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Chenonceau : un jeu de données inédit

Contexte du projet

Les IRMs cliniques sont des outils de prédilection pour imager le cerveau humain : ils permettent de le cartographier de manière non-invasive en offrant une gamme étendue de contrastes. Les systèmes actuels présetent un champ statique puissant, mais sont équipés de gradients dont la puissance reste modérée, et qui limite la résolution spatio-angulaire des données d'imagerie. Ces modalités ne permettent pas d'observer l'organisation fine du cerveau. Pour aller au-delà de ces limites, il est nécessaire de recourir à des systèmes d'imagerie avancés et à des protocoles d'acquisition exigeants.

À cet égard, les approches reposant sur l'utilisation d'échantillons post mortem jouent un rôle de plus en plus important. Bien que ces derniers présentent des caractéristiques défavorables pour l'IRM pondérée en diffusion (IRMd), la possibilité d'étendre le temps d'acquisition permet de concevoir des protocoles d'acquisition spécifiques, dédiées à l'exploration fine des structures anatomiques cérébrales et leurs microstructures.

Les IRMs précliniques se distinguent des imageurs cliniques car ils bénéficient à la fois d'un champs statiques élevés et de gradients puissants favorables à une IRMd de haute résolution. Dans la littérature, le cadre préclinique a ainsi permis la mise en oeuvre de larges campagnes d'acquisition post mortem, perfectionnant la routine de préparation et de conservation des tissus, ainsi que le développement de séquences d'acquisition avec une excellente résolution et une forte pondération en diffusion. Ces campagnes concernent toutefois des échantillons de dimension réduite, n'excedant pas quelques cm 3 .

Le projet Chenonceau ambitionne de fournir à la communauté neuroscientifique un jeu de données unique d'IRM anatomique et de diffusion acquises à 11,7T à une résolution mésoscopique. L'objectif est de développer une cartographie fine des structures anatomiques cérébrales, de leur connectivité et de leur ultra-structure.

À cette fin, le jeu de données s'appuie sur le puissant système préclinique Bruker 11,7T pour concevoir un protocole d'acquisition de pointe, combinant une acquisition IRMd HYDI de 200µm avec des acquisitions anatomiques pondérées en T 2 à 100µm et 150µm .

Concilier la taille réduite du tunnel de l'imageur préclinique avec le cerveau humain est un enjeu majeur. La stratégie consiste à découper le cerveau en échantillons à acquérir séparément. Un recalage a posteriori permettra de réunir les différents volumes pour former un cerveau complet.

Protocole d'acquisition

En premier lieu, un cerveau humain a été acquis en collaboration avec l'Institut du Don du Corps du Laboratoire d'Anatomie de l'Université de Tours (Pr. C. Destrieux, Faculté de Médecine, CHU Bretonneau, Tours, France). Toutes les manipulations de l'échantillon ont été préalablement validées par la procédure CODECOH.

En prévision de la campagne d'acquisition conséquente qui était programmée, un protocole de fixation particulièrement exigeant a été mis en place. Ce dernier a notamment combiné fixation par immersion et perfusion pour garantir l'homogénéité de la fixation au sein de l'échantillon. Avec la réhydratation des tissus, près de 9 mois ont été nécessaires pour que les tissues soient prêts.

Pour rendre le cerveau compatible avec l'image préclinique, il a été nécessaire de procéder à la division de celui-ci en échantillons de taille réduite. Le cerveau a d'abord été divisé en deux hémisphères, plus le tronc cérébral et le cervelet. Ensuite, chaque hémisphère a été découpé en tranches épaisses de 4 cm maximum dans le sens médio-latéral. Enfin, chaque tranche a été découpée en blocs d'une largeur maximale de 4 cm dans la direction rostro-caudale. Chaque bloc x a ensuite été placé dans un récipient dédié et recouvert de gel afin de maintenir l'échantillon en place.

Le protocole d'acquisition a été réparti sur plusieurs imageurs. Le système clinique Siemens 3T Prisma a été utilisé pour imager le cerveau entier avant la découpe, et pour imager tous les blocs après la coupe. Les séquences utilisées étaient des séquences SPACE pondérées en T 2 , avec une résolution respective de 500 µm et 400 µm.

Un système IRM préclinique Bruker 11.7T a été utilisé pour les scans mésoscopiques anatomiques et pondérés en diffusion. La taille des champs de vue (FOV) a été maximisé pour atteindre une longeur de 5.6 cm, avec une section de 4.2x4.2cm 2 .

Pour acquérir les images pondérées en diffusion, une séquence EPI 3D segmentée Pulsed Gradient Spin Echo (PGSE) a été choisi. Résolu à 200µm, elle présentait 3 pondérations distinctes en diffusion b=1500/4500/8000 s.mm -2 chacune avec respectivement 25/60/90 directions et avec 17 volumes b=0s.mm -2 (TE/TR=24,3/250 ms, δ/∆=5/12,3 ms, matrice 212x204, 280 slices, FA=90°, RBW=300kHz, 30 segments, Gmax=289/500/666mT/m, 1 moyenne, 82h). Un grand nombre de segments a été choisi pour réduire considérablement les effets de susceptibilité et les distorsions liées aux courants de Foucault.

Les acquisitions anatomiques reposaient sur deux acquisitions. Une séquence pondérée en T 2 3D-SE à 100µm (TE/TR=20/500ms, matrice 400x400, 560 slices, FA=90°, RBW = 50kHz, 1 moyenne, 22h13min). La seconde séquence était pondérée en T 2 , 2D-SE à 150µm (TE/TR= 16/6600ms, matrice 275x256, 374 slices, FA=90°, RBW=66kHz, 9 moyennes, 3h26min). La séquence SE 2D a permis une cartographie rapide des tissus avec un bon rapport signal sur bruit (SNR) et un excellent contraste entre la substance grise et la substance blanche. La séquence SE 3D a présenté moins de contraste que la séquence 2D en raison d'un temps de répétition réduit. Cependant, elle a bénéficié d'un SNR plus élevé et d'une plus meilleure résolution, 100µm, qui permet de visualiser des détails anatomiques plus fins.
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Résumé de la thèse

Introduction

La cartographie de la connectivité anatomique du cerveau humain est un défi scientifique majeur. Décrire la trajectoire et les connexions réalisées par les cent milliards de neurones qui composent le cerveau est une tâche titanesque et multi-échelle.

Les grands faisceaux ont été décrits par des approches anatomiques classiques dès le 20ème siècle. Ces travaux ont également révélé l'existence de faisceaux plus courts, appelés superficiels, qui définissent la connectivité entre les régions anatomiques voisines. La taille réduite et la forme complexe de ces faisceaux pose un sérieux défi à leur visualisation, si bien que leur description demeure à ce jour débattue.

Le premier axe de recherche de cette thèse vise à repousser les limites de l'IRM de diffusion et proposer un nouveau jeu de données ex vivo du cerveau humain entier. Intitulé Chenonceau, il est dédié à la caractérisation de la connectivité fine du cerveau. Le jeu de données est composé de deux acquisitions anatomiques pondérées en T 2 à une résolution de 100 et 150µm, ainsi que 175 jeux de données d'IRMd à une résolution de 200µm et une pondération s'élevant jusqu'à 8000 s.mm -2 . Plus de 4500 heures d'acquisitions, réparties sur deux années et demie ont été nécessaires pour acquérir ces données.

L'intégralité de la démarche est présentée, incluant le protocole de coupe et de préservation des pièces anatomiques, le détail des séquences IRM utilisées ainsi que la description du pipeline de traitement des images. Une attention particulière est portée à la définition de l'étape de recalage qui recompose le volume entier à partir des acquisitions réalisées sur des champs de vue partiels.

La seconde partie de la thèse est dédiée à l'exploration de ce jeu de données unique, afin d'en extraire la connectivité profonde et superficielle avec une précision inédite.

La troisième partie de la thèse porte sur le développement d'une nouvelle méthode de suivi de fibres, fondée sur l'utilisation d'un modèle de verres de spins. Ce dernier exprime le problème de tractographie sous la forme d'un ensemble de fragments de fibres, appelés spin, distribués dans l'échantillon et dont la position et l'orientation, ainsi que les connexions qu'ils établissent sont associés à une quantité d'énergie et dont le minimum correspond à la connectivité structurelle recherchée.

Cette thèse propose de remplacer la méthode de Metropolis-Hastings utilisée pour l'optimisation par un agent entraîné dans un cadre d'apprentissage par renforcement. Cette nouvelle formulation vise à améliorer le choix des actions, qui ne seraient plus tirées aléatoirement, mais dictées par une stratégie apprise par l'agent, fruit de ses interactions passées avec des environnement semblables. xi L'acquisition du jeu de données de Chenonceau correspondait à l'acquisition de 45 champs de vue distincts, couvrant les 13 blocs. Cela a représenté 4600 heures d'acquisition, ce qui équivaut à une période de 6 mois d'acquisitions ininterrompues. En pratique, le partage du système et les défaillances occasionnelles des imageurs ont porté la durée de la campagne à 2 ans et demi.

Le suivi et la validation de qualité des images s'est fondé sur l'étude du SNR. Le SNR était globalement satisfaisant, aussi bien pour les acquisitions pondérées en T 2 -SE, que les acquisitions pondérées en diffusion (Figure 2). Nous avons montré de plus que le SNR état stable à travers toute la période d'acquisition des images, avec aucune tendance visible sur le SNR des images acquises en fonction du temps (Figure 3). 

Traitement des images

L'assemblage de tous les champs de vue pour reconstruire l'ensemble des données IRM mésoscopiques du cerveau à 11,7T a nécessité le développement d'un pipeline dédié. Sa première étape est le pré-traitement des images pour préparer les champs de vue individuels (reconstrucxii tion, flipping, débruitage, correction du biais). Dans un second temps, l'étape de recalage calcule les transformations des champs de vue vers le MNI, ce qui permet de reconstruire le volume entier du cerveau dans les trois modalités. Une fois le cerveau reconstruit, les algorithmes classiques liées à l'imagerie de diffusion (calcul des modèles locaux, tractographie) permettent de modéliser le chemin des fibres.

Le recalage compose une part importante du travail presenté ici. L'étape vise pour chaque FOV, et pour chaque modalité, à définir la transformation qui amène le FOV de son espace natif à l'espace MNI ICBM152 asymétrique 2009c. Le calcul direct de ces transformations est délicat, car il nécessite la définition a priori du FOV dans le référentiel MNI, et le calcul d'un recalage complexe tenant compte de diverses déformations. Afin de pallier ces difficultés, le processus de recalage est décomposé en trois étapes de recalage plus faciles à gérer, s'appuyant sur les images du blockface et des blocs, acquises sur le système clinique Siemens 3T (Figure 4).

Chaque étape de recalage corrige diverses déformations, notamment les déformations dues aux séquences d'acquisition, ainsi que les déformations des tissus causées par la coupe et le stockage. Comme ces déformations sont locales et fortement non linéaires, leur correction nécessite l'utilisation d'approches difféomorphes. ANTs est choisi pour sa rapidité, sa facilité d'utilisation, sa polyvalence et sa robustesse.

Ces recalages intermédiaires, spécifiquement du champs de vue au bloc et du bloc au cerveau entier, sont des recalages d'images mieux résolues mais partielles vers un volume entier, moins bien résolu. C'est un problème bien étudié pour les études histologiques 3D, où les slices 2D sont recomposés dans un unique volume. Dans le projet Chenonceau cependant, les images à recaler sont des volumes 3D. Ce genre de problème s'appelle "part-to-whole registration" et demeure peu étudié dans la littérature médicale.

La démarche que nous proposons ici repose sur la définition a priori de l'espace que doit occuper le volume partiel à recaler au sein du volume complet. Ces aires dites cibles sont définies à l'aide de recalages affine préliminaires et des informations liées aux acquisitions. xiii La composition de tous les FOVs permet de reconstruire l'ensemble du dataset Chenonceau, selon les trois modalités (Figure 5). 

Exploration de connectivité structurelle

Dans le cadre de cette thèse nous proposons également une première exploration de la connectivité structurelle du dataset Chenonceau. À cette fin nous réalisons une modélisation 'analytical Q-Ball' du shell à b=8000 s.mm -2 . L'approche 'streamline regularized' a été choisie pour la tractographie, car sa simplicité et efficicacité computationnelle permettent de construire le connectogramme complet dans des échelles de temps raisonnables.

La compatibilité du tractogramme vis à vis d'atlas existants de la substance blanche est xiv évalué. Nous investiguons en particulier la possibilité d'extraire les faisceaux défini précédemment du tractogramme de Chenonceau. Les résultats sont positifs car les grands faisceaux (Figure 6) aussi bien que les faisceaux courts sont catégorisés de manière fiable. (Figure 7). Ces étiquettages de faisceaux permettent d'établir la compatibilité du dataset proposé avec le cadre traditionnel de l'étude de la connecticité structurelle et ouvrent donc la voie à l'utilisation du dataset pour construire de nouveaux atlas des faisceaux de la substance blanche.

Le renforcement pour résoudre la tractographie globale Contexte L'IRM pondérée en diffusion, en association avec des modélisations locales permet d'accéder aux orientations des principales populations de fibres au sein des voxels de la substane blanche. Les algorithmes de tractographie s'appuient sur ces informations locales pour construire des lignes de courant dont les trajectoires approchent celles des fibres nerveuses. Pour que cette approximiation soit la meilleure possible, il est nécessaire de réaliser un compromis entre les informations décrivant la distribution des fibres et les règles a priori définissant les attentes anatomiques pour les fibres.

La tractographie globale à verres de spins exprime le problème de tractographie sous la forme d'un ensemble de fragments de fibres, appelés spin, distribués dans l'échantillon et dont la position et l'orientation, ainsi que les connexions qu'ils établissent sont associés à une quantité d'énergie. La construction des tracts résulte du déplacement et de la connexion des spins, dans le but d'atteindre le minimum global d'énergie. Cette thèse propose de remplacer la méthode de Monte-Carlo par chaînes de Markov utilisée pour l'optimisation par un agent entraîné dans un cadre d'apprentissage par renforcement.

Présentation de la démarche

L'un des principaux inconvénients des approches à verres de spin est le long temps de calcul de la méthode de Metropolis Hastings. Elle repose sur la proposition de petites modifications aléatoires du tractogramme, et leur acceptation est conditionnée par le ratio de Green, qui devient progressivement plus sélectif durant l'inférence du tractogramme.

Proposer de petites itérations aléatoires pour parcourir l'espace extrêmement vaste de toutes les configurations de spin possibles prend du temps, en particulier parce que les modifications proposées ne forment pas un chemin court vers une configuration satisfaisante. De plus, toutes les propositions rejetées constituent une perte de calculs, prolongeant le temps d'inférence sans amélioration du tractogramme.

L'apprentissage par renforcement (RL) est une branche distincte de l'apprentissage automatique, qui désigne la formation d'un agent, dans le but d'atteindre un certain objectif, au travers d'une interaction directe avec son environnement. Des avancées récentes ont démontré la capacité de cette approche à maîtriser des environnements extrêmement complexes.

La motivation pour implémenter une tractographie à verres de spin s'appuyant l'apprentissage par renforcement s'articule autour de trois arguments. Tout d'abord, durant l'apprentissage, l'agent interagit avec le tractogramme et apprend à construire des configurations de spin pertinentes. Au moment de l'inférence, la connaissance accumulée permet de choisir directement les meilleures actions, menant directement à une configuration optimale des spins. Par opposition à un choix aléatoire des modifications evaluées a posteriori, le choix direct des actions optimales devrait mener à une réduction du temps de calcul du tractogramme. D'autre part, bien que l'optimiseur Metropolis Hastings soit fiable, il ne permet pas d'établir des stratégies à long terme : les actions sont évaluées et acceptées si elles améliorent individu- xvii ellement le tractogramme. En revanche, dans l'apprentissage par renforcement, les valeurs des actions sont définies en fonction des valeurs des actions futures. L'agent est donc encouragé à construire des stratégies durables, afin d'atteindre une récompense finale plus importante. Dans le contexte de la tractographie, cette nouvelle capacité pourrait fournir les outils nécessaires pour démêler des configurations de fibres complexes, car l'agent définit la trajectoire de la fibre non seulement en fonction de l'information DW locale, mais aussi en fonction de l'information DW dans les voxels à venir.

Enfin, l'apprentissage par renforcement apparaît comme une alternative prometteuse à l'apprentissage supervisé. En effet, l'apprentissage par renforcement repose sur l'experience acquise par l'interaction, et supprime donc le besoin de datasets labelisés. Or, dans le domaine de la tractographie, il est à ce jour difficile d'établir ces bases de donneés, en particulier parce que le consensus sur la nature des faisceaux neuronaux et les outils pour exploiter les images pondérées en diffusion est faible.

Présentation de l'implémentation

La reformulation du problème de tractographie globale par verres de spin dans le cadre de l'apprentissage par renforcement suit plusieurs principes clés.

Tout d'abord, nous avons souhaité traduire la tractographie globale en un état avec la propriété de Markov, car c'est le contexte le plus favorable pour la formation de l'agent. L'avancement de la tractographie doit donc décrire non seulement les informations anatomiques mais aussi le chemin parcouru par la fibre en cours de construction, ainsi que la trajectoires des fibres précédemment reconstruites. Cette triple description caractérise de manière exhaustive la tractographie et permet de définir une causalité claire entre les états successifs.

Deuxièmement, la résolution efficace du problème de tractographie à verres de spin nécessite une stratégie multi-échelle. À l'échelle locale, le choix doit s'orienter vers le spin dont la position est la plus adéquate. L'échelle intermédiaire guide le choix de la trajectoire en levant les ambiguïtés éventuelles issues des informations anatomiques. Enfin, l'échelle globale assure que la fibre finale présente une trajectoire anatomique plausible. Les réseaux de neurones composés de couches de convolution apparaissent comme un choix technologique pertinent dans ce cadre. Elles permettent de représenter et de traiter des informations spatiales riches, avec un coût de calcul limité, et elles sont spécifiquement conçues pour extraire des caractéristiques multi-échelles.

Dans les approches conventionelles, les spins sont vus comme des fragments de fibres dispersés dans le volume, qu'il faut connecter au mieux, pour reconstruire des fibres optimales. Le cadre proposé modifie cette définition, et les spins deviennent des fragments de fibre potentiels, que l'agent peut générer à volonté afin de s'y connecter. Ces spins potentiels sont distribués régulièrement dans le volume, et les directions possibles sont définies par les informations issues des modèles locaux. Dans ce nouveau cadre, la construction d'une fibre est assez similaire aux approches de streamlining, où une fibre est étendue pour un certaine distance le long d'une des directions disponibles.

Cependant, la terminologie des spins reste pertinente car la caractéristique clé de la tractographie basée sur les spins est de rechercher la meilleure configuration pour les spins disponibles, en faisant des compromis dans la connexion des spins afin de présenter le résultat final le plus cohérent à l'échelle globale. Comme l'agent est encouragé à utiliser un nombre limité de spins par voxel, il est encouragé à rechercher des compromis similaires lors de l'extension d'une fibre.

Résultats préliminaires

Pour résoudre le problème, nous décidons d'utiliser un algorithme dit "Deep-Q Learning" pour la formation de l'agent. La fonction d'approximaton est un "Fully Convolutional Network", sans réduction de taille. Nous démontrons que le réseau est capable d'apprendre de manière stable sur un cas simple, et de maximiser le gain final (Figure 8). Les stratégies mises en place présentent des aspects récurrents. Ainsi à la fin de l'apprentissage, l'agent a tendance à connecter les spins de manière rectiligne, ceci est une amélioration vis à vis de la trajectoire ondulante résultant d'un choix aléatoire. De même, après l'apprentissage, l'agent choisit de ne pas construire de fibres qui bouclent. Enfin, les fibres semblent capables de contourner les obstacles, de sorte à s'étendre jusqu'à atteindre le cortex.

Malgré ces premiers résultats positifs, ces résultats montrent de nombreuses pistes d'amélioration. Les fibres rectilignes révèlent notamment la sous-grille cartésienne utilisée pour l'implémentation, établissant une organisation peu naturelle des fibres. Enfin le passage à l'échelle, à la fois vers un échantillon plus grand et vers la 3D n'est pas encore assuré et requiert des développements supplémentaires. 

Conclusion

Le travail doctoral présenté ici se consacre à l'exploration de la connectivité structurelle du cerveau humain, suivant deux axes complémentaires. Le projet Chenonceau vise à fournir le premier jeu de données du cerveau humain entier, avec une forte sensibilisation à la diffusion et une échelle mésoscopique. L'acquisition de ce jeu de donnée a requis la mise en place d'un processus de fixation de pointe, d'un protocol de stockage exigeant ainsi que d'un protocole d'imagerie unique. Ces éléments ont été dévelopé au cours d'une thèse antérieure et nous montrons ici la stabilité et fiabilité de cette méthodologie.

Une proposition essentielle du projet Chenonceau est d'utiliser un système IRM préclinique pour l'acquisition d'un cerveau humain entier. Cet imageur permet de repousser les limites de l'IRMd post mortem, mais il nécessite également la division du cerveau en échantillons plus petits, compatibles en taille avec le système IRM. Cette thèse présente le pipeline développé pour reconstruire à partir des acquisitions individuelles, soit 45 volumes distincts, selon 3 modalités différentes, le volume cérébral entier.

La stratégie proposée est basée sur la division du recalage en trois transformations plus petites et plus faciles à définir, en s'appuyant sur l'utilisation de volumes de référence intermédiaires. Nous soulignons la nécessité d'utiliser des recalages difféomorphes, permis par la boîte à outils ANTs. L'approche proposée, et notamment la partition du volume cérébral entier à l'aide d'un algorithme de type watershed, constitue une nouvelle approche pour résoudre les problèmes '3D part-to-whole registration'. Chaque étape du recalage est présentée en détail et validée.

Enfin, nous montrons que le jeu de donnée Chenonceau est compatible avec les atlas de faisceaux existants. Les faisceaux longs sont trouvés de manière fiable, prouvant que les fibres sont capables de passer de d'un bloc à l'autre, réalisant une trajectoire complète au sein du cerveau. Le fait qu'une grande majorité de faisceaux courts soit retrouvés au sein de Chenonceau démontre que le jeu de données est adéquat pour caractériser la trajectoire des faisceaux courts et complexes.

Le second axe de recherche de la thèse a été le développement d'une nouvelle approche de la tractographie par verres de spin. Celle-ci repose sur l'utilisation de l'apprentissage par renforcement et met à profit les nouveaux outils de l'apprentissage profond.

La présente thèse présente l'implémentation de la tractographie globale dans le cadre de l'apprentissage par renforcement. Une attention particulière est consacrée à ce que le problème soit formulée de manière favorable, c'est à dire compatible avec l'utilisation de réseaux de convolution et présentant des états vérifiant l'état de Markov. Une première implémentation et un entraînement de l'agent sont présentés. Ce dernier obtient un succès fiable sur un jeu de données simple. 
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General Introduction

The exploration of the brain anatomy spans millennia and blends with the history of human civilizations. The Egyptian highest priest Imhotep consigns within the Edwin Smith surgical papyrus the first written reference to the human brain, as early as in the 17 th century BC. The document is a surgery manual, describing various injuries and wounds, including the incredible description of a man left speechless after a head wound. However, the Egyptian belief that emotions and reason are hosted in the heart limits the medical investigation.

This belief is revisited a millenium later, by the ancient Greece philosophers. The school of Alexandria in particular, becomes a prominent actor of medical research and innovation in the Antiquity. Among the scholars whose name traveled to this day, Galen of Pergamon is recognized as the most influential. He notably publishes De usu partium, whose 8 th volume is dedicated to the description of the brain. It notably establishes the organ as the nerve center of the human body, and receptor of all emotions and voluntary movement. The work of Galen shapes the practice of medicine for the following millennium, through all the Middle Ages.

The Renaissance questions this heritage and urges medical scholars to turn to the direct exploration of the human body. Universities of northern Italy, including Padua, Bologna and Pisa become the new epicenter of this research and embrace the innovations proposed by Andreas Vesalius. He promotes the extensive use of dissections of human bodies to explore the anatomy. His masterpiece is the De humani corporis fabrica, a set of seven books on human anatomy, richly illustrated and depicting the body with an unprecedented precision.

From the 17 th century, the investigation of the brain anatomy accelerates. Advances in the fixation protocol allows the British anatomist Thomas Willis to explore the deep structures of the brain. In Cerebri anatomi cui accessit nervorum descriptio et usus he describes the globus pallidus, the thalamus and names the Willis polygon. In the 18 th century, the research flourishes in the Universities of Northern Europe, through the introduction of new methods, including the use of microscopic observations and ink injection. At the end of the century, Luigi Galvani establishes the existence of electrical currents in the brain, offering a scientific explanation to the interaction between the mind and body.

The silver staining developed by Camillo Golgi is a pivotal advancement of the 19 th century. By coloring a small fraction of the cells present in a sample, this staining allows to characterize their individual properties. Improved by Santiago Ramón y Cajal, this approach enables the description of individual neurons. These observations lead him to establish the Neuron doctrine which affirms that the nervous system consists of discrete individual cells. The expansion of the histological techniques supports the creation of the Vogt-Vogt school, dedicated to the investigation of the brain myeloarchitecture. Member of the school, Korbinian Brodmann investigates the cytoarchitecture of the brain and establishes the first mapping of the entire human cortex, identifying 52 cortical areas. Despite improvements brought by modern technologies, the Brodmann atlas remains referenced to this day.

The 20 th century sees the emergence of non-invasive tools to study the brain. This new field of research is sparked by Wilhelm Conrad Röntgen, with the discovery of the ability of X-rays to cross biological tissues. The field undergoes fast development in the beginning of the century, supported by the major advances in the understanding of radioactivity. Those developments lead to the conception of the modern CT scan in the 1970s. In parallel, the century also sees the development of the Nuclear Magnetic Resonance theory (NMR). First described by Isidor Rabi in 1938, the phenomenon is further characterized by Felix [START_REF] Bloch | Nuclear induction[END_REF]Edward Mills Purcell in 1946. In 1973, Paul Lauterbur achieves a multi-dimensional spatial encoding allowing him to publish the first NMR image. The acquisition process is significantly improved by Peter Mansfield with the introduction of the Echo-Planar Imaging (EPI) technique. In 1980, the MRI is first used for a clinical purpose, locating a tumor within a patient's chest. Since, it has become a fundamental tool of modern medicine, to the point that the ratio of MRI systems per population serves as an evaluation of the medical equipment of a community.

The focus of this thesis is to employ a specific MRI contrast, called diffusion (dMRI), to explore the structural connectivity of the brain. The latter is the description of the trajectories and the connections made by the neural fibers. Mapping the hundred billion neurons that make up the human brain is a titanic and multi-scale task, but it is key to deepen our understanding of the brain. Indeed, while neurons intervene in a vast range of processings, they all share a fundamental property : they convey information through an identical electrical impulse. And thus, what gives meaning to a particular stimulation is not only some chemical exchanges, but a specific arrangement of neurons which interact collectively to interpret the stimulation. Those microscopic networks build up to macroscopic functional areas and shape the functional organization of the brain. Consequently, mapping the brain networks is describing how the brain processes information. The more the map is precise, the better the understanding of the information encoding in the brain will be.

Mapping the human brain and modeling its structure, ultra-structure and functioning has become the main target of the neuroscientific community, addressing both healthcare and fundamental questions. The quest has lead to two complementary strategies.

The first strategy is wide phenotyping, also called population imaging, and relies on the existing healthcare centers to widely map the population and provide large neuroimaging cohorts. However, the amount of data acquired per subject remains limited. The second strategy leverages state of art neuroimaging tools to increase the spatial, temporal, spectral and angular resolutions of images, in order to map the finest brain structures. This deep phenotyping approach relies on a limited number of high-end imaging systems installed in advanced research centers. Their limited availability restricts them to studies targeting a small number of subjects. Some of them are further confined to ex vivo imaging. But contrary to population imaging, they can deliver a much higher resolution and number of measurements per subject. Ultrahigh and extreme field MRI are part of this advanced imaging modality, allowing to map the brain at the submillimeteror mesoscopic-scale, depending on the nature of the sample.

The two strategies are complementary, with the wide phenotyping allowing to investigate the intersubject variability of the brain, while the deep phenotyping allows to map individual brain structures at unprecedented resolutions, on a reduced number of subjects.

The first research axis of this thesis participates in the deep phenotyping effort with the acquisition and exploitation of the Chenonceau project. The latter seeks to investigate the anatomy, connectivity and microstructure of a single ex vivo human brain, pushing the limits of spatial and angular resolutions with ultra-high field 11.7T MRI. The project leads to a large number of developments, including the definition of a specific preparation and conservation setup of brain tissues to allow for the long acquisition campaign, the design of a dedicated imaging protocol on a Bruker 11.7T MRI system and the establishment of a specific pipeline to reconstruct the mesoscopic anatomical and diffusion MRI dataset from the large set of acquisitions performed on restricted fields of view. The following investigation of the dataset focuses on the exploration of the structural connectivity of the brain.

This project is lead in collaboration with the INSERM iBrain U1253 unit (Pr. Christophe Destrieux, CHU Bretonneau, Faculté de Médecine de Tours, France) and the Institute of Neuroscience and Medecine 1 (Pr. Katrin Amunts and Pr. Markus Axer, Forschungszentrum, Jülich, Germany). This project is funded by the French FibrAtlas II and III ANR project and the European flagship Human Brain Project (HBP)(FET-Open SGA2 and SGA3 phases).

The second research axis of this thesis is the development of a new fiber tracking algorithms based upon the global spin glass tractography frame. The latter expresses the tractography problem in the form of a set of fiber fragments, called spins, distributed in the sample and whose position and orientation, as well as the connections they establish, are associated with a certain quantity of energy. The construction of the neural tracts results from the displacement and connection of the spins, with the aim of reaching the global energy minimum.

This thesis proposes to replace the Metropolis Hasting method used for optimization by an agent trained in a reinforcement learning framework. This new formulation aims at improving the choice of actions, which would no longer be randomly drawn, but dictated by a strategy learned by the agent, fruit of its past interactions with similar environments.

The anticipation and projection capacities of such agent appear particularly adequate to propose the most relevant trajectory in regions where the diffusion information is ambiguous. Moreover, the possibility for the algorithm to learn through interactions allows to circumvent the difficulty of establishing datasets of ground-truth bundles.

The following thesis is organized along three main parts. The first part sets the scientific background of the proposed investigation. The Chapter 2 presents an anatomical overview of the human brain, from the gross anatomy to the detail of the white matter organization. The Chapter 3 presents the key concepts of the Magnetic Resonance Imaging. The diffusion weighting is presented thoughtfully. The chapter is concluded with a brief presentation of the challenges associated with ex vivo dMRI acquisitions. The Chapter 4 presents an overview of the tracking algorithms, with notably a review of the new generation of fiber tracking approaches powered by machine learning technologies.

The second part of this thesis presents the developments associated with the Chenonceau Project. Chapter 5 presents the establishment of the dataset. First, it describes the acquisition protocol, including the sample cutting and storage policies and the detail of the MRI sequences. Second, it presents the post-processing of the images. Special attention is dedicated to the depiction of the registration process, monitoring the reconstruction of the whole brain volume from individual acquisitions. The Chapter 6 presents the first inference of the structural connectivity based upon the Chenonceau dataset. The associated vast tractogram, rich of a hundred million tracks, is processed to highlight the major and superficial bundles of the human brain.

The last part of this thesis is dedicated to the description of the new global tractography approach. After introducing the fundamentals of reinforcement learning, the Chapter 7 presents how the spin-based global tractography problem is redefined as a reinforcement learning problem. The first results of the proposed approach are presented.

The final Chapter 8 reviews the contributions of this work and details the future developments.

Part I

Background

Chapter 2

The anatomy of the human brain

This chapter is dedicated to a brief presentation of fundamental anatomical concepts. It starts with the description of the main components of the brain, then discusses the properties of gray and white matter, and finally outlines the microstructural specifics of the brain. 

Macroscopic description

The human nervous system defines how we perceive our surroundings, how we interact with it, and by extension our general behaviour. This titanic functions are carried through a vast network of neurons, nerves and ganglions called the neural system. It is morphologically split into a central nervous system (CNS) and a peripheral nervous system (PNS). The PNS designates the multitude of nerves that run across the body, gathering sensory information and triggering muscles. The CNS has two parts, the spinal cord and the brain. It is responsible for centralising sensory information, processing it and issuing relevant motor commands. The PNS and CNS communicate through the spinal nerves, running along the spinal cord, and the cranial nerves emerging at the junction of the brain and the spinal cord. The CNS is a soft organ that requires a protective covering. The brain specifically, is shielded by the skull, but also by several layers of protective membranes known as the meninges (Figure 2.1). The outermost layer is the dura mater, it is a thick and tough fibrous membrane subdivided into the endosteal layer and the meningeal layer, respectively adhering to the skull and to the second meningeal layer. At the midline, the interstice between the two layers is called the superior sagital sinus. Beyond improving the robustness of the skull, the dura mater supplies vascularly the calvaria; and is the support of several cranial nerves, which include the trigeminal nerve, parts of the vagus nerve and the first two cervical nerves. Those are the closest sensory nerves to the brain, as the inner meninges and the brain itself are not innerved [START_REF] Ebrall | Thieme Atlas of Anatomy (Head and Neuroanatomy)[END_REF]].

The meninges

The meningeal layer is followed with the arachnoid mater. It is a translucent layer with numerous trabeculae, that is spiderweb-like fibers spanning across the subarachnoid space to reach the last membrane. The latter is named pia mater and is a delicate membrane that tightly adheres to the surface of the brain, reproducing its intricate convolutions.

The subarachnoid space is filled with cerebrospinal fluid (CSF). It cushions potential abrupt movement of the brain, preventing collisions with the dura mater. It provides also mechanical support to the brain by alleviating 97% of its weight. Finally it serves as waste cleaner, evacuating molecules in excess in the brain environment as well as harmful elements. The composition of the CSF is thus indicative of the brain's condition. In addition, the subarachnoid space supports the major cerebral arteries that supply the brain.

Different parts of the brain

The brain consists of three parts : the cerebrum, the cerebellum and the brainstem (Figure 2.2).

Brainstem

The brainstem is the junction between the cerebrum and the spinal cord. In ascending order, it consists of the medulla oblongata, the pons and the midbrain. Anatomically, it is an extremely dense region, containing major neural pathways and their associated nuclei.

The brainstem is a crossing point for motor and somatosensory neurons. The anterior part of the brainstem is thus dedicated to the descending motor tracts, hosting notably their decussation in the medulla oblongata; while the sensory tracts ascend along the medial lemniscus.

The brainstem is also the first emergence area for fibers leaving the CNS, containing 10 out of the 12 cranial nerves(Figure 2.3). Their exit points are distributed vertically as follows: The cranial nerves include afferent and efferent nerves, and they can belong to the somatic system, monitoring interaction with the environment, or the autonomic system, regulating organs.

The nuclei associated with each nerve are not only distributed vertically, similarly to the exit points, but also laterally according to their function. Thus, from the innermost to the outermost area, lie the somatic afferent area first, then the visceral efferent nuclear, the visceral afferent and finally the somatic afferent.

The brainstem also hosts the pontine nuclei, which is located in the pons and is reponsible for relaying the motor as well as the sensory information to the cerebellum.

Cerebellum

The cerebellum is situated at the back of the brain, just beneath the temporal and occipital lobes, inside the posterior cranial fossa. It shares several similarities with the cerebrum. On the surface, it is also covered with gyris, called folia, although they have a different shape : they are regularly spaced, fine and horizontal. The cerebellum also presents two hemispheres, which can be further divided into 3 lobes : the anterior lobe, the posterior lobe and the flocculonodular lobe. The similarities extend to the internal organisation of the cerebellum. Four cluster of deep nested nuclei (fastigial nucleus, emboliform nucleus, globose nuclei and dentate nucleus) regulate the nervous influx among different cortical areas (Figure 2.4). The latter are composed of only 3 layers, with the Perkinje and the granular layer concentrating body cells, and the molecular layer containing the axons of granule cells. The cerebellum is an important actor of movement coordination. First, it is responsible for the extensor muscles, which maintain the posture and balance, and thus supplements the cerebrum, which focuses on effective muscles, intended for voluntary gestures. Additionally the cerebellum assists the cerebrum by tracking the execution of voluntary movements : by synthesising the sensory information with the motor signals, the cerebellum is able to modulate the command, to keep the gestures adequate with the environment. 

Description of the cerebrum

The cerebrum has an oval shape with an average volume of around 800cm 3 [START_REF] Henery | The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas[END_REF]. The great longitudinal fissure splits the cerebrum along the median axis, into 2 symmetric hemispheres. Deep and intricate grooves run across its surface, giving it its characteristic look. These depressions, called sulci, are also important anatomical markers, helping define borders between different anatomical areas.

Lobes

The brain is divided into five lobes, whose boundaries correspond to different sulci. A popular, although significantly simplified model, is to associate each lobe with a few cognitive functions, thus drawing a coarse functional organization of the cerebrum (Figure 2.6). • The frontal lobe extends from the anterior extremity of the cerebrum to the central sulcus, with its inferior border delimited by the sylvian fissure. It is a major associative region. Its anterior part, the prefrontal lobe, is dedicated to the processing of abstract concepts and is thus involved in general decision-making and reasoning. It also plays a role in the storage of short-term memory. Posterior to the prefrontal lobe lies the premotor area, in charge of planning any voluntary action. The Broca area, a key area of speech, is situated at the inferior extremity of the premotor area, overlapping with the prefrontal cortex. Finally, the posterior extremity of the frontal lobe is the primary motor cortex, in charge of ordering the execution of movements.

• The parietal lobe is located at the back of the cerebrum, bounded by the central sulcus, the parieto-occipital sulcus and the silvian fissure. It is primarily dedicated to the integration of somatic sensations : touch, pain and temperature. In addition, its position at the crossroad with the occipital and temporal lobe results in a key associative area known as the temporo-parietal junction (TPJ). It combines somatic, auditory and visual information to allow for complex cognitive functions. Thus, the left TPJ is home to the Wernicke area, a crucial element in the language processing system.

• The temporal lobe is located at the front of the cerebrum, beneath the Sylvian fissure and extends up to the lateral parieto-temporal line. It harbors two main systems. First, the posterior-superior part of the temporal lobe hosts the auditory cortex. The Heschl's gyrus (primary auditory cortex), in charge of the basic processings of the signal, is surrounded with the secondary auditory cortex performing higher level analysis. In the left hemisphere, the Wernicke area adjoins medially the primary cortex. Second, the middle sections of the lobe are dedicated to the encoding of long term memory. The hippocampus in particular, is a structure nested in the limbic system, and is responsible for the consolidation of episodic memory.

• The occipital lobe is located at the inferior dorsal extremity of the cerebrum, separated from the parietal lobe by the parieto-occipital sulcus. It consists of the primary and secondary visual cortex. Those areas answer for an exhaustive processing of the visual information, from the reception of the raw signal, to the extraction of features such as the color, the estimation of the distance, and the identification of known items.

• The insula is the smallest of the five lobes and is located within the Sylvian fissure. It is divided into the anterior insula, subdivided itself into three or four short gyri, and the posterior insula consisting of a single gyrus. This lobe is associated with a high number of cognitive functions, including the monitoring of the body's homeostasis, motor control and emotions. Moreover, the insula appears to be involved in drug addiction mechanisms.

Grey matter

The gray matter designates areas with high concentration of neuron cells, by opposition to the white matter, consisting firstly of neuron tracts. In the cerebrum, the gray matter is situated on the surface, the cortex, and in deep structures, namely the basal ganglia and the diencephalon( Figure 2.7).

Cortex

The cortex is a fine layer, coating the entire surface of the cerebrum, with a thickness varying from 2 to 5 millimetres [START_REF] Zilles | Centenary of Brodmann's map-conception and fate[END_REF]. It contains most of the cerebrum neurons, with an estimated total of 10 10 neurons and up to 10 15 synapses. It represents an important surface of 2500cm 2 , of which two-thirds are hidden inside the sulci [START_REF] Henery | The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas[END_REF]. The intense cortical folding thus allows to circumvent the spatial constraints imposed by the skull, and expand the available surface to host neurons. The neocortex makes up the 95% of the cortex. As it shapes motor, sensory and associative areas, the neocortex is associated with high-level processings. It is divided into 6 horizontal layers, each characterised by a distribution of neurons and a connection scheme to neighbouring neurons and distant areas. It will discussed further in section 2.4.2.

The allocortex complements the neocortex. Phylogenetically older, the allocortex recovers the olfactory bulb and its close vicinity, a part of the hippocampus, the indusium griseum and the fornix. It is characterised by fewer cortical layers : the paleocortex and archicortex consist of only three layers, while the periallocortex holds four.

Basal ganglia

The basal ganglia is a set of deep nuclei located in the telencephalon. They are composed of the caudate nucleus, the putamen and the globus pallidus. Several groups of structure are defined : the caudate nucleus and the putamen form the striatum, whereas the putamen and the globus pallidus form the lenticular nucleus (Figure 2.8). The caudate nucleaus is a C-shaped structure, further divided into a head, a body and a tail. The head is the broadest part and forms a part of the anterior horn of the lateral ventricule, the body runs backs gradually narrowing, and ends with the tail, which bends anteriorilly to form the roof of the inferior horn of the lateral ventricle. The putamen is a round structure located at the base of the forebrain, lateral to the globus pallidus, and medial to the external capsule. The globus pallidus is medial to the putamen and is subdivided into a medial part, the globus pallidus internus, and a lateral part, the globus pallidus externus. The pallidum is recognizable by its lighter color, due to the myelinated axons that cross the structure.

Although several purposes are associated with the basal ganglia, including emotionnal and cognitve functions; these structures are known first as regulatory agents in the planning of movements. These nuclei will combine the expression of the wished movement from the premotor area, with the perception of the environment obtained from the sensory area; to design the adequate movement to be transmitted to the thalamus. This processing relies on intricate excitatory/inhibitory loops known as direct and indirect pathways.

The failure of this regulation may result in two motor disorders such as Huntington and Parkinson diseases. Thus, in the Huntington disease, the decline of inhibitory circuits prevents the effective sorting of wished movements and leads to the apparition of sudden and involuntary gestures. Conversely in the Parkinson's disease, the degeneration of the Loca Negra disorganises the transmission of wished movements and results in difficulties to initiate movements.

Diencephalon

The diencephalon lies in the continuity of the brainstem, above the midbrain and the cerebral peduncle (Figure 2.8). It lies inferiorily to the corpus callosum and the fornix. Finally, its medial part walls the third ventricule. It is a cluster of structures that includes the epithalamus, the thalamus, the subthalamus, and the hypothalamus.

The thalamus is a large structure accounting for four-fifth of the diacephalon volume. It forms an important part of the lateral wall of the third ventricle. It is made up of around 120 nuclei, classified as either specific or generic. Specific nuclei are directly connected to the cortex, through the thalamic radiations (Figure 2.10.c). They are further divided into four groups, according to their location : the anterior nuclei, the medial nuclei, the ventro-lateral nuclei and the dorsal nuclei. The nonspecific nuclei target principally the midbrain. The thalamus is a key relay structure of the cerebrum. First, it relays all afferent sensory information, with the exception of olfactory signals, before projecting it to the relevant cortical areas. But it also plays a role in inter-cortical communications, participating in functions as diverse as sleep and consciousness. The epithalamus is situated at the posterior end of the thalamus. Composed of the pineal gland and the habenulae, the epithalamus plays an important role in endocrine regulation. Through the secreation of several hormones, including the melatonin, the epithalamus is considered to participate in the monitoring of numerous endocrine organs, including the thyroid, parathyroids, adrenals and gonads.

