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Abstract  

Fouling-resistant membranes endowed with intelligent isopores in high-areal density are 

highly-desired to move towards next-generation ultrafiltration (UF) membranes. Indeed, 

membranes tailored with smart nanochannels, able to adjust their size in response to an external 

stimulus such as temperature and pH, are appealing materials to efficiently prevent the common 

problem of fouling, considered as one of the biggest challenges in membrane technology. 

 In this context, the aim of this thesis work was based on the synthesis and self-assembly of a 

series of well-defined pH- and temperature-double stimuli responsive amphiphilic triblock 

terpolymers in membrane configuration. For that purpose, a polystyrene-block-poly(2-

vinylpyridine)-block-poly(N-isopropylacrylamide) (PS-b-P2VP-b-PNIPAM) was first 

prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. An 

original methodology combining the traditional nonsolvent-induced phase separation (NIPS) 

process with a solvent vapor annealing (SVA) treatment was then used to produce a perforated 

lamellar structure within double stimuli-responsive PS-b-P2VP-b-PNIPAM membranes. To 

improve the membrane wettability as well as its thermo-responsiveness, a block copolymer 

blend strategy was also used. 

A double stimuli-responsive porous nanostructure having an excellent long-range order formed 

within the terpolymer membranes is highly desired to manufacture high selectivity smart 

separation-based materials able to transit their pore state from hydrophilic to hydrophobic (and 

vice versa), thereby leading to much more efficient detachment of foulants during the cleaning 

process. 

 

Keywords : PS-b-P2VP-b-PNIPAM, RAFT polymerization, thermo-sensitive, pH-sensitive, 

thick film. 
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Résumé  

Les membranes résistantes à l'encrassement dotées d'isopores intelligents à haute densité 

surfacique sont fortement désirées pour générer des membranes d’ultrafiltration de nouvelle 

génération. En effet, les membranes dotées de nano-canaux intelligents, capables d'ajuster leurs 

tailles en réponse à un stimulus externe tel que la température et/ou le pH sont des matériaux 

intéressants pour prévenir efficacement le problème courant de l'encrassement, considéré 

comme l'un des plus grands défis des technologies membranaires.   

Dans ce contexte, l'objectif de ce travail de thèse est basé sur la synthèse de terpolymères ABC 

linéaires amphiphiles bien définis composés de polystyrène-bloc-poly(2-vinylpyridine)-bloc-

poly(N-isopropylacrylamide) (PS-b-P2VP-b-PNIPAM) sensibles au pH et à la température via 

une polymérisation par transfert de chaîne par addition-fragmentation réversible (RAFT). 

Une méthodologie originale combinant le procédé traditionnel de séparation de phase induite 

par l’intrusion de non-solvant (NIPS) avec un traitement de recuit sous vapeur de solvant (SVA) 

a été utilisée pour produire une structure lamellaire perforée au sein des films épais de 

terpolymères ABC linéaires doublement stimulables. Une stratégie de mélange de copolymères 

à blocs a également été utilisée pour améliorer l’hydrophilicité et la thermosensibilité de la 

membrane. Cette nanostructure poreuse dotée d'un excellent ordre à longue portée est très 

recherchée pour fabriquer des membranes intelligentes capables de faire passer leurs pores de 

l'état hydrophile à l'état hydrophobe (et vice versa), ce qui permet un détachement beaucoup 

plus efficace des polluants pendant le processus de nettoyage. 

 

Mots clés:  PS-b-P2VP-b-PNIPAM, polymérisation RAFT, thermo-sensible, pH-sensible, film 

épais. 
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Titre et résumé en français : 

Synthèse et étude de l’auto-organisation de terpolymères 

ABC linéaires en vue de réaliser des membranes 

asymétriques innovantes 

 
 

L’eau, également appelée « or bleu » est une ressource naturelle vitale indispensable au 

développement de l’humanité et à l’équilibre des écosystèmes aquatiques. Pourtant, sa 

raréfaction est devenue aujourd’hui l’un des problèmes majeurs de notre siècle. La pollution, le 

changement climatique, la surpopulation ou encore la mauvaise utilisation des ressources sont 

les principales causes du déficit mondial en eau douce.  Selon l’Organisation des nations unis 

pour l’éducation, la science et la culture (UNESCO), la demande mondiale en eau de bonne 

qualité augmentera de 55% en 2050,1 une proportion inquiétante qui risque de s’aggraver au fil 

des années. Ainsi, il est urgent de proposer des solutions afin de préserver cette ressource vitale.  

Afin d’augmenter les stocks d’eau potable, deux voies peuvent être explorées : le traitement des 

eaux usées et le dessalement de l’eau de mer. À ce titre, la filtration sur membrane est considérée 

comme la principale technologie de potabilisation de l’eau.2 Avec une consommation d’énergie 

relativement faible sans l’ajout de produits chimiques, la technologie membranaire joue un rôle 

central dans la purification de l’eau. Cependant, cette technique reste limitée par la dégradation 

des membranes due au colmatage. Ce phénomène découle de l’accumulation de matières 

(également appelées retentas) à la surface des membranes ayant comme conséquence la 

diminution des performances de filtrations dans le temps, accompagnée par une diminution de 

la vie active de la membrane.  

Le développement de membranes résistantes à l'encrassement dotées d'isopores intelligents à 

haute densité surfacique est fortement souhaité pour générer des membranes d'ultrafiltration de 

nouvelle génération. En effet, les membranes dotées de nano-canaux intelligents, capables 

d'ajuster leurs tailles en réponse à un stimulus externe tel que la température et/ou le pH sont 

des matériaux intéressants pour prévenir efficacement le problème courant de l'encrassement, 

considéré comme l'un des plus grands défis des technologies membranaires.   

 

 Les travaux de recherche de cette thèse s’inscrivent dans cette thématique puisque basés sur le 

développement de nouvelles membranes innovantes résistantes à l’encrassement. Nous avons 
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choisi l’incorporation de blocs stimuli-répondants au pH et à la température au sein de 

membranes terpolymères afin de former des nano-pores intelligents capables d'ajuster leurs 

tailles en réponse à un stimulus externe et de faciliter l’auto-nettoyage des membranes. 

 

Cette thèse se divise en quatre parties. La première porte sur la synthèse et la caractérisation de 

terpolymères ABC linéaires par polymérisation radicalaire contrôlée, et plus précisément par 

polymérisation contrôlée par transfert de chaîne réversible par addition-fragmentation (RAFT). 

La deuxième partie est dédiée à l’étude de l’auto-assemblage des terpolymères sous forme de 

membranes asymétriques nano-structurées. Pour ce faire, le procédé de séparation de phase 

induite par l’intrusion de non-solvant « non-solvent induced phase separation » (NIPS) a été 

combiné à la technique de recuit sous vapeur de solvant « solvent vapor annealing » (SVA). La 

troisième partie de cette thèse consiste en l’étude des performances de filtration des membranes 

stimuli-répondantes fabriquées. Enfin, la dernière partie est consacrée à l’étude de l’auto-

assemblage d’un mélange de terpolymère ABC linéaire avec d’autres copolymères à blocs 

amphiphiles afin d’améliorer l’hydrophilicité de la membrane et sa résistance à l’encrassement.  

 

Dans la première partie de cette thèse, nous avons utilisé la polymérisation RAFT afin de 

synthétiser un terpolymère ABC linéaire composé de polystyrène-block-poly(2-vinylpyridine)-

block-poly(N-isopropylacrylamide) (PS-b-P2VP-b-PNIPAM). Cette technique de 

polymérisation radicalaire contrôlée a été choisie car elle permet de synthétiser des polymères 

d’architectures bien définies, de haute fonctionnalité et de faible dispersité (D).3 

 

Dans un premier temps, une série du premier bloc hydrophobe polystyrène (PS) a été 

synthétisée en présence d’un agent RAFT de type trithiocarbonate : le 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDPA) et de l’amorceur 

azobisisobutyronitrile (AIBN) en solution (dioxane) ou en masse (voir Schéma 1.a). 

Les homopolymères PS macro-CTA ainsi synthétisés ont été caractérisés par résonnance 

magnétique nucléaire (RMN) du proton en présence de dichlorométhane deutéré (CD2Cl2) et 

par chromatographie d’exclusion stérique (SEC) dans le tétrahydrofurane (THF). 

 

Comme les bouts de chaînes de l’agent RAFT n’étaient pas visibles sur les spectres RMN, les 

masses moléculaires (Mn) du PS ont été déterminées, principalement par SEC dans le THF à 

35°C, dans une gamme allant de 22 à 55 kg/mol, D < 1.20. 
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Les PS macro-CTA obtenus ont été utilisés pour la synthèse d’un copolymère dibloc de type 

PS-b-P2VP répondant à des changements de pH dans l’eau. Pour cela, le monomère 2-

vinylpyridine (2VP) a été dissout dans le 1,4-dioxane (DOX) en présence d’AIBN et du PS 

macro-CTA. La réaction a été réalisée à 70°C comme présenté dans le Schéma 1.b. Tous les 

copolymères diblocs synthétisés sont composés majoritairement de PS avec un rapport moyen 

des fractions volumiques de l’ordre de 60% (PS:P2VP = 0.60:0.40), déterminé par RMN du 

proton. Les masses molaires déterminées par SEC dans le THF varient de 31 à 51 kg/mol, D < 

1.40. 

 

Les terpolymères ABC linéaires de type PS-b-P2VP-b-PNIPAM ont été synthétisés par 

extension des chaînes de PS-b-P2VP macro-CTA avec du monomère NIPAM en présence 

d’AIBN et de dioxane (voir Schéma 1.c). Ici la purification du terpolymère sensible au pH et à 

la température a dû être optimisée afin d’avoir un système suffisamment pur, et donc capable 

de s’auto-organiser sous forme de nanodomaines bien définies. Pour cela, nous avons utilisé 

l’extraction liquide-solide de type Soxhlet afin d’éliminer les chaînes de PNIPAM non-

attachées au terpolymère. 

 

Le terpolymère PS-b-P2VP-b-PNIPAM obtenu est alors caractérisé par RMN du proton dans 

le CD2Cl2. La présence des signaux du PS ( = 6.40 – 7,05 ppm), du P2VP ( = 6.40 - 7,05 ppm 

et  = 8.23 ppm) et du PNIPAM ( = 1.14 ppm et  = 3.99 - 4.0ppm) sur le spectre RMN après 

purification confirme l’attachement du PNIPAM avec succès sur les chaînes de PS-b-P2VP. Le 

déplacement des courbes obtenues par SEC des plus petites masses molaires vers les plus hautes 

masses molaires est une preuve supplémentaire du bon déroulement de la réaction. Enfin, une 

analyse RMN à deux dimensions « diffusion ordered spectroscopy » (DOSY) a été effectuée. 

La présence d’un coefficient de diffusion unique sur le spectre RMN DOSY atteste de la pureté 

du terpolymère synthétisé. 
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La deuxième partie de cette thèse consistait en l’étude des morphologies accessibles par l’auto-

assemblage du terpolymère PS-b-P2VP-b-PNIPAM. Pour cela, nous avons utilisé le procédé 

séparation de phase induite par l’intrusion de non-solvant « non-solvent induced phase 

separation » (NIPS) afin de fabriquer des membranes asymétriques innovantes.4 

Le terpolymère a été dissout dans un mélange de solvant constitué de DOX et de THF dans un 

rapport 1 pour 1. La solution de polymère à 18% en masse a ensuite été déposée sous forme de 

film  épais sur un support en silicium à l’aide d’une racle disposée à une hauteur de 250 µm 

(« tape casting process »). Le film a ensuite été exposé à l’air pendant 30s, afin de densifier la 

surface libre du matériau par évaporation partielle le mélange de solvants, puis plongé dans un 

bain de coagulation (eau). Durant cette étape, le mélange DOX/THF diffuse dans le bain de 

coagulation alors que l’eau diffuse dans le film formant ainsi une membrane asymétrique 

constituée d’une couche supérieure dense et d’une sous-structure macroporeuse de type  

spongieuse. 

  

Des images de microscopie à force atomique (AFM) et microscopie électronique à balayage 

(MEB) ont été réalisées afin de caractériser les surfaces des membranes préparées. L’image 

MEB présentée sur la Figure 1.a correspond à la vue en coupe d’une membrane de                                  

Schéma  1. Synthèse par polymérisation RAFT (a) de l’homopolymère PS macro-CTA, (b) du 

copolymère dibloc PS-b-P2VP macro-RAFT et (c) du terpolymère PS-b-P2VP-b-PNIPAM macro-CTA. 



19 
 

PS-b-P2VP-b-PNIPAM générée par NIPS montrant bien une morphologie asymétrique 

constituée d’une couche supérieure dense et une sous-structure composée d’un réseau de pores 

ouverts. L’image AFM présentée sur la Figure 1.b montre la topographie de surface de la 

membrane préparée par NIPS qui se révèle être essentiellement constituée de pores désordonnés 

ayant une période de 12.1 nm. Afin de remplacer cette phase désordonnée, obtenue dans des 

conditions hors équilibre, il a alors été utilisé un procédé recuit par vapeur de solvant (SVA) 

permettant de promouvoir la mobilité des chaînes terpolymères vers un état d‘équilibre 

thermodynamique. Cette étape de reconstruction de surface repose sur l’exposition d’un film 

polymère à une vapeur de solvant d’une manière constante et régulée.5 Ici, la membrane 

préparée par NIPS a été traitée par  une vapeur de chloroforme (CHCl3) afin d’obtenir une 

nanostructuration de surface avec un ordre à longue portée. La Figure 1.c montre que la phase 

désordonnée générée NIPS sur surface libre de la membrane s’est entièrement transformée en 

une morphologie lamellaire perforée (PL) bien définie après exposition à une vapeur de CHCl3 

durant 6h. Cette phase PL, ayant une périodicité de 41 nm, consiste en une alternance de 

lamelles de PS et de lamelles de P2VP/PNIPAM perforées par des protrusions de PS.  

 

 

 

 

 

 

 

Figure 1. (a) Vue MEB en coupe de la membrane PS-b-P2VP-b-PNIPAM générée par NIPS, montrant une couche 

supérieure dense et une sous-structure sous forme de pores ouverts. (b) Image AFM topographique de la membrane 

obtenue par NIPS constituée de pores désordonnés. (c) Image AFM  topographique de la même membrane obtenue 

par NIPS-SVA (6h, CHCl3) montrant une reconstruction de surface libre constituée de lamelles perforées bien 

ordonnées. 
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La perméabilité à l’eau de la membrane terpolymère sensible au pH et à la température a été mesurée 

en utilisant un mode de filtration frontale (« dead-end filtration »). Il s’agit ici d’une filtration où la 

circulation de la solution à filtrer est perpendiculaire à la membrane. Dans notre cas, la perméabilité à 

l’eau des membranes a été mesurée à froid et à chaud, c’est-à-dire à des températures inférieures et 

supérieures à la température de transition critique inférieure (LCST) du PNIPAM qui est de l’ordre de 

32°C dans l’eau. Le bloc thermosensible de PNIPAM a tendance à changer de conformation en fonction 

de la température de sorte qu’à des températures inférieures à 32°C, il est hydrophile et gonflé et au-

delà, il devient hydrophobe et se recroqueville. Cette variation de configuration du bloc de PNIPAM, 

répondant à un changement de température de l’eau, permet de générer un mécanisme 

d’ouverture/fermeture des pores au sein de la membrane terpolymère, et ainsi de faire varier la 

perméabilité de cette dernière. Afin de contrôler plus finement, le mécanisme d’ouverture/fermeture 

des pores, le caractère pH-sensible du bloc de P2VP a aussi été exploité dans cette étude. Pour cela, 

nous avons fait varier simultanément la température et le pH de l’eau de sorte, notamment, à 

maximiser l’ouverture et la fermeture des pores puisque le bloc de P2VP deprotoné en milieu basique 

à tendance à se recroqueviller alors qu’il a tend à se gonfler sous sa forme protonée en milieu acide 

(voir Figure 2). 

 

 

 

Figure 2. Dessin schématique du terpolymère PS-b-P2VP-b-PNIPAM et illustration du comportement des nanopores 

de P2VP/PNIPAM sensibles à différents stimuli. La porosité effective est régulée par le gonflement ou la rétraction 

des blocs P2VP et PNIPAM en fonction des changements de pH et de température. 

 

 

La Figure 3 représente les résultats de filtration de la membrane de PS-b-P2VP-b-PNIPAM en 

fonction de la température et du pH. A pH neutre, les courbes de flux présentées sur la Figure 

3.a montrent que les nano-canaux cœur/couronne de P2VP/PNIPAM adoptent véritablement 

un état ouvert ou fermé en fonction de la température puisque les perméabilités, corrigées du 



21 
 

changement de viscosité de l’eau en fonction de la température, s’établissent respectivement à 

2 et 18 L.h-1.m-².bar-1 pour une température inférieure (20°C) et supérieure (46°C)  à la 

température du changement de conformation du bloc de PNIPAM (TLCST = 32°C). De plus, 

pour une membrane donnée, il est observé que la porosité effective du matériau est aussi régit 

par le pH de l’eau puisque la valeur de flux est minimisée/maximisée en milieu acide/basique 

(0.8 L.h-1.m-² à 1bar pour un pH= 3 et T= 20°C et 8.8 L.h-1.m-² à 1bar pour un pH= 9.5 et T= 

46°C) (voir Figure 3.b). Ces membranes terpolymères ont également démontré d’excellentes 

performances de réversibilité (c.à.d. cyclabilité) aux changements de température (Figure 3.c). 

En effet, une superposition des valeurs de perméabilité a été observée en faisant varier la 

température de l’eau en dessous et au-dessus de la TLCST du PNIPAM sur plusieurs cycles, 

attestant ainsi une bonne stabilité du mécanisme d’ouverture/fermeture  des pores mais aussi 

une bonne tenue mécanique de la membrane. 

 

 

 

 

Enfin, dans la dernière partie de cette thèse, nous avons mélangé le terpolymère PS-b-P2VP-b-

PNIPAM à d’autres copolymères amphiphiles afin d’accéder à de nouvelles morphologies par 

leur auto-assemblage et aussi d’augmenter l’hydrophilicité de la membrane ainsi que sa 

résistance à l’encrassement. Pour cela, par exemple, nous avons préparé des mélanges à base 

de PS-b-P2VP-b-PNIPAM et de PS-b-PNIPAM, à différents ratios, puis nous avons élaborés 

des membranes à l’aide du procédé NIPS-SVA. L’ajout de chaînes de PS-b-PNIPAM en faible 

pourcentage (25% en masse) au sein des membranes de PS-b-P2VP-b-PNIPAM a donné lieu à 

Figure 3. a) Flux d'eau obtenus pour des membranes PS-b-P2VP-b-PNIPAM à différentes températures : 

(carrés noirs) à 20°C et(points rouges) corrigés de la viscosité à 46°C. Les données non-corrigées (triangles 

bleus) mesurées à 46°C sont également données tandis que les barres d'erreur sont les écarts types des valeurs 

moyennes de perméabilité relative calculées pour deux échantillons différents. (b) Valeurs de perméabilité à 

l'eau mesurées dans un environnement acide et basique (pH = 3 et 9,5) à différentes températures : (carrés 

noirs) 20°C et corrigée de la viscosité (points rouges) 46°C. (c) Réversibilité de la perméabilité à l'eau en 

fonction des cycles de température (20°C et 46°C). Les données non-corrigées (triangles bleus) et corrigées en 

fonction de la viscosité (points rouges) sont données. 
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la formation de nanopores bien définies (période = 46 nm) après l’étape de recuit sous une 

vapeur de CHCl3 durant 6h (voir Figure 6a). De plus, l’incorporation de chaînes de PS-b-

PNIPAM s’est révélée être bénéfique en matière de flux membranaire puisque,  pour la 

première fois dans ce travail de thèse, la perméabilité à l'eau de la membrane terpolymère a 

augmenté après l’étape de SVA (6h, CHCl3) pour atteindre une valeur maximale de ~80 L.h-

1.m-2.bar-1 à une température supérieure à la LCST du PNIPAM (46°C) (voir Figure 6.b).  

 

           

 

 

Pour conclure, dans cette thèse, nous avons synthétisé pour la première fois une série de 

terpolymères ABC linéaires composés de PS, P2VP et PNIPAM par polymérisation RAFT. 

Cette voie de synthèse s’est révélée intéressante car les étapes de synthèses sont simples et 

quantitatives. En revanche, selon la taille de terpolymère souhaitée, l’étape de purification doit 

être optimisée. Dans notre cas, l’extraction de type Soxhlet était un bon moyen de purification 

permettant d’éliminer les chaînes de PNIPAM non-attachées et de garder un bon rendement 

final. 

L’auto-assemblage des terpolymères ABC linéaires sous forme de nanodomaines bien définies 

a été démontré au sein de membranes asymétriques. Pour cela, le procédé NIPS a été combiné 

à un traitement SVA afin de promouvoir la mobilité des chaînes terpolymères, et donc de 

Figure 4. (a) Image AFM topographique d’une membrane PS-b-P2VP-b-PNIPAM/PS-b-PNIPAM 

préparée par NIPS-SVA (6h, CHCl3) présentant une reconstruction de la surface sous forme de 

nanodomaines bien ordonnées. (b) Valeurs de perméabilité pour le même type de membrane recueillies  à 

différent temps de SVA pour deux températures : (carrés noirs) à 20°C et (points rouges) corrigées de la 

viscosité à 46°C. les barres d'erreur sont les écarts types des valeurs moyennes de perméabilité relative 

calculées pour deux échantillons différents. 
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reconstruire la surface de la membrane dotée d’une phase désordonnée après l’étape de 

fabrication par NIPS. Nous avons également montré que les membranes terpolymères préparées 

par NIPS-SVA sont sensibles au pH et à la température par l’étude de leur performance en mode 

filtration. 

Enfin, nous avons mélangé le terpolymère PS-b-P2VP-b-PNIPAM à d’autres copolymères 

amphiphiles et nous avons montré qu’en respectant certaines règles de conception architecturale 

(telles que la taille des blocs et la nature chimique de ces derniers), il était possible d’augmenter 

la perméabilité de la membrane tout en gardant une nanostructuration de surface thermosensible 

avec un ordre à longue portée.  
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General introduction  

  

The global freshwater deficit is becoming one of the most economic and social challenges. 

Access to safe drinking water is one of the first priorities following a disaster. Today, millions 

of people in Europe are drinking contaminated water, often without knowing it. The World 

Health Organization (WHO) estimates that over 14 people die every day from diarrheal diseases 

due to lack of water and hygiene. The population growth, the industrialization demand and the 

climate change are the principal reasons of the drinking water deficit. 

The increase of drinking water supplies can be accomplished by two different strategies: 

wastewater treatment and seawater desalination. To this end, one of the current promising 

strategy is membrane filtration. The use of a porous film designed to control the passage or 

retention of components under the action of a driving force is intensely used in water treatment 

and often involved in the development of innovative systems. However, this technique remains 

limited by one of the major problem in membrane technology, which is fouling. The 

accumulation of colloids, particles or organic matters on the surface or inside the pores of the 

membrane has a direct consequence in a decrease of membrane flux over time and a crucial 

need of the use of chemical and/or mechanical cleaning with a significant impact on the 

environment. It is therefore necessary to design new innovative materials able to respond to the 

current problems of society not only in water field treatment, but also in other domains such as 

environmental protection, food, health, etc.  

The development of fouling resistant membranes composed with a high density of smart 

isopores able to adjust their size in response to an external stimulus such as temperature, pH, 

magnetic field, etc., are interesting materials to effectively prevent the common problem of 

fouling considered as one of the biggest challenges in membrane technology.  

The aim of this PhD thesis is based on the development of new nanostructured block copolymer 

smart membranes manufactured by phase inversion process. For that, we will first focus on the 

synthesis and the characterization of double stimuli-responsive linear ABC terpolymers. Then, 

we will study the self-assembly of the synthesized terpolymers into well-defined nanostructures 

formed on asymmetric membranes as well as the filtration performances of the resulted 

materials. Finally, the last part of this work will be devoted to the study of the self-assembly of 

blends comprising the double stimuli-responsive linear ABC terpolymers and other amphiphilic 
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block copolymers in order to improve the hydrophilicity of the blended membrane, and 

consequently its resistance to fouling. 

          Chapter 1 will introduce the different concepts addressed in this work for a better 

understanding of the general context of this thesis. After a brief description of membrane 

classifications and the fundamental notions regarding the bulk self-assembly of block 

copolymers, we will introduce the different membrane manufacture processes related to this 

work. Finally, we will discuss about smart and stimuli-responsive membranes as well as their 

potential applications. 

          Chapter 2 of this manuscript will describe the Reversible addition−fragmentation chain-

transfer (RAFT) polymerization used to prepare well-defined linear ABC terpolymers consisted 

of polystyrene (PS), a pH-responsive poly(2-vinylpyridine) (P2VP) and a thermo-responsive 

poly(N-isopropylacrylamide) (PNIPAM). Analytical methods, such as nuclear magnetic 

resonance (NMR) and size-exclusion chromatography (SEC) were used to characterize the 

synthesized terpolymers. 

          In Chapter 3, we will first detail the fabrication of asymmetric PS-b-P2VP-b-PNIPAM 

thick films by non-solvent induced phase separation (NIPS) followed by the transformation of 

their top surfaces from a poorly-defined phase into a well-ordered perforated lamellar structure 

when treated by solvent vapor annealing (SVA). We will then evaluate the thermo/pH dual 

responsive behavior of the prepared membranes by water permeability measurements. 

          Chapter 4 will be devoted to the study of the self-assembly of blends comprising the PS-

b-P2VP-b-PNIPAM chains and different amphiphilic block copolymers. The combination of 

the NIPS technique and the SVA process was used to produce blended PS-b-P2VP-b-PNIPAM 

thick films with improved hydrophilicity.    

          Chapter 5 constitutes the experimental part of this manuscript and gathers all the 

methods, techniques and syntheses carried out in this work. 
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1. Introduction 
 

Membrane filtration is considered as the main technology in water treatment. According to 

United Nations Educational, Scientific and Cultural Organization (UNESCO), global demand 

for good quality water will increase by 55% in 2050 due to population growth, industrialization 

demand and due to climate change that highly affect the supply of clean water.1 Therefore, 

selective membrane technologies are good candidates for the development of sustainable water 

economy and prevent disruption in supply of clean water as well as the use of all the available 

water sources. Nowadays, membrane separation techniques contribute 53% of world’s clean 

water.2 They present an ease of handling, energy efficiency, manufacturing scalability and cost 

effectiveness. 

In 1963, Loeb and Sourirajan3 introduced the first example of high-effective processing of 

synthetic polymer into functional membranes via the non-solvent induced phase separation 

(NIPS) technique. The obtained integral asymmetric membranes  exhibit continuous pores, thin 

selective layers and high water permeability.1 This technique opened access to significant 

progress in membrane manufacturing on large-scales and great advances in porous membrane 

performances.  

Current commercially available membranes present a permeability-selectivity trade-off limiting 

their use over time.4 In addition, they face another crucial problem in membrane technology, 

which is fouling. It corresponds to the deposition of unwanted materials (called foulants) on 

membrane surface, resulting in a strong flux decline and reduction of the pore size. Nowadays, 

the biggest challenge in membrane technology is the development of new class of advanced 

fouling-resistant membranes able to surpass the existing trade-off. 

The aim of this thesis work is to address conception of novel nanostructured block copolymer 

smart membranes fabricated by phase inversion technique. The innovative membranes will be 

composed of a high areal density of pores with well-controlled sizes in order to eventually reach 

high selectivity and high permeability. Furthermore, thanks to the phase inversion process and 

to the different block copolymers properties, the envisioned smart membranes will surpass the 

current permeability-selectivity trade-off and will be fouling-resistant.  

