
HAL Id: tel-03789640
https://theses.hal.science/tel-03789640

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Représentation de structures poreuses d’alumine gamma
par modélisation numérique

Gabriel Alejandro Ledezma Lopez

To cite this version:
Gabriel Alejandro Ledezma Lopez. Représentation de structures poreuses d’alumine gamma par
modélisation numérique. Chemical and Process Engineering. Université de Lyon, 2021. English.
�NNT : 2021LYSE1333�. �tel-03789640�

https://theses.hal.science/tel-03789640
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 
N°d’ordre NNT : 2021LYSE1333 
 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

l’Université Claude Bernard Lyon 1 
 

Ecole Doctorale N° 206  

Chimie, Procédés, Environnement 

 
Discipline :  

Procédés 
 
 

Soutenue publiquement le 17/12/2021, par : 

Gabriel Alejandro Ledezma Lopez 

 
Suitable Representations of Gamma 

Alumina Porous Structures by 
Computational Modeling 

 
 

Devant le jury composé de : 
 
Mme. TAYAKOUT-FAYOLLE 
Mélaz 

Professeur des universités, UCBL Présidente du jury 

   
M. JALLUT Christian Professeur des universités, UCBL Directeur de thèse 
   
M. DENOYEL Renaud Professeur des universités, Aix-

Marseille Université 
Rapporteur 
 

M. FAVRE Eric Professeur des universités, Université 
de Lorraine 

Rapporteur 
 

M. RIGBY Sean Professeur, Université de Nottingham Examinateur 
Mme. SPECCHIA Stefania Professeur, Ecole Polytechnique de 

Turin 
Examinatrice 
 
 

M. VERSTRAETE Jan IFPEN Promoteur 
M. SORBIER LOIC IFPEN Co-Promoteur 
   
Mme JOLIMAITRE Elsa IFPEN Invitée 
M. LEINEKUGEL-LE-COCQ 
Damien 

Praticien hospitalier, UCBL Invité 

 



 

 

  



 

N°d’ordre NNT : 2021LYSE1333 

 

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
Opérée au sein de 

L’Université Claude Bernard Lyon 1 
 

École Doctorale 206 
(Chimie, Procédés, Environnement) 

 
Spécialité de doctorat : Procédés 

Gabriel Alejandro Ledezma Lopez 

 

 

Suitable Representations of Gamma Alumina Porous Structures 

by Computational Modeling 

 

 

Devant le jury composé de : 

M. FAVRE Eric LRPG Rapporteur 

M. DENOYEL Renaud MADIREL Rapporteur 

Mme. SPECCHIA Stefania PoliTO Examinatrice 

Mme. TAYAKOUT-FAYOLLE Mélaz UCBL Examinatrice 

M. RIGBY Sean UoN Examinateur 

M. JALLUT Christian UCBL Directeur de Thèse 
M. VERSTRAETE Jan IFPEN Promoteur 
M. SORBIER LOIC IFPEN Co-Promoteur 

Mme JOLIMAITRE Elsa IFPEN Invitée 

M. LEINEKUGEL-LE-COCQ Damien IFPEN Invité 

 

December 2021 

 



 

Université Claude Bernard – LYON 1 

 

Président de l’Université M. Frédéric FLEURY 

Président du Conseil Académique M. Hamda BEN HADID 

Vice-Président du Conseil d’Administration M. Didier REVEL 

Vice-Président du Conseil des Etudes et de la Vie Universitaire M. Philippe CHEVALLIER 

Vice-Président de la Commission de Recherche M. Petru MIRONESCU 

Directeur Général des Services M. Pierre ROLLAND 
 

COMPOSANTES SANTE 
 
 

Département de Formation et Centre de Recherche 
en Biologie Humaine 

Directrice : Mme Anne-Marie SCHOTT 

Faculté d’Odontologie Doyenne : Mme Dominique SEUX 

Faculté de Médecine et Maïeutique Lyon Sud - Charles Mérieux Doyenne : Mme Carole BURILLON 

Faculté de Médecine Lyon-Est Doyen : M. Gilles RODE 

Institut des Sciences et Techniques de la Réadaptation (ISTR) Directeur : M. Xavier PERROT 

Institut des Sciences Pharmaceutiques et Biologiques (ISBP) Directrice : Mme Christine VINCIGUERRA 
 
 

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE 
 
 

Département Génie Electrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO 

Département Informatique Directeur : M. Behzad SHARIAT 

Département Mécanique Directeur M. Marc BUFFAT 

Ecole Supérieure de Chimie, Physique, Electronique (CPE Lyon) Directeur : Gérard PIGNAULT 

Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE 

Institut National du Professorat et de l’Education Administrateur Provisoire : M. Pierre CHAREYRON 

Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON 

Observatoire de Lyon Directrice : Mme Isabelle DANIEL 

Polytechnique Lyon Directeur : Emmanuel PERRIN 

UFR Biosciences Administratrice provisoire : Mme Kathrin GIESELER 

UFR des Sciences et Techniques des Activités Physiques et Sportives 
(STAPS) 

Directeur : M. Yannick VANPOULLE 

UFR Faculté des Sciences Directeur : M. Bruno ANDRIOLETTI 

 



i 

Acknowledgments 

I want to thank God for always inspiring me to pursue the mysteries of his creation through 

science. 

I want to thank IFPEN for providing the material resources for this research work. Thanks to Dr. 

Cécile Barrère-Tricca (head of the IFPEN-Lyon site), Dr. Pierre Porot (head of the Process Design 

and Modeling Division), Dr. Christophe Boyer (head of the department of the Reactions and 

Chemical Reactors Modeling), and Dr. Andreas Ehinger (head of the Doctoral Studies). 

I would like to express my gratitude to LAGEPP (Laboratoire d'Automatique, de Génie des 

Procédés et de Génie Pharmaceutique) for counting me among its members too. 

I would like to thank my thesis director Prof. Christian Jallut (LAGEPP) for all his time and support. 

I enjoyed a lot our scientific discussions. I would like to thank also my supervisors Dr. Jan 

Verstraete (IFPEN), Dr. Loïc Sorbier (IFPEN), Dr. Damien Leinekugel Le-Cocq (IFPEN), and Dr. Elsa 

Jolimaitre (IFPEN) for their support and scientific spirit. 

Thanks, Jan, for all the experiences we have shared. You are a teacher, a role model, and a friend. 

If I could choose you again as my supervisor, I would choose you the same number of pores that 

are in 1 gram of gamma alumina. 

Thanks to Isabel Sebbane (Secretary R12) and Martine Glo (Secretary R12) for their support. 

I would like to thank all my teachers and professors. It would be difficult to name them all here, 

but I would like them to know that they have my deepest respect and gratitude. There are 2 

special teachers I would like to thank for introducing me to science at the tender age of 8 years, 

Mrs. Dilia Ramos and Mrs. Carmen Machin. I want to express my gratitude to Prof. Juan Matos 

Lale for his guidance, the time, and experiences we shared, and for becoming my friend. 

Thanks to my dear friends and colleagues: Giulia, Aleksandra, Polina, Maxime, Florencia, Kris, 

Edoardo, Lucas, Laura M, Laura DC, Viktor, Mehdi, Adam, Giovannino, Iana, Deisy, Ricardo, 

Alberto, Maria, Raquel, Andrea, Angela, Gonzague, Jose Luis, Jose Angel, Moira, Erika, Conor, 

Jorge, Jhon, David, Adriana, Stefano, Miguel, Mei, Jhonathan, Luz, Manuel M., Jesus V. 

I would like to thank my beloved parents, aunt, and sister for always being there. Thanks to all my 

family for their love and support. 

Thanks, Estefany, for joining me during the first part of this adventure. 



ii 

Sometimes I think that life can be described with a population balance equation. What are we 

for our universe but dust? A grain of dust that travels in space and time. A grain which exchanges 

mass with other grains (friends, families, acquaintances, role models) through interactions. Part 

of ourselves will be lost in this travel. We will gain some mass when particles of other grains will 

aggregate to us, and parts of us will aggregate to other grains as a result of our exchanges. Finally, 

we will generate some mass through our inventions, ideas, beliefs, and motivations. A quantity 

of mass so small that at a cosmic scale someone will consider that it cannot be measured, or it 

can be considered null (which is a nice particle accelerator joke). 

Thanks to all of you. You are and will be a part of me and my work. 

 

 

To Maria Dolores Lopez Arrieta and Eliut Oswaldo Velazquez Blanco. 

 



 

iii 

Abstract 

Porous materials are widely used in chemical engineering. At the mesoporous scale, confinement 

effects influence the thermodynamic of the system and the transport conditions. Indeed, the 

architecture of the pore network is the origin of mass transfer limitations within disordered 

porous materials. Therefore, it is important to understand not just the textural properties of the 

solid but also its pore network characteristics. 

Gamma-alumina is a disordered porous material with an elevated tortuosity very often used in 

the oil refining and petrochemistry, whose topology is not yet fully understood (1, 43, 44). Recent 

research articles propose that this material has different pore domains, each one characterized 

by its own pore size distribution and void fraction (45). The interplay among these different levels 

clearly plays a role in effective diffusion. 

This work intends to better understand the textural and topological descriptors of gamma 

alumina by creating a digital representation of it. The catalyst is represented using a pore network 

model. The pore network representation is then characterized using originally developed 

computational equivalents of textural and mass transfer characterization techniques. The 

experimental validation was done through the generation of digital twins for real gamma alumina 

samples. 

Using diffusion simulations on the pore network model fitted to the nitrogen sorption curves, a 

tortuosity factor was predicted that differs by less than 20% from the tortuosity factor measured 

by PFG-NMR. This illustrates how a digital twin allows to provide a reasonable estimate for the 

tortuosity factor from readily available nitrogen porosity experiments. 

The research work in this thesis is the start of the path to ultimate goal of improving the catalytic 

performance of disordered porous catalyst by the digital optimal design of the material 

architecture. At the same time, the accuracy of the models used to design and evaluate 

heterogeneous reactor performance will be improved. 

Keywords 

Gamma Alumina Supports, Pore Network Models, Computational Characterization, Diffusion in 

Porous Media, Digital Twin. 
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Résumé 

Les matériaux poreux sont largement utilisés en génie chimique. À l'échelle mésoporeuse, les 

effets de confinement influencent la thermodynamique et les conditions de transport. En effet, 

l'architecture du matériau poreux peut augmenter les limitations de transfert de masse à 

l'intérieur du catalyseur. Par conséquent, comprendre non seulement les propriétés texturales 

mais aussi la topologie du solide est important pour améliorer les performances du catalyseur et 

la précision des différents modèles permettant de concevoir et d'évaluer les performances des 

réacteurs hétérogènes. L'alumine gamma est un matériau poreux désordonné à tortuosité élevée 

très souvent utilisé dans le raffinage du pétrole et la pétrochimie, dont la topologie n'est pas 

encore totalement comprise (1, 43, 44). Des articles de recherche récents suggèrent que ce 

matériau a différents domaines de pores, chacun caractérisé par sa propre distribution de taille 

de pores et sa propre fraction de vide (45). L'interaction entre ces différents niveaux joue 

clairement un rôle dans une diffusion efficace. En créant des jumeaux numériques d'échantillons 

réels d’alumine, il est possible de mieux comprendre comment les propriétés texturales et la 

topologie du réseau influencent la diffusion à travers le réseau à un niveau fondamental. Dans ce 

travail, un modèle de génération de réseau de pores rapide et flexible est créé. Ensuite, différents 

algorithmes pour caractériser le réseau de pores numériques sont développés. Ces algorithmes 

simulent la porosimétrie à l'azote, la porosimétrie au mercure, la cryoporométrie et la résonance 

magnétique nucléaire à gradient de champ pulsé (PFG-RMN). Un jumeau numérique d'alumine 

gamma est finalement créé en optimisant les paramètres d'entrée du modèle de réseau de pores 

pour s'adapter à une isotherme de sorption mesurée expérimentalement. En utilisant des 

simulations de diffusion sur le modèle de réseau de pores ajusté aux courbes de sorption d'azote, 

un facteur de tortuosité a été prédit qui diffère de moins de 20 % du facteur de tortuosité mesuré 

par PFG-RMN. Cela illustre comment un jumeau numérique permet de fournir une estimation 

raisonnable du facteur de tortuosité à partir d'expériences de porosité à l'azote facilement 

disponibles. 

 

Mots clés 

Supports d'alumine gamma ; Modèles de réseau de pores ; Caractérisation numérique ; 

Diffusion en milieux poreux ; Jumeau numérique. 
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GENERAL INTRODUCTION 

Porous materials are widely used in chemical engineering. At the mesoporous scale, 

confinement effects influence thermodynamics and transport conditions. Indeed, the 

architecture of the porous material can cause mass transfer limitations inside of the catalyst 

(Wood et al. 2002). Therefore, understanding not just the textural properties but also the 

topology of the solid is important to improve the catalyst performance and the accuracy of 

different models allowing to design and evaluate heterogeneous reactor performance 

(Johannessen et al. 2007; Ye et al. 2019b; Ye et al. 2016). 

Modeling the phenomena that occur at the interior of the pore network can improve the 

assessment of critical descriptors that are valuable for the synthesis of industrial catalysts, 

supports, and adsorbents. When applied to the chemical reactors or adsorbers it would 

then be possible (i) to estimate the tortuosity of a catalyst sample through computer 

simulations starting from cheap and common characterization techniques, and (ii) to 

optimize the structural parameters of the gamma alumina to maximize activity, selectivity 

and/or stability of the catalyst. 

In order assess the phenomena that occur in the interior of the porous structure, it is 

possible to use either mimetic methods or reconstruction methods (Schüth 2002a). Mimetic 

methods try to create the final material by simulating its synthesis, starting from the genesis 

all the way to the final structure of the solid. On the other hand, reconstruction methods 

directly model the material in its final state. Among the reconstruction methods, pore 

network models are common representations. They are widely used because they can be 

easily assembled, its flexibility, and its reasonable CPU intensity. Such structures represent 

a useful solution to simulate adsorption, dissolution and precipitation (Peter Matthews et 

al. 1996), biomass growth (Ezeuko et al. 2011), permeability (Huang et al. 2016), carbon 

capture (Li et al. 2006), fuel cells (El Hannach et al. 2014), adsorbers (Ye et al. 2015), and 

chemical reactors (Ye et al. 2019a; Hannaoui et al. 2015). Pore network models were 

mentioned for the first time by Fatt in 1956 (Fatt 1956b). At that time, the novelty resided 

in the consideration of pore network connectivity, a concept that was lacking in the classic 

“bundle of tubes” model (Wheeler 1951). Since then, multiple variants have been proposed 

to understand the role of the different characteristics of the network architecture on 

thermodynamics and transfer phenomena. The new models consider different textural and 

topological characteristics that can be relevant to describe the material. Amongst the more 

recent models with the most relevant improvements are: The dual site bond model (DSBM), 

proposed by Cruz in 1989 (Cruz et al. 1989; Mayagoitia et al. 1996; Mayagoitia et al. 1997) 

and later modified by Riccardo, to create energetically consistent structures (Riccardo et al. 
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1993); The corrugated pore structure model (CPSM), first proposed by Mann and 

Andropoutsopoulus in 1981 (Mann and Golshan 1981; Mann and Thomson 1987; 

Androutsopoulos and Salmas 2000b), which accounts for the rugosity on the pore walls; The 

Hierarchical pore network models, which described in the works of Spearing and Matthews, 

Rieckmann and Keil, Gladden, Sharrat and Hollewand, and Sadeghi (Spearing and Matthews 

1991; Hollewand and Gladden 1991, 1992; Sadeghi et al. 2017; Rieckmann and Keil 1997; 

Sharratt and Mann 1987).  

It is necessary to have experimental information in order to correctly model the 

heterogeneity of the solid. The characterization is normally done using one or a 

combination of the following techniques: Small Angle X-ray Scattering (SAXS), X-ray 

computed micro-tomography (micro-CT), Focused Ion Beam (FIB) coupled with Scanning 

Electron Microscope (SEM), Nuclear Magnetic Resonance (NMR)-Relaxometry, Nuclear 

Magnetic Resonance-Cryoporometry, mercury porosimetry, and nitrogen sorption 

porosimetry. 

In many cases, only nitrogen and mercury porosimetry are available because these 

techniques are the fastest, cheapest, and most common. They provide qualitative 

information on the topology and the architecture of the network. Hence, many studies have 

been carried out at different scales to improve the understanding and quality of the models 

used for the interpretation of the experimental data from these techniques 

Molecular simulations are done to study the effect of confinement on the gas 

adsorption/condensation and evaporation/desorption (Nguyen et al. 2011; Bruschi et al. 

2015; Coasne et al. 2004; Palmer et al. 2009; Kolesnikov et al. 2020). Other studies try to 

explain the effect of the connectivity and the architecture on reaction and transport 

properties at the mesoscopic scale (Armatas and Pomonis 2004; López-Ramón et al. 1997; 

Meyers et al. 2001; Murray et al. 1999b; Seaton 1991; Perkins et al. 2008; Rojas et al. 2002; 

Kikkinides et al. 2020; Gommes 2012). 

Gamma-alumina is a disordered porous material very frequently used in the oil refining and 

petrochemical industries. It has an elevated tortuosity, and its topology is not yet fully 

understood (Schüth 2002a; Wang 2017; Rigby et al. 2017). Recent research articles propose 

that this material has different pore domains, each one characterized by its own pore size 

distribution and void fraction (Rigby et al. 2002). The interplay among these different levels 

clearly plays a role in effective diffusion. By creating digital twins of real gamma-alumina 

samples, it is possible to better understand how the textural properties and the topology of 

the network influence diffusion through the network at a fundamental level. At the same 

time, in applied R&D, this allows to create more accurate and flexible models that better 

represent the reactor performance. 
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OUTLINE OF THE THESIS 

This work intends to better understand the textural and topological descriptors of gamma 

alumina by creating a digital representation of it. The catalyst is represented using a pore 

network model. The pore network representation is then studied using computational 

equivalents of textural and mass transfer characterization techniques. The experimental 

validation is done through the generation of digital twins for real gamma alumina samples. 

The second chapter of this work describes the state of the art of the synthesis, 

characterization, and modelling of gamma alumina-based materials. 

The third chapter focuses on the Pore Network Model implemented to model gamma 

alumina. First, the generation algorithm is described. The next section describes in detail 

the characteristics of the model. Subsequently, a statistical analysis is done to know the 

minimum network size that should be used in order to represent appropriately the input 

variables. The last section of this chapter consists of a topological analysis of the pore 

network model. 

The fourth chapter contains the description of the algorithms developed for the simulation 

of three different textural characterization techniques: Nitrogen Sorption, Mercury 

Porosimetry and Cryoporometry. At the end of the chapter a case study is presented. 

A trend analysis is reported in chapter 5. The objective of this chapter is to show the effect 

of the input parameters used for the generation of the pore network model on the 

characteristic curves obtained from the digital characterization techniques. 

The sixth chapter shows the creation of gamma alumina digital twin using a particle swarm 

optimization (PSO) algorithm. The structure is optimized based on an experimental nitrogen 

isotherm. 

Chapter 7 presents the development of a PFG-NMR simulation tool. The state of the art 

and the basics of the physical phenomena that are involved are presented first. Then the 

foundations of the model are explained. A case study is presented in the last section. 

The last chapter is dedicated to the conclusion and perspectives of this work. 
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Chapter 1: Context 

1.1. Introduction 

Better understanding a material provides the opportunity to improve it. The technical 

upgrading and evolution of processes rely importantly on it. In chemical reactor design, the 

engineering and the scientific communities can model and predict hydrodynamic properties 

of fluids flowing through industrial equipment by using very complex equations derived 

from the Boltzmann equation (such as Navier-Stokes) with complex corrections for 

turbulent flow at different scales. Still, when it comes to mass transfer and chemical 

reaction through porous materials, reaction-diffusion is often modeled in a very idealized 

way considering continuum transport coefficients that average the influence of an 

important number of phenomena along with the heterogeneities of the material. The 

diffusion phenomena are usually modeled using Fickian transport, the interactions of the 

fluid components with the walls are not taken into account, their adsorption in some pores 

and the effect it has on the performance are not considered, while the topology effects and 

local heterogeneities of the pore distribution are also not considered. When the solid 

synthesis is altered, it is very hard to accurately consider the new transport properties of 

the material without performing new experimental studies. 

Porous materials are very common in the industry, covering important and profitable 

applications such as adsorption, catalysis, separation, oil recovery, and energy storage. In 

these applications, there are chemical and/or physical interactions with different types of 

fluids. Hence, transport properties are intimately correlated to the pore media organization, 

its morphology, and its topology. To identify, measure, model and predict these transport 

properties, it is necessary to understand the pore network architecture and therefore to 

characterize its textural properties. The characterization can be very straightforward if the 

pores have a regular shape and are well organized, as is the case of zeolites such as ZMS-5 

for example. However, when the pore structure of the material is disordered and possesses 

several relevant length scales, the characterization becomes a very complex topic, and is 

therefore a very active research domain. A case of particular interest is gamma-alumina. 

Gamma alumina is a very important material present in the oil industry for processes such 

as hydrotreating, hydrocracking, catalytic reforming, and isomerization. It is used both as a 

support and as a catalyst. The material possesses micro-, meso-, and macroscopic pores as 

well as a high void fraction (0.5-0.75). 

In Figure 1 are presented SEM images for two different representative alumina samples. 

Sample A and Sample B were prepared using different mixing intensities. The result leads 

to two different alumina samples, one in which the higher porosity fraction is concentrated 
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into the grains (Sample A) and another in which the higher porosity fraction is concentrated 

in the matrix (Sample B). 

 
Figure 1. SEM images for two different representative alumina samples (Glowska 2021) 

A better understanding of the material properties is an opportunity to improve it, hence, 

the characterization and modeling of alumina porous structures is a fertile field for 

technological breakthroughs. 

1.2. Objective and general strategy 

In 2017, Kolitcheff, during his Ph.D. thesis “Multi-technique approach to diffusion 

phenomena in hydrotreating of distillates”, characterized textural properties and mass 

transport properties of several samples of commercial gamma-alumina (Kolitcheff 2017). 

On this basis, he tried to find a plausible explanation for the very high tortuosity of gamma-

alumina that appeared to be somehow inconsistent with its elevated porosity (Figure 2). He 

showed how different samples having the same porosity exhibited different tortuosities. 

These results can be explained by the topology of the structure. They demonstrated 

experimentally that solids with similar macroscopic textural properties can exhibit different 

tortuosity values based on the internal organization of the pore network, as already 

suggested by literature simulation works (Hollewand and Gladden 1995). In his conclusions, 

Kolitcheff suggests the existence of a hierarchical organization within the alumina 

represented by two different and intertwined porosity levels that influence the mass 

transport properties of the network. 
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Figure 2. Comparison between the tortuosity values obtained through stack correlations and experimental tortuosity 

values obtained by inverse chromatography (Experimental values are in green) (Kolitcheff 2017). 

Ferreira, in her Ph.D. thesis, proposed to model the porous solid using a pore network 

method based on a stochastic reconstruction algorithm, and represented the basic textural 

characteristics (pore volume, specific surface area, and pore size distribution) of the 

commercial samples employed by Kolitcheff using hierarchical structures (Ferreira 2018). 

However, several pore networks with different organizations were able to match the same 

macroscopic textural properties This suggested that more parameters were required to 

obtain a more complete and unambiguous representation. To select the most appropriate 

representation, Ferreira compared the calculated pore network tortuosity to the 

experimentally measured tortuosities measured by Kolitcheff. 

The general scope of the present thesis is generating a digital representation of the gamma-

alumina pore network that can correctly represent the topology of the material (Figure 3). 

In order to validate the pore network model, modeling and simulation of commonly used 

characterization techniques are compared with experimental results. By using 

representative digital structures, it will be possible to investigate how textural and 

architectural descriptors influence tortuosity. 

In a first step, a fast and flexible pore network model generation algorithm has been 

developed. The generation of a genuine representation of porous media is a fundamental 

part of the work. To create such a representation, new descriptors and relevant information 

to reproduce the architectural, morphological, and topological effects are employed 

considering the insights previously found (Morin 2014; Kolitcheff 2017; Wang 2017; Ferreira 

2018). New tools that simulate characterization techniques (nitrogen sorption porosimetry, 

mercury porosimetry, and cryoporosimetry) that provide information about the topology 

of the system have been created. These models have been validated by checking their 
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ability to create digital twins that can reproduce the experimental curves obtained from 

these textural characterization techniques. To better understand the influence of the 

network architecture on tortuosity, the Pulse Field Gradient NMR mass transfer 

characterization technique has been simulated. The simulation of diffusion within the 

generated pore network has been compared to experimental values of effective diffusion 

coefficients. These experiments provide additional information on the organization and 

structure of the porous solid. 

 

Figure 3. General strategy of the present Ph.D. thesis 

In future work, understanding the impact of disorder and the degree of microstructural 

heterogeneity will aim at producing continuum models to design of chemical reactors and 

identifying the internal organization of catalysts given their performance. This knowledge 

could allow proposing optimized architectures for gamma-alumina catalysts. The 

complexity of the interaction of the fluid with the solid matrix can be considered for 

diffusion and diffusion/reaction steps. Surface adsorption, pore-blocking due to adsorption, 

non-ideality of the fluid, and different diffusion regimes can be considered. 

This PhD thesis work has been performed in collaboration with the PhD thesis work of 

Aleksandra Glowska “Multi-technique analysis of porous networks in gamma-alumina 

supports” (IFPEN thesis 2018-R05-09, Ph.D. student: Aleksandra Glowska, IFPEN promotor: 

Elsa Jolimaitre, Ph.D. Director: Prof. Marc-Olivier Coppens, University College London) that 

has taken place in the IFPEN Physics and Analysis Division. This collaboration provided 
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experimental data from different characterization techniques for the validation of the 

computational models. 
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Chapter 2: Gamma Alumina porous structure modeling and 

characterization – State of the Art 

2.1. Alumina crystalline structure 

Alumina is a polymorphous material that is composed of aluminum, oxygen, and hydrogen. 

Every crystalline form has its particular textural properties and can be transformed into 

another. Several reviews were published (Euzen P., Raybaud P. et al. 2002; Wefers and 

Misra 1987), which show the morphosis relation between most of the different 

polymorphisms (Figure 4). The alumina can be classified into aluminum hydroxides and 

aluminum oxides. 

The aluminum hydroxides can be sub-classified in aluminum trihydroxides (Al(OH)3) and 

aluminum (oxyhydr)oxides (AlOOH). The gibbsite is the most common form obtained by 

mining and processing the most abundant mineral of aluminum, which is bauxite. In Table 

1, the most common forms are presented according to the classification mentioned above. 

 

 
Figure 4. Dehydration temperature of the aluminum (oxy)hydroxides (Digne et al. 2002). 

The thermodynamic stability of a form depends on the free energy of the solid, which in 

small particles mainly depends on the surface contribution. According to the energy of the 

bulk of the structure, corundum is the most stable form, while, in terms of the contribution 

of the surface, the amorphous oxide tends to be the most stable of the transitions aluminas 

(Schoen and Roberson 1970). 

The characterization of the cell parameter and crystalline structure of aluminum hydroxides 

is widely described in literature. The most common reported experimental characterization 

techniques are XRD (X-ray diffraction), atomic force microscopy, neutron diffraction, Raman 
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spectroscopy, while theoretical ones are based on ab initio simulations (Saalfeld and Wedde 

1974). 

Table 1. Alumina polymorphisms. 

Type Prefix Common Name 

Trihydroxides γ Gibbsite/Hydrargygillite 

 
α Bayerite 

  Nordstrandite 

  Doyleite 

   
(Oxyhydr)oxides γ Boehmite 

  
Diaspore 

   
- - *Akdalaite 

   

Oxides α Alumina 

 
ρ Alumina 

 
χ Alumina 

 
κ Alumina 

 
η Alumina 

 
γ Alumina 

 
δ Alumina 

 
θ Alumina 

 
θ' Alumina 

 
θ'' Alumina 

 
α Corundum 

*The Akdalaite is a form that contains a very low hydration degree. 

In the latter review, boehmite has a central importance, as it is the most common precursor 

of gamma-alumina. The determination of the boehmite crystalline structure has been the 

object of many investigations, and several spatial groups (SGs) were proposed, differing in 

the hydrogen atoms setting only. The SG most frequently quoted in the literature is Cmcm 

(or Amam) (Schüth 2002a). 
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Boehmite (and also trihydroxides) are layered structures where crystal cohesion is 

guaranteed by interlayer hydrogen bridges. The coordination polyhedra in the alumina 

crystalline structure are mainly octahedral and tetrahedral. The chemical bonds that are 

present in the alumina are of the covalent type within the bulk (Al-O, O-H), ionic type in the 

surface, and hydrogen bridges everywhere (O…..H) (Demichelis et al. 2011). 

Boehmite particles are monocrystals with a dimension of 2 to 50 nm. The commonly 

reported morphologies are fibrillary, oval, spherical, or orthorhombic plates. The 

morphology of the boehmite crystals can be controlled through the physicochemical, 

mechanical, and thermodynamic parameters of the synthesis: pH, viscosity, ionic strength, 

agitation, temperature, and pressure during the synthesis. The time of aging plays a 

fundamental role in the process. 

The control of particle size, morphology, and functionalization will be fundamental in 

determining the textural properties (such as surface area, pore size distribution, and pore 

volume) in the porous network that will be produced with calcination of the solid (Morin 

2014). 

The solid (oxy)hydroxides and the hydroxides are amphoteric, but aluminum oxide exhibits 

an acid behavior that is associated with the morphology and the superficial area of the solid 

(Jolivet 2016). The character of the Al-O-H bond on the surface is predominately covalent, 

while within the bulk the character of the bond is ionic. 

Aluminum oxides are produced by calcination of the aluminum hydroxides. The transition 

of boehmite to gamma-alumina is a topotactic transformation, which means that the 

gamma-alumina particle will maintain the same morphology as the (oxy)hydroxide particle. 

This does not mean that the two surfaces are atomically equivalent. According to the 

synthesis method, the morphology and the textural properties will vary (Lippens 1961). As 

the temperature of the calcination process is higher, the dehydration of the solid structure 

advances. The calcination will decrease the number of hydroxyl groups on the solid surface, 

which means that the number of Lewis acid sites is decreasing too. The loss of Lewis acid 

sites is also reinforced by the loss in surface area due to the sintering of the solid. The 

different alumina phases, from boehmite to alpha-alumina, are shown in Error! Reference s

ource not found.. As the oxide evolves to alpha alumina, the surface area decreases and 

the number of acid sites too, which leads to decreasing chemical reactivity. 

 
Figure 5. Phase evolution of boehmite to alpha alumina as a function of temperature (Ingram et al. 1996). 
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The force of the acid site is associated with the aluminum ion coordination: it can be tri 

coordinated (tetrahedral with a vacancy), tetrahedral coordinated, penta-coordinated 

(octahedral with a vacancy), and octahedral coordinated. It has been postulated that the 

strongest acid sites correspond to the tricoordinated Al3+ (Schüth 2002a; Lippens 1961). 

Several structural models have been proposed for gamma-alumina (the spinel model, the 

defective spinel model, and the non-spinel model), but the truth is that the position and the 

state of the hydroxyls are not yet fully determined for gamma-alumina. 

The different aluminum oxide forms are suitable for different technological applications. 

Aluminum oxides are mainly used as isolating materials, adsorbents, catalysts, and catalyst 

supports. Among them, gamma-alumina is widely used in the field of catalysis due to its 

stability, its surface area, and the physical chemistry of its surface. 

2.2. Alumina synthesis and shaping 

2.2.1. Solution Chemistry 

Jolivet gives a very exhaustive description of the solution chemistry of alumina synthesis. A 

summary of his theories will be exposed here (Jolivet 2016). 

The precipitation of alumina from a solution (boehmite for example) can be done in three 

different ways: by neutralization with a base at room temperature, by thermohydrolysis, 

and by hydrothermal treatment. When the aluminum cation is in solution, it forms aquo 

complexes of the type [Al(OH2)N]3+ due to the Lewis acid behavior of the cation. The 

covalent O-H bond on the aquo complexes is weaker than that of the water solution, and 

the aquo complexes behave as a Bronsted acid, releasing protons by hydrolysis and 

hydroxylating the complex, forming an aquo hydro complex. The degree of hydroxylation 

(defined as the number of hydro groups in the coordination sphere of the cation) depends 

on the formal charge of the cation (z/r) and the pH of the medium. 

This aquo hydro complex can condense in oligomers by olation and hydroxylation. The 

number of elements of the oligomer is limited to the weakening of the polarization capacity 

of the cation. 

The olation is the faster of the two mechanisms and it occurs by unimolecular substitution. 

The hydroxyl group (entering group) substitutes an aquo group (exiting group) forming a 

hydro bridge. The oxolation occurs through a slower two-step mechanism of bimolecular 

association by the nucleophilic attack of a hydroxo group to the cation, forming oxo bridges. 
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The polycationic structures are continuously and rapidly changing and are very sensitive to 

the pH of the medium. The formation of the crystal structure requires the right 

hydroxylation index and time to neutralize all the species in solution. 

The germination of the crystal occurs due to the birth of neutral species and not from the 

addition of polycations. Once the particle nucleates, it grows during an aging process. Aging 

involves two mechanisms, dissolution/crystallization and/or structural reorganization. The 

first one is prominently present when the pH of the solution is far from the limit of solubility. 

This mechanism facilitates the dissolution of the species and favors the mass transfer 

through the medium. According to the pH value, the resultant crystalline structure obtained 

can correspond to gibbsite (pH=5) or bayerite (pH=10). Structural reorganization is always 

present, but it is predominant close pH=6, almost at the limit of solubility. This 

reorganization is governed by the Ostwald law (Euzen P., Raybaud P. et al. 2002). The 

mechanism leads to boehmite crystals due to a final dehydration process during the 

structural reorganization. This method usually leads to the formation of very small crystals 

(Jolivet 2016). 

There are different methods to generate the neutral species and cause nucleation. These 

nucleation conditions will define which form will nucleate and which morphology will be 

favored. 

2.2.2. Industrial Synthesis 

According to the technological application, the synthesis path can differ since, for example, 

undesired impurities can remain present in the solid as traces depending on the synthesis. 

For example, this is the case for catalysts that are not favored by the presence of sodium 

on their surface. 

Synthesis methods will fundamentally include the following routes: 

- Neutralization with a base at room temperature. 

- Thermohydrolysis: This implies heating the solution (below 100 °C, and at 

atmospheric pressure) in an acid medium to force the deprotonation of the aquo 

complexes and cause the hydroxylation beyond the thermodynamic limit that 

existed at room temperature. This allows obtaining a neutral precursor 

[Al(OH)3(OH2)3]0. This process leads to the formation of boehmite crystals. The 

thermal effect favors condensation kinetics and dehydration and, as a consequence, 

the formation of the oxyhydroxide (Jolivet 2016). 
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- Hydrothermal treatment consists of increasing the temperature above 100 °C and 

increasing the pressure to maintain the solution in the liquid state. In those 

conditions, the physicochemical properties of the water vary. This modification in 

the synthesis conditions allows influencing the acidity and the orientation of the 

oligomers, allowing them to obtain crystals structurally and morphologically 

different from those obtained by thermolysis (Schüth 2002a). 

A practical example is the aluminum alkoxide hydrolysis, into which the alkoxide is 

hydrolyzed to obtain boehmite plus long-chain alcohol; neutralization is obtained by 

decomposition of a base in solution with an acidic aluminum salt. 

