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Abstract

The State Of Charge (SOC) estimation is a signi�cant issue for safe performance and

the lifespan of Lithium-ion (Li-ion) batteries which is used to power the Electric Vehicles

(EVs).

In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent

Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three

new SOC estimator based on di�erent DRNN algorithms are proposed: a Bidirectional

LSTM (BiLSTM) method, a Robust Long-Short Term Memory (RoLSTM) algorithm,

and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on

precise battery models and can avoid complicated mathematical methods especially in

a battery pack. In addition, these models are able to precisely estimate the SOC at

varying temperature. Also, unlike the traditional recursive neural network where content

is re-written at each time, these networks can decide on preserving the current memory

through the proposed gateways. In such case, it can easily transfer the information over

long paths to receive and maintain long-term dependencies.

Comparing the results indicates the BiLSTM network has a better performance than

the other two. Moreover, the BiLSTM model can work with longer sequences from two

direction, the past and the future, without gradient vanishing problem. This feature helps

to select a sequence length as much as a discharge period in one drive cycle, and to have

more accuracy in the estimation. Also, this model well behaved against the incorrect

initial value of SOC.

Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries

in an Ev. IPG Carmaker software was used to collect data and test the model in the

simulation. The results showed that the suggested algorithm can provide a good SOC

estimation without using any �lter in the Battery Management System (BMS).
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Résumé

L'estimation de l'état de charge (SOC) est un point crucial pour la sécurité des per-

formances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter

les VE. Dans cette thèse, la précision de l'estimation de l'état de charge est étudiée à

l'aide d'algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire,

pour une cellule d'une batterie Li-ion, trois nouvelles méthodes sont proposées : une mé-

moire bidirectionnelle à long et court terme (BiLSTM), une mémoire robuste à long et

court terme (RoLSTM) et une technique d'unités récurrentes à grille (GRU). En utilisant

ces techniques, on ne dépend pas de modèles précis de la batterie et on peut éviter les

méthodes mathématiques complexes, en particulier dans un bloc de batterie. En outre,

ces modèles sont capables d'estimer précisément le SOC à des températures variables.

En outre, contrairement au réseau de neurones récursif traditionnel dont le contenu est

réécrit à chaque fois, ces réseaux peuvent décider de préserver la mémoire actuelle grâce

aux passerelles proposées. Dans ce cas, il peut facilement transférer l'information sur de

longs chemins pour recevoir et maintenir des dépendances à long terme. La comparaison

des résultats indique que le réseau BiLSTM a de meilleures performances que les deux

autres méthodes. De plus, le modèle BiLSTM peut travailler avec des séquences plus

longues provenant de deux directions, le passé et le futur, sans problème de disparition du

gradient. Cette caractéristique permet de sélectionner une longueur de séquence équiva-

lente à une période de décharge dans un cycle de conduite, et d'obtenir une plus grande

précision dans l'estimation. En outre, ce modèle s'est bien comporté face à une valeur

initiale incorrecte du SOC. En�n, une nouvelle méthode BiLSTM a été introduite pour

estimer le SOC d'un pack de batteries dans un EV. Le logiciel IPG Carmaker a été utilisé

pour collecter les données et tester le modèle en simulation. Les résultats ont montré que

l'algorithme proposé peut fournir une bonne estimation du SOC sans utilisation de �ltre

dans le système de gestion de la batterie (BMS).
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Chapter 1. Introduction

1.1 motivation

For over 100 years, automobiles have been used for transportation of humans, and in

this way, reformed traveling around the world. Exploring of rural areas and going on

a road trip across the country were made possible using wheels. However, the engine

vehicles cause many environmental damages as well [7]. According to the World Health

Organization (WHO), in 2000, fuel vehicles produce 34% of nitrogen dioxide discharged

into the environment. They, additionally, are responsible for 51% of the carbon monoxide,

10% of the particulate, and 33% of the carbon dioxide, in the United States only [8].

Reacting with humidity in the air, nitrogen dioxide makes nitric acid, which causes severe

corrosion. It also leads to thick fog and drastically reduces �eld of view. This molecule has

a greenhouse e�ect and a critical negative footprint on plant growth. Carbon monoxide

(CO) is a harmful gas that provokes migraines, dizziness, and respiratory disease. High

enough CO levels may induce unconsciousness or death. Lastly, carbon dioxide is a

major contributor to worldwide temperature rise. As a result, nowadays, using Electric

Vehicles (EVs) as an alternative to diesel- and petrol-powered cars is highly regarded.

Subsequently, a high-tech battery is a crucial element for EVs.

Various types of batteries such as nickel-cadmium, lithium, and acid, are used as the

dominant power source in EVs [9]. Among them, Lithium-ion (Li-ion) batteries are the

most popular due to their speci�c characteristics, e.g., high energy density, self-discharge,

charging speed, low maintenance, and long-life cycle. The correct charging of Li-ion

batteries improves their performance and extends their lifespan and it is only possible by

using the Battery Management System (BMS), which controls the discharging [10]. To

provide an accurate measurement of the residual driving range of the vehicle, as well as

the correct battery balance, a trustworthy status estimate is necessary. State Of Charge

(SOC) is the remaining battery load and de�nes the ratio of the battery's remaining

capacity to its nominal battery capacity [11]. The battery might be exposed to very

dynamic load demands due to the unexpected driving behavior and frequent acceleration

and deceleration of a car. Because of these charging demands, SOC estimation is a di�cult

task. SOC is not a visible factor, thus its precise estimate is crucial to dependable and
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safe vehicle operation [12].

1.2 SOC estimation as a central measure

To date, various methods have been developed and introduced to SOC estimation, which

are separated into two main categories of direct and indirect methods [13, 14]. In the case

of direct techniques, the battery's physical characteristics such as current, voltage and

battery temperature are utilized to evaluate SOC. A popular direct method is Coulomb

Counting estimation (CC) described in detail by Lashway et al. [15]. Many published

studies also contributed in the development of the Open Circuit Voltage (OCV) method

for the SOC estimation (e.g., [7, 16]). Electrochemical Impedance Spectroscopy (EIS)

is another direct method to evaluate SOC [17]. Indirect methods, on the other hand,

do not use a speci�c equation, rather they employ a model for the battery or mapping

of system speci�cation. One of the model-based methods is Electrical Circuit Model

(ECM) [18]. Another type of indirect methods are the adaptive-�lter based algorithms

such as Kalman Filter (KF, EKF, UKF, and AEKF) [19, 20, 21], Recursive Least Square

(RLS), and the H-in�nity (H∞) algorithm [14, 22, 23].All these approaches, generally

need complex models to accurately identify the non-linear behavior of a battery and

involve numerous di�erential equations that may be complicated. They also frequently

need several parameters for a satisfying SOC estimate in di�erent environments. As a

result, in recent years, Arti�cial Intelligent (AI) and data-driven approaches as a category

of indirect methods have been utilized for SOC estimation, including Fuzzy Logic (FL)

[24, 25, 26], Neural Networks (NNs) [27, 28, 29, 30, 31], and Support Vector Machine

(SVM) [32, 33]. Nevertheless, these techniques also have weaknesses, as the variety of and

complexity of Li-ion batteries restricts their estimation e�cacy. For instance, training is

based on manually created characteristics that requires a lot of human work and skill.

In addition, their architectures do not have adequate analytical skills to handle high-

dimensional measurement data that are used. Deep learning algorithms, as a crucial area

of AI, o�er an excellent approach to these issues.

Deep learning (also known as deep structured learning or dynastic learning) is a class
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of Machine Learning (ML) for extracting a higher level of features, and is based on work-

speci�c algorithms. Figure 1.1 is a Venn diagram representing the area of AI, Machine

Learning as a subset of AI, and deep learning as a sub-�eld of ML.

Figure 1.1: Venn diagram clarifying the relationship between Arti�cial Intelligent, Ma-
chine learning, and Deep learning.

Most modern deep learning models are based on arti�cial neural networks. However,

they may include predicate or hidden variables in generating models such as nodes in

deep belief networks and deep Boltzmann machines [34, 35]. Nonlinear transformations

and multi-layer deep neural networks allow for extracting hierarchical representations

from input data. One Deep Neural Network (DNN) layer has the ability to learn new

representations of input by itself. As well as, the network's stacking structure is able to

extract complex feature information by combining simple input. A few recent DNN-based

techniques that use data to determine battery SOC have emerged during the past three

years [36, 37]. Chemali et al. [38] developed a Multi Layer Perceptron (MLP) network

using battery data at di�erent temperatures and generate the �rst deep learning SOC

estimator. In [39] they utilized Long-Short Term Memory (LSTM), since it improves

temporal information in time series capture, and found more accuracy in their calculated

SOC. The low-complexity estimating model that relies on Gated Recurrent Units (GRUs)

proposed in [40, 41]. Since deep learning-based state estimation for batteries is still quite

new, the accuracy and model structure of these estimators still need to be improved.
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1.3 Objectives and Thesis Structure

The ability to estimate the SOC of Li-ion batteries in real time, which is one of the

most essential performance features of a battery, becomes more important with the in-

creasing usage of battery-driven electric vehicles. This research study is focused on the

implementation of SOC estimation by means of deep learning methods with the goal

of reducing computing complexity while simultaneously increasing accuracy. As such,

three new structure for SOC evaluation of one cell of Li-ion are investigated. Following

that, the BiLSTM method is presented as the best algorithm for the SOC estimate in a

battery-pack that includes both series and parallel wiring of batteries.

In Chapter 2, a short history of EVs and rechargeable batteries is provided. In addition,

the speci�c of the enhanced lithium-based batteries, the existing methods for modeling

them, and important de�nitions related to the Battery Management System are addressed.

Chapter 3 proposes a review on SOC estimation techniques. This chapter discusses

the bene�ts and drawbacks of the methods that have been used before.

Details of three proposed SOC estimation methods, typically BiLSTM, Robust Long-

Short Term Memory (RoLSTM) and GRUs, are explained in chapter 4. First estimator

is based on BiLSTM algorithm, which is a novel technique for estimating SOC sequences

through the bidirectional and sequential Li-ion input data. The improved estimate ac-

curacy of this design will be achieved through learned bidirectional relationships. In

RoLSTM method as the second estimator, instead of one LSTM network, three of them

are used in parallel for each input, and consequently, the number of LSTM units will be

reduced. Also, to optimize the LSTM network, a robust and adaptive online optimization

method is used. This optimization is an improvement of Adam method which is called Ro-

bust Adam (RoAdam)[42]. RoAdam can be adaptively tuned against a doubtful outlier.

The weights and biases could be adapted online with a strategy of adaptive optimization

to have a high-performance network. The last estimator presented here is based on Gated

Recurrent Units (GRUs) approaches. These networks are an improved version of standard

RNNs introduced to overcome the vanishing gradient problem. GRUs are using two gate

unites to decide between bene�cial and not functioning data.
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Chapter 5 shows the results of these three methods implemented for one cell Li-ion

battery. Moreover, this chapter discusses the e�ects of the number of layers and units of

DRNN on the accuracy of the SOC estimation. The Panasonic 18650PF Li-ion databases

produced by McMaster's University in Ontario are employed to evaluate these techniques.

Additionally, Tensor�ow, an open-source deep learning framework written in Python, and

the Strasbourg University Computing Center's server are applied for the development and

the learning step of the algorithms.

Chapter 6 focuses on SOC estimation of a battery pack mounted on EVs. Employing

BiLSTM technique to evaluate SOC for EVs battery-pack in the real-time simulation is

investigated. Using the IPG CarMaker environment,vehicle models have been created

to model various EVs architectures, including battery parameters, transmission, electric

motors, vehicle aerodynamics, and most signi�cantly, driver characteristics.

Last, a concluding remark is given in chapter 7, along with possible future directions

of this project.

1.4 List of Publications

As a consequence of this Ph.D. project, the relevant academic papers have been published:

1. Gelareh Javid, Dja�ar Ould Abdeslam, Michel Basset. �Adaptive Online State

Of Charge Estimation of EVs Lithium-ion Batteries with Deep Recurrent Neural

Networks�, Energies 2021, 14(3), 758.

2. Gelareh Javid, Michel Basset, Dja�ar Ould Abdeslam. �Adaptive Online Gated

Recurrent Unit for Lithium-Ion Battery SOC Estimation�, 46th Annual Conference

of the IEEE Industrial Electronics Society (IES) (IECON2020), Singapore.

3. Gelareh Javid, Dja�ar Ould Abdeslam, Dirk Benyoucef. �Maximum Power Point

Tracking of PhotoVoltaic Power System with Adaptive Fuzzy Terminal Sliding Mode

Controller�, IEEE 18th International Conference on Environment and Electrical En-

gineering and 2nd Industrial and Commercial Power Systems Europe (EEEIC2018),

Palermo, Italy.
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2.1. Introduction

2.1 Introduction

This Chapter provides a brief overview of the history of EVs and rechargeable batter-

ies. There is also a discussion on the details of the lithium-based battery, a review of

the battery modeling method, and key terminologies linked to the battery management

system.

2.2 Development of Electric Vehicles

The electric vehicle's history started in the middle of the nineteenth century. However,

compared to the combustion-engine cars that eventually reached the market, these vehicles

were more costly, slower, and had a shorter range, which led to a drop in their use globally.

Since the early 20th century, interest in electric automobiles and alternative fuels has been

stoked by worries about the escalating problems with hydrocarbon pollutants and vehicle

fuels, such as environmental impact and hydrocarbon �ow stability.

In 1867, the Austrian inventor Franz Kravgol demonstrated the �rst electric two-

wheeled bikes at the Paris World's Fair. Nonetheless, this e�ort was just for entertainment

purposes and was not appropriate for street driving. Gustave Trouve, a French inventor,

exhibited another cycle, this time a tricycle, at the International Electric Exhibition in

Paris in November 1881[43].

In London in 1884, Thomas Parker developed the �rst electric car. Parker's interest

in low-emission cars, as well as his concern about the harmful e�ects of smoking and

pollution in London at the time, pushed him to create electric autos. He used high-

capacity, rechargeable batteries designed speci�cally for this vehicle. He was also involved

with the electri�cation of the London Underground, trams in Liverpool and Birmingham,

and the Coalite smokeless fuel. [1].

The �rst American electric car was developed between 1890 and 1891 by William

Morrison. The vehicle had a six-seater wagon and reached a speed of 14 miles per hour

(23 kilometers per hour) [44].

Motor vehicle enthusiasm grew in the late 1890s and early 1900s. Electric taxis gained
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Figure 2.1: The �rst practical electric car may have been built by the English inventor
Thomas Parker in 1884 [1]

popularity in the late 1800s. These taxis were popularized by Walter C. Bersey, and in

1897, electric taxis joined the taxi �eet and the streets of London. As a result, these taxis

began to be known as "humming birds" after a time. The electric carriage was utilized

as a cab by Samuel's Electric Carriage and Wagon Company in New York City the same

year. By 1898, when it was converted into an electric vehicle business by investors, it had

manufactured 62 taxis [45].

Several companies, including Henny Coachworks, National Electrical Union Company,

and Exide Battery manufacturers, collaborated on the development of an all-electric ve-

hicle in the 1950s. The car's voltage was set between 36 and 72 volts. Powered by 72-volt

batteries, the 72-volt variant could reach speeds of up to 96 km / h (60 mph) and travel

for up to an hour on a single charge.

Although the popularity of electric cars declined in the 1900s as a result of the

widespread availability of low-cost gasoline for transportation and the improved perfor-

mance of gasoline vehicles, the demand for EVs has increased dramatically in the past few

decades. As reported by the International Energy Agency (IEA), yearly EV sales have

increased from 1.67 thousand in 2005 to 2.1 million in 2019, and as a result, the world-

wide stock of electric vehicles has reached 7.2 million. Figure 2.2 depicts the Histogram

of the Electric Vehicles Stock of Passenger Automobiles from the years 2013 to 2019 for

the major geographic areas [46]. It is anticipated that the demand for electric cars will
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grow in the future years. According to the Sustainable Development Scenario, the global

electric vehicle stock is expected to increase by 36 percent each year. In the next 10 years,

the quantity of EV in stock will have increased by a factor of more than 30. Figure 2.3

illustrates the worldwide electric vehicle �eet through 2030 [47].
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Figure 2.2: Electric car stock by region, 2013-2019
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Figure 2.3: Global Electric Vehicle stock by Sustainable Development Scenario , 2018-2030

2.3 A review on rechargeable batteries for Electric Ve-

hicles

Alessandro Volta was the �rst to de�ne the concept of a voltage cell, often known as a

battery, in 1800. Voltage cells are devices that produce electrical energy via chemical

processes. Volta's battery is made up of disks of zinc and copper that alternate with each
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other. The copper cathode performs the reduction process, whereas the zinc anode does

the oxidation. Furthermore, to complete the circuit, a salt bridge, which is constructed

from a layer of cloth that has been wetted with brine, is placed between the cathode

and the anode. In addition, an external circuit is utilized to direct the �ow of electrons

through the system. The areas where reduction and oxidation occur are called half-cells

[48]. There were two major issues with this battery: First and foremost, the high number

of disks causes brine to be drawn out of the fabric, resulting in a reduction in current

output. The second issue with the Volta cell was that it had a limited lifetime owing to

the fast corrosion of metal in the presence of saltwater, which caused it to malfunction

[49].