This first chapter will introduce the different concepts addressed in this work for a better 

understanding of the rest of the study. After a brief description of membrane classifications, the 
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bibliographic study will describe the fundamental concepts concerning bulk self-assembly of 

block copolymers and polymerization techniques. Different membrane manufacture processes 

will then be described. Finally, this chapter will report on smart and stimuli-responsive 

membranes as well as their potential applications. 
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2. Membrane technology  
 

2.1. Definition  
 

Membranes are selective barriers that can separate substances with different physical/chemical 

properties.5 Components that pass through the pores of the membrane are called permeate and 

must be smaller than the pore size of the membrane whereas the ones remaining at the surface 

of the membrane are called retentates (see Figure 1).Membrane separation efficiency depends 

on different parameters: permeability, selectivity, pore size and molecular weight cut-off 

(MWCO). Permeability is defined by the trans-membrane flux that evaluates the productivity 

of membrane processes while the selectivity is characterized by the ability of membrane for the 

rejection/permeation of specific substances. Both permeability and selectivity depend on the 

pore size and surface properties of the membrane. Finally, molecular weight cut-off is the 

lowest molecular weight (in Dalton) at which greater than 90% of a polymer with given molar 

mass is retained by the membrane. MWCO determines size distribution of the membrane and 

its retention capabilities.   

 

 

 

 

Figure 1. Schematic illustration of a membrane separation.6 
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2.2. Classification of membranes 
 

Membranes can be classified according to different parameters: origin, structure, geometry or 

pore size (see Figure 2Erreur ! Source du renvoi introuvable.).  Firstly, depending on their 

nature, membranes are categorized into biological or synthetic. In fact, this is the simple 

classification since these two types of membranes are completely different from each other both 

in their structure and in their functionality.6 Biological membranes are of great importance as a 

model and source of inspiration for separation processes, however, they will not be discussed 

in this study. 

 

v Classification by natures  

Synthetic membranes are classified according to the used material into organic (liquid/polymer) 

or inorganic (metal/ceramic). Ceramic membranes are generally prepared from alumina, 

zirconium oxide, titanium oxide or silicon carbide. Moreover, they have good chemical 

resistance (use of organic solvent) and good mechanical properties (application of high 

pressure). 

In this study, we were interested in polymeric membranes. They are mostly prepared from 

cellulose acetate (CA), polysulfone (PSU), polyethersulfone (PES), polyamide (PA) or 

polyvinylidene fluoride (PVDF). Comparing to ceramic membranes, they have a flexible 

structure facilitating their implementation, but they have a low chemical and mechanical 

resistance. 

Figure 2. Membrane classification.8 

 



39 
 

v Classification by geometries 

Membranes are also classified according to their geometries into two categories: planar or 

cylindrical. Planar membranes are either arranged in stacks or wound in a spiral. Cylindrical 

membranes have tubular wound or hollow fiber. Depending on their wound type, membranes 

can be used in different separation applications. For example, hollow fiber membranes are used 

in reverse osmosis, gas separation and nanofiltration. Spiral wound membranes are used in 

reverse osmosis for water desalination. Planar wound membrane types are used in tangential 

flow filtration for bio-pharmaceutical application or frontal filtration that is used for 

clarification or debacterization. 

Frontal filtration, also referred as dead-end filtration, is based on perpendicular circulation of 

the fluid to be filtered in relation to the membrane. This filtration mode is limited by formation 

of accumulation of retentates at the surface resulting in fouling and in decrease in filtration 

flow. 

Tangential flow filtration (crow-flow filtration) is based on parallel circulation preventing the 

accumulation of solutes at the surface and limiting fouling issue. This separation technique is 

the most widely used industrially because it can operate more easily continuously. 

 

v Classification by structures  

Based on their morphologies and structures, membranes can be categorized such as dense, 

porous and composite. Porous membranes are essentially used for ultrafiltration and 

microfiltration. Non-porous membranes are generally used for reverse osmosis, nanofiltration 

and molecular separation in the gas phase.  

Porous membranes can be symmetric or asymmetric: symmetric are of uniform structure and 

their thickness ranges from 10 to 200 µm, they may be homogeneous dense or porous. The 

constant pores diameter throughout the symmetric membrane cross section limit the mass 

transfer during filtration. 

Asymmetric membranes are composed of either a porous or dense skin layer with a thickness 

from 50 to 150 µm and a sponge-like substructure.  
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They are divided into integrally porous, non-porous and composite skin layer. The pores 

generated by porous membranes are classified into Chemistry (IUPAC) : micropores (pores 

smaller than 2 nm), mesopores (2-50 nm) and three categories by their size according to the 

International Union of Pure and Applied macropores (larger than 50 nm). Comparing to 

symmetric membranes, asymmetric ones are less prone to fouling issues thanks to the difference 

in pore size from the surface to the substructure. Furthermore, asymmetric membranes are used 

in several sectors of industry like water purification/treatment 7, biopharmaceutical separation 
8 and electronic processing.9   

The existing membranes are usually facing an important decrease in their productivity. In one 

hand, this productivity limitation can be caused by a significant decrease in permeability during 

filtration through concentration polarization that corresponds to a change in the concentration 

of a specific component at the boundary layer near to the membrane surface. In the other hand, 

fouling is another phenomenon limiting the filtration and membrane lifetime. In fact, it 

corresponds to the accumulation of retentates at the membrane surface and it can be reversible 

or irreversible. Reversible fouling corresponds to the attachment of retentates to the membrane 

surface and thus can be easily removed by rinsing with water or organic solvent. Irreversible 

fouling is more difficult to eliminate and it corresponds to an interne fouling due to adsorption 

of particles via intermolecular interactions (hydrophobic, hydrogen bonds or van der Waals) 

between the substances and the membrane. 

Current commercial NIPS-made homopolymer membranes for ultrafiltration are limited by an 

inadequate separation and poor fouling resistance (see Figure 3Erreur ! Source du renvoi 

introuvable..a).1  However, block copolymer (BCP) membranes are able to tailor the 

membranes surface chemistries (see Figure 3Erreur ! Source du renvoi introuvable..b). Indeed, 

the block copolymer self-assembly into periodic nanostructures with controllable morphologies 

offers the potential to build uniform pore size in a highly-areal density within the membrane 

skin layer and the development of smart fouling resistant (self-cleaning) membranes. 

The next section is devoted to an introduction on the BCP self-assembly and their use in the 

development of membranes with controlled morphologies. 

 



41 
 

 

 

 

 

 

3. Porous polymeric membranes 
 

Block copolymers are composed of at least two different monomer units (A and B) linked 

together with a covalent bond. BCPs are categorized based on the arrangements and number of 

the connected blocks, depending on this block number, they are called di-, tri- or multi-block 

copolymers. For example, a diblock copolymer composed of two monomer units A and B is 

called poly(A)-block-poly(B) while a triblock copolymer with the same monomer units is called 

poly(A)-block-poly(B)-block-poly(A) or poly(B)-block-poly(A)-block-poly(B) depending on 

the central block. Another triblock copolymer type exists composed with three monomer units 

A, B and C, termed triblock terpolymer poly(A)-block-poly(B)-block-poly(C). BCPs are also 

classified based on their arrangement into linear, grafted and star miktoarm (see Figure 4 

Erreur ! Source du renvoi introuvable.). 

 

Figure 3. a) Illustration of homopolymer membrane obtained by NIPS limited by stochastic 
pore sizes and undesirable surface chemistries. b) Illustration of block copolymer membrane 
with improved surface chemistry and c) illustration of block copolymer self-assembly in bulk 
or in solution into an ordered or disordered state generating uniform pore size in both cases.1 
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Porous polymeric membranes are of great interest in the development of new membranes with 

controlled morphologies. Indeed, thanks to the well-known self-assembly of BCPs, membrane 

structures can be well tuned. Block copolymer self-assembly can be as well in solution as in 

bulk and different nanostructures can be obtained. 

In this study, we are interested in the use of block copolymers for membrane preparations with 

controlled morphologies. Therefore, it seemed essential to us to deepen their self-assembly in 

bulk, the following part is then devoted to this aspect. 

 
3.1. Self-assembly of block copolymer in bulk  
 

In a mixture of immiscible polymers, one of the polymers would tend to minimize the contact 

interface by forming a dispersion in the second one, this phenomenon comparable to water in 

oil emulsion is called macrophase separation. 

Otherwise, in the case where immiscible polymers are connected by a junction point like block 

copolymers, this macrophase separation is not possible anymore due to the covalent bond. 

Thermodynamically, the phase separation of block copolymer can be explained by the Gibbs 

free energy:  ΔGm = ΔHm – TΔSm and it occurs when ΔGm > 0. 

ΔHm represents the enthalpy and is determined by the Flory-Huggins parameter χ which is 

related to the interactions between the blocks. ΔSm is the entropy and it depends on the 

polymerization degree N of the chains. When the temperature T increases, the magnitude of 

Figure 4. Block copolymers arrangement. 

 



43 
 

TΔSm approaches the one of ΔHm and the self-assembly of the AB-type BCP becomes  

progressively less effective. However, their self-assembly occurs spontaneously if ΔGm is 

positive and accompanied by a loss of enthalpy and entropy. The loss of enthalpy is due to the 

repulsion of polymer chains while  the entropy opposes the macrophase separation due to the 

junction between the blocks (see Figure 5).10 

 

 

 

 

3.1.1. AB diblock copolymers 
 

Over 30 years, the microphase separation of linear AB-type BCPs have been studied and 

numerous structures have been identified depending on the volume fractions f of each block 

(ƒA+ ƒB = 1) and the segregation strength between the blocks, represented by the product χN. 

AB diblock copolymer self-assembly is the simplest and can be predicted by Matsen and Bates 

phase diagram (see Figure 6) which is represented as a function of volume fraction and the 

segregation strength between two blocks.  

 

Figure 5. Enthalpy and entropy balance during phase 
separation. 10 
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According to the self-consistent field theory (SCFT) 11 different morphologies can be predicted 

such as the “classical” lamellar (L), cylindrical (C), spherical (S) phases and the more complex 

double gyroid (G)12 structure (see Figure 6.b). 

By increasing the volume fraction of the block A or B, the microdomain arrangement changes 

from closely packed spheres (CPS), to body centered cubic spheres (Q229), to hexagonally 

packed cylinders (H), to bicontinuous gyroid (Q230), and finally to Lamellae.13 

The segregation of A and B blocks is dictated by the product χN. The critical lower limit is 

defined at χN = 10.5 below this value the entropy dominates and a disordered phase (DIS) is 

observed. Conversely, when χN >10.5, A and B blocks become immiscible causing an order-

disorder transition (ODT).13 

Figure 6. a) Phase diagram of diblock copolymer predicted by self-consistent field theory (SCFT). 
f : volume fraction of one block, χ : Flory-Huggins interaction parameter, N : degree of 

polymerization, L: lamellae, H : hexagonally packed cylinders, Q230 :  double-gyroid phase,         
Q229 : body centered spheres, CPS : closed-packed spheres and DIS : disordered phase. b) 

Schematic representation of some accessible morphologies depending on volume fraction.14 
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The lamellar phase is formed at nearly symmetric compositions of the A and B blocks                 

(ƒA = ƒB). The other phases depend on the arrangement of the minor block. In the case where  

the minority component forms hexagonal cylinders, the cylindrical phase is obtained. On the 

other hand, when this block forms spheres arranged on a centered cubic lattice, the spherical 

phase is formed. The gyroid structure is observed when the minority domain forms two 

interweaving threefold coordinated lattices. Another reported metastable complex phase is a 

perforated lamellar phase (PL). Here the minority component layers of the lamellar structure 

exhibit a hexagonal or tetragonal array of passages through which the majority component 

layers are connected via protrusions. 

Three different segregation regimes can be defined in AB diblock copolymer self-assembly 

based on χN value. When  χN < 15, a weak segregation limit (WSL) is noted. The intermediate 

segregation limit (ISL) and strong segregation limit (SSL) regions are reached for 15< χN <100  

and χN >100, repectively. 

For instance, Matsen et al.14 described the phase behavior occurring in the intermediate 

segregation limit, for values of  χN = 20. In this regime, a sequence of different morphologies 

can be predicted based on theoretical calculations, including the lamellar, gyroid, cylindrical 

and spherical phases. 

 

3.1.2. ABA triblock copolymers  
 

The self-assembly of ABA triblock copolymers is similar to the one of AB-type BCP.  Here, 

however, the critical lower limit χN is found to be 18.0.15  

In the case of AB-type BCP, the polymers have a “tail” conformation binding the A and B 

domains. On the other hand, in the case of ABA triblock copolymers, the central block can form 

a "loop" in which the latter folds back on itself to anchor the terminal blocks in adjacent areas. 

A "bridge" configuration is observed when the central block connects two distant zones, making 

that the mechanical strength in the solid state of the material and the compatibility in solution 

are greatly improved. 

The incorporation of a third different block constitutes another class of BCP self-assembly in 

bulk that is different from the one of AB- and ABA-type BCPs. In this case, the presence of a 
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third C-block will change the parameters controlling the self-assembly, resulting in the 

formation of new ordered structures. The self-assembly of ABC-type BCP is detailed hereafter. 

3.1.3. ABC triblock copolymers  
 

The addition of a third (or more) block(s) in BCPs increases the level of self-assembly 

complexity in bulk and can provide more tuning of the morphology. 16 It can also generate 

unusual geometries and introduce structural hierarchies. 17 In addition, ABC-type BCPs offer a 

great opportunity to manufacture membranes with a panoply of network structures.4,18 Several 

studies have been focused on ABC linear triblock terpolymer self-assembly in bulk, suggesting 

the existence of at least 30 different morphologies.19  

In the case of linear ABC-type triblock terpolymers, the number of observable morphologies is 

increased and depends on the position of each block and on the parameters listed below: 

• Three independent volume fractions with fA + fB + fC = 1 

 • Three interaction parameters χAB, χBC and χAC between linked A / B and B / C blocks and 

unbound A / C blocks  

• The order of the blocks (ABC / ACB / BAC) 

Depending on the topology of the terpolymer chains and on the interactions between the blocks, 

different frustration types are described. At molecular scale, frustration corresponds to the phase 

separation of different blocks while the chain connectivity prevents a macroscopic phase 

separation. At mesoscopic scale, frustration occurs as long as the polymeric domains tend to 

maintain a uniform shape and fill the space. These frustrations constitutes the main driving 

force to form complex ordered phases. 

Bates et.al 20 have summarized different structures obtained according to these parameters. For 

equal volume fractions (fA =  fC) and same interaction parameters (χAB = χBC = χAC ), the triblock 

terpolymer adopt a lamellar morphology. 

In the case where χAC is larger than the other interaction pairs, there is absence of any frustration 

(called a type 0 frustration). The contact between A and C blocks is not favorized, allowing the 

formation of core-shell morphologies. (see Figure 7.f,g and i) 
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A type I frustration is observed when the Flory-Huggins interaction parameters are organized 

as follows χAB = χAC <χBC. Hückstädt et al.21 reported in their work on self-assembly of 

polystyrene-block-polybutadiene-block-poly(2-vinylpyridine) (PS-b-PB-b-P2VP) into a core-

shell double gyroid morphology. The small P2VP block formed the core, surrounded by a shell 

of the highest incompatible PB block.  

A type II frustration is noted when χAC is smaller than the other interactions. Here, the central 

B block becomes strongly incompatible with the A and C blocks, the domains B become 

discontinuous. New morphologies were observed such as  hexagonal array where A and C form 

cylindrical microdomains in B matrix.22 

 

 

 

In 2020, Miskaki et al 23 summarized in their work the different morphologies observed in the 

literature depending on block sequence, molecular weight range and annealing conditions used 

in the case of linear ABC-type triblock terpolymers,  

For example, the self-assembly of polystyrene-block-poly(isoprene)-block-poly(2-

vinylpyridine) (PS-b-PI-b-P2VP) triblock terpolymers has been studied in different works. For 

a  PS-b-PI-b-P2VP molecular weight of 43 kg.mol-1 and equal volume fractions fPS:fPI:fP2VP 

Figure 7. Types of nanostructures formed by linear triblock 
terpolymers in different block order sequence (ABC, ACB or 

BAC).16 
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(0.33:0.33 0.33) Gido et al.24 observed a lamellar structure.  At  a higher molecular weight value 

(196 kg.mol-1) and higher PI volume fraction (0.18:0.66:0.16), Matsushita et al.25 observed an 

ordered tricontinuous double diamond (OTDD) structure.  

For a similar ABC triblock terpolymer system having, however, a different block order 

sequence (i.e., PI-b-PS-b-P2VP),  Mogi et al.26,27 identified different types of morphologies by 

changing the volume fraction of the midblock from 0.48 to 0.66. The observed morphologies 

were: the core-shell lamellar, OTDD, cylindrical and spherical phases. 

Bailey et al.28 studied another system composed of polystyrene-block-poly(isoprene)-block-

poly(ethylene glycol) (PS-b-PI-b-PEO) with different volume fraction of PEO, ranging from 

2.9% to 33.2%. They observed the formation of two- and three-domain lamellar structures, 

hexagonally packed core-shell cylinders and pentacontinuous core-shell gyroid morphology. In 

the same strategy but by changing the block sequence order to PI-b-PS-b-PEO, the same 

research group 18 observed three different  morphologies (i.e., the orthorhombic O70 (Fddd)  

network morphology, and 3-phase 4-layer lamellae (LAM)) that were obtained by increasing 

volume fraction of PEO from 0.12 to 0.33. 

These examples show how the effect of the molecular weight of the ABC-type BCP, the block 

sequence order as well as the interactions between the multiple blocks strongly affect the final 

morphology.  

As described in this part, the addition of a third block in BCP increased the level of self-

assembly complexity, giving rise to new complex well-defined morphologies. In order to push 

the complexity even further, distinctly different block copolymers can be combined together, 

also known as blend of BCPs. This strategy has a huge potential for the design of new well-

defined and controlled superstructures. The following section is devoted to this aspect.   

 

3.1.4. Blend of block copolymers 
 

More advanced and complex morphology also called “nonclassical” morphologies can be 

observed by blending block copolymers with multimodal dispersity of the targeted blocks. 
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The morphologies observed in the case of blend copolymers can be the same as for classical 

polymers (i.e. lamellae, perforated lamellae, gyroid, cylinder or spheres) accompanied with a 

shift in the  phase diagram boundaries.29  

Blending block copolymers can also open more possibilities for more complex architecture and 

new morphologies different from the classical ones.  

Block copolymer morphologies by blending can be influenced by different parameters. Some 

of the examples of blending linear block copolymers are presented in the following part. 

In 1998, Koneripalli et al.30 studied the blending of two asymmetric diblocks composed of PS-

b-P2VP with same molar mass but a different volume fraction of PS, they observed that this 

blending mixture leaded to a lamellar structure even the individual diblocks exhibit a 

nonlamellar morphology. 

The use of small molecules for blending block copolymer may be the simplest way to achieve 

new morphologies. For example Ruokolainen et al.31 added pentadecyl phenol (PDP) to their 

PS-b-P4VP system and observed formation of asymmetric lamellar structure due to the H-

bonding between PDP and P4VP, inducing restriction of block copolymer junctions on the 

microdomain interface. 

 

v Blending with homopolymers 

In the same strategy of H-bonding, Dobroseielska et al.32  blended PS-b-P2VP diblock 

copolymer for average molecular weight , Mw, of  130 kg.mol-1 with poly(4-hydroxystyrene) 

(Mw ~ 14 kg.mol-1). They observed a morphological transition from cylindrical to spherical 

structures upon addition of large amount of poly(4-hydroxystyrene). Here the morphology was 

more tunable due to H-bonding interactions between the added homopolymer and P2VP 

moiety. These results were compared with those obtained from blends of PS-b-P2VP with P2VP 

homopolymer (Mw = 6.6 kg.mol-1). The initial PS-b-P2VP diblock copolymer was arranged in 

a hexagonally packed cylindrical structure while the addition of the homopolymer resulted in a 

lamellar structure. 

Whitmore et al.33 and Matsen et al.34 explained the effect of blending an AB diblock copolymer 

with an A-type homopolymer with high- and low-molecular weight. In the case where the 
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diblock exhibit lamellae morphology is blended with high-molecular weight homopolymer, 

there is an attractive interaction between diblock bilayers causing a macrophase separation 

between the diblock-rich lamellar phase and homopolymer-rich disordered phase. In the case 

where a low-molecular-weight homopolymer is added, a repulsive interaction between bilayers 

occurs and the homopolymer is added to the lamellar phase indefinitely without macrophase 

separation.  

v Blending with diblock copolymers 

The use of block copolymer as blend is more complicated, since several parameters can 

influence the morphology transition. For example, Chen et al.35 reported the morphology and 

phase behaviors of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock 

copolymers in their blend films. The AB-type BCPs were composed with similar molecular 

weights but different PS volume fractions (fPS = 0.3 and 0.7), the observed morphologies depend 

on the interaction between the solvent and the block and on the differences in chain lengths.  

Multilayered microphase morphologies composed of spheres and triple coaxial circular 

microdomain structure with PS as core and PMMA as shell were reported. 

In another study, Guo et al.36  observed the same behavior in thin film of blends of two 

asymmetric PS-b-PB with molecular weight of 137 and 96.5 kg.mol-1 and PS volume fractions 

of 0.24 and 0.62, respectively. They observed a new morphology that they named “sphere 

between cylinders” where the PS form cylinders in PB in the first BCP and PB cylinders in PS 

matrix in the second one.  

 

v Blending with triblock terpolymers 

In the case of blends containing ABC-type terpolymers, a larger variety of specific behavior 

can be observed due to the presence of central block forming a bridge conformation. Matsushita 

et al.37 studied the blend of three PI-b-PS-b-P2VP with different molecular weights (26, 96 and 

150 kg.mol-1,respectively). They observed lamellar structures at low dispersity values                   

(D = 1.03 to 1.04) and undulated lamellar structure when  D value increased from 1.1 to 1.5.   

Asai et al.38  studied the blend of different PI-b-PS-b-P2VP chains composed with the same 

molar mass of 130 kg.mol-1 and same middle-block volume fraction but different end-block 
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volume fractions (0.39:0.56:0.05 and 0.06 : 0.62: 0.32).  Here tricontinuous gyroid structures 

were transformed into cylindrical ones, by forming a new tetragonal arrangement. 

In this series of examples on PI-b-PS-b-P2VP, Ahn et al.39 reported the blend of the terpolymer 

system with a diblock composed of PI-b-PS, in this case, a coexistence of spheres and cylinders 

with tetragonal packing was observed. Depending on the volume fraction used, for binary 

mixture of PI-b-PS-b-P2VP and PI-b-PS with overall volume fraction f PI = 0.12, f PS = 0.79 and                     

f P2VP = 0.09 a core-shell double gyroid was observed where P2VP was the matrix, PS formed 

thick shell and PI thin core. 

Low dispersity values and high purity of block copolymers are of great importance in self-

assembly, several polymerization techniques have been developed in order to achieve new 

polymer structures suitable for different applications. The next section details the synthesis 

procedure for block copolymers used in this thesis. 

 

4. Linear ABC terpolymer synthesis  
 

Several methods have been developed to synthesize myriad of structures of block copolymers 

with precise control of the chain-growth polymerization having a relatively narrow molecular 

weight distribution, or dispersity (Ð ≤ 1.5).40 The methods generally employed are living 

polymerization (anionic/cationic) or controlled radical polymerization (CRP): Nitroxide-

Mediated Radical Polymerization (NMP), Atom Transfer Radical Polymerization (ATRP) or 

Reversible Addition-Fragmentation chain Transfer polymerization (RAFT). 

The choice of polymerization mechanism to employ is adapted to the need of the polymer 

scientist depending on the final chemical functionality of the membrane. 

For example, living anionic polymerizations offer excellent control of the block copolymer 

molecular weights and molecular weight distribution,41 however this synthesis route is limited 

to a select number of monomers and the synthesis of multiblock polymers but also by the 

reaction medium which must be completely inert in order to avoid termination reactions.42 

Conversely, controlled radical polymerization mechanisms are more compatible with different 

monomer types and less sensitive to ambient conditions than other controlled polymerization 
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mechanisms and can be easily scaled up. NMP, ATRP and RAFT polymerizations 43,44,45 all 

three have been used to generate nanostructured membranes from block polymer templates with 

a high degree of success each of these CRP polymerizations has its own unique set of positive 

aspects and potential drawbacks. 

In this study, we used RAFT polymerization for the synthesis and design of linear ABC tribock 

terpolymers, the principals of the polymerization mechanism are detailed hereafter. 

4.1. RAFT polymerization 
 

RAFT polymerization was established for the first time at CSIRO laboratory in 199846–48 and 

since that time more than 8000 publications have been reported in the topic. RAFT 

polymerization  is a versatile synthetic method to prepare highly functional polymers. This 

polymerization is mediated by a thiocarbonylthio compound called RAFT chain transfer agent 

(CTA) such as: dithioesters, trithiocarbonates, xanthates or thiocarbamates (Figure 8). 

Generally, CTA possesses a leaving group R and stabilizing Z group.49 It ensures a reversible 

equilibrium in the reaction, minimizes irreversible termination and prevents termination giving 

polymers with high molecular weight and low polydispersity values. Finally, CTA can be easily 

removed at the end of the synthesis, if necessary for further applications. 

 

 

 

 

                   

Polymer chains synthesized by RAFT polymerization have the same degree of polymerization 

(DP) at a given time and the kinetic of the reaction depends on the insertion of the monomer 

between the Z and R groups on the CTA.50  

Figure 8. Chemical structures of several thiocarbonylthio transfer agents 
a) dithioester, b) xanthate, c) dithiocarbamate and d) trithiocarbonate. 
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RAFT mechanism is based on five steps as describe shown in Figure 9: 

 

1. The two first steps are activation (or initiation) and propagation. Activation corresponds 

to radical initiation from free-radical source (i.e., azobisisobutyronitrile AIBN), radical 

fragments generated will afterward react with a monomer to initiate chain growth. 

During propagation, longer chains are formed by the reaction of the growing chain with 

more monomer molecules. 

2. The pre-equilibrium step corresponds to the addition of radicals on RAFT agent in order 

to enter in equilibrium between active and dormant species. The formed RAFT radical 

can fragment in both directions and the resulting leaving group R will act as new radical.  

3. In the re-initiation step, another active polymer chain is started by the reaction of leaving 

group radical’s and monomer. 

4. The next step corresponds to the main equilibrium of RAFT polymerization, termed 

degenerate, since it involves a reversible transfer to the functional chain end-group. For 

an effective process, the addition/fragmentation equilibrium should be faster than the 

propagation, resulting in addition of less than one monomer unit added per activation 

cycle, finally all chains will have narrow dispersity and similar degree of polymerization 

at a given time. 

5. The final step is termination, it represents the formation of a dead polymer formed for 

instance by coupling of two radicals. 
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4.2. Parameters influencing RAFT polymerization 
  

An optimal RAFT polymerization requires the tuning of different parameters that are detailed 

below. 

 

4.2.1. Choice of RAFT agent  
 

The choice of the RAFT agent is crucial for the synthesis of well-controlled architectures. It is 

chosen according to the target molecular weight and to insure good purity and low 

polydispersity. The effectiveness of CTA is determined by the substituents Z (the activating 

group) and R (the homolytic leaving group). The Z group determines the stability of the 

intermediate radicals and modifies both the rate of addition of propagating radicals to the 

Figure 9. Mechanism of Reversible Addition-Fragmentation Chain Transfer (RAFT) 
polymerization.54 
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thiocarbonyl group and the rate of fragmentation of the intermediate radicals. For an optimal 

control of the reaction, the R group must be a good homolytic leaving group, in order to avoid 

any retardation effect, the generated radical (R•) must be able to reinitiate efficiently the 

polymerization. 

RAFT agent should have an appropriate solubility in the reaction medium and possess the 

terminal group functionality required for the intended application, it must have a higher transfer 

constant, it should not undergo side reactions or retardation effect during the polymerization. 