2.2.3. Shaping for Catalyst Industry 

The industrial catalyst and adsorbents must satisfy several constraints. In the industry, the 

process is generally carried out under important stress conditions for the elements that are 

assembled conform to the chemical plant. Such stress comes from process conditions that 

imply high hydraulic loads, high temperature, pressure, friction, and abrasion produced by 

the fluid that goes through the system or by the movement of the system itself. The shaping 

of the solid obeys the primary necessity of having a solid structure with high mechanical 

resistance and thermal stability to face severe process conditions. 

Additionally, the final shape should generate a low-pressure drop, while its external surface 

area should be high. At the same time, the internal surface area mandatorily needs to be 

high, and the structure of the porous network should reduce diffusion limitations of the 

molecules of interest. 

Boehmite powder is composed of agglomerates with an approximate size between 5-40 

µm, which are composed of aggregates that are held by electrostatic forces. The mean size 

of these aggregates is between 0.3-5 µm. The aggregates are formed by boehmite crystallite 

clusters, whose typical size is 2-50 nm. The typical size of the crystallite clusters matches 

the mesopore size range. 

During the shaping, rheological modifiers and pore-forming agents (used to increase the 

meso- and macroporosity) are employed. The traditional methods to shape the solid 

element of alumina are: 

- Extrusion 

Extrusion consists of producing a peptized dough of boehmite to be extruded in 

some particular geometry. The preparation of the paste consists of mixing the 

boehmite powder with water, a peptizing agent (an acid), and a rheological modifier 

(a plasticizer). The mix is mulled during a determined time and finally extruded. The 
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peptization grade of the boehmite influences the final pore volume and the pore 

size distribution obtained. The peptization extent will depend on the nature, 

concentration, and quantity of the acid, the mulling time, and the intrinsic 

dispersibility of the powder. 

 

- Oil-drop coagulation 

This consists of making drops of a boehmite slurry suspension that fall into a non-

miscible water fluid whose interaction with the drop will produce a surface tension 

that forces the drop to take a spherical shape. The slurry is composed of water, a 

peptizing agent, a rheological modifier, and a pore-forming agent. Several variants 

of the process exist, which use a base to recrystallize a fraction of the boehmite that 

may be diluted in a peptizing agent. 

 

- Granulation 

The alumina powder is granulated and introduced in a tilted rotating pan with 

alumina seeds (bigger grains) and a binder (which can be water). The alumina 

powder agglomerates around the seeds until a deformed spherical solid is formed 

and falls by gravity to the bottom of the pan. The geometry and the size distribution 

of solid obtained by this method are very difficult to control. 

The shaped boehmite element has then to be dried and calcinated, thereby creating the 

final porous network of interest. 

2.3. Alumina porous structure 

The porous structure of the alumina (topology), its textural properties (specific surface, 

specific pore volume, and pore size distribution) and its mechanical properties depend on: 

1. The morphology and the size of the elementary crystallites. 

2. The architectural arrangement in space of the different levels of porosity created by 

elementary crystallites, aggregates, and agglomerates. 

3. The presence of an artificial pore-forming agent. 

The morphology of the crystallites automatically expresses a specific surface-to-volume 

ratio. The commonly reported morphologies are fibrillary, oval, spherical, or orthorhombic 

plates (Figure 6). 
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Figure 6. TEM of different morphologies of alumina elementary platelets. (a) Fibrillar (Chiche et al. 2008) (b) Orthorhombic 

(Chiche et al. 2008) (c) Hexagonal (Santos et al. 1996). 

The morphology of the boehmite crystals and their spatial organization are the result of 

physicochemical, mechanical, and thermodynamic parameters of the synthesis, such as pH, 

viscosity, ionic strength, agitation, temperature, and pressure during the synthesis, shaping, 

drying, and calcination (gamma-alumina). Numerous computational and experimental 

studies have been developed over the years to understand the link between the properties 

of the shaped gamma-alumina and the different variables involved during its synthesis. 

As already mentioned, the porosity of the network is represented at three different scales, 

one associated with the spaces between the elementary crystallites conforming to the 

aggregates, a second one associated with the spaces between the aggregates, and a third 

one associated with the spaces between the agglomerates (Figure 7). 

 

 
Figure 7. Schematic distribution of pore volume distribution (Dadyburjor 1988). 
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Figure 8. Influence of the orientation of aggregates on the porous structure: (a) oriented particles; (b) non-oriented 

particles (Kotanigawa et al. 1981). 

The resultant pore network is disordered with mono or bi-dispersed porosity and has been 

the subject of numerous research studies linked to hierarchical structures. As would be 

expected, the orientation of the aggregate will also influence the architecture of the porous 

structure (Figure 8). Naturally, these studies influence the nature of any possible 

computational model. 

2.4. Classification of pore structure models 

Modeling the porous structure of a material is very useful to understand how a particular 

phenomenon at the pore scale influences the macro-scale. Since 1950, it has been 

attempted to understand how different phenomena such as adsorption, absorption, 

chemical reactions, mass transfer, heat transfer, momentum transfer, and growing of 

micro-organisms at porous scale affect macro-properties. All those phenomena are present 

in a vast range of domains of important industrial interest such as fuel-cells (El Hannach et 

al. 2014), chemical reactors (Ye et al. 2017; Gheorghiu and Coppens 2004; Ye et al. 2019a), 

absorbers, Carbon Capture and Storage (Li et al. 2006), Enhanced Oil Recovery (EOR) and 

bio-remediation (Ezeuko et al. 2011). 

In a general manner, a mathematical model serves to imitate the behavior of a particular 

system and how good it is depends on what is intended to be obtained from the model 

(Coppens and Bhatt 2017). The models of porous materials can be classified according to 

various criteria. 

A first classification is based on a distinction between continuous or discrete 

representations: 

- Continuum models express a particular property of a system state as a smooth 

function of a position and/or a time coordinate, to guarantee continuity in the 
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relation that has been established. The continuum models for porous structures do 

not account explicitly for their local topology, even if this is an important textural 

property for the transport inside the porous material. The topology of the system 

encloses the connectivity of the network, and it can also be a function of time. 

Continuum models use effective parameters to account indirectly for different 

phenomena that occur at the porous scale. These effective parameters usually come 

from empirical correlations and are constrained to be representative of the 

evaluated system. This means that if there is a change in the topology of the material 

(for example) the effective parameters of the model will be no longer valid. 

- In discrete models or heterogeneous models, the solid phase and the fluid phase are 

considered separately. 

A second classification is described in the Handbook of Porous Solids (Schüth 2002b, 2002b, 

p. 208) and focuses on the generation process of the models: 

- Mimetic simulation methods are based on the idea that, by representing the 

synthesis process of the material and mimicking it with a simulation model, one can 

obtain a simulated material that matches the measured properties of the material. 

- Reconstruction methods directly create a numerical representation of the porous 

material that matches its measured properties, without considering the synthesis 

process of the material. 

A third classification is based on the scale(s) under consideration. Models for porous 

structures can contemplate the atomic scale, the micro/mesoscopic scale, and the 

macroscopic scale: 

- In atomic-scale models, the atoms are the smallest discretely modeled units and are 

placed in space considering the atomic structure of the material and the force fields 

around them (Figure 9). This approach contributes to study the interactions 

between a fluid phase and the solid structure. The drawback of this approach resides 

in the calculation time necessary for the minimum number of atoms (a 

representative volume element, or RVE) required in (heterogeneous) disordered 

solids in order to obtain results that represent the textural and surface properties of 

the material. However, atomic-scale methods are very useful to study confinement 

effects and to better understand phenomena such as capillary adsorption in pores 

of different materials, sizes, and shapes. 

- For the micro-mesoscopic scale, coarse-grained models are used. In these models, 

the atoms are no longer distinguished in the solid structure, so the solid is 

considered to be homogeneous below the microscopic scale. These models are 



19 

discrete models, and, for their construction, they can focus either on the solid itself 

or on the void space. 

- Macroscopic modeling relies on porous solids pseudo continuum models. These are 

used to model transport phenomena and chemical kinetics within catalyst pellets 

implicitly considering the pore network influence through a tortuosity factor. 

 

 
Figure 9: Atomistic perspective of ZSM-5; silicon atoms are in yellow, oxygen atoms in red (Newsome et al. 2014). 

A fourth classification is based on a distinction between solid models and void models: 

- The solid-focused models or grain-based models use agglomerations of solid 

Euclidean forms to recreate the porous structure of the material. They can also use 

irregular solid objects when image reconstruction techniques are used (as explained 

below). 

- The void space-focused models use agglomerations of Euclidean forms that 

represent the void. It can be said that it is like carving the void in the solid. To do so, 

regular and irregular lattices of different nature are used to account for the 

connectivity between the pores. In this category enter the pore network models. 

The last remark concerns the effect of the dimensional behavior of the model. A system is 

called isotropic if its intensive properties behave statistically in the same way in any 

direction. If not, the system is considered anisotropic. However, observing an identical 

statistical behavior also depends on the length scale. If we isolate a small portion of our 

system delimited by a cubic cell, we will probably need to increase the size of this 

characteristic cell until observing an isotropic behavior. A cell at this point can be considered 

as a discrete point with properties equivalent to volume average properties of the points 

enclosed by the cube. If the volume of the cell keeps increasing, an anisotropic behavior can 
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arise again. It is convenient to ensure that the properties at the length scale of the model 

are isotropic to avoid the use of tensors. 

2.4.1. Heterogeneous models 

Generally speaking, a heterogeneous model is designed to create a discrete statistically 

representative structure. These structures can be:  

- Lattice-based or pore network models: Regular and irregular lattices of different 

nature are used to account for textural and topological properties. 

- Grain-based models: Random or ordered packing of solids are used, considering or 

not the packing process. 

- Models obtained from image reconstruction methods. 

- 2D mapped structure-based models: Scanning information in 2D is used to make a 

reconstruction of solid accompanied by extrapolation algorithms (Hannaoui et al. 

2015). 

- 3D mapped structure-based models: Scanning information in 3D is used to make a 

reconstruction of solid (Figure 10). 

 

2.4.1.1. Image reconstruction methods 

These models use as input information the images obtained by tomography and 

microscopy. The image reconstruction methods are also called pore network extraction 

models. The main problem of these methods is the difficulty to obtain global and non-local 

representative properties. When the total structure is not directly mapped, these methods 

fail in predicting long-range connectivity (Xiong et al. 2016). Also, at the low scales, they are 

limited by the highest resolution that can be reached with the image characterization 

techniques. Image reconstruction methods can be classified in: 

➢ Statistical Reconstruction from 2D scanning information: By using 

morphological descriptors, it is possible to statistically reconstruct a 3D 

representation of the solid by starting from 2D images (Hannaoui et al. 

2015). 

➢ Direct-Mapping Models: 3D scanning information is used to reconstruct the 

full topology of the solid obtaining a 1 to 1 spatial representation of the 

system. The two more common algorithms for extracting the porous 

network of a digital binarized volume are the medial axis algorithm and the 

maximal ball algorithm. One of the particular problems of this kind of model 

is the criterion to identify the pores in very heterogeneous systems (Figure 

10). 
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-  
Figure 10: Extraction of Hollington sandstone pore network using watershed segmentation algorithm: (a) the region of 

interest within the porous body (cube size: 840 microns); (b) Connected body of isolated pores; (c) breaking down the 

structure with watershed algorithm; (d) labeling the detected pores with different colors; (e) Putting the spheres and 

tubes inside the geometry representing the pores and throats, respectively (Baychev et al. 2019). 

2.4.2. Grain-Based Models 

In this kind of model, Euclidean solids are used to simulate the agglomeration of the 

elementary particles or aggregates of the material in order to reproduce the porous 

structure. The models created using this method can be mimetic (diagenetic) or 

reconstructive. This kind of model is abundant in the literature (MacMullin R. B. and Muccini 

1956; Aste et al. 2004; Silbert et al. 2002; Sasloglou et al. 2000; Kansal et al. 2002; Beeckman 

1990). Grain-based models are used to represent a stack of catalysts or supports within 

reactors, absorbers, filters, crystallizers, driers, and distillation columns to simulate the 

hydrodynamics of the system. They have been proven to be useful for the reconstruction 

of porous media related to soil modeling for bioremediation, oil recovery, water 

permeation, and geological evolution. 
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In mimetic models, the departure point of structural transformation is also associated with 

Euclidean objects, which, due to its regular geometry, makes it easy to model force field 

interactions and phenomena such as aggregation or peptization. 

However, these models become less convenient when they are not able to reflect the 

heterogeneities of the pore matrix. Also, the final morphology of the void channels is 

generally highly irregular, which complicates the accurate resolution of the transport 

equations inside the void space. This is not convenient for a system with large 

representative volume elements because it requires high calculation times to perform a 

simulation. 

2.4.3. Pore Network models 

Even if all the aforementioned methods attempt to model the pore network of the material, 

the term pore network model is usually reserved to lattice-based structures into which the 

pores are represented with Euclidean solids connecting the nodes of the lattice. This kind 

of organization allows also building hierarchical structures. 

Some examples present in the literature are hybrids of different approaches. Except by 

direct mapping models, the pore structures built are expected to statistically reproduce the 

properties of the actual porous network. 

A more detailed literature review of pore network models will be given in section 2.6. 

2.5. Porous structure experimental characterization techniques 

The characterization of porous structures involves several properties of interest that reach 

the field of topology and stereology. The simplest properties are porosity, surface area, 

volume, and pore size distribution. Increasing the level of detail, it is also possible to study 

the pore shapes, their mean curvature, the surface roughness, the structural correlations 

within the solid matrix, and the topology. Some common techniques are shown in Table 2. 

Table 2. Conventional characterization techniques for porous solids. 
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Using different characterization techniques, it is possible to get direct or indirect insights 

into the material’s textural properties. In this section, we will provide more information on 

techniques that are used in this work. 

2.5.1.1. X-ray computed micro-tomography 

It provides 2D and 3D images of the topology of the solid. It is a non-destructive technique 

(Coles 1999; Hamamoto et al. 2016; Schlüter et al. 2014; Blunt et al. 2013; Ketcham and 

Carlson 2001). 

2.5.1.2. Focused Ion Beam (FIB) couple with Scanning Electron Microscope 

(SEM) 

SEM is a microscopic technique that provides 2D images of the surface of a solid. Coupling 

a focused ion beam allows eroding layer by layer the sample’s surface. The 3D volume is 
reconstructed by piling the SEM images of each slice (Wirth 2009; Keller et al. 2013; Uchic 

et al. 2007). 

2.5.1.3. Nuclear Magnetic Resonance-Relaxometry 

NMR relaxometry allows measuring the pore size distribution of a sample and the auto-

diffusion coefficient of a species. The measurement is based on the random movement of 

the molecules and the energy released by them due to relaxing after being excited by an 

energy source (Mohnke 2014; Javed et al. 2019). 

2.5.1.4. Nuclear Magnetic Resonance-Cryoporometry 

This technique is based on the shift in the solid-liquid phase transition temperature of a 

chemical probe due the solid-liquid interface curvature. At the beginning, the liquid phase 

is imbibed into the solid, and then solidification and melting of the probe are performed. As 

the sample is frozen or melted, the intensity of the Nuclear Magnetic Resonance (NMR) 

signal associated with the liquid phase quantity is recorded. Finally, one obtains 

characteristic curves representing the amount of liquid as a function of the temperature. 

The sensitivity of the temperature sensor and the right choice of the relaxation filter 

parameter are crucial and can limit the technique. The thermodynamic model on which is 

based the data treatment is the Gibb-Thomson equilibrium equation (Mitchell et al. 2008). 

Freezing and melting temperatures depend on the pore size and the surface-to-volume 

ratio, which evolves along the phase change process. The hysteresis between the melting 

and the freezing temperature is commonly associated with metastable states of the fluid 

under confinement. A difference in the solid-liquid interface mean radius of curvature 

between freezing and melting can also explain this hysteresis. In the case of a cylindrical 

pore for example, the melting proceeds radially while freezing occurs according to the pore 

axis. In order to avoid random heterogeneous freezing, a common practice is to generate a 
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solid phase layer surrounding the sample. This layer acts as a nucleation seed during the 

process and gets the freezing temperature closer to the equilibrium temperature (Mitchell 

et al. 2008; Petrov and Furó 2009). The freezing temperature can also be constrained by the 

absence of nucleation solid phase, preventing the solid phase formation and creating a 

metastable state (Petrov and Furó 2009). As there is a broad pore size distribution in 

disordered interconnected porous material, the freezing step can be topologically 

dependent, or as stated by Petrov architecturally dependent (Petrov and Furó 2009). On 

the surface of the pore remains a very thin layer (≈Å) of liquid, even after the homogeneous 

freezing step. Its thickness depends on the temperature and nature of the material and is 

called the pre-molten layer or plastic ice (Dash et al. 2006; Li and Somorjai 2007; Schreiber 

et al. 2001). 

Several attempts to model the cryoporometry characterization technique are described in 

the literature pursuing understanding the phase change under confinement phenomena 

and improving the interpretation of the results. For example, Kondrashova (Kondrashova 

and Valiullin 2013) used a lattice-fluid model to study how freezing and melting proceed in 

disordered mesoporous materials. Enninful presented a study that models cryoporometry 

by using a serially connected pore model (Enninful et al. 2019). In this model, the authors 

consider an advancing solid phase front for the freezing step and proposed to model 

advanced melting by including a constant factor to the Gibb-Thomson equation. Perkins 

used percolation analysis to simulate the advancing of the solid phase front phenomena 

and confirming the pore blocking effects by PFG NMR (Perkins et al. 2008). 

2.5.1.5. Mercury porosimetry 

Mercury porosimetry is used to characterize meso- and macro-porous materials. The 

technique relies on the resistance shown by a liquid with very high surface tension (non-

wettable liquid) to penetrate in a confined medium. The pressure that needs to be applied 

to the fluid so that it penetrates in a pore of a determined characteristic length can be 

determined by the Washburn equation. The latter is a mechanical equilibrium equation that 

can easily be derived from the Young-Laplace equation by making a balance of forces. The 

applied pressure is inversely proportional to the pore size. The effective measurement 

range is between 4 nm and 200 µm corresponding to pressures in the range between 

4000 bar to 0.5 bar, respectively. By increasing and decreasing the applied pressure, 

mercury intrusion and extrusion occurs, the variation of the mercury volume present within 

the sample being measured. 

For the analysis of the results, the assumption of a cylindrical pore geometry is widely used. 

This assumption allows relating the pore size to the applied pressure. Then, to each pore 

size must be associated a volume to get the intrusion and extrusion characteristic curves. 
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This characterization technique is well documented by Allen and Lowell (Allen 1990; Lowell 

and Shields 1991). The sample is first degassed and then immersed in mercury. By increasing 

its pressure, the front of mercury advances, penetrating pores according to a percolation 

process (Kaufmann 2010). Some difficulties can occur to assign a volume to a given pore 

size. As a matter of fact, due to the random location of pores of different sizes, wider pores 

can be further beyond the front where narrower pores are been penetrated at a certain 

pressure, which means that the volume of intruded mercury accounted at higher pressures 

will be accounted as mercury intruded into narrower pores. Naturally, this can be thought 

of as pore blocking. Once the final pressure is reached, it is decreased to start an extrusion 

process. During the intrusion, the mercury is in compression, while during the extrusion the 

mercury is in tension. For the analysis of the experimental results, a correction must be 

applied to consider the compressibility of mercury according to the pressure. 

Experimentally, there is a hysteresis between the intrusion and extrusion curve that can 

again be related to pore blocking phenomena, as in the case of the intrusion, but also to a 

change in contact angle and/or mean radius of curvature between the solid and the fluid. 

In the model commonly used for the analysis of results, the intrusion angle and extrusion 

angle are considered equal and constant. This is considered to be reasonable in the domain 

of oxides. However, various authors have proposed models in which the angles of intrusion 

and extrusion are different or even variable along the characterization (Kaufmann et al. 

2009). This also applies to the surface tension of the mercury. 

At the end of the test, there is a volume of mercury retained in the porous material after 

extrusion. The retention volume of mercury is generally proposed to be related to a jump 

of potential (Moore and Slobod 2013; Mohanty et al. 2013), which can be simply explained 

as a situation in which there is mercury trapped in a pore or ensemble of pores surrounded 

by empty pores that are smaller. This means that these full pores are at a lower potential 

than their neighboring pores and that additional energy should be provided to the system 

to drain the mercury that is trapped inside. 
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Figure 11. Intrusion/Extrusion Mercury Porosimetry typical curve (modified). (Rouquerol et al. 2011). 

On the intrusion curve, well-defined zones can be identified (Figure 11) for a porous 

medium made of an agglomeration of porous particles. The first one corresponds to lower 

pressures and represents the interparticle filling region. 

Due to the high hydrostatic pressures involved in the test, the solid is subject to plastic 

deformation and rupture caused by compression. As a result, it is necessary to be cautious 

if information from the extrusion curve is to be used. 

A significant number of authors have proposed simulations for this characterization 

technique (Tsakiroglou and Payatakes 1991; Lapidus et al. 2007; Mohanty and Scriven 1987; 

Murray et al. 1999a). The first attempt to use a pore network model to reproduce mercury 

porosimetry characteristic curves was performed by Mann in 1980, assigning the pore size 

distribution by trial and error (Mann and Golshan 1981; Mann et al. 1981). 

2.5.1.6. Nitrogen adsorption and desorption 

Nitrogen sorption relies on capillary condensation phenomena and is useful to characterize 

micro- (down to 0.5nm) and mesoporous solids (rigorously speaking, it is a liquefaction 

process). First, the porous sample is heated under vacuum to eliminate any trace surface 

adsorbed species. Subsequently, it is submitted to an ultra-high vacuum into a sealed vessel 

where nitrogen is then injected at its boiling point. Nitrogen starts to adsorb on the pore 

walls due to physical interactions. A layer of molecules is formed, and it thickens as the 

pressure increases. When the pressure is high enough, sudden condensation happens 

within the core, i.e. the free remaining volume, of the pore (Figure 12). 
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Figure 12. Simulation snapshots of argon particles in graphitic cylindrical pores at 87.3 K before condensation and after 

evaporation (Nguyen et al. 2011). 

The quantity of nitrogen present within the sample being measured, an experimental curve 

that relates the pressure to the amount of nitrogen adsorbed is obtained. This curve is called 

nitrogen adsorption isotherm. At the end of the adsorption process, the pressure is 

decreased to get a desorption isotherm by the same principle. When the two isotherms are 

plotted, it is possible to observe in some cases a hysteresis loop. The shape of the isotherm 

and the hysteresis loop provide qualitative information about the topology of the porous 

structure There exist classifications that allow the user to make inferences about the kind 

of structure and topology of solid according to the shape of the isotherm. The more cited 

classifications are IUPAC’s and Rouquerol’s (Figure 13) (Rouquerol et al. 2014a; Rouquerol 

et al. 2011). Different pore architectures generate different characteristic loops. 

 
 

Figure 13. Isotherm and hysteresis loop classification (Rouquerol et al. 2014b). 
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Several authors (Rodrigues et al. 1989; Sing 1985; Rouquerol et al. 2014a; Rouquerol et al. 

2011) explain why nitrogen sorption continues to be one of the most used characterization 

techniques for the characterization of the textural properties of porous solids. Among them, 

it is worth mentioning that the technique is cheap, technologically simple, widely used 

(useful for comparison), and that the thickness of the adsorbed nitrogen multilayer is largely 

insensitive to differences in the adsorbent particle size or surface structure. 

There exists theoretical evidence (Nguyen et al. 2011; Gelb and Gubbins 1999; Bruschi et al. 

2015; Zeng et al. 2017) suggesting that the adsorption and desorption branches are affected 

by the pore size, the pore length, the pore shape, the type of pores end, and the surface 

adsorption strength. These parameters could affect the shape of the liquid nitrogen 

meniscus, influencing the capillary forces and the critical density of the core before 

condensation/evaporation (Nguyen et al. 2011). 

The sorption hysteresis loop is generally considered to be related to the textural properties 

of the structure, topology, surface strength, and tensile strength. Usually, the surface 

strength and tensile strength are neglected: the surface strength is considered to be low 

since there is no chemical interaction of nitrogen with the surface, and the tensile strength 

is considered to be very high (rigid pores), respectively. 

By using theoretical and empirical models to interpret the nitrogen sorption curves, pore 

size distribution, pore-volume, surface area, and porosity are estimated from sorption 

experiments. BET, BJH and BdB (Broekhoff 1967; Brunauer et al. 1938; Barrett et al. 1951) 

are some common examples of models used for the interpretation of the results. 

Regarding computational modeling, adsorption in mesoporous materials is generally 

displayed as a phenomenon mainly influenced by capillary forces. Capillary forces will 

influence the sorption pressure of the nitrogen as a function of the textural properties of 

the material (pore size and pore shape). The classic approach to represent the phenomenon 

is through the modified Kelvin equation (Cohan 1944; Zhang et al. 2006). The modified 

Kelvin equation considers the variation of the thickness of the adsorbed layer of nitrogen 

before the sudden phase transition within the pore core. There exist different models based 

on thermodynamics and statistical dynamics with some empirical components to model the 

thickness of the layer (t) as a function of the pressure (Figure 14). A very interesting study 

about the influence of different statistical thickness models on the sorption isotherms was 

made by Šolcová in 2006 (Šolcová et al. 2006). 
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Figure 14. Examples of statistical thickness models. 

For adsorption, the modified Kelvin equation allows to directly relate the relative pressure 

to the pore size. The adsorption process of the gas is supposed to be unconstrained by the 

topology of the structure. 

For desorption, however, the pressure of the pore at which nitrogen in the pore desorbs is 

determined by the combined effect of the capillary forces and the topology, i.e. according 

to its location within the network. The topology of the structure can cause pore-blocking 

promoting a vapor-phase percolation phenomenon. Indeed, during the desorption step, the 

nitrogen vaporization can be delayed due to the topology of the material, creating a 

metastable state. Even if the desorption pressure for the pore is reached, the liquid phase 

needs to be in contact with the vapor phase to be able to desorb. Figure 15 represents a 

system of three pores A, B, and C in series open at both ends. A and C have a smaller radius 

than B. Assuming a cylindrical geometry, the desorption pressure of A and C is lower than 

that of B. This means that the nitrogen contained in B is constrained and cannot desorb until 

A or C is evacuated. Consequently, the phase change pressure of pore B will be lower than 

during adsorption. 

 
Figure 15. Representation of three pores in a row. 

Another common methodology for nitrogen sorption is the generation of scanning curves 

or scanning desorption isotherms. A scanning curve is represented by an adsorption branch 

obtained from a solid that is not totally filled with condensed nitrogen (relative pressure 

<1). The relative pressure at which the desorption starts will determine which pores are 

filled with condensed nitrogen (not just with adsorbed nitrogen). Scanning curves allow to 

C 
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obtain a qualitative interpretation of the structure and topology, to make inferences about 

the existence of possible hierarchical architectures, combining the experimental 

information with other characterization techniques (Cimino et al. 2013; Hitchcock et al. 

2014; Rigby et al. 2017). 

2.6. Pore Network Models: state of the art 

Pore network models are used in a great number of applications in different domains 

related to porous media. Adsorption, dissolution, precipitation (Peter Matthews et al. 

1996), biomass growth (Ezeuko et al. 2011; Daigle et al. 2015), permeability studies through 

soils, rock, and shales (Huang et al. 2016; Song et al. 2020; Spearing and Matthews 1991; 

Bultreys et al. 2016), chemical reaction (Adloo et al. 2019), mass transfer (Rosen 1976) and 

lyophilization (Attari Moghaddam et al. 2018) are some of the domains in which this kind of 

models is used. Using a pore network model, it is possible to simulate different phenomena 

and heterogeneities at the micro- and mesoscopic scale; some examples are phase 

exchange, non-Newtonian displacement, non-Darcy flow, slippage, interfacial transport, 

non-viscous effects, and reactive transport. 

Because pore network models are used in so many different scientific domains, there is no 

unified terminology for their description. Usually, the “centers” can be called nodes, sites, 
pore bodies, pore sites, or just pores; while the connections between them are called 

bonds, throats, or just pores. In what follows, referring to the vocabulary used in graph 

theory, we will use the term “nodes” for the centers, and the term “edges” for the 

connections. The term “pore” will refer to an object to which dimensions can be assigned: 

it can occupy a node position or an edge position. 

Pore network models provide significant advantages among which it is worth mentioning: 

- They represent a length scale above the atomic scale up to the macro scale. The first 

consideration means that it is possible to simplify the elemental surface chemistry 

characteristic of the material, which offers the possibility of considering 

representative clusters of the microscopic and the mesoscopic scale in shorter 

calculation times. Such a model allows simulating reaction kinetics, diffusion, and 

permeability at the micro/mesoscale. As affirmed by Xiong, the lower scale limit of 

the pore network is determined by the governing equations and the upper scale by 

the computational power (Xiong, Baychev et Jivkov 2016). 

- They allow modeling local and global heterogeneities of the material. 

- It is possible to get rid of the tortuosity. Tortuosity is defined by Keil as an ill-defined 

correction factor, affirming that the relation between the geometry of the structure 

and the parameter was not clear at all (Keil 1999), thereby supporting Rosen who 

defined it as a fudge factor (Rosen 1976). 
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The main characteristics of a pore network are: 

- Pore geometry. The geometry used to represent the void space is relevant for mass 

transfer considerations and the resolution of transport equations along the 

network. The pores usually have regular geometries such are cylinders, spheres, and 

cubes. Irregular geometries are usually associated with the representations 

constructed from image techniques information. The pore wall can be also smooth 

or rough. The existence of sharp edges can be useful to model bi-phasic flow, for 

example. The selected geometry will condition the maximum Surface/Volume ratio 

of the network and the number of parameters to set (Figure 16). 

- Characteristic dimensions of the pore. The selected geometry will determine the 

number of characteristic sizes or parameters to set. For example, a spherical 

geometry has just one characteristic dimension (radius); a cylindrical geometry has 

two characteristic dimensions (radius and length); a rectangular parallelepiped has 

three characteristic lengths (two sides sizes and its length) (Figure 16). 

- Assignation of the characteristic dimension(s) to the pores. This is also 

characteristic of different models. In the simplest case, the characteristic 

dimensions are constant. If at least one of them obeys a particular statistical 

distribution, there is more than one way to perform the assignation. 

- Nodes and edges. Different geometries and characteristics can be assigned to these 

elements. For example, nodes can be assigned to be zero-volume, while pores in the 

edge position have volume. Alternatively, a volume can be assigned to pores in the 

node positions, while zero-volume is considered for the pores on edges. As the latter 

create a resistance to mass transfer, in this case, the accumulation and resistive 

properties of the network are described separately. The definition of these features 

will affect the average coordination number, the range of reproducible textural 

properties, the mass transfer process, the complexity level of the equations to be 

solved. 

- Connectivity. Connectivity is a very important parameter in a porous material. It 

represents the number of edges connected to a node. This parameter influences 

permeability, mass transfer coefficients, and textural properties of the network. The 

average connectivity of the network’s nodes can be fixed at the beginning of the 

construction of the network, but it is also possible to make it dependent on the pore 

existence probability used during the creation of the pores along the network. It is 

also possible to use connectivity probability density functions for the network. 

Another way is to eliminate nodes or edges randomly until the desired connectivity 

is reached. 

- Architecture and level of correlation. The pore network can have several pore 

classes coming from different pore size distributions and pore existence 

probabilities. Those can be placed on different lattices along the network. The pore 

classes can be independent in terms of pore size. However, it is also possible to 
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generate more complex networks into which the different levels of porosity are also 

correlated. 

A lot of studies mention the importance of the distribution of the pore sizes, volume, and 

morphologies along with the network (Blunt et al. 1992; Knackstedt et al. 1998; Øren 2002; 

G. Jerauld et al. 1984; Hollewand and Gladden 1995; Valvatne and Blunt 2004; Sahimi et al. 

1990; Raoof and Hassanizadeh 2010; Meyers and Liapis 1999). 

 

 
Figure 16. Examples of regular transversal pore sections. 

 

    
a-) b-) c-) d-) 

    
e-) f-) g-) h-) 

Figure 17. Different lattice examples. a-) Square, b-) Single hexagonal, c-) Double hexagonal, d-) Triple hexagonal, e-) 

Voronoi-Dirichlet, f-) Voronoi tessellation, g-) Delaunay tessellation, h-) Bethe tree. 

 

Another element to pay attention to in a pore network model is the kind of lattice used 

since it will influence the connectivity and the topology (Figure 17). The elemental 

classification for lattices is relative to their organization. A lattice can be regular or irregular. 

In a regular lattice, the nodes are displayed with short or long-range order, a constant and 
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well-defined pattern. Since his first work, Fatt (Fatt 1956a) showed and compared several 

kinds of lattices. Naturally, a lattice can be displayed in two or three dimensions. There exist 

some more elaborated lattices as the Bethe lattice (Beeckman and Froment 1979; 

Beeckman and Froment 1980), the Voronoi lattice (Voronoi 1908), and the Delaunay lattice. 

The latter is a combination of Voronoi polygons with a Dirichlet tessellation. This kind of 

tessellation produces spatially correlated random networks (Tranter et al. 2018). The Bethe 

lattice does not have closed loops. Figure 18 shows an example of a pore network model 

based on a regular square lattice with spherical pores on the node locations and cylindrical 

pores on the edge locations. 

 
Figure 18. 2D Cylinders and spheres regular square lattice pore network representation. 

The pioneer of pore network models is Fatt in 1956. At that time, there were two main 

common models used to describe the permeability through a material: the bundle of tubes 

model described for diffusion and reaction by Wheeler (Wheeler 1951) and the sphere 

packs. According to Fatt, even if the bundle of tubes models allows making rigorous 

derivations of properties, it fails to correctly represent the porous material in terms of flow 

isotropy. On the other hand, the sphere pack prevented the derivation of an accurate 

description of flow through the interstices due to the complexity of the geometry of the 

voids. He hypothesized that, if the two models were combined to represent the pore space 

seen in sphere pack model, it would then be possible to create a network on which exact 

flow calculations could be made (Fatt 1956a). Decades after this statement, this idea would 

be sustained by Gladden, who reiterated that by representing the pore space with pores of 

idealized geometry, the equations of diffusion and reaction can be easily solved (Hollewand 

and Gladden 1992). 

However, for a long time, the bundle of tubes model has still been around along with some 

modifications but with the same limitations, as in the work by Wakao and Smith for a 

hierarchical network representation of alumina (Wakao and Smith 1962) or in the work by 

Mann and Thompson for zeolites (Mann and Thomson 1987). Johnson and Steward offered 
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a solution to the lack of pore connectivity in the bundle of tubes model by creating the 

cross-linked capillary model (Figure 19) used for model diffusion through a porous media 

(Johnson and Stewart 1965; Feng and Stewart 1973). 

 
Figure 19. Cross-linked capillary model representation (Feng and Stewart 1973). 

In 1981, Mann used a stochastic pore network model in order the simulate mercury 

porosimetry and also coking (Mann and Golshan 1981). At that time, he claimed to use some 

sort of version of invasion percolation previously developed for oil entrapment, but he did 

not explain the methodology. Some years after, he was the first author along with Sharratt 

in publishing an extensive study relating diffusion and reaction to the pore network 

properties (Sharratt and Mann 1987). 

Mohanty and Lin (Mohanty 1981; Lin and Cohen 1982) were the first to develop an explicit 

methodology to map material onto an equivalent structure of interconnected pore bodies. 

