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Abstract

The State Of Charge (SOC) estimation is a significant issue for safe performance and
the lifespan of Lithium-ion (Li-ion) batteries which is used to power the Electric Vehicles

(EVs).

In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent
Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three
new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional
LSTM (BiLSTM) method, a Robust Long-Short Term Memory (RoLSTM) algorithm,
and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on
precise battery models and can avoid complicated mathematical methods especially in
a battery pack. In addition, these models are able to precisely estimate the SOC at
varying temperature. Also, unlike the traditional recursive neural network where content
is re-written at each time, these networks can decide on preserving the current memory
through the proposed gateways. In such case, it can easily transfer the information over

long paths to receive and maintain long-term dependencies.

Comparing the results indicates the BILSTM network has a better performance than
the other two. Moreover, the BiLSTM model can work with longer sequences from two
direction, the past and the future, without gradient vanishing problem. This feature helps
to select a sequence length as much as a discharge period in one drive cycle, and to have
more accuracy in the estimation. Also, this model well behaved against the incorrect

initial value of SOC.

Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries
in an Ev. TPG Carmaker software was used to collect data and test the model in the
simulation. The results showed that the suggested algorithm can provide a good SOC
estimation without using any filter in the Battery Management System (BMS).



Résumé

L’estimation de I'état de charge (SOC) est un point crucial pour la sécurité des per-
formances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter
les VE. Dans cette thése, la précision de l'estimation de I’état de charge est étudiée a
l'aide d’algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire,
pour une cellule d’une batterie Li-ion, trois nouvelles méthodes sont proposées : une mé-
moire bidirectionnelle & long et court terme (BiLSTM), une mémoire robuste a long et
court terme (RoLSTM) et une technique d’unités récurrentes a grille (GRU). En utilisant
ces techniques, on ne dépend pas de modéles précis de la batterie et on peut éviter les
méthodes mathématiques complexes, en particulier dans un bloc de batterie. En outre,
ces modéles sont capables d’estimer précisément le SOC a des températures variables.
En outre, contrairement au réseau de neurones récursif traditionnel dont le contenu est
réécrit a chaque fois, ces réseaux peuvent décider de préserver la mémoire actuelle grace
aux passerelles proposées. Dans ce cas, il peut facilement transférer I'information sur de
longs chemins pour recevoir et maintenir des dépendances a long terme. La comparaison
des résultats indique que le réseau BiLSTM a de meilleures performances que les deux
autres méthodes. De plus, le modéle BiLSTM peut travailler avec des séquences plus
longues provenant de deux directions, le passé et le futur, sans probléme de disparition du
gradient. Cette caractéristique permet de sélectionner une longueur de séquence équiva-
lente & une période de décharge dans un cycle de conduite, et d’obtenir une plus grande
précision dans I'estimation. En outre, ce modéle s’est bien comporté face 4 une valeur
initiale incorrecte du SOC. Enfin, une nouvelle méthode BiLSTM a été introduite pour
estimer le SOC d’un pack de batteries dans un EV. Le logiciel IPG Carmaker a été utilisé
pour collecter les données et tester le modéle en simulation. Les résultats ont montré que
I’algorithme proposé peut fournir une bonne estimation du SOC sans utilisation de filtre

dans le systéme de gestion de la batterie (BMS).
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Chapter 1. Introduction

1.1 motivation

For over 100 years, automobiles have been used for transportation of humans, and in
this way, reformed traveling around the world. Exploring of rural areas and going on
a road trip across the country were made possible using wheels. However, the engine
vehicles cause many environmental damages as well [7]. According to the World Health
Organization (WHO), in 2000, fuel vehicles produce 34% of nitrogen dioxide discharged
into the environment. They, additionally, are responsible for 51% of the carbon monoxide,
10% of the particulate, and 33% of the carbon dioxide, in the United States only [8].
Reacting with humidity in the air, nitrogen dioxide makes nitric acid, which causes severe
corrosion. It also leads to thick fog and drastically reduces field of view. This molecule has
a greenhouse effect and a critical negative footprint on plant growth. Carbon monoxide
(CO) is a harmful gas that provokes migraines, dizziness, and respiratory disease. High
enough CO levels may induce unconsciousness or death. Lastly, carbon dioxide is a
major contributor to worldwide temperature rise. As a result, nowadays, using Electric
Vehicles (EVs) as an alternative to diesel- and petrol-powered cars is highly regarded.

Subsequently, a high-tech battery is a crucial element for EVs.

Various types of batteries such as nickel-cadmium, lithium, and acid, are used as the
dominant power source in EVs [9]. Among them, Lithium-ion (Li-ion) batteries are the
most popular due to their specific characteristics, e.g., high energy density, self-discharge,
charging speed, low maintenance, and long-life cycle. The correct charging of Li-ion
batteries improves their performance and extends their lifespan and it is only possible by
using the Battery Management System (BMS), which controls the discharging [10]. To
provide an accurate measurement of the residual driving range of the vehicle, as well as
the correct battery balance, a trustworthy status estimate is necessary. State Of Charge
(SOC) is the remaining battery load and defines the ratio of the battery’s remaining
capacity to its nominal battery capacity [11]. The battery might be exposed to very
dynamic load demands due to the unexpected driving behavior and frequent acceleration
and deceleration of a car. Because of these charging demands, SOC estimation is a difficult

task. SOC is not a visible factor, thus its precise estimate is crucial to dependable and
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safe vehicle operation [12].

1.2 SOC estimation as a central measure

To date, various methods have been developed and introduced to SOC estimation, which
are separated into two main categories of direct and indirect methods [13, 14]. In the case
of direct techniques, the battery’s physical characteristics such as current, voltage and
battery temperature are utilized to evaluate SOC. A popular direct method is Coulomb
Counting estimation (CC) described in detail by Lashway et al. [15]. Many published
studies also contributed in the development of the Open Circuit Voltage (OCV) method
for the SOC estimation (e.g., |7, 16]). Electrochemical Impedance Spectroscopy (EIS)
is another direct method to evaluate SOC [17]. Indirect methods, on the other hand,
do not use a specific equation, rather they employ a model for the battery or mapping
of system specification. One of the model-based methods is Electrical Circuit Model
(ECM) [18]. Another type of indirect methods are the adaptive-filter based algorithms
such as Kalman Filter (KF, EKF, UKF, and AEKF) [19, 20, 21], Recursive Least Square
(RLS), and the H-infinity (Hoo) algorithm [14, 22, 23|.All these approaches, generally
need complex models to accurately identify the non-linear behavior of a battery and
involve numerous differential equations that may be complicated. They also frequently
need several parameters for a satisfying SOC estimate in different environments. As a
result, in recent years, Artificial Intelligent (AI) and data-driven approaches as a category
of indirect methods have been utilized for SOC estimation, including Fuzzy Logic (FL)
[24, 25, 26|, Neural Networks (NNs) [27, 28, 29, 30, 31|, and Support Vector Machine
(SVM) [32, 33]. Nevertheless, these techniques also have weaknesses, as the variety of and
complexity of Li-ion batteries restricts their estimation efficacy. For instance, training is
based on manually created characteristics that requires a lot of human work and skill.
In addition, their architectures do not have adequate analytical skills to handle high-
dimensional measurement data that are used. Deep learning algorithms, as a crucial area
of Al offer an excellent approach to these issues.

Deep learning (also known as deep structured learning or dynastic learning) is a class
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of Machine Learning (ML) for extracting a higher level of features, and is based on work-
specific algorithms. Figure 1.1 is a Venn diagram representing the area of Al, Machine

Learning as a subset of Al, and deep learning as a sub-field of ML.

ARTIFICIAL
DEEP MACHINE | INTELLIGENCE
LEARNING LEARNING

Figure 1.1: Venn diagram clarifying the relationship between Artificial Intelligent, Ma-
chine learning, and Deep learning.

Most modern deep learning models are based on artificial neural networks. However,
they may include predicate or hidden variables in generating models such as nodes in
deep belief networks and deep Boltzmann machines [34, 35]. Nonlinear transformations
and multi-layer deep neural networks allow for extracting hierarchical representations
from input data. One Deep Neural Network (DNN) layer has the ability to learn new
representations of input by itself. As well as, the network’s stacking structure is able to
extract complex feature information by combining simple input. A few recent DNN-based
techniques that use data to determine battery SOC have emerged during the past three
years |36, 37]. Chemali et al. [38| developed a Multi Layer Perceptron (MLP) network
using battery data at different temperatures and generate the first deep learning SOC
estimator. In [39] they utilized Long-Short Term Memory (LSTM), since it improves
temporal information in time series capture, and found more accuracy in their calculated
SOC. The low-complexity estimating model that relies on Gated Recurrent Units (GRUs)
proposed in [40, 41]. Since deep learning-based state estimation for batteries is still quite

new, the accuracy and model structure of these estimators still need to be improved.
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1.3 Objectives and Thesis Structure

The ability to estimate the SOC of Li-ion batteries in real time, which is one of the
most essential performance features of a battery, becomes more important with the in-
creasing usage of battery-driven electric vehicles. This research study is focused on the
implementation of SOC estimation by means of deep learning methods with the goal
of reducing computing complexity while simultaneously increasing accuracy. As such,
three new structure for SOC evaluation of one cell of Li-ion are investigated. Following
that, the BILSTM method is presented as the best algorithm for the SOC estimate in a

battery-pack that includes both series and parallel wiring of batteries.

In Chapter 2, a short history of EVs and rechargeable batteries is provided. In addition,
the specific of the enhanced lithium-based batteries, the existing methods for modeling

them, and important definitions related to the Battery Management System are addressed.

Chapter 3 proposes a review on SOC estimation techniques. This chapter discusses

the benefits and drawbacks of the methods that have been used before.

Details of three proposed SOC estimation methods, typically BiLSTM, Robust Long-
Short Term Memory (RoLSTM) and GRUs, are explained in chapter 4. First estimator
is based on BiLLSTM algorithm, which is a novel technique for estimating SOC sequences
through the bidirectional and sequential Li-ion input data. The improved estimate ac-
curacy of this design will be achieved through learned bidirectional relationships. In
RoLLSTM method as the second estimator, instead of one LSTM network, three of them
are used in parallel for each input, and consequently, the number of LSTM units will be
reduced. Also, to optimize the LSTM network, a robust and adaptive online optimization
method is used. This optimization is an improvement of Adam method which is called Ro-
bust Adam (RoAdam)[42]. RoAdam can be adaptively tuned against a doubtful outlier.
The weights and biases could be adapted online with a strategy of adaptive optimization
to have a high-performance network. The last estimator presented here is based on Gated
Recurrent Units (GRUs) approaches. These networks are an improved version of standard
RNNs introduced to overcome the vanishing gradient problem. GRUs are using two gate

unites to decide between beneficial and not functioning data.
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Chapter 5 shows the results of these three methods implemented for one cell Li-ion
battery. Moreover, this chapter discusses the effects of the number of layers and units of
DRNN on the accuracy of the SOC estimation. The Panasonic 18650PF Li-ion databases
produced by McMaster’s University in Ontario are employed to evaluate these techniques.
Additionally, Tensorflow, an open-source deep learning framework written in Python, and
the Strasbourg University Computing Center’s server are applied for the development and
the learning step of the algorithms.

Chapter 6 focuses on SOC estimation of a battery pack mounted on EVs. Employing
BiLSTM technique to evaluate SOC for EVs battery-pack in the real-time simulation is
investigated. Using the IPG CarMaker environment,vehicle models have been created
to model various EVs architectures, including battery parameters, transmission, electric
motors, vehicle aerodynamics, and most significantly, driver characteristics.

Last, a concluding remark is given in chapter 7, along with possible future directions

of this project.

1.4 List of Publications

As a consequence of this Ph.D. project, the relevant academic papers have been published:

1. Gelareh Javid, Djaffar Ould Abdeslam, Michel Basset. “Adaptive Online State
Of Charge Estimation of EVs Lithium-ion Batteries with Deep Recurrent Neural
Networks”, Energies 2021, 14(3), 758.

2. Gelareh Javid, Michel Basset, Djaffar Ould Abdeslam. “Adaptive Online Gated
Recurrent Unit for Lithium-Ion Battery SOC Estimation”, 46th Annual Conference
of the IEEE Industrial Electronics Society (IES) (IECON2020), Singapore.

3. Gelareh Javid, Djaffar Ould Abdeslam, Dirk Benyoucef. “Maximum Power Point
Tracking of PhotoVoltaic Power System with Adaptive Fuzzy Terminal Sliding Mode
Controller”, IEEE 18th International Conference on Environment and Electrical En-
gineering and 2nd Industrial and Commercial Power Systems Europe (EEEIC2018),
Palermo, Italy.
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2.1. Introduction

2.1 Introduction

This Chapter provides a brief overview of the history of EVs and rechargeable batter-
ies. There is also a discussion on the details of the lithium-based battery, a review of
the battery modeling method, and key terminologies linked to the battery management

system.

2.2 Development of Electric Vehicles

The electric vehicle’s history started in the middle of the nineteenth century. However,
compared to the combustion-engine cars that eventually reached the market, these vehicles
were more costly, slower, and had a shorter range, which led to a drop in their use globally.
Since the early 20th century, interest in electric automobiles and alternative fuels has been
stoked by worries about the escalating problems with hydrocarbon pollutants and vehicle
fuels, such as environmental impact and hydrocarbon flow stability.

In 1867, the Austrian inventor Franz Kravgol demonstrated the first electric two-
wheeled bikes at the Paris World’s Fair. Nonetheless, this effort was just for entertainment
purposes and was not appropriate for street driving. Gustave Trouve, a French inventor,
exhibited another cycle, this time a tricycle, at the International Electric Exhibition in
Paris in November 1881[43].

In London in 1884, Thomas Parker developed the first electric car. Parker’s interest
in low-emission cars, as well as his concern about the harmful effects of smoking and
pollution in London at the time, pushed him to create electric autos. He used high-
capacity, rechargeable batteries designed specifically for this vehicle. He was also involved
with the electrification of the London Underground, trams in Liverpool and Birmingham,
and the Coalite smokeless fuel. [1].

