Prof Dr Olivier Haeberle 
  
Kalman Filter Kf 
  
  
  
  
  
GRUs Gated Recurrent Units. H∞ H-innity. HWFET Highway Fuel

Keywords: Adam Adaptive Moment Estimation, AEKF Adaptive Extended Kalman Filter, AI Articial Intelligent, Artemis Assessment and Reliability of Transport Emission Models and Inventory Systems, BiLSTM Bidirectional LSTM BPNN Back-Propagation Neural Network, CADC Common Artemis Driving Cycles, CC Coulomb Counting estimation, CO Carbon monoxide EECM Electrical Equivalent Circuit Models, EIS Electrochemical Impedance Spectroscopy, EKF Extended Kalman Filter, EVs Electric Vehicles, FL Fuzzy Logic, FTP Federal Test Procedure, GPU graphics processing unit

First and foremost I would like to

3.3

Impedance spectra of a Li-ion cell (a) at dierent SOC at 25 • C [START_REF] Waag | Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its inuence on the application[END_REF], (b) at approximate 50% SOC and dierent temperature, the point in (b) shows the 1Hz frequency [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4

Equivalent circuit nRC battery model . . . . . . . . . . . . . . . . . . . . .

3.5

Block diagram of Fuzzy Logic System . . . . . . . . . . . . . . . . . . . . .

3.6

Block diagram of Neural Network System . . . . . . . . . . . . . . . . . . .

4.1

The structure of a Recurrent Neural Network for n inputs. . . . . . . . . .

4.2

Long Short-Term Memory block. x t is the input, h t is the output of the LSTM unit at time t, and h t-1 is the output of previous LSTM block. . . .

4.3

Structure of unfolded BiLSTM network. x t and ŷt represent the input and output variables at time t, respectively. σ is the activation function for combining the output of forward layer and backward layer. . . . . . . . . .

4.4

BiLSTM architecture for SOC estimation with two hidden layers. The rst hidden layer is a BiLSTM layer with n units and the second one is a one directional LSTM with m unit. x t = {V t , I t , T t } and ŷt = ŜOC t represent the input and output variables at time t, respectively. . . . . . . . . . . . .

4.5

The proposed structure of the LSTM model for the SOC estimation. . . . .

4.6

The owchart of RoLSTM algorithm for SOC estimation. . . . . . . . . . .

4.7

Gated Recurrent Unit block. σ is the gate activation function, tanh is the output activation function, and h t-1 is the output of hidden layer node at The battery system of Tesla-S. The right gure is a module of batteries which is contain 74P6S battery. The capacity of each module is 74 ×

3.2Ah = 23.7Ah and the voltage is 6 × 3.6V = 21.6V . The left gure is the Tesla-S powertrain system containing 6 modules wiring in series. . . . . .

6.7

3D view of powertrian system in Tesla-S. The drive units is located between the rear wheel [5,6] 

6.13

Implementation steps of BiLSTM algorithms for SOC estimation in the EV 6. [START_REF] Zhang | State of the art of lithium-ion battery soc estimation for electrical vehicles[END_REF] The speed prole of case 1. In this Case the maximum speed is 120km/h. . 6. [START_REF] Lashway | Adaptive battery management and parameter estimation through physics-based modeling and experimental verication[END_REF] The speed prole with 100km/h maximum speed for case 2. . . . . . . . . 6. [START_REF] Xing | State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[END_REF] The speed prole of case 3. In this Case the maximum speed is 120km/h, 

motivation

For over 100 years, automobiles have been used for transportation of humans, and in this way, reformed traveling around the world. Exploring of rural areas and going on a road trip across the country were made possible using wheels. However, the engine vehicles cause many environmental damages as well [START_REF] Zheng | Inuence of dierent open circuit voltage tests on state of charge online estimation for lithium-ion batteries[END_REF]. According to the World Health Organization (WHO), in 2000, fuel vehicles produce 34% of nitrogen dioxide discharged into the environment. They, additionally, are responsible for 51% of the carbon monoxide, 10% of the particulate, and 33% of the carbon dioxide, in the United States only [START_REF]2005 : particulate matter, ozone, nitrogen dioxide and sulfur dioxide[END_REF].

Reacting with humidity in the air, nitrogen dioxide makes nitric acid, which causes severe corrosion. It also leads to thick fog and drastically reduces eld of view. This molecule has a greenhouse eect and a critical negative footprint on plant growth. Carbon monoxide (CO) is a harmful gas that provokes migraines, dizziness, and respiratory disease. High enough CO levels may induce unconsciousness or death. Lastly, carbon dioxide is a major contributor to worldwide temperature rise. As a result, nowadays, using Electric Vehicles (EVs) as an alternative to diesel-and petrol-powered cars is highly regarded.

Subsequently, a high-tech battery is a crucial element for EVs.

Various types of batteries such as nickel-cadmium, lithium, and acid, are used as the dominant power source in EVs [START_REF] Farzin | A Practical Scheme to Involve Degradation Cost of Lithium-Ion Batteries in Vehicle-to-Grid Applications[END_REF]. Among them, Lithium-ion (Li-ion) batteries are the most popular due to their specic characteristics, e.g., high energy density, self-discharge, charging speed, low maintenance, and long-life cycle. The correct charging of Li-ion batteries improves their performance and extends their lifespan and it is only possible by using the Battery Management System (BMS), which controls the discharging [START_REF] Rahimi-Eichi | Battery management system: An overview of its application in the smart grid and electric vehicles[END_REF]. To provide an accurate measurement of the residual driving range of the vehicle, as well as the correct battery balance, a trustworthy status estimate is necessary. State Of Charge (SOC) is the remaining battery load and denes the ratio of the battery's remaining capacity to its nominal battery capacity [START_REF] Cheng | Batterymanagement system (BMS) and SOC development for electrical vehicles[END_REF]. The battery might be exposed to very dynamic load demands due to the unexpected driving behavior and frequent acceleration and deceleration of a car. Because of these charging demands, SOC estimation is a dicult task. SOC is not a visible factor, thus its precise estimate is crucial to dependable and 1.2. SOC estimation as a central measure safe vehicle operation [START_REF] Xiong | Critical review on the battery state of charge estimation methods for electric vehicles[END_REF].

SOC estimation as a central measure

To date, various methods have been developed and introduced to SOC estimation, which are separated into two main categories of direct and indirect methods [START_REF] Rivera-Barrera | SoC Estimation for Lithium-ion Batteries: Review and Future Challenges[END_REF][START_REF] Zhang | State of the art of lithium-ion battery soc estimation for electrical vehicles[END_REF]. In the case of direct techniques, the battery's physical characteristics such as current, voltage and battery temperature are utilized to evaluate SOC. A popular direct method is Coulomb

Counting estimation (CC) described in detail by Lashway et al. [START_REF] Lashway | Adaptive battery management and parameter estimation through physics-based modeling and experimental verication[END_REF]. Many published studies also contributed in the development of the Open Circuit Voltage (OCV) method for the SOC estimation (e.g., [START_REF] Zheng | Inuence of dierent open circuit voltage tests on state of charge online estimation for lithium-ion batteries[END_REF][START_REF] Xing | State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[END_REF]). Electrochemical Impedance Spectroscopy (EIS) is another direct method to evaluate SOC [START_REF] Westerho | Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries[END_REF]. Indirect methods, on the other hand, do not use a specic equation, rather they employ a model for the battery or mapping of system specication. One of the model-based methods is Electrical Circuit Model (ECM) [START_REF] Wang | Correlation between the model accuracy and model-based SOC estimation[END_REF]. Another type of indirect methods are the adaptive-lter based algorithms such as Kalman Filter (KF, EKF, UKF, and AEKF) [START_REF] Andre | Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[END_REF][START_REF] Claude | Experimental validation for Li-ion battery modeling using Extended Kalman Filters[END_REF][START_REF] Yu | Stateof-charge estimation for lithium-ion battery using improved dukf based on stateparameter separation[END_REF], Recursive Least Square (RLS), and the H-innity (H∞) algorithm [START_REF] Zhang | State of the art of lithium-ion battery soc estimation for electrical vehicles[END_REF][START_REF] Charkhgard | Design of adaptive H ∞ lter for implementing on state-of-charge estimation based on battery state-of-chargevarying modelling[END_REF][START_REF] Yu | Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Innity and Unscented Kalman Filters[END_REF].All these approaches, generally need complex models to accurately identify the non-linear behavior of a battery and involve numerous dierential equations that may be complicated. They also frequently need several parameters for a satisfying SOC estimate in dierent environments. As a result, in recent years, Articial Intelligent (AI) and data-driven approaches as a category of indirect methods have been utilized for SOC estimation, including Fuzzy Logic (FL) [START_REF] Song | State-ofcharge (SOC) estimation using T-S fuzzy neural network for lithium iron phosphate battery[END_REF][START_REF] Sheng | Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine[END_REF][START_REF] Sepasi | Extended kalman lter with a fuzzy method for accurate battery pack state of charge estimation[END_REF], Neural Networks (NNs) [START_REF] Xia | State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network[END_REF][START_REF] Dang | Open-Circuit Voltage-Based State of Charge Estimation of Lithium-ion Battery Using Dual Neural Network Fusion Battery Model[END_REF][START_REF] He | State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman lter-based error cancellation[END_REF][START_REF] Mahammad | Neural network approach for estimating state of charge of lithiumion battery using backtracking search algorithm[END_REF][START_REF] Jiménez-Bermejo | Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles[END_REF], and Support Vector Machine (SVM) [START_REF] Carlos Álvarez Antón | Support vector machines used to estimate the battery state of charge[END_REF][START_REF] Li | A novel state of charge approach of lithium ion battery using least squares support vector machine[END_REF]. Nevertheless, these techniques also have weaknesses, as the variety of and complexity of Li-ion batteries restricts their estimation ecacy. For instance, training is based on manually created characteristics that requires a lot of human work and skill.

In addition, their architectures do not have adequate analytical skills to handle highdimensional measurement data that are used. Deep learning algorithms, as a crucial area of AI, oer an excellent approach to these issues.

Deep learning (also known as deep structured learning or dynastic learning) is a class of Machine Learning (ML) for extracting a higher level of features, and is based on workspecic algorithms. techniques that use data to determine battery SOC have emerged during the past three years [START_REF] Abbas | Performance comparison of narx amp; rnn-lstm neural networks for lifepo4 battery state of charge estimation[END_REF][START_REF] Javid | Adaptive online state of charge estimation of evs lithium-ion batteries with deep recurrent neural networks[END_REF]. Chemali et al. [START_REF] Chemali | Stateof-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[END_REF] developed a Multi Layer Perceptron (MLP) network using battery data at dierent temperatures and generate the rst deep learning SOC estimator. In [START_REF] Chemali | Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries[END_REF] they utilized Long-Short Term Memory (LSTM), since it improves temporal information in time series capture, and found more accuracy in their calculated SOC. The low-complexity estimating model that relies on Gated Recurrent Units (GRUs)

proposed in [START_REF] Zhao | A compact methodology via a recurrent neural network for accurate equivalent circuit type modeling of lithium-ion batteries[END_REF][START_REF] Javid | Adaptive online gated recurrent unit for lithium-ion battery soc estimation[END_REF]. Since deep learning-based state estimation for batteries is still quite new, the accuracy and model structure of these estimators still need to be improved.