The subthalamus is located beneath the posterior part of the thalamus, laterally to the hypothalamus. It is composed of the globus pallidus, which shifts laterally during the brain development, and the zone incerta and the subthalamic nucleus, which remain below the thalamus. Intensely connected with the basal ganglia, the subthalamus is involved in the movement planning.

The hypothalamus lies below the thalamus. It is primarily devoted to overseeing the homeostasis (body temperature, blood pressure, caloric intake/expenditure) by regulating the feeding and the sexual activity. The white matter designates the white tissue lying underneath the cortex (Figure 2.9). It is made of millions of fiber tracts connecting distant cortical areas and subcortical structures. Those microscopic tracts join together to form large observable fascicles. Those fascicles are classified depending on the areas they connect. Association fibers link cortical areas of the same hemisphere, commissural fibers make inter-hemispherical connections and projection fibers run from cortical areas towards the peripheral system.

White matter

Projection fibers

The projection fibers (Figure 2.10) are connecting the CNS to the PNS. They are composed of ascending and descending tracts that respectively carry the somatosensorial information and the motor commands. Fibers forming cortico-basal and cortico-cerebellar connections, directly involved in the processing of sensory information and the design of motor commands are also part of projection fibers.

The ascending fibers include two major tracts. First, the spinothalamic runs from the spinal cord, along the medial lemniscus of the brainstem and projects to the parietal lobe. It is responsible for gathering coarse touch sensation, pain and temperature across the body. Second, the trigeminal tract collects the sensory information from the head; it is a cranial nerve that joins the brainstem at the level of the pons (Figure 2.3), and similarly raises to the superior parts of the parietal lobe.

The three major descending tracts are the corticospinal, the cortibulbar and the the corticopontine tracts. Those fibers are salient in the cerebrum as they form the corona radiata: a crown-shape convergence of fibers from the motor and premotor area to the thalamus. Bundles then run along the internal capsule, while maintaining an internal ordering based on their cortical origin. Finally, the fibers exit the CNS at the most anterior area of the cerebral peduncles.

The cortico-basal, cortico-thalamic, cortico-cerebellar as well as connections among the subcortical structures themselves, constitute a dense network of interacting loops. This allows to continually fuse together information from the wished gesture (premotor area), the environment (parietal lobe) and the current motor commands (motor area), to adapt in real-time the movements to the environment. Adapted from https://commons.wikimedia.org

Association fibers

Association fibers connect cortical areas inside an hemisphere. As those connections link areas located in different lobes as well as sub-regions of a single cortical area, association fibers have a vast range of length, from a few millimeters up to 30 centimeters.

The fibers shorter than 80 millimeters are considered short. Those fibers guarantee the communications between neighboring cortical areas and within a single cortical area. Extremely dense, they support intense communications within functional regions, allowing complex processing to happen. Unfortunately, their small size combined with high inter-individual variability have been important impediments to their study. Recent progress in acquisition techniques and image processing thus represents a new opportunity [M. [START_REF] Guevara | Creation of a whole brain short association bundle atlas using a hybrid approach[END_REF]]. • the uncinate fasciclus links inferior portions of the frontal lobe, including the Broca area and the orbital gyri, with the temporal lobe, the anterior parahippocampus and the amygdala.

The tracts follow a strongly curved path across the stem of the lateral sulcus. It is part of the extended limbic system and intervenes in memory, emotions and language.

• the cingulum is a long C-shaped fascicle that connects the inferior-posterior frontal sections to the temporal cortex, through the cingulate gyrus. The cingulum is functionally divided into its anterior and posterior part, with the former linked to emotion, while the latter is related to high cognitive functions.

• the superior longitudinal fasciculus (SLF) is the largest association bundle. Starting from the anterior frontal region, it runs above the insular lobe, and fans out to reach both the occipital lobe, and the temporal lobe.

• the inferior longitudinal fasciculus (ILF) starts in the occipital pole and disperses in the temporal lobe, reaching the temporopolar cortex, the amygdala and the hippocampus. The tract plays a role in object and face recognition, reading and visual memory.

• the inferior fronto-occipital fasciculus (IFOF) starts at the orbitofrontal cortex and runs back, behind the corona radiata, then along the caudate nucleus, to eventually disperse in the inferior and medial occipital cortex. The fascicle is thought to participate in reading, attention and visual processing.

• the arcuate fasciculus (AF) connects the perisylvian cortex of the frontal, temporal and parietal lobes. In the left hemisphere, it is involved in language processing whereas in the right it is involved in visu-spatial processing.

Commissures

Commissural fibers make inter-hemispheric connections (Figure 2.12). In most cases, these tracts connect homologous cortical areas. Called homotopic, this kind of connection helps process information relative to the midline of the human body. For instance, in somatic areas, the trunk representation has an inter-hemispheric connection, while the hand representation do not.

Alternatively, the connections are called heterotopic and link heterogeneous parts of the cortex.

In this case, they can be related to lateralized cognitive functions, such as speech.

Main commissures include the anterior and posterior commissure, as well as the corpus callosum. The most important is the corpus callosum : it forms an arch, approximately 10cm long, uniting both hemispheres. It runs just above the lateral ventricles and forms the floor of the longitudinal fissure.

Figure 2.12: Illustration of the frontal view of the pathway of the fornix and anterior commissure (a., adapted from Reyes, Bragg Gonzalo, and Nieto 2020) and the corpus callosum (b., adapted from [START_REF] Highley | The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study[END_REF]. c. : Scheme of the subdivisions of the corpus callosum along the sagital axis, exhibiting the rostrum, the genu, the body and the splenium. Adapted from https://commons.wikimedia.org.

The corpus callosum is divided into four main parts. The anterior extremity of the corpus callosum lies close to the lamina terminalis and is called the rostrum. It curves upwards in proximity to the septum pellucidum, and thickens to form the genu. Further back, the body of the corpus callosum arches back above the lateral ventricles and bends backward into the splenium, the thickest part. Each of these subregions is crossed with specific fibers. Thus, fibers crossing through the rostrum and the genu bend forward to connect respectively the orbital surfaces, and lateral and medial surfaces of the frontal lobe. Across the body, the fibers intersect with the corona radiata and extend to the precentral and central cortex and the parietal lobes. Finally, the splenium is the crossing area for fibers connecting together the occipital lobes [START_REF] Standring | Gray's anatomy e-book: the anatomical basis of clinical practice[END_REF]].

The anterior commissure is located anterior to the columns of the fornix. It is divided in two bundles : the first part curves forward to the connect the anterior perforated substance and join the olfactory tracts; while the second part connects the anterior parts of the temporal lobes. The posterior commissure links the two hemispheres at the rostral end of the cerebral aqueduct. It notably connects the pulvinar nuclei of the thalamus and the superior colliculus, a structure of the midbrain. The anterior and posterior commissures are important landmarks in neuroimaging : they define the origin of the Talairach coordinates.

Small commissures, like the fornix, are made of short fibers connecting adjacent contralateral structures of the thalamus.

Microstructure

Cells of the central nervous system

To the bare eye, the brain tissue looks like a homogeneous white continuum, with a few salient deep structures and a gray coating. Only the developments of histology in the second half of the 19 th century, in particular the silver and Nissl staining, allowed to label with precision the cell bodies of the neural system, namely the neurons and the glial cells.

Neuron

In the late 19 th century, Ramón y Cajal identified the neuron as the origin and the propagator of all electrical impulses in the brain. This discovery established the cell as the fundamental functional component of the nervous system. The neuron's cell body (Figure 2.13), or soma, holds the nuclei, containing all the genetic information, and the endoplasmic reticulum, which provides structures for the production of proteins and neurotransmitters. The remarkable specificity of neurons is a variable number of branches surrounding the soma and connecting neurons with each other. The branches consist of several dendrites and an unique axon; the first is responsible for gathering and transmitting the signal from one or many sources to the soma; and the second propagates the signal from the soma to the neuron's end. The signal takes the form of a brief change of the polarization of the membrane, called the action potential, that is equivalent to an electrical current. Along the axon, the propagation of the signal is favored by the presence of a regularly interrupted myelin sheath, which improves its insulation and allows for a quicker transmission. When the electrical impulse reaches the synaptic terminal, it triggers the release of excitatoty or inhibitory neurostransmitters in the synapse. Those chemical elements are captured by the post-synaptic dendrites and integrated in the post-synaptic axon hillock. Once a depolarization threshold is exceeded, the axon fires a new action potential, propagating the signal further. The neurons can be classified according to their function. Sensory neurons transmit information from the body peripheral sensors into the nervous system, allowing one to perceive its environment. Motor neurons, carry various commands from the brain or the spinal cord to the muscles. And finally, the interneurons transmit the signal from neuron to neuron. They include relay neurons, characterized by a long axon enabling to carry an impulse across significant distance; and local interneurones, dedicated to the creation of dense networks, characteristic of the brain. Additionally, the shape of the soma, the length of the axon and the spatial distribution of the dendrites help set several classes of neurons (Figure 2.14) :

• Unipolar cell has only a single branch, which splits into several extensions; one will serve as the axon, while the other function as dendrites. Common among invertebrates, those cells are only found in the autonomic nervous system in the vertebrates.

• Bipolar neurons have an oval soma with two branches. The first is the axon, and the second accommodates all dendrites, collecting all available information as a single input. Those neurons make up many sensory systems, including the olfactory and visual system. Additionally, bipolar neurons include pseudo-unipolar neurons, a remarkable variant involved in the transmission of touch, pressure and pain sensations.

• Multipolar neurons are the most widespread in the nervous systems of vertebrates. The soma presents many dendritic branches, each gathering a particular set of impulses, exponentially increasing the number of inputs to the soma. In terms of magnitude, an ordinary motor cell can receive 10 000 connections, while a Purkinje cell can accumulate up to a million inputs.

Glial cells

The glial cells, or glia, significantly outnumber the neurons (up to a factor 10) and can be thought of as the surrounding environment of the neurons (Figure 2.15). Glial cells are first classified according to their size [START_REF] Kandel | Principles of neural science[END_REF]]. The smallest corresponds to the microglia which is composed of phagocytes cells, and forms the main immune system of the brain. Large glial cells correspond to the macroglia, and they are subdivided into three categories : the Schwann cells, the oligodendrocytes and the astrocytes. While the first ones are specific to the PNS, the other two are present in the brain, in equal proportions. Oligoendrocytes are small cells, with a diameter of approximately 6-8 µm [START_REF] Karasek | Ultrastructure of the central nervous system: the basics[END_REF], with up to a few dozens extensions. They are mainly found in the white matter, in the form of short rows, running parallel to the axons. Their density is estimated around 400 cells per mm 2 [START_REF] Edgar | White matter structure: a microscopist's view[END_REF]. Their extremities are connected to axons and create layers of the myelin sheath.

Astrocytes are larger cells, with a 10-12 µm diameter [START_REF] Karasek | Ultrastructure of the central nervous system: the basics[END_REF]. They are named after their appearence : they present many branches, sphericallydistributed and resembling the points of a star. Protoplasmic astrocytes are found in the gray matter and their branches envelop the somas and synapses. Fibrous astrocytes are located in the white matter and their extensions interact with the Ranvier nodes of neighbouring axons. They fulfill several tasks. First, they act as a regulatory agent, monitoring the quantity of neurotransmitters and ions K + close to the synapses, taking up the excess if necessary. Keeping synapses clean from possible saturation of these elements allow for efficient and reliable communications between neurons. Second they help ensure the insulation of the connection, and thus increase the precision of the transmitted signal. Finally, they nourish neighbouring neurons through releases of growth factor.

Microscopical description of the neocortex

2.4.2.1

Myeloarchitecture and cytoarchitecture

The development of histology gave rise to two methodologies for studying the cortex. On one hand, cytoarchitecture Brodmann 1909 maps the cellular population of the cortex, distinguishing the nature of cells and their geometrical properties. On the other hand, myeloarchitecture O. [START_REF] Vogt | Zur anatomischen Gliederung des Cortex cerebri[END_REF] characterizes the organization of myelinated fibers in the cortex. The latter display two principal orientations and behavior : tangeantial fibers gather to form local concentrations or bands, possibly visible to the naked eye; while radial fibers join into bundles, or radii. These two methodologies are concordant in defining six layers to the neocortex (Figure 2.16). For the sake of clarity, layers defined by cyto-and myeloarchitecture are respectively noted with roman and arabic numbers Cytoarchitectural layers are described as :

Layer I : the molecular layer presents mostly the dendrites of cells located in deeper layers and crossing axons

Layer II : the external granular layer contains small pyramidal cells and small spherical neurons.

Layer III : the external pyramidal layer includes small pyramidal neurons

Layer IV : the internal granular layer : is made up of small spherical neurons and small pyramidal neurons Layer V : the internal pyramidal layer contains large pyramidal neurons

Layer VI : the multiform layer is formed of neurons of varied shape and size Myeloarchitectural layers are defined as follows:

Layer 1 : the zonal layer is differentiated into four sublayers (a, b, c ,d) with 1.a crossed by significantly more fibers Layer 2 : the dysfibrous layer contains very few fibers Layer 3 : the suprastriate layer contains three sublayers (a 1 , a 2 , b). Sublayer 3b is the stopping region for the end-segments of the radial bundles.

Layer 4 : the external stria or outer stripe of Baillarger is a dark band of tightly packed tangential fibers.

Layer 5 a : the intrastriate layer contrasts well with the Baillarger stripes as it is relatively deprived of tangeantial fibers.

Layer 5 b : the internal stria or inner stripe of Baillarger is characterized with tightly packed tangeantial fibers.

Layer 6 : the layer is subdivided into the pale substriate lamina 6a 1 , and laminae 6a 2 , 6b 1 and 6b 2 . They show increasing densities of tangeantial fibers. Additionally, layers are also characterized by the kind of connection their neurons make. The layers 2 and 3 are mainly concerned with associative connections, while the layer 4 is primarily the destination of sensory inputs; finally layer 5 and 6 are usually the origin of projections to subcortical regions. Consequently, studying the variations of the width and the composition of the layers helps delineate homogeneous cortical areas and even suggest their cognitive function. This approach is the basis of cytoarchitectural mappings.

Brodmann atlas

Cyto-and myelo-architecture provide means to describe the laminar structure of the cortex, characterizing not only the depth of the cortex, but also the relative width of its different layers. Such a description enables to classify rigorously parts of the cortex, and further provides insights about their functional role.

Brodmann is prominent pioneer of cytoarchitectural studies as he first successfully mapped an entire human cortex [START_REF] Brodmann | Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues[END_REF]] identifying 52 different cortical areas. Even though this work has been later refined by Constantin von Economo and Georg N. Koskinas [START_REF] Economo | Die cytoarchitektonik der hirnrinde des erwachsenen menschen[END_REF], and despite the rise of modern techniques, which allow a significantly greater precision; the Brodmann parcellation remains a staple of neuroanatomy. In particular, certain regions are still commonly referenced though this atlas :

• Areas 1,2 and 3 : primary somatosensory cortex • Area 4 : primary motor cortex • Area 6 : premotor motor cortex • Area 17 : primary visual cortex • Areas 41 and 42 : auditory cortex But modern techniques have also highlighted the shortcomings of the cytoarchitectural approach [START_REF] Amunts | Architectonic mapping of the human brain beyond Brodmann[END_REF]. Fine understanding of the brain operating requires cytoarchitecture to precisely identify processing nodes; but also the knowledge of their anatomical connections, through structural connectivity; and finally the outline of their functional connections, through functional connectivity.

Microscopical description of the white matter

The white matter consists of tightly packed neural fibers connecting various areas of the CNS ( §2.3). Those fibers consist of axons, possibly surrounded by a myelin sheath. The axon's diameter ranges from ranges from 0.2µm up to 10 µm [START_REF] Edgar | White matter structure: a microscopist's view[END_REF]. It is a defining parameter for the neuron as it remains constant along the axon and more importantly because it has a linear relation with the propagation speed of the action potential [START_REF] Trapp | Structure of the myelinated axon[END_REF].

A majority of axons with a diameter wider than 0.2µm have a myelin sheath. It is a lipid and protein coating, surrounding the axon in successive layers (Figure 2.18.ab). It prevents ion exchanges during nerve conduction, effectively insulating the axon and accelerating the propagation of the signal. Longitudinally to the axon, the myelin sheaths are interrupted by Ranvier nodes. The length between two nodes is called the internode and ranges between 100µm and 1700µm, with a loose linear relationship to the axon diameter [START_REF] Hildebrand | Myelinated nerve fibres in the CNS[END_REF]]. Radially, the myelin sheath is characterized by the ratio between the axonal diameter and the fiber diameter (axon with myelin sheath), which is called the g-ratio. Most fibers present a g-ratio equal to 0.6 [START_REF] Waxman | Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system[END_REF], which is optimal for improving the conduction velocity.

The fiber width is thus an important parameter of the bundle organization, revealing the priorities given to the rapid transmission of specific signals. It results in strong variability of fiber diameter among fascicules. The optic nerve contains notably small diameter axons, while projection fibers are consistently composed of larger fibers. The resulting packing density thus varies greatly between fascicules. In the rhesus monkey, Lamantia and Rakic 1990 report axonal densities of 7.2 10 8 per mm 2 in the hippocampal commissure, and 3.8 10 9 mm 2 in the basal telencephalic commissure.

Those biological components are rich with water. It is distributed between the intra-and the extra-cellular space. The first includes the water inside the axon, as well as water in the myelin sheath. In the latter, the water is located in the inner and outer tongues (Figure 2.18.ab) and the paranodal loops. The second designates the water contained in the inter-cellular space, the glial cells; and within the myelin sheath in the intraperiod space (betwwen myelin layers) and the periaxonal space (between the myelin sheath and the axon).

Conclusion

This chapter defines key anatomical notions, from the gross anatomy to the cellular nature of neurons.

Clear definitions of the main anatomical parts of the brain are essential to properly characterize the scope of the investigation described in thesis. This general description is also helpful to understand the preparation of the sample described in Chapter 5.

In the perspective to propose a new atlas for the exploration of the structural connectivity of the human brain, it is necessary to describe the well-known white matter bundles. In particular, these bundles will be at the heart of the Chapter 6, dedicated to demonstrate the compatibility of the proposed dataset with previously published atlases of the white matter.

Finally, the microscopical depiction of the white matter environment, with notably the definition of the glia and a presentation of the structure of the myelin sheaths is intended to provide a biological perspective for the water diffusion phenomenon leveraged in dMRI and described by various local modeling approaches, as will be detailed in Chapter 3.

Chapter 3

Diffusion magnetic resonance imaging

Magnetic Resonance Imaging is central to this thesis. The first part of this chapter thus presents its fundamental principles. The second part describes the basis of diffusion-weighted MRI, from the definition of the physical phenomenon of diffusion to the introduction of models in use to characterize the microstructure of the brain. The last part of this chapter discusses the specifics of post mortem imaging. All atoms share a unique structure : protons and neutrons compose the nucleus, which is circled by orbiting electrons. The nuclei and electrons are associated with a magnetization induced by the presence of respectively positive and negative electric charges. As the nuclei resulting magnetization, also called spin, is significantly stronger, they are the element of choice to interact with in order to create images of biological tissues. Among the various atom present in biological tissues, 1 H is the most abundant, notably as part of the water molecule, and is therefore the atom of choice when using the MRI to image the human body.

Other atoms can however be chosen for their specific distribution across biological samples, including the phosphorus( 31 P), the sodium( 23 Na) and the carbon ( 13 C).

Under natural circumstances, the direction of spins inside a volume is random. The presence of a strong magnetic field will align all the spins along a direction, either in the same way, called parallel orientation, or the opposite way, called anti-parallel orientation (Figure 3.1). In MRI systems, this role is carried out by its magnetic bore surrounding the acquisition tunnel, that produces a strong static field using supraconducting coils. In clinical MRI scanners the strength of this static field ranges from 1.5 tesla for standard MRI scanners, up to 7T for the latest generation. In preclinical systems, dedicated to the study of small animals, the reduced field of view allows to significantly increase this range: starting at 5.4T and reaching 17.2T.

The static field produced by the supraconductivity magnet is generally noted B 0 with its direction corresponding to the z-axis of the MRI frame (0xyz), 0 being the isocenter of the magnet.

Radiofrequency excitation

Under the influence of the static field B 0 , all spins align with the direction z. The magnitude B 0 of the static field defines the processing frequency of the spins, according to the Larmor equation:

ω = γB 0
Where γ is the is nucleus-specific gyromagnetic ratio. For 1 H its value is approximately 2.68 • 10 8 rad.s -1 .T -1 ; ω is called the Larmor frequency.

In order to interact with the spins, a second dynamic and transiting magnetic field is applied transverse to the static field. It is generally referenced as B 1 and called a radiofrequency (RF) pulse; its emission is ensured by a dedicated RF coil. When the spectrum of B 1 embeds the Larmor frequency, the pulse induces a nutation process that tilts the original magnetization, from its alignment along B 0 z towards the transverse plane (0xy) (Figure 3.2). This phenomenon is called the magnetic resonance.

A specific nutation angle, called flip angle, can be obtained depending on the B 1 waveform and duration. Typically RF pulse are tuned to reach 90°for excitation pulses and 180°for inversion pulses. Once tilted, each spins is subject to a double phenomenon. The magnetic contributions of the numerous spins present in its neighborhood, bring an unpredictable and rapidly evolving local component to the B 0 field. This spin-spin interaction, leads to a rapid dephasing of the spin, and thus to a decrease of the transverse magnetization. The associated time constant is the transverse relaxation time T 2 . The medium of the spin, on the other hand, acts as a elastic environment, seeking to reestablish the original magnetization of the spin. This spin-lattice interaction thus drives the regrowth along the longitudinal axis. The associated time constant is here the longitudinal relaxation time T 1 .

The temporal evolution of the magnetization resulting from spins is depicted by the phenomenological equations established by [START_REF] Bloch | Nuclear induction[END_REF] :

             dM x (t) dt = γ(M (t) × B(t)) x - M x (t) T 2 dM y (t) dt = γ(M (t) × B(t)) y - M y (t) T 2 dM z (t) dt = γ(M (t) × B(t)) z - M z (t)) -M 0
T 1 which lead to the following solution for the transverse and longitudinal magnetization :

       M z (t) = M z (0) exp - t T 1 + M 0 1 -exp - t T 1 M xy (t) = M xy (0) exp - t T 2 exp(-iω 0 t)
Where M z (0) and M x,y (0) designate the magnetization reached after the application of the rf-pulse, respectively along the longitudinal axis and in the traverse plane. Those quantities verify : M z (0) 2 + M 2

x,y (0) = M 0 , where M 0 is the longitudinal magnetization in the permanent state.

In consequence, this transition state is described with two simultaneous events. First the longitudinal magnetization regrows with an exponential profile, according to the T 1 constant (Figure 3.3). Second, the transverse magnetization follows a exponential oscillating decrease (Figure 3.4), which does not depend only on T 2 . The presence of various elements, with significantly different magnetic properties, in the direct neighborhood of the excited spins produce an unpredictable local magnetic configuration that actually drives the decrease of the transverse magnetization. The resulting exponential parameter, combining T 2 and local magnetic configuration, is called T 2 *. This oscillating decrease generates a electromagnetic signal which can be registered by the radio frequency coil. This signal constitutes the output of the imaging sequence and is called the Free Induction Decay (FID).

Mitigating the local magnetization field

The dependence of the FID decrease on T 2 * is prejudicial to the tissue imaging. First, as T 2 * is shorter than T 2 , it reduces the available time for the acquisition of the signal. Second, it completely conceals the tissue's T 2 time constant. This shortcoming is alleviated with the introduction of a 180°refocusing pulse [START_REF] Hahn | Spin echoes[END_REF]] which compensates local magnetic disparities (Figure 3.5). c,d,e,f ). The emission of a the refocusing pulse at T E/2 reverses the spin processing (g). The latter thus start to converge back (h). At T E, all the spins are synced again (i) and emit a "spin echo" whose amplitude is directed by the T 2 exponential decrease. Source : Pipe 2014.

Let a set of spins be stimulated by a 90°rf-pulse. It projects their magnetization in the transverse plane, and the spins begin to relax according to the tissue they belong to (T 2 constant), and their magnetic surroundings, the resulting T 2 * constant. The local magnetic susceptibilities thus create different processing frequencies, which lead to a dispersion of phases in the volume (Figure 3.5.cd).

However, the emission of a 180°refocusing rf-pulse, reverts the processing way of the spins. The latter process back and the instant where all spins are aligned again is called the echo time (TE). At this time, the dispersion of phases, are compensated and the magnitude of the signal corresponds to the T 2 exponential decrease.

The addition of this new pulse allows to circumvent the T 2 * decrease of the transverse magnetization and access the T 1 and T 2 time constants of the tissues. exploiting T 1 andT 2 The T 1 and T 2 time constants are a characteristic of the tissues. They are affected by the magnitude of the static field B 0 , as seen in the table 3 To effectively distinguish tissues, the strategy is to exploit their various T 1 and T 2 constants, through two parameters : echo time (TE) and repetition time (TR). They respectively designate the time between the rf-pulse and the readout and the time between between successive rf-pulses. TR interacts with T 1 , setting the amount of the regrowth along the longitudinal axis, while TE interacts with T 2 to set the amplitude of the decrease of the transverse magnetization. The amplitude of the obtained signal S out with a spin echo is then :

Contrast mechanisms

S out = ρ • [1 -e -T R T 1 ] • e -T E T 2
where ρ is the proton density of the tissue. It leads to the definition of the following contrasts:

• T 1 -weighted: Short TE makes the contribution of T 2 negligible, paired with short TR, it leads the contrast is mainly defined by T 1 .

• T 2 -weighted: Long TR cancels the dependence of the signal on T 1 , associated with long TE, it allows to weight the signal with respect to the T 2 constant of the tissue.

• Proton density weighted : Long TR and short TE cancel the dependence of the signal on T 1 and T 2 , the contrast is then simply driven by the proton density.

A "good" contrast allows to discern easily the tissues present in a sample. To reach this goal it is necessary to adjust TE and TR to maximize the difference between the signal returned by those different tissues (Figure 3.6).

Spatial encoding

The spatial encoding allows to identify the location of the spins the scanner interacts with, allowing to probe small portions of the sample and thus iteratively build the final image. This encoding is implemented using a set of coils inducing field gradients, which create secondary, position-dependent, magnetic fields that will modify the processing frequency of the spins. In 2D imaging, the spatial encoding is achieved with the use of linear gradients along the sample. At the emission of the rf-pulse, the slice of interest is defined through a slice-selection gradient.

During the sequence and at its end, the phase and frequency gradients encode spatially the said slice.

More precisely, during the slice-selection gradient, the scanner stimulates spins through the emission of a rf-pulse matching their Larmor frequency ω. By applying a linear gradient along the slice-axis, the scanner modulates the magnetic field applied to the spins, modifying their Larmor frequency ω(z), now dependent on their position along the slice-axis z. Thus, the emission of a rf-pulse with a frequency of ω(z 0 ) allows to select the spins only located at z 0 . More accurately, the rf-pulse does not consist of a single frequency f 0 , but of a range of frequencies, called bandwidth, centered around f 0 . The amplitude of the band-width together with the steepness of the gradient defines the range of spins being stimulated, and consequently the width of the slice (Figure 3.7).

Once a single slice is stimulated, a 2D-encoding is necessary to distinguish the signals from different voxels. During the execution of the sequence a gradient is applied along the phaseencoding direction y. The processing frequency of the spins then depends on their position on the y-axis, leading to a shifting of the phase along this axis. Once the gradient stops, all the spins return to processing at ω 0 ,but the phase shifting is not compensated. The spins along the y-axis are thus distinguishable by their initial phase difference.

To encode the second direction in the slice, a final gradient is applied along the frequency-axis x during the readout of the signal. This gradient modifies the Larmor frequency of the spins along the x-axis, and thus pairs with a specific frequency in the returned signal with a precise position along x.

This way, the position of every spin in the slice is characterized with its phase and frequency.

K-space

A single readout from a stimulated slice thus consists of the coordinated echo of a set of spins, identified by their phase shift, and labeled with a range of frequencies. This broad-frequency response fills a single line of the {phase, frequency} matrix, a square matrix of dimension N , 

T acq = T R • N ph • N ex
with N ph the number of encoding steps in the phase axis and N ex the number of excitations.

The matrix is transformed to a spatial image with an inverse Fourier transform.

The k-space depicts the frequency characteristics of the image, with low frequency information located at the center of the matrix, and high frequency information situated in the periphery. K-space filling strategies leverage those properties to design more efficient acquisition patterns.

For instance oversampling the central parts of the k-space improves the robustness to movement; while relying on the symmetry of the k-space allows to acquire only a fraction of the matrix, saving considerable acquisition times.

Design of an acquisition protocol

When designing a novel acquisition protocol, the achievement of a good signal to noise ratio (SNR) is at the heart of the parameter tuning. Understanding the implication of the different parameters helps to make the best trade-offs.

SN R ∝ S out • B 0 • ∆ x ∆ y ∆ z • N ph • √ N ex √ RBW
With S out the signal emitted by a tissue under specific TE and TR, as defined in §3.1.4. The SNR grows with the amplitude of the static field B 0 . This linear relation justifies the willingness to rely on increasingly more powerful scanners.

But the main tuning revolves around the axial resolutions, the number of repetitions and the bandwidth of the readout gradient.

The resolution sets the quantity of tissues contributing to the signal of a single voxel, the linear relation between the axis-resolution and the SNR is thus logical. In that regard, the use of anisotropic resolutions is a controversial practice. Indeed, sacrificing the resolution along an axis allows to significantly increase the SNR, but compromises many quantitative measurements, such as diffusion measurements.

Increasing the number of repetitions N ex , increases the number of measurements for a single voxel, improving its signal by √ N ex , but extending linearly the acquisition time. Lastly, the bandwidth of the readout gradient defines the time needed to sample the echo signal. Low bandwidth improves the SNR but extends the acquisition time and worsens the image distortions. Conversely, large bandwidth decreases the image distortions but at the cost of lower SNRs.

3D spatial encoding

An alternative spatial encoding strategy is the 3D encoding. In this case, the rf-pulse stimulates not a single slice but the whole volume (called partition), and the matrix to be filled in the k-space is a 3D matrix. The spatial encoding along the z-axis is then realized with the introduction of a further phase encoding gradient : the partition gradient. The latter can be applied simultaneously with the phase-encoding gradient. The stimulation of the whole volume means that all voxels contribute to the signal. This increases the amount of received signal and thus improves the overall SNR :

SN R ∝ S out ∆ x ∆ y ∆ z N ph • N par N rep √
RBW However the acquisition of the entire partition comes at the cost of an extended acquisition time. Indeed, in 2D imaging, the stimulated slices are independent from one another, and their imaging can thus be made in a interleaved fashion, saving a lot of time. In 3D-imaging, those approaches are no longer available, forcing a sequential acquisition of the k-space. The resulting acquisition time is then defined by :

T acq = T R • N ph • N par • N ex
With N par the number of encoding steps in the partition axis.

The extended acquisition time makes 3D-imaging especially sensible to movement artifacts. In deed, any movement in the whole volume during the long acquisition time will impact the imaged data. To shorten this acquisition time, 3D-imaging can associated with rapid imaging sequences, such as fast gradient-echo sequences (3.1.6.2); and more efficient k-space filling strategies, such as echoplanar or EPI schemes.

Finally, the 3D imaging is more restive than the 2D-imaging as the phase encoding along two directions requires the sample of interest to not exceed from the field of view in those two directions.

Standard acquisition sequences

MRI sequences designate specific coordination of the rf-coil and the gradients to leverage the imaging mechanisms previously presented. The following section will describe the key imaging sequences.

3.1.6.1

The spin-echo sequence

The most emblematic sequence is the spin-echo sequence. It implements the refocusing pulse to allow for the measurement of the T 1 and T 2 constants (Figure 3.9).

Figure 3.9: Description of a 2D spin-echo sequence. The rf-pulse is emitted along the sliceselecting gradient. The phase encoding gradient is applied before the 180°refocusing pulse, which is applied together with a slice selection gradient at T E/2. Finally, the return signal is registered at T E, with the help of a frequency-encoding read-out gradient. Source : http://xrayphysics.com/ 3.1.6.2

The gradient-echo sequence

The specificites of the gradient echo sequence are two-fold : the flip angle of the rf-pulse is inferior to 90°and there is no refocusing 180°rf-pulse. The refocusing of the signal is made by the frequency encoding, with a first negative lobe that dephases the spins, and a second positive lobe which re-aligns the spins and serves as a read-out gradient. With a reduced flip-angle, only a part of the longitudinal magnetization is projected on the transverse plane, and its regrowth is much shorter. Allowing for extremely short TR times (up to 30ms). Additionally, the removal of the 180°pulse allows to set very short TE. By making possible to reduce TE and TR, gradient echo is a rapid sequence, allowing notably to rapidly acquire 3D volumes.

On the other hand, the removal of the refocusing pulse at 180°makes the transverse magnetization decrease according to T 2 *, and not T 2 . It bars from accessing the T 2 contrast, and requires for the T 1 contrast very short TE times.

3.1.6.3

The echoplanar readout scheme 2D Echo-Planar Imaging sequence aims at acquiring an entire slice with a single rf-pulse. First developed by [START_REF] Mansfield | Multi-planar image formation using NMR spin echoes[END_REF], the strategy is to relay on rapid gradient echoes associated with a iterative increase of the phase encoding, to record all line of the k-space with a single rf-pulse.

The profile of the phase increments defines the filling of the k-space. Finally, the spin coherence is maintained by the means of strong symmetric read-out gradients (Figure 3.11). This is a extremely fast acquisition sequence that allows the acquisition of an entire brain volume in a few seconds. Such short acquisition time allow to mitigate the artifacts caused by movements.

This methods also have several shortcomings. First, as the EPI-signal is not properly refocused through a 180°pulse, it is prone to local magnetic susceptibility. Second, the numerous commutations of the read-out gradients paired with their high amplitude, require a powerful gradient, but more importantly generates eddy currents on conductor material close to the gradient coils. That induces further geometrical distortions.

These shortcomings are mitigated by acquiring with each rf-pulse fractions of the k-space, called segments. The segmented EPI have however a longer acquisition time that their single-shot counterparts.

Figure 3.11: Description of a 2D EPI sequence. After the slice stimulation and the refocusing of the spins, the phase is increased with small increments, synced with strong symmetric readout gradients. The latter support phase coherence of the stimulated spins. Source : http://xrayphysics.com/.

Steady State Free Precession sequence

Gradient echo sequences use short TE, leaving after the readout a substancial transverse magnetization. In traditional sequences, in order to quickly emit a new rf-pulse this surviving magnetization is erased with the use of spoilers gradient.

On the contrary the Steady-State Free Precessing sequences [START_REF] Carr | Steady-state free precession in nuclear magnetic resonance[END_REF]] save and maintain this residual transverse magnetization. It is achieved through the use of extremely brief repetition times, shorter than T 2 *, preventing spins from loosing their transverse magnetization between successive stimulations. In the balanced SSFP sequence, the preservation of the transverse coherence is further improved with a symmetric distribution of the gradients, aimed at canceling the gradient-based dephasing.

A steady-state of the magnetization is quickly reached and allows for a rapid imaging of the tissues. However, the contribution of the longitudinal and transverse magnetization to the returned signal results in a particular contrast of the images, depending on T 2 /T 1 ratio.

Figure 3.12: Description of a 2D SSFP sequence. The first half of the sequence is analoguous to classical gradient echo sequence : the RF pulse is synced with the slice selection gradient and after the phase encoding, a frequency gradient is applied to read the signal. The SSFP introduces a symmetrical readout gradient, with a 3 rd negative lobe, and a rewinder that compensates the phase encoding. Finally, after an α°rf-pulse, comes a -α°rf-pulse, further contributing to the symmetry of the gradients. Source : http://xrayphysics.com/

Principles of diffusion-weighted MRI

Diffusion weighted magnetic resonance imaging (dMRI) investigates the microscopical behavior of water molecules in biological tissues, to portray the geometry of their cellular environments. Although the influence of water self-diffusion in MRI has been observed as early as in [START_REF] Hahn | Spin echoes[END_REF], 30 years of methodological and hardware improvements were necessary to set robust grounds for this research field. Today, powerful and reliable MRI systems associated with sophisticated models of the molecules behavior allow to get access to some characteristics of the tissue microstructure. At the beginning of the 19 th century, the biologist Robert Brown described the random displacements of pollen grains suspended in water [START_REF] Brown | XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies[END_REF]]. This motion, named Brownian displacement, is the reflection of the random thermal molecular motion of the water molecules. This molecular movement fuels a well known macroscopic phenomenon : the diffusion process. The latter designates the dispersion of a certain element within a liquid (Figure 3.13) and is characterized by the Fick laws. The first law sets that within a fluid, the flux of the diffusing element is proportional to its concentration gradient :

Diffusion process within an unrestricted environment

J = -D∇C
with J being the flux of the element, C its concentration and D the diffusion coefficient, dependent on the liquid and the element. In the case of the self-diffusion of water, D is 2.299•10 -9 m 2 .s -1 at 25°C.

The second law describes the temporal evolution of the concentration.

∂C ∂t = D • ∇ 2 C
In the case of self-diffusion, the description of the motion of molecules is facilitated with the introduction of the propagator function P (r, r ′ , t). The latter quantifies the probability for a water molecule to go from a position r to a position r ′ under a time t. The propagator function also satisfies the Fick's laws and thus :

∂ ∂t P (r, r ′ , t) = D • ∇ 2 P (r, r ′ , t)
In a isotropic environment, the propagator simply describes a movement characterized by a 3D Gaussian displacement distribution :

P (r, r ′ , t) = 1 √ 4πDt exp - ∥r ′ -r∥ 4Dt (3.1)
But general characterization of the motion remains difficult, as there is no bulk movement of the molecules, and the average of individual trajectories is null. The introduction of the mean squared displacement by Einstein 1905 allowed to link the distance traveled by a diffusive molecule, to the duration of the diffusion and the diffusion coefficient (Figure 3.14) :

⟨x 2 ⟩ = 6D∆t
The Einstein equation is central to the development of the dMRI framework because it quantifies the displacement of the molecules depending on the diffusion time, and thus helps define distinct diffusive behaviors inside the brain.

Diffusion within a complex biological environment

The diffusive motion of a molecule depends on the physical interaction it makes with its surrounding environment. In the case of a free environment, the molecules diffuse isotropically, bouncing randomly from one another. The hindered environment describes an environment that hampers the molecule, iso-or anisotropically, without setting insurmountable barriers. Both of these diffusions can be described by Gaussian distributions.

Restricted environments are constituted of impermeable walls that constrain the molecule to move along specific directions. In this case, the Gaussian modeling is no longer relevant, and more sophisticated models of the environment are required to depict the motion of water molecules.

In the brain, the nature of cells populating the tissues, and their geometrical properties constraint the motion of the embedded and extra-cellular water molecules. In particular, axons are commonly represented as impermeable cylinders, restraining the propagation of the molecule along their direction. A millimeter resolution voxel contains hundreds of thousands of interwoven cells of different kinds, leading to a rich and complex diffusion signal. Disentangling the contribution of each cell population to accurately portray this environment is an opportunity to access unique microstructural properties. 

Sensitizing MRI to the diffusion process of water

Description of the diffusion contrast

The self-diffusion of water has been observed using MRI by [START_REF] Hahn | Spin echoes[END_REF], who linked the molecular diffusion to signal attenuations in spin-echo acquisitions. Stejskal and Tanner 1965 established a significant part of the modern formalism of dMRI with the introduction of the Pulse-Gradient Spin Echo sequence (PGSE) enabling the sensitization of the NMR signal to the diffusion process The diffusion sensitization is quantified by a parameter b, called the "b-factor" and defined as :

b = (Gγδ) 2 (∆ -δ/3) = (Gγδ) 2 τ
Where τ is called the diffusion time. The specificity of this sequence (Figure 3.16) is to introduce two gradient dedicated to probe the diffusion process. The first encoding gradient sets a linear shift of the phases along a particular direction. This phase increment acts as a spatial encoding along this direction. The 180°refocusing pulse inverses the processing of the spins, and thus reverses their phase shift. The second gradient is identical to the first, and applies a second increment to the spins, after an interval called diffusion time ∆.

If the spin's position along the axis, at the first and second increment is identical, then the second increment cancels the first, and the returned signal is unaffected by this diffusion weighting (Figure 3.17 top row ). Otherwise, if the spin moved along the axis during the diffusion time, then the second phase increment does not perfectly compensate the first, and the spin has a phase-discrepancy with its surroundings. This dispersion of phases results in the attenuation of the signal at the readout (Figure 3.17 bottom row ).

This sequence associates the displacement of water molecules along a certain direction with a specific signal decay. This new contrast is called diffusion weighted-imaging.

Introduction to the diffusion wavevector space q

For a particular diffusion weighting, a diffusion gradient G is applied along e 1 . Let us define the wave vector q as : Figure 3.17: Illustration of the diffusion contrast mechanism. The 1 st gradient dephases the spins according to their position. If the spins remain still (top row), then the second gradient perfectly compensates the first and the result is not affected by the diffusion weighting. On the contrary, if the spins move (bottom row) then the second phase increment does not correct the dephasing and the set of spins presents a dispersion of phases that will result in signal loss. Source : Beaujoin 2018 q = 1 2π γδG q thus describes the diffusion weighting applied to the sample, and the associated space is called q-space. Let us define the resulting attenuation E(q) of the signal as :

E(q) = S(q) S(0) (3.2)
where S(q) is the signal obtained with the diffusion weighting q, and S(0) the signal obtained without diffusion weighting.

The signal attenuation due to the motion of water molecules on this axis e 1 depends on the local density of the molecules ρ(r), their likelihood P (r ′ |r, ∆) to travel from r to r ′ during a time ∆, and finally of the strength of the diffusion gradient q :

E(q) = ρ(r) • P (r ′ |r, ∆)e -i(r ′ -r)•q dr ′ dr
Diffusion characterized with a Gaussian propagator, such as free and hindered diffusion, will support an accessible representation of E(q) that will be discussed in §3.2.4. The modeling of the restricted diffusion will require the use of more elaborated models presented in §3.2.5.

Gaussian models

Isotropic diffusion

In the particular case of a free and isotropically hindered diffusion, the propagator P is Gaussian as defined in equation 3.1, and thus the attenuation can be simply expressed as a function of the apparent diffusion coefficient ADC and the diffusion sensitization b : This minimalist modeling allowed the first investigations of the diffusion process within the brain. [Le [START_REF] Bihan | MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[END_REF]] reports an average ADC equal to 8.10 -10 m 2 .s -1 in the brain.

E(q) = e -b•ADC
The characterization of the general diffusivity of brain tissues is of high interest for clinical diagnosis. In particular, in the case of acute ischemia [START_REF] Moseley | Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy[END_REF]], the sudden loss of blood circulation in a part of the brain is not visible on classical MRI contrasts, but is obvious when estimating the ADC (Figure 3.18). This is why the dMRI is now used for the diagnosis of acute ischemic stroke.