The first American electric car was developed between 1890 and 1891 by William
Morrison. The vehicle had a six-seater wagon and reached a speed of 14 miles per hour
(23 kilometers per hour) [44].

Motor vehicle enthusiasm grew in the late 1890s and early 1900s. Electric taxis gained

13
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Figure 2.1: The first practical electric car may have been built by the English inventor
Thomas Parker in 1884 [1]

popularity in the late 1800s. These taxis were popularized by Walter C. Bersey, and in
1897, electric taxis joined the taxi fleet and the streets of London. As a result, these taxis
began to be known as "humming birds" after a time. The electric carriage was utilized
as a cab by Samuel’s Electric Carriage and Wagon Company in New York City the same
year. By 1898, when it was converted into an electric vehicle business by investors, it had
manufactured 62 taxis [45].

Several companies, including Henny Coachworks, National Electrical Union Company,
and Exide Battery manufacturers, collaborated on the development of an all-electric ve-
hicle in the 1950s. The car’s voltage was set between 36 and 72 volts. Powered by 72-volt
batteries, the 72-volt variant could reach speeds of up to 96 km / h (60 mph) and travel
for up to an hour on a single charge.

Although the popularity of electric cars declined in the 1900s as a result of the
widespread availability of low-cost gasoline for transportation and the improved perfor-
mance of gasoline vehicles, the demand for EVs has increased dramatically in the past few
decades. As reported by the International Energy Agency (IEA), yearly EV sales have
increased from 1.67 thousand in 2005 to 2.1 million in 2019, and as a result, the world-
wide stock of electric vehicles has reached 7.2 million. Figure 2.2 depicts the Histogram
of the Electric Vehicles Stock of Passenger Automobiles from the years 2013 to 2019 for

the major geographic areas [46]. It is anticipated that the demand for electric cars will
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grow in the future years. According to the Sustainable Development Scenario, the global
electric vehicle stock is expected to increase by 36 percent each year. In the next 10 years,
the quantity of EV in stock will have increased by a factor of more than 30. Figure 2.3
illustrates the worldwide electric vehicle fleet through 2030 [47].

Em China EmE Europe United States Others

Laill

Figure 2.2: Electric car stock by region, 2013-2019

BN PLDVs-BEV ~EEE PLDVs-PHEV ~EEE LCVs-BEV HEE LCVs-PHEV EEE Buses-BEV Buses - PHEV Trucks - BEV

Figure 2.3: Global Electric Vehicle stock by Sustainable Development Scenario , 2018-2030

2.3 A review on rechargeable batteries for Electric Ve-
hicles

Alessandro Volta was the first to define the concept of a voltage cell, often known as a
battery, in 1800. Voltage cells are devices that produce electrical energy via chemical

processes. Volta’s battery is made up of disks of zinc and copper that alternate with each
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other. The copper cathode performs the reduction process, whereas the zinc anode does
the oxidation. Furthermore, to complete the circuit, a salt bridge, which is constructed
from a layer of cloth that has been wetted with brine, is placed between the cathode
and the anode. In addition, an external circuit is utilized to direct the flow of electrons
through the system. The areas where reduction and oxidation occur are called half-cells
[48]. There were two major issues with this battery: First and foremost, the high number
of disks causes brine to be drawn out of the fabric, resulting in a reduction in current
output. The second issue with the Volta cell was that it had a limited lifetime owing to
the fast corrosion of metal in the presence of saltwater, which caused it to malfunction
[49].

To prevent hydrogen from collecting on a copper cathode, John Frederic Daniell in-
vented a secondary electrolyte that interacted chemically with the hydrogen. He published
his findings in 1836. Daniel’s dual electrolyte battery, commonly known as Daniel’s cell,

is a kind of rechargeable battery [50].

Gaston Planté, in 1859, created the first rechargeable lead-acid battery by immersing
two sheets of lead in a sulfuric acid solution. When the lead anode reacts with the
acid, electrons are liberated, while the lead cathode absorbs the electrons, resulting in
the production of a current. By reversing the current flow, it is possible to recharge the

battery [51].

As early as 1881, Camille Alphonse Faure made significant improvements to the
Planté’s design performance by creating a new sheet that contained lead oxide batter
squeezed into a lead grid lattice [52]. Until the late 1800s, the electrolyte in batteries was
liquid. This made transporting batteries extremely risky, and as a result, most batteries
were not designed to be transported after being attached to a circuit. Inventor Georges
Leclanche created a battery in 1866 that included three components: a manganese dioxide
cathode, a zinc anode, and an ammonium chloride solution electrolyte. Despite the fact
that the electrolyte in the Leclanche cell was liquid, the chemical composition of the bat-
tery was an important step in the development of the dry battery. Further down the road
in 1887, Carl Gessner discovered how to make an electrolyte by gluing together ammo-

nium chloride and Paris plaster. By the late 1950s, these new dry batteries had become
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very popular [49]. These novel dry batteries were also referred to as carbon batteries since
carbon serves an important role as an electrical conductor in them, despite the fact that

it is not employed in chemical processes.

Waldemar Jungner was the developer of the nickel-cadmium (NiCd) battery, which
was first used in the early 1900s. The negative electrode (anode) of this battery is made
of cadmium (Cd), and the positive electrode (cathode) is built of nickel (Ni) (cathode).
In 1901, iron was replaced by cadmium in a nickel-cadmium battery by Thomas Edison,
and it was renamed Ni-Fe (NiFe) [53|. Low specific energy and rapid self-ignition are
among the disadvantages of nickel-iron batteries. They also have poor performance at

low temperatures.

In the 1950s, Lewis Urry, Paul Marshall, and Karl Kordesch of Union Carbide replaced
the ammonium chloride electrolyte with an alkali material known as alkaline. Since the
1960s, alkaline batteries have been increasingly popular, particularly as a replacement for
carbon-zinc batteries. Alkaline solar batteries have a longer service life and are capable of
storing far more energy than carbon batteries [54]. Comsat invented the nickel-hydrogen
battery in the 1970 for use in communications satellites, which was later adopted by other
companies. Nickel-hydrogen batteries can store hydrogen gas in pressured gas molds,
which are a type of pressure vessel. A large number of spacecraft and space stations are
powered by nickel-hydrogen batteries. In the late 1980s, nickel-metal hydride (NiMH)
batteries were created by researchers at many businesses and brought onto the market.
NiMH batteries were smaller in size and less expensive than nickel-hydrogen batteries at

the time of their introduction [55].

Sony was the first company to commercialize the manufacturing of lithium-ion bat-
teries in 1991. There are three components to this battery: a carbon anode, a lithium
cobalt oxide cathode, and a non-liquid electrolyte. It was not until the late 1990s that
a soft, flexible container for lithium-ion batteries was developed, resulting in the devel-
opment of lithium-polymer batteries [56]. In comparison to other rechargeable batteries,
Li-ion batteries have a high energy efficiency and power density, making them an excellent
choice for portable devices. Because of these desires, they may be built to be lighter and

smaller. Furthermore, Li-ion batteries have a wide temperature range of operation, quick
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charge capabilities, a reasonably long cycle life, a low self-discharge rate, and high energy,

voltage, and power efficiency, among other advantages [57].

2.4 Lithium-ion Battery

Each battery is made up of three basic components: a positive electrode, a negative
electrode, and an electrolyte (or electrolyte solution). In Li-ion batteries, the positive
electrode, also known as the cathode, is formed of a lithium-metal-oxide compound, while
the negative electrode, also known as the anode, is built of carbon, with a separating layer
between them. The electrolyte in lithium batteries is likewise produced from lithium salt
in an organic solvent, as is the electrolyte in lead batteries. Given the flammability
of organic solvents in their capacity as electrolytes, additional precautions must be taken
while using them as electrolytes. The engineering of the electrolyte structure is made more
difficult by safety precautions and other steps used to improve the performance of lithium
batteries. A number of different materials make up the electrolyte in these batteries,
each of which serves a specific purpose. In the event that any electrolyte component
performs below expectations, this will result in the battery’s overall performance being

compromised [58]. A view of a lithium battery cell is shown in figure 2.4.

* Li-Metal

. Carbon. * Li-Metal Oxides:
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Solvent i
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Figure 2.4: The hierarchical structure of lithium ion batteries |2]
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The reaction mechanism in Li-ion batteries includes the movement of Li* between
cathode and anode materials. During battery discharge, the electrolyte allows Li™ trans-
fers from the anode to the cathode. And simultaneously, for every Li* in the transfer,
one electron will be released. The chemical reaction for the cathode and the anode can

be provided by equations (2.1) and (2.2), respectively [59].

LiMOy = Liy_yMOq+ xLi" + ze” (2.1)

zLit +ze” +6C = Li,Cq (2.2)

In addition to the aforementioned characteristics, lithium batteries are equipped with
electronic protection circuits and fuses to guard against polarization, overvoltage, over-

heating, and other potential safety hazards.

Different types of Li-ion batteries that function differently are made by using different
materials for the cathode electrolyte. In figure 2.5, the major Li-ion properties for six
types of Li-ion batteries are compared. Moreover, table 2.1 describes the performance of

several Li-ion battery types [60, 61, 62, 63].

— LiCo02
~— liMn204
: —— LiFePO4
Specific Energy —— LiNiMnCo02
~— LiNiCoAlO2
= LidTi50I12

Power Density

Figure 2.5: Comparison between Characteristics of different Li-ion battery types
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Table 2.1: The performance of Li-ion battery types

Li-ion Battery
Type

Advantage

Limitation

Applications

LiC00

LiMnsOy

LiFePQOy

LiNiMnCoOq

LiNiCoAlO,

LiyTi5019

Very high specific
energy

High power,
moderate safety
and life span

Excellent current
rate, highly safe,
elevated longevity

Well performance,
high capacity and
power

Elevated specific
energy, great
power densities,
well lifetime

Excellent safety,

good stability,long

life, fast charge

Low lifetime, limited
specific power, low
safety

Less capacity

low specific energy, less
voltage than other
Li-ion batteries,
decreased performance
at lower temperature

High cost

High cost, low safety

Low voltage, low
energy density, high
cost

Mobile phones,
laptops, cameras

Electric powertrains,
medical device

Power tools, EVs,
portable devices

Medical devices, Evs,
industrial systems

Industrial systems,
electric powertrains,
medical devices

Nano-technology
applications, UPS,
electric powertrains

2.5 Battery Modeling

Li-ion battery models can be classified into three major categories as mathematical, elec-

trochemical and electrical equivalent circuit models [64, 65, 66].

2.5.1 Mathematical Models

Analytical models and stochastic models are both types of mathematical models. In the

analytical model, the battery properties are represented by a few equations and different

physical concepts. Stochastic battery models, like Markov chain processes, are able to
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model the entire battery system all at once. The purpose of stochastic models is to
explain batteries theoretically, with less time wasted in comparison to electrochemical

models, and to obtain better accuracy than other methods [67].

2.5.2 Electrochemical Models

Electrochemical kinetics and the charge transfer process can both be used to explain the
reactions that take place inside the battery. The electrochemical models based on physical
principles were developed specifically for this purpose [68, 69]. To explain the cell’s
potential and diffusion gradients, a set of coupled partial differential equations (PDEs)
are used. Solid concentrations at positive and negative electrodes and in the electrolyte

are achieved by Fick’s law of diffusion as Equation(2.3): [70]

005_&2(2805
ot _r26rr or

), forr € (0,Ry) (2.3)

Where Dy is the solid phase diffusion coefficient in the electrolyte. The initial condi-

tions and Neumann boundary conditions are defined as (2.4):

Cso=C, forC>0att=0r¢€(0,Ry)

o0, (2.4)
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B jLiRS
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_o, 0C
r=0 87“

In (2.4) F is Faraday’s number, R, and j* denote the radius of the particle and the local
volumetric transfer current density, respectively. Also, the potential distribution in the

solid phase and electrolyte phase is calculated by Ohm’s law as (2.5):
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2.5.3 Electrical Equivalent Circuit Models

Electrical equivalent circuit models are based on a circuit network consisting of resistors
and capacitors which are connected to a voltage source. The RC model, the Thevenin
model, and the PNGV model are the essential equivalent circuit models that are used in

EVs [71, 72.

2.5.3.1 RC Model

The RC model was introduced by SAFT Battery Company. The schematic of this model
is illustrated in figure 2.6. This model comprises a large capacitor (', indicates the stored
capacity, and a small capacitor C. represents the polarization. Equation (2.6) describes

the electrical behavior of the RC circuit model.

; -1 1 —R.
Vi _ | Co(Ret+Re)  Cy(RetRe) Vo + Cy(RetRe) | 1
; 1 -1 Re
‘/C Cc(Re+Rc) CC(R6+RC) _‘/C CC(R€+R(‘)
(2.6)
V= [ R. R } Ve n [—R ReRe | [,
(R5+Rc) (R6+RC) V ¢ (R€+RC)

Where R;, R , R, are the terminal resistor, the capacitor resistor and the end resis-

tance, respectively.
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2.5.3.2 Thevenin Model

Thevenin theorem is a method for converting a complex circuit model to a simple equiva-
lent circuit composed of a resistor which is placed in series with a source voltage. Figure
2.7 is usually used as a typical Thevenin model of a Li-ion battery. Model elements in-
clude a series of DC internal resistance (R,) resistors, an RC' parallel circuit network, and

an ideal DC voltage source that indicates the open circuit voltage.

Vol O v,

Figure 2.7: Equivalent circuit Thevenin battery model

The equation of state-space for Thevenin model is described in (2.7):

.y I
Vo = ®,C, T C,

VL:‘/OC_V;)_[LRO

2.5.3.3 PNGYV Model

The PNGYV model is proposed by The US PNGV under the Freedom CAR hybrid electric
vehicles effect. This model can be generated by adding a capacitor C, to the Thevenin

model. C'o indicates the changes in V. generated by the timely integration of load current
(Ir).