Objectives and Thesis Structure

The ability to estimate the SOC of Li-ion batteries in real time, which is one of the most essential performance features of a battery, becomes more important with the increasing usage of battery-driven electric vehicles. This research study is focused on the implementation of SOC estimation by means of deep learning methods with the goal of reducing computing complexity while simultaneously increasing accuracy. As such, three new structure for SOC evaluation of one cell of Li-ion are investigated. Following that, the BiLSTM method is presented as the best algorithm for the SOC estimate in a battery-pack that includes both series and parallel wiring of batteries.

In Chapter 2, a short history of EVs and rechargeable batteries is provided. In addition, the specic of the enhanced lithium-based batteries, the existing methods for modeling them, and important denitions related to the Battery Management System are addressed.

Chapter 3 proposes a review on SOC estimation techniques. This chapter discusses the benets and drawbacks of the methods that have been used before.

Details of three proposed SOC estimation methods, typically BiLSTM, Robust Long-Short Term Memory (RoLSTM) and GRUs, are explained in chapter 4. First estimator is based on BiLSTM algorithm, which is a novel technique for estimating SOC sequences through the bidirectional and sequential Li-ion input data. The improved estimate accuracy of this design will be achieved through learned bidirectional relationships. In RoLSTM method as the second estimator, instead of one LSTM network, three of them are used in parallel for each input, and consequently, the number of LSTM units will be reduced. Also, to optimize the LSTM network, a robust and adaptive online optimization method is used. This optimization is an improvement of Adam method which is called Robust Adam (RoAdam) [START_REF] Yang | Robust and adaptive online time series prediction with long short-term memory[END_REF]. RoAdam can be adaptively tuned against a doubtful outlier.

The weights and biases could be adapted online with a strategy of adaptive optimization to have a high-performance network. The last estimator presented here is based on Gated Recurrent Units (GRUs) approaches. These networks are an improved version of standard RNNs introduced to overcome the vanishing gradient problem. GRUs are using two gate unites to decide between benecial and not functioning data.

Chapter 5 shows the results of these three methods implemented for one cell Li-ion battery. Moreover, this chapter discusses the eects of the number of layers and units of DRNN on the accuracy of the SOC estimation. The Panasonic 18650PF Last, a concluding remark is given in chapter 7, along with possible future directions of this project.
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Introduction

This Chapter provides a brief overview of the history of EVs and rechargeable batteries. There is also a discussion on the details of the lithium-based battery, a review of the battery modeling method, and key terminologies linked to the battery management system.

Development of Electric Vehicles

The electric vehicle's history started in the middle of the nineteenth century. However, compared to the combustion-engine cars that eventually reached the market, these vehicles were more costly, slower, and had a shorter range, which led to a drop in their use globally.

Since the early 20th century, interest in electric automobiles and alternative fuels has been stoked by worries about the escalating problems with hydrocarbon pollutants and vehicle fuels, such as environmental impact and hydrocarbon ow stability.

In other. The copper cathode performs the reduction process, whereas the zinc anode does the oxidation. Furthermore, to complete the circuit, a salt bridge, which is constructed from a layer of cloth that has been wetted with brine, is placed between the cathode and the anode. In addition, an external circuit is utilized to direct the ow of electrons through the system. The areas where reduction and oxidation occur are called half-cells [START_REF] Volta | Late Eighteenth Century European Scientists[END_REF]. There were two major issues with this battery: First and foremost, the high number of disks causes brine to be drawn out of the fabric, resulting in a reduction in current output. The second issue with the Volta cell was that it had a limited lifetime owing to the fast corrosion of metal in the presence of saltwater, which caused it to malfunction [START_REF] Christopher | Energy on demand: A brief history of the development of the battery[END_REF].

To prevent hydrogen from collecting on a copper cathode, John Frederic Daniell invented a secondary electrolyte that interacted chemically with the hydrogen. He published his ndings in 1836. Daniel's dual electrolyte battery, commonly known as Daniel's cell, is a kind of rechargeable battery [START_REF] Whittingham | History, evolution, and future status of energy storage[END_REF].

Gaston Planté, in 1859, created the rst rechargeable lead-acid battery by immersing two sheets of lead in a sulfuric acid solution. When the lead anode reacts with the acid, electrons are liberated, while the lead cathode absorbs the electrons, resulting in the production of a current. By reversing the current ow, it is possible to recharge the battery [START_REF] Kurzweil | Gaston Planté and his invention of the lead-acid battery-The genesis of the rst practical rechargeable battery[END_REF].

As early as 1881, Camille Alphonse Faure made signicant improvements to the Planté's design performance by creating a new sheet that contained lead oxide batter squeezed into a lead grid lattice [START_REF] David | Energy Storage with Lead-Acid Batteries[END_REF]. Until the late 1800s, the electrolyte in batteries was liquid. This made transporting batteries extremely risky, and as a result, most batteries

were not designed to be transported after being attached to a circuit. Inventor Georges Leclanche created a battery in 1866 that included three components: a manganese dioxide cathode, a zinc anode, and an ammonium chloride solution electrolyte. Despite the fact that the electrolyte in the Leclanche cell was liquid, the chemical composition of the battery was an important step in the development of the dry battery. Further down the road in 1887, Carl Gessner discovered how to make an electrolyte by gluing together ammonium chloride and Paris plaster. By the late 1950s, these new dry batteries had become very popular [START_REF] Christopher | Energy on demand: A brief history of the development of the battery[END_REF]. These novel dry batteries were also referred to as carbon batteries since carbon serves an important role as an electrical conductor in them, despite the fact that it is not employed in chemical processes.

Waldemar Jungner was the developer of the nickel-cadmium (NiCd) battery, which was rst used in the early 1900s. The negative electrode (anode) of this battery is made of cadmium (Cd), and the positive electrode (cathode) is built of nickel (Ni) (cathode).

In 1901, iron was replaced by cadmium in a nickel-cadmium battery by Thomas Edison, and it was renamed Ni-Fe (NiFe) [START_REF] Kurzweil | Overview of batteries for future automobiles[END_REF]. Low specic energy and rapid self-ignition are among the disadvantages of nickel-iron batteries. They also have poor performance at low temperatures.

In the 1950s, Lewis Urry, Paul Marshall, and Karl Kordesch of Union Carbide replaced the ammonium chloride electrolyte with an alkali material known as alkaline. Since the 1960s, alkaline batteries have been increasingly popular, particularly as a replacement for carbon-zinc batteries. Alkaline solar batteries have a longer service life and are capable of storing far more energy than carbon batteries [START_REF] Viswanathan | Batteries. In Energy Sources[END_REF]. Comsat invented the nickel-hydrogen battery in the 1970 for use in communications satellites, which was later adopted by other companies. Nickel-hydrogen batteries can store hydrogen gas in pressured gas molds, which are a type of pressure vessel. A large number of spacecraft and space stations are powered by nickel-hydrogen batteries. In the late 1980s, nickel-metal hydride (NiMH) batteries were created by researchers at many businesses and brought onto the market.

NiMH batteries were smaller in size and less expensive than nickel-hydrogen batteries at the time of their introduction [START_REF] Bernard | Nickel-Cadmium and Nickel-Metal Hydride Battery Energy Storage[END_REF].

Sony was the rst company to commercialize the manufacturing of lithium-ion batteries in 1991. There are three components to this battery: a carbon anode, a lithium cobalt oxide cathode, and a non-liquid electrolyte. It was not until the late 1990s that a soft, exible container for lithium-ion batteries was developed, resulting in the development of lithium-polymer batteries [START_REF] Schipper | A brief review: Past, present and future of lithium ion batteries[END_REF]. In comparison to other rechargeable batteries,

Li-ion batteries have a high energy eciency and power density, making them an excellent choice for portable devices. Because of these desires, they may be built to be lighter and smaller. Furthermore, Li-ion batteries have a wide temperature range of operation, quick charge capabilities, a reasonably long cycle life, a low self-discharge rate, and high energy, voltage, and power eciency, among other advantages [START_REF] Placke | Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density[END_REF].

Lithium-ion Battery

Each battery is made up of three basic components: a positive electrode, a negative electrode, and an electrolyte (or electrolyte solution). In Li-ion batteries, the positive electrode, also known as the cathode, is formed of a lithium-metal-oxide compound, while the negative electrode, also known as the anode, is built of carbon, with a separating layer between them. The electrolyte in lithium batteries is likewise produced from lithium salt in an organic solvent, as is the electrolyte in lead batteries. Given the ammability of organic solvents in their capacity as electrolytes, additional precautions must be taken while using them as electrolytes. The engineering of the electrolyte structure is made more dicult by safety precautions and other steps used to improve the performance of lithium batteries. A number of dierent materials make up the electrolyte in these batteries, each of which serves a specic purpose. In the event that any electrolyte component performs below expectations, this will result in the battery's overall performance being compromised [START_REF] Wakihara | Recent developments in lithium ion batteries[END_REF]. A view of a lithium battery cell is shown in gure 2.4.

Figure 2.4: The hierarchical structure of lithium ion batteries [START_REF] Liu | Understanding electrochemical potentials of cathode materials in rechargeable batteries[END_REF] 2.4. Lithium-ion Battery

The reaction mechanism in Li-ion batteries includes the movement of Li + between cathode and anode materials. During battery discharge, the electrolyte allows Li + transfers from the anode to the cathode. And simultaneously, for every Li + in the transfer, one electron will be released. The chemical reaction for the cathode and the anode can be provided by equations (2.1) and (2.2), respectively [59].

LiM O 2 ⇋ Li 1-x M O 2 + xLi + + xe - (2.1) xLi + + xe -+ 6C ⇋ Li x C 6 (2.2)
In addition to the aforementioned characteristics, lithium batteries are equipped with electronic protection circuits and fuses to guard against polarization, overvoltage, overheating, and other potential safety hazards.

Dierent types of Li-ion batteries that function dierently are made by using dierent materials for the cathode electrolyte. In gure 2.5, the major Li-ion properties for six types of Li-ion batteries are compared. Moreover, table 2.1 describes the performance of several Li-ion battery types [START_REF] Hannan | A review of lithiumion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[END_REF][START_REF] Miao | Current li-ion battery technologies in electric vehicles and opportunities for advancements[END_REF][START_REF] Kim | A comprehensive review of li-ion battery materials and their recycling techniques[END_REF][START_REF] Zhao | Quantitative evaluation of lifepo 4 battery cycle life improvement using ultracapacitors[END_REF]. 