Mohanty argued in his Ph.D. thesis how transport and reaction are influenced by the 

morphological state of the porous media and formulated the problem of lack of sufficient 

information for the analysis of such phenomena coming from macroscopic measures 

“which often provide the essential but not sufficient information” – he said. Mohanty 

sustained the need for a microscopic approach arguing about the multiphase flow 

dependency upon microscopic connectivity, which had been at the time recently 

demonstrated by several researchers (Larson et al. 1981; Dullien 1979). 

In 1991, Gladden used two pore network models to study diffusion and reaction in a 

spherical-shaped catalyst. In both models, the edges are modeled as cylinders (Hollewand 

and Gladden 1991). The pellet is modeled as a cube. Two of the parallel faces of the cube 

are set as the surface of the material and the other 4 perpendicular faces are periodic 

boundaries. The first model uses a regular cubic lattice in which connectivity is varied by 

eliminating randomly nodes along the network. In the second case, the authors did not use 

a lattice but distributed the nodes randomly within the cube. The nodes were connected 

through pores that were assigned along the network until the desired connectivity was 

reached. The diameter of the edge was randomly assigned from a given pore size 

distribution. For the selected simulation conditions, the tortuosity calculated for regular and 

irregular networks are significantly different. It was also observed that the sensitivity of 
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tortuosity to the pore size distribution and the connectivity decreased as the connectivity 

increased. To understand the relation between the irregular and regular networks, this 

research group published new research in 1992 characterizing the networks by percolation 

and finite-size scaling theories (Figure 20). They concluded their work by saying that the 

critical exponents that were found are independent of the topology and the connectivity, 

but only dependent on the system dimensionality (Hollewand and Gladden 1992). Also, 

they confirmed that the differences in percolation threshold on both types of pore networks 

were significant but disappeared for very high connectivities (Z=14). The authors also 

advised against using uncorrelated pore size distributions for the different levels of porosity. 

They already suggested that the topology and the connectivity may have an important role 

in the diffusion and diffusion-reaction properties of the network. This work changed the 

paradigm impulsed by the results shown by Jerauld (G. Jerauld et al. 1984), in which there 

was no difference between the percolation properties obtained from a regular network and 

from an irregular network assembled on a Voronoi lattice, both having the same 

coordination number. However, this still remains a controversial topic. 

 
Figure 20. 2D representation of the hierarchical pore network used by Gladden in 1992 (Hollewand and Gladden 1992). 

 

Spearing and Matthews developed a pore network baptized as the Pore-Cor model (and 

recently rebaptized PoreXpert) for representing a Clashach sandstone (Spearing and 

Matthews 1991). In their work, they chose a cubic geometry for the nodes and cylinders for 

the edges (Figure 21). The size of each cubic node depended on the maximum size of the 

cylindrical edges arriving on the node. This allowed them to avoid the overlap between 
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pores. At the same time, this structure allowed them to correlate the node-edge geometries 

and to use an experimental throat/pore diameter correlation for the same material. They 

verified the pore size distribution by using a mercury intrusion simulation and compare the 

geometric surface area to the BET area. To adjust the model’s BET area, they considered a 

rough surface on the pore walls, adding roughness parameters to adjust the model. 

In 1995, Satik and Yortsos proposed a cubic network lattice to study the effect of the 

temperature on sorption isotherms using as a case study the flow in a geothermal field 

(Satik. C. 1995). The lattice was assembled using cylinders and spheres, representing edges 

and nodes, respectively. The diameters of the edges were randomly assigned using three 

different pore size distributions. The rules used for modeling the sorption phenomenon 

were those established and explained by Yortsos who considered pore-blocking 

phenomena, the topology, and the thermodynamic stability of the system (Parlar and 

Yortsos 1988, 1989). Keil used the same kind of network to study diffusion and reaction in 

porous material using a pore size distribution coming from experimental nitrogen sorption 

(Keil 1999). 

 
Figure 21. 3D representation of the pore network used by Spearing and Matthews in 1991 (Spearing and Matthews 1991). 
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Figure 22. Pore‐network modeling of biofilm evolution in porous media. (Ezeuko et al. 2011) 

In 2002, Gladden published two very interesting studies in which capillary condensation was 

considered along with diffusion and reaction in a pore network (Wood and Gladden 2002; 

Wood et al. 2002). They discussed the insights of the effect of Thiele modulus and the pore 

network parameters on diffusion. In this work, they used a random pore network model 

based on their previous work (Hollewand and Gladden 1992) and on the work of Sharratt 

and Mann (Sharratt and Mann 1987). 

In the last decade, pore network models have also been used for studying biofilm evolution 

in porous media (Figure 22). In these studies, the influence of the support on the biofilms is 

tested and new bioreactor models are proposed. 

Pore network models can have a limited predictive capacity “because some characteristic 
features of the pore space are missing” (Blunt 2001), as in the Fisher and Celia model to 

predict permeability based on capillary pressure measurements (Fischer and Celia 1999). In 

the same review, Blunt stated that a spatially correlated disordered network was required 

to make more accurate predictions. With spatially correlated networks, Blunt was enclosing 

the effect of the topology, thereby reaffirming Gladden’s conclusions (Hollewand and 

Gladden 1995). 
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In 2002, Moore studied the effect of pore structure, randomness, and pore size on effective 

diffusivity using different kinds of regular and random lattices (Mezedur et al. 2002). Here, 

the creation of the pores is based on an average porosity, which can be directly related to 

a probability of existence, while in previous works, the porosity or the connectivity was met 

by randomly eliminating nodes or edges of the network. 

The Dual Site-Bond Model (DSBM) is a pore network modeling approach was developed by 

Mayagoitia (Cruz et al. 1989; Mayagoitia et al. 1996; Mayagoitia et al. 1997). Like the Pore-

Cor model, the authors use a regular square 2D lattice or a regular cubic 3D lattice, in which 

nodes are represented by spheres and edges by cylinders (Figure 23). They use a 

constrained Markovian process to assign of a size characteristic to each pore, in which the 

radius of the spherical pore located on the node needs to be larger than the radii of all 

cylindrical edges arriving on the node to avoid the overlap between pores. In contrast to 

other pore network models, the algorithm does not draw a new pore size, but it iteratively 

swaps the sizes of two randomly selected nodes or two randomly selected edges until all 

geometrical constraints are satisfied. This methodology provides a potential to the nodes 

and edges to restrict the way into the network is created. It can be used to create pore 

networks with different scales of correlated porosity by creating new probability density 

functions that change dynamically as a result of the interaction between the probability 

density functions of the two scales. It is also possible to statistically consider overlaps 

between the geometrical representation of the pores or avoid overlapping by setting local 

size constraints (Montiel et al. 2019). For example, it is possible to consider the adsorption 

energy distribution as a potential and to build and an energetically consistent structure 

(Riccardo et al. 1993). 

 
Figure 23. Dual site-bond network representation (Montiel et al. 2019). a-) Representation of the real media. b-) Pore 

network. 

Armatas and Pomonis used a Monte Carlo semi-random dual-site-bond model (DSBM) to 

study the porous characteristics of functionalized silica (Armatas and Pomonis 2004). This 
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kind of pore network model uses as input the pore size distribution obtained by nitrogen 

sorption porosimetry and the specific surface area calculated by BET analysis. The length of 

the edges is constant. The pore networks are generated according to a probability of 

existence. The generation of the network starts by increasing the probability of existence 

until the backbone of the network is constructed as soon as the percolation threshold is 

reached. The edges that are part of the backbone are considered to be macropores, and no 

volume is assigned to them under the hypothesis that the BET analysis does not account for 

macropore volume since the quantity of nitrogen adsorbed within them is negligible. The 

rest of the network is built starting from the backbone until the BET surface is reached. 

Again, the nodes must have a radius higher than the biggest edge connected to them. The 

method is called semi-random because the smaller edges are set to be closer to the external 

surface of the network. Nitrogen sorption is simulated within the network. The position of 

the edges is then varied randomly to obtain an isotherm that agrees with the experimentally 

measured one. In 2006, Armatas published additional work using the same pore network 

and studying the combined effect of variation of the pore size distribution, tortuosity, and 

connectivity on diffusive transport parameters. However, this time, instead of varying 

randomly the edges of the network to generate a particular nitrogen isotherm, he fitted the 

topology of the structure to a pore connectivity distribution using a Monte Carlo method 

(Armatas 2006). These different approaches indicate different ways of distributing the 

volume along with the network and different ways to generate hierarchical networks. 

In 1981, Androutsopoulos (Mann et al. 1981; Androutsopoulos and Salmas 2000b; 

Androutsopoulos and Salmas 2000a; Ammus et al. 1987) created a pore model called 

Corrugated Pore Structure Model (CPSM). This model is an upgrade of the bundle of tubes 

model and has similarities with the specular model developed by Foster (Foster and Butt 

1966) (Figure 24). This is a statistical numerical method that models the pore structure as 

cylindrical pores of different diameters connected in series. The model has been adapted 

for nitrogen sorption, mercury intrusion, and deactivation due to carbon lay down 

(Androutsopoulos and Salmas 2000a; Androutsopoulos and Salmas 2000b; Ammus et al. 

1987). However, the biggest disadvantage of the model lies in a limited concept of 

connectivity that makes impossible the simulation of a real percolation process, thereby 

requiring to use artificial parameters for fitting. For example, for nitrogen sorption, the two 

angles used to define the curvature of the liquid-vapor interphase are freely varied to fit 

the model. Based on CPSM, a tortuosity predicting model has been also created (Salmas 

and Androutsopoulos 2001). However, the lack of a real representation of the connectivity 

makes the model predict very high tortuosity values (Armatas and Pomonis 2004). 
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Figure 24. Graphical representation of a corrugated pore structure model (CPSM) (Androutsopoulos and Salmas 2000a). 

 
Figure 25. Huang pore network representation (Huang et al. 2016). 

In 2016, Huang (Huang et al. 2016) used a pore network to model a two-phase shale matrix 

flow. The pore geometry was rectangular for the edges and cubic for the nodes (Figure 25). 

The authors assumed that only the edges would offer a resistance to the flow, but without 

having volume, while the nodes possess volume, but do not offer a resistance to the flow. 

The edge length was considered as constant, and the node inscribed diameter was 

randomly assigned according to a given pore size distribution. 

Xie worked on a pore-network model including viscous coupling effects using direct 

simulation by the lattice Boltzmann method (Xie et al. 2017) based on the network adapted 

by Blunt (Valvatne and Blunt 2004) (Figure 26). 

 
Figure 26. Different fluid configurations for biphasic flow in a pore from the network. (Xie et al. 2017) 
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Figure 27. Sadeghi’s model: (a) Bottom-up approach (b) Top-down approach (Sadeghi et al. 2017). 

In 2017, Sadeghi studied the influence of hierarchical structures on mass transfer by doing 

a sensitivity analysis of a new pore network model approach (Sadeghi et al. 2017). In his 

adaptation, two approaches are defined, which he called the bottom-up and the top-down 

approach (Figure 27). The approaches look to create a hierarchical structure using different 

strategies. The node geometry is spherical, while the edges are cylindrical. The edge length 

is constrained by the radius of the nodes and the node spacing. There are always two levels 

of porosity (defined as A and B). In the bottom-up approach, the network is assembled using 

the smallest level of porosity (A); some nodes are selected randomly and the perimeter that 

surrounds it is substituted by a spherical pore of level B. The top-down approach is a simple 

inversion of this methodology: the network is created by using the largest level of porosity 

(B), and some of these nodes are selected randomly and replaced by a set of smaller nodes 

(A). He did not specify the strategy for the assignation of the diameters of different pore 

levels. 

Probability functions can be applied to the networks to adjust pore densities to create 

porosity gradients. Tranter used two different pore size distributions for the generation of 

a network. Defining different pore size distributions along different directions allowed them 

to decrease the pore-density at the top and bottom surfaces of the domain, creating larger 

pores (Tranter et al. 2018). This is intended to simulate experimental porosity gradients. 

Ye developed an algorithm for generating a pore network with an arbitrary external surface 

shape (Ye et al. 2017) (Figure 28). This methodology allows varying the external border 

conditions for mass transfer simulations, i.e. the ratio of external to internal pores. 
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Figure 28. Four different kinds of pore networks with one-holed ring border conditions. (a) A regular network of cylindrical 

pores (b) Regular network of cylindrical and spherical pores (c) Irregular network of cylindrical pores (d) Irregular network 

of cylindrical and spherical pores (Ye et al. 2017) 
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Chapter 3: Pore Network Model Generation 

3.1. Introduction 

This chapter describes the pore network model that was implemented to model gamma 

alumina. In the next section of this chapter, a general description of the pore network model 

structure is given. Section 3 describes each input variable used for the pore network 

generation, while section 4 explains the generation algorithm of the pore network step by 

step. In the fifth section, the minimum network dimension and the minimum number of 

simulations required to limit the variance on the calculated properties is discussed. In the 

sixth section, an analysis of the influence of the input parameters on the geometric textural 

properties of the network is presented. The seventh section details the percolation 

algorithm used to characterize the network and the selected binary heap algorithm. In the 

last sections, a topological and architectural analysis of the network is performed. 

3.2. Pore Network Model (PNM) 

The pore network model that we propose is created through a discrete reconstruction 

method based on a stochastic algorithm that starts from an initial lattice, or graph, made of 

nodes and edges. At the end of the pore network generation process, hollow cylinders will 

occupy a fraction of the edges, while the remaining nodes can be either zero-volume nodes 

(i.e., the nodes do not play any physical role) or be occupied by hollow spheres with a 

physical influence in the model. It is possible to create a pore network in 1D, 2D, or 3D. 

Generated pore networks can have a fixed size or can be periodic along one or several axes. 

The characteristics of the initial lattice define the maximum connectivity of the network, i.e. 

the initial number of edges of each given node. At the end of the pore network generation 

process, this corresponds to the maximum number of pores that can be connected to a 

given node. The lattice can either be regular, with a fixed spacing between the nodes, or 

irregular, by creating random displacements of the nodes in the lattice. Hence, the length 

of the pores located on the edges will either be constant (in regular lattices), or variable. 

Different features provide heterogeneity to the digital structures in order to obtain not only 

a good representation of the textural properties but also a good representation of the 

topology of the network. With the developed pore network generation tool, it is possible to 

use several pore size distributions in the same network, which allows the construction of 

hierarchical structures, i.e. networks with different porosity levels. The porosity of each 

porosity level of the network is controlled by a threshold value defined as the pore existence 

probability (PEP). Each porosity level can have its own PEP. The intertwining of the various 
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porosity levels can also be varied by modifying the grid spacing between the different pore 

levels, thereby adding complexity to the final network. 

The pore network generation tool uses a Monte Carlo algorithm that works as follows. At a 

given node, an edge to a “neighboring” node is selected, and a random number is drawn 
and compared to the pore existence probability threshold in order to evaluate whether a 

pore is to be created or not. If a pore is to be created on this edge, its pore diameter is 

randomly drawn from a user defined pore size distribution. By repeating this procedure for 

each edge, each node will be connected to a number of pores that ranges from 0 (non-

existing node) and the maximum connectivity number. After generating the network, 

inaccessible pores are removed. 

3.3. Input variables of the pore network model 

3.3.1. Network size and dimensions 

The network dimensions are defined according to 3 parameters that will define the network 

volume: 

- Directions. The edges can be created in 1 direction (𝑋⃗), 2 directions (𝑋⃗, 𝑌⃗⃗) or 3 

directions (𝑋⃗, 𝑌⃗⃗, 𝑍⃗). 

- Number of nodes along each direction 𝑁𝑋⃗⃗ , 𝑁𝑌⃗⃗, 𝑁𝑍⃗. 

- Node spacing. 

The total number of nodes is given by: 𝑁𝑇 = 𝑁𝑋⃗⃗ ∗ 𝑁𝑌⃗⃗ ∗ 𝑁𝑍⃗ 

Equation 1. Total number of nodes 

By defining the number of nodes in each direction, the algorithm detects which are the 

direction throughout the edges will be created. If in a given direction, the number of nodes 

is equal one, the corresponding direction is removed. 

The maximum initial total number of edges can be estimated as: 

𝑁𝑇𝐸𝑑𝑔𝑒𝑠 = 𝑁𝑇𝑛𝑜𝑑𝑒𝑠 ∗ 𝑍𝑚𝑎𝑥2  

Equation 2. Maximum number of pores (estimation) 

The node spacing defines the initial distance between two adjacent nodes along an axis. In 

the current version of the pore network generation model, the initial distance between two 
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adjacent nodes is the same in each direction. This initial grid of nodes is equidistant in all 

directions. 

3.3.2. Grid distortion 

In order to allow for more random structure, this initial grid of nodes can be distorted by 

defining a grid distortion parameter. The grid distortion parameter represents the 

maximum distance that a node can be randomly relocated in each direction from its original 

position. If the grid distortion is zero, the edge length along each axis will be constant. The 

grid distortion parameter should not exceed the initial node spacing in order to avoid 

overlapping between nodes in each direction. Graphically, the node can be relocated to any 

position within the purple zone showed in Figure 29. 

 
Figure 29. Random relocations for a node when grid distortion is activated. Figure a represents the original state of the 

system without distortion. Figures b, c and d represent different possible random relocations for one of the nodes. 

The use of grid distortion will create networks with varying pore lengths. In the model 

developed here, this factor does not influence on average the spatial volume distribution. 

Thus, it does not have an important impact on the textural properties of the digital solid, 

and apparently, it does not influence the topology either (See sensitivity analysis for 

nitrogen). The reason is that, as the grid distortion is implemented, the pore length 

distribution will approximately follow a triangular distribution and will be homogenously 

distributed in the space (Figure 30). Both characteristics are a consequence of the random 

nature of the process for the relocation of the nodes. 
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Figure 30. Pore length distribution for a 2D pore network with a spacing of the fixed grid equal to 30 nm and a Grid 

distortion equal to 30 nm. 

3.3.3. Network lattice and connectivity pattern 

The network lattice defines the connectivity pattern between the grid points. Hence, the 

lattice used for the pore network generation sets the maximum connectivity in the network. 

The connectivity pattern is represented by the directions of a unitary cell (Figure 31). 

 
Figure 31. Different lattice representations and their unitary vectors. a-) Square lattice, maximum connectivity equal to 4 
(Zmax=4). b-) Triangular lattice, maximum connectivity equal to 6 (Zmax=6). c-) Cubic lattice, maximum connectivity equal to 
6 (Zmax=6). 

In this work, the connectivity is defined taking the node as reference. In the lattice, the 

maximum connectivity of a node is the number of edges connected to a node. As the 

algorithm is currently configured, it is possible to create a network with a maximum 

connectivity of up to 18. Once the algorithm has built the pore network by placing pores on 

edges, the actual connectivity of a node will become the number of pores connected to that 

node. 

In the current version, the pore network generation tool is limited to using the same kind 

of lattice for all the pore populations on each porosity level. 
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3.3.4. Periodicity 

The pore network can be periodic along one or several dimensions. This property is useful 

to create pore networks models that will be used for mass diffusion simulations. In a 

periodic network, an edge will connect the last available node of a row of a series of nodes 

along an axis to the first node on the same row (Figure 32). 

 
Figure 32. Example of a network with periodicity in the X-direction. 

3.3.5. Pore populations 

The term “pore population” will be used to describe a group of pores on the edges of the 

graph with common characteristics, such as the pore existence probability and the pore size 

distribution. The term “pore level” will be used for hierarchical structures with 2 or more 

different pore populations, i.e. with pore size distributions that represent different size 

scales, for example micropores, mesopores, and macropores. 

The number of pore populations of the network needs to be specified first. For each pore 

population, a Pore Existence Probability (PEP) threshold, a grid spacing, and a pore size 

distribution needs to be defined. 

Each pore population has its own Pore Existence Probability (PEP) threshold. This threshold 

defines the probability of adding a pore of an edge position. For each edge of the lattice, a 

random number is generated (range 0-1). A pore is created, that is to say, it is placed on the 

corresponding edge, only if the random number is below the PEP. Thus, if the PEP is equal 

to 1, all the edges of the initial lattice will be occupied. 

The grid spacing is a key parameter of the model. The grid spacing is the recurrence of the 

pore population in each dimension. Figure 33a is generated with one population with a grid 

spacing equal to 1 and a PEP of 1. All the rows and columns are filled with pores. Figure 33b 
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is generated using the same population but with a grid spacing equal to 5 in each direction 

(𝑋⃗, 𝑌⃗⃗). Figure 33d shows the same population with a grid spacing equal to 5 but 

implementing a triangular lattice. In both cases, the free edges can be occupied by another 

pore population. Figure 33c shows the same initial lattice as in Figure 33b with two 

populations. 

 

Figure 33. Pore networks with different grid spacings: a-) One population, grid spacing equal to 1. b-) One population, 

grid spacing equal to 5. c-) Two populations, grid spacing of population 1 equal to 5, grid spacing of population 2 equal to 

1. d-) One population, grid spacing equal to 5 (triangular lattice). 

There is an order in which the populations should be inserted. They should be specified 

starting from the population with the highest grid spacing to the one with the lowest grid 

spacing. The reason is that the algorithm will not allocate edges for just one population. 

Let’s consider Figure 33c: population 1 has the largest diameter and it has a grid spacing 

equal to 5, while population 2 has the smallest diameter and a grid spacing of 1. The pore 

network generation algorithm will first create population 1 and then population 2. As 

population 2 has a grid spacing of 1, the generation algorithm will create pores on all the 

free edges. If population 2 is created first, the results would look like Figure 34. The 

algorithm will create first the population with the grid spacing equal to 1 and a PEP of 1. 

Hence, when the population with the grid spacing equal to 5 is to be created, there are no 

longer free edges available. 
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Figure 34. Wrong representation of a pore network with 2 different pore populations. 

Figure 35 gives another example of the effect of grid spacing. In this example, a first 

population with a grid spacing equal to 4 and a second one with a grid spacing equal to 2 

exist. As 4 is a multiple of 2, then the population with a grid spacing of 2 will have fewer 

available lines to occupy. 

 

Figure 35. Network with two pore populations. Population 1 has a grid spacing equal to 4 and population 2 has a grid 
spacing equal to 2. 

The use of multiple populations and of grid spacing allows providing a greater heterogeneity 

to the network and allows to fully use the capacity of the lattice to create void space. Let’s 
consider the same case of Figure 35, but this time, the PEP of population 1 (biggest 

diameter) is set to 0.6. Since population 2 has a PEP equal to 1, it will fill the free spots left 

by the pores of the population 1 that do not exist. The result is shown in Figure 36. 
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Figure 36. Network with two pore populations. Population 1 has a grid spacing equal to 4 and a PEP equal to 0.6. 
Population 2 has a grid spacing equal to 2 and a PEP equal to 1. 

For each pore population, the pore size distribution information is provided in terms of its 

cumulative distribution function (CDF). The first parameter to be specified is the number of 

points that will be used to describe the cumulative pore size distribution. The input CFD 

must start at a cumulated probability equal to 0 and must end at a cumulated probability 

equal to 1.  

3.3.6. Skeletal density 

The skeletal density of the material, in our case of gamma-alumina, is an important 

parameter to be specified. This is an experimental value and is needed to calculate the total 

mass of the digital network. 

3.4. Pore network construction 

3.4.1. Generation of the grid of nodes 

The nodes are the smallest unit of the network and serve as reference point for the 

implementation of the lattice. 

All the information of the network is stored in multidimensional arrays. The first element 

created for the network generation is the set of nodes. The spatial coordinates of the nodes 

for the initial grid are first calculated considering the user-specified node spacing of the grid. 

If the grid distortion is different from zero, the node is relocated (Equation 3). The new 

position of the node is given by the distorted coordinates: 

x = x + (rand – 1/2) * Ldistort 
y = y + (rand – 1/2) * Ldistort 
z = z + (rand – 1/2) * Ldistort 

Equation 3. Node news coordinates after distortion. 
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where Ldistort is the grid distortion, rand is a random number between 0 and 1, and x,y,z 

are the cartesian coordinates of the nodes  

Once the coordinates of the nodes are calculated, they are numbered or labeled. The 

labeling sequence for the nodes is illustrated in Figure 37 for a 2D and a 3D network. 

 

 
Figure 37. Labelling sequence for nodes a-) 2D network b-) 3D network. 

3.4.2. Generation of pores on the edges 

The algorithm will create the pores, node by node, fulfilling the lattice pattern given as an 

input. The nodes are swiped in the order indicated by their labels. Figure 38 illustrates the 

creation and labelling sequence for the pores. For each node, all the edges are explored one 

by one. Before creating the pore, a random number is generated. If this number, whose 

range is amid 0 and 1, is lower than the PEP threshold, then the pore is created. 

Figure 38 shows a labeling example with a triangular pattern. The external pores cannot be 

connected between them in non-periodic networks: this is the case of the first 8 pores. 

Pores 9, 10, and 11 are created in the same order of the generation unit vectors on the right 

side of Figure 38. 
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Figure 38. Labelling sequence process for pores in a network with PEP=1 

If the network is periodic in the X-direction, then the external nodes of the Y-direction will 

be connected by pores. Similarly, if the network is periodic in the Y-direction then the 

external nodes of the X-direction will be connected by pores (Figure 39). 

 
Figure 39. Periodic networks: a-) Periodic network in the X-direction. b-) Periodic network in the Y direction. 

When a pore is created, dimensional information is required. Although various pore 

geometries could be used (Figure 16), in the current version of the pore network generation 

tool, the pores located on the edges of the graph are represented by smooth cylinders. 

Hence, two dimensions are required, and a length and a diameter are attributed to the ore 

when it is created. The pore length will depend on the distance between the two nodes the 

pore is connecting. For the diameter, a random number will be generated between 0 and 

1. This random number is considered as the cumulative distribution value of the diameter 

to assign. If the value is between two points of the CDF of the pore size distribution, a linear 

interpolation is computed to find the corresponding diameter. 
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3.4.3. Generation of pores on the nodes 

Once all edges have been explored, and all pores located on edges have been attributed, 

the algorithm will scan all nodes to add additional void space, if requested by the user. By 

default, the pore network will be created with nodes that do not have any physical property 

and just provide a reference framework. However, the pore network generation tool also 

allows creating pore networks with nodes that provide additional void volume to the 

network (Figure 40). The radius of the hollow sphere located on the node will be equal to 

the minimum radius that is needed to avoid overlapping of pores located on the edges of 

the node. This will often involve the radius of the biggest pore connected to the node. If a 

triangular lattice is used, diagonal pores also have to be considered for the calculation of 

the minimum sphere radii to avoid pore overlapping. 

 
Figure 40. 2D Schematic representation of an elementary system node-pore for a square lattice with PEP equal to 1. (a) 
The porous space is just represented by the cylinders (pores on edges). (b) The porous space is represented by the cylinders 
(pores on edges) and by the spheres (pores on nodes). 

3.4.4. Calculation of geometrical textural properties  

Once the pore network model is fully generated, the geometrical textural properties are 

calculated using the information coming from the digital network. These properties are the 

pore volume, surface area, porosity, and connectivity. The total volume of the network is 

defined as the void volume (pores) plus the solid volume. The total volume is calculated 

according to Equation 4 using the coordinates of the nodes. 𝑉𝑁 = (𝑥𝑁𝑋⃗⃗⃗⃗ − 𝑥1) ∗  (𝑦(𝑁𝑋⃗⃗⃗⃗∗𝑁𝑌⃗⃗⃗−𝑁𝑋⃗⃗⃗⃗+1) − 𝑦1) ∗ (𝑧(𝑁𝑇−𝑁𝑋⃗⃗⃗⃗∗𝑁𝑌⃗⃗⃗+1) − 𝑧1) 

Equation 4. Total volume of the network 

The total mass can be calculated using the total volume of the network and knowing the 

structural density of the material: 𝑀𝑇 =  𝑉𝑁 ∗  𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙   
Equation 5. Pore network total mass 
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The porosity, surface area and pore volume are calculated adding the individual properties 

of each pore. With zero-volume nodes, the geometrical textural properties are calculated 

from the dimensions of the hollow cylinders. 

𝜀 =  ∑ 𝜋 ∗ 𝑑𝑖24 ∗ 𝑙𝑁𝑝𝑜𝑟𝑒𝑠𝑖=1 𝑉𝑁   
Equation 6. Digital solid porosity. 

𝑆𝑔𝑒𝑜𝑚(𝑚2 ∗ 𝑔−1) =  ∑ 𝜋 ∗ 𝑑𝑖 ∗ 𝑙𝑁𝑝𝑜𝑟𝑒𝑠𝑖=1𝜌𝐴𝑙203 ∗ 𝑉𝑁 ∗ (1 − 𝜀)  
Equation 7. Digital solid specific pores surface area. 

𝑣𝑝_𝑔𝑒𝑜𝑚(𝑚3 ∗ 𝑔−1) = ∑ 𝜋 ∗ 𝑑𝑖24 ∗ 𝑙𝑁𝑝𝑜𝑟𝑒𝑠𝑖=1𝜌𝐴𝑙203 ∗ 𝑉𝑁 ∗ (1 − 𝜀)  
Equation 8. Digital solid specific pores volume. 

It is possible to simplify these equations for a scenario with zero-volume nodes in which the 

diameter and length of the pores can be considered as constant. For these conditions, 

textural properties can be approximated as described in Equation 9, Equation 10, and 

Equation 11: 

𝜀 = 𝑍𝑚𝑎𝑥2 ∗ 𝑃𝐸𝑃 ∗ 𝜋 ∗ 𝐷𝑃2 4𝐿𝑃2   
Equation 9. Digital solid porosity approximation. 

𝑆𝑔𝑒𝑜𝑚(𝑚2 ∗ 𝑔−1) = 𝑍𝑚𝑎𝑥2 ∗ 𝑃𝐸𝑃 ∗ 𝜋 ∗ 𝐷𝑃𝜌𝐴𝑙203 ∗ (𝐿𝑃2 −  𝑍𝑚𝑎𝑥2 ∗ 𝑃 ∗ 𝜋 ∗ 𝐷𝑃24 ) 

Equation 10. Digital solid specific pores surface area approximation. 

𝑣𝑝_𝑔𝑒𝑜𝑚(𝑚3 ∗ 𝑔−1) = 𝑍𝑚𝑎𝑥2 ∗ 𝑃𝐸𝑃 ∗ 𝜋 ∗ 𝐷𝑝24𝜌𝐴𝑙203 ∗ (𝐿𝑃2 − 𝑍𝑚𝑎𝑥2 ∗ 𝑃 ∗ 𝜋 ∗ 𝐷𝑃24 ) 

Equation 11. Digital solid specific pores volume approximation. 
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3.4.5. Output files with the network structural information 

There are two main files that contain the information of the pore network structure. The 

first one is called connectivity matrix. It is a table that reports the connectivity of the node, 

i.e. the actual number of the pores connected to it, the labels of the pores, and whether the 

pore is an external pore or not (Table 3). The second relevant file is called Pore dimensions 

and Connections (Table 4). This file reports the length and diameter of each pore. It also 

reports to which nodes the pore is connected. Additionally, a third output file called node 

coordinates contains the metric coordinates of all the nodes. Knowing the metric 

coordinates of the nodes is possible to create computer-aided design files (CAD) to 

graphically represent the pore network. 

Table 3. Connectivity matrix 

Node Z Connected pores CF 

1 0 0 0 0 0 -2 
2 1 1 0 0 0 -2 
3 0 0 0 0 0 -2 
4 1 2 0 0 0 -2 
5 4 -1 -2 3 4 0 
6 1 -3 0 0 0 -2 
7 0 0 0 0 0 -2 
8 1 -4 0 0 0 -2 
9 0 0 0 0 0 -2 

 

Table 4. Pore dimensions and connections 

Pore Length Diameter Node1 Node2 

1 3.00E-08 1.00E-08 2 5 
2 3.00E-08 1.00E-08 4 5 
3 3.00E-08 1.00E-08 5 6 
4 3.00E-08 1.00E-08 5 8 

 

As can be seen in Table 3, the pore label in the connectivity matrix has an algebraic sign. 

This sign provides information about the position of the pore relative to the node. If the 

pore is connected to the node by the left side or from the downside, then it has a negative 

sign. If the pore is connected to the node from the top side or the right side, then it will 

have a positive sign (Figure 41). 
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Figure 41. Pore label algebraic sign 

The connectivity matrix includes a parameter designed as CF. This parameter has two 

functions. The first one is to mark the external nodes. The second function is to indicate the 

entrance and the exit of the network for a simulation that involves diffusion in a semi-

infinite plate. If the CF parameters of a node is not equal to zero (CF ≠ 0), then the node is 

an external node. If the CF is negative (CF<0), it means that these nodes are the entrance of 

the network. If the CF is positive (CF>0), it means that these nodes represent the exit of the 

network. 

3.4.6. Some examples of generated pore networks 

Examples of simple 2D configurations that can be created using the pore network 

generation program are shown in Figure 42. Figure 43 shows examples of more complex 

networks. These complex networks are created using different pore size distributions and 

different pore existence probabilities. 

 



57 

 
Figure 42. Example of different possible 2D configurations generated by the program. In every row, the degree of 

distortion is increased from left to right. The Pore Existence Probability (PEP) is lower than 1 in every last case. 
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Figure 43. Transversal section of 6 different pore networks: a-) Regular pore network created with 2 different pore size 
distributions, a grid spacing equal to 6 for the second population, and PEP 1. b-) Distorted pore network created with 2 
different pore size distributions, a grid spacing equal to 6 for the second population, and PEP 1. c-) Regular pore network 
created with 5 different pore size distributions and PEP 1 for all the populations. d-) Distorted Pore network created with 
5 different pore size distributions and PEP 1 for all the populations. e-) Regular pore network created with 5 different pore 
size distributions and PEP 0.5 for the population of pores with higher diameter. f-) Distorted pore network created with 5 
different pore size distributions and PEP 0.5 for the population of pores with higher diameter. 
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3.4.7. Conclusions 

As a rule, a model is good if it can represent the required characteristic of a system. The 

selected pore network model representation and network generation tool have multiple 

advantages: 

- The lattice-based stochastic generation tool is extremely efficient, with low memory 

requirements and low computational requirements. 

- A regular pore geometry is used, thereby simplifying the phase equilibrium and flow 

models that can be implemented in the network. This decreases the calculation time 

per unit of simulated volume and allows simulating bigger portions of the solid or 

more complex phenomena with reasonable execution times. 

- The use of several pore populations allows the creation of more complex 

architectures. 

- When different pore populations are implemented at the same time, the volume 

density distribution becomes heterogeneous when compared with simpler 

architectures with the same dimension. 

As each model has its limitations, here is a list on features that could be improved in the 

future: 

- The initial node spacing is equidistant along each axis. 

- A single lattice is used for all pore populations. 

- The shape of the pores is regular (cylindrical for pores on edges, spherical for pores 

on nodes). 

- The model does not consider wall roughness in the pores. 

- The maximum possible values for the solid textural properties are limited by the 

Surface to Volume ratio of the pore geometry (e.g., of hollow cylinders). 

- The intertwining of various pore populations is regular throughout the pore 

network. 

- The pore existence probability threshold is constant throughout the pore network. 

3.5. Pore network minimum size and minimum number of generations 

Each time the pore network construction algorithm is executed, a different pore network is 

generated. Indeed, due to the stochastic nature of the generation process, a generated pore 

network is a random structure as a whole, and so will be its textural properties. In what 

follows, the word generation is referred to the action of generating a pore network. In the 

following sections, the variability of the output results will be investigated. 
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3.5.1. Minimum size of the pore network 

For given values of the input parameters, a large number of pore networks can be 

generated, each having its own textural properties. One can then calculate the mean value, 

standard deviation and relative deviation of each of these textural properties (Equation 12, 

Equation 13 and Equation 14). 