Anisotropic diffusion : diffusion tensor imaging

The Diffusion Tensor Imaging [START_REF] Basser | MR diffusion tensor spectroscopy and imaging[END_REF] preserves the Gaussian assumption of the diffusion process, but accounts for the anisotropy of the tissue by replacing the scalar diffusion coefficient with a 2 nd order diffusion tensor. The latter is a symmetric 3x3 matrix that quantifies the displacements of molecules in 3D.

D =   d x,x d x,y d x,z d x,y d y,y d y,z d x,z d y,z d z,z   Figure 3
.19: Illustration of different diffusion regimes encountered in the brain, and their corresponding diffusion tensor. On the left, the diffusion is isotropic, meaning that molecules diffuse identically in all directions. Therefore λ 1 = λ 2 = λ 3 and the tensor is a sphere. On the right, the diffusion is highly anisotropic, as it would be in a voxel with a high proportion of fibers running in the same direction. It leads to :

λ 1 > λ 2 ≥ λ 3 .
The associated tensor is then an ellipsoid whose main direction corresponds to the directions of the fibers. Adapted from [START_REF] Gholizadeh | Characterization of prostate cancer using diffusion tensor imaging: A new perspective[END_REF] The tensor is often visualized as an ellipsoid (Figure 3.19). Its eigenvector (ϵ 1 , ϵ 2 , ϵ 3 ) depict the main direction of the diffusion process; while its eigenvalues (λ 1 , λ 2 , λ 3 ) depict the amplitude of the movement and reveal the anisotropy of the tissue microstructure.

The determination of the diffusion tensor consists in the resolution of a log-linear equation system with 6 unknowns. Acquiring six images with different diffusion weightings, with a seventh non diffusion-weighted image, and solving the system is a straightforward technique. However, the obtained DTIs are extremely sensitive to the noise. As DW images are generally characterized by poor SNRs, a popular and more reliable approach is to acquire more DW images, from 15 to 60, and use advanced regression schemes such as log-Euclidian or Riemann frameworks ensuring the positiveness of the obtained diffusion tensor.

Within the white matter, the direction of ϵ 1 estimates the main direction of the fibers inside the voxel. A very popular representation of this information uses a color-encoding scheme associating the coordinates of ϵ 1 with a RGB component, scaled by the anisotropy of the tensor to distinguish the most anistoropic voxels, generally corresponding to white matter. This representation allows to interpret fibers configurations at a glance.

Figure 3.20: Illustration of the limitations of the DTI model to represent complex configurations of fibers bundles, with the comparison of the real fiber configuration, its propagator function p, its diffusion tensor and the main deduced direction. In the first row, the voxel only contains fibers running parallel, the tensor then pictures correctly the configuration and the principal direction is correct. In the following configurations, namely the fanning, the bending and the acute crossing, the resulting tensor is similar to the first, with slight variations of anistropy. The tensor thus fails to differentiate these fiber configurations from straight fibers. The last row presents the least favourable configuration with a 90°crossing. In this case, the tensor is incapable of determining the principal direction, which in practise will be determined by the local noise. Source : Seunarine and Daniel C. [START_REF] Seunarine | Chapter 6 -Multiple Fibers: Beyond the Diffusion Tensor[END_REF] Several rotationally invariant scalar features can be computed from the eigenvalues, providing a set of microstructural metrics, namely the Apparent Diffusion Coefficient(ADC), the Fractional Anisotropy (FA), and the transverse and longitudinal diffusivities (λ ⊥ and λ ∥ ).

ADC = λ 1 + λ 2 + λ 3 3 F A = 3 2 (λ 1 -⟨λ⟩) 2 + (λ 2 -⟨λ⟩) 2 + (λ 3 -⟨λ⟩) 2 λ 2 1 + λ 2 2 + λ 2 3 λ ⊥ = λ 2 + λ 3 2 λ ∥ = λ 1
The mean of the eigenvalues is a robust estimation of the ADC coefficient. The fractional anisotropy is the normalized variance of the eigenvalues. It quantifies the anisotropy within a voxel, with FA approaching 1.0 in highly anisotropic voxels, such as in in corpus callosum, and FA approaching 0.0 in isotropic voxels, such as in the gray matter and CSF.

The DTI model is appealing because it allows to easily access microstructural features of the tissues, and identify complex biological mechanisms. Thus in neuro-developmental studies, the rise of the FA in WM is associated with the maturation of the fascicles and the progression of the associated cognitive abilities [Neil et al. 1998, Hüppi and[START_REF] Hüppi | Diffusion tensor imaging of brain development[END_REF]. Conversely, in neurodegenarative studies, lesions caused by various neurological diseases, including the Alzheimer disease and multiple sclerosis, exhibit a decline of FA [Assaf andPasternak 2008, Horsfield and[START_REF] Horsfield | Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases -a review[END_REF]. However, the simplicity of the associated Gaussian model bounds the specificity of the latter metrics. The rise of FA, for instance, can be explained either by a rise of myelination, or by a rise of the axonal density. This lack of specificity hampers the interpretability of the metric, and limits the understanding of the biological phenomenons at play.

Moreover, the link between the direction of the tensor and the real orientations of fiber bundles remains questionable [START_REF] Seunarine | Chapter 6 -Multiple Fibers: Beyond the Diffusion Tensor[END_REF]. Simple configurations are well described. More precisely, in voxels crossed by a single fiber fascicle running straight, the direction of this fascicle is robustly identified. However, if the voxel is crossed by several bundles, each with a particular direction, then the tensor will poorly reflect the fiber configuration (Figure 3.20). Similarly, more complex configurations, such as fanning, bending or kissing are out of reach of the tensor.

HARDI, HYDI and microstructural models

White matter bundles are often depicted as sets of straight and parallel cylinders. In reality, the fiber arrangement is significantly more complex : single fibers have a smooth but not straight geometry. At the millimetric resolution, a single voxel can contain hundred of thousands of fibers running straight, but also bending and fanning. Moreover, at this resolution, a majority of voxels is expected to contain more than a single fiber population, implying possible crossings and overlaps. The portrayal of such an environment requires to define appropriate new models of the environment.

On the one hand, the diffusion tensor model is too simplistic to describe these complex environments. On the other hand, the propagator function is a comprehensive descriptor of the motion of molecules but its estimation is challenging. Intermediate metrics allows to describe the main properties of the environment, while remaining computationally approachable. Their estimation is made possible by specific samplings of the q-space. The High Angular Resolution Diffusion Imaging (HARDI) introduced by David Solomon [START_REF] Tuch | Diffusion MRI of complex tissue structure[END_REF], samples the q-space along a sphere corresponding to a constant b-value, also called shell. The sampling of a sphere uses of between 20 and a 250 measurements uniformly distributed over the sphere. This approach was extended with HYDI imaging Y.-C. Wu and A. L. Alexander 2007 which supports shells with different b-values.

New models were developed to leverage this rich data, following two main strategies : the non-parametric modeling approach and the parametric modeling approach. A non-exhaustive summary of these models is presented in Figure 3.21 and the following section specifically presents some of the most popular.

Non-parametric models

The non-parametric models mainly wish to estimate the diffusion Orientation Distribution Function (dODF). It is the spherical probability distribution function for a molecule to move in a particular direction, and is the integral of the propagator along a specific direction :

dODF (e) = P (r, ∆)r 2 dr
The fiber Orientation Distribution Function (fODF), also called Fiber Orientation Distribution (FOD), represents the underlying distribution of fibers. It is linked to the dODF with a convolution over a impulse response of a fiber R f : Where R f is the impulse response of a spin diffusing along a direction in a typical bundle.

dODF (e) = f ODF (e) * R f
The foundation of non-parametric models is the q-space theory [START_REF] Callaghan | Diffraction-like effects in NMR diffusion studies of fluids in porous solids[END_REF]]. The latter defines the Narrow Pulse Condition (NPC), which requires the diffusion encoding time δ to be brief enough to neglect the displacement of molecules happening during this time. Under the NPC, the propagator P (r ′ |r, ∆) can be expressed through an inverse spherical Fourier transform of the attenuation function E(q) :

P (r ′ |r, ∆) = F -1 [E(q, ∆)]
In practice however, the NPC is too restrictive and cannot be reached on actual acquisition protocols. The inverse spherical Fourier transform of E(q) thus yields an averaged metric : the Ensemble Average Propagator (EAP). It describes the probability for molecules to travel the distance R.

EAP (R, ∆) = F -1 [E(q, ∆)] (3.3)
As the EAP exhibits the same angular maxima as the propagator, it is a satisfying substitute.

Diffusion Spectrum Imaging : [START_REF] Wedeen | Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging[END_REF] introduces the Diffusion Spectrum Imaging as a direct exploitation of the relation 3.3. A comprehensive sampling of the q-space followed by an inverse Fourier transform allows to access the displacement distribution function P . The DSI is remarkable by its acquisition scheme. Whereas following sequences will tend to sample the information on a particular spheres of the q-space; the DSI requires a extensive sampling of the space, on a regular grid, limited to a sphere of maximum radius. This distinctive feature also illustrates the main drawback of the method. The complete sampling of the attenuation space requires typically 500-1000 measurements. In practice, a decrease of the resolution is necessary to shorten the otherwise excessive acquisition time.

Qball Imaging : David S Tuch 2004 relies on the Funk-Radon tranformation (FRT) which enables to deduct dODFs from spherical samplings of the q-space. The FRT is a transform of a sphere to a sphere, which associates to w, a unit direction vector, the integral of the function on the corresponding equator (Figure 3.22). Given a 3D function f (x), the FRT at a particular radius r, along (w) is given by :

G[f (x)](w, r) = f (x)δ(x T w)δ(|x| -r)dx
Therefore, the sampling of an unique sphere in the q-space, called shell, is sufficient to deduce the associated dODF profile. It reduces drastically the required number of measurements with respect to the DSI approach, as typically 60 measurements are sampled to estimate a sphere. The sampling of a unique sphere allows also to specifically choose the magnitude for the diffusion encoding, enabling a trade-off between the SNR and the diffusion weighting. [START_REF] Descoteaux | Regularized, fast, and robust analytical Qball imaging[END_REF] improved this method with the introduction of analytical Q-Ball imaging, relying on the use of a modified spherical harmonics basis for the representation of the diffusion signal :

S(θ i , ϕ i ) = R j=1 c j Y j (θ i , ϕ i )
where :

Y j =      √ 2 • Re(Y m k ) if -k ≤ m < 0 Y 0 k if m = 0 √ 2 • Im(Y m k ) if 0 < m ≤ k with Y m
k the standard spherical harmonic, of phase m and order k. This new basis provides a two-fold advantage. First, it facilitates the addition of a Laplace-Beltrami regularization, which corresponds to a Laplace regularization on the sphere. It improves the robustness to noise and allows a high-order modeling of the diffusion signal. Second, the modified spherical harmonics greatly simplifies the application of the Funk-Radon transform. Indeed, the authors demonstrate that the modified spherical harmonics are eigenfunctions of the Funk-Radon transform :

G[S](u) = R j=1 2πP lj (0)c j Y j (u)
with P lj the Legendre polynomial of degree l j evaluated at 0. [Özarslan et al. 2013] aims at estimating the propagator P associated with an attenuation signal. To this end, it expresses the MR signal in terms of Hermite functions. The latter have demonstrated rapid convergence in Fourier space, granting quick estimation of the signal, and they are the eigenfunctions of the Fourier transform. Therefore, the estimation of the attenuation E(q) in this base, directly lead to obtaining the propagator.

MAP-MRI :

In 1D, those quantities write :

E 1D (q) = n a n ϕ n (u, q) with ϕ n (u, q) = i -n √ 2 n n! e -2π 2 q 2 u 2 H n (2πuq)
where u is the scaling of the function and H n the n th Hermite polynomial. The propagator can then be expressed as : 

P 1D (r) = n a n ψ n (u, r)
with ψ(u, r) = 1 √ 2 n+1 πn!u e -x 2 /2u 2 H n (x/u)
This method also gives access to two novel diffusion features quantities : the return to origin probability (RTOP) and the return to axis probability (RTAP). For the restricted diffusion compartment, RTOP provides a proxy to the average volume, whereas RTAP gives access to its mean-cross sectional area.

Parametric models

Parametric models represent the different components of the tissue as geometrical compartments with various diffusion properties. Identifying in the diffusion signal the contributions of the different compartments allows to describe the tissues. The spherical deconvolution approach [J- [START_REF] Tournier | Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution[END_REF]] aims at evaluating directly the fiber orientation distribution : fODF. Its key assumption is to consider that all white matter bundles in the brain share the same diffusion characteristics. The diffusion of water within a single coherent WM bundle, such as the corpus callosum, therefore allows to infer the impulse response corresponding to the deconvolution kernel. In regimes of short diffusion times, the displacement of the water molecule is extremely limited, typically 10µm. In consequence, water molecules can be assumed to remain is a singular fiber bundle over the diffusion time, and thus participate in only one compartment. Finally, by considering that the white matter consists only of fiber bundles, the diffusion signal can be modeled as the sum of the contribution of the different fiber population :

S(θ, ϕ) = i f i A i R(θ)
Where R(θ) is the response function, f i the volume fraction and A i is the operator representing a rotation around the direction (θ, ϕ). This quantity can also be written as the convolution over the unit sphere of the impulse response R with the fODF F (θ, ϕ) :

S(θ, ϕ) = F (θ, ϕ) * R(θ)
A simple deconvolution thus yields the fODF of the voxel. This method has been incrementally improved since. The constrained SD J-Donald Tournier, Calamante, and Connelly 2007 minimizes the physically impossible negative values of the fODF. The multi-shell multi-tissue CSD Jeurissen, Jacques-Donald [START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF] leverages multi-shell information to model the diffusion signal as the impulse responses of different kind of tissues, namely the white matter, the gray matter and the CSF. The MSMT-CSD is currently an extremely popular choice for local modeling for two main reasons. First, it sets the inference of the composition of a voxel as a standard constrained linear least square problem, that can solved robustly and efficiently. Second, the description of the tissue's fraction is of great help to determine fODFs in voxels with an important fraction of GM or CSF.

While the CSD primarily aimed at characterizing the orientations of fibers in the white matter, multi-compartments models focus on determining geometrical properties of the environment which include the axonal diameter, the density of axons and their orientation dispersion. A summary of the key models published in the literature is proposed in Figure 3. [START_REF] Zemmoura | How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter[END_REF].

The Composite Hindered and Restricted Model of Diffusion (CHARMED) was first presented as an alternative to the DTI modeling [START_REF] Assaf | Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[END_REF]. It stands out with his dual representation of the diffusion in the axonal space : longitudinal to the axon, the diffusion is modeled as 1D gaussian, transverse to the axon it is considered to follow the Neuman theory. This framework was the starting point of two major models. It inspired AxCaliber [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF], a model able to characterize the diameter distribution of a set of axons, given they share a single known direction. The latter restriction was alleviated by the ActivAx framework[Daniel C [START_REF] Alexander | A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features[END_REF], that is able to estimate the average axon diameter in clinical conditions.

NODDI [H. [START_REF] Zhang | NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF] was initially developed as an extension of ActivAx [H. [START_REF] Zhang | Axon diameter mapping in the presence of orientation dispersion with diffusion MRI[END_REF]. It simplifies the representation of the axons to simple sticks, in order to estimate their orientation dispersion(OD). This dispersion is described as a Watson's parametric distribution. Characterized by a single concentration parameter κ, the model is efficient in representing various symmetric dispersion profiles, from high OD in grey matter, to low OD found in white matter. The robustness of the model and its compatibility with clinical protocols made it a popular choice for the characterization of the microstructure of the CNS. And as such it has been subject to many improvements. The Bingham-NODDI [START_REF] Tariq | Bingham-NODDI: mapping anisotropic orientation dispersion of neurites using diffusion MRI[END_REF]] models the OD with a Bingham's distribution, allowing to depict asymmetric configurations of the bundles, such as fanning and bending.

Tuning of dMRI protocols

As described in §3.2.3.1, the diffusion sensitization corresponds to an attenuation of a T 2 -weighted NMR signal, and thus deteriorates the overall SNR of the acquisition. An acquisition protocol is thus a compromise between the expanse of the desired DW data, the hardware and time limitations of the acquisition system and the constraint of an acceptable final SNR.

First, it is necessary to define the processing intended for the DW data. Simpler models, such as DTI, require a small number (<30) of diffusion weightings, but offer limited metrics to describe the tissues. Conversely, HARDI and HYDI models provide significantly improved metrics, but require much more diffusion weightings. Microstructural investigations may bear more specific requirements towards the DW data. The investigation of the cell size using the SHORE approach, for instance, requires to sample various diffusion times across the diffusion weightings.

Consequently, fine tuning of the protocol is key to ensure an acceptable SNR and is subject to various trade-offs : Those tunings ( §3.1.5.3) include the reduction of the resolution, the shortening of the bandwidth and the increase of repetitions. Shortening the echo time also helps to preserve a good SNR, but it constraints the time dedicated to the diffusion-encoding to be shortened as well. This exhibits the importance of powerful gradients, able not only to reach high values (gradient strength), but also to reach them quickly (slew-rate). Those characteristics practically limit the accessible b-values for a scanner.
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In the case of in vivo acquisitions, the single-shot EPI PGSE sequence is a widespread choice for in-vivo imaging. Indeed, it is an extremely fast sequence, allowing to acquire HARDI data even in clinical conditions. It is moderately sensitive to movement, which is key in the clinical frame. The main drawbacks of this sequence are severe distortions due to the susceptibility effects and eddy currents.

Post mortem imaging

Limitations of in vivo acquisitions

In human dMRI studies, in vivo acquisitions are the natural framework. But it comes with severe limitations for DW-MRI.

The large inner bore diameter of clinical scanners is necessary to welcome the subject, but it also makes challenging to design powerful magnets and gradients. Indeed, most scanners have a static field of 1.5T or 3T, with few research facilities equipped with 7T scanners. It leads a first restriction on the SNR ( §3. 1.5.3). But more importantly, the gradients that equip those scanners are not really suited for diffusion weighting. Most recent conventional gradients deliver a strength and a slew rate of { 80 mT.m -1 , 100 T.m -1 .s -1 }. In that regard, the Connectom project [START_REF] Setsompop | Pushing the limits of in vivo diffusion MRI for the Human Connectome Project[END_REF][START_REF] Huang | Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso-and macroconnectome[END_REF]] has successfully raised gradient's power to reach first { 300 mT.m -1 , 200 T.m -1 .s -1 } and soon { 500 mT.m -1 , 600 T.m -1 .s -1 } but these implementations remains seldom across exiting scanners. Yet, as described in §3.2.6, powerful gradients are central to efficient MRI acquisitions [Derek K Jones, Daniel [START_REF] Jones | Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI[END_REF]. They allow a good sampling of the q-space in a reduced time. They thus enable precise local models and reduced sequence durations, with good SNRs.

Working with living human subjects further sets mandatory ethical constraints. The length of the acquisition must remain reasonable, and in practice rarely exceeds 90 minutes. Besides, the strong gradient commutations in DW single-shot EPI sequences ( §3.1.6.3) are known to induce eddy currents in the conductive parts of the scanner. These commutations may also produce peripheral nerve stimulations (PNS). To avoid the latter, the admissible amplitude of the gradients is further limited [START_REF] Tan | Peripheral nerve stimulation limits of a high amplitude and slew rate magnetic field gradient coil for neuroimaging[END_REF]] : 200 T.m -1 .s -1 for whole body gradient coils and 600 T.m -1 .s -1 with head-insert gradient coils.

To compensate the limited hardware and time restrictions, the only solution is to increase the resolution of the acquisitions and moderate the diffusion sensitization. The resolution of in vivo dMRI dataset is generally limited to the millimeter resolution (see Table 3.2), with recent sequence designs enabling to reach 760 µm resolution, at the cost of long scan durations [F. [START_REF] Wang | In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution[END_REF].

The ex vivo framework does not suffer from these limitations. The ability to extend acquisition at will, up to days or weeks, has to the development of new acquisition sequences. The latter have shown to account for the hardware limitations of clinical scanners. Moreover, working post mortem allows to focus on precise samples of limited size, compatible with pre-clinical scanners. More powerful, these scanners have commonly a static magnetic field between 5.4T and 17.2T, while the gradient characteristics can reach a strength and a slew rate of { 1000 mT. -1 , 10 000 T.m -1 .s -1 }.

Specifics of ex vivo acquisitions

Ex vivo dMRI is challenging as it requires first a thoughtful preparation and preservation of the post mortem brain samples. This processes alters the magnetic and diffusive properties of the tissues, thus imposing to drastically revisit the imaging protocols. Still, ex vivo imaging remains appealing as it enables the use of alternative sequence schemes, with longer acquisition times and more powerful gradients.

Preparation and storage of human brain samples

With the cessation of the blood supply, the brain tissues start a destructive enzymatic reaction known as the autolysis. In the white matter, this process leads notably to the desintegration of the myelin sheath [START_REF] Hukkanen | Autolytic changes of human white matter: an electron microscopic and electrophoretic study[END_REF]. This phenomenon is reflected by a diminution of FA [ Miller et al. 2011a, D'Arceuil and[START_REF] D'arceuil | The effects of brain tissue decomposition on diffusion tensor imaging and tractography[END_REF] and the disorganization of fiber bundles ( Figure 3.24). The fixation of the tissues stops this destructive reaction. The resulting time interval between the death of the subject and the beginning of the fixation process, known of the Post-Mortem Interval (PMI), is a key marker of the overall state of the tissues. In animals studies, this interval can be really short, or even reduced to 0 with premortem intracardial injections. For human studies, such short times are unapproachable and in practice, a PMI of less than 24h hours is considered as a good achievement. Phosphate buffered formalin is a common choice for the tissue fixation [START_REF] Fox | Formaldehyde fixation[END_REF]]. The product cross-links molecules, blocking enzymes operations and preventing microbial development [START_REF] Shatil | Quantitative ex vivo MRI changes due to progressive formalin fixation in whole human brain specimens: longitudinal characterization of diffusion, relaxometry, and myelin water fraction measurements at 3T[END_REF].

Two fixating strategies are possible. The first is simple immersion of the sample in the fixative, to allow the diffusion of the fixative agent along the tissues. The sample must be suspended in the solution to avoid deformation due to the container. Although very accessible this technique relays on the penetration rate of the fixative agent, which can estimated at 0.1 mm.h -1 [START_REF] Start | Reassessment of the rate of fixative diffusion[END_REF]]. For large samples, such as the human brain, it imposes a long fixation delay, which may extend to 6 months. Moreover, deep structures will be affected by the fixative much later than superficial areas. Those important delays are revealed by a significant reduction of the SNR in the central areas.

An alternative fixative strategy is to inject the fixative through the brain arteries with the help of a pump. In this case, deep structures are irrigated much sooner [START_REF] Mcfadden | Perfusion fixation in brain banking: a systematic review[END_REF]]. This approach requires the sample to preserve a functioning vascular system. A drawback of this approach is that the pump applies a significant pressure on the arteries, which can cause deformation of the blood vessels, or its vicinity.

Finally, a corollary effect of the fixative is to deeply dehydrate the tissues. Before investigating the motion of water molecules, a thorough rehydration of the tissues is thus necessary[T. M. [START_REF] Shepherd | Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue[END_REF]]. It is achieved through immersion-suspension in phosphatebuffered saline (PBS). For large samples, the rehydration period may extend to several months.

Specifics of post mortem tissues

Death and fixation bring major changes to the biological tissues. Those are reflected in sharp changes in the magnetic constants of the tissues : the proton density, the T 1 and T 2 constant decrease significantly [START_REF] Pfefferbaum | Postmortem MR imaging of formalin-fixed human brain[END_REF], T. M. [START_REF] Shepherd | Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue-implications for MRI studies of human autopsy samples[END_REF]. It is detrimental to dMRI acquisitions, as shorten T 2 and reduced protonic density, directly lessen the SNR of the acquisition, and further limits the reachable values of b.

In addition, the overall diffusivity of the tissues is much lower. This is attributed to the molecular modifications provoked by the fixative process but also the temperature difference. In deed, the samples are not scanned at 37°C, as they would be in the human body, but at room temperature, at around 20°C. This reduction of temperature slows the brownian movement of water molecules, and thus reduces the diffusivity.

Consequently, to maintain the diffusion weighting contrast e -bD it is necessary to significantly increase the b-values. Usual in vivo b-values stand range between 700 to 2500 s.mm -2 ; ex vivo the recommended value range between 2500 and 10000 s.mm -2 , with a typical single shell acquisition done at 4000 s.mm -2 [START_REF] Dyrby | An ex vivo imaging pipeline for producing highquality and high-resolution diffusion-weighted imaging datasets[END_REF]].

Specific acquisition sequences

The modifications of magnetic and diffusive properties of ex vivo tissues do not play in favor of dMRI acquisitions. However, the possibility to design arbitrarily long sequences fostered the development of new, best suited sequences.

In pre-clinical scanners, powerful hardware allowed to easily adapt to the post mortem framework. Still, the lengthening of the acquisition time allowed to use 3D segmented EPI, that benefit from a better SNR and an improved robustness to characteristic EPI distortions.

For clinical scanners, the naturally lower SNRs, together with the need for a stronger diffusion weighting have long constituted a serious impediment to ex vivo dMRI. Recent sequence developments however allow to circumvent the limitation of the scanner:

• The dw-SSFP sequence leverages its steady-state to progressively accumulate diffusion weighting in the sample, achieving high b-values even on standard clinical scanners [START_REF] Mcnab | High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession[END_REF][START_REF] Foxley | Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T[END_REF][START_REF] Tendler | Use of multi-flip angle measurements to account for transmit inhomogeneity and non-Gaussian diffusion in DW-SSFP[END_REF]. This new sequence notably allowed to initiate The Digital Brain Bank [START_REF] Tendler | The Digital Brain Bank: an open access platform for post-mortem datasets[END_REF]]. The latter is an initiative to build a database of whole human brains at mesoscopical resolution (500 µm) with strong diffusion weighting. The main drawback of this sequence is a complex expression of the actual b weighting. 

Conclusion

The acquisition of a new post mortem dMRI dataset of the human brain is an important part of this thesis. This chapter is intended to introduce the physic and algorithmic background of this particular kind of acquisitions, in order to fully explain the choices made for the acquisition of the dataset. The introduction of the key notions of MRI, including the definition of the contrast mechanism and the spatial encoding technique allow to precisely define existing acquisition sequences, as well as their respective strengths and weaknesses. These arguments will be at the core of the design of the acquisition protocol, described in the Chapter 5.

The presentation of the various local modelings allows to explicit the relation between the sampling of the q-space and the finesse of the accessible microstructural parameters. This aspect is pivotal in the choice of the extensive q-sampling used for the Chenonceau acquisition. The latter is in turn determinant in the outstanding length of the acquisition protocol and thus acquisition campaign.

Moreover, the inaccuracies of the local modelings extend naturally to the construction of tracts with tractography algorithms. Precisely defining the limits of the local modelings allows to correctly assess the challenges facing the fiber tracking algorithms, as will be discussed in the Chapter 4.

Finally, the stillness of post mortem samples is an unique opportunity to design new acquisition protocols. However, ex vivo samples require a proper processing in order to limit as much as possible the deterioration of tissues, and they set specific challenges for acquisition protocols. Meeting those constraints is central in the design of the sample preparation, its storage protocol and the acquisition sequence itself, as will be detailed in Chapter 5.

Chapter 4

Review of conventional and modern tractography algorithms

The following chapter presents the frame of fiber tracking algorithms. First, it introduces the key terms of tractography and describes the current applications of tractograms. Second, it presents a review of tractography algorithms, including conventional approaches but oriented towards the presentation of machine-learning based approaches. Finally, the chapter discusses the pitfalls and challenges characterizing the use of tractography algorithms.

Contents

Tractography : definition and applications

From local modeling to virtual fibers

Diffusion-weighted MRI characterizes the displacement of the water molecules in the tissues.

Local modelings analyze those displacements to extract various microstructural metrics, including the main diffusion directions. In the WM, those privileged directions are identified as the main orientations of the underlying fiber populations.

The tractography field regroups the algorithms interpreting those local cues to reconstruct the path of anatomical fibers.

From a mathematical perspective, those orientations define a vector-field v. Its streamlines are curves r, parameterized by the arc length s, that follow the vector field(Figure 4.1).

dr(s) ds = v[r(s)]
The reconstructed streamlines are called tracks and pathways. The entire set of generated streamlines is called a tractogram.

Delineating tracks from the local configurations defines a largely under-constrained inverse problem. While modern tractography approaches are successful in retrieving the path of anatomical fibers, ambiguous local fiber configurations still lead to the creation of many anatomically unrelated tracks. The tractogram interpretations must thus be cautious when identifying reconstructed tracks to existing neural fibers. 

Tractogram investigation

Once the tractogram has been established it can serve two main purposes. It can be used to extract anatomical fascicles, called bundles, in order to characterize the paths and the microstructural properties of the fascicles among a certain population, age-or decease-related for instance [START_REF] Yeatman | Tract profiles of white matter properties: automating fiber-tract quantification[END_REF][START_REF] Bahrami | Subconcussive head impact exposure and white matter tract changes over a single season of youth football[END_REF][START_REF] Lebel | A review of diffusion MRI of typical white matter development from early childhood to young adulthood[END_REF]. The tractogram of the whole brain can also be used to initiate connectivity studies. Identifying connections among different regions establishes the structural connectivity of the brain. This allows to perceive the brain as a network and analyze its organization with methodologies borrowed from the graph theory.

Bundle segmentation

Manual approaches Manual approaches rely on the construction of regions of interest (ROI) that will either select of reject fibers that cross them. This iterative process sorts out irrelevant fibers and progressively refines the definition of the wanted fascicle. The wide use of this approach is mainly due to its accessibility and the explicit selection of fibers composing the bundles. However, this approach suffers from heavy inter-and intra-operator variability (see §4.4.2). Moreover, the manual delineation of fascicles is notoriously time-consuming.

Automatic approaches Automatic methods aim at rapidly and reliably recognize white matter bundles from the tractogram, they can divided in three categories.

Connectivity-based methods sort fibers according to a set of pre-defined template ROIs [Y. [START_REF] Zhang | Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy[END_REF][START_REF] Wassermann | The white matter query language: a novel approach for describing human white matter anatomy[END_REF]. Streamline-based techniques select fibers according to their similarity with anatomical fascicles [P. [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF][START_REF] Garyfallidis | Recognition of white matter bundles using local and global streamline-based registration and clustering[END_REF]. Finally, clustering approaches gather similar fibers into bundles in order to reduce the complexity of the tractogram. The dense and disorganized tractogram is thus turned into a set of anatomically relevant bundles.

Many clustering approaches have been proposed, with implementations of supervised and unsupervised methods. Defining the similitude between fibers, which drives the construction of bundles, is at the heart of the discussions. Methods relay on distance metrics between fibers, or shape similitude, or the use of anatomical knowledge [START_REF] Siless | A comparison of metrics and algorithms for fiber clustering[END_REF], T. Zhang et al. 2014[START_REF] Siless | AnatomiCuts: Hierarchical clustering of tractography streamlines based on anatomical similarity[END_REF]].

Here, the attention will be focused on the clustering algorithm used in the following of the thesis [P. Guevara, C. Poupon, et al. 2011]. The latter uses a hierarchical approach, divided into several steps (Figure 4.3). First, the tractogram fibers are split into groups, according to the hemisphere they belong to (right, left or inter-hemispheric) and their length. For each a group, the path of fibers is binarized and to form a mask fiber presence. It is further divided into parcels, with each parcel measuring the size of a few voxels.

The fibers crossing a parcel are counted to form a large connection matrix. The latter is analyzed to retrieve strongly connected parcels : a parcel-cluster. When a fiber crosses a significant part of a parcel-cluster, it added to the associated fiber-cluster The fibers composing a fiber-cluster are further differentiated according to their extremity.

Finally, other approaches implement the bundle reconstruction directly during fiber inference. Tracula [START_REF] Yendiki | Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy[END_REF]] leverages the global probabilistic approach of Saad [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF], enriched with anatomical prior information about the pathways, to directly construct fascicle-relevant fibers. TractSeg [Wasserthal, P. Neher, and Maier-Hein 2018] uses convolutional network to learns a direct mapping from fODF maps to anatomical bundles.

Connectomics

Connectomics [START_REF] Sporns | The human connectome: a structural description of the human brain[END_REF]Kötter 2005, Hagmann 2005] designate the creation of a graph depicting the strength or existence of connections between distinct regions across the brain.

Diverse atlases are used to define the parcellation of the brain. They include brain morphology atlases [START_REF] Desikan | An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[END_REF][START_REF] Destrieux | Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature[END_REF]] (Figure 4.4), fMRI-based atlases [START_REF] Yeo | The organization of the human cerebral cortex estimated by intrinsic functional connectivity[END_REF]] and myeloarchitectural and cytoarchitectural atlases [START_REF] Brodmann | Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues[END_REF][START_REF] Eickhoff | A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data[END_REF]. 

Conventional fiber tracking approaches

A large variety of methods exist to deduce fibers from the DW-signal. Here are presented local approaches, either deterministic or probabilistic, as well as global approaches.

Local approaches

The first approach for building tractograms proposed to iteratively grow fibers from seeds distributed across the volume of interest, in accordance with the local direction information, until a stopping criteria is reached. While the framework remains common for all methods, two main classes of algorithms, deterministic or probabilistic, define how the choice of the direction is maid.

Framework

The framework defines a set of parameters ruling the progression of the fibers.

Propagation region It defines the domain where the fibers are created and constrained to belong to. It can be the whole sample, or the white matter mask, or even a specific region of the sample.

Seeds

The starting point from which a fiber is grown is called a seed. How seeds are distributed across the propagation region is called the seeding strategy. It is defined by two parameters.

First, the number of seeds per voxel defines the fiber density of the tractogram, typically ranges from 1 to 8 seeds per voxel. The second parameter is the distribution of those seeds within the propagation region. They can be scattered across the whole brain volume, located inside the cortex, or at the border of the cortex and the white matter. Those different distributions help mitigate the over-representation of larger bundles in the tractogram (see §4.4.1.2).

Step-size Once the chosen algorithm yields the next direction of the fiber, the algorithm extends the fiber in this direction for a distance called step-size. This parameter is subject to the classic integration step dilemma, with high step-size allowing rapid fiber-tracking but possibly leaping though fine variations (see §4.4.1.1), and conversely for a small step-size. In practice, a step size of a quarter of the resolution is a widespread choice.

Aperture angle Neural fibers display a low curvature along their path. The aperture angle mirrors this biological a priori by setting a maximal acceptable curvature when propagating the fiber a step further. If the fiber cannot continue with this restricted angle, it stops. In practice, an aperture angle of 30°is common.

Stopping criteria

The propagation of a fiber can be stopped according to various criteria. Usual criteria include falling under a fractional anisotropy threshold or reaching the propagation region boundary.

Fiber-length filtering Once a fiber is completed, its length serves for a first plausibility evaluation. If a fiber is unreasonably long with respect to the sample size, it corresponds to an outlier and needs to be discarded. Similarly, extremely short fibers need to be removed from the final tractogram.

4.2.1.2

Streamline deterministic tractography Streamline fiber tracking algorithms were first proposed by the community when the DTI model was introduced. The propagation direction was simply the main direction of the tensor in the voxel [START_REF] Mori | Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging[END_REF][START_REF] Conturo | Tracking neuronal fiber pathways in the living human brain[END_REF][START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Lazar | White matter tractography using diffusion tensor deflection[END_REF]]. More precisely, the FACT method [START_REF] Mori | Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging[END_REF]] extended fibers in the direction of the voxel's tensor, until the fiber reached the end of the voxel. [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF] proposed a popular method to compute tri-dimensionnal resampling of the tensors in the neighborhood, allowing smoother evolution of the tracks (Figure 4.5).

However, those deterministic tracking method made particularly salient the limitations of the DTI model ( §3.2.4.2) to correctly represent complex configurations of fibers within WM. Regions with crossings notably were prone to significant errors and premature fiber stopping.

The introduction of HARDI models ( §3.2.5) allowed to represent several directions inside a single voxel and led to a new generation of deterministic algorithms [J-Donald Tournier, Calamante, and Connelly 2012, [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF]] that follow the most prominent direction among those complying with the aperture angle. [START_REF] Perrin | Fiber tracking in q-ball fields using regularized particle trajectories[END_REF] extends this idea by adding inertia to fibers. In order to determine the next direction of the fiber d i+1 at the position p i , this regularized approach makes a trade-off between the optimal direction d opt provided by the ODF, in accordance with the aperture angle C(p i , d i ), and the previous direction of the fiber d i :

d i+1 = (1 -α)d i + αd opt with d opt = argmax e∈C(p i ,d i ) ODF(p i , e)
Where α ∈ [0, 1] is a normalized measure of anisotropy. In anisotropic areas, the bundles direction is well-defined and α is large, allowing the algorithm to follow the direction provided by the next ODF. In areas with low anistropy, the ODF is almost spherical without any peaks, in this case the fiber is encouraged to proceed along the incident direction.

4.2.1.3

Probabilistic tractography A major drawback of deterministic tractography approaches is that they do not account for any uncertainty in the direction profile that may be due either to physical noise corrupting the acquisition or to the limitations of the chosen diffusion model to represent the fiber configuration. Probabilistic methods on the other hand estimate the uncertainty of a given local model, and thus propagate the fiber along multiple plausible paths, with an estimate of their likelihood. A key metric in this framework is the uncertainty ODF (uODF). Using a similar spherical representation, it displays the probability cone associated with the metric of interest (fODF, dODF) (Figure 4.14.a). The estimation of the uncertainty is achieved through three main methods :

Bootstraping calculates the uncertainty of a measure by describing its variability across several measurements. Several acquisitions of a single sample are thus used as estimates of the uODf. To avoid a senseless number of acquisitions, the results obtained from a few acquisitions are bootstraped together to form the desired number of datasets [Derek K [START_REF] Jones | Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI[END_REF]]. The WILD bootstraping allievates the need for several acquisitions by exploiting discrepancies between the model and the obtained data to generate new, uncertain data [Derek K Jones 2008[START_REF] Whitcher | Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging[END_REF].

Bayesian models propose a bayesian estimation of the uncertainty associated with the fitting of a parametric model. These approaches define the likelihood P (D|M ) of seeing this dataset given the parameters, and the prior belief concerning the said model P (M ). The likelihood must define a relationship between the chosen local modeling and the underlying fiber structure, as well as a model of the noise (rician, gaussian). The prior belief presents known characteristics of the parameters, such as the positiveness of diffusion coefficients [ Timothy EJ [START_REF] Behrens | Characterization and propagation of uncertainty in diffusion-weighted MR imaging[END_REF][START_REF] Behrens | Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?[END_REF][START_REF] Kaden | Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging[END_REF]. The Bayes theorem then allows to estimate the posterior probability P (M |D) for a set of parameters to fit the data.

Calibration methods describes the uODF as a function of the noise level and the ODF characteristics, such as peak sharpness [Geoffrey JM [START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF].

A single seed thus generates a range of possible fibers with various likelihood (Figure 4.14.b). To reconstruct more understandable bundles, a popular strategy is to propagate the fiber by sampling the following propagation direction from the uODF. The more a tract is likely, the more its successive directions will be likely to be selected, leading to a probable reconstruction of the said tract.

Anatomically informed regularization

Streamlining approaches can be enhanced by leveraging anatomical information.

Anatomically-Constrained Tractography [R. E. [START_REF] Smith | Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information[END_REF]] aims at improving the policies stopping the propagation of the fiber. In conventional algorithms, the extension stops when the fiber reaches a low FA region, when the curvature is too high, or when the fiber exits the binary tracking mask. However those classic rules remain imperfect and may lead to anatomically implausible fibers, with notably tracks terminating in the WM due to an unexpected sharp turn.

In ACT, the addition of an anatomical segmentation of the sample, characterizing the distribution of WM, cortical GM, subcortical GM and CSF allows to define more precise rules. Specifically, an additional stopping criteria stops fibers when they exit a sub-cortical region they have previously entered. New rejection criteria allow to discard not plausible tracks, which include tracks that end in WM or exit the tracking mask into the CSF.

Finally, accessing the partial volume of WM allows to define a new criterion for accepting short tracks. The authors propose to keep a streamline if the integral of the WM along the streamline reaches a certain threshold. This rule supports the creation of very short fibers that pass through superficial white matter, while discarding short tracks confined to the GM.

In the case of the Surface Enhanced Tractography [START_REF] St-Onge | Surface-enhanced tractography (SET)[END_REF]] the additional anatomical knowledge aims at correcting the trajectories of the fibers arriving to the gyri. It is well known that conventional tracking algorithms struggle to depict the sharp turns of fibers connecting to the gyri walls. Called gyral bias, this phenomenon is precisely defined in §4. 4.1.1. SET proposes to enforce a specific behavior for fibers reaching the gyri. The desired fiber trajectory is overall smooth, with fibers running parallel to the gyri wall before making a sharp turn to end orthogonal to the WM/GM interface. Moreover, the fiber distribution is defined as regular, with no hole or over-connection to specific areas of the gyri. The expected behavior is to a connectivity index, consisting of the mean diffusivity multiplied by the FA along each geodesic. The final tractogram keep the fibers with the high connectivity index. This techniques successfully retrieves important anatomical tracts, but is unfavorable to the detection of small bundles, and in particular the U-shape bundles (Figure 4.9).

Spin glass models

The spin glass framework [C. [START_REF] Poupon | Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles[END_REF][START_REF] Mangin | A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data-a technical review[END_REF] takes inspiration from the metallurgic models. The idea is to scatter across the tractography space a set of small fiber segments, typically measuring a fraction of voxel length. Those segments, called spins, can be connected to one another by their extremities, to form cliques. In the context of tractography, those cliques represent the neural pathways. The computation of the tractogram thus becomes the search for a configuration of spins, where their position and orientation is in compliance with the diffusion data, while the connections they make draw anatomically realistic neural fibers. By considering the whole tractogram at each iteration, these algorithms perceive the local fiber configurations as embedded in their coherent anatomical environment. This widen representation yields the much needed additional insights to disentangle complex fiber configurations.

More formally, this framework can described with a Bayesian frame :

P (D|Y ) ∝ P (Y |D) • P (D)
Where D is the underlying fiber network and Y the registered diffusion data. The likelihood P (D) quantifies the plausibility of the neural tracts, and thus encapsulates the properties stemming from general anatomical knowledge. In general, those properties include the need for a low curvature of the fibers and the requirement to start and end within grey matter. The prior P (Y |D) describes the matching between the diffusion data, and the proposed spin configuration.

The formulation of this framework under the energetic perspective yields :

E g (D, Y ) = E i (Y, D) + E e (D)
With E g , E i and E e respectively the global, internal and external energy. From this perspective, maximizing the posterior reverts to searching for a global energy minimum. Fillard, C. Poupon, and Jean-François Mangin 2009 proposed specific definitions for those energies and further set E gen , the generative potential, driving the creation of new spins. Kreher, Mader, and V. Kiselev 2008 framed the search for a optimum tractogram as a sampling of the posterior P (D|Y ) over the space of all possible tractograms for a given diffusion acquisition. By lowering progressively the acceptance rate, it becomes more and more likely to sample from the maxima of P (D|Y ).