Battery Modeling

Li-ion battery models can be classied into three major categories as mathematical, electrochemical and electrical equivalent circuit models [START_REF] Sun | Overview of the types of battery models[END_REF][START_REF] Tomasov | Overview of battery models for sustainable power and transport applications[END_REF][START_REF] Shen | A review on battery management system from the modeling eorts to its multiapplication and integration[END_REF].

Mathematical Models

Analytical models and stochastic models are both types of mathematical models. In the analytical model, the battery properties are represented by a few equations and dierent physical concepts. Stochastic battery models, like Markov chain processes, are able to model the entire battery system all at once. The purpose of stochastic models is to explain batteries theoretically, with less time wasted in comparison to electrochemical models, and to obtain better accuracy than other methods [START_REF] Tao | A review of stochastic battery models and health management[END_REF].

Electrochemical Models

Electrochemical kinetics and the charge transfer process can both be used to explain the reactions that take place inside the battery. The electrochemical models based on physical principles were developed specically for this purpose [START_REF] Meng | Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles[END_REF][START_REF] Forman | Reduction of an electrochemistry-based li-ion battery model via quasi-linearization and padé approximation[END_REF]. To explain the cell's potential and diusion gradients, a set of coupled partial dierential equations (PDEs) are used. Solid concentrations at positive and negative electrodes and in the electrolyte are achieved by Fick's law of diusion as Equation(2.3): [START_REF] Lin | Simplication and ecient simulation of electrochemical model for li-ion battery in evs[END_REF] ∂C

s ∂t = D s r 2 ∂ ∂r (r 2 ∂C s ∂r ), f or r ∈ (0, R s ) (2.3) 
Where D s is the solid phase diusion coecient in the electrolyte. The initial conditions and Neumann boundary conditions are dened as (2.4):

C s,0 = C, f or C > 0 at t = 0 r ∈ (0, R s ) ∂C s ∂r r=0 = 0, ∂C s ∂r r=Rs = - j Li R s 3ε s F (2.4)
In (2.4) F is Faraday's number, R s and j Li denote the radius of the particle and the local volumetric transfer current density, respectively. Also, the potential distribution in the solid phase and electrolyte phase is calculated by Ohm's law as (2.5): 

∂ ∂x (σ ef f ∂ ∂x ϕ s ) -j Li = 0,            -σ ef f ∂ϕs ∂x x=0 = σ ef f ∂ϕs ∂x x=L = I(t) A ∂ϕs ∂x x=δn = ∂ϕs ∂x x=δn+δsep = 0 ∂ ∂x (k ef f ∂ ∂x ϕ e ) + ∂ ∂x (k d ef f ∂ ∂x ln C e ) + j Li = 0, ∂ϕ e ∂x x=0 = ∂ϕ e ∂x x=L = 0
  Vb Vc   =   -1 C b (Re+Rc) 1 C b (Re+Rc) 1 Cc(Re+Rc) -1 Cc(Re+Rc)     V b V c   +   -Rc C b (Re+Rc) Rc Cc(Re+Rc)   I L V L = Rc (Re+Rc) Re (Re+Rc)   V b V c   + -R c ReRc (Re+Rc) I L (2.6)
Where R t , R C , R e are the terminal resistor, the capacitor resistor and the end resistance, respectively.

Thevenin Model

Thevenin theorem is a method for converting a complex circuit model to a simple equivalent circuit composed of a resistor which is placed in series with a source voltage. Figure 

       Vp = -Vp RpCp + I L Cp V L = V oc -V p -I L R o (2.7)

PNGV Model

The PNGV model is proposed by The US PNGV under the Freedom CAR hybrid electric vehicles eect. This model can be generated by adding a capacitor C o to the Thevenin model. Co indicates the changes in V oc generated by the timely integration of load current

(I L ).
The PNGV model is represented as (2.8), where V Co and V Cp are the voltage across 

  V Co V Cp   =   0 0 0 -1 RpCp)     V Co V Cp   +   1 Co 1 Cp   I L V L = 1 1   V Co V Cp   + R o I L + V oc (2.8)

Battery Management System

In contrast to public batteries, electric vehicle batteries need special attention in terms of safety since they produce a great deal of heat throughout the charge and discharge cycle, as well as when they are subjected to high power consumption. Many variables contribute to cell death include heat control, cellular equilibrium, and the proper chemical selection amongst others.

Generally, a Battery Management System (BMS) is an electronic system that manages a cell or pack of rechargeable batteries by monitoring the battery, reporting the data and balancing it, charging and discharging control, and protecting the battery from being operated outside of the Safe Operating Area (SOA). The SOA of batteries is limited by the amount of current, voltage, and temperature applied to them [START_REF] Andrea | Battery Management Systems for Large Lithium-ion Battery Packs[END_REF]. The main operating specications of the BMS are shown in gure 2.9. Each of its functions is explained in detail below, individually: 

Battery monitoring

In EVs, a chain of Li-ion battery cells in a pack is utilized. In order to safeguard the battery pack from over/under voltage, over/under current, and charging/discharging outside of a specied temperature range, the BMS can monitor the battery's total voltage, total current, and total temperature during operation of the battery.. Furthermore, because each single cell can exhibit a wide range of behavior over time, battery cell monitoring, such as voltage and temperature for each cell in the battery pack, is one of the most challenging aspects of battery management systems [START_REF] Hannan | State-ofthe-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations[END_REF].

Cell Balancing and Equalization

An imbalance in the charge levels of the cells is easily detected in the battery and shown via estimates of the SOC. The balancing procedure is done by passing extra charge to an undercharged cell or the other module/pack, or by moving needed charge to an over-charged cell from nearby modules/packs. A battery equalization control may prolong the lifespan of the battery pack, reducing the likelihood of its batteries being damaged.

Yet, because of the enormous battery size and expense, it is hard to do things like the monitoring and administration of each battery. For this reason, it is essential to have an improved BMS to implement eective cell monitoring and charge equalization with a basic design and control [START_REF] Hoque | Voltage equalization control algorithm for monitoring and balancing of series connected lithium-ion battery[END_REF].

Thermal Management

Based on the temperature range of the battery cells, the BMS determines whether to turn on heating or cooling to keep the battery pack above or below the minimum and maximum working temperatures, respectively [START_REF] Liu | Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[END_REF].

Charge and Discharge Control

The BMS regulates the current rate of the charger utilized in the battery charge procedure to maintain the battery in SOA throughout the charge and discharge of the battery [START_REF] Vezzini | 15 -lithium-ion battery management[END_REF].

Modelling and State Estimation

Battery state estimation, such as State Of Charge (SOC), State Of Health (SOH) and State of Function (SOF) can be computed by using the measured data. Calculating the accuracy of SOH estimates is done via fault diagnostic data and the service life forecast.

The fault states, SOH, and SOC are all important factors that inuence SOF. The eects of aging factor, temperature variations, SOC range, and fault conditions are considered in SOF.

Fault Diagnosis and Health management

Fault diagnosis is one of the most important tasks of the BMS, as it allows it to take the necessary steps to minimize disruption to the battery pack's functioning while also protecting the battery. Factors contributing to battery pack failures include overcharging, undercharging, internal short circuit, overheating, and etc. [START_REF] Lu | A review on the key issues for lithium-ion battery management in electric vehicles[END_REF].

Renewable Energy For Charging the EVs Battery

Among the main renewable energy technologies being pushed by governments today are solar PhotoVoltaic (PV) panels, which generate electricity from sunlight. The fact that solar energy is provided by nature means that it is free and plentiful, and that it can be made accessible nearly wherever there is sunshine is another advantage. Solar PV panels have a very great future, both in terms of economic viability and in terms of environmental sustainability. Photovoltaic panels generate clean energy and electricity in a direct power production manner, and they are completely quiet in their operation. As a result, they are an excellent choice for metropolitan locations as well as residential applications. PV panels may be a cost-eective option for charging the battery in EVs [START_REF] Kumar Das | Forecasting of photovoltaic power generation and model optimization: A review[END_REF][START_REF] Javid | Maximum power point tracking of photovoltaic power system with adaptive fuzzy terminal sliding mode controller[END_REF].

Discussion

This chapter reviewed briey the history of EVs generations one of the best replacement options for conventional engine cars. The Li-ion battery has several benets over other rechargeable batteries that may be attributed to the way that these types of batteries are often used as the primary storage device for electric vehicles. The chemical mechanism and theoretical modeling of Li-ion batteries were discussed. Additionally, the battery management and monitoring system's functionality is described in detail to enhance the current Li-ion battery performance in EVs applications. The ability to control charge and discharge, as well as protection, state estimation, energy storage, and measurement are features of BMS that are used to help improve Li-ion battery performance inEVs applications. 

STATE OF CHARGE ESTIMATION: REVIEW METHODS

Introduction

One of the signicant issues of BMS is the SOC estimation of battery. The SOC of battery is dened as the rate of the available capacity (Q t ) to its maximum capacity when a battery is completely charged (Q nom ) [START_REF] Sundén | Thermal management of batteries[END_REF].

SOC(t) = Q t Q nom * 100% (3.1)
SOC = 100% and SOC = 0% indicate the battery is fully charge and fully discharge, respectively. To date, various methods have been developed and introduced to SOC estimation. This chapter discusses the existing methods of state of charge estimation for Li-ion batteries.

State Of Charge estimation Methods

The accurate and reliable SOC estimation can provide a necessary evaluation factor for energy management and the control system's optimal design in EVs. Consequently, several methods have been suggested for SOC estimation. Figure 3.1 summarizes SOC estimation methods that are separated into two main categories: direct methods and indirect methods [START_REF] Rivera-Barrera | SoC Estimation for Lithium-ion Batteries: Review and Future Challenges[END_REF][START_REF] Zhang | State of the art of lithium-ion battery soc estimation for electrical vehicles[END_REF][START_REF] Waag | Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[END_REF][START_REF] Hannan | A review of lithiumion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[END_REF]. Some of the essential SOC estimation methods are described below.

Direct Methods

When considering direct methods, an equation or a relationship is used to estimate SOC, which is determined by the battery's physical properties like current, voltage, and battery temperature.

Coulomb Counting estimation (CC)

The Coulomb Counting estimation method or Ampere-hour balancing method is the simplest method for SOC estimation. Due to the fact that this technique is dependent on the integration of battery current with respect to time as the battery charges or discharges, it is critical to understand the initial values of SOC

The equation of the CC method is presented in Eq. (3.2):

SOC(t) = (SOC(t 0 ) + 1 C n t 0 +t t 0 ηI b (dt)) * 100% (3.2)
Where SOC(t 0 ) is the initial values of the SOC and I b is the battery current. Also, η and C n represent the discharged eciently and the nominal capacity of battery, respectively. Although this method is very simple to implement, it has some drawbacks, including :

The initial value of SOC can not be estimated with CC method.

This method is an open-loop estimator, then the errors could be increased by uncertainties or disturbance.

The accuracy of estimation is reduced by aging the battery and destruction of the battery static capacity.

[12, 84, 85].