𝑝𝑟𝑜𝑝̅̅ ̅̅ ̅̅ ̅ = 1𝑁𝑝 ∑ 𝑝𝑟𝑜𝑝𝑖𝑁𝑝
𝑖=1  

Equation 12. Textural property average value. 

𝜎𝑝𝑟𝑜𝑝 = √ 1𝑁𝑝 − 1 ∑(𝑝𝑟𝑜𝑝𝑖 − 𝑝𝑟𝑜𝑝̅̅ ̅̅ ̅̅ ̅)2𝑁𝑝
𝑖=1  

Equation 13. Textural property standard deviation. %𝑟_𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑜𝑝 = 100 ∗ 𝜎𝑝𝑟𝑜𝑝𝑝𝑟𝑜𝑝̅̅ ̅̅ ̅̅ ̅  

Equation 14. Textural property relative error. 

Due to the stochastic nature of the pore network generation process, the average values of 

the textural properties and their standard deviations vary with the dimension of the 

network and the number of network generations. To find the minimum network size, 

different input parameter combinations for different pore network dimensions were tested 

as a function of the number of nodes. 1000 network generations were performed for each 

configuration. An example is shown in Figure 44, in which the network generations were 

performed using the following parameters: Zmax=6, PEP=0.5, PSD=60 ± 10 nm, L=300 nm. 

Each point represents, for 1000 network generations, the average value of the textural 

property, the maximum value obtained, its minimum value, and the relative deviation of 

the average value. In general, when the dimension of the network increases, the relative 

deviation decreases, the average value reaches a plateau, and the maximum and minimum 

values are closer to the average one. 

The objective of the sensitivity analysis is to select the minimum network dimension in such 

a way that a single network generation provides representative results for all textural 

properties, i.e. even if the generated network corresponds to an extremum value, its 

properties do not deviate significantly from the average over a large number of network 

generations. This minimum network dimension is chosen so as to obtain a relative deviation 
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lower than 5% of the average textural property relative to the plateau for all the textural 

properties (Figure 44). 

 

 

Figure 44. Textural properties for different network sizes (Triangular lattice, Zmax=6, PEP=0.5, PSD=60 ± 10 nm, 
L=300 nm): a-) Number of pores. b-) Average connectivity. c-) Average diameter. d-) Porosity. e-) Specific pore volume. f-
) Specific surface area. 

It is relevant to observe that when the maximum connectivity increases, the minimum 

dimension does not vary (case 1 and 2 in Table 5). In 1.1.1.1.Appendix B it is possible to 

observe that for the same dimension, as the connectivity increases, the relative deviation 

of all textural properties decreases. This is simply related to the higher number of pores 

present in the model due to the higher maximum connectivity, which improves the 
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representativity of each sample. Due to the same reason, when the pore existence 

probability is reduced, it will be necessary to increase the minimum dimension of the 

network to reach a standard deviation under 5% for all the textural properties (cases 1,3, 

and 5 in Table 5). A lower Pore Existence Probability means that a lower number of pores 

are present in the network. A broader pore size distribution also requires a higher minimum 

dimension as indicated by cases 4, 5, and 6 in Table 5. 

Table 5. Minimum pore network dimension as a function of the pore network model input parameters 

Case Zmax Davg (nm) Dev (nm) PEP Dimension 

1 4 60 ±10 0.5 50x50 
2 6 60 ±10 0.5 50x50 
3 6 60 ±10 0.1 200x200 
4 6 60 ±5 1 10x10 
5 6 60 ±10 1 20x20 
6 6 60 ±15 1 20x20 

3.5.2. Minimum number of network generations 

Different input parameter combinations were tested in order to find the minimum number 

of generations to be performed. For each configuration, 1000 network generations were 

done. Figure 45 shows an example for a pore network created using the following 

parameters: Triangular lattice, 50x50 nodes, Zmax=6, PEP=0.5, PSD=60 ± 10 nm, L=300 nm. 

For all parameters represented in Figure 45, the relative deviation stays under 5%. A 

minimum number of 30 generations was considered sufficient for a broad range of different 

parameters combinations (See 1.1.1.1.Appendix B ) 
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Figure 45. Average textural properties as a function of the number of generations (Triangular lattice, Zmax=6, PEP=0.5, 
PSD=60 ± 10 nm, L=300 nm): a-) Number of pores. b-) Average connectivity. c-) Average diameter. d-) Porosity. e-) Specific 
pore volume. f-) Specific surface area. 
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3.6. Sensitivity study on the average textural properties 

The influence of the pore network generation input parameters on the porosity, the specific 

surface area, and the specific volume was tested, the obtained results are the average from 

30 different generation processes. For the 2D and 3D networks, standard size of 100x100 

nodes and 50x50x50 nodes were imposed. For a fixed network size and a variation in an 

input parameter that increases the number of pores will naturally increase the porosity, the 

specific surface area, and the pore volume. For example, such is the case when the 

maximum connectivity increases (Figure 46a, Figure 47a, Figure 48a) or the pore existence 

probability increases (Figure 46b, Figure 47b, Figure 48b). An increment in the average pore 

size will increase the porosity, the specific pore volume, and the specific surface area of the 

network (Figure 46c, Figure 47c, Figure 48c). For a monomodal network, a broader pore size 

distribution will increase the porosity and the pore volume of the network (Figure 46d, 

Figure 47d) but it will not have an important effect on the specific surface area (Figure 48d). 

All three textural properties are very sensitive to pore length. Shorter pores will allow 

obtaining higher porosities, increasing the specific properties. 

 

 

Figure 46. Porosity for different pore network input configurations. a-) Lattice b-) Pore existence probability c-) Average 
size of the Pore Size Distribution d-) PSD deviation. 
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Figure 47. Specific pore volume for different pore network input configurations. a-) Lattice b-) Pore existence probability. 
c-) Average size of the Pore Size Distribution. d-) PSD deviation. 

 

Figure 48. Specific surface area for different pore network input configurations. a-) Lattice b-) Pore existence probability 
c-) Average size of the Pore Size Distribution d-) PSD deviation. 
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3.7. Percolation algorithm 

In this Ph.D. thesis, three static characterization techniques will be simulated. In nitrogen 

sorption and cryoporometry, the phase change is associated to the diameter of the pore, 

but also to the environment of the pore within the network. In the case of the mercury 

porosimetry, the mercury intrusion in a pore depends on the pore diameter, but also its 

environment within the network. This phenomenon, i.e. the impact of the local 

environment on the phase change or the intrusion behavior in a pore, is often called pore 

blocking effect, pore shielding effect or pore hindering. 

3.7.1. Pore Blocking Phenomenon 

The pore blocking phenomenon will first be described for mercury intrusion. In mercury 

porosimetry, thermodynamic equations relate a state of the pore with a given diameter to 

the pressure. Given an intrusion pressure, the Laplace-Young equation serves to calculate 

an equilibrium pore diameter above which the mercury can intrude into a pore. However, 

the intrusion process has to start from the external surface of the structure. When mercury 

penetrates in a porous structure, it will do this first, i.e. at the lower pressures, through the 

pores with a large diameter. However, if a large pore is not directly connected to the 

external surface but surrounded by smaller pores, mercury cannot enter the large pore 

unless the smaller pores are already filled by mercury, i.e. at higher pressures. This 

phenomenon is known as pore shielding, pore hindering, or pore blocking, because the 

smaller pores hinder the access of mercury to these large pores. 

 

Figure 49. Pore blocking phenomenon in a 2D pore network during mercury intrusion. Mercury is colored in red. 
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Such a situation is illustrated in Figure 49. At the pressure represented in this image, the 

pores in the violet rectangles are large pores that, according to the Laplace-Young equation, 

should already be filled with mercury, just as their counterparts connected to the external 

surface. However, due to the fact that all their neighboring pores are smaller, these smaller 

pores block the access of mercury to the larger pores. 

A similar phenomenon happens during desorption of nitrogen. Again, the thermodynamic 

equations relate a state of the pore with a given diameter to the pressure. For a given 

relative pressure, the Kelvin-Cohan equation serves to calculate an equilibrium pore 

diameter above which the nitrogen can desorb from a pore. Starting from a pore network 

completely filled with adsorbed nitrogen, the desorption process has to start from the 

external surface of the structure. When the relative pressure decreases, the pores with a 

large diameter will start to empty first. However, if a large pore is not directly connected to 

the external surface but surrounded by smaller pores, liquid nitrogen cannot desorb unless 

the smaller pores are already empty, thereby providing a pathway to the external surface. 

In such a case, nitrogen vaporization will be delayed, maintaining the liquid nitrogen in a 

metastable state. Again, this phenomenon is called pore shielding, pore hindering, or pore 

blocking, because the smaller pores block the desorption of the liquid nitrogen from these 

large pores. 

 

Figure 50. Pore blocking phenomenon in a 2D pore network during nitrogen desorption. Adsorbed liquid nitrogen is 
colored in blue. 

Such a situation is illustrated in Figure 50. At the relative pressure represented in this image, 

the pores in the violet rectangles are large pores that, according to the Kelvin-Cohan 

equation, should already be empty, just as their counterparts connected to the external 
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surface. However, due to the fact that all their neighboring pores are smaller and still filled 

with liquid, these smaller pores block the desorption of nitrogen from the larger pores. 

A similar phenomenon also happens during cryoporometry. The Gibbs-Thomson equation 

gives the solid-liquid equilibrium temperature as a function of the solid-liquid interface 

mean radius of curvature. During the freezing step, heterogeneous freezing of the liquid 

within the pore proceeds through the propagation of the ice front in the axial direction of 

the pore. Hence, as the freezing process has to start from the external surface, the liquid in 

a large pore can only freeze when connected to the external surface. However, if a large 

pore is not directly connected to the external surface but surrounded by smaller pores, 

freezing of the liquid in the large pore cannot occur unless the smaller pores are already 

frozen, i.e. at lower temperatures. In such a case, freezing will be delayed, maintaining the 

liquid in a metastable state. Once again, this phenomenon is called pore shielding, pore 

hindering, or pore blocking. 

As discussed above, all three techniques therefore require accounting for the position of 

the pore in the network by determining at which conditions each pore has access to the 

external surface. To model such pore blocking phenomena, a percolation algorithm is 

required. The scope of such a percolation algorithm is to model the effect of the position 

and environment of the pore within the network. As explained above, such an algorithm 

needs to analyze a pore network and define the percolation order of a fluid inside the pore 

network. Finally, the general percolation algorithm will need to be adapted in order to be 

applicable to the three characterization techniques. 

3.7.2. Existing Invasion Percolation Algorithms 

Wilkinson’s algorithm was conceived to follow the path taken by an invading phase through 

a porous structure. Conceptually, there are two phases, one that is already within the pore 

structure (the defending phase) and another one that is slowly displacing the first one (the 

invading phase). Invasion Percolation therefore models slow quasi-static fluid invasion in 

porous media. Related algorithms have been used for multiple applications associated with 

percolation through soil, reservoirs, catalysts, supports, and membranes. Wilkinson’s 
algorithm used the Kopelman algorithm to sort the pore of the network (Hoshen and 

Kopelman 1976). In 1999, Sheppard improved the speed of the search algorithm but did not 

explicitly publish the computational algorithm used (Sheppard et al. 1999). To the best of 

our knowledge, the most recent mathematical improvements made to the invasion 

percolation algorithm were published by Masson and Pride (Masson and Pride 2014). In 

their publication, they proposed to sort a priority list that contains the characteristic size of 

the pores using a binary tree, which in this case is a max binary heap with a top-down 

approach. They proved that this algorithm is even faster than the one proposed by 
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Sheppard. However, in their paper, they only discussed the mathematics but did not show 

explicitly how they integrated the max heap into Wilkinson’s algorithm. In the next section, 

we show how the invasion percolation algorithm originally devised by Wilkinson (Wilkinson 

D., Willemsen J. 1983) can be adapted to our case. The algorithm we propose is called the 

triggering diameter algorithm. 

3.7.3. The triggering diameter algorithm 

The algorithm aims at finding the percolation order of a fluid inside the pore network. In 

the case of nitrogen sorption, the percolation order is important during the desorption 

process. Indeed, desorption does not necessarily occur at the relative pressure given by the 

Kelvin-Cohan equation but will occur at a lower pressure if smaller pores block the direct 

connection of this pore to the external surface. The invasion percolation algorithm needs 

to determine the desorption pressure for each pore considering its position within the 

network, i.e. the pressure at which this pressure can desorb. However, instead of storing 

the desorption pressure of each pore, an equivalent diameter corresponding to the 

desorption pressure will be stored. The diameter that corresponds to the desorption 

pressure will be called the desorption triggering diameter. Analogously, in mercury 

intrusion, the intrusion triggering diameter found by the algorithm corresponds to the real 

intrusion pressure of the mercury within the pore considering its location within the 

network. For cryoporometry, the freezing triggering diameter calculated using the 

algorithm is the diameter that corresponds to the freezing temperature according to the 

location the pore occupies in the network. 

Figure 51 graphically describes the process of finding the percolation order. It lists all the 

algorithmic rules that will be explained in detail later. The algorithm first finds all the pores 

connected to the surface of the network (Figure 51a). Since these pores are in contact with 

the exterior, it assigns to these pores a triggering diameter equal to its real diameter (dark 

blue). This image is depicted in Figure 51b. The algorithm then creates a list in which the 

pores are ordered from the biggest diameter to the smallest diameter. Then, exploration of 

the network starts from the first pore on this priority list (Guide Pore). The pores connected 

to the guide pore are going to be added to the list in a position that corresponds to their 

triggering diameter. If the diameter of the connected pore is lower than the diameter of the 

guide pore, its triggering diameter will be equal to its own diameter. On the contrary, if its 

diameter is larger than the diameter of the guide pore, the triggering diameter assigned to 

the connected pore will be equal to the triggering diameter of the guide pore. The newly 

added pores are colored dark blue in Figure 51c. Since the effect of the guide pore has now 

been propagated to the underlying pores, the guide pore is removed from the priority list. 
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It is now colored orange in Figure 51c, and the next largest pore becomes the new guide 

pore. The exploration continues until the priority list is empty, as shown in Figure 51d. 

 

Figure 51. Triggering Diameter Algorithm Example. a) Non explored network. b) External pores identified. c) Exploration 

of the network. d) Exploration of the network. e) Completely explored network. 
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The Invasion Percolation (IP) algorithm that is proposed in this work was adapted from the 

work of Wilkinson and Willemsen (Wilkinson D., Willemsen J. 1983) and the improvement 

proposed by Masson and Pride (Masson and Pride 2014). 

This triggering diameter algorithm uses five different lists: external_pores, visited_nodes, 

visited_pores, searchlist, and connectmatrix. The first four are indexed lists. The last one is 

a matrix that contains the information on the pore network (section 3.4.5). 

There are six main rules on which the algorithm is based: 

• The triggering diameter is assigned only once to each pore. There is no overwriting 

of the triggering diameter. 

• A pore can be added to the searchlist only once. 

• A node can be visited only once. 

• The pore picked up from the searchlist must always be the pore with the biggest 

diameter on the list (priority rule). 

• The triggering diameter of the external pores corresponds to the actual pore 

diameter. 

• Upon initialization, the searchlist must contain all external pores (boundary 

conditions). 

First, the external nodes and the external pores of the network are identified and listed in 

visited_nodes and external_pores respectively (Figure 51a). The external pores are the 

initial input for searchlist. For each pore, its label and diameter are saved into this list. After 

sorting searchlist, the pore on the list with the biggest diameter is picked up and it will be 

called guide pore for didactic purposes. Two nodes are connected to the guide pore, but 

one of them has already been visited and saved in visited_nodes. With this information, the 

node that has not yet been visited can be identified. The connectivity of this new node is 

explored to identify the pores connected to the guide pore using connectmatrix. The newly 

identified pores will be added to searchlist, but first, its triggering diameter will be assigned 

by comparison with the guide pore. We will call the two following rules assignation rules. 

i) If the diameter of the pore is smaller than the triggering diameter of the guide pore, 

the pore conserves its original diameter as triggering diameter. 

ii)  If the diameter of the pore is bigger than the triggering diameter of the guide pore, 

the pore adopts the guide pore’s triggering diameter as its triggering diameter. 

Then, the pores are added to searchlist and visited_pores. At the same time, the node is 

saved in the visited_nodes list. The guide pore is removed from searchlist, and a new guide 

pore is selected. This process is repeated until searchlist has been emptied, which means 
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that a triggering diameter was assigned to all the non-isolated pores (pores that can be 

accessed from the surface). 

Let’s consider an example in order to explain the principle of the algorithm. Figure 51a 

represents a network in which no pore has yet been assigned a triggering diameter. In 

Figure 51b, the external pores have been identified, their triggering diameters are assigned, 

since for external pores the triggering diameter is equal to the actual diameter, and the 

pores are stored in searchlist. Figure 51c depicts the selection of a guide pore (the biggest 

diameter in searchlist) and the assignation of a triggering diameter to the pores connected 

to it. The guide pore is eliminated from searchlist and one of the pores to which it is 

connected is taken as guide pore (Figure 51d). In Figure 51e, all pores have been explored. 

A general algorithm flow chart for the assignation of the triggering diameter is shown in 

Figure 52. For ordering hierarchically the search list, binary heaps are used. Sorting, adding, 

and eliminating elements from the list is handled using the binary heaps (Section 3.7.4). 

It is important to note that: 

• Any risk of infinite loops is mitigated by not considering pores with an already 

assigned triggering diameter (visited_pores). 

• Due to the randomness of the pore network generation process, and as in the real 

material, some isolated clusters of pores are not connected to the surface. Due to 

the logic used to explore the network, the algorithm never walks through those 

pores, saving time. 

• The full analysis of the pore network is completed with only one sweep. 

The three key points of the general algorithm are: 

• The algorithm initializes searchlist with the external pores. 

• The pore selected as the guide pore is the one with the biggest diameter in searchlist 

(priority). 

• The assignation rules. 

The first point means that the algorithm explores the network starting from its exit points, 

the surface nodes. Combined with the second point, this means that the best possible 

option is always studied. For example, if the biggest pore of the network is in the middle of 

the network if that pore is not yet in the search list, it means that for sure it is surrounded 

by smaller pores and blocked by them. 
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Figure 52. Triggering diameter algorithm flow diagram. 
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In the triggering diameter algorithm described above, the list of pores is always ordered 

from the biggest diameter to the smallest diameter. This is due to the fact, during nitrogen 

desorption, the largest pores will empty first. The same pore diameter order is needed for 

mercury intrusion and for the advancing ice front during the freezing step of cryoporometry. 

However, for mercury extrusion, the algorithm needs to be slightly modified because the 

list of pores now needs to be ordered from the smallest diameter to the largest diameter. 

3.7.4. Binary Heap Algorithms 

The triggering diameter algorithm can only work correctly if the search list contains the 

priority queue, i.e. if it is always sorted from the biggest to the smallest diameters. But 

sorting a list of numbers is a computationally intensive task. Also, the exploration list 

searchlist is constantly refreshed. It is a list for which there are very specific needs: 

1- The guide pore, which represents an element with the highest diameter (or lowest 

diameter, in the case of mercury intrusion), needs to be identified in every iteration. 

2- There are addition operations, every time a pore is added to the list. 

3- There are extraction operations, every time a guide pore is removed from the list. 

This basically means that the elements in the list should be ordered at least N times for a 

pore network of N elements (if there are no isolated pores). The algorithm time used to 

handle such a sorted list could easily represent more than 60% of the execution time of the 

complete algorithm. 

The selection of the right computational algorithms to model the physical phenomena and 

to store and handle the network’s information is very important to limit the execution time. 
In computer science, a priority queue can be efficiently implemented in a heap. This is a 

tree-based data structure that satisfies the so-called heap property: in a Max-Heap, the 

value of any given node is smaller than or equal to the value of its parent node. Hence, the 

node at the top of the heap contains the highest value, has no parent, and is called the root 

node. In a Min-Heap, the value of any given node is larger than or equal to the value of its 

parent node. Hence, the top of the heap now contains the lowest value of all data. A binary 

heap is heap structure in which a parent node can have at most two children. A heap is a 

maximally efficient useful data structure when it is necessary to repeatedly remove the 

object with the highest (or lowest) priority, or when insertions need to be interspersed with 

removals of the root node. 

Figure 53 represents the kind of two-dimensional array [R] used for the dynamic searchlist. 

It has two columns. In the first one are written the labels of the pores, and in the second 
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one, the pore diameter. For the heap, the value, which is always compared for the operation 

within the heap, is the diameter, representing the key value to sort the priority queue. 

 
Figure 53. Two-dimensional array for the dynamic list 

As mentioned before, Masson proposed a top-down binary heap approach in order to 

decrease considerably the time used for ordering the elements of the list and finding a value 

of interest (Masson and Pride 2014). In our case, we propose to use a max-heap in the top-

down approach (and the min-heap in the bottom-up approach, in the case of mercury 

intrusion). The following paragraphs explain the logic of these approaches and how each 

characterization technique can be implemented in a more convenient manner. 

The first to be described is the Max-Heap algorithm. It consists of an array of elements for 

which the root node contains the element with the maximum value. This algorithm has an 

execution time of O[N log(N)] and can be segmented in several operations (Cormen et al.). 

This data structure can be represented graphically as a tree with nodes having maximum of 

two children each (Figure 54). This binary tree structure allows rearranging the element 

elements easily without sorting the full array. The operations that are required for this are 

the addition and elimination operations. 

The addition operation (Figure 55) allows adding new elements to the list. The new element 

is placed at the first empty position (in) of two-dimensional array [R] and its value compared 

with the diameter corresponding to in/2 position, which following the common jargon for 

data structures will be called the parent of the in position. If the diameter of the parent is 

lower than the diameter of the added element, both elements swap their positions. The 

operation finishes when the element has arrived at the top position or the value of the 

diameter of its parent is higher. 
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Figure 54. Algorithm Flowchart. Max Heap: Elimination Operation 

 

 
Figure 55. Algorithm Flowchart. Max Heap: Addition Operation 

The elimination operation consists of the elimination of the top element of the array, the 

promotion of one of its two children to the top position and in consequence displacing 

upwards the elements of the array without leaving empty spaces along (Figure 56).In order 

to keep the tree balanced and not leaving empty spaces, once the floor of one of the two 

branches of the tree is reached, the resultant empty space is filled with the last value of the 

array. 
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Figure 56. Algorithm Flowchart. Max Heap: Elimination Operation 

The Max-Heap algorithm is used for the desorption isotherm algorithm, the intrusion curve 

algorithm, and the advancing ice front for the freezing algorithm, into which it is necessary 

to follow a priority sequence starting from the higher value represented by the higher pore 

diameter which is dynamically changing as the network is explored. 

The Min-Heap algorithm consists of the same procedure but placing at the top the value 

with the lowest possible value. In this way, the array is going from the lowest value (stored 

in the root node) to higher (bottom) values. This kind of algorithm is used for the extrusion 

curve algorithm. For this case, the bottom-up approach can be used to easily transform a 

Max-Heap to a Min-Heap. It allows sorting the list by starting at the n-1 level of the tree 

(Figure 57). Every element is compared with all its family offspring, and the comparison 

stops when the 2*i position does not exist. Its utility resides in using the same initial array 

built for the dynamic search list in the desorption isotherm algorithm (or in any of the other 

two algorithms) to create a Min-Heap to be used for the extrusion curve algorithm. 

The contrast between the top-down and bottom-up algorithms lies in the starting state of 

the values that compose the array. If the values to build the array (search list) are known a 

priori and there is no need to add new elements to it, the best option is the bottom-up 

approach. The advantage of this approach resides in performing a heap sort of the array 

from the bottom starting from level n-1, thus saving the need of sorting half of the elements 

in the array. However, making this every time a new element is added ends up being more 

expensive in terms of number of operations. Its counterpart is used when the array is 
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initially empty and new elements need to be dynamically added, which means sorting n 

times a logarithmic number of elements with respect to the total size in the worst case. 

 

 
Figure 57. Algorithm Flowchart. Max Heap: Bottom-Up Approach 

3.8. Topological analysis of the pore network model 

There are three relevant characteristics of the pore network: 

- The topological map. 

- The percolation map. 

- The volume distribution. 

The topology of the network represents how the pores are interconnected. In the case of 

the present pore network models, the topology is defined by the connectivity distribution 

of the network. Such a connectivity distribution is impacted by changing the lattice of the 

network (affecting the maximum connectivity) or the pore existence probability (PEP) 

(creating a connectivity distribution). 

The percolation map represents the percolation order of the network. It is represented by 

the order in which some fluid would enter the network starting from the pores in contact 

with the surface and always from the biggest to the lowest diameter. The percolation map 

is a function of the topological map and the diameter of the pores. 

The volume distribution on the network is a function of the diameter of the pore and the 

pore length. It is related to the capacitance of the network and is a fundamental parameter 

for volume processes. 
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Figure 58. Variables that influences the topology, percolation and volume distribution of the network 

Before performing a sensitivity analysis on the topology of the network, percolation spectra 

and several other variables will be defined first. 

A percolation spectrum shows how an observed variable will change when the network is 

being explored. Such a spectrum is created using the percolation list obtained from the 

percolation algorithm described in section 3.7. The percolation list contains the order in 

which a liquid would percolate through the network using as only the criterion the pore 

diameter and its position in the network (percolation order). The percolation spectrum plots 

an observed variable as a function of the fraction of explored pores. The fraction of explored 

pores 𝑓𝑒 is defined in Equation 15, where 𝑛_𝑒𝑥𝑝 represents the number of explored pores 

from the list. 𝑓𝑒 =  𝑛_𝑒𝑥𝑝 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡  
Equation 15. Explored fraction 

A first observed variable is the Cumulated Pore Volume Fraction (CPVF), which is given in 

Equation 16. This term represents the sum of the pore volume of explored fraction from 

the list divided by the total pore volume in the list (𝑉𝑝_𝑡𝑙). 

𝐶𝑉𝑃𝐹 =  ∑ 𝑉𝑝_𝑖𝑉𝑝_𝑡𝑙𝑛_𝑒𝑥𝑝 
𝑖=1  

Equation 16. Cumulated Pore Volume Fraction (CVPF) 
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A second observed variable is the Cumulated Average Diameter (CAD) defined by Equation 

17. This corresponds to the average pore diameter of the fraction explored and is calculated 

as the sum of the pore diameter of explored fraction from the list divided by the number of 

explored pores. 

𝐶𝐴𝐷 =  ∑ 𝐷𝑝_𝑖𝑛_𝑒𝑥𝑝 𝑛_𝑒𝑥𝑝 
𝑖=1  

Equation 17. Cumulated Average Diameter (CAD) 

The two variables above can also be clustered into classes. Each class will represent the 

pores contained in each 1% of the exploration list (meaning 1% of 𝑓𝑒). 

The CVPF by Class (CVPF_C) is defined in Equation 18 as the average diameter of the pores 

for each 1% of the explored fraction 𝑓𝑒, where 𝑛𝑝_𝑐𝑙𝑎𝑠𝑠 represents the number of pores 

in this class. 

𝐶𝑉𝑃𝐹_𝐶 =  ∑ 𝑉𝑝𝑖𝑉𝑝_𝑡𝑙𝑛𝑝_𝑐𝑙𝑎𝑠𝑠𝑛𝑝_𝑐𝑙𝑎𝑠𝑠 
𝑗=1  

Equation 18. CVPF by class (CVPF_C) 

The Average Diameter by Class (ADC) is defined in Equation 19 as the average diameter of 

the pores for each 1% of the explored fraction 𝑓𝑒, where 𝑛𝑝_𝑐𝑙𝑎𝑠𝑠 represents the number 

of pores in this class. 

𝐴𝐷𝐶 =  ∑ 𝐷𝑝𝑗𝑛𝑝_𝑐𝑙𝑎𝑠𝑠𝑛𝑝_𝑐𝑙𝑎𝑠𝑠 
𝑗=1  

Equation 19. Average Diameter by class (ADC) 

For an ideal case of a network with pores of equal diameter, all percolation spectra will 

show a horizontal line, i.e. the spectra are completely uniform. As an example, since 1% of 

CVPF would correspond exactly to 1% of explored fraction, we will find a horizontal line that 

intersects the y-axis in 𝐶𝑉𝑃𝐹/𝑓𝑒 = 1. 

3.8.1. Effect of the maximum connectivity 

Figure 59 compares the spectra of three different structures with the same pore size 

distribution: the first structure is a bundle of parallel non-interconnected pores (Zmax=1), 

the second structure is a pore network that uses a square lattice with a maximum 

connectivity of 4 (Zmax=4); the third structure is a pore network based on a triangular lattice 
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with a maximum connectivity of 6 (Zmax=6). In a bundle of parallel non-interconnected 

pores, the connectivity is always equal to 1. As all pores are in contact with the external 

surface in this case, percolation phenomena do not affect the network. 

 
Figure 59. Effect of the maximum connectivity on the topological map. a-) Percolation spectra of a square pore network 
compared with the percolation spectra of a triangular network. b-) Average diameter for the spectra of figure a. 

In Figure 59a, the spectra start at their highest point, meaning that the first pores to be 

explored are big pores close to the external surface. The bundle of tubes spectrum shows 

an ideal case that is not affected by the percolation order. The spectra for the maximum 

network of connectivity 6 and 4 consistently draw away from the bundle of tubes curve. 

This means that smaller pores, belonging to the left branch of the pore size distribution, 

need to be explored first in order to be able to access the larger pores in this 𝑓𝑒 section. 

This is behavior is also observed in Figure 59b. For a 𝑓𝑒 lower than 40 %, the average 

diameter CAD of the explored pores is the highest for the bundle of pores and, for the same 

pore size distribution, the average diameter decreases when the average connectivity is 

lower, due to the fact that the pores with a diameter above the average will be relegated 

to lower positions in the list. 

On the spectra in Figure 59, there is a region where the CAD value is almost constant. It 

corresponds to the range 𝑓𝑒 ≈ 2% − 40% in the case of Zmax=6. The region in the spectra 

implies that the average diameter of the explored fraction remains close to constant. This 

is confirmed by Figure 60, which shows the Average Diameter by Class (ADC) as a function 

of the explored fraction 𝑓𝑒. At values for 𝑓𝑒 below 30% to 40%, the average explored 

diameter per class (ADC) is almost constant lower in the case of the interconnected pore 

networks. 

For high values of 𝑓𝑒, above 45% for Zmax=6 and above 65% for Zmax=4, the spectra become 

identical to the bundle of pores network. This indicates that pore shielding becomes much 

less important for the smaller pores. For the small pores in the network, the topology is no 

longer relevant since their always seems to be a pathway to the external surface. 
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Figure 60. Average Diameter by class (ADC) as a function of fe. 

As the length of the pores in this comparison is constant, the CVPF_C spectrum in Figure 61 

follows the same trend as the ADC spectrum in Figure 60. 

 
Figure 61. CVPF by class (CVPF_C) as a function of fe. 

In conclusion, the higher the connectivity, the less relevant is the topology of the network 

when the percolation phenomena need to be evaluated. A high connectivity influences the 

percolation map by improving the connections of large pores to the external surface. 

Depending on the maximum connectivity and the pore network organization, a different 

fraction of the network will not be influenced by the percolation order. 

3.8.2. Effect of the pore existence probability 

The pore existence probability (PEP) influences the topological map because it influences 

the connectivity. Using a PEP lower than 1 will create a connectivity distribution. Given the 

random nature of the pore generation algorithm, the connectivity distribution will follow a 

gaussian trend that can be skewed to the right or the left according to the value of the PEP. 

The distribution at PEP 0.5 is Gaussian. For PEP lower than 0.5, the distribution is skewed to 



83 

the left and, as the PEP increases above 0.5, the shape is progressively skewed to the right 

(Figure 62). 

 
Figure 62. Number connectivity distribution for a triangular network (Zmax=6) 

Figure 63 contains the percolation spectra for two triangular pore networks with two 

different PEP. One network was created using a PEP=1 and a second network was created 

with a PEP=0.5. Due to the use of PEP=0.5 the network has connectivity distribution. For 
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PEP=0.5, the average connectivity is equal to 3 (Z=3), different from the case of PEP=1 when 

the connectivity is the same in all the network (except by the external nodes) and equal to 

6 (Z=6). The use of a PEP of 0.5 changes considerably the topological map, making about 80 

% of the network sensitive to the percolation map instead of just the 40% (Z=6). 

 

 
Figure 63. Effect of the connectivity on the topological map 

3.8.3. Effect of the Pore Size Distribution 

The percolation map is also affected by the pore size distribution. In the case of gaussian 

pore size distribution, it is not affected by the average value of the distribution but by the 

standard deviation. A higher standard deviation leads to a more important fraction of the 

network influenced by the percolation map. Figure 64 compares the ADC for different pore 

size distributions that have the same average and different standard variance. For each pore 

size distribution, an interconnected pore network (dotted line) and the ideal case, a bundle 

of pores (continuous line), are compared. A higher standard deviation for the pore size 

distribution produces a higher relative deviation between the ADC for the interconnected 

pore network and its ideal case. For the pore size distribution that corresponds to 

10 ± 2.5 nm, the difference between the pore network and its ideal case is the highest at 𝑓𝑒 = 50%. A high standard deviation in Gaussian distribution indicates long tails. Longer 

tails increase the percentage of the pore influenced by the percolation order. 
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Figure 64. Influence of the pores size distribution on the percolation map. 

3.8.4. Effect of multiple populations 

When several populations are used, the topology of the network is influenced by the PEP 

of each population. In addition to the connectivity distribution of the network, the 

connectivity distribution by population becomes relevant. 

When only one pore population is implemented and the PEP is lower than 1, isolated group 

of pores can exist. The term isolated is reserved to pores that are not connected to the 

external surface, either directly or through other pores belonging to the same pore 

population. Figure 65 represents an example of such pore domains. The highlighted regions 

in green show some examples of them. 

These isolated groups of pores belonging to one population will be considered as pore 

domains. The access to these pore domains will be ruled by the pores of the population that 

surrounds them, as shown in Figure 66. 
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Figure 65. Pore network with a PEP=0.2: The green rectangles enclose examples of pore domains. 

 
Figure 66. Pore network with two different populations: Population 1, PE=0.2; Population 2, PEP=1. The green rectangles 
enclose examples of pore domains. 

These domains can have different topology, size distribution, volumetric density and 

represent a different fraction of the total porosity represented by the population. All these 

parameters are mainly influenced by the PEP. As the PEP decreases, the pore volume 

represented by these pore domains (relative to the full network) will change following a 

gaussian trend. At the same time, the pore volume represented by them relative to their 

population will increase, meaning that a smaller fraction of this population is in contact with 
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the external surface when the PEP decreases. Figure 67 shows the number of pores 

represented by the domains relative to the total number of pores of the population. For 

this test, a network with a triangular lattice, constant diameter and constant length was 

used. 

 
Figure 67. Domain sensitivity to PEP. a-) Isolated pore fraction of the population. b-) Biggest domain in the pore network 
calculated as pores percentage. c-) Average pore percentage in each domain of the population. d-) Quantity of population 
domains (trend). 

The average size of the domains shown in Figure 67c represents the percentage of pores 

contained in each domain. It is important to note that the size of these domains has a high 

dispersion (relative to PEP) that corresponds to the Gaussian maximum in 0.4-0.5 (Figure 

68). It can be concluded from Figure 67c and Figure 67d that lower PEP creates a higher 

number of domains of smaller size. The biggest domains that can be created exist at PEP of 

0.5. However, the conclusion needs to be analyzed with care given the dispersion shown in 

Figure 68. Big domains are far from the average number of pores for each domain and are 

extreme values. According to the pore volume fraction set as target for the population, the 

desired domain size, and the acceptable fraction of the population that can be connected 

to the external surface, the PEP range of 0.2-0.4 and 0.4-0.6 should be used (Figure 67c). 