In this work, the RAFT agent used for the synthesis of the ABC triblock terpolymers were 

purchased, nevertherless, different methods are available for the synthesis of RAFT agents.  

Keddie et al.51 have listed in their work, the different procedures for the design of RAFT agents, 

among them: carbodithioate salt with an alkylating agent, various thiocylation procedures, 

ketoform reaction, thiol exchange, radical substitution of a bis(thioacyl) disulfide and radical-

induced R-group exchange. 

 

4.2.2. Choice of monomer  
 

Monomers used in RAFT polymerization are divided into two families according to their 

reactivity: “more activated” monomers MAMs and “less activated” monomers LAMs. 

MAMs have a vinyl group conjugated either to a double bond, to a carbonyl compound or to a 

nitrile function, such as: butadienes, isoprenes, styrenes, vinylpyridines, (meth)acrylates or 

acrylonitriles. LAMs have an adjacent double bond to an oxygen, a nitrogen or a halogen, such 

as vinyl acetate, N-vinylpyrrolidones or vinyl chloride. 

MAMs monomers generally produce more stable radicals and therefore require Z groups 

capable of ensuring the stability of the intermediate radical formed, but also in order to promote 

its addition to C = S bond of the CTA. Trithiocarbonates (Z = S-alkyl) or dithiobenzoates (Z = 

Ph) are generally designated to control the polymerization of monomers of MAMs type. 

LAMs monomers are very reactive and poor homolytic groups, so they require a less stable 

intermediate radical than MAMs monomers. Therefore, xanthates (Z = O-alkyl) or 

dithiocarbamates (Z = N-alkyl) are generally designed in order to promote the fragmentation 

and the propagation step of the radical. 

Beside, R group should be a good initiating group, to quickly reinitiate the propagation  and 

thus to ensure low molecular weight dispersity and form radical with sufficient reactivity 

allowing it to be added to the monomer.   
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4.2.3. Reaction medium 
 

RAFT polymerization process can be performed in homogenous as well as in heterogeneous 

medium. Similarly to conventional radical polymerization, RAFT polymerization can be 

performed in solution (organic solvent or water) or in bulk. At the exception of strong 

nucleophilic solvents that may degrade the thiocarbonylthio group of RAFT agent, most of 

organic solvents used in conventional radical polymerization can be used in RAFT 

polymerization. 

Heterogeneous RAFT polymerization is often based on a self-assembly approach for instance 

via dispersion in aqueous system. Briefly, during this process, an amphiphilic macro-RAFT 

agent is formed which undergoes self-assembly into micelles then forming polymer particles.  

Polymerization medium is a critical parameter during the reaction, since it can highly affect the 

kinetic. 

4.2.4. RAFT kinetic 
 

The rate of RAFT polymerization is highly dependent on the number of radicals initially present 

in the reaction. Indeed, in degenerative transfer system, the use of radical source allows tuning 

of the polymerization rate and the number of living and dead chains via the appropriate choice 

of polymerization conditions. Typically, in the case of initiation by thermal initiator i.e., diazo 

or peroxide compounds, based on the amount of the decomposed with initiator in the time, the 

number of dead chains can be predicted. Furthermore, radical source in RAFT polymerization 

is key to the process, since it assures: 

 

- good control of the reaction as the amount of dead chains in the system is determined 

by the number of radicals generated 

- the polymerization rate which is directly related to radical concentration 

 

The control of initiator concentration allows the control of the reaction by balancing rate speed 

of the reaction and livingness of the resulting polymeric chains. Typically, for a good control 

of the reaction, CTA: initiator ratio should be between 5 and 10. In this case, the number of 

radicals from the initiator are lower than the number of CTA, so the majority of chains come 

from the R-group during the re-initiation step. 
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The number of dead chains is governed by the number of radicals generated during the 

polymerization. Nevertheless, the rate at which the radicals are generated has no influence on 

the control of the reaction. Therefore, the polymerization rate is highly influenced by the rate 

of radical generation. For example the initiator  4,4’-azobis(4-cyanovaleric acid) (ACVA, half-

life time of 10 h at 69 °C) result in 85% decomposition in 24h at 70°C in water, while the 

initiator 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044, half-life time of 

10 h at 44 °C) undergoes 95% decomposition in 2h under the same conditions. 

 

In this study, we used thermal initiation for the synthesis of the triblock but there exist other 

ways to initiate the reaction in RAFT polymerization such as redox initiation or light-induce 

initiation. 

 

Finally, once the target polymer length has been reached, the reaction is generally stopped by 

cooling down the temperature and exposing the reaction medium to oxygen. The oxygen will 

react with the negligible amount of living radical in a termination way. The obtained polymer 

is in between the R group and thiocarbonate moiety of CTA. The polymerization can restart at 

any time by the addition of an initiator and another monomer in order to synthesize block 

copolymers, this is the reason why RAFT polymerization is called reversible.  

 

In this work, RAFT polymerization was used for the synthesis of linear ABC triblock 

terpolymers in order to fabricate innovative isoporous membranes. 

Different fabrication techniques have been developed for the conception of porous membranes. 

In the following section, we introduced the different process related to this study. 

 

 

5. Fabrication techniques for polymeric membranes  
 

An ideal membrane present high permeability and good selectivity with high density of pores 

that all possess a single and well-defined size. Currently, a trade-off between permeability and 

selectivity exists.52 Membrane performances are highly dependent on the fabrication technique 

used. In this section, we will describe the most common techniques used to manufacture 
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membranes including details of the basic theory. A discussion of their advantages and 

limitations will be also conducted. 

 

5.1. Track etching and others 

 

Track etching technique is based on irradiating polymers with either energetic heavy ions, 

electrons, X-ray irradiation or UV light, resulting in the formation of linear damaged tracks 

through the exposed polymeric film (see Figure 10.a). The damaged tracks are transferred into 

pores using either properly selected wet chemical etching conditions or an applied electric 

field.53   

Track-etched membranes have nearly uniform pore size distribution, resulting in highly 

selective membranes, but since the pores are sparsely distributed, this decreases the 

permeability (see Figure 10.b). 

 

  

Lithography-based process is another type of manufacturing of porous polymeric membranes. 

It is based on a pressing of a template against (i.e., mold) a deformable resist layer deposited 

on a substrate.54 It can be easily scaled up and overcomes the issues of scaling up and fabrication 

Figure 10. a) Sketch of track etching single irradiation setup 9 , b) SEM image of 

track-etched membrane.58 
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time. In addition, it can overcome the range of pore size, shape and density (obtained with track-

etching). However, it remains limited by the high-cost fabrication of the master mold. 

 

In order to improve the permeability of membranes, another technique based on the phase 

separation of polymers is currently used in the fabrication of porous polymeric membranes.  

During this process, the polymer passes in a controlled manner from a solution to a solid state. 

The membrane preparation is driven by a transition from a state in a homogeneous solution to 

a state with two liquids, this separation is also called liquid-liquid demixing. During the 

demixing process, the phase with the highest polymer concentration solidifies to form a solid 

matrix, leading to a control of the membrane morphology. By controlling the initiation of the 

phase transition, porous as well as non-porous membranes can be prepared. The well-known 

phase inversion processes for the fabrication of asymmetric membranes include: non-solvent 

induced phase separation (NIPS), self-assembly and non-solvent induced phase separation 

(SNIPS), thermally induced phase separation (TIPS), and vapor induced phase separation 

(VIPS). 

In this work, we were interested on the use of the NIPS and SNIPS processes for the preparation 

of polymer structures with small nanopores. The next section will present the details regarding 

the fabrication of porous polymeric membranes derived from the block copolymer self-

assembly. 

 

5.2. Non-solvent Induced Phase Separation (NIPS) 
 

This technique was introduced for the first time in 1962 by Loeb et al.3  for the conception of 

asymmetric membranes for reverse osmosis. The asymmetric membranes are composed of a 

porous support layer providing mechanical strength and stability, covered by a thin selective 

layer providing separation capabilities. The membrane structure obtained is a result of a 

combination of a matter transfer and phase separation. During the NIPS process, the polymer 

solution (solvent + polymer) is casted on a suitable support using a doctor blade in order to 

achieve an homogenous thickness.55 The polymer film is then plunged in a coagulation bath 

containing the non-solvent (the solvent used and the non-solvent must be miscible).At this 

stage, the solvent will diffuse into the coagulation bath while the non-solvent diffuses into the 
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film (see Figure 11). After a certain time, the exchange between the solvent and the non-solvent 

gives rise to a demixing in the solution. The resulting membrane, with a dense surface layer and 

a sponge-like sublayer, shows in many cases high flux, good selectivity and good mechanical 

stability.55 

 

 

 

 

 

 

 

 

 

 

The final morphology of the membrane depends on several parameters: 

• Choice of the polymer 

• Choice of the solvent  

• Polymer concentration in solution 

• Molecular weight of the polymer 

• Coagulation bath 

• Temperature of the solution and of the coagulation bath 

• Evaporation time  

• Relative humidity  

• The use of additives in the film 

The membrane morphology can be modified from an open porous structure to a dense non-

porous membrane by varying one or more of these parameters. 

Figure 11. Schematic of the Non-solvent Induced Phase 
Separation (NIPS) technique.61 
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Comparing to track-etched membranes, the ones fabricated using a phase separation technique 

present high permeability thanks to their high porosities but are limited by a non-uniform pore 

size distribution that lower their selectivity. 

In order to face this permeability-selectivity trade-off, it is essential to improve the fabrication 

of innovative materials having high density of pores with well-controlled size to produce 

membrane combining good selectivity and high permeability.4 

 

5.3. Self-assembly and Non-solvent Induced Phase Separation (SNIPS) 
 

SNIPS was developed for the first time by Peinemann and Abetz 56 for preparing isoporous 

block copolymer membranes having pores in a high-areal density. The SNIPS technique is a 

combination of the self-assembly of block copolymers with NIPS. 

Similarly, to the NIPS process, the final membrane structure is determined by several 

parameters that should be carefully tuned such as choice of the block copolymer, concentration 

of polymer solution, choice of solvent or solvent mixture, evaporation time before precipitation 

and rate of solvent evaporation. In addition, the environmental conditions (temperature and 

humidity), nature of the non-solvent bath, initial thickness of membrane precursor and 

precipitation bath conditions are important parameter that governs the membrane structure. 

In general, a successful SNIPS process implies the formation of monodisperse pores on the 

membrane top surface that strongly depends on the state of micellization of block copolymers 

in solution as well as on the morphology of the formed micelles and their stability                       

(see Figure 12). 
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In SNIPS, the BCP self-assembly occurs in different steps: in the first one, a micellization takes 

place because of the unfavorable interactions between the solvent and one of the blocks above 

the critical micelle concentration (CMC). 57 In the second step, the micellization happens due 

to the interactions between the two polymer blocks at the surface-air interface.58 The change in 

solution concentration and solvent selectivity caused by the variation of polymer-solvent 

interactions during the partial solvent evaporation, tune the initial stage of the emerging 

structural features and control the structure of the micelles. Additionally, the packing of block 

copolymer micelles in solution has an important impact on the final membrane structure.s 

Finally, the obtained morphology depends on different parameters, firstly the nature of solvents 

used. The simplest case is the use of a solvent mixture showing equal affinities with the two 

blocks. In such conditions, the BCP chains can form an isoporous membrane with pores having 

a cylindrical morphology.59 Conversely, a preferential segregation and unequal distribution in 

domains take place in the case of a solvent mixture where one solvent shows preferential 

affinities with one block. 

Figure 12. Schematic showing the different steps required to prepare of a PS-b-P4VP 
membrane by SNIPS where P4VP and PS form the core (blue) and corona (green) of 

micelles: (left) the film casting, (middle) the evaporation step, and (right) the  
precipitation in the non-solvent. The initially disordered micelles transform into packed 

and ordered hexagonal arrangement of cylinders.1 
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In Figure 13, cross sectional views of PS-b-P4VP membranes obtained by SNIPS are 

presented. They show the effect of the evaporation time and the molar mass on the self-

assembly. From the Figure 13, we can see that the thickness of the (effective) skin layer 

increases as a function of the evaporation time while the pore size increases as a function of the 

BCP molecular weight.  

 

 

 

 

5.4. Parameters influencing the SNIPS process  
  

5.4.1. Concentration effect 
 

Another critical parameter is the solution concentration. Timothy et al.60 showed that the 

polystyrene-block-poly(ethylene)-block-poly(propylene) system presents different 

morphologies depending on the solution concentrations, including disordered spherical 

micelles, body-centered cubic spheres (BCC), hexagonally packed cylinders (HEX) and 

lamellae (LAM).  

Figure 13. a) cross-sectional morphology of the formed PS-b-P4VP membrane showing an 
increase of the active layer with increase of evaporation time (scale bars of 200 nm) 67 and 

b) A larger average pore size is obtained by increasing the molar mass of the block 
copolymer (scale bars of 0.5 µm).68  
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Foroutani et al.61 showed that the formation of an ordered pore network is a highly 

concentration-dependent process, determined by the solvent evaporation time. They observed 

the formation of a highly permeable asymmetric isoporous polystyrene-block-poly(acrylic acid) 

(PS-b-PAA) membrane at relatively low casting solution concentration  (15wt%) and  over a 

wide range of evaporation time (40-120s) (see Figure 14).  For such conditions, a hexagonal 

close-packed structure of micelles assembly was observed on the membrane selective layer. 

 

 

Finally, the polymer concentration and solvent selectivity are important parameters to insure 

the reproducibility of the SNIPS process, whatever the composition of block copolymers.  

 
5.4.2. Phase inversion effect 

 

In SNIPS, the solvent evaporation time is a critical parameter for the development of the 

nanophase. The time required to induce the desired nanostructure should match with the casting 

rate. Once the nanostructure is formed on the membrane top surface, it is trapped by plunging 

the film into a non-solvent bath.  

 

Figure 14. Field emission scanning electron microscopy (FE-SEM) micrographs of the top 
surface of PS-b-PAA membranes prepared from different casting solution and evaporation 

times (scale bars of 200nm).70 



65 
 

Different studies focused on the analysis of what really happen when the casted film is 

immersed into coagulation bath. It can be realized by comparing the pore ordering on final 

membrane with structure obtained from the casting solution.62  For instance, Stegelmeier et al.63 

showed that a large amount of a non-solvent can fully trap the transient pore structure by 

spraying a predefined volume of water onto the film that has be analyzed by in-situ SAXS 

analysis.  

Other parameters can also affect the final morphology of the nanostructured membrane. Nunes 

et al.64 studied the effect of pH of water bath on the formation of P4VP pores. They observed a 

decrease in the pore size concurrent with an increase of their density in acidic pH (from 6 to 2). 

Conversely, the pore formation was ineffective when the pH was increased to 10. 

Jung et al.65 studied the effect of temperature of the precipitation bath on the pore formation 

within isoporous PS-b-P2VP membranes. They observed the formation of uniform and 

regulated pores in water having a temperature under 3°C.They stated that the solvent exchange 

rate decreased in cold bath and the solution viscosity increased which is important to maintain 

the polymer assemblies during the phase inversion. 

The final morphology of the isoporous SNIPS-made membranes are highly dependent on 

different parameters such as the molecular weight, polymer composition, temperature, solvent 

properties, polymer concentration, phase inversion and evaporation.66  Therefore, the pore 

formation reproducibility as well as the surface functionalization are challenging to achieve by 

a SNIPS strategy. Besides the advantages of this technique, isoporous membranes obtained by 

SNIPS have permeability values lower than the theoretical predictions, this is due to the thick 

sublayer which shows a large flow resistance.67  

To tackle this issue, additives can be added in order to increase the process reproducibility and 

tailor the polymer assembly during the pore formation. The performance of additives on 

regulating the polymer assembly highly depends on the polymer/additive properties and 

solution conditions.68,69 These additives can be metal salts reacting with the block copolymer 

via coordination, like: CuCl2, Cu(Ac)2 ,Cu(NO3)2 , CuSO4, AgNO3, HAuCl3, Zn(Ac)2, 

Mg(Ac)2, LiCl, Fe(Ac)2, Co(Ac)2, Ni(Ac) or some sugars : glucose, saccharose.70 

Polymers can also be used as additives reacting via H-bonding, van der Waals force or chain 

entanglement. The polymeric additive can be a homopolymer (e.g., P4VP, PAA, poly(ethylene 
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glycol) PEG, PS) or even  a block copolymer such as: PS-b-PAA, PS-b-P4VP, PI-b-PS-b-P4VP 

or poly(isoprene)-b-polystyrene-b-poly(2(dimethylamino)ethylmethacrylate) (PI-b-PS-b-

PDMAEMA). 71 

Nanomaterials like carbon nanotubes (CNTs), TiO2 nanoparticles or graphene oxides (GOs) 

can as well be used as additives interacting via π-π interaction or H-bonding.70  

The most popular additives used for the SNIPS process are metal salts and polymers. Metal 

salts form excellent coordination sites with the hydrophilic block of amphiphilic block 

copolymers. For example, the addition of copper acetate Cu(Ac)2  to the casting solution of        

PS-b-P4VP promoted the formation of isoporous structure. Here, the Cu2+ ions were located 

within the P4VP corona lead to a stabilization of the phase-separated structures via a 

coordination interaction and protection of the polymer assemblies from deformation during 

phase inversion, thereby generating the formation of isoporous structure by SNIPS. 

Cu-based heavy metal ions are generally used for the formation of isoporous membranes. 

However, their use in biological applications remains limited because of their toxicity. These 

toxic metal ions can be replaced by other heavy metal ions such as Mg2+ and Zn2+, Ag+ or Au3+ 

having a much weaker coordination with BCP, so that the reduction of ions into nanoparticles 

is a facile way to eliminate their bad effect and endow membranes with desirable functions.72  

In this work, we were interested on the use of polymer additives rather than metal additives. 

On one hand, polymer additives are often used in NIPS process to face the trade-off effect since  

they enable to tailor the surface wettability, improve fouling-resistance and manufacture 

membranes with novel functionalities73,74. On the other hand, polymer additives play a much 

more complicated role in the SNIPS process since their effect depend on the property, molecular 

weight and composition of polymers. In the next section, polymer additives are presented for 

both the NIPS and SNIPS processes according to their hydrophilicity and nature, (i.e., 

homopolymer vs. block copolymer). 
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5.4.3. Hydrophilic homopolymer additives effect 
 

Generally, isoporous membranes are prepared from block copolymers, so the use of polymer 

additives and especially hydrophilic homopolymers helps to tailor the block copolymer self-

assembly as well as the membrane conception. Indeed, the hydrophilic homopolymer added 

will preferentially interact with the hydrophilic segments of the  block copolymer via H-

bonding interaction, which help to effectively avoid the undesirable macrophase separation 

during the mixing. Moreover, this selective interaction favors a pore size tailoring during the 

pore-formation due to the segregation of hydrophilic polymer additives. 

For example, Phillip et al.75 observed an increase of the pore size from 16 to 30 nm and a 

decrease in the uniformity of the isoporous structure by adding P4VP homopolymer to the 

casting solution of a PI-b-PS-b-P4VP system. In another study, Yang et al.67 used PEGs with 

different molecular weight, and showed that the one with molecular weight close to that of the 

hydrophilic block in BCP presented the best pore-forming performance. Moreover, these 

authors demonstrated that the maximum loading amount preserving the isoporous structure was 

independent of the PEG molecular weight. They added two PEGs with a molecular weight of 

20 kg/mol and 10 kg/mol and, they observed, in both cases, an increase in the pore size within 

the isoporous layer and a suppression of fingerlike pores leading to a decrease of the 

permeability of isoporous membranes.  

Hydrophilic homopolymers are also used as promoters to drive the microphase separation of 

BCPs with low interaction parameters (χ). For example, Zhu et al.76 used a hydrophilic PAA 

homopolymer as additive to blend a PS-b-PNIPAM membrane. The authors showed that the 

thermoresponsive PS-b-PNIPAM system has a low interaction parameter (χ ~ 0.05) and was 

unable to form isoporous structure during the SNIPS process. In contrast, by using a blending 

strategy, a microphase separation happened due to H-bonding of the two hydrophilic PAA and 

PNIPAM polymers. This interaction resulted in a decrease in chain conformation of PAA and 

increase of interaction parameter (see Figure 15). 
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The use of polymer as additives can also affect the membrane flow resistance via an increasing 

the porosity at the cross-section. Yang et al.67 observed that PEG homopolymers increased the 

finger-like pores at the cross-section, and reduced flow resistance of the support layer resulting 

in increase of membrane permeability. Ulbircht et al.77 compared the effects of different 

additives on polyethersulfone (PES) ultrafiltration membranes. The additives were composed 

of polyvinylpyrrolidone (PVP), PEG and poly(ethylene oxide)-b-poly(propylene oxide)-b-

polyethylene oxide), also called Pluronic®, Plu. The results showed that Pluronic was the best 

additive since the membranes characteristics and performances, including surface 

hydrophilicity, surface charge and water flux and rejection tests.  

  

5.4.4. Hydrophobic homopolymer additives effect 
 

Hydrophobic polymers had been more used to regulate the BCP self-assembly within thin films 

than as additives in SNIPS. This is due to the weak molecular interaction and the risk to induce 

a macrophase-separation. 

Kenneth et al.78 and Mayes et al.79 observed that the homopolymer distribution and their role 

in the polymer self-assembly is highly dependent on their molecular weight. Yang et al.70 used 

Figure 15. (Right) SEM images of isoporous membranes prepared from the 
blending of the PS-b-PNIPA film with PAA chains. (Left) SAXS results and 
scheme for PAA induced microphase separation in the casting solution.78  

 

 



69 
 

a PS homopolymer with a low molecular weight as additive within PS-b-PAA membranes and 

observed a change in the pore orientation. Indeed, the cylindrical pores, oriented parallel to the 

free surface of unblended membranes, adopt a perpendicular orientation within PS-b-PAA/PS 

membranes (see Figure 16). 

The use of hydrophobic homopolymers as additives remains limited since they tend to decrease 

the hydrophilic segment effectiveness and potentially lead to fouling issues.  

 

 

 

 

5.4.5. Block copolymers as additives effect 

The use of block copolymer as additives is more complicated than homopolymers since the co-

assembly of block copolymer pairs is difficult to predict. In the case of AB diblock copolymers, 

blending of block copolymers can be through different ways: 1) A-B/A'-B' (A’ and B’ are of 

the same nature as A and B blocks  with varied compositions and molecular weights), 2) A-

B/A'-C, and 3) A-B/C-D.80,60,81,36 Depending on compositions and selective interaction between 

blocks, the blending classification can be subdivided into subgroups. 

Figure 16. SEM images of  membranes prepared (a) from pure PS-b-PAA chains and (b) from 
a blend of PS-b-PAA and PS. (c) AFM topographic images of  solvent-annealed (dioxane, 9h) 

thin films casted (c) from pure PS-b-PAA chains and (d) from a blend of of PS-b-PAA and PS.  
(e) SAXS results for casting solution with pure PS-b-PAA and a blend of PS-b-PAA and PS  
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Commonly, in SNIPS process, produced isoporous membranes are from cylindrical self-

assembly of block copolymers in equilibrium. The blending is limited to A-B/A'-B' and A-B/A'-

C where A and A’ are major blocks while B and C are minor blocks. 

Maryam et al.82 compared isoporous membrane formation from the blending of PS-b-P4VP 

diblock copolymers with different compositions and molecular weights. They firstly reached 

the concentrations allowing the preparation of isoporous membrane at any blending ratio, then 

they adjusted the mixing ratio in order to regulate the pore size.  

Yu et al.59 studied the blending of two PS-b-PAA block copolymers with different molecular 

weights. They found that the load of a BCP with a low molecular weight was favorable to reach 

the exact thermodynamic conditions for self-assembly, resulting in the formation of hexagonal 

pores. 

The fabrication of isoporous membranes by SNIPS from the blending of different block 

copolymers at any ratio, remains a big challenge. However, the strategy of blending opens the 

accessibility to diverse pore functionalities, improve membranes hydrophilicity, fouling-

resistance, stimuli-responsiveness and separation performances from a simple fabrication 

process.  

 

5.5. Comparison between SNIPS and NIPS  
 

The procedures of SNIPS and NIPS are almost identical but the self-assembly in SNIPS makes 

the major difference. The porosity within the thick sublayer of isoporous membranes fabricated 

by SNIPS is induced by NIPS mechanism. Since both processes share a close relationship, it 

seemed important to us to compare the additive performances in both processes. 

In NIPS process, there is no microphase-separation occurring during the preparation of the 

porous membranes. In this case, the use of additives leads to a regulation of the macrophase 

separation that is determined by the competition between thermodynamic and kinetic effects. 

Commonly, membranes prepared by NIPS present a disordered porous structure with a broad 

pore size distribution, poor defects control and no structural reproducibility compared to 

isoporous membranes prepared by SNIPS. As seen in the previous section, additives are able to 
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increase the porosity and pore connectivity in the sublayer resulting in an improvement of the 

trade-off effect. Yang et al.70 resumed the additive effects on pore-forming functions in NIPS 

and SNIPS. 

 

To improve the tradeoff effect, in NIPS process, it is preferable to use homopolymers with high 

molecular weights and broad distributions, while in SNIPS, block copolymers can be used. The 

difference between the two process is also illustrated during different steps. For example, in 

NIPS process it is not required to drive microphase separation since neither to control pore 

orientation, the evaporation induced self-assembly is also absent. Moreover, comparing to 

SNIPS, there is no increase in structure reproducibility, but it is necessary to tailor the surface 

roughness. 

In conclusion, NIPS technique is a revolutionary technology in membrane preparation, although 

the uncontrolled phase demixing lead to broad pore size distributions that limit the membrane 

selectivity. SNIPS process is an innovative strategy to face this problem by combining block 

copolymer self-assembly with NIPS. Additives such as metal salts, small organics, polymers or 

nanomaterials play an important role in the reproductive generation of isoporous structures. 

Additives used as porogens drive the microphase separation and regulate the formation of 

isopores. The ones used as functional modifiers allow for the preparation of isoporous 

membranes with new functionalities such as stimuli-responsiveness, fouling-resistance, etc. 

Finally, SNIPS process is an improvement of NIPS process, but without the use of additives, it 

remains limited by the formation of kinetically trapped low-dimensional nanostructure, making 

inaccurate the fabrication of highly selective, well-controlled and reproducible membranes.4 

In this work, we were also interested in another technique capable to drive the BCP self-

assembly into long-range ordered nanostructures, namely, the solvent vapor annealing (SVA). 

This process allows the formation of well-ordered three-dimensional morphologies with control 

of the growing network structure. The following section is devoted on the principals of this 

technique and its application in the formation of isoporous membranes.  
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5.6. Solvent Vapor Annealing (SVA) 
 

The solvent vapor annealing technique was firstly used as an alternative to thermal annealing 

for BCPs with thermal degradation problematic. SVA is a powerful technique to achieve long-

range ordered nanostructures, due to the increase of the chain mobility of the polymers. During 

this process, BCP film is exposed to vapors of one or several organic solvents, depending on 

the affinity between blocks and solvent(s) and Hildebrand solubility parameter, polymer will 

preferentially absorb the “good” solvent and swell, resulting in the formation of thicker film. 

Within the swollen film, the polymer chain mobility increases due to decrease of glass transition 

below room temperature.83  

Comparing to other techniques such as thermal annealing, nonequilibrium metastable phases 

can be obtained.84,85 Indeed, thermal annealing technique is based on heating of a thin BCP film 

above the glass temperature (Tg) and below the order-to-disorder transition temperature (ODT). 

Thermal annealing is limited to block copolymers with low χ values or low molecular weights, 

otherwise, high annealing temperature and longer time are required to reach lower 

configuration.  