Open Circuit Voltage (OCV)

The Open Circuit Voltage is the battery voltage under the equilibrium condition. OCV based estimation uses a relationship like (3.3) between SOC and OCV. Each type of battery has a specic relationship between its OCV and its SOC. In other words, this relationship is dependent on both the material and the capacity of the battery. Therefore, it is dened as a nonlinear function, similar to the (3.3) in Li-ion batteries [START_REF] Zheng | Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles[END_REF]. In addition, as can be seen in gure 3.2 the OCV-SOC curve is changed by the temperature and current discharge. Consequently, this function is dependent on temperature and battery aging [START_REF] Chemali | Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: State-of-the-art review and future trends[END_REF].

SOC = f -1 (OCV ) (3.3)
This method needs a long time resting to estimate SOC, and as a result, it can not be implemented in real time. Additionally, the OCV technique, like the CC method, is an open-loop estimator, and consequently, it is not accurate against uncertainty. 

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy is a helpful test technique for electrochemical systems. The Electrochemical Impedance Spectroscopy technique perturbs the system by applying a small AC voltage as a function of various frequencies, and the bat-tery impedance is measured across a wide range of frequencies [START_REF] Xu | A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model[END_REF][START_REF] Meddings | Application of electrochemical impedance spectroscopy to commercial li-ion cells: A review[END_REF]. The measured impedance is a complex number consisting of a real component (Z ′ ) and an imaginary part (Z "), which may be expressed as (3.4): 

Z = Z ′ + jZ ′′ ( 3 

Kalman Filter Based Methods

Since early 20 th century, several studies are suggested the Kalman Filter (KF) based methods for SOC estimation [START_REF] He | State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman lter based on an improved thevenin model[END_REF][START_REF] Xu | State of charge estimation for lithium-ion batteries based on adaptive dual kalman lter[END_REF][START_REF] Shrivastava | Overview of model-based online state-of-charge estimation using Kalman lter family for lithium-ion batteries[END_REF]. In the context of a linear dynamic system, Kalman ltering is an algorithm that generates optimal state estimates from a series of measurements involving error over time [START_REF] Chui | Kalman Filtering[END_REF]. The KF algorithm is represented by the Algorithm 1, in which,

A k ∈ R n×n , B k ∈ R n×m , C k ∈ R q×n and D k ∈ R q×m are constant matrices, with condition 1 ≤ m, q ≤ n. u k ∈ R m is a known deterministic input, w k and v k
are the n-dimensional unknown system noise vector and q-dimensional observation noise vector, respectively , which are associated the white noise process with known covariance.

Additionally, P k ∈ R n×n is dened as the error covariance matrix.

The KF estimator for SOC based on linear state space battery model are revealed in [START_REF] Chiasson | Estimating the state of charge of a battery[END_REF][START_REF] Luo | An adaptive kalman lter to estimate state-of-charge of lithium-ion batteries[END_REF][START_REF] Choudhury | Real time state of charge prediction using kalman lter[END_REF]. Since the Li-ion batteries have a nonlinear model, The EKF is widely used for SOC estimation [START_REF] He | State-of-charge estimation of the lithium-ion battery using an adaptive extended kalman lter based on an improved thevenin model[END_REF][START_REF] Gregory | Extended kalman ltering for battery management systems of lipb-based hev battery packs: Part 3. state and parameter estimation[END_REF][START_REF] Huang | Robustness evaluation of extended and unscented kalman lter for battery state of charge estimation[END_REF] .

The EKF operates on the principle of linearization of the nonlinear model, where at every time step of the state estimation, the dynamics of the nonlinear system are linearized from the estimated data using the partial derivatives and rst-order Taylor series expansion. The algorithm of EKF is shown in Algorithm 2, where, f(x k , u k ) and g(x k , u k ) are the nonlinear state transition functions and nonlinear measurement functions, respectively.

Algorithm 1 Kalman Filter algorithm Linear state-space system model:

x k+1 = A k x k + B k u k + w k y k = C k x k + D k u k + v k Covariances of the two noise model: Q w = E[w k w T k ] R v = E[v k v T k ]
Initialization:

x+ 0 = E[x 0 ] P + 0 = E[(x 0 -x+ 0 )(x 0 -x+ 0 ) T ]
Computation: for k=1,2,... do

x- k = A k-1 x+ k-1 + B k-1 u k-1 {State estimation time update} P - k = A k-1 P + k A T k-1 + Q w {Error covariance time update} ŷ = C k x- k + D k u k K k = P - k C T k [C k P - k C T k + R v ] T {Kalman gain matrix} x+ k = x- k + K k [y k -ŷk ] {State estimate measurement update} P + k = (I -K k C k )P - k {Error covariance measurement update} end for
Algorithm 2 Extended Kalman Filter algorithm Non Linear state-space system model:

x k+1 = f(x k , u k ) + w k y k = g(x k , u k ) + v k Co-variances of the two noise model: Q w = E[w k w T k ] R v = E[v k v T k ]
Denitions:

Âk = ∂f(x k ,u k ) ∂x k x k =x + k Ĉk = ∂g(x k ,u k ) ∂x k x k =x - k
Initialization:

x+ 0 = E[x 0 ] P + 0 = E[(x 0 -x+ 0 )(x 0 -x+ 0 ) T ]
Computation: for k=1, 2, ... do

x-

k = f(x + k-1 , u k-1
) {State estimation time update}

P - k = Âk-1 P + k ÂT k-1 + Q w {Error covariance time update} ŷ = g(x - k , u k ) K k = P - k ĈT k [ Ĉk P - k ĈT k + R v ] T {Kalman gain matrix} x+ k = x- k + K k [y k -ŷk ] {State estimate measurement update} P + k = (I -K k Ĉk )P - k {Error covariance measurement update} end for
In application of SOC estimation X k , y k and u k are dened as (3.6):

x k = (SOC k , u 1,k , u 2,k , ..., u n,k ) y k = OCV (Z k ) - n i=1 u i,k -R 0 I k + v k u k = I k (3.6)
The positive aspect of the KF-based method is the accurate state estimation versus external disturbances. Despite this, KF-based estimator requires a complicated computation to be applied to the state estimate of a nonlinear system [START_REF] Gregory | Extended kalman ltering for battery management systems of lipbbased hev battery packs: Part 1. background[END_REF].

Articial Intelligence Based Methods

Because of the Li-Ion batteries have a nonlinear and complex model, in recent years, the Articial Intelligent methods such as Fuzzy Logic, Neural Networks (NN) and Support

Vector Machines(SVMs) are considered for SOC estimation [START_REF] He | State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman lter-based error cancellation[END_REF][START_REF] Xia | State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network[END_REF][START_REF] Tong | Battery state of charge estimation using a load-classifying neural network[END_REF][START_REF] Sheng | Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine[END_REF][START_REF] Hu | State-of-charge estimation for battery management system using optimized support vector machine for regression[END_REF]. These methods are known as data-based estimators, and they operate similarly to a black-box model using known input data.

Fuzzy Logic Methods

Fuzzy Logic (FL) is a knowledge-based method introduced by L.A. Zadeh that is similar to the way humans reason [START_REF] Zadeh | Fuzzy sets[END_REF]. The FL approach simulates the human decisionmaking process by considering all possible intermediate states between the digital values of "yes" and "no". FL is an appropriate data-based algorithm for nonlinear and complex models.

FL system consists of a fuzzier, a fuzzy rule base, a fuzzy inference engine, and a defuzzier. The fuzzy rule bases includes a collection of If-then rules, such as following:

R (l) : IF {x 1 is F l 1 and... and x n is F l n } T HEN y is G l , l = 1, ..., M (3.7) 
That X = [x 1 , x 2 , ..., x n ] T ∈ U is the input and y ∈ V is the output of FL system. F l i and G l are fuzzy sets in U i and V . The mapping from input sets to output is performed with a inference engine. Moreover, the fuzzier maps a crisp point from X into fuzzy set in U and defuzzier maps fuzzy sets in y to a crisp point in V . are not capable of providing great accuracy. In order to get high accuracy using NNs algorithms, it is necessary to combine this technique with ltering algorithms such as KF.

According to [START_REF] He | State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman lter-based error cancellation[END_REF], the Max SOC estimate error by the NNs method was 2.5%, whereas this value dropped to 0.5% when the NNs was used in conjunction with the UKF algorithm.

Hybrid methods

In recent years, researchers are looking into hybrid algorithms as a means of improving the accuracy and eciency of estimation approaches. It was tried by the authors of [START_REF] Zheng | State of charge estimation for power lithium-ion battery using a fuzzy logic sliding mode observer[END_REF] to reduce the chattering of SOC estimations by employing a FL system in conjunction with a sliding mode controller. In [START_REF] He | Ekf-ah based state of charge online estimation for lithiumion power battery[END_REF], estimation of time-varying dynamic systems is accomplished by the use of a mixture of the EKF and CC techniques. According to [START_REF] Dai | ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries[END_REF][START_REF] Fotouhi | Electric vehicle battery model identication and state of charge estimation in real world driving cycles[END_REF], a hybrid intelligent algorithm composed of Fuzzy Logic and adaptive Neural Networks, which is known as ANFIS, is proposed.

Discussion

The various techniques of SOC estimation, as well as the diculties associated with them, are discussed in this chapter. In RNNs, each neuron or processing unit can manage its internal state or memory to maintain the previous input information. This feature is critical in many applications related to serial data. The main idea behind this type of architecture is the exploitation of this series structure. The name of this neural network is derived from the fact that these types of networks operate recursively. An operation is performed for each element of a sequence (word, sentence, etc.), and its output depends on the current input and previous operations [START_REF] Skansi | Introduction to Deep Learning[END_REF]. It means the output at time t is achieved by combining the output network at t -1 with the new network input at time t. With these cycles, information can be passed from one step to the next step. In other words, these types of networks have a loop within themselves, which they can pass information through the input of neurons.

The structure of RNNs is shown in gure 4.1, where the black square represents the time delay at each time step. 

Long-Short Term Memory Algorithm

LSTM, in fact, emerged in 1995 to improve RNNs in dealing with sequential data, and solving the problem of the disappeared gradient phenomenon [START_REF] Hochreiter | Long Short-Term Memory[END_REF]. Sepp Hochreiter et al. [START_REF] Hochreiter | Long Short-Term Memory[END_REF] explain that long-term memory in LSTM refers to acquired weights and shortterm memory represents internal cellular states. The major change in this network is replacing the hidden layer of the RNNs with a block called the LSTM block and its most incredible feature is the ability to learn long-term dependencies that are not possible using RNNs [START_REF] Gre | LSTM: A Search Space Odyssey[END_REF]. To predict the next step, one needs to update the weight values on the network, which requires maintaining the initial step's information. An RNN can only learn a limited number of short-term relationships, but long-time series such as 1000 steps are not considered by the RNNs, while LSTMs can properly learn these long-term dependencies.

All RNNs are in the form of repetitive sequences of neural network modules (units).