Both ranges have similar sensitivity in terms of the number of domains and domain size. 

However, they differ in the fraction of the population connected to the external surface 

(without crossing other domains) and the total pore volume fraction that they represent. 
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Figure 68. Domain size (calculated as fraction of the total number of pores in the population) as a function of PEP. 

These domains can be created using several populations and 1 dominant population that 

will fill all the spaces left by the populations used for the domains. It is also possible to 

create bigger domains of the same population. To do so, it is possible for example to declare 

2 populations with the same pore size distribution and different grid spacings (See section 

3.3.5) and then declare a third population that will dominate the 2 first ones in terms of 

percolation. 

Two examples will be analyzed using two different populations in the same network to 

illustrate how a second population can influence the percolation order of the domain. The 

results for these two examples are shown in Figure 69 and Figure 70. The pore fractions 

(%Pores Pop #) and pore volume fractions (%Vp Pop #) contained in each population are 

given in Table 6. Each population has a unique pore diameter (no pore size distribution is 

used). Population 1 has a grid spacing equal to 2 and population 2 has a grid spacing equal 

to 1. 

Table 6. Pore volume percentage represented by different populations 

Case Pop1 PEP_Pop1 Pop2 PEP_Pop2 %Pores Pop1 %Pores Pop1 %Vp Pop1 %Vp Pop2 

1 

20 0.1 40 1 5.0 95.0 1.3 98.7 

20 0.5 40 1 24.7 75.3 7.6 92.4 

20 1 40 1 50.0 50.0 20.0 80.0 

2 

40 1 20 0.1 5.1 94.9 17.7 82.3 

40 1 20 0.5 25.1 74.9 57.3 42.7 

40 1 20 1 50.0 50.0 80.0 20.0 

 

0

0.5

1

1.5

2

2.5

3

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%
P

o
p

u
la

ti
o

n

PEP



89 

In case 1, population 1 is represented by pores of 20 nm and population 2 is represented by 

pore of 40 nm. Three different networks with a squared lattice and different PEP for 

population 1 are compared. It is important to remark the effect of the pore diameter of 

each population. If the PEP is equal for both populations, the number of pores for each 

population will be the same, however, the population with the highest pore diameter will 

represent the highest pore volume fraction (Table 6). The pore size of each population will 

also influence the percolation maps according to their spatial coordinates and its grid 

spacing (Section 3.3.5). 

Figure 69 represents the cumulated pore volume explored for each population as a function 

of the explored fraction (fe) for case 1. In this graph, an average constant slope refers to the 

constant average pore size. Population 1 is represented by pores of 20 nm and population 

2 is represented by pores of 40 nm. Each slope variation corresponds to a change in the 

population that dominates the percolation. In the second column of Figure 69, the 

associated connectivity distribution by population is shown. Even if the maximum 

connectivity is defined by the lattice, the use of two different pore populations will create 

a connectivity distribution by population that will influence the topology map and then the 

percolation list. Still, the total maximum connectivity remains the same, a lower 

connectivity by population increases the influence of the percolation map. This connectivity 

distribution by population shows how many pores of a certain population are connected to 

one node. When the connectivity is equal to zero (Z=0), it means the number of nodes that 

are not connected to any pore. 

In Figure 69a there is no interaction between population 1 and population 2. Despite the 

PEP of population 1, even if several domains are formed, its exploration is not blocked by 

population 2 because its diameter is smaller than the diameter of population 2. In Figure 

69a before the exploration of population 1, all the pores belonging to population 2 are 

already explored. Most of the nodes do not have pores from population 1 connected to 

them. This population is present with a maximum of 2 pores by each node. The most 

common pores that are connected to nodes are those from population 2 (percentage %). 

Figure 69 shows how, as the PEP of population 1 grows, the connectivity distribution by 

population passes from having specular symmetry to become symmetrical. This leads to 

total modification of the topological map. 

 



90 

 

Figure 69. Cumulated explored percentage by population as a function of fe and pore connectivity distribution by 
population: a-) Population 1 – PEP=0.1, Population 2 – PEP=1 ; b-) Population 1 – PEP=0.5, Population 2 – PEP=1 ; 
Population 1 – PEP=1, c-) Population 2 – PEP=1 
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Figure 70. Cumulated explored percentage by population as a function of fe and pore connectivity distribution by 
population: a-) Population 1 – PEP=0.1, Population 2 – PEP=1 ; b-) Population 1 – PEP=0.5, Population 2 – PEP=1 ; c-) 
Population 1 – PEP=1, Population 2 – PEP=1. Inverse to the population configuration used in Figure 69. 

 

In case 2, population 1 is represented by pores of 40 nm, and population 2 is represented 

by pores of 20 nm (inverse of case 1). In this case, Figure 70a shows the interaction between 

the 2 populations. Population 1 is explored at a constant rate, while population 1 is explored 

at different rates highlighted by the slope change. There are at least 4 different slope 

changes. This indicates that population 1 was segregated into 4 different effective domains. 
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Figure 70c depicts the case for PEP of population 1 equal to 0.5. In this case, the pore volume 

fraction represented by population 1 is bigger than the one represented by population 2 

(Table 6). The number of pores for both populations is the same. In this case, the exploration 

rate of population 2 is affected by population 1. There are still 4 rate changes. However, at 

each change in the exploration rate of population 1, the exploration rate of population 2 

changes too. In this case, a higher number of pores from population 1 are not constrained 

by population 2 and it dominates the exploration at the beginning of the percolation list. 

Finally, Figure 70d shows the case in which the two populations have a PEP equal to 1. In 

this case, as already mentioned before, despite the position of the population or the grid 

spacing, the populations do not interact with one another. If pore size distributions that 

overlap in their tails had been used for the 2 populations, an interaction would exist. 

Figure 70 again shows how, as the PEP of population 1 grows, the connectivity distribution 

by population passes from having specular symmetry to become symmetrical. This leads to 

total modification of the topological map. 

3.9. Tortuosity of the pore network 

A parametric study was performed to analyze the influence of the input parameters on the 

tortuosity factor of the network. A sufficient number of simulations was executed for each 

case in order to obtain a relative error lower than 10%. The dimension of the network used 

for the analysis was fixed to 50x50. The simulation time is sufficiently long to reach the 

stationary state of the system. The diffusion simulation time step (Δtstep) was fixed at 4.16 

10-9 s. 

3.9.1. Diffusion simulation methodology and tortuosity factor estimation. 

The first and second Fick laws are used to simulate diffusion into each pore of the network. 

The 1D material balance within each pore associated to the Fick model is represented in 

Equation 20. 

𝐽𝑖 =  −𝐷𝑚 𝜕𝐶𝑖𝑝𝜕𝑙  

Equation 20. Fick first diffusion law 

Boundary conditions at each end of the pore depend on the position and the type of node 

the pore is connected to (Table 7). For external nodes, the concentration is considered as 

constant, and a Dirichlet boundary condition is imposed. For the internal nodes connected 

to just one pore (blind pore), a Neumann boundary condition is implemented. For internal 

nodes linked to more than one pore, a Kirchhoff’s flow boundary condition is used. This 
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means that the concentration at the extreme of the pores connected to the same node 

must be the same. 

Table 7. Boundary conditions 

Node type Border condition 

External node 𝐶𝑖𝑝 = 𝐶𝑒𝑥𝑡          𝑡 ≥ 0 

Internal node (blind pore) 
𝑑𝑐𝑖𝑑𝑙 = 0          𝑙 = 𝐿𝑝 

Internal node ∑ 𝐽𝑖,𝑛 𝑆𝑝,𝑛𝑍0 = 0 

 

The network was spatially discretized using the orthogonal collocation method (Villadsen 

and Stewart 1967). For the resolution of the resulting algebro-differential equation system 

the DASPAK routine was employed (van Keken et al. 1995). 

A semi-infinite pore network, representing an infinite plate, was used. Two orthogonal 

directions are periodic, while in the third direction boundaries represent the entrance and 

the exit of the network. A similar element was presented before by Gladden in 1991 

(Hollewand and Gladden 1991). For the calculation of the tortuosity factor, a methodology 

like the one presented by Ruthven is implemented (Helfferich 1985). At steady state, the 

molar flow at the exit of the network can be calculated as the addition of the molar flows 

coming out of each individual pore which is connected to the external nodes of the exit face 

of the infinite plate (Equation 21). 

𝐽𝑖 =  − ∑ 𝐽𝑖𝑝 𝑆𝑝∑ 𝑆𝑝  

Equation 21. Molar flux at the outlet of the network 

The effective diffusion coefficient can be calculated assuming that the structure can be 

modelled in a higher length scale as a unique straight fluid macropore, where the 

concentration difference is measured between the inlet and the outlet of the 3D periodic 

network (Equation 22). 

𝐽𝑖 =  −𝐷𝑒𝑓𝑓 ∆𝐶𝑖𝐿𝑁  

Equation 22. Flux throughout the network thickness. 

The length 𝐿𝑁 represents the linear distance between the two non-periodic faces of the 

plate, while ∆𝐶𝑖 is the concentration difference between the inlet and the outlet size of the 
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3D periodic network. Finally, by definition, the tortuosity can be calculated using the 

Equation 23. 

𝜏 = 𝐷𝑚𝐷𝑒𝑓𝑓 

Equation 23. Tortuosity 

3.9.2. Influence of the pore network generation parameters on tortuosity 

3.9.2.1. Influence of the Pore Existence Probability 

The input conditions used for the simulations are presented in Table 8. 

Table 8. Conditions used to analyze the influence of PEP on the tortuosity factor 

Input parameters 

PEP (-) Variable 

Pore Length (nm) 40 

Avg. Diameter (nm) 20 

PSD St.Dev. (nm) 20 

Zmax (-) 6 

Grid Distortion (%) 0 

 

As shown in Figure 71, a decrease in the pore existence probability causes an increase in 

the tortuosity of the system. A lower PEP increases the average length travelled by the 

chemical species to reach the exit of the semi-infinite network. 

 
Figure 71. Variation of the tortuosity as a function of the PEP. 
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3.9.2.2. Influence of the average diameter 

The input conditions used for the simulations are presented in Table 9. 

Table 9. Conditions used to analyze the influence of average diameter of a gaussian PSD on the tortuosity factor 

Input parameters 

PEP (-) 0.75 

Pore Length (nm) 40 

Avg. Diameter (nm) Variable 

PSD St.Dev. (nm) 2 

Zmax (-) 6 

Grid Distortion (%) 0 

 

As shown in Figure 72, a lower PSD average diameter increases the tortuosity. This 

observation is coherent if the system is analyzed in terms of the resistance to diffusion 

(Equation 24). As the diameter increases, the resistance to diffusion decreases. 

𝑅𝑖 = 𝐿𝑃𝜋 ∗ 𝑅𝑃2𝐷𝑚 

Equation 24. Mass transfer resistance 

 

 
Figure 72. Variation of the tortuosity as a function of the pore average diameter. 
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3.9.2.3. Influence of the PSD standard deviation 

The input conditions used for the simulations are presented in Table 10. 

Table 10. Conditions used to analyze the influence of the standard deviation of gaussian PSD on the tortuosity factor 

Input parameters 

PEP (-) 0.75 

Pore Length (nm) 40 

Avg. Diameter (nm) 20 

PSD St.Dev. (nm) Variable 

Zmax (-) 6 

Grid Distortion (%) 0 

 

As shown in Figure 73, an increase of the PSD standard deviation causes a small increase in 

the tortuosity of the system. As discussed in section 3.8.3, the PSD standard deviation 

influences the percolation map of the system. A higher PSD standard deviation will cause 

an increase in fraction of pores affected by pore blocking. This means that in the diffusion 

case, the fluid could face a more complex system of resistances. These results are in 

agreement with the conclusion of Gladden (Hollewand and Gladden 1992). 

 

 
Figure 73. Variation of the tortuosity as a function of the PSD standard deviation. 
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3.9.2.4. Influence of the pore length 

The input conditions used for the simulations are presented in Table 11. 

Table 11. Conditions used to analyze the influence of the length on the tortuosity factor. 

Input parameters 

PEP (-) 0.75 

Pore Length (nm) Variable 

Avg. Diameter (nm) 10 

PSD St.Dev. (nm) 2 

Zmax (-) 6 

Grid Distortion (%) 0 

 

As shown in Figure 74, a variation of the pore length in a network in which all the pores 

have the same pore length has no effect on the tortuosity of the system. In this pore 

network model, an increase of the pore network length causes a proportional increase of 

the network size and in the characteristic time of the network. These results imply that the 

tortuosity of a pellet could be simulated using very long pores to extrapolate the size of the 

system to the macroscopic scale as proposed by Coppens (Ye et al. 2017). It should be 

mentioned that the textural properties will of course be different. 

 

 
Figure 74. Variation of the tortuosity as a function of the pore length. 
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3.9.2.5. Influence of the grid distortion 

The input conditions used for the simulations are presented in Table 12. 

Table 12. Conditions used to analyze the influence of length distortion on the tortuosity factor 

Input parameters 

PEP (-) Variable 

Pore Length (nm) 100 

Avg. Diameter (nm) 10 

PSD St.Dev. (nm) 2 

Zmax (-) 6 

Grid Distortion (%) Variable 

 

As shown in Figure 75, an increase in the distortion percentage causes a small increase on 

the tortuosity of the system. The distortion of the network in this model generates a 

gaussian length distribution (Figure 30). However, the pore length apparently has no 

influence on the tortuosity factor. It is possible that the increase of the tortuosity factor is 

due to the fact that the distortion is emphasizing the effect of the PSD standard deviation. 

 

 
Figure 75. Variation of the tortuosity as a function of the grid distortion. 
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Table 13. Conditions used to analyze the influence of different PEP in a hierarchical network on the tortuosity factor 

Input parameters 

PEP (-) Variable 

Pore Length (nm) 10 

Avg. Diam. Pop 1 (nm) 15 

Avg. Diam. Pop 2 (nm) 5 

PSD St.Dev. Pop 1 (nm) 2 

PSD St.Dev. Pop 2 (nm) 2 

Zmax (-) 6 

Grid Distortion (%) 0 

 

Having multiple domains located in random positions into a hierarchical architecture will 

have an influence on the tortuosity factor (see section 3.8). Figure 76 shows a parabolic 

evolution of the tortuosity factor as a function of the pore existence probability of the first 

population. When Figure 76 is confronted to the parametric analysis of PEP for hierarchical 

networks (or domains) in Figure 67, it seems that there exists a correlation between the 

number of clusters (or domains) and the tortuosity factor. The highest tortuosity value 

corresponds to the PEP that generates the highest number of clusters. 

 

Figure 76. Variation of the tortuosity as a function of the PEP of the population 1. 

This is line with experimental results for hierarchical gamma aluminas in which the porosity 

is concentrated into the grains instead of being concentrated into the matrix. When the 

tortuosity measured by PFG-NMR was compared against the tortuosity of hierarchical 

gamma alumina in which the porosity is concentrated into the matrix, it was found that the 

tortuosity is higher for the first case (Figure 77 and Figure 78). 
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Figure 77. SEM microscopies for two gamma alumina’s A and B (Glowska 2021) 

 

Figure 78. PFG NMR tortuosity measurements for 5 gamma alumina’s A, B, C, D and E (Glowska 2021) 

3.10. Conclusion 

In this chapter, the pore network model implemented was discussed in detail. The flexibility 

of the model and its versatile features were illustrated. 2D and 3D networks can be created 

using one or several pore populations that have independent characteristics: pore size 

distribution and pore existence probability. The network can be regular or distorted as 

shown in section 3.3. In the model, the maximum connectivity can be easily varied by 

implementing different lattices. The interaction between the different pore populations 
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and the variation of the pore network generation parameters can produce complex outputs 

such as pore connectivity distributions and pore volume distribution by population. The 

implementation of a percolation algorithm using advanced strategies such as heap 

structures significantly increases the simulation speed. 

A topological analysis was carried out in order to better understand the influence of the 

different network generation parameters the network’s architecture. It was argued how the 
topological maps are affected by the lattice and the pore existence probability, how the 

percolation map is affected by the topological map and the pore size distribution, and how 

the pore volume distribution is affected by the pore size distribution and the pore length 

distribution. The fact that a fraction of the pores is not influenced by percolation 

phenomena is an interesting conclusion of this section. This fraction depends on the 

maximum connectivity of the network and the pore existence probability. 

The interaction between several pore populations was also studied. The populations can 

hinder each other according to their grid spacing and their pore size distribution. The 

volume represented by each population is a key variable. The effect of the percolation map 

on volume processes is significantly influenced by the pore volume fraction allocated to 

each population. This is result relevant to understand the role of pore blocking effect when 

techniques such as nitrogen sorption are to be simulated. Controlling the size and the 

dispersion of the domains could improve importantly the quality of the model. These 

descriptors can be useful to characterize hierarchical gamma aluminas. 

The existence of pore domains of different populations, their number, and their dispersion 

in the network strongly influence the effective diffusion coefficient. This is in line with 

experimental observations. This analysis proves the relevance of using multiple populations 

and pore domains to model the network architecture of gamma aluminas. 
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Chapter 4: Simulating textural characterization techniques 

4.1. Introduction 

Generating structures that match structural descriptors of a real porous material is an 

important task. For disordered porous material, the randomness of the structure is an 

important factor to consider and sometimes the existing characterization techniques only 

provide limited information about the structure. The lack of information is due to 

constraints of the techniques, to the low accuracy of the interpretation models or to a lack 

of understanding of the phenomena occurring during the characterization experiments. 

Interpretation of the results coming from different techniques can be time-consuming and 

sometimes contradictory. 

Direct simulation of the phenomena on which the experimental characterization technique 

is based can help to get a better interpretation of the results. Studying the validity of the 

assumptions used for the interpretation of the raw data and the calculation of specific 

properties such as surface area, pore volume, and pore size distribution is a way to do this. 

By doing this, it should be possible to create a more accurate digital representation of the 

material and a statistically representative computational structure (Schüth 2002a). It could 

be also possible to extrapolate results, identify new relevant descriptors, and finally 

optimize the structure with a specific goal. 

In this chapter, we will describe the models that we have developed for the simulation of 

the characteristic curves obtained by Nitrogen Sorption (NS), Mercury Porosimetry (MP), 

and Cryo-Porometry (CP). 

Several authors have worked on the numerical modeling of these characteristics curves: 

some of them using computationally expensive methods coming from molecular dynamics 

or DFT (Wongkoblap et al. 2011; Bruschi et al. 2015; Gelb and Gubbins 1999; Do et al. 2010; 

López-Ramón et al. 1997; Gavalda et al. 2002), others through statistical methods such as 

percolation theory (Seaton 1991; Daigle et al. 2015; Murray et al. 1998, 1999a; Liu et al. 

1993; Cimino et al. 2013), and the last group using equations and models based on capillary 

phenomena (Mehmani and Prodanović 2014; Meyers et al. 2001; Tian and Daigle 2018; 

Rojas et al. 2002; Satik. C. 1995; Wang et al. 2018). To match the digital structure with the 

structure of the material, an important amount of computational time must be invested 

depending on the number of parameters of the model. It is therefore critical to create 

algorithms capable of getting accurate results in a minimum time. Recent interesting 

research proposes to combine the information provided by different porous solid 

characterization techniques (digital and experimental) to characterize the topology of the 

solid (Cimino et al. 2013; Rigby et al. 2017; Hitchcock et al. 2014). 
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4.2. Methodology 

 
Figure 79. Elements of the algorithm for the characterization techniques simulations. 

The models that we propose are based on the pore networks that are generated by using 

the stochastic generation algorithm described in Chapter 3. 

The simulation of each characterization technique has two fundamental parts (Figure 79). 

The first one is the thermodynamic or mechanical equilibrium model that relates the input 

experimental variable to the size of the pores. The second one corresponds to the pore 

blocking phenomena and how they affect penetration and exit, or the phase change of the 

fluid used for the characterization. The percolation algorithm that we have developed in 

section 3.7 will be used to deal with this situation. 

4.3. Nitrogen sorption simulation 

4.3.1. Thermodynamic Model 

The Kelvin-Cohan (KC) equation (Equation 25) represents the pressure of the vapor-liquid 

equilibrium in a confined medium as a function of the liquid-vapor interface mean curvature 

at a given temperature. This equation has well-known limitations, especially below the 5 nm 

diameter threshold (Zhang et al. 2006). 

To model the vapor-liquid equilibrium in confined media, the Kelvin-Cohan equation is used 

along with the Harkin-Jura statistical thickness equation (Equation 26) that gives the 

thickness of a layer of adsorbed nitrogen on the pore’s surface. This layer reduces the size 

of the empty part of the pore and hence the mean curvature of the liquid-vapor interface. 

 

Equation 25. Kelvin-Cohan equation as a function of two curvature radii. 

𝑃𝑣𝑃𝑜 = exp (𝜎𝑙𝑔 ∗ 𝑉𝑙𝑚𝑅𝑇 ∗ ( 1𝑟1(𝑡) + 1𝑟2(𝑡))) 



104 

𝑡 = 13.990.034 − 𝑙𝑜𝑔10 (𝑃𝑣𝑃0)12
 

Equation 26. Harkins-Jura Statistical thickness equation (with t in angstrom). 

If rp is the radius of a given cylindrical pore, the size req to be accounted for is given by: 𝑟𝑒𝑞 = 𝑟𝑝 − 𝑡 

The following assumptions are taken: 

• The pores are rigid, cylindrical, and open at both ends. 

• During the increasing pressure step, sorption mechanism starts with the adsorption 

of the nitrogen on the pore wall followed by sudden liquefaction. For a given 

pressure, liquefaction occurs in pores the radius of which being given by the KC 

equilibrium (Equation 25) with: 1𝑟1(𝑡) + 1𝑟2(𝑡) = 1𝑟𝑒𝑞 

• During the decreasing pressure step, the liquid nitrogen needs to be in contact with 

the vapor phase to evaporate. In this case, a pore blocking phenomenon occurs, and 

a triggering diameter has to be assigned to each pore of the network. In a pore 

whose diameter is equal to the triggering diameter, the evaporation occurs axially 

according to the equilibrium KC equation. In this case, the liquid-vapor interface is 

spherical, and the mean radius of curvature is: 1𝑟1(𝑡) + 1𝑟2(𝑡) = 2𝑟𝑒𝑞 

Once all the liquid nitrogen is vaporized, desorption occurs on the pore wall. 

4.3.2. Triggering diameter assignment for decreasing pressure step 

Even if the equilibrium pressure in a given pore is reached, the liquid phase needs to be in 

contact with the gas phase to be able to vaporize. In Figure 80, a simple example is 

represented by considering three cylindrical pores in series: A, B, and C. All the three pores 

are open at both ends and A and C are in contact with gas. C has the smallest radius, A has 

an intermediate radius, and B has the largest radius. This means that the vaporization 

equilibrium pressure in pore B is higher than in pores A and C. The liquid nitrogen contained 

in B cannot vaporize until there is a connection to the surrounding gas, i.e. until the liquid 

nitrogen contained by A is vaporized. We will say that vaporization in pore B is triggered by 
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vaporization in pore A. The vaporization pressure in pore B will therefore be out of 

equilibrium and lower than during a non-blocked liquefaction process. 

 

Figure 80. Representation of an example network of three pores. 

The triggering diameter of pore B represents the critical diameter at which vaporization of 

nitrogen contained in pore B will take place. Hence, in the case of Figure 80, the triggering 

diameter of pore B is equal to the diameter of pore A. 

The attribution of the vaporization triggering diameter to each pore is performed by using 

the dedicated generic algorithm described in section 3.7. 

4.3.3. Nitrogen volume calculation 

The simulation starts from a relative pressure equal to zero. As the pressure increase, the 

nitrogen penetration process occurs in two steps: layer formation and full condensation. It 

is therefore necessary to establish a liquefaction criterion for the cumulated volume of 

liquid nitrogen (Equation 27). 𝐷𝑝 > 𝐷𝑒𝑞 − 2𝑡 

Equation 27. Liquefaction criteria 

If the diameter of the pore (Dp) is higher than the Kelvin-Cohan equilibrium diameter (Deq - 

2t) for a given relative pressure, then the adsorbed volume 𝑉𝑝 in this particular pore at the 

current pressure is equal to the volume of nitrogen in the adsorbed layer: 𝑉𝑁2 = 𝜋 ∗ 𝐿𝑝 ∗ (𝐷𝑝 − 𝑡) ∗ 𝑡 

Equation 28. Total adsorbed volume as a function of the adsorbed layer thickness. 

Otherwise, it is considered that pore is full of liquid, and its volume is given by: 𝑉𝑁2 = 𝜋4 ∗ 𝑙 ∗ 𝐷𝑝2 

Equation 29. Total liquid volume within the pore 

A
B

C
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For the decreasing pressure step, as the pore blocking phenomena exist, the procedure is 

the same, but the vaporization triggering diameter (D𝑇) of the pore instead of the actual 

diameter (Dp) is used in the comparison against the Kelvin-Cohan equilibrium diameter 

(Deq_n-2t) for a given pressure step. For the calculation of the cumulated volume, the easiest 

way to do it is to count the liquid volume in the same way as for adsorption: from the lowest 

relative pressure to higher relative pressures. Doing it in the higher-to-lower relative 

pressure direction would imply using more criteria to correctly attribute the volume of the 

core that desorbs abruptly once the metastable state is broken. 

4.3.4. Characteristic curve generation 

Finally, in pseudo-code, the simulation code can be written as follows: 

Generate Pore Network Model 

Find desorption triggering diameter for each pore 

FOR Prelative= 0 to 1 

  FOR pore=1,Npores 

Calculate the quantity of nitrogen inside the pore (Equation 27, 

Equation 28 and Equation 29) using the actual diameter (for adsorption) 

or the triggering diameter (for desorption) 

  END FOR 

END FOR 

Print 

 

First, the pore network is generated. Secondly, the desorption triggering diameter is found. 

Thirdly, the relative pressure is variated from 0 to 1. At each pressure step the quantity of 

nitrogen within each pore is calculated. Finally, the characteristic curve is printed.  

4.3.5. Scanning curves 

By adapting the full Nitrogen Sorption algorithm, it is also possible to simulate scanning 

curves that are sensitive to pore blocking phenomena. The thermodynamic phenomena 

remain the same. However, there are slight changes in the input used for triggering 

diameter algorithm and the curve generation. A scanning curve is represented by an 

adsorption branch obtained from a solid that is not totally filled with condensed nitrogen 

(relative pressure < 1). The relative pressure at which the desorption starts will determine 

the number of pores filled with condensed nitrogen (not just with adsorbed nitrogen). This 

pressure will be called target pressure. 

The target pressure will determine how to change the input of the triggering diameter. 

Using the Kelvin-Cohan equation it is possible to determine the critical diameter for the 

target pressure. In the connectivity matrix, the diameters that are superior to the critical 

value will be substituted by 1 (or any value bigger than the biggest pore diameter of the 

network). Then, triggering diameter assignment algorithm will be executed. Once the task 

is finished, the original diameter of all the pores with a modified diameter will be restored. 
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At the same time, for these pores also, their original diameter will be assigned as their 

triggering diameter. 

There are two reasons to assign a diameter equal to 1 to the pores with diameter higher 

than the critical diameter at the target pressure. The first one is that the nitrogen adsorbed 

in these pores will not block the desorption of the nitrogen condensed in smaller pores. The 

second reason is to transport the critical diameter information to the more inner pores (see 

assignation rule ii) in section 3.7.3). A graphical depiction is shown in Figure 81. The three 

pores are explored from the right to the left. In Figure 81b, the nitrogen adsorbed in the 

pore 2 does not block the nitrogen condensed in pore 3. When the pore 2 takes the 

triggering diameter of pore 1 as his own, the pore 3 can take it too. 

 

Figure 81. Scanning curves input change logic. a-) Array of three pores in which the pore 2 has a diameter superior to the 

critical diameter for the target pressure. b-) Case a with nitrogen condensed in pores 1 and 3. 

As mentioned before, the original diameter of all the pores with corrected diameter of 1 

will be restored. For these pores, their original diameter will also be assigned as their 

triggering diameter. This will allow to create the characteristic curve. The use of the true 

diameter of the pore over the critical value is important to quantify the quantity of adsorbed 

nitrogen in these pores. 

The critical diameter at the target pressure is calculated assuming that the meniscus is 

described by a cylindrical geometry. If the meniscus of the pore has a geometry different 

than the one used for the adsorption (ex. cylindrical for the adsorption and spherical for 

desorption), a discrimination needs to be made for pores with a diameter higher the critical 

diameter (modified diameter for the triggering diameter algorithm). In the criteria 

described in Equation 27, 𝐷𝑒𝑞 must be calculated using Equation 25 for a cylindrical 

meniscus. For the pore in which nitrogen condensed, 𝐷𝑒𝑞 must be calculated using Equation 

25 for a spherical meniscus. The process is summarized in Figure 82. 
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Figure 82. Modification on the nitrogen simulation algorithm for the scanning curves simulation: a-) Modifications for the 

input of the triggering diameter algorithm. B-) Modification for the characteristic curves. 

The use of the spherical cap to describe the meniscus of a pore has for consequence a 

reduction in the desorption pressure for pore of the same diameter. This means that if this 

geometry is also used for pores with an equilibrium pressure over the target pressure, the 

model will quantify evaporation at lower relative pressure. 

The procedure is repeated for each scanning curve as described in Figure 83. 

 

 

Figure 83. Algorithm’s modification for scanning curves: a-) General sequence of the integrated algorithm. b-) Adaptation 

for the generation of the scanning curves. 

4.3.6. Brunauer, Emmett Teller (BET) surface area 

The calculation of the BET area follows the methodology described by (Rouquerol et al. 

2014b). Initially, all the isotherm points belonging to the relative pressure range between 0 
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and 0.15 are considered to adjust the BET curve (Equation 30). If the intercept is negative 

(
1𝑛𝑚𝐶 < 0), then the upper limit of the range is reduced. This procedure is repeated until 1𝑛𝑚𝐶 > 0. 1𝑛𝑎 ( 𝑃𝑃𝑜 − 1) = 1𝑛𝑚𝐶 + 𝐶 − 1𝑛𝑚𝐶 ∗ ( 𝑃𝑃𝑜) 

Equation 30. BET model for to calculate the specific surface area of a porous solid. 

Once the capacity of the monolayer is obtained (𝑛𝑚), knowing the average cross-sectional 

area occupied by each molecule of nitrogen (𝜎 [m2/molecule]), it is possible to calculate the 

specific area of the solid (m2/g) using Equation 31: 𝑆𝐵𝐸𝑇 = 𝑛𝑚 ∗ 𝑁𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 ∗ 𝜎 

Equation 31. Specific surface area calculation using the monolayer capacity obtained from the BET equation. 

4.3.7. BJH Pore Size Distribution 

The calculation of the pore size distribution using the method of Barret, Joyner and Halenda 

(BJH) is computed using the methodology described in detail by Lowell and Shields (Lowell 

and Shields 1991). The methodology is based on the evaluation of the change of nitrogen 

volume in liquid state between two relative pressures in the section of the isotherm that is 

occupied by the hysteresis loop. The total pore volume occupied by the change of liquid 

nitrogen volume at each pressure step is calculated as: 

𝑉𝑇𝑃𝑠𝑡𝑒𝑝 = (𝑟𝑝𝑃𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ ̅̅𝑟𝑘𝑃𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ ̅̅ )2 [∆𝑉𝑙𝑖𝑞 − (∆𝑡 ∑ 𝑆𝑗𝑗=𝑃𝑠𝑡𝑒𝑝
𝑗=2 )]  

Equation 32. Total pore volume occupies by the change of liquid nitrogen volume 

All the averages in Equation 32 are calculated using the quantities that corresponds to Pstep 

and (Pstep-1). ∆𝑉𝑙𝑖𝑞 is the change of nitrogen volume in liquid state. 𝑟𝑝𝑃𝑠𝑡𝑒𝑝̅̅ ̅̅ ̅̅ ̅̅  is the average 

pore radius. For each relative pressure step, the pore radius is calculated as: 𝑟𝑝 = 𝑟𝑘 + 𝑡  
Equation 33. Pore critical pore radius 𝑟𝑘 is the Kelvin radius calculated using Equation 25. ∆𝑡 represents the difference in 

statistical thickness of the adsorbed nitrogen layer. Finally, ∑ 𝑆𝑗𝑃𝑠𝑡𝑒𝑝2  represents the 
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cumulated area of the pore walls quantified up until the pressure steps under consideration. 

The surface area for each pressure step is calculated as: 

𝑆𝑃𝑠𝑡𝑒𝑝 = 2 𝑉𝑇𝑃𝑠𝑡𝑒𝑝𝑟𝑝𝑃𝑠𝑡𝑒𝑝  ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Equation 34. Exposed wall pore surface area at each pressure steps 

4.4. Mercury Intrusion Porosimetry 

4.4.1. Mechanical model 

Mercury intrusion can be considered as a mechanical process, modelled here by the 

Laplace-Young equation. Again, there are two important components to model and link: the 

triggering diameter algorithm, which allows to find the pressure at which mercury intrudes 

in every pore considering pore blocking, and the mechanical/thermodynamic model 

represented by Laplace-Young equation (Equation 35), which sets the pressure at which the 

mercury intrudes in a pore based on purely mechanical/thermodynamic considerations. 

𝑃 = −4 ∗ 𝜎𝐿𝑉 ∗ cos 𝜃𝐷𝑒𝑞_𝑚  

Equation 35. Laplace-Young equation 

To search for the intrusion diameter, the following assumptions made are: 

• The Laplace-Young equation is applicable over the complete pore size distribution 

range. 

• The shape of the meniscus is always considered as hemispherical. 

• The intrusion angle is constant and air-mercury surface tension are constant. 

• The material is not deformable under stress. 

• The mercury is not compressible. 

• The pores are cylindrical. 

• Pore blocking phenomena are present and fully associated with the topology of the 

pore network. 

• The effect of gravity is negligible compared to the capillary forces. 

In this case, the simulation will only model the intraparticle intrusion. The system is 

considered to be in equilibrium at every pressure step. 
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4.4.2. Triggering diameter assignment adaptation 

In this case, the triggering diameter represents the critical diameter at which the intrusion 

of mercury will take place. 

The percolation algorithm for mercury intrusion is identical to the percolation algorithm for 

nitrogen desorption (section 3.7). The following assignation rules are used: 

i) If the diameter of the pore is smaller than the intrusion triggering diameter of the 

guide pore, the pore conserves its original diameter as intrusion triggering diameter. 

ii)  If the diameter of the pore is bigger than the intrusion triggering diameter of the 

guide pore, the pore adopts the guide pore’s intrusion triggering diameter as its own 
intrusion triggering diameter. 

However, the percolation algorithm for the extrusion is different. The assignation rules 

change due to two reasons: 

- The pores from which the mercury extrudes first are the smallest pores, which 

means that pores causing pore blocking are now the bigger pores. 

- There needs to exist a continuum path of pores filled by mercury connecting a 

specific pore to the external bulk of mercury to allow the extrusion of this pore. 

In this case, the exploration of the network for identifying the trapped zones can be easily 

done exploring the network from the external pores. The extrusion process can be modelled 

with a similar algorithm as for the other characterization techniques with slightly 

modification on the logic. 

4.4.3. Mercury volume calculation 

The simulation starts with pressure equal to the atmospheric pressure. If the intrusion 

triggering diameter of the pore is lower than the equilibrium diameter (𝐷𝑒𝑞_𝑚) for a given 

pressure, then mercury does not intrude into the pore and has a null contribution to the 

total intruded volume at that step. Otherwise, the intrusion process is modeled as if it 

happens in one single step: the mercury has totally intruded into the pore and contributes 

to the volume increase with the volume of this pore as given by Equation 36. 𝑉𝐻𝑔 = 𝜋4 ∗ 𝑙 ∗ 𝐷𝑝2 

Equation 36. Total intruded/extruded volume within/from the pore 
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4.4.4. Characteristic curve generation 

Finally, in pseudo-code, the simulation code can be written as follows: 

Generate Pore Network Model 

Find intrusion triggering diameter for each pore 

FOR Prelative= 0 to 420MPa 

  FOR pore=1,Npores 

Calculate the quantity of mercury intruded using Equation 36 

  END FOR 

END FOR 

Print 

 
First, the pore network is generated. Secondly, the intrusion triggering diameter is 

determined. Thirdly, the relative pressure is varied from 0 to 420 MPa. At each pressure 

step, the quantity of mercury within each pore is calculated. Finally, the characteristic curve 

is printed. 

4.5. Cryoporometry 

4.5.1. Thermodynamic Model 

To model the liquid-solid equilibrium in the confined media, Strange’s simplification based 
on the Gibbs–Thomson equation is used along with the Liljeblad pre-molten layer data 

obtained from 2H-NMR experiments on porous silica imbibed with deuterium (Liljeblad et 

al. 2016; Strange et al. 1993). The Gibbs-Thomson equation gives the solid-liquid 

equilibrium temperature as a function of the mean radius of curvature of the solid-liquid 

interface, the solid phase being in the concave part of the interface. For this simulation, the 

thicknesses of the pre-molten layer tl during freezing and melting are considered to be 

equal. 

∆𝑇𝑖 = 𝑇𝑖 − 𝑇° = − 2 ∗ 𝑘𝐷𝑒𝑞_𝑐  

Equation 37. Strange’s simplification of the Gibbs–Thomson equation 𝑡𝑖 = −0.452 ∗ 𝐿𝑛(∆𝑇𝑖) + 1.7704 

Equation 38. Pre-molten layer equation based obtained from Liljeblad experiments (ti in angström). 

During the freezing step, the porous media is considered to be surrounded by a layer of bulk 

ice prior to the freezing step according to the experimental operating conditions. The 

heterogeneous freezing of the liquid within the pore is carried out by propagation of the ice 

front in the axial direction of the pore and is only hindered by the pore size. The liquid 
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considered for the simulation is ultrapure water. The homogenous freezing temperature of 

the water is set to be 233 K (Enninful et al. 2019; Mascotto et al. 2017). 

The following assumptions are made for our model: 

• The Gibbs-Thompson equation is applicable over the complete pore size distribution 

range. 

• The properties of the confined water are assumed to be the same as those of the 

bulk water and to be independent of the temperature. 

• The properties of the material are considered to be independent of the temperature 

(no dilatation). 

• Pore blocking phenomena are present and fully associated with the topology of the 

pore network. 

4.5.2. Triggering diameter assignment adaptation 

The triggering algorithm is applied to the freezing branch. The advancing of the freezing 

front proceeds as for the desorption process in nitrogen desorption, but instead of 

considering a desorption triggering diameter, a freezing triggering diameter is considered 

(section 3.7). 

4.5.3. Frozen volume calculation 

The simulation starts from the temperature equal to the freezing condition of the liquid in 

the bulk. If the freezing triggering diameter of the pore is lower than the Gibbs-Thompson 

equilibrium diameter (Deq_c) for a given temperature, then the ice front does not advance 

through it and has a null contribution on the decrease of the total volume of liquid at that 

step. Otherwise, the advancing of the frozen front occurs in a single step, and the reduction 

in volume at liquid state is equal to: 𝑉𝐻2𝑂 = 𝜋4 ∗ 𝑙 ∗ (𝐷𝑝 − 𝑡𝑙)2
 

Equation 39. Total volume of frozen liquid within the pore 

In Equation 39, tl represents the thickness of the pre-molten layer. For the melting, the same 

logic is applied, but the diameter is the actual diameter of the pore, since the melting is not 

considered to be constrained by pore blocking. 

4.5.4. Characteristic curve generation 

Finally, in pseudo-code, the simulation code can be written as follows: 
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Generate Pore Network Model 

Find freezing triggering intrusion diameter for each pore 

FOR T = 273 to 233K 

  FOR pore=1,Npores 

Calculate the volume of ice using Equation 39 

  END FOR 

END FOR 

Print  

 
First, the pore network is generated. Secondly, the freezing triggering diameter is found. 

Thirdly, the temperature is variated from 273 K to 233 K. At each temperature step, the 

frozen volume is calculated. Finally, the characteristic curve is printed. 

4.6. Case Study 

Two different kinds of pore networks were used for the case study. In the first case, the 

pores are connected to zero-volume nodes, and only the pores located on the connections 

between the nodes represent the total pore space; in the second case, the nodes have a 

volume, and the total pore space is the sum of the volume of all pores and all nodes (Figure 

84). Due to the stochastic nature of the network generation process, 30 simulations were 

performed for every test case to obtain a low standard deviation for the network’s average 

textural properties (Section 3.5). The results are presented as the average of every set. The 

simulation was carried out on a Dell desktop computer with a 3.5 GHz Intel Xeon E5 CPU 

and 16GB of RAM. 

 
Figure 84. 2D Schematic representation of an elementary system node-pore for a square lattice with PEP equal to 1. (a) 

The porous space is represented by the cylinders (pores) and the spheres (nodes). (b) The porous space is represented by 

the cylinders only (pores). 



115 

4.6.1. Network Parameters 

A pore size distribution generated from a Gaussian distribution centered at 10 nm and with 

a standard deviation equal to 2 nm was employed. To verify the consistency, the output 

pore size distribution of the generated network was analyzed, and its consistency was 

proven. The comparison between input and output in terms of the cumulative distribution 

function is shown in Figure 85. 

 
Figure 85. Comparison between the input and output CDF. 

4.6.2. Execution Time 

In order to test how the execution time of the algorithm evolves with the size of the 

network, six cubic lattice networks of different sizes were generated. The pore existence 

probability (PEP) was set to 1. The results are shown in Figure 86 and Figure 87 with 

execution time in function of the total number of pores. As the size of the network increase, 

the time required for the execution increases as well. The execution times for all three 

algorithms exhibits approximately the same trend. All algorithm execution times proceeds 

with an O[N log(N)] time. The mercury porosimetry algorithm is slightly faster, not because 

the min-heap algorithm is faster, but since the breakup consideration makes a list of active 

pores considerably shorter, a significant number of pores do not need to be explored, 

thereby considerably reducing the execution time. The time for the network with nodes as 

porous space is not considered superior to the first case because it treats the nodes as 

pores. This is equivalent to an increase of about 16% the number of the pore to explore, 

and hence an increase in execution time. 
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Figure 86. Effect of the network size on the algorithm’s execution time for nodes with zero volume. 

 
Figure 87. Effect of the network size on the algorithm’s execution time for nodes with volume. 

4.6.3. Connectivity Effect 

To test the connectivity effect, six cubic lattice networks were generated. Networks with 

different average connectivities were generated by changing the pore existence probability, 

but also the dimension of the network in order to maintain constant (on average) the total 

number of pores. The number of pores was set to 3.5E+05. The result is shown in Figure 88 

and Figure 89 with the execution times as function of the average connectivity. The 

execution time is not significantly affected by connectivity. It is far from being a relevant 

factor influencing the execution time at low connectivity. 
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Figure 88. Effect of the connectivity on the algorithm’s execution time for nodes with zero volume. 

 
Figure 89. Effect of the connectivity on the algorithm’s execution time for nodes with volume. 

4.6.4. Execution time to generate a network with low variability 

In section 3.5, we studied the minimum required network size for different pore existence 

probabilities and lattice patterns in 2D and 3D in order to obtain textural properties with 

low variability. The execution times of the algorithm for those practical cases was also 

stored and are shown in Table 14 to Table 17. As expected, the required time is very low 

and opens the door to more ambitious applications of the digital characterization of pore 

network models. 

Table 14. Execution time for the minimum required size of the network for NS. 
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Table 15. Execution time for the minimum required size of the network for MP. 

 

 

Table 16. Execution time for the minimum required size of the network for CP. 

 

 

In order to make a simple comparison in terms of final execution time using the max-heaps 

algorithm vs. the common sorting algorithm used by default in FORTRAN, the execution 

times for the same cases are shown in Table 17. 

Table 17. Execution time for the minimum required size of the network for NS by using the Fortran 90 sorting algorithm. 

 

4.6.5. Characteristic Curves 

For the characterization of the network in this case study, zero-volume nodes have been 

used, and only the connections between the nodes represent the porous space (Figure 84). 

The pore size distribution employed to assemble the network is the same used in section 

4.6.1. 

The characteristic curves of the three characterization techniques are shown in Figure 90 to 

Figure 92. All simulated curves correspond qualitatively to typically observed experimental 

curves. The input used for the generation of the network were: cubic geometry-lattice of 

dimension 50x50x50, PEP equal to 0.75, and pore size distribution generated by using a 

Gaussian distribution centered at 10 nm and with a standard deviation equal to 2 nm. The 

average connectivity of the resulting network was equal to 4.20. 

The isotherm observed in Figure 90 is the result associated with the parameters given 

above. There is a hysteresis loop as a consequence of the pore blocking phenomena and 
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P=0.5 100x100 1.97 100x100 7.37 20x20x20 2.63 30x30x30 64.49

P=0.7 100x100 5.12 100x100 16.56 20x20x20 6.89 80x80x80 19 h 42min

P=0.9 50x50 0.56 200x200 395.24 40x40x40 757.91 -

2D 3D

Connectivity/Lattice Zmax=4 (square) Zmax=8 (tetrahedral) t(s)t(s) Zmax=6  (Triangular) t(s) Zmax=6 (Cubic) t(s)
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the difference of curvature of the meniscus between adsorption and desorption considered 

in the KC equation. The isotherm qualitatively corresponds to a type IV isotherm (according 

to IUPAC classification) with hysteresis loop closing at about 0.42 (Rouquerol et al. 2014a). 

 
Figure 90.Nitrogen sorption simulation output: a) Numerical Nitrogen Isotherm. b) Calculated BJH Pore Size Distribution 

(Both branches) 

The intrusion/extrusion curves in Figure 91 show similar behavior to experimental curves 

with a retention volume of about 40 % (Kaufmann 2010). In this characteristic curve 

intrusion and extrusion, branches are influenced by the pore blocking phenomena. 

 

 
Figure 91. Mercury intrusion simulation output: a) Numerical Intrusion/Extrusion Curve. b) Calculated Pore Size 

Distribution (Intrusion branch). 

Last but not least, the freezing/melting curves in Figure 92 show a classical hysteresis loop, 

qualitatively similar to experimental curves shown by Hitchcock and coworkers (Hitchcock 

et al. 2011). The loop closes above 233 K as expected due to the minimum pore size. The 

freezing branch is affected by the advancing ice front consideration and hence by the 
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topology of the structure. In all three cases, the starting and closing volumes coincide for 

both branches. 

 
Figure 92. Cryoporometry simulation output: a) Numerical Freezing/Melting Curve. b) Calculated Pore Size Distribution 

(Both branches) 

Figure 90 to Figure 92 also show the pore size distributions back-calculated from the 

simulated numerical experiments. As can be seen, the back-calculated pore size distribution 

is very close to the actual one for mercury porosimetry and for the freezing branch of the 

cryoporometry. Significant differences are found for the back-calculated BJH pore size 

distribution from the nitrogen adsorption isotherm. 

Finally, Figure 93 provides an example of the scanning curves obtained for this sample. 

 
Figure 93. Nitrogen sorption simulation output: Scanning Curves 
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4.7. Conclusions 

A fast algorithm for the characterization of a digital pore network was developed and 

adapted to three different porosimetry techniques. The algorithm can also easily be 

adapted to other porosimetry characterization techniques such as thermoporometry. Pore 

blocking phenomena and thermodynamic or mechanical equilibrium were considered to 

determine a triggering diameter for each pore through the network. 

The algorithm was optimized by using a Max-Heap / Min-Heap sorting technique as a tool 

for handling the search list. A time execution test for the nitrogen sorption algorithm and 

an octahedral lattice of about 2 million pores required 6.7 seconds using the binary heap 

algorithm, which is more than 20 times faster than other sorting algorithms. This shows the 

advantage of using the binary heaps for handling the search list as suggested by Masson 

(Masson and Pride 2014). The size of the network is the main parameter that affects the 

execution time and exhibits an O[N log(N)] behavior. 

The developed algorithms are able to reproduce qualitatively the trends of the typical 

curves for Nitrogen Sorption (NS), Mercury Intrusion Porosimetry (MIP), and cryo-

porometry (CP). A future sensitivity analysis will help to better characterize how the 

different input parameters influence the obtained type of characteristic curve. Adding an 

optimizer to this algorithm in order to match the digital characteristic curves to those of an 

actual porous alumina sample will allow obtaining a digital structure that not only exhibits 

the same macroscopic properties but that could also statistically represent the topology of 

the material. 
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Chapter 5: Parametric sensitivity analysis for the digital 

characterization techniques 

5.1. Nitrogen sorption 

A nitrogen isotherm possesses several characteristic indicators that allow getting qualitative 

information about the textural properties of the solids and their topology. In Figure 94, an 

experimentally obtained isotherm of an actual alumina sample is shown, and the indicators 

are numbered from 1 to 6. These characteristic indicators are: 

• 1) BET adsorption/desorption branch Slope. The slope of the section of the 

isotherm lies in the P/Po range 0-0.15. The magnitude of this slope and the 

corresponding nitrogen volume are both used to calculate the BET surface area. In 

this range, the nitrogen is liquefied in the micropores (diameter = 0-2 nm) and the 

very initial range of mesopores (diameter = 2-50 nm) (See Table 18). However, the 

nitrogen volume measured in this range includes also the nitrogen adsorbed in 

bigger pores quantified by the statistical thickness equation (Equation 26). The pores 

that contribute with the highest fraction of the total surface area are not necessarily 

the micropores of the solid structure, but the pores that exist in greatest abundance. 

In the pore network model, this indicator depends on the pore volume distribution 

and the density of the pores. The density of the pores depends on the pore existence 

probability (PEP), the lattice used, and the pore length. 

• 2) Loop lower closure. It indicates the end of the pore blocking effect. This provides 

information about the smallest pore size that is causing the liquid nitrogen 

retention. In some works, cavitation is reported under P/Po = 0.4, meaning that if 

there is nitrogen retention due to the pore size distribution, the liquid nitrogen in a 

metastable state does not need to be in contact with the external area to evaporate. 

• 3) Vaporization/liquefaction branch slope change. The slopes that can be 

individuated in the desorption branch are indicators of the kind of pore size 

distribution that constitutes the solid structure. In the case of the isotherm shown 

in Figure 94, there is a clear slope change. When the BJH method for the calculation 

of the pore size distribution is applied to the vaporization branch, a bimodal pore 

size distribution is obtained. 

• 4) Nitrogen retention pressure range during vaporization. This indicates the 

average diameter of the pores initially blocked. This retention can be also due to the 

change in the curvature radius of the nitrogen meniscus before evaporation. When 

a spherical meniscus arises in the pore, the consideration of this spherical meniscus 

in the Kelvin-Cohan equation reduces by half the equilibrium evaporation pressure 
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for a pore relative to its liquefaction pressure. This means that even if the topology 

and the percolation map would not have caused the liquid nitrogen retention, the 

nitrogen still would be retained. 

• 5) Total nitrogen volume within the sample. This represents the specific total 

volume present within the porous solid, it is then equivalent to the specific void 

volume of the structure. The void volume is mainly supplied by the pores of higher 

diameters. 

• 6) Retained volume fraction. It is calculated between the liquid volume at maximum 

relative pressure and the loop lower closure. This considers the volume fraction of 

the hysteresis loop. It is an indicator of the influence of the pore blocking effect. 

 

 
Figure 94. Major indicators on a nitrogen isotherm: 1-) BET Slope, 2-) Loop lower closure, 3) Desorption/ Adsorption 
slopes change, 4) Initial nitrogen retention, 5) Total adsorbed volume, 6) Retained volume fraction. 

The sensitivity of the equilibrium diameter to the pressure in the Kelvin equation can be 

analyzed using derivatives. In Figure 95, the derivative of the diameter as a function of the 

pressure is represented. Also, the derivative of the Kelvin diameter (without the thickness 

of the adsorbed layer), and the derivative of the thickness of the adsorbed layer are 

presented for comparison. The sensitivity to the pressure change decreases until the P/Po 

0.15, which is the BET maximum pressure. This relative pressure value corresponds to a 

pore diameter equal to 1.8 nm. 
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Figure 95. Analysis of the Kelvin equation and the Harkin Jura statistical thickness 

It is not difficult to calculate the evolution of volume fractions in the pore that correspond 

to the volume adsorbed in the layer (𝑓𝑎) and to the volume of the core (𝑓𝑐), i.e. added by 

liquefaction. The fractions in Equation 40 are calculated for the full range of relative 

pressure. The results are presented in Figure 96. 𝑓𝑎 = 𝑡𝐷𝑘 + 𝑡 

𝑓𝑐 = 𝐷𝑘𝐷𝑘 + 𝑡 

Equation 40. Fractions that correspond to the adsorbed volume (𝒇𝒂) and liquified volume (𝒇𝒄).  
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Figure 96. Core and adsorbed layer volume fraction as a function of the relative pressure using the Kelvin-Cohan for a 
cylindrical pore. 

The adsorbed layer volume contribution is the highest until P/Po = 0.57, which corresponds 

to an equilibrium diameter equal to 4.8 nm. 

After the BET zone in Figure 95, the sensitivity of the equilibrium diameter to change in the 

relative pressure grows at an increasing rate that eventually becomes exponential after 

P/Po=0.91 (See also Table 11). 

Table 18. Kelvin equation relevant ranges 

BET Relative pressure range (0-0.15 P/Po) 

P/Po t (nm) rk (nm) Dk+2t (nm) 

0.15 0.40 0.50 1.80 

Hight sensitivity to relative pressure (>0.91 P/Po) 

P/Po t (nm) rk (nm) Dk+2t (nm) 

0.91 1.32 9.05 20.74 

Mesopores relative pressure (0.19-0.96 P/Po) 

P/Po t (nm) rk (nm) Dk+2t (nm) 

0.96 1.64 23.35 50.00 

 

For the network tested here, the default generation parameters are PEP=0.75, PSD=10 ± 2 

nm, and pore length=20 nm. 

5.1.1. Effect of the connectivity 

As seen in section 3.8.1, an increase in the connectivity of the network decreases the 

fraction of pores influenced by the percolation phenomena. Figure 97 shows the 
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comparison between the sorption isotherms simulated for two networks of maximum 

connectivity equal to 4 and 6 respectively. As a matter of fact, the use of higher connectivity 

implies that a higher number of pores are present in the generated network (in the case of 

our example 50% more from Zmax=4 to Zmax=6). This is only due to the generation algorithm. 

To facilitate the comparison, the volumes of both networks are normalized to one. 

It can be seen on Figure 97 that a higher connectivity decreases the fraction of pores 

blocked for vaporization, reducing the nitrogen retention pressure range during 

vaporization (indicator 4), and decreasing the retained volume fraction (indicator 6). 

Consequently, the hysteresis loop closes at a higher pressure (indicator 2). The slope of the 

BET region (indicator 1) does not change. The adsorption branches overlap because there 

are no changes in the volume and distribution, since a monomodal PSD has been used to 

generate the network. Consequently, for both isotherms, the slope of the vaporization 

branch throughout the hysteresis loop and after the retention zone is almost constant. 

 

Figure 97. Effect of the connectivity on the nitrogen isotherm. 

5.1.2. Effect of the pore existence probability (PEP) 

Figure 98 presents three isotherms generated with different PEP. The total pore volume of 

the generated network increases if the PEP increases (indicator 5), the volume distribution 

being constant. Consequently, the BET slope does not vary (indicator 1) and the adsorption 
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branches for the normalized volume isotherms overlap. On the contrary, a decrease of the 

PEP increases the fraction of the pores affected by the percolation phenomena. Hence, a 

lower PEP causes the recession of the loop lower closure (indicator 2) and increases the 

initial retention volume (indicator 4). 

 

Figure 98. Effect of the pore existence probability on the nitrogen isotherm (PSD=20 ± 2 nm). 

5.1.3. Effect of the average diameter of the pore size distribution 

The simulated isotherms are influenced by the average diameter through the equilibrium 

relation between the applied pressure and the pore diameter as given by the Kelvin-Cohan 

equation. As was shown in Figure 95, the equilibrium diameter trend becomes steeper 

when the relative pressure increases. Three isotherms are compared in Figure 99, obtained 

by using three pore size distributions having the same variance but different mean values. 

The retention pressure range during vaporization (indicator 4) decreases when the average 

diameter size increases. However, the retained volume fraction (indicator 6) is the same for 

the three cases. The loop lower closure (indicator 2) recedes as the average diameter size 

become lower due to a thermodynamic effect. Indicator 3 for each vaporization branch 

remains constant. Looking at indicator 1, the slope of the BET region and the nitrogen 

adsorbed volume increase as the average diameter size decreases. This is expected due to 

the higher quantity of smaller pores. 
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Figure 99. Effect of the average pore diameter on the nitrogen isotherm. 

5.1.4. Effect of the width of the pore size distribution 

The width of the pore size distribution has a thermodynamic effect on the simulated 

isotherm and influences the percolation map of the generated network. Regarding indicator 

1, a higher gaussian pore size distribution width generates a larger quantity of smaller pores, 

increasing the slope of the isotherm and the adsorbed volume within the BET region. 

Figure 100 represents three isotherms generated with different pore size distribution 

widths. The existence of long tails increases the fraction of pores influenced by percolation 

(see section 3.8.3). Therefore, the increase of the pore size distribution width has several 

consequences: as smaller pores are going to block bigger pores, the loop lower closure 

recedes (indicator 2), and the nitrogen retention pressure range during vaporization slightly 

increases (indicator 4) due to the damping effect created by the big pores (right tail of the 

distribution) from which nitrogen freely evaporates. The total void volume increases 

(indicator 5) due to the existence of bigger pores. Finally, the retained volume fraction will 

increase (indicator 6). 
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Figure 100. Effect of the pore existence probability variance on the nitrogen isotherm (PSD=10 ± st.dev.). 

5.1.5. Summary 

Table 19 summarizes the effect of different input parameters used to generate the pore 

network on the sorption isotherm. The connectivity and the pore existence probability are 

the variables that influence the topological map of the network. These input variables are 

both related to the fraction of pores affected by the percolation phenomena (see section 

3.8.1 and 3.8.2). Both change the relative pressure at which the hysteresis loop lower closes 

(indicator 2) and the nitrogen retention fraction (indicator 6). However, the connectivity 

influences also the retention pressure range during vaporization (indicator 4). When any of 

those 2 input variables are changed, the trend of the nitrogen adsorption does not change. 

If the resultant isotherms are normalized, the adsorption branches fully overlap. As 

expected, the adsorption branch is independent of the topology and the network 

architecture. 

The influence of the average diameter of the pore size distribution on indicators 1, 2, 4 and 

5 is only due to the liquid-vapor equilibrium thermodynamic model. It is interesting to see 

that, as they have no effect on the topological and the percolation maps, it cannot influence 

the retained volume fraction. 

The pore size distribution width changes the percolation map, increasing the fraction of the 

retained nitrogen volume, as expected. Unlike the maximum connectivity and the PEP 

(which influences the topological map), the width of the pore size distribution can also 

change the indicator 1 (by increasing the fraction of smaller pores). This causes a variation 

on the trend for the adsorption. 
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It can be concluded that the shape of the adsorption branch only depends on the volume 

distribution. This suggests that the shape of the adsorption branch of a pore network model 

can be fully fitted by simply adjusting the pore volume distribution. This could lead to affirm 

that under the present model hypothesis, an adsorption branch has a unique solution for a 

given pore volume distribution. The pore size distribution and the pore length distribution 

can therefore be adjusted in consequence. 

However, to fit the desorption branch, it is necessary to consider indicators 2, 3, 4, and 6. 

This means that it is necessary to fit the topological map by changing the lattice (maximum 

connectivity), the pore existence probability (connectivity distribution), and using multiple 

pore size distributions (domains) if changes in indicator 3 are observed. 

Once the topological map, the percolation map, and the average pore size (for the 

thermodynamic model) are fixed, then the isotherm can be fitted. 

Indicator 3 is not changed by any of the input variables of the table because it depends on 

the use of more than one pore population, the grid spacing, and the PEP of each population. 

Table 19. Effect of the different input variables on the sorption isotherm 

 
*For a volume non-normalized system. 

5.2. Mercury porosimetry 

A mercury intrusion porosimetry curve contains a few indicators that provide qualitative 

and quantitative information about the textural properties and the topology of the 

structure. These indicators are numbered from 1 to 3 in Figure 101. The mercury intrusion 

curve shown in this figure corresponds to the experimental characterization of an actual 

alumina sample. These indicators are: 

• 1) Macropores range: Mercury first occupies the inter-particle volume made of the 

biggest pores as well as the particles’ macropores. 

Manipulated Variable Davg (nm) 1 2 3 (desorption) 3 (adsorption) 4 5* 6 Topologic m. Percolation m.

10 none + none none/overlapping - + - Y N

20 none + none none/overlapping - + - Y N

30 none + none none/overlapping - + - Y N

10 none + none none/overlapping none + - Y N

20 none + none none/overlapping none + - Y N

30 none + none none/overlapping none + - Y N

10 - - none non - + none N N

20 - - none non - + none N N

30 - - none non - + none N N

10 + - none non + + + N Y

20 + - none non + + + N Y

30 + - none non + + + N Y

Max Connectivity

PEP

PSD Avg

PSD Dev



131 

• 2) Main pore population filling region: Despite a decrease in the sensitivity of the 

pressure to the pore size, the intrusion curve becomes steeper. When changes in 

slope in this steep region are observed, it is possible to infer about the existence of 

different pore populations or also pore blocking. 

• 3) Total intruded volume: It simply represents the pore volume of the sample 

accessible to mercury. 

It is important to remember that digital mercury porosimetry simulation does not 

consider the inter-particle volume. 

 

Figure 101. Major indicators on a mercury intrusion curve: 1) Inter-particle volume, 2) Main pore population filling, 3) 
Total intruded volume. 

The sensitivity of the equilibrium diameter to the pressure in the Kelvin equation can be 

analyzed using derivatives. In Figure 102, the derivative of the intrusion diameter as a 

function of the pressure is represented. The sensitivity to the pressure change decreases as 

the intrusion pressure increases. 

The region that corresponds to a pressure below 117.6 MPa is the most sensitive to the 

pressure: this is the range of the macropores. The mesopores region (P>117.6 MPa) is 

characterized by a lower sensitivity to the variation of the pressure. This implies that very 
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high pressures need to be reached to make the mercury intrude in the smallest mesopores 

(Table 20). 

 
Figure 102. Washburn equation derivative 

Table 20. Washburn equation relevant ranges 

Pore size intrusion pressure range 

Pore Size Lower Limit Upper Limit 

Micropores none none 

Mesopores 117.6 MPa 420 MPa* 

Macropores 0 117.6 MPa 
* This upper limit corresponds to a mesopore size of 4 nm 

For the network here tested, the default generation parameters are PEP=0.75, PSD=10 ± 2 

nm, and pore length=20 nm. 
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5.2.1. Effect of the connectivity 

To facilitate the comparison, the volumes of the generated networks compared here are 

normalized to one. As a matter of fact, a higher connectivity implies that a higher number 

of pores are present in the generated network (50% higher from Zmax=4 to Zmax=6) leading 

to a higher intruded volume (Indicator 3). An increase in the average connectivity decreases 

the number of pores affected by the pore blocking effect. One can see in Figure 103 that 

the mercury intrusion is delayed for the network with the lowest connectivity. This means 

that the biggest pores are less connected to the external surface in this case. It is also 

valuable to consider how, for indicator 2 (the mesopore range), the curves are at first 

parallel. The curve with higher connectivity starts to be saturated first, approximately 

halfway of the total intruded volume. The reason is that, as the pressure increases, the size 

of the pores that can be intruded decreases, and thus also the volume that they can contain. 

However, the curve with the lower connectivity has a higher slope at the same intruded 

volume range, meaning the mercury is also intruding in the bigger pores that were blocked 

by the smaller ones. For a given pressure, the difference between the intruded volumes in 

both normalized curves would provide the blocked pore volume fraction relative to this 

pressure. However, this is only true if there is no pore blocking for the lowest connectivity. 

 
Figure 103. Effect of the connectivity on the mercury intrusion curve. 

5.2.2. Effect of the pore existence probability (PEP) 

In a mercury intrusion curve, when the pore existence probability decreases, the intrusion 

will start at a higher pressure, as was the case for a lower connectivity (Figure 104). As a 
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matter of fact, a lower pore existence probability decreases the average connectivity and 

changes the trend of the pore connectivity distribution (Figure 62). For the cases of a PEP 

equal to 1 and 0.75, the pore blocking phenomena effect is similar to the one represented 

in Figure 103. However, for a PEP of 0.5, the intrusion curve of Figure 104 shows a strong 

pore-blocking effect in which the slope of the intrusion is remarkably lower. In this case, 

there are multiple regions of blocked pores due to the very low connectivity, which differs 

from cases where there is a sudden access to one region of large pores. For a pore network 

with a triangular lattice and maximum connectivity of 6, the use of a PEP=0.5 produces 

average connectivity of about 3 (Figure 62). 

 
Figure 104. Effect of the pore existence probability on the mercury intrusion curve. 

5.2.3. Effect of the average diameter of the pore size distribution 

When different average diameters are used, it is possible to study the influence of the 

equilibrium mechanical model on the simulated intrusion process. As the average pore 

diameter increases, the intrusion process begins at a lower pressure and exhibits a steeper 

slope (Figure 105). As explained at the beginning of section 5.2, at higher pressure the 

sensitivity of the mechanical equilibrium model decreases (Figure 102). 
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Figure 105. Effect of the average pore diameter on the mercury intrusion curve. 

5.2.4. Effect of the width of the pore size distribution 

A broad pore size distribution increases the fraction of pores affected by pore blocking. A 

decrease in the width of the pore size distribution leads to a steeper intrusion occurring at 

a slightly lower pressure (Figure 106). 

 

 
Figure 106. Effect of the width of the pore size distribution on the mercury intrusion curve 
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5.3. NMR Cryoporometry 

The NMR cryoporometry characteristic curve contains different indicators that provide 

qualitative and quantitative information about the textural properties and topology of the 

porous structure. These indicators are illustrated and numbered in Figure 107. 

• 1) Freezing/Melting slope change. The slopes that can be individuated on the 

freezing branch are an indicator of the kind of pore size distributions that constitute 

the solid structure. 

• 2) Total liquid volume. This represents the specific total liquid volume that fills the 

porous solid. It is equivalent to the specific void volume of the structure. The void 

volume is mainly provided by the pores of higher diameter. 

• 3) Initial water retention range. It indicates the pore diameter of the pores initially 

blocked. This initial retention can be also due to the differences between the values 

of the cryoscopic and ebullioscopic constants. 

 
Figure 107. Major indicators on a cryoporometry curve: 1-) Freezing/Melting slope, 2-) Total liquid volume. 

In Figure 108, the derivative of the equilibrium diameter as a function of the temperature 

is represented. Also, the derivative of the equilibrium diameter (without the thickness of 

the plastic ice layer) and the derivative of the thickness of the plastic ice layer are presented 

for comparison. The sensitivity to the temperature change decreases as the temperature 

increases. The macropores range is studied between 273 K and 269 K (see Table 21). The 

second part of the temperature range encompasses the mesopores (Figure 108b). This 

technique does not allow the study of the microporosity due to the homogenous freezing 

temperature (233K for water) (see Table 21). The influence of the plastic ice layer is 
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negligible for the macropores but becomes important for the mesoporous range. The 

thickness of this layer never exceeds 2 nm. However, as the equilibrium diameter decreases, 

the pore volume fraction that it occupies increases considerably. At the minimum pore size, 

it can surpass 50% of the volume fraction of the pore (Figure 109). 

 
Figure 108. Gibbs-Thompson equation derivative: a-) with respect to temperature, b-) with respect to pore diameter 

 

Table 21. Gibbs-Thompson thermodynamic model relevant ranges 

T (K) Dimensions 

273-269 1940 nm - 50nm 

269-233 50nm - 4.85nm 
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Figure 109. Core and plastic ice layer volume fraction as a function of the temperature calculated using the Gibbs-
Thompson thermodynamic model. 

 

5.3.1. Effect of the connectivity 

Again, the curves compared are volume normalized. The connectivity of the generated 

network influences the topological and percolation maps, but it does not influence the 

volume distribution. As a result, despite the use of different lattices, the melting branches 

overlap in Figure 110. When the connectivity decreases, indicator 2 increases due to a larger 

influence of the pore blocking effect. 

 
Figure 110. Effect of the connectivity on the cryoporometry curve. 
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5.3.2. Effect of the pore existence probability (PEP) 

The pore existence probability influences the percolation and topological map by creating 

and pore connectivity distribution. It also decreases the total pore volume of the sample. 

Then, a lower pore existence probability will increase the fraction of pores affected by pore 

blocking, increasing the value of indicator 2 (Figure 111). The case of the lowest PEP in 

Figure 111 evidence a strong pore-blocking effect caused by the low average connectivity 

of the structure (Zavg=3). 

 

 
Figure 111. Effect of the pore existence probability on the cryoporometry curve. 

 

5.3.3. Effect of the average diameter of the pore size distribution 

The study of the average pore diameter allows studying the effect of the thermodynamic 

model. As for mercury porosimetry, the model is less sensitive to the lower pore sizes. In 

cryoporometry, low pore sizes are visible at the lower temperatures. Lower pore sizes cause 

more pronounced hysteresis between the fully frozen and fully melted network state 

(Figure 112). In Figure 112, it is also possible to observe an increase on indicator 1 for lower 

average pore diameters. There is also an increase of indicator 2. 
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Figure 112. Effect of the average pore diameter on the cryoporometry curve. 

 

5.3.4. Effect of the width of the pore size distribution 

The width of the pore size distribution changes the volume distribution, which affects the 

percolation map. As the width increases, the fraction of pores influenced by the pore 

blocking increases too. This becomes evident by observing how, in Figure 113, the indicator 

3 increases as the pore size distribution variance increase too. The transitions from the total 

frozen to the total melted state are slower when the variance increases too. 
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Figure 113. Effect of the width of the pore size distribution on the cryoporometry curve. 
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Chapter 6: Porous model validation from porosimetry experiments 

A gamma-alumina digital twin is created by means of a hierarchical pore network model. 

For this digital twin, nitrogen sorption is simulated, and the parameters of the pore network 

model are modified by means of a Particle Swarm Optimization (PSO) algorithm until both 

branches of the digital isotherm match those of the experimental isotherm. After parameter 

identification, the resulting pore network model provides a digital isotherm that is in good 

agreement with the experimental results. The same set of parameters also allows to predict 

the experimental nitrogen scanning curves. The BJH pore size distribution obtained from 

the digital isotherm corresponds well to the experimental one. The generated digital twin 

can therefore statistically represent the topology of the industrial alumina sample. Diffusion 

simulations on the final structure allowed to estimate the tortuosity factor of the structure. 