The SVA apparatus is composed of a sealed chamber containing polymer film casted on 

appropriate substrate connected to a solvent reservoir held at room temperature with no 

additional controls over temperature. The SVA is also equipped with mass flow controler in 

order to get greater control over the degree of swelling and improved reproducibility (see 

Figure 17). The final morphology obtained by SVA is highly dependent on several parameters 

such as the annealing chamber volume, surface area and the absence of any solvent vapor leak.  

 

 
Figure 17. Solvent Vapor Annealing (SVA) setup. Adapted from [93,94]. 
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Despite the formation of long-range-ordered morphologies, the mechanism involved in SVA 

process is not understood yet.86 In situ analysis is critical to understand the intermediate degree 

of swelling and to control the reproducibility. 

The efficacy of the vapor annealing can be affected by several parameters that have to be 

considered when preparing block copolymer thin film via SVA. Firstly, the choice of the BCP 

composition, the χ-parameter between the blocks and the solubility of the BCP in the solvent 

used. Secondly, the nature of substrate surface, depending on its hydrophilicity, the wettability 

of the film can be influenced, resulting in a change during the film deposition (change in 

thickness and uniformity) which is a critical parameter in thin film formation. Furthermore, the 

thickness of the film is also highly dependent on the polymer deposition process. Finally, 

solvent vapor annealing conditions within the chamber such as: temperature, relative humidity, 

time of annealing, purity of solvent and size of annealing chamber play major roles in final 

morphology of thin film. The choice of solvent is a critical parameter, it must be neutral or 

selective for one of the blocks. Once exposed to solvent vapor, polymer film swells until 

thermodynamic equilibrium represented by equal chemical potential of the solvent in the film 

and solvent in the vapor phase.  

In 1998, Albalak et al. 87 suggested in their work that during the SVA process, the polymers 

swell and reach a thermodynamically preferred arrangement. In the same year, Kim et al.88 

studied the effect of the evaporation rate on the final morphology obtained from a polystyrene-

block-poly(butadiene)-block-polystyrene terpolymer  casted from toluene. Fukunaga et al.89 

and Knoll et al.90showed in their work how vapor solvent exposure allows rearrangements from 

disordered to well-ordered state. In 2004, Kim et al.91  explained in their work that drying have 

an important influence on the final structure in the dried film. They suggested that domains 

have a preferential orientation in a direction perpendicular to the solvent front, resulting from 

the evaporation of the solvent at the free surface that generating a front propagating from the 

interface through the thickness of the film.86  

Inversely to thermal annealing, heat-sensitive polymer can be used in SVA since the process 

can be performed below the BCP glass temperature. SVA is a very versatile technique since a 

wide range of solvents with different characteristics (solubility parameters, vapor pressure, etc.) 

can be used. 
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In the following part, some examples of solvent-annealed linear triblock terpolymers are 

presented. 

In 2018, Lee et al.92 studied the morphology evolution as a function of the as-cast film thickness 

and solvent affinity of a PS-b-PDMS-b-PS triblock terpolymer. By using a solvent mixture of 

toluene and heptane, they observed a morphology transition from a bilayer of cylinders to a 

bilayer of lamellae, passing through a bilayer of perforated lamellae.      

Lee et al.93 studied the morphology evolution of the PDMSB-b-PS-b-PMMA (DSM) and 

PDMSB-b-PS-b-PLA (DSL) systems during the SVA process (in chloroform) using an in-situ 

grazing-incidence small-angle X-ray scattering (GISAXS) technique. They observed the 

formation of in-plane core-shell PMMA-PS cylinders within a 90 nm thick DSM film and out-

of-plane core-shell PLA-PS cylinders within perforated lamellae oriented parallel to the 

substrate for a 150 nm thick DLS film. In another study, Lee et al.94 studied the self-assembly 

of three triblock PS-b-PI-b-PMMA with different compositions in THF and in chloroform. In 

this study, they explained that the phase behavior during SVA is not simply predictable by 

solubility parameters and separate swelling measurements. THF and CHCl3 have similar 

solubility parameters and both are neutral for all blocks. Interestingly, under a chloroform 

vapor, the ABC triblock terpolymers showed different morphologies from the one obtained 

from thermal annealing, and the cylinder-in-cylinder (cic), cylinder-on-cylinder (coc) and 

cylinder-on-lamellar (col) phases were observed. Otherwise, under THF vapor, no change in 

self-assembly was noticed. This is due to a preferential swelling of the blocks in the solvents. 

Indeed, in this case, PMMA swells preferentially in chloroform than PI and PS, resulting in 

change of PMMA volume fraction. Meanwhile, THF swells all the blocks equally. 

More recently in 2020, Vayer et al.95 studied bulk sample of binary PI-b-PS-b-P2VP, they 

observed new morphological composition illustrated by hexagonal morphology composed of 

centered hexagons of PI surrounded by P2VP. Here the chain length difference of PI favored 

the formation of bigger domain with stable conformation entropy. 

As part of conception of new porous membrane from block copolymer self-assembly, SVA 

technique can be associated to SNIPS or NIPS in order to generate a new membrane generation.  

Aissou et al.96 combined NIPS and SVA to produce long-range ordered network. In this work, 

the triblock terpolymer composed of PDMSB-b-PS-b-PMMA generated a disordered phase by 
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NIPS on the film top surface. The disordered phase was then transformed into a highly ordered 

bicontinuous network without disrupting the substructure morphology. 

In the same strategy, a sponge-like substructure topped by a nanostructured dense top layer was 

obtained from a PDMSB-b-PS-b-P2VP system by combining the SNIPS and SVA techniques.4  

In this work,  the square array morphology formed on the membrane top surface by SNIPS was 

transformed into a thick core-shell perforated lamellae after 3h of annealing in CHCl3, and by 

increasing the duration of SVA (18h), monolith entirely composed of bicontinuous perforated 

lamellae were obtained. 

Nowadays, membranes play a major role in sustainable development of several fields (energy, 

environment, human health, etc.), however, efficient membrane applications are generally 

restricted due to the pore fouling generated by the accumulation of retentates on the membrane 

top surface. Inspired by biological membranes with stimuli-responsive channels, synthetic 

membranes with artificial stimuli-responsive smart gating are developed by 

chemically/physically incorporation of stimuli-responsive materials into porous membrane in 

order to provide smart membranes with advanced functions and improved performances for 

breaking trade-off of traditional membrane technologies. In this study, we work on the 

development of smart stimuli-responsive membranes with anti-fouling properties. The 

following section is devoted to the principles of smart membrane preparations. 

 

6. Antifouling membranes  
 

The development of smart membranes with self-regulated permeability and selectivity can 

expand and create new opportunities for membrane applications. External stimuli-responsive 

functions can be incorporated chemically or physically into porous membrane substrates as 

functional gates. These environmental stimuli can be temperature, pH, specific ions/molecules, 

light, magnetic fields and redox. They will provide a conformational switch for adjusting the 

pore size and/or the surface properties of the membrane. 

Self-regulated membranes with enhanced performances are used in myriad of applications. In 

the next section, we will focus on the introduction of these stimuli-responsive gates on porous 

membranes, specifically the fabrication strategies and advanced applications.  
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It can be passive fouling-resistant, fouling-release mechanism or active antibacterial 

mechanism. 

 

6.1. Passive fouling release membranes  
 

Fouling-release membranes are generally fabricated from low surface energy materials that 

firstly weaken the interaction between membrane surfaces and foulants and secondly, release 

the foulants under low shear forces.97 

Passive mechanism aims to prevent the initial adsorption of foulants on the membrane surface 

without affecting the intrinsic feature of the membrane, while active antifouling strategy is 

based on the presence of antimicrobial agents able to kill bacteria by interfering with 

biochemical. 98 

As an example in the fabrication of fouling release membrane, Zhao et al.99 manufactured 

amphiphilic membranes from PEO-b-polydimethylsiloxane (PEO-b-PDMS) by NIPS where 

the hydrophilic PEO block was used to prevent the adsorption of biofoulants while the 

hydrophobic PDMS block having a low surface energy was used to drive away the adsorbed 

foulants. In the same strategy, a variety of amphiphilic copolymers composed of hydrophilic 

block (e.g. PEG) and non-polar, low surface energy segments (e.g. fluoroalkyl and 

semifluorinated side chains and perfluoropolyether segments) were also used to generate 

membranes.98 Gao et al.97 fabricated antifouling and antibacterial membranes from 

poly(hexafluorobutyl methacylate)-block-poly(ethylene glycol) methyl ether methacrylate)-

block-poly[2-(methacryloyxyl)ether trimethylammonium chloride) (PHFBM-b-PEGMA-b-

PMTAC) since PHFBM has a low surface energy, PGEMA is hydrophilic and PMTAC is 

antibacterial. In this case, a combination of passive fouling-release mechanism (via PHFBM 

and PEGMA segments) and active antibacterial mechanism (via PMTAC segment) was 

obtained. 

Several antifouling mechanisms can be combined and form multi-defense mechanism 

membranes that can be more efficient for oil fouling for example. In this study, we worked on 

the development of fouling-resistant membranes from stimuli-responsive block copolymers. 
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6.2. Stimuli-responsive membranes  
 

Biological cell membranes with stimuli-responsive channels (also called “smart gates”) able to 

selectively open or close for specific substances to transfer across and to maintain the desired 

intracellular and extra cellular concentrations to insure life activities are of great inspiration for 

the development of artificial smart membranes for achieving advanced performances. 100   

By definition, smart gating membrane are synthetic membranes with responsive gates (in the 

membrane pores) able to regulate the trans-membrane transport of substances in response to 

external stimuli.101  

Generally, the open/close state of the pores is achieved through the shrinking/swelling 

transitions of stimuli-responsive gates, which leads to an increase/decrease of permeability. 

Furthermore, the hydrophobic/hydrophilic transition associated with the shrinking/swelling 

behavior of the gates can adjust the surface properties of the pores.5 

The stimuli-responsive gates can be introduced in two different ways: during the membrane 

preparation or after the membrane preparation. In the next section, we will present the different 

strategies for introduction of stimuli-responsive gates.  

 

6.2.1. Introduction of stimuli-responsive gates after the membrane formation 
 

This strategy is more popular, consisting on the introduction of responsive domains into or onto 

the pre-formed pores101  by different methods including chemical grafting, physical coating or 

pore-filling.102 The chemical grafting can be divided into the “grafting-from” and “grafting-to” 

methods.  

For the “grafting-from” technique, membranes are fabricated by polymerizing functional 

monomers from the active site to form cross-linked networks in the pores or linear polymers. 

This grafting can be chemical, UV-induced or plasma-induced. A wide range of functional gates 

can be incorporated into various membrane substrates to create smart gating membranes. 

The “grafting to” strategy is based on the incorporation of the pre-formed functional gates in 

the form of polymer chains or microspheres onto the pores surfaces. The incorporated polymer 

chains or microspheres can be pre-synthesized by well-established methods, resulting in well-
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controlled macrostructures. This grafting strategy offers improved controllability and flexibility 

for the microstructure. 

Otherwise, such methods provide good control of the mechanical properties of the membrane 

but could cause an inherent conflict between the flux and the responsive property: the more 

responsive domains introduced, the more significant the responsive property and the lower is 

the flux. 

Beside the effect of the responsive property on the membrane flux, the introduction of stimuli-

responsive gates after membrane preparation techniques requiring two-step processes are still 

difficult to be scaled up and it is difficult to have an efficient grafting rate. 

 

6.2.2. Introduction of stimuli-responsive gates during the membrane formation 
 

Conversely, this strategy is one-step process, during which stimuli-responsive gates are 

introduced during membrane formation. The gates are generally stimuli responsive block 

copolymers, they are usually blended with membrane-forming polymers during the membrane 

formation. 

The main advantage of this one-step method for membrane modification is the easy scale-up to 

industrial membrane fabrication. 

There are different external stimuli-responsive gates in the smart membrane fabrication. 

Typically temperature and pH are the most common parameters varying in biological/chemical 

reactions and organ tissues103, moreover ions (such as potassium ions) are essential for 

biological metabolism.104 The biological system can also be influenced by other parameters 

such as concentration of glucose molecules in the blood which is a critical indicator for diabetes 

and hypoglycemia, light and magnetic fields are also important parameters.105,106 5 

In the following section, few examples of smart stimuli-responsive membranes are presented.  
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6.3. pH-responsive membranes  
  

Polymers with weak alkaline groups able to be protonated or deprotonated are also used as pH-

responsive gates.  For example, poly(N,N-dimethylamino ethyl methacrylate) (PDMAEMA) is 

a pH-responsive polymer where in acidic conditions, it can swell due to the electrostatic 

repulsion between protonated amine groups and vice versa in basic conditions, it is 

deprotonated  and PDMAEMA is shrunk. 

Inversely, pH-responsive gates having weak acidic groups and can gain or lose protons in 

response to pH changes. In this case, in acidic environments, polymer chains can shrink due to 

the formation of intermolecular hydrogen bonding and in basic conditions, they can swell due 

to the electrostatic repulsion between the protonated carboxylic groups. 

In this strategy, Fan et al.107 fabricated a dual pH-responsive smart gating membrane by 

blending PDMAEMA microgels into poly(ether sulfone). The protonation and deprotonation 

of the pH responsive PDMAEMA in acidic and basic environment, respectively, resulted in 

opening and closing of the membrane pores. The resulting dual pH-responsive membrane can 

be used in myriad applications such as sewage treatment or drug delivery. 

Xiang et al.108 modified PVDF membrane by incorporation of pH-responsive PDMAEMA 

hydrogels. The membrane has been used for the separation of surfactant-stabilized water-in-oil 

and oil-in-water emulsions. The protonation and deprotonation of tertiary amine side-groups in 

PDMAEMA affect the wettability of the membrane. High flux separation and anti-fouling 

properties have been obtained. 
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6.4. Thermo-sensitive membranes 
 

Thermo-responsive polymers such as N-substituted polyamides, polyethers, poly (2-oxazoline), 

poly(vinyl caprolactone) and poly(methyl vinyl ether) are widely used for fabrication of 

positively responsive gating membranes.  

For example, poly(N-isopropylacrylamide) PNIPAM with its low critical solution temperature 

(TLCST~ 32°C)  is widely used in membrane fabrication. At temperature below LCST, the 

PNIPAM chains are hydrophilic and swollen due to the hydrogen bonding between the amide 

function and water molecules, hence the membrane pores are “closed”. On the other hand, by 

increasing temperature above LCST, the hydrogen bonds are cleaved since the polymer is 

shrunken and hydrophobic, making that membrane pores are “opened”. 

Thermo-sensitive polymers with an upper critical solution temperature (UCST) can also be used 

to tune the membrane pores, such as polymers with interpenetrating networks (IPNs) composed 

of poly(acrylamide) (PAAm) and (PAAc).5 Inversely to polymers with LCST, in this case, at 

temperature below the IPN UCST, PAAm and PAAc form complex via hydrogen bonds 

resulting in pore “opening”.  At temperature above UCST, the hydrogen bonds break allowing 

a pore “closing” state. 

Finally, LCST and UCST of polymers can be tuned by incorporating hydrophilic or 

hydrophobic groups into the polymer chains, thus, the membrane pores can switch from an 

“open” to a “closed” state once the temperature increases or decreases. 

Huang et al.109 grafted poly(N-isopropylacrylamide)-b-poly(ethylene glycol) methacrylate) 

PNIPAM-b-PGEMA  chains on the surface of porous polypropylene (PP) by plasma-initiated 

method. The hydrophilic BCP was able to improve both anti-fouling and self-cleaning 

membrane’s performances. Bovine serum albumin (BSA) was used as foulant and the 

membrane presented high water flux recovery with 98.2% less BSA on the surface. 

Cetintas et al.110 prepared a fully reversible thermo-responsive membrane of PS-b-PNIPAM by 

SNIPS. The resulting membrane with worm like cylinders morphology with interconnected 

nanopores presented a higher permeability value (up to 400%) going from room temperature to 

50°C. Zhao et al. 111 prepared smart anti-fouling and self-cleaning membrane from PNIPAM-

SiO2 (silicon dioxide) nanoparticles grafted on PVDF ultrafiltration membrane via a blending 

method. The resulting membrane showed increased permeability values between 25°C and 
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37°C, and decreased values in irreversible fouling ratio. The self-cleaning properties were 

represented by a continuous increase in BSA adsorption-desorption ratio with temperature 

switching around LCST. 

Different stimuli-responsive gates can be combined to form novel smart membrane. In this 

strategy, Clodt et al.112 prepared pH and thermo-sensitive membrane by modification of 

asymmetric PS-b-P4VP membrane with PNIPAM by surface linking reaction. The resulting 

membrane showed an increase in permeability with increase of temperature from 22 to 40°C.   
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7. Conclusion  
 

In this bibliographic study, a general context of this thesis work was described. The existing 

ultrafiltration membranes face a selectivity-permeability trade-off and practical challenges such 

as fouling, degradation and material failure that limit their use. 

Currently, the main challenge in membrane technology is the development of next-generation 

membranes with uniform nanopores to surpass the existing selectivity-permeability trade-off. 

In this context, block copolymers are excellent candidates due to their capability of self-

assembly into periodic nanostructures with a range of controllable morphologies. Block 

copolymers membranes produced by phase inversion are limited by the uncontrolled formation 

of regular pores on the skin layer, which limit the use of this technique on large scale. The 

combination of solvent vapor annealing process with phase inversion technique  open access to 

broad structural diversity and manufacture of asymmetric membrane having an equilibrium 

morphology within the skin layer. 

Fouling-resistant membranes  composed with smart isopores are highly desired in order to reach 

next-generation ultrafiltration membranes. In this strategy, stimuli-responsive polymers can be 

used due to their “open-close” behavior in response to an external stimulus (temperature, pH, 

UV-light …etc.) leading to an increase/decrease of membrane permeability and to an 

adjustment of the pores surface properties.  
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1. Introduction  
 

The aim of this thesis work was the conception of fouling-resistant and high performance 

separation membranes derived from the self-assembly of block copolymers (BCPs).  

As discussed in the bibliographic part, BCPs are excellent candidates for the manufacture of 

next-generation ultrafiltration membranes. This is mainly due to their capability to self-

assemble into periodic nanostructures with controllable morphologies that can be used as 

innovative platform to build uniform pore size within the membrane skin. The addition of a 

third block within the BCP chains opens access to a broader structural diversity and allows for 

the fabrication of membranes with nanopores having more functionalities (e.g., a dual pH- and 

thermo-sensitive behavior of pores). However, the use of ABC-type BCP chains having a well-

defined composition as well as a narrow size distribution is mandatory for an efficient design 

of  asymmetric and nanostructured membranes. To this end, a series of well-defined linear 

polystyrene-block-poly(2-vinylpyridine)-block-poly(N-isopropyalcrylamide) (PS-b-P2VP-b-

PNIPAM) terpolymers was prepared for the first time by RAFT polymerization in order to 

produce smart dual responsive membranes (see Figure 1.a).  

The linear ABC triblock terpolymer chains envisioned in this work contain a hydrophobic and 

rigid PS block, known as an amorphous and glassy polymer having a glass-transition 

temperature around 100°C. For such reasons, only ABC-type BCP chains having a large PS 

composition have been synthetized in order to generate mechanically robust PS-rich 

membranes by phase inversion. Our ABC-type BCP system also includes a pH-responsive 

poly(2-vinylpyridine) mid-block to produce smart nanopores. Indeed, the 

protonation/deprotonation transition state of the nitrogen atom (in the pyridine ring) occurring 

at pH4.8 allows for the regulation of the pore size (see Figure 1.b). To produce bifunctional 

ABC-type BCP chains, the gold standard thermo-sensitive poly(N-isopropylacrylamide) has 

been selected as third-block. Due to a lower critical solution temperature (LCST) behavior, 

PNIPAM undergoes a coil-globule transition at 32°C in water that can be exploited to 

simultaneously control both the size and hydrophilic/hydrophobic character of the pores, 

thereby leading to the conception of  improved fouling-resistant membranes (see Figure 1.c). 

Note that depending on the water mild conditions, the configuration of P2VP-b-PNIPAM 

chains inside the membrane nanopores can vary as follows: fully stretched (pH > 4.8 and T < 

32°C), partially stretched (pH > 4.8 and T < 32°C or pH < 4.8 and T > 32°C) or even fully 
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compressed (pH < 4.8 and T > 32°C). Such different configurations of the P2VP-b-PNIPAM 

chains can be used to fine-tune the effective size of the nanochannels formed on the membrane 

substructure (see Figure 1.d)  

 

 

 

 

In this chapter, we will describe the synthesis RAFT polymerization route used to prepare well-

defined dual stimuli-responsive PS-b-P2VP-b-PNIPAM triblock terpolymers. The livingness 

of the polymerization was confirmed by the chain extension of 2VP using PS as macro RAFT 

agent first, and then by the chain extension of NIPAM using the PS-b-P2VP diblock as macro-

CTA. 

Figure 1. (a) Schematic representation of the linear PS-b-P2VP-b-PNIPAM triblock terpolymer 

studied in this work. (b) Protonation (close) and deprotonation (open) state of the P2VP block in 

response to the pH variation. (c) Swelling (close) and shrinking (open) state of the PNIPAM block in 

response to the water temperature variation. (d) Cross-section view of the envisioned membrane 

consisting of a core-shell cylindrical structure within the top surface layer and a macroporous 

substructure. 
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2.  Polystyrene homopolymer (hPS) 
 

2.1. Synthesis of PS macro-RAFT agents  

 

The aim of this section was the synthesis of a series of polystyrene homopolymers by RAFT 

polymerization with different molecular weights. To this end, three different trithiocarbonate 

RAFT agents were used with same stabilizing  Z-group  and different leaving R-groups: 4-

cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDPA), 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanol (CDP) and 2-dodecylthiocarbonylthio-2-

methyl proionic acid (DDMAT) (see Scheme 1.a,b and c ). Azobisisobutyronitrile (AIBN) was 

used as initiator (see Scheme 1.d).  

 

 

 

Scheme 1. The RAFT agents (a,b and c) and initiator (d) chemical 

structures used in this work. 
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The control of the RAFT polymerization is strongly dependent on the reaction medium since 

the choice of the solvent and reagent concentrations (monomer, CTA and initiator) as well as a 

good degassing can affect both the molecular weight and size distribution of the targeted 

terpolymers. The good control of the RAFT polymerization and the absence of any potential 

retardation effect1 are also highly dependent  on  the choice of  the initiator and the Z and R 

groups of the RAFT agent as well as the order of the monomer sequence for the BCP synthesis. 

Therefore, the choice of the monomer sequence order in this study was not arbitrary. Here, the  

hPS macro-CTA was chosen as starting block for the synthesis of linear PS-b-P2VP-b-

PNIPAM triblock terpolymers. It was reported that it is preferable to start the block 

copolymerization with the monomer having the lowest chain transfer constant (CTC)2 which is 

the case of styrene. 

Additionally, styrene belongs to the family of more activated monomers “MAMs”3 and 

trithiocarbonate RAFT agents are suitable for polymerization of  MAMs since they can balance 

activity and stability. Such RAFT agents are also less sensitive to degradation and no 

discernable polymerization has been noticed with these reagents. The choice of AIBN as 

initiator to prepare the linear PS-b-P2VP-b-PNIPAM triblock terpolymers was motivated by 

the fact that the 2-cyano-2-propyl radical is a good leaving group.4 

The two series of PS macro-CTAs synthesized in this study are summarized in Table 1. The 

first series (S1 to S8) was synthesized in bulk with a targeted theoretical molecular weight 

(Mn,theo,targeted) of about 30 kg/mol. The second series (S9 to S12) was synthesized in solution 

(1,4-dioxane)  to target higher theoretical molecular weight (Mn,theo,targeted  50 kg/mol). 
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As an example of a PS macro-CTA synthesized in bulk, hereafter is presented the experimental 

procedure for the S7 synthesis. For that purpose, a round-bottom flask was charged with 

styrene, CDPA as RAFT agent and AIBN. The reaction vessel was sealed and stirred until the 

full dissolution of CDPA and AIBN in styrene. The sealed reaction vessel was purged with 

nitrogen to remove any oxygen traces and then was placed in a preheated oil bath at 70°C for 

24h (see Scheme 2). The reaction was stopped abruptly by lowering the temperature of the 

reaction into an ice bath. 

An aliquot was withdrawn from the solution to determine the monomer conversion before 

precipitation of the resulting PS macro-CTA three times in cold methanol. The obtained 

polymer was dried overnight in a vacuum oven at room temperature (RT) to give a white-

yellowish powder (the color is indicating the incorporation of the RAFT CDPA group within 

the polymer chains). 

 

 

 

 

 

Table 1. Two series of PS macro-CTAs prepared by RAFT with bulk and solution polymerization. 
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It was reported that hPS with high molecular weight (> 105 g/mol) and low dispersity (D = 

Mw/Mn < 2) values have improved mechanical properties than PS homopolymers with a low 

molecular weight. Such polymer materials have improved impact strength, high heat-resistance 

and high environmental stress crack resistance.5  

In this study, the first series of syntheized  hPS in bulk have a molecular weight of 30 kg/mol.  

For the synthesis of the second series of PS macro-CTAs in solution using 1,4-dioxane (DOX) 

as solvent, several conditions were tested to achieve a Mn of 50 kg.mol-1. First, we tried the 

same reaction conditions as in bulk, i.e., same monomer/CTA/AIBN concentrations, at 70°C 

and for 24h (S9 in Table 1). The molecular weight and D of the obtained polymer were about 

25.3 kg.mol-1  and 1.11, respectively. Here, the presence of dioxane decreased the reaction rate 

and 24h were not sufficient to reach the targeted Mn with a narrow D.  

As another example, the synthesis of S10 (see Table 1) was performed at 110°C for 24h. By 

increasing the temperature, the control of polymerization was affected, and thus hPS chains 

with a high dispersity value (D =1.74) were prepared. This result indicate that high temperatures 

are not suitable for the synthesis of well-defined PS macro CTAs in solution. This is due to a 

high decomposition rate of AIBN with a half-life time (t1/2) of few minutes for a temperature 

higher than 100°C 6  (vs. 5h  at 70°C) which results in the production of more initiated radical 

species that react with styrene to form propagating PS chains. In addition, the  uncontrolled 

synthesis of PS chains at high temperature is due to the appearance of a high termination rate 

and more side reactions resulting in the formation of new chains generated both by AIBN and 

thermal self-initiation.  

Scheme 2. Polystyrene macro-CTA synthesis by RAFT polymerization in bulk. 
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Comparing to synthesis in bulk, several parameters should be carefully chosen to prepare well-

defined PS macro-CTAs in solution with a high molecular weight. The best way to synthesize 

the targeted hPS chains in DOX was to use a temperature of 70°C to prevent reaction disruptions 

by inappropriate decomposition of AIBN and avoid the quick consumption of radicals 

conducing to a loss of polymerization control. In addition, half of initial AIBN amount must be 

added each 24h followed by a good degassing of the reaction in order to ensure presence of the 

required number of radicals in the solution. By using this protocol, well-defined PS macro-

CTAs with a molecular of 50 kg/mol and low  D values (<1.2) were prepared (see S14 and 

S15 in Table 1). 

In summary, the synthesis of PS homopolymers in bulk was quite simple since macro-CTAs 

having the targeted molecular weight (30 kg.mol-1) and low dispersity values (<1.2) were 

prepared. Conversely, the synthesis in solution of PS homopolymers with a higher Mn revealed 

to be more complicated. The optimum conditions for the synthesis of hPS in solution with Mn 

> 30 kg.mol-1 were reached by (i) working at 70°C as reaction temperature, (ii) periodically 

adding the good quantity of AIBN and (iii) choosing the required amount of solvent. 

 

2.2. Characterization of hPS by 1H NMR and SEC  

 

The PS homopolymers synthesized were characterized by 1H nuclear magnetic resonance 

(NMR) spectroscopy (400MHz) in deuterated dichloromethane (CD2Cl2) at room temperature. 