In standard RNNs, these repeatable modules have a simple structure: for example, they only contain a hyperbolic tangent (tanh) layer. But in LSTM, instead of only one layer, four layers communicate in a special structure.

In gure 4.2, x t is the input, h t is the output of the LSTM unit at time t, and h t-1

is the output of the previous LSTM block. x t is the input, h t is the output of the LSTM unit at time t, and h t-1 is the output of previous LSTM block.

𝜎

The initial phase in the LSTM is deciding what information should be discarded from the cell state. This decision is made by a sigmoid (σ) layer, shown in Equation (4.1), called the forget gate layer (f t ). The next step is deciding what new information has to be save in the cell state. This decision contains two parts. First, a sigmoid layer called the input gate (i t ) decides which values will be updated with Equation (4.2). The next step, represented in Equation (4.3), is a tanh layer that makes the vector of values called "memory cell" (C t ) that could be added to the state cell. By combining these two steps, the state cell (h t ) can be updated within the next step. Finally, it must be determined what information is to be transmitted to the output (O t ). This output will be based on the state cell, however, it will pass via a specied lter. The formula for LSTM are expressed below.

f t = σ(W f [h t-1 , x t ] + b f ) (4.1) i t = σ(W i [h t-1 , x t ] + b i ) (4.2) C t = f t * C t-1 + i t * tanh(W g [h t-1 , x t ] + b g ) (4.3) O t = σ(W o [h t-1 , x t ] + b o ) (4.4) h t = O t * tanh(C t ) (4.5)
Where the initial values of C t and h t are C 0 = 0 and h 

0 = 0. W f , W i , W g , W o

Bidirectional LSTM for SOC Estimation

Bidirectional LSTM (BiLSTM) networks include two hidden layers, which are coupled to one output and have opposite orientations. The rst hidden layer is in the forward direction of the input sequences from time t-1 to time T , and the second is in the opposite direction of the input sequences from time T to time t -1. 

• • • • • • • • • • • • • • 𝑦 𝑡-1 𝑦 𝑡 𝑦 𝑡+1 𝑦 𝑇

Activation Layer

LSTM Algorithm for SOC Estimation

In this inquiry, an LSTM structure is used for the SOC estimation of a one-cell Li-ion battery with voltage (V), current (I), and temperature (T) as input variables and the SOC of the battery as the output. The whole structure is depicted in gure 4.5 for implementation on multiple GPUs. Three LSTM networks are used for the inputs. In fact, each input variable contains two hidden layers with k and l LSTM units, respectively, which work in parallel on three GPUs. The concatenation of these layers is realized to regularize the output with a dense layer, which is a linear operation that relates every input to every output with the following equation:

ŜOC t = W h t + b (4.9)
where W and b are dened, respectively, as the weight matrices and biases of full connected layers. To implement this method and the mathematics operations, Tensorow framework is used.

The owchart of this program is shown in gure 4.6. 

Gated Recurrent Units for SOC estimation

In comparison with other RNNs, GRUs has a simple structure, and is robust against vanishing gradient. The structure of GRU block is depicted in gure 4.7. 

𝜎

z t = σ(W z x t + U z h t-1 + b z ) r t = σ(W r x t + U r h t-1 + b r ) ĥt = tanh(W x t + r t ⊙ U h t-1 + b) h t = (1 -z t ) ⊙ h t-1 + z t ⊙ ĥt
σ(x) = 1 1 + exp(-x) (4.11) tanh(x) = exp(x) -exp(-x) exp(x) + exp(-x) (4.
12)

The proposed Adaptive GRUs network in this work for SOC estimation, uses the voltage V t , current I t and the temperature T t of the battery as the input variables, and the SOC of the battery SOC t as the output of the network at time step t. The structure of the GRUs network for SOC estimation is shown in gure 4.8. This network contains two hidden layers with k and l units. Hence, in gure 4.8, h 1 t (k) represents the k th unit of the rst hidden layer, and h 2 t (l) is the l th unit of the second hidden layer at time t. For the regression output, a Dense layer is used.

Here are the steps for implementing the GRUs technique of estimating SOC:

1. Normalize the dataset after dividing it into training and validation datasets. The dataset consists of input and output variables.

2. Set the input layer parameters, hidden layers units, and output layer parameters.

3. Dene the activation functions, loss functions and optimization methods.

4. Congure the evaluation function and train the GRUs. The network parameters will be self-learned because GRUs is a self-learning approach.

Validate the GRUs network with the validation dataset for SOC estimation.

This method is implemented with Tensorow framework in Keras library. 

Optimization Algorithms

The deep learning algorithm's primary goal is to develop a model that achieves high performance and makes accurate predictions. The weights and biases of the network must be updated on a regular basis in order to keep the system losses as low as possible. while stopping condition is not achieved do

t = t + 1 g t = ∇L W (W t-1 ) m t = β 1 m t-1 + (1 -β 1 )g t v t = β 2 v t-1 + (1 -β 2 )g t 2 mt = mt 1-β 1 t vt = vt 1-β 2 t W t = W t-1 -mt α √ vt+ϵ end while return W t
In Algorithm 3, L is the loss function that is evaluated under Mean Square Error with (4.13):

L = n t=0 1 n (SOC t -ŜOC t ) 2 (4.13)
where n is the number of data points, SOC t and ŜOC t are measured and predicted capacity of battery at time step t, respectively.

Robust and Adaptive Online Optimization method

A Robust and Adaptive Online Optimization Algorithm (RoAdam) is proposed in [START_REF] Yang | Robust and adaptive online time series prediction with long short-term memory[END_REF] to train the system and adjust the network's weights and biases. RoAdam is depending on gradient and the squared gradient. The algorithm of RoAdam is described in (4.14). η = 0.0005 is the training step size, β 1 = 0.9 , β 2 = 0.999 and β 3 = 0.999 are exponential decay rates, W t is the weights vector of the model in time step t and ϵ = 10 -8 is a constant.

The initial values of the rst moment of the gradients, m t , and the second moment of the gradients, v t , are zero. r t is dened as a relative prediction error term of the loss function.

g t = ∇L W (W t-1 ) m t = β 1 m t-1 + (1 -β 1 )g t v t = β 2 v t-1 + (1 -β 2 )g t 2 mt = m t 1 -β 1 t vt = v t 1 -β 2 t r t = ∥L(W t-1 )/L(W t-2 )∥ d t = β 3 d t-1 + (1 -β 3 )(r t ) W t = W t-1 -mt η d t √ vt + ϵ (4.14)
L is the loss function that is calculated considering (4.15):

L = 1 n n t=0 |SOC t -ŜOC t | (4.15)
where n is the number of data point, SOC t and ŜOC t are respectively actual and predicted values of state of charge at time step t.

To guarantee the stability of the relative prediction error, a threshold is intended for r t . Then r t will be changed as (4.16).

r t =        min{max{k, ∥L(W t-1 )/L(W t-2 )∥}, K}, if∥L(W t-1 )∥ ≥ ∥L(W t-2 )∥ min{max{1/K, ∥L(W t-1 )/L(W t-2 )∥}, 1/k}, Otherwise (4.16)
Where, k=0.1 and K=10 are the lower and upper thresholds, respectively.

Data Preprocessing

Since deep learning methods are dened as data-base techniques, data is just as important as the model algorithm in terms of performance. In reality, when deep learning models are trained with relevant, accurate, and adequate data, they may perform exceptionally well.

As a result, data preparation is an extremely crucial step before constructing a model.

Normalization is essential due to the dierences in the ranges of voltage, current, and temperature, all of which are included in the input data for the SOC estimation. Data is normalized in the range[-1,1] using the following formulas for the input:

x = [((x raw -x min )/(x max -x min )) * (max -min)] + min (4.17)

In (4.17), the minimum and maximum values of input vector x raw are shown by x min and x max , respectively. In addition, max equals 1 and min is -1. To scale the testing dataset, the maximum and minimum values of training inputs must be used.

Moreover, the input datasets for the LSTM and GRUs should be three-dimensional (3D), as stated by the denition (Samples, Time steps, Features).

Samples indicate the number of sequences, Time steps symbolize the number of observations in each sample, and Features represent the number of features for each element in the samples. The input datasets must be normalized and converted to a 3D array for utilization as a network input during the preprocessing step. Another parameter that 4.8. Hyperparameters Tuning must be properly adjusted in time series data preprocessing is the sample frequency. The sampling rate of raw data is set to 1Hz in this case.

Hyperparameters Tuning

Hyperparameters are dened as parameters that control the training process. They are comprising two parts:

Model-specic hyperparameters: including network structure variables, like number of layers and number of units in each layer.

Optimization hyperparameters: the associated variables with the optimization and training process, such as learning rate and batch size.

In general, there is no clear method for determining the right number of layers and units inside them. A trial-and-error approach is usually employed to determine the ideal model structure in these cases. The deeper learning capacity is required for more complicated functions. In this case, we start with one hidden layer and 64 units in it. Training loss data from varying the number of layers and units are given in the following chapter.

Discussion

Since battery discharge is a time series and sequential process, RNNs are more suited to estimating SOC than other data-driven algorithms. This chapter was presented new DRNN-based algorithms for SOC estimation in Li-ion batteries. The structures of BiL-STM, LSTM, and GRUs estimators have been explained. More gates in the hidden units of these algorithms allow them to overcome the issue of the vanishing gradient in the simple DRNN. Moreover, The BiLSTM is able to manage long-term relationships from both the previous and the future directions. This feature allows it to learn more sequential data and improves estimate accuracy. The results provided in the next chapter depict the performances of these methods for one cell Li-ion.

Introduction

In this Chapter, the experimental results to evaluate the SOC of single cell Li-ion battery by the BiLSTM, the RoLSTM, and the GRUs algorithms are presented and examined in detail. All programs are developed in Python by using Tensorow and Keras libraries.

Three Nvidia Tesla 100 GPUs from the Strasbourg University Computing Centre are employed for the learning process. GPU is a great tool to speed up a deep neural network data pipeline. The large number of cores in GPU improve processing power. Also, In contrast to CPUs, which have limited memory bandwidth, GPUs are capable of moving much greater amounts of information over the same time frame (as much as 750GB/s compared to only 50GB/s for CPUs). One of the greatest advantages of GPUs is their potential for parallelism, and this capability means you can use them in a variety of ways, including combining them in clusters and distributing jobs throughout the cluster. As a consequence, the Strasbourg University Computing Center helps us in using more data for system training and dening bigger sequences in each batch to improve system accuracy.

For the BiLSTM estimator, the impact of the number of hidden layers and units is discussed in detail. Furthermore, all of these algorithms are implemented at changing temperatures, which is an essential aspect of them.