To prevent hydrogen from collecting on a copper cathode, John Frederic Daniell in-

vented a secondary electrolyte that interacted chemically with the hydrogen. He published

his �ndings in 1836. Daniel's dual electrolyte battery, commonly known as Daniel's cell,

is a kind of rechargeable battery [50].

Gaston Planté, in 1859, created the �rst rechargeable lead-acid battery by immersing

two sheets of lead in a sulfuric acid solution. When the lead anode reacts with the

acid, electrons are liberated, while the lead cathode absorbs the electrons, resulting in

the production of a current. By reversing the current �ow, it is possible to recharge the

battery [51].

As early as 1881, Camille Alphonse Faure made signi�cant improvements to the

Planté's design performance by creating a new sheet that contained lead oxide batter

squeezed into a lead grid lattice [52]. Until the late 1800s, the electrolyte in batteries was

liquid. This made transporting batteries extremely risky, and as a result, most batteries

were not designed to be transported after being attached to a circuit. Inventor Georges

Leclanche created a battery in 1866 that included three components: a manganese dioxide

cathode, a zinc anode, and an ammonium chloride solution electrolyte. Despite the fact

that the electrolyte in the Leclanche cell was liquid, the chemical composition of the bat-

tery was an important step in the development of the dry battery. Further down the road

in 1887, Carl Gessner discovered how to make an electrolyte by gluing together ammo-

nium chloride and Paris plaster. By the late 1950s, these new dry batteries had become
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very popular [49]. These novel dry batteries were also referred to as carbon batteries since

carbon serves an important role as an electrical conductor in them, despite the fact that

it is not employed in chemical processes.

Waldemar Jungner was the developer of the nickel-cadmium (NiCd) battery, which

was �rst used in the early 1900s. The negative electrode (anode) of this battery is made

of cadmium (Cd), and the positive electrode (cathode) is built of nickel (Ni) (cathode).

In 1901, iron was replaced by cadmium in a nickel-cadmium battery by Thomas Edison,

and it was renamed Ni-Fe (NiFe) [53]. Low speci�c energy and rapid self-ignition are

among the disadvantages of nickel-iron batteries. They also have poor performance at

low temperatures.

In the 1950s, Lewis Urry, Paul Marshall, and Karl Kordesch of Union Carbide replaced

the ammonium chloride electrolyte with an alkali material known as alkaline. Since the

1960s, alkaline batteries have been increasingly popular, particularly as a replacement for

carbon-zinc batteries. Alkaline solar batteries have a longer service life and are capable of

storing far more energy than carbon batteries [54]. Comsat invented the nickel-hydrogen

battery in the 1970 for use in communications satellites, which was later adopted by other

companies. Nickel-hydrogen batteries can store hydrogen gas in pressured gas molds,

which are a type of pressure vessel. A large number of spacecraft and space stations are

powered by nickel-hydrogen batteries. In the late 1980s, nickel-metal hydride (NiMH)

batteries were created by researchers at many businesses and brought onto the market.

NiMH batteries were smaller in size and less expensive than nickel-hydrogen batteries at

the time of their introduction [55].

Sony was the �rst company to commercialize the manufacturing of lithium-ion bat-

teries in 1991. There are three components to this battery: a carbon anode, a lithium

cobalt oxide cathode, and a non-liquid electrolyte. It was not until the late 1990s that

a soft, �exible container for lithium-ion batteries was developed, resulting in the devel-

opment of lithium-polymer batteries [56]. In comparison to other rechargeable batteries,

Li-ion batteries have a high energy e�ciency and power density, making them an excellent

choice for portable devices. Because of these desires, they may be built to be lighter and

smaller. Furthermore, Li-ion batteries have a wide temperature range of operation, quick
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charge capabilities, a reasonably long cycle life, a low self-discharge rate, and high energy,

voltage, and power e�ciency, among other advantages [57].

2.4 Lithium-ion Battery

Each battery is made up of three basic components: a positive electrode, a negative

electrode, and an electrolyte (or electrolyte solution). In Li-ion batteries, the positive

electrode, also known as the cathode, is formed of a lithium-metal-oxide compound, while

the negative electrode, also known as the anode, is built of carbon, with a separating layer

between them. The electrolyte in lithium batteries is likewise produced from lithium salt

in an organic solvent, as is the electrolyte in lead batteries. Given the �ammability

of organic solvents in their capacity as electrolytes, additional precautions must be taken

while using them as electrolytes. The engineering of the electrolyte structure is made more

di�cult by safety precautions and other steps used to improve the performance of lithium

batteries. A number of di�erent materials make up the electrolyte in these batteries,

each of which serves a speci�c purpose. In the event that any electrolyte component

performs below expectations, this will result in the battery's overall performance being

compromised [58]. A view of a lithium battery cell is shown in �gure 2.4.

Figure 2.4: The hierarchical structure of lithium ion batteries [2]
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The reaction mechanism in Li-ion batteries includes the movement of Li+ between

cathode and anode materials. During battery discharge, the electrolyte allows Li+ trans-

fers from the anode to the cathode. And simultaneously, for every Li+ in the transfer,

one electron will be released. The chemical reaction for the cathode and the anode can

be provided by equations (2.1) and (2.2), respectively [59].

LiMO2 ⇋ Li1−xMO2 + xLi+ + xe− (2.1)

xLi+ + xe− + 6C ⇋ LixC6 (2.2)

In addition to the aforementioned characteristics, lithium batteries are equipped with

electronic protection circuits and fuses to guard against polarization, overvoltage, over-

heating, and other potential safety hazards.

Di�erent types of Li-ion batteries that function di�erently are made by using di�erent

materials for the cathode electrolyte. In �gure 2.5, the major Li-ion properties for six

types of Li-ion batteries are compared. Moreover, table 2.1 describes the performance of

several Li-ion battery types [60, 61, 62, 63].

Figure 2.5: Comparison between Characteristics of di�erent Li-ion battery types
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Table 2.1: The performance of Li-ion battery types

Li-ion Battery
Type

Advantage Limitation Applications

LiCoO2 Very high speci�c
energy

Low lifetime, limited
speci�c power, low

safety

Mobile phones,
laptops, cameras

LiMn2O4 High power,
moderate safety
and life span

Less capacity Electric powertrains,
medical device

LiFePO4 Excellent current
rate, highly safe,
elevated longevity

low speci�c energy, less
voltage than other
Li-ion batteries,

decreased performance
at lower temperature

Power tools, EVs,
portable devices

LiNiMnCoO2 Well performance,
high capacity and

power

High cost Medical devices, Evs,
industrial systems

LiNiCoAlO2 Elevated speci�c
energy, great

power densities,
well lifetime

High cost, low safety Industrial systems,
electric powertrains,
medical devices

Li4Ti5O12 Excellent safety,
good stability,long
life, fast charge

Low voltage, low
energy density, high

cost

Nano-technology
applications, UPS,
electric powertrains

2.5 Battery Modeling

Li-ion battery models can be classi�ed into three major categories as mathematical, elec-

trochemical and electrical equivalent circuit models [64, 65, 66].

2.5.1 Mathematical Models

Analytical models and stochastic models are both types of mathematical models. In the

analytical model, the battery properties are represented by a few equations and di�erent

physical concepts. Stochastic battery models, like Markov chain processes, are able to
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model the entire battery system all at once. The purpose of stochastic models is to

explain batteries theoretically, with less time wasted in comparison to electrochemical

models, and to obtain better accuracy than other methods [67].

2.5.2 Electrochemical Models

Electrochemical kinetics and the charge transfer process can both be used to explain the

reactions that take place inside the battery. The electrochemical models based on physical

principles were developed speci�cally for this purpose [68, 69]. To explain the cell's

potential and di�usion gradients, a set of coupled partial di�erential equations (PDEs)

are used. Solid concentrations at positive and negative electrodes and in the electrolyte

are achieved by Fick's law of di�usion as Equation(2.3): [70]

∂Cs

∂t
=

Ds

r2
∂

∂r
(r2

∂Cs

∂r
), for r ∈ (0, Rs) (2.3)

Where Ds is the solid phase di�usion coe�cient in the electrolyte. The initial condi-

tions and Neumann boundary conditions are de�ned as (2.4):

Cs,0 = C, for C > 0 at t = 0 r ∈ (0, Rs)

∂Cs

∂r

∣∣∣∣
r=0

= 0,
∂Cs

∂r

∣∣∣∣
r=Rs

= −jLiRs

3εsF

(2.4)

In (2.4) F is Faraday's number, Rs and jLi denote the radius of the particle and the local

volumetric transfer current density, respectively. Also, the potential distribution in the

solid phase and electrolyte phase is calculated by Ohm's law as (2.5):

∂

∂x
(σeff ∂

∂x
ϕs)− jLi = 0,


−σeff ∂ϕs

∂x

∣∣∣∣
x=0

= σeff ∂ϕs

∂x

∣∣∣∣
x=L

= I(t)
A

∂ϕs

∂x

∣∣∣∣
x=δn

= ∂ϕs

∂x

∣∣∣∣
x=δn+δsep

= 0

∂

∂x
(keff ∂

∂x
ϕe) +

∂

∂x
(kd

eff ∂

∂x
lnCe) + jLi = 0,

∂ϕe

∂x

∣∣∣∣
x=0

=
∂ϕe

∂x

∣∣∣∣
x=L

= 0

(2.5)
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2.5.3 Electrical Equivalent Circuit Models

Electrical equivalent circuit models are based on a circuit network consisting of resistors

and capacitors which are connected to a voltage source. The RC model, the Thevenin

model, and the PNGV model are the essential equivalent circuit models that are used in

EVs [71, 72].

2.5.3.1 RC Model

The RC model was introduced by SAFT Battery Company. The schematic of this model

is illustrated in �gure 2.6. This model comprises a large capacitor Cb indicates the stored

capacity, and a small capacitor Cc represents the polarization. Equation (2.6) describes

the electrical behavior of the RC circuit model.

Figure 2.6: Equivalent circuit RC battery model

V̇b

V̇c

 =

 −1
Cb(Re+Rc)

1
Cb(Re+Rc)

1
Cc(Re+Rc)

−1
Cc(Re+Rc)

Vb

Vc

+

 −Rc

Cb(Re+Rc)

Rc

Cc(Re+Rc)

 IL

VL =
[

Rc

(Re+Rc)
Re

(Re+Rc)

]Vb

Vc

+
[
−Rc

ReRc
(Re+Rc)

]
IL

(2.6)

Where Rt, RC , Re are the terminal resistor, the capacitor resistor and the end resis-

tance, respectively.
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2.5.3.2 Thevenin Model

Thevenin theorem is a method for converting a complex circuit model to a simple equiva-

lent circuit composed of a resistor which is placed in series with a source voltage. Figure

2.7 is usually used as a typical Thevenin model of a Li-ion battery. Model elements in-

clude a series of DC internal resistance (Ro) resistors, an RC parallel circuit network, and

an ideal DC voltage source that indicates the open circuit voltage.

Figure 2.7: Equivalent circuit Thevenin battery model

The equation of state-space for Thevenin model is described in (2.7):


V̇p = − Vp

RpCp
+ IL

Cp

VL = Voc − Vp − ILRo

(2.7)

2.5.3.3 PNGV Model

The PNGV model is proposed by The US PNGV under the Freedom CAR hybrid electric

vehicles e�ect. This model can be generated by adding a capacitor Co to the Thevenin

model. Co indicates the changes in Voc generated by the timely integration of load current

(IL).

The PNGV model is represented as (2.8), where VCo and VCp are the voltage across
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Figure 2.8: Equivalent circuit PNGV battery model

Co and Cp, respectively :

 ˙VCo

˙VCp

 =

0 0

0 −1
RpCp)

VCo

VCp

+

 1
Co

1
Cp

 IL

VL =
[
1 1

]VCo

VCp

+RoIL + Voc

(2.8)

2.6 Battery Management System

In contrast to public batteries, electric vehicle batteries need special attention in terms of

safety since they produce a great deal of heat throughout the charge and discharge cycle,

as well as when they are subjected to high power consumption. Many variables contribute

to cell death include heat control, cellular equilibrium, and the proper chemical selection

amongst others.

Generally, a Battery Management System (BMS) is an electronic system that manages

a cell or pack of rechargeable batteries by monitoring the battery, reporting the data and

balancing it, charging and discharging control, and protecting the battery from being

operated outside of the Safe Operating Area (SOA). The SOA of batteries is limited by

the amount of current, voltage, and temperature applied to them [73]. The main operating

speci�cations of the BMS are shown in �gure 2.9. Each of its functions is explained in

detail below, individually:

24



2.6. Battery Management System
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Figure 2.9: The operating speci�cations of the BMS

2.6.1 Battery monitoring

In EVs, a chain of Li-ion battery cells in a pack is utilized. In order to safeguard the battery

pack from over/under voltage, over/under current, and charging/discharging outside of

a speci�ed temperature range, the BMS can monitor the battery's total voltage, total

current, and total temperature during operation of the battery.. Furthermore, because

each single cell can exhibit a wide range of behavior over time, battery cell monitoring,

such as voltage and temperature for each cell in the battery pack, is one of the most

challenging aspects of battery management systems [74].

2.6.2 Cell Balancing and Equalization

An imbalance in the charge levels of the cells is easily detected in the battery and shown

via estimates of the SOC. The balancing procedure is done by passing extra charge to

an undercharged cell or the other module/pack, or by moving needed charge to an over-
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charged cell from nearby modules/packs. A battery equalization control may prolong

the lifespan of the battery pack, reducing the likelihood of its batteries being damaged.

Yet, because of the enormous battery size and expense, it is hard to do things like the

monitoring and administration of each battery. For this reason, it is essential to have

an improved BMS to implement e�ective cell monitoring and charge equalization with a

basic design and control [75].

2.6.3 Thermal Management

Based on the temperature range of the battery cells, the BMS determines whether to

turn on heating or cooling to keep the battery pack above or below the minimum and

maximum working temperatures, respectively [76].

2.6.4 Charge and Discharge Control

The BMS regulates the current rate of the charger utilized in the battery charge procedure

to maintain the battery in SOA throughout the charge and discharge of the battery [77].

2.6.5 Modelling and State Estimation

Battery state estimation, such as State Of Charge (SOC), State Of Health (SOH) and

State of Function (SOF) can be computed by using the measured data. Calculating the

accuracy of SOH estimates is done via fault diagnostic data and the service life forecast.

The fault states, SOH, and SOC are all important factors that in�uence SOF. The e�ects

of aging factor, temperature variations, SOC range, and fault conditions are considered

in SOF.

2.6.6 Fault Diagnosis and Health management

Fault diagnosis is one of the most important tasks of the BMS, as it allows it to take

the necessary steps to minimize disruption to the battery pack's functioning while also

protecting the battery. Factors contributing to battery pack failures include overcharging,

undercharging, internal short circuit, overheating, and etc. [78].
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2.7 Renewable Energy For Charging the EVs Battery

Among the main renewable energy technologies being pushed by governments today are

solar PhotoVoltaic (PV) panels, which generate electricity from sunlight. The fact that

solar energy is provided by nature means that it is free and plentiful, and that it can be

made accessible nearly wherever there is sunshine is another advantage. Solar PV panels

have a very great future, both in terms of economic viability and in terms of environmental

sustainability. Photovoltaic panels generate clean energy and electricity in a direct power

production manner, and they are completely quiet in their operation. As a result, they

are an excellent choice for metropolitan locations as well as residential applications. PV

panels may be a cost-e�ective option for charging the battery in EVs [79, 80].

2.8 Discussion

This chapter reviewed brie�y the history of EVs generations one of the best replacement

options for conventional engine cars. The Li-ion battery has several bene�ts over other

rechargeable batteries that may be attributed to the way that these types of batteries are

often used as the primary storage device for electric vehicles. The chemical mechanism

and theoretical modeling of Li-ion batteries were discussed. Additionally, the battery

management and monitoring system's functionality is described in detail to enhance the

current Li-ion battery performance in EVs applications. The ability to control charge

and discharge, as well as protection, state estimation, energy storage, and measurement

are features of BMS that are used to help improve Li-ion battery performance inEVs

applications.
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3.1 Introduction

One of the signi�cant issues of BMS is the SOC estimation of battery. The SOC of

battery is de�ned as the rate of the available capacity (Qt) to its maximum capacity

when a battery is completely charged (Qnom) [81].

SOC(t) =
Qt

Qnom

∗ 100% (3.1)

SOC = 100% and SOC = 0% indicate the battery is fully charge and fully discharge,

respectively. To date, various methods have been developed and introduced to SOC

estimation. This chapter discusses the existing methods of state of charge estimation for

Li-ion batteries.

3.2 State Of Charge estimation Methods

The accurate and reliable SOC estimation can provide a necessary evaluation factor for

energy management and the control system's optimal design in EVs. Consequently, several

methods have been suggested for SOC estimation. Figure 3.1 summarizes SOC estimation

methods that are separated into two main categories: direct methods and indirect methods

[13, 14, 82, 83]. Some of the essential SOC estimation methods are described below.

3.2.1 Direct Methods

When considering direct methods, an equation or a relationship is used to estimate SOC,

which is determined by the battery's physical properties like current, voltage, and battery

temperature.
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3.2.1.1 Coulomb Counting estimation (CC)

The Coulomb Counting estimation method or Ampere-hour balancing method is the sim-

plest method for SOC estimation. Due to the fact that this technique is dependent on the

integration of battery current with respect to time as the battery charges or discharges,

it is critical to understand the initial values of SOC

The equation of the CC method is presented in Eq. (3.2):

SOC(t) = (SOC(t0) +
1

Cn

∫ t0+t

t0

ηIb(dt)) ∗ 100% (3.2)

Where SOC(t0) is the initial values of the SOC and Ib is the battery current. Also,

η and Cn represent the discharged e�ciently and the nominal capacity of battery, re-

spectively. Although this method is very simple to implement, it has some drawbacks,

including :

� The initial value of SOC can not be estimated with CC method.