The chosen sampling algorithm is the Reverse Jump Markov Chain Monte Carlo method (RJMCMC) [START_REF] Green | Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[END_REF]], an extension of the Metropolis-Hasting algorithm [START_REF] Bishop | Pattern recognition[END_REF]]. Its characteristic is to randomly choose the transitions between successive samples, according to a transition probability p. Let D be the current tractogram, p(D) the associated distrubution of possible alterations, and D ′ the new altered tractogram. The acceptance of D ′ as a new sample depends on the Green ratio :

R = P (D|Y ) P (D ′ |Y ) • p(D|D ′ ) p(D ′ |D)
Alterations with a Green ratio superior to 1 are accepted. The acceptance of uncertain operations, with a Green ratio inferior to 1, is governed by a variable called temperature. At the beginning of the sampling process, the temperature is high with a high acceptance rate. As the sampling continues, the temperatures lowers to only accept alterations leading to the most likely samples. Starting from a random location with a low likelihood, small iterative alterations to the sample will progressively drive the sampling algorithm to reach for the more likely locations. This progressive improvement is supported by a progressive lowering of the acceptance rate, which encourages the sampling along the more likely direction. Source : https://www.turing.ac.uk/ Kreher, Mader, and V. Kiselev 2008 also redefines the matching of the spins with the diffusion data as a generative problem. Each spin is associated with an attenuation signal, portrayed in this case by a diffusion tensor. The generated diffusion signal by the i th spin ρ i , in the voxel v along the direction n is then :

ρ i (v, n) = c i (v)e -T r(n•R i DR -1 i )
With R i the rotation matrices; c i (v) the spin volume fraction in the voxel v and λ 1 , λ 2,3 the fixed eigenvalues of the tensor D.

The difference between the obtained diffusion data, and the diffusion data generated by the spins constitutes the internal energy E i . This approach creates a voxel-wise dependency between the spins and promotes spin distributions representative of the associated diffusion signal. This latter proposition is key for the computationnal improvements presented in [START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF]. The generated signal by the i th spin is redefined to a simple stick model :

ρ i (x, n) = w • e -c(n T n i ) 2 e -|x-x i | 2 /σ 2
The parameters σ and c describe respectively the spatial extent and the sharpness of the diffusion signal, while w sets its amplitude. These 3 parameters, together with the length of the spins, bound the expected number of spins inside a voxel and thus effectively restrict the accessible tractogram space, shortening significantly the computing time. In practice, the authors report that maintaining around 2 3 , 5 3 spins per voxels is good a compromise between computation time and complexity of the reconstruction.

Further developments of the generative model are at the heart of the following studies. Reisert, Valerij G Kiselev, et al. 2014 models the diffusion signal as a multi-compartment model. The parallel and longitudinal diffusivity as well as the fraction volume become new parameters to fit. [START_REF] Konopleva | Modelfree global tractography[END_REF] on the other hand, jettisons the representation of the underlying microstructure; to find in every voxel the best admissible response function, so that the fODF (resulting from the spin distribution) matches the attenuation signal. The authors further penalize the overall number of spins, reducing the spins to 3 per voxel. These spins no longer stand for direct representation of a fascicles, but rather depict the orientational complexity of the fODF.

In parallel, Teillac 2017 proposed to refine the likelihood of the model with further anatomical and microstructural constraints. In particular, the authors take into account the distance to the pial surface, the distance to ventricules and the orientation dispersion stemming from the NODDI model [H. [START_REF] Zhang | NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF] to shape a likelihood supporting anatomically coherent sharp turns in gyris (Figure 4.11 and Figure 4.12). 

Tractography post-processing

Tractogram algorithms generate hundred of thousands, if not millions of fibers. Different postprocessing algorithms aim at pruning this dense output to facilitate its future analysis. Filtering methods select fibers that are a posteriori compliant with the microstructural properties of the local model

MicroTrack [START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF] aims at extracting from the dense tractogram, a coherent subset of fibers. Each fiber is associated with a variable local orientation, and a set of microstructural properties (average axon radius, g-ratio, intra-axonal diffusivity and extra-axonal diffusivity) that are considered constant along the fiber. The DWsignal associated to the fiber is approximated using the CHARMED model [START_REF] Assaf | Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[END_REF]. The optimizer then searches for a set of fibers that best reproduces the original DW signal. The elimination of spurious or redundant fibers is further encouraged by penalizing fascicule overlap, which in fine leads to a more sparse tractogram.

The Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) brings major computationnal improvements to this model [START_REF] Daducci | COMMIT: Convex optimization modeling for microstructure informed tractography[END_REF]]. The new convex formulation for the parameter space allows for a significantly improved converge time, with guarantees to reach the global minimum.

The SIFT [R. [START_REF] Smith | SIFT: Spherical-deconvolution informed filtering of tractograms[END_REF] exploits the linear relation between the amplitude of the fODF, and the volume of the associated tissue. By associating a constant cross-section to all fibers, it becomes possible to select a subset of fibers that best complies to the fODFs described by indivudual voxels (Figure 4.13). SIFT2 [R. Smith et al. 2015] improves this approach by associating a variable cross-section to the different fibers instead of removing the irrelevant ones. 

Machine learning and deep learning based approaches

Introduction to deep learning

This section is dedicated to the introduction of the fundamental notions of deep learning.

For a more comprehensive review of deep learning fundamentals, the reader may refer to Goodfellow, Bengio, and Courville 2016.

Neural network

The invention of neural networks as a new machine learning paradigm is credited to Rosenblatt 1958 with his implementation of perceptrons. This new concept took inspiration from the biological system, and aspired to bridge biophysics and psychology. Although, the biological significance of this model has progressively faded away, some anatomical terms have remained.

And thus, the atomic constituent of perceptrons, and modern neural networks, is the neuron. It is a vector-to-scalar function f , characterized by an activation function h and by a parameterset θ, consisting of a bias b and weights {ω i } 0≤i≤n :

f (x) = h(w T x + b)
As its biological counterpart, the neuron takes different as inputs signals, process them, and outputs a single response. Associated in parallel, the neurons form a layer of a given width. When several such layers are stacked together, they establish a deep chain-structure. The first and last layer are called input and output layers, while the intermediary layers are called hidden layers. The feed-forward networks are subset of networks where information progresses along the network, with no backward loop. Finally, the fully connected layers designate networks where each neuron of a layer is connected to every neuron of the previous layer. In particular, non-linear activation functions allowed perceptrons to approximate the nonlinear function XOR [START_REF] Minsky | Perceptrons: An introduction to computational geometry[END_REF]. Furthermore, the universal approximation theorem [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]] states that a feedforward network, with at least one hidden layer can approximate any continuous function on a closed and bounded subset of R n , with any precision, given enough hidden units. Unfortunately, the required number of neurons can be exponential [START_REF] Barron | Universal approximation bounds for superpositions of a sigmoidal function[END_REF]].

Deeper networks, on the other hand, have demonstrated their capabilities to approximate complex, multi-dimensional functions, with a reasonable number of parameters. Hidden layers can thus be interpreted as intermediate processing operations of moderate complexity, whose concatenation achieves to model a complex function.

Training of a neural network

Training a supervised machine learning algorithm consists in tuning its parameters to minimize a well chosen cost function, describing the problem at hand. Linear machine learning methods (SVM, logistic regression), assume a convex cost function, whose optimization is guaranteed to reach the minimum, with little to no dependence on initialization parameters. The non-linearity of neural networks however reshapes the cost function as non-convex. As a consequence, minimizing the cost function, requires to travel the parameter space through gradient descent. But, the true distribution of all possible inputs is unknown, and can only be approached with samples, designated as the training data. Deterministic methods, performing a gradient descent based on the entire available dataset have proven to be inefficient and costly. Stochastic methods of the contrary, propose to compute the gradient over "mini-batches", composed of a restricted number of items. The size of a minibatch is a trade-off between the growing computational burden and the improved accuracy of the obtained gradient. In practice, batch sizes range between a dozen to a few hundred items.

The gradient can computed using the backpropagation algorithm [START_REF] Rumelhart | Backpropagation: The basic theory[END_REF]] which relays on an effective computation of the chain rule across the entire network. The resulting update of the parameters is driven by optimization algorithms, the most common of whom is the Stochastic Gradient Descent (SGD). The Adagrad optimizer Duchi, Hazan, and Singer 2011 uses historical gradient values to properly scale the learning rate paramater-wise. Thus, parameters with a large partial derivative see their learning rate rapidly decrease; while parameters with small partial derivatives will benefit from a slower decrease of the learning rate. This approach was further improved with RMSProp G. Hinton, Srivastava, and Swersky 2012 and AdamGrad Kingma and Ba 2014 optimizers.

Convolutional layers

The convolution of two function f and g is defined as :

(f * g)(t) = +∞ -∞ f (a)g(t -a)da
In signal processing, the discrete convolution of a sampled input ŷ over a specific signal s, is a reliable way to detect the presence of s. In the case where s is a finite short signal of length T , then the sum is significantly shortened. The convolution operation thus allows to test the presence of a said signal, in a few computational steps.

(ŷ * s)(t) = T i=0 ŷ(t -i)s(i)
This idea has been transposed to neural networks with the development of convolutional layers [START_REF] Lecun | Handwritten digit recognition with a back-propagation network[END_REF]. A convolutional layer is centered arournd its 2D kernel K, which performs the convolution, and consists of a set of m × n neurons. The output of the convolution is called a feature map S. Sparse Interactions : Contrary to fully connected layers, a convolution layer does not read the entirety of the input. Small kernels make convolution a local operation, taking into account only a patch of the incoming data. They are designed to detect small features, such as edges or basic patterns. The associated computational gains are significant. Smaller kernels mean fewer parameters per convolution, which in turn shortens the computations and reduces the required memory.

Parameter Sharing : Instead of learning as many different kernels as there are applied convolutions, a single kernel is learnt, and is applied in every location. A convolution is thus entirely described by a single kernel, made of a few neurons. This allows to further reduce the memory burden.

Equivariant representations : Parameter sharing enables the convolution to be equivariant to translations of the image. In deed, as the kernel is applied to the whole image, the spatial coordinates of a specific feature are irrelevant to the convolution. Other affine transformations however, modify the shapes of the features, and may affect the convolution.

Convolutional layers shine by their capacity to work with multi-channel images. The input of a convolution can be a multi-channel image I, typically a RGB image, that will be processed by 4D-kernel K, to output a 3D-image Z, called tensor, with each channel being the result of a particular convolution.

With increasing depth, the pattern extracted by features maps gains in complexity. In the first layer, the features maps are similar to classical image processing filters (angle, basic patterns), the latest layer on the other hand develop more abstract patterns, characteristic of deep learning (Figure 4.16). 

Construction of convolutionnal networks

Convolutional networks use commonly three other layers in association with convolutional layers :

Pooling layers are akin to downsampling layers. A function will select over a grid n * m a single value. Most frequently it is the maximal value (max-pooling), but it can also be the average value (average-pooling).

Dropout regularization ratio determines the part of neurons that will be randomly removed during a single training pass forward. This random sampling creates and thus trains slightly different networks for each pass. At testing time, the inference is thus the average of a variety of networks [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF]]. This practice allows to greatly reduce the overfitting of large networks.

Batch Normalisation layers normalize activation maps, working as a regularizer for the network, speeding up training and making it less dependant on parameter initialization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF].

Those different layers are arranged to compose convolutional networks. Notorious network configurations have become the ground for the development of specific, ad-hoc solutions. Such fundamental networks include LeNet [LeCun, Bottou, et al. 1998], the AlexNet [Krizhevsky, Sutskever, and G. E. Hinton 2012], the VGGNet [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] and the U-Net [Ronneberger, P. Fischer, and Brox 2015]. For a more extensive list, the reader is referred to A. S. Lundervold and A. Lundervold 2019.

New fiber tracking approaches

Iterative fiber tracking algorithms are based on classic local streamlining framework ( §4.2.1.1). They reconstruct fibers independently, using a random seed to initialize the fiber and propagate it along a direction for a distance determined by a step-size. The new generation of machine learning approaches aims at better interpreting the local information surrounding the fiber to suggest the best direction to follow.

The first machine learning approach for fiber tracking was proposed in [P. F. [START_REF] Neher | A machine learning based approach to fiber tractography using classifier voting[END_REF], P. F. Neher, Côté, et al. 2017]. It relays on a random tree classifier that estimates the tissue composition (white matter/grey matter) and the fiber directions directly from DW data. The classifier is trained on a DW dataset where the ground truth is the associated set of bundles, obtained from a standard tractography algorithm, and curated. The algorithm thus aims at reproducing the presence and the distribution of known fibers in each voxel.

More precisely, the classifier deduces from a set of 100 resampled directions d i , the distributions of fibers P (d i ) along those directions, plus the probability for fibers to stop in this voxel P nofib . After being initialized from a seed, a fiber is extended iteratively. At each step, the optimal direction in the neighborhood is estimated, by sampling N points p j and estimating their best direction d j .

d j = 100 i=0 P j (d i ) • ⟨d i , d old ⟩ • d i
where d old is the current direction of the fiber. The dot product modulates the distribution of fibers to enhance directions co-linear to the current direction of the fiber, and thus encourages the creation of smooth tracts. A hard threshold on the angle (d i , d old ) prevents sharp turns and U-turns. The fiber is then extended for a fixed step-size along the new direction of propagation d new :

d new = j d j
This method lays the foundation for the "Learn to Track" approach [START_REF] Poulin | Learn to track: Deep learning for tractography[END_REF][START_REF] Poulin | Bundle-Wise Deep Tracker: Learning to track bundle-specific streamline paths[END_REF]]. In the latter, a fiber is represented as a sequence of equally-spaced dots, with spatial coordinates P i . Each dot is associated with the DW signal attenuation at P i , resampled along 100 directions :

D(P i ) = {D i } 0<i<100 .
A feed forward neural network is trained to predict at the extremity of the fiber, the next direction of propagation di+1 , using the current diffusion information D(P i ) and the previous direction of propagation of the fiber d i . The mean-squared difference (MSE) between di+1 and the actual next direction of the fiber d i+1 defines a natural loss for the network (Figure 4.22.a).

The model uses further improved with the introduction of a recurrent neural network whose internal state saves relevant past information (Figure 4.22.b).

At the inference time, the network yields the new direction of propagation, and the fiber is extended along this direction for a fixed step size. The fiber is interrupted under classical stopping criteria : too high curvature, exiting propagation region (see §4.2.1.1).

"Learn to track" differs from [P. F. [START_REF] Neher | A machine learning based approach to fiber tractography using classifier voting[END_REF] as it reframes the problem from a classification to a regression task. The gain is two-fold : the need to evaluate each of the discrete possible directions is removed, which allows to reduce the number of computations; and the next following direction is not bounded by a predefined set, which enhances the obtained precision.

This approach was further developed in [START_REF] Théberge | Track-To-Learn: A general framework for tractography with deep reinforcement learning[END_REF] with the introduction of reinforcement learning. This new methodology will be presented in detail in the next chapter.

Benou and Raviv 2019 proposed an intermediary approach, using a similar RRN to restore the classification frame. When tracking, the network evaluates each of the next possible directions, from the history of the travelled path. This exhaustive evaluation allows to implement either deterministic tracking, by always picking the maximum direction for propagating the fiber, or probabilistic tracking, by randomly sampling from the possible directions.

Interestingly, the presented RNN methods exclude the position information from the data given to the network, thus making the model invariant to spatial configurations (brain size, translations, rotations,...). It grants good generalization properties while reducing the need for preprocessing and data augmentation. [START_REF] Wegmayr | Data-driven fiber tractography with neural networks[END_REF] proposed to extend the spatial span of the diffusion information, taking into account not only the diffusion data at the point P i , but in the cube of dimensions k 3 voxel, centered on P i . This information is flattened and concatenated with the previous directions. This input is then processed by a multilayer perceptron to predict the next direction to follow. This approach is extended in Entrack [START_REF] Wegmayr | Entrack: Probabilistic spherical regression with entropy regularization for fiber tractography[END_REF] with the introduction of a general probabilistic model for spherical regression.

Direct estimation of the tractogram properties

A set of approaches aim at bypassing the difficult fiber tracking, and directly estimating the properties of the tractogram, ie the position of the anatomical fascicles or its connectogram.

Bundles segmentation

Tractograms can be used to extract well-known anatomical tracts, which allows to summarize millions or tens of millions of fibers, under a set a well-known anatomical tracts whose properties can now be studied. TractSeg Wasserthal, P. Neher, and Maier-Hein 2018 leverages a 2D-UNet to estimate from the fODF vector field the probability for a voxel to be part of a set of 72 well-defined tracts. That is to say, this approach bypasses the tracking and filtering of fibers, to directly estimate the path of the anatomical fascicles.

Specifically, the fODF field is processed to extract its 3 main directions. The latter allow for a more compact representation of the information for the network as only 9 channels are required to represent the information.

To avoid the computational burden of a 3D convolutional network, the proposed net is a twofold Fully Convolutionnal Neural Network (FCNN). The first FCNN, takes as input 2D slices of the brain (axial, coronal or sagital) and estimates the probability for every pixel to belong to a tract. The second FCNN is trained to fuse together the information from the different axis to yield, after a final mean operation, the probability for each voxel to be crossed by any of the 72 tracts. The use of a sigmoid function allows in each voxel the sum of all classes to be superior to 1. The binary cross entropy is used as the loss. B. [START_REF] Li | Neuro4Neuro: A neural network approach for neural tract segmentation using large-scale population-based diffusion imaging[END_REF] extends this approach with the implementation of a 3D U-Net. Interestingly they report better results with a DTI modeling, than with the peaks of the fODF. It notably enables this approach to be used with usual clinical acquisition protocols.

Reisert, Coenen, et al. 2018 achieves a similar mapping, but with different means. Hierarchical Harmonic Filters for Learning Tracts (HAMLET) takes advantages of the Spherical Tensor Algebra to develop rotation covariant filters. Similar to convolution layers, they consist of iterated application of spatial convolutions and non-linearities; and in addition to spatial invariance, these filters are rotation covariant.

This built-in rotation invariance dispenses with heavy data augmentation as with Wasserthal, P. Neher, and Maier-Hein 2018. Furthermore, covariant filters represent more concisely bundles, as this network requires 3 orders of magnitude less parameters to represent a tract, than their CNN counterparts. The reduction of needed parameters is highly valuable in the context of scarce learning data. Finally, the network returns a multi-channel tensor field, with each tensor defining through its amplitude and direction, the probability of presence and the direction, of a specific anatomical fascicle in a voxel. A final streamlining algorithm may be used to produce traditional streamlines of the tracts, instead of scalar field prediction.

Connectogram extraction

Sarwar et al. 2020 use a 3D-CNN to infer from minimally processed dMRI signal the connectivity matrix of the sample. However, the high-dimensionnality of large samples makes impossible to evaluate at once the connectivity of an entire brain. Consequently, the sample is divided into a set of overlapping cubic blocks of a reasonable size. The fibers that cross a block entirely, contribute to the associated block connectivity matrix. The latter are stitched together to reproduce the connectivity of the whole sample (Figure 4.19). The role of the CNN is then estimate the block connectivity matrix from minimally processed DW data, thus removing the need for local modeling and fiber tracking.

Tractography challenges

Numerous hardships characterize the building of tractograms, ranging from the challenging fiber tracking operation, to the biases due to the starting and stopping criteria, to the large variability of the obtained bundles. However, the development of an accessible evaluation frame and robust validation protocols help the community to better tackle these difficulties. Tracking fibers with precision across an entire sample requires a reliable representation of local fiber configurations and a robust tracking algorithm. In practice however, both present wellknown limitations that result in a set of expected errors :

The bottleneck effect is observed in configurations where several fascicles converge into a small region, and separate afterwards. In such setting, tractography algorithms cannot disentangle the anatomically true exit for a fiber, and thus will tend to consider all exiting options as valid. It results in the spread of the incoming bundle, with the creation of possibly many false positives.

The wall effect arises when bundles intersect locally with a low incidence angle. The latter may be low enough to be undetectable for local models, which will portray the intersection as a straight line configuration. The tracking algorithm, in turn, will straighten the path of the fibers in this area, instead of bending them into the overlapping region. This phenomenon leads to the creation of a visual wall between the two bundles.

The narrow intersection affects low angle crossings. Contrary to the previous setting, the local modeling is not at fault here, as it is able to properly characterize the different available directions. However, if the two directions are close enough, they can both be under the tractography curvature threshold ( §4.2.1.1), and thus represent equally valid options for the tracking algorithm. As a consequence, the latter is likely to track the fiber along the wrong direction.

The overshooting designates a well-documented pitfall for fiber tracking, that is the underestimation of the curvature for strongly curved pathways [START_REF] Tournier | Limitations and requirements of diffusion tensor fiber tracking: an assessment using simulations[END_REF]. The use of a smaller step-size solves this issue, at the cost of a longer computation time. The gyral bias designates the tendency of fiber tracks to traverse in straight line the gyri to terminate on gyral crowns, rather than on the sulcal fundi [START_REF] Reveley | Superficial white matter fiber systems impede detection of longrange cortical connections in diffusion MR tractography[END_REF]. Histological studies contradicts such monolothic behaviour : while there is a slightly higher connectivity at the crowns, neural fibers are shown to make sharp turns to connect to the walls of the gyri. This tractography bias is associated with several causes [START_REF] Van Essen | Chapter 16 -Mapping Connections in Humans and Non-Human Primates: Aspirations and Challenges for Diffusion Imaging[END_REF], K. Schilling et al. 2018].

The dominant cause of the bias appears to be the surrepresentation of medium and long fibers among the tractogram. As the latter do terminate in the gyral crown, they imbalance the overall depiction of the connectivity.

Another source of error is the sharp turning of fibers into the cortex walls, which can reach 50°. It exceeds the recommended tractography curvature threshold, 30°for millimeter acquisitions, making such fibers untracktable with classical approaches.

Finally, precise local modeling in the gyri is challenging as the grey matter participates to the partial volume effect. The latter bias local estimates towards the gyral crown. The usual millimetric resolution of the DW-imaging is particularly sensitive to this bias. Conversely, refinement of the resolution alleviates this bias, as [K. [START_REF] Schilling | Confirmation of a gyral bias in diffusion MRI fiber tractography[END_REF]] reports a median deviation of just 2.2°for a resolution of 400 µm.

Fiber seeding and stopping biases

The initialization of fibers and their stopping criterion rise their own biases.

The seeding bias is linked to the common seeding strategy which initializes fibers in every white matter voxel. As large bundles occupy more space, they will receive more seeds and hence will be more reconstructed [START_REF] Jeurissen | Diffusion MRI fiber tractography of the brain[END_REF][START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF]]. An alternative strategy is to seed from the WM/GM interface. While reducing the large bundles overrepresentation, this strategy bring new challenges. First, this approach makes fiber tracking over long distances more hazardous, as the accumulation of errors tends to divert fibers from their true course. Second, the reconstruction of small and complex bundles, such as the fornix [Francois [START_REF] Rheault | Bundle-specific fornix reconstruction for dualtracer PET-tractometry[END_REF]], is more difficult with this strategy.

The stopping criterion To prevent fibers from stopping within the white matter, a classical stopping criterion for fibers is to reach the grey matter ( §4.2.1.1). However, the implementation of such a common sense rule, brings unexpected pitfalls.

First, the GM mapping must be cautious as a simple FA threshold may exclude WM areas containing important crossings, such as the prefrontal lobe. Second, maps of grey matter include the cortex and the deep nuclei. While, reaching the cortex is indeed a reasonable stopping criteria, the strategy to adapt towards the deep nuclei is unclear. Some nuclei, as the thalamus, are major relay points for the association pathways ( §2.2.3) and justify the stopping and creation of a new fiber. On the contrary, some nuclei are notorious for being crossed by fibers, as the globus pallidus ( §2.2.2).

Finally, recent DW acquisition protocols make possible to study the inner connections of the cortex and the deep nuclei [START_REF] Dell'acqua | MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum[END_REF]. A simplistic GM stopping criterion is no longer suited for such analysis.

Sources of variability

The bundle segmentation is the final outcome of a long protocol, which starts at the selection of the MRI scanner, to end with the choice of hyperparameters for the tracking algorithm. Each of these decisions is a potential source of variability.

Regarding the influence of the protocol, K. G. [START_REF] Schilling | Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow[END_REF] recently reported that bundle segmentation shows major variations across different acquisition resolutions, and scanner vendors. Variations across different scanners from a single vendor and different diffusion sensitization are less impacting. Next, the image processing pipeline is also a source of variability [START_REF] Pujol | The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery[END_REF][START_REF] Maier-Hein | The challenge of mapping the human connectome based on diffusion tractography[END_REF]. It generally consists of classic image processing algorithms, such as denoising, followed by the choice of the local modeling of the DW signal, and at last by the choice of the tractography algorithm itself. The high number of available algorithms and implementations is further exponentially increased by the number of hyper-parameters associated with each step [START_REF] Côté | Tractometer: towards validation of tractography pipelines[END_REF].

Finally, the variability extends to the very definition of fiber bundles within the tractogram. The bundle segmentation relays on various techniques, ranging from manual segmentation to automatical, or semi-automatical methods (see §4. 1.2.1). In practice, the subjective notion of bundles plausibility serves to their assessment. Such a loose framework leads to significant variations in bundle definition[K. G. [START_REF] Schilling | Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?[END_REF]].

Challenging validation

The bundle dissection variability stems from the absence of consensus on the path of white matter bundles [START_REF] Bajada | Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network[END_REF][START_REF] Panesar | Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification[END_REF][START_REF] Mandonnet | The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification[END_REF]. Beyond the challenge of characterizing an extremely rich and interconnected network, this anatomical disunity is the consequence of the difficulty to probe efficiently WM bundles.

In the study of human brains, validation of fiber bundles relies exclusively on invasive approaches. Through specific tissue preparation, the Klingler dissection [START_REF] Klingler | Atlas cerebri humani[END_REF]Ludwig 1956, Zemmoura et al. 2016] gives access to large bundles of the brain, but remains ill-suited for the study of entire connectograms. Indeed the progressive delineation and thus extraction of a specific bundles, ineluctably destroys fascicles crossing it (Figure 4.24). Histological approaches [START_REF] Dyrby | Validation of in vitro probabilistic tractography[END_REF], K. G. Schilling, Gao, et al. 2019], have the ability to accurately describe even microscopic fiber configurations, and as such they represent the gold-standard of bundle validation. More recently, Polarized Light Imaging (PLI) has demonstrated its ability to characterize fiber orientations at similar resolutions [START_REF] Axer | A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain[END_REF][START_REF] Herold | The hippocampus of birds in a view of evolutionary connectomics[END_REF], thus providing a validation method better-suited for fiber tracking. While the latter two methods provide an extremely refined fiber characterization, at the scale of the whole human brain, they remain too work-intensive for most settings.

As a consequence, tissue validation approaches do not help to delineate actual bundles. 

Building an evaluation frame

With hard to reach biological ground-truths, the community turned towards synthetic phantoms to evaluate its algorithms. Phantoms sough to imitate challenging fiber configurations, with a known underlying fiber structure. First phantoms consisted of hydrophobic acrylic fibers woven together [START_REF] Fillard | Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom[END_REF][START_REF] Drobnjak | Physical and digital phantoms for validating tractography and assessing artifacts[END_REF]. Thereafter, the development of virtual phantoms lead to a more adaptable frame, allowing to generate fiber configuration on the fly [START_REF] Caruyer | Phantomas: a flexible software library to simulate diffusion MR phantoms[END_REF], P. F. Neher, Laun, et al. 2014]. Maier-Hein et al. 2017 extended significantly the complexity of phantoms by proposing a synthetic phantom of the human brain.

Those several publicly-available phantoms are ground to build a systemic evaluation system, able to assess the best image processing practices, and the most relevant fiber tracking algorithms. [START_REF] Côté | Tractometer: towards validation of tractography pipelines[END_REF] is an online comparison tool, reporting at the date of publication, the comparison Figure 4.24: Illustration of the similarity between the FiberCup phantom bundles and anatomical bundles. The FiberCup phantom (a) reproduces the high curvature (bundle 4), the fanning (bundles 5,6,7), the bundle merging (bundles 1,3) and bundle crossings (bundles 2,3) that can be found in the brain (b,c). Source : [START_REF] Côté | Tractometer: towards validation of tractography pipelines[END_REF] of more than 50 000 different bundle definition pipelines. In particular, the author introduce new metrics to assess the nature of reconstructed bundles, and thus go beyond the false positive evaluations :

Average Bundle Coverage (ABC): ratio of the fiber bundle covered by streamlines.

Valid Connections (VC): streamlines connecting unexpected ROIs or streamlines connecting expected ROIs but exiting the expected fiber bundle mask Invalid Connections (IC): streamlines connecting unexpected ROIs or streamlines connecting expected ROIs but exiting the expected fiber bundle mask. These streamlines appear plausible, but are actually artefactual.

No Connections (NC): streamlines that do not connect two ROIs

Valid Bundles (VB): bundle connecting expected ROIs

Invalid Bundles (IB): bundle connecting unexpected ROIs

Reducing the variability of the fiber tracking algorithm allows to consider a much nedeed standardisation of fiber dissections practices [START_REF] Rheault | Tractostorm: The what, why, and how of tractography dissection reproducibility[END_REF][START_REF] Rheault | TractEM: Evaluation of protocols for deterministic tractography white matter atlas[END_REF]].

Conclusion

This thesis investigates two aspects of the structural connectivity field, establishing a new dMRI dataset of the human brain, but also proposing a new approach for a fiber tracking algorithm.

The novel dataset is aimed at the exploration of the superficial connectivity of the brain. A fine tuning of the tractography algorithm is key in retrieving such delicate results. In that perspective, the presentation of the various existing approaches as well as their respective strengths and weaknesses allows to better apprehend the chosen fiber tracking setting presented in 6.

The new implementation of the spin-based global tractography algorithm relies on the reinforcement learning theory. Prior to the introduction of this new technique in the Chapter 7, it is important to define the context of fiber tracking algorithms with the presentation of conventional approaches. Naturally, the conventional spin-based algorithm is of particular interest as our proposal can be seen as a direct extension of this model, focusing the innovation on the decision making process.

As the recent breakthroughs of reinforcement learning are powered by deep neural networks, the latter will play a central role in our proposed implementation. The definition of the fundamental aspects of this technology, as well as its first applications for fiber tracking allows to outline the current research context.

Finally, the description of the pitfalls and challenges of tractography algorithms serves a dual purpose. First, it helps delineate the possible limits of the anatomical exploration of the new dataset, lead in Chapter 6. Second, it allows to define leads for innovation in our new fiber tracking algorithm.

Part II

The Chenonceau project

Context

The investigation of the human brain is currently driven by population imaging approaches, whose primary aim are to answer healthcare questions. This wide phenotyping sets the ground for defining population-wide clinical subgroups and opens the way to the design of a new generation of medicine tools, with enhanced forecasting abilities.

The construction of those large datasets relays on clinical MRI systems, the only available medium to map non-destructively the human brain. These systems may display powerful static field, reaching up to 7 teslas, but are mostly equipped with moderately powerful gradients. The further requirement to reduce the cost of individual acquisitions limits the dataset to be of millimetric resolution, and use a HARDI sampling of the q-space [ [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF][START_REF] Allen | UK biobank data: come and get it[END_REF]].

The latter protocols do not provide the means to describe the fine details of the organization of the brain. To access such refined characteristics, it is necessary to rely on advanced imaging systems and demanding acquisition protocols, restraining severely the breadth of the resulting datasets. In that regard, ex vivo samples play an increasingly important role. Although the characteristics of the ex vivo tissues display a lower proton density and diffusivity, which are unfavorable characteristics for dMRI, the possibility to extend at will the acquisition time provides the opportunity to design specific and detailed acquisition protocols.

The clinical scanners have long been ill-equipped to overcome the challenges posed by ex vivo tissues. However, the last decade has seen decisive improvements of the clinical system framework. The advent of a new generation of MRI systems, equipped with a ultra high static field 7T, the strengthening of gradients lead by the Connectome project 1.0 and 2.0 [START_REF] Setsompop | Pushing the limits of in vivo diffusion MRI for the Human Connectome Project[END_REF][START_REF] Huang | Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso-and macroconnectome[END_REF]], coil improvements [START_REF] Scholz | A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner[END_REF], and finally the enhancement of specific post mortem dMRI sequences [START_REF] Mcnab | High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession[END_REF][START_REF] Foxley | Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T[END_REF][START_REF] Tendler | Use of multi-flip angle measurements to account for transmit inhomogeneity and non-Gaussian diffusion in DW-SSFP[END_REF] allow not only to establish reliable acquisition of the brain at a millimetric resolution, but to reach the semi-millimetric resolution. The Table 5.1 presents a chronology of the different post mortem datasets acquired on clinical systems.

Preclinical scanners, on the other hand, have benefited from powerful hardware for a long time. The strong static field, extremely powerful gradients and proximity between the coil and the tissues have allowed to accommodate to the specificities of post mortem dMRI. The preclinical frame has thus constituted a fruitful environment to the implementation of consequent post mortem acquisition campaigns, perfecting the tissue preparation and conservation routine, as well as the development of acquisition sequences with excellent resolution and diffusion sensitization. As an entire human brain far exceeds the maximum volume acceptable by the system, these systems have mostly been used to map portions of the human brain and spinal cord, as presented in Table 5.3.

The investigation of post mortem samples can be further extended with histological studies. While being tissue destructive and work-intensive, they stand as the unique way to describe the ground truth of the brain tissue organization. Long-term efforts have led to the development of large scale microtomes, able to process slices of an entire brain. Such microtomes open the way, not only to the investigation of singular brain at the microscopic resolution [START_REF] Amunts | BigBrain: an ultrahigh-resolution 3D human brain model[END_REF][START_REF] Ding | Comprehensive cellular-resolution atlas of the adult human brain[END_REF]], but to the construction of probabilistic atlases of the brain [START_REF] Amunts | Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture[END_REF]]. The Polarized Light Imaging [START_REF] Axer | A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain[END_REF]] intends to leverage this new technology to scale its processing ability from samples of restricted size, to large scale samples.

The Chenonceau dataset is first intented to provide the neuroscientific community with an unique dataset of anatomical and diffusion MRI acquired at 11.7T at the mesoscopic resolution.

Its purpose is to further approach the groundtruth of the anatomy of the brain relying on a fine mapping of its structures, its connections and its cytoarchitecture. To this end, it leverages the powerful preclinical Bruker 11.7T system to design a state of the art acquisition protocol; combining a 200µm HYDI dMRI acquisition (Table 5.2) with 100µm and 150µm T 2 -weighted anatomical acquisitions.

To accomodate the small bore size, the strategy is to cut the brain into blocks to be acquired separately. A posteriori registration will bring the different volumes back together, to form a full brain.

From a methodological point of view, the Chenonceau project is at cross-roads with various fields of brain investigation. Its scale allows the extractions of metrics and features over the whole brain, encouraging the comparison with regular whole brain datasets. The acquisition protocol can be seen as an extension of preclinical imaging protocols, from the tissue preparation and storage to the acquisition scheme. Finally, the cutting of the brain, the post-processing reconstruction, as well as the dataset size and overall computational burden are strong similarities with large-scale histological studies. 

Preparation of the Chenonceau brain

This section summarizes the sample preparation, described thoughtfully in Beaujoin 2018. The latter is a key element of the Chenonceau project.

Extraction and fixation of the sample

A human brain was acquired from the Body Donation program of the Anatomy Laboratory of Tours University (Pr C. Destrieux, Faculty of Medicine, CHU Bretonneau, Tours, France).

The sample acquisition and fixation protocol were approved by the French national CODECOH procedure which monitors all manipulations of human samples for research purposes.

The donor was a 92-year-old male, with a history of macular degeneration and early stages of cognitive disorders. The sample was extracted with a Post Mortem Interval (PMI) of 8 hours and the subsequent fixation protocol combined immersion and perfusion of the brain with 4% buffered formalin [START_REF] Latini | The use of a cerebral perfusion and immersion-fixation process for subsequent white matter dissection[END_REF]. This process lasted an extended period of 5 months, at a low temperature of 5°C to ensure an optimal fixation of the brain. The brain was then thoroughly washed and immersed in 0.1M phosphate buffered saline (PBS) for 4 months. This re-hydration stage improved significantly the proton density and T 2 recovery [T. M. [START_REF] Shepherd | Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue[END_REF]. While immersed, the brain was suspended in the fluid, to avoid deformations from the mechanical pressure of the container.

In total, 9 months were necessary to prepare the brain for the acquisition campaign.

Cutting of the brain

To accommodate the small bore size of the system, it was necessary to cut the brain into samples, called blocks, that were scanned individually.

Definition of the sample size

To minimize the number of required scans to image the whole brain, the maximum size of the samples that can be scanned on the Bruker 11.7T system was estimated. The inner diameter of the system's tunnel is 89 mm and the largest existing coil has a 60mm inner diameter. In order to maximize the available space in the coil, a specific bed and container were designed, using plastic materials (POV, PVC, KO, PMMA, nylon) and brass screws. The resulting sample containers were cuboids, of internal dimension 4x4x20 cm.

Choice of a gel

Each block was intended to be scanned several times, with each acquisition lasting dozens of hours. Ensuring the immobility of the sample inside the container was necessary, first to guarantee no displacement during the long acquisition, and second to allow precise and reproducible placements of the sample during the subsequent acquisitions of the block.

The sealing of the sample within the block was achieved with the use of an embedding gel. This gel must verify the following conditions :

• its preparation must exclude thermal treatment, as exposing tissues to temperature cycles, including possibly freezing or boiling temperatures, would inevitably harm the tissues

• due to the frequent manipulations of the samples (see §5.3.3.1), direct exposition of operators to the gel was inevitable. Therefore the gel must not contain any toxical element, such as nickel chloride or sodium azide.

• the T 1 and T 2 relaxation constants of the gel must be sufficiently different from the constants of the brain, in order to not be visible in the acquired MRI dataset.

• as the acquistion campaign was expected to last over a year, the gel must be stable over extended periods of time.

• the ease of use and affordability of the gel also participate to the selection.

The agar gel is a popular choice for the embedding of MRI phantoms [START_REF] Hellerbach | MRI phantoms-are there alternatives to agar?[END_REF]]. However, the exposition of the gel to ambient air may lead to fungal or bacterial growth and overall deterioration over time [START_REF] Mitchell | Agarose as a tissue equivalent phantom material for NMR imaging[END_REF]].

The gel that best fitted the requirements was the BizLine gel. This gel is used originally for electrical isolation and to the best of our knowledge, has never been used in MRI studies. It reticulates at room temperature within minutes, allowing to be easily applied with no specific setup. It is not toxic and displays no alteration through time. However, its relaxation constants are rather similar to the constants of the tissues. From the acquisition protocol design perspective, it is similar to fat tissues in MRI body imaging. The acquisition protocol must thus be adapted, as described in §5.3.

5.2.2.3

Cutting of the sample Beyond matching the samples with the designed containers, the cutting of the brain was thought to preserve the tissue integrity as much as possible. The brain was first divided into the two hemispheres plus the brainstem and the cerebellum. Then, each hemisphere was cut into thick slices of maximum 4cm along the medial-lateral direction. Last, each slice was cut into blocks wide of maximum 4cm in the rostro-caudal direction. Each block was then placed in a dedicated container and embedded in BizLine gel to maintain the structures of the brain. The left hemisphere was cut into 7 blocks (numeroted A to G) with block D containing little tissue. The cutting was refined for the right hemisphere to make only 6 blocks (numeroted A to G, missing the block D) (Figure 5.1).

Imaging protocols

The acquisition protocol was distributed across several MRI systems. The clinical Siemens 3T Prisma system was used to scan the whole brain before cutting, and to scan all the blocks after cutting. A preclinical Bruker 11.7T MRI system was used for the mesoscopic anatomical and DW scans. A preclinical Bruker 7T MRI system was used in parallel in Raïssa Yebga Hot 2021 to conduct a quantitative MRI study of the Chenonceau brain that will not be covered here.

Imaging protocol on the clinical 3T MRI system

Two acquisitions were maid on a clinical Prisma 3T MRI system (Siemens, Erlangen, Germany) (Figure 5.2).

First, before the cutting, a T 2 -weighted SPACE scan of the whole brain was acquired with the sequence parameters described in Table 5 Then, after the cutting, a similar T 2 -weighted Space sequence (Table 5.5), with a slightly higher resolution was used to scan all the blocks together. Table 5.5: Details of the sequence to image the blocks.

Acquisition on a Bruker 11.7T preclinical MRI system

The sensitivity profile of the volume coil antenna defined the acceptable length of the field of view (FOV) along the direction of the magnet axis. It is expected to correspond to the diameter of the coil antenna, that is 60mm. A further investigation of the image quality led us to define a field of view of 42x42x56 mm for all sequences (Figure 5.3). As the lateral 0.8 centimeters were expected to be affected by the loss of sensitivity of the coil, they were specifically dedicated to serve as overlaps between consecutive FOVs, to help ensure a good inter-FOV registration (see §5.5.3). Diffusion sequences The design of the DW sequence was intended to provide high quality images of the tissues with a sampling of the q-space targeting specific objectives :

• the image resolution must reach the mesoscale, that is a few hundreds of micrometers

• the q-sampling must provide high angular resolutions for the the ODF or PDF and be compatible with advanced microstructural models to provide cytoarchitectural metrics of the brain tissues.

• the duration of the acquisition of each field of view must not exceed a few consecutive days

To this aim, a 3D segmented Pulsed Gradient Spin Echo (PGSE) EPI sequence was tuned to target a spatial resolution of 200 µm with a multiple-shell sampling of the q-space. The highest b-value was chosen in order to ensure a minimal SNR of 4.

A 3D segmented PGSE EPI (see §3. 1.5.4 and §3.1.6.3) was chosen. The sequence parameters were chosen as described in the Table 5.6. The echo time T E =24.3ms was chosen to be as short as possible with regards to the largest b-value (8000 s.mm -2 ) and the repetition time was set to T R =250ms. The FOV was set to 42.4x40.8x56.0 mm 3 . A large number of segments, 30, was chosen to drastically reduce the susceptibility effects and eddy current related distortions.

As detailed in Beaujoin 2018, the gel presents relaxation constants with a T 1 of 1300ms and a T 2 of 525ms at 11.7T. A shorten TR allows to make negligible the contribution of the gel, making it invisible in practice.

The q-space sampling relied on a spherical multiple shell scheme with 3 shells at b=1500, 4500 and 8000 s.mm -2 . [START_REF] Dyrby | An ex vivo imaging pipeline for producing highquality and high-resolution diffusion-weighted imaging datasets[END_REF] demonstrated that a b-value close to 4000 s.mm -2 is an adequate solution for ex vivo dMRI. Indeed, the decrease of the diffusivity by a factor between 3 and 5 imposes to significantly increase the diffusion sensitization to preserve the diffusion-related contrast. An increasing number of diffusion directions were uniformly distributed on the unit sphere, with respectively 25, 60 and 90 directions for the shells b=1500, 4500 and 8000 s.mm -2 .