Battery Specication and Experimental Conditions

To apply our methods, the database related to the Panasonic 18650PF Li-ion battery is used. The Panasonic 18650PF Li-ion battery is employed in some Tesla EVs. This database was created by McMaster University in Ontario (Canada) [START_REF] Kollmeyer | Panasonic 18650pf li-ion battery data[END_REF]. The battery parameter specications are listed in Table 5. drive cycles is utilized. Since the sampling frequency was set to 1Hz, the length of each sequences was approximately among 4000 and 10,000 time-steps, resulting in a training dataset with more than 100,000 time-steps. It is not feasible to implement a network with a time-steps equal to this length sequence. Hence, the dataset is split to shorter sequences. In this work, the dierent time-steps between 500 to 10,000 were tested.

The results of SOC estimation by BiLSTM models are described in this section. As mentioned in the previous chapter, The input vector is identied as x t = {V (t), I(t), T (t)}, where V (t), I(t), T (t) are the voltage, current and temperature of the battery at time t, respectively. Furthermore, the proposed model structure is explained in Section 4.3, and the Adam optimization method is used for learning the system. To evaluate the eect of the number of hidden units (N n ), and number of hidden layers (L) on the estimated performance, BiLSTM was developed with dierent hidden layers and hidden units. The times-step is set to 10, 000, and the learning rate is chosen at 10 -4 . Additionally, to overcome the over-tting, Early stopping method is used. With Early stopping, the training process stops while the validation loss begins to increase after several iterations.

To achieve accurate estimation, each suggested network is learned 10 times. The MAE, MAX, and RMSE performances reported here is obtained from the average results of ten training. The network performance increases by creating a network with consecutive layers.

Therefore, a network with a large number of hidden units can be replaced with a multilayer network with fewer units per layer. According to the results in Table 5.3, it is apparent that the highest estimation performance is achieved by the two hidden layers model with 256 BiLSTM units in rst layer and 32 LSTM units in second layers. The RMSE and MAX error for the two hidden layers network is 0.75 and 1.8 at 25 • C, respectively, while these values are equal to 1.02 and 3.2 for the best network with one hidden layer under the same condition. Since one of the main challenges in estimating SOC is nding the exact initial value of SOC, the methods independent of the initial value are considered. To test the system with an incorrect initial value, h 0 is set to zero. 

Experimental result of SOC Estimation By RoL-STM Algorithm

In this section, the experimental results of SOC estimation obtained with the model explained in section 4.4. Also, the optimization algorithm used for training the system is Roadam, with an initial learning rate equal to 0.0005. The number of units and layers are chosen by trial and error. k = 128 and l = 8 are the number of units of the rst layer and the second layer for each input, respectively. RoAdam can be adaptively tuned against an outlier. The weights and biases could be tuned online with a strategy of adaptive optimization to have a high-performance network. The train and test datasets are chosen as in the previous section. Here, the time-step is 1000. If raw data is used for output data, RoAdam helps us to have smoother estimation by decreasing the eect of outliers. RoAdam is a useful optimization algorithm in real time data against unwanted noise and disturbance. However, in our results, in comparison with the Adam algorithm, the performance improvement was not signicant because there was no noticeable outlier in the used datasets. In RoLSTM, the M AE = 0.54 and the RM SE = 0.79 at 25 • C, whereas these values with the LSTM-Adam algorithm are 0.76 and 0.98, respectively.

The results obtained from the average SOC estimation after ten times of training are summarized in Table 5.4. 

GRU Algorithm used for SOC Estimation

Here, the SOC estimate is achieved using the Gated Recurrent Units algorithm, as explained in section 4.5. The number of hidden layers and units discovered through trial and error is equal to two layers with 512 and 32 units respectively. The Adam optimization algorithm with a learning rate= 10 -4 is utilized to adjust the weights and biases of the network. As described in section 5.3 all datasets are re-sampled at 1Hz sampling frequency. Also, the time-step is chosen as 1000. Temperature is shown in (c).

Discussion

In this chapter, the results of SOC estimation using three deep RNNs models in a single cell battery are investigated. In summary, a comparison of the results in this chapter with those of other studies is listed in Table 5.5. 

Methods

Error Temperature Li-ion Type AUKF with LSSVM [START_REF] Meng | Lithium polymer battery state-ofcharge estimation based on adaptive unscented kalman lter and support vector machine[END_REF] M AE < 2% 25

• C ∼ 42 • C 70Ah Kokam FNN [124] M AE < 4.04% 0 • C ∼ 40 • C
LG18650HG2 LSTM-RNN [START_REF] Chemali | Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries[END_REF] M AE < 1.6% 0

• C ∼ 25 • C Panasonic 18650PF FO-AEKF [125] M AE < 1.59% Li[NiCoAl]O2(NCA) BiLSTM M AE < 0.77% 0 • C ∼ 25 • C Panasonic 18650PF RoLSTM M AE < 1.03% 0 • C ∼ 25 • C Panasonic 18650PF GRU M AE < 1.2% 0 • C ∼ 25 • C Panasonic 18650PF
As can be seen from the comparison of the results, the BiLSTM network was demonstrated greater performance than the other algorithms. With this model, it is possible to analyze longer sequences from two directions (the past and the future) without the gradient vanishing happening. In this feature, one could get more accurate estimates of discharge period duration, due to the ability to choose the length of discharge period as long as a drive cycle's time. Moreover, BiLSTM estimator performed well when presented with an incorrect SOC initial value.

Introduction

The battery pack, which serves as the primary source of energy in EVs, is made up of many cells that are linked in series and parallel. Since knowing the status of charge of the pack is essential for the driver, investigating the SOC estimate of the battery-pack in EVs is of great interest. A large number of published studies describe the techniques of SOC estimation for a single cell. However, in [START_REF] Plett | Ecient battery pack state estimation using bar-delta ltering[END_REF], Plett introduced a "Bar-Delta" ltering method based on Kalman Filter to estimate the SOC in battery-pack. Mawonou et al.

improved the accuracy of the Bar-Delta estimator by "switched bar-delta" algorithm [START_REF] Senou | Li-ion battery pack soc estimation for electric vehicles[END_REF].

Additionally, in [START_REF] Xiong | Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles[END_REF][START_REF] Xiong | Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach[END_REF] the authors are proposed the AEKF based approach. Machine learning methods for estimating SOC in EVs battery packs are presented in [START_REF] Xu | Kalman ltering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model[END_REF][START_REF] Sheng | Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine[END_REF] to reduce computational complexity.

Finding an estimator which can reduce the complexity of computing tasks while still working in real time with sucient accuracy is a critical issue in electric vehicle development. In order to achieve the aforementioned objectives, This chapter presents a new BiLSTM method for estimating the SOC of a pack of batteries in EVs. To collect data and evaluate the model in the simulation, IPG Carmaker software was utilized.

CarMaker Environment

CarMaker is a virtual software introduced by the company IPG Automotive for simulation of real-time driving tests during the complete development process (Model-In-Loop, Software-In-Loop, Hardware-In-Loop, and Vehicle-In-Loop). Real test scenarios can be created by CarMaker in a virtual environment by simulating dierent types of roads, trac, weather conditions, and maneuvering conditions. Additionally, CarMaker also includes an intelligent driver model with the ability to specify driving behaviors, as well as a comprehensive vehicle model that includes tires, chassis, powertrain, and controllers [START_REF]User's Guide Version 9[END_REF].

The main Graphical User Interface (GUI) of CarMaker which acts as a software's control center is shown in Figure 6.1. Moreover, this software is able to convert tracks, routes, and way-points to each others. 

Driver Model

The driver behavior is a essential factor in modeling vehicle tensions during driving. Considering that each person performs a specic driving action, dierent models of driver aggressiveness are necessary for the development process. CarMaker allows us to simulate a model for controlling driver actions. The driver model utilized in this project is a model based on Proportional-integral-derivative (PID) controllers predened in CarMaker. The acceleration diagrams for three types of drivers are illustrated in Figure 6.12. All longitudinal and lateral acceleration combinations are dened for the driver-friendly area within the red lines.

scenario Maneuver

applying Carmaker, a test scenario can be described for the driver. For example , increase the acceleration, driving at constant speed over a period of time or reduce speed and stop.

Additionally, Carmaker allows us to denition a trac scenario as in reality. 

Developed State of Charge Estimation Method

In this section, the developed SOC estimation method in the EVs is described. The steps of this method are summarized in Figure 6.13.

The structure of the proposed BiLSTM model for SOC estimation in Evs explained in section 4.3. Like BiLSTM algorithm for estimate the SOC in one cell, the number of hidden layers and the units chosen by trial and error. The best results were obtained by two hidden layers with 256 BiLSTM units in the rst layer and 64 LSTM units in the second layer. Furthermore, the Adam optimization algorithm with the initial learning rate lr = 0.001, and the MAE as loss functions is utilized for training the system. The input vector is identied as x t = {V (t), I(t), T (t)}, where V (t), I(t), T (t) are the battery pack voltage, the current of battery pack and the ambient temperature at time t, respectively. Here, the raw data with a sampling frequency of 1Hz is used as a input of the system. Furthermore, the time-step is set to 9000. 

Drive Cycles Test Cases

Conclusions

This thesis was undertaken to design and evaluate the SOC estimation of Li-ion batteries by using deep learning methods. In the face of humanity's pressing demand for clean energy, Li-ion batteries have steadily shown to be valuable because of their special features such as high energy density, self-discharge, fast charging time, easy operation, and extended life cycle. Accurate SOC estimation is essential for monitoring battery balance and safety mechanisms as well as measuring the amount of residual driving range. To accurately measure SOC in conventional estimation methods, battery modeling tools are essential. Deep learning algorithms have a great deal of representational capacity and expressible, which means that SOC estimates and battery modeling may be accomplished via learning about them through experience. One of the biggest advantages of this approach is that it streamlines the battery model creation and state estimate processes, allowing both to be done in a single step instead of requiring separate processes. This may be done without losing accuracy in estimating. Using deep learning approaches, a competitor's accuracy has been increased and information has been found in previously confusing situations. In many scenarios, it has been proven that deep learning approaches yield surprising results, such as their ability to both accurately resist random noise, osets, and gains, thereby achieving greater estimation accuracy. This research oers three novel techniques for estimating SOC sequences based on DRNNs. The results demonstrated that all of proposed methods can provide reliable estimate of SOC at varying ambient temperature. These methods and their advantages are listed below:

1. BiLSTM estimator that takes into account the sequential and bidirectional of Liion measurement sequences to describe the battery dynamics for estimating SOC at various ambient temperatures. Unlike previous unidirectional models, the built bidirectional model can incorporate long-term dependencies from both past and future directions, allowing it to acquire more temporal information from Li-ion batteries and therefore improve estimate accuracy. Additionally, The predicted sequence of successive SOC readings may intuitively represent the trend of the battery's resid-7.2. Future Work ual capacity over a certain time period. This model introduces a novel approach to processing battery data sequences for SOC estimation.

2. RoLSTM algorithm suggested for SOC estimation are used three LSTM networks with fewer units are processed in parallel. As a result, the number of LSTM units can be reduced in the whole model. The method is a self-learning algorithm that can learn all the network parameters. The proposed algorithm is suitable for SOC estimation in dierent ambient temperatures. Moreover, the RoAdam optimizer gives a smoother estimate in comparison with other optimizer of LSTM network. This thesis is completed by implementing a BiLSTM algorithm to evaluate the SOC on EVs battery-pack in oine and real time mode. The IPGcarmaker was used to implement the model in issue. For the drivers, only the SOC of the pack are relevant, then dening a algorithm for estimating the battery pack's state is essential. Since the battery-pack has a complex and nonlinear model, the traditional algorithms have a complicated mathematical calculation. Moreover, by using the raw data of battery variable as a input this method did not need any prepossessing on the real data and consequently, BiLSTM model helps to reduce the computational load on the BMS.

Future Work

As Deep Recurrent Neural Networks techniques were suggested to SOC estimation of Liion battery, this study can be expanded to evaluate the State Of Health (SOH) for single and pack of Li-ion. Since, the Li-ion battery plays an important role in determining the driving range in autonomous car, assessment of SOC and SOH of the battery, can be incorporated into route optimization algorithms. Thus, doing longer tests on a real vehicle and obtain more experimental data in dierent landscapes and environmental challenges, is signicant for the improvement the learning process of deep learning algorithms. For the
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  Figure 1.1 is a Venn diagram representing the area of AI, Machine Learning as a subset of AI, and deep learning as a sub-eld of ML.
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 11 Figure 1.1: Venn diagram clarifying the relationship between Articial Intelligent, Machine learning, and Deep learning.
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 25 Figure 2.5: Comparison between Characteristics of dierent Li-ion battery types
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 5253 Electrical Equivalent Circuit Models Electrical equivalent circuit models are based on a circuit network consisting of resistors and capacitors which are connected to a voltage source. The RC model, the Thevenin model, and the PNGV model are the essential equivalent circuit models that are used in EVs [71, 72]. 2.5.3.1 RC Model The RC model was introduced by SAFT Battery Company. The schematic of this model is illustrated in gure 2.6. This model comprises a large capacitor C b indicates the stored capacity, and a small capacitor C c represents the polarization. Equation (2.6) describes the electrical behavior of the RC circuit model.
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 26 Figure 2.6: Equivalent circuit RC battery model
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 7 is usually used as a typical Thevenin model of a Li-ion battery. Model elements include a series of DC internal resistance (R o ) resistors, an RC parallel circuit network, and an ideal DC voltage source that indicates the open circuit voltage.
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 27 Figure 2.7: Equivalent circuit Thevenin battery model
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 28 Figure 2.8: Equivalent circuit PNGV battery model
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 29 Figure 2.9: The operating specications of the BMS
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 32 Figure 3.2: OCV vs SOC(%) curve discharge prole of LiF eP O 4 measured (a) under Three temperatures and discharge current rate 1C, (b) at 25 • C and three discharge current values.
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 4334322 Figure 3.3: Impedance spectra of a Li-ion cell (a) at dierent SOC at 25 • C [3], (b) at approximate 50% SOC and dierent temperature, the point in (b) shows the 1Hzfrequency[4] 
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 3 5 shows the diagram of FL system.Villanova University worked on the implementation a three-input single-output Sugeno fuzzy model for SOC estimation by impedance parameters[START_REF] Singh | A fuzzy system methodology to determine state-of-charge in primary u/so2 and other batteries pritpal singh ece department villanova university[END_REF][START_REF] Salkind | Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[END_REF]. Singh et al. developed a FL-based SOC estimator in application of portable debrillators, which was published in[START_REF] Singh | Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable debrillators[END_REF]. In this estimator the fuzzy rule based were generated from voltage recovery measurements and ac impedance of the battery as input fuzzy set, and SOC as output fuzzy set. More recent attention has focused on the applied fuzzy logic to estimate SOC by combining other methods. This is covered in more detail in the section Hybrid methods.
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 35 Figure 3.5: Block diagram of Fuzzy Logic System
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 36 Figure 3.6: Block diagram of Neural Network System
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 41 Figure 4.1: The structure of a Recurrent Neural Network for n inputs.
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 42 Figure 4.2: Long Short-Term Memory block.x t is the input, h t is the output of the LSTM unit at time t, and h t-1 is the output of previous LSTM block.

  are respectively the weights of the forget gate, input gate, memory cell, and output gates, and b f , b i , b g , b o are the associated biases. The gate activation function and the output activation function are shown by σ and tanh, which are dened in the Equations (4
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 43 Figure 4.3: Structure of unfolded BiLSTM network. x t and ŷt represent the input and output variables at time t, respectively. σ is the activation function for combining the output of forward layer and backward layer.
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 44 Figure 4.4: BiLSTM architecture for SOC estimation with two hidden layers. The rst hidden layer is a BiLSTM layer with n units and the second one is a one directional LSTM with m unit. x t = {V t , I t , T t } and ŷt = ŜOC t represent the input and output variables at time t, respectively.
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 45 Figure 4.5: The proposed structure of the LSTM model for the SOC estimation.

Figure 4 .

 4 Figure 4.6: The owchart of RoLSTM algorithm for SOC estimation.
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 10 Where, W z , W r and W are the three connection weight matrices for inputs. U z , U r and U are the weight matrices for the output of the hidden layer node at the previous time, and b z , b r and b are the bias parameters. ⊙ is used to calculate the Hadamard (element-wise) product. ĥt expresses the current memory content, and h t-1 is the output of the hidden layer node at the previous time. σ and tanh represent the gate activation function and the output activation function, respectively, determined by the following equations:
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 48 Figure 4.8: Structure of the developed Adaptive GRU network for SOC estimation. V t , I t and T t represent the Voltage , Current and the Temperature at time t, h 1 t (k) is the k th unit of rst hidden layer and h 2 t (l) shows the l th unit of second hidden layer at time t

Following the transfer of

  training data to the network, random values are used to determine the initial values of system weight and bias, which are then used to start the training procedure. By activating the units in each layer, the result is passed to the next layer to generate the SOC estimation in the output layer. The system loss function is determined after comparing the estimated value to the true value. Utilizing this value, as well as an appropriate optimizer to minimize the loss function, the new weights and biases are computed. In order to prepare for the next training session, these values are returned to the units inside the network layers. Two optimization algorithms are used in this work, which are described in further detail below.4.6.1 Adaptive Moment Estimation (Adam) AlgorithmAdaptive Moment Estimation (Adam) is an adaptive learning rate optimization method that works with rst-order gradients and is based on the concept of learning rate optimization. More specically, estimations of the rst and second moments of gradients are utilized to compute adaptive learning rates for each weight parameter.Algorithm 3 Adam algorithm. Default setting for parameters are α = 10 -4 , β 1 = 0.9, β 2 = 0.999 and ϵ = 10 -8 .Require: α: Learning rate Require: β 1 , β 2 ∈ [0, 1): Exponential decay rates for the moment estimates Require: L(W ): Loss function Require: W 0 : Initial parameter vector m 0 = 0 (Initialize rst moment vector) v 0 = 0 (Initialize second moment vector) t = 0 (Initialize timestep)
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 5152 Figure 5.1: The drive cycle powers for a one cell of battery pack of Ford F150 for (a) US06, (b) UDDS,(c) LA92, (d) HWFT proles used for the training and testing phases at 25 • C
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 553 Figure 5.3: Comparison of SOC estimation performances regarding to number of hidden units at 25 • C ambient temperature.
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 54 Figure 5.4: Validation loss function for network with 512 hidden units and 128 hidden units.
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 5555 Figure 5.5 and gure 5.6 depict the SOC estimation and the SOC error, which is dened as the dierence between the SOC measurement and the SOC estimation, for network with N n = 512 at 0 • C and 25 • C ambient temperature, respectively.
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 557 Figures 5.7 and 5.8 demonstrate the SOC estimation result as well as the SOC error of BiLSTM with two layers at 0 • C and 25 • C, respectively.
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 5859 Figure 5.8: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06, HWFET, USDDE and LA92 at 25 • C by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the rst layer and 32 LSTM units are in the second layer.
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 55 Figure 5.10: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06, HWFET, USDDE and LA92 at 25 • C by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the rst layer and 32 LSTM units are in the second layer and h 0 = 0.
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 5555 Fig. 5.13 shows the performance of RoLSTM model at varying ambient temperature.
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 5 Figure 5.14: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06, HWFET, USDDE and LA92 at 0 • C by GRU network with 2 hidden layers, the 512 GRU units are in the rst layer and 32 GRU units are in the second layer.
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 55 Figure 5.15: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06, HWFET, USDDE and LA92 at 25 • C by GRU network with 2 hidden layers, the 512 GRU units are in the rst layer and 32 GRU units are in the second layer.
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 6 Figure 6.1: IPG CarMaker main GUI

Figure 6 . 2 :

 62 Figure 6.2: IPGMovie window

Figure 6 . 3 :

 63 Figure 6.3: Instruments window

Figure 6 . 5 :

 65 Figure 6.5: Direct Variable Access window

Figure 6 . 6 :

 66 Figure 6.6: The battery system of Tesla-S. The right gure is a module of batteries which is contain 74P6S battery. The capacity of each module is 74 × 3.2Ah = 23.7Ah and the voltage is 6 × 3.6V = 21.6V . The left gure is the Tesla-S powertrain system containing 6 modules wiring in series.

Figure 6 . 7 :Figure 6 . 10 :

 67610 Figure6.7: 3D view of powertrian system in Tesla-S. The drive units is located between the rear wheel[5, 6] 

Figure 6 .

 6 Figure 6.11 shows the software environment. In Figure 6.11 part (A) illustrates the Google trac online Maps, part (B) describes the Position list, and part (C) depicts the rout elevation. Since the generated 3D route and way-points can be edited by Rout-Converter, the output le is more suitable for using in IPGCarmaker. In this thesis, Routconverter software was used for generate the 3D road.

Figure 6 . 11 :

 611 Figure 6.11: The environment of RoutConverter software. Part (A) shows the Maps from Google trac online model, Part (B) indicates the Position list of desired track, and Part (C) shows the rout elevation.

Figure 6 . 12 :

 612 Figure 6.12: Acceleration diagram for three driver behavior. Diagram (a) shows the Normal driver, diagram (b) is for defensive driver and diagram (C) illustrates the aggressive driver

Figure 6 . 13 :

 613 Figure 6.13: Implementation steps of BiLSTM algorithms for SOC estimation in the EV

6. 4 Figure 6 . 14 :Figure 6 . 15 :

 4614615 Figure 6.14: The speed prole of case 1. In this Case the maximum speed is 120km/h.

Figure 6 . 16 :

 616 Figure6.16: The speed prole of case 3. In this Case the maximum speed is 120km/h, and at the rst thousand seconds, the trac density with ten percent variation is considered.

  Figure6.17 and gure 6.18 show the route prole and the speed prole of this case, respectively.

Figure 6 . 17 :

 617 Figure 6.17: The rout prole of case 4.

Figure 6 . 18 :

 618 Figure 6.18: Case 4 assumes a speed prole with a maximum speed of 100km/h and a dynamic trac with 10% density for the rst 1000 seconds.
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 66 Figure 6.19: (a) SOC estimation and (b) error estimation of battery pack in EV at 0 • C by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the rst layer and 64 LSTM units are in the second layer.
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 6666 Figure 6.21: (a) SOC estimation and (b) error estimation of battery pack in EV at varying ambient temperature by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the rst layer and 64 LSTM units are in the second layer.

3 .

 3 GRUs-based State Of Charge (SOC) estimation introduced as another data-driven estimator. A GRUs network has fewer parameters and a simpler structure, in comparison to the LSTM network.

  

  

  

  

  

  

  Li-ion databases produced by McMaster's University in Ontario are employed to evaluate these techniques.

	Additionally, Tensorow, an open-source deep learning framework written in Python, and
	the Strasbourg University Computing Center's server are applied for the development and
	the learning step of the algorithms.
	Chapter 6 focuses on SOC estimation of a battery pack mounted on EVs. Employing
	BiLSTM technique to evaluate SOC for EVs battery-pack in the real-time simulation is
	investigated. Using the IPG CarMaker environment,vehicle models have been created
	to model various EVs architectures, including battery parameters, transmission, electric
	motors, vehicle aerodynamics, and most signicantly, driver characteristics.

CHARGING CHALLENGES FOR ELECTRIC VEHICLES: BASIC DEFINITIONS
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Table 2 .

 2 1: The performance of Li-ion battery types

	Li-ion Battery	Advantage	Limitation	Applications
	Type			
	LiCoO 2	Very high specic	Low lifetime, limited	Mobile phones,
		energy	specic power, low	laptops, cameras
			safety	
	LiM n 2 O 4	High power,	Less capacity	Electric powertrains,
		moderate safety		medical device
		and life span		
	LiF eP O 4	Excellent current	low specic energy, less	Power tools, EVs,
		rate, highly safe,	voltage than other	portable devices
		elevated longevity	Li-ion batteries,	
			decreased performance	
			at lower temperature	
	LiN iM nCoO 2	Well performance,	High cost	Medical devices, Evs,
		high capacity and		industrial systems
		power		
	LiN iCoAlO 2	Elevated specic	High cost, low safety	Industrial systems,
		energy, great		electric powertrains,
		power densities,		medical devices
		well lifetime		
	Li 4 T i 5 O 12	Excellent safety,	Low voltage, low	Nano-technology
		good stability,long	energy density, high	applications, UPS,
		life, fast charge	cost	electric powertrains

Table 3

 3 .2 contains a comparison of several techniques with an emphasis on their benets and drawbacks. SOC estimation using deep learning algorithms is a relatively recent subject in the eld of machine learning. In this thesis, three deep learning algorithms based on Deep Recurrent Neural Network (DRNN) are suggested as a method for SOC estimation in the EVs, taking into account the advantages and limits of prior work. Following the application of these techniques to a single cell

of a Li-ion battery, the Bidirectional LSTM model is utilized for SOC estimate of the battery pack in Tesla's electric vehicle. A battery's nonlinear model requires complicated mathematical computations, especially in a battery pack. As a consequence, using datadriven techniques is becoming more essential. Furthermore, while comparing samples NNs and FL, it is shown that DRNN provides superior results and higher accuracy without the need of lters. Increased depth of networks aids in improving the accuracy of the approximation of the nonlinear model system.

Table 3 .

 3 2: summary of SOC estimation methods with the advantages and disadvantages

	Methods	Advantages	Disadvantages
	CC	Easily implemented Low Power consumption	Low accuracy against uncertain disturbances High dependency to initial values of SOC
	OCV	Sample and easy to implement high accuracy	Need long rest time to reach a stable condition Not suitable for online test
	EIS	Online method inexpensive	High dependency to temperature Not practical for EVs which charging with dif-ferent current
	KF	High Accuracy state estima-tion versus external distur-bances	Highly dependent on the model and sensor precision Has complex mathematical calculations Not suitable for nonlinear system
	EKF	Predicts a non-linear dynamic state with good precision	Not proper for system with highly non-linear Have limitation in linearization accuracy from jacobian matrices
	UKF	Not needed to Jacobian matrix and gaussian noise	Weak robustness owing to uncertainty and dis-turbances in modeling
	H∞	Good accuracy Time eciency Satisfactory computational cost	Non-linear constraints are not well-handled Deviation from accuracy by aging, hysteresis and temperature
	RLS (Recur-sive Least Square)	high precision noise reduction in the mea-sured voltage	Heavy computation Unstable operation if the forgetting values fac-tor is not appropriate
	NN	Independence of battery model	require a large training data set and memory storage
	FL	work well in nonlinear system modeling temperature good performance against	computational complexity
	Hybrid Meth-ods	Low cost improve the eciency	Diculty level of implementation

Table 5 .

 5 

	2: SOC estimation accuracy by BiLSTM methods with dierent number of hidden
	units.			
	Number of hidden units Test case evaluation Temperature ( • C) 25 0
	128	MAE(%) MAX(%) RMSE(%)	0.87 4.1 1.3	1.31 4.9 1.54
	256	MAE(%) MAX(%) RMSE(%)	0.75 4.07 1.20	1.10 4.3 1.23
	512	MAE(%) MAX(%) RMSE(%)	0.60 0.81 3.2 4.01 1.02 1.08
	1024	MAE(%) MAX(%) RMSE(%)	0.7 3.5 1.15	0.94 5.02 1.35

Table 5 .

 5 3: SOC estimation accuracy by BiLSTM methods with two hidden layers.

	Number of hidden layers Test case evaluation Temperature ( • C) 25 0
	256-16	MAE(%) MAX(%) RMSE(%)	0.76 3.8 1.14	1.13 4.15 1.6
	256-32	MAE(%) MAX(%) RMSE(%)	0.43 0.7 1.8 2.3 0.75 0.92
	512-32	MAE(%) MAX(%) RMSE(%)	0.83 2.06 1.05	0.92 4.3 1.2

Table 5 .

 5 The SOC estimation by RoLSTM algorithm at 0 • C and 25 • C are illustrated in Fig.5.11 and Fig.5.12, respectively. As well as, like BiLSTM model, this algorithm was evaluated by a drive cycle test at varying ambient temperatures. The M AE = 1.03 and RM SE = 1.78 indicate the RoLSTM performance is good at variable temperature.

	4: compare SOC estimation accuracy by RoLSTM method and LSTM-Adam
	algorithm .			
	LSTM Algorithm Test case evaluation Temperature ( • C) 25 0 RoLSTM MAE(%) 0.54 0.7 MAX(%) 1.9 2.56 RMSE(%) 0.79 1.02
	LSTM-Adam	MAE(%) MAX(%) RMSE(%)	0.76 2.98 0.97	0.98 3.6 1.12

  The average of ten times of training yields MAE, RMSE, and MAX errors of 0.93, 1.1, 4.4 at 0 • C, and 0.84, 1.09, 4.2 at 25 • C, respectively. Moreover, the MAE =1.2, RMSE= 2.04, and MAX= 5.01 at varying ambient temperature. The gures 5.14, 5.15, and 5.16 depict the GRU's performance at

Table 5 .

 5 5: Comparison of SOC estimation accuracy in recent studies.

Table 6 .

 6 1. The battery system of the Tesla-S contains 16 modules. As can be seen in gure 6.6 each module includes 444 battery cells, which are wired in 74 cells in parallel and 6 groups in series. The battery cells used in the modules are Panasonic NCR18650BE models with 3200mAh and 3.6 V nominal capacity and voltage, respectively. Table6.1: The overall specication of the desired body vehicle.

	Vehicle overall mass [kg] Vehicle overall center of gravity x / y / z [m] 2.580 2108 Vehicle overall inertia tensor x / y / z [kgm ] 952.229 3519.035 3954.288 0.000 0.545 Axle load front / rear [kg] 1064.646 1043.354 Wheel base [m] 2.970

  Table 6.2. Table 6.2: The accuracy of SOC estimation by BiLSTM algorithm at dierent ambient temperature.

	Temperature ( • C)	MAE(%)	RMSE(%)	MAX(%)
	0	0.74	0.92	2.56
	10	0.57	0.81	3.5
	20	0.7	1.04	3.7

The schematic of the nRC Electrical Equivalent Circuit Models (EECM) which is generally used in EKF-based methods for SOC estimation, is illustrated in gure 3.4.

The equations of these models for 0 ≤ n ≤ 4, and PNGV model are listed in table 3.1 [START_REF] Lai | A comparative study of dierent equivalent circuit models for estimating state-of-charge of lithium-ion batteries[END_REF]. 

In table 3.1, Z k explains the relationship between OCV and SOC. Also, u n,k and u cb,k are described by equation (3.5):

NCR18650PF cell for dierent drive cycles. The negative power represents the discharge power, whereas the positive power represents the charge power. The current, voltage, and capacity of battery for a sample drive cycle utilized in the training process are illustrated in gure 5.2. 

3D Road Prole Generation

The next step in simulation with Carmaker is creating the road. In powertrain tests, the road plays an important role, in fact, the use of real routes provides more traceability of the system via real conditions.

The important parameters in the road model to produce optimal conditions in the Carmaker are as follows:

X and Y direction coordinates: like straight sections and road curvature.

Gradient: the road slope is an essential parameter in changing the inuential forces on vehicles.

Speed limits: dened as the maximum speed allowed for the driver according to legal standards.

Road characteristic: such as track width, trac light, speed bump et etc.

Two ways to generate the 3D road prole are described below:

temperature must be read from Carmaker each one second and used as a input data in system to predict the SOC at time t. The environment of simulation the system in real time is depicted in Figure 6.23. 

Discussion

In this chapter, the BiLSTM algorithm for SOC estimation in EVs in oine and real time mode have been investigated. The IPGcarmaker software, and also the Tensorow and keras Python libraries, were employed to create the proposed model. The learning processes were done on the server of Strasbourg University Computing Center.

The raw data without any normalization is used as a trained and validation data in the BiLSTM estimator to decrease the computation complexity. The results here are conrmed the ability of the BiLSTM algorithm to perform estimate the SOC of the batterypack in both Oine and real time mode, as well as in varying ambient temperature.

last recommendation, the accurate SOC estimate will be used to charge the EV with solar energy at the time of its production, in order to improve the self-consumption of green energy. This estimation will help to better re-inject into the electrical grid the energy stored in the batteries by the Vehicle to Grid (V2G) principle during consumption peaks.

The EV will play the role of a mobile battery that will increase the storage capacity of the electrical supply network for demand response application.

A 

A.1.2 FTP-75

The FTP-75 is generated by appending a third phase of 505 s to FTP-72 cycle. This phase is the same as the rst phase of FTP-72, but with a hot beginning. The third period starts after the engine has been stopped for ten minutes. As a result, the whole FTP-75 cycle is made up of the following segments: The test takes place two times, with a pause between runs of maximum 17 s. The rst is a preconditioning process for a vehicle, the second is the real emissions test.