� This method is an open-loop estimator, then the errors could be increased by un-

certainties or disturbance.

� The accuracy of estimation is reduced by aging the battery and destruction of the

battery static capacity.

[12, 84, 85].

3.2.1.2 Open Circuit Voltage (OCV)

The Open Circuit Voltage is the battery voltage under the equilibrium condition. OCV

based estimation uses a relationship like (3.3) between SOC and OCV. Each type of

battery has a speci�c relationship between its OCV and its SOC. In other words, this

relationship is dependent on both the material and the capacity of the battery. Therefore,

it is de�ned as a nonlinear function, similar to the (3.3) in Li-ion batteries [86]. In addition,

as can be seen in �gure 3.2 the OCV-SOC curve is changed by the temperature and current

discharge. Consequently, this function is dependent on temperature and battery aging
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[87].

SOC = f−1(OCV ) (3.3)

This method needs a long time resting to estimate SOC, and as a result, it can not be

implemented in real time. Additionally, the OCV technique, like the CC method, is an

open-loop estimator, and consequently, it is not accurate against uncertainty.
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Figure 3.2: OCV vs SOC(%) curve discharge pro�le of LiFePO4 measured (a) under
Three temperatures and discharge current rate 1C, (b) at 25◦C and three discharge current
values.

3.2.1.3 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy is a helpful test technique for electrochemi-

cal systems. The Electrochemical Impedance Spectroscopy technique perturbs the sys-

tem by applying a small AC voltage as a function of various frequencies, and the bat-
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tery impedance is measured across a wide range of frequencies [88, 89]. The measured

impedance is a complex number consisting of a real component (Z ′) and an imaginary

part (Z”), which may be expressed as (3.4):

Z = Z
′
+ jZ

′′
(3.4)

In [3], Wagg et al. demonstrated the dependency of the battery impedance on SOC,

temperature, short-time prior history, and current rate. The Nyquist diagram of a battery

impedance is depicted in �gure 3.3, where the x axis and the y axis are the real part

and the imaginary part of the battery impedance, respectively. From this �gure, it is

apparent that the battery impedance is more sensitive to temperature change, especially

at low frequencies. As a result, it is di�cult to get an accurate SOC estimation [90].

(a) (b)

Figure 3.3: Impedance spectra of a Li-ion cell (a) at di�erent SOC at 25◦C [3], (b)
at approximate 50% SOC and di�erent temperature, the point in (b) shows the 1Hz
frequency [4]

3.2.2 Indirect Methods

Due to direct methods needs enough rest-time to monitor SOC, they cannot be applied

while the vehicle is moving. As a result, and in order to overcome the uncertainties
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associated with open-loop SOC estimate methods, adaptive-based algorithms are widely

investigated during the last several decades. Indirect approaches based on operational

adaptive techniques propose a method for estimating SOC from battery input signals by

using a model of the battery or system speci�cation.

3.2.2.1 Kalman Filter Based Methods

Since early 20th century, several studies are suggested the Kalman Filter (KF) based

methods for SOC estimation [91, 92, 93]. In the context of a linear dynamic system,

Kalman �ltering is an algorithm that generates optimal state estimates from a series of

measurements involving error over time [94]. The KF algorithm is represented by the

Algorithm 1, in which, Ak ∈ Rn×n, Bk ∈ Rn×m, Ck ∈ Rq×n and Dk ∈ Rq×m are constant

matrices, with condition 1 ≤ m, q ≤ n. uk ∈ Rm is a known deterministic input,wk and vk

are the n-dimensional unknown system noise vector and q-dimensional observation noise

vector, respectively , which are associated the white noise process with known covariance.

Additionally, Pk ∈ Rn×n is de�ned as the error covariance matrix.

The KF estimator for SOC based on linear state space battery model are revealed in

[95, 96, 97]. Since the Li-ion batteries have a nonlinear model, The EKF is widely used

for SOC estimation [91, 98, 99] .

The EKF operates on the principle of linearization of the nonlinear model, where

at every time step of the state estimation, the dynamics of the nonlinear system are

linearized from the estimated data using the partial derivatives and �rst-order Taylor

series expansion. The algorithm of EKF is shown in Algorithm 2, where, f(xk,uk)

and g(xk,uk) are the nonlinear state transition functions and nonlinear measurement

functions, respectively.
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Algorithm 1 Kalman Filter algorithm

Linear state-space system model:

xk+1 = Akxk +Bkuk +wk

yk = Ckxk +Dkuk + vk

Covariances of the two noise model:

Qw = E[wkw
T
k ]

Rv = E[vkv
T
k ]

Initialization:

x̂+
0 = E[x0]

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ]

Computation:

for k=1,2,... do
x̂−
k = Ak−1x̂

+
k−1 +Bk−1uk−1 {State estimation time update}

P−
k = Ak−1P

+
k AT

k−1 +Qw {Error covariance time update}

ŷ = Ckx̂
−
k +Dkuk

Kk = P−
k CT

k [CkP
−
k CT

k +Rv]
T {Kalman gain matrix}

x̂+
k = x̂−

k +Kk[yk − ŷk] {State estimate measurement update}

P+
k = (I −KkCk)P

−
k {Error covariance measurement update}

end for
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Algorithm 2 Extended Kalman Filter algorithm

Non Linear state-space system model:

xk+1 = f(xk,uk) +wk

yk = g(xk,uk) + vk

Co-variances of the two noise model:

Qw = E[wkw
T
k ]

Rv = E[vkv
T
k ]

De�nitions:

Âk =
∂f(xk,uk)

∂xk

∣∣∣∣
xk=x̂

+
k

Ĉk =
∂g(xk,uk)

∂xk

∣∣∣∣
xk=x̂

−
k

Initialization:

x̂+
0 = E[x0]

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ]

Computation:

for k=1, 2, ... do
x̂−
k = f(x̂+

k−1, uk−1) {State estimation time update}

P−
k = Âk−1P

+
k ÂT

k−1 +Qw {Error covariance time update}

ŷ = g(x̂−
k , uk)

Kk = P−
k ĈT

k [ĈkP
−
k ĈT

k +Rv]
T {Kalman gain matrix}

x̂+
k = x̂−

k +Kk[yk − ŷk] {State estimate measurement update}

P+
k = (I −KkĈk)P

−
k {Error covariance measurement update}

end for
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The schematic of the nRC Electrical Equivalent Circuit Models (EECM) which is

generally used in EKF-based methods for SOC estimation, is illustrated in �gure 3.4.

The equations of these models for 0 ≤ n ≤ 4, and PNGV model are listed in table 3.1

[100].

Figure 3.4: Equivalent circuit nRC battery model

Table 3.1: The Li-ion model equation base on OCV and SOC

number of n Model name Model equation

0 0RC(Rint model) Vk = OCV (Zk)− IkR0

1 1RC(Thevenin model) Vk = OCV (Zk)− IkR0 + u1,k

2 2RC (DP model) Vk = OCV (Zk)− IkR0 + u1,k + u2,k

3 3RC Vk = OCV (Zk)− IkR0 + u1,k + u2,k + u3,k

4 4RC Vk = OCV (Zk)−IkR0+u1,k+u2,k+u3,k+u4,k

- PNGV Vk = OCV (Zk)− IkR0 + u1,k + ucb,k

In table 3.1, Zk explains the relationship between OCV and SOC. Also, un,k and ucb,k

are described by equation (3.5):

un,k = exp(−∆t/τn)un,k−1 +Rn[1− exp(−∆t/τn)]Ik

ucb,k = ucb,k−1 +
1

Cb

R1[1− exp(−∆t/τ1)]Ik

(3.5)
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In application of SOC estimation Xk, yk and uk are de�ned as (3.6):

xk = (SOCk, u1,k, u2,k, ..., un,k)

yk = OCV (Zk)−
n∑

i=1

ui,k −R0Ik + vk

uk = Ik

(3.6)

The positive aspect of the KF-based method is the accurate state estimation versus

external disturbances. Despite this, KF-based estimator requires a complicated compu-

tation to be applied to the state estimate of a nonlinear system [101].

3.2.2.2 Arti�cial Intelligence Based Methods

Because of the Li-Ion batteries have a nonlinear and complex model, in recent years, the

Arti�cial Intelligent methods such as Fuzzy Logic, Neural Networks (NN) and Support

Vector Machines(SVMs) are considered for SOC estimation [29, 27, 102, 25, 103]. These

methods are known as data-based estimators, and they operate similarly to a black-box

model using known input data.

3.2.2.2.1 Fuzzy Logic Methods

Fuzzy Logic (FL) is a knowledge-based method introduced by L.A. Zadeh that is

similar to the way humans reason [104]. The FL approach simulates the human decision-

making process by considering all possible intermediate states between the digital values

of "yes" and "no". FL is an appropriate data-based algorithm for nonlinear and complex

models.

FL system consists of a fuzzi�er, a fuzzy rule base, a fuzzy inference engine, and a

defuzzi�er. The fuzzy rule bases includes a collection of If-then rules, such as following:

R(l) : IF{x1 is F
l
1 and... and xn is F l

n} THEN y is Gl, l = 1, ...,M (3.7)

That X = [x1, x2, ..., xn]
T ∈ U is the input and y ∈ V is the output of FL system. F l

i
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and Gl are fuzzy sets in Ui and V . The mapping from input sets to output is performed

with a inference engine. Moreover, the fuzzi�er maps a crisp point from X into fuzzy set

in U and defuzzi�er maps fuzzy sets in y to a crisp point in V . Figure 3.5 shows the

diagram of FL system.

Villanova University worked on the implementation a three-input single-output Sugeno

fuzzy model for SOC estimation by impedance parameters [105, 106]. Singh et al. de-

veloped a FL-based SOC estimator in application of portable de�brillators, which was

published in [107]. In this estimator the fuzzy rule based were generated from voltage

recovery measurements and ac impedance of the battery as input fuzzy set, and SOC as

output fuzzy set. More recent attention has focused on the applied fuzzy logic to estimate

SOC by combining other methods. This is covered in more detail in the section Hybrid

methods.

Figure 3.5: Block diagram of Fuzzy Logic System

3.2.2.2.2 Neural Networks-Based Methods

Neural Networks (NNs) are a series of intelligent computational algorithms inspired

by the human neurons system. Numerous studies have attempted to estimate SOC by

Feed Forward NNs [108, 109, 29, 110]. The common structure of feed forward NNs is

illustrated in �gure 3.6. Each NN contains at least three layers: one Input layers, the

Hidden layers that can more than one layer, and one Output layer. The number of nodes

in input layer is equal to input variable.
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Jansen et al. [111] are proposed a Back-Propagation Neural Network (BPNN) based

on measured impedance and frequency measurement for SOC estimation. They were

successful in increasing the accuracy of error estimates on batteries that were becoming

older. Also, an NNs model with four variables in the input layer (Voltage, current,

temperature and the battery's resistance), one hidden layer with 30 node and SOC as an

output layer is presented in [112].

Figure 3.6: Block diagram of Neural Network System

NNs algorithms, despite the fact that they are self-learning and model-independent,

are not capable of providing great accuracy. In order to get high accuracy using NNs

algorithms, it is necessary to combine this technique with �ltering algorithms such as KF.

According to [29], the Max SOC estimate error by the NNs method was 2.5%, whereas this

value dropped to 0.5% when the NNs was used in conjunction with the UKF algorithm.

3.2.3 Hybrid methods

In recent years, researchers are looking into hybrid algorithms as a means of improving

the accuracy and e�ciency of estimation approaches. It was tried by the authors of [113]

to reduce the chattering of SOC estimations by employing a FL system in conjunction

with a sliding mode controller. In [114], estimation of time-varying dynamic systems

is accomplished by the use of a mixture of the EKF and CC techniques. According to
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[115, 116], a hybrid intelligent algorithm composed of Fuzzy Logic and adaptive Neural

Networks, which is known as ANFIS, is proposed.

3.3 Discussion

The various techniques of SOC estimation, as well as the di�culties associated with them,

are discussed in this chapter. Table 3.2 contains a comparison of several techniques

with an emphasis on their bene�ts and drawbacks. SOC estimation using deep learning

algorithms is a relatively recent subject in the �eld of machine learning. In this thesis,

three deep learning algorithms based on Deep Recurrent Neural Network (DRNN) are

suggested as a method for SOC estimation in the EVs, taking into account the advantages

and limits of prior work. Following the application of these techniques to a single cell

of a Li-ion battery, the Bidirectional LSTM model is utilized for SOC estimate of the

battery pack in Tesla's electric vehicle. A battery's nonlinear model requires complicated

mathematical computations, especially in a battery pack. As a consequence, using data-

driven techniques is becoming more essential. Furthermore, while comparing samples NNs

and FL, it is shown that DRNN provides superior results and higher accuracy without

the need of �lters. Increased depth of networks aids in improving the accuracy of the

approximation of the nonlinear model system.
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Table 3.2: summary of SOC estimation methods with the advantages and disadvantages

Methods Advantages Disadvantages

CC
� Easily implemented

� Low Power consumption

� Low accuracy against uncertain disturbances

� High dependency to initial values of SOC

OCV
� Sample and easy to implement

� high accuracy

� Need long rest time to reach a stable condition

� Not suitable for online test

EIS
� Online method

� inexpensive

� High dependency to temperature

� Not practical for EVs which charging with dif-
ferent current

KF
� High Accuracy state estima-

tion versus external distur-
bances

� Highly dependent on the model and sensor
precision

� Has complex mathematical calculations

� Not suitable for nonlinear system

EKF � Predicts a non-linear dynamic
state with good precision

� Not proper for system with highly non-linear

� Have limitation in linearization accuracy from
jacobian matrices

UKF � Not needed to Jacobian matrix
and gaussian noise

� Weak robustness owing to uncertainty and dis-
turbances in modeling

H∞

� Good accuracy

� Time e�ciency

� Satisfactory computational
cost

� Non-linear constraints are not well-handled

� Deviation from accuracy by aging, hysteresis
and temperature

RLS (Recur-
sive Least
Square)

� high precision

� noise reduction in the mea-
sured voltage

� Heavy computation

� Unstable operation if the forgetting values fac-
tor is not appropriate

NN � Independence of battery model
� require a large training data set and memory

storage

FL

� work well in nonlinear system
modeling

� good performance against
temperature

� computational complexity

Hybrid Meth-
ods

� Low cost

� improve the e�ciency
� Di�culty level of implementation
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4.1 Introduction

Recurrent Neural Networks (RNNs) are a type of deep learning methods created in the

1980s [117] yet widely used only in the last few years. These types of neural networks are

bene�cial for serial or sequencing data.

In RNNs, each neuron or processing unit can manage its internal state or memory

to maintain the previous input information. This feature is critical in many applications

related to serial data. The main idea behind this type of architecture is the exploitation of

this series structure. The name of this neural network is derived from the fact that these

types of networks operate recursively. An operation is performed for each element of a

sequence (word, sentence, etc.), and its output depends on the current input and previous

operations [118]. It means the output at time t is achieved by combining the output

network at t − 1 with the new network input at time t. With these cycles, information

can be passed from one step to the next step. In other words, these types of networks have

a loop within themselves, which they can pass information through the input of neurons.

The structure of RNNs is shown in �gure 4.1, where the black square represents the

time delay at each time step.

Figure 4.1: The structure of a Recurrent Neural Network for n inputs.

The network's operation is completely understandable when the chain formed after

opening this computational graph is viewed. Now, this is an architecture that can receive

di�erent inputs xt and generate ot outputs at each time step. It also contains a memory

state ht that maintains the information about what happened on the network until the

time (t). W1, W2, and W3 in �gure 4.1 indicate the weights of input neuron, recurrent
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neuron, and output layer, respectively.

In this chapter, three Deep Recurrent Neural Network (DRNN) algorithms for esti-

mating SOC are argued. Theoretically, RNNs should have the ability to use previous

data for estimation of any future one. In practice, however, this is not the case, and with

expanding the sequence, traditional RNNs are unable to learn the information. For this

reason, the use of RNNs was stopped for a while until outstanding results were obtained

using the long-term and short-term memory unit (Long-Short Term Memory (LSTM))

in the neural network. Unlike traditional RNNs, LSTMs are not in trouble in dealing

with long sequences, using a designed mechanism. Additionally, in [119], Chung et al.

introduced a new gating mechanism in RNNs. The Gated Recurrent Units (GRUs) is

an improved version of standard RNNs. GRUs uses two gate units to decide between

bene�cial and not functioning data.

4.2 Long-Short Term Memory Algorithm

LSTM, in fact, emerged in 1995 to improve RNNs in dealing with sequential data, and

solving the problem of the disappeared gradient phenomenon [120]. Sepp Hochreiter et

al. [120] explain that �long-term memory� in LSTM refers to acquired weights and �short-

term memory� represents internal cellular states. The major change in this network is

replacing the hidden layer of the RNNs with a block called the LSTM block and its most

incredible feature is the ability to learn long-term dependencies that are not possible

using RNNs [121]. To predict the next step, one needs to update the weight values on

the network, which requires maintaining the initial step's information. An RNN can only

learn a limited number of short-term relationships, but long-time series such as 1000

steps are not considered by the RNNs, while LSTMs can properly learn these long-term

dependencies.