The details of the diffusion weighting are available in Table 5.7. The preclinical 11.7T MRI system is dedicated to small animals, with fields of view generally limited to a few centimeter. Such acquisitions do not require large amounts of memory to host the raw k-space data. In the case of the Chenonceau brain, the large fields of view and the high number of shells and diffusion directions to be explored cause severe memory overloads. To solve this issue, the diffusion MRI scan was split into 17 scans, completed in the following order :

• For the shell b=8000 s.mm -2 , the 90 diffusion direction set is split into 9 scans consisting each of 10 DW volumes and 1 b=0 s.mm -2 reference volume

• For the shell b=4500 s.mm -2 , the 60 diffusion direction set is split into 6 scans consisting each of 10 DW volumes and 1 b=0 s.mm -2 reference volume

• For the shell b=1500 s.mm -2 , the 25 diffusion direction set is split into 2 scans consisting of 12 and 13 DW volumes and 1 b=0 s.mm -2 reference volume

The scan duration for one subset of DW-volumes ranges from 4h40 (10 directions) to 5h57 (13 directions). The total duration for all dMRI scans amounts to 84 hours, that is 3.5 days.

Pauses lasting 1 minute were inserted between 2 consecutive dMRI scans. It allows for the reconstruction of the corresponding dMRI volumes, and the release of the associated reconstruction memory buffer. The latter may otherwise be corrupted if a new acquisition is launched before the end of the reconstruction. Second, it allows to limit the heating of the sample, and consequently preserve it at constant temperature, and thus diffusivity, during the whole acquisition. Anatomical sequences Two T 2 -weighted spin-echo (SE) sequences were used to map the anatomy of the Chenonceau brain at the mesoscale :

• 2D T 2 -weighted SE sequence at 150µm

• 3D T 2 -weighted SE sequence at 100µm

Detailed parameters of the sequences are provided in Table 5.8 and Table 5.9. The 2D SE sequence delivers a quick mapping of the tissues with a good SNR and excellent contrast between gray and white matter. The 3D SE sequence depicts less contrast than the 2D sequence due to a reduced repetition time. However, it benefits from a higher SNR and a greater resolution (100µm) to display finer anatomical details.

Ultimately, the combination of the two datasets was beneficial to perform the delineation of anatomical structures. Preparation of the samples A campaign spanning several years requires a rigorous sample processing. The blocks are stored at 5°, immersed into 0.1M phosphate buffered saline. This solution was renewed every month as a steady evaporation reduced the amount of PBS in the container and would progressively expose the tissue. 12 hours before the acquisition, the block was put at room temperature, to let the tissues warm progressively, as recommended by [START_REF] Dyrby | An ex vivo imaging pipeline for producing highquality and high-resolution diffusion-weighted imaging datasets[END_REF]. Prior to the acquisition, the PBS was changed to Fomblin (Solvay Solexis Inc), a susceptibility-matched, hydrogen-free liquid.

Sample placement in the system At last, an innocuous but crucial step of the acquisition protocol was the precise placement of the sample inside the tunnel. Placing the sample with a reproducible precision of 0.1 mm thanks to the motorized bed of the 11.7T MRI system, allowed to precisely apply the acquisition plan and control the stillness of the sample between different acquisitions.

Difficulties met and solutions

Various hardships arose during the campaign. The preparation of the block for the acquisition, and specifically the change of the solution from PBS to Fomblin requires caution. It is important to ensure that no PBS drops remains before pouring the Fomblin, as the PBS has a diffusion signature similar to the water and will thus be noticeable on images. Similarly, when pouring the Fomblin, it is important to eliminate manually the numerous air bubbles that are trapped in sulci as they might produce severe susceptibility artifacts.

While setting up the acquisition, attention must be dedicated to the interaction between the tissues and the gel. With regard to MR imaging, the latter is similar to fat and specific tuning of the sequence allows to make it invisible. However, in several field of views, where the gel was predominant with respect to the brain tissues, the system mistakenly selected the frequency of the gel, making the tissue invisible. To avoid this situation, it was necessary to remove some gel in areas with little tissue, notably at the extremity of the blocks.

Lastly, although the Bruker 11.7T system has proven to be reliable, several failures of the hardware lead to months long setbacks. The design of the protocol was slowed by two quenches [Beaujoin 2018], and the acquisition campaign suffered notably from a gradient amplifier failure and active shim coils failure, causing a 6 months delay.

Processing pipeline

Assembling all the fields of view to create the whole brain mesoscopic 11.7T MRI dataset required the development of a complete pipeline that is described in this section. It can be divided into three main steps :

Preprocessing step : implements image processing algorithms to prepare individual FOVs for the registration and reconstruction. It performs standard artifacts correction (noise and signal intensity bias), establishement of the tissue masks and SNR evaluation.

Registration step : designates the registration of blocks and fields of vie to recompose a full brain image in the MNI template.

DW Processing step : refers to the standard DW data processing, that is local modeling, tractography and clustering, applied to the Chenonceau dataset.

Software design

Great care has been dedicated to the software design of this massive pipeline. At its heart, it relays on the solid image processing algorithms of the Ginkgo toolkit. The numerous files and sub-stages of the processing are organized with an extensive Python pipeline.

The challenge of setting this pipeline is twofold. First, the 45 fields of view and the 13 blocks, together with all their various stages of processing form a constellation of files that needs that to be accessed efficiently. The need for a systemic access to files notably appears in complex functions. Basic functions, may require as little as 2 references : the path to the input image and to the output image. Conversely, the most complicated functions, such as the final reconstruction of the diffusion weighted volume, requires to reference about 600 files (path to the DW images, to the diffusion gradient encoding information files and the numerous transformations, times the number of FOVs).

Flipping This step aligns the axis of the FOV acquisition with the axis of the MNI referential. The flipping axis of a FOV are defined by the block it belongs to.

Scaling By default, the values of images are at the order of magnitude of 10 -2 . We scale the images with a factor 10 5 so that the values belong to the range 10 2 -10 3 .

Noise ROI definition In order to access the statistics of the noise in the images, we manually outline a ROI outside the tissues. The standard deviation of the noise is notably used for the Non Local Means filtering and SNR definition ( §5.4.3).

Filtering The acquisitions are denoised using a Non Local Means algorithm [START_REF] Buades | Non-local means denoising[END_REF]. The latter is set using the noise standard deviation estimated with the noise ROI, and the following parameters : the search bloc size at 16, the neighborhood size at 2 and the degree of filtering at 0.3. These parameters allow for a light denoising of the images, notably preserving the typical 'grain' of DW images.

Masking The masks are calculated using the Ginkgo toolbox. They are manually inspected and corrected.

Bias correction

The bias T 2 -weighted images is corrected using the N4 bias correction [START_REF] Tustison | N4ITK: improved N3 bias correction[END_REF]]. The parameters are shrink factor at 4, convergence iteration at 50x50x50x50, convergence threshold at 0.0, rescaled intensities at True. These default parameters yielded very satisfying results.

This algorithm is especially successful in correcting the bias affecting the T 2 -weighted 100µm image.

WM sample extraction

In order to access the statistics of the WM within each FOV, we outline manually a representative ROI in the WM of each FOV, at each modality. The mean value of the WM will be determinant for the final reconstruction of the T 2 -weighted Chenonceau dataset ( §5.5.6).

SNR characterization

The acquisition campaign is monitored with the estimation of the SNR for every FOV and for every modality. The latter is calculated over the minimally processed images (reconstructed and flipped), using the average signal of the whole tissue present in the FOV, and a sample of background noise.

Selecting the entire tissue to compute the SNR gives a complete overview of the quality of the signal. However, in the context of the Chenonceau database, different FOVs map different parts of the brain and thus share different ratios of WM/GM. Consequently, FOVs containing a larger part of WM, or FOVs mapping the basal ganglia, depict lower signal intensities, and thus a lower SNR.

Therefore, it is expected that the presented SNR values display a relation with the mapped area of the brain. As will be detailed in the following section, this relation remains secondary as the observed SNR displays satisfying values and coherent behaviors intra-and inter-acquisitions. 

Anatomical acquisitions SNR characterization

The Figure 5.9 exhibits the distributions of the obtained SNR over the various FOVs for both anatomical scans at 100 µm and 150 µm.

The SNR ranges from 53.8 to 20.0 for the 100 µm T 2 -weighted scans, with a mean value of 37.6 and a standard deviation of 9.0. For the the 150 µm T 2 -weighted scans, the SNR ranges from 16.1 to 34.5, with an average value of 25.9 and a standard deviation of 4.4. The obtained SNRs are overall quite good. These values demonstrate that the 100µm 3D T 2 -weighted SE scans have higher SNRs than the 2D T 2 -weighted SE, but also display a higher SNR variability.

The SNR was further improved with a Non-Local Filtering [Buades, Coll, and Morel 2011] and N4 bias correction [START_REF] Tustison | N4ITK: improved N3 bias correction[END_REF]]. The obtained SNRs were overall quite good. These values demonstrated that the 100 µm 3D T 2 -weighted SE scans had higher SNRs than the corresponding 2D T 2 -weighted SE scans but displayed a higher variability. These SNR values assessed the high quality of the dMRI scans acquired for each FOV.

Evolution of the SNR along the 17 DW scans The DW acquisition protocol proposed in Chenonceau was particular by its extended acquisition time (82h). To allow the system to withhold such an intensive scanning, the DW sequences were separated into 17 DW scans. The distribution of the associated SNR is presented in Figure 5.11.

The SNR distribution across images with no-diffusion weighting (ie b = 0) was similar for all DW scans; as was the SNR distribution for the DW-images, across a shell. The stability of the system was further investigated by calculating, for each DW scan i, for each acquisition a, the ratio R i,a between the SNR of a DW scan SNR i,a and the average SNR of the associated shell SNR j,a j∈shell .

R i,a = SNR i,a SNR j,a j∈shell
The Figure 5.12 presents the distribution of R i,a over the Chenonceau dataset, with DW scans rearranged in chronological order. All acquisitions start with the 9 DW scans at highest diffusion weighting (b=8000 s.mm -2 ), followed by the 6 DW scans at intermediate diffusion weighting (b=4500 s.mm -2 ), and end with the lightest diffusion weighting (b=1500 s.mm -2 ).

The SNR displays little intra-shell variations. However, the first DW scan, ("11-dwi-b8000") displays 6 outliers (out of the 45 first DW scan), with a significant reduction of SNR (up to 40%). This behaviour is associated to tissues that have not reached the room temperature at the start of the acquisition, and that continue to warm up during the first DW scan, inducing relaxation and thus displacement of the tissues. This SNR loss does not impact the quality of the next processing in question, as it affects only 10 of the 90 directions involved in the sampling of the shell.

Registration procedure

State of the art

The reconstruction of the Chenonceau whole brain volume relies on the meticulous registration of all FOVs to the reference whole brain volume. The reconstruction of an original sample from better resolved but partial images is a well-documented challenge for 3D-histological studies. In the latter, the goal is to register successive 2D histological slices onto a 3D reference of the original sample. This is known as a slice-to-volume registration, and a wide array of tools and approaches tackle this processing [Pichat, J. E. Iglesias, et al. 2018[START_REF] Ferrante | Slice-to-volume medical image registration: A survey[END_REF][START_REF] Dauguet | Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain[END_REF]]. In Chenonceau however, the pieces to register are not 2D slices, but 3D volumes. This category of registration is called 3D part-to-whole registration [Pichat, E. Iglesias, et al. 2017]. In the brain mapping literature, the latter are seldom.

To the best of our knowledge, only two studies are using this approach. In a similar spirit to Chenonceau, [START_REF] Mancini | A multimodal computational pipeline for 3D histology of the human brain[END_REF][START_REF] Calabrese | Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution[END_REF] aspire to extend the spatial capabilities of an image acquisition system, and image a large sample with an excellent resolution.

Hence, [START_REF] Mancini | A multimodal computational pipeline for 3D histology of the human brain[END_REF] aims at overcoming the limitations of standard microtomes in order to acquire a 3D histology of one entire hemisphere of the human brain. The hemisphere is first divided into 10 mm-thick coronal slices (called whole-slice), then each slice is cut into blocks, compatible with the dimensions of microtome's cassettes (74x56 mm). During the histological slicing, blockface photographes of the block are taken. Their stack forms a blockface volume.

The reconstruction of the whole sample requires a 3-stage registration. First, the histological slices are registered to the block, following a slice-to-volume registration. Second, the blocks are registered to a whole-slice, according to a part-to-whole registration. Third, the whole-slices are registered in a back-to-back fashion to reconstruct the original volume.

The second step presents similarities with the challenges encountered in Chenonceau (Figure 5.14). The part-to-whole registration is first initialized with a 2D-rigid registration between the photography of the blocks, and the photography of the whole sample, supported by the SURF/RANSAC framework [START_REF] Bay | Surf: Speeded up robust features[END_REF]Gool 2006, Fischler and[START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF]. This registration achieves good results as the photographed objects are nearly identical and the illumination conditions unchanged.

Second, the blockface volumes are registered simultaneously toward the whole-slice reference on the T 2 -weighted MRI volume [START_REF] Mancini | Hierarchical joint registration of tissue blocks with soft shape constraints for large-scale histology of the human brain[END_REF]. Each block is registered with a combination of a 3D translation (3 parameters), a 3D rotation (3 parameters) and two scalings (2 parameters). The cost function is defined as the correlation between edge maps of the two images, improved with two regularizers. The first penalizes the overlaps and gaps between different blocks, while the second penalizes deviations of the scaling values from the expected value, deduced from tissue shrinkage. [START_REF] Calabrese | Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution[END_REF] performs an integral mapping of the human spinal cord, at a mesoscopic resolution (see Table 5.3), using a 7T preclinical MRI system (Magnex Scientific, Yarton, Oxford, UK) equipped with a custom 11 cm long coil with a 3.1 cm inner diameter. The chosen FOV (2x2x8cm 3 ) allows to map the entire cross-section of the spinal cord, but only a fraction of its length. The imaging protocol thus consists in the acquisition of seven overlapping segments. A posterior registration, implemented with the ANTs toolbox, leverages the overlap between FOVs to register the segments with respect to each other. The dimensions of the final image are 46.76×2.00×1.67 cm 3 .

Although depicting strong similarities with Chenonceau, the spinal cord sample processed in [START_REF] Calabrese | Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution[END_REF] benefits from a cross section that fits into the preclinical MRI system, reducing drastically the number of required acquisitions and facilitating the registration step. 

Strategy for the Chenonceau brain

The aim of the registration stage is to compute for each field of view, and for each modality the transformation that brings the FOV, from its native space to the MNI ICBM152 asymetric 2009c space. The combination of all FOVs in the MNI referential brings together the puzzle, and reconstructs the whole brain volume at the mesoscale.

The referential notation is defined as follows : R fov , R block and R blockface designate the native referential of the FOV, the block and the blockface, while R MNI designates the MNI referential. The notation of the transformation between the native referential of a specific FOV f , to the MNI referential T {R fov (f ) → R MNI }, is simplified to : T fov→MNI .

Direct computation of these transformations is delicate, as it requires the definition a priori of the FOV in the MNI referential, and the computation of a complex registration accounting for various deformations. In order to alleviate these difficulties, the registration process is broken into three more manageable registration steps, relying on the images of the blockface and of blocks (acquired on the clinical Siemens 3T system) as waypoints.

T fov→MNI = T fov→block • T block→blockface • T blockface→MNI Each registration step embeds various deformations, including warpings due to the acquisition schemes, as well as tissue deformations caused by the cutting and the storage. As those deformations are local and strongly non-linear their correction requires the use of diffeomorphic approaches. The available tools include DARTEL [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF]] provided with SPM, FNIRT [START_REF] Jenkinson | Fsl[END_REF] provided with FSL and the ANTs toolbox [START_REF] Avants | Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain[END_REF]. ANTs is chosen for its rapidity, ease of use, versatility and robustness.

The T fov→block and T block→blockface are 3D part-to-whole registrations. To bound the space of transformation parameters and thus facilitate the optimization process driving the registration, we define the area the tissue should occupy in the target space, under the form of a binary mask called target mask. The latter are initialized with an affine registration, computed using the Registration3d command available in the in-house Ginkgo toolbox. This approximated target mask is then refined with additional processing to enforce a priori constraints.

Once restricted to the target mask, the diffeomorphic registration amounts to a classical registration between two equivalent items, in different referentials. All ANTs registrations consists of a translation, a rigid, an affine and a diffeomorphic stage. The detail of the setting is provided for each registration. T fov→block places each field of view within its original block. This first transformation encompasses in reality 3 different transformations, corresponding to each acquired modality : T 2 -weighted SE anatomical volumes, with resolution 100µm and 150µm, and the dMRI reference volume. The latter designates the average of the 17 images with no diffusion sensitization b=0.

The field of view to block transformation is mainly a translation that shifts the field of view with respect to the block. Here, the non-linear registration helps to better correct the distortions that are related to the difference of gradient non linearities between the 3T MRI gradient coils and the 11.7T MRI gradient coils. The latter are due to the large dimensions of the FOV, which exceed the domain of linearity of the system gradients . Gradient non-linearities corrupt the position encoding at the extremities of the FOV, resulting in non-linear distortions.

The definition of the target mask requires the knowledge of the translation as well as the length of the field of view along the MRI magnet axis (5.6 cm). Moreover, these parameters allow to account for the overlap between FOVs : accordingly truncating each image removes the overalapping in the final volume. However, the small variations due to the diffeomorphic registration are unpredictable, and the final truncating requires manual supervision.

The T fov→block registration appears as a computational heavy process, as every modality acquired on the preclinical system requires its own registration to fit into the block. However, the simplicity of the registration allows to calculate reliably all those transformations, with minimal manual input and parameter tuning.

The versatility of this approach is proven with the work presented in Raïssa Yebga Hot 2021. The registration of 3 new modalities, namely T 1 -weighted VFA Flash, T 2 -weighted MSME, T 2 *weighted FLASH SPGR, required no adjustments to the pipeline, and yielded fast and reliable results.

Setting the registration

The setting of AntsRegistration for the computation of T fov→block is described in Table 5.10. The global parameters were set to gradient step at 0.1, totalFieldVariance at 0, updateFieldVariance at 3. and5.17 present the registration of 6 FOVs, over the 3 modalities, overlaid to their respective blocks. The added value of the diffeomorphism compared with the affine transformation appeared obvious, with a better correction of the gradient non-linearities, allowing the FOV to effectively cover the target area; and a higher precision of the registration in complex structures.

The quality of the registration was further controlled by combining together the FOVs of a block. The obtained "Reconstructed-Block" allowed to assess the coherence of the registration between the different FOVs, and to control the extent of their overlap. Figure 5.18,5.19 and 5.20 display all the reconstructed blocks, but only for the dMRI reference volumes.

The registration appeared to be consistent : the FOVs were registered reliably to the block, for 12 of 13 blocks. The block Left Hemisphere D displayed a less accurate registration (see Figure 5.18) as the small quantity of tissues in this specific block make the registration challenging.

The interface between blocks was satisfying, with no gaps or major overlaps. The different FOVs remained distinguishable as they may present steep intensity variations. This matter will be addressed specifically during the reconstruction of the whole volume (see §5.5.6). T block→blockface places each block within the whole brain volume.The target block mask must therefore correspond to the expected location of the block within the blockface. The blocks and blockface are both acquired on the Siemens 3T system, with a similar T 2weighted SPACE sequence, respectively with a resolution of 500µm and 400µm (see §5.3.1). Despite those acquisition similarities, the deformations between the block and the blockface remain significant.

Indeed, the blocks originate from the cutting of the brain into samples, followed by their storage into cuboid containers. The storage induced most of the distortions as the disappearance of the surrounding tissues modified the mechanical constraints applied to the block and provoked the subsidence of the block within the container. Slight shrinkage of the samples is also observed. In addition, albeit best efforts, the cutting of the brain induced mechanical stress on the samples, which resulted in the destruction of small parts at the level of the cortex.

Defining correctly the target block is crucial to account for these operator-induced deformations.

Defining the target mask

Although the affine registation yields a first approximation of T block→blockface , it has two important shortcomings : it is unable to register the most strongly warped samples, and cannot account precisely for the shrinking of the blocks.

Manual registration of the strongly deformed samples The block C, D and G of the left hemisphere, and the block E, F, G of the right hemisphere required to be separated into parts, which were then manually registered to the blockface (Figure 5.21). The combination of the manually registered parts constitutes the affine target mask of the entire block.

Figure 5.21: Illustration of the partial blocks mechanism in block D of the Left Hemisphere. In the case where the blocks are too strongly warped by the container, an affine registration of the entire block is unable to fit the block with the blockface (upper row). It is then necessary to divide the block into parts (independant of the FOVs), and register them by hand (lower row). Overlaps and gaps may occur between the registered parts, but they are of no consequence as the following step is the dilation of the affine mask.

Accounting of the shrinking of the samples Once the affine target is ready, it needs to be refined. The first step is to binarize the target into a "Target Mask". A small dilation of the latter allows to cover the space between the blocks, as well as account for the imprecisions of the affine registration, notably in highly detailed areas (Figure 5.24). The dilation also causes significant overlaps between various target masks. While little overlapping may be suitable to ensure the continuity of tissues, large overlapping make no anatomical sense and amounts to a cropping of the acquired images. To precisely control their extent, the overlaps are identified and split in halves, with each half associated with the closest block (Figure 5.23). In other words, the non-assigned space in the blockface volume is split between the blocks, based on a direct proximity metric; much like a watershed algorithm. As a result, the whole brain volume is completely partitioned between the targets of different blocks (Figure 5.22).

A small overlap of 4 voxels (1600µm) is chosen to ensure that registered blocks achieve good inter-block tissue continuity. An additional broad overlap was designed over to the corpus callosum, to allow fibers to cross the inter-hemispheric border.

Setting the registration

The setting of AntsRegistration for the computation of T block→blockface is described in Table 5.11. The global parameters were set to gradient step at 0.1, totalFieldVariance at 0, updateField-Variance at 3. Table 5.11: antsRegistration setting for the block to blockface registration

Resulting registration

The diffeomorphic registration associated with the target masks allowed a significant improvement of the registration process. The advantages included a better correction of the containerinduced strong warpings, a precise compensation of the shrinkage of the blocks and an accurate registration of complex geometric brain structures (Figure 5.24) .

In association with the Figure 5.24, Figures 5.25 and 5.26 present the registration of all 13 blocks to the blockface. The results were overall satisfying with accurate registrations even in the most complex areas.

Similarly to , the blocks were also composed together to form the brain volume. This allowed to evaluate the coherence of the collective registration, ensuring the absence of gaps and significant overlaps. The relative registrations of the blocks appeared to be satisfying, with a good tissue continuity at the interfaces between blocks, and no large overlaps. In this example the block A of the left hemisphere (a) is first affine registered to the blockface. The registered mask is dilated (b) to account for imprecisions of the affine approach and the shrinkage of the samples. The dilatation causes overlaps between various target blocks (c). Identifying the overlaps (d) allows to split them in 3 areas, with lateral areas defining the overstepping part of the overlap, and the central part defining a small shared area (4 voxels, ie 1600µm) between target masks to help with tissue continuity. After refinement of the target masks, they form a partition of the whole brain volume (e). Each target mask is then properly defined (f ). Figure 5.23: Illustration of the splitting of the overlap between target masks. This example investigates the configuration between the blocks A,B and E. The shrinkage of the blocks leads to a large gap between affine target masks(a). They are dilated (b) to cover this space, which also results in significant overlaps. The later are characterized and split in halves (c). Each target mask is then adjusted by removing in each overlap (d-e, f-g, h-i), the overstepping half, leading finally to a clean partition of the whole volume (i). This iterative approach allows to deal with 3D complex configurations, where 2, 3 or 4 blocks can overlap, as illustrated in this example. Figure 5.24: Illustration of the advantages of the diffeomophic registration for the block to blockface registration, over the affine registration. In the following, the image (i) represents the affine registration, and the image (ii) the diffeomorphic registration. (a) Direct comparison, along the axial axis, between the affine registration and diffeormorhic registration of the block C of the left hemisphere on the blockface. The visual improvements can be divided into 3 categories. The diffeomorphic registration allows to properly account for the strong warpings due to the storage (b). In association with target masks, the diffeomorphic registration accounts for the shrinkage of the samples (c). Finally, the diffeomorphic registration is extremely efficient in the registration of complex geometric forms(d). 

Nature of deformations

The last step of the registration is a regular whole brain registration, from the blockface image to the MNI ICBM152 asym 2009c template space.

The deformations from the blockface volume to the MNI space mainly stem from two sources : the fixation process induces a shrinkage of the brain and the inter-subject variability between the Chenonceau subject and the 152 subjects used to elaborate the MNI template.

The advanced age of the Chenonceau subject (92 years old) brings further modifications to the brain structure, that typically include the increase of the ventricles volume, and a reduction of the cortex thickness.

Setting the registration

The setting of AntsRegistration for the computation of T blockface→MNI is described in Table 5.12. The global parameters were set to gradient step at 0.1, totalFieldVariance at 0, updateField-Variance at 3. Table 5.12: antsRegistration setting for the blockface to MNI registration

Resulting registration

The ANTs toolbox achieved satisfying results as overall geometry and deep anatomical structures were correctly registered. However, the registration of the cortical mantel displayed imprecisions, notably at the level of the gyri.

Advanced diffeomorphic registration using sulcal prior knowledge

A good registration of the cortical mantel is key, as the cortical atlases used for connectivity measures are defined upon those specific areas. The projection of a standard atlas, such as the Desikan or Destrieux atlas, in the Chenonceau dataset consequently requires a reliable registration of the gyri. This aspect of the registration can be improved through the use of the DIffeomorphic Sulcalbased COrtical (DISCO) registration tool [START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF]. It leverages prior anatomical knowledge to ensure a better alignment of structures between subjects. Specifically, DISCO uses sulci as landmarks for a first diffeomorphic registration, which serves as an initilization for DARTEL [START_REF] Ashburner | A fast diffeomorphic image registration algorithm[END_REF]]. The latter helps to preserves the complex geometry of sulci and yields more precise registrations.

The registration improvements are highlighted by the comparison of the segmented sulci (Figure 5.28). The segmentation was performed automatically using the Morphologist toolbox of BrainVisa [START_REF] Rivière | BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools[END_REF].

The inclusion of the DISCO registration in the Chenonceau pipeline is currently under development in close collaboration with the UNIACT team, and will be the object of a future release of the Chenonceau dataset. In the following work, all developments and Figures are realized using the ANTs registration. 

Reconstruction of the whole Chenonceau dataset

The reconstruction of the whole Chenonceau dataset designates the composition of all 45 FOV acquisitions, along the three modalities T 2 -weighted SE at 100µm and 150µm and dMRI, into the corresponding whole brain volumes, with the help of the final T fov→MNI transformation.

In order to minimize the number of reinterpolation steps, a dedicated pipeline is developed to compose the basic transformations (T fov→block , T block→blockface and T blockface→MNI ) on the fly.

A light overlap is expected between different FOVs, whether they belong to one or different blocks. The overlap is designed to ensure tissue continuity in the reconstructed volume. During the reconstruction, these overlaps cause several values to be assigned to a single voxel. In these cases, the policy is to keep the largest value. It deals efficiently with small overlaps, while encouraging a stronger signal.

Anatomical dataset In the case of T 2 -weighted volumes, each FOV acquisition is associated with a specific digital amplification factor, involved in the digitization of the signal during the acquisition. These various factors lead to steep variations in average signal intensity between FOVs, which becomes obvious when the FOVs are reunited in a single volume. This discrepancy is corrected by manually sampling the average value a of WM within each FOV f , at each modality m : a(f, m). During the reconstruction, each FOV is scaled with the factor 10000/a(f, m) to homogenize the WM value over the reconstructed volume.

Diffusion-weighted dataset For the dMRI volumes, no inter-FOV scaling is necessary. However, special care was dedicated to update the diffusion directions according to the successive transformations applied to each volume. During the acquisition, the directions of the diffusion gradients are defined within the native referential of the FOV. When the FOV is projected within the MNI referential, directly applying the transformation to the diffusion directions would lead to each FOV having its singular diffusion referential in the reconstructed volume.

In order to build an uniform whole brain dataset, with an unique referential for the diffusion directions, we propose to re-interpolate the DW volumes at the reconstruction, to express the diffusion signal according to a global set of directions, identical for all FOVs. The global set of directions is defined as identical to the acquisition set, it thus consists of 3 shells 1500/4500/8000 s.mm -2 each consisting of 25/60/90 directions, along the directions defined in the acquisition set.

For the re-interpolation, the signal of each sphere is expressed in the q-space using the analytical Qball model (harmonic order of 8, Laplace-Beltrami factor of 0.006) [START_REF] Descoteaux | Regularized, fast, and robust analytical Qball imaging[END_REF]] and transformed using the affine part of the transformation T fov→MNI . At the reconstruction, the value of a voxel along a global diffusion direction is calculated by interpolating the transformed local model. It results in an uniform volume, where all voxels, regardeless of the their FOV of origin, share an unique diffusion referential and identical diffusion directions.

The resulting Chenonceau dataset are presented in Figures 5.29,5.30,5.31 and 5.32. 

Conclusion

This chapter presented the acquisition protocol and the image processing pipeline leading to the construction of the anatomical and DW Chenonceau dataset. The quality and uniformity of the individual acquisitions, combined to their satisfying registration towards the whole brain volume yielded a final mesoscopic dataset, ready to be used for anatomical exploration. In addition to publishing the dataset, the developments required for the achievement of the Chenonceau dataset lead to several scientific contributions.

The anatomical images displayed a good SNR and contrast, while the DW acquisitions kept an uniform behavior during the particularly long acquisition and achieved good SNR. Those results established the success of the long acquisition campaign, and demonstrated the reliability of the acquisition protocol.

The reliability of the storage protocol was established as well, as the samples did not undergo any noticeable modification. The benefits of the Bizline gel were confirmed, as the gel fully succeeded to immobilize the biological sample and did not display any deterioration during the acquisition campaign.

Furthermore, the processing the Chenonceau dataset required the implementation of a dedicated pipeline. This pipeline relied on the in-house image processing software Ginkgo, but required a number of specific developments. In particular, the registration of the individual acquisitions towards the MNI template constituted a registration of rare complexity in the medical imaging processing field. The proposed approach relied on dividing the complete transformation into three smaller and more accessible transformations. The approach yielded a precise partition of the whole brain volume, leaving little to no empty areas in the reconstructed volume, while allowing to define a minimal overlap ensuring tissue continuity.

The quality of the registration allowed to validate the general "divide and reconstruct" acquisition approach. This novel approach can be replicated for the acquisition of new datasets. It appears particularly relevant for the imaging of samples exceeding a few times the maximal field of view of preclinical MRI systems.

Finally, the Chenonceau dataset is ready for investigation. The Chapter 6 will present the first results from the investigation of the tractogram.

The dataset is ready to be shared with the community through the HBP initiative. The data will be made available through several means. It can be downloaded on the eBrains portal and visualized on the online atlas viewer. The dataset will be accessible through the API Siibra.

Detailed perspectives for the Chenonceau project are outlined in the Chapter 8.

Chapter 6

Exploration of the human structural connectivity with the Chenonceau brain

This chapter presents the first investigation of the structural connectivity of the Chenonceau human brain. First, the chapter presents the computation of the tractogram, describing notably the tractography algorithm setting. Second is outlined the compatibility of the tractogram with previously published atlases of the structural connectivity. The accuracy gained from the mesoscopic resolution of DW dataset is highlighted. Third is described the development of a novel mesoscale white matter bundle atlas using advanced fiber clustering techniques. 6.1 Inference of the Chenonceau structural connectivity using tractography

Local modeling

The diffusion-weighted Chenonceau dataset consists of 3 shells at b=1500/4500/8000 s.mm -2 , with respectively 25/60/90 directions, at a mesoscopic resolution of 200 µm.

As each shell represents respectively 110, 250 and 380Go, the calculation of a multi-shell model required to manage 740Go of data, which exceeded our capabilities.

To validate the fiber tracking potential of the Chenonceau dataset, we chose to model the diffusion signal using a single shell. The shell b=8000 s.mm -2 was the best suited as it provided the strongest diffusion sensitization, and thus the highest angular resolution, while maintaining a good average SNR of 7.4.

We used the analytical Q-Ball model [START_REF] Descoteaux | Regularized, fast, and robust analytical Qball imaging[END_REF]] (spherical harmonics order 8, Laplace-Beltrami regularization factor 0.006) to model the orientation distribution functions over the entire brain. Choosing the order 8 for the modeling is consistent with the literature, as it allows a good compromise between the precision of the modeling and the robustness to noise. Additional modelings, such as the CSD [J-Donald Tournier, Calamante, and Connelly 2007], the MSMT [START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF]] and the SHORE model [Özarslan et al. 2013] will be applied in future implementations.

Setting the tractography algorithm

In order to infer the structural connectivity, we chose to use a streamline regularized tractography [START_REF] Perrin | Fiber tracking in q-ball fields using regularized particle trajectories[END_REF]] whose simplicity and computational efficiency allowed to construct the tractogram within reasonable time periods. More elaborated tracking approaches, including probabilistic and global algorithms, will be applied to the dataset in the future.

The streamline regularized tractography algorithm is implemented in the open-source Ginkgo toolbox and requires the definition of the following input parameters :

The streamline propagation domain is defined using a binary mask. The latter was manually corrected to accurately exclude the bottom of the sulci and thus prevent streamlines from crossing joining sulci (Figure 6.2). The future segmentation of the brain structures will allow to use anatomically constrained tractography, distinguishing the cortex, the white matter, the deep gray matter and the ventricules.

The forward step was set to a quarter of the diffusion MRI spatial resolution, ie. 50µm, as usually recommended.

The seeding strategy allows to define within each voxel the number and position of the seeds from which to grow streamlines. We chose to set 1 random seed per voxel. This parameter will be increased in the future.

The aperture angle defines the solid angle containing the admissible directions within the next ODF, in acccordance with the current direction of the fiber. We set up the aperture angle to 5°, which exceeded the usually recommended 60°/mm value. This increased value aimed at allowing fibers to make sharp turns when entering the cortical ribbon.

The number of directions in the orientation space defines the total number of directions each ODF is represented with during the extension of the fiber. This value is linked to the aperture angle : as a reduced aperture angle limits per definition the extent of available directions, maintaining a reasonable number of options requires to increase the number of directions. We set this parameter to 35000.

The stopping strategy relies typically on 3 distinct criteria. The fiber may be stopped if it reaches the boundary of the propagation domain, falls under a generalized fraction anisotropy threshold, or meets a more elaborated anatomical rule. We decided to rely only the first criterion. The future segmentation of the brain anatomy will allow to fully use the other two criteria.

The streamline downsampling factor defines the number of points kept in memory to describe a completed tract. Keeping a point every 50µm is extremely demanding in terms of memory and would lead to a memory overload at the scale of the entire connectogram. Each fiber was therefore downsampled to a resolution of 1mm, corresponding to a downsampling factor of 20.

Resulting tractogram

The resulting tractogram was consequent, with a fiber population of 140 million fibers (Figure 6.3) and representing 90Go of data. Several criteria were explored to assess the validity of the produced tractogram. The trajectory of fibers was satisfying, with overall smoothness and no implausibly sharp turns. Moreover, the tracts propagate uniformly across the volume, crossing seamlessly the transitions between FOVs, thus assessing the reliability of the reconstruction pipeline. Lastly, the tracts displayed anatomically relevant behavior when approaching the cortical ribbon.

The Figure 6.3 displays large overview of the tractogram, establishing the homogeneity and anatomical coherence of the dataset. The finesse of the tracts was already perceptible, as zooming in areas such as the hyppocampus, reveals subtle fiber organizations (Figure 6.4). 6.2 Segmentation of the white matter bundles

Long and superficial WM bundles atlases

The Chenonceau tractogram provided a novel and unprecedented source of information to establish novel atlases of white matter bundles. However, prior to mapping this novel information, it was necessary to establish the compatibility of the Chenonceau tractogram with existing WM bundle atlases. This compatibility would further validate the registration protocol described in §5.5.3.3 and confirm the ability of the Chenonceau dataset to be used within the traditional frame of WM bundle atlases.

The Ginkgo toolbox implements an automatic streamline labeling algorithm which classifies streamlines according to their similarity with the bundles of a WM atlas.

The bundles of the atlas are defined as a set of tracts, called centroids, representative of the population from which the atlas was established.

The labeling process of a connectogram consists in 3 steps:

1. transformation of the tractogram to be labeled into the atlas space (Talairach, MNI) and downsampling streamlines to a limited number of points.

2. for each streamline, computation of its distance to each centroid of the atlas 3. labeling of each streamline with the WM bundle label of the centroid depicting the smallest distance to the current streamline, if inferior to a distance criterion

The following segmentation of the Chenonceau tractogram will rely on three atlases, established using dMRI databases (Archi, HCP) acquired in vivo at the millimiter scale. They were developed by the BAOBAB/GAIA laboratory, in close collaboration with the team of Pr. Pamela Guevara (Université de Concepción, Chili).

The LONG_GUEVARA atlas

The LONG_GUEVARA atlas [P. [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF]] is established using the NMR public database [C. Poupon, F. Poupon, et al. 2006], characterized by a high angular resolution with 200 directions at b=3000 s.mm -2 and a voxel size 1.875×1.875×2mm, acquired using the 1.5T Sigma EchoSpeed MRI system. The bundle definition relies on a 2-step clustering of the fibers, followed by an expert manual labeling of the bundles. The resulting atlas consists of 18 major bundles, with a major projection bundle, 13 major association bundles and 4 commissural bundles (Table 6 

The SUPERFICIAL_GUEVARA atlas

The SUPERFICIAL_GUEVARA atlas [M. [START_REF] Guevara | Creation of a whole brain short association bundle atlas using a hybrid approach[END_REF]] is established from the ARCHI database [START_REF] Assaf | The CONNECT project: combining macro-and micro-structure[END_REF]] consisting of 78 subjects acquired on a 3T Tim Trio MRI system following a single-shell dMRI protocol at b=1500 s.mm -2 along 60 uniformly distributed directions at a resolution of 1.7x1.7x1.7mm 3 . The atlas describes 100 superficial WM bundles, as detailed in Table 6.2. The number of distinct paths per region pair is outlined as 'Count'.

Count Name Count Name Count Name Count CAC-CAC 2 CAC-MOF 1 CAC-PoCi 1 CAC-PrCu 1 CAC-RAC 1 CAC-SF 5 CMF-CMF 9 CMF-Op 1 CMF-PoC 1 CMF-PrC 3 CMF-RMF 3 CMF-SF 4 Cu-Cu 6 Cu-LO 2 Cu-Li 6 Cu-PeCa 2 Cu-PrCu 1 En-En 1 En-IC 1 En-IT 1 En-Li 1 En-MOF 1 En-PH 1 Fu-Fu 8 Fu-IT 3 Fu-LO 3 Fu-Li 1 Fu-PH 1 IC-PH 1 IC-PoCi 3 IC-PrCu 3 IP-IP 10 IP-LO 3 IP-MT 4 IP-SM 1 IP-SP 8 IP-ST 1 IT-IC 1 IT-IT 7 IT-LO 1 IT-Li 2 IT-MT 2 IT-PH 2 IT-ST 1 Ins-Ins 1 LO-LO 12 LOF-Ins 2 LOF-LOF 11 LOF-MOF 2 LOF-Or 1 LOF-RAC 1 LOF-ST 3 Li-Li 7 Li-PH 2 Li-PrCu 1 MOF-MOF 4 MOF-PH 1 MOF-PoCi 1 MOF-PrC 1 MOF-RAC 2 MOF-SF 2 MOF-ST 1 MT-MT 15 MT-SM 1 MT-ST 3 Op-Op 6 Op-PrC 1 Op-SF 1 Op-Tr 2 Or-Ins 1 Or-Or 2 Or-RMF 1 PC-PC 5 PC-PoC 1 PC-PoCi 2 PC-PrC 1 PC-PrCu 2 PC-SP 1 PH-PH 1 
The atlas leverages the DISCO registration strategy [START_REF] Auzias | Diffeomorphic brain registration under exhaustive sulcal constraints[END_REF] to overcome the high inter-individual variability of the cortical folding and extract representative short association bundles (ranging between 20mm and 85mm) of the human brain.

The bundles are named accordingly to the regions they are connecting, with regions defined according to the Desikan atlas. As several bundles may connect the same regions, the bundles are further differentiated through an index. It leads to the definition of 348 bundles, delineating 112 connections between distinct regions pairs. The detail of the bundles set is presented in Table 6.3. The mapping of the short association bundles notably leads to outline distinct bundles shapes (Figure 6.5). Labeling with the LONG_GUEVERA atlas First, we evaluated the conformity of the tracts yielded by the Chenonceau dMRI dataset using a downsampled version of the latter, with a resolution of 800µm. This lighter dataset was similar to a standard millimeter dataset and thus generated a tractogram of conventional dimensions, called the 800µm tractogram.

The labeling of the 800µm tractogram achieved to outline the major white matter bundles within the tractogram (Figure 6.6). The fornix however, was not identified successfully. From our experience, the latter is traditionally harder to locate within tractograms, due to the larger anatomy variability.

Labeling with the SUPERFICIAL_GUEVARA atlas

A priori, the Chenonceau tractogram may display variations with the SUPERFICIAL_GUEVARA atlas as the Chenonceau subject was 92-years old with a significantly thinner cortex than subjects of the ARCHI database. Furthermore, at the tested millimeter scale, using a single seed per voxel leads to a succinct tractogram.

The labeling of the superficial bundles was partially successful. Indeed 99% of the bundles are retrieved (Figure 6.7 and Figure 6.8) but a significant fraction of the obtained bundles was composed of a few fibers, with 38% of bundles containing less than 100 fibers, and 15% less than 20 fibers. This reduced fiber count hindered the proper visualization and definition of the bundle within the tractogram. 

Labeling the 200µm tractogram

The successful labeling of the 800µm tractogram demonstrated the overall compatibility of the dMRI dataset with the atlas. The true potential of the dataset could be estimated by labeling the tractogram resulting from the diffusion MRI dataset at full scale (200 µm), called the 200µm tractogram.

The first consequence of the mesoscopic resolution was the net increase of the number of seeds, and thus streamlines, by a factor 64. It was expected for this fiber increase to be reflected in the number of fibers found per bundle.

Labeling with the LONG_GUEVERA and SUPERFICIAL_GUEVARA atlases

The labeling of the long white matter bundles, as defined in LONG_GUEVERA, with the 200µm tractogram provided much more populated bundles(Figure 6.9), in line with the expectations.

The geometrical characteristics of the labeled bundles remained however similar to the bundles previously extracted.

In contrast, the benefits of the 200µm tractogram became striking with the labeling of the superficial bundles. In this case, the increase of the fiber count per bundle (Figure 6.10 and Figure 6.11) allowed to draw dense and continuous bundles, resulting in a better representation of the trajectory (Figure 6.12 and Figure 6.13). Notably, all bundles are retrieved, with the bundles containing fewer than 100 and 20 fibers representing only 5% and 1% of all bundles. 

Labeling with the SUPERFICIAL_LABRA atlas

After retrieving large and superficial bundles from the 200µm tractogram, we investigated further the potential of the dataset by evaluating its compatibility with the the SUPERFICIAL_LABRA atlas, dedicated to short association bundles [START_REF] Avila | Inference of a U-fiber bundle atlas informed by the variability of the cortical folding pattern[END_REF].