After cooling down the reaction vessel into an ice bath, an aliquot was collected from the 

solution to determine the conversion by 1H NMR.  This was done by comparing the integrated 

aliphatic protons signals of the PS group at 1.92 ppm to those of the monomer at 5.83-5.88 ppm 

(see Figure 2.a), and a conversion of 39% was found for the polymer S7 synthesized in bulk. 

The resulting PS macro-RAFT was then purified by two successive precipitations into an excess 

of cold methanol and dried under vacuum overnight. Figure 2.b represents the 1H NMR 

spectrum of the purified PS macro-CTA where the peaks were indexed as follows: δ = 6.60-
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7.05 (5H, m, Ph), 1.1- 1.47 (3H,m,CH-CH2-). No traces of remaining monomer are visible in 

the spectrum, hence confirming the presence of pure PS chains. 

 

                              

Figure 2. 1H NMR spectrum of the PS macro-CTA in CD2Cl2 before (a) and after (b) 

precipitation. 
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The molecular weight of the homopolymer was determined only by size exclusion 

chromatography (SEC) since the large size of the hPS chains makes that the CTA chain-end 

protons of the methyl group (at 3.35 ppm) were not visible from the NMR spectrum. 

Figure 3 represents the SEC chromatograms of  two purified PS homopolymers (THF at 35°C 

using PS standard) with different molecular weights:  S15 (red, Mn = 54.7 kg.mol-1, D = 1.19) 

and S7 (black, Mn= 28.2 kg.mol-1, D = 1.09). In order to characterize the controlling/living 

nature of the chain growth polymerization, different kinetic representations of the experimental 

results were plotted such as conversion of monomer vs. reaction time, experimental molecular 

weight (SEC) vs. conversion and ln(Mo/M) vs. time. The linear relationship shows the 

controlled and living nature of RAFT polymerization (see Figure 4). 

 

 

 

 

Figure 3. SEC traces in THF of two hPS macro-CTAs of different 

molecular weights (red is S15 and black is S7 from table 1). 
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As discussed in the previous part, the synthesis in solution of PS homopolymers is more 

complicated than in bulk. For instance, to illustrate the effect of a high temperature on D, Figure 

5 represents the SEC chromatogram of S12 (in Table 1) synthetized at 110°C for 62h. Here, a 

high conversion value was obtained (90%) but, unfortunately, the loose of control of the 

polymerization is clearly evidenced by the generation of several polymer chains with different 

molecular weights. 

 

 

 

Figure 5. SEC trace in THF of the S12 macro-CTA . 

 

Figure 4. Kinetic plots (a) molecular weight Mn (SEC) vs. conversion, (b) ln(Mo/M) vs. 

time, (c) conversion vs. time for RAFT polymerization of PS macro-CTA (S13 Table 1). 
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3. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)   
 

3.1. Synthesis of PS-b-P2VP by RAFT polymerization  

 

Smart BCP chains are highly-desirable for the manufacture of next-generation membranes able 

to self-regulate their permeability via the flexible adjustment of the pore size based on the 

“open/close” switch of the stimuli-responsive block. To address this issue, P2VP was 

incorporated as middle block of the targeted ABC-type BCP due to its capability to respond to 

a change in the environment and particularly in pH. Indeed, P2VP is one of the well-known pH 

sensitive polymer having a pKa value of approximately 4.57 that allows for a change in its 

conformation by the protonation and deprotonation of the nitrogen group.8 Under neutral or 

alkaline conditions, the nitrogen group is deprotonated and the insoluble P2VP can shrink in 

water (open state). Conversely, under acidic conditions (pH < 5), the protonated P2VP can swell 

in water due to the electrostatic repulsion between protonated nitrogen groups (close state).9 

Moreover, PS and P2VP are strongly incompatible with an interaction parameter χPS-P2VP ≈ 

0.1.10  Such a high incompatibility is mandatory to produce nanostructured BCP membranes 

even for low degrees of P2VP polymerization.  

The synthesis of the PS-b-P2VP macro-CTA was performed in 1,4-dioxane by mixing the 2VP 

monomer with the previously synthesized PS macro-CTA and AIBN (see Scheme 3). The 

reaction medium was purged with nitrogen and heated to 70°C.   

 

Scheme 3. PS-b-P2VP macro-CTA synthesis by RAFT polymerization. 
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 About certain amount of time (see Table 2), the reaction was stopped by lowering the 

temperature of the reaction mixture into an ice bath. The targeted diblocks will have a high PS 

volume fraction, fPS, and low dispersity value. 

 

 Table 2. PS-b-P2VP macro-CTAs prepared by RAFT polymerization. 

 

3.2. Characterization of PS-b-P2VP by 1H NMR and SEC  

 

1H NMR spectroscopy (400MHz) in CD2Cl2 was used to determine the monomer conversion 

during the reaction. To do this, an aliquot was withdrawn from the solution before the 

precipitation of the PS-b-P2VP chains three times in heptane to eliminate the remaining 

monomer.  For instance, the resulting brown PS-b-P2VP macro-CTA corresponding to SV3 in  

gave rise to a yield of 26% after to be dried overnight at RT under vacuum. For this PS-b-

P2VP macro-RAFT agent, the conversion was calculated by 1H NMR to be 10.2 % by 

comparing the integrated aromatic proton signals of the P2VP ring at 8.25 ppm to those of the 

2VP monomer at 8.53 ppm.  

After precipitation in heptane, the 1H NMR spectrum of the SV3 BCP (red) shows additional 

peaks that are not observed on the corresponding hPS CTA spectrum (blue) (see Figure 6). 

These characteristic peaks of P2VP units were indexed as follows: δ = 8.25 (1H,m Ph), 6.61-

7.06 (8H,m,Ph) and 1.27-2.30 (6H,m,CH-CH2). From the 1H NMR spectrum, the molecular 

weight of SV3 and its PS volume fraction were determined to be 34.6 kg.mol-1  and 0.83, 

respectively.  
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Figure 7 represents the SEC traces in THF using PS standard of the SV3 BCP (blue) and its 

corresponding hPS CTA (red, given for comparison). The monomodal blue curve indicates the 

absence of any residual hPS chains during the synthesis of the SV3 BCP having a molecular 

weight of 41.8 Kg.mol-1. In addition, the SEC trace shows that the SV3 chains have a relatively 

narrow molecular weight distribution (D = 1.14).  

 

 

Figure 7. SEC traces of the PS (S7 in red) and PS-b-P2VP (SV3 in blue)  macro-CTAs in THF. 

Figure 6. 1H NMR spectra of the PS (in blue) and PS-b-P2VP (in red) macro-CTAs in CD2Cl2. 
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4. Polystyrene-block-poly(2-vinylpyridine)-block-poly(N-

isopropylacrylamide)  (PS-b-P2VP-b-PNIPAM) 
 

4.1. Synthesis of the PS-b-P2VP-b-PNIPAM macro-CTA by RAFT 

polymerization 

 

The synthesis of linear ABC triblock teroplymers was performed as follows:  PS-b-P2VP 

macro-RAFT agent, NIPAM and AIBN were dissolved in 1,4-dioxane. The solution was purged 

with nitrogen and placed in preheated oil bath at 70°C for certain amount of time (see Scheme 

4).  

 

 

 

The polymerization was stopped by placing the reaction vessel into ice bath and an aliquot was 

afterwards withdrawn. 1,4-Dioxane was removed with a rotary evaporator after which the PS-

b-P2VP-b-PNIPAM chains were dissolved in a small amount of THF. The ABC triblock 

terpolymer was precipitated first from cold diethyl ether, in order to eliminate the unreacted 

NIPAM monomer, and then in heptane. Importantly, all the resulting PS-b-P2VP-b-PNIPAM 

terpolymers prepared via this route inherently contained PNIPAM dead chains that can be 

observed from their SEC chromatogram.  

Here a side synthesis of free hPNIPAM takes place due to the poor accessibility of the CTA at 

the end chains of the PS-b-P2VP macro-CTA. This poor accessibility of the CTA, mainly due 

to a weak diffusion of both the initiator and NIPAM in presence of high molecular weight PS-

b-P2VP chains, makes that the monomers preferentially react with the initiator before they ever 

Scheme 4. PS-b-P2VP-b-PNIAM macro-CTA synthesis by RAFT polymerization. 
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get a chance to polymerize with the PS-b-P2VP macro-CTA.  Such a phenomenon gives rise to 

the formation of undesired PNIPAM chains in the reaction medium. 

To properly separate the PS-b-P2VP-b-PNIPAM terpolymer from the undesired PNIPAM 

chains, a liquid-liquid extraction in dichloromethane/water was performed since hPNIPAM is 

soluble in water at temperature T < 32°C while the PS-b-P2VP-b-PNIPAM terpolymer is 

soluble in dichloromethane. Although this technique allowed the separation of the terpolymer 

from the homopolymer chains, several cycles of extraction were required to completely remove 

the unattached PNIPAM homopolymers, which results in a decrease of 15% in the final yield. 

In order to avoid this decrease of yield, we opted for liquid solid extraction namely Soxhlet 

extraction. Chen et al.11 used Soxhlet extractor to remove the unreacted PNIPAM chains within 

functionalized silica nanoparticles. 

Soxhlet extraction is based on a continuous extraction generally used for analysis of pesticides 

in food and soil materials. 12 The principle of Soxhlet extraction is based on continuous solvent 

reflux, where the solid component (polymer powder) is placed in suitable thimble (generally in 

cellulose) and is ground to a fine powder prior extraction to increase the area of the immersion 

liquid.  The extractor containing the product in the thimble is connected to a round bottom flask 

containing the solvent that is heated to the boiling point. The subsequent steam in formation 

rises through the branch pipe of the extractor prior to be condensed and drops in the extractor. 

At this stage, the solvent enters in contact with the solid for extraction, and the siphon is then 

filled with solvent and at a certain amount and is siphoned back to the flask. The cycle is 

repeated until the solid is highly purified (see Figure 8).13 
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Soxhlet extraction of PS-b-P2VP-b-PNIPAM terpolymers was performed in ethanol at 95°C 

for 4 days. For instance, the yield of NIPAM monomer transformation into PNIPAM was found 

to be 40% for the SVN7 terpolymer presented in Table 3. 

 

 

 

After Soxhlet extraction in ethanol of PS-b-P2VP-b-PNIPAM chains, we noticed a decrease in 

P2VP ratio, meaning that the starting PS-b-P2VP macro-CTA contained some unattached P2VP 

hompolymers that dissolved in ethanol. This phenomenon indicates that the length of the 

synthesized BCP macro-CTA was already too long to incorporate properly the 2VP monomer. 

Figure 8. Soxhlet extraction set-up. 12  

Table 3. Series of PS-b-P2VP-b-PNIPAM triblock terpolymers synthesized by RAFT polymerization. 
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4.2. Characterization of PS-b-P2VP-b-PNIPAM by 1H NMR and SEC 

 

The conversion of the synthesized PS-b-P2VP-b-PNIPAM macro-CTA corresponding to SVN7 

in Table 3 was calculated by 1H NMR to be 56%. This percentage value was determined by 

comparing the integrated proton signals of the PNIPAM groups at 3.99 ppm to those of the 

NIPAM monomer. Figure 9 shows the 1H NMR spectrum in CD2Cl2 of the synthesized SVN7 

triblock terpolymer (blue) as well as its associated hPS (green) and PS-b-P2VP (red) macro 

CTA spectra where the additional peaks arising from the PNINAM block were indexed as 

follows: δ = 3,99 (1H, s, CH), 1.13 (6H,m,CH3-). The (blue) 1H NMR spectrum revealed that 

PS-b-P2VP-b-PNIPAM chains consisted of PS (28.2 kg/mol, fPS = 0.68), P2VP (5.8 kg/mol, 

fP2VP = 0.13) and PNIPAM (8.5 kg/mol, fPNIPAM = 0.19).  

 

 

 

 

 

Figure 9. 1H NMR spectra in CD2Cl2 of hPS (green), PS-b-P2VP (red) and 

PS-b-P2VP-b-PNIPAM (blue). 
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The SEC elugrams in THF corresponding to the SVN7 triblock terpolymer before (blue) and 

after (black) purification by Soxhlet extraction as well as the data (red) arising from the residual 

hPNIPAM concentrated in ethanol at the end of the extraction are shown in Figure 10.a. The 

presence of a shoulder (at low molecular weight side) on the blue curve evidences the presence 

of residual PNIPAM chains within the crude product, and makes that the molecular weight 

distribution of the blend is large (D = 1.79). After purification by Soxhlet extraction, a black 

curve with a monomodal profile can be observed. This SEC curve indicates that the purified 

SVN7 chains have a relatively narrow molecular weight distribution (D = 1.32) after the 

extraction of the undesired PNIPAM homopolymer giving rise to the red trace (D = 1.29). 

Figure 10.b. represents the SEC traces of the PS homopolymer (red), PS-b-P2VP  (green) and 

PS-b-P2VP-b-PNIPAM (blue) chains synthesized by RAFT polymerization. All the polymers 

were obtained with relatively narrow molecular weight distributions (D < 1.32). The shift of 

the SEC curves toward higher molecular weights, resulting from the difference in the 

hydrodynamic volumes of polymers, fully supports the successful preparation of targeted ABC-

type BCP chains.  

 

 

 

 

Figure 10. (a) SEC traces in THF of unattached PNIPAM chains (in red) eliminated by Soxhlet 

extraction and SEC traces of PS-b-P2VP-b-PNIPAM before- (in blue) and after Soxhlet extraction 

(in black). (b) SEC traces of PS (red), PS-b-P2VP (green) and PS-b-P2VP-b-PNIPAM (red). 
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Figure 11 represents the 2D DOSY (diffusion ordered spectroscopy) NMR spectra (600 MHz, 

CDCl3) of the hPS (red), PS-b-P2VP (green) and PS-b-P2VP-b-PNIPAM (blue) chains. The 

protons assigned to each block are aligned along the same line, confirming a good purity of the 

polymers since all the signals arise from the same macromolecule having a diffusion coefficient 

of 5.01 x 10-11 m2.s-1. The diffusion coefficients of the PS and PS-b-P2VP chains are bigger 

than that of the ABC triblock terpolymer since they are found to be 6.60 x 10-11 m2.s-1 and 8.31 

x 10-11 m2.s-1, respectively. 

 

 

 

 

 

 

Figure 11. Overlaid 1H NMR 2D DOSY spectra in CDCl3 of hPS (red), PS-b-P2VP (green) and           

PS-b-P2VP-b-PNIPAM (blue). 
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5. Synthesis of linear CBA triblock terpolymers: effect of the 

block sequence order 
 

As discussed previously, the synthesis of PS-b-P2VP-b-PNIPAM triblock terpolymer by RAFT 

polymerization required several purification steps due to the presence of free PNIPAM chains. 

In order to face this issue, another strategy was followed based in the change of  the block 

sequence order. Here instead of beginning the terpolymer synthesis with a PS-macro CTA, we 

rather started the polymerization with a PNIPAM macro-RAFT agent, following by P2VP and 

PS, in order to prepare a linear CBA triblock terpolymer. 

It was reported in the literature10 that in case of linear ABC triblock terpolymers, the accessible 

morphologies within the phase diagram can be crucially influenced by the sequence order of 

the blocks. As the junction points are equivalent for a CBA-type BCP and its ABC homologue, 

the phase behavior of these triblock terpolymers would be basically the same. In fact, a linear 

CBA triblock terpolymer will differ from the ABC-type BCP only in the location of the RAFT 

agent end chains. Consequently, starting the polymerization with short PNIPAM chains could 

be a good alternative to purity and livingness issues reported previously. In addition, the change 

of the block sequence order and therefore the location of the RAFT agent end chains could be 

a good point of comparison of both the phase behavior and filtration performance of the BCP 

membranes. 

RAFT polymerization is ideal for the synthesis of low molecular weights.3 Besides, PNIPAM 

homopolymer has already been synthesized by RAFT in the literature with a low molecular 

weight and low dispersity value.14 The aim of this section was the synthesis of linear CBA 

triblock terpolymer (i.e., PNIPAM-b-P2VP-b-PS) by RAFT polymerization with a high PS 

volume fraction (targeted compositions: fPNIPAM = 0.1, fP2VP = 0.2 and fPS = 0.7). 

 

5.1.  Synthesis and characterization of the PNIPAM macro-CTA 

 

The RAFT polymerization was started by filling a ground flask with NIPAM, DDMAT, AIBN 

and dimethylformamide (DMF) used as solvent. The reaction mixture was stirred until full 

dissolution of solid components and purged with nitrogen. The reaction vessel was then sealed 

and placed in a preheated oil bath at 70°C for 2h30. The reaction was stopped by plunging the 

reaction vessel into an ice bath (see Scheme 5 ). The crude product was precipitated three times 
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in cold diethyl ether and dried at room temperature under vacuum overnight to recover the 

PNIPAM macro-CTA. 

 

 

 

The molecular weight of the PNIPAM-macro CTA was determined by 1H NMR spectroscopy 

by the following equation :  

 

 

Where ʃ represent the peak integral of the amide group of PNIPAM at 3.98 ppm and the peak 

integral of methyl group of end chain of DDMAT at 0.88 ppm. Mo,NIPAM and Mo,DDMAT are the 

molecular weight of NIPAM monomer and RAFT agent DDMAT respectively. 

Conversely to PS-macro CTA discussed previously, the molecular weight of PNIPAM-macro 

CTA could be determined by NMR spectroscopy since the end chain of DDMAT were visible 

from the spectrum (see Figure 12, triplet zoomed in orange corresponding to 3H). The 

molecular weight of the synthesized hPNIPAM determined by 1H NMR spectroscopy in 

CD2Cl2, Mn,NMR  was of 7 kg.mol-1 while the one established by SEC, Mn,SEC, in THF using 

PS standard was of 4.9 kg.mol-1, D = 1.02.  

 

Scheme 5. Synthesis route for the PNIPAM macro-CTA by RAFT polymerization. 
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5.2. Synthesis and characterization of the PNIPAM-b-P2VP macro-CTA 

 

Starting from a PNIPAM macro-CTA, the controlled synthesis of BCPs containing 2VP by 

RAFT was previously described Zeng et.al.15. In this work, the same synthesis route was used 

to prepare PNIPAM-b-P2VP chains with low dispersity. For that purpose, the PNIPAM macro-

CTA was mixed with 2VP and AIBN, and the reaction was performed in mass for 5h at 70°C 

prior  to recover the PNIPAM-b-P2VP chains by twice precipitation in hexane (see Scheme 6).  

 

 

Figure 12. 1H NMR Spectrum in CD2Cl2 of the PNIPAM macro-CTA. 

Scheme 6. PNIPAM-b-P2VP macro-CTA synthesis by RAFT polymerization. 
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Interestingly, the presence of a small shoulder at low molecular weight on the (blue) SEC trace  

presented in Figure 13 makes that the crude product exhibits a higher dispersity value (D = 

1.96) than the PS-b-P2VP chains. Due to its position on the SEC elugram, this shoulder 

unambiguously can be attributed to the unreacted PNIPAM chains. To eliminate hPNIPAM, 

the crude product was rinsed with cold water and lyophilized. This purification step was 

effective since a lower dispersity value (D = 1.3) can be observed on the (black) SEC trace of 

the recovered PNIPAM-b-P2VP chains due to a good shoulder attenuation (see Figure 13).  

 

 

 

Figure 13. Superimposed SEC traces of PNIPAM-b-P2VP diblock  and hPNIPAM (in the left) 

and SEC trace of the purified PNIPAM-b-P2VP chains in THF (in the right). 

 

It is noteworthy that the undesired side reaction can be attributed to a reinitiation problem of 

the PNIPAM radicals on the 2VP monomer since the PNIPAM macro-CTA has a low molecular 

weight (Mn < 7 kg/mol). This is probably due to a difference in the reactivities of the species 

that was also reported by Bivigou-koumba et.al 1 for polymerization of styrene from a PNIPAM 

macro-CTA where a slow initiation and fragmentation of the intermediate radials  as well as 

irreversible termination reactions were encountered. This behavior differs from the free radical 

polymerization of NIPAM occurring during the preparation of the PS-b-P2VP-b-PNIPAM 

terpolymer since the lower availability of the RAFT agent at the end of the PS-b-P2VP chains 

was identified as the main problem to explain this undesired reaction.  
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5.3. Synthesis and characterization of the PNIPAM-b-P2VP-b-PS macro-

CTA 

 

The first strategy for the incorporation of  the PS block within the previously synthesized CB-

type BCP consisted on the growing chain via RAFT polymerization (see Scheme 7). Here the 

PNIPAM-b-P2VP macro-CTA was mixed with styrene, AIBN and 1,4-dioxane. After 

degassing the reaction was plunged in preheated oil bath at 70°C for 48h.  

 

 

 

The growing of PS block was slow and AIBN initially present in the reaction vessel was fully 

consumed about 24h. Therefore, the reaction was reinitiated by adding the same amount of 

AIBN, resulting in damaged RAFT end chains of the synthesized CBA triblock terpolymer. 

To avoid this phenomenon, another synthesis strategy based on the RAFT emulsion 

polymerization was followed. Here we inspired from the work of Nieswandt et al. 16 based on 

the synthesis of  the P3VP-b-PS BCP by this method. The reaction named surfactant-free RAFT 

emulsion polymerization known as a feasible and robust route towards the polymerization of a 

variety of vinyl monomers16. It was reported that the synthesis of PS by radical polymerizations 

has been found to be slow. Conversely, RAFT emulsion polymerization in water has been 

proven to be a feasible approach to accelerate styrene polymerization. In their study, Nieswandt 

and coworkers described the RAFT synthesis of P3VP-b-PS chains using a polymerization-

induced self-assembly (PISA) approach, based on the chain extension of homopolymer-macro 

RAFT agents with co-monomer to eventually achieve the desired BCP.16  

To follow this approach, in a flask containing the PNIPAM-b-P2VP macro-CTA dissolved in 

dimethylformamide (DMF) and water, AIBN dissolved in a small amount of DMF was first 

Scheme 7. PNIPAM-b-P2VP-b-PS synthesis by RAFT polymerization 
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added to the solution followed by styrene. After purging the headspace of the solution 

mixture with nitrogen, the reaction was allowed to proceed overnight under stirring at 800 rpm. 

After removing the DMF/H2O mixture, the resulting PISA-latex was dissolved in THF and 

subsequently precipitated twice in diethyl ether prior to be washed in heptane. 

Figure 14. represents the SEC traces of the CBA triblock terpolymer synthesized by RAFT 

emulsion polymerization (in blue), PNIPAM-b-P2VP diblock (in red) and PNIPAM 

homopolymer (in black). The shift to high molecular weight evidences the difference in 

hydrodynamic volumes of polymers and support the preparation of the synthesized CBA 

triblock terpolymer. A high molecular weight PNIPAM-b-P2VP-b-PS triblock terpolymer, with 

high PS volume fraction was synthesized, with Mn,SEC  = 115.1 kg.mol-1, D = 1.17 and fPS = 

0.51. 

 

 

 

 

 

Figure 14. SEC traces of CBA macro-CTA by 

RAFT emulsion polymerization. 
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The synthesis of CBA triblock terpolymer by RAFT polymerization in this study was not 

successful. Starting with PNIPAM with low molecular weight and accessible end chains is more 

favorable in synthesis of block copolymer by RAFT polymerization, but in this case the 

reactivity of 2VP caused retardation of polymerization. The chain extension of styrene using 

the synthesized PNIPAM-b-P2VP as macro-CTA was slow, resulting in loss of livingness and 

control of the polymerization. 

However, the chain extension of styrene via surfactant-free RAFT emulsion polymerization 

was more promising method, resulting in pure CBA linear triblock terpolymer with low 

dispersity values (D = 1.17), without any unattached dead chains. 
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6. Conclusion  
 

In this chapter, linear PS-b-P2VP-b-PNIPAM triblock terpolymer was synthesized for the first 

time by RAFT polymerization. Different series of well-defined dual stimuli-responsive ABC 

triblock terpolymers were obtained with different molecular weight and compositions. The 

main issues reported during the synthesis were the purity and the livingness of polymers, 

specially the unattachement of hPNIPAM chains to the diblock, essentially due to its chain 

length.  

Liquid-solid Soxhlet extraction was a successful purification technique to eliminate the 

remaining PNIPAM chains and obtain pure ABC triblock terpolymer by RAFT polymerization 

with high molecular weight. 

Synthesis of polymer with low molecular weight is more favorable in RAFT polymerization. 

The change of monomer sequence order in this study and the use of acrylamide group with low 

molecular weight as starting block was not advantageous due to retardation polymerization. 

The use of other RAFT agent with the AIBN leaving R-group could be a solution to get a better 

control. Styrene chain extension was slow and several re-initiations were needed to obtain high 

PS volume fraction. The other technique tested was surfactant-free RAFT emulsion 

polymerization. The CBA triblock terpolymer obtained was pure with low dispersity value, 

however, this technique was not compatible with the aim of this study since it generates in situ 

formation of micellar structures through initial chain growth in aqueous solution.16 

For the rest of this study, we preferred to work with synthesized ABC triblock terpolymer by 

RAFT polymerization with different composition, study their self-assembly behavior in bulk 

and finally membrane fabrication. 
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CHAPTER 3  

  

Self-assembly of double-stimuli 

responsive PS-b-P2VP-b-PNIPAM 

triblock terpolymer membranes  
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1. Introduction  
 

Nowadays, one of the biggest challenge in membrane technology is the preparation of advanced 

materials combining high selectivity, high permeability and good fouling-resistance. An ideal 

membrane should be endowed with self-cleaning capabilities and should be composed of a 

macroporous substructure and a dense skin layer having a high-areal density of isopores to 

insure high permeability and high selectivity, respectively.  

In this strategy, the block copolymers (BCPs) have attracted more attention in the manufacture 

of isoporous membranes with improved selectivity and permeability. Thanks to their ability to 

self-assemble into a large diversity of morphologies, they offer the possibility to adapt the size 

and chemistry of the membrane pores, resulting in a variety of  pores geometries and a great 

flexibility in their functionalization.1 Furthermore, the incorporation of stimuli-responsive 

pores into the membrane is one of the promising approach to help cleaning and overcome 

fouling issues. In this approach, the use of BCPs with stimuli-responsive characters can prevent 

the common problem of fouling (e.g., thermal, pH, light, magnetic or electrical, etc.). Upon the 

application of one of these external stimuli, the pore sizes can be adjusted (e.g., increased), 

resulting in a high back flush speeds and higher shear forces that lead to much more efficient 

physical cleaning.2  

Non-solvent induced phase separation (NIPS) technique was introduced for the first time in the 

1960s3 to fabricate integrally asymmetric structure, and since that time it is still a promising 

approach that attracts lots of interest from the membrane community to prepare membranes 

with varied pore sizes ranging from nanometer to micrometer.4  In this work, the phase behavior 

of the previously synthesized polystyrene-block-poly(2-vinylpyridine)-block-poly(N-

isopropylacrylamide) (PS-b-P2VP-b-PNIPAM)  triblock terpolymer was studied in membrane 

configuration. The NIPS technique was combined to a solvent vapor annealing (SVA) process 

to produce pH- and thermo-sensitive membranes. 