All RNNs are in the form of repetitive sequences of neural network modules (units).

In standard RNNs, these repeatable modules have a simple structure: for example, they

only contain a hyperbolic tangent (tanh) layer. But in LSTM, instead of only one layer,

four layers communicate in a special structure.
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In �gure 4.2, xt is the input, ht is the output of the LSTM unit at time t, and ht−1

is the output of the previous LSTM block.

𝜎 𝜎𝑡𝑎𝑛ℎ
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ℎ𝑡−1

ℎ𝑡

𝜎

𝐶𝑡
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𝑊𝑓
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𝑊𝑜

𝑂𝑡

𝑊𝑖

𝑖𝑡

𝑊𝑔

Figure 4.2: Long Short-Term Memory block. xt is the input, ht is the output of the LSTM
unit at time t, and ht−1 is the output of previous LSTM block.

The initial phase in the LSTM is deciding what information should be discarded from

the cell state. This decision is made by a sigmoid (σ) layer, shown in Equation (4.1),

called the forget gate layer (ft). The next step is deciding what new information has to

be save in the cell state. This decision contains two parts. First, a sigmoid layer called

the input gate (it) decides which values will be updated with Equation (4.2). The next

step, represented in Equation (4.3), is a tanh layer that makes the vector of values called

"memory cell" (Ct) that could be added to the state cell. By combining these two steps,

the state cell (ht) can be updated within the next step. Finally, it must be determined

what information is to be transmitted to the output (Ot). This output will be based

on the state cell, however, it will pass via a speci�ed �lter. The formula for LSTM are

expressed below.
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4.2. Long-Short Term Memory Algorithm

ft = σ(Wf [ht−1, xt] + bf ) (4.1)

it = σ(Wi[ht−1, xt] + bi) (4.2)

Ct = ft ∗ Ct−1 + it ∗ tanh(Wg[ht−1, xt] + bg) (4.3)

Ot = σ(Wo[ht−1, xt] + bo) (4.4)

ht = Ot ∗ tanh(Ct) (4.5)

Where the initial values of Ct and ht are C0 = 0 and h0 = 0. Wf ,Wi,Wg,Wo are

respectively the weights of the forget gate, input gate, memory cell, and output gates,

and bf , bi, bg, bo are the associated biases. The gate activation function and the output

activation function are shown by σ and tanh, which are de�ned in the Equations (4.6)

and (4.7), respectively.

σ(x) =
1

1 + exp(−x)
(4.6)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(4.7)
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4.3 Bidirectional LSTM for SOC Estimation

Bidirectional LSTM (BiLSTM) networks include two hidden layers, which are coupled

to one output and have opposite orientations. The �rst hidden layer is in the forward

direction of the input sequences from time t−1 to time T , and the second is in the opposite

direction of the input sequences from time T to time t− 1. The output layer is generated

by the combination of the output of the forward direction,
−→
ht , and the backward direction

output,
←−
ht , as shown in equation (4.8).

ŷt = σ(
−→
ht ,
←−
ht) (4.8)

The unfolded BiLSTM architecture is illustrated in �gure 4.3.
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Output Layer

Backward Layer

Forward Layer

Input Layer

Figure 4.3: Structure of unfolded BiLSTM network. xt and ŷt represent the input and
output variables at time t, respectively. σ is the activation function for combining the
output of forward layer and backward layer.

The BiLSTM network proposed in this thesis for SOC estimation contains one input

layer with three variables, a BiLSTM hidden layer with n units, an LSTM hidden layer

with m units, and a single variable output layer. The structure of the proposed BiLSTM

is depicted in �gure 4.4. The input vector and output variable at time t are denoted by
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xt = {Vt, It, Tt} and ˆSOCt, respectively.

𝑁1

𝑥𝑡

𝐼𝑡𝑉𝑡 𝑇𝑡

𝑁2 𝑁3 𝑁𝑛

●●●
𝐿1 𝐿2 𝐿3 𝐿𝑚

●●●

 𝑆𝑂𝐶𝑡

Input Layer

BiLSTM Layer

LSTM Layer

Output Layer

Figure 4.4: BiLSTM architecture for SOC estimation with two hidden layers. The �rst
hidden layer is a BiLSTM layer with n units and the second one is a one directional LSTM
with m unit. xt = {Vt, It, Tt} and ŷt = ˆSOCt represent the input and output variables at
time t, respectively.

4.4 LSTM Algorithm for SOC Estimation

In this inquiry, an LSTM structure is used for the SOC estimation of a one-cell Li-ion

battery with voltage (V), current (I), and temperature (T) as input variables and the

SOC of the battery as the output. The whole structure is depicted in �gure 4.5 for

implementation on multiple GPUs. Three LSTM networks are used for the inputs. In

fact, each input variable contains two hidden layers with k and l LSTM units, respectively,

which work in parallel on three GPUs. The concatenation of these layers is realized to

regularize the output with a dense layer, which is a linear operation that relates every

input to every output with the following equation:

ˆSOCt = Wht + b (4.9)

where W and b are de�ned, respectively, as the weight matrices and biases of full

connected layers. To implement this method and the mathematics operations, Tensor�ow

framework is used.
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The �owchart of this program is shown in �gure 4.6.

Figure 4.5: The proposed structure of the LSTM model for the SOC estimation.

Figure 4.6: The �owchart of RoLSTM algorithm for SOC estimation.

52



4.5. Gated Recurrent Units for SOC estimation

4.5 Gated Recurrent Units for SOC estimation

In comparison with other RNNs, GRUs has a simple structure, and is robust against

vanishing gradient. The structure of GRU block is depicted in �gure 4.7.

𝜎𝜎 𝑡𝑎𝑛ℎ
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𝑈𝑟 𝑈
 ℎ𝑡

𝑊𝑟

𝑈𝑧

𝑊𝑧 𝑊

𝑟𝑡 𝑧𝑡

Figure 4.7: Gated Recurrent Unit block. σ is the gate activation function, tanh is the
output activation function, and ht−1 is the output of hidden layer node at previous time.

The GRU block contains two gates: the update gate and the reset gate. The update

gate, zt, controls how much of the previous information is relayed to the future. rt is

the reset gate, which selects what the past information to forget based on its value. The

equations of the GRUs method are presented in equation (4.10).

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Wxt + rt ⊙ Uht−1 + b)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt

(4.10)

Where, Wz, Wr and W are the three connection weight matrices for inputs. Uz, Ur
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and U are the weight matrices for the output of the hidden layer node at the previous

time, and bz, br and b are the bias parameters. ⊙ is used to calculate the Hadamard

(element-wise) product. ĥt expresses the current memory content, and ht−1 is the output

of the hidden layer node at the previous time. σ and tanh represent the gate activation

function and the output activation function, respectively, determined by the following

equations:

σ(x) =
1

1 + exp(−x)
(4.11)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(4.12)

The proposed Adaptive GRUs network in this work for SOC estimation, uses the

voltage Vt, current It and the temperature Tt of the battery as the input variables, and

the SOC of the battery SOCt as the output of the network at time step t. The structure

of the GRUs network for SOC estimation is shown in �gure 4.8. This network contains

two hidden layers with k and l units. Hence, in �gure 4.8, h1
t (k) represents the k

th unit of

the �rst hidden layer, and h2
t (l) is the lth unit of the second hidden layer at time t. For

the regression output, a Dense layer is used.

Here are the steps for implementing the GRUs technique of estimating SOC:

1. Normalize the dataset after dividing it into training and validation datasets. The

dataset consists of input and output variables.

2. Set the input layer parameters, hidden layers units, and output layer parameters.

3. De�ne the activation functions, loss functions and optimization methods.

4. Con�gure the evaluation function and train the GRUs. The network parameters

will be self-learned because GRUs is a self-learning approach.

5. Validate the GRUs network with the validation dataset for SOC estimation.

This method is implemented with Tensor�ow framework in Keras library.
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Figure 4.8: Structure of the developed Adaptive GRU network for SOC estimation. Vt,
It and Tt represent the Voltage , Current and the Temperature at time t, h1

t (k) is the k
th

unit of �rst hidden layer and h2
t (l) shows the lth unit of second hidden layer at time t

4.6 Optimization Algorithms

The deep learning algorithm's primary goal is to develop a model that achieves high

performance and makes accurate predictions. The weights and biases of the network

must be updated on a regular basis in order to keep the system losses as low as possible.

Following the transfer of training data to the network, random values are used to

determine the initial values of system weight and bias, which are then used to start the

training procedure. By activating the units in each layer, the result is passed to the next

layer to generate the SOC estimation in the output layer. The system loss function is

determined after comparing the estimated value to the true value. Utilizing this value,

as well as an appropriate optimizer to minimize the loss function, the new weights and
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biases are computed. In order to prepare for the next training session, these values are

returned to the units inside the network layers. Two optimization algorithms are used in

this work, which are described in further detail below.

4.6.1 Adaptive Moment Estimation (Adam) Algorithm

Adaptive Moment Estimation (Adam) is an adaptive learning rate optimization method

that works with �rst-order gradients and is based on the concept of learning rate opti-

mization. More speci�cally, estimations of the �rst and second moments of gradients are

utilized to compute adaptive learning rates for each weight parameter.

Algorithm 3 Adam algorithm. Default setting for parameters are α = 10−4, β1 = 0.9,
β2 = 0.999 and ϵ = 10−8.

Require: α: Learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: L(W ): Loss function
Require: W0: Initial parameter vector

m0 = 0 (Initialize �rst moment vector)
v0 = 0 (Initialize second moment vector)
t = 0 (Initialize timestep)

while stopping condition is not achieved do
t = t+ 1

gt = ∇LW (Wt−1)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)gt
2

m̂t =
mt

1−β1
t

v̂t =
vt

1−β2
t

Wt = Wt−1 − m̂t
α√
v̂t+ϵ

end while
return Wt

In Algorithm 3, L is the loss function that is evaluated under Mean Square Error

with (4.13):
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L =
n∑

t=0

1

n
(SOCt − ˆSOCt)

2 (4.13)

where n is the number of data points, SOCt and ˆSOCt are measured and predicted

capacity of battery at time step t, respectively.

4.6.2 Robust and Adaptive Online Optimization method

A Robust and Adaptive Online Optimization Algorithm (RoAdam) is proposed in [42]

to train the system and adjust the network's weights and biases. RoAdam is depending

on gradient and the squared gradient. The algorithm of RoAdam is described in (4.14).

η = 0.0005 is the training step size, β1 = 0.9 , β2 = 0.999 and β3 = 0.999 are exponential

decay rates, Wt is the weights vector of the model in time step t and ϵ = 10−8 is a constant.

The initial values of the �rst moment of the gradients, mt, and the second moment of the

gradients, vt, are zero. rt is de�ned as a relative prediction error term of the loss function.

gt = ∇LW (Wt−1)

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)gt
2

m̂t =
mt

1− β1
t

v̂t =
vt

1− β2
t

rt = ∥L(Wt−1)/L(Wt−2)∥

dt = β3dt−1 + (1− β3)(rt)

Wt = Wt−1 − m̂t
η

dt
√
v̂t + ϵ

(4.14)

L is the loss function that is calculated considering (4.15):

L =
1

n

n∑
t=0

|SOCt − ˆSOCt| (4.15)

where n is the number of data point, SOCt and ˆSOCt are respectively actual and
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predicted values of state of charge at time step t.

To guarantee the stability of the relative prediction error, a threshold is intended for

rt. Then rt will be changed as (4.16).

rt =


min{max{k, ∥L(Wt−1)/L(Wt−2)∥}, K}, if∥L(Wt−1)∥ ≥ ∥L(Wt−2)∥

min{max{1/K, ∥L(Wt−1)/L(Wt−2)∥}, 1/k}, Otherwise

(4.16)

Where, k=0.1 and K=10 are the lower and upper thresholds, respectively.

4.7 Data Preprocessing

Since deep learning methods are de�ned as data-base techniques, data is just as important

as the model algorithm in terms of performance. In reality, when deep learning models are

trained with relevant, accurate, and adequate data, they may perform exceptionally well.

As a result, data preparation is an extremely crucial step before constructing a model.

Normalization is essential due to the di�erences in the ranges of voltage, current, and

temperature, all of which are included in the input data for the SOC estimation. Data is

normalized in the range[−1,1] using the following formulas for the input:

x = [((xraw − xmin)/(xmax − xmin)) ∗ (max−min)] +min (4.17)

In (4.17), the minimum and maximum values of input vector xraw are shown by xmin

and xmax, respectively. In addition, max equals 1 and min is −1. To scale the testing

dataset, the maximum and minimum values of training inputs must be used.

Moreover, the input datasets for the LSTM and GRUs should be three-dimensional

(3D), as stated by the de�nition (Samples, Time steps, Features).

Samples indicate the number of sequences, Time steps symbolize the number of ob-

servations in each sample, and Features represent the number of features for each element

in the samples. The input datasets must be normalized and converted to a 3D array for

utilization as a network input during the preprocessing step. Another parameter that
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must be properly adjusted in time series data preprocessing is the sample frequency. The

sampling rate of raw data is set to 1Hz in this case.

4.8 Hyperparameters Tuning

Hyperparameters are de�ned as parameters that control the training process. They are

comprising two parts:

� Model-speci�c hyperparameters: including network structure variables, like number

of layers and number of units in each layer.

� Optimization hyperparameters: the associated variables with the optimization and

training process, such as learning rate and batch size.

In general, there is no clear method for determining the right number of layers and units

inside them. A trial-and-error approach is usually employed to determine the ideal model

structure in these cases. The deeper learning capacity is required for more complicated

functions. In this case, we start with one hidden layer and 64 units in it. Training loss

data from varying the number of layers and units are given in the following chapter.

4.9 Discussion

Since battery discharge is a time series and sequential process, RNNs are more suited

to estimating SOC than other data-driven algorithms. This chapter was presented new

DRNN-based algorithms for SOC estimation in Li-ion batteries. The structures of BiL-

STM, LSTM, and GRUs estimators have been explained. More gates in the hidden units

of these algorithms allow them to overcome the issue of the vanishing gradient in the sim-

ple DRNN. Moreover, The BiLSTM is able to manage long-term relationships from both

the previous and the future directions. This feature allows it to learn more sequential

data and improves estimate accuracy. The results provided in the next chapter depict the

performances of these methods for one cell Li-ion.
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Chapter 5. Experimental results for State of charge Estimation of one cell Li-ion Battery

5.1 Introduction

In this Chapter, the experimental results to evaluate the SOC of single cell Li-ion battery

by the BiLSTM, the RoLSTM, and the GRUs algorithms are presented and examined in

detail. All programs are developed in Python by using Tensor�ow and Keras libraries.

Three Nvidia Tesla 100 GPUs from the Strasbourg University Computing Centre are

employed for the learning process. GPU is a great tool to speed up a deep neural network

data pipeline. The large number of cores in GPU improve processing power. Also, In

contrast to CPUs, which have limited memory bandwidth, GPUs are capable of moving

much greater amounts of information over the same time frame (as much as 750GB/s

compared to only 50GB/s for CPUs). One of the greatest advantages of GPUs is their

potential for parallelism, and this capability means you can use them in a variety of ways,

including combining them in clusters and distributing jobs throughout the cluster. As a

consequence, the Strasbourg University Computing Center helps us in using more data for

system training and de�ning bigger sequences in each batch to improve system accuracy.

For the BiLSTM estimator, the impact of the number of hidden layers and units is

discussed in detail. Furthermore, all of these algorithms are implemented at changing

temperatures, which is an essential aspect of them.

5.2 Battery Speci�cation and Experimental Conditions

To apply our methods, the database related to the Panasonic 18650PF Li-ion battery

is used. The Panasonic 18650PF Li-ion battery is employed in some Tesla EVs. This

database was created by McMaster University in Ontario (Canada) [122]. The battery

parameter speci�cations are listed in Table 5.1.

Panasonic NCR18650PF cell discharge datasets are generated from various standard

drive cycles in the United States, including the Los Angeles 92 (LA92), Supplemental Fed-

eral Test Procedure Driving Schedule (US06), Highway Fuel Economy Test (HWFET),

and Urban Dynamometer Driving Schedule (UDDS), with a variety of current steps

and temperatures. Figure 5.1 presents the drive cycle power pro�les of the Panasonic
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5.2. Battery Speci�cation and Experimental Conditions

NCR18650PF cell for di�erent drive cycles. The negative power represents the discharge

power, whereas the positive power represents the charge power. The current, voltage, and

capacity of battery for a sample drive cycle utilized in the training process are illustrated

in �gure 5.2.

Table 5.1: The speci�cation of the Panasonic 18650PF battery parameters

Item Speci�cation

Capacity Min.2750mAh
Typ.2900mAh

Nominal voltage 3.6V
Min/Max Voltage 2.5V /4.2V
Charging CC-CV, Std. 1375mA, 4.20V, 4.0 hrs
Temperature Charge and Discharge: 0◦C to 45◦C

Discharge: −20◦C to 60◦C
Storage: −20◦C to 50◦C

Energy density Volumetric:577 Wh/l
Gravimeteric: 207 Wh/kg

In this study, the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and

Maximum Error (MAX) are used to evaluate the performance of the suggested network

for SOC estimation. The MAE, RMSE, and MAX are calculated using equations (5.1) -

(5.3), respectively.