The compatibility of the Chenonceau tractogram with the atlas was satisfying as the labeling of the tracts allowed to retrieve 100% of the short association bundles on the left hemisphere and 90% on the right hemisphere. The number of fibers per bundle was also satisfying (Figure 6.14) with an average fiber count of 47000 and only 1% of bundles containing less than 100 fibers. The dense bundle maps (Figure 6.15 and Figure 6.16) provided a rich representation of the known bundles, allowing to highlight the short bundles shapes outlined by Labra Avila 2020 (Figure 6.17 and Figure 6.18). Figure 6.17: Highlight of several retrieved short association bundles as defined in the SUPERFI-CIAL_LABRA atlas on the left hemisphere, using the 200µm tractogram, with direction colorencoding. Figure 6.18: Highlight of several retrieved short association bundles as defined in the SUPER-FICIAL_LABRA atlas on the right hemisphere, using the 200µm tractogram, with direction color-encoding.

Towards the Chenonceau WM bundles atlas

Analyzing a dense connectogram of 140 million fibers is a demanding task which advocates for methods to simplify their representation. Fiber clustering approaches aim at simplifying this complexity by grouping fibers into fascicles of streamlines sharing similar geometries. It offers an adequate framework to explore the structural connectivity of the Chenonceau brain and to identify its long and superficial white matter connectivity.

The clustering strategy used to process the Chenonceau tractogram relies on the approach proposed by P. Guevara, C. Poupon, et al. 2011 and involves two stages : a fiber clustering stage at the subject level followed by a fiber clustering stage at the group level. The intra-subject clustering gathers fibers into spatially coherent bundles. The latter contain between a few to several hundred fibers and can be represented by a centroid : a single fiber depicting the path of the bundle. The second stage of the clustering aims at grouping similar fascicles stemming from a population of subjects, keeping only those representative of the population.

Intra-subject clustering

The first step of the clustering relies on a hierarchical clustering algorithm (Figure 6.19).

The algorithm starts by first splitting the fibers according to their location (right hemisphere, left hemisphere, inter-hemispheric, cerebellum). Second it classifies the fibers according to their length into 10 groups, defined as regular intervals between the lower l min and upper l max bundle length threshold.

In each group, a density map of the fiber population is computed and binarized with a threshold of a minimum number of fibers per voxel (parcellation fiber count threshold). A kmeans algorithm is applied to parcel the resulting binary mask into patches of a pre-determined size (parcel voxel count). Those patches represent a regular parcellation of the volume containing the fibers of the length-group.

Then, a connectivity matrix based on the fibers crossing those patches is established. The size of the patch is key as it reduces the dimensions of the connectivity matrix, and thus shortens its computation. A hierarchical clustering is applied to the connectivity matrix to extract clusters of connected parcels : the parcel-clusters. Next, the fiber-clusters associated to the parcel-cluster are deduced by selecting from the tractogram fibers whose section that belongs to the parcelcluster exceeds a certain ratio of the fiber (minimum percentage of fiber length belonging to cluster).

Thin clusters, containing less than a set number of fibers (minimum fiber count in cluster) are discarded. Finally, a centroid is outlined within each bundle, defined as the fiber with the minimal distance to the other fibers (symmetric mean of closest point).

Parameter Value

Lower bundle length threshold lmin 5

Upper centroid length threshold lmax 280

Parcellation fiber count threshold 5

Parcel voxel count 27

Minimum percentage of fiber length belonging to cluster 33%

Minimum fiber count in cluster 5

Table 6.4: Intra-subject clustering parameters used to process the Chenonceau tractogram.

The parameters used to process the Chenonceau tractogram are detailed in the Table 6.4. From our experience, these parameters deliver the best results for the processing of human 

Inter-subject clustering

The following step of the clustering groups fiber-clusters representative of the population together, resulting in the outline of white matter bundle components. In past studies [P. [START_REF] Guevara | Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas[END_REF], M. Guevara et al. 2016[START_REF] Avila | Inference of a U-fiber bundle atlas informed by the variability of the cortical folding pattern[END_REF][START_REF] Hot | A novel male Japanese quail structural connectivity atlas using ultra-high field diffusion MRI at 11.7 T[END_REF] this step was used to outline similarities between several subjects. In Chenonceau, it is used on a single subject, in order to further compress the information of the tractogram.

This stage takes as input the centroid of the bundles, as defined in the previous intra-subject clustering step. This parsimonious representation focuses on the path of the bundle, discarding its 3D shape and thus alleviates significantly the computational cost of the clustering.

A modified normalized pairwise distance and a Gaussian kernel are used to compute an affinity matrix between the centroids. The proposed metric adapts the distance criteria to the length of the centroids. The resulting matrix is then processed using a hierarchical HDBSCAN algorithm [START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF], gathering close centroids into centroid-clusters. Let Aff(C 1 , C 2 ) be the affinity between two centroids C 1 and C 2 and d(C 1 , C 2 ) the distance between them. Each centroid C i is resampled to a set of N points p i and is characterized by its length l i :

Aff(C 1 , C 2 ) = exp - d(C 1 , C 2 ) σ 2 and d(C 1 , C 2 ) = min max 0≤i<N ∥p 1,i -p 2,i ∥, max 0≤i<N ∥p 1,i -p 2,N -i-1 ∥ -n f • min(l 1 , l 2 ) -l min l max -l min
The parameters used for the inter-subject clustering are outlined in Table 6.5. As these parameters displayed the best results in the processing of large datasets of human brain tractograms, they are a fitting choice to process the Chenonceau tractogram.

This second clustering step yielded 56 000 clusters per hemisphere. This final representation was sufficiently parsimonious for the following manual delineation of anatomical fascicles. Table 6.5: Inter-subject clustering parameters used to process the Chenonceau tractogram.

Towards the Chenonceau white matter bundles atlas

We established the presence of major and superficial bundles in the dataset using existing white matter bundles atlases. In collaboration with Bastien Herlin, Simon Legeay and Bosco Taddei, was initiated the manual delineation of those fascicles, based on the results of the clustering algorithm. The objective here was to leverage the precision of the tractogram to propose a novel delineation of known fascicles.

To that end, we used well-defined anatomical regions to select candidate centroids, which were further refined using exclusion zones, and finally perfected with manual cluster selection or removal.

Definition of the major white matter bundles First, we delineate (Figure 6.21) the following long association and projection bundles : • The cortico-spinal tract (CST) is one of the major descending tracts. It descends from the motor and premotor area to the thalamus, running along the internal capsule and finally exiting the CNS in the anterior area of the cerebral peduncles.

• The arcuate fascicle (AF) connects the lateral temporal cortex with the frontal cortex via a dorsal projection, arching around the Sylvian fissure [START_REF] Fernández-Miranda | Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain[END_REF]].

• The inferior frontal occipital fascicle (IFOF) links together the occipital cortex, the temporobasal areas, the superior parietal lobule, and the precuneus to the frontal lobe [START_REF] Benedictis | The inferior fronto-occipital fascicle: a century of controversies from anatomy theaters to operative neurosurgery[END_REF]].

• The uncinate fascicle (UF) is a C-shape connection between the frontal and temporal lobes.

It runs through the temporal stem and links the anterior part of the temporal lobe with the orbitofrontal cortex and the polar frontal cortex [START_REF] Leng | The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain[END_REF]].

• The superior longitudinal fascicle (SLF) is a longitudinal bundle linking the parietal and frontal lobes and is further divided into SLF-I and SLF-II. SLF-I begins in the superior parietal lobule and runs anteriorly to arrive in the superior frontal gyrus and the supplementary motor area. SLF-II is inferior-lateral to SLF-I, and runs from the inferior parietal lobule to the middle frontal gyrus [START_REF] Vergani | Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional review[END_REF]].

• The cingulum forms almost a complete ring starting from the orbital frontal cortices and ending in the temporal lobe, running dorsal to the corpus callosum [START_REF] Bubb | The cingulum bundle: anatomy, function, and dysfunction[END_REF].

• The optical radiations realize a direct connection between the lateral geniculate nuclei (LGNs) and the visual cortex. It can be divided into 3 portions : anterior, middle and posterior. The first forms the Meyer loop, the second runs along the IFOF before entering the occipital cortex, and the third targets the superior portion of the calcarine fissure [START_REF] Arrigo | New insights in the optic radiations connectivity in the human brain[END_REF]].

Conclusion

This chapter investigated the potential of the Chenonceau DW dataset for the exploration of the structural connectivity of the human brain. First, we demonstrated that well-known large and superficial bundles could be retrieved from the Chenonceau tractogram. It further validated the reconstruction pipeline and established the ability of fiber tracking algorithms to follow tracts between different FOVs.

Second, we outlined the benefits of the mesoscopic resolution in the investigation of superficial and short association bundles. The dense and refined tractogram allowed to form largely populated bundles, expressing in detail the spatial characteristics of the bundles. In particular, we highlighted the ability to retrieve from the Chenonceau tractogram the large majority of short association bundles, as defined in a recent state-of-art atlas.

Finally, we presented the ongoing work towards the Chenonceau white matter bundles atlas. The vast tractogram was processed using the "intra-subject" and "inter-subject" clustering algorithms to express the fibers as spatially meaningful clusters. This parsimonious representation simplified the interactions with the Chenonceau connectogram. It notably allowed us to manually delineate several long association and projection bundles.

Part III

Spin-based tractography powered by reinforcement learning

Chapter 7

Global tractography powered by reinforcement learning

This chapter presents the novel application of reinforcement learning to global tractography.

First is provided the general context and motivation for this reaserch, followed by a brief introduction to reinforcement learning. Finally, we present in detail a novel spin-based global tractography framework powered by reinforcement learning.

Why applying reinforcement learning to tractography

Diffusion-weighted MRI, in association with local models of the diffusion process, offers a wide array of insights about the local tissue microstructure. In the white matter, those metrics notably include the diffusion and fiber orientation distribution functions. Tractography algorithms rely upon this local information to construct streamlines matching the path followed by neural fibers. Solving this inverse problem requires to compromise between the information depicting the fiber distribution and anatomical priors characterizing neural fibers. The numerous existing tractography approaches rely on distinct paradigms of fiber construction, varying scopes of diffusion information and various implementation of the prior anatomical knowledge.

Streamlining approaches, either deterministic or probabilistic [START_REF] Mori | Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging[END_REF][START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Behrens | Characterization and propagation of uncertainty in diffusion-weighted MR imaging[END_REF]] achieved first reliable results and highlighted the potential of the tractography approaches to map non-invasively the structural connectivity in humans and animals. Although insightful, those approaches suffer from several biases (seeding bias, gyral bias, wall effect bias,...), that lead to the development of new approaches.

Global approaches set a comprehensive framing for the tractography problem, expanding the scope of the available anatomical information to the algorithm during the fiber definition. Saad [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF] included region-wise a priori connectivity information in the bayesian framework [Timothy EJ [START_REF] Behrens | Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?[END_REF]]. Geodesic approaches [Geoffrey JM [START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF]Daniel C Alexander 2005, Saâd Jbabdi et al. 2008] define the streamline between two points as the shortest path between them, according to a metric function derived from local models. Spin glass based approaches [C. [START_REF] Poupon | Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles[END_REF][START_REF] Mangin | A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data-a technical review[END_REF], Fillard, C. Poupon, and Jean-François Mangin 2009] express the inference of the structural connectivity as a global inverse problem : fiber fragments are distributed across the volume and aligned in accordance with the local DW data.The optimization process consists in modifying the position and direction of spins and generating connection between spins, while minimizing the associated cost. The latter approach has been further improved with the addition of various generative models [Kreher, Mader, and V. Kiselev 2008[START_REF] Reisert | MesoFT: unifying diffusion modelling and fiber tracking[END_REF][START_REF] Konopleva | Modelfree global tractography[END_REF], and the addition of advanced anatomical knowledge and microstructure [START_REF] Teillac | Tractographie globale sous contraintes anatomiques[END_REF].

A new generation of tractography methods based on machine learning and neural networks is currently emerging. The supervised learning techniques take advantage of the developing curated tractogram datasets to propose various tractography paradigms, from improved fiber tracking [P. F. [START_REF] Neher | A machine learning based approach to fiber tractography using classifier voting[END_REF], P. F. Neher, Côté, et al. 2017[START_REF] Poulin | Learn to track: Deep learning for tractography[END_REF], to direct estimation of anatomical bundles [Wasserthal, P. Neher, and Maier-Hein 2018, B. Li et al. 2020[START_REF] Reisert | HAMLET: hierarchical harmonic filters for learning tracts from diffusion MRI[END_REF] and connectograms [START_REF] Sarwar | Towards deep learning for connectome mapping: A block decomposition framework[END_REF].

Reinforcement learning stands as a separate branch of machine learning distinct of supervised and unsupervised learning : while the former learns to map an input to an output using a training set of labeled examples and the latter detect hidden structures inside unlabeled data; Reinforcement Learning (RL) designates the training of a learning agent to achieve a certain goal, through direct interaction with its environment. Decisions of the agent lead to modifications of the environment and agent aims at learning what actions yield the final expected outcome.

Recent breakthroughs [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]] have demonstrated the ability of this approach to master extremely complex environments, such as the game of Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]] and modern video games [START_REF] Vinyals | Grandmaster level in StarCraft II using multiagent reinforcement learning[END_REF][START_REF] Berner | Dota 2 with large scale deep reinforcement learning[END_REF]. The strength of powerful agents is to able to devise long-term strategies, taking decisions that may appear sub-optimal in the short-term, but which contribute to finally yielding the expected outcome.

Our proposal is to reformulate spin-based global tractography as a reinforcement learning problem. We believe that this new frame could efficiently answer the challenges facing conven-tional spin-based approaches, shortening significantly their inference time, while enhancing the implemented strategies.

A major drawback of spin-based approaches (see §4.2.2.3) is the long computation time of the Reverse Jump Markov Chain Monte Carlo method (RJMCMC) [START_REF] Green | Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[END_REF]. It relays on the proposal of small random modifications to the tractogram, and their acceptance is conditioned by the Green ratio, which becomes progressively more selective along the inference of the tractogram.

Proposing small random iterations to travel the extremely large space of all possible spin configurations is time consuming, in particular as the proposed trajectory is not expected to be a short path towards a satisfying configuration. Furthermore, all rejected modifications constitute wasted computations, extending the inference-time without improving the tractogram.

Reinforcement Learning may bring a valuable addition to this frame. By interacting with the tractogram using a similar set of small modifications, the agent learns from experience to build relevant spin configurations. At inference time, the accumulated knowledge allows to propose directly the best actions, leading shortly to a minimal global spin configuration. In the context of traveling the tractogram space, the training of the agent can be interpreted as the exploration of the tractogram space. At inference, the agent is able to leverage this knowledge to follow the shortest path to a satisfying configuration.

The RL frame further offers grounds to establish more complex strategies. While the RJM-CMC optimizer is reliable, it does not support the setting of long-term strategies: the actions are evaluated and accepted if they individually improve, in a certain extent, the tractogram. The possible future actions are not taken into account. In contrast, with reinforcement learning, the action values are defined upon the values of the following actions. The agent is thus encouraged to build lasting strategies, in order to reach a final greater reward. In the context of tractography, this new ability might provide the tools to disentangle ambiguous fiber configurations, as the agent would track the fiber not only based on the local DW information, but also with a foresight of the DW information in the voxels to come. By embedding the environment with the additional knowledge (path of the fiber being reconstructed, path of all other fibers), the agent has access to an unprecedented quantity of information to perform the best decision.

Finally, in the context of machine learning applied to tractography algorithms, reinforcement learning appears as a promising alternative to supervised learning. A characteristic of the tractography field is the difficulty to define ground truths. The tractograms yielded by conventional algorithms require expert manual labeling for the fibers to be considered anatomically relevant. Such manual delineations are work-intensive and subject to heavy inter-and intra-operator variability (see §4.4.3). Despite recent progress [START_REF] Fillard | Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom[END_REF][START_REF] Caruyer | Phantomas: a flexible software library to simulate diffusion MR phantoms[END_REF], P. F. Neher, Laun, et al. 2014], phantoms are still unable to represent the complexity of the human brain. They provide a useful ground for validating and bench-marking existing algorithms, but in the context of training an algorithm, they cannot be an alternative to real biological datasets.

Supervised-learning approaches, and especially those based on deep-learning technologies, require a large labeled dataset. In particular, in the case of DW data, the numerous sources of variability (resolution, diffusion sensitization, system brand,...) [K. G. [START_REF] Schilling | Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow[END_REF][START_REF] Pujol | The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery[END_REF][START_REF] Maier-Hein | The challenge of mapping the human connectome based on diffusion tractography[END_REF] set high requirements in that regard. Those requirements would be further expanded if pathological cases were to be taken into account. Thus, despite recent progress[F. Zhang, Y. Wu, et al. 2018], the establishment of large scale labeled tractograms remains an open challenge.

By contrast, the ability of the reinforcement learning to learn from interaction, removes the need for labeled datasets. Furthermore, it also removes the need for prior fiber reconstruction using conventional algorithms. It is beneficial, as the RL approaches stand independent of the possible biases of the latter. Furthermore, it shortens the necessary processing of the dataset and reduces the variability associated with the various existing methods.

Large human datasets (HCP, UK-Biobank), as well as specific pathology-related datasets, or even animal datasets, become directly viable grounds for the algorithm to expand its experience and learn more complex strategies.

Introduction to reinforcement learning

As for the section introducing neural networks, this section intends to define the core notions of reinforcement learning. The reader may refer to Sutton and Barto 2018 for a comprehensive presentation of this field.

Fundamental concepts

Reinforcement learning aims at learning to achieve a goal from interaction. The framework is defined upon a few fundamental components.

A reinforcement learning problem is defined by a decision-maker, the agent, that interacts with an environment, through actions. Those actions alter the environment, which presents a new state to the agent. At the same time, the environment may yield a reward. The agent's goal is to maximize this reward (Figure 7.1). The environment designates the physical or virtual system the agent is interacting with. In the example of a game of chess, the physical board and the player facing the agent constitute the environment. To each action taken by the agent, that is the displacement of a piece, the environment answers by displacing a piece of the other set, generating a new state.

The state designates the information of the environment available to the agent. For the game of chess it may be a grid representation of the board with integers representing pieces, or direct pictures of the board. States that achieve to represent comprehensively the environment, so that its response at t + 1 depends only the state and the action at t, are said to have the Markov property. The associated RL frame is called a Markov Decision Process (MDP). It is a favorable frame as the reaction of the environment to an action is described only by the previous state, rather than the full history of states. In the case of game of chess, the picture of a board is sufficient to depict the whole situation, while exclusively citing the start and ending position of a piece ("e2 e4"), requires a full history of displacement to be representative of the current situation.

Furthermore, problems with a limited number of states and actions, which ultimately reach a final state, are called finite MDPs. The sequence of states from start to finish is called an episode, its length is the number of states constituting it. The game of chess is a finite MDP, whose length ranges from a few actions to a few dozens.

The reward is the scalar value the environment may yield when encountering certain states. In the case of the game of chess, one option is for the final state to yield +1, 0, -1, respectively in cases of victory, draw, loss. Intermediate rewards during the game are also possible, with a positive reward if the agent captures an enemy piece, and a negative reward if the agent loses a piece.

The probability to access the state s ′ and get the reward r by choosing the action a in the state s thus writes p(s ′ , r|s, a).

The behavior of the agent, that is the probability to choose the action a when the state s is encountered, is defined by the policy function π :

S × A -→ [0, 1] π : (a, s) -→ π(a|s)
It is possible to associate with a state s, the expected reward accumulated until the end of the episode, by following a certain policy π. This quantity is called the value of a state v π (s) :

S -→ R v π : s -→ E ∞ k=0 γ k R t+k+1 S t = s
The term γ ∈ [0, 1] is the discount rate and defines the reward forecasting horizon, with high values granting importance to further rewards. Similarly to the value of a state, the action value q π can be defined as the averaged return from choosing the action a in the state s, and then following the policy π.

A × S -→ R q π : (s, a) -→ E ∞ k=0 γ k R t+k+1 S t = s, A t = a
A key property of the state-value v π and of the action-value q π functions is to verify a recursive property, called the Bellman equation. It establishes the relation between the value of a state v π (s) and the value of the next state v π (s ′ ) depending on the policy π and the transition probabilities p.

v π (s) = E ∞ k=0 γ k R t+k+1 S t = s = a π(a|s) s ′ ,r p(s ′ , r|s, a) r + γv π (s ′ )

What means learning in reinforcement learning ?

An agent is learning when it improves its policy to achieve higher rewards. Consequently, policies can be partially ordered depending on the expected values of the possible states. A policy π is said to be better than π ′ , if π achieves higher rewards from all states :

π ⩾ π ′ ⇔ v π (s) ⩾ v π ′ (s), ∀s ∈ S
The best policy is called the optimal policy and is noted π * . The associated state-value functions is called optimal state-value function and is noted v * :

v * = max π v π (s)
The optimal action-value function is defined similarly. The optimal state-value function satisfies a particular version of the Bellman equation, called the Bellman optimality equation :

v * (s) = max a s ′ ,r
p(s ′ , r|s, a) r + γv * (s ′ )

In finite MDPs, this relation allows to depict the set of N possible states, as a set of N equations, in N unknows. In cases where the transitions p(s ′ , r|s, a) are known, solving this system allows to establish the optimum value for each state, independently of the policy.

Once the optimal value of every state is established, determining the optimal policy is straightforward : one has simply to choose the action with the highest expected return at every step. In other words, once the optimum value are known, the best policy is to choose the best action every time. This behavior is called a greedy-policy, one that does not explore sub-optimal states, but exploits and accumulates rewards from rewarding states.

Naturally, the solving of such a system is irrelevant in most cases. The number of possible states N can be very large and more significantly, the transitions p are often unknown to the agent. The search for the optimum policy thus relies on iterative approaches.

Strategies for learning

A wide array of approaches exist to determine the optimum policy. Three large categories of approaches are defined, each aimed at fitting specific constraints of the environment.

Policy Iteration Dynamic programming (DP) designates the search for an optimum policy for MDP with a known model p.

In this frame, the policy iteration is a key method. The latter first evaluates the current policy, by estimating iteratively the values of the states, with the help of the Bellman equation. Updated state values allows to improve the policy by greedily selecting the best available actions. The estimated values of states must be updated to fit this new policy.

This joint optimization is a reliable process, whose convergence is guaranteed as long as all states are updated. The granularity of the update, and in especially the extent of the policy evaluation is secondary : methods ranging from extensive policy evaluation to one-step evaluation, typically converge to the same result.

Monte Carlo methods A fundamental requirement for DP is the perfect knowledge of the environment model. For complex environment however, this requirement is unattainable. In those cases, the Monte Carlo approaches dispense from modeling the environment and relies solely on the experience gained from interactions.

By definition, the value of a state is the expected return from that state. Consequently, visiting numerous times a state and recording the obtained returns at the end of the episode provides an estimate of the state value. Similarly to policy-iteration, once the states values are known, defining the optimum policy is straightforward, as a greedy policy is the optimum policy.

The convergence of Monte-Carlo methods requires the policy to visit every possible state. It highlights a key notion of reinforcement learning : balancing exploration and exploitation during the learning. Exploration designates the choice of sub-optimal actions during learning. This behavior allows to explore the implications of a what seems to be a sub-optimal choice, in order to better assess its value. The exploration however comes at the cost of neglecting the best-looking actions. Fewer selections of those actions degrade the quality of their value estimation.

When learning from scratch, the balance between exploration and exploitation follows a well defined trend. At the beginning, the values of actions are mostly random, and strong exploration is needed to give a first estimate of the actions values. As the evaluation of actions improves, it becomes necessary to distinguish among similar actions the best option. In other words, it is necessary to better refine the values of good-looking actions through repeated selection. The exploitation thus becomes predominant.

This trade-off can be easily implemented with ϵ-greedy policies which select the best available action in (1 -ϵ) cases, and select a random action in ϵ cases. At the start of the learning, ϵ is equal to 1, and progressively decreases along the learning.

Temporal Difference Methods A major drawback of Monte-Carlo approaches is to require the episode to end before updating the values of the encountered states. If the episodes are very long or expensive to produce, this learning framework is no longer relevant. Temporal-Difference approaches (TD) aim at estimating the value of a state, relying only the next few states and rewards encountered by the agent.

In the case where only the next state is used to estimate a value action, TD(0), two methods stand out :

The SARSA algorithm is a on-policy TD(0) algorithm. It updates the value of an action using the value of the next action the policy π would perform :

Q(S t , A t ) ←-Q(S t , A t ) + α R t + γQ(S t+1 , A t+1 ) -Q(S t , A t )
The choice of a ϵ-greedy policy guarantees to explore all states. An important variation of this algorithm is the Q-Learning algorithm. Rather than estimating the value of state according to a policy, the latter estimates directly the optimal value of state :

Q(S t , A t ) ←-Q(S t , A t ) + α R t + γ max a Q(S t+1 , a) -Q(S t , A t )
In Q-Learning (Algorithm 1), regardless of the policy used by the agent to interact with the environment, the policy evaluated is the optimum policy.

This contrasts with the previous on-policy methods, which interacted and evaluated a single policy. Evaluating a certain strategy, called target policy, while interacting with the environment with an another strategy, called behavior policy, is called off-policy learning. 

Deep Q-Learning

The introduction of deep neural network to temporal differences methods in [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF] is pivotal to recent successes of reinforcement learning.

The strength of TD methods is to leverage the information from successive states to improve the action-value assessment. However, the complexity of the environment and specifically the scale of the state-action space remains an important pitfall : exploring and evaluating an exponentially growing number of state and actions becomes quickly impossible. In practice, even moderately complex games, such as chess, exhibit a hardly tractable number of possible states. In more complex games or environments, like playing a modern real-time strategy game or driving a car, quantifying the number of existing states becomes meaningless.

Deep neural networks answer this challenge by acting as an approximation function, able to analyze a state by drawing similarities with previously encountered states. This enables to generalize the knowledge acquired from visiting a limited number of states to novel situations.

This novel generalization capabilities of the agent are illustrated [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]] with the successful training of a single agent to play 7 Atari arcade games ( Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest and Space Invaders ).

The agent is provided with lightly processed frames of the games (grey-scale, down-sampling and cropping) and has access to all in-game possible actions, exactly as human player would. As the reward system varies greatly in amplitude from game to game, it is scaled to +1 for all positive rewards, and -1 for all negative rewards.

The neural network Q(s, a; θ) is thus an approximation of the optimum action value function Q * (s, a). More precisely, two iterations of the networks are defined, an online network Q(s, a; θ i ), and a target network Q(s, a; θ i-1 ). The difference between the action value estimated by the online network, and the expected return from the next state as evaluated by the target network, plus reward, constitutes the loss.

Over a set of states, the loss L i writes :

L i (θ i ) = E s (y i -Q(s, a; θ i )) 2
where,

y i = E s r + max a ′ Q(s ′ , a ′ , θ i-1 |s, a)
The parameters of the target network are kept fixed when optimizing the loss function. The inclusion of gradient clipping allows to ignore excessively important gradient values.

Every τ , the parameters of the online network are copied into the target network. This parameter must be chosen carefully, as seldom network updates slow down the learning, but too frequent network updates lead to instabilities.

When playing the Atari games, the subsequent frames are highly correlated, which is highly detrimental to the training of neural networks. The experience-replay mechanism proposes to store the just encountered frames within a large replay memory (Algorithm 2). Sampling from this memory leads to the creation of un-correalated mini-batches, spanning all 7 games. 

j = r j ; if s j+1 terminal r j + γ max a ′ Q(s j+1 , a ′ ; θ i-1 )
; otherwise Perform a gradient descent step on (y j -Q(s j , a j ; θ i )) 2 end for end for 7.3 Reinforcement learning applied to tractography

Related work

To the best of our knowledge, the first and only published RL-based tractography approach [START_REF] Théberge | Track-To-Learn: A general framework for tractography with deep reinforcement learning[END_REF]] extends the "Learn to Track" approach [START_REF] Poulin | Learn to track: Deep learning for tractography[END_REF][START_REF] Poulin | Bundle-Wise Deep Tracker: Learning to track bundle-specific streamline paths[END_REF] to reformulate the tracking of individual fibers as a reinforcement learning problem.

Starting from a random seed, the agent chooses the direction the fiber should follow for the next step. The fiber is extended iteratively until a stopping criterion is reached. Besides the usual criteria (fiber exits the WM mask, fiber exceeds maximum length or aperture angle, FA falls below a given threshold), the authors additionally stop the extension of a fiber that exceeds a maximum cumulative angle between segments, typically preventing a fiber to loop.

The state, that is the information accessible to the agent, consists of the characteristics of the voxel containing the head of the fiber and its 6 direct neighboring voxels. Those characteristics include the local model describing the DW data, in this case the Spherical Harmonics decomposition of the fODF issued from the CSD model [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF], together with the values of the binary tracking mask. This local information is completed with the inclusion of the 4 last directions of the fiber (see Figure 7.14). The state thus results in a 215-dimensional input. The reward function is built to encourage the agent to keep a smooth curvature along the fiber and to be consistent with the information provided by the local modeling. The proposed reward is thus the product of the corresponding two quantities, with the cosine distance between the last streamline direction u -1 and the new chosen direction a t multiplied by the absolute cosine distance between the new direction chosen by the agent and the closest peak p i extracted from the fODF.

r t = | max p i ⟨p i , a t ⟩| • ⟨a t , u -1 ⟩
The approximation function Q is implemented as a 3-layer fully-connected neural network. The presented learning are based on the Actor-Critic framework.

The batching capabilities of neural networks allow to set multiple agents to reconstruct the tractogram simultaneously, providing a significant acceleration to the construction of a tractogram.

Finally, besides being competitive with modern tractography algorithms, this approach demonstrates the better generalization capabilities of the RL agent : when confronted with a severely modified dataset, the agent is able to better adapt than it supervised-learning counterpart.

Definition of the proposed RL framework

Environment

The environment of the algorithm designates the overall software infrastructure the agent interacts with in order to build a tractogram. The environment thus manages and presents the DW data of the sample, as well as all supplementary anatomical information (tractography mask, cortex mask) to the agent. It applies the actions decided by the agent, notably the connection of two spins. Finally, it records all reconstructed fibers. To extend upon the existing framework of Teillac 2017 and the rich toolset provided by the Ginkgo software, this environment is integrated fully in the Ginkgo setting (see Figure 7.3).

This C++ framework is a reliable and rich foundation for the environment. However, due to the numerous interconnexions between the environment and the agent, this technological choice also constraints to implement the agent, and its underlying neural network in C++.

The recent release of the PyTorch C++ frontend allows to conduct this implementation with the usual tools of the Pytorch toolbox [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]]. 

State

Guiding principles The implementation of the reinforcement learning framework follows several principles.

First, we seek to translate the whole-brain scale of the global tractography into a global state with the Markov propriety, as it is the most favorable context for the learning agent. In other words, the state must bear a description of the history of the agent actions. In the game of chess, to have the Markov property, the state must give a complete view of the board, and not simply the description of the latest piece move. Quite similarly, we consider that to be considered Markov the tractography state must describe not only the anatomical information (DW data and masks) but also fully describe the fiber under construction and the fibers previously reconstructed. This threefold description characterizes extensively the tractography and allows for an clear causality between states.

Second, at this core, the problem is to select for a spin, under restrictions, the spin it would best connect with. Solving this problem efficiently requires a multi-scale description. On the local scale, connecting efficiently two spins is a matter of analyzing spin distribution patterns, and infer the smoothest configurations. On a semi-global scale, a good connection requires to be able to alleviate the ambiguity of the anatomical information to allow the fiber to carry on the intended global direction. On the global scale, a good fiber must present a plausible anatomical trajectory and behavior.

Convolutional layers appear as a relevant technological choice, answering both requirements. They allow to represent and process rich spatial information, with a limited computational cost, and they are specifically designed to perform a multi-scale feature extraction. To be compatible, the state must thus be formulated under the form of a grid. The organization presented in [START_REF] Vinyals | Starcraft ii: A new challenge for reinforcement learning[END_REF], is a major inspiration.

In conventional approaches, the spins are seen as fiber fragments dispersed across the volume, aligned with the orientation distribution function. The challenge is then to connect at best those various fragments, reconstructing optimal global streamlines. The proposed framework shifts the definition of spins, as they become potential fiber fragments, that the agent is able to generate at will in order to connect with them. The position of the spins are distributed regularly across the volume, and the possible directions are defined by the local DW information. In this new framework, the construction of a fiber is quite similar to streamlining approaches, where a fiber is extended for a certain step-size along one of the available directions, as defined by local DW data.

However, the spin terminology remains relevant as it highlights the discrete and gridded nature of the fiber extension process. What is perceived by the user as a fiber construction, is seen from the agent perspective as a successive case selection problem. Furthermore, a key characteristic of spin-based tractography is the idea of looking for the best configuration for the available spins, driving compromises in spin connection in order to present the most coherent final result at the global scale. As will be detailed in the reward mechanism section (see §7.3.2.6), the agent is encouraged to use a limited number of spins per voxel, driving him to search for similar trade-offs when extending a fiber.

Implementation of a state

We consider that an extensive description of the tractogram under construction consists of three elements :

• anatomical information, including the tracking mask and the cortex mask, and the DW information, as a metric derived from a classical local modeling,

• a record of the reconstructed fiber,

• the representation of the fiber under construction.

As detailed, this information must be set in the form of a grid. The resolution of this grid is of critical importance, as a thinner resolution allows a more precise placement of the spins and in fine a smoother fiber trajectory, but expands significantly the scale of the problem.

In the first instance, we propose to set this subvoxel resolution as 3 times thinner than the original voxel resolution. Future evaluations will allow to determine precisely the most relevant value.

DW and anatomical MRI data The microstructural information of the DW data is summarized under the form of the main directions of the fiber population present in the voxel. This derived metric is obtained by modeling the signal with the analytical Q-Ball approach [START_REF] Descoteaux | Regularized, fast, and robust analytical Qball imaging[END_REF]], extracting up to 3 peaks of the dODF through a custom implementation of the method proposed by Aganj, Lenglet, and Sapiro 2010. The amplitude of the extracted peak i is referred to as relative importance of the peak ρ(i). This last metric is central in defining the completion of the tractogram (see §7.3.2.7).

This representation is inspired by Wasserthal, P. Neher, and Maier-Hein 2018 and provides a concise description of the fiber configuration : per direction, 3 coefficient describe the direction and 1 its relative importance. Moreover, directly providing the main directions of the fiber configurations allows to create spins along those directions without any additional processing of the dODF.

In addition to modeling the DW information, the state must include a segmentation of the cortex, as a simple binary mask. The Cartesian coordinates of these directions define the channels associated with this voxel (green tiles). In addition, the relative weight ω of the extracted directions (0.4 and 0.6) are associated with N min_spin , equal to 9, to define the minimal number of spins that need to be created in the voxel along this direction, for this direction is considered completed (red tiles). Once all directions are completed, the voxel is said to be completed. Recording of existing fibers To provide the agent with a metric of the advancement of the tractogram reconstruction, as well as deliver him information contributing to the reward calculation, the state also represents reconstructed fibers from the beginning of the episode.

Those fibers are not represented individually but as a sum. More precisely, is represented the number of times a spin has been selected to extend the fiber, per direction, per voxel (Figure 7.5). As the agent is unable by design to 'jump over' voxels, recording its successive steps allows to depict with a coarse resolution the path of the fiber. Summing the fiber count per voxel, and not per subvoxel, allows to draw a comparison between the dODF signal and the spins created in the corresponding voxel. Those grounds are used to define a simple generative model, able to depict the completion of the tractogram reconstruction (see §7.3.2.7).

Recording of the current fiber Finally, the current position of the head of fiber is indicated, together with the past positions of this fiber (Figure 7.10). Besides indicating the current advancement of the fiber, it also helps restrict the voxels already visited to the fiber, preventing backtracking and looping.

Complete state As detailed in Table 7. The training strategy

Learning approach The agent is trained using a Deep Q-Learning algorithm [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]]. This approach is chosen for its reliability and ease of implementation. The potential gains from implementing an actor-critic approach are detailed in the perspective section (see §7.3.5).

In the original DQN study, the spatial aspect of the input is discarded before the action is selected through fully connected output layers. It is sensible to exclude spatial information as the possible actions ("go right/left", "fire",...) have no spatial component.

However, in the global tractography context, similarly to [START_REF] Vinyals | Starcraft ii: A new challenge for reinforcement learning[END_REF], the actions (choice of the following spin) are determined from their spatial characteristics. As the latter match the resolution of the input space, it is judicious to preserve the spatial resolution of the input grid up until the action evaluation stage. To that end, we propose to implement a fully convolutional network, with resolution-preserving convolutional layers. The networks consists of 6 convolutional layers of size 3x3, with the input layer consisting of 18 filters, the hidden layers of 64 filters, and the output layer of 6 filters, no strides and 1-pixel padding. The input and hidden layers use a ReLU activation and the output layer is linear. The training of the network is performed with the Adam optimizer, a batch-size of 64, a learning rate of 0.0001 and a drop-out rate of 50%.

Phantoms Two phantoms are used to conduct the experiments.

The first phantom is a minimalistic sample representing a 90°crossing of two fiber populations. It is a noise-free, partial-volume free image of small dimensions : 18x18x4. This sample supports the establishment of the overall framework, with the implementation of the environment, actions and rewards.

Once the RL-tractography framework yields tractograms with acceptable proprieties, the definition and refinement of rules is performed using the FiberCup sample. The latter is larger (64x64x4), displays several complex fiber configurations, presents a moderate quantity of noise and little partial-volume (Figure 7.6).

Finally, we restrain the samples to single slices, performing 2D tractography. A 2D configuration preserves the nature of the problem, allowing to build a sensible reward system, and equally preserves all the interactions between the agent and the environment. In that regard, it allows to define the framework, while alleviating the computational burden of manipulating 3D data and 3D CNNs. 

Agent and actions

Similarly to [START_REF] Vinyals | Starcraft ii: A new challenge for reinforcement learning[END_REF], we choose to model the approximation function as a Fully Convolutional Network [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], with no size reduction. The output of the network is thus a N × N × 6 tensor, where N is the size of the sample, and 6 corresponds to the 3 available directions, times 2, the number of extremities per spin. The evaluated actions are thus dual : the network estimates the value to extend the fiber to a certain subvoxel, under a certain direction. The choice of position and orientation, subvoxel and channel, is designated as the choice of a subvoxel-direction.

We highlight that the couple subvoxel-direction, is equivalent to a spin. The latter is located at the center of the subvoxel, aligned along the specified direction. Additionally, per fiber, there can only be one spin per subvoxel. This is why, when an agent is said to 'choose' a subvoxeldirection, it is equivalent for the agent to designate directly the associated spin.

Further, we emphasize the three distinct perspectives of an agent action. From the user's perspective, the agent extends the fiber under construction. From the environment point of view, this extension designates the choice of the following spin to connect to. From the agent's perspective, it is the choice to move the head of the fiber to an another subvoxel-direction.

Among the information provided to the network, is the identification of the subvoxel-direction containing the head of the fiber. The network is tasked to estimate the values of extending the fiber from this subvoxel-direction, to the neighboring subvoxel-directions. The values for all subvoxel-directions is estimated at once, through a single forward pass.

In cases where no available extension is available the agent can choose to stop the propagation of the fiber. That is, the current subvoxel-direction of the fiber becomes available for the agent to choose.

In order to maintain an effective exploration of the state space, it is necessary to limit the extent of available subvoxel-directions. Much like the rule for conventional streamlining (step size, maximum aperture angle, tracking inside the WM mask...), we restrict the available actions to the agent with a set of masks.

Before defining the implementation of the masks, it is important to highlight that saying that two spins connect together is a simplification. In detail, one extremity of the spin connects with one extremity of an another spin. To ensure that the connection is properly set, the restricting mask are defined upon spin extremities, rather than spin themselves. This is why it is more accurate to say that the network estimates the value of connecting a specific extremity of the last spin, with the available extremities of the neighboring spins.

Let x i designate a spin, x + i and x - i its forward and backward extremities, and x i x + i x - i their respective position. Let n + i = x + i -x i be the vector depicting the 'direction' of the forward extremity.

The available extremities of spins are the extremities satisfying three conditions :

1. The distance between the current and the available extremities must be inferior to t d . Let D + (x + i ) be the set of forward extremities abiding this rule with respect to x + i :

D + (x + i ) = x + j ∥x + j -x + i ∥ < t d D -(x + i
) is defined similarly. 2. The connection between spins x i and x j must be set properly, with the connecting extremities 'facing' each-other. Mathematically, it reverts to n + i and n +/j being opposed. Let O + (x + i ) be the set of forward extremities abiding this rule with respect to x + i :

O + (x + i ) = x + j ⟨n + i , n + j ⟩ < 0 O -(x + i
) is defined similarly. 3. The directions of two connecting spins x i and x j must be compatible. Absurd configurations, such as backward connections, must be prohibited. To this end is implemented a threshold on the angle between the direction of the spin n + i and the direction between the two involved extremities (x

+/- i -x +/- j
). This relation must be symmetric. Contrary to the opening angle parameter of conventional tractographies, this threshold angle is rather large (66°) as it does not aim at enforcing the smoothness of the fiber but only restrict the action space (see Figure 7.7). The smoothness of the fibers is expected to be part of the solution found by the agent. Let S + (x + i ) be the set of forward extremities abiding this rule with respect to x + i :

S + (x + i ) = x + j ⟨(x + j -x + i ), n + i ⟩ > t θ and ⟨(x + i -x + j ), n + j ⟩ > t θ S -(x + i ) is defined similarly.
In fine, the set of available extremities A(x + i ) is defined by: 

A(x + i ) = D + (x + i ) ∩ O + (x + i ) ∩ S + (x + i ) ∪ D -(x + i ) ∩ O -(x + i ) ∩ S -(x + i )

Reward

The reward system is designed to encourage the agent to build tracts akin to neural fibers. In particular, the created tracts are expected to be smooth, start and end in the gray matter. The reward system convey those expectations to the agent by yielding a reward r, after almost each action. r = r c + r s with r c and r s the rewards associated the two main kinds of actions available to the agent: connecting the current spin (r c ) or stopping the fiber at the current spin (r s ). Remarkably, all actions, with the exception of the primo-selection of a spin, grant immediate reward from the environment. This is a favorable configuration, as it reduces the need for the agent to relay on the prediction of a distant value reward, to appreciate the available actions.

Connection of the current spin In the case where the agent chooses to extend the fiber by connecting the current spin x i to a following spin x i+1 , the first term u c of the reward is based on the smoothness of the connection. To assess the later, the proposed metric is identical to the interaction potential defined by [START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF] which is the squared distance from the extremities of the spins x i + n i , to the barycentre of the two spins system x. Contrary to the version proposed by Teillac 2017, all spins have the same length l. This first term is completed with p c , penalizing linearly the creation of spins in a voxel :

u c (x i , x i+1 ) = ∥x i + n i -x∥ 2 l 2 + ∥x i+1 + n i+1 -x∥ 2 l 2
p c (x i , x i+1 ) = - N spin (x i+1 ) T spin
Where N spin (x i+1 ) is the number of already created spins in the voxel containing x i+1 and T spin is set to 50. This penalty deteriorates the reward gained from following a certain path, depending on the number of fibers already following it, voxel-wise. First, it discourages the agent to accumulate reward by creating redundant fibers. Indeed, the Figure 7.9 demonstrates that in the absence of such a penalizer, a greedy policy draws the agent to create more and more fibers, using more and more actions. Second, counting the fibers crossing each voxel encourages further the agent to deploy fibers uniformly across a homogeneous area, rather than channeling all fibers through a certain path. 

f scale (x) =        -1 x ≤ t low x + t high t low t low ≤ x ≤ t high 1 t high ≤ x ,
This linear scaling first set limits to the reward, as advised for learning agents. Second, this scaling encourages the agent to perform longer connections. All negative rewards, or rewards with overly selective t high , pushes the agent to minimize the number of connections per fiber, notably with enhanced early stopping. On the contrary, the agent is expected to learn to track across long distances, crossing ambiguous regions and overcoming obstacles caused by noise or partial volume. Setting a positive reward for sufficiently good connections, promotes this behavior.

t low and t high are respectively set to -10 and -4.