In this chapter, we will detail the transformation of a poorly defined phase generated by NIPS 

on the top surface of asymmetric PS-b-P2VP-b-PNIPAM thick films into a well-ordered 

perforated lamellar (PL) structure when exposed to a chloroform vapor. 
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2. Self-assembly of PS-b-P2VP-b-PNIPAM triblock 

terpolymers 

 

As reported in Chapter 2, the synthesis of linear PS-b-P2VP-b-PNIPAM triblock terpolymer 

was realized by RAFT polymerization. The three different polymer blocks were used for their 

intrinsic properties. For such reasons, the synthesized terpolymers were prepared of a high PS 

volume fraction in order to obtain mechanically robust membranes by phase inversion. P2VP 

was introduced to generate smart nanopores able to regulate their size under pH environment 

changes.5 Indeed, the deprotonation of the pyridine groups under pH values above 5, results in 

a shrinkage of the P2VP block, and so an increase of the nanochannel porosity. Conversely, the 

swelling of the P2VP block under pH values below 5 makes that the nanopores close. To 

produce double stimuli-responsive nanochannels, the gold standard thermo-responsive 

PNIPAM has been also incorporated within the ABC-type BCP. Here, the lower critical 

temperature (LCST) of PNIPAM occurring at 32°C enables to control both the size and the 

hydrophilic/hydrophobic character of the pores by adjusting the water temperature.  

The study of the self-assembly of the PS-b-P2VP-b-PNIPAM triblock terpolymer within 

double-sensitive membranes is detailed in the following section. For that purpose, the NIPS 

process was combined to the SVA technique in order to produce a well-defined perforated 

lamellar structure. 
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2.1. Non-solvent induced phase separation (NIPS) 

 

2.1.1. Membranes preparation  

 

Non-solvent induced phase separation (NIPS) technique was used for the first time by Loeb and 

Sourirajan in 1960 to prepare a reverse osmosis membrane with an asymmetric structure.3 NIPS 

process is described as a controlled precipitation of a polymer solution by immersion in a 

coagulation bath.  

In general, NIPS process is simple and based on three steps (see Figure 1). First, a polymer is 

dissolved in a solvent or solvents mixture that is/are miscible with the non-solvent. The polymer 

solution is then casted as a film and afterward immersed in a coagulation bath, that is nearly 

always water. As the solvent(s) and the non-solvent (water) are miscible, they exchange such 

that the solvent(s) diffuses out in water and water diffuses into the polymer solution. This 

solvents exchange continues until the polymer solution coagulates as a solid porous film.6 The 

resulting membrane is composed of a dense skin layer and a macro/microporous substructure.  

On one hand, the dense surface is formed due to the solidification of the polymer top layer as 

soon as the cast membrane is in contact with the coagulation bath which is induced by a fast 

solvent outflow. On the other hand, the porous sub-layer morphology is formed from the liquid-

liquid demixing during which the solution phase separates into a polymer rich-phase5 and a 

polymer poor-phase.7 In this case, the solvent/non-solvent diffusion rate as well as the 

solidification rate will define the final structure of the porous substructure.8  Strathmann et al.9 

and  Smolders et al.10 reported in their work that if the solvent/non-solvent mutual diffusion is 

high, instantaneous demixing occurs with the formation of a macrovoid structure, while a 

bicontinuous structure is observed in the case where the diffusion rate is low enough to go 

through delayed demixing.  

 
Figure 1. Non-solvent induced phase separation (NIPS) process used for the preparation 

of PS-b-P2VP-b-PNIPAM membranes. 
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The final membrane morphology depends on several parameters such as the type of polymers, 

molecular weights, polymer concentrations, the choice of solvent/solvents mixture, type of non-

solvent, evaporation time, relative humidity, temperature of polymer solution and non-solvent 

bath.  

In this chapter, the previously synthesized PS-b-P2VP-b-PNIPAM (SVN7 from Chapter 2) 

composed of a high PS volume fraction (28.2 kg/mol, fPS = 0.68), P2VP (5.8 kg/mol, fP2VP = 

0.13) and PNIPAM (8.5 kg/mol, fPNIPAM = 0.19) was selected for the rest of this study. 

The terpolymer was dissolved in a di-solvent mixture of 1,4-dioxane (DOX) and 

tetrahydrofuran (THF) (50/50 by weight). The choice of solvents is one of the most important 

parameters for NIPS, due to the significant effects on the final material properties.11 In this 

study, THF and DOX are miscible with water and are selective solvents for the three blocks. 

THF was chosen since it is frequently used for the preparation of block copolymer membranes, 

due to its high volatility and its ability to create ordered structures.11–13  DOX is a good solvent 

for the three polymers and evaporate slower than THF.  

After the complete dissolution of the PS-b-P2VP-b-PNIPAM in the DOX/THF di-solvent 

mixture, the polymer solution (18 wt.%) was casted onto (3x3 cm) silicon substrates by using 

a tape casting technique with a 250 µm gap. DOX and THF were allowed to evaporate during 

30s at room temperature (RT), thus forming a dense air surface layer with a kinetically trapped 

nanoporous structure. The prepared PS-b-P2VP-b-PNIPAM membrane was immersed into a 

deionized water bath at RT for 5 min to induce the polymer precipitation. In this step, the 

miscible solvent mixture and the non-solvent exchange to give rise to a so-called integral-

asymmetric membrane. When the viscous polymer film is transferred to the non-solvent, PS 

precipitates and a matrix is formed due to the poor affinity of PS with water.14 In order to 

facilitate the removal of the terpolymer membranes from the substrate, the silicon pieces were 

treated by an oxygen plasma in a home-made chamber prior to their use (plasma conditions: 

45W mTorr O2, 10 min). A sacrificial poly(poly(3,4-ethylenedioxythiophene) polystyrene 

sulfonate (PEDOT: PSS) was then inserted by spin-coating between the substrate and the PS-

b-P2VP-b-PNIPAM thick films.    

In this work, the polymer concentration was kept to 18 wt.% in order to avoid any problem 

related to polymer solution viscosity. Indeed, it was reported that a higher polymer 

concentration (~25 wt.%) results in higher viscosity solution which prevents the non-solvent 

penetration, resulting in the formation of a dense structure.7  
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The evaporation time before the polymer film immersion in water was about 30s to allow the 

formation of a dense top layer. This is in accordance with previous results since Jung et al.15  

reported that an irregular membrane layer composed of few nanopores and macropores was 

formed within PS-b-P2VP membranes for a shorter evaporation time (20s). Conversely, by 

increasing it by 5s, perpendicular and parallel cylinders were formed. The authors also 

demonstrated that the best result was obtained for an evaporation time of 30s, since hexagonally 

packed cylinders with a perpendicular orientation take place. For longer evaporation time, the 

homogeneous layer is still present but the cylinders are not hexagonally assembled anymore.  

 

2.1.2. Membranes characterization  

 

Atomic force microscopy (AFM Nano-Observer, CSInstruments) was used to study the local 

surface morphology of the films. Silicon cantilevers (PPP-NCH, Nanosensors) with a typical 

tip radius of 5 nm were used. The resonance frequency of the cantilevers was about 235 kHz. 

Prior AFM measurements, PS-b-P2VP-b-PNIPAM thick films were treated with a fluorine 

based plasma in a home-made chamber to improve the AFM topographic image contrast 

(plasma conditions: 45W, 75 mTorr CF4 and 90s).  

Scanning electron microscopy (SEM) was used to analyze the membranes cross section and top 

surface. SEM pictures were obtained using a Hitachi S4800 operating under 0.1-30 kV working 

voltage. 

Figure 2 shows two representative top surface morphologies of PS-b-P2VP-b-PNIPAM thick 

films generated by NIPS (as cast) for a solvent evaporation time of 30s. Interestingly, for similar 

NIPS process conditions, the membrane top surfaces exhibit different morphologies: one is 

highly porous while the other one appears denser (i.e., less porous). In Figure 2.a is presented 

a highly porous top surface membrane exhibiting a rough surface (Rrms = 10.8 nm) and a mean 

center-to-center pore spacing, p, of ~68 nm as extracted from the 2D-fast Fourier transform 

(FFT). This poorly-ordered phase generated by NIPS on the material top surface is mainly due 

to the presence of a large amount of solvent within the skin layer when the sample was 

transferred in the water bath. In contrast, a denser membrane top surface with Rrms = 23.8 nm 

and p = 12 nm can be observed from on Figure 2.b. Here, it appears that the remaining solvents 

(mainly THF) contained in the as-cast polymeric membrane have been evaporated faster to 

leave a denser top surface. Note that the two top surface morphologies were generated by the 
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same NIPS conditions (i.e., similar polymer solution concentration, evaporation time and 

immersion time in the coagulation bath) but not made the same day, thereby indicating that the 

external temperature and the relative humidity variations play an important role on the NIPS 

process reproducibility. Such results demonstrate that the preparation of asymmetric and 

isoporous copolymer thick films by NIPS require extensive optimization. 

 

 

 

 

To produce well-ordered nanochannels within the membrane skin layer, the NIPS process was 

combined to a SVA treatment as previously performed.16–18 In the following section, it is 

detailed the top surface reconstruction of PS-b-P2VP-b-PNIPAM thick films by SVA 

treatment. 

 

2.2. Solvent vapor annealing (SVA) 

 

The solvent vapor annealing process is based on the exposure of the BCP film to vapors of one 

or more solvents at temperature below the bulk glass temperature (Tg) of the different blocks to 

form a swollen and mobile polymer film on the substrate. The process takes place in a closed 

chamber continuously filled with solvent vapor(s). SVA is highly effective over other 

techniques such as thermal annealing requiring large timescales, particularly for high molecular 

Figure 2. (a) and (b) AFM topographic images of NIPS-made (as cast) 

PS-b-P2VP-b-PNIPAM thick films.  
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weight BCPs. SVA is highly dependent on several parameters such as the χ-parameters, the 

degree of polymerization (N), the BCP composition, and more importantly the type of solvent 

and SVA treatment time.19 Indeed, the importance of solvent choice is related to the 

reconstruction of the surface during the SVA treatment. In general, when the BCP film is cast 

from a solvent onto a substrate, it becomes kinetically trapped in a non-equilibrium, disordered 

and ill-defined structure. The solvent chosen must drive sufficiently the mobility of the polymer 

chains to allow for a structural reorganization.20 

 

2.2.1. Membranes preparation 

 

In this study, the self-assembly of PS-b-P2VP-b-PNIPAM terpolymers was stimulated by 

exposing films for different times (ranging from 0h to 7h) to a continuous stream of chloroform 

(CHCl3) as represented in Figure 3. Chloroform is a good solvent for the three polymers and 

can drive the chain mobility. The vapor was produced by bubbling nitrogen gas through the 

liquid solvent as described in previous works.21–23 The continuous flow system was used to 

control the CHCl3 vapor pressure in the chamber by dilution with a separate N2 stream so that 

a solvent vapor consisted of 32 sccm CHCl3 vapor and 8 sccm N2 (total 40 sccm). The 

morphology of the solvent-annealed PS-b-P2VP-b-PNIPAM thick film was frozen by fast 

removal of the chamber lid.  

   

 

 

Figure 3. Schematic representation of solvent vapor annealing (SVA) setup used 

in this work. Adapted from [24, 25].   
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2.2.2. Membranes characterization  

 

Figure 4 shows the AFM topographic images of several membrane top surfaces generated by 

NIPS-SVA from three different PS-b-P2VP-b-PNIPAM (SVN) terpolymers with the respective 

volume fractions (determined by 1H NMR): S:V:N = 56:18:26 (51.8 kg/mol, D = 1.22) (see 

Figure 4.a), S:V:N = 61:34:5 (92.8 kg/mol, D = 1.31) (see Figure 4.b), and S:V:N = 68:13:19 

(42.5 kg/mol, D = 1.32) (see Figure 4.c). Here, the solvent was allowed to evaporate for 30s 

during the NIPS process, and the three different PS-b-P2VP-b-PNIPAM membranes were then 

exposed to a CHCl3 vapor during 6h. Under such conditions, the use of CF4 plasma etching 

reveals that the equilibrium structure formed on the membrane top surfaces consists of an 

alternation of long range-ordered PS (bright) and P2VP/PNIPAM (dark) out-of-plane lamellae.  

In all cases, the combination of the NIPS and SVA techniques result in a full reconstruction of 

the membrane top surfaces into a lamellar morphology where the period varies as follows: (a) 

55.7 nm, (b) 53.1nm and (d) 41 nm. Note that the PS-b-P2VP-b-PNIPAM chains with the 

largest PNIPAM composition (S:V:N = 56:18:26) are ordered into out-of-plane lamellae  with 

short-range order which should be taken account to explain its larger periodicity.    

 

 

 

 

Figure 4. AFM topographic images of several membrane top surfaces generated by NIPS-

SVA (30s-CHCl3, 6h) from three different PS-b-P2VP-b-PNIPAM (SVN) terpolymers: (a) 

S:V:N = 56:18:26 (51.8 kg/mol, D = 1.22), (b) S:V:N = 61:34:5 (92.8 kg/mol, D = 1.31) and 

(c)  S:V:N = 68:13:19 (42.5 kg/mol, D = 1.32). 
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To better understand the phase behavior of the PS-b-P2VP-b-PNIPAM chains during the SVA 

process, AFM topographic images, taken for different times of exposure to a chloroform stream, 

are presented in Figure 5. When the PS-b-P2VP-b-PNIPAM (S:V:N = 68:13:19) membrane is 

solvent-annealed during 30min, the top surface roughness and the pore size start to decrease, in 

comparison with the as-cast surface morphology (see Figure 2a). Indeed, a smooth top surface 

membrane (Rrms = 0.7 nm) with pores having a mean period of 47 nm are produced from a 

solvent-annealed (CHCl3, 30 min) PS-b-P2VP-b-PNIPAM thick film. By increasing SVA 

treatment to one hour, the period of the nanostructure formed on the membrane top surface  

decreased again to 42 nm (very close to the equilibrium period of 41 nm, see Figure 4.c) and 

a narrower first-order peak is observed on the power spectral density (PSD) profile (see Figure 

5.c). The presence of a high-order peak located at 2k (where k is the spatial frequency) confirms 

an increase of the long-range order of pores on the membrane top surface. 

 

 

 

SEM image presented in Figure 6.a shows the representative top view of a PS-b-P2VP-b-

PNIPAM thick film generated by NIPS. A dense top surface layer with poorly defined domains 

is produced when the mixture of di-solvents is allowed to evaporate from the PS-b-P2VP-b-

PNIPAM material for 30s.  The cross-sectional view presented in Figure 6.b. indicates this 500 

nm thick dense top layer with closed pores has formed on microporous substructure exhibiting 

a (spinodal) open network morphology (see the part bellow the dotted line in Figure 6.b). 

Figure 5. (a) and (b) AFM topographic images of PS-b-P2VP-b-PNIPAM (S:V:N = 68:13:19) 

thick films treated by SVA for 30min and 60min in a CHCl3 vapor. (c) Power spectral density 

(PSD) profiles of NIPS-made (as cast) and SVA treated thick films (30min and 60min).   
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Cross-sectional SEM images of solvent-annealed (6h, CHCl3) PS-b-P2VP-b-PNIPAM thick 

films taken close to the top surface and in middle of the material are shown in Figure 6.c and 

d, respectively. These images reveal that after the SVA treatment, the microporous open 

network generated by NIPS has been transformed into an ordered lamellar phase (see Figure 

6.d).  

 

 

In the following part, the filtration performances of the prepared PS-b-P2VP-b-PNIPAM 

membranes were studied as a function of temperature and pH variations. 

  

3. Double stimuli-responsive membranes  
 

The water permeability of the different PS-b-P2VP-b-PNIPAM thick films was studied using a 

dead-end filtration set-up by measuring the flux of Milli-Q pure water at different pressures (0–

2 bar). The membrane was cut into a round shape with a diameter of 2.5 cm supported by a high 

permeable hydrophilic polyvinylidene fluoride (PVDF) material. It was subsequently placed in 

an Amicon type filter cell (Amicon 8010 stirred cell) with a volume of 10 mL. The cell was 

connected to a pressure vessel filled with Milli-Q pure water, where pressure was applied using 

compressed air line. The cell and the vessel were heated to specific temperatures ranging from 

15 °C to 46°C by placing them inside a stainless steel electronic bath filled with water (see 

Figure 6. (a) Cross-sectional SEM view of an asymmetric PS-b-P2VP-b-PNIPAM thick film generated by 

NIPS showing a 500 nm thick top layer with a poorly defined phase delimited from the sponge-like 

substructure by a dashed line. (b) Cross-sectional SEM views of a solvent-annealed (6h, CHCl3) PS-b-

P2VP-b-PNIPAM thick film generated by NIPS-SVA showing the formation of  a symmetric membrane 

composed with a lamellar phase in the top and in the (c) bottom interfaces. Scale bars: 500 nm.  
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Figure 7). To ensure a stable temperature, the cell was stored at a specific temperature for half 

an hour before the measurement.  

 

 

 

 

 

 

3.1. Thermo-responsive PS-b-P2VP-b-PNIPAM thick films  

 

In order to investigate the thermo-responsive properties of the membrane, we studied membrane 

permeability at temperature below (15°C) and above (45°C) the LCST of PNIPAM (32°C). The 

water permeability (L.h-1.m-2.bar-1) was calculated as the ratio of the flux over the applied 

pressure drop as shown in the following equation:  

 

 

Figure 7. Schematic representation of the dead-end filtration setup used in this work. 
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Where V is the permeate volume (L), A is the membrane area (m2), t is the time (h), J is the 

permeate flux (L.h-1.m-2) and 𝛥P is the pressure drop across the membrane (bar).  For 

temperature higher than 20°C, the permeability was normalized for the temperature dependent 

changes in viscosity of the water passing at elevated temperature. For that purpose, the 

permeability results were corrected by multiplying the results with the relative change in the 

dynamic viscosity of water given at a specific temperature compared to that of water at 20°C.  

In this section, we will detail the water permeability values obtained as a function of the 

annealing time and temperature.  

Table 1 and 2 summarize the normalized water permeability rates of NIPS-SVA made PS-b-

P2VP-b-PNIPAM thick films.  

The NIPS-made PS-b-P2VP-b-PNIPAM thick films showed different disordered 

morphologies: one composed of completely open pores (refereed hereafter as case 1) and the 

other with closed pores (case 2). 
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In the first case, the NIPS-made membrane is composed of highly open pores generated during 

the solvent exchange. The water permeability value recorded at 23°C is maximized to                  

112  L.h-1.m-2.bar-1 when the nanostructure formed was composed of highly disordered and large 

open pores as shown in Table 1. After the SVA treatment, the membranes surface 

reconstruction induced by the polymer chain mobility in CHCl3 vapors results in decrease of 

permeability at temperature below LCST to 25 L.h-1.m-2.bar-1 accompanied by a pronounced 

thermo-responsive character at temperature above LCST (~ 96 L.h-1.m-2.bar-1). By increasing 

the SVA treatment of the prepared membrane to 1h and 6h, the permeability remains the same 

(~ 115 L.h-1.m-2.bar-1). This is mainly due to the polymer chain mobility that reaching the 

thermodynamic equilibrium. This is in agreement with informations extracted from AFM 

topograpgic images, where the period decreases until a thermodynamic equilibrium, and thus 

the permeability does not change even until 6h. 

In the second case, the as-cast membrane is composed of completely closed pores. Not 

surprisingly, no permeability was recorded in this case as shown in Table 2. However, after 30 

min exposition to CHCl3 vapors, the membrane surface reconstruction allows to reach a water 

permeability of 7 L.h-1.m-2.bar-1 at temperature below LCST (at 15°C). By heating up the 

membrane above the PNIPAM LCST (at 46°C), the permeability was measured to be 7 times 

higher (50 L.h-1.m-2.bar-1), thereby confirming the thermo-responsive character of the 

terpolymer thick film generated by the collapsed state of the PNIPAM blocks. After 2h of 

exposure to CHCl3 vapors, the water permeability at 15°C decreased by 70 % to                                               

Table 1. Membrane permeability rates as a function 

of the annealing time and temperature obtained from 

closed porous NIPS-made membranes (see Fig. 2b). 

Table 2. Membrane permeability rates as a function 

of the annealing time and temperature obtained from 

open porous NIPS-made membranes (see Fig. 2a). 
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2 L.h-1.m-2.bar-1, which is due to the membrane top surface reconstruction as discussed 

previously. Finally, the permeability value for a terpolymer membrane exposed to a CHCl3 

vapor for 6h, was quite similar to the one measured at 2h at temperatures below and above the 

PNIPAM LCST. Such results are in accordance with membrane top surface reconstruction 

observed by AFM, where the period of the nanostructure formed on the membrane top surface 

was close to the equilibrium period. We can note that the morphology changes of porous 

nanodomains are due to the mobility of polymer chains driven by the CHCl3 vapors. 

From these results, we can conclude that the NIPS-made thick films are not stable and can 

generate different top surface organizations. However, the combination of the NIPS process 

with a SVA treatment generate the same overall qualitative trend in term of permeability. 

Starting from an initial membrane morphology genetrated by NIPS, the permeability at 

temperature below LCST starts to decrease and stabilizes when  for a SVA treatment of 1h. The 

thermo-responsive behavior caused by the difference in pore size between the open and close 

states of PNIPAM-based nanodomains is more pronouced in well organised top surface. 

Finally, we can note that the morphology change of porous nanodomains strongly influences 

the overall membrane permeability since we observe that the water transport properties, at 

temperature above LCST, through poorly ordered membrane top surfaces (SVA, 30 min,            

96 L. L.h-1.m-2.bar-1) are lower than that through highly ordered lamellae (SVA, 6h,                       

115 L.h-1.m-2.bar-1).  

The corrected and uncorrected permeability values of the NIPS-SVA made PS-b-P2VP-b-

PNIPAM annealed 30 min in CHCl3 is presented in Figure 8. The thermo-responsive behavior 

is a consequence of the chain collapse of PNIPAM above its LCST. The linear relation between 

flux and pressure for 20°C and 46°C demonstrate the mechanical stability of the membrane. 

Indeed, if the membrane exhibited any compaction or rupture, there would be deviation from 

linearity. The slope of the line for viscosity corrected flux at 46°C (~ 56 L.h-1.m-2.bar-1) is 

considerably higher than the one at 20°C (~ 7 L.h-1.m-2.bar-1) which clearly reveals the thermo-

responsive character of the membrane. 
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Since the studied PS-b-P2VP-b-PNIPMA is reported as a double stimuli-responsive triblock 

terpolymer, it was important to show the pH-responsive character in addition to the thermo-

responsive state. Therefore, the following section is devoted to this aspect. 

  

3.2. pH-responsive PS-b-P2VP-b-PNIPAM thick films  

 

In order to show the double stimuli-responsiveness of the prepared PS-b-P2VP-b-PNIPAM 

membranes, pH-dependent water flux was measured at acidic (pH = 3) and basic (pH = 9.5) 

environment at temperatures below (11 °C) and above (42°C) the PNIPAM LCST. By changing 

the pH, the nitrogen group in P2VP can be protonated and deprotonated, and thus allowing the 

tuning of the pore size. Hydroxide sodium solution was used for increasing the pH value and 

hydrochloric acid solution for decreasing it. Before water permeability measurements at 

different pH values, the NIPS-made PS-b-P2VP-b-PNIPAM thick film was exposed to CHCl3 

vapor for 2h. As discussed previously, the as cast membranes were not sufficiently stable and 

can show different membrane surface constructions (either highly porous or completely closed 

pores). SVA treatment of about 30 min showed a beginning of membrane top surface 

Figure 8. Membrane permeability rates (annealed 30 min in CHCl3) at 

20°C and 46°C as a function of pressure. 
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reconstruction and depending on the as cast configuration, the membrane did not reach the 

thermodynamic equilibrium. However, with about 2h of CHCl3 exposure, the membrane 

roughness decreased and the periodicity of the pores was quite similar to the membrane treated 

for 6h, which is the thermodynamic equilibrium in this case.  For a question of time, we chose 

to work with membranes treated during 2h instead of 6h. 

The highest water flux of the PS-b-P2VP-b-PNIPAM membrane was measured at pH of 9.5 

and water temperature of 42°C, and it was found to be 8.8 L.h-1.m-2 for a pressure drop of 1 bar. 

By decreasing the temperature below the PNIPAM LCST (to 10°C), it was found to                       

1.2 L.h-1.m-2 at 1bar. At acidic pH, P2VP is protonated and the pore size decreases, thereby the 

water flux goes down as represented in Figure 9. 

 

 

 

 

 

 

 

 

Figure 9. Schematic representation of (left) protonation/deprotonation of the P2VP block 

depending of pH and (right) swelling/stretching of the PNIPAM block depending of 

temperature. 
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At pH of 3, the pores are almost closed, which leads to a very small flux (0.8 L.h-1.m-2 at 10 °C 

and 5.1 L.h-1.m-2 at 42°C) (see Figure 10.a). From these results, we can conclude that the 

prepared PS-b-P2VP-b-PNIPAM membrane shows a double stimuli-responsive behavior to pH 

and temperature variations. The flux variation under different pH environments is less 

pronounced than the one observed with temperature, this is may be due to the chain length of 

P2VP (5.8kg/mol) which is smaller than the one of PNIPAM (8.5 kg/mol). 

 

 

 

Another PS-b-P2VP-b-PNIPAM triblock terpolymer system with a higher P2VP (Mn,NMR = 31.1 

kg/mol, ΦP2VP =  0.31) volume fraction was tested in order to verify that this less pronounced 

pH effect is related to the chain length. Surprisingly, the results were similar as presented in 

Figure 10.b. Indeed, the highest water flux was observed for a basic and hot water solution. It 

was measured to be of ~ 9.6 L.h-1.m-2 at pH =10 and 42°C. The lowest water flux value was 

observed for the opposite case (~ 0.6 L.h-1.m-2 at pH =3 and 10°C).  The water permeability 

observed in this case are slightly higher than with the other terpolymer composed with smaller 

P2VP volume fraction (Mn,NMR = 5.8 kg/mol, ΦP2VP =  0.13). These results show that the 

prepared membranes are pH- and thermo-responsive but the pH responsiveness is less  

Figure 10. Water flux variations as a function of pH for two different NIPS-SVA made 

PS-b-P2VP-b-PNIPAM thick films. Water fluxes for different environments as well the 

molecular weight and compositions of the ABC-type BCPs used to produce the 

membranes are given in their respective Table. 
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pronounced. This is due to the P2VP block length but more importantly to its position within 

the terpolymer chain. 

The use of polymers containing stimuli-responsive character is a promising approach to 

facilitate the cleaning process of the membranes and thus limiting the fouling. Furthermore, it 

was reported that membranes endowed with a good temperature cyclability (i.e., good 

reversibility of the water permeability as a function of temperature cycles)  offer new 

possibilities for the development of advanced easy-to-clean membranes.2 To this end, we detail 

the cyclability of the pH- and thermo-responsive PS-b-P2VP-b-PNIPAM membranes upon 

temperature variations in the following section.  

 

3.3. Reversible PS-b-P2VP-b-PNIPAM thick films 

 

The cyclability of the membranes was tested by measuring the permeability for four 

temperature cycles (i.e., switching between 13°C and 43°C) for three different NIPS-SVA made 

PS-b-P2VP-b-PNIPAM membranes (see Figure 11). Here the corrected permeability values 

show that the thermo-responsive behavior is a consequence of the chain collapse of PNIPAM 

above its LCST. 

 

 

 

Figure 11. Reversibility of thermo-responsive behavior of three PS-b-P2VP-b-PNIPAM 

membranes showing different stabilities. 
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Figure 11.a presents a freshly prepared membrane exposed to a CHCl3 vapor for 2h and directly 

tested by measuring the permeability for four temperature cycles. The membrane was 

conditioned at 2 bar at temperature below the PNIPAM LCST for 10 min before each cycle. 

This membrane was not reversible since it shows unstable variations of permeability for each 

cycle, with an important increase of permeability during the second cycle. From this result, we 

can conclude that the filtration at high temperature played a role in the permeability and the 

freshly prepared membrane was not stable. 

In Figure 11.b is presented another membrane that was stored in water few hours to allow 

hydration and stabilization of pores and then conditioned at 45°C before reversibility 

measurements. We can observe an increase of permeability during the last cycle which is 

probably due to the high pressure drop applied during the filtration (1.5bar). From these results, 

we can note that the conditioning at temperature above the PNIPAM LCST as well as the 

storage in water conduce to a more reversibly stable membrane.  