A relative error of 17 % was found. 

In the first section of this chapter, the alumina sample characterization is described. In the 

second section, the optimized results are represented. 

6.1. Alumina characterization 

Nitrogen sorption isotherms of various gamma-aluminas were measured on the 3Flex 

instrument (Micromeritics). Prior to analysis, the samples were subjected to a pretreatment 

at 350°C during 3 hours under secondary vacuum (10-5 mbar). Structural properties, such as 

porous volume and specific surface area, were evaluated from the nitrogen adsorption 

isotherm with an uncertainty of 3% and 5%, respectively. For the evaluation of pores size 

distribution, the BJH model was used. The analysis was repeated several times on each 

alumina sample for measurement of desorption scanning isotherms. Each scanning curve 

was measured by allowing adsorption up until a fixed value of relative pressure below 1, 

followed by complete desorption induced through gradual decrease of pressure. 

Helium pycnometry was performed on the AccuPyc 1340 apparatus (Micromeritics) to 

evaluate the structural density of each alumina (ρs), which was further used to calculate the 

total porosity (εN2) from the porous volume provided by nitrogen adsorption according to 

the following expression: 

𝜀𝑁2 = 𝑉𝑝𝑜𝑟𝑒𝑉𝑝𝑜𝑟𝑒 + 1𝜌𝑠 

Equation 41. Porosity calculated through helium pycnometry 
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Diffusion measurements were performed by 1H PFG (Pulsed-Field Gradient)-NMR at 305 K 

on Avance 600MHz spectrometer (Bruker) equipped with a BBI (Double Resonance 

Broadband Probe) scattering probe of 5mm and a field gradient amplifier capable of 

producing field gradient pulses up to 50G/cm. A range of organic liquids of varying size and 

polarity were used for experiments (Table 22), and, for each molecule, the unrestricted 

molecular and effective self-diffusivity in the support was measured. 

Table 22. Molecular size and dipole moment of organic liquids used for diffusion measurements 

Organic liquid Formula Molecular radius, Ȧ Dipole moment, D 

Acetonitrile C2H3N 2.76 3.30 

Toluene C7H8 3.49 0.36 

n-Heptane C7H16 3.89 0 

Squalane C30H62 5.94 0 

Perfluorooctane C8F18 4.63 0 

 

For molecular and effective self-diffusion measurement, a 13-interval stimulated echo-

pulsed bipolar sequence (PGSTEBP, Bruker) was applied with the following acquisition 

parameters (Table 23): 

Table 23. Acquisition parameters for PFG-NMR experiments 

PFG-NMR parameter 
Unrestricted 

molecular diffusion 
Effective diffusion 

in support 

Diffusion time ∆, s 0.140 

Gradient pulse duration δ, s 6∙10-4 

Gyromagnetic ratio of 1H γg, rad∙s-1∙G-1 2.67∙104 

Time between two radio-frequency pulses τe, s 2.61‧10-3 

Maximum gradient intensity G, G/cm 26 46 

Number of gradient steps 10 20 

 

In both cases, measurements were conducted through linear variation of the gradient 

intensity G at a constant gradient pulse duration δ. For the PGSTEBP sequence, the relation 

between signal intensity and the self-diffusion coefficient for a molecule 𝐷𝑖  is expressed as: 
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I = exp [−(γgδG)2Di (4Δ + 6τe − 2δ3 )] 

Equation 42. Model for the signal calculation using a PGSTEBP sequence 

where 𝐷𝑖  represents either the molecular 𝐷𝑚 or effective diffusivity 𝐷𝑒𝑓𝑓, depending on 

whether diffusion is measured for unconfined molecules in the bulk or within the porous 

solid, respectively. 

Prior to PFG-NMR experiments on the studied alumina, support extrudates were dried at 

120°C for 24 h in order to remove physisorbed water. Directly after pretreatment, the 

extrudates were soaked in each organic liquid for 10 minutes to ensure full saturation. 

Before analysis, extrudates were taken out from the liquids and gently rolled over blotting 

paper to remove excess liquid from the external extrudate surface. All measurements were 

performed in 5 mm NMR tubes on a single extrudate placed in a 2.5 mm capillary and the 

analysis was repeated on three extrudates for each studied liquid to verify the repeatability 

of effective diffusivity measurement. 

Based on these measurements, the tortuosity factor 𝜏 was calculated for each liquid as the 

ratio of the unrestricted molecular diffusivity to the effective diffusivity in alumina 

(Equation 23). 

6.2. Pore network model parameter estimation 

For the simulations, the final simulated isotherm is the average of the simulated 

characterization of 50 different 3D distorted hierarchical pore networks generated with the 

same input parameters. A randomly distorted cubic lattice was used for the generation of 

the networks. The selected lattice type fixed the maximum connectivity to 6. The 

experimental sorption curves were fitted using three porosity levels with three different 

pore size distributions (PSD 1, PSD 2, and PSD 3). Each pore size distribution has its own grid 

spacing and pore existence probability (PEP). The length of the pores is defined by the 

position of the lattice points. A cubic section of one of the pore networks is shown in Figure 

114. 
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Figure 114. Cubic section of one of the full networks 

The parameters of the pore network model were identified by using a particle swarm 

optimization (PSO) algorithm. The resulting pore network model provides a digital 

characterization isotherm in good agreement with the experimental isotherm (Figure 115). 

To validate the pore network model, the digital scanning curves were compared to 

experimental ones. Overall, for the scanning curves also a good agreement was observed 

(Figure 116). The final parameters for the pore network generation model are listed in Table 

24. 

Table 24. Estimated parameters for the pore network generation 

Fixed network generation parameters 

Lattice Type Dimensions Node spacing (m) Number of porosity levels Skeletal density of the solid (kg/m3) 

Cubic 50x50x50 3.00E-08 3 3100 

Estimated network generation parameters 

Pore Size Distribution 1 

 Beta Distribution β=0.5; α=2.4; Minimum diameter = 20 nm, Maximum diameter= 60 nm 

 PEP = 0.1 

 Grid Spacing = 3 

Pore Size Distribution 2 

 Beta Distribution β =1; α =1; Minimum diameter = 1 nm, Maximum diameter= 20 nm 

 PEP= 0.95 

 Grid Spacing = 2 

Pore Size Distribution 3 

 Log-Normal Distribution Average=6 nm; Standard Deviation= 3 nm 

 PEP= 1 

 Grid Spacing = 1 

 

* Max number of pores = 375000 
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Figure 115. Experimental Isotherm compared to the simulated Isotherm 

The adsorption branch is the easiest branch to fit. It allows to set the pore volume 

distribution of the structure. However, to fit the desorption isotherm and the scanning 

curves, the topology of the network plays an important role. It is computationally possible 

to generate pore network models with the same adsorption isotherm but with totally 

different desorption branches due to a different topology. This allows to infer that this could 

also be possible experimentally and could explain why solids with similar textural properties 

can have very different experimental tortuosity values. 

Complex pore networks exhibit hysteresis in several classic characterization techniques 

(Nitrogen Sorption, Mercury Porosimetry, CryoPorometry, and ThermoPorometry). In each 

of them, the pore network organization has been declared to be partially responsible for 

this. In the particular case of Nitrogen Sorption, during the desorption stage, there is a 

retention of nitrogen in a metastable state within some pores. As explained above, the 

evaporation process is blocked by the nitrogen contained in pores with lower evaporation 

pressure that stand between the blocked pores and the vapor phase. This pore blocking 

phenomenon is related to a characteristic size effect and to how these pores are connected 

to each other. For complex solids as gamma-alumina, the shape of the desorption isotherm 

is influenced by the topology of the network, and hence it contains implicitly information 

about its topology. It is preferable to use the word implicitly because to relate the topology 

of the network to the shape of the isotherm, a model is needed. At this point, it is valid to 

mention also that if the desorption branch is influenced by the topology, it is then also 

heavily influenced by the volume distribution into space. 
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In a single isotherm, there are 5 characteristics that are relevant for its interpretation: 

• the slope that corresponds to the BET specific surface area, 

• the pressure at which the hysteresis loop closes, 

• the desorption branch slope (s) in the hysteresis loop, 

• the relative pressure at which the desorption starts, 

• the volume of the total specific adsorbed nitrogen volume. 

The BET surface area slope represents the monolayer of the nitrogen adsorbed and is mainly 

determined by the smallest pores. In our digital twin, PSD 3 represents mainly small 

mesopores with some micropores. Hence, it is this PSD that determines the BET slope. The 

relative pressure at which the hysteresis loop closes is influenced mainly by PSD 1 and 

PSD 2. PSD 2 is a uniform pore size distribution that contains pores from 1 to 20 nm. The 

simulated isotherm loop closes at a relative pressure of about 0.64, just as the experimental 

curve (Figure 115). The different slopes in the desorption branch can indicate the presence 

of several pore populations. In fitting this section, all three pore size distributions have an 

important influence. However, the maximum connectivity, the pore existence probability 

for each population, and the grid spacing between populations play a very significant role. 

Indeed, these parameters modify the architecture of the network. They have also an 

important influence on the relative pressure at which the desorption starts. 

The parameters found for our digital twin also allow to correctly predict the scanning curves 

of the industrial alumina sample (Figure 116). This indicates that the digital twin is a good 

representation of the pore blocking effects of the network. Applying the BJH analysis to an 

adsorption branch indicates the most accessible pore size, but an analysis of the scanning 

curves allows to get information about how the pore populations are hindering each other. 

The scanning curves therefore provide more information about the internal organization of 

the network and constitute a very useful tool to computationally study the topology of the 

structure. 

The overall pore size distribution in the pore network model contains less than 3% of pores 

with a pore diameter below 2 nm, representing less than 0.09 vol% of the total pore 

network. Figure 117 illustrates the combined input PSD of the pore network model on a 

volume basis. A BJH analysis was also applied to the simulated isotherm. A good agreement 

was found between the BJH pore size distribution calculated for the experimental sample 

and the pore size distribution for pores above 10 nm (Figure 117). For pores smaller than 

10 nm, the deviation is more pronounced. 
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Using diffusion simulations, a tortuosity factor equal to 1.5 was obtained. By employing 

PFG-NMR on the actual sample, an experimental tortuosity factor of 1.8 was measured. The 

relative error between the two tortuosity factors is 17 %. 

 
Figure 116. Experimental scanning curves compared to the simulated scanning curves: a-) Relative Pressure 0.75. b-) 

Relative Pressure 0.79. c-) Relative Pressure 0.88. d-) Relative Pressure 0.90. e-) Relative Pressure 0.95. f-) Experimental 

Scanning curves over the full experimental isotherm. 
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Figure 117. BJH pore size distribution obtained from the desorption branch. 

6.3. Conclusions 

A digital twin of an industrial alumina sample was created by generating a three-level 

hierarchical pore network model. Through parameter identification, a pore network model 

was obtained that provides a digital characterization isotherm in good agreement with the 

experimental isotherm. The same set of parameters allows to correctly predict the nitrogen 

scanning curves, thereby validating the digital twin. The BJH pore size distribution obtained 

from the desorption branch of the digital isotherm corresponds well to the experimental 

BJH pore size distribution for the pores above 10 nm. 

For nitrogen sorption porosimetry, the adsorption isotherm mainly provides information on 

the pore volume distribution of the structure, but it does not allow to get a statistically 

representative model that reproduces the effects of the topology of the solid. However, the 

desorption isotherm and the scanning curves are strongly influenced by the topology of the 

network. It is therefore computationally possible to have various representations with the 

same adsorption isotherm, but with totally different desorption branches that represent 

different topologies. This allows us to infer that it should also be experimentally possible 

and could explain why solids with similar textural properties can have different 

experimental tortuosity values. 

It should be stressed that it is not yet possible to confirm that, from a given isotherm, the 

attributes of the pore network structure curve can be uniquely identified. Our results point 

in the direction that a family of topologies can generate the same isotherms. However, the 

use of the scanning curves in the objective function of the optimizer could help to reduce 

the number of structures that can generate the same characteristic curves as a given 

alumina sample, and therefore restricts the possible topologies of the solid. 
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Using diffusion simulations on the pore network model fitted to the nitrogen sorption 

curves, a tortuosity factor was calculated that differs by less than 20% from the tortuosity 

factor measured by PFG-NMR. This illustrates how a digital twin allows to predict the 

tortuosity factor from readily available nitrogen porosity experiments with a reasonable 

accuracy. 

More information on the industrial alumina sample will of course allow to generate better 

digital twins. Hence, the simulation tool will be extended to perform the structural 

optimization with an objective function that not only uses nitrogen porosimetry data, but 

also scanning curve, mercury porosimetry and NMR-cryoporometry simulations. In future 

works, further diffusion-reaction simulations could also be used to investigate and better 

understand the link between the topology of these solids and their tortuosity. 
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Chapter 7: Simulation of PFG-NMR experiments 

7.1. Introduction 

PFG-NMR characterization technique is used to estimate the effective diffusion coefficient 

of porous structures. The objective of this chapter is to create a too able to characterize 

pore network models. The comparison of the digital and characterization information could 

lead to a better understanding of the influence of the pore structure on diffusion 

phenomena. 

Nuclear magnetic resonance (NMR) is a non-invasive technique based on the reorientation 

of the magnetic moment of nuclei that possess a non-null. The spin is reoriented by using 

radiofrequency applied continuously (continuous wave) or by sending it in the form of 

pulses (pulse methods) (Farrar and Becker 1971). In the present bibliography, we just 

consider pulse methods. According to Levitt (Levitt 2008) “an NMR spectrometer is a device 

capable of: (i) Magnetizing the nuclear spin with a large applied magnetic field; (ii) Rotating 

the spin polarizations by radiofrequency pulses to produce transverse nuclear 

magnetization. (iii) detecting the small oscillating electric currents induced by the processing 

transverse spin magnetization”. 

One of the most common NMR applications is Nuclear Magnetic Resonance Imaging (MRI). 

MRI is used to create images of the internal sections of closed structures (e.g., the brain). 

The main advantage is that NMR uses a non-invasive methodology. NMR applications are 

not limited to medicine, but it is also employed in chemistry, physics, and engineering. In 

this research, the main interest lies in the applications to measure mass transfer properties. 

The NMR branch used to measure effective diffusion coefficients is the Pulsed Field 

Gradient NMR (PFG-NMR). 

7.2. NMR Fundamentals 

7.2.1. The nuclear spin 

The nuclear spin is an intrinsic property of elementary atomic particles such as mass or 

electric charge. This property has a quantum mechanics description, so it is represented by 

discrete energy levels defined by the nuclear spin quantic number. For fermions (electron, 

protons, and neutrons) it has just two possible states +1/2 (↑) (the lowest energy level) or 

-1/2(↓) (the highest energy level). The population of the states follows the Boltzmann 

distribution (Equation 43). 
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𝑁 ↑𝑁 ↓ = 𝑒−Δ𝐸𝑖𝜅 𝑇 = 𝑒−ℎ𝑤𝜅 𝑇  
Equation 43. Boltzmann distribution 

The spin provides to the particle an intrinsic kinetic and magnetic moment. The nuclei with 

an odd total number of proton or/and neutron have a total fractional nuclear spin and then 

exhibit a magnetic moment. By finding the projection of the spin energy levels on a Riemann 

sphere, it is possible to define the direction of the magnetic moment, obtaining a mechanic 

representation of the spin properties. It is impossible to know the exact state of an 

individual spin in a particular instant, however, it is possible to measure the probability of 

an ensemble of particles to be in a particular state, or according to our interest, pointing 

towards a direction. This is the origin of the vectorial spin model (Figure 119). Then, in 

quantum terms, the distribution of spins among the two energy states can be changed by 

providing energy to the system; in mechanic terms, the application of an external magnetic 

field can orient a set of the population into a particular direction generating a macroscopic 

magnetic moment that produces a measurable signal (Levitt 2008). 

7.2.2. Spin Dynamics 

7.2.2.1. The initial state 

The nuclear magnetic resonance technique takes advantage of the nuclei spin properties. 

Not all elements have an impaired nuclear spin, but each element has at least one isotope 

that possesses it. For the basic experiment, the sample is placed into a homogeneous static 

magnetic field of known intensity 𝑩𝟎, which is referentially pointing along the Z-axis in a 

Cartesian coordinate system Figure 120a. From now on let us visualize the model as the 

addition of the individual magnetization moments of a sufficiently big number of nuclei with 

spin ½ (by example protons as hydrogen nuclei). The total magnetic moment of the sample 

(generated by a part of the spin’s population) precesses about the direction of 𝑩𝟎. The 

precession frequency is called the Larmor frequency. It is dependent on an intrinsic property 

of the nuclei called the gyromagnetic ratio (𝜸) and the magnitude of external magnetic field. 

The Larmor frequency is represented in Equation 44, where |𝑩𝟎| is intensity of the magnetic 

field. 𝑤 = 𝛾 |𝑩𝟎| 
Equation 44. Larmor Equation 

The spins that are precessing about Z are in the lowest energy level or +1/2. The population 

of spins in this level is slightly higher than the population filling the highest energy level (-

1/2) (magnetic moment pointing in the opposite direction to 𝑩𝟎). The net magnetic 

moment is pointing towards +Z and it is called equilibrium magnetization moment (𝑴𝟎) that 
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is to say in equilibrium with the magnetic field. The segregation among the energy levels is 

caused by the presence of the static magnetic field and the phenomenon is called the 

Zeeman effect. It is important to mention that as a function of the intensity of the magnetic 

field the energy gap between the two levels increases (Figure 118). 

 
Figure 118. Proton spin energy differences (Joseph P. Hornak 1997) 

 

 
Figure 119. Vectorial representation 

The energy separation between these states is small and the energy coming from thermal 

collisions is sufficient to take nuclei into higher energy spin states (Kaseman et al. 2020). In 

Equation 45 the segregation is described in terms of the Boltzmann distribution and as a 

function of the static magnetic field. 

𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑁 ↑𝑁 ↑ +𝑁 ↓ = 𝑁𝑇𝑜𝑡𝑎𝑙  𝑒− 𝐸𝑖𝜅 𝑇∑ 𝑒− 𝐸𝑖𝜅 𝑇𝑖 = ℎ 𝛾 |𝑩𝟎|4 𝜋 𝜅 𝑇  

Equation 45. Fractional segregation of the two energy levels 

7.2.2.2. The Magnetic Pulse and the T1-T2 time constants. 

An alternating magnetic field 𝑩𝟏, perpendicular to 𝑩𝟎 and with the same Larmor frequency 

(to send energy at the same frequency) is pulsed during the experiment according to a 
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selected sequence. The equivalence between energy and frequency is given by the Einstein 

equation (Equation 46) in which the frequency can be substituted by the Larmor frequency. 𝐸 = ℎ 𝑤 = ℎ 𝛾 𝐵 

Equation 46. Relation between frequency and field strength. 

A right calibrated pulse with the right intensity will equalize the energy level population. 

This will cause the vertical component of the total magnetic moment to cancel while the 

horizontal or transversal one being in the xy-plane will be measurable (Figure 120a and 

Figure 120b). 

The static field is several orders of magnitude larger than the oscillating field. The reason 

why a weaker field can produce an effect on the spins that are under the effect of 𝑩𝟎 is that 𝑩𝟏 is resonant with the precession frequency of the spin. This means that the effect of 𝑩𝟏 

can accumulate during the radiofrequency pulse duration so that the change in the Larmor 

frequency can be induced after several microseconds (Levitt 2008). 

 

 
Figure 120. Magnetic moments orientations. a-) Initial state, b-) 90° degrees pulse applied, c-) Dephasing of transversal 
magnetization, d-) Return to the fundamental state. 
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It is said that the total magnetic moment has rotated 90°. In the technical jargon means that 

a radiofrequency pulse intense enough to make rotate the total magnetization vector by 

90° has been employed (Figure 120b). After some time, the populations go back to 

equilibrium with its surroundings and the magnetic moment come back to its original 

position (𝑴𝟎) (Figure 120a) (Farrar and Becker 1971). This process is called longitudinal 

relaxation (Figure 120d). The time constant that describes this process is called spin-lattice 

relaxation time (T1). It is measured as the time that takes the magnetic moment to reach ( 1𝑒 ∗ 100) % of Mo and it represents a first order relaxation process. The T1 constant is the 

first characteristic valuable information of the NMR technique. 

To simplify the mathematical treatment of the phenomena, a rotating coordinate system is 

used. If we think about the trajectory that follows the total magnetization vector from the 

transversal plane to its original equilibrium position (or vice versa), it is easy to imagine a 

conical spiral due to the precession of the spins about Z. However, if the three-axis XYZ 

rotate at the same frequency 𝑤 than the spins, the total magnetization is seen as stationary 

(assuming perfect resonance). 

A second process occurs while the magnetic moment is still on the transversal plane. Let’s 
think about it as a faster process than the T1 process. As the magnetic moments are 

polarized in the same direction on the transversal plane (XY), it is said that they are in 

resonance. This resonance corresponds to the maximum value of the transverse 

magnetization (𝑴𝑿𝒀). As time passes, the spins start to come in equilibrium with each other, 

which makes them dephase by precessing at different frequencies (still in the XY plane) 

(Figure 120c). This causes the decay of the 𝑴𝑿𝒀 magnitude. The process is called transversal 

relaxation. The time constant that describes the transversal relaxation process is called spin-

spin relaxation time (T2). The spin-spin relaxation phenomena are related to the spins 

entering equilibrium with each other. The T2 constant is the second valuable characteristic 

information coming from the NMR technique. 

7.2.2.3. Some of the sources of error in the measured signal 

Two phenomena contribute to the decay of transverse magnetization. The first one is 

molecular interactions (pure T2 molecular effect). The seconds one is the variations in 𝑩𝟎 

(inhomogeneous magnetic field effect) (Joseph P. Hornak 1997). The addition of the two 

effects led to a corrected T2 defined as 𝑇∗2. 1𝑇2∗ = 1𝑇2 + 1𝑇2_𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 

Equation 47 T2 correction 
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As an interesting fact, Peter Mansfield and Paul Lauterbur won the Nobel Prize in 2003. The 

inhomogeneity of 𝑩𝟎 causes heterogeneous broadening on the NMR spectra. These two 

researchers showed in 1972 that if the inhomogeneity was controlled, the shape of the 

spectra could be related to the shape of the sample and the distribution of spin within it. 

This opened the door to MRI and diffusion measuring techniques (as PFG-NMR). 

The rotation frequency distribution depends on the temperature and viscosity of the 

solution. Therefore, T1 will vary as a function of temperature (Joseph P. Hornak 1997). The 

spins are also continuously exchanging between the lower and the higher energy level with 

no changes in the population distribution. These phenomena do not affect T1 but influence 

T2 because the phase coherence of transverse magnetization is lost during the exchange 

(Joseph P. Hornak 1997). 

The electrons can create a local magnetic field that is opposite to the homogeneous 

magnetic field. This local field shields the nucleus and then changes the precession 

frequency which varies the frequency that needs to be sent with 𝑩𝟏 to excite the system. 

Therefore, when a spectrum is generated for the identification of multiple compounds, 

normally a compound of reference is used for normalization. 

 = ( - REF) x 106 / REF 

Equation 48 Chemical Shift 

7.2.2.4. Basic Pulse Sequence 

A radiofrequency pulse or 𝑩𝟏 has two objectives: (i) To equalize the spin population and (ii) 

to create coherence meaning to put in phase the spin (to make them point into the same 

direction in a rotating frame). The value of the transverse component magnetization vector 

is measured in the direction perpendicular to the homogeneous magnetic field. The 

obtained signal is called Free Induction Decay (FID). It is related to the dephasing of the 

spins in the transversal (T2) (Figure 120c) and longitudinal (T1) direction (Figure 120d). To 

measure the value of the transverse component of the total magnetization vector, a coil 

perpendicular to the homogenous field is used. The rotating magnetic moment generates a 

rotating magnetic field, this rotating magnetic field creates an oscillating magnetic current 

that flows through the wire generating a detectable signal. The device can detect just the 

transverse magnetization component. The projection of the total magnetization vector on 

the transversal plane will evolve according to a sinusoidal curve of frequency ω and initial 

amplitude proportional to 𝑴𝟎 (Akoka S. 2002). When the total magnetization vector is in 

equilibrium with 𝑩𝟎 the detected signal is equal to zero. 

A suitable pulse sequence for 𝑩𝟏 will help to improve the signal-to-noise ratio during the 

experiment and also to reduce the effect of possible field inhomogeneity’s that influence 
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the measurement (due for example to Eddy’s currents) (Price 1998). According to the 

application and the structural architecture of the sample, there is a wide choice of 

possibilities adapted to different cases. However, the most common sequences are the 

Inversion-Recovery (used to measure T1) and the Spin-Echo sequence (used to measure T2) 

(Figure 121). 

The reason to use pulse sequences is to cast down the sources of the error in the measured 

signal and to comply with the assumptions made by the signal post-treatment models. 

7.2.2.5. The Spin-Echo Experiment 

Unless 𝑇2 ≪ 𝑇2_𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (Equation 47) the contribution of 𝑩𝟎’s inhomogeneity makes 

of 𝑇2∗ a bad approximation to 𝑇2 (Farrar and Becker 1971). Hahn proposed in 1950 a pulse 

sequence to cast down the inhomogeneity effect. The name of the pulse experiment is spin-

echo (Hahn 1950). 

The Spin–Echo sequence is normally used to measure T2. It consists of a first 90° degrees 

pulse that makes rotate the total magnetization 90° (Figure 122a), a time interval between 

the first and second pulse (∆t) followed by a 180° pulse that refocuses the total 

magnetization vector in the opposite direction (Figure 122c). The pulse sequence is written 

as 90°, ∆t, 180°. This sequence generates an FID signal with a characteristic shape exhibiting 

a first intensification of the signal due to the 180° pulse until a maximum and a new 

dephasing process on the transversal plane. 

 

 
Figure 121 Spin-Echo sequence (Joseph P. Hornak 1997) 

As ∆t is bigger, the maximum value of the transversal component will decrease because of 

natural transversal relaxation processes (Farrar and Becker 1971). The maximum value of 

the echo amplitude of the transversal magnetization component is correlated with T2. The 

experiment is repeated several times to get the maximum signal for several ∆t. 
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Figure 122 Vectorial model of a Spin-Echo sequence. 

 

7.2.2.6. Mathematic Model of the interactions of the magnetic fields with the 

spins: The Bloch equations. 

The dynamic of the macroscopic magnetization vector in presence of a static magnetic field 

(𝑩𝟎) and an oscillating one (𝑩𝟏) were first described by Bloch (Bloch 1946). The motion can 

be represented by the torque exerted by the homogeneous magnetic field on the spin 

magnetic moment as shown in Equation 49, where 𝝁 represents the magnetic moment of 

one single molecule and 𝑯 the homogeneous magnetic field (× being the cross product). 𝑑𝝁𝑑𝑡 = 𝛾𝝁 ×  𝑯 

Equation 49 

Considering that the macroscopic vector 𝑴 represents the addition of all the individual’s 
magnetic moments, it is possible to write: 𝑑𝑴𝑑𝑡 = 𝛾𝑴 ×  𝑯 

Equation 50 

By definition of the cross product, we obtain for each coordinate: 𝑑𝑀𝑥𝑑𝑡 = 𝛾(𝑀𝑦𝐻𝑧 − 𝑀𝑦𝐻𝑧) 𝑑𝑀𝑦𝑑𝑡 = 𝛾(𝑀𝑧𝐻𝑥 − 𝑀𝑥𝐻𝑧) 𝑑𝑀𝑧𝑑𝑡 = 𝛾(𝑀𝑥𝐻𝑦 − 𝑀𝑦𝐻𝑥) 

Equation 51 

The term of the magnetization field includes the addition of and static and an alternating 

contribution of the two fields, by cancelling the non-existent contributions (e.g., the 
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alternating field has no static contribution) and taking into account that the alternating field 

is moving with the rotating frame of reference at a frequency equal to ω: 𝐻𝑥 = 𝐻1 cos(𝜔𝑡) , 𝐻𝑥 = −𝐻1 sin(𝜔𝑡) , 𝐻𝑧 = 𝐻0 𝑑𝑀𝑥𝑑𝑡 = 𝛾(𝑀𝑦𝐻0 + 𝐻1 sin(𝜔𝑡)) 𝑑𝑀𝑦𝑑𝑡 = 𝛾(𝑀𝑧𝐻1 cos(𝜔𝑡) − 𝑀𝑥𝐻0) 𝑑𝑀𝑧𝑑𝑡 = −𝛾(𝑀𝑥𝐻1 sin(𝜔𝑡) − 𝑀𝑦𝐻1 cos(𝜔𝑡)) 

Equation 52 

At last, taking into account the relaxations processes, into which the transverse components 

go back to their null equilibrium value and the longitudinal component to 𝑴𝟎: 𝑑𝑀𝑥𝑑𝑡 = 𝛾(𝑀𝑦𝐻0 + 𝐻1 sin(𝜔𝑡)) − 𝑀𝑦𝑻𝟐  𝑑𝑀𝑦𝑑𝑡 = 𝛾(𝑀𝑧𝐻1 cos(𝜔𝑡) − 𝑀𝑥𝐻0) − 𝑀𝑥𝑻𝟐  𝑑𝑀𝑧𝑑𝑡 = −𝛾(𝑀𝑥𝐻1 sin(𝜔𝑡) − 𝑀𝑦𝐻1 cos(𝜔𝑡)) − 𝑀𝑧 − 𝑀0𝑻𝟏  

Equation 53 

To consider the diffusion effect, Torrey modified these equations in 1956 (Torrey 1956). The 

detailed deduction will not be shown here but it is available on his paper. In a simple 

vectorial form for isotropic diffusion, it is possible to write: 𝜕𝑴(𝒓, 𝑡)𝜕𝑡 = 𝛾𝑴 ×  𝑩(𝒓, 𝑡) − 𝑀𝑥𝐢 + 𝑀𝑦𝐣𝑇2 − (𝑀𝑧 + 𝑀𝑜)𝒌𝑇1 + D∇2𝑴 

Equation 54. Bloch-Torrey Equation 

7.2.3. Pulsed Field Gradient (PFG)-NMR 

The purpose of PFG-NMR is to measure the molecular self-diffusion coefficient. The 

technique covers a broad range of fields since it allows to measure the self-diffusion 

coefficient of species in a confined medium or effective diffusion coefficient. Vast examples 

exist on the study of diffusion and reaction in porous media (Keil 1999; Rieckmann and Keil 

1997), nutrient transport by cells (Brownstein and Tarr 1979), oil permeation (Wilson and 
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Hürlimann 2006), and also the structure of materials (Imaging techniques), particularly 

biological tissue (Nicholson 2001). 

The self-diffusion coefficient can be determined by the analysis of relaxation data (T1-T2 

experiments). The differences between these two alternatives lie in the sensitivity of the 

relaxation experiment to rotational diffusion and the PFG’s to translational diffusion (Price 

1997). The first technique allows measuring molecular motion in a time scale from pico- to 

nanoseconds, whereas PFG measurements are performed over milliseconds. By using the 

Debye and the Stokes-Einstein equations the rotational diffusion coefficient determined by 

relaxation can be translated to the translational diffusion coefficient (Price and Hwang 

1992; Blümich 1993). 

PFG-NMR consists in measuring the average displacement of the molecules along one 

dimension. The best we can get is a displacement distribution. The challenge is how to mark 

the initial and the final position of the molecules. 

The precession frequency of the spin is proportional to the magnitude of the surrounding 

magnetic field. On the other hand, the intensity of the signal is directly associated with the 

number of spins in resonance (same precession frequency) and phase (magnetic moment 

polarized in the same direction). The spins can be resonance but to lost coherence (Figure 

123). 

 
Figure 123 Spin resonance and spin coherence 

For PFG-NMR as for NMR there exist a vast catalogue of pulse sequences, in this case, with 

different magnetic field gradients (Equation 55) echoes and spin echoes. 𝑔 = ∇𝑩𝟎 

Equation 55. Magnetic field gradient (T/m) 

The most basic proposed sequence is based on the Hahn spin-echo sequence adding two 

gradient pulses of equal intensity and duration around the 180° pulse (Figure 124). The 180° 

pulse not just refocuses the phase dispersion caused by the first gradient pulse but also the 
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chemical shifts and the frequency dispersion due to 𝑩𝟎 inhomogeneity. This sequence is 

the Stejskal and Tanner pulse sequence (Stejskal and Tanner 1965). 

In the pulse sequence described in Figure 124 at time zero the spins are in phase in the 

transversal plane (if the spins are in phase, they are also in resonance). 

 

Figure 124 Stejskal and Tanner pulse sequence (Stejskal and Tanner 1965) 

A magnetic field is generated. Its magnitude varies in a particular direction according to a 

given gradient. According to the magnitude of the magnetic field at the molecule position, 

the precession frequency will be different (Figure 125). 

 
Figure 125 Spins with different Larmor Frequencies 

The magnetic field gradient is stablished for a few milliseconds (). The Larmor frequency 

obtained by each molecule acts as a marker for its initial position. Then a 180° rf pulse is 

applied. This pulse rotates the magnetization around the Y-axis. It serves to invert the effect 

of the first gradient. The molecules are let to diffuse for a few milliseconds (∆). The final 

position of the molecules after ∆ will be proportional to their final Larmor frequency. Finally, 

a gradient with the same characteristics as the first one is pulsed. This second gradient 

should reverse the effect of the first one. So, if the molecule was always at the same place, 

the maximum possible signal will be obtained. However, if it has diffused, the molecule will 

not recover its original Larmor frequency, and the obtained signal will be lower. So, it is 

possible to think about it as the quantification the phase difference or phase shift (𝜑) 

(Larmor Frequency change) originated when the molecules travel in one direction. If 𝜑 is 

zero, the final and initial position of the molecules is the same (see Figure 126). The further 
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has travelled an ensemble of molecules, the lower will be the detected signal meaning the 

phase difference is higher. 

 

 
Figure 126. Phase Shift (𝝋) after diffusion process. 

 

The further an ensemble of molecules has travelled, the lower will be the detected signal 

meaning the phase difference is higher (Figure 127). 

 
Figure 127. Progression of the magnitude of the total magnetization vector as a function of the distance. The distance is 
normalized in the 0-1 interval. 

The experiment is repeated several times, increasing the diffusion time (∆) and always 

saving the signal value right after the gradient pulse. At the end, a curve that relates the 

diffusion time with the signal intensity is obtained () (Figure 128). There is another 
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methodology in which ∆ is maintained constant and the magnitude of the magnetic gradient 

(g) is varied. 

 
Figure 128 PFG-NMR Signal decay 

7.2.3.1. Relation between the signal attenuation and the diffusion process 

The attenuation of the signal is caused by relaxation and by diffusion. In the presence of 

diffusion and gradient pulses, it is possible to separate the contributions from both. In the 

absence of diffusion and/or gradient pulses, the signal value obtained at the end of the 

pulse sequence (highest peak value) is given by:  

𝑆(2𝜏)𝑔=0 = 𝑆(0) exp (−2𝜏𝑇2 ) 

Equation 56 

where 𝑆(0) is the signal measured a t=0 right after the 90° rf pulse is applied. In order to 

take into account the diffusion and the gradient pulses, the signal at the end of the 

sequence can be mathematically given by: 

𝑆(2𝜏) = 𝑆(0) exp (−2𝜏𝑇2 )  𝑓(𝛿, 𝑔, Δ, 𝐷) 

Equation 57 

The attenuation due to the diffusion process is then given by: 
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𝐸 = 𝑆(2𝜏)𝑆(2𝜏)𝑔=0 =  𝑓(𝛿, 𝑔, Δ, 𝐷) 

Equation 58 

where 𝑓(𝛿, 𝑔, Δ, 𝐷) is a function of the gradient pulse duration (𝛿), the gradient intensity (𝑔) the diffusion time(Δ), and the molecular diffusion coefficient (𝐷). 