The final reward r c thus writes :

r c (x i , x i+1 ) = f scale (u c (x i , x i+1 ) + p c (x i , x i+1 ))
Fiber stopping The agent can choose to stop the fiber only if no other option is available. This rule is intended to allow the agent to stop a fiber once it has reached the limits of the tracking mask in the cortex. In practice however, the presence of noise and partial volume creates uncertainty in the definition of the peaks and grants importance to artefactual directions. When chosen by the agent, the latter drive the fiber into a position incompatible with other spins. This dead-end causes an early stopping of the fiber. This results in a typical erroneous fiber. The reward system aims at encouraging the agent to learn to avoid such situations.

In the case where the agent stops the fiber at the spin x, it receives the reward r s :

r s (x i ) = 1 if x i in cortex -1 otherwise , 7.3.2.

Episode

An episode designates the set of actions required for the completion of the task. In the proposed framework, an episode corresponds to a completion of the full tractogram of the sample.

When the tractogram is initialized, the agent is asked to choose a first subvoxel-direction among all non-completed subvoxel-directions, this action is called primo-selection. The spin corresponding to the subvoxel-direction is the starting position for a fiber, similarly to a seed in conventional tracking algorithms. The agent extends the fiber, spin after spin, until the first half of the fiber is completed. At this point, the agent is brought back to the first spin, and starting from its other extremity, the agent extends the fiber iteratively until completion (Figure 7.10).

Once a fiber is complete, if the tractogram is not completed, the agent is asked to primo-select another spin, which generates another fiber, and so on.

A tractogram is completed when every voxel located in the tracking mask is completed. A voxel is completed when it contains the minimal number of created spins, per direction. The minimal number of spins per direction is defined by the parameter N min_spin , multiplied by the relative importance of the direction in the voxel ρ (see §7.3.2.3). In practice, the presented results use N min_spin =9 . A voxel containing two identically important fiber population with different directions, will be considered completed when 5 and 4 spins are created along each direction.

This mechanism can be understood as a loose generative model, as defined in [Kreher, Mader, and V. Kiselev 2008[START_REF] Reisert | MesoFT: unifying diffusion modelling and fiber tracking[END_REF][START_REF] Konopleva | Modelfree global tractography[END_REF] where each spin x i contributes 1/N min_spin d j to the signal in the voxel with j ∈ [START_REF] Vergani | Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional review[END_REF]3] designating the direction in the voxel. The voxel is considered uncompleted as long as :

N j i=0 i N min_spin < ρ(j) for j ∈ [1, 3]
The overall number of spins is restrained by the penalizing term p c (see §7.3.2.6). This generative model is loose because the agent is not required to respect the ratio between the different directions.

However, this model presents the advantage to require an exhaustive coverage of the tracking space, forcing the agent to track a minimal number of fibers across all voxels. The amplitude of N min_spin sets the density of the resulting tractogram.

On the other hand, this exhaustiveness also makes the agent vulnerable to artefactual directions. Indeed, to complete the tractogram the agent must use for all directions of a voxel, leaving him to create fibers along erroneous directions.

Figure 7.10: Illustration of the progress of an episode. At the beginning, no fiber has been created (i-Existing Fiber). All spins are thus available to be selected by the agent (ii-Mask). Once a spin is selected, it defines the head of the current fiber (ii-Current Fiber). Idem for step iii and iv. In the step v, the fiber can no longer expand and thus the only available action to the agent is the selection of its current position. The fiber is considered completed and added to the completed fibers channel (vi). This process is repeated until completion of the tractogram, yielding a filled completed fibers channel (vii). Still, as precised in the reward description section ( §7.3.2.6), the ability of the agent to maximize the score does not ensure that the final tracts are anatomically plausible. Thus, visual inspections remains important to decipher the strategies defined by the agent and to conclude to a successful learning. The Figure 7.12 displays the comparison between a random strategy and the final greedy policy. The Figure 7.13 displays supplementary examples of final policies learned by the agent.

The learned policies display recurrent strategies. First, at the end of the learning, the agent tends to connect the spins in a straight manner, in contrast with the waving trajectory resulting from a random policy. This is consistent with the reward system penalizing curved trajectories. Similarly, after learning the agent chooses not to construct looping fibers. This behavior further demonstrates the adequacy of the reward system which efficiently discourages the agent to construct anatomically erroneous tracts.

Second, the tracts appear to be able to get around obstacles, allowing any fiber to expand until it reaches the 'cortex'. This ability is allowed by the intermediate angle threshold t θ , but also demonstrates the willingness of the agent to expand the fiber further, instead of trying to stop it as early as possible.

On the other hand, the results also display room for improvement. The coarse resolution of the subvoxel grid becomes apparent as when minimizing the curvature of the tracts, the resulting tracts follow rigorously this Cartesian grid, displaying unnatural gridded organization. Second, we observe that the tracts may channel along specific subvoxels, leaving the rest of the voxel empty. This demonstrates that penalizing the creation of spins depending on the number of fibers per voxel, might be insufficiently precise for the agent to distribute fibers regularly across the propagation domain.

These results demonstrate that the environment provides the means to construct plausible fibers. The state and reward mechanisms are also adequate as they allow the agent to consistently learn from interaction and establish reasonable strategies to build the tractogram. 

Facing a more challenging environment

To investigate further the ability of our current agent to solve more complex fiber configurations, the FiberCup phantom appears a relevant candidate.

both configurations, tracts fail to cross the intersecting branch. Moreover, their trajectories are corrupted in regions surrounding the crossing area.

Discussion

The proposed network has several limitations.

Global scale Although the proposed framework does model the entirety of the tractogram, the agent has access only to a fraction of the overall picture, as defined by the receptive field of the convolutional network. In the proposed implementation, 5 layers with filters of size 3, and a final layer with filters of size 1, the total receptive field extends to 11x11 subvoxels. For the 90°c rossing phantom, this field covers approximately 5% of the total tractogram. In the FiberCup phantom, this ratio further decreases. For the agent to leverage fully the available information, the architecture of network must be modified significantly.

Subgrid The proposed subgrid offers a compromise between the gridded description of the environment required for the CNN, while providing a finer resolution for the fiber tracking. This proposition comes with two drawbacks. First, it generates a computational overload, increasing several folds the size of the sample. This computational burden is manageable in 2D, but appears as a barrier for 3D implementations, in particular for the full-scale human brains. A specific accommodation will be required to efficiently process such large images. Second, the discretization of the tracking space remains coarse, and becomes clearly visible once the agent starts to reconstruct straight fibers. As relying on a finer subgrid resolution would lead to an unsustainable computational cost, the interaction between the agent and the environment requires to be further deepen.

Dependance on peak extraction The first step of the proposed approach is define the possible directions for the spins within a voxel, by extracting the peaks of the dODF from the analytical Q-ball model. This approach is convenient as it allows to initialize the putative directions of the spins with the peaks of the dODF.

The selection of the highest peaks among the dODF is highly selective, making the process moderately sensitive to spurious peaks caused by noise. However, voxels with important partial volume display large erroneous peaks. The latter may be considered as main fiber directions in the voxel. This wrong appreciation is particularly damaging as the agent is required to complete each direction of the voxel, that is create fibers along those erroneous directions.

Descriptive reward The reward system yields returns for almost every action. This constant feedback is favorable to the agent learning, which can evaluate the value of different actions without the need to refer to distant rewards.

However, the proposed rewards miss the evaluation of the reconstructed fibers as a whole. Contrary to zero-sum games, a high score for our agent, does not mean a successful solving of the problem at hand. This difference explains the need to visually inspect the reconstructed fibers before concluding to the success of the agent. 

Perspectives

We consider that the environment definition is mostly satisfying, as it provides the grounds for building successful tractograms. The current implementation of the learning agent however is simplistic and is unable to achieve plausible fiber tracking when confronted with complex fiber configurations, as those proposed by the FiberCup phantom.

To strengthen the agent capabilities, future work will focus on the usage of more powerful algorithmic models, the creation of more complex actions and the definition of a better reward system.

Overcoming the subgrid resolution The subgrid is necessary as it the meeting point of the continuous tractogram space and of the gridded description of a state. However, it provides a coarse ground for fiber tracking. First, the discrete resolution leads to the reconstruction of gridded fibers. Second, the fiber can only be extended along the main directions provided by the ODF, setting harsh restrictions for fiber tracking in complex regions and hampering the construction of smooth fibers.

To overcome those limitations, a perspective is to provide the agent with the possibility to tune the newly created spin, in order to better fit his position and orientation to the current fiber.

An adjustable spatial increment would allow to locate the spin in a continuous manner inside the subvoxel. The resulting domain for spin positioning would then be 0, N subVoxel d ×[-0.5, 0.5] d where d is the dimension of the tractogram and N subVoxel the size of the subvoxel grid. This dual representation provides a continuous access to the whole tracking area and allows to avoid the creation of gridded fibers.

The action can be further extended with an adjustable angular increment to widen the orientations available for a spin to a range of directions centered on the main ODF directions. This additional flexibility would allow to build smooth connections and enhance the ability to forecast a specific path, by progressively inclining spins to gain access to previously unreachable spins. The spin position space would then defined by 0, N subVoxel d × [-0.5, 0.5] d × [-α, α] d-1 with α the extent of the angular range.

The drawback of introducing new variables for the agent is the increase of the dimensionality of the the state-action space. In practice, this increase is incompatible with the DQN approach. Actor-critic approaches appear more suitable to handle this enriched state-action space.

Improving the score evaluation The reward system is built to drive the agent to achieve plausible tracts by expertly crafting connection rewards. Rather, directly evaluating and rewarding the plausibility of a fiber would reduce the dependence of the agent towards those local expert-type rewards and reduce the associated reward-hacking behaviors. Moreover, such a global estimation of the fiber appears as a natural evaluation method within the global proposed framework.

In that regard, the approach presented in Alpha-Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]] may serve as an inspiration. The authors highlight the importance of guiding the agent through particularly vast action-spaces by encouraging him to perform actions similar to actions played by professional players. This encouragement takes the form of a classifying network, trained on histories of professional games, to recognize expert moves.

In the tractography frame, existing curated datasets could be similarly used to teach the network what realistic bundles look like.

Implementing algorithmic improvements

The algorithmic implementation can be improved along two perspectives.

For one, the proposed DQN implementation is minimalist, the addition of well-tested extensions to this model should improve the proposed results [START_REF] Van Hasselt | Deep reinforcement learning with double q-learning[END_REF][START_REF] Schaul | Prioritized experience replay[END_REF], Z. Wang et al. 2016]. Furthermore, the implementation of an actor-critic approach appears as a profitable extension of this work, as it is reputed for its superior results in comparison to DQN. More importantly, an actor-critic approach could handle the high dimensionality of the proposed framework.

The architecture of the neural network can also be improved. The current FCN implementation conserves the original resolution of the problem and allows for a straightforward communication between the agent and the environment. However, this simple architecture limits the foresight for evaluating a specific action to the receptive field of the final layer. This aspect is highlighted when the network faces a large sample, and is able to process only fraction of the available information. Furthermore, with the exception of the primo-selection action, the spins available for each action are severely restricted (see §7.3.2.5), leaving only a handful of possible candidates. Therefore, the majority of the computations are dedicated to unavailable spins, and are thus unnecessary.

Previously have been highlighted the three distinct scales of the global tractography : global, semi-global and local ( §7.3.2.2). For proper implementation, those scales might gain from a specific representation within the network architecture. Specifically, as the global scale extracts features at the level of the entire sample, notably dismissing the spatial aspect of the information, encoding all the available information in a size-reduction network appears computationally profitable. Moreover, as the detail of local spin-configurations is less important, it should be possible to use not the subvoxel resolution, but the regular voxel resolution. This would alleviate most of the computational cost to use a super-resolved grid for the state description, and make 3D computations considerably more accessible. Finally, as the global sample is analyzed with a specific network, the description of the local and semi-global scale, which are dependent on the subgrid size, only need to account for the neighborhood of the current spin, setting reasonable requirements for the size of the receptive field of the last layer.

An architecture currently under investigation is loosely inspired from the U-Net architecture, and consists of two merging branches, one analyzing the full sample at voxel resolution with size reduction, yielding a tensor of size N × N . The latter is concatenated with the N × N neighborhood of the current spin, at the sub-voxel resolution, to be processed along a FCN to evaluate the value of the available spins.

Adding microstructural constraints The tractogram is considered completed when the minimal number of spins have been reached, with the minimum number defined as the product of N min_spin and the relative importance ρ of the associated peak in the ODF. While providing a clear definition for the ending of the tractography, it leaves the algorithm very sensitive to the spurious peaks caused by partial volume. The MSMT model [START_REF] Jeurissen | Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data[END_REF]] provides a possible accommodation to this flaw, as it has a good robustness to the partial volume when estimating the fiber directions. Furthermore, the hyperpameter N min_spin could discarded in favor of a metric depending on the fraction of WM present in the voxel. The more a voxel contains fiber bundles, the more created spins would be needed for the voxel to be completed.

By increasing the dimensionnality of the actions available to the agent, the microstructural information gained from local modelings can be further leveraged. For instance, the range of the angular increment α, as well as the set of direction-compatible spins S (see §7.3.2.5), can depend on the Orientation Dispersion metric provided by the NODDI modeling [H. [START_REF] Zhang | NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[END_REF], as proposed by Teillac 2017. Likewise spins could be provided with a variable meancross sectional area, in accordance to the RTAP metric provided my the MAP-MRI modeling [Özarslan et al. 2013].

Conclusion

This chapter presented a new implementation of a global tractography algorithm, focused on the introduction of deep-learning-based reinforcement learning. Deep learning technologies lead to a new generation of fiber tracking approaches, relying on a large part on supervised learning techniques. In contrast, the use of reinforcement learning is seldom. The work presented here thus constitutes one of the first application of this framework to the fiber tracking problem.

The main motivation to investigate the application of RL is its ability to learn from interaction, loosening the need for large labelled datasets of fiber bundles. Indeed, despite recent progress, the establishment of the latter remain a highly-disputed subject and the consensus is hard to reach.

The objective of the implementation was to establish a good synergy between the spin-based description of the tractogram and the reinforcement learning frame. In practice, this synergy was based on two axis. First the environment was defined to have the Markov property, depicting the whole tractogram and its complete history, in order to set favorable grounds for the learning of the agent. Second, the environment was established with the objective to be compatible with convolutional layers. The latter are a computational efficient solution for processing multidimensional large items. Moreover, it opened the way to the implementation of well-established tools and network architecture developed in image processing.

The development of the agent and the training procedure were primarily dictated by the reliability and ease of implementation, in order to demonstrate that learning is possible for simple configurations, and thus validate the proposed environment. As a consequence, the proposed agent appeared inadequate to face larger and more complex samples. Its strengthening appears as the next priority of this project.

Further perspectives for this project are discussed in Chapter 8.

Chapter 8

General Conclusion

Scientific contributions

The present thesis was dedicated to the exploration of the structural connectivity of the human brain and lead to three main contributions.

The Chenonceau project constituted the main axis of research of the thesis. It aimed at pushing the limits of diffusion MRI to establish a new ex vivo dataset of the whole human brain dedicated to the characterization of the fine connectivity of the brain. This project was lead in collaboration with the INSERM iBrain U1253 unit (Pr. Christophe Destrieux, CHU Bretonneau, Faculté de Médecine de Tours, France) and the Institute of Neuroscience and Medecine 1 (Pr. Katrin Amunts and Pr. Markus Axer, Forschungszentrum, Jülich, Germany). This project was funded by the French FibrAtlas II and III ANR project and the European flagship Human Brain Project (HBP)(FET-Open SGA2 and SGA3 phases).

A central part of the project was the development and validation of a novel acquisition protocol, allowing to acquire samples largely exceeding the size of the preclinical scanner. The proposed protocol relied on precise storage protocol, robust acquisition sequences and consistent diffeomorphic registration.

Furthermore, the mesoscopic resolution of Chenonceau supported the establishment of an extremely dense tractography, which enabled a first exploration of the long and superficial structural connectivity of the Chenonceau brain.

The third contribution of the thesis was the proposal of a new formulation for the spinbased global tractography algorithm. The latter aimed at leveraging the recent progress in artificial intelligence to improve the conventional Metropolis Hastings approach. This novel implementation aimed at shortening the inference time, and provide more sophisticated tracking strategies.

The Chenonceau project

An essential proposal of the Chenonceau Project was to relay on a preclinical MRI system to acquire a whole human brain. While the strengthened hardware allowed to push the boundaries of post mortem dMRI, it also required the division of the brain into smaller samples, compatible in size with the MRI system. Their acquisition imposed a large acquisition campaign, requiring more than 4500 hours of acquisition, distributed across two and a half years.

The thesis demonstrated the robustness of the proposed acquisition protocol and established a consistent registration framework to reassemble the set of individual acquisitions into an homogeneous whole brain volume.

Validation of a novel acquisition protocol

The acquisition protocol has been originally developed by Justine Beaujoin [Beaujoin 2018]. The fixation procedure extended the state of the art processes and combined immersion and perfusion fixation in order to guarantee the homogeneity of the tissues and their durability. A specific preparation and storage protocol were designed to ensure that the samples were optimally prepared for acquisitions and correctly protected from any deterioration.

The reliability of the fixation and storage protocol was highlighted by the homogeneity of the acquired images across the campaign.

The proposed anatomical and diffusion MRI sequences pushed the limits of the MRI system in order to combine a large FOV with extreme diffusion weighting, mesoscopic resolution and extended acquisition times. Their high and uniform SNR, both on T 2 -weighted and diffusion weighted volumes, demonstrated the stability and quality of the proposed imaging protocol.

Proposition of a novel part-to-whole registration process

This thesis presented a novel approach to bring the individual acquisitions, corresponding to 45 distinct volumes, and 3 different modalities, together to reconstruct the whole brain volume. The proposed strategy was based on the decomposition of the complete transformation into three smaller and easier to define transformations, relying on the use of intermediate reference volumes. We highlighted the necessity to use diffeomorphic registrations to appropriately correct the various encountered distortions. Each step of the registration was presented in detail and validated.

We proved that the registration process was successful in achieving the whole brain reconstruction. The proposed approach, and notably the partition of the whole brain volume using a watershed-like algorithm, constitutes a novel approach for solving the 3D part-to-whole problem.

Mapping the structural connectivity of the Chenonceau brain at the mesoscale

We further validated the Chenonceau DW dataset by highlighting its compatibility with previously published bundle atlases. First was demonstrated the ability of the dataset to recover the well-known long white matter fiber bundles. The latter were reliably found, proving that the fibers were able to pass seamlessly from block to block, completing a complete trajectory within the dataset. The short bundles were investigated as well. We showed that a vast majority of superficial bundles can be found, confirming that the Chenonceau dataset is adequate for characterizing the path of short and complex white matter bundles.

Global tractography with reinforcement learning

This thesis presented a novel approach to the global tractography using the spin glass framework. The latter is known for delivering better fiber tracking but its wide use is held back by its extensive inference time. We proposed to substitute the global optimization lead by the Metropolis Hastings algorithm, by a reinforcement learning approach. Learning efficient strategies could shorten the inference time while establishing more complex strategies. In addition, a significant benefit of the reinforcement learning was to alleviate the requirement for extensive labeled datasets.

The presented work was mainly dedicated to express the tractography problem within a favorable reinforcement learning frame. The proposed implementation relied on two main aspects. First it offered a representation benefiting from the Markov property, combining the fully history of actions with a complete depiction of the problem. Second, the proposed implementation was compatible with the use of convolutional networks, allowing a high computational efficiency. In this thesis the quality and stability of the individual acquisitions composing the Chenonceau dataset was established. The registration of those individual acquisitions towards the MNI template was carefully inspected and validated. Finally, the compliance of the Chenonceau dataset with previously published datasets was established. Therefore, the Chenonceau dataset is ready to be used for anatomical investigations. As a part of the European Human Brain Project, the Chenonceau dataset is first intended to be shared with the community. It will be made accessible through several means. The entirety of the dataset can be downloaded from the eBRAINS portal and can be visualized with the online atlas viewer. Finally, to facilitate the access and encourage the usage of this massive dataset, it will be possible to interact with specific sections of the dataset through the API Siibra.

The HBP initiative encourages interactions between various atlases, promoting a multi-modal exploration of the brain. The DW Chenonceau dataset will complete the existing cytoarchitectural, fMRI and DW atlases with its unique mesoscopic resolution and strong diffusion sensitization.

The dMRI Chenonceau dataset can also be considered as a novel benchmarking tool for the diffusion MRI community developing fiber tracking algorithms. The high resolution and exhaustive diffusion weighting allows to outline the subtle fiber paths and thus approach the ground truth of neural fibers in the brain. Since the Chenonceau dataset can be downsampled to match the current resolution of clinical MRI dataset, it provides an interesting opportunity to compare the ability of various fiber tracking algorithms to recover the "true" path of fibers, evaluating the impact of resolution and diffusion sensitization on the validity of results.

The exploitation of the Chenonceau dataset will also be pursued in our team. Notably, a collaboration with the INSERM iBrain team aims at investigating the connections of the thalamic and sub-thalamic regions. The project combines the expert anatomical knowledge of our colleagues to establish a fine segmentation of the nuclei using all the available modalities, with the fiber tracking experience of our team to investigate the subtle connections at the core of these complex structures.

Finally, it is important to highlight that the DW and anatomical Chenonceau dataset will be further extended with the addition of a mesoscopic quantitative dataset [Raïssa Yebga [START_REF] Hot | Ultra-high field diffusion and quantitative MRI with strong gradients to explore the connectivity, cytoarchitecture and myeloarchitecture of animal and human brains at the mesoscale[END_REF]. The latter was acquired with a similar acquisition protocol on the preclinical Bruker 7T system, over the same samples. The 48 individual acquisitions were reassembled into a single whole brain volume using the registration technique presented in this thesis. The quantitative dataset consists of T 1 , T 2 , T 2 * and B 1 + mappings at a resolution of 200µm based respectively on T 1 -weighted VFA FLASH, T 2 -weighted MSME, 3D FLASH SPGR acquisitions sequences and dual flip angle 3D EPI.

This additional dataset will be valuable for the fine characterization of the myelin content of the tissues and together with diffusion based cytoarchitectural features, will allow to segment the cortical layers across the entire brain. In that regard, the association of modern local modelings over the DW dataset with the quantitative mappings is very promising.

Future usage of the proposed acquisition protocol

The quality of the registration allows to validate the global acquisition approach. This approach can be replicated for the acquisition of new datasets. Specifically, this approach appears particularly relevant for the imaging of samples exceeding a few times the maximal field of view of the system. Those samples would consist of a few individual acquisitions, that could be registered easily to the whole sample. For the Bruker 11.7T system, such samples include the brain of large primates, such as chimpanzees. This approach can also considered for MRI systems with an even higher static field, like the 17T Bruker system of Neurospin, opening the way to the acquisition of small primates.

A new project, the premature Human Connectome Project (pHCP, headed by Pr. Adle-Biassette, service d'Anatomie et Cytologie pathologiques, CHU Lariboisière), funded by the French National Research Agency, has been launched to extensively scan the brains of fetuses and ex vivo premature brains. It will directly benefit from the imagery protocol established in the frame of this thesis.

Defining a reinforcement learning approach for global tractography

This thesis set the first grounds for a novel implementation of a spin glass based tractography approach within the reinforcement learning frame.

In the up-coming stages, the work should focus on two aspects. The main priority is the strengthening of the agent. In the presented work, the agent was able to propose relevant strategies a simple numerical crossing phantom, but struggled to appropriately solve the complex fiber configurations of the FiberCup phantom. A lead for improvement is the implementation of a more complex network architecture, able to properly represent the information at the level of the whole sample, and thus better address the global-scale part of the strategy.

Once the agent is able to reliably solve the Fiber Cup phantom, we believe that the reconstructed fibers would benefit from the implementation of a more complex environment. To circumvent the gridded nature of the states and establish continuously distributed fibers, it appears necessary to enhance the action of the agent with the addition of adjustable position and orientation increments. For the agent to be able to manage those additional parameters, it is expected that an actor-critic frame has to be be implemented. In that context, the addition of microstructural information could further enhance the decisions of the agent. For instance, the inclusion of an estimate of the fraction of WM in the voxel would allow to appropriately calibrate the expected number of spins per voxel, and would thus greatly reduce the impact of partial volume effects on the agent. Furthermore, the addition of the Orientation Dispersion metric stemming from the NODDI model would allow to fit the connection rules locally and to better adapt to the underlying fiber configuration.

The agent could also benefit from a global reward. Directly evaluating and rewarding the plausibility of an entire fiber would reduce the dependence of the agent towards local rewards and reduce the associated reward-hacking behaviors. Moreover, such a global estimation of the fiber appears as a natural evaluation method within the proposed global framework. La seconde partie de la thèse a porté sur le développement d'une nouvelle méthode de suivi de fibres, fondée sur l'utilisation d'un modèle de verres de spins. Ce dernier exprime le problème de tractographie sous la forme d'un ensemble de fragments de fibres, appelés spin, distribués dans l'échantillon et dont la position et l'orientation, ainsi que les connexions qu'ils établissent sont associés à une quantité d'énergie. La construction des tracts résulte du déplacement et de la connexion des spins, dans le but d'atteindre le minimum global d'énergie.

Cette thèse propose de remplacer la méthode de Metropolis-Hastings utilisée pour l'optimisation par un agent entraîné dans un cadre d'apprentissage par renforcement. Cette nouvelle formulation vise à améliorer le choix des actions, qui ne seraient plus tirées aléatoirement, mais dictées par une stratégie apprise par l'agent, fruit de ses interactions passées avec des environnement semblables. Les capacités d'anticipation et de projection d'un tel agent apparaissent particulièrement adéquates pour proposer la trajectoire la plus pertinente dans des régions ou l'information de diffusion est ambiguë. De même, la possibilité pour l'algorithme d'apprendre au travers d'interactions permet de contourner la difficulté d'établir des ensembles de faisceaux considérées véritables.
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Mapping the structural connectivity of the human brain is a major scientific challenge. Describing the trajectory and connections made by the hundred billion neurons that make up the brain is a titanic and multi-scale task.

The major fiber bundles have been described by classical anatomical approaches since the 20th century. These studies also revealed the existence of shorter bundles, called superficial bundles, that ensure the connectivity between neighboring anatomical regions. The small size and complex shape of these bundles set a serious challenge to their visualization, so that their description remains under discussion to this day.

The first research axis of this thesis aims at pushing the limits of diffusion MRI and proposing a new ex vivo dataset of the whole human brain, called Chenonceau, dedicated to the characterization of the fine connectivity of the brain. The dataset consists of two T2-weighted anatomical acquisitions at 100 and 150µm resolution, as well as 175 dMRI datasets at 200µm resolution and weighting up to 8000 s/mm2. More than 4500 hours of acquisition, distributed across two and a half years were required to acquire this data.

Chenonceau takes advantage of the Bruker 11.7T preclinical MRI system, equipped with both a high magnetic field and a powerful gradient tunnel (780mT/m) allowing to reach the mesoscopic resolution and a very high diffusion weighting. To reconcile the large size of the human brain with the preclinical system, a new acquisition protocol is proposed. It is based on the separation of the brain into smaller samples, which are imaged individually, then reassembled in post-processing to reconstitute the full volume. The whole process is presented, including the protocol for the cutting and the storage of the anatomical sam-ples, the details of the MRI sequences used and the description of the image processing pipeline. Special attention is dedicated to the definition of the registration step which recomposes the whole volume from the individual acquisitions. The first inferences of anatomical connectivity from this new dataset are also presented. Tractography associated with clustering techniques allow the extraction of the long and superficial bundles of Chenonceau.

The second part of the thesis focused on the development of a new method for fiber tracking, based on the use of the spin glass model. The latter expresses the tractography problem as a set of fiber fragments, called spins, distributed in the sample and whose position and orientation, as well as the connections they establish, are associated with an amount of energy. The construction of the tracts results from the displacement and connection of the spins, with the aim of reaching the global minimum of energy. This thesis proposes to replace the Metropolis-Hastings method used for optimization by a trained agent in a reinforcement learning framework. This new formulation aims at improving the choice of actions, which would no longer be randomly drawn, but dictated by a strategy learned by the agent, fruit of its past interactions with similar environments. The anticipation and projection capacities of such an agent appear particularly adequate to propose the most relevant trajectory in regions where the diffusion information is ambiguous. Moreover, the possibility for the algorithm to learn through interactions allows to circumvent the difficulty of establishing datasets of ground-truth bundles.
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 1 Figure 1: Vue d'ensemble de la procédure de découpe : du cerveau entier aux blocs. Le cerveau entier (a) est d'abord séparé en hémisphères (b). L'utilisation d'un cadre (c,d,e) permet d'enrober progressivement les tissus avec le gel et assure une découpe régulière de l'échantillon. Une coupe finale (f ) mène à l'obtention d'échantillons compatibles avec les conteneurs (g). Le remplissage des conteneurs avec du gel (h) est la dernière étape, conduisant à des blocs prêts à être acquis (i).
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 2 Figure 2: Bilan du SNR sur les images acquises. (a) Présentation du SNR des volumes pondérés en diffusion, en fonction de l'amplitude de la pondération b=1500/4500/8000 s.mm -2 . (b) Présentation du SNR des volumes pondérés en T 2 , avec respectivement une résolution de 100 µm et 150 µm.
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 3 Figure 3: Évolution du SNR selon les 3 modalités, au cours de la campagne d'acquisition. (a) Évoluation du SNR dans les volumes pondérées en T 2 -SE avec une résolution de 100µm. (b) Évoluation du SNR dans les volumes pondérées en T 2 -SE avec une résolution de 150µm. (c) Évoluation du SNR dans les volumes de référence, avec une pondération en diffusion nulle b=0 s.mm -2 .
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 4 Figure 4: La trasformation complexe T fov→MNI est décomposée dans les trois transformations suivantes : T fov→block , T block→blockface et T block→blockface .
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 5 Figure 5: Images axiales du dataset Chenonceau. (a) Encodage RGB de la principale direction des populations de fibres par voxel, tel qu'estimé par le modèle 'analytical QBall'. (b) Image pondérée en T 2 -SE avec une résolution de 100 µm. (c) Image pondérée en T 2 -SE avec une pondération de 150 µm.
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 6 Figure 6: Illustration des longs faisceaux de substance blanche extrait du tractogramme Chenonceau. L'ensemble des faisceaux sur l'hémisphère gauche et droit est présenté, ainsi que plusieurs faisceaux individuels.

Figure 7 :

 7 Figure 7: Illustration des faisceaux superficiels de la substance blanche extrait du tractogramme Chenonceau. Une vue d'ensemble est présentée ainsi que le détail de 4 faisceaux.
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 8 Figure 8: Évolution du score au cours des 'epoch' de vingt apprentissages différents, en utilisant une 'greedy policy'.
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 9 Figure 9: Comparaison d'une stratégie aléatoire(a) et apprise(b) pour la construction d'un tractogramme sur l'échantillon croix.
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 21 Figure 2.1: Illustration of the protective layers of the brain, depicting the skull, the dura mater, the arachnoid mater and the pia mater. Source https://anatomytool.org/content/morton-notedanatomist.

Figure 2 . 2 :

 22 Figure 2.2: Illustration of the sagittal medial section of the brain with the outline of the principal parts of the brain, including the cerebrum, the brainstem and the cerebellum. Source : https://www.kenhub.com .

Figure 2 .

 2 Figure 2.3: Scheme of the anterior view of the brainstem presenting its main parts (from top to bottom the midbrain, the pons and the medulla oblongata) together with the emerging point of the cranial nerves. Source : https://commons.wikimedia.org.
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 24 Figure 2.4: Illustration of an axial section of the cerebellum, exhibiting its internal organisation and in particlar the cerebellar nuclei : the dentate nucleus, the globose nucleus and the fatigial nuclues. Source https://www.kenhub.com/

Figure 2 . 5 :

 25 Figure 2.5: Scheme of the anterior and lateral view of the four ventricles, with the outline of the main anatomical landmarks : the anterior, posterior and inferior horn of the lateral ventricle, the intraventricular foramen and the cerebral aqueduct. Source https://catalogue.pearsoned.ca/assets/
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 26 Figure 2.6: Illustration of the brain with a highlight of the four main lobes ( frontal, temporal, parietal and occipital) and the outline of the Sylvian fissure and the central sulcus. Source https://commons.wikimedia.org

Figure 2 . 7 :

 27 Figure 2.7: Axial section of the cerebrum exhibiting the contrast between the pale white matter and the darker cortex and deep nuclei. Source : https://qbi.uq.edu.au/brain/

Figure 2 .

 2 Figure 2.8: a. Volumic representation of the basal ganglia, highlighting the curved shape of the caudate nucleus and its position relative to the thalamus and the putamen. (Source https://vc.bridgew.edu/) b. Illustration of a central coronal section, exhibiting the basal ganglia (including the caudate nucleus, the putamen and the globus pallidus), as well as the diacephalon (outlining the thalamus, the subthalamic nucleus and the substancia nigra). Adapted from H. Wu et al. 2018.

Figure 2 . 9 :

 29 Figure 2.9: Illustration of the neural pathways composing the white matter. Short association fibers, connecting adjacent gyri in parietal lobe are visible, as well as long association bundles reaching the occipital lobe. The striking convergence of fibers above the brainstem depicts the corona radiata, crucial passing point for projection fibers. Adapted from Mayo 1827.

Figure 2 .

 2 Figure 2.10: Illustration of several projection tracts, including the cortico-spinal tract (a), the cortico-pontine tract (b) and the anterior thalamic radiations (c).Adapted from https://commons.wikimedia.org

Figure 2 .

 2 Figure 2.11: Illustration of the major associative tracts, in particular the uncinate fascicle together with the cingulum tract(a); the arcute fascicle (b); the inferior fronto-occipital fascicle with the inferior longitudinal fascicle(c); and finally the superior lateral fascicle. Adapted from https://commons.wikimedia.org

Figure 2 .

 2 Figure 2.13: Scheme outlining the main components of a neuron (including the cell body, the dendrites and the axon) and glial cells: microglia, astrocyte and oligodendrocyte. Source : https://berenicedoyon.wordpress.com/ .

Figure 2 .

 2 Figure 2.14: Illustration of the four main kinds of neurons : unipolar, bipolar, pseudo-unipolar and multipolar. Adapted from Angevine 2002.

Figure 2 .

 2 Figure 2.15: a. Electronmicrograph from a mouse brain, in which an oligodendrocyte (captionned) extends many processes. They each wrap around particular axons : A1-5. b. Electronmicrographs of glial cells in the mouse displaying an astrocyte nucleus (N) together with a microglial cell (M). Numerous processes (arrow-heads) extend from the astrocyte cell body. They contain parallel arrays of glial filaments. Scale bars : 2µm. Adapted from Edgar and Griffiths 2009.

Figure 2 .

 2 Figure 2.16: Illustration of an histological study of a sample of the neocortex, with the left part presenting its cytoarchitecture, and the right part exhibiting its myeloarchitecture. The six layers of the neortex are visible and annotated (adapted from Nieuwenhuys 2013).

Figure 2 .

 2 Figure 2.17: Illustration of the parcellation of the human cortex according to Brodmann. Source : https://commons.wikimedia.org.

Figure 2 .

 2 Figure 2.18: (a) Schematic of (b), illustrating the arrangement of the myelin sheath and the axon in cross-section. (b) Electronmicrograph of a cross-section through a myelinated axon. The inner tongue (asterisk) and the outer tongue (double asterisk) are captionned. They are cytoplasm-filled ridges that run along the entire internode. The periaxonal space is a small space, around 150 Å (15 nm) wide, that separates the inner part of the myelin sheath from the axon. (c) Schematic of a longitudinal section of a myelinated axon, centered around a Ranvier node (N). At the border, the cytoplasm-filled channel at the lateral edge of the myelin sheath forms the regular array of paranodal loops(P). Scale bar : 0.25 µm. (Adapted from Edgar and Griffiths 2009)
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 31 Figure 3.1: (a) Schematic representation of a few protons with randomly oriented spins. (b)The impact of a strong exterior magnetic field B 0 is to align those spins either in the parallel or the anti-parallel orientation (Source : http://www.surendranathcollege.org/).
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 32 Figure 3.2: Illustration of the evolution of the longitudinal and the transverse magnetization after the emission of the rf-pulse. The 90°rf-pulse completely projects the magnetization from the longitudinal axis to the transverse plane (a,b). M x,y then progressively shrinks while M z grows (c,d). Source: Bosshard 2011.

Figure 3

 3 Figure 3.3: Description of the longitudinal magnetization M z regrowth. With the 90°rf-pulse, the M z is brought to 0, it then regrows according to T 1 time constant until it reaches the equilibrium value M 0 . Source : Ridgway 2010
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 34 Figure 3.4: Description of the transverse magnetization M xy decrease. After the 90°rf-pulse, M xy is maximal and follows an oscillating exponential decrease until it reaches 0. Due to local perturbations to the magnetic field, the decrease does not follow the T 2 relaxation (gray trajectory) but the shorter T 2 * time constant. Source : Ridgway 2010

Figure 3

 3 Figure 3.6: MRI of a human brain, seen along the axial axis with different contrasts. (a)T 1 contrast : known as the anatomical contrast, displays a bright white matter, and a darker gray matter. (b) T 2 contrast : inverses the T 1 contrast, with white matter darker than gray matter. (c) Proton density contrast : recognizable with the good contrast between gray and white matter, and bright CSF. Source : Elnakib 2013

Figure 3 . 7 :

 37 Figure 3.7: Illustration of the slice selection process, with the set up of a magnetic gradient along the z axis and the emission of a rf-pulse with the frequency γB(z 0 ) which allows to select a slice centered on z 0 . The width of the slice is shown to depend on the steepness of the gradient and the bandwidth of the rf-pulse. Source : https://www.radiologycafe.com
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 38 Figure 3.8: Illustration of the filling of the k-space. The phase discrepancy allow to select a single row during the readout, and the frequency composition of the signal allows to register the entire row. Source: Ridgway 2015.

Figure 3 .

 3 Figure3.10: Description of a 2D gradient echo sequence. After the emission of the rf-pulse coupled with a slice selection gradient, the phase is encoded. A specific 2-lobes readout gradient can then be applied, the first lobe accelerates the loss of the coherence of the spins and is followed by the second lobe, the proper readout gradient that refocuses the different spins and allows to record the returned signal. The dependence of the signal decrease on T 2 * as well as the possibility to access extremely short TE are highlighted. Source : http://xrayphysics.com/
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 3 Figure 3.13: Illustration of the diffusion phenomenon in the ordinary sense : the dissolution and dispersion of a lump of sugar in a cup of water. Source : https://basicmedicalkey.com/

Figure 3 .

 3 Figure 3.14: (a) Illustration of the Brownian motion of a single molecule in 3D with a color encoding of the time. (b) Illustration of the evolution the square distance over time, with a clear linear dependence. Source : https://physics.nyu.edu/

Figure 3 .

 3 Figure 3.15: Segmented 2D histological slices of the brain together with a 3D reconstruction the axons running across a 15µm 3 sample. Histology is an opportunity to finely characterize limited samples of the neural tissues and to bring to light their extraordinary complexity. A white matter sample as small as 15µm 3 combines dozens of fibers running in different directions, with different width, with or without myelin sheath. Source : Abdollahzadeh et al. 2019.

Figure 3 .

 3 Figure 3.16: Description of a PGSE sequence with the omission of the slice, phase and readout gradient. Two lobes of the diffusion encoding gradient are specified, together with their duration. Adapted from : Wassermann 2010.

Figure 3 .

 3 Figure 3.18: Comparison in several contrasts ( T 2 , diffusion weighted, ADC ) of two brains along the axial axis. The first suffered an acute ischemia (A), the second is healthy(B). While the T 2 contrast does not reveal any difference, the diffusion weighted and especially the ADC clearly expose a decrease of the diffusivity in the left hemisphere, indicative of the stroke. Source : Labriffe and Leiber 2019.

Figure 3

 3 Figure 3.21: Summary of the main model-dependant and model-free HARDI modelings. Source : Teillac 2017

Figure 3 .

 3 Figure 3.22: Illustration of the Funk-Radon Transform. The left column depicts the diffusion signal, the direction of the dODF being calculated (white arrow) and the associated equator ( black and white ellipse ). The right column depicts the obtained dODF with the specific direction calculated highlighted (white circle). Source : Descoteaux 2015.
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 323 Figure 3.23: Presentation of modelling chosen by the CHARMED, AxCaliber, ActivAx with orientation dispersion and NODDI models for the different compartments. The latter include intracellular space, extra-cellular space, isotropic(ie CSF) and stationnary space. The diffusion models combine isotropic, hindered anisotropic and restricted within cylinders. Adapted from : [Beaujoin 2018].
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 3 Figure 3.24: Illustration of the influence of PMI on tractography (A,B) and microcopical properties of fibers (C) in the mouse. (A,B) compare the evolution of the tractography at PMI 0 and PMI 14, in the corpus callosum. At PMI 14 days, the tractogram is significantly depleted. (C) The mean fiber density and mean fiber length of those fibers show a constant decrease along the 14 days. Source : D'Arceuil and Crespigny 2007 .
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 41 Figure 4.1: Illustration of two tracks reconstructed using a tractography approach in a coronal slice of a human brain. The local modeling the single main orientation of fibers within a voxel, and the tractography simply follows the main directions, from voxel to voxel. Source : Jeurissen, Descoteaux, et al. 2019
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 42 Figure 4.2: Overview of a tractography processing pipeline. The DW acquisition (a) is processed to track streamlines (b), which collectively form the whole-brain tractogram(c).The latter can be used to depict anatomical fascicles and their microstructural properties (d), as well as to build the connectivity matrix of the brain (e). Adapted from : F.[START_REF] Zhang | Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: a review[END_REF] 

Figure 4

 4 Figure 4.3: Illustration of parcel-cluster definition. Parcels p i subdivide the space occupied by fibers(a). Counting the number of fibers crossing each voxel allows to create coherent parcelclusters (b,c). Source : P. Guevara, C. Poupon, et al. 2011
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 44 Figure 4.4: Comparison of the lateral and medial view of the Desikan Atlas (left) and the Destrieux atlas (right). These two atlases are available in the FreeSurfer toolkit. Adapted from : Desikan et al. 2006 and Destrieux et al. 2010
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 45 Figure4.5: Comparison between the algorithms proposed by[START_REF] Mori | Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging[END_REF] andBasser, Pajevic, et al. 2000(b). The second approach displays smoother tracts. Source :[START_REF] Teillac | Tractographie globale sous contraintes anatomiques[END_REF] 
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 4 Figure 4.6: (a) Illustration of the uncertainty-ODF. Larger lobes characterize areas with high uncertainty. (b) Illustration of the various possible paths forecasted by a probabilistic model. Source : Timothy EJ Behrens, Sotiropoulos, and Saad Jbabdi 2014 , Jeurissen, Descoteaux, et al. 2019
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 4 Figure 4.8: a. Illustration of the dependance between different parameters in the global bayesian framework. C is the connectivity matrix between different regions R. L depicts the locations of the extremities of the pathways. The resulting variable F represents the a priori path of the fibers, as defined with the set of the spline control points K. F influences the orientation of fibers (Θ, Φ) and the fractionnal volume f . d, s 0 are the diffusion properties and Σ is the noise. Λ is the scaling parameter. The dotted box shows the variables involved in the local baeysian framework [Timothy EJ Behrens, Berg, et al. 2007]. b. Illustration of the various variables. Two regions R 1 and R 2 are connected : C 1,2 = 1. The path of the fiber F 1,2 is defined with the help of the K spline control points. Source : Saad Jbabdi et al. 2007
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 49 Figure 4.9: Illustration of the strategy for a full brain tractography with geodesic methods. a. 500 points are scattered across the brain. b,c. Evaluating the connectivity index for all the connections and allows to select the most releveant fibers Source : Saâd Jbabdi et al. 2008
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 4 Figure 4.10: Illustration of the random sampling process.Starting from a random location with a low likelihood, small iterative alterations to the sample will progressively drive the sampling algorithm to reach for the more likely locations. This progressive improvement is supported by a progressive lowering of the acceptance rate, which encourages the sampling along the more likely direction. Source : https://www.turing.ac.uk/
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 4 Figure 4.11: Comparison of the influence of anatomical a priori over a phantom replicating the gyral configuration. Without ODI information, fibers tend to advance in straight lines to reach the extremity of the phantom (a). The inclusion of the ODI allows the fibers to curve significantly to connect to the walls of the phantom (b). Source : Teillac 2017
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 4 Figure 4.12: Illustration of whole brain tractogram computed using the spin-based global tractography algorithm. (a) Sagital view of the tractogram superimposed onto the T 1 -weighted image. (b) Highlight of fibers emerging from the corpus callosum and connecting with the cortex. They display a curvature in accordance with anatomical data. Adapted from : Teillac 2017

Figure 4 .