Finally, a fully reversible membrane with the same permeability values for each temperature 

cycle was obtained in the following conditions: applied filtration pressure about 1bar, storage 

of the membrane in water and conditioning at 43°C (see Figure 11.c). 

We can conclude that the conditioning step is important to generate fully reversible double 

stimuli-responsive PS-b-P2VP-b-PNIPAM membranes. 

 

The determination of the pore size distribution (PSD) is a critical factor characterizing the 

membrane filtration performances. It plays a major influence on the membrane permeability 

and in turn the filtrate flux. In this study, an approach based on solute rejection using gold 

nanoparticles was used to evaluate the rejection of nanostructured NIPS-SVA made PS-b-

P2VP-b-PNIPAM thick films. 
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4. Pore size distribution of PS-b-P2VP-b-PNIPAM thick films 

 

Aqueous solutions containing monodisperse gold nanoparticles (Au-NPs) with different sizes 

ranging from 5 to 20 nm were used to evaluate the pore size of the prepared double stimuli-

responsive thick films. This strategy is based on the evaluation of the rejection factor that can 

be determined by the following equation:  

 

Where R is the rejection factor (%), Cperm. and CFeed are the concentrations of the permeate and 

of the feed respectively. The ideal case in this study would be composed of high rejection factor 

at temperature below the PNIPAM LCST due to its swollen state and low rejection factor at 

temperature above LCST. 

The filtrations were performed at 2 bar with the same filtration setup used to determine the 

water permeability. The Au-NPs solutions were diluted 10 times in Milli-Q ultrapure water. 

UV-visible spectrometer (Shimadzu, UV-2401 PC) was used to measure the concentrations in 

the feed, permeate and retentate solutions by recording its UV-visible spectrum over the 400-

800 spectral range. 

Figure 12.a presents the UV-visible spectra of the feed, retentate and permeate of rejection of 

5 nm Au-NPs. A rejection of ~ 57% was achieved at 2 bar for the NIPS-SVA made (2h, CHCl3) 

PS-b-P2VP-b-PNIPAM thick film, suggesting first that the prepared thick film is not dominated 

by any macro defects, and consequently that the water transport occurs through the perforated 

lamellar P2VP-PNIPAM nanodomains. By heating-up the rejection factor decreased to ~51% 

confirming the shrinking of PNIPAM chains and a small opening of the membrane pores (see 

Figure 12.b).  
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This rejection rate gives a first information regarding the pore size that are bigger than 5 nm 

and confirms the thermo-responsive character of the material. 

10 nm Au-NPS were filtrated at 46°C. Here, a higher rejection of ~ 81% was recorded at 

temperature below LCST (see Figure 13.a), indicating that the prepared thick film has pore 

size distribution higher than 5nm but not equal to 10 nm, otherwise the rejection would be 

100%. Surprisingly, the rejection factor at temperature above LCST has increased to ~ 97% as 

shown in Figure 13.b, no absorption at 520 nm in the UV-visible spectrum can be achieved, 

indicating that the 10 nm gold NPs are completely blocked and that the pore size are smaller 

than in the cold state, which is not in accordance with the PNIPAM behavior. 

 

 

 

 

Figure 12. UV-visible spectra of the feed, retentate and permeate recorded over the 400-800 nm spectral 

range at a (a) low and (b) high temperature. All the UV-visible spectra consist of a peak centered at 

approximatively 520 nm corresponding to the surface polariton generated by the 5 nm Au-NPs. 
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We assumed that Au-NPs solutions were not stable at high temperature and the nanoparticles 

aggregate.Dynamic light scattering was performed on 5 nm and 10 nm Au-NPs in order to 

verify their stability in hot water. As shown in Figure 14, the three NPs of different sizes did 

not show any change in their hydrodynamic diameter between cold and hot temperature and 

show a good stability of the solutions. 

  

Figure 13. UV-visible spectra of the feed, retentate and permeate recorded over the 400-800 

nm spectral range. (a) At low temperature, all the UV-visible spectra consist of a peak centered 

at approximatively 520 nm corresponding to the surface polariton generated by the 10 nm Au-

NPs. (b) At high temperature, no absorption peak is observed at 520 nm on permeate spectra, 

which indicates a rejection of the 10 nm Au-NPs. 
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From these results, we can conclude that the pore size distribution of the NIPS-SVA made PS-

b-P2VP-b-PNIPAM membrane is higher than 10 nm at temperature below 32°C and that the 

prepared material is not dominated by the formation of macro defects. However, the 10 nm gold 

nanoparticles filtration was not in accordance with the thermo-responsive behavior of the 

PNIPAM and was not successful. 

  

Figure 14.  Hydrodynamic size calculated by DLS measurements of commercial 5 nm and 

10 nm gold nanoparticles solutions. 
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5. Conclusion  
 

In this chapter, we presented the study of self-assembly of the previously synthesized                  

PS-b-P2VP-b-PNIPAM triblock terpolymer by RAFT polymerization. For that purpose, we 

used a combination of the non-solvent induced phase separation (NIPS) technique with a 

solvent vapor annealing (SVA) treatment to produce an out-of-plane lamellar phase.  

We showed that the NIPS-made (as-cast) membranes were not stable and presented two 

completely different morphologies: either highly porous or completely closed membrane 

surface. These results are in accordance with the high influence of external parameters 

(specifically the external temperature and relative humidity in our case) on the final 

morphology. 

The use of a SVA treatment showed a full reconstruction of the membrane surface. Indeed, by 

varying the exposure time to CHCl3 vapors (from 0 to 6h), the membrane surface morphology, 

roughness and pore periodicity decreased to reach thermodynamic equilibrium resulting in a 

highly ordered out-of-plane lamellar phase (SVA, 6h in CHCl3) with a period ~41 nm. 

The water permeability of the double stimuli-responsive membrane was studied at temperatures 

below (< 20°C) and above (> 35°C)  the PNIPAM LCST. Depending on the NIPS-made 

membrane i.e., the starting point (either highly permeable or completely closed membrane) the 

water permeability measurements were in accordance with PNIPAM collapsed and swollen 

states, presenting in all cases an increase in water permeability at temperature higher than 32°C, 

thereby confirming the presence of a thermo-sensitive effect of the prepared membranes. 

Moreover, the thermo-sensitive behavior was fully reversible, if the membrane conditioning 

was adapted. 

The double stimuli-responsive behavior was also confirmed by water permeability 

measurement in different pH environments. It was found that the pH-sensitive character is less 

pronounced at cold temperature due to the P2VP chain length and probably its position within 

the terpolymer. Finally, the pore size distribution of the prepared thick film is higher than 10 

nm since the rejection factor was less than 100% at cold temperature. However, the pore size 

distribution of the material was not confirmed at hot temperature. 
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1. Introduction  
 

As discussed in Chapter 3, amphiphilic block copolymers (BCPs) are excellent candidates for 

membrane preparation since well-defined nanostructures with highly desirable functionalities 

(i.e., isoporosity, hydrophilicity, and fouling reduction) can be produced on the material top 

surface. Depending on the block volume fractions and the Flory-Huggins interaction parameters 

between the different pairs (i.e., A/B, B/C and A/C), more than 20 ordered morphologies have 

been reported1 from the microphase-separation of linear ABC triblock terpolymers, including 

lamellae, cylinders, spheres, and more complex continuous phases (e.g., perforated lamellae 

and gyroid).2 One of the critical challenges in BCP self-assembly is the extension of the 

available suite of geometries to more complicated ones. Therefore, the combination of two (or 

more) distinctly BCPs, also referred as blend of BCPs is a promising approach to design novel 

superstructures with controlled morphologies.3 

In this thesis, we are interested in the manufacture of fouling resistant membranes. To this end, 

we chose the direct incorporation of hydrophilic polymers with strong water affinity such as 

the pH-responsive P2VP and the thermo-responsive PNIPAM within the double stimuli-

responsive PS-b-P2VP-b-PNIPAM membrane to build fouling-resistant nanopores.  

To increase the membrane hydrophilicity (so as to reduce the interactions between the foulants 

and materials), the previously synthesized PS-b-P2VP-b-PNIPAM has been blended with other 

amphiphilic BCPs. To this end, a poly(ethylene oxide) (PEO)-containing ABC-type BCP and 

a PNIPAM-containing AB-type BCP were loaded to the PS-b-P2VP-b-PNIPAM membranes to 

possibly improve their fouling resistance. 

This chapter will be devoted to the study of the self-assembly of blended PS-b-P2VP-b-

PNIPAM with two different amphiphilic BCPs: PS-b-P2VP-b-PEO and PS-b-PNIPAM. The 

combination of the non-solvent induced phase separation (NIPS) technique and the solvent-

vapor annealing (SVA) process was used to produce asymmetric blended PS-b-P2VP-b-

PNIPAM thick films with improved hydrophilicity.    
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2. Fabrication of blended PS-b-P2VP-b-PNIPAM thick films by 

NIPS 
 

NIPS was used to prepare asymmetric blended PS-b-P2VP-b-PNIPAM thick films. The 

following described procedure was applied for all the prepared materials (i.e., blends of PS-b-

P2VP-b-PNIPAM chains with the two PEO-based ABC-type terpolymers and the PS-b-

PNIPAM BCP discussed later on).  

PS-b-P2VP-b-PNIPAM terpolymer was mixed with the selected terpolymer as blend in the 

targeted ratio. The polymer mixture powder was dissolved in a di-solvent mixture of 1,4-

dioxane (DOX) and tetrahydrofuran (THF) (50/50 by weight). Before casting the polymer 

solution, the silicon substrate has been prepared in advance according to this procedure:  the 

silicon substrate (3x3cm) surface was treated by an oxygen plasma (45W mTorr O2, 10 min) in 

order to prevent the polymer from sticking. A hydrophilic “sacrificial” poly(poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) was then spin-coated on the 

silicon substrate in order to facilitate the removal of the polymeric membrane once immersed 

in water. 

The polymer mixture solution (18 wt.%) was casted using a tape casting technique with a 

250µm gap. DOX and THF were evaporated for 30s at room temperature (RT) to form a dense 

top layer. The membrane was then plunged into a deionized water bath for 5 min to induce the 

polymer precipitation (see Figure 1). 
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The choice of polymer concentration, solvent mixture and evaporation time were proved to be 

good conditions to generate asymmetric PS-b-P2VP-b-PNIPAM thick films, so they were 

applied here as point of comparison. However, in the previous chapter, we noted that the NIPS 

process generated an instable poorly ordered membrane surface mainly due to external 

temperature and relative humidity issues. In order to avoid any problem related to these 

parameters, the membranes to be studied were prepared the same day.  

 
 

 

 

Figure 1. Schematic representation of the NIPS technique used for preparation of blended 

PS-b-P2VP-b-PNIPAM membranes. (a) Polymer solution mixture, (b) polymer solution 

casting, (c) immersion in coagulation bath and (d) cross-sectional view of blended 

membrane obtained by NIPS showing sponge-like sublayer.  
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3. Surface reconstruction of blended PS-b-P2VP-b-PNIPAM 

thick films by SVA  
 

Solvent vapor annealing treatment is a promising technique for the generation of well-organized 

PS-b-P2VP-b-PNIPAM membrane surfaces.  

In this chapter, the self-assembly of the blended PS-b-P2VP-b-PNIPAM system with other 

block copolymers was stimulated by exposing films for different times (ranging from 0h to 6h) 

to a continuous stream of chloroform (CHCl3). Nitrogen gas was bubbled continuously through 

the liquid solvent in order to generate continuous flow and insure a good control of CHCl3 vapor 

pressure in the chamber. The solvent vapor was diluted with a separate N2 stream so that a 

solvent vapor consisted of 32 sccm CHCl3 vapor and 8 sccm N2 (total 40 sccm). The 

morphology of the solvent-annealed PS-b-P2VP-b-PNIPAM thick films was frozen by a fast 

removal of the chamber lid. Chloroform was already studied on the self-assembly of PS-b-

P2VP-b-PNIPAM and it was shown that it can drive the membrane reconstruction until full 

equilibrium. Furthermore, it was demonstrated that it is a suitable solvent for the PS-b-P2VP-

b-PEO terpolymer.4  

 

3.1. Characterization techniques  

 

The following characterization techniques were used for all the blended PS-b-P2VP-b-

PNIPAM thick films presented in this chapter. 

 

 Surface morphology  

The surface morphology of the blended PS-b-P2VP-b-PNIPAM thick-films were characterized 

by Atomic force microscopy (AFM Nano-Observer, CSInstruments) in tapping mode. Silicon 

cantilevers (PP-NCH-Nanosensers) with a typical tip radius of 5 nm were used. The resonance 

frequency of the cantilevers was about 235 kHz. In order to improve the AFM contrast, the 

blended thick films were treated with a fluorine plasma in a home-made chamber. The plasma 

conditions were as followed: 45 W, 75 mTorr CF4, and 90s. 
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Scanning electron microscopy (SEM) was used to analyze the membranes cross section and top 

surface. SEM pictures were obtained using a Hitachi S4800 operating under 0.1-30 kV working 

voltage. 

 Water flux performances 

The water permeability of the different blended PS-b-P2VP-b-PNIPAM thick films was studied 

using a dead-end filtration set-up by measuring the flux of Milli-Q pure water at different 

pressures (0–2 bar). Hydrophilic polyvinylidene fluoride (PVDF) was used to support the round 

shape blended membranes with a diameter of 2.5 cm. Amicon type filter cell containing the 

supported membrane was connected to a pressure vessel filled with Milli-Q pure water. A 

stainless steel electronic bath filled with water was used to heat up the temperature and measure 

the water permeability from 23°C to 45°C. All the measured permeability at temperature below 

or above than 20°C, the results were corrected by multiplying them with the relative change in 

the dynamic viscosity of water at 20°C. 

 

 

4. Phase behavior of blends of PS-b-P2VP-b-PNIPAM and PS-

b-P2VP-b-PEO: effect of the molecular weight 
 

Amphiphilic copolymers composed of both hydrophobic and hydrophilic materials are largely 

used as additives to be blended with different types of host polymers.5 The principle of blending 

block copolymers lies in that the hydrophilic segments tend to segregate within the nanopores, 

and improve consequently the membrane hydrophilicity. The hydrophobic ones, for their part, 

are mixed with the membrane skeleton by chain entanglement which improve their 

compatibility with host polymers.6 Surface segregation of amphiphilic copolymers in the phase 

inversion process has long been used to improve membrane hydrophilicity as long as the 

copolymers used are sparsely dosed into the casting solutions.6 Indeed, membrane properties, 

such as high flux, high solute rejection and fouling resistance can be tuned by controlling the 

ratio of hydrophobicity and hydrophilicity.7 The use of diblock and triblock copolymers result 

in more complex morphologies able to muscularly sway transport properties of the membrane. 

However, in order to insure the successful blending of BCPs and improve the targeted 

membrane properties, the selected polymers must be miscible at any blend ratio.6 
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The BCP self-assembly is highly dependent on several parameters such as: polymer types, 

blocks order, their respective molecular weight, volume fractions, Flory-Huggins χ-parameters, 

etc. In this chapter part, two commercial PS-b-P2VP-b-PEO  triblock terpolymers (noted 

hereafter SVO) having different molecular weights (69,5 kg/mol and 112 kg/mol) were used as 

additives in different ratios to be blended with the double stimuli responsive PS-b-P2VP-b-

PNIPAM chains in order to manufacture fouling resistant membranes with improved 

hydrophilicity. Here the effect of the molecular weight as well as the effect of the blend 

percentage on the self-assembly of the PS-b-P2VP-b-PNIPAM terpolymer will be evaluated. 

For the rest of this study, the previously synthesized double stimuli-responsive terpolymer 

(SVN7 from Chapter 2) composed of PS (28.2 kg/mol, fPS = 0.68), P2VP (5.8 kg/mol, fP2VP = 

0.13) and PNIPAM (8.5 kg/mol, fPNIPAM = 0.19) was selected (see Table 1). 

Both PEO-containing ABC-type terpolymers were purchased from Polymer source and have a 

low dispersity (D < 1.10). The small molecular weight SVO system consisted of PS (45 kg/mol, 

PS = 56), P2VP (16 kg/mol, P2VP =23) and PEO (8.5 kg/mol, PEO = 12) while the large one 

was composed of PS (75 kg/mol, PS = 69), P2VP (21 kg/mol, P2VP = 18) and PEO (16 kg/mol, 

PEO = 14), where  represents the different volume fractions. PS45k-b-P2VP16k-b-PEO8.5k and 

PS75k-b-P2VP21k-b-PEO16k  will be called hereafter SVO8k and SVO16k, respectively, where the 

subscripts represent the molecular weight of each block and k means kg/mol (see Table 1).  

 

 

 

The following part is devoted to the study of the self-assembly of blended PS-b-P2VP-b-

PNIPAM terpolymer with a high molecular weight SVO16k system in membrane configuration 

generated by the NIPS-SVA technique. 

Table 1. Molecular weight of each block and dispersity of selected PS-b-P2VP-b-PEO 

and PS-b-P2VP-b-PNIPAM triblock terpolymers. 
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4.1. Asymmetric PS-b-P2VP-b-PNIPAM thick films blended with SVO16k 

chains 

 

PEO is a hydrophilic polymer with low toxicity suitable for medical and biological 

applications.8 Thanks to its affinity with water, PEO is well-known for improving the 

antifouling properties of a membrane which is desirable characteristic with respect of 

durability.9 Several studies demonstrated that surface modifications with PEO reduced 

significantly the adsorption of proteins. Regarding this aspect, great efforts have been invested 

in the use of PEO coating to improve fouling resistance.8 

Thanks to the hydroxyl end-group, the PEO block can be easily added as a third block to PS-b-

P2VP system to improve the membrane properties (see scheme 1).10 

 

 

 

Before starting the study of the blended PS-b-P2VP-b-PNIPAM/SVO systems, we first 

compared water permeability performances of PS-b-P2VP-b-PNIPAM and SVO16K. As it was 

reported in Chapter 3, NIPS process generated unstable membrane morphologies, either highly 

porous or completely closed depending on the external parameters. However, SVA treatment 

allowed a full membrane surface reconstruction, resulting in stable and reproducible membrane 

morphologies. From this results, an asymmetric NIPS-made SVO16K was prepared and exposed 

to CHCl3 vapor for 6h. The permeability of the prepared membrane was then recorded using a 

dead-end filtration set-up by measuring the flux of Millli-Q water from 0.5 to 2 bar and at 

temperatures below and above the PNIPAM LCST (32°C). Figure 2.a presents the permeability 

rate of the SVO16k membrane while Figure 2.b corresponds to the one obtained for a PS-b-

P2VP-b-PNIPAM membrane.   

Water permeability of the NIPS-SVA made SVO16K membrane at temperature below 32°C was 

noted to be 7 time higher than that of the PS-b-P2VP-b-PNIPAM one due to the presence of 

PEO chains. However, it was measured to be lower than the one of the double-stimuli 

Scheme. 1 Chemical structure of poly(ethylene oxide) (PEO). 
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responsive system at temperature above the PNIPAM LCST, which is expected since PEO 

polymer is not thermosensitive. These results show that the PEO-containing ABC-type 

terpolymer will not negatively impact the hydrophilicity of the blended systems. 

 

 

 

 

Note that the selected commercial SVO16k was composed of a high PS volume fraction to 

reinforce the membrane mechanical properties and with a small PEO volume fraction to fit with 

the PNIPAM domain size. PS-b-P2VP-b-PNIPAM was blended with 75 wt.%, 50 wt. % and 25 

wt. % of SVO16K, and three membranes (one for each blend ratio) were prepared by NIPS 

process and treated with CHCl3 vapors for 6h. Figure 3. presents the AFM topographic images 

of the obtained membranes.  We can see that the blended PS-b-P2VP-b-PNIPAM membranes 

with 75% and 50% SVO16K show a poorly-ordered top surface. While the membrane top 

surface, corresponding to the blend with the lower amount of SVO16k, exhibits a less defective 

nanostructure. 

Figure 2. Water permeability rates of the (a) PS-b-P2VP-b-PEO and 

(b) PS-b-P2VP-b-PNIPAM membranes generated by NIPS-SVA 

(annealed 6h in CHCl3) at 20°C and at 46°C as a function of pressure. 
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From these results, we can note that the optimum blend ratio of SVO16k with the double stimuli-

responsive PS-b-P2VP-b-PNIPAM triblock terpolymer was about 25 wt.%. It was reported that 

overdosed additives, specifically amphiphilic BCP may not be compatible with the casting 

solutions and can ruin the phase inversion process as well as the membrane performances.6 

Table 2. summarizes the normalized water permeability rates of NIPS-SVA made blended PS-

b-P2VP-b-PNIPAM/SVO16k thick films measured at temperatures below (15°C) and above 

(46°C) the PNIPAM LCST.  The as-cast membranes loaded with 50 wt.% and 25wt.% of 

SVO16k present different water permeability values. The permeability value of the membrane 

with the highest SVO blend ratio was established to be of ~135 L.h-1.m-2.bar-1 at 15°C. By 

increasing the water temperature above the PNIPAM LCST, the water permeability is found to 

be ~2 times higher (245 L.h-1.m-2.bar-1 at 46°C). The second membrane with the lowest amount 

of SVO16k, has a water permeability value of ~2 L.h-1.m-2.bar-1  at 15°C . However, this value 

is 10 times increased at 46°C (22 L.h-1.m-2.bar-1) which indicates that the thermo-responsive 

character of the membrane is more pronounced in this case.  

After exposure to CHCl3 vapors, the permeability of both membranes decreased due to the 

surface reconstruction. After a SVA treatment of 6h, both membranes present water 

permeability values not higher than 10 L.h-1.m-2.bar-1 at 46°C. From these results, we can 

conclude that PS-b-P2VP-b-PNIPAM thick films blended with 25 wt.%  of SVO16k chains 

shows the best membrane surface reconstruction generated by SVA. In this case, the 

Figure 3. AFM topographic images of PS-b-P2VP-b-PNIPAM/ SVO16k thick films with different blend 

ratios. 
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hydrophilicity of the membrane did not increase but the thermo-responsive character was 

conserved. Higher ratio percentages result in a less well-ordered morphology on the NIPS-SVA 

made membrane top surface,  and conduce to a decrease in the material thermo-responsive 

character. 

 

 

 

Another PEO-containing ABC-type terpolymer having a lower molecular weight was also 

blended with the PS-b-P2VP-b-PNIPAM chains to evaluate the effect of the molecular weight 

on the BCP self-assembly. 

 

4.2. Asymmetric PS-b-P2VP-b-PNIPAM thick films blended with SVO8k 

chains 

 

Erukhimovich  et al.11 reported in their work that the addition of a short third block in diblock 

copolymer can influence the segregation and change the stretching of the other two blocks. Jung 

et al.10 showed that short PEO (< 10 Kg/mol) has a strong influence on the structure formation 

of PS-b-P2VP membranes. A repulsion interaction between PEO and the other blocks tend to 

induce a decrease of interfacial curvature where the system adopts a morphology in which the 

components are stronger segregated. 

Table 2. Membrane permeability rates as a function of the annealing time and 

temperature. Results were obtained from blends of PS-b-P2VP-b-PNIPAM chains with 50 

wt.% and 25 wt. % of SVO16k. 
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In this study, the same previously synthesized PS28.2k-b-P2VP5.8k-b-PNIPAM8.5k was blended 

with 25 wt % of SVO8k. Here the hydrophilic end-block of both systems have the same 

molecular weight about 8.5 kg/mol (see Table 1). 

Figure 4.presents the AFM topographic images of NIPS-SVA made blended PS-b-P2VP-b-

PNIPAM/SVO8k thick films. The membrane surface reconstruction is similar to the one of pure 

double stimuli-responsive terpolymer. The as cast (SVA = 0h) to surface membrane showed a 

poorly ordered micelle-like nanoparticles generated as a result of solvent exchange during NIPS 

process (Figure 4.a). After 30 min of exposure to CHCl3 vapors, the membrane surface exhibits  

poorly ordered core/shell P2VP/PNIPAM nanodomains (Figure 4.b). 

 

 

 

Filtration performances of the blended PS-b-P2VP-b-PNIPAM/SVO8k were measured at 

pressure drop between 0.5 and 2 bar for two temperatures (15°C and 46°C) as shown in Table 

3. 

The NIPS-made (as-cast) PS-b-P2VP-b-PNIPAM/SVO8k  membrane showed small increase 

of water permeability values ~ 3 L.h-1.m-2.bar-1 at 15°C comparing to the one of the non-blended 

polymer (0 L.h-1.m-2.bar-1) even if the AFM topographic image (see Figure 4.a) showed 

completely closed pores. This small permeability difference is mainly due to the presence of 

PEO chains. 

A higher water permeability was measured to be ~157 L.h-1.m-2.bar-1 (at 15°C) for 30 min of 

exposure to CHCl3 vapors, which is roughly 22 times higher than the one recorded for the        

Figure 4. AFM topographic images of solvent-annealed PS-b-P2VP-b-PNIPAM membranes 

blended with 25 wt.% SVO8k . Membranes were treated with CHCl3 vapors for different 

times: (a) 0h and (b) 30min  
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PS-b-P2VP-b-PNIPAM system. At this point the reconstruction of the membrane surface and 

the segregation of the PEO block within the P2VP/PNIPAM pores allowed an increase of water 

permeability. After a SVA treatment of 6h, the permeability decreased to ~5 L.h-1.m-2.bar-1 at 

15°C, which is in accordance with the previous results, where the reorganization of the 

membrane surface resulted in decrease of permeability values at temperature above the 

PNIPAM LCST. However, at 46°, the water permeability increased to ~ 21 L.h-1.m-2.bar-1 which 

is higher than the one reported for the non-blended membrane. 

 

 

The overall hydrophilicity of the double stimuli-responsive membrane has increased by using 

25wt.% of SVO8k chains.  This blend percentage as well as the addition of terpolymer with short 

PEO block, having exact molecular weight as PNIPAM block (Mn,PEO = Mn,PNIPAM = 8.5 

kg/mol ) seemed to be more compatible, resulting in successful segregation of the hydrophilic 

PEO polymer with membrane pores composed of P2VP/PNIPAM. Despite the increase of 

overall wettability of the membrane, the thermo-responsive behavior was conserved. 

In order to improve the hydrophilicity as well as the thermo-repsonsive behavior of the 

membrane, another AC-type BCP composed of PS-b-PNIPAM was studied. Here, the addition 

of short hydrophilic thermo-responsive polymer is expected to increase the membrane 

permeability, thanks to its perfect compatibility with the double stimuli-responsive ABC-type 

terpolymer end-block, as well as the membrane fouling resistance. Indeed, if the transtition 

Table 3. Permeability rates of blended (25wt.% of SVO8k) and unblended PS-b-P2VP-b-PNIPAM 

membranes as a function of the SVA duration and temperature.  
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between swelling and stretching state of PNIPAM (also reprensenting the “close/open” state of 

membrane pores) is increased, the membrane self-cleaning is then increased. 

In the following section, we will detail the self-assembly of PS-b-P2VP-b-PNIPAM/PS-b-

PNIPAM, also reffered as ABC/AC thick films. 

 

5. Self-assembly of PS-b-P2VP-b-PNIPAM membranes blended 

with PS-b-PNIPAM chains  

 

Poly(N-isopropylacrylamide) (PNIPAM) is a hydrophilic polymer, and one of the best known 

thermo-responsive polymer exhibiting a lower critical solution temperature in water ranging 

from 31°C to 33°C.12 In membrane technology, the combination of PNIPAM with other 

polymers has been largely investigated to develop smart surfaces with a controllable wetting 

behavior.13 

The selected PS-b-PNIPAM diblock copolymer was synthesized by RAFT polymerization in 

presence of 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) as RAFT 

agent and azobisisobutyronitrile (AIBN) as initiator. Polystyrene macro RAFT agent was 

prepared first, and then extended with NIPAM to produce PS-b-PNIPAM with low dispersity, 

D = 1.10 (see Chapter 5 for synthesis details). The synthesized AC-type BCP consisted of a 

high PS volume fraction (22 kg/mol, fPS = 0.81) and PNIPAM (6.7 kg/mol, fPNIPAM = 0.19) (see 

Table 4). 