The PNGV model is represented as (2.8), where V¢, and Vi, are the voltage across
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Figure 2.8: Equivalent circuit PNGV battery model

C, and C), respectively :

Ve 0 0 Ve o
.640 — : Co + C’lo ]L
Vo] 10 monl Vel Lo
(2.8)
Ve,
V=1 1) | |+ Roli+ Ve
Ve

2.6 Battery Management System

In contrast to public batteries, electric vehicle batteries need special attention in terms of
safety since they produce a great deal of heat throughout the charge and discharge cycle,
as well as when they are subjected to high power consumption. Many variables contribute
to cell death include heat control, cellular equilibrium, and the proper chemical selection

amongst others.

Generally, a Battery Management System (BMS) is an electronic system that manages
a cell or pack of rechargeable batteries by monitoring the battery, reporting the data and
balancing it, charging and discharging control, and protecting the battery from being
operated outside of the Safe Operating Area (SOA). The SOA of batteries is limited by
the amount of current, voltage, and temperature applied to them [73]. The main operating
specifications of the BMS are shown in figure 2.9. Each of its functions is explained in

detail below, individually:

24



2.6. Battery Management System

Battery
Moni-
toring
Fault
Diag- Cell
nosis & Balanc-
Health ing &
Man- Equal-
age- ization
ment Battery
Man-
age-
ment
System
Model- (BMS)
ing & Ther-
State mal
Estima- Man-
tion(SOC age-
-SOH- ment
SOF)
Charge
& Dis-
charge
Control

Figure 2.9: The operating specifications of the BMS

2.6.1 Battery monitoring

In EVs, a chain of Li-ion battery cells in a pack is utilized. In order to safeguard the battery
pack from over/under voltage, over/under current, and charging/discharging outside of
a specified temperature range, the BMS can monitor the battery’s total voltage, total
current, and total temperature during operation of the battery.. Furthermore, because
each single cell can exhibit a wide range of behavior over time, battery cell monitoring,
such as voltage and temperature for each cell in the battery pack, is one of the most

challenging aspects of battery management systems |74].

2.6.2 Cell Balancing and Equalization

An imbalance in the charge levels of the cells is easily detected in the battery and shown
via estimates of the SOC. The balancing procedure is done by passing extra charge to

an undercharged cell or the other module/pack, or by moving needed charge to an over-
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charged cell from nearby modules/packs. A battery equalization control may prolong
the lifespan of the battery pack, reducing the likelihood of its batteries being damaged.
Yet, because of the enormous battery size and expense, it is hard to do things like the
monitoring and administration of each battery. For this reason, it is essential to have
an improved BMS to implement effective cell monitoring and charge equalization with a

basic design and control [75].

2.6.3 Thermal Management

Based on the temperature range of the battery cells, the BMS determines whether to
turn on heating or cooling to keep the battery pack above or below the minimum and

maximum working temperatures, respectively [76].

2.6.4 Charge and Discharge Control

The BMS regulates the current rate of the charger utilized in the battery charge procedure
to maintain the battery in SOA throughout the charge and discharge of the battery [77].

2.6.5 Modelling and State Estimation

Battery state estimation, such as State Of Charge (SOC), State Of Health (SOH) and
State of Function (SOF) can be computed by using the measured data. Calculating the
accuracy of SOH estimates is done via fault diagnostic data and the service life forecast.
The fault states, SOH, and SOC are all important factors that influence SOF. The effects

of aging factor, temperature variations, SOC range, and fault conditions are considered

in SOF.

2.6.6 Fault Diagnosis and Health management

Fault diagnosis is one of the most important tasks of the BMS, as it allows it to take
the necessary steps to minimize disruption to the battery pack’s functioning while also
protecting the battery. Factors contributing to battery pack failures include overcharging,

undercharging, internal short circuit, overheating, and ete. [78§].
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2.7 Renewable Energy For Charging the EVs Battery

Among the main renewable energy technologies being pushed by governments today are
solar PhotoVoltaic (PV) panels, which generate electricity from sunlight. The fact that
solar energy is provided by nature means that it is free and plentiful, and that it can be
made accessible nearly wherever there is sunshine is another advantage. Solar PV panels
have a very great future, both in terms of economic viability and in terms of environmental
sustainability. Photovoltaic panels generate clean energy and electricity in a direct power
production manner, and they are completely quiet in their operation. As a result, they
are an excellent choice for metropolitan locations as well as residential applications. PV

panels may be a cost-effective option for charging the battery in EVs [79, 80].

2.8 Discussion

This chapter reviewed briefly the history of EVs generations one of the best replacement
options for conventional engine cars. The Li-ion battery has several benefits over other
rechargeable batteries that may be attributed to the way that these types of batteries are
often used as the primary storage device for electric vehicles. The chemical mechanism
and theoretical modeling of Li-ion batteries were discussed. Additionally, the battery
management and monitoring system’s functionality is described in detail to enhance the
current Li-ion battery performance in EVs applications. The ability to control charge
and discharge, as well as protection, state estimation, energy storage, and measurement
are features of BMS that are used to help improve Li-ion battery performance inEVs

applications.
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3.1 Introduction

One of the significant issues of BMS is the SOC estimation of battery. The SOC of
battery is defined as the rate of the available capacity (Q;) to its maximum capacity

when a battery is completely charged (Qnom) [81]-

Q:

nom

SOC(t) = « 100% (3.1)

SOC = 100% and SOC = 0% indicate the battery is fully charge and fully discharge,
respectively. To date, various methods have been developed and introduced to SOC
estimation. This chapter discusses the existing methods of state of charge estimation for

Ti-ion batteries.

3.2 State Of Charge estimation Methods

The accurate and reliable SOC estimation can provide a necessary evaluation factor for
energy management and the control system’s optimal design in EVs. Consequently, several
methods have been suggested for SOC estimation. Figure 3.1 summarizes SOC estimation
methods that are separated into two main categories: direct methods and indirect methods

[13, 14, 82, 83]. Some of the essential SOC estimation methods are described below.

3.2.1 Direct Methods

When considering direct methods, an equation or a relationship is used to estimate SOC,
which is determined by the battery’s physical properties like current, voltage, and battery

temperature.
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3.2.1.1 Coulomb Counting estimation (CC)

The Coulomb Counting estimation method or Ampere-hour balancing method is the sim-
plest method for SOC estimation. Due to the fact that this technique is dependent on the
integration of battery current with respect to time as the battery charges or discharges,
it is critical to understand the initial values of SOC
The equation of the CC method is presented in Eq. (3.2):
to+t

SOC(t) = (SOC(to) + Ci nly(dt)) * 100% (3.2)

n Jig

Where SOC/(ty) is the initial values of the SOC and I, is the battery current. Also,

n and C), represent the discharged efficiently and the nominal capacity of battery, re-
spectively. Although this method is very simple to implement, it has some drawbacks,

including :
e The initial value of SOC can not be estimated with CC method.

e This method is an open-loop estimator, then the errors could be increased by un-

certainties or disturbance.

e The accuracy of estimation is reduced by aging the battery and destruction of the

battery static capacity.

12, 84, 85].

3.2.1.2 Open Circuit Voltage (OCV)

The Open Circuit Voltage is the battery voltage under the equilibrium condition. OCV
based estimation uses a relationship like (3.3) between SOC and OCV. Each type of
battery has a specific relationship between its OCV and its SOC. In other words, this
relationship is dependent on both the material and the capacity of the battery. Therefore,
it is defined as a nonlinear function, similar to the (3.3) in Li-ion batteries [86]. In addition,
as can be seen in figure 3.2 the OCV-SOC curve is changed by the temperature and current

discharge. Consequently, this function is dependent on temperature and battery aging
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187).
SOC = f~H0CV) (3.3)

This method needs a long time resting to estimate SOC, and as a result, it can not be
implemented in real time. Additionally, the OCV technique, like the CC method, is an

open-loop estimator, and consequently, it is not accurate against uncertainty.
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Figure 3.2: OCV wvs SOC(%) curve discharge profile of LiFePO, measured (a) under
Three temperatures and discharge current rate 1C, (b) at 25°C' and three discharge current
values.

3.2.1.3 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy is a helpful test technique for electrochemi-
cal systems. The Electrochemical Impedance Spectroscopy technique perturbs the sys-

tem by applying a small AC voltage as a function of various frequencies, and the bat-
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tery impedance is measured across a wide range of frequencies [88, 89]. The measured
impedance is a complex number consisting of a real component (Z’) and an imaginary

part (Z7), which may be expressed as (3.4):
Z=27+3i7" (3.4)

In [3], Wagg et al. demonstrated the dependency of the battery impedance on SOC,
temperature, short-time prior history, and current rate. The Nyquist diagram of a battery
impedance is depicted in figure 3.3, where the x axis and the y axis are the real part
and the imaginary part of the battery impedance, respectively. From this figure, it is
apparent that the battery impedance is more sensitive to temperature change, especially

at low frequencies. As a result, it is difficult to get an accurate SOC estimation [90].
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Figure 3.3: Impedance spectra of a Li-ion cell (a) at different SOC at 25°C' [3], (b)
at approximate 50% SOC and different temperature, the point in (b) shows the 1Hz
frequency [4]

3.2.2 Indirect Methods

Due to direct methods needs enough rest-time to monitor SOC, they cannot be applied

while the vehicle is moving. As a result, and in order to overcome the uncertainties
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associated with open-loop SOC estimate methods, adaptive-based algorithms are widely
investigated during the last several decades. Indirect approaches based on operational
adaptive techniques propose a method for estimating SOC from battery input signals by

using a model of the battery or system specification.

3.2.2.1 Kalman Filter Based Methods

Since early 20" century, several studies are suggested the Kalman Filter (KF) based
methods for SOC estimation [91, 92, 93]. In the context of a linear dynamic system,
Kalman filtering is an algorithm that generates optimal state estimates from a series of
measurements involving error over time [94]. The KF algorithm is represented by the
Algorithm 1, in which, A, € R™", B, € R™™ (C} € R?™ and D, € R?*™ are constant
matrices, with condition 1 < m,q < n. u; € R™ is a known deterministic input, w; and v
are the n-dimensional unknown system noise vector and ¢-dimensional observation noise
vector, respectively , which are associated the white noise process with known covariance.
Additionally, P;, € R™" is defined as the error covariance matrix.

The KF estimator for SOC based on linear state space battery model are revealed in
[95, 96, 97|. Since the Li-ion batteries have a nonlinear model, The EKF is widely used
for SOC estimation [91, 98, 99| .

The EKF operates on the principle of linearization of the nonlinear model, where
at every time step of the state estimation, the dynamics of the nonlinear system are
linearized from the estimated data using the partial derivatives and first-order Taylor
series expansion. The algorithm of EKF is shown in Algorithm 2, where, fx,u)
and g¢(xy,u;) are the nonlinear state transition functions and nonlinear measurement

functions, respectively.
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Algorithm 1 Kalman Filter algorithm

Linear state-space system model:

Xpy1 = ArXp + Brug + wy,

Vi = Cpxp + Dyuy, + vy
Covariances of the two noise model:

Q,, = E[wywy]

R, = E[vyv!]
Initialization:

&g = E[x]

Py = E[(xo — &g )(xo — ¢ )]
Computation:

for k=1,2,... do
j\j]: = Ak’—l‘%ljfl + Bk_luk_l {State estimation time update}

Pk_ = Ak—IP]:_A%Ll + Qw {Error covariance time update}

Kk = Pk_CkT[CkPk_C,? + RU]T {Kalman gain matrix}

= & + Kl — ] {swe o }
= Ty k| Yk Yk| 1 State estimate measurement update

P]:' = (I — Kka)Pk_ {Error covariance measurement update}
end for
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Algorithm 2 Extended Kalman Filter algorithm

Non Linear state-space system model:

Xpy1 = f(Xk, Ug) + Wi
Y = 9(Xp; up) + Vi
Co-variances of the two noise model:
Q,, = E[wywy]
R, = E[vyvi]
Definitions:

A—k — af(Xk,le)

axk

Xk:)ACZ_
A~ Og(xk,uk)
Ck - 8Xk

Xk:}A(;

Initialization:

At
Ty = Elz]

Py = E[(zo — #¢) (0 — 37)"]
Computation:
for k=1, 2, ... do
&y = (&7 |, up—1) {State estimation time update }
P = /lk_lp,j AT | + Qy, {Error covariance time update }
g = g(2),ux)
Kj, = Py COF[CLP7CT + R,)" {Kalman gain matrix}

‘%2— = [ﬁ]; + Kk [yk — gk] {State estimate measurement update}

Pl:r = ([ — chk)P]; {Error covariance measurement update}
end for
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The schematic of the nRC Electrical Equivalent Circuit Models (EECM) which is
generally used in EKF-based methods for SOC estimation, is illustrated in figure 3.4.
The equations of these models for 0 < n < 4, and PNGV model are listed in table 3.1
[100].

I
- Kk Ry Ry
_/\/\/\/_

A [ :
Ro ] ] —

i C, C, Co
0cV == Vi
0

Figure 3.4: Equivalent circuit nRC battery model

Table 3.1: The Li-ion model equation base on OCV and SOC

number of n Model name Model equation

1 1RC(Thevenin model) Vi, = OCV (Zy,) — IRy + uy

2 2RC (DP model) Vk = OCV(Zk) — IkRo + Ui,k + U2 k

3 3RC Vk = OCV(Zk) — IkRo + Ui,k + U2,k + U3 k

4 4RC Vk = OOV(Zk)—]kR0+U1’k+u27k+U37k+U4’k
- PNGV Vk = OCV(Zk) - ]k;RO + Uy k + Uceb, k

In table 3.1, Zj, explains the relationship between OCV and SOC. Also, u, ; and e g

are described by equation (3.5):

U = exXp(—At/7,)un k1 + B[l — exp(—At/7,)| 1k
(3.5)

1
Ueh k= Uchk—1 + 531[1 — exp(—At/7)|I;
b
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In application of SOC estimation Xy, y, and uy are defined as (3.6):

X = (SOCk, Uk, Ug ks vy Un k)
Yi = OCV(Zi) = Y uir — Roly + v (3.6)
=1

uk:Ik

The positive aspect of the KF-based method is the accurate state estimation versus
external disturbances. Despite this, KF-based estimator requires a complicated compu-

tation to be applied to the state estimate of a nonlinear system [101].

3.2.2.2 Artificial Intelligence Based Methods

Because of the Li-Ion batteries have a nonlinear and complex model, in recent years, the
Artificial Intelligent methods such as Fuzzy Logic, Neural Networks (NN) and Support
Vector Machines(SVMs) are considered for SOC estimation [29, 27, 102, 25, 103]. These
methods are known as data-based estimators, and they operate similarly to a black-box

model using known input data.

3.2.2.2.1 Fuzzy Logic Methods

Fuzzy Logic (FL) is a knowledge-based method introduced by L.A. Zadeh that is
similar to the way humans reason [104]. The FL approach simulates the human decision-
making process by considering all possible intermediate states between the digital values
of "yes" and "no". FL is an appropriate data-based algorithm for nonlinear and complex
models.

FL system consists of a fuzzifier, a fuzzy rule base, a fuzzy inference engine, and a

defuzzifier. The fuzzy rule bases includes a collection of If-then rules, such as following:

R . IF{xyis Fl and... and z,, is F.} THEN yis G', 1 =1,... M (3.7)
That X = [z, 7,...,2,]7 € U is the input and y € V is the output of FL system. F}
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and G' are fuzzy sets in U; and V. The mapping from input sets to output is performed
with a inference engine. Moreover, the fuzzifier maps a crisp point from X into fuzzy set
in U and defuzzifier maps fuzzy sets in y to a crisp point in V. Figure 3.5 shows the
diagram of FL system.

Villanova University worked on the implementation a three-input single-output Sugeno
fuzzy model for SOC estimation by impedance parameters [105, 106]. Singh et al. de-
veloped a FL-based SOC estimator in application of portable defibrillators, which was
published in [107]. In this estimator the fuzzy rule based were generated from voltage
recovery measurements and ac impedance of the battery as input fuzzy set, and SOC as
output fuzzy set. More recent attention has focused on the applied fuzzy logic to estimate

SOC by combining other methods. This is covered in more detail in the section Hybrid

methods.
Crisp Input Fuzzy Input set Tororr Fuzzy output set Crisp Output
g nterrace o
m==lp  Fuzzifier . Defuzzifier
Engine
Data Rule
Base Base
Knowledge Base

Figure 3.5: Block diagram of Fuzzy Logic System

3.2.2.2.2 Neural Networks-Based Methods

Neural Networks (NNs) are a series of intelligent computational algorithms inspired
by the human neurons system. Numerous studies have attempted to estimate SOC by
Feed Forward NNs [108, 109, 29, 110]. The common structure of feed forward NNs is
illustrated in figure 3.6. Fach NN contains at least three layers: one Input layers, the
Hidden layers that can more than one layer, and one Output layer. The number of nodes

in input layer is equal to input variable.
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Jansen et al. [111] are proposed a Back-Propagation Neural Network (BPNN) based
on measured impedance and frequency measurement for SOC estimation. They were
successful in increasing the accuracy of error estimates on batteries that were becoming
older. Also, an NNs model with four variables in the input layer (Voltage, current,
temperature and the battery’s resistance), one hidden layer with 30 node and SOC as an

output layer is presented in [112].

X P PR
X2 ™ P
s
A  soc
———
Xn-1 P P
B
X5 P /-\
e
Input Layer Hidden Layer Output Layer

Figure 3.6: Block diagram of Neural Network System

NNs algorithms, despite the fact that they are self-learning and model-independent,
are not capable of providing great accuracy. In order to get high accuracy using NNs
algorithms, it is necessary to combine this technique with filtering algorithms such as KF.
According to [29], the Max SOC estimate error by the NNs method was 2.5%, whereas this

value dropped to 0.5% when the NNs was used in conjunction with the UKF algorithm.

3.2.3 Hybrid methods

In recent years, researchers are looking into hybrid algorithms as a means of improving
the accuracy and efficiency of estimation approaches. It was tried by the authors of [113|
to reduce the chattering of SOC estimations by employing a FL system in conjunction
with a sliding mode controller. In [114], estimation of time-varying dynamic systems

is accomplished by the use of a mixture of the EKF and CC techniques. According to
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[115, 116], a hybrid intelligent algorithm composed of Fuzzy Logic and adaptive Neural
Networks, which is known as ANFIS, is proposed.

3.3 Discussion

The various techniques of SOC estimation, as well as the difficulties associated with them,
are discussed in this chapter. Table 3.2 contains a comparison of several techniques
with an emphasis on their benefits and drawbacks. SOC estimation using deep learning
algorithms is a relatively recent subject in the field of machine learning. In this thesis,
three deep learning algorithms based on Deep Recurrent Neural Network (DRNN) are
suggested as a method for SOC estimation in the EVs, taking into account the advantages
and limits of prior work. Following the application of these techniques to a single cell
of a Li-ion battery, the Bidirectional LSTM model is utilized for SOC estimate of the
battery pack in Tesla’s electric vehicle. A battery’s nonlinear model requires complicated
mathematical computations, especially in a battery pack. As a consequence, using data-
driven techniques is becoming more essential. Furthermore, while comparing samples NNs
and FL, it is shown that DRNN provides superior results and higher accuracy without
the need of filters. Increased depth of networks aids in improving the accuracy of the

approximation of the nonlinear model system.
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Table 3.2: summary of SOC estimation methods with the advantages and disadvantages

Methods

Advantages

Disadvantages

CC

oCcv

EIS

KF

EKF

UKF

Hoo

RLS  (Recur-
sive Least
Square)

NN

FL

Hybrid Meth-
ods

Easily implemented

Low Power consumption

Sample and easy to implement

high accuracy

Online method

inexpensive

High Accuracy state estima-
tion versus external distur-
bances

Predicts a non-linear dynamic
state with good precision

Not needed to Jacobian matrix
and gaussian noise

Good accuracy

Time efficiency

Satisfactory
cost

computational

high precision

noise reduction in the mea-
sured voltage

Independence of battery model

work well in nonlinear system
modeling

good performance against
temperature
Low cost

improve the efficiency

Low accuracy against uncertain disturbances

High dependency to initial values of SOC

Need long rest time to reach a stable condition

Not suitable for online test

High dependency to temperature

Not practical for EVs which charging with dif-
ferent current

Highly dependent on the model and sensor
precision

Has complex mathematical calculations

Not suitable for nonlinear system

Not proper for system with highly non-linear
Have limitation in linearization accuracy from

jacobian matrices

‘Weak robustness owing to uncertainty and dis-
turbances in modeling

Non-linear constraints are not well-handled

Deviation from accuracy by aging, hysteresis
and temperature

Heavy computation

Unstable operation if the forgetting values fac-
tor is not appropriate

require a large training data set and memory
storage

computational complexity

Difficulty level of implementation
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4.1 Introduction

Recurrent Neural Networks (RNNs) are a type of deep learning methods created in the
1980s [117] yet widely used only in the last few years. These types of neural networks are
beneficial for serial or sequencing data.

In RNNs, each neuron or processing unit can manage its internal state or memory
to maintain the previous input information. This feature is critical in many applications
related to serial data. The main idea behind this type of architecture is the exploitation of
this series structure. The name of this neural network is derived from the fact that these
types of networks operate recursively. An operation is performed for each element of a
sequence (word, sentence, etc.), and its output depends on the current input and previous
operations [118]. It means the output at time t is achieved by combining the output
network at t — 1 with the new network input at time t. With these cycles, information
can be passed from one step to the next step. In other words, these types of networks have
a loop within themselves, which they can pass information through the input of neurons.

The structure of RNNs is shown in figure 4.1, where the black square represents the

time delay at each time step.

0, 0,4 0, 03 0,

ws wsy w3 W3 Ws

ho
w, h, W,

h,

W,

W,

W, Wy Wy Wy

X1 X2 X3 Xt

Figure 4.1: The structure of a Recurrent Neural Network for n inputs.

The network’s operation is completely understandable when the chain formed after
opening this computational graph is viewed. Now, this is an architecture that can receive
different inputs x; and generate o, outputs at each time step. It also contains a memory
state h; that maintains the information about what happened on the network until the

time (t). Wi, Wy, and Wj in figure 4.1 indicate the weights of input neuron, recurrent
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neuron, and output layer, respectively.

In this chapter, three Deep Recurrent Neural Network (DRNN) algorithms for esti-
mating SOC are argued. Theoretically, RNNs should have the ability to use previous
data for estimation of any future one. In practice, however, this is not the case, and with
expanding the sequence, traditional RNNs are unable to learn the information. For this
reason, the use of RNNs was stopped for a while until outstanding results were obtained
using the long-term and short-term memory unit (Long-Short Term Memory (LSTM))
in the neural network. Unlike traditional RNNs, LSTMs are not in trouble in dealing
with long sequences, using a designed mechanism. Additionally, in [119], Chung et al.
introduced a new gating mechanism in RNNs. The Gated Recurrent Units (GRUs) is
an improved version of standard RNNs. GRUs uses two gate units to decide between

beneficial and not functioning data.

4.2 Long-Short Term Memory Algorithm

LSTM, in fact, emerged in 1995 to improve RNNs in dealing with sequential data, and
solving the problem of the disappeared gradient phenomenon [120]. Sepp Hochreiter et
al. [120] explain that “long-term memory” in LSTM refers to acquired weights and “short-
term memory” represents internal cellular states. The major change in this network is
replacing the hidden layer of the RNNs with a block called the LSTM block and its most
incredible feature is the ability to learn long-term dependencies that are not possible
using RNNs [121]. To predict the next step, one needs to update the weight values on
the network, which requires maintaining the initial step’s information. An RNN can only
learn a limited number of short-term relationships, but long-time series such as 1000
steps are not considered by the RNNs, while LSTMs can properly learn these long-term
dependencies.

All RNNs are in the form of repetitive sequences of neural network modules (units).
In standard RNNs, these repeatable modules have a simple structure: for example, they
only contain a hyperbolic tangent (tanh) layer. But in LSTM, instead of only one layer,

four layers communicate in a special structure.
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In figure 4.2, x; is the input, h; is the output of the LSTM unit at time ¢, and h; 4
is the output of the previous LSTM block.

Xt

————— —————

.5

N o -

B —

hy

Figure 4.2: Long Short-Term Memory block. x; is the input, h; is the output of the LSTM
unit at time ¢, and h;_; is the output of previous LSTM block.

The initial phase in the LSTM is deciding what information should be discarded from
the cell state. This decision is made by a sigmoid (o) layer, shown in Equation (4.1),
called the forget gate layer (f;). The next step is deciding what new information has to
be save in the cell state. This decision contains two parts. First, a sigmoid layer called
the input gate (i;) decides which values will be updated with Equation (4.2). The next
step, represented in Equation (4.3), is a tanh layer that makes the vector of values called
"memory cell" (C}) that could be added to the state cell. By combining these two steps,
the state cell (h;) can be updated within the next step. Finally, it must be determined
what information is to be transmitted to the output (O;). This output will be based
on the state cell, however, it will pass via a specified filter. The formula for LSTM are

expressed below.
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)

ht = Ot * tanh(C’t
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Where the initial values of C; and h; are Cp = 0 and hy = 0. Wy, W;, Wy, W, are
respectively the weights of the forget gate, input gate, memory cell, and output gates,
and by, b;, 04,0, are the associated biases. The gate activation function and the output
activation function are shown by o and tanh, which are defined in the Equations (4.6)

and (4.7), respectively.
1

= T+ ex(—a) 0

o(z)

_exp(x) — exp(—x)
tanh(x) = oxp(z) T oxp(—2) (4.7)
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4.3 Bidirectional LSTM for SOC Estimation

Bidirectional LSTM (BiLLSTM) networks include two hidden layers, which are coupled
to one output and have opposite orientations. The first hidden layer is in the forward
direction of the input sequences from time t—1 to time 7', and the second is in the opposite
direction of the input sequences from time 7" to time ¢t — 1. The output layer is generated
by the combination of the output of the forward direction, E), and the backward direction

output, E, as shown in equation (4.8).

g = o(hy, hy) (4.8)

The unfolded BiLSTM architecture is illustrated in figure 4.3.

yt—l )A)t 5}!+1 yT
Output Layer oot
Activation Layer T o o a

V.

Backward Layer

il okl

LSTM LSTM <«— LSTM
Forward Layer ‘ ‘ ‘
Input Layer oo
Xt—1 Xt Xt+1 Xr

Figure 4.3: Structure of unfolded BiLSTM network. x; and v; represent the input and
output variables at time ¢, respectively. o is the activation function for combining the
output of forward layer and backward layer.

The BiLSTM network proposed in this thesis for SOC estimation contains one input
layer with three variables, a BiLSTM hidden layer with n units, an LSTM hidden layer
with m units, and a single variable output layer. The structure of the proposed BiLSTM

is depicted in figure 4.4. The input vector and output variable at time ¢ are denoted by
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4.4. LSTM Algorithm for SOC Estimation

x; = {V;, I, T;} and SOC,, respectively.

Output Layer

LSTM Layer Ly L, Ly e L

T ————
BiLSTM Layer Ny N, N coe Ny,

Input Layer v, I T,

Figure 4.4: BiLSTM architecture for SOC estimation with two hidden layers. The first
hidden layer is a BiLSTM layer with n units and the second one is a one directional LSTM
with m unit. z; = {V;, I;, T;} and g, = SOC, represent the input and output variables at
time ¢, respectively.

4.4 LSTM Algorithm for SOC Estimation

In this inquiry, an LSTM structure is used for the SOC estimation of a one-cell Li-ion
battery with voltage (V), current (I), and temperature (T) as input variables and the
SOC of the battery as the output. The whole structure is depicted in figure 4.5 for
implementation on multiple GPUs. Three LSTM networks are used for the inputs. In
fact, each input variable contains two hidden layers with £ and [ LSTM units, respectively,
which work in parallel on three GPUs. The concatenation of these layers is realized to
regularize the output with a dense layer, which is a linear operation that relates every

input to every output with the following equation:

SOC, = Wh,+b (4.9)

where W and b are defined, respectively, as the weight matrices and biases of full
connected layers. To implement this method and the mathematics operations, Tensorflow

framework is used.
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The flowchart of this program is shown in figure 4.6.

[\l Voltage Layer [\n | Current Layer [\l Temperature ...
{ sequencelnput “l sequencelnput “‘ sequencelnput
LSTM1 (128) LSTM2 (128) LSTMS3 (128)
IstmLayer IstmLayer IstmLayer
LSTM4 (8) LSTM5 (8) LSTM6 (8)
IstmLayer IstmLayer IstmLayer
concat
“ concatenationL
Dense
fullyConnected

Figure 4.5: The proposed structure of the LSTM model for the SOC estimation.
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Figure 4.6: The flowchart of RoLSTM algorithm for SOC estimation.
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4.5 Gated Recurrent Units for SOC estimation

In comparison with other RNNs, GRUs has a simple structure, and is robust against

vanishing gradient. The structure of GRU block is depicted in figure 4.7.

Xt

Figure 4.7: Gated Recurrent Unit block. o is the gate activation function, tanh is the
output activation function, and h;_; is the output of hidden layer node at previous time.

The GRU block contains two gates: the update gate and the reset gate. The update
gate, z;, controls how much of the previous information is relayed to the future. r; is
the reset gate, which selects what the past information to forget based on its value. The

equations of the GRUs method are presented in equation (4.10).

2t = U(szt + Uzht—l + bz)

Ty = O'(W,Jl?t + U'rht—l + bT)
) (4.10)
ht = tanh(WﬁL’t +7r© Uht_l + b)

ht:(l—zt)th—l‘i'Zt@ﬁt

Where, W,, W, and W are the three connection weight matrices for inputs. U,, U,
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and U are the weight matrices for the output of the hidden layer node at the previous
time, and b,, b, and b are the bias parameters. © is used to calculate the Hadamard
(element-wise) product. h, expresses the current memory content, and h;_; is the output
of the hidden layer node at the previous time. ¢ and tanh represent the gate activation
function and the output activation function, respectively, determined by the following

equations:
1

o(x) = FRrapn (4.11)

_ exp(a) — exp(—a)
tanh(z) = oxp(2) T exp(—2) (4.12)

The proposed Adaptive GRUs network in this work for SOC estimation, uses the
voltage V,, current I; and the temperature T; of the battery as the input variables, and
the SOC of the battery SOC; as the output of the network at time step ¢t. The structure
of the GRUs network for SOC estimation is shown in figure 4.8. This network contains
two hidden layers with k and 1 units. Hence, in figure 4.8, h} (k) represents the k' unit of
the first hidden layer, and h2(l) is the {"* unit of the second hidden layer at time t. For
the regression output, a Dense layer is used.

Here are the steps for implementing the GRUs technique of estimating SOC:

1. Normalize the dataset after dividing it into training and validation datasets. The

dataset consists of input and output variables.
2. Set the input layer parameters, hidden layers units, and output layer parameters.
3. Define the activation functions, loss functions and optimization methods.

4. Configure the evaluation function and train the GRUs. The network parameters

will be self-learned because GRUs is a self-learning approach.
5. Validate the GRUs network with the validation dataset for SOC estimation.

This method is implemented with Tensorflow framework in Keras library.
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N Output
Input layer hidden hidden Iaer

Figure 4.8: Structure of the developed Adaptive GRU network for SOC estimation. V;,
I; and T; represent the Voltage , Current and the Temperature at time t, h}(k) is the k¥
unit of first hidden layer and h?(l) shows the [ unit of second hidden layer at time ¢

4.6 Optimization Algorithms

The deep learning algorithm’s primary goal is to develop a model that achieves high
performance and makes accurate predictions. The weights and biases of the network
must be updated on a regular basis in order to keep the system losses as low as possible.

Following the transfer of training data to the network, random values are used to
determine the initial values of system weight and bias, which are then used to start the
training procedure. By activating the units in each layer, the result is passed to the next
layer to generate the SOC estimation in the output layer. The system loss function is
determined after comparing the estimated value to the true value. Utilizing this value,

as well as an appropriate optimizer to minimize the loss function, the new weights and
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biases are computed. In order to prepare for the next training session, these values are
returned to the units inside the network layers. Two optimization algorithms are used in

this work, which are described in further detail below.

4.6.1 Adaptive Moment Estimation (Adam) Algorithm

Adaptive Moment Estimation (Adam) is an adaptive learning rate optimization method
that works with first-order gradients and is based on the concept of learning rate opti-
mization. More specifically, estimations of the first and second moments of gradients are

utilized to compute adaptive learning rates for each weight parameter.

Algorithm 3 Adam algorithm. Default setting for parameters are o = 107, 3; = 0.9,
Ba = 0.999 and € = 1078,

Require: a: Learning rate

Require: 31, 3> € [0,1): Exponential decay rates for the moment estimates
Require: L(W): Loss function

Require: Wj: Initial parameter vector

mo = 0 (Initialize first moment vector)
vo = 0 (Initialize second moment vector)
t = 0 (Initialize timestep)

while stopping condition is not achieved do
t=t+1

gt = VLW(VVt—l)
my = Prme—1+ (1 — 1) g
v = Povp_y + (1 — ﬁ2)gt2

A m
my = 17511&
N v
bt = 1—é2t
— o
Wt = Wt,1 — mthre

end while
return W,

In Algorithm 3, L is the loss function that is evaluated under Mean Square Error

with (4.13):
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I =
t=0

(SOC, — SOC,)? (4.13)

S|

where n is the number of data points, SOC; and SOC, are measured and predicted

capacity of battery at time step t, respectively.

4.6.2 Robust and Adaptive Online Optimization method

A Robust and Adaptive Online Optimization Algorithm (RoAdam) is proposed in [42]
to train the system and adjust the network’s weights and biases. RoAdam is depending
on gradient and the squared gradient. The algorithm of RoAdam is described in (4.14).
n = 0.0005 is the training step size, 1 = 0.9 , B2 = 0.999 and [3 = 0.999 are exponential
decay rates, W, is the weights vector of the model in time step ¢ and ¢ = 10~% is a constant.
The initial values of the first moment of the gradients, m;, and the second moment of the

gradients, v;, are zero. r; is defined as a relative prediction error term of the loss function.

gt = VLW(Wt—l)
my = Brme—1+ (1 — 1) gt

v = Pov—1 + (1 — 52)97&2

~ my
my = ——
1—-75
) o (4.14)
Vp = —
1

e = [|[L(Wi—1)/L(W;-s)||

dy = Bady—1 + (1 — B3) ()

.
Wy = Wiy — iy
' T A+ €

L is the loss function that is calculated considering (4.15):

1< .
L= EZ]SOQ — SOC,| (4.15)

t=0

where n is the number of data point, SOC; and SOC, are respectively actual and
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predicted values of state of charge at time step .
To guarantee the stability of the relative prediction error, a threshold is intended for

re. Then r; will be changed as (4.16).

min{maz{k, |L(We) /LWL K}, LW 2 [Z(Wiss)]
r = (4.16)

min{maz{1/K, || L(W;_1)/L(W;_2)||},1/k}, Otherwise

Where, k=0.1 and K=10 are the lower and upper thresholds, respectively.

4.7 Data Preprocessing

Since deep learning methods are defined as data-base techniques, data is just as important
as the model algorithm in terms of performance. In reality, when deep learning models are
trained with relevant, accurate, and adequate data, they may perform exceptionally well.
As a result, data preparation is an extremely crucial step before constructing a model.
Normalization is essential due to the differences in the ranges of voltage, current, and
temperature, all of which are included in the input data for the SOC estimation. Data is

normalized in the range[—1,1] using the following formulas for the input:
T = [((Zraw — Tmin)/ (Tmaz — Tmin)) * (Mmax —min)| + min (4.17)

In (4.17), the minimum and maximum values of input vector z,, are shown by z,,,
and x4, respectively. In addition, max equals 1 and min is —1. To scale the testing
dataset, the maximum and minimum values of training inputs must be used.

Moreover, the input datasets for the LSTM and GRUs should be three-dimensional
(3D), as stated by the definition (Samples, Time steps, Features).

Samples indicate the number of sequences, Time steps symbolize the number of ob-
servations in each sample, and Features represent the number of features for each element
in the samples. The input datasets must be normalized and converted to a 3D array for

utilization as a network input during the preprocessing step. Another parameter that
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must be properly adjusted in time series data preprocessing is the sample frequency. The

sampling rate of raw data is set to 1Hz in this case.

4.8 Hyperparameters Tuning

Hyperparameters are defined as parameters that control the training process. They are

comprising two parts:

e Model-specific hyperparameters: including network structure variables, like number

of layers and number of units in each layer.

e Optimization hyperparameters: the associated variables with the optimization and

training process, such as learning rate and batch size.

In general, there is no clear method for determining the right number of layers and units
inside them. A trial-and-error approach is usually employed to determine the ideal model
structure in these cases. The deeper learning capacity is required for more complicated
functions. In this case, we start with one hidden layer and 64 units in it. Training loss

data from varying the number of layers and units are given in the following chapter.

4.9 Discussion

Since battery discharge is a time series and sequential process, RNNs are more suited
to estimating SOC than other data-driven algorithms. This chapter was presented new
DRNN-based algorithms for SOC estimation in Li-ion batteries. The structures of BilL-
STM, LSTM, and GRUs estimators have been explained. More gates in the hidden units
of these algorithms allow them to overcome the issue of the vanishing gradient in the sim-
ple DRNN. Moreover, The BiLSTM is able to manage long-term relationships from both
the previous and the future directions. This feature allows it to learn more sequential
data and improves estimate accuracy. The results provided in the next chapter depict the

performances of these methods for one cell Li-ion.
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Chapter 5. Fxperimental results for State of charge Estimation of one cell Li-ion Battery

5.1 Introduction

In this Chapter, the experimental results to evaluate the SOC of single cell Li-ion battery
by the BiLSTM, the RoLSTM, and the GRUs algorithms are presented and examined in
detail. All programs are developed in Python by using Tensorflow and Keras libraries.
Three Nvidia Tesla 100 GPUs from the Strasbourg University Computing Centre are
employed for the learning process. GPU is a great tool to speed up a deep neural network
data pipeline. The large number of cores in GPU improve processing power. Also, In
contrast to CPUs, which have limited memory bandwidth, GPUs are capable of moving
much greater amounts of information over the same time frame (as much as 750GB/s
compared to only 50GB/s for CPUs). One of the greatest advantages of GPUs is their
potential for parallelism, and this capability means you can use them in a variety of ways,
including combining them in clusters and distributing jobs throughout the cluster. As a
consequence, the Strasbourg University Computing Center helps us in using more data for
system training and defining bigger sequences in each batch to improve system accuracy.

For the BiLSTM estimator, the impact of the number of hidden layers and units is
discussed in detail. Furthermore, all of these algorithms are implemented at changing

temperatures, which is an essential aspect of them.

5.2 Battery Specification and Experimental Conditions

To apply our methods, the database related to the Panasonic 18650PF Li-ion battery
is used. The Panasonic 18650PF Li-ion battery is employed in some Tesla EVs. This
database was created by McMaster University in Ontario (Canada) [122]. The battery
parameter specifications are listed in Table 5.1.

Panasonic NCR18650PF cell discharge datasets are generated from various standard
drive cycles in the United States, including the Los Angeles 92 (LA92), Supplemental Fed-
eral Test Procedure Driving Schedule (US06), Highway Fuel Economy Test (HWFET),
and Urban Dynamometer Driving Schedule (UDDS), with a variety of current steps

and temperatures. Figure 5.1 presents the drive cycle power profiles of the Panasonic
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NCRI18650PF cell for different drive cycles. The negative power represents the discharge
power, whereas the positive power represents the charge power. The current, voltage, and
capacity of battery for a sample drive cycle utilized in the training process are illustrated

in figure 5.2.

Table 5.1: The specification of the Panasonic 18650PF battery parameters

[tem Specification
Capacity Min.2750mAh
Typ.2900mAh
Nominal voltage 3.6V
Min/Max Voltage 2.5V /4.2V
Charging CC-CV, Std. 1375mA, 4.20V, 4.0 hrs
Temperature Charge and Discharge: 0°C' to 45°C'

Discharge: —20°C to 60°C

Storage: —20°C' to 50°C'
Energy density Volumetric:577 Wh/1

Gravimeteric: 207 Wh/kg

In this study, the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Maximum Error (MAX) are used to evaluate the performance of the suggested network
for SOC estimation. The MAE, RMSE, and MAX are calculated using equations (5.1) -
(5.3), respectively.

1 < .
MAE = E;woa — SOC,| (5.1)
n 1 R
RMSE = ; \/ ~(S0C, = S0C,)? (5.2)
MAX = max |SOC; — SOC| (5.3)

where SOC; and SOOt are shown the measured value and the estimated value at

timestep ¢, respectively. As well as, n is the number of data point in the sequence.

63



Chapter 5. Fxperimental results for State of charge Estimation of one cell Li-ion Battery

067 1e soseyd Suryse) pue 3ururer) oY) 10J pasn sajgoad
LAMH (P) ‘26VT (°)'sadn (4) ‘908N (&) 105 06T prog Jo yoed £1091%q Jo [[90 U0 & 10} s19M0d AL VAL OYJ, 1[°¢ dNTL]

(s)awirL
0005 000 000€ 0002 0001 0

—

01—

"
p——
e
"
P
—
———
p—

o
(M)d1amod

) 0c
p
000S 000% 000€ 0002 0001 0
| | |
0Z—
01—
o
Hy b
! ! ot 2
L Y (LA 11/ I i AN o I SR z
! 0c¢
og
()
000S 000 000€ 0002 000T 0
0Z—

N _ N _ I, | T .

il Al i | \l )
:.:FL&}_EL LA L:L,___,_;T;__HL__ LU ..r._t__:P:L_fE, LUILMALL _L::,T;E_H_Er? o w

_.___ _ | _.___ _ | et _ | ot

Q)
0005 000% 000€ 0002 0001 0
| _ | | ov—

| oe- 3
H
o S

| I | | | | 0z

(e)

64



5.2.  Battery Specification and Experimental Conditions
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Figure 5.2: The (a) Current, (b) Voltage, (c¢) Capacity of battery for train drive cycle at
25°C, 10°C'" and 0°C' ambient temperature
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5.3 State Of Charge Estimation By BiLSTM method

For train datesets of Panasonic NCR18650PF cells, up to eight drive cycle sequences in
three distinct ambient temperatures (25°C, 10°C, 0°C') are combined. For the validation
dataset, a drive cycle created by a random mix of US06, HWFET, USDDE, and [LA92
drive cycles is utilized. Since the sampling frequency was set to 1Hz, the length of each
sequences was approximately among 4000 and 10,000 time-steps, resulting in a training
dataset with more than 100,000 time-steps. It is not feasible to implement a network
with a time-steps equal to this length sequence. Hence, the dataset is split to shorter

sequences. In this work, the different time-steps between 500 to 10,000 were tested.

The results of SOC estimation by BiLSTM models are described in this section. As
mentioned in the previous chapter, The input vector is identified as x, = {V/(t), I(t), T(¢)},
where V (t), I(t), T(t) are the voltage, current and temperature of the battery at time ¢,
respectively. Furthermore, the proposed model structure is explained in Section 4.3, and
the Adam optimization method is used for learning the system. To evaluate the effect
of the number of hidden units (N, ), and number of hidden layers (L) on the estimated
performance, BILSTM was developed with different hidden layers and hidden units. The
times-step is set to 10,000, and the learning rate is chosen at 10~*. Additionally, to
overcome the over-fitting, Early stopping method is used. With Early stopping, the
training process stops while the validation loss begins to increase after several iterations.
To achieve accurate estimation, each suggested network is learned 10 times. The MAE,
MAX, and RMSE performances reported here is obtained from the average results of ten
training. Figure 5.3 compares the estimation accuracy for N, = {128,256,512,1024} at
25°C" ambient temperature. When N, increases to 512, the MAE and RMSE decrease to
0.60 and 1.02 at 25°C , respectively. However, an overgrowth of IV,, can cause overfitting
and reduce the accuracy of SOC estimation. This effect is visible in the MAE and RMSE
values reached by N,, = 1024. These results are presented in more detail in the Table 5.2
at 25°C' and 0°C'. As can be seen, the best performance is reached by N,, = 512. Also,
the validation loss function for N, = {128,512} at 25°C' ambient temperature are shown

in figure 5.4. It is clear that larger number of NV, makes system converge faster to good
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performance.
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Figure 5.3: Comparison of SOC estimation performances regarding to number of hidden
units at 25°C" ambient temperature.

Table 5.2: SOC estimation accuracy by BiLSTM methods with different number of hidden
units.

. . . T °
Number of hidden units Test case evaluation emperature (°C)

25 0
MAE(%) 0.87 1.31

128 MAX(%) 4.1 4.9
RMSE(%) 1.3 1.54

MAE(%) 0.75 1.10

256 MAX (%) 4.07 43
RMSE(%) 1.20 1.23

MAE(%) 0.60 0.81

512 MAX (%) 3.2 4.01
RMSE (%) 1.02 1.08

MAE(%) 0.7 0.94

1024 MAX (%) 3.5 5.02
RMSE(%) 1.15 1.35
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Figure 5.4: Validation loss function for network with 512 hidden units and 128 hidden
units.

Figure 5.5 and figure 5.6 depict the SOC estimation and the SOC error, which is
defined as the difference between the SOC measurement and the SOC estimation, for

network with N,, = 512 at 0°C' and 25°C ambient temperature, respectively.

(a)

100 A

75 1

SOC(%)

50 A

25 A

0 1000 2000 3000 b4000 5000 6000 7000

SOCerror(%)
N

0 1000 2000 3000 4000 5000 6000 7000
Time(s)

Figure 5.5: (a) SOC estimation and (b) error estimation by BiLSTM network with 512
hidden units for a drive cycle mix of US06, HWFET, USDDE and LA92 at 0°C.
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Figure 5.6: (a) SOC estimation and (b) error estimation by BiLSTM network with 512
hidden units for a drive cycle mix of US06, HWFET, USDDE and LLA92 at 25°C.

Table 5.3: SOC estimation accuracy by BiLSTM methods with two hidden layers.

[e]
Number of hidden layers Test case evaluation Temperature (°C)

25 0
MAE(%) 0.76 1.13
256-16 MAX (%) 3.8 415
RMSE(%) 1.14 1.6
MAE(%) 0.43 0.7
256-32 MAX (%) 1.8 2.3
RMSE(%) 0.75 0.92
MAE(%) 0.83 0.92
512-32 MAX(%) 2.06 43
RMSE(%) 1.05 1.2

The network performance increases by creating a network with consecutive layers.
Therefore, a network with a large number of hidden units can be replaced with a multi-
layer network with fewer units per layer. According to the results in Table 5.3, it is
apparent that the highest estimation performance is achieved by the two hidden layers

model with 256 BiLSTM units in first layer and 32 LSTM units in second layers. The
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RMSE and MAX error for the two hidden layers network is 0.75 and 1.8 at 25°C, respec-
tively, while these values are equal to 1.02 and 3.2 for the best network with one hidden

layer under the same condition.

Figures 5.7 and 5.8 demonstrate the SOC estimation result as well as the SOC error
of BiLSTM with two layers at 0°C and 25°C', respectively.

The above results indicate that BiLSTM algorithm behaves well at fixed ambient
temperatures. But, in reality, the ambient temperature may be changed. Hence, to assess
the SOC estimation performance the algorithm (256-32) was applied to a test case dataset
consisting of different ambient temperatures within 10°C' to 25°C. The MAE is 0.77 and
the RMSE is equal to 0.96. These results reveal that the proposed algorithm has a good
ability to estimate SOC at ambient temperature. The performance of the BiLSTM model

at varying ambient temperatures is depicted in figure 5.9.
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Figure 5.7: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 0°C' by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the first layer and 32 LSTM units are in the second layer.
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Figure 5.8: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25°C by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the first layer and 32 LSTM units are in the second layer.

— true
=== pred

SOC(%)

6 20‘00 AUbO (b) 6000 8000

SOCerror(%)

0 2000 4000 6000 8000

(c)

6 ZdDO 4Db0 6000 8000
Time(s)

Figure 5.9: (a) SOC estimation and (b) error estimation for a drive cycle mix of USO06,
HWFET, USDDE and LA92 at varying temperature by BiLLSTM network with 2 hidden
layers, the 256 BiLSTM units are in the first layer and 32 LSTM units are in the second
layer. Temperature is shown in (c).
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Since one of the main challenges in estimating SOC is finding the exact initial value
of SOC, the methods independent of the initial value are considered. To test the system
with an incorrect initial value, hg is set to zero. Figure 5.10 shows the 40% error at the
start of the cycle. However, this value decreases rapidly, and the SOC estimate reaches

the desired value after approximately 10 seconds.
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Figure 5.10: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25°C by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the first layer and 32 LSTM units are in the second layer and hy = 0.

5.4 Experimental result of SOC Estimation By RoL-
STM Algorithm

In this section, the experimental results of SOC estimation obtained with the model

explained in section 4.4. Also, the optimization algorithm used for training the system

72



5.4. Fxperimental result of SOC Estimation By RoLSTM Algorithm

is Roadam, with an initial learning rate equal to 0.0005. The number of units and layers
are chosen by trial and error. £ = 128 and [ = 8 are the number of units of the first
layer and the second layer for each input, respectively. RoAdam can be adaptively tuned
against an outlier. The weights and biases could be tuned online with a strategy of
adaptive optimization to have a high-performance network. The train and test datasets
are chosen as in the previous section. Here, the time-step is 1000. If raw data is used for
output data, RoAdam helps us to have smoother estimation by decreasing the effect of
outliers. RoAdam is a useful optimization algorithm in real time data against unwanted
noise and disturbance. However, in our results, in comparison with the Adam algorithm,
the performance improvement was not significant because there was no noticeable outlier
in the used datasets. In RoLSTM, the M AE = 0.54 and the RMSE = 0.79 at 25°C,
whereas these values with the LSTM-Adam algorithm are 0.76 and 0.98, respectively.
The results obtained from the average SOC estimation after ten times of training are

summarized in Table 5.4.

Table 5.4: compare SOC estimation accuracy by RoLSTM method and LSTM-Adam
algorithm .

LSTM Algorithm  Test case evaluation Temperature (°C)

25 0
MAE(%) 0.54 0.7
RoLSTM MAX (%) 1.9 2.56
RMSE (%) 0.79 1.02

MAE(%) 0.76 0.98

LSTM-Adam MAX(%) 2.98 3.6
RMSE(%) 0.97 1.12

The SOC estimation by RoLSTM algorithm at 0°C and 25°C are illustrated in Fig. 5.11
and Fig. 5.12, respectively. As well as, like BiLSTM model, this algorithm was eval-
uated by a drive cycle test at varying ambient temperatures. The MAE = 1.03 and
RMSE = 1.78 indicate the RoLLSTM performance is good at variable temperature.

Fig. 5.13 shows the performance of RoLSTM model at varying ambient temperature.
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Figure 5.11: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 0°C' by RoLSTM network with 2 hidden layers, the 128
LSTM units are in the first layer and 8 LSTM units are in the second layer for each input.
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Figure 5.12: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25°C' by RoLSTM network with 2 hidden layers, the 128
LSTM units are in the first layer and 8 LSTM units are in the second layer for each input.
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Chapter 5. Fxperimental results for State of charge Estimation of one cell Li-ion Battery

5.5 GRU Algorithm used for SOC Estimation

Here, the SOC estimate is achieved using the Gated Recurrent Units algorithm, as ex-
plained in section 4.5. The number of hidden layers and units discovered through trial
and error is equal to two layers with 512 and 32 units respectively. The Adam optimiza-
tion algorithm with a learning rate= 10~* is utilized to adjust the weights and biases of
the network. As described in section 5.3 all datasets are re-sampled at 1Hz sampling
frequency. Also, the time-step is chosen as 1000. The average of ten times of training
yields MAE, RMSE, and MAX errors of 0.93, 1.1, 4.4 at 0°C, and 0.84, 1.09, 4.2 at 25°C,
respectively. Moreover, the MAE =1.2, RMSE= 2.04, and MAX= 5.01 at varying am-
bient temperature. The figures 5.14, 5.15, and 5.16 depict the GRU’s performance at

0°C', 25°C' and varying ambient temperature.
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Figure 5.14: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,

HWFET, USDDE and LA92 at 0°C' by GRU network with 2 hidden layers, the 512 GRU
units are in the first layer and 32 GRU units are in the second layer.
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Figure 5.15: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25°C' by GRU network with 2 hidden layers, the 512 GRU
units are in the first layer and 32 GRU units are in the second layer.
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Figure 5.16: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at varying temperature by GRU network with 2 hidden
layers, the 512 GRU units are in the first layer and 32 GRU units are in the second layer.
Temperature is shown in (c).
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5.6 Discussion

In this chapter, the results of SOC estimation using three deep RNNs models in a single
cell battery are investigated. In summary, a comparison of the results in this chapter with

those of other studies is listed in Table 5.5.

Table 5.5: Comparison of SOC estimation accuracy in recent studies.

Methods Error Temperature Li-ion Type

AUKF with LSSVM [123] MAE < 2% 25°C ~ 42°C 70Ah Kokam

FNN [124] MAFE < 4.04% 0°C ~ 40°C LG18650HG2
LSTM-RNN [39] MAE < 1.6% 0°C ~ 25°C Panasonic 18650PF
FO-AEKF [125] MAE < 1.59% E— Li[NiCoAl|JO2(NCA)
BiLSTM MAE < 0.77% 0°C ~ 25°C Panasonic 18650PF
RoLSTM MAFE < 1.03% 0°C ~ 25°C Panasonic 18650PF
GRU MAE < 1.2% 0°C ~ 25°C Panasonic 18650PF

As can be seen from the comparison of the results, the BILSTM network was demon-
strated greater performance than the other algorithms. With this model, it is possible
to analyze longer sequences from two directions (the past and the future) without the
gradient vanishing happening. In this feature, one could get more accurate estimates of
discharge period duration, due to the ability to choose the length of discharge period as
long as a drive cycle’s time. Moreover, BiILSTM estimator performed well when presented

with an incorrect SOC initial value.
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Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

6.1 Introduction

The battery pack, which serves as the primary source of energy in EVs, is made up of
many cells that are linked in series and parallel. Since knowing the status of charge of the
pack is essential for the driver, investigating the SOC estimate of the battery-pack in EVs
is of great interest. A large number of published studies describe the techniques of SOC
estimation for a single cell. However, in [126], Plett introduced a "Bar-Delta" filtering
method based on Kalman Filter to estimate the SOC in battery-pack. Mawonou et al.
improved the accuracy of the Bar-Delta estimator by "switched bar-delta" algorithm [127].
Additionally, in [128, 129] the authors are proposed the AEKF based approach. Machine
learning methods for estimating SOC in EVs battery packs are presented in [130, 25] to

reduce computational complexity.

Finding an estimator which can reduce the complexity of computing tasks while still
working in real time with sufficient accuracy is a critical issue in electric vehicle devel-
opment. In order to achieve the aforementioned objectives, This chapter presents a new
BiLLSTM method for estimating the SOC of a pack of batteries in EVs. To collect data

and evaluate the model in the simulation, IPG Carmaker software was utilized.

6.2 CarMaker Environment

CarMaker is a virtual software introduced by the company IPG Automotive for simula-
tion of real-time driving tests during the complete development process (Model-In-Loop,
Software-In-Loop, Hardware-In-Loop, and Vehicle-In-Loop). Real test scenarios can be
created by CarMaker in a virtual environment by simulating different types of roads,
traffic, weather conditions, and maneuvering conditions. Additionally, CarMaker also in-
cludes an intelligent driver model with the ability to specify driving behaviors, as well as a
comprehensive vehicle model that includes tires, chassis, powertrain, and controllers|131].

The main Graphical User Interface (GUI) of CarMaker which acts as a software’s

control center is shown in Figure 6.1.
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CarMaker (localhost) - Test: test1 — X
File Application Simulation Parameters Seftings Help 21PG
Car: Examples/Demo_Tesla_S Select

Typical, unvalidated data for passenger car
with Electrical Powertrain

Trailer: - Select

A,

/RT_245_35R21-p2.50 /RT_245_35R21-p2.50

_ Select |

__Seled |
Tires: /RT_245_35R21-p2.50 /RT_245_35R21-p2.50 Select

_ seled |

Load: 200kg Select
90 kg +80 kg +20 kg + 10 ko
Mascuver Simulation St f Results -
0 - 100 d imu n orage of Results o
1 30.0 GBCP Perf:  ¥|realtime Mode: ¥|collect only
tatus:
SHIE Buffer: Stop |
Time:
~| | Distance: Save | Stop I Abort |

Figure 6.1: IPG CarMaker main GUI

The essential tools in CarMakers are:

o IPGMovie: areal-time 3D animation of the vehicle that shows the desired maneuvers

on the determined road (Figure 6.2).

IPGMovie - 'desktop-6dsgbur' online = m] X

File View Scene Camera Help 21PG

0| > |0 4630 s start

Figure 6.2: IPGMovie window

e Instruments: displays important instruments and driving conditions information

such as the ABS warning lamp, pedal position, and so on (Figure 6.3).
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Figure 6.3: Instruments window

e [PGControl: it can manage the result in real-time by monitoring, displaying, and

exporting the data (Figure 6.4)

IPGControl - 3.0.5 (Window 0) - o X
File Disgram Seftings Help B.lx. Ix. . ##. 8. giPCG
{3 ata Sources %R
Key Description
b 4 C1__ CarMaker 9.0 - admin@d.
iPo|=|
1Y, | quantites DR
Search xX=
[QuantityName — [unit] »
T APO ®
[ Brake (142)
@ Car s69)
DeltaT s
DeltaTPeak
DM )
I Driver 5
GEnv. (15)
Implicit
Glog ®
aPT (154, 4 selected)
BattHV. (6, 4 selected)
AOC An
Current A
Energy KWh
Pur_max W
emp K
olt oc v
BattLV )
= BCU ®
& Control “
G0L ©
GearBoxM 9
©Gen ®
G Mcu @
I Motor *)
OSRate v
=23 i

Figure 6.4: TPGControl window

e Direct Variable Access: allows for the observation and modification of simulation

variables throughout the simulation (Figure 6.5).
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Direct Variable Access Close
Quantity Value Unit G1 G2 Mode Duration [ms] New Value
¥|PT.BattHV.Current 54.65 A T vaiue| 1 Set
¥|PT.BattHV.Energy 21.2819 kWh T vaive| 1 _Set |
X|PT.BattHV.Volt_oc 400 V u ﬂ 1 _Set |
2|PT.BCU.SOC_HV 253441 % T vaise| 1 _Set|
X|Time 187.834 s T vaise| 1 Set
¥|PT.BattHV.Pwr_max 300000 W | I vaie| 1 Set
¥|Env.Temperature 293219 K | I vaie| 1 set | |
¥|PT.BattHV.AOC 53.2227 Ah | I vae| 1 Set | |
¥|PT.PwrSupply.HV1.Voltage 399.864 V P vaiue| 1 Set
2|PT.PwrSupply.HV1.Pwr 21852.6 W P vaise| 1 set ||
Set Group 1 | Set Group 2 | Release all {

Figure 6.5: Direct Variable Access window

6.3 Creating a simulation for estimate the SOC in EVs

Having an accurate SOC estimation depends on various conditions, including road in-
formation, driver behavior, maneuver strategy, and climate conditions. Behavioral and
environmental effects on energy consumption in EVs were assessed by Vincent et al. [132].
To create a simulation with Carmaker for collecting the train and test data for SOC es-

timation with considering all factors, the following steps are performed:
1. Choose the vehicle with all properties
2. The desired road
3. Select the driver behaviors
4. The maneuver status

5. Environment condition

6.3.1 Vehicle Model

In this project, the demo of Tesla-S vehicle model from the library of Carmaker has been
chosen. In this model, the vehicle body was defined as a flexible body for simulation of
the bending and torsion of the body. The specifications of the vehicle body are listed in
Table 6.1. The battery system of the Tesla-S contains 16 modules. As can be seen in

figure 6.6 each module includes 444 battery cells, which are wired in 74 cells in parallel

83



Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

and 6 groups in series. The battery cells used in the modules are Panasonic NCR18650BE
models with 3200mAh and 3.6 V nominal capacity and voltage, respectively.

Table 6.1: The overall specification of the desired body vehicle.

Vehicle overall mass [kg] 2108

Vehicle overall center of gravity x /y / z [m]  2.580 0.000 0.545
Vehicle overall inertia tensor x / y / z [kgm?] 952.229  3519.035 3954.288
Axle load front / rear [kg] 1064.646  1043.354

Wheel base [m] 2.970
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Figure 6.6: The battery system of Tesla-S. The right figure is a module of batteries
which is contain 74P6S battery. The capacity of each module is 74 x 3.2Ah = 23.7Ah
and the voltage is 6 x 3.6V = 21.6V. The left figure is the Tesla-S powertrain system
containing 6 modules wiring in series.

Figures 6.7 and 6.8 display a 3D view of the powertrain system and basic information
regarding the powertrain of the demo Tesla-S, respectively. The rear drive is selected as
the drive-line in the powertrain dataset. In the rear-drive model, the differential output
shafts are connected to the rear wheels. The power supply is defined by two levels of
voltage: high voltage (HV) and low voltage (LV). The idle voltage of HV is 400v. The
capacity and power of the battery are 210 Ah and 85Kw, respectively. Figure 6.9 repre-
sents the specification of HV Battery. In This thesis the data are collected with different

initial state of Charge.
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Drive unit is located between the rear wheels

Figure 6.7: 3D view of powertrian system in Tesla-S. The drive units is located between
the rear wheel [5, 6]
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Figure 6.8: Powertrain configuration of Tesla-S
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Vehicle Data Set File ¥ Close
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Source
Battery Model: #¥| Chen Edit
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Idle voltage [V] 400.0 Resistance R1[Ohm] 0.0004
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Figure 6.9: Specification of HV Battery

6.3.2 3D Road Profile Generation

The next step in simulation with Carmaker is creating the road. In powertrain tests, the
road plays an important role, in fact, the use of real routes provides more traceability of
the system via real conditions.

The important parameters in the road model to produce optimal conditions in the

Carmaker are as follows:

e X and Y direction coordinates: like straight sections and road curvature.

e Gradient: the road slope is an essential parameter in changing the influential forces

on vehicles.

e Speed limits: defined as the maximum speed allowed for the driver according to

legal standards.

e Road characteristic: such as track width, traffic light, speed bump et etc.

Two ways to generate the 3D road profile are described below:
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6.3.2.1 Using Google Maps

Google Maps is a free internet-based software applied for navigation. The data collected
by Google Maps can be saved in a file including just X-Y coordinates. Since the altitude
of the road plays an important role in EV’s energy consumption, the data generated from
Google Maps is not enough efficient for real-time testing. To overcome this problem, an
online service named GPSVisualizer is applied. GPSVisualizer refines GPS coordinates
taken from Google Maps by adding altitude parameters. The GPSVisulizer output file
can be exported directly to IPGCarmaker Figure 6.10 shows the sample route in Google
Maps.

utterbach¥Grand]Est Iﬂ @ I Exit Street View I

lGo/cnge Earth

{1 jeye alt 14.90 km

Figure 6.10: Sample route in Google Earth

6.3.2.2 RoutConverter Software

RouteConverter is a free open source software applied for display and edit GPS data.
Moreover, this software is able to convert tracks, routes, and way-points to each others.
Figure 6.11 shows the software environment. In Figure 6.11 part (A) illustrates the
Google traffic online Maps, part (B) describes the Position list, and part (C) depicts the
rout elevation. Since the generated 3D route and way-points can be edited by Rout-
Converter, the output file is more suitable for using in TPGCarmaker. In this thesis,

Routconverter software was used for generate the 3D road.
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Figure 6.11: The environment of RoutConverter software. Part (A) shows the Maps from
Google traffic online model, Part (B) indicates the Position list of desired track, and Part
(C) shows the rout elevation.

6.3.3 Driver Model

The driver behavior is a essential factor in modeling vehicle tensions during driving. Con-
sidering that each person performs a specific driving action, different models of driver
aggressiveness are necessary for the development process. CarMaker allows us to simulate
a model for controlling driver actions. The driver model utilized in this project is a model
based on Proportional-integral-derivative (PID) controllers predefined in CarMaker. The
acceleration diagrams for three types of drivers are illustrated in Figure 6.12. All longitu-
dinal and lateral acceleration combinations are defined for the driver-friendly area within

the red lines.

6.3.4 scenario Maneuver

applying Carmaker, a test scenario can be described for the driver. For example , increase
the acceleration, driving at constant speed over a period of time or reduce speed and stop.

Additionally, Carmaker allows us to definition a traffic scenario as in reality.
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(@)

Figure 6.12: Acceleration diagram for three driver behavior. Diagram (a) shows the Nor-
mal driver, diagram (b) is for defensive driver and diagram (C) illustrates the aggressive
driver

6.3.5 Environment Conditions

As said before, the environmental conditions play an important role to Evs energy con-
sumption. Defining environmental factors like the temperature, and the daytime are
possible with the environment module in IPGCarmaker. In this research, the effect of
temperature variations on the state of charge of the battery is considered by performing

simulations at different ambient temperature.

6.4 Developed State of Charge Estimation Method

In this section, the developed SOC estimation method in the EVs is described. The steps
of this method are summarized in Figure 6.13.

The structure of the proposed BiLSTM model for SOC estimation in Evs explained
in section 4.3. Like BiLSTM algorithm for estimate the SOC in one cell, the number of
hidden layers and the units chosen by trial and error. The best results were obtained by
two hidden layers with 256 BiLSTM units in the first layer and 64 LSTM units in the
second layer. Furthermore, the Adam optimization algorithm with the initial learning

rate [r = 0.001, and the MAE as loss functions is utilized for training the system.
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Figure 6.13: Implementation steps of BILSTM algorithms for SOC estimation in the EV

The input vector is identified as x; = {V'(¢), [(¢),T(t)}, where V (¢),1(t),T(t) are the
battery pack voltage, the current of battery pack and the ambient temperature at time ¢,
respectively. Here, the raw data with a sampling frequency of 1Hz is used as a input of

the system. Furthermore, the time-step is set to 9000.

6.4.1 Drive Cycles Test Cases

Difference drive cycles test at varying ambient temperature are considered for collecting
the Training and validation datasets. Five datasets developed by combination of the
standard drive cycles test in United State such as: Federal Test Procedure 72/75 (FTP-
72, FTP-75), US06, and HWFET. Additionally, the Artemis standard, which is a group
of the drive cycles for powertrain test in Europe, is used to create three drive cycle test
in this thesis. Moreover, four test cases as follows are defined to evaluated train and

validation dataset:

6.4.1.1 Case 1l

To create this case a route around Mulhouse with the 240 to 340 meter Elevation range
was chosen. The Maximum speed defined 120km/h as a standard European for Highway.
The details of the route and the speed curve are shown in Figure 6.11 and Figure 6.14,

respectively.

90



6.4. Developed State of Charge Estimation Method

125 A . - . ﬂ
100 ~
<
E 754
x
H
8 50 A {
@»
25 4
0 500 1000 1500 2000 2500 3000
Time(s)

Figure 6.14: The speed profile of case 1. In this Case the maximum speed is 120km /h.

6.4.1.2 Case 2

Case 2 is defined at the speed profile depicted in Figure 6.15 in the same route profile as

the Case 1. The maximum speed in this case is 100km/h.
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Figure 6.15: The speed profile with 100km/h maximum speed for case 2.

6.4.1.3 Case 3

For Case 3 a stochastic traffic with 10% density at the first 1000 second of driving is
added to Case 1. Figure 6.16 illustrated the speed profile of this case.

91



Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

|

Speed(km/h)

0 500 1000 1500 2000 2500 3000
Time(s)

Figure 6.16: The speed profile of case 3. In this Case the maximum speed is 120km/h, and
at the first thousand seconds, the traffic density with ten percent variation is considered.

6.4.1.4 Case 4

A trip from Mulhouse to Metz is chosen for test case 4. The elevation in this route varies
between 187m and 950m. Additionally, a stochastic traffic with 10% density is evaluated
to scenario maneuver with maximum speed 100K'm/h. Figure 6.17 and figure 6.18 show

the route profile and the speed profile of this case, respectively.

(8 | ) Map: Google Traffic (online)

o] wowscsa | Convert Browse|

. N v Format: Google Earth 4.2 (*kml)
> bergle ) Content: 1track;
v i w ) [postiontist:  [Track (Track) =
eibronn: i (BN Type: frack __[+)
= 3 |Position Count: 4358  Length: 246km  Duration: -
Overall ascend: 2975m Overall descend: 3044m

Description Lor Latitude  Eleva... (4

= | Position 2 113 47.579158 255m

Position3 7567143 47.562329 255m)
| Position4 7.5642 47.585492 254m|
Positions 7563207 47.586505 257m)
. | Positioné 7562145 47.587688 253m
Position 7 7.560911  47.58895 254m|
Position 8 7.560066 47.589561 253 m|
Position 9 7.559062 47.590187 252m|
_ | Position 10 7.558389 47.590704 253m|
Position 11 7.557861 47.591102 252m|
oL o ¥ 4 1268300 Saint-Louis, Grand Est, France 7.5576169 47.5912956 252m
4 L % s 0 B g ut 13 Rue de Mulhouse 79, 68300 Saint-Louis, Gra...  7.5576518 47.5913444 252m
i 5 Ay b 3 Position 14 7.5576164 47.591431 252m
‘.gm i I AP 27‘."“1 Prach ) BRee | postion 15 7.5575686 47.5914566 252m)
§ 5 i ; 5 3 Position 16 7.5574294 475914544 252m
! | Position17 75572929 47.591572 252m)
® | Posttion 18, 7556971 47.591894 253m
Position 19 7.556565 47.592304 254m|

(E3 N VN SR

levation [m]

El
N oW
000
660

S0 40 S0 60 70 80 SO 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
Distance [km]

Figure 6.17: The rout profile of case 4.
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Figure 6.18: Case 4 assumes a speed profile with a maximum speed of 100km/h and a
dynamic traffic with 10% density for the first 1000 seconds.

6.4.2 SOC Estimation Results in Offline Mode

In this section, the accuracy of SOC estimation by BiLSTM algorithms are described. The
results are obtained by training the system with 22 random datasets from existing drive
cycles test at varying ambient temperature. The MAE, MAX, and RMSE are derived from
the average performances of different validation dataset. The MAE, RMSE, and MAX
error achieved at 0°C' are 0.74%, 0.92%, and 2.56%, respectively. These values of SOC
estimation at 20°C' are equal to MAE = 0.7%, RMSE = 1.04%, and MAX = 3.7%. The
performance of BiLSTM algorithm at 0°C' and 20°C' are illustrated in Figure 6.19 and
Figure 6.20, respectively. SOC estimation accuracy by BiLSTM algorithm at different

ambient temperature are listed in Table 6.2.

Table 6.2: The accuracy of SOC estimation by BiLSTM algorithm at different ambient
temperature.

Temperature (°C) MAE(%) RMSE(%) MAX(%)

0 0.74 0.92 2.56
10 0.57 0.81 3.5
20 0.7 1.04 3.7
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Figure 6.19: (a) SOC estimation and (b) error estimation of battery pack in EV at 0°C
by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the first layer
and 64 LSTM units are in the second layer.

(a)

75 A

50 A

SOC(%)

25 A

0 500 1000 1500 b 2000 2500 3000 3500

N
1

SOCerror(%)
=

o
1

0 500 1000 1500 2000 2500 3000 3500
Time(s)

Figure 6.20: (a) SOC estimation and (b) error estimation of battery pack in EV at 20°C
by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the first layer
and 64 LSTM units are in the second layer.

Additionally, to evaluate the system performance the algorithm were applied to a drive
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cycle at varying ambient temperature within 10°C' to 30°C'. Figure 6.21 shows the SOC
estimation of battery pack over a driving cycle while the ambient temperature increasing.

The MAE = 0.8 and RMSFE = 1.3 shows the BiLSTM can achieved a good estimate at

varied environment temperature.
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Figure 6.21: (a) SOC estimation and (b) error estimation of battery pack in EV at varying
ambient temperature by BiLSTM network with 2 hidden layers, the 256 BiLSTM units
are in the first layer and 64 LSTM units are in the second layer.
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To examine the effect of the incorrect initial value of SOC, hg is considered zero. The
SOC error is equal to 50% at the start of cycle, and converge to a desired SOC estimate

quickly. The result in Figure 6.22 indicate that the convergence time is about 20 second.
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Figure 6.22: (a) SOC estimation and (b) error estimation of battery pack in EV at varying
ambient temperature by BiLSTM network with 2 hidden layers, the 256 BiLSTM units
are in the first layer and 64 LSTM units are in the second layer and hy = 0.

6.4.3 SOC Estimation Results in Real Time Mode

The performance of BILSTM algorithm in real time simulation are investigated in this
section. Pycarmaker library in python is used to connect python with IPGCarmaker to
read/write data real time [133].

The best weights of BILSTM model obtained by learned the system with Offline train
datasets, are loaded in python to used as a model for prediction. Since the sampling

frequency of training dataset was 1H z, the battery current, the battery voltage and the
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temperature must be read from Carmaker each one second and used as a input data in
system to predict the SOC at time ¢. The environment of simulation the system in real

time is depicted in Figure 6.23.
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Figure 6.23: The environment of simulation BiLSTM Model to estimate the SOC in real
time.

The proposed system is tested on a sample validation case. Figure 6.24 shows the
SOC estimation and the Soc error during a drive cycle. The performance of system are
evaluated by calculated the MAE and RMSE at the end of cycle. The MAE, RMSE,
and MAX error achieved 0.79%, 1.2%, and 2.69%, respectively. These values indicate the
BiLSTM model can work with high accuracy in real time. Additionally, the converge time

of BiLSTM algorithm at incorrect initial values (hy = 0) is illustrated in Figure 6.25.
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Figure 6.24: (a) SOC estimation and (b) error estimation of battery pack in EV in real
time test by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the first
layer and 64 LSTM units are in the second layer.
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Figure 6.25: (a) SOC estimation and (b) error estimation of battery pack in EV in real
time test by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the first
layer and 64 LSTM units are in the second layer and hy = 0.
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6.5 Discussion

In this chapter, the BiLSTM algorithm for SOC estimation in EVs in offline and real
time mode have been investigated. The IPGcarmaker software, and also the Tensorflow
and keras Python libraries, were employed to create the proposed model. The learning
processes were done on the server of Strasbourg University Computing Center.

The raw data without any normalization is used as a trained and validation data in
the BiLSTM estimator to decrease the computation complexity. The results here are con-
firmed the ability of the BiLSTM algorithm to perform estimate the SOC of the battery-

pack in both Offline and real time mode, as well as in varying ambient temperature.

99



Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

100



(

CONCLUSIONS AND PERSPECTIVES

Contents
7.1 Conclusions . . . . . i i i i i i i e e e e e e e e e e e e e e e e, 102
7.2 Future Work . . . . . @ i i i i it e e e e e e e e e e e e e e e 103

101



Chapter 7. Conclusions and Perspectives

7.1 Conclusions

This thesis was undertaken to design and evaluate the SOC estimation of Li-ion batteries
by using deep learning methods. In the face of humanity’s pressing demand for clean
energy, Li-ion batteries have steadily shown to be valuable because of their special fea-
tures such as high energy density, self-discharge, fast charging time, easy operation, and
extended life cycle. Accurate SOC estimation is essential for monitoring battery balance
and safety mechanisms as well as measuring the amount of residual driving range. To
accurately measure SOC in conventional estimation methods, battery modeling tools are
essential. Deep learning algorithms have a great deal of representational capacity and
expressible, which means that SOC estimates and battery modeling may be accomplished
via learning about them through experience. One of the biggest advantages of this ap-
proach is that it streamlines the battery model creation and state estimate processes,
allowing both to be done in a single step instead of requiring separate processes. This
may be done without losing accuracy in estimating. Using deep learning approaches, a
competitor’s accuracy has been increased and information has been found in previously
confusing situations. In many scenarios, it has been proven that deep learning approaches
yield surprising results, such as their ability to both accurately resist random noise, offsets,
and gains, thereby achieving greater estimation accuracy.

This research offers three novel techniques for estimating SOC sequences based on
DRNNs. The results demonstrated that all of proposed methods can provide reliable
estimate of SOC at varying ambient temperature. These methods and their advantages

are listed below:

1. BiLSTM estimator that takes into account the sequential and bidirectional of Li-
ion measurement sequences to describe the battery dynamics for estimating SOC at
various ambient temperatures. Unlike previous unidirectional models, the built bidi-
rectional model can incorporate long-term dependencies from both past and future
directions, allowing it to acquire more temporal information from Li-ion batteries
and therefore improve estimate accuracy. Additionally, The predicted sequence of

successive SOC readings may intuitively represent the trend of the battery’s resid-
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ual capacity over a certain time period. This model introduces a novel approach to

processing battery data sequences for SOC estimation.

2. RoLSTM algorithm suggested for SOC estimation are used three LSTM networks
with fewer units are processed in parallel. As a result, the number of LSTM units
can be reduced in the whole model. The method is a self-learning algorithm that
can learn all the network parameters. The proposed algorithm is suitable for SOC
estimation in different ambient temperatures. Moreover, the RoAdam optimizer

gives a smoother estimate in comparison with other optimizer of LSTM network.

3. GRUs-based State Of Charge (SOC) estimation introduced as another data-driven
estimator. A GRUs network has fewer parameters and a simpler structure, in com-

parison to the LSTM network.

This thesis is completed by implementing a BILSTM algorithm to evaluate the SOC on
EVs battery-pack in offline and real time mode. The IPGcarmaker was used to implement
the model in issue. For the drivers, only the SOC of the pack are relevant, then defining a
algorithm for estimating the battery pack’s state is essential. Since the battery-pack has a
complex and nonlinear model, the traditional algorithms have a complicated mathematical
calculation. Moreover, by using the raw data of battery variable as a input this method
did not need any prepossessing on the real data and consequently, BiLSTM model helps
to reduce the computational load on the BMS.

7.2 Future Work

As Deep Recurrent Neural Networks techniques were suggested to SOC estimation of Li-
ion battery, this study can be expanded to evaluate the State Of Health (SOH) for single
and pack of Li-ion. Since, the Li-ion battery plays an important role in determining
the driving range in autonomous car, assessment of SOC and SOH of the battery, can be
incorporated into route optimization algorithms. Thus, doing longer tests on a real vehicle
and obtain more experimental data in different landscapes and environmental challenges,

is significant for the improvement the learning process of deep learning algorithms. For the
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last recommendation, the accurate SOC estimate will be used to charge the EV with solar
energy at the time of its production, in order to improve the self-consumption of green
energy. This estimation will help to better re-inject into the electrical grid the energy
stored in the batteries by the Vehicle to Grid (V2G) principle during consumption peaks.
The EV will play the role of a mobile battery that will increase the storage capacity of

the electrical supply network for demand response application.
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Appendix A. Standard Drive Cycle Test in United State

A.1 Federal Test Procedure (FTP)

A.1.1 FTP-72

FTP-72 also known as Urban Dynamometer Driving Schedule (UDDS), simulated a 12.07
km urban route at 1369 seconds with frequent pauses and a maximum speed of 91.25
km/h. In this cycle the average speed is equal to 31.5 km/h.

The Cycle is divided into two parts:

e Cold start phase: 505 seconds, containing 5.78 km at 41.2 km /h.

e Transient phase : 864 seconds.
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Figure A.1: The EPA Urban Dynamometer Driving Schedule (FTP-72)

A.1.2 FTP-75

The FTP-75 is generated by appending a third phase of 505 s to FTP-72 cycle. This
phase is the same as the first phase of FTP-72, but with a hot beginning. The third
period starts after the engine has been stopped for ten minutes. As a result, the whole

FTP-75 cycle is made up of the following segments:
e Cold start transient phase (ambient temperature 20-30°C), 0-505 s.
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e Stabilized phase 506-1372 s.
e Hot soak (min 540 s, max 660 s).
e Hot start transient phase, 0-505 s.

Each phase’s emissions are collected in a separate teflon bag, tested, and stated in grams
per mile (g/km). The cold start phase has a weighting value of 0.43, the ‘stabilized’ phase
has a weighting factor of 1.0, and the hot start phase has a weighting factor of 0.57.
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Figure A.2: The EPA Urban Dynamometer Driving Schedule (FTP-75)

A.2 Supplemental Federal Test Procedure Driving Sched-
ule (US06)

To solve deficiencies, the FTP-75 test cycle in the aggressive speed and/or high speed
driving behaviors, speed variations, and driving behavior after starting, the supplementary
Supplemental Federal Test Procedure Driving Schedule (US06) has been created. This
cycle is around 12.8 km with 77.9 km/h maximum speed and a length of 596 seconds,
with an average speed of 129.2 km/h.
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Figure A.3: The Supplemental Federal Test Procedure Driving Schedule cycle

A.3 Highway Fuel Economy Test (HWFET)

This cycle is a chassis dynamometer driving schedule established by the US EPA to
determine the fuel efficiency of light duty cars. The HWFET calculates the fuel efficiency
of highway transport, whereas the city rate is determined on the FTP-75 test.

The test takes place two times, with a pause between runs of maximum 17 s. The first
is a preconditioning process for a vehicle, the second is the real emissions test.

Some typical parameters of the cycle are as follows:
e 765 seconds duration
e 16.45 km length

e 77.7 km/h average speed
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Figure A.4: The Highway Fuel Economy Test cycle
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Appendixz B. Standard Drive Cycle Test in Europe

B.1 Artemis

In the European Assessment and Reliability of Transport Emission Models and Inventory
Systems (Artemis) project, a European database of real-world driving behaviors was used
to create Common Artemis Driving Cycles (CADC), which is a system for simulation of
energy consumption that includes chassis dynamometer procedures. The three driving
schedules are Urban, Rural, and Motorway, which are in turn designed for various driving
conditions. Two versions of the Motorway cycle are now available; one has a top speed of
130 km/h, while the other one has a top speed of 150 km/h.

Table B.1 is a summary of some of the features of Artemis driving cycles. Figures B.1,
B.2, and B.3 indicate the vehicle’s speed in Artemis cycles. In addition to gear-changing

techniques, Artemis cycle definitions contain several definitions.

Table B.1: The specification of Artemis Driving cycle

Characteristic Urban Rural Road Motorwayl130 Motorway150
Distance (km) 4.47 17.27 28.74 29.55
Duration(s) 920 1081 1067 1067
Average speed(km /h) 17.5 57.5 97 99.7
Maximum speed(km/h) 58 112 132 150
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Figure B.1: The Artemis urban cycle
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Figure B.2: The Artemis cycle for rural road
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Figure B.3: The Artemis motorway cycle
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