MAE =
1

n

n∑
t=0

|SOCt − ˆSOCt| (5.1)

RMSE =
n∑

t=0

√
1

n
(SOCt − ˆSOCt)2 (5.2)

MAX = max |SOCt − ˆSOCt| (5.3)

where SOCt and ˆSOCt are shown the measured value and the estimated value at

timestep t, respectively. As well as, n is the number of data point in the sequence.
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Figure 5.2: The (a) Current, (b) Voltage, (c) Capacity of battery for train drive cycle at
25◦C, 10◦C and 0◦C ambient temperature
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Chapter 5. Experimental results for State of charge Estimation of one cell Li-ion Battery

5.3 State Of Charge Estimation By BiLSTM method

For train datesets of Panasonic NCR18650PF cells, up to eight drive cycle sequences in

three distinct ambient temperatures (25◦C, 10◦C, 0◦C) are combined. For the validation

dataset, a drive cycle created by a random mix of US06, HWFET, USDDE, and LA92

drive cycles is utilized. Since the sampling frequency was set to 1Hz, the length of each

sequences was approximately among 4000 and 10,000 time-steps, resulting in a training

dataset with more than 100,000 time-steps. It is not feasible to implement a network

with a time-steps equal to this length sequence. Hence, the dataset is split to shorter

sequences. In this work, the di�erent time-steps between 500 to 10,000 were tested.

The results of SOC estimation by BiLSTM models are described in this section. As

mentioned in the previous chapter, The input vector is identi�ed as xt = {V (t), I(t), T (t)},

where V (t), I(t), T (t) are the voltage, current and temperature of the battery at time t,

respectively. Furthermore, the proposed model structure is explained in Section 4.3, and

the Adam optimization method is used for learning the system. To evaluate the e�ect

of the number of hidden units (Nn), and number of hidden layers (L) on the estimated

performance, BiLSTM was developed with di�erent hidden layers and hidden units. The

times-step is set to 10, 000, and the learning rate is chosen at 10−4. Additionally, to

overcome the over-�tting, Early stopping method is used. With Early stopping, the

training process stops while the validation loss begins to increase after several iterations.

To achieve accurate estimation, each suggested network is learned 10 times. The MAE,

MAX, and RMSE performances reported here is obtained from the average results of ten

training. Figure 5.3 compares the estimation accuracy for Nn = {128, 256, 512, 1024} at

25◦C ambient temperature. When Nn increases to 512, the MAE and RMSE decrease to

0.60 and 1.02 at 25◦C , respectively. However, an overgrowth of Nn can cause over�tting

and reduce the accuracy of SOC estimation. This e�ect is visible in the MAE and RMSE

values reached by Nn = 1024. These results are presented in more detail in the Table 5.2

at 25◦C and 0◦C. As can be seen, the best performance is reached by Nn = 512. Also,

the validation loss function for Nn = {128, 512} at 25◦C ambient temperature are shown

in �gure 5.4. It is clear that larger number of Nn makes system converge faster to good
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performance.
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Figure 5.3: Comparison of SOC estimation performances regarding to number of hidden
units at 25◦C ambient temperature.

Table 5.2: SOC estimation accuracy by BiLSTM methods with di�erent number of hidden
units.

Number of hidden units Test case evaluation
Temperature (◦C)

25 0

128
MAE(%) 0.87 1.31
MAX(%) 4.1 4.9
RMSE(%) 1.3 1.54

256
MAE(%) 0.75 1.10
MAX(%) 4.07 4.3
RMSE(%) 1.20 1.23

512
MAE(%) 0.60 0.81
MAX(%) 3.2 4.01
RMSE(%) 1.02 1.08

1024
MAE(%) 0.7 0.94
MAX(%) 3.5 5.02
RMSE(%) 1.15 1.35
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Figure 5.4: Validation loss function for network with 512 hidden units and 128 hidden
units.

Figure 5.5 and �gure 5.6 depict the SOC estimation and the SOC error, which is

de�ned as the di�erence between the SOC measurement and the SOC estimation, for

network with Nn = 512 at 0◦C and 25◦C ambient temperature, respectively.
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Figure 5.5: (a) SOC estimation and (b) error estimation by BiLSTM network with 512
hidden units for a drive cycle mix of US06, HWFET, USDDE and LA92 at 0◦C.
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Figure 5.6: (a) SOC estimation and (b) error estimation by BiLSTM network with 512
hidden units for a drive cycle mix of US06, HWFET, USDDE and LA92 at 25◦C.

Table 5.3: SOC estimation accuracy by BiLSTM methods with two hidden layers.

Number of hidden layers Test case evaluation
Temperature (◦C)

25 0

256-16
MAE(%) 0.76 1.13
MAX(%) 3.8 4.15
RMSE(%) 1.14 1.6

256-32
MAE(%) 0.43 0.7
MAX(%) 1.8 2.3
RMSE(%) 0.75 0.92

512-32
MAE(%) 0.83 0.92
MAX(%) 2.06 4.3
RMSE(%) 1.05 1.2

The network performance increases by creating a network with consecutive layers.

Therefore, a network with a large number of hidden units can be replaced with a multi-

layer network with fewer units per layer. According to the results in Table 5.3, it is

apparent that the highest estimation performance is achieved by the two hidden layers

model with 256 BiLSTM units in �rst layer and 32 LSTM units in second layers. The
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Chapter 5. Experimental results for State of charge Estimation of one cell Li-ion Battery

RMSE and MAX error for the two hidden layers network is 0.75 and 1.8 at 25◦C, respec-

tively, while these values are equal to 1.02 and 3.2 for the best network with one hidden

layer under the same condition.

Figures 5.7 and 5.8 demonstrate the SOC estimation result as well as the SOC error

of BiLSTM with two layers at 0◦C and 25◦C, respectively.

The above results indicate that BiLSTM algorithm behaves well at �xed ambient

temperatures. But, in reality, the ambient temperature may be changed. Hence, to assess

the SOC estimation performance the algorithm (256-32) was applied to a test case dataset

consisting of di�erent ambient temperatures within 10◦C to 25◦C. The MAE is 0.77 and

the RMSE is equal to 0.96. These results reveal that the proposed algorithm has a good

ability to estimate SOC at ambient temperature. The performance of the BiLSTM model

at varying ambient temperatures is depicted in �gure 5.9.
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Figure 5.7: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 0◦C by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the �rst layer and 32 LSTM units are in the second layer.
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Figure 5.8: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25◦C by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the �rst layer and 32 LSTM units are in the second layer.
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Figure 5.9: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at varying temperature by BiLSTM network with 2 hidden
layers, the 256 BiLSTM units are in the �rst layer and 32 LSTM units are in the second
layer. Temperature is shown in (c).
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Since one of the main challenges in estimating SOC is �nding the exact initial value

of SOC, the methods independent of the initial value are considered. To test the system

with an incorrect initial value, h0 is set to zero. Figure 5.10 shows the 40% error at the

start of the cycle. However, this value decreases rapidly, and the SOC estimate reaches

the desired value after approximately 10 seconds.
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Figure 5.10: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25◦C by BiLSTM network with 2 hidden layers, the 256
BiLSTM units are in the �rst layer and 32 LSTM units are in the second layer and h0 = 0.

5.4 Experimental result of SOC Estimation By RoL-

STM Algorithm

In this section, the experimental results of SOC estimation obtained with the model

explained in section 4.4. Also, the optimization algorithm used for training the system
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is Roadam, with an initial learning rate equal to 0.0005. The number of units and layers

are chosen by trial and error. k = 128 and l = 8 are the number of units of the �rst

layer and the second layer for each input, respectively. RoAdam can be adaptively tuned

against an outlier. The weights and biases could be tuned online with a strategy of

adaptive optimization to have a high-performance network. The train and test datasets

are chosen as in the previous section. Here, the time-step is 1000. If raw data is used for

output data, RoAdam helps us to have smoother estimation by decreasing the e�ect of

outliers. RoAdam is a useful optimization algorithm in real time data against unwanted

noise and disturbance. However, in our results, in comparison with the Adam algorithm,

the performance improvement was not signi�cant because there was no noticeable outlier

in the used datasets. In RoLSTM, the MAE = 0.54 and the RMSE = 0.79 at 25◦C,

whereas these values with the LSTM-Adam algorithm are 0.76 and 0.98, respectively.

The results obtained from the average SOC estimation after ten times of training are

summarized in Table 5.4.

Table 5.4: compare SOC estimation accuracy by RoLSTM method and LSTM-Adam
algorithm .

LSTM Algorithm Test case evaluation
Temperature (◦C)

25 0

RoLSTM
MAE(%) 0.54 0.7
MAX(%) 1.9 2.56
RMSE(%) 0.79 1.02

LSTM-Adam
MAE(%) 0.76 0.98
MAX(%) 2.98 3.6
RMSE(%) 0.97 1.12

The SOC estimation by RoLSTM algorithm at 0◦C and 25◦C are illustrated in Fig. 5.11

and Fig. 5.12, respectively. As well as, like BiLSTM model, this algorithm was eval-

uated by a drive cycle test at varying ambient temperatures. The MAE = 1.03 and

RMSE = 1.78 indicate the RoLSTM performance is good at variable temperature.

Fig. 5.13 shows the performance of RoLSTM model at varying ambient temperature.
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Figure 5.11: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 0◦C by RoLSTM network with 2 hidden layers, the 128
LSTM units are in the �rst layer and 8 LSTM units are in the second layer for each input.
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Figure 5.12: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25◦C by RoLSTM network with 2 hidden layers, the 128
LSTM units are in the �rst layer and 8 LSTM units are in the second layer for each input.
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5.5 GRU Algorithm used for SOC Estimation

Here, the SOC estimate is achieved using the Gated Recurrent Units algorithm, as ex-

plained in section 4.5. The number of hidden layers and units discovered through trial

and error is equal to two layers with 512 and 32 units respectively. The Adam optimiza-

tion algorithm with a learning rate= 10−4 is utilized to adjust the weights and biases of

the network. As described in section 5.3 all datasets are re-sampled at 1Hz sampling

frequency. Also, the time-step is chosen as 1000. The average of ten times of training

yields MAE, RMSE, and MAX errors of 0.93, 1.1, 4.4 at 0◦C, and 0.84, 1.09, 4.2 at 25◦C,

respectively. Moreover, the MAE =1.2, RMSE= 2.04, and MAX= 5.01 at varying am-

bient temperature. The �gures 5.14, 5.15, and 5.16 depict the GRU's performance at

0◦C, 25◦C and varying ambient temperature.

0 1000 2000 3000 4000 5000 6000 7000

25

50

75

100

SO
C(
%
)

(a)
true
pred

0 1000 2000 3000 4000 5000 6000 7000
Time(s)

0

2

4

SO
Ce

rro
r(%

)

(b)

Figure 5.14: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 0◦C by GRU network with 2 hidden layers, the 512 GRU
units are in the �rst layer and 32 GRU units are in the second layer.

76



5.5. GRU Algorithm used for SOC Estimation

0 2000 4000 6000 8000 10000
0

25

50

75

100

SO
C(
%
)

(a)
true
pred

0 2000 4000 6000 8000 10000
Time(s)

0

2

4

SO
Ce

rro
r(%

)

(b)

Figure 5.15: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at 25◦C by GRU network with 2 hidden layers, the 512 GRU
units are in the �rst layer and 32 GRU units are in the second layer.
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Figure 5.16: (a) SOC estimation and (b) error estimation for a drive cycle mix of US06,
HWFET, USDDE and LA92 at varying temperature by GRU network with 2 hidden
layers, the 512 GRU units are in the �rst layer and 32 GRU units are in the second layer.
Temperature is shown in (c).
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5.6 Discussion

In this chapter, the results of SOC estimation using three deep RNNs models in a single

cell battery are investigated. In summary, a comparison of the results in this chapter with

those of other studies is listed in Table 5.5.

Table 5.5: Comparison of SOC estimation accuracy in recent studies.

Methods Error Temperature Li-ion Type

AUKF with LSSVM [123] MAE < 2% 25◦C ∼ 42◦C 70Ah Kokam

FNN [124] MAE < 4.04% 0◦C ∼ 40◦C LG18650HG2

LSTM-RNN [39] MAE < 1.6% 0◦C ∼ 25◦C Panasonic 18650PF

FO-AEKF [125] MAE < 1.59% ���� Li[NiCoAl]O2(NCA)

BiLSTM MAE < 0.77% 0◦C ∼ 25◦C Panasonic 18650PF

RoLSTM MAE < 1.03% 0◦C ∼ 25◦C Panasonic 18650PF

GRU MAE < 1.2% 0◦C ∼ 25◦C Panasonic 18650PF

As can be seen from the comparison of the results, the BiLSTM network was demon-

strated greater performance than the other algorithms. With this model, it is possible

to analyze longer sequences from two directions (the past and the future) without the

gradient vanishing happening. In this feature, one could get more accurate estimates of

discharge period duration, due to the ability to choose the length of discharge period as

long as a drive cycle's time. Moreover, BiLSTM estimator performed well when presented

with an incorrect SOC initial value.
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Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

6.1 Introduction

The battery pack, which serves as the primary source of energy in EVs, is made up of

many cells that are linked in series and parallel. Since knowing the status of charge of the

pack is essential for the driver, investigating the SOC estimate of the battery-pack in EVs

is of great interest. A large number of published studies describe the techniques of SOC

estimation for a single cell. However, in [126], Plett introduced a "Bar-Delta" �ltering

method based on Kalman Filter to estimate the SOC in battery-pack. Mawonou et al.

improved the accuracy of the Bar-Delta estimator by "switched bar-delta" algorithm [127].

Additionally, in [128, 129] the authors are proposed the AEKF based approach. Machine

learning methods for estimating SOC in EVs battery packs are presented in [130, 25] to

reduce computational complexity.

Finding an estimator which can reduce the complexity of computing tasks while still

working in real time with su�cient accuracy is a critical issue in electric vehicle devel-

opment. In order to achieve the aforementioned objectives, This chapter presents a new

BiLSTM method for estimating the SOC of a pack of batteries in EVs. To collect data

and evaluate the model in the simulation, IPG Carmaker software was utilized.

6.2 CarMaker Environment

CarMaker is a virtual software introduced by the company IPG Automotive for simula-

tion of real-time driving tests during the complete development process (Model-In-Loop,

Software-In-Loop, Hardware-In-Loop, and Vehicle-In-Loop). Real test scenarios can be

created by CarMaker in a virtual environment by simulating di�erent types of roads,

tra�c, weather conditions, and maneuvering conditions. Additionally, CarMaker also in-

cludes an intelligent driver model with the ability to specify driving behaviors, as well as a

comprehensive vehicle model that includes tires, chassis, powertrain, and controllers[131].

The main Graphical User Interface (GUI) of CarMaker which acts as a software's

control center is shown in Figure 6.1.
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Figure 6.1: IPG CarMaker main GUI

The essential tools in CarMakers are:

� IPGMovie: a real-time 3D animation of the vehicle that shows the desired maneuvers

on the determined road (Figure 6.2).

Figure 6.2: IPGMovie window

� Instruments: displays important instruments and driving conditions information

such as the ABS warning lamp, pedal position, and so on (Figure 6.3).
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Figure 6.3: Instruments window

� IPGControl: it can manage the result in real-time by monitoring, displaying, and

exporting the data (Figure 6.4)

Figure 6.4: IPGControl window

� Direct Variable Access: allows for the observation and modi�cation of simulation

variables throughout the simulation (Figure 6.5).
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Figure 6.5: Direct Variable Access window

6.3 Creating a simulation for estimate the SOC in EVs

Having an accurate SOC estimation depends on various conditions, including road in-

formation, driver behavior, maneuver strategy, and climate conditions. Behavioral and

environmental e�ects on energy consumption in EVs were assessed by Vincent et al. [132].

To create a simulation with Carmaker for collecting the train and test data for SOC es-

timation with considering all factors, the following steps are performed:

1. Choose the vehicle with all properties

2. The desired road

3. Select the driver behaviors

4. The maneuver status

5. Environment condition

6.3.1 Vehicle Model

In this project, the demo of Tesla-S vehicle model from the library of Carmaker has been

chosen. In this model, the vehicle body was de�ned as a �exible body for simulation of

the bending and torsion of the body. The speci�cations of the vehicle body are listed in

Table 6.1. The battery system of the Tesla-S contains 16 modules. As can be seen in

�gure 6.6 each module includes 444 battery cells, which are wired in 74 cells in parallel
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and 6 groups in series. The battery cells used in the modules are Panasonic NCR18650BE

models with 3200mAh and 3.6 V nominal capacity and voltage, respectively.

Table 6.1: The overall speci�cation of the desired body vehicle.

Vehicle overall mass [kg] 2108
Vehicle overall center of gravity x / y / z [m] 2.580 0.000 0.545
Vehicle overall inertia tensor x / y / z [kgm² ] 952.229 3519.035 3954.288
Axle load front / rear [kg] 1064.646 1043.354
Wheel base [m] 2.970

Figure 6.6: The battery system of Tesla-S. The right �gure is a module of batteries
which is contain 74P6S battery. The capacity of each module is 74 × 3.2Ah = 23.7Ah
and the voltage is 6 × 3.6V = 21.6V . The left �gure is the Tesla-S powertrain system
containing 6 modules wiring in series.

Figures 6.7 and 6.8 display a 3D view of the powertrain system and basic information

regarding the powertrain of the demo Tesla-S, respectively. The rear drive is selected as

the drive-line in the powertrain dataset. In the rear-drive model, the di�erential output

shafts are connected to the rear wheels. The power supply is de�ned by two levels of

voltage: high voltage (HV) and low voltage (LV). The idle voltage of HV is 400v. The

capacity and power of the battery are 210 Ah and 85Kw, respectively. Figure 6.9 repre-

sents the speci�cation of HV Battery. In This thesis the data are collected with di�erent

initial state of Charge.
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6.3. Creating a simulation for estimate the SOC in EVs

Figure 6.7: 3D view of powertrian system in Tesla-S. The drive units is located between
the rear wheel [5, 6]

Figure 6.8: Powertrain con�guration of Tesla-S
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Figure 6.9: Speci�cation of HV Battery

6.3.2 3D Road Pro�le Generation

The next step in simulation with Carmaker is creating the road. In powertrain tests, the

road plays an important role, in fact, the use of real routes provides more traceability of

the system via real conditions.

The important parameters in the road model to produce optimal conditions in the

Carmaker are as follows:

� X and Y direction coordinates: like straight sections and road curvature.

� Gradient: the road slope is an essential parameter in changing the in�uential forces

on vehicles.

� Speed limits: de�ned as the maximum speed allowed for the driver according to

legal standards.

� Road characteristic: such as track width, tra�c light, speed bump et etc.

Two ways to generate the 3D road pro�le are described below:
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6.3.2.1 Using Google Maps

Google Maps is a free internet-based software applied for navigation. The data collected

by Google Maps can be saved in a �le including just X-Y coordinates. Since the altitude

of the road plays an important role in EV's energy consumption, the data generated from

Google Maps is not enough e�cient for real-time testing. To overcome this problem, an

online service named GPSVisualizer is applied. GPSVisualizer re�nes GPS coordinates

taken from Google Maps by adding altitude parameters. The GPSVisulizer output �le

can be exported directly to IPGCarmaker Figure 6.10 shows the sample route in Google

Maps.

(a) (b)

Figure 6.10: Sample route in Google Earth

6.3.2.2 RoutConverter Software

RouteConverter is a free open source software applied for display and edit GPS data.

Moreover, this software is able to convert tracks, routes, and way-points to each others.

Figure 6.11 shows the software environment. In Figure 6.11 part (A) illustrates the

Google tra�c online Maps, part (B) describes the Position list, and part (C) depicts the

rout elevation. Since the generated 3D route and way-points can be edited by Rout-

Converter, the output �le is more suitable for using in IPGCarmaker. In this thesis,

Routconverter software was used for generate the 3D road.
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Figure 6.11: The environment of RoutConverter software. Part (A) shows the Maps from
Google tra�c online model, Part (B) indicates the Position list of desired track, and Part
(C) shows the rout elevation.

6.3.3 Driver Model

The driver behavior is a essential factor in modeling vehicle tensions during driving. Con-

sidering that each person performs a speci�c driving action, di�erent models of driver

aggressiveness are necessary for the development process. CarMaker allows us to simulate

a model for controlling driver actions. The driver model utilized in this project is a model

based on Proportional-integral-derivative (PID) controllers prede�ned in CarMaker. The

acceleration diagrams for three types of drivers are illustrated in Figure 6.12. All longitu-

dinal and lateral acceleration combinations are de�ned for the driver-friendly area within

the red lines.

6.3.4 scenario Maneuver

applying Carmaker, a test scenario can be described for the driver. For example , increase

the acceleration, driving at constant speed over a period of time or reduce speed and stop.

Additionally, Carmaker allows us to de�nition a tra�c scenario as in reality.
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Figure 6.12: Acceleration diagram for three driver behavior. Diagram (a) shows the Nor-
mal driver, diagram (b) is for defensive driver and diagram (C) illustrates the aggressive
driver

6.3.5 Environment Conditions

As said before, the environmental conditions play an important role to Evs energy con-

sumption. De�ning environmental factors like the temperature, and the daytime are

possible with the environment module in IPGCarmaker. In this research, the e�ect of

temperature variations on the state of charge of the battery is considered by performing

simulations at di�erent ambient temperature.

6.4 Developed State of Charge Estimation Method

In this section, the developed SOC estimation method in the EVs is described. The steps

of this method are summarized in Figure 6.13.

The structure of the proposed BiLSTM model for SOC estimation in Evs explained

in section 4.3. Like BiLSTM algorithm for estimate the SOC in one cell, the number of

hidden layers and the units chosen by trial and error. The best results were obtained by

two hidden layers with 256 BiLSTM units in the �rst layer and 64 LSTM units in the

second layer. Furthermore, the Adam optimization algorithm with the initial learning

rate lr = 0.001, and the MAE as loss functions is utilized for training the system.
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Figure 6.13: Implementation steps of BiLSTM algorithms for SOC estimation in the EV

The input vector is identi�ed as xt = {V (t), I(t), T (t)}, where V (t), I(t), T (t) are the

battery pack voltage, the current of battery pack and the ambient temperature at time t,

respectively. Here, the raw data with a sampling frequency of 1Hz is used as a input of

the system. Furthermore, the time-step is set to 9000.

6.4.1 Drive Cycles Test Cases

Di�erence drive cycles test at varying ambient temperature are considered for collecting

the Training and validation datasets. Five datasets developed by combination of the

standard drive cycles test in United State such as: Federal Test Procedure 72/75 (FTP-

72, FTP-75), US06, and HWFET. Additionally, the Artemis standard, which is a group

of the drive cycles for powertrain test in Europe, is used to create three drive cycle test

in this thesis. Moreover, four test cases as follows are de�ned to evaluated train and

validation dataset:

6.4.1.1 Case 1

To create this case a route around Mulhouse with the 240 to 340 meter Elevation range

was chosen. The Maximum speed de�ned 120km/h as a standard European for Highway.

The details of the route and the speed curve are shown in Figure 6.11 and Figure 6.14,

respectively.
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Figure 6.14: The speed pro�le of case 1. In this Case the maximum speed is 120km/h.

6.4.1.2 Case 2

Case 2 is de�ned at the speed pro�le depicted in Figure 6.15 in the same route pro�le as

the Case 1. The maximum speed in this case is 100km/h.
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Figure 6.15: The speed pro�le with 100km/h maximum speed for case 2.

6.4.1.3 Case 3

For Case 3 a stochastic tra�c with 10% density at the �rst 1000 second of driving is

added to Case 1. Figure 6.16 illustrated the speed pro�le of this case.

91



Chapter 6. Real time State Of Charge Estimation for Electric Vehicle

0 500 1000 1500 2000 2500 3000

Time(s)

0

50

100

S
p
e
e
d
(k
m
/h
)

Figure 6.16: The speed pro�le of case 3. In this Case the maximum speed is 120km/h, and
at the �rst thousand seconds, the tra�c density with ten percent variation is considered.

6.4.1.4 Case 4

A trip from Mulhouse to Metz is chosen for test case 4. The elevation in this route varies

between 187m and 950m. Additionally, a stochastic tra�c with 10% density is evaluated

to scenario maneuver with maximum speed 100Km/h. Figure 6.17 and �gure 6.18 show

the route pro�le and the speed pro�le of this case, respectively.

Figure 6.17: The rout pro�le of case 4.
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Figure 6.18: Case 4 assumes a speed pro�le with a maximum speed of 100km/h and a
dynamic tra�c with 10% density for the �rst 1000 seconds.

6.4.2 SOC Estimation Results in O�ine Mode

In this section, the accuracy of SOC estimation by BiLSTM algorithms are described. The

results are obtained by training the system with 22 random datasets from existing drive

cycles test at varying ambient temperature. The MAE, MAX, and RMSE are derived from

the average performances of di�erent validation dataset. The MAE, RMSE, and MAX

error achieved at 0◦C are 0.74%, 0.92%, and 2.56%, respectively. These values of SOC

estimation at 20◦C are equal to MAE = 0.7%, RMSE = 1.04%, and MAX = 3.7%. The

performance of BiLSTM algorithm at 0◦C and 20◦C are illustrated in Figure 6.19 and

Figure 6.20, respectively. SOC estimation accuracy by BiLSTM algorithm at di�erent

ambient temperature are listed in Table 6.2.

Table 6.2: The accuracy of SOC estimation by BiLSTM algorithm at di�erent ambient
temperature.

Temperature (◦C) MAE(%) RMSE(%) MAX(%)

0 0.74 0.92 2.56
10 0.57 0.81 3.5
20 0.7 1.04 3.7
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Figure 6.19: (a) SOC estimation and (b) error estimation of battery pack in EV at 0◦C
by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the �rst layer
and 64 LSTM units are in the second layer.
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Figure 6.20: (a) SOC estimation and (b) error estimation of battery pack in EV at 20◦C
by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the �rst layer
and 64 LSTM units are in the second layer.

Additionally, to evaluate the system performance the algorithm were applied to a drive
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cycle at varying ambient temperature within 10◦C to 30◦C. Figure 6.21 shows the SOC

estimation of battery pack over a driving cycle while the ambient temperature increasing.

The MAE = 0.8 and RMSE = 1.3 shows the BiLSTM can achieved a good estimate at

varied environment temperature.
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Figure 6.21: (a) SOC estimation and (b) error estimation of battery pack in EV at varying
ambient temperature by BiLSTM network with 2 hidden layers, the 256 BiLSTM units
are in the �rst layer and 64 LSTM units are in the second layer.
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To examine the e�ect of the incorrect initial value of SOC, h0 is considered zero. The

SOC error is equal to 50% at the start of cycle, and converge to a desired SOC estimate

quickly. The result in Figure 6.22 indicate that the convergence time is about 20 second.
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Figure 6.22: (a) SOC estimation and (b) error estimation of battery pack in EV at varying
ambient temperature by BiLSTM network with 2 hidden layers, the 256 BiLSTM units
are in the �rst layer and 64 LSTM units are in the second layer and h0 = 0.

6.4.3 SOC Estimation Results in Real Time Mode

The performance of BiLSTM algorithm in real time simulation are investigated in this

section. Pycarmaker library in python is used to connect python with IPGCarmaker to

read/write data real time [133].

The best weights of BiLSTM model obtained by learned the system with O�ine train

datasets, are loaded in python to used as a model for prediction. Since the sampling

frequency of training dataset was 1Hz, the battery current, the battery voltage and the
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temperature must be read from Carmaker each one second and used as a input data in

system to predict the SOC at time t. The environment of simulation the system in real

time is depicted in Figure 6.23.

Figure 6.23: The environment of simulation BiLSTM Model to estimate the SOC in real
time.

The proposed system is tested on a sample validation case. Figure 6.24 shows the

SOC estimation and the Soc error during a drive cycle. The performance of system are

evaluated by calculated the MAE and RMSE at the end of cycle. The MAE, RMSE,

and MAX error achieved 0.79%, 1.2%, and 2.69%, respectively. These values indicate the

BiLSTM model can work with high accuracy in real time. Additionally, the converge time

of BiLSTM algorithm at incorrect initial values (h0 = 0) is illustrated in Figure 6.25.
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Figure 6.24: (a) SOC estimation and (b) error estimation of battery pack in EV in real
time test by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the �rst
layer and 64 LSTM units are in the second layer.
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Figure 6.25: (a) SOC estimation and (b) error estimation of battery pack in EV in real
time test by BiLSTM network with 2 hidden layers, the 256 BiLSTM units are in the �rst
layer and 64 LSTM units are in the second layer and h0 = 0.
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6.5 Discussion

In this chapter, the BiLSTM algorithm for SOC estimation in EVs in o�ine and real

time mode have been investigated. The IPGcarmaker software, and also the Tensor�ow

and keras Python libraries, were employed to create the proposed model. The learning

processes were done on the server of Strasbourg University Computing Center.

The raw data without any normalization is used as a trained and validation data in

the BiLSTM estimator to decrease the computation complexity. The results here are con-

�rmed the ability of the BiLSTM algorithm to perform estimate the SOC of the battery-

pack in both O�ine and real time mode, as well as in varying ambient temperature.
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Chapter 7. Conclusions and Perspectives

7.1 Conclusions

This thesis was undertaken to design and evaluate the SOC estimation of Li-ion batteries

by using deep learning methods. In the face of humanity's pressing demand for clean

energy, Li-ion batteries have steadily shown to be valuable because of their special fea-

tures such as high energy density, self-discharge, fast charging time, easy operation, and

extended life cycle. Accurate SOC estimation is essential for monitoring battery balance

and safety mechanisms as well as measuring the amount of residual driving range. To

accurately measure SOC in conventional estimation methods, battery modeling tools are

essential. Deep learning algorithms have a great deal of representational capacity and

expressible, which means that SOC estimates and battery modeling may be accomplished

via learning about them through experience. One of the biggest advantages of this ap-

proach is that it streamlines the battery model creation and state estimate processes,

allowing both to be done in a single step instead of requiring separate processes. This

may be done without losing accuracy in estimating. Using deep learning approaches, a

competitor's accuracy has been increased and information has been found in previously

confusing situations. In many scenarios, it has been proven that deep learning approaches

yield surprising results, such as their ability to both accurately resist random noise, o�sets,

and gains, thereby achieving greater estimation accuracy.

This research o�ers three novel techniques for estimating SOC sequences based on

DRNNs. The results demonstrated that all of proposed methods can provide reliable

estimate of SOC at varying ambient temperature. These methods and their advantages

are listed below:

1. BiLSTM estimator that takes into account the sequential and bidirectional of Li-

ion measurement sequences to describe the battery dynamics for estimating SOC at

various ambient temperatures. Unlike previous unidirectional models, the built bidi-

rectional model can incorporate long-term dependencies from both past and future

directions, allowing it to acquire more temporal information from Li-ion batteries

and therefore improve estimate accuracy. Additionally, The predicted sequence of

successive SOC readings may intuitively represent the trend of the battery's resid-
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ual capacity over a certain time period. This model introduces a novel approach to

processing battery data sequences for SOC estimation.

2. RoLSTM algorithm suggested for SOC estimation are used three LSTM networks

with fewer units are processed in parallel. As a result, the number of LSTM units

can be reduced in the whole model. The method is a self-learning algorithm that

can learn all the network parameters. The proposed algorithm is suitable for SOC

estimation in di�erent ambient temperatures. Moreover, the RoAdam optimizer

gives a smoother estimate in comparison with other optimizer of LSTM network.

3. GRUs-based State Of Charge (SOC) estimation introduced as another data-driven

estimator. A GRUs network has fewer parameters and a simpler structure, in com-

parison to the LSTM network.

This thesis is completed by implementing a BiLSTM algorithm to evaluate the SOC on

EVs battery-pack in o�ine and real time mode. The IPGcarmaker was used to implement

the model in issue. For the drivers, only the SOC of the pack are relevant, then de�ning a

algorithm for estimating the battery pack's state is essential. Since the battery-pack has a

complex and nonlinear model, the traditional algorithms have a complicated mathematical

calculation. Moreover, by using the raw data of battery variable as a input this method

did not need any prepossessing on the real data and consequently, BiLSTM model helps

to reduce the computational load on the BMS.

7.2 Future Work

As Deep Recurrent Neural Networks techniques were suggested to SOC estimation of Li-

ion battery, this study can be expanded to evaluate the State Of Health (SOH) for single

and pack of Li-ion. Since, the Li-ion battery plays an important role in determining

the driving range in autonomous car, assessment of SOC and SOH of the battery, can be

incorporated into route optimization algorithms. Thus, doing longer tests on a real vehicle

and obtain more experimental data in di�erent landscapes and environmental challenges,

is signi�cant for the improvement the learning process of deep learning algorithms. For the

103



Chapter 7. Conclusions and Perspectives

last recommendation, the accurate SOC estimate will be used to charge the EV with solar

energy at the time of its production, in order to improve the self-consumption of green

energy. This estimation will help to better re-inject into the electrical grid the energy

stored in the batteries by the Vehicle to Grid (V2G) principle during consumption peaks.

The EV will play the role of a mobile battery that will increase the storage capacity of

the electrical supply network for demand response application.
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Appendix A. Standard Drive Cycle Test in United State

A.1 Federal Test Procedure (FTP)

A.1.1 FTP-72

FTP-72 also known as Urban Dynamometer Driving Schedule (UDDS), simulated a 12.07

km urban route at 1369 seconds with frequent pauses and a maximum speed of 91.25

km/h. In this cycle the average speed is equal to 31.5 km/h.

The Cycle is divided into two parts:

� Cold start phase: 505 seconds, containing 5.78 km at 41.2 km/h.

� Transient phase : 864 seconds.
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Figure A.1: The EPA Urban Dynamometer Driving Schedule (FTP-72)

A.1.2 FTP-75

The FTP-75 is generated by appending a third phase of 505 s to FTP-72 cycle. This

phase is the same as the �rst phase of FTP-72, but with a hot beginning. The third

period starts after the engine has been stopped for ten minutes. As a result, the whole

FTP-75 cycle is made up of the following segments:

� Cold start transient phase (ambient temperature 20-30°C), 0-505 s.
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A.2. Supplemental Federal Test Procedure Driving Schedule (US06)

� Stabilized phase 506-1372 s.

� Hot soak (min 540 s, max 660 s).

� Hot start transient phase, 0-505 s.

Each phase's emissions are collected in a separate te�on bag, tested, and stated in grams

per mile (g/km). The cold start phase has a weighting value of 0.43, the `stabilized' phase

has a weighting factor of 1.0, and the hot start phase has a weighting factor of 0.57.
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Figure A.2: The EPA Urban Dynamometer Driving Schedule (FTP-75)

A.2 Supplemental Federal Test Procedure Driving Sched-

ule (US06)

To solve de�ciencies, the FTP-75 test cycle in the aggressive speed and/or high speed

driving behaviors, speed variations, and driving behavior after starting, the supplementary

Supplemental Federal Test Procedure Driving Schedule (US06) has been created. This

cycle is around 12.8 km with 77.9 km/h maximum speed and a length of 596 seconds,

with an average speed of 129.2 km/h.
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Figure A.3: The Supplemental Federal Test Procedure Driving Schedule cycle

A.3 Highway Fuel Economy Test (HWFET)

This cycle is a chassis dynamometer driving schedule established by the US EPA to

determine the fuel e�ciency of light duty cars. The HWFET calculates the fuel e�ciency

of highway transport, whereas the city rate is determined on the FTP-75 test.

The test takes place two times, with a pause between runs of maximum 17 s. The �rst

is a preconditioning process for a vehicle, the second is the real emissions test.

Some typical parameters of the cycle are as follows:

� 765 seconds duration

� 16.45 km length

� 77.7 km/h average speed
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A.3. Highway Fuel Economy Test (HWFET)
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Figure A.4: The Highway Fuel Economy Test cycle
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Appendix B. Standard Drive Cycle Test in Europe

B.1 Artemis

In the European Assessment and Reliability of Transport Emission Models and Inventory

Systems (Artemis) project, a European database of real-world driving behaviors was used

to create Common Artemis Driving Cycles (CADC), which is a system for simulation of

energy consumption that includes chassis dynamometer procedures. The three driving

schedules are Urban, Rural, and Motorway, which are in turn designed for various driving

conditions. Two versions of the Motorway cycle are now available; one has a top speed of

130 km/h, while the other one has a top speed of 150 km/h.

Table B.1 is a summary of some of the features of Artemis driving cycles. Figures B.1,

B.2, and B.3 indicate the vehicle's speed in Artemis cycles. In addition to gear-changing

techniques, Artemis cycle de�nitions contain several de�nitions.

Table B.1: The speci�cation of Artemis Driving cycle

Characteristic Urban Rural Road Motorway130 Motorway150

Distance (km) 4.47 17.27 28.74 29.55
Duration(s) 920 1081 1067 1067
Average speed(km/h) 17.5 57.5 97 99.7
Maximum speed(km/h) 58 112 132 150
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Figure B.1: The Artemis urban cycle
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B.1. Artemis
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Figure B.2: The Artemis cycle for rural road
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Figure B.3: The Artemis motorway cycle

113



Appendix B. Standard Drive Cycle Test in Europe

114



BIBLIOGRAPHY

[1] https://historycollection.com/thomas-parker-invented-�rst-electric-car-1884/.

[2] Chaofeng Liu, Zachary G. Neale, and Guozhong Cao. Understanding electrochem-

ical potentials of cathode materials in rechargeable batteries. Materials Today,

19(2):109 � 123, 2016.

[3] Wladislaw Waag, Stefan Käbitz, and Dirk Uwe Sauer. Experimental investigation

of the lithium-ion battery impedance characteristic at various conditions and aging

states and its in�uence on the application. Applied Energy, 102:885�897, 2013. Spe-

cial Issue on Advances in sustainable biofuel production and use - XIX International

Symposium on Alcohol Fuels - ISAF.

[4] Johannes Schmalstieg and Dirk Uwe Sauer. Full cell parameterization of a high-

power lithium-ion battery for a physico-chemical model: Part II. thermal parameters

and validation. Journal of The Electrochemical Society, 165(16):A3811�A3819, 2018.

[5] https://teslapower2020.blogspot.com/1979/09/tesla-engine-diagram.html.

[6] chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.tesla.

com/sites/default/�les/downloads/2014_Model_S_Emergency_Response_

Guide_en.pdf.

[7] Fangdan Zheng, Yinjiao Xing, Jiuchun Jiang, Bingxiang Sun, Jonghoon Kim, and

115

https://historycollection.com/thomas-parker-invented-first-electric-car-1884/
https://teslapower2020.blogspot.com/1979/09/tesla-engine-diagram.html
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.tesla.com/sites/default/files/downloads/2014_Model_S_Emergency_Response_Guide_en.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.tesla.com/sites/default/files/downloads/2014_Model_S_Emergency_Response_Guide_en.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.tesla.com/sites/default/files/downloads/2014_Model_S_Emergency_Response_Guide_en.pdf


Bibliography

Michael Pecht. In�uence of di�erent open circuit voltage tests on state of charge

online estimation for lithium-ion batteries. Applied Energy, 2016.

[8] World Health Organization. Regional O�ce for Europe. Air quality guidelines global

update 2005 : particulate matter, ozone, nitrogen dioxide and sulfur dioxide, 2006.

[9] Hossein Farzin, Mahmud Fotuhi-Firuzabad, and Moein Moeini-Aghtaie. A Practical

Scheme to Involve Degradation Cost of Lithium-Ion Batteries in Vehicle-to-Grid

Applications. IEEE Transactions on Sustainable Energy, 7(4):1730�1738, oct 2016.

[10] Habiballah Rahimi-Eichi, Unnati Ojha, Federico Baronti, and Mo Yuen Chow. Bat-

tery management system: An overview of its application in the smart grid and

electric vehicles. IEEE Industrial Electronics Magazine, 7(2):4�16, 2013.

[11] K. W.E. Cheng, B. P. Divakar, Hongjie Wu, Kai Ding, and Ho Fai Ho. Battery-

management system (BMS) and SOC development for electrical vehicles. IEEE

Transactions on Vehicular Technology, 60(1):76�88, jan 2011.

[12] R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun. Critical review on the battery state of

charge estimation methods for electric vehicles. IEEE Access, 6:1832�1843, 2018.

[13] Juan Rivera-Barrera, Nicolás Muñoz-Galeano, and Henry Sarmiento-Maldonado.

SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Elec-

tronics, 2017.

[14] Ruifeng Zhang, Bizhong Xia, Baohua Li, Libo Cao, Yongzhi Lai, Weiwei Zheng,

Huawen Wang, and Wei Wang. State of the art of lithium-ion battery soc estimation

for electrical vehicles. Energies, 11(7), 2018.

[15] Christopher R. Lashway and Osama A. Mohammed. Adaptive battery management

and parameter estimation through physics-based modeling and experimental veri-

�cation. IEEE Transactions on Transportation Electri�cation, 2(4):454�464, dec

2016.

116



[16] Yinjiao Xing, Wei He, Michael Pecht, and Kwok Leung Tsui. State of charge es-

timation of lithium-ion batteries using the open-circuit voltage at various ambient

temperatures. Applied Energy, 113:106�115, 2014.

[17] U. Westerho�, T. Kroker, K. Kurbach, and M. Kurrat. Electrochemical impedance

spectroscopy based estimation of the state of charge of lithium-ion batteries. Journal

of Energy Storage, 8:244�256, nov 2016.

[18] Qianqian Wang, Jiao Wang, Pengju Zhao, Jianqiang Kang, Few Yan, and

Changqing Du. Correlation between the model accuracy and model-based SOC

estimation. Electrochimica Acta, 2017.

[19] Dave Andre, Christian Appel, Thomas Soczka-Guth, and Dirk Uwe Sauer. Ad-

vanced mathematical methods of SOC and SOH estimation for lithium-ion batteries.

Journal of Power Sources, 2013.

[20] F. Claude, M. Becherif, and H. S. Ramadan. Experimental validation for Li-ion

battery modeling using Extended Kalman Filters. International Journal of Hydrogen

Energy, 42(40):25509�25517, oct 2017.

[21] Chuan-Xiang Yu, Yan-Min Xie, Zhao-Yu Sang, Shi-Ya Yang, and Rui Huang. State-

of-charge estimation for lithium-ion battery using improved dukf based on state-

parameter separation. Energies, 12(21), 2019.

[22] Mohammad Charkhgard and Mohammad Haddad Zarif. Design of adaptive H∞ �l-

ter for implementing on state-of-charge estimation based on battery state-of-charge-

varying modelling. IET Power Electronics, 2015.

[23] Quanqing Yu, Rui Xiong, Cheng Lin, Weixiang Shen, and Junjun Deng. Lithium-

Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-In�nity

and Unscented Kalman Filters. IEEE Transactions on Vehicular Technology, 2017.

[24] Shuxiang Song, ZhenhanWei, Haiying Xia, Mingcan Cen, and Chaobo Cai. State-of-

charge (SOC) estimation using T-S fuzzy neural network for lithium iron phosphate

117



Bibliography

battery. In 26th International Conference on Systems Engineering, ICSEng 2018 -

Proceedings, 2019.

[25] Hanmin Sheng and Jian Xiao. Electric vehicle state of charge estimation: Nonlinear

correlation and fuzzy support vector machine. Journal of Power Sources, 2015.

[26] Saeed Sepasi, Leon R. Roose, and Marc M. Matsuura. Extended kalman �lter with

a fuzzy method for accurate battery pack state of charge estimation. Energies,

8(6):5217�5233, 2015.

[27] Bizhong Xia, Deyu Cui, Zhen Sun, Zizhou Lao, Ruifeng Zhang, Wei Wang, Wei

Sun, Yongzhi Lai, and Mingwang Wang. State of charge estimation of lithium-ion

batteries using optimized Levenberg-Marquardt wavelet neural network. Energy,

2018.

[28] Xuanju Dang, Li Yan, Kai Xu, Xiru Wu, Hui Jiang, and Hanxu Sun. Open-Circuit

Voltage-Based State of Charge Estimation of Lithium-ion Battery Using Dual Neu-

ral Network Fusion Battery Model. Electrochimica Acta, 2016.

[29] Wei He, Nicholas Williard, Chaochao Chen, and Michael Pecht. State of charge

estimation for Li-ion batteries using neural network modeling and unscented Kalman

�lter-based error cancellation. International Journal of Electrical Power and Energy

Systems, 2014.

[30] Mahammad A. Hannan, Molla S.Hossain Lipu, Aini Hussain, Mohamad H. Saad,

and A�da Ayob. Neural network approach for estimating state of charge of lithium-

ion battery using backtracking search algorithm. IEEE Access, 6:10069�10079, jan

2018.

[31] David Jiménez-Bermejo, Jesús Fraile-Ardanuy, Sandra Castaño-Solis, Julia Merino,

and Roberto Álvaro-Hermana. Using Dynamic Neural Networks for Battery State

of Charge Estimation in Electric Vehicles. In Procedia Computer Science, 2018.

[32] Juan Carlos Álvarez Antón, Paulino José García Nieto, Cecilio Blanco Viejo, and

118



José Antonio Vilán Vilán. Support vector machines used to estimate the battery

state of charge. IEEE Transactions on Power Electronics, 28(12):5919�5926, 2013.

[33] Jiabo Li, Min Ye, Wei Meng, Xinxin Xu, and Shengjie Jiao. A novel state of charge

approach of lithium ion battery using least squares support vector machine. IEEE

Access, 8:195398�195410, 2020.

[34] Charu C. Aggarwal. Neural Networks and Deep Learning. 2018.

[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[36] Ghulam Abbas, Menaa Nawaz, and Farrukh Kamran. Performance comparison of

narx amp; rnn-lstm neural networks for lifepo4 battery state of charge estimation.

In 2019 16th International Bhurban Conference on Applied Sciences and Technology

(IBCAST), pages 463�468, 2019.

[37] Gelareh Javid, Dja�ar Ould Abdeslam, and Michel Basset. Adaptive online state of

charge estimation of evs lithium-ion batteries with deep recurrent neural networks.

Energies, 14(3), 2021.

[38] Ephrem Chemali, Phillip J. Kollmeyer, Matthias Preindl, and Ali Emadi. State-

of-charge estimation of Li-ion batteries using deep neural networks: A machine

learning approach. Journal of Power Sources, 2018.

[39] Ephrem Chemali, Phillip J. Kollmeyer, Matthias Preindl, Ryan Ahmed, and Ali

Emadi. Long Short-Term Memory Networks for Accurate State-of-Charge Estima-

tion of Li-ion Batteries. IEEE Transactions on Industrial Electronics, 2018.

[40] Ruxiu Zhao, Phillip J. Kollmeyer, Robert D. Lorenz, and Thomas M. Jahns. A

compact methodology via a recurrent neural network for accurate equivalent circuit

type modeling of lithium-ion batteries. IEEE Transactions on Industry Applications,

55(2):1922�1931, 2019.

119

http://www.deeplearningbook.org


Bibliography

[41] G. Javid, M. Basset, and D. O. Abdeslam. Adaptive online gated recurrent unit for

lithium-ion battery soc estimation. In IECON 2020 The 46th Annual Conference

of the IEEE Industrial Electronics Society, pages 3583�3587, Oct 2020.

[42] Haimin Yang, Zhisong Pan, and Qing Tao. Robust and adaptive online time series

prediction with long short-term memory. Computational Intelligence and Neuro-

science, 2017.

[43] THE HISTORY OF THE FIRST ELECTRIC CARS. https://easyelectriclife.

groupe.renault.com/en/outlook/lifestyle-en/the-history-of-the-�rst-electric-cars/.

[44] Keith McClellan. The Morrison Electric: Iowa's First Automobile. The Annals of

Iowa, 36(8), 1963.

[45] Masayuki Morimoto. Which is the �rst electric vehicle? Electrical Engineering in

Japan (English translation of Denki Gakkai Ronbunshi), 192(2), 2015.

[46] IEA Paris IEA (2020), Electric Vehicles, 2020. https://www.iea.org/reports/

electric-vehicles.

[47] IEA Paris IEA (2019), Electric Vehicles, 2019. https://www.iea.org/reports/

global-ev-outlook-2019.

[48] ALESSANDRO VOLTA, 1745�1827. In Late Eighteenth Century European Scien-

tists, pages 127�142. Elsevier, jan 1966.

[49] Christopher L Heth. Energy on demand: A brief history of the development of the

battery. Substantia, 3(2):77 � 86, Nov. 2019.

[50] M. Stanley Whittingham. History, evolution, and future status of energy storage.

Proceedings of the IEEE, 100(Special Centennial Issue):1518�1534, 2012.

[51] P. Kurzweil. Gaston Planté and his invention of the lead-acid battery-The genesis

of the �rst practical rechargeable battery. Journal of Power Sources, 195(14):4424�

4434, jul 2010.

120

https://easyelectriclife.groupe.renault.com/en/outlook/lifestyle-en/the-history-of-the-first-electric-cars/
https://easyelectriclife.groupe.renault.com/en/outlook/lifestyle-en/the-history-of-the-first-electric-cars/
https://www.iea.org/reports/electric-vehicles
https://www.iea.org/reports/electric-vehicles
https://www.iea.org/reports/global-ev-outlook-2019
https://www.iea.org/reports/global-ev-outlook-2019


[52] David A.J. Rand and Patrick T. Moseley. Energy Storage with Lead-Acid Batteries.

In Electrochemical Energy Storage for Renewable Sources and Grid Balancing, pages

201�222. Elsevier Inc., jan 2015.

[53] P. Kurzweil and J. Garche. Overview of batteries for future automobiles. In Lead-

Acid Batteries for Future Automobiles, pages 27�96. Elsevier Inc., mar 2017.

[54] Balasubramanian Viswanathan. Batteries. In Energy Sources, pages 263�313. Else-

vier, jan 2017.

[55] Patrick Bernard and Michael Lippert. Nickel-Cadmium and Nickel-Metal Hydride

Battery Energy Storage. In Electrochemical Energy Storage for Renewable Sources

and Grid Balancing, pages 223�251. Elsevier Inc., jan 2015.

[56] Florian Schipper and Doron Aurbach. A brief review: Past, present and future of

lithium ion batteries. Russian Journal of Electrochemistry, 52(12):1095�1121, dec

2016.

[57] Tobias Placke, Richard Kloepsch, Simon Dühnen, and Martin Winter. Lithium ion,

lithium metal, and alternative rechargeable battery technologies: the odyssey for

high energy density. Journal of Solid State Electrochemistry, 21(7), 2017.

[58] M. Wakihara. Recent developments in lithium ion batteries. Materials Science &

Engineering R-reports, 33:109�134, 2001.

[59] Batteries for Sustainability. 2013.

[60] M. A. Hannan, M. S.H. Lipu, A. Hussain, and A. Mohamed. A review of lithium-

ion battery state of charge estimation and management system in electric vehicle

applications: Challenges and recommendations, 2017.

[61] Yu Miao, Patrick Hynan, Annette von Jouanne, and Alexandre Yokochi. Current

li-ion battery technologies in electric vehicles and opportunities for advancements.

Energies, 12(6), 2019.

121



Bibliography

[62] Hee-Je Kim, TNV Krishna, Kamran Zeb, Vinodh Rajangam, Chandu V. V. Muralee

Gopi, Sangaraju Sambasivam, Kummara Venkata Guru Raghavendra, and Ihab M.

Obaidat. A comprehensive review of li-ion battery materials and their recycling

techniques. Electronics, 9(7), 2020.

[63] Chen Zhao, He Yin, and Chengbin Ma. Quantitative evaluation of lifepo4 battery

cycle life improvement using ultracapacitors. IEEE Transactions on Power Elec-

tronics, 31(6):3989�3993, 2016.

[64] Kai Sun and Qifang Shu. Overview of the types of battery models. In Proceedings

of the 30th Chinese Control Conference, pages 3644�3648, 2011.

[65] Marian Tomasov, Martina Kajanova, Peter Bracinik, and David Motyka. Overview

of battery models for sustainable power and transport applications. In Transporta-

tion Research Procedia, volume 40, pages 548�555. Elsevier B.V., jan 2019.

[66] Ming Shen and Qing Gao. A review on battery management system from the

modeling e�orts to its multiapplication and integration, 2019.

[67] Laifa Tao, Jian Ma, Yujie Cheng, Azadeh Noktehdan, Jin Chong, and Chen Lu.

A review of stochastic battery models and health management. Renewable and

Sustainable Energy Reviews, 80:716�732, 2017.

[68] Jinhao Meng, Guangzhao Luo, Mattia Ricco, Maciej Swierczynski, Daniel-Ioan

Stroe, and Remus Teodorescu. Overview of lithium-ion battery modeling methods

for state-of-charge estimation in electrical vehicles. Applied Sciences, 8(5), 2018.

[69] Joel C. Forman, Saeid Bashash, Je�rey L. Stein, and Hosam K. Fathy. Reduction

of an electrochemistry-based li-ion battery model via quasi-linearization and padé

approximation. Journal of The Electrochemical Society, 158(2):A93, 2011.

[70] Cheng Lin and Aihua Tang. Simpli�cation and e�cient simulation of electrochemical

model for li-ion battery in evs. Energy Procedia, 104:68�73, 2016. Clean Energy

for Clean City: CUE 2016�Applied Energy Symposium and Forum: Low-Carbon

Cities and Urban Energy Systems.

122



[71] Hongwen He, Rui Xiong, and Jinxin Fan. Evaluation of lithium-ion battery equiv-

alent circuit models for state of charge estimation by an experimental approach.

Energies, 4(4):582�598, 2011.

[72] Abbas Fotouhi, Daniel J. Auger, Karsten Propp, Stefano Longo, and Mark Wild.

A review on electric vehicle battery modelling: From Lithium-ion toward Lithium-

Sulphur, 2016.

[73] Davide Andrea. Battery Management Systems for Large Lithium-ion Battery Packs.

2010.

[74] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker. State-of-

the-art and energy management system of lithium-ion batteries in electric vehicle

applications: Issues and recommendations. IEEE Access, 6:19362�19378, 2018.

[75] M. M. Hoque, M. A. Hannan, and A. Mohamed. Voltage equalization control algo-

rithm for monitoring and balancing of series connected lithium-ion battery. Journal

of Renewable and Sustainable Energy, 8(2), 2016.

[76] Huaqiang Liu, Zhongbao Wei, Weidong He, and Jiyun Zhao. Thermal issues about

Li-ion batteries and recent progress in battery thermal management systems: A

review, 2017.

[77] Andrea Vezzini. 15 - lithium-ion battery management. In Gianfranco Pistoia, editor,

Lithium-Ion Batteries, pages 345�360. Elsevier, Amsterdam, 2014.

[78] Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang. A

review on the key issues for lithium-ion battery management in electric vehicles.

Journal of Power Sources, 226:272�288, 2013.

[79] Utpal Kumar Das, Kok Soon Tey, Mehdi Seyedmahmoudian, Saad Mekhilef, Moh

Yamani Idna Idris, Willem Van Deventer, Bend Horan, and Alex Stojcevski. Fore-

casting of photovoltaic power generation and model optimization: A review. Re-

newable and Sustainable Energy Reviews, 81:912�928, jan 2018.

123



Bibliography

[80] Gelareh Javid, Dja�ar Ould Abdeslam, and Dirk Benyoucef. Maximum power point

tracking of photovoltaic power system with adaptive fuzzy terminal sliding mode

controller. In 2018 IEEE International Conference on Environment and Electri-

cal Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe

(EEEIC / I CPS Europe), pages 1�6, 2018.

[81] Bengt Sundén. Thermal management of batteries. In Hydrogen, Batteries and Fuel

Cells, pages 93�110. Elsevier, jan 2019.

[82] Wladislaw Waag, Christian Fleischer, and Dirk Uwe Sauer. Critical review of the

methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Jour-

nal of Power Sources, 258:321�339, 2014.

[83] M.A. Hannan, M.S.H. Lipu, A. Hussain, and A. Mohamed. A review of lithium-

ion battery state of charge estimation and management system in electric vehicle

applications: Challenges and recommendations. Renewable and Sustainable Energy

Reviews, 78:834�854, 2017.

[84] Yuan Zou, Xiaosong Hu, Hongmin Ma, and Shengbo Eben Li. Combined state of

charge and state of health estimation over lithium-ion battery cell cycle lifespan for

electric vehicles. Journal of Power Sources, 273:793�803, 2015.

[85] Rui Xiong. Battery SOC and SOH Estimation, pages 107�165. Springer Singapore,

Singapore, 2020.

[86] Yuejiu Zheng, Minggao Ouyang, Xuebing Han, Languang Lu, and Jianqiu Li. In-

vestigating the error sources of the online state of charge estimation methods for

lithium-ion batteries in electric vehicles, 2018.

[87] Ephrem Chemali, Matthias Preindl, Pawel Malysz, and Ali Emadi. Electrochemical

and electrostatic energy storage and management systems for electric drive vehicles:

State-of-the-art review and future trends. IEEE Journal of Emerging and Selected

Topics in Power Electronics, 4(3):1117�1134, 2016.

124



[88] Jun Xu, Chunting Chris Mi, Binggang Cao, and Junyi Cao. A new method to

estimate the state of charge of lithium-ion batteries based on the battery impedance

model. Journal of Power Sources, 233:277�284, 2013.

[89] Nina Meddings, Marco Heinrich, Frédéric Overney, Jong-Sook Lee, Vanesa Ruiz,

Emilio Napolitano, Ste�en Seitz, Gareth Hinds, Rinaldo Raccichini, Miran

Gaber²£ek, and Juyeon Park. Application of electrochemical impedance spec-

troscopy to commercial li-ion cells: A review. Journal of Power Sources, 480:228742,

2020.

[90] Y. Ma, X. Zhou, B. Li, and H. Chen. Fractional modeling and soc estimation of

lithium-ion battery. IEEE/CAA Journal of Automatica Sinica, 3(3):281�287, 2016.

[91] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan. State-of-charge estimation of the

lithium-ion battery using an adaptive extended kalman �lter based on an improved

thevenin model. IEEE Transactions on Vehicular Technology, 60(4):1461�1469,

2011.

[92] Yidan Xu, Minghui Hu, Anjian Zhou, Yunxiao Li, Shuxian Li, Chunyun Fu, and

Changchao Gong. State of charge estimation for lithium-ion batteries based on

adaptive dual kalman �lter. Applied Mathematical Modelling, 77:1255�1272, 2020.

[93] Prashant Shrivastava, Tey Kok Soon, Mohd Yamani Idna Bin Idris, and Saad

Mekhilef. Overview of model-based online state-of-charge estimation using Kalman

�lter family for lithium-ion batteries, oct 2019.

[94] Charles K. Chui and Guanrong Chen. Kalman Filtering. Springer International

Publishing, 2017.

[95] J. Chiasson and B. Vairamohan. Estimating the state of charge of a battery. In

Proceedings of the 2003 American Control Conference, 2003., volume 4, pages 2863�

2868 vol.4, 2003.

[96] Z. Luo, Y. Li, and Y. Lou. An adaptive kalman �lter to estimate state-of-charge of

125



Bibliography

lithium-ion batteries. In 2015 IEEE International Conference on Information and

Automation, pages 1227�1232, 2015.

[97] J. R. Choudhury, T. P. Banerjee, H. Gurung, A. K. Bhattacharjee, and S. Das.

Real time state of charge prediction using kalman �lter. In 2009 World Congress

on Nature Biologically Inspired Computing (NaBIC), pages 1190�1194, 2009.

[98] Gregory L. Plett. Extended kalman �ltering for battery management systems of

lipb-based hev battery packs: Part 3. state and parameter estimation. Journal of

Power Sources, 134(2):277�292, 2004.

[99] C. Huang, Z. Wang, Z. Zhao, L. Wang, C. S. Lai, and D. Wang. Robustness evalua-

tion of extended and unscented kalman �lter for battery state of charge estimation.

IEEE Access, 6:27617�27628, 2018.

[100] Xin Lai, Yuejiu Zheng, and Tao Sun. A comparative study of di�erent equivalent

circuit models for estimating state-of-charge of lithium-ion batteries. Electrochimica

Acta, 259:566�577, 2018.

[101] Gregory L. Plett. Extended kalman �ltering for battery management systems of lipb-

based hev battery packs: Part 1. background. Journal of Power Sources, 134(2):252�

261, 2004.

[102] Shijie Tong, Joseph H. Lacap, and Jae Wan Park. Battery state of charge estimation

using a load-classifying neural network. Journal of Energy Storage, 7:236�243, aug

2016.

[103] J. N. Hu, J. J. Hu, H. B. Lin, X. P. Li, C. L. Jiang, X. H. Qiu, and W. S. Li.

State-of-charge estimation for battery management system using optimized support

vector machine for regression. Journal of Power Sources, 269:682�693, dec 2014.

[104] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338�353, 1965.

[105] Pritpal Singh. A fuzzy system methodology to determine state-of-charge in primary

u/so2 and other batteries pritpal singh ece department villanova university. 38th

Power Sources Conference, page 295, 1998.

126



[106] Alvin J Salkind, Craig Fennie, Pritpal Singh, Terrill Atwater, and David E Reis-

ner. Determination of state-of-charge and state-of-health of batteries by fuzzy logic

methodology. Journal of Power Sources, 80(1):293�300, 1999.

[107] Pritpal Singh, Ramana Vinjamuri, Xiquan Wang, and David Reisner. Design and

implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used

in portable de�brillators. Journal of Power Sources, 162(2 SPEC. ISS.):829�836,

nov 2006.

[108] A. A. Hussein. Capacity fade estimation in electric vehicle li-ion batteries using

arti�cial neural networks. IEEE Transactions on Industry Applications, 51(3):2321�

2330, 2015.

[109] M. A. Hannan, M. S. H. Lipu, A. Hussain, M. H. Saad, and A. Ayob. Neural network

approach for estimating state of charge of lithium-ion battery using backtracking

search algorithm. IEEE Access, 6:10069�10079, 2018.

[110] Jinquan Guo, Hongwen He, and Jiankun Peng. Real-time energy management for

plug-in hybrid electric vehicle based on economy driving pro system. In Energy

Procedia, 2019.

[111] P. Jansen, T. Gebel, D. Renner, D. Vergossen, W. John, and J. Götze. An approach

to determine the state of charge of a lithium iron phosphate cell using classi�cation

methods based on frequency domain data. In 8th IET International Conference on

Power Electronics, Machines and Drives (PEMD 2016), pages 1�6, 2016.

[112] Yifeng Guo, Zeshuang Zhao, and Limin Huang. SoC Estimation of Lithium Battery

Based on Improved BP Neural Network. In Energy Procedia, volume 105, pages

4153�4158. Elsevier Ltd, may 2017.

[113] Wenhui Zheng, Bizhong Xia, Wei Wang, Yongzhi Lai, MingwangWang, and Huawen

Wang. State of charge estimation for power lithium-ion battery using a fuzzy logic

sliding mode observer. Energies, 12(13), 2019.

127



Bibliography

[114] Z. He, M. Gao, and J. Xu. Ekf-ah based state of charge online estimation for lithium-

ion power battery. In 2009 International Conference on Computational Intelligence

and Security, volume 1, pages 142�145, 2009.

[115] Haifeng Dai, Pingjing Guo, Xuezhe Wei, Zechang Sun, and Jiayuan Wang. ANFIS

(adaptive neuro-fuzzy inference system) based online SOC (State of Charge) cor-

rection considering cell divergence for the EV (electric vehicle) traction batteries.

Energy, 80:350�360, feb 2015.

[116] A. Fotouhi, K. Propp, and D. J. Auger. Electric vehicle battery model identi�cation

and state of charge estimation in real world driving cycles. In 2015 7th Computer

Science and Electronic Engineering Conference (CEEC), pages 243�248, 2015.

[117] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323(6088):533�536, October 1986.

[118] Sandro Skansi. Introduction to Deep Learning. 2018.

[119] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-

ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,

abs/1412.3555, 2014.

[120] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735�1780, nov 1997.

[121] Klaus Gre�, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jurgen

Schmidhuber. LSTM: A Search Space Odyssey. IEEE Transactions on Neural

Networks and Learning Systems, 28(10):2222�2232, oct 2017.

[122] Phillip Kollmeyer. Panasonic 18650pf li-ion battery data. Mendeley Data, 2018.

[123] Jinhao Meng, Guangzhao Luo, and Fei Gao. Lithium polymer battery state-of-

charge estimation based on adaptive unscented kalman �lter and support vector

machine. IEEE Transactions on Power Electronics, 31(3):2226�2238, 2016.

128



[124] Wenxian Duan, Chuanxue Song, Silun Peng, Feng Xiao, Yulong Shao, and Shixin

Song. An improved gated recurrent unit network model for state-of-charge estima-

tion of lithium-ion battery. Energies, 13(23), 2020.

[125] Qiao Zhu, Mengen Xu, Weiqun Liu, and Mengqian Zheng. A state of charge estima-

tion method for lithium-ion batteries based on fractional order adaptive extended

kalman �lter. Energy, 187:115880, 2019.

[126] G. Plett. E�cient battery pack state estimation using bar-delta �ltering. 2009.

[127] Kodjo Senou Rodolphe Mawonou, Akram Eddahech, Didier Dumur, Emmanuel

Godoy, Dominique Beauvois, and Michel Mensler. Li-ion battery pack soc estima-

tion for electric vehicles. In IECON 2018 - 44th Annual Conference of the IEEE

Industrial Electronics Society, pages 4968�4973, 2018.

[128] Rui Xiong, Fengchun Sun, Xianzhi Gong, and Hongwen He. Adaptive state of charge

estimator for lithium-ion cells series battery pack in electric vehicles. Journal of

Power Sources, 242:699�713, nov 2013.

[129] Rui Xiong, Hongwen He, Fengchun Sun, and Kai Zhao. Online estimation of peak

power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop ap-

proach. Energies, 5(5):1455�1469, 2012.

[130] Long Xu, Junping Wang, and Quanshi Chen. Kalman �ltering state of charge esti-

mation for battery management system based on a stochastic fuzzy neural network

battery model. Energy Conversion and Management, 53(1):33�39, jan 2012.

[131] IPG Automotive Group. User's Guide Version 9.0 CarMaker. 2020.

[132] Vincent R. Tannahill, Kashem M. Muttaqi, and Danny Sutanto. Driver alerting sys-

tem using range estimation of electric vehicles in real time under dynamically vary-

ing environmental conditions. IET Electrical Systems in Transportation, 6(2):107�

116, 2016.

[133] pycarmaker. https://github.com/gmnvh/pycarmaker#readme.

129

https://github.com/gmnvh/pycarmaker#readme


Bibliography

130


	Acknowledgment
	Abstract
	Résumé
	Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	motivation
	soc estimation as a central measure
	Objectives and Thesis Structure
	List of Publications

	Charging Challenges for Electric Vehicles: Basic definitions
	Introduction
	Development of Electric Vehicles
	A review on rechargeable batteries for Electric Vehicles
	liion Battery
	Battery Modeling
	Mathematical Models
	Electrochemical Models
	Electrical Equivalent Circuit Models
	RC Model
	Thevenin Model
	PNGV Model


	Battery Management System
	Battery monitoring
	Cell Balancing and Equalization
	Thermal Management
	Charge and Discharge Control
	Modelling and State Estimation
	Fault Diagnosis and Health management

	Renewable Energy For Charging the evs Battery
	Discussion

	State Of Charge Estimation: Review Methods
	Introduction
	soc estimation Methods
	Direct Methods
	cc
	ocv
	eis

	Indirect Methods
	Kalman Filter Based Methods
	Artificial Intelligence Based Methods
	fl Methods
	nn-Based Methods


	Hybrid methods

	Discussion

	State Of Charge Estimation with drnn Methods
	Introduction
	lstm Algorithm
	bilstm for soc Estimation
	LSTM Algorithm for soc Estimation
	gru for soc estimation
	Optimization Algorithms
	adam Algorithm
	Robust and Adaptive Online Optimization method

	Data Preprocessing
	Hyperparameters Tuning
	Discussion

	Experimental results for State of charge Estimation of one cell Li-ion Battery 
	Introduction
	Battery Specification and Experimental Conditions
	State Of Charge Estimation By BiLSTM method
	Experimental result of SOC Estimation By rolstm Algorithm
	GRU Algorithm used for SOC Estimation
	Discussion

	Real time State Of Charge Estimation for Electric Vehicle
	Introduction
	CarMaker Environment
	Creating a simulation for estimate the soc in evs
	Vehicle Model
	3D Road Profile Generation
	Using Google Maps
	RoutConverter Software

	Driver Model
	scenario Maneuver
	Environment Conditions

	Developed State of Charge Estimation Method
	Drive Cycles Test Cases
	Case 1
	Case 2
	Case 3
	Case 4

	SOC Estimation Results in Offline Mode 
	SOC Estimation Results in Real Time Mode 

	Discussion

	Conclusions and Perspectives
	Conclusions
	Future Work

	Standard Drive Cycle Test in United State
	ftp
	ftp-72
	ftp-75

	us06
	hwfet

	Standard Drive Cycle Test in Europe
	Artemis

	Bibliography