 

 

Table 4. Molecular weight of each block and dispersity of selected 

PS-b-P2VP-b-PNIPAM terpolymer and PS-b-PNIPAM diblock 

copolymer. 
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NIPS technique was used to produce asymmetric PS-b-P2VP-b-PNIPAM blended with 20 wt.% 

of PS-b-PNIPAM. In Figure 5.a is presented an AFM topographic image of the NIPS-made 

ABC/AC thick film. The rough membrane surface (Rrms = 25.9 nm) was composed of poorly-

ordered features with a period of 12.3 nm, that was transformed into highly open porous 

surface with P2VP-PNIPAM/PNIPAM pores having a period of 57.1 nm  after exposure to 

CHCl3 vapors for 2h as shown in Figure 5.b. 

The membrane surface reconstruction of a NIPS-SVA made PS-b-P2VP-b-PNIPAM/PS-b-

PNIPAM thick film exposed to chloroform vapors for 6h is shown in Figure 5.c. Once again 

the SVA treatment allowed an improvement of the long-range ordered nanostructure. The 

membrane top surface is composed of well-organized pores having a mean period of ~ 45 nm.  

 

 

 

The cross-sectional SEM view in Figure 6.b shows an asymmetric PS-b-P2VP-b-PNIPAM/ 

PS-b-PNIPAM thick film prepared by NIPS process and SVA treatment for 2h. The prepared 

thick film consisted of a dense skin layer (see the part above the dotted line) and  a microporous 

substructure morphology.  

Figure 5. AFM topographic images of NIPS-made PS-b-P2VP-b-PNIPAM/PS-b-PNIPAM thick 

films exposed to a CHCl3 vapor for different times: (a) 0 min (as-cast) (b) 2h and (c) 6h. 
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The water permeability values of the NPS-SVA made ABC/AC thick films obtained for 

different SVA durations are presented in Table 5. The SVA treatment was successful in term of 

membrane surface reconstruction but also it allows, for the first time in this study, an important 

increase of the water permeability for the PS-b-P2VP-b-PNIPAM/PS-b-PNIPAM thick films. 

After SVA treatment for 6h in CHCl3 vapor, the water permeability of the blended membrane 

was measured to be   ~30 L.h-1.m-2.bar-1 at 15°C. By heating up the water temperature to 46°C, 

the permeability increased by ~ 2.5 times (81 L.h-1.m-2.bar-1). 

The use of PS-b-PNIPAM as blend ratio with small PNIPAM volume fraction has leaded to a 

drastic increase of membrane surface reconstruction resulting in perforated lamellar phase on 

the membrane top surface, which is relevant for challenging separation applications. 14 

 

 

Figure 6. Cross-sectional SEM view of  blended (20 wt. %) PS-b-P2VP-b-PNIPAM/PS-b-PNIPAM 

thick film generated by NIPS-SVA (2h, CHCl3). 
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Table 5. Membrane permeability rates as a function of the annealing time and 

temperature obtained from PS-b-P2VP-b-PNIPAM thick films blended with 

20 wt% of PS-b-PNIPAM chains. 
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6.  Conclusion 
 

In this chapter, double stimuli-responsive PS-b-P2VP-b-PNIPAM membranes were blended 

with different amphiphilic copolymers in order to increase their hydrophilicity and their 

potential fouling resistance. Different molecular weight PEO-containing ABC-type BCPs were 

first studied in different blend ratios in order to evaluate the effect of the molecular weight as 

well as the effect of the blend percentage on the final self-assembled terpolymer thick films. 

As the combination of the NIPS process with a SVA treatment generated well organized double 

stimuli-responsive membrane composed of lamellar morphology (reported in Chapter 3). The 

same techniques were used to produce blended membranes with improved hydrophilicity and 

achieve new morphologies via a blending strategy. 

Firstly, blend ratio of PS-b-P2VP-b-PEO triblock terpolymer was studied and it was reported 

that high blend percentage > 25 wt. % leaded to disturbed phase inversion process and poorly 

organized morphologies. Furthermore, NIPS-SVA PS-b-P2VP-b-PNIPAM membranes 

blended with 50 wt. % of PEO-containing ABC-type terpolymer showed poor permeability 

value at temperatures below and above the PNIPAM LCST. 

Secondly, the molecular weight effect of blended PEO-based terpolymer was studied and it was 

observed that a short PEO  block with equal molecular weight to the PNIPAM one (8.5 kg/mol) 

showed less packing frustration within the membrane pores (i.e., blended and unblended 

membranes exhibit the same morphology). Moreover, by blending the PS-b-P2VP-b-PNIPAM 

membranes with SVO8k chains, it is observed an increase of the water permeability both below 

and above the PNIPAM LCST in comparison with the neat material. Here, the water 

permeability is increased thanks to the presence of the PEO blocks within the membranes pores 

since PEO allows for an increase of the pore hydrophilicity, thereby reducing the capillary 

forces occurring within the nanodomains. In other words, a full reconstruction of the membrane 

top surface into a highly ordered lamellar phase was observed accompanied with increase of 

the hydrophilicity as well as the thermo-responsiveness. 

A PS-b-PNIPAM BCP was also loaded within the pH and thermo-responsive PS-b-P2VP-b-

PNIPAM membranes with a low percentage (20 wt. %). This made that, for the first time in this 

work, the water permeability of the blended membranes generated by NIPS-SVA (6h, CHCl3) 

has increased to ~80 L.h-1.m-2.bar-1 at temperature above the PNIPAM LCST.  
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The full compatibility between the PNIPAM blocks has increased the transition between 

collapsed and stretched state of PNIPAM resulting in increase of water permeability and of 

thermo-responsive character of the membrane.  

Finally, the combination of the NIPS-SVA process is a promising technique for the generation 

of membrane top surfaces having a well-ordered morphology. The blend of the double stimuli-

responsive PS-b-P2VP-b-PNIPAM terpolymer with an amphiphilic BCP, and particularly the 

AC-type BCP, created a new film morphology having well-ordered nanodomains. This 

membrane reconstruction increased the wettability of the thick film and its thermo-responsive 

behavior, which is one of the desired properties in the manufacture of fouling-resistant 

membranes. 
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1. Used products  

 

 Monomers 

N-isopropylacrylamide (NIPAM, >99%, Sigma-Aldrich) was purified by recrystallization in a 

mixture of toluene/hexane (50/50, v/v). Styrene (St, >98%, Sigma-Aldrich) was stirred with 

inhibitor removal resin about 30 min prior to use. 2-Vinylpyridine (2VP, >97%, Sigma-Aldrich) 

was passed throw a column of activated alumina in order to remove the tert-butylcatechol 

present in the monomer.  

 RAFT agents  

4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDPA, >97%,  RAFT 

agent, Sigma-Aldrich), 4-Cyano-4-[dodecylsulfanylthiocarbonyl)sulfanyl]pentanol (CDP ≥ 

96.5%, RAFT agent, Sigma-Aldrich) and 2-dodecylthiocarbonylthio-2-methyl propionic acid 

(DDMAT, >97%,  RAFT agent, Sigma-Aldrich) were used without further purification. 

 Initiator  

2,2′-Azobis (2-methylpropionitrile) (AIBN, >99%, Sigma-Aldrich) was purified by 

recrystallization from methanol before being used. 

 Polymers  

Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) PS45k-b-P2VP26k-b-

PEO8.5k and PS75k-b-P2VP21k-b-PEO16k (where the subscripts represent the number averages 

molecular weight of each block, k means kg/mol) were purchased from Polymer source. 

 Solvents  

1,4-dioxane (DOX, >99%), tetrahydrofuran (THF, >99%), heptane, dimethylformamide (DMF, 

>99%), diethyl ether (>99%) and NMR solvents: deuterated dichloromethane (CD2Cl2) and 

chloroform deuterated (CDCl3) were purchased from Sigma-Aldrich and used as received. 
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2. Analysis techniques  

 

2.1. Polymers characterization  

 

2.1.1. 1H nuclear magnetic resonance (NMR) spectroscopy 

 

1H NMR spectra were recorded at room temperature on Bruker Avance spectrometers operating 

at 400 MHz using either deuterated dichloromethane (CD2Cl2).  

 

2.1.2. Diffusion ordered spectroscopy (DOSY) 

 

2D DOSY spectra were recorded at room temperature on Bruker Avance spectrometers 

operating at 600 MHz using deuterated chloroform (CDCl3). 

 

2.1.3. Size exclusion chromatography (SEC) 

 

Size exclusion chromatography SEC was carried out on a Viscotek device (Malvern 

Instruments, Worcestershire, U.K) with a triple detector array. The SEC apparatus was 

equipped with two PLgel 5µm 500Å columns, THF as eluent with a flow rate at 1mL/min at 

35°C, PS standards were used for calibration of the column. Omnisec software using refractive 

index and light scattering signals was applied to calculate Mn and Đ of polystyrene synthesized. 
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2.2. Membranes characterization  

 

2.2.1. Atomic force microscopy (AFM) 

 

Atomic force microscopy (AFM Nano-Observer, CSInstruments) was used in tapping mode to 

characterize the surface morphology of PS-b-P2VP-b-PNIPAM thick films. Silicon cantilevers 

(PPP-NCH, Nanosensors) with a typical tip radius of 5 nm were used. The resonance 

frequency of the cantilevers was about 235 kHz.  

 

2.2.2. Scanning electron microscopy (SEM) 

 

Scanning electron microscopy (SEM, Hitachi S-4800) was used at an accelerating voltage of 5 

kV to acquire top view and cross-section images of both asymmetric thick films and monoliths 

formed by PS-b-P2VP-b-PNIPAM chains. 

 

3. Protocol: CHAPTER 2  

 

3.1. Synthesis of PS macro-CTA by RAFT 

 

In the following section, we will describe the synthesis procedure for the homopolymer S7 

presented in Table 1 in Chapter 2. 

A 100 mL round-bottomed flask was charged with 60 g of freshly purified styrene (0.57 mol), 

0.26 g of CDPA (0.66 mmol) and 21 mg of AIBN (0.13 mmol). The sealed reaction vessel was 

purged with nitrogen and immersed in a preheated oil bath at 70 °C for 20h. The styrene bulk 

polymerization was stopped by cooling the reaction vessel in an ice bath. The styrene bulk 

polymerization was stopped by cooling the reaction vessel in an ice bath, then an aliquot was 

withdrawn from the solution to determine the monomer conversion by 1H NMR. By comparing 

the integrated aliphatic proton signals due to the PS groups at 1.88 ppm to those due to the 

styrene monomer at 5.77–5.83 ppm, the conversion was found to be 39%. The resulting PS 
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macro-chain transfer agent (CTA) was precipitated three times in cold methanol and dried 

overnight in a vacuum oven at RT) to give a white-yellowish powder. The molecular weight of 

hPS was determined only by SEC since the CTA chain-end protons are not visible from the 

NMR spectrum. 

 

3.2. Synthesis of PS-b-P2VP macro-CTA by RAFT  

 

In this part, we will describe the synthesis procedure for the diblock copolymer SV3 presented 

in Table 1 in Chapter 2. 

In 200 mL round flask, hPS28.2k (5 g, 0.17 mmol) was mixed with 2VP (28.82 g, 0.27 mol), 

AIBN (5.8 mg, 0.035 mmol) and 1,4-dioxane (54.9 ml). The solution was purged with nitrogen 

and then heated to 70°C by using a temperature controlled oil bath. Polymerization was allowed 

to proceed during 7h prior to stop the reaction by immersing the vessel into an ice bath. An 

aliquot was withdrawn from the solution, then the brown mixture was concentrated in heptane 

and dried overnight under vacuum at room temperature (RT) (5.45 g, yield = 16 %). The PS-b-

P2VP macro-RAFT agent conversion was calculated by 1H NMR to be 10.2 %, by comparing 

the integrated aromatic proton signals of the P2VP ring at 8.25 ppm to those of the 2VP 

monomer at 8.53 ppm. 1H NMR (400MHz, CD2Cl2): δ = 8.25 (1H,m Ph), 6.61-7.06 (8H,m,Ph) 

and 1.27-2.30 (6H,m,CH-CH2). The PS-b-P2VP molecular weight and its PS volume fraction 

were determined by 1H NMR to be 34.6 kg/mol and 0.83, respectively. SEC in THF using PS 

standard: Mn= 41.8 kg/mol, Đ = 1.14. 

 

3.3. Synthesis of PS-b-P2VP-b-PNIPAM macro-CTA by RAFT  

 

The synthesis procedure described in this part corresponds to the terpolymer SVN7 in Table 1 

in Chapter 2.  

 

The PS-b-P2VP34.6k macro-RAFT agent (4.5 g, 0.13 mmol), NIPAM (4.42 g, 0.03 mol) and 

AIBN (2.13 mg, 0.013 mmol) were dissolved in 23.4 ml of 1,4-dioxane. The solution was 

purged with nitrogen and then placed in preheated oil bath at 70°C for 5h. The polymerization 

was stopped by placing the reaction vessel into ice bath and an aliquot was afterwards 
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withdrawn. 1,4-dioxane was removed with a rotary evaporator after which the PS-b-P2VP-b-

PNIPAM chains were dissolved in a small amount of THF. The ABC triblock terpolymer was 

precipitated once from cold diethyl ether, in order to eliminate the unreacted NIPAM monomer, 

and heptane. To properly eliminate the undesired PNIPAM dead chains, a Soxhlet extraction 

was carried out with ethanol at 95°C for 96h. The PS-b-P2VP-b-PNIPAM terpolymer was then 

concentrated, precipitated in heptane and dried in vaccum oven at RT. The conversion was 

calculated by 1H NMR to be 56%, by comparing the integrated proton signals of the PNIPAM 

groups at 3.99 ppm to those of the NIPAM monomer at 4,01-4,13 ppm. 1H NMR (400MHz, 

CD2Cl2): δ = 3,99 (1H, s, CH), 1.13 (6H,m,CH3-). 
1H NMR spectrum revealed that PS-b-P2VP-

b-PNIPAM chains consisted of PS (28.2 kg/mol, PS = 0.68), P2VP (5.8 kg/mol, P2VP = 0.13) 

and PNIPAM (8.5 kg/mol, PNIPAM = 0.19). SEC in THF using PS standard: Mn= 26.4 kg/mol, 

Đ = 1.32.  

 

3.4. Synthesis of PNIPAM macro-CTA by RAFT 

 

A 100 mL round-bottomed flask was charged with 11 g of recrystallized NIPAM (0.09 mol), 

0.35 g of DDMAT (0.97 mmol), 15.9 mg of AIBN (0.09 mmol) and 25.3 g of DMF. The sealed 

reaction vessel was purged with nitrogen and immersed in a preheated oil bath at 70 °C for 

2h30. The NIPAM polymerization was stopped by cooling the reaction vessel in an ice bath, 

then an aliquot was withdrawn from the solution to determine the monomer conversion by 

70%%. The resulting PNIPAM macro-chain transfer agent (CTA) was precipitated three times 

in cold diethyl ether dried overnight in a vacuum oven at RT to give a white-yellowish powder. 

The molecular weight of hPNIPAM was determined by NMR by comparing the integral peak 

of the amide group at 3.98 ppm to the one of the methyl group of end chain of DDMAT at 

0.88pp. It was found to 7 kg.mol-1 while the one established by SEC, Mn,SEC, in THF using PS 

standard was of 4.9 kg.mol-1, D = 1.02.   

 

3.5. Synthesis of PNIPAM-b-P2VP macro-CTA by RAFT  

 

A 50 mL round flask was charged with 2.66 g of the previously synthesized PNIPAM macro-

CTA (0.38 mmol), 7.59g of 2VP (72.2 mmol) and 62.4 mg of AIBN ( 0.38mmol). The reaction 
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was performed in mass for 5h at 70°C prior to precipitate  the PNIPAM-b-P2VP chains twice 

in hexane, followed by rinsing with cold water to eliminate the unattached PNIPAM chains and 

then lyophilization to eliminate all the water traces.  The conversion was determined by 1H 

NMR to be 36% by comparing the integrated aromatic proton signals of the P2VP ring at 8.25 

ppm to those of the 2VP monomer at 8.53 ppm. 1H NMR (400MHz, CD2Cl2): δ = 8.25 (1H,m 

Ph), 6.61-7.06 (8H,m,Ph) and 1.27-2.30 (6H,m,CH-CH2). The PS-b-P2VP molecular weight 

was determined by 1H NMR to be 20.5 kg/mol. SEC in THF using PS standard: Mn= 19.8 

kg/mol, D = 1.30 

 

3.6. Synthesis of PNIPAM-b-P2VP-b-PNIPAM macro-CTA by RAFT 

 

Here, 2.10 g of PNIPAM-b-P2VP macro-CTA (0.06 mmol) was mixed with 6 g of styrene (0.05 

mol), 2.18 mg of AIBN (0.01 mmol) and 11.4 g of 1,4-dioxane. After degassing the reaction 

was plunged in preheated oil bath at 70°C for 48h, with addition of same initial amount of AIBN 

each 24h to reinitiate the reaction. the final terpolymer was precipitated twice in diethyl ether 

and then once in heptane. SEC trace was bimodal presenting high dispersity D = 2.10 

 

3.7. Synthesis of PNIPAM-b-P2VP-b-PNIPAM by surfactant-free emulsion 

RAFT polymerization  

 

In typical experiment, a 50 Ml round flask was charged with 1.57 g of PNIPAM-b-P2VP macro-

CTA (0.07mmol), and 60 g of water. 4.8 g of styrene (46 mmol) and 0.6 mg of AIBN (0.03 

mmol) were dissolved in DMF and added to the aqueous solution. After purging the solution 

mixture with nitrogen, the reaction was allowed to proceed overnight under stirring at 800 rpm. 

After removing the DMF/H2O mixture, the resulting PISA-latex was dissolved in THF and 

subsequently precipitated twice in diethyl ether prior to be washed in heptane. 

1H NMR (400MHz, CD2Cl2): δ = 3,99 (1H, s, CH), 1.13 (6H,m,CH3-). 
1H NMR spectrum 

revealed that PS-b-P2VP-b-PNIPAM chains consisted of PNIPAM (7.0 kg/mol, PNIPAM = 

0.13), P2VP (18.4 kg/mol, P2VP = 0.35) and PS (26.7 kg/mol, PNIPAM = 0.51). SEC in THF 

using PS standard: Mn= 115.1 kg/mol, Đ = 1.17.  
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4. Protocol: CHAPTER 3 
 

4.1. Membrane preparation by Non-solvent induced phase separation 

(NIPS) 

 

The terpolymer synthesized by RAFT polymerization (SVN7 from Chapter 2) was dissolved 

in solvent mixture of DOX/THF (50/50 by weight). The polymer solution (18 wt.%) was casted 

onto (3x3 cm) silicon substrates by using a tape casting technique with 250 µm gap. DOX and 

THF were allowed to evaporate during 30 s at room temperature, forming a dense air surface 

layer with a kinetically trapped nanoporous structure.  The polymer film was then immersed 

into a coagulation bath of water for 5 min to induce the polymer precipitation. In this step, the 

miscible solvent mixture and water exchange to give rise to an integral-asymmetric membrane. 

The solid film was then deposited on high permeable hydrophilic polyvinylidene fluoride 

(PVDF) for further use. 

4.2. Membrane preparation by solvent vapor annealing (SVA) 

 

In this study, the self-assembly of PS-b-P2VP-b-PNIPAM terpolymers was stimulated by 

exposing films for different times (ranging from 0h to 7h) to a continuous stream of chloroform 

(CHCl3). The vapor was produced by bubbling nitrogen gas through the liquid solvent. The 

continuous flow system was used to control the CHCl3 vapor pressure in the chamber by 

dilution with a separate stream so that a solvent vapor consisted of 32 sccm CHCl3 vapor and 8 

sccm N2 (total 40 sccm). The morphology of the solvent-annealed PS-b-P2VP-b-PNIPAM thick 

film was frozen by fast removal of the chamber lid.  

 

4.3. Water permeability measurements  

 

The water permeability of the different PS-b-P2VP-b-PNIPAM thick films was studied using a 

dead-end filtration set-up by measuring the flux of Milli-Q pure water at different pressures (0–

2 bar). The membrane was cut into a round shape with a diameter of 2.5 cm supported by a high 

permeable hydrophilic PVDF material. It was subsequently placed in an Amicon type filter cell 

(Amicon 8010 stirred cell) with a volume of 10 mL. The cell was connected to a pressure vessel 

filled with Milli-Q pure water, where pressure was applied using compressed air line. The cell 
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and the vessel were heated to specific temperatures ranging from 23 °C to °C by placing them 

inside a stainless steel electronic bath filled with water. To ensure a stable temperature, the cell 

was stored at a specific temperature for half an hour before the measurement.  

 

5. Protocol: CHAPTER 4 
 

5.1. Synthesis of PS-b-PNIPAM by RAFT   

 

 In 50 mL round flask, hPS22k (2.7 g, 0.12 mmol) was mixed with NIPAM (4 g, 0.03 mol), 

AIBN (4.05 mg, 0.02 mmol) and 1,4-dioxane (10 g). The solution was purged with nitrogen 

and then heated to 70°C by using a temperature controlled oil bath. Polymerization was allowed 

to proceed during 1h prior to stop the reaction by immersing the vessel into an ice bath. An 

aliquot was withdrawn from the solution. The white-yellowish product was concentrated and 

precipitated twice in cold diethyl ether, then rinsed with hot water and filtrated  

1H NMR (400MHz, CD2Cl2): δ = 8.25 (1H,m Ph), 6.61-7.06 (8H,m,Ph) and 1.27-2.30 

(6H,m,CH-CH2). The PS-b-PNIPAM molecular weight and its PS volume fraction were 

determined by 1H NMR to be 22 kg/mol and 0.81, respectively. SEC in THF using PS standard: 

Mn= 21.1 kg/mol, Đ = 1.10.  
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 General conclusion 

 

The aim of this PhD thesis was to develop original smart nanostructures formed by linear ABC 

triblock terpolymer membranes having stimuli-responsive pores to facilitate the removal of 

fouling, which is considered as one of the biggest challenges in membrane technology. To this 

end, the strategy proposed in this work was based on the synthesis and self-assembly of double 

stimuli-responsive linear ABC terpolymers in membrane configuration. 

The first part of this work was devoted to the synthesis of pH and thermo-responsive linear 

ABC triblock terpolymers. Reversible addition−fragmentation chain-transfer (RAFT) 

polymerization was used to prepare, for the first time, a series of well-defined polystyrene-

block-poly(2-vinylpyridine)-block-poly(N-isopropylacrylamide) (PS-b-P2VP-b-PNIPAM) 

terpolymers able to self-assemble into smart nanostructures comprising a mechanically robust 

PS matrix and dual responsive P2VP/PNIPAM pores. This kind of materials are highly 

desirable for the manufacture of fouling resistant membranes since the formation of nanopores 

showing both pH- and thermo-sensitive behavior is an optimum strategy to effectively prevent 

the common problem of fouling. 

The second section of this work was focused on the study of the self-assembly of the PS-b-

P2VP-b-PNIPAM chains into asymmetric smart membranes. For that purpose, a non-solvent 

induced phase separation (NIPS) technique was first used to produce an asymmetric PS-b-

P2VP-b-PNIPAM thick film composed of a dense top layer having a poorly defined phase and 

a macroporous substructure. The thick film was then exposed to chloroform vapors via the use 

of a solvent vapor annealing (SVA) treatment that allows for the membrane surface 

reconstruction from a NIPS made poorly defined phase into a well-ordered perforated lamellar 

structure. The thermo/pH dual responsive behavior of the prepared films was therefore 

evaluated by water permeability measurements.  

In the last part of this work, to improve the membrane hydrophilicity, blended double stimuli-

responsive terpolymer thick films with amphiphilic copolymers were also manufactured. Here 

we selected two poly(ethylene oxide) (PEO)-based linear ABC terpolymers and a PNIPAM-

based diblock copolymer to study the effect of polymer type, molecular weight as well as blend 

percentage on the membrane water permeability performances. We observed that the load of 

PS-b-P2VP-b-PEO chains with a specific amount within the PS-b-P2VP-b-PNIPAM membrane 
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can lead to a full reconstruction of the material top surface into a highly ordered lamellar phase, 

accompanied with an increase of both the hydrophilicity and thermo-responsiveness of the 

blended membrane. An important increase of the membrane water permeability                           

(~80 L.h-1.m-2.bar- 1 at 46°C) was also demonstrated by using blends of PS-b-P2VP-b-PNIPAM 

and PS-b-PNIPAM  chains. Finally, the full compatibility between the PNIPAM blocks makes 

that an important increase of the thermo-responsive character of the PS-b-P2VP-b-

PNIPAM/PS-b-PNIPAM   thick films is observed, which is one of the desired properties in the 

manufacture of fouling-resistant membranes. 
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Outlook  

Since the aim of this work was to manufacture fouling-resistant membranes, logically, the next 

step would be to evaluate this property. To this end, the self-cleaning efficiency can be 

evaluated by filtering suspensions of dextran or bovine serum albumin (BSA) for example. The 

rejection of the feed solution of this kind of particle suspensions as a response to the change of 

the pH and temperature can be measured. If the water permeability values of the smart 

membrane are restored after filtration of the particles, that would confirm the self-cleaning and 

fouling-resistance of the membrane. 

The same type of experiments can also be performed on blended membranes, more precisely 

on the PS-b-P2VP-b-PNIPAM/PS-b-PNIPAM thick films. As demonstrated in Chapter 4, the 

wettability of this blended membrane was higher than that of its unblended homolog. In 

addition, the thermo-responsive character was also increased, so that an improvement of self-

cleaning properties would be expected. 

To push the system one-step further, the PS-b-P2VP-b-PNIPAM membrane surface can be 

post-functionalized with grafted hydrophilic PEO homopolymers to decrease the hydrophobic-

hydrophobic interactions between foulants and the membrane surface. This grafting approach 

can be based on the exploitation of the different affinities of metallic precursors. To this end, 

metallic salts such as gold salt (Au3+) can be added to interact with the mid-block P2VP prior 

to be reduced to Au0 by ultra-violet (UV) irradiations or by a reactive ion etch (RIE) plasma 

treatment. Thiol-terminated hydrophilic homopolymers such as PEO can be attached on the 

metallic nanorings surrounding the membrane pores to protect them against foulants by forming 

a hydrophilic barrier. The membrane post-functionalization methodology would be as follow: 

the double stimuli-responsive thick film will be immersed into an aqueous HAuCl4 solution 

then subsequently treated by an oxygen RIE plasma to complete the Au3+ to Au0 reduction. The 

gold nanorings will ultimately be functionalized with thiol-terminated fouling-resistant 

homopolymers, such as commercially available poly(ethylene oxide) (PEO) by deep-coating 

procedure that consists on immersing the membrane inside a PEO-SH solution and subsequent 

rinsing in water. The thiol-gold chemistry is an effective methodology to achieve a high-

grafting density in different media. 

In order to improve the double stimuli-responsiveness of the prepared membrane, another 

strategy based on the change of the terpolymer architecture can be envisaged. The synthesis of 
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well-defined linear PNIPAM-b-PS-b-P2VP terpolymers having the thermo-sensitive block and 

pH-sensitive one at the ends of the terpolymer will generate decoupling of pH and temperature 

effects and increase in membrane wettability in response to both stimuli. 

The change of terpolymer architecture as well as its composition is a promising strategy to reach 

other morphologies such as cylindrical or gyroid that are highly desirable in membrane 

technology to increase permeability and selectivity by reducing the pore dimensionality. 
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