In Stejskal and Tanner pulse sequence in Figure 124 the total magnetization vector is first 

rotated 90°. Then a first gradient pulse is applied, which causes the spin to dephase. 

Secondly, a 180° rf pulse is applied, to invert the orientation to their opposite direction on 

the transversal plane. The molecule is diffusing during the time interval ∆. The last step is 

to pulse a second gradient, identical to the first one a during an equivalent time 𝛿. The logic 

of this sequence lies in the following concept: if the molecules haven’t changed their 
position, the phase shift cause by the second gradient will be of the same magnitude than 

the first one leading to a null phase shift. 

In this case, we are describing the gradient as a pulse of constant amplitude. According to 

the chosen sequence, the gradient can be time-dependent or constant. 

The cumulative phase shift for a single spin in the case of a gradient pointed towards X can 

be generally described as: 

Φ(t) =  γ𝐵𝑂𝑡 +  𝛾 ∫ 𝑔(𝑡′)𝑡
0 𝑧(𝑡′)𝑑𝑡′ 

Equation 59. Phase shift as a function of the position  

Where 𝐵𝑂 = |𝑩𝑶|. In this equation, the effect of field inhomogeneity is neglected. 

Generally, it is assumed that the transmitter of the alternating magnetic field is turned on 

and off so fast that the pulse function has a squared shape (Farrar and Becker 1971). 

Considering the Stejskal and Tanner sequence in Figure 124, what is relevant is the net 

phase shift between the two gradients (Figure 126) after the time interval Δ. The expression 

for the cumulative phase shift for one spin will be:  

𝜙𝑖(2𝜏) = {𝛾𝐵𝑜𝜏 + 𝛾𝑔 ∫ 𝑥𝑖(𝑡)𝑡1+𝛿
𝑡1 𝑑𝑡} − {𝛾𝐵𝑜𝜏 + 𝛾𝑔 ∫ 𝑥𝑖(𝑡′)𝑡1+𝛿+Δ

𝑡1+Δ 𝑑𝑡′} 

𝜙𝑖(2𝜏) = 𝛾𝑔 {∫ 𝑥𝑖(𝑡)𝑡1+𝛿
𝑡1 𝑑𝑡 − ∫ 𝑥𝑖(𝑡′)𝑡1+𝛿+Δ

𝑡1+Δ 𝑑𝑡′} 

Equation 60. Phase shift as a function of the position and the gradient parameters 
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where 𝑥𝑖  is the position of the nuclei along the direction of the gradient. 𝛿 is a key 

parameter. During the time 𝛿 the phase shift is going to cumulate. This is reason why 𝛿 must 

be equal for both gradient in the Stejskal and Tanner pulse sequence sequence. 

The measurement taken from the experiment is the signal emitted by the system. Then it is 

needed an expression that relates the signal to the phase shift. A generic version of this 

equation is: 

𝑆(2𝜏) = 𝑆(2𝜏)𝑔=0 ∫ 𝑃(𝜙, Δ)∞
−∞ 𝑒𝑖𝜑𝑑𝜙 = 𝑆(2𝜏)𝑔=0 ∫ 𝑃(𝜙, Δ)∞

−∞ cos (𝜙)𝑑𝜙 

Equation 61. Signal as function of the phase shift distribution of the system 

where 𝑃(𝜙, Δ) is the phase distribution function comprising the phase of all the elements 

of the system. By definition ∫ 𝑃(𝜙, Δ)∞−∞ 𝑑𝜙 = 1. 

PFG-NMR gives no information about the trajectory of a particle but about the average 

mean square displacement of the molecules. If the probability density function is defined 

as 𝑃(𝒓𝟎, 𝒓𝟏, 𝑡) , it is possible to calculate the probability for a molecule to be at a position 𝒓𝟏 starting from a position 𝒓𝟎 after a time t. 𝑃(𝒓𝟎, 𝒓𝟏, 𝑡) varies according to the nature of 

the diffusion domain. When the technique is used to measure free diffusion, meaning 

diffusion of particles into a non-restricted domain, it does not matter how much Δ is 

increased, the means squared displacement increases linearly with Δ and the diffusion 

coefficient will not change Figure 129. However, when the measurement is taken into a 

restrictive geometry (ex. Pores), the diffusion time Δ becomes relevant. 

 
Figure 129 Signal attenuation progression comparison for free diffusion and restricted diffusion in a spherical medium. 

Price proposed three different regimes for measurements in confined media based on 

Equation 62 comparing the diffusion time constant based on the characteristic length L of 

the confinement structure to the diffusion time (Price 1997). 
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𝜉 = 𝐷Δ𝐿2  

Equation 62. Price’s restricted diffusion criteria 

In the case of a sphere of L=R radius for example (Figure 129), when 𝜉 < 1, the mean square 

displacement increases linearly with Δ and the diffusion coefficient is not different from the 

one obtained for the free diffusion regime. When 𝜉 = 1 the growth of the mean square 

displacement start to abandon linearity and for 𝜉 > 1 the measured diffusion coefficient 

will be an apparent one that is heavily influenced by the surface to volume ratio of the 

confined space where the mean squared displacement becomes constant and so 

independent from Δ (Mitra and Sen 1992b; Mitra and Sen 1992a; Latour et al. 1993; Tycko 

1994). 

 
Figure 130 Restricted diffusion regimes according to Price’s Criteria reference (ξ from price criteria) ( (Price 1997)  

To get a model for the interpretation of the output signal as a function of the diffusion 

coefficient there are multiple paths. The rigorous deduction starting from the Bloch 

equation for diffusion ( Equation 54 ) will not be shown here but can be found in (Price 

1997). Generally, the experiment is done under constant 𝜏 so can be considered constant 

and absorbed by 𝐸0 (Balinov et al. 1993). The model used for the interpretation of the 

Stejskal and Tanner pulse sequence is: 

ln(𝐸/𝐸0) = − 2𝜏𝑇2 − (𝛾𝑔𝛿)2𝐷 (Δ − 𝛿3) = −(𝛾𝑔𝛿)2𝐷 (Δ − 𝛿3) 

Equation 63. Signal attenuation model for the Stejskal and Tanner pulse sequence using a GPD approximation (see 
section 7.2.3.2) 
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7.2.3.2. GPD and SPG approximations 

There are different assumptions that can be made to simplify the resolution of Equation 54. 

The Gaussian Phase Approximation (GPA) considers that the radial distribution function of 

the spins in an infinitely large system concerning an arbitrary reference time is Gaussian 
(Equation 64) (Joseph P. Hornak 1997; Cotts et al. 1989; Price 1998, 1997). 

𝑃(𝒓𝟎, 𝒓𝟏, 𝑡) = (4𝜋𝐷𝑡)−32 exp (− (𝒓𝟏 − 𝒓𝟎)24𝐷𝑡 ) 

Equation 64. Gaussian propagator 

It is shown by Van Kampen (van Kampen 2007) that the phase distribution is also Gaussian: 

𝑃(𝜙, 2𝜏) = (2𝜋 < 𝜙 >2𝑎𝑣)−12 exp ( −𝜙22 < 𝜙 >2𝑎𝑣) 

Equation 65. Phase distribution 

Where < 𝜙 >2is the mean-squared phase change at 𝑡 = 2𝜏. Finally, it leads to a result 

similar to the one obtained for free diffusion starting from the Bloch Equations: 

ln(𝐸/𝐸0) = −(𝛾𝑔𝛿)2𝐷 (Δ − 𝛿3) 

Equation 66. Signal for a GDP approximation 

The short gradient pulse (SGP) approximation considers δ<<<𝛥 so there is no displacement 

or phase change during this time. The detailed derivation of the model is presented by Price 

(Price 1997). The signal attenuation at 𝑡 = 2𝜏 is represented by Equation 67 which very 

similar to Equation 66 but with 
δ3 →0. E(g, Δ) = exp(−(𝛾𝑔𝛿)2𝐷𝛥) 

Equation 67. Signal for a SGP approximation  

The GDP and the SGP approximations can be considered as equally valid for free diffusion, 

that is 𝜉 < 1 and the GDP has been proven to work well at 𝜉 ≫ 1 after the time-lapse in 

which the original position 𝑟0 is not considered relevant anymore. 

When the interest is to find an effective diffusion coefficient for restricted space, the model 

used for the interpretation of the result must be modified. The complexity increases 

exponentially from regular to complex restrictions and generally for the complex media 

there is no exact solution. When experimental data coming from a restricted space as a pore 

network is analyzed with free diffusion models, an apparent auto-diffusion coefficient is 
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expected (Price 1997). However, it is important to deal with the technical problems 

associated with these structures. 

7.2.3.3. Existing simulation models 

There are two common general approaches for the simulation of NMR. The first one is to 

use random walkers to diffuse through the structure which allows quantifying the phase 

change and by doing so, the apparent diffusion coefficient (Grebenkov 2011; Grebenkov et 

al. 2013; Balinov et al. 1993; Lin et al. 2003; Waudby and Christodoulou 2011). The second 

one consists of the resolution and analysis of the Bloch-derived equations with the scope of 

extending or improving the models for the analysis of experimental data (Lin 2018; Li et al. 

2019; Ning et al. 2017). In this classification the simulations vary regarding the optimization 

time, the hypothesis of the models, and the type of physical restriction for the domain (Ex. 

catalyst pores, adsorbents, biological tissue). 

The common approach is based on the simulation of Brownian motion of spin-bearing 

particles confined into a physical domain with Neumann border conditions (Neuman 1974), 

meaning reflection on the walls. The main modules of the simulation are the Brownian 

motion, the physical boundaries, and the phase accumulation model. Douglas and McCall 

developed the method of phase accumulation for measuring diffusion in paraffin 

hydrocarbons (Dean C. Douglass, David W. McCall 1958). 

 
Figure 131. Simulation approaches 

7.3. PFG-NMR experiment simulation model 

In this section is described a simulator of the PFG-NMR experiment allowing to calculate the 

tortuosity of a digital pore network. To this end, it is necessary to compute the effective 

diffusion coefficient. Such coefficient will be obtained from the self-diffusion simulation of 

the molecules within the network. In this sense, it is necessary to simulate the spin diffusion 

and not the spin dynamics (see Figure 131). This will allow to obtain the signal attenuation 

curve associated to the transversal magnetization (see Figure 132). 
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Figure 132. PFG-NMR simulation block diagram 

In literature it is possible to find multiple researches works that simulate the auto-diffusion 

phenomenon based on molecular simulations (Balinov et al. 1993; Cotts et al. 1989; 

Grebenkov et al. 2013). To decrease the simulation time and open the door to new 

simulation scales, it is proposed here to simulate the auto diffusion phenomenon using the 

Fick’s model that is formally equivalent to Brownian motion at the molecule’s population 
scale. 

The simulation of the PFG-NMR has two main blocks. In the diffusion block are set all the 

boundary equations, diffusion model, discretization and numeric solver are specified. The 

second block corresponds to the PFG-NMR model. The output data that comes from the 

diffusion block is used as the input for the PFG-NMR mathematical model. 

7.3.1. Hypothesis 

- The magnetic field inhomogeneities are neglected 

- The total magnetic moment is in the transversal plane 

- The interactions between the local magnetic fields created by each molecule are 

neglected 

- The signal loss due to the particle that escape from the porous media is neglected 

It is important to remark that it not necessary to model the full spin dynamics. The required 

magnitude is the phase shift after Δ. Considering the hypotheses that are made, the phase 

shift in just dependent of the magnitude of the gradient (g), the gradient time application 

(δ), the distance travelled by the molecule, and the gyromagnetic ratio (constant). 
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7.3.2. Methodology 

The diffusion block handles each auto diffusion simulation. The diffusion block works as 

described in section 3.9.1. A Dirichlet boundary condition is imposed in the external work 

of the network. 

Equation 68 quantifies the cumulative phase shift for the system. The phase change is 

cumulated during the application time of the gradient. One of the properties of the 

radiofrequency (𝑩𝟏) is to allow the spin to cumulate the phase (different to the case of 

homogeneous magnetic field (𝑩𝟎). The phase change depends also on the magnetic field 

gradient. 

𝜙𝑖(2𝜏) = {𝛾𝑔 ∫ 𝑥𝑖(𝑡)𝑡1+𝛿
𝑡1 𝑑𝑡} − {𝛾𝑔 ∫ 𝑥𝑖(𝑡′)𝑡1+𝛿+Δ

𝑡1+Δ 𝑑𝑡′} 

Equation 68. Phase shift as a function of the position and the gradient parameters 

If the displacement of the molecules during 𝛿 is neglected, the phase shift can be calculated 

as:  

𝜙(2𝜏) = {𝛾𝑔𝑥𝑜 ∫ 𝑑𝑡𝑡1+𝛿
𝑡1 } − {𝛾𝑔𝑥𝑓 ∫ 𝑑𝑡′𝑡1+𝛿+Δ

𝑡1+Δ } =  𝛾𝑔𝛿(𝑥𝑜 − 𝑥𝑓) = 𝛾𝑔𝛿(𝑥𝑜 − 𝑥𝑓) 

Equation 69. 

where 𝑥𝑜 and 𝑥𝑓 represent the initial and the final X coordinate of the molecule. 

For the calculation of the phase shift, the pore network is discretized using the middle 

coordinates of pores. 

For 𝑡𝑠𝑖𝑚 = 0 a gaussian concentration profile of a tracer species is set along one pore of the 

network. The pore is randomly chosen, and it will be denominated the tracer pore. 𝑥𝑜 will 

be equal to the middle coordinate of the tracer pore ( 𝑥𝑜 = 𝑥𝑚_𝑡𝑝). The diffusion simulation 

is then triggered. The final diffusion simulation time will be equal to Δ (𝑡𝑠𝑖𝑚 = Δ ). A phase 

shift relative to each pore middle coordinate will be calculated using Equation 70, where 𝑥𝑓will represent the middle coordinate of each pore i different than the tracer (𝑥𝑓 = 𝑥𝑖).  𝜙𝑖 =  𝛾𝑔𝛿(𝑥𝑚_𝑡𝑝 − 𝑥𝑖) 

Equation 70. Phase shift expression used for the pore the network characterization  
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Figure 133. Post treatment discretization for the PFG NMR simulation  

The total signal that corresponds to the simulation is calculated multiplying the signal 

generated by each phase shift by the fraction of the tracer species in the pore associated to 

it: 

𝐸𝑗 = ∑ {cos (𝜑𝑖) 𝑆𝑖 ∫ 𝐶𝐴(𝑙, Δ)𝑃𝑖𝐿0 𝑑𝑙𝑆0 ∫ 𝐶𝐴(𝑙, 0)𝑃0𝐿0 𝑑𝑙}𝑖=𝑁𝑃
𝑖=1  

Equation 71. Signal for one simulation 

where 𝐶𝐴(𝑙, 0) represents the molar concentration of the tracer species in the tracer pore 
at t = 0 and 𝐶𝐴(𝑙, Δ) represent the concentration in a pore at 𝑡𝑠𝑖𝑚 = Δ. 

The initial position of the tracer will conditionate the signal obtained for each Δ. Multiple 

initial simulation conditions are considered (initial tracer pores) to get a representative 

signal of the full pore network (Figure 134). Each tracer pore is randomly chosen. Figure 134 

shows an example of three different tracer pores (pores in red). 

The final signal will be then calculated as: 
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𝐸∆ = 1𝑁𝑡 ∗ ∑ 𝐸𝑗𝑗=𝑁𝑡
𝑗=1  

Equation 72. Average signal generated for a particular Δ after multiple tracer simulations 

where 𝑁𝑡 represents the total number of tracer pores. A sufficiently high number of tracer 

pores is considered in order to get a standard deviation for the average signal lower than 

5%. 

 

 
Figure 134. Tracer pores graphical representation (pores in red). 

If the tracer pore is far enough from the border of the pore network, then there is no risk 

of losing a fraction of the tracer during the simulation. To avoid this situation the pores that 

can be chosen as tracer pores will be inside of a squared region called the active zone (Figure 

135) of the network. 𝐿𝐷 in the Equation 73 represent the diffusion distance for unrestricted 

diffusion calculated using the Einstein equation. The dimension  𝐿𝐴𝑍 for the active zone is 

calculated using the Equation 74.  𝐿𝐴𝑍 is imposed and the total length of the network is 

calculated as:  𝐿𝐷 = √4 ∗ ∆ ∗ 𝐷𝑚 

Equation 73. Distance from the border of the active zone to the border of the network.  𝐿𝑁 =  𝐿𝐴𝑍 − 2 𝐿𝐷 

Equation 74. Dimension of the network  

The minimum dimension of the network if fixed to grant the representativity of the topology 

map, the percolation map, and the pore size distribution. 
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To reduce the simulation times to actions were implemented. According the with the 

diffusion time ∆, a different network size is used. In each case  𝐿𝐴𝑍 is recalculated and 

network size is determined. As the scope of the simulation is to measure the tortuosity, a 

sufficiently low diffusion coefficient is used to minimize the network size that should be 

used for each ∆. 

 
Figure 135. Active zone graphical description  

Summarizing, the signal for each Δ point is the average of the signal obtained for several 

tracer pores simulations. At the same time, the signal from each tracer pore is calculated 

considering the mol fraction of tracer in each pore at 𝑡𝑠𝑖𝑚 = Δ. A graphical representation 
that illustrates the relations between the output variables is shown on Figure 136. 
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Figure 136. Simulations scheme for each ∆ 

 

This is pseudo would be written as:  

 

 

7.4. Case study 

Different pore networks were characterized using the methodology described in the last 

section. Table 25 specifies the parameters used for the simulation. The default parameters 

for the network generation were triangular lattices, 1 pore population, PEP=0.75, 

PSD=(10 ± 2) nm, pore length=60 nm, grid spacing=1. The  𝐿𝐴𝑍 for the test was fixed in 1740 

nm. 
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Table 25. Parameters used for the PFG-NMR ideal case simulation 

Parameter Value 

G (T/m) 3.44 𝛿 (s) 0.0006 

ϒ(rad/s/T) 2.67E+08 

Dm(m2/s) 1,897*10-13 

 

In the first test, the pore existence probability for the network was varied. Figure 137 

represents the attenuation curve observed for a pore network of PEP=0.71. As can be 

observed, the trendline passes close to zero and the correlation coefficient is 0.9998. The 

ratio ∆/𝛿 for ∆= 5 𝑚𝑠 is equal to 8 and to 160 for the longest used diffusion time (∆=100 𝑚𝑠). 

 
Figure 137. Attenuation curve for network of PEP=0.71 

Figure 138 presents the tortuosity obtained for different PEP using the PFG-NMR 

simulation. The obtained tortuosity values have the right order of magnitude for gamma 

alumina samples. As the PEP decreases, the tortuosity increases. This trend is in agreement 

with the results obtained for the characterization done using the infinite plate methodology 

in section 3.9. 
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Figure 138. Tortuosity for different PEP using the PFG-NMR simulation and the semi-infinite plate simulation. 

 

7.5. Conclusions 

A fast PFG-NMR simulation method for the characterization of pore networks was 

developed. It is based on a Fickian diffusion simulation. The equation used for the 

interpretation of the results derives from the Stejskal and Tanner pulse sequence. A set of 

different initial conditions is used to obtain a good representation of the diffusion into the 

pore network. 

Two simulation methods were created, in agreement with the experimental practice: 

- Variation of the diffusion time Δ 

- Variation of the magnitude of the magnetic field gradient (g) 

The size of the generated pore network is varied according to the diffusion time Δ. This is 
done to avoid mass loss and to save simulation time. 

The obtained tortuosity trends are reasonable and similar to those in section 3.9. The 

simulation derived tortuosity values are of the same order of magnitude of the 

experimental values for gamma alumina. 
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Chapter 8: Conclusions and Future Work 

8.1. Conclusions 

In this work, digital twins for porous gamma aluminas have been developed in order to 

simulate mass transfer without or with reactions. These representations are based on pore 

network models that are created by means of a discrete reconstruction method using a 

stochastic algorithm. Starting from an initial graph, or lattice, composed of nodes and edges, 

pores are randomly added on the structure. At the end of the pore network generation 

process, hollow cylinders occupy a part of the edges. The nodes can be set to have zero 

volume (the nodes do not play any physical role) or can be occupied by hollow spheres that 

create an additional pore volume in the pore network model. 

The characteristics of the initial lattice set the maximum connectivity of the network, that 

is to say the maximum number of edges that can be connected to a given node. Different 

features provide heterogeneity to the digital structures to get not only a good 

representation of the textural properties but also a good representation of the topology of 

the network. The pore network generation tool can accommodate several pore size 

distributions in the same network, which allows the construction of hierarchical structures, 

i.e. networks with different porosity levels or pore populations. The porosity of each 

population of the network is regulated through its own existence threshold defined as the 

pore existence probability (PEP). The length of the pores can either be constant in regular 

lattices, or variable by creating random distortions in the lattice. The grid spacing between 

the different pore levels can also be modified, defining their intertwining. The interaction 

between the different pore populations and the variation of the pore network generation 

parameters can produce complex outputs such as pore connectivity distributions and pore 

volume distribution for each population. It is possible to create pore networks in 1D, 2D, or 

3D. The resulting pore network can be periodic along one or several dimensions. 

A topological analysis was carried out in order to better understand the influence of the 

different pore network generation parameters on the network’s architecture. It was 
discussed how the topological maps are affected by the lattice and the pore existence 

probability, how the percolation map is affected by the topological map and the pore size 

distribution, and how the pore volume distribution is affected by the pore size distribution 

and the pore length distribution. To understand pore blocking phenomena in the network, 

a percolation algorithm was developed that characterizes the effect of the position and 

environment of each pore within the network by establishing the percolation order of the 

pores when a fluid enters the pore network. The implementation of the pore blocking 

algorithm required implementing high performance priority queues using heap structures 



178 

to drastically increase the simulation speed of such an analysis. A sensitivity analysis of 

percolation simulations into various pore network models showed that a fraction of the 

smaller pores is not influenced by the percolation phenomena. The fact that this fraction 

depends on the maximum connectivity of the network and on the pore existence probability 

is an interesting conclusion of the analysis of these simulation results. 

The interaction between several pore populations was also studied. The populations can 

hinder each other depending on the grid spacing and their pore size distributions. The 

volume represented by each population is a key variable. The effect of the percolation map 

on volume processes is highly influenced by the pore volume fraction allocated to each 

population. This is result is relevant to understand the role of the pore blocking effect when 

techniques such as pore nitrogen sorption are simulated. By controlling the size and 

dispersion of the domains, one can significantly improve the quality and representativity of 

the pore network model. 

The existence of pore domains with different pore populations, their number and their 

dispersion in the network strongly influence the effective diffusion coefficient. This is in line 

with experimental observations, thus confirming the relevance of using multiple 

populations and pore domains to model the gamma alumina network architecture. 

To fully characterize the pore network models and provide a detailed comparison of these 

models to experimental data, a fast algorithm was implemented for the simulation of three 

porosimetry techniques: Mercury Intrusion Porosimetry, Nitrogen Sorption and 

CryoPorometry. These characterization techniques exhibit hysteresis phenomena that can 

be attributed to pore blocking, resulting in percolation phenomena and thermodynamic or 

mechanical equilibrium hysteresis. By introducing the concept of triggering diameter, such 

hysteresis phenomena can be simulated on digital pore networks. The algorithm used to 

identify the triggering diameter of each pore in the network was optimized by using a Max-

Heap / Min-Heap sorting technique as a tool for handling the search list. A time execution 

test for the nitrogen sorption simulation and an octahedral lattice of about 2 million pores 

only required 6.7 seconds using the binary heap algorithm, which is more than 20 times 

faster than other sorting algorithms. The size of the network is the main parameter that 

affects the execution time, which exhibits an O[N log(N)] behavior. 

A sensitivity analysis applied to the simulated characterization techniques helped to better 

characterize how the different input parameters influence the obtained characteristic 

curve. The connectivity and the pore existence probability are the variables that influence 

the topological map of the network. These input variables are both related to the network 

pore fraction affected by the percolation phenomena. The average diameter of the pore 

size distribution has an influence on the mechanical or thermodynamical equilibrium 
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model, while the width of the pore size distribution changes the percolation map, thereby 

increasing the pore blocking phenomena. 

A digital twin of an industrial alumina sample was created by generating a three-level 

hierarchical pore network model. During the parameter identification procedure, it was 

clearly shown that, in nitrogen porosimetry, the adsorption isotherm mainly provides 

information on the pore volume distribution of the structure, but it does not allow getting 

a statistically representative model that reproduces the effects of the topology of the solid. 

However, the desorption isotherm and the scanning curves are strongly influenced by the 

topology of the network. It is therefore computationally possible to have various 

representations with the same adsorption isotherm but with totally different desorption 

branches that represent different topologies. After the final parameter identification, a 

pore network model was obtained that provides a simulated nitrogen sorption isotherm 

that is in good agreement with the experimentally determined sorption isotherm. The same 

set of parameters also allows to correctly predict the nitrogen scanning curves, thereby 

validating the digital twin. The BJH pore size distribution obtained from the desorption 

branch of the simulated isotherm corresponds well to the experimental BJH pore size 

distribution for the pores above 10 nm. 

It should be stressed that it is not yet possible to confirm that, from a given isotherm, the 

attributes of the pore network structure curve can be uniquely identified. Our results point 

in the direction that a family of topologies can generate the same isotherms. However, the 

use of the scanning curves in the objective function of the optimizer could help to reduce 

the number of structures that can generate the same characteristic curves as a given 

alumina sample, and therefore restricts the possible topologies of the solid. 

Another way of validating the digital twin consists in predicting the tortuosity factor from 

the pore network model and comparing it to experimentally measured values. Using 

diffusion simulations on the pore network model fitted to the nitrogen sorption curves, a 

tortuosity factor was calculated that differs by less than 20% from the tortuosity factor 

measured by PFG-NMR. This illustrates how a digital twin allows to provide a reasonable 

estimate for the tortuosity factor of a catalyst sample from cheap, readily available, and 

commonly used nitrogen sorption characterization experiments. 

As an alternative to the diffusion simulations, a fast PFG-NMR simulation method for the 

characterization of pore networks was developed. It is based on a Fickian diffusion 

simulation. The equation used for the interpretation of the results derives from the Stejskal 

and Tanner pulse sequence. A collection of different initial conditions is used to obtain a 

good representation of the diffusion into the pore network. Two simulation methods were 

implemented that correspond to two experimental practices: (i) variation of the diffusion 
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time Δ, (ii) variation of the magnitude of the magnetic field gradient (g). The size of the 

generated pore network is varied depending on the diffusion time Δ. This is done to avoid 
mass loss and to save simulation time. The obtained tortuosity trends are reasonable, and 

the PFG-NMR simulation derived tortuosity values are of the same order of magnitude of 

the experimental values for gamma alumina support. 

 

8.2. Perspectives 

For the short-term perspectives, multiple questions remain open and there is room for 

numerous improvements in the developed numerical tools: 

• The texture and roughness of the pore surface is not considered in the model 

presented here. The influence of this property therefore remains an open question. 

• A broader topological study should be carried out to better understand the 

interaction between the multiple pore population sin terms of the percolation and 

topological maps. The different pore populations organized as isolated pore 

domains can be interpreted as grains into the material matrix. The understanding of 

their impact on the results from different experimental characterization techniques 

and their digital equivalents is still to be studied. The scanning curves for nitrogen 

sorption are a valuable tool for this study. 

• The number of sets of pore network generation parameters that can fit the same 

nitrogen sorption is also to be studied. The flexibility of the model in terms of the 

types of the nitrogen sorption hysteresis loops that can be represented still remains 

a question. 

• A digital tool to simulate cryoporometry measurements has been developed, but 

the lack of available experimental data did not allow to validate the simulations. 

• The PFG-NMR diffusion simulation needs to be further validated. This is a valuable 

tool that can be used for several applications. The question of the influence of the 

network’s architecture on the diffusion propagator remains open. The influence of 
the architecture of the sample added to the effect of chemical kinetics on the 

diffusion coefficient could also be studied. 

• Better characterization of industrial alumina samples will of course allow generating 

better digital twins. Hence, the simulation tool should be extended to perform the 

structural optimization with an objective function that not only uses nitrogen 

porosimetry data, but also scanning curve, mercury porosimetry and NMR-

cryoporometry simulations. 

• The pore network model has demonstrated to be efficient and provide reasonable 

representations of the topology of the material. As the model is proposed now, each 

pore population has its own pore existing probability and pore size distribution. 
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However, new key features could be added to allow (i) to set different maximum 

connectivities for each pore population in order to better study the influence of the 

interaction of different pore domains, (ii) to set a different length distribution for 

each population, and (iii) to set the average volume fraction of each pore 

population. 

The next major step is to study the influence of the network architecture on chemical 

diffusion-reaction systems. The network’s architecture plays an important role on kinetics 

that must be better understood. Detailed diffusion-reaction simulations will be used to 

investigate and clarify the link between the topology of these solids and their tortuosity. To 

validate such systems, the architecture of different gamma alumina catalyst can be fitted 

using the numerical tools developed in this thesis. Then, the diffusion-reaction simulation 

would be validated using data generated from chemical reaction experiments that use the 

structurally fitted gamma alumina catalyst. This study would allow to understand how to 

optimize structural parameters to reach a target selectivity in different reaction systems. 

Once the optimal pore network structure has been defined from the previous step, we still 

need to devise a way to produce a gamma alumina with this target structure. Mimetic 

models remain a cutting-edge solution to link the synthesis conditions of gamma alumina 

to its pore structure. However, the complexity of the generated morphology makes this 

methodology less attractive for simulating transport phenomena and diffusion-reaction 

systems. IFPEN has developed several mimetic modeling tools during thesis work of Giulia 

Ferri (Ferri 2021). By solving the inverse problem for the target structure, these numerical 

approaches could allow to define the right combination of synthesis parameters for the 

preparation of the optimum catalyst. 
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APPENDICES 

 

Appendix A  Pore network generation input text file 

 

 

Fig. Ap. A 1 Pore network generation input text file (example) 

 

  

1-> 0     1                      ! Optimization flag, Visualisation flag 
2-> 50 50    1      ! Size of the network along x, y, z 
3-> 0     0     0              ! Periodicity in the x, y, z direction 
4-> 21e-9    0              !Spacing of the fixed grid (m), Grid distortion (m) 
5-> 3.1d3                    ! Skeletal density of the solid (kg/m3) 
6-> 50                          ! Maximum number of classes in the Pore Size Distribution 
7-> 1                          ! Number of porosity levels: = 1 means a random pore network, > 1 means a 
hierachical pore network 
 
8-> 0.75                       ! Pore existence probability for porosity level 1 
9-> 1                            ! Grid spacing for this porosity level 
10-> 20                          ! Number of classes for the cumulative pore diameter distribution  
11-> 1.00E-09 0 
12-> 9.00E-09 0.308537539 
13-> 1.00E-08 0.5 
14-> 1.10E-08 0.691462461 
15-> 1.20E-08 0.841344746 
16-> 2.00E-08 1 
 
17-> 2                          ! Size of the stencil or pattern 
18-> 1     0                   ! delta X, delta Y and delta Z for each direction 
19-> 0     1     0 
 
20-> 1                          ! 1 for cilynder/2 spheres+cylinders 
21-> 1                        ! 1 non_diagonal pores/ 2  diagonal pores 
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Appendix B  Average textural properties as a function of the number of 

generations for different set of parameters (Zmax=4). 
 

 

 

Fig. Ap. B 1. Evolution of the average connectivity and its relative error for a network of dimension 10x10. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 2. Evolution of the average diameter and its relative error for a network of dimension 10x10. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 3. Evolution of the average porosity and its relative error for a network of dimension 10x10. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 4. Evolution of the average specific geometric volume and its relative error for a network of dimension 
10x10. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 5. Evolution of the average specific geometric surface and its relative error for a network of dimension 
10x10. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 6. Evolution of the average connectivity and its relative error for a network of dimension 100x100. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 7. Evolution of the average diameter and its relative error for a network of dimension 100x100. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 8. Evolution of the average porosity and its relative error for a network of dimension 100x100. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 9. Evolution of the average specific geometric volume and its relative error for a network of dimension 
100x100. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 10. Evolution of the average specific geometric surface and its relative error for a network of dimension 
100x100. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 11. Evolution of the average connectivity and its relative error for a network of dimension 1000x1000. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 12. Evolution of the average diameter and its relative error for a network of dimension 1000x1000. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 13. Evolution of the average porosity and its relative error for a network of dimension 1000x1000. 
PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 14. Evolution of the average specific geometric volume and its relative error for a network of dimension 
1000x1000. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Fig. Ap. B 15. Evolution of the average specific geometric surface and its relative error for a network of dimension 
1000x1000. PSD=(10 ± 1.7) nm, PEP=0.5. 
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Appendix C  Nitrogen isotherms for different hierarchical networks 
 

a) 

 

b) 

 

Fig. Ap. C 1. Nitrogen isotherm for two different populations created in different order and grid spacings. Zmax=4, 
L=21 nm a) Pop1: PSD=(10 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(20 ± 4) nm, grid spacing=1. b) Pop1: 
PSD=(20 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(10 ± 4) nm, grid spacing=1. 
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a) 

 

b) 

 

Fig. Ap. C 2. Nitrogen isotherm for two different populations created in different order and grid spacings. Zmax=4, 
L=21 nm a) Pop1: PSD=(30 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(10 ± 4) nm, grid spacing=1. b) Pop1: 
PSD=(10 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(30 ± 4) nm, grid spacing=1. 
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a) 

 

b) 

 

Fig. Ap. C 3. Nitrogen isotherm for two different populations created in different order and grid spacings. Zmax=4, 
L=21 nm a) Pop1: PSD=(20 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(30 ± 4) nm, grid spacing=1. b) Pop1: 
PSD=(30 ± 4) nm, grid spacing=2 or 3; Pop2: PSD=(20 ± 4) nm, grid spacing=1. 
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Appendix D  Repeatability of Nitrogen Sorption Simulations 

 

 

 

Fig. Ap. D 1. Sorption isotherm with minimum and maximum values for all the simulations. Network 
dimension=100x100 nodes, Zmax=4, PEP=0.75, L=21 nm, PSD=(20 ± 4) nm. Number of simulations=100. 

 

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
o

lu
m

e 
 (

cm
3
/g

)

P/Po

Adsorption

Desorption

MIN_Adsorption

Max_Adsorption

MIN_Desorption

Max_Desorption

Avg+Dev  Adsortion

Avg+Dev  Desorption

Avg+2Dev  Adsortion

Avg+2*Dev  Desorption



222 

 

 

Fig. Ap. D 2. Relative error (standard deviation divided by average value) for the adsorption (Ads) and desorption 
(Des) branches for different regular network sizes. Zmax=4, PEP=0.75, L=21 nm, PSD=(20 ± 4) nm. Number of 
simulations=100. 
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Fig. Ap. D 3. Relative error (standard deviation divided by average value) for the adsorption and desorption branches 
along the isotherm for a network of 100x100 nodes. Zmax=4, PEP=0.75, L=21 nm, PSD=(20 ± 4) nm. Number of 
simulations=100. 
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Fig. Ap. D 4. Relative error (standard deviation divided by average value) for the adsorption and desorption branches 
along the Kelvin-Cohan equation for a network of 100x100 nodes. Zmax=4, PEP=0.75, L=21 nm, PSD=(20 ± 4) nm. 
Number of simulations=100. 
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