 4 Figure 4.13: Illustration of the SIFT principle. The crossing of two unbalanced fiber population in a voxel(a), is summarized by the fODF that matches these directions and the ratio between the two populations(b). By associating a constant cross-section to fibers, SIFT is expected to recreate this ratio when filtering the fibers in the voxel(c). Source : R.[START_REF] Smith | SIFT: Spherical-deconvolution informed filtering of tractograms[END_REF] 
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 4 Figure 4.14: Illustration of a fully connected network with a input layer consisting of three neurons, an output layer consisting of a single neuron, and a number of hidden layers. Source : Lebel, Treit, and Beaulieu 2019

Figure 4 .

 4 Figure 4.15: Illustration of the sparse and full connectivity. On the top row, the neurons x i are connected to a small number of input neurons s i , the connectivity is said to be sparse. On the bottom row, the neurons x i are connected with every other neuron s i , the layer is called fully connected. Source :[START_REF] Goodfellow | Deep learning[END_REF] 

Figure 4 .

 4 Figure 4.16: Illustration of the growing complexity of features maps. The low-level features are very simple edge and color filters. As the image is processed along the network, the features maps gain in complexity, extracting task specific features.

Figure 4 .

 4 Figure 4.17: Illustration of the operation of "Learn to track". a. The network is feed-forward and its inputs are the diffusion signal P i and the previous direction d i . The difference between di+1 and d i+1 forms the loss. b. The RNN implementation and the inclusion of a hidden state h i allows to carry the information of chosen past directions {d j } j<i to the present choice. c. At inference time, the proposed directions di are used to propagate the fiber. Source : Poulin, Cote, et al. 2017.
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 4 Figure 4.18: Illustration of Trackseg algorithm. The preprocessing includes the computation of the fODF field and the peak extraction. The resulting vector field is passed to two-fold FCNN which evalute the path of the 72 anatomical fascicles. Source : Wasserthal, P. Neher, and Maier-Hein 2018.
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 4 Figure 4.19: Comparison of the classical pipeline to determine connectivity matrix, with the Block Decomposition and Stitching (BDS) pipeline. Source : Sarwar et al. 2020.

Figure 4 .

 4 Figure 4.20: Illustration of several tracking problems. a. The bottleneck effect appears when the three bundles (a,b,c) converge together. Each possible exit (1,2,3) is a valid tracking option, which leads to the creation of many false positives. b. The wall effect happens when two bundles overlap with a low angle. In stead of bending into the overlaping area, the bundles display a straight trajectory. c. Narrow intersections are intersections with a crossing angle θ inferior to the opening angle of the algorithm. The latter can thus choose any of exit, creating in fine false positives. Source : Francois Rheault, Poulin, et al. 2020.
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 4 Figure 4.21: Illustration of the gyral bias. a. Definition of the gyral crown, wall and fundus. b. Expected distribution of fibers inside a gyri. c. Diffusion data associated with the gyri. d. Most common fiber reconstruction, that is straight lines going in the gyral crown. Adapted from : K. Schilling et al. 2018 and St-Onge et al. 2018.
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 4 Figure 4.22: Illustration of the various reconstruction of pyramidal tracts obtained by 8 different teams over a single DW dataset. The image displays the lateral ventricles (dark blue) as well as a tumor (light yellow, pink and light blue). The yellow tract is on the side of the tumor, the orange is on the contralateral side. The various reconstructed bundles share a general path, which is agreed to be correspond to the true pyramidal tract. However, the extent of the bundle is highly unpredictable, and portrays the high number of generated false-positives. Adapted from :[START_REF] Pujol | The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery[END_REF] 
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 423 Figure 4.23: Illustration of several validations approaches. Top row : the Klingler dissection relays on a specific tissue preparation to transform bundles into easily removable strips. Iterative stip extraction allow to progressively explore the bundles paths, along a certain plane. Bottom row : illustration of the PLI applied to the hippocampus of pigeons. The microscopic resolution allows to disantagle complex 3D local configurations. Adapted from : Zemmoura et al. 2016, Herold et al. 2019.
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 51 Figure 5.1: Overview of the cutting procedure : from whole brain to blocks. The whole brain (a) is first separated into hemispheres (b). The use of a base frame (c,d,e) allows to progressively embed the tissues with the BizLine Gel and ensures a regular cutting of the sample. A final sectioning of the brain (f ) divides the samples into container-compatible samples (g). Filling the containers with gel (h) is the last step, leading to acquisition-ready blocks (i).
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 52 Figure 5.2: Coronal and axial view of the blockface acquisition (a). Views of the entire block acquisition on the left hemisphere (b) at the Prisma 3T system.

Figure 5 . 3 :

 53 Figure 5.3: Illustration of the dimensions of a field of view, highlighting its lateral parts, affected by a sensitivity loss and dedicated to the posterior registration.
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 54 Figure 5.4: Illustration of 3 different diffusion weightings in the FOV Right Hemisphere C3 : (a) b = 1500, (b) b = 4500 and (c) b = 8000s.mm -2 .

Figure 5 . 5 :

 55 Figure 5.5: Illustration of the 100µm (a) and 150 µm (b) T 2 -weighted sequences in the FOV Right Hemisphere C3.

  acquisition campaign The acquisition of the Chenonceau dataset corresponded to the acquisition of 45 distinct fields of view, covering the 13 blocks. It represents 4600 hours of acquisition, which amounts to a period of 6 months time of uninterrupted acquisitions. In practice, the sharing of the system and the occasional failures of the acquisitions extended the campaign to 2 and half years (Figure5.6).
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 56 Figure 5.6: Illustration of the Chenonceau acquisition campaign time schedule. The hemispheres, blocks and FOVs are made visible, to better describe the acquisition campaign that started in May 2018 and ended in December 2020.
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 58 Figure 5.8: Presentation of the main prepossessing stages (scaling, filtering, bias correction) on the FOV LeftHemisphere-G2, over the three modalities (T 2 -weighted 100µm, T 2 -weighted 150µm and reference DW with b=0 s.mm -2 ).
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 59 Figure 5.9: Boxplot(a) and Violin plot(b) of the SNR of T 2 -weighted anatomical acquisitions, across all FOVs.

5. 4

 4 .3.2 Characterizing the SNR of diffusion MRI data Overall SNR The shells of the dMRI dataset b = 1500, b = 4500 and b = 8000 have SNR means values equal to 17.8, 10.6 and 7.4, with standard debiation equal to 3.8, 2.3, and 1.6. These values were satisfying. The SNR distribution across FOVs is presented in Figure 5.10. As shown in the Figure, both the mean and standard deviation of the dMRI scans decreases as the diffusion sensitization b increases. Still, even at the highest diffusion weighting, the SNR values are in a large majority (95%) greater than the expected minimum threshold of 4, and never inferior to 3.

Figure 5 .

 5 Figure 5.10: Boxplot(a) and Violin plot(b) of the SNR in DW acquisitions, per shell, across all FOVs.

Figure 5 .

 5 Figure 5.11: Distribution of SNR across all DW scans, for the b = 0 images (a) and the DW images (b).

Figure 5 .

 5 Figure 5.14: (a) Coronal view of a T 2 -weighted MRI of a whole slice. (b) Registered blocks to the MRI whole-slice. (c) Overlay of the registered blocks on the reference. Adapted from Mancini, Casamitjana, et al. 2020.

Figure 5 .

 5 Figure 5.15: The complex T fov→MNI transformation is divided into the 3 following transformations : T fov→block , T block→blockface and T blockface→MNI .

Figure 5 .

 5 Figure 5.16: Overlays of registered FOVs A3(A), C2(B) and F3(C) of the Left Hemisphere over the reference T 2 -weighted block images. Images depict the affine registration for the T 2 -weighted 100µm image (i), the T 2 -weighted 150µm image (iii) and b = 0 image (v). The images below, represent the diffeomorphic registration, of the same modality that is T 2 -weighted 100µm image (ii), the T 2 -weighted 150µm image (iv) and b = 0 image (vi).

Figure 5 .

 5 Figure 5.17: Overlays of registered FOVs B4(A), E2(B) and G1(C) of the Right Hemisphere over the reference T 2 -weighted block images. Images depict the affine registration for the T 2 -weighted 100µm image (i), the T 2 -weighted 150µm image (iii) and b = 0 image (v). The images below, represent the diffeomorphic registration, of the same modality, that is T 2 -weighted 100µm image (ii), the T 2 -weighted 150µm image (iv) and b = 0 image (vi).

Figure 5 .

 5 Figure 5.18: Overlay of the reconstructed blocks using DW b = 0 FOVs, on the reference T 2weighted block. This figure presents 5 blocks of the left hemisphere.

Figure 5 .

 5 Figure 5.19: Overlay of the reconstructed blocks using DW b = 0 FOVs, on the reference T 2weighted block. This figure presents 2 blocks of the Left Hemisphere and 3 blocks of the right hemisphere.

Figure 5 .

 5 Figure 5.20: Overlay of the reconstructed blocks using DW b = 0 FOVs, on the reference T 2weighted block. This figure presents 3 blocks of the right hemisphere.

Figure 5 .

 5 Figure 5.22: Illustration of the construction of the target mask from the affine registration. In this example the block A of the left hemisphere (a) is first affine registered to the blockface. The registered mask is dilated (b) to account for imprecisions of the affine approach and the shrinkage of the samples. The dilatation causes overlaps between various target blocks (c). Identifying the overlaps (d) allows to split them in 3 areas, with lateral areas defining the overstepping part of the overlap, and the central part defining a small shared area (4 voxels, ie 1600µm) between target masks to help with tissue continuity. After refinement of the target masks, they form a partition of the whole brain volume (e). Each target mask is then properly defined (f ).

Figure 5 .

 5 Figure 5.25: Presentation along the axial view of the registered blocks of the left hemisphere, superposed to the blockface. (a) Block A, (b) Block B, (c) Block D, (d) Block E, (e) Block F, (f ) Block G. The brain volume has been rotated to expose the maximal section of the registered block. The Block C is presented in the Figure 5.24.

Figure 5 .

 5 Figure 5.26: Presentation along the sagital view (e) or the axial view of the registered blocks of the right hemisphere, superposed to the blockface. (a) Block A, (b) Block B, (c) Block C, (d) Block E, (e) Block F, (f ) Block G. The brain volume has been rotated to expose the maximal section of the registered block.

Figure 5 .

 5 Figure 5.27: Axial (a) and Coronal (b) views of the reconstructed blockface.

Figure 5 .

 5 Figure 5.28: Comparison of the whole brain diffeomorphic registration obtained by Ants (-ANTs) and DISCO-DARTEL (-DARTEL). The sulci of the MNI template are displayed red, while the sulci resulting from the ANTs and DISCO-DARTEl registration are displayed in blue. (a) Comparison of the registration of the central sulcus. (b) Comparison of the registration of the postcentral sulcus and the intra-parietal sulcus.
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 5 Figure 5.29: Images of the color encoded maps of the fully reconstructed DW Chenonceau Dataset, along the axial axis.

Figure 5 .

 5 Figure 5.30: Images of the color encoded maps of the fully reconstructed DW Chenonceau Dataset, along the axial axis.

Figure 5 .

 5 Figure 5.31: Images of the T 2 -weighted 100µm fully reconstructed Chenonceau Dataset, along the axial axis.

Figure 5 .

 5 Figure 5.32: Images of the T 2 -weighted 150µm fully reconstructed Chenonceau Dataset, along the axial axis.

Contents 6 . 1

 61 Inference of the Chenonceau structural connectivity using tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.1.1 Local modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.1.2 Setting the tractography algorithm . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Resulting tractogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Segmentation of the white matter bundles . . . . . . . . . . . . . . . 139 6.2.1 Long and superficial WM bundles atlases . . . . . . . . . . . . . . . . . 139 6.2.2 Labeling the 800µm tractogram . . . . . . . . . . . . . . . . . . . . . . 143 6.2.3 Labeling the 200µm tractogram . . . . . . . . . . . . . . . . . . . . . . 147 6.3 Towards the Chenonceau WM bundles atlas . . . . . . . . . . . . . . 157 6.3.1 Intra-subject clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.3.2 Inter-subject clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3.3 Towards the Chenonceau white matter bundles atlas . . . . . . . . . . 160 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 6 . 1 :

 61 Figure 6.1: Illustration of the ODF field resulting from the analytical Q-Ball model (spherical harmonics order 8, Laplace-Beltrami regularization factor 0.006) applied to the Chenonceau 200µm dMRI dataset. The illustration depicts progressive zooms in the the tissues, from (a) to (d). The extent of the zoom is defined by the white box. In images (b,c,d) the scale is 2mm.

Figure 6 . 2 :

 62 Figure 6.2: Illustration of the exclusion of the sulci from the propagation mask. The corrected mask (blue) is overlayed over two axial slices of Chenonceau DW dataset.

Figure 6

 6 Figure 6.3: Illustration of the tractogram obtained using the regularized deterministic fiber tracking method, as 3D volume and along the sagittal, coronal and axial axis.

Figure 6 . 4 :

 64 Figure 6.4: Illustration of the precision of the Chenonceau tractogram with the highlight of the tractogram in the left hippocampus, overlayed over the 200µm GFA map.

Figure 6 . 5 :

 65 Figure 6.5: Illustration of the various shapes of short association tracts, as outlined by Labra Avila 2020. Adapted from Labra Avila 2020

Figure 6 . 6 :

 66 Figure6.6: Illustration of the retrieved long white matter bundles as defined in the LONG_GUEVERA atlas over the tractogram built with the 800µm Chenonceau dataset. The whole set of bundles on the left and right hemisphere is displayed, together with the highlight of various bundles.

Figure 6 . 7 :

 67 Figure 6.7: Perspective of the left and right hemisphere of the whole set of retrieved superficial white matter bundles as defined in the SUPERFICIAL_GUEVERA atlas over the tractogram built with the 800µm Chenonceau dataset.

Figure 6

 6 Figure 6.8: Top and bottom perspective of the whole set of retrieved superficial white matter bundles as defined in the SUPERFICIAL_GUEVERA atlas over the tractogram built with the 800µm Chenonceau dataset.

Figure 6 . 9 :

 69 Figure 6.9: Comparison of the number of fibers (using a log 10 in the retrieved large bundles as defined in the LONG_GUEVERA atlas between the tractogram yielded by the 800µm (dark blue) and 200µm (light blue) dataset.

Figure 6 .

 6 Figure 6.10: Comparison of the number of fibers (using a log 10 scale) in the retrieved superficial bundles as defined in the SUPERFICIAL_GUEVERA atlas between the tractogram yielded by the 800 µm and 200µm tractogram across hemispheres.

Figure 6 .

 6 Figure 6.11: Detailed comparison of the number of fibers (using a log 10 scale) in the retrieved superficial bundles as defined in the SUPERFICIAL_GUEVERA atlas between the tractogram yielded by the 800 µm (orange) and 200µm (blue) dataset across hemispheres.

Figure 6 .

 6 Figure 6.12: Perspective of the left and right hemisphere of the whole set of retrieved superficial white matter bundles as defined in the SUPERFICIAL_GUEVERA atlas over the tractogram built with the 200µm Chenonceau dataset.

Figure 6 .

 6 Figure 6.13: Top and bottom perspective of the whole set of retrieved superficial white matter bundles as defined in the SUPERFICIAL_GUEVERA atlas over the tractogram built with the 200µm Chenonceau dataset.

Figure 6 .

 6 Figure 6.14: Comparison of the number of fibers (using a log 10 scale) in the retrieved short bundles as defined in the SUPERFICIAL_LABRA atlas using the tractogram yielded by the 200µm dataset across hemispheres.

Figure 6 .

 6 Figure 6.15: Perspective of the left and right hemisphere of the whole set of retrieved short association bundles as defined in the SUPERFICIAL_LABRA atlas using using the tractogram built with the 200µm Chenonceau dataset.

Figure 6 .

 6 Figure 6.16: Perspective on the top and bottom of the whole set of retrieved short association bundles as defined in the SUPERFICIAL_LABRA atlas using the tractogram built with the 200µm Chenonceau dataset.

Figure 6 .

 6 Figure 6.20: Illustration of the intra-subject clustering stage of the Chenonceau tractogram. 3 group-length out of the existing 10 are presented. The displayed fibers are the centroids of 1% of the obtained bundles.

Figure 6 .

 6 Figure6.21: Presentation of the proposed long-fascicle delineation, using the Chenonceau dataset. The outlined fascicles are the arcuate, the inferior frontal occipital fascicle, the uncinate, the superior longitudinal, the cingulum, the cortico-spinal tract and the optical radiations.
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 71 Figure 7.1: Illustration of the interactions between the main components of a reinforcement learning problem. Source : Sutton and Barto 2018.

Figure 7 . 2 :

 72 Figure 7.2: Illustration of the state yielded to the agent in Théberge et al. 2021. The state is composed of the 4 previous fiber directions (white arrows) and the fODF coefficients of the voxel containing the head of the fiber, and its 6 direct neighboring voxels. Source : Théberge et al. 2021.

Figure 7 .

 7 Figure 7.3: UML representation of the main classes composing the environment. GlobalTractog-raphyAlgorithm is the functor that defines the overall processing of the tractogram, using adhoc classes to model the spin setting (SpinGlass), and a set of classes related to the implementation of the RL framework (Agent, Environment, ExperienceReplay).

Figure 7 . 4 :

 74 Figure 7.4: Illustration of the grid representation of the DW information. The DW information is first modeled using analytical Q-ball reconstruction method (a). Up to three main directions are extracted in each voxel (b).The Cartesian coordinates of these directions define the channels associated with this voxel (green tiles). In addition, the relative weight ω of the extracted directions (0.4 and 0.6) are associated with N min_spin , equal to 9, to define the minimal number of spins that need to be created in the voxel along this direction, for this direction is considered completed (red tiles). Once all directions are completed, the voxel is said to be completed.

Figure 7 . 5 :

 75 Figure 7.5: Illustration of the recording of reconstructed fibers. Of the three displayed voxels (a), two depict a single population direction (top and left voxels) and one has 2 population directions (center voxel). During the construction of the tractogram, 6 fibers cross those voxels (b). The spins used for those fibers are represented, with blue spins being oriented along the first direction in the voxel, and the green spins oriented along the second available direction in the voxel. Counting the number of times each each spin is used in each subvoxel, along each direction leads to (c-1), (c-2), (c-3). Finally, summing those quantity per voxel, per direction leads to (d-1), (d-2), (d-3).

  1, this threefold representation of the tractogram results in a 18-channel state : forward extremity in Cartesian coordinates of the spin along directions {1-3}

Figure 7 . 6 :

 76 Figure 7.6: In plane view of the samples used for defining the environment and training the agent. The small sample (a) is a 90°degree crossing phantom. The Fiber Cup phantom (b) is dedicated to present more challenging fiber configurations to the agent.

Figure 7 . 7 :

 77 Figure 7.7: Illustration of the impact of increasing t θ . The figures present the completed tractogram over the small sample with random policy, with increasing t θ , from 0.1 in (a) to 0.4 in (b) to 0.85 in (c). As expected, high thresholds constraint the fibers to straight trajectories. Such rigid trajectories struggle to overcome local obstacles (c. blue arrow)

Figure 7 . 8 :

 78 Figure 7.8: Illustration of the spin components involved in the calculation of the interaction potential. Adapted from Teillac 2017.

Figure 7 . 9 :

 79 Figure 7.9: Evolution of the number of fibers (a) and actions (b) required to complete a tractogram in the small sample over the epochs. The results are presented for a set of 20 separate training with the penalty, and 10 separate trainings without penalty.

Figure 7 .

 7 Figure 7.11: Evolution of the score along the epochs. The score is registered after the completion of an episode using a greedy policy.

Figure 7 .

 7 Figure 7.12: Comparison of a random policy (a) and a learned policy (b) on the reconstruction of the tractogram over the 90°crossing phantom.

Figure 7 .

 7 Figure 7.13: Examples of different learned policies over the 90°crossing phantom.

Figure 7 .

 7 Figure 7.15: Comparison the tracts resulting from the random policy applied to the FiberCup phantom(a) and the tracts resulting from a learned policy(b). To improve readability, only 20% of the fibers are represented.
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  Inférence globale de la connectivité structurelle des faisceaux de matière blanche en utilisant des approches d'apprentissage profond et d'a priori microstructurels. Mots clés: IRM de Diffusion, Substance blanche, Apprentissage profond La cartographie de la connectivité anatomique du cerveau humain est un défi scientifique majeur. Décrire la trajectoire et les connexions réalisées par les cent milliards de neurones qui composent le cerveau est une tâche titanesque et multi-échelle.Les grands faisceaux ont été décrits par des approches anatomiques classiques dès le 20ème siècle. Ces travaux ont également révélé l'existence de faisceaux plus courts, appelés superficiels, qui définissent la connectivité entre les régions anatomiques voisines. La taille réduite et la forme complexe de ces faisceaux posent un sérieux défi à leur visualisation, si bien que leur description demeure à ce jour débattue.Le premier axe de recherche de cette thèse vise à repousser les limites de l'IRM de diffusion et proposer un nouveau jeu de données ex vivo du cerveau humain entier, intitulé Chenonceau, dédié à la caractérisation de la connectivité fine du cerveau. Le jeu de données est composé de deux acquisitions anatomiques pondérées en T2 à une résolution de 100 et 150µm, ainsi que 175 jeux de données d'IRMd à une résolution de 200µm et une pondération s'élevant jusqu'à 8000 s/mm2. Plus de 4500 heures d'acquisitions, réparties sur deux ans et demie ont été nécessaires pour acquérir ces données.Chenonceau met à profit la puissance de l'IRM pré-clinique Bruker 11.7T, doté à la fois d'un champ magnétique élevé et d'un tunnel de gradients puissants (780mT/m) permettant d'atteindre la résolution mésoscopique et une très forte pondération en diffusion. Pour concilier la taille imposante du cerveau humain avec l'imageur pré-clinique, un nouveau protocole d'acquisition est proposé. Celui-ci repose sur la séparation du cerveau en échantillons de taille réduite, qui sont sont imagés individuellement, puis réassemblés en post-traitement pour reconstituer le volume intégral. L'ensemble de la démarche est présenté, incluant le protocole de coupe et de préservation des pièces anatomiques, le détail des séquences IRM utilisées ainsi que la description du pipeline de traitement des images. Une attention particulière est portée à la définition de l'étape de recalage qui recompose le volume entier à partir des acquisitions individuelles. Les premières inférences de la connectivité anatomique issues de ce nouveau jeu de données sont également présentées. Les techniques de tractographie et de clustering permettent d'extraire non seulement les faisceaux longs de Chenonceau, mais également les faisceaux superficiels.
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	.1 :

1: Presentation of the time constants T 1 and T 2 for different tissues, under 1.5T and 3T. Source : Nielsen et al. 2015.
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	Dataset Name	Publication	Resolution	b values	#Directions Length
	3T WU-Minn	Van Essen et al. 2013	1.25 mm	1000		
	HCP			2000		55 min
				3000		
	7T WU-Minn	Vu et al. 2015	1.05 mm	1000	143	40 min
	HCP			2000	143	
				1000		
	MGH-USC HCP	Fan et al. 2016	1.5 mm	3000		89 min
				5000	128	
				10000	256	
	Baby Connectome	Howell et al. 2019	1.5 mm	500,1000	9, 12	23 min
	Project			1500, 2000	17, 24	
				2500, 3000	34, 38	
	HCP-Development Bookheimer et al. 2019	1.5 mm	1500		24 min
	& HCP-Aging			3000		
	Uk-BioBank	Allen et al. 2014	2 mm	1000		7 min
				2000		

2: Presentation of popular dMRI in vivo datasets.

  • The diffusion-weighted STimulated Echo Acquisition Mode (dSTEAM) sequence [Merboldt, Hänicke, and Frahm 1991] is able to apply a significant part of the diffusion weighting during the T 1 decay. Fritz et al. 2019 is thus able to acquire high-b values (6000-8000 s.mm -2 ) with millimetric resolution (1000 µm), and moderate b-value (3000s.mm -2 ) at mesoscopic resolution (400 µm) on a 9.4T clinical scanner.

Table 5 . 1 :

 51 Overview of the existing ex vivo oriented dMRI protocols designed for clinical scanners.

	Publication	Sequence	Resolution	b-val (s.mm -2 )	Acq.
					#Directions	Time
	Tendler, Hanayik, et al. 2021	DW-SSFP	500µm	4000	144h
					90	
	Fritz et al. 2019	kT-dSTEAM	1000µm	4000/6000		37h
					36/48	
				400µm	3000		53h
					20	
	Pallebage-Gamarallage et al. 2018	DW-SSFP	850µm	5150		24h
					120	
	Foxley et al. 2014	DW-SSFP	1000µm	8550		20h
					49	
	Miller et al. 2011b	DW-Seg-EPI	940µm	4500		6h
					54	
				730µm	3050		96h
					64	
	McNab et al. 2009	DW-SSFP	800µm	16.7ms x 40mT/m	37h
					63	
	Dataset	Brain Section	Sequence	Resolution	b-val (s.mm -2 )	Acq.
		FOV size			#Directions	Time
	Chenonceau	Whole Brain	3D-Seg-EPI	200µm	1500/4500/8000	82h
		56x40x40mm 3			25/60/90	
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	Publication	Brain Section	Sequence	Resolution b-val (s.mm -2 )	Acq.
		FOV size			#Directions	Time
	Ly et al. 2020	Hippocampus	3D-SE	Up to	Up to 10k	Up to 74h
		26×13×13mm 3		100µm	Up to 256	
	Henssen et al. 2019	Brainstem	Seg-EPI	500µm	4000	nd
		nd			256	
	Beaujoin et al. 2018	Hippocampus	2D-SE	300µm	4500	210h
		38×50×55mm 3			500	
			2D-SE	300µm	4.5/7.5/10k	79h
					60/60/60	
	Calabrese et al. 2018	Spinal Cord	3D-GE	50µm	4000	38h
		80×20×20mm 3			31	
	Bastiani et al. 2016	Motor ctx.	2D-SE	340µm	300	120h
		39×36×24mm 3			60	
	Modo et al. 2016	Hippocampus	Seg-EPI	100µm	4000	124h
		11×21×18mm 3			6	
	Plantinga et al. 2016	Basal ganglia	3D-Seg-EPI	500µm	2800	42h
		60x60x56mm 3			60	
	E. Calabrese et al. 2015	Brainstem	2D-SE	200µm	4000	208h
		& Thalamus			120	
		90x55x45mm 3				
	Aggarwal et al. 2015	Cortical areas	3D GRASE	92µm	2000	28h
		15×15×22mm 3			30	
	M. Aggarwal et al. 2013	Brainstem	2D Seg-EPI	170µm	2800	35h
		43x43x65mm 3			6	
	Roebroeck et al. 2008	Optic Tract	Seg-EPI	156x156	1580	nd
		20x20x20mm 3		x312µ	6	
	Shepherd et al. 2007	Hippocampus	2D-SE	60x60	1250	19h
		18x8x8mm 3		x300µm	21	

2: Overview of the DW Chenonceau Dataset

Table 5 .

 5 3: Overview of DW datasets of ex vivo samples of the human brain and spinal cord, acquired on a preclinical system.
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	Name	TE/TR	Resolution Matrix size Acceleration factor Averages Acq. time
	T2 SPACE 105/700 ms	500µm	512x512	2	1	20 min
				320 slices		

Table 5 . 4
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: Details of the sequence used to image the blockface.
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 5 6: Characteristics of the EPI sequence used for DW acquisition.

	δ/∆	b values	# Directions # b0 images	Gradient strength
	5/12.3 ms 1500 / 4500 / 8000	25 / 60 / 90	17	289 / 500 / 666 mT.m -1

Table 5 .

 5 7: Characteristics of the diffusion weighting.
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 5 8: Characteristics of the T 2 -weighted 150µm sequence.

	Name	TE/TR	Resolution Matrix size Averages Flip Angle Acq. time Bandwidth
	2D SE 16/6600 ms	150µm	274x256	1	90°3h26 min	66 kHz
				374 slices		
	Name	TE/TR	Resolution	Matrix size	Averages Flip Angle Acq. time Bandwidth
	3D SE 20/500 ms	100µm	400x400x560	1	90°22h	50 kHz

Table 5 .
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9: Characteristics of the T 2 w 100µm sequence.
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 5 10: antsRegistration setting for the FOV to block registration

		Step	Iterations	Shrink Smoothing Convergence	Similarity
				factors	factors	Threshold	Measure
	Translation	1000x500x300	8x4x2	3x2x1	10 -6	Mutual Information (MI)
		Rigid	1000x500x300	8x4x2	3x2x1	10 -6	MI
		Affine	1000x500x300	8x4x2	2x2x1	10 -6	MI
	Diffeomorphic	150x100x100	8x4x2	2x2x1	10 -8	MI
	5.5.3.3	Resulting registration		
	Figures 5.16				

  .1).

	Index Num	Index Name	Index Num	Index Name
	0	Arcuate Anterior	1	Arcuate
	2	Arcuate Posterior	3	Long Cingulum
	4	Short Cingulum	5	Temporal Cingulum
	6	CST	7	InferiorFrontoOccipital
	8	InferiorLongitudinal	9	Thalamic Rad. Anterior
	10	Thalamic Rad. Inferior	11	Thalamic Rad. Posterior
	12	Uncinate	13	Fornix
	14	Corpus Callosum Body	15	Corpus Callosum Genu
	16	Corpus Callosum Rostrum	17	Corpus Callosum Splenium
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1: List of the 18 bundles composing the LONG_GUEVARA atlas. They are composed of 13 association bundles, 1 projection bundle and 4 commissural bundles. The abbreviation 'Rad.' stands for 'Radiations'.

  Table 6.3: List of the bundles composing the SUPERFICIAL_LABRA atlas. A bundle connects one or two regions (as defined in the Desikan atlas) with distinct paths composing distinct bundles.

							PoC-Ins	3
	PoC-PoC	8	PoC-PrC	9	PoC-SM	1	PoC-SP	1
	PoC-ST	1	PoCi-PrCu	2	PoCi-RAC	1	PoCi-SF	3
	PrC-Ins	3	PrC-PrC	5	PrC-SF	3	PrC-SM	1
	PrCu-PrCu	10	PrCu-SF	1	PrCu-SP	1	RAC-RAC	3
	RAC-SF	1	RAC-ST	1	RMF-RMF	12	RMF-SF	6
	SF-SF	17	SM-Ins	1	SM-SM	10	SM-TT	1
	SP-SM	2	SP-SP	5	ST-Ins	2	ST-SM	2
	ST-ST	2	Tr-Ins	2	Tr-RMF	3	Tr-Tr	3

  With probability ϵ select a random action a t otherwise select a t = max a Q(s t , a) Execute action a t and observe reward r t and state s t+1y = r t ; if s t+1 terminal r t + γ max a ′ Q(s t+1 , a ′ ); otherwise Q(s t , a t ) ← Q(s t , a t ) + α[y -Q(s t , a t )]

	Algorithm 1 Q-learning
	Initialize action-value function Q
	for episode = 1,M do
	Initialize sequence s 1
	for t = 1,T do
	end for
	end for

  Algorithm 2 Deep Q-Learning Initialize replay memory D Initialize action-value function Q with random weights for episode = 1,M do Initialize sequence s 1 for t = 1,T do With probability ϵ select a random action a t otherwise select a t = max a Q * (s t , a; θ i ) Execute action a t and observe reward r t and next state s t+1 Set s t+1 = s t , a t , x t+1 Store transition (s t , a t , r t , s t+1 ) in D Sample random minibatch of transitions {s j , a j , r j , s j+1 } from D

	y
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1: Per-channel organization of a state 7.3.2.4

  • J. Beaujoin, A. Popov, R. Yebga Hot, F. Poupon, J.-F. Mangin, C. Destrieux, C. Poupon, CHENONCEAU: towards a novel mesoscopic (100/200µm) post-mortem human brain MRI atlas at 11.7T. Abstract Th671. Organization for Human Brain Mapping (2019) -Poster presentation • J. Beaujoin, A. Popov, R. Yebga Hot, F. Poupon, J.-F. Mangin, C. Destrieux, C. Poupon, CHENONCEAU: towards a novel mesoscopic (100/200µm) post mortem human brain MRI atlas at 11.7T. Abstract 0654. International Society for Magnetic Resonance in Medicine (2019) -Oral presentation (Summa cum laude)
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implemented by combining the iterative fiber extension with a modified mass-stiffness flow, in areas close to the gyris (Figure 4.7). 

Global tractography

Local tractography approaches rely on the anatomical information contained in the direct vicinity of the fiber head. This limited scope makes them sensitive to the ambiguities of the local modeling, and notably leads to the creation of numerous anatomically unrelated tracks.

Global approaches aim at using a larger anatomical scope to clarify those ambivalent configurations. There are three main approaches : Bayesian, geodesic and spin-based.

Bayesian approach

Saad [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF] takes inspiration from the functional connectivity methods, to condition the local fiber tracking between two regions on the a priori description of their connectivity.

To that end, the authors extend the bayesian framework developed in Timothy EJ [START_REF] Behrens | Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?[END_REF] : a set of N regions in the brain and the associated connectivity matrix C (size NxN, values 0 or 1) describe the likelihood of presence of fibers between regions; and hence participate in the estimation of the direction and volume fraction of fibers (Figure 4.8).

The authors demonstrate that this new enriched a priori setting helps the fiber tracking in uncertain areas, while having little influence over areas with low uncertainty. Moreover, by explicitly defining the presence or absence of a connexion, this framework allows to formally test the connectivity between two regions.

Geodesic approach

Geodesic approaches define a method function which transforms the ODF field into a more convenient vector field. Tracts are then the shortest path between two points, in this new vector field [Geoffrey JM [START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF]Daniel C Alexander 2005, Saâd Jbabdi et al. 2008]. The choice of the metric is at the core of the approach. The inverse of the diffusion tensor is a popular choice, although challenged with more recent methods [START_REF] Fuster | Adjugate diffusion tensors for geodesic tractography in white matter[END_REF]].

Once the vector field is defined, the application of a fast marching algorithm allows to efficiently explore the space between two regions and thus draw the shortest connection.

Chapter 5

Acquisition and construction of the Chenonceau dataset

This chapter is dedicated to the introduction of the Chenonceau project and the presentation of the acquisition protocol, image processing pipeline and registration approach leading to the reconstruction of the whole Chenonceau brain.

To tackle effectively this large-scale dataset, the pipeline relays on specific design patterns. The core idea is to define "DataProxy" objects which encapsulte the informations relative to a certain type of image (such as the name of the block or the index of the FOV), and store them in ad-hoc cascading containers. Matching factories populate each container with the items the user wish to process (Figure 5.7). In particular, the implementation of the various possible referentials of an image has received special care. By definition, a FOV is acquired in its own native referential. But during the registration pipeline, it can be registered to the native referential of its corresponding block, or to the native referential of the blockface, or the MNI referential. Therefore, as the type of an image gives no guarantee about the referential the image is in, the pipeline allows to freely define the referential for any image, under minimal restrictions.

The other challenge of this pipeline is to handle the unusual resolution and weight of this dataset. The resulting reconstructed DW volume of the whole brain, along the shells b = 1500, b = 4500 and b = 8000 weights respectively 110, 250 and 380Go. Working with the 3-shells sampling requires to manage more than 740Go at once. In that perspective, the use of dedicated hardware is necessary. In practice a server with a 1To of RAM and 80 CPUs was dedicated to the processing of the database. The software also required to be specifically adapted to the dataset. These updates span fixes to account for the hardware limitation (insufficient RAM memory, even on the server), the scaling of certain variables (switch from a 32 bytes integer encoding to 64 bytes encoding) or more subtle algorithmic updates.

The final computational burden remains acceptable as a the entire pipeline requires around 3 months to complete.

Preprocessing

The first stage of the pipeline defines the preliminary processing of the FOVs. It consists of classical image processing algorithms aimed at preparing the FOVs to the registration and reconstruction stages. Unless specified, the following are applied to all modalities, T 2 -weighted and DW. The impact of several stages is illustrated in Figure 5.8. These results confirmed an uniform behaviour of the system during the long acquisition sequence.

Figure 5.12: Distribution of the ratio between the SNR of a DW scan and the average SNR of the associated shell, for all DW scans.

Evolution of the SNR during the acquisition campaign

The outstanding duration of the acquisition campaign was also a major specificity of the Chenonceau project. In order for the FOVs to be reconstructed in a single homogeneous volume, interpretable as a coherent brain mapping, it was absolutely necessary that the blocks stay unaltered during the time of the campaign.

To ensure the stability of the tissues during this period, the evolution of the SNR for the two anatomical scans and the reference dMRI volume at b = 0 s.mm -2 , during all the acquisition campaign, is displayed in Figure 5.13.

The plots depict no correlation between the date of the acquisition and the estimated SNR, in all three modalities. This proves the stability of the tissues during the acquisition campaign. Table 6.2: List of the 66 bundles composing the SUPERFICIAL_GUEVARA atlas together with their index.

The SUPERFICIAL_LABRA atlas

The SUPERFICIAL_LABRA atlas [Labra Avila 2020] is established from the HCP database [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF]] using 76 subjects. The dMRI dataset is acquired on a Connectom 3T MRI system with a multiple shell dMRI protocol at b=1000/2000/3000 s.mm -2 along 90 uniformly distrubuted directions at a resolution of 1.25x1.25x1.25mm 3 . tractograms. In Chenonceau, this step allowed to reduce the number of fibers to 80 million, organized within 6 million clusters (Figure 6.20). 

Solving the spin-based tractography

The results are two-fold. First, we establish that the proposed framework is a relevant reinforcement learning framing of the spin-based global-tractography problem. Second, we discuss the shortcomings of the proposed agent when faced with a challenging sample.

Validation of the proposed RL implementation

The goal of the proposed framework is to translate the complex spin-based global tractography problem to a reinforcement learning frame. For the implementation of the environment to be successful, the environment must be able to produce plausible tracts, which at minima correspond to long and smooth tracts across the sample; while allowing the learning of the agent, through implementation of an appropriate state and reward system.

We implement the state to describe comprehensively the tracking problem, across the entire tracking volume. This description is threefold, containing the DW information, the spatial distribution of past fibers and the path of the present fiber. Maintaining the global scope is necessary, as the core idea of spin-based approaches is to leverage the semi-global and global information to disentangle ambiguous local configurations. Furthermore, the inclusion of previous connections forms a concise and efficient depiction of the past decisions, providing the state with the Markov property. The latter is a favorable learning setting, allowing to use well-established reinforcement learning techniques.

To efficiently process this rich multi-dimensional spatial information, convolutional networks appear as a sensible choice. By design, they are able to represent large spatial configurations at a moderate computational cost. Furthermore, their ability to extract features of increasing scale and complexity perfectly fits the need of the agent.

An incompatibility arises between the gridded representation required for the convolutional network and the need for a smooth, that is continuous, tracking of the fibers. As an answer, we propose to define a subgrid over the voxels, with a resolution 3 times as high. Locating the spins at the center of the subvoxels defines a refined resolution for the fiber tracking, and allows a seamless communication between the agent and the environment The shortcomings and possible improvements of this implementation are specifically discussed in §7.3.4.

Furthermore, in order to allow the algorithm to construct long, uninterrupted tracts, it is necessary to implement the possibility for the agent to create spins on the fly. It is achieved by defining all spins, located at the center of the subvoxels, as potential spins, that the agent is free to duplicate in order to connect with them. In that regard, the potential spins define a vector field of possible directions to the agent.

The adequacy of the proposed environment, state and reward system is evaluated by the capacity of an agent to learn to produce plausible fibers over a minimalist phantom.

First, we demonstrate that the agent is able to learn consistently to maximize the score over an entire episode (Figure 7.11). Using a Tesla V100 PCIe-16GB, the inference time is under 2 minutes.

The sample is compatible with the implemented network. Despite a larger size (64x64 versus 18x18), the computational cost remains acceptable for the hardware, and allows to scale the proposed network, without architectural modifications. In addition, the FiberCup sample is compatible with 2D tractography as the fibers run in-plane and no synthetic fiber is aligned along the z-axis. While compatible, this phantom is significantly more challenging for the agent to solve. First, the large size of the phantom sets a higher computational burden, requiring small adjustments to the learning hyperparameters (batch size reduced to 16). It also requires the agent to draw considerably longer fibers, challenging its forecasting abilities.

Second, the phantom exhibits more complex fiber configurations. The crossings C 2 and C 3 have a lower incidence than the 90°C 1 . The steep rotation R 1 requires the agent to make sharp turns. While the merging M 1 and M 2 evaluate the capacity of the agent to organize fusion of tracts.

In addition, the DW MRI data is corrupted by noise and characterized by the existence of partial volume effect.

The agent achieves partial success in tracking fibers within the FiberCup phantom. Using a Tesla V100 PCIe-16GB, the inference time is close to 10 minutes. We compare the final policy of the agent with the random policy on Figure 7.15. On one hand, simple fiber configurations remain appropriately solved, with the reconstruction yielding straight and smooth fibers along straight portions. The crossing C 1 is solved correctly, in line with the results obtained for the 90°crossing phantom. The rotation R 1 is also successfully solved, displaying the ability of the agent to perform sharp turns. The merging M 1 is handled appropriately with a regular distribution of fibers. The strategy proposed for the merging M 2 is mostly satisfying. Notably, the agent displays the ability to take obstacles into account when drawing fibers, specifically at the top and at the right side of the branch B 4 .

On the other hand, the tracts reconstructed in the crossings C 2 and C 3 are erroneous. In