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Thèse présentée et soutenue à Palaiseau, le 2/02/2022, par

PIERRE-YVES COURSOLLE

Composition du Jury :

Jean GOUBAULT-LARRECQ
Full professor, ENS Paris Saclay (Laboratoire Spécification et
Vérification) & CNRS Président

Maria Manuel CLEMENTINO
Professeure, Universidade de Coimbra (Departamento de
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l’École polytechnique)

Directeur de thèse
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Chapter 1

Résumé

L’usage de méthodes provenant de la Topologie Algébrique dans l’étude de la théorie de la
concurrence a été explicitement initié dans [FGR06]. L’un des ingrédients clefs est la réalisation
des ensembles précubiques dans la catégorie des espaces localement ordonnés (définition 4.1.6).
Toutefois, cette dernière catégorie n’est pas cocomplète, voir chapitre 4. En outre, le concept
d’espace localement ordonné n’est pas totalement fixé : plusieurs définitions non équivalentes
se retrouvent en effet dans la littérature [Law89, FGR06, BW06, Kah09]. C’est un inconvénient
sérieux car les colimites d’espaces localement ordonnés sont extrêmement sensibles à des chan-
gements apparemment anodins dans les définitions, voir chapitre 4. Deux autres cadres alter-
natifs ayant de bien meilleures propriétés catégoriques ont été introduits : les d-espaces [Gra09,
1.4.0] et les streams [Kri09]. Comme inconvénient, tous deux autorisent des pathologies comme
les vortex. On se retrouve avec une pléthore de notions similaires mais non équivalentes, toutes
basées sur la topologie, cherchant à formaliser la même idée. On cherche à définir un cadre
unifié pour pouvoir faire des comparaisons entre elles.

Puisque tous les modèles auxquels on s’intéresse sont basés sur la topologie, une idée natu-
relle est de généraliser cette dernière. Au vu des applications mentionnées dans le préambule, on
aurait besoin d’étendre la notion de topologie sur un ensemble X de façon à ce que l’ensemble
des parties P(X) soit remplacé par un simple ensemble préordonné T (X) avec une relation
supplémentaire ∈X

T remplaçant la relation d’appartenance. Typiquement, les membres de T (X)
sont des sous-ensembles de X équipés d’une structure additionnelle (par exemple des ordres ou
des préordres). Le préordre sur T (X) est alors donné par l’inclusion des ensembles sous-jacents
et par des conditions de préservation des structures par cette inclusion. Par exemple, on peut
demander à ce que les inclusions soient des plongements ou juste des morphismes : ce choix en
apparence anodin a des conséquences majeures sur les catégories des ‘espaces généralisés’ qui
en résultent, voir chapitre 4.

Le cadre que l’on a développé jusque-là permet de parler des ‘sous-ensembles’ ; on doit encore
distinguer ceux qui sont ouverts. Contrairement à la théorie des locales, nous devons exprimer
notre notion de ‘topologie généralisée’ sans utiliser les unions ni les intersections finies, puis-
qu’elles ne sont pas supposées exister dans T (X), et même si elles existent, la distributivité
est fausse en générale. Cela nous laisse avec plusieurs approches possibles en fonction de la
caractérisation de la topologie que l’on choisit, parmi ces caractérisations, on retrouve

- les bases ([Kel55, Theo 11 p.47], [Eng89, 1.2.1 p.21])

- les voisinages ([Bro06, Sect 2.1, p.20])

On définit nos ‘espaces généralisés’ grâce aux bases et on prouve que la notion qui en résulte
correspond à celle que l’on aurait obtenue avec une approche basée sur les voisinages (5.2.10).
Une base de topologie classique sur X est un sous-ensemble B ⊂ P(X) vérifiant

pour toute famille finie (Bj) de B, pour tout x ∈ X tel que x ∈ Bj pour tout j,

il existe B ∈ B tel que x ∈ B et B ⊂ Bj pour tout j.
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6 CHAPTER 1. RÉSUMÉ

De manière analogue, dans notre cadre, une base de T -topologie est un sous-ensemble B ⊂
T (X) vérifiant

pour toute famille finie (Bj) de B, pour tout x ∈ X tel que x ∈X
T Bj pour tout j,

il existe B ∈ B tel que x ∈X
T B et B ⊂X

T Bj pour tout j.

De là, on définit les T -ouverts associés à une base et on dit que deux bases sont équivalentes
si elles induisent les mêmes T -ouverts. Pour que ces concepts aient de bonnes propriétés, on
suppose que :

- la relation ⊂X
T est un préordre sur T (X), et

- la relation ∈X
T est un module (voir 3.1.1) de (X,=) vers (T (X),⊂X

T ), autrement dit

(x ∈X
T A ⊂X

T B) ⇒ x ∈X
T B .

L’étape suivante est de définir les applications f : X → Y T -continues en x. Pour adapter la
définition standard de la continuité exprimée en termes de bases de topologie B et B′ sur X et
Y , c’est-à-dire

∀B′ ∈ B′ tel que f(x) ∈ B′,∃B ∈ B tel que x ∈ B et f(B) ⊂ B′ ,

on a besoin d’une relation T (f) de T (X) vers T (Y ) jouant le rôle de l’énoncé "f(B) ⊂ B′ ". La
relation T (f) est faite pour remplir ce manque : la fonction f est T -continue en x, avec B et B′

des bases de T -topologies sur X et Y , quand

∀B′ ∈ B′ tel que f(x) ∈Y
T B′,∃B ∈ B tel que x ∈X

T B et B T (f)B′ .

Pour s’assurer que la définition ci-dessus ne soit pas dépendante du choix des bases, il suffit de
supposer que

- la relation T (f) soit un module (voir 3.1.1), autrement dit

(A ⊂X
T A′, A′ T (f)B′, B′ ⊂Y

T B) ⇒ A T (f)B) ,

- et que les modules ∈X
T et ∈Y

T satisfassent la condition de naturalité lax (diagramme 5.2) :

x ∈X
T A et A T (f)B ⇒ f(x) ∈Y

T B .

Par exemple, soient T (X) et T (Y ) les collections des ensembles ordonnés dont les ensembles
sous-jacents sont inclus dans X et Y respectivement. Alors, pour n’importe quels membres A et
B de T (X) et de T (Y ), on pose A T (f) B quand f(A) ⊂ B et la restriction de f à A est une
application croissante de A vers B.

Bien sûr, on voudrait que les espaces T -topologiques et les applications T -continues forment
une catégorie concrète. C’est le cas lorsque T est un foncteur lax de la catégorie des ensembles
vers celle des modules (définition 5.1.1). On appelle théorie topologique une paire T = (T,∈T )
qui satisfait les hypothèses précédentes, la catégorie correspondante est notée TopT .

La construction décrite jusqu’ici considère la théorie T comme un paramètre fixe. Étant
donné une autre théorie T ′, on appelle transformation sémantique (définition 5.3.1) n’importe
quel foncteur concret de TopT vers TopT ′ . Un tel foncteur peut oublier trop d’informations.
Pour cette raison, on introduit la notion de données de changement de bases (définition 5.3.3) de-
puis lesquelles on déduit des transformations sémantiques qui ont de bonnes propriétés appelées
foncteurs de changement de bases (définition 5.3.14). La théorie topologique

X : Set 7→
(
(P(X),⊂),∈

)
,

que l’on note (P,∈), est l’objet final de la catégorie des théories topologiques avec les données de
changement de bases comme morphismes. Les espaces (P,∈)-topologiques correspondant sont
les espaces topologiques usuels. Par conséquent, il existe un foncteur de changement de bases
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canonique de TopT dans Top induit par l’unique donnée de changement de bases T → (P,∈).
La topologie sous-jacente d’un espace T -topologique est son image par ce foncteur canonique.
Beaucoup de notions classiques de topologie peuvent être relevées le long de ce foncteur.

À présent, décrivons rapidement le contenu de ce manuscrit :
Dans le troisième chapitre, on rappelle certains concepts de théorie des ordres, principale-

ment pour fixer la terminologie utilisée qui diverge sur certains points de celle standard. On
introduit aussi certains concepts moins usuels comme les modules (au sens de la théorie des
ordres). De nombreux exemples intéressant de théories topologiques peuvent être formulés en
termes de quantales, bien que ceux-ci ne soient pas impliqués dans le développement de la
théorie ; pour cette raison on leur dédit un chapitre en annexe.

Le quatrième chapitre, qui est principalement une reproduction de [CH21], se concentre sur
les espaces localement ordonnés, qui sont historiquement les premiers exemples de modèles de
la concurrence basés sur la topologie. Il commence avec une introduction détaillée et contient
une étude approfondie de leurs colimites puisque celles-ci jouent un rôle crucial dans les appli-
cations à la théorie de la concurrence.

Le cinquième chapitre est dédié aux notions élémentaires associées à la T -topologie. On
formalise les concepts esquissés précédemment. On décrit aussi la construction Loc, qui as-
socie fonctoriellement à chaque théorie topologique T une nouvelle théorie Loc(T ). On voit
que les espaces Loc(T )-topologiques admettent une description plus concrète et possèdent de
meilleures propriétés que les espaces T -topologiques généraux. De plus, la construction Loc
fournit de nombreux exemples utiles comme les espaces localement (pré)ordonnés.

Dans le sixième chapitre, on adapte naturellement des notions classiques de topologie,
comme la convergence, la quasi-compacité et divers axiomes de séparation, aux espaces T -
topologiques. Certaines de ces généralisations se résument simplement au fait que l’espace to-
pologique sous-jacent satisfasse la notion standard.

Dans le septième chapitre, on étudie les (co)limites dans TopT via les relèvements initiaux
et finaux le long du foncteur d’oubli UT : TopT → Set. Pour cela, on généralise les concepts de
topologies finales (7.2), initiales (7.4) et induites (7.5) aux espaces T -topologiques. Ce faisant,
des difficultés apparaissent du fait que T est seulement un foncteur lax ; elles sont étudiées au
début du chapitre (7.1). On se concentre ensuite sur le cas de Loc(T ) (7.6) : si UT est une
fibration alors Loc(T ) satisfait les hypothèses requises pour l’utilisation de la Loc(T )-topologie
induite, à partir de laquelle on prouve que ULoc(T ) est aussi une fibration. Avec une approche
similaire, on prouve que ULoc(T ) est topologique quand UT l’est.

Dans le huitième chapitre, on se concentre sur les espaces T -topologiques X dans les-
quels l’intersection de n’importe quelle famille de T -ouverts de X qui sont deux-à-deux ≃T -
equivalents est encore un T -ouvert de X (on écrit A ≃T B quand x ∈T A ⇔ x ∈T B pour tout
x ∈ X). De tels espaces T -topologiques sont appelés des T -streams à cause de leur relation avec
les streams de Krishnan [Kri09].

Dans le neuvième chapitre, suivant [GL13, 5.2-4], on étudie comment une structure monoï-
dale sur TopT (telle que le foncteur d’oubli dans Set soit un foncteur monoïdal strict) peut être
étendue à la catégorie TopLoc(T ). Pour cette occasion, les T -streams jouent un rôle important :
quand TopT est une catégorie monoïdale close, les Loc(T )-streams core-compact sont expo-
nentiables. En adaptant [GL13, 5.6], on montre que, sous certaines hypothèses sur une classe
d’objets donnée C, la catégorie des objets C-engendrés est cartésienne close.
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Chapter 2

Introduction

The usage of methods from Algebraic Topology in the study of Concurrency Theory was explic-
itly initiated in [FGR06]. One of its key ingredients is the realization of precubical sets1 in the
category of locally ordered spaces (Definition 4.1.6). Nevertheless, these latter do not form a co-
complete category, see Chapter 4. Moreover, the concept of a locally ordered space is not firmly
set: various nonequivalent definitions have indeed appeared in the literature [Law89, FGR06,
BW06, Kah09]. This is a serious drawback because the colimits of locally ordered spaces are
extremely sensitive to seemingly anodyne modification in their definition, see Chapter 4. In the
meantime, two alternative frameworks enjoying much better categorical properties were intro-
duced: the d-spaces [Gra09, 1.4.0] and the streams [Kri09]. As a drawback, both of them allow
pathologies like vortex. Both are related by an adjunction whose center [PT91] was concretely
described in [Hau12]. We end up with plethora of similar (yet non-equivalent) mathematical
notions, all grounded on topology, intended to formalize the same idea. We aim at designing a
unified framework to compare them. We have explained the goal, let us discuss the mean.

Since all the models we would like to deal with are based on topology theory, a natural idea
is to generalize the latter. From here, pointless topology is certainly the first option to consider.
Pointless topology extends classical topology by allowing any Heyting algebra to play the role
of the lattice of open sets, thus focusing on the distributivity of the meet operator [Bor94c, 1]
[Joh82, 2] [PT+03, 2]. In particular, pointless topology does not let us deal with ‘non-open
subsets’. In view of the applications mentioned in the preamble, we would need to extend
topology on a set X in a way that the powerset P(X) is replaced by a mere preordered set
T (X) together with an additional relation ∈X

T standing for the membership relation. Typically,
the members of T (X) are subsets of X endowed with an additional structure (e.g. preorders
or orders). The preorder on T (X) is then given by underlying set inclusion satisfying extra
requirements about structure preservation. For example, one can require inclusions to induce
embeddings or just morphisms: this seemingly anodyne choice has dramatic consequences on
the resulting category of ‘generalized spaces’, see Chapter 4. The setting we have described so far
just let us deal with ‘subsets’, so we still have to explain what the open ones are. By opposition
with pointless topology, we have to express our notion of ‘generalized topology’ without using
joins nor finite meets, since they are not supposed to be available in T (X), and even if they are,
distributivity may not hold. This leaves us with several approaches depending on the chosen
characterization of topologies, among which

- bases ([Kel55, Theo 11 p.47], [Eng89, 1.2.1 p.21])

- neighbourhoods ([Bro06, Sect 2.1, p.20])2

We define our ‘generalized spaces’ by means of bases, and prove that the resulting notion
matches the one we would have obtained from an approach based on neighbourhoods (5.2.10).

1Precubical sets are to higher dimensional automata as graphs are to automata. For a detailed account of the
importance of higher dimensional automata in concurrency theory see [vG06].

2In our context, Axiom N3 from [Bro06] has to be read «if x belongs the neighbourhoods U and V , there exists a
neighbourhood W containing x, and included in both U and V ».

9



10 CHAPTER 2. INTRODUCTION

A standard basis of topology on X is defined as a subset B ⊂ P(X) satisfying

for all finite family (Bj) of B, for all x ∈ X such that x ∈ Bj for every j,

there is B ∈ B such that x ∈ B and B ⊂ Bj for every j.

By analogy, in our framework, a basis of T -topology is a subset B ⊂ T (X) satisfying

for all finite family (Bj) of B, for all x ∈ X such that x ∈X
T Bj for every j,

there is B ∈ B such that x ∈X
T B and B ⊂X

T Bj for every j.

From there we define T -open members related to the basis, and state that two such bases are
equivalent if they induce the same T -open members. In order to make these concepts well-
behaved, we make the following assumptions:

- the relation ⊂X
T is a preorder on T (X), and

- the relation ∈X
T is an order-theoretic module (see 3.1.1) from (X,=) to (T (X),⊂X

T ), i.e.

(x ∈X
T A ⊂X

T B) ⇒ x ∈X
T B .

The next step is to define the T -continuous functions f : X → Y at x. In order to adapt the
standard notion expressed in terms of the bases of topology B and B′ on X and Y , i.e.

∀B′ ∈ B′ such that f(x) ∈ B′,∃B ∈ B such that x ∈ B and f(B) ⊂ B′ ,

we need a relation T (f) from T (X) to T (Y ) playing the role of the statement f(B) ⊂ B′.
Indeed, the usual inverse and direct image operators associated to f may not induce morphisms
between the preordered sets (T (X),⊂X

T ) and (T (Y ),⊂Y
T ). The relation T (f) is intended to fill

that gap: the function f is said to be T -continuous at x, with B and B′ bases of T -topology on
X and Y , when

∀B′ ∈ B′ such that f(x) ∈Y
T B′,∃B ∈ B such that x ∈X

T B and B T (f)B′ .

To ensure the above definition does not dependent on the bases, it is enough to assume that

- the relation T (f) is a module (see 3.1.1), i.e.

(A ⊂X
T A′, A′ T (f)B′, B′ ⊂Y

T B) ⇒ A T (f)B) ,

- and that the modules ∈X
T and ∈Y

T satisfy the lax naturality condition (diagram 5.2):

x ∈X
T A and A T (f)B ⇒ f(x) ∈Y

T B .

For example, let T (X) and T (Y ) be the collections of ordered sets whose underlying sets are
included in X and Y . Then, for A and B members of T (X) and T (Y ), we write A T (f) B to
mean that f(A) ⊂ B and the restriction of f to A induces an increasing map from A to B. In
this specific case, the relation T (f) is neither representable not corepresentable in the sense of
Definition 3.1.2.

Of course we expect that T -topological spaces and T -continuous maps form a concrete cat-
egory. It is so when T is a lax functor from the category of sets to that of (order-theoretic)
modules (Definition 5.1.1). Call topological theory3 any pair T = (T,∈T ) that satisfies the pre-
ceding assumptions, the corresponding category is denoted by TopT .

We draw attention to the fact that being isomorphic in TopT may be a rather weak notion of
‘sameness’: some properties of T -topological spaces may not transfer along their isomorphisms.
In the end, it strongly depends on the properties of T . Nevertheless, all the ‘natural’ topological
theories studied in this manuscript induce a ‘strong’ notion of isomorphism.

3This notion differs from its homonym in [Hof07] even if they are driven by the same principle: from a given kind of
‘syntactic object’ we define ‘models’ which are seen as the ‘topological spaces’ associated to it.
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The construction described so far takes the theory T as a fixed parameter. Given another
theory T ′, we call semantic transformation (Definition 5.3.1) any concrete functor from TopT

to TopT ′ . Such a functor may forget too much information. For this reason, we introduce
the notion of a changing of bases data (Definitions 5.3.3) from which we deduce well-behaved
semantic transformations called changing of bases functors (Definition 5.3.14). The topological
theory

X : Set 7→
(
(P(X),⊂),∈

)
,

which we denote by (P,∈), is the terminal object of the category of topological theories with
changing of bases data as morphisms. The corresponding (P,∈)-topological spaces are the usual
ones. Consequently, we have a canonical change base functor from TopT to Top induced by
the unique changing of bases T → (P,∈). The underlying topology of T -topological space is its
image under this canonical functor. Many notions of usual topology can be lifted along it.

We now briefly describe the content of the manuscript:
In the third chapter, we recall some concepts of order theory mainly to fix some terminology

which, in some cases, slightly diverges from standard one. We also introduce some unusual
concepts like (order-theoretic) modules. Many the relevant examples of topological theories
can be presented in terms of quantales, though they are not involved in the development of the
theory; for this reason we dedicate an appendix to them.

The fourth chapter, which is mainly a reproduction of [CH21], focuses on locally ordered
spaces, which are historically the first model of concurrency based on topology. It starts with
a detailed introduction, and contains a thorough study of their colimits, since the latter play a
crucial role in applications to concurrency theory.

The fifth chapter is dedicated to the elementary notions related to T -topology. Basically, we
formalize the concepts sketched in the above introduction. We also describe the construction
Loc, which functorially associates each topological theory T with a new one Loc(T ). We see
that Loc(T )-topological spaces admit more concrete descriptions, and enjoy better properties
than T -topological spaces. On the top of that, the Loc construction provides a wealth of useful
examples, including the locally (pre)ordered spaces.

In the sixth chapter, we naturally adapt classical notions of point-set topology like conver-
gence, compactness, and various separation axioms, to the T -topological spaces. Some of them
boil down to having the corresponding standard notion satisfied by the underlying topological
space.

In the seventh chapter, we study (co)limits in TopT by means of initial and final lifting along
the forgetful functor UT : TopT → Set. To this aim, we generalize the concepts of final (7.2),
initial (7.4), and induced topology (7.5) to T -topological spaces. Doing so, issues arise from the
fact that T is just a lax functor; they are early dealt with in (7.1). Then we focus on Loc(T )
(7.6): if UT is a fibration (i.e. it lifts morphisms ‘nicely’) then Loc(T ) satisfies the required
assumptions for the use of induced Loc(T )-topology, from which we prove that ULoc(T ) is also
a fibration. By a similar approach we prove that ULoc(T ) is topological when so is UT .

In the eighth chapter, we focus on the T -topological spaces in which the meet of any family of
T -open members of X that are pairwise ≃T -equivalent, is still a T -open member of X (we write
A ≃T B when x ∈T A ⇔ x ∈T B for all x ∈ X). Such T -topological spaces are called T -streams
because of their relation to Krishnan’s streams [Kri09]. The typical kind of T -topological space
that we want to rule out is the following: X = R, T (R) is the collection of all preorders on
the set R, the relation ∈T is always true, ⊂T is the mere inclusion of preorders. The T -open
members are the preorders ⪯ containing the partial order ⩽r for some r ∈ R, where x ⩽r y
means x = y or r ⩽ x ⩽ y. Indeed, we have an infinite strictly decreasing chain of T -open
members all sharing the same underlying set, namely R, whose meet is not a T -open member.

In the ninth chapter, following [GL13, 5.2-4], we study how a monoidal structure on the
category TopT (with a strictly monoidal forgetful functor to Set) can be extended to the cate-
gory TopLoc(T ). On this occasion, the T -streams play an important role: provided that TopT

is (monoidal) closed, the core-compact Loc(T )-streams are exponentiable. Every T -topological
space, seen as a Loc(T )-topological space, is a core-compact Loc(T )-stream. Adapting [GL13,
5.6] we show that under certain assumptions about a given class of objects C, the category of
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C-generated objects form a cartesian closed category.



Chapter 3

Preliminaries

In this chapter, we recall some order-theoretic notions and fix some terminology and notations
that will be pervasively used in the rest of the manuscript. Many results presented here can be
found, up to slightly different terminology, in [HST14, II.1].

A relation from a set M to a set N is a function R : M × N → {0, 1}; such a function will
be denoted by R : M →p N . Let A ∈ M and B ∈ N , we write A R B when R(A,B) = 1 and
we say that A is R-related to B. Two relations R : M →p N and S : N →p O are composed as
usual: given A ∈ M and C ∈ O, we set A (S ◦ R) C when there exists B ∈ N such that A R B
and B S C. Moreover, two parallel relations R,R′ : M →p N can be compared: we say that R is
lesser than R′ when, for every A ∈ M and B ∈ N , A R B implies A R′ B1. One easily checks
that for every relations R,R′ : M →p N and for every relations S, S′ : N →p O, if R (respectively
S) is lesser than R′ (respectively S′) then S ◦R is lesser than S′ ◦R′.

A preorder on a set X is a relation ≤: X →p X which is

- reflexive: for every x ∈ X, x ≤ x, and,

- transitive: for every x, y, z ∈ X, x ≤ y and y ≤ z imply x ≤ z.

An order on X is a preorder which is moreover

- antisymmetric: for every x, y ∈ X, x ≤ y and y ≤ x imply x = y.

A (pre)ordered set is a set equipped with a (pre)order. As usual, we often identify a (pre)orde-
red set and its underlying set when there is no risk of confusion. Let (X,≤X) and (Y,≤Y ) be
two preordered sets, a function f : X → Y is an increasing map from (X,≤X) to (Y,≤Y ) when
x ≤X x′ implies f(x) ≤Y f(x′) for all x, x′ ∈ X. We denote by Rel the ordered category2 of
sets and relations, by Ord the category of preordered sets and increasing maps, and by SOrd
the full subcategory of ordered sets.

3.1 Modules

Definition 3.1.1 (Modules). Let (M,≤M ) and (N,≤N ) be two preordered sets. A module from
(M,≤M ) to (N,≤N ) is a relation R : M →p N such that, for all A,A′ ∈ M and for all B,B′ ∈ N ,

(A ≤M A′, A′ R B′, B′ ≤N B) ⇒ A R B .

1By taking the inverse image of {1}, we can identify the relations M →p N and the subsets of M ×N . Hence, we also
say that a relation R is included in a relation R′ when the former is lesser than the latter.

2A (pre)ordered category is just a category with a (pre)order on each hom-set such that the composition is increasing
in each variable (see [HST14, II.4.5]) for more details). It can be seen as a particular instance of a 2-category (see
[Bor94a, 7.1]).

13
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A
R //

≤M

��

B

A′
R

// B′

≤N

OO

Any module from M to N can be thought of as a preorder ≤R on the disjoint union M ⊔N
such that:

- the preorder ≤R matches with ≤M on M and with ≤N on N , and,

- no element of N is lesser than an element of M .

When a relation R : M →p N is a module from (M,≤M ) to (N,≤N ), it will be denoted by
R : (M,≤M ) −→◦ (N,≤N ), or, more concisely, by R : M −→◦ N if there is no risk of confusion
about the concerned preorders.

One readily checks that the composite of two modules (viewed as relations) is a module
and that, for all preordered set (M,≤M ), the relation (≤M ) : M →p M is a module and is a
neutral element for module composition. We denote by Mod the category of preordered sets
and modules. The category Mod inherits from the order of the category Rel.

Every increasing map f : (M,≤M ) → (N,≤N ) induces a module f∗ : (M,≤M ) −→◦ (N,≤N )
and a module f∗ : (N,≤N ) −→◦ (M,≤M ), defined, for A ∈ M and B ∈ N , by

A f∗ B if f(A) ≤N B

B f∗ A if B ≤N f(A)

For every preordered set (M,≤M ), we have

(IdM )∗ = (IdM )∗ = ≤M .

For every increasing maps f : M → N and g : N → P , one has

g∗ ◦ f∗ = (g ◦ f)∗ and f∗ ◦ g∗ = (g ◦ f)∗ .

In particular, we get two functors (_)∗ and (_)∗, respectively covariant and contravariant, from
Ord to Mod. In the ordered category Mod, the morphisms f∗ and f∗ form an adjunction:

(≤M ) ≤ (f∗ ◦ f∗) and (f∗ ◦ f∗) ≤ (≤N ) .

Modules of the form f∗ play a crucial role all over the manuscript.

Definition 3.1.2 (Representable and corepresentable modules). Let (M,≤M ) and (N,≤N ) be
preordered sets, and let R : M −→◦ N be a module. The module R is representable when there is
an increasing map f : (M,≤M ) → (N,≤N ), called representation, such that R = f∗. Likewise,
the module R is corepresentable when there is an increasing map g : (N,≤N ) → (M,≤M ), called
corepresentation, such that R = g∗.

In the previous definition, the assumption that R is a module makes monotonicity assump-
tion on g (and f) superfluous.

Lemma 3.1.3. Let (M,≤M ) and (N,≤N ) be preordered sets, let R : M −→◦ N be a module,
and let g : N → M be a function such that, for all A ∈ M and B ∈ N , A R B if, and only if,
A ≤M g(B). Then we have g(B)R B for all B ∈ N .

Proof. Trivial since g(B) ≤M g(B).
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Proposition 3.1.4. Let (M,≤M ) and (N,≤N ) be preordered sets, let R : M −→◦ N be a module,
and let g : N → M be a function such that, for all A ∈ M and B ∈ N , A R B if, and only if,
A ≤M g(B). Then the function g is increasing (and then R = g∗).

Proof. Let B,B′ ∈ N such that B ≤N B′. By the previous lemma, we have g(B) R B. Since R
is a module, we have g(B)R B′. By hypothesis on g, this implies g(B) ≤M g(B′).

We deduce the following proposition from the functoriality of (_)∗:

Proposition 3.1.5. If R : M −→◦ N is corepresented by g : N → M and if S : N −→◦ P is
corepresented by h : P → N , then the composite g ◦ h is a corepresentation of S ◦R : M−→◦ P .

Similar results hold for representable modules.
The functor (_)∗ : Ord → Mod also allows us to define a canonical functor Eq : Set →

Mod, where Set denotes the category of sets. This functor associates every function f : X → Y
with the module f∗ : (X,=) −→◦ (Y,=). If there is no risk of confusion, the module f∗ : (X,=
) −→◦ (Y,=) is simply denoted by f : X → Y .

3.2 Filters

The notion of filter defined below is weaker that the one classically used in order theory. We
prefer it because it has better stability properties for non-complete preordered spaces, as we
shall see.

Definition 3.2.1 (Filter). Let (M,≤) be a preordered set. A subset F ⊂ M is a filter if, for every
finite subset F of F , for every A ∈ M , if ∀C, (∀B ∈ F,C ≤ B) ⇒ C ≤ A then A ∈ F (in other
words, an element of M which is an upper bound of the set of all lower bounds of a finite part
of F is in F).

Remark 3.2.1. This notion of filter is in fact the dual notion of Frink ideals (see [Fri54] and
[Nie06]).

Remark 3.2.2. Letting F be a singleton in the above definition, we deduce that F is an upward
closed subset: if A ≤ B and if A ∈ F , then B ∈ F .

Remark 3.2.3. The empty set is a filter in (M,≤) if, and only if, there is no greatest element in
M .

Remark 3.2.4. When M is finitely complete, this notion of filter matches with the classical one:
a non-empty subset, upward closed, and stable under binary meets.

Definition 3.2.2. Let (M,≤) be a preordered set and let F and F ′ be two filters on it. The filter
F is finer than F ′ if F ′ ⊂ F . Dually, F ′ is coarser than F .

One easily checks that the intersection of a family of filters is a filter. Thus the set Fl(M) of
all filters on (M,≤) ordered by inclusion is a complete ordered set (and the meets are classical
subset intersections). This property may not hold for the classical notion of filter.

The following result, which is also generally false for the classical notion of filter, justifies the
choice of the terminology.

Proposition 3.2.3. Let (M,≤) be a preordered set and let P ⊂ M . The subset

F(P ) := {A ∈ M ; ∃F ⊂ P finite such that ∀C ∈ M, (∀B ∈ F,C ≤ B) ⇒ C ≤ A}

is a filter and it is the coarsest one among the filters containing P .

Proof. Let (Bj)j∈J be a finite family of F(P ). For every j ∈ J , by definition, there is a finite
family (Bj,k)k∈Jj

of P such that Bj is an upper bound of the set of all lower bounds of (Bj,k)k∈Jj
.

Let A ∈ M such that A is an upper bound of the set of all lower bounds of (Bj)j∈J . Let C ∈ M a
lower bound of (Bj,k)j∈J,k∈Jj

. For every j ∈ J , C is a lower bound of (Bj,k)k∈Jj
, hence C ≤ Bj .

Therefore C is a lower bound of (Bj)j∈J and so C ≤ A. Thus, A is an upper bound of the set



16 CHAPTER 3. PRELIMINARIES

of all lower bounds of (Bj,k)j∈J,k∈Jj
, and, since (Bj,k)j∈J,k∈Ji

is a finite family of P , one finally
obtains A ∈ F(P ). Consequently F(P ) is a filter on M .

Let A ∈ P . The singleton set {A} is a finite subset of P and A is an upper bound of the set
of all its lower bounds, hence A ∈ F(P ).

The filter F(P ) is clearly the coarsest one among the ones containing P because the elements
of F(P ) are, by definition, upper bounds of the set of all lower bounds of some finite family of
P .

We say that F(P ) is the filter generated by P or that P is a filter basis of F(P ).

Definition 3.2.4 (Filtered and cofiltered preordered set). A preordered set (M,≤) is filtered
when every finite subset of M has an upper bound and is cofiltered when every finite subset has
an lower bound.

Remark 3.2.5. We choose to use the category theory terminology (see [Bor94a, 2.13.1] or
[Mac98, 9.1]).

The classical notion of filter in order theory matches with cofiltered filters (for the induced
preorder) as previously defined.

Remark 3.2.6. Let (M,≤) be a preordered set and let P ⊂ M a cofiltered subset (for the induced
preorder). Then the filter generated by P is {A ∈ M ; ∃B ∈ P/B ≤ A} and it is a cofiltered
subset.

Definition 3.2.5. Let M and N be two preordered sets, and let R : M −→◦ N be a module. The
image of a part P ⊂ M under R is the set

PR := {B ∈ N ; ∃A ∈ M such that AR B} .

When P is a filter, the direct image filter of P under R is the filter generated by PR.

Remark 3.2.7. The direct image filter of a non-empty filter can be empty.

Remark 3.2.8. The direct image filter under a module of a cofiltered filter may not be cofiltered.
However, it is when the module is representable.

Another construction working nicely with the chosen notion of filter is the following

Definition 3.2.6 (Kowalsky sum). Let (M,≤) a preordered set and let F be a filter in the pow-
erset P(Fl(M)) ordered by inclusion. The Kowalsky sum

∑
F of F is the following subset of

M : ∑
F := {A ∈ M ; AFl ∈ F}

where AFl := {F ∈ Fl(M) ; A ∈ F}.

Proposition 3.2.7. Let (M,≤) a preordered set and let F be a filter in the powerset P(Fl(M))
ordered by inclusion. The Kowalsky sum

∑
F is a filter in (M,≤).

Proof. Let (Aj)j∈J be a finite family of
∑

F and let C ∈ M be an upper bound of the set of all
lower bounds of (Aj)j∈J . We are to show that

⋂
j∈J AFl

j ⊂ CFl. Since F is a filter and since
AFl

j ∈ F, this will prove that C ∈ F from which we can conclude that C ∈
∑

F.
Let F ∈

⋂
j∈J AFl

j . Then (Aj)j∈J is a finite family of the filter F , hence C ∈ F , i.e. F ∈
CFl.

3.3 Order-theoretic compactness

Definition 3.3.1 ((order-theoretic) compactness). Let (M,≤) be a preordered set. Define the
relation ≪ on M by A ≪ B when for every family (Ai)i∈I

3 such that ∀C, (∀i ∈ I, Ai ≤ C) ⇒
3For many authors, notably in domain theory, like in [GL13, 5.1.1], the family is also assumed to be filtered and to

have a join in M . Anyway the way-below relation will be mostly used in cases where the preordered set M is complete;
then every family has a join and can be modifying by adding the joins of every finite subfamily, hence the two definitions
match.
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B ≤ C (i.e. B is a lower bound of the set of all upper bounds of (Ai)i∈I), there is a finite subset
J ⊂ I such that ∀C, (∀i ∈ J,Ai ≤ C) ⇒ A ≤ C (i.e. A is a lower bound of the set of all upper
bounds of (Ai)i∈J).

One can easily check that, for all A, B, and C ∈ M , one has

- A ≪ B ⇒ A ≤ B,

- A ≤ B ≪ C ⇒ A ≪ C, and,

- A ≪ B ≤ C ⇒ A ≪ C.

The relation is called ≪ the way-below relation. An element A of M is compact when A ≪ A.

Proposition 3.3.2. Let (M,≤) be a preordered set, (Ak)k∈K be a finite family of M , and B ∈ M .
If, for all k ∈ K, Ak ≪ B, and if (Ak)k∈K has a join

∨
k∈K Ak in (M,≤) then

∨
k∈K Ak ≪ B.

Proof. Let (Ci)i∈I be a family of M such that B is a lower bound of the set of all upper bounds
of the family. For each k ∈ K, since Ak ≪ B, there is a finite subset Jk ⊂ I such that Ak

is a lower bound of the set of all upper bounds of (Ci)i∈Jk
. Let D be an upper bound of

(Ci)i∈⋃
k∈K Jk

. Then, for all k ∈ K, D is an upper bound of (Ci)i∈Jk
hence Ak ≤ D. Conse-

quently,
∨

k∈K Ak ≤ D. Thus
∨

k∈K Ak is a lower bound of the set of all upper bounds of the
finite family (Ci)i∈⋃

k∈K Jk
. It follows that

∨
k∈K Ak ≪ B.

Definition 3.3.3 (Continuous preordered set). A preordered set (M,≤) is continuous when, for
all A ∈ M , the set

S≪(A) := {B ∈ M ; B ≪ A}

is filtered and A is a join of S≪(A).

Theorem 3.3.4 (Interpolation lemma). Let (M,≤) be a continuous preordered set and let A,C ∈
M . If A ≪ C then there is B ∈ M such that A ≪ B ≪ C.

Proof. Write N := {D ∈ M ; ∃B ∈ M such that D ≪ B ≪ C}.
Let (Dj)j∈J be a finite family of N and let (Bj)j∈J be a family such that, for every j ∈ J ,

Dj ≪ Bj ≪ C. By continuity of M , the set S≪(C) is filtered so there is B ∈ M such that B ≪ C
and, for every j ∈ J , Bj ≤ B. Let j ∈ J , since Dj ≪ Bj ≤ B, one has Dj ≪ B. Then, since
S≪(D) is filtered, there is D ∈ M such that D ≪ B and, for every j ∈ J , Dj ≤ D. Thus N is
filtered.

Let E be an upper bound of N . Let B ∈ M such that B ≪ C. For every D ∈ M such that
D ≪ B, one has D ∈ N , hence D ≤ E. Therefore, E is an upper bound of S≪(B). It follows
that B ≤ E, because, since (M,≤) is continuous, B is a join of S≪(B). Similarly, we deduce
that E an upper bound of S≪(C), then that C ≤ E. Thus C is a lower bound of the set of all
upper bounds of N .

Since A ≪ C and since N is filtered, there is D ∈ N such that A ≤ D. In other words, there
is B ∈ M such that A ≤ D ≪ B ≪ C. Consequently, one has A ≪ B ≪ C.

We also use the notion of supercompactness which is a variant of the notion of compactness.

Definition 3.3.5 (Supercompactness). Let (M,≤) be a preordered set. We define the relation
≪ on M by A ≪ B when for every family (Ai)i∈I such that ∀C, (∀i ∈ I,Ai ≤ C) ⇒ B ≤ C,
there is i0 ∈ I such that A ≤ Ai0 .

The relation ≪ satisfies properties similar to those satisfied by the relation ≪. One easily
checks that, for all A, B, and C ∈ M , one has

- A ≪ B ⇒ A ≪ B,

- A ≤ B ≪ C ⇒ A ≪ C, and,

- A ≪ B ≤ C ⇒ A ≪ C.

An element A of M is supercompact when A ≪ A.
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Remark 3.3.1. When M is complete and thus has all joins, the previous definitions match with
the usual ones.

Example 3.3.1. Let X be a set. In (P(X),⊂), the compact elements are the finite subsets, and
the supercompact elements are the singleton subsets.



Chapter 4

A motivating example

This chapter has been submitted as an article [CH21].

We provide several variants of the notion of a locally ordered space, only differing by the
separation properties their underlying spaces are required to satisfy. Quite surprisingly, these
variations have dramatic consequences on colimits, even on their mere existence. Yet, for the
rest of the introduction, we remain vague about the variant under consideration and write
LOSp to denote one of them. After having provided a catalog of pathological coequalizers in
LOSp (and proven that some of them not even exist), our purpose is to give an insight into
locally ordered spaces colimits.

No algebraic topologist would imagine working in categories that are not cocomplete1, or in
which certain seemingly obvious colimits are so ill-behaved. It is thus necessary, before dwelving
in the technical details, to explain why locally ordered spaces should be taken seriously. As a
first argument, we cite the work by J. D. Lawson in which the equivalence between ordered
manifolds (a certain kind of locally ordered spaces) and conal manifolds is established [Law89,
Theorem 2.7], the relation to Lie theory of semigroups [HHL89], and also to causal orientation
in cosmology [Seg76, pp.22–28]. Beyond that somewhat argument of authority, and adopting
the computer scientist point of view, the crucial property of locally ordered spaces is that they
are free of vortices (a vortex is a point every neighbourhood of which contains a non-trivial
directed loop). Regardless of the chosen perspective, vortices are pathological. Then we have
to face a dilemma. On one hand, we can require our working category to be topological over
Top [Bor94b, 7.3] so colimits be well-behaved. We thus have a convenient framework for
homotopical methods, but in which vortices are pervasive. This is the case with the category
of d-spaces [Gra09, 1.4.7]. On the other hand, we can ban vortices from our class of models,
though this comes at the price of missing or poorly behaved colimits. This is the case with all
the variants of the category of locally ordered spaces considered in this chapter.

A natural idea to prove that LOSp is not cocomplete consists of identifying all the points
visited by a directed loop to contradict the fact that a locally ordered space has no vortex. We
experiment this approach on the standard directed cylinder S1 × R, see Example 4.2.1 2. More
precisely, one tries to ‘create’ a vortex by identifying all the points of the form (s, 0) with s ∈

−→
S1.

Depending on the category of locally ordered spaces under consideration, this coequalizer may
or may not exist, see Corollaries 4.2.9, 4.2.14, and 4.2.15 in Section 4.2.

A lucid analysis of the directed cylinder example reveals that any coequalizer in LOSp (when
it exists) is obtained by identifying points of a topological space. Nevertheless, the antisymme-
try locally imposed by the elements of an ordered basis (Definition 4.1.1) often forces much
more points to be identified than in an ordinary topological quotient. Yet, the effects of the
phenomenon described above may be limited by the underlying topology. Formally, the more
points are ordered, the more points are identified by quotient construction. Dually, the finer the
topology is, the less extra points are identified. Sections 4.3 and 4.4 illustrate this claim:

1E.g. every model category is required to be bicomplete.
2The latter is, in particular, a conal manifold in the sense of [Law89]: the cones are induces by the canonical

parallelization [BG80, Appendix 3B].

19
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In Section 4.3, we start again from the standard cylinder. However, we equip it with a
local order so that it contains a countable family of pairwise disconnected directed loops which
converges, in a certain sense, to another directed loop γ.3 Trying to identify all the points visited
by γ results in a diagram whose coequalizer does not exist.

In Section 4.4, we identify a section of a cylinder whose basis is totally disconnected. In this
case, the coequalizer exists, and its underlying topology even matches the coequalizer of the
underlying topological spaces.

Despite the pathological behaviour of colimits in the category of locally ordered spaces, a
wide class of precubical sets can be realized in it. Moreover, for any precubical set of this class,
the underlying space of the realization in LOSp matches the realization in Top [FGR06]. In
contrast, we observe that the above property is no longer satisfied if we consider cubical sets
instead of precubical ones. Indeed, identifying a section of the directed cylinder results in a
colimit that is very close to the one required to realize the following cubical set:

K2 = {s} with ∂+
1 s = ∂−

1 s σ∂−
0 ∂−

0 s = ∂−
0 s .

Concretely, this cubical set identifies the two vertical edges of the square s and reduces the lower
horizontal edge to a single point.

Hence, it seems that locally ordered spaces have been especially tailored for precubical set
realization. This observation, together with the fact that they naturally occur in some well
established branches of mathematics and physics, have motivated the attention paid to locally
ordered spaces.

4.1 Locally ordered spaces

For all basic definitions related to General Topology, we refer to the standard textbooks [Mun00]
and [Kel55]. The order of an ordered set P is denoted by ≤P , its underlying set by P (or |P |
when we need to emphasize on the distinction).

Definition 4.1.1 (Ordered bases). Let X be a topological space. An ordered basis on X is a set−→
B of ordered sets such that:

- the underlying sets of the elements of
−→
B form a basis of the topology of X, and

- for all x ∈ X and all B,B′ ∈
−→
B such that

x ∈ B ∩B′

there is B′′ ∈
−→
B such that

x ∈ B′′ ⊂ B ∩B′

and the partial order ≤B′′ is so that p ≤B′′ q implies p ≤B q and p ≤B′ q. Since this
relation between ordered subsets is pervasively used throughout the rest of this section,
we give it a name: for every pair of ordered sets B and B′, we denote B ⊂lax B′ when
|B| ⊂ |B′|, and p ≤B q implies p ≤B′ q for all p, q ∈ B.

The basis is said to be strict when, in the above definition, the order ≤B′′ actually coincides with
the restrictions of ≤B and ≤B′ to B′′; this stronger relation will be denoted by B ⊂str B′. Most
of the examples met in this section are of the latter type.

An ordered basis
−→
B′ is coarser than

−→
B if, for every x ∈ X and for every B′ ∈

−→
B′ such that

x ∈ B′, there is B ∈
−→
B such that

x ∈ B ⊂lax B′ .

We say that
−→
B and

−→
B′ are equivalent when, in addition,

−→
B is coarser than

−→
B′.

It is natural to define a notion of strict equivalence between strict bases by replacing the
order ⊂lax in the above definition by ⊂str but it does not bring anything new:

3The directed loops mentioned here are to be understood as nontrivial.
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Proposition 4.1.2. Two strict ordered bases
−→
B and

−→
B

′
on the topological space X are equiva-

lent if, and only if, they are strictly equivalent.

Proof. Two strictly equivalent bases are equivalent because the relation ⊂str is stronger than the
relation ⊂lax.

Conversely, assume that
−→
B and

−→
B

′
are equivalent. Let B ∈

−→
B

′
containing a point x ∈ X.

There exist A ∈
−→
B such that x ∈ A ⊂lax B, and B′ ∈

−→
B

′
such that x ∈ B′ ⊂lax A. Since the

basis
−→
B

′
is strict, there is B′′ ∈

−→
B

′
such that x ∈ B′′ ⊂str B, B′. Once again, since

−→
B and

−→
B

′

are equivalent, there is A′ ∈
−→
B such that x ∈ A′ ⊂lax B′′. Since

−→
B is a strict basis, there is

A′′ ∈
−→
B such that x ∈ A′′ ⊂str A, A′. We now check that A′′ ⊂str B. Since A′′ ⊂str A ⊂lax B,

we have A′′ ⊂lax B. Let x′, x′′ ∈ A′′ such that x′ ≤B x′′. We have x′ ≤B′′ x′′ because B′′ ⊂str B.
From B′′ ⊂str B′ and B′ ⊂lax A, we deduce that x′ ≤A x′′. Finally, since A′′ ⊂str A, we obtain
x′ ≤A′′ x′′. The other direction in the definition of strict equivalence is obtained by symmetry.
The above reasoning is summarized in the following diagram:

A B

B′

B′′

A′′ A′

lax

la
x

st
r strsr

t

str

la
x

Definition 4.1.3. If
−→
B and

−→
B

′
are ordered bases of topological spaces X and X ′ then the

collection
−→
B ×

−→
B

′
=

{
B ×B′ ; B ∈

−→
B and B′ ∈

−→
B

′}
is an ordered basis on X ×X ′. Note that if

−→
B and

−→
B

′
are strict then so is

−→
B ×

−→
B

′
.

The equivalent class of B admits a greatest element
−→
O(

−→
B) with respect to inclusion. Its

elements are the ordered sets A such that:

- the underlying set of A is included in X, and

- for all x ∈ A, there exists B ∈
−→
B such that x ∈ B ⊂lax A.

One readily checks that the underlying set of any element of
−→
O(

−→
B) is open in X.

Lemma 4.1.4. Let
−→
B be an ordered basis on the topological space X, and O be an element of

−→
O(

−→
B). Every open subset O′ of O equipped with the restriction of ≤O to O′, belongs to

−→
O(

−→
B).

Proof. Let x ∈ O′. Since O′ is an open of X, there exists B ∈
−→
B such that x ∈ B ⊂ O′. Then

we have B′ ∈
−→
B such that x ∈ B′ ⊂lax O, B. Thus, we have B′ ⊂ O′ and ≤B′ is included in

≤′.

Definition 4.1.5. An ordered space is a topological space X equipped with a order. A Nachbin
ordered space is an ordered space whose order is closed as a subspace of the product X ×X.4

4Nachbin ordered spaces should not be confused with Nachbin-Hewitt spaces, which is another name for ‘realcompact
spaces’ [Joh82, p.166].
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Definition 4.1.6 (Locally ordered spaces). A locally ordered space is an ordered pair (X, E)
where E is an equivalence class of ordered bases on the topological space X. The greatest ele-
ment of E , whose elements are called the open ordered subsets of (X, E), is denoted by

−→
O(X, E).

We will often use the same denotation for a locally ordered space and its underlying topological
space. A locally ordered space is said to be Hausdorff when so is its underlying topological
space. A strictly locally ordered space is an ordered space (X, E) such that E contains a strict
ordered basis.

Definition 4.1.7. A locally Nachbin ordered space X is a locally ordered space such that for
every x ∈ X and every O ∈

−→
O(X) containing x, there exists O′ ∈

−→
O(X) containing x, which is

a Nachbin ordered space (with the topology inherited from X) such that O′ ⊂lax O.

In strictly locally ordered spaces, we have the following characterisation :

Proposition 4.1.8. Assume that (X, E) is a strictly locally ordered space with a chosen strict
basis

−→
B ∈ E . Then (X, E) is a locally Nachbin ordered space if, and only if, for every x ∈ X,

there is B ∈
−→
B containing x such that B is a Nachbin space.

Proof. Let x ∈ X. There is B ∈
−→
B containing x. By hypothesis, we have O ∈

−→
O(X) such that

x ∈ O ⊂lax B and the order ≤O is closed. Then there is B′ ∈
−→
B such that x ∈ B′ ⊂lax O. Since−→

B is a strict ordered basis, there is B′′ ∈
−→
B such that x ∈ B′′ ⊂str B, B′. We check that ≤B′′

is a closed order. Let x′, x′′ ∈ B′′. If x′ ≤B′′ x′′, then x′ ≤B′ x′′ and x′ ≤O x′′. The other way
round, if x′ ≤O x′′ then x′ ≤B x′′, and we also have x′ ≤B′′ x′′ because B′′ ⊂str B. We have
proven that ≤B′′ is the restriction of the closed relation ≤O to B′′. The converse implication is
obvious.

By [Nac65], the underlying topological space of a locally Nachbin ordered space is a locally
Hausdorff space.

Remark 4.1.1. If
−→
B is an ordered basis of the locally ordered space X, and Y is a subspace of

the underlying space of X, then { Y ∩ B | B ∈
−→
B } is an ordered basis on Y (note that if

−→
B is

strict then so is this basis). All the ordered bases of Y obtained this way are equivalent, which
allows us to define the (strictly) locally ordered subspace Y of X.

Remark 4.1.2. Let X and X ′ be two locally ordered spaces: an ordered basis of X ×X ′ is given
by

−→
B ×

−→
B

′
, with

−→
B and

−→
B

′
being any ordered bases of X and X ′ respectively. The equivalence

class of
−→
B ×

−→
B

′
only depends on the equivalence classes of

−→
B and

−→
B

′
.

Remark 4.1.3. Every topological space X can be seen as a strictly locally ordered space with
a canonical strict ordered basis which consists of all the open subsets of X equipped with the
equality. It is a locally Nachbin ordered space if, and only if, it is a locally Hausdorff space.

Remark 4.1.4. More generally, every ordered space (X,≤) can be seen as a strictly locally or-
dered space with a canonical strict ordered basis which consists of all the open subsets of X
equipped with the restriction of ≤. If (X,≤) is moreover a Nachbin space then it a locally
Nachbin ordered space.

Definition 4.1.9. Let X and Y be locally ordered spaces and let
−→
B (resp.

−→
B′) be an ordered

basis in the equivalent class of ordered bases of X (resp. Y ). A function f : X → Y is locally
increasing at x ∈ X when, for all B′ ∈

−→
B′ such that f(x) ∈ B′, there exists B ∈

−→
B such that

x ∈ B, f(B) ⊂ B′ and fB : B → B′ is increasing. One verifies that this notion only depends
on the equivalence classes of

−→
B and

−→
B

′
. The function f is a locally increasing map if it is locally

increasing at every point of X.

One easily checks that a function locally increasing at a point x is continuous at x for the
underlying topological spaces.

Example 4.1.1. Let (X,≤X) and (Y,≤Y ) be two ordered spaces and let f : X → Y be a
function. If f is continuous and increasing then one easily checks that it is a locally increasing
map with (X,≤X) and (Y,≤Y ) seen as locally ordered spaces following Remark 4.1.4. The
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converse is false: for example consider the ordered space X := ([0, 1] ∪ [2, 3],≤) where [0, 1] ∪
[2, 3] is endowed with the topology induced by the usual one on R and ≤ is the restriction of the
usual order of R. Then the function{

x 7→ x+ 2 if x ∈ [0, 1]
x 7→ x− 2 if x ∈ [2, 3]

from X into itself is locally increasing but not increasing. Thus we get a (non-full) concrete
functor from the category of (Nachbin) ordered spaces and continuous increasing maps to the
category of locally (Nachbin) ordered spaces and locally increasing maps.

In the case where the target space is a strictly locally ordered space, we have a convenient
characterisation of locally increasing maps.

Proposition 4.1.10. Let X be a locally ordered space, Y be a strictly locally ordered space given
by a strict ordered basis

−→
B

′
and let f : X → Y be a function. The map f is locally increasing at

x ∈ X if, and only if, it is continuous at x and there exists O ∈
−→
O(X) and B0 ∈

−→
B

′
such that

x ∈ O, f(O) ⊂ B0, and fO : O → B0 is increasing

where fO is the restriction of f to O.

Proof. The condition is clearly necessary. On the other hand, we suppose that there exist O ∈
−→
O(X) and B0 ∈

−→
B

′
such that x ∈ O, f(O) ⊂ B0 and fO : O → B0 is increasing. Let B ∈

−→
B

′

such that f(x) ∈ B. There is B′ ∈
−→
B

′
such that f(x) ∈ B′ ⊂str B0, B. Since f is continuous at

x, there is an open O′ ⊂ O such that x ∈ O′ and f(O′) ⊂ B′. We denote by ≤O′ the restriction
of ≤O to O′. By Lemma 4.1.4 the ordered subset (O′,≤O′) belongs to

−→
O(X). Then we have

f(O′) ⊂ B′ ⊂ B, and:

- the map fO′ : O′ → B0 is increasing since fO : O → B0 is increasing and ≤O′ is the
restriction of ≤O,

- the map fO′ : O′ → B′ is increasing since fO′ : O′ → B0 is increasing, f(O′) ⊂ B′, and
≤B′ is the restriction of ≤B0

, and finally

the map fO′ : O′ → B is increasing since fO′ : O′ → B′ is increasing and the relation ≤B′ is the
restriction of the relation ≤B to B′.

4.2 Cylinder

The compact unit circle (with its usual topology) is

S1 := { z ∈ C ; |z| = 1 } = {eix| x ∈ R } .

Definition 4.2.1. An ordered arc is a proper open arcs of S1, i.e. a subset of the form

>
ab := { eix ; x ∈ ]a, b[ }

with a, b ∈ R such that 0 < b− a < 2π, equipped with the standard order

eix ≤a,b e
iy if a < x < y < b .

We observe that if we have a′, b′ such that
>
ab =

>
a′b′, then their standard orders match. So we

denote by ≤α the standard order on a proper open arc α.
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One readily checks that the proper open arcs with their standard order form a strict ordered
basis. The resulting locally ordered space is the directed (unit) circle, we denote it by

−→
S1. The

unordered (unit) circle is obtained the same way, replacing the standard orders on open proper
arcs by the discrete ones.

The counter-examples we are about to describe are based on products of locally ordered
spaces of the following form (with X denoting any locally ordered space)

−→
S1 ×X

We write p2 : S1 ×X → X for the second projection, and

it : S
1 → S1 ×X, s 7→ (s, t) (t ∈ X)

for the section at the level t.

Figure 4.1: Cylinder with X = [0, 1]

1

0

We fix a point ∗ of X and give a criterion on the lattice of neighbourhoods of ∗ for the
coequalizer of the pair (i∗, c∗) : S1 →

−→
S1 ×X (with c∗ := s 7→ (1, ∗)) to exist.

Let f :
−→
S1 ×X → Y be a locally increasing map and K(f) be the set

{ t ∈ X ; ∀s, s′ ∈ S1, f(s, t) = f(s′, t) } . (4.1)

Lemma 4.2.2. The set K(f) is an open subset of X.

Proof. Let t0 ∈ K(f) and let U ∈
−→
O(Y ) such that f(1, t0) ∈ U .

For all s ∈ S1, f is locally increasing at (s, t0), so, by Definition 4.1.9, there exists an ordered
arc αs containing s, an open ordered subset Os of X containing t0 such that f(αs × Os) ⊂ U
and the restriction fs : αs ×Os → U is increasing. Since S1 is compact, the open covering made
of the proper open arcs of the form αs admits a finite subcovering

F =
{
αs ; s ∈ J

}
.

We denote by O the finite intersection ⋂
s∈J

Os ,

which is thus an open neighbourhood of t0. We are to show that O ⊂ K(f). Let t ∈ O, x, y ∈ S1.
There exists a finite sequence r0, . . . , rn ∈ S1 such that r0 = x, rn = y, and for all k ∈ {1, . . . , n}
there is sk ∈ J such that rk, rk+1 ∈ αsk and rk is less than rk+1 in αsk . In particular (rk, t) is less
than (rk+1, t) in the product ordered set αsk ×Osk from which we deduce that

f(rk, t) ≤U f(rk+1, t)
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because the restriction fsk is increasing. By transitivity of ≤U , we have f(x, t) ≤U f(y, t). By
swapping the roles of x and y in the previous reasoning we prove that f(y, t) ≤U f(x, t). From
the antsymmetry of ≤U , we deduce that f(x, t) = f(y, t), so t belongs to K(f), which is therefore
open in X.

Remark 4.2.1. Lemma 4.2.2 remains valid if one replaces the directed circle by a compact locally
ordered space that is strongly connected in the sense that for every ordered pair of points (a, b)
there is a directed path from a to b.

By the above Lemma, if f ◦ i∗ = f ◦ c∗, then K(f) is an open neighbourhood of ∗ in X.
We will see that if f collapses the section at level ∗ to the point ∗, then the collapsing spreads

around the sections whose level are close to ∗.

Now, for every open neighbourhood O of ∗, we construct a locally ordered space XO and a
locally increasing map qO :

−→
S1 ×X → XO such that K(qO) = O.

We define the set

XO := O ⊔ { (s, t) ; s ∈ S1, t ∈ X/O }

and the (set theoretic) map qO :
−→
S1 ×X → XO by

qO(s, t) =

{
t if t ∈ O

(s, t) if t ∈ X/O .
(4.2)

We note that K(qO) = O.

Lemma 4.2.3. The final topology of qO is generated by the subsets of the form

Uα,A := O ∩A ⊔ { (s, t) ; s ∈ α, t ∈ (X/O) ∩A }

with α proper open arc, and A ∈
−→
O(X).

Proof. Indeed, these subsets are open in the final topology because q−1
O (Uα,A) = S1 × (O∩A) ∪

α × A is an open subset of S1 ×X. Conversely, let B be a subset of XO such that q−1
O (B) is an

open subset of S1 ×X and x ∈ B. Since qO is a surjection, there exists (s, t) ∈ S1 ×X such that
qO(s, t) = x. Then q−1

O (B) is an open neighbourhood of (s, t) in S1 × X so there are a proper
open arc α and an open ordered subset A of X such that (s, t) ∈ α × A ⊂ q−1

O (B). We verify
that Uα,A ⊂ B.

An element u ∈ Uα,A is either an element of O∩A or an ordered pair (s, t) ∈ α×((X/O)∩A).
Depending on the case, the second component of u refers to u itself or to t, we denote it by p2(u).
We provide every set Uα,A with the image of the order ≤α×A under the mapping qO, which we
denote by ≤1

α,A.

Lemma 4.2.4. The relation ≤1
α,A matches with the relation ⊑ defined below:

u ⊑ u′ if p2(u) ≤A p2(u
′) and


{u, u′} ∩O ̸= ∅

or

u = (s, t), u′ = (s′, t′), and s ≤α s′.

Proof. Let u and u′ be elements of Uα,A such that u ⊑ u′.

- If u = t ∈ O and u′ = t′ ∈ O, let s0 ∈ α, we have (s0, t) ≤α×A (s0, t
′), qO(s0, t) = u and

qO(s0, t
′) = u′, hence u ≤1

α,A u′.

- If u = t ∈ O and u′ = (s′, t′) ∈ α× ((X/O)∩A), we have (s′, t) ≤α×A (s′, t′), qO(s′, t) = u
and qO(s

′, t′) = u′, hence u ≤1
α,A u′.
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- If u = (s, t) ∈ α × ((X/O) ∩ A) and u′ = t′ ∈ O, we have (s, t) ≤α×A (s, t′), qO(s, t) = u
and qO(s, t

′) = u′, hence u ≤1
α,A u′.

- If u = (s, t) ∈ α × ((X/O) ∩ A) and u′ = (s′, t′) ∈ α × ((X/O) ∩ A), we have (s, t) ≤α×A

(s′, t′), qO(s, t) = u and qO(s
′, t′) = u′, hence u ≤1

α,A u′.

The fact that u ≤1
α,A u′ implies u ⊑ u′ readily derives from the definition of qO.

Lemma 4.2.5. The transitive closure of the relation ≤1
α,A, which we denote by ≤α,A, is anti-

symmetric. Moreover we have u ≤α,A u′ if and only if

u ⊑ u′ or ∃ u′′ ∈ O ∩A such that u ⊑ u′′ ⊑ u′ .

We write u ⊴ u′ when the above condition is satisfied.

Proof. We check that the relation ≤α,A is antisymmetric. Indeed, if u ≤α,A u′ ≤α,A u then
we have p2(u) = p2(u

′). It follows that u, u′, and also any u′′ such that u ≤α,A u′′ ≤α,A u′

all belong to O or to its complement. The first case is obvious, in the second one we have
s ≤α s′ ≤α s, from which we deduce that s = s′. The relation ⊴ is indeed an extension of
≤1

α,A and is clearly included in ≤α,A. In order to prove that ⊴ is transitive, we first make an
observation about the relation ⊑ : assume that u0 ⊑ u1 ⊑ u ⊑ u2 ⊑ u3 with u ∈ O∩A. We have
p2(u0) ≤A p2(u) ≤A p2(u3), and then u0 ⊑ u ⊑ u3. We now check that ⊴ is transitive: assume
that u0 ⊴ u1 ⊴ u2. If u0 = (s0, t0), u1 = (s1, t1) and u2 = (s2, t2), and if u0 ⊑ u1 ⊑ u2 then, by
transitivity of ≤α and of ≤A, we have u0 ⊑ u2. Otherwise, we meet one of the following cases:

1. one of the elements u0, u1, and u2 belongs to O ∩A, or

2. there exists ũ ∈ O ∩A such that u0 ⊑ ũ ⊑ u1 or u1 ⊑ ũ ⊑ u2.

In any case the observation we made about ⊑ allows us conclude that there exists u ∈ O ∩ A
such that u0 ⊑ u ⊑ u2, and therefore u0 ⊴ u2. Finally, the relations ⊑ and ≤α,A match.

Consequently, if (X/O) ∩A is order-convex5 in (A,≤A) then ≤α,A=≤1
α,A.

Lemma 4.2.6. The family of ordered sets (Uα,A,≤α,A) is an ordered basis on XO.

Proof. Let u ∈ XO such that u ∈ Uα0,A0 ∩ Uα1,A1 with α0, α1 proper open arcs and A0, A1 ∈
−→
O(X). If u ∈ O, there exists A2 ∈

−→
O(X) such that A2 ⊂ O and u ∈ A2 ⊂lax A0, A1. Then

Uα0,A2
is such that u ∈ Uα0,A2

⊂lax Uα0,A0
, Uα1,A1

. We note that if A2 ⊂str A0, A1, then
Uα0,A2 ⊂str Uα0,A0 , Uα1,A1 . If u = (s, t) ∈ S1 × (X/O), there exists a proper open arc α2 and
A2 ∈

−→
O(X) such that s ∈ α2 ⊂ α0 ∩ α1, and t ∈ A2 ⊂lax A0, A1. Then Uα2,A2

is such that
u ∈ Uα2,A2

⊂lax Uα0,A0
, Uα1,A1

. We note that if A2 ⊂str A0, A1 and if the subsets (X/O) ∩ Ai

are order-convex in the ordered sets (Ai,≤Ai
), then Uα2,A2

⊂str Uα0,A0
, Uα1,A1

. Finally, XO is
a locally ordered space.

Remark 4.2.2. Moreover, if there is a strict ordered basis
−→
B such that for all B ∈

−→
B , (X/O)∩B

is order-convex in B, then XO is a strictly locally ordered space. In particular, if X a strictly
locally ordered space coming from a topological space (4.1.3), then the canonical ordered basis
satisfies the latter order-convexity condition. Besides, when O is a clopen subset, any strict basis−→
B can be turned into a strict basis satisfying the order-convexity condition by keeping only those
elements B ∈

−→
B such that B ⊂ O or B ⊂ X/O.

Lemma 4.2.7. The map qO is locally increasing.

Proof. Let x = (s, t) ∈
−→
S1×X and let Uα,A such that qO(x) ∈ Uα,A, with α proper open arc, and

A ∈
−→
O(X). If qO(x) ∈ O, we can assume that A ⊂ O. Let α′ be a proper open arc containing

s, then x ∈ α′ × A ∈
−→
O(

−→
S1 ×X), qO(α′ × A) ⊂ Uα,A and the restriction of qO to α′ × A is

increasing from α′ × A to Uα,A. If qO(x) = (s, t) ∈ S1 × (X/O), then x ∈ α × A ∈
−→
O(

−→
S1 ×X),

qO(α×A) ⊂ Uα,A and the restriction of qO to α×A is increasing from α×A to Uα,A.
5Recall that a subset P of a preordered set (M,≤M ) is order-convex when, for every x, y, z ∈ A such that x ≤M

y ≤M z, if x and z belong to P then y ∈ P too.
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Lemma 4.2.8. Any locally increasing map f :
−→
S1 × X → Y such that O ⊂ K(f) factorizes

through the map qO in a unique way.

Proof. The map h : XO → Y soundly defined by qO(s, t) = f(s, t) is the only one satisfying
f = h ◦ q0. Since the underlying topology on XO is the final topology associated to qO, the map
h is continuous. Let u ∈ XO and W ∈

−→
O(Y ) such that h(u) ∈ W . Let (s, t) ∈

−→
S1 ×X such that

u = qO(s, t). Since f is locally increasing, we have a proper open arc α and an open ordered
subset A of

−→
O(X) such that (s, t) ∈ α × A, f(α × A) ⊂ W and the restriction of f to α × A is

increasing from α × A to W . Then u ∈ Uα,A and h(Uα,A) = h(qO(α × A)) = f(α × A) ⊂ W . It
remains to show that the restriction of h to Uα,A is an increasing map from Uα,A to W . Let u′ and
u′′ be elements of Uα,A such that u′ ≤1

α,A u′′. There exist two elements x′ and x′′ of α×A such
that x′ ≤α×A x′′, qO(x′) = u′ and qO(x

′′) = u′′. Hence h(u′) = f(x′) ≤W f(x′′) = h(u′′).

Corollary 4.2.9. In the category of locally ordered spaces, there exists a coequalizer of i∗ and
c∗ if and only if the family of open neighbourhoods of ∗ has a smallest element. If O is such a
neighbourhood, then qO :

−→
S1 ×X → XO is the coequalizer.

Proof. Assume that there is a coequalizer f :
−→
S1 × X → Y of i∗ and c∗. Let O be an open

neighbourhood of ∗. The map qO :
−→
S1 × X → XO coequalizes i∗ and c∗ so there is a map

h : Y → X0 such that qO = h ◦ f , hence K(f) ⊂ K(qO) = O. Moreover we know from Lemma
4.2.2 that K(f) is an open neighbourhood of ∗ in X.

Conversely, let O be the least element among the open neighbourhoods of ∗ in X. Given
f :

−→
S1 × X → Y that coequalizes i∗ and c∗, the subset K(f) is an open neighbourhood of ∗

(Lemma 4.2.2) so O ⊂ K(f). Thus, by Lemma 4.2.8, there exists a unique factorization of f
through qO.

Corollary 4.2.10. Let X be a strictly locally ordered space. Assume that V is an open neigh-
bourhood basis of ∗ satisfying the following property: for every O ∈ V there is a strict ordered
basis

−→
B of X such that (X/O) ∩ B is order-convex in each B ∈

−→
B . Then, in the category of

strictly locally ordered spaces, the coequalizer of i∗ and c∗ exists if and only if V has a least
element. If O is the least element of V, then qO :

−→
S1 ×X → XO is the coequalizer of i∗ and c∗.

Proof. The proof of Corollary 4.2.9 still holds taking Remark 4.2.2 into account.

Lemma 4.2.11. For every continuous map f : S1 × X → Y with Y locally Hausdorff, the set
K(f) is a closed subset of X.

Proof. Let t ∈ K(f), we are to show that the continuous map f ◦ it : S1 → Y is locally constant,
which is sufficient to prove that f ◦ it is constant (i.e. t ∈ K(f)) because S1 is a connected
space.

Let s ∈ S1 and let U ∈ O(Y ) such that f(s, t) ∈ U and U Hausdorff.
Since f is continuous at (s, t), there exists an open neighbourhood α × A of (s, t) such that

f(α × A) ⊂ U with α denoting a proper open arc and A an open of X. From t ∈ K(f),
we deduce that there is a net (ti)i∈I of A ∩ K(f) that converges to t. Let s′ ∈ α. The nets
(s, ti)i∈I and (s′, ti)i∈I converge respectively to (s, t) and (s′, t). Each ti belongs to K(f) hence
f(s, ti) = f(s′, ti). The images of the nets (s, ti)i∈I and (s′, ti)i∈I under f are thus equal and
converge, by continuity of f , to f(s, t) and f(s′, t). We deduce that f(s, t) = f(s′, t) because U
is Hausdorff.

Remark 4.2.3. Connectedness is the only property of S1 that is really used in the above proof.
Under the stronger assumption that Y is Hausdorff, the above lemma is valid for any topological
space instead of S1.

Proposition 4.2.12. If X is a locally ordered space whose underlying topology is Hausdorff,
then the two following statements are equivalent:

1. The underlying topology of the locally ordered space XO is Hausdorff.
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2. The open subset O of X is closed.

Proof. The first statement imply the second one by Lemma 4.2.11 (take f = qO). Conversely,
assume that O is closed. Let u, u′ ∈ XO with u ̸= u′. We have two situations to consider:

- There are s, s′ ∈ S1 and t, t′ ∈ X with t ̸= t′ such that u = qO(s, t) and u′ = qO(s
′, t′).

Since X is Hausdorff, there are disjoint open ordered subsets A and A′ containing t and
t′ respectively. For any proper open arc α containing s and s′, the subsets Uα,A and Uα,A′

are disjoint open neighbourhood of u and u′ respectively.

- There are t ∈ X and s, s′ ∈ S1 with s ̸= s′ and u = qO(s, t) and u′ = qO(s
′, t). Let α and

α′ be disjoint proper open arcs containing s and s′ respectively and let A be open ordered
subset containing t and included in X/O (which is an open subset by hypothesis). Then
the subsets Uα,A and Uα′,A are disjoint open neighbourhood of u and u′ respectively.

Proposition 4.2.13. Assume that X is a locally Nachbin ordered space. The two following
statements are equivalent:

1. The space XO is locally Nachbin ordered.

2. The open subset O of X is closed.

Proof. The first statement imply the second one by Lemma 4.2.11. Conversely, assume that O
is closed. Let A, α and u be an element of

−→
O(X), an ordered arc, and an element of Uα,A

respectively. We have two cases to deal with. On one hand, if u = t ∈ O∩A, there is A′ ∈
−→
O(X)

included in O such that t ∈ A′ ⊂lax A, and the order ≤A′ is closed for the topology induced by
X. So the sets Uα,A′ and A′ are equal, the topologies induced on them by XO and X are the
same, and the orders ≤α,A′ and ≤A′ coincide. Moreover, we have Uα,A′ ⊂lax Uα,A. On the other
hand, if x = (s, t) ∈ α× (A∩ (X/O)) with X/O open, there is A′ ∈

−→
O(X) included in X/O such

that t ∈ A′ ⊂lax A and the order ≤A′ is closed for the topology induced by X. So the sets Uα,A′

and α×A′ are equal, the topologies induced on them by XO and S1 ×X are the same, and the
orders ≤α,A′ and ≤α×≤A′ coincide. Moreover, we have Uα,A′ ⊂lax Uα,A.

Corollary 4.2.14. In the category of (strictly) locally Nachbin ordered spaces, there exists a
coequalizer of i∗ and c∗ if and only if the family of clopen neighbourhoods of ∗ has a smallest
element. If O is such a neighbourhood, then qO : S1 ×X → XO is the coequalizer.

Proof. Assume that there is a coequalizer f : S1 × X → Y of i∗ and c∗ with Y a (strictly)
locally Nachbin ordered space. Then, by Lemma 4.2.2 and Lemma 4.2.11, K(f) is a clopen
neighbourhood of ∗ in X. Let O be a clopen neighbourhood of ∗. The map qO : S1 ×X → XO

coequalizes i∗ and c∗ and, by Remark 4.2.2 and by Proposition 4.2.13, XO is a (strictly) locally
Nachbin ordered space, so there is a map h : Y → XO such that qO = h ◦ f , hence

K(f) ⊂ K(qO) = O

Conversely, if O is the least element among the clopen neighbourhoods of ∗ in X. Still by
Remark 4.2.2 and by Proposition 4.2.13, the space XO is a (strictly) locally Nachbin ordered
space. For every f : S1 × X → Y that coequalizes i∗ and c∗ with Y (strictly) locally Nachbin
ordered, the subset K(f) is an clopen neighbourhood of ∗ (see Lemmas 4.2.2 and 4.2.11).
Therefore O is included in K(f), and there exists a unique factorization of f through qO.

Corollary 4.2.15. Assume that the underlying topology of X is Hausdorff. In the category of
(strictly) locally (Nachbin) ordered Hausdorff spaces, there exists a coequalizer of i∗ and c∗ if
and only if the family of clopen neighbourhoods of ∗ has a smallest element O. In that case,
qO : S1 ×X → XO is the coequalizer.
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Proof. Assume that there is a coequalizer f : S1 ×X → Y of i∗ and c∗ with Y a (strictly) locally
(Nachbin) ordered Hausdorff space. Then, by Lemmas 4.2.2 and 4.2.11, K(f) is a clopen
neighbourhood of ∗ in X. Let O be a clopen neighbourhood of ∗. The map qO : S1 ×X → XO

coequalizes i∗ and c∗ and, by Remark 4.2.2 and by Propositions 4.2.12 and 4.2.13, XO is a
(strictly) locally (Nachbin) ordered Hausdorff space, so there is a map h : Y → X0 such that
qO = h ◦ f , hence

K(f) ⊂ K(qO) = O

Conversely, let O be the least clopen neighbourhood of ∗. Still by Remark 4.2.2 and by
Propositions 4.2.12 and 4.2.13, the space XO is a (strictly) locally (Nachbin) ordered space. For
every f : S1 ×X → Y that coequalizes i∗ and c∗ with Y a (strictly) locally (Nachbin) ordered
space, the subset K(f) is an clopen neighbourhood of ∗ (see Lemmas 4.2.2 and 4.2.11) so O is
included in K(f). So there exists a unique factorization of f through qO.

It is now time to provide some examples:

Example 4.2.1. The spaces R and Q are the real line and the space of rational numbers. The
coarsest refinement of the topology of R in which every singleton {x} with x ̸= 0 is open induces
a topological space that is denoted by R⋆.

The collection of open subsets of R, each equipped with the standard order, forms a strictly

locally Nachbin ordered space which we denote by
→
R. Let S be an infinite set with a distin-

guished element s̄. We denote by U the topological space on S in which a subset is open when
it contains s̄ 6. The table here below summarizes the cases where the coequalizer of i∗ and c∗
exists (see 4.1.3). The distinguished elements of R⋆ and U are respectively 0 and s̄. In all the
other cases, the distinguished element can be any point ∗ of the space.

X
category

R
→
R

−→
S1 R⋆ Q U

(strictly) locally ordered spaces ✗ ✓

(strictly) locally ordered Hausdorff spaces ✓ ✗ ✓

(strictly) locally Nachbin ordered spaces ✓ ✗ n/a
(strictly) locally Nachbin ordered Hausdorff spaces ✓ ✗ n/a

In the first three columns, the coequalizer, when it exists, is the second projection. It is also
the coequalizer when the space under consideration is U and the ambient category is that of
locally ordered Hausdorff spaces. In the latter case, if we drop the Hausdorffness assumption,
the coequalizer is the quotient map qO where O = {s̄}, see (Eq. 4.2). All the spaces appearing
in the above table are strict and satisfy the hypotheses of Corollary 4.2.10. Consequently, the
results summarized in the table are valid regardless of the fact that the coequalizers are taken
in categories of strictly or laxly locally ordered spaces.

4.3 Zebra cylinder

We emphasize that any point of [0, 1] admits the whole space as its smallest clopen neighbour-
hood, so the according to the results from Section 4.2 the coequalizer of (i0, c0) : S1 → S1×[0, 1]
with the product ordered basis on S1 × [0, 1] exists in the category of locally ordered Hausdorff
spaces (it is actually [0, 1]).

In this Section, we describe a strict ordered basis
−→
B on S1 × [0, 1] so that the coequalizer

of the morphisms (i0, c0) no longer exists in the category of (strictly) locally (Nachbin) ordered
(Hausdorff) spaces. As before, the strategy consists of setting the ordered basis in a way that:

- all the sections in a chosen neighbourhood V of the section i0 are collapsed, and

- the neighbourhood V can be made arbitrarily small.

6The open subsets of U are the elements of the principal ultrafilter on S generated by s̄ [DP02, p.233]
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Let N be the set of extended natural numbers N⊔{+∞}, and (dn)n∈N be a strictly decreasing
sequence with values in the compact unit interval I := [0, 1]. Assume that inf { dn ; n ∈ N } = 0.
For all n ∈ N, I(n) denotes the interval [d2n+1, d2n] and I(+∞) the degenerated interval {0}.

The elements of
−→
B are of the form α×O where α is an ordered arc and O is an open subset

of I, ordered as follows:

(s, u) ⪯O
α (s′, u′) if

{
s ≤α s′ and u = u′ ∈ I(n) for some n ∈ N,

or s = s′ and u = u′ .
(4.3)

We denote by Z the resulting strictly locally Nachbin ordered Hausdorff space.

Figure 4.2: Zebra cylinder
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Let f : Z → X be a locally increasing map such that

f ◦ i0 = f ◦ c0

and recall that K(f) is the set

{ t ∈ I ; ∀s, s′ ∈ S1, f(s, t) = f(s′, t) } .

We prove a result similar to lemma 4.2.2.

Lemma 4.3.1. There exists n ∈ N such that, for all m ≥ n, I(m) ⊂ K(f).

Proof. The arguments are mostly the same as in the proof of Lemma 4.2.2. By hypothesis 0

belongs to K(f). Let U ∈
−→
O(X) such that f(1, 0) ∈ U . For all s ∈ S1, the function f is

locally increasing at (s, 0), so there exists an open neighbourhood αs × Os of (s, t0) such that
f(αs × Os) ⊂ U and the restriction fs : (αs × Os,⪯s) → U is increasing with αs denoting a
proper open arc and ⪯s the order ⪯Os

αs
on αs ×Os.

Since S1 is compact, the open covering made of the proper open arcs of the form αs admits
a finite subcovering

F =
{
αs ; s ∈ J

}
.

We denote by O the finite intersection ⋂
s∈J

Os ,

which is thus an open neighbourhood of 0.
Since the sequence (dn)n∈N tends to 0, there exists n ∈ N such that the intervals I(m)

are included in O for every m ≥ n. Let m be such a natural number. We are to show that
I(m) ⊂ K(f). Given t ∈ I(m), x, y ∈ S1, there exists a finite sequence r0, . . . , rl ∈ S1 such that
r0 = x, rl = y, and for all k ∈ {1, . . . , l} there is sk ∈ J such that rk, rk+1 ∈ αsk and rk ≤k rk+1
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with ≤k denoting the standard order on the proper open arc αsk . In particular, since t ∈ I(m),
we have

(rk, t) ⪯sk (rk+1, t)

from which we deduce that
f(rk, t) ≤U f(rk+1, t)

because the restriction fsk is increasing. By transitivity of ≤U , we have f(x, t) ≤U f(y, t). By
swapping the roles of x and y in the previous reasoning we prove that f(y, t) ≤U f(x, t). From
the antisymmetry of ≤U , we deduce that f(x, t) = f(y, t), so t belongs to K(f), which therefore
contains I(m).

Proposition 4.3.2. The pair of morphisms (i0, c0 : S1 → Z) does not have any coequalizer in
the category of (strictly) locally (Nachbin) ordered (Hausdorff) spaces.

Proof. Let f : Z → X, g : Z → Y be two locally increasing maps which coequalize i0 and c0. If
there is h : Y → X such that f = h ◦ g, then K(g) ⊂ K(f).

We construct, for each n ∈ N, a locally ordered space Xn (which is actually strict, Nachbin,
and Hausdorff) and a locally increasing map fn : Z → Xn such that fn ◦ i0 = f ◦ c0 and
K(fn) = [0, d2n]. If g was the coequalizer of (i0, c0), we would have

0 ∈ K(g) ⊂
⋂
n∈N

K(fn) =
⋂
n∈N

[ 0, d2n ] = {0}

but this is in contradiction with Lemma 4.3.1. For n ∈ N we define the set

Figure 4.3: The locally ordered space Xn
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d2n−1

d2n−2

d2n

.

.

the collapsing does not
spread beyond the unordered

band

.

collapsed part

Xn :=
[
0, d2n

]
⊔
{
(s, t) ; s ∈ S1, t ∈] d2n, 1 ]

}
and the (set theoretic) map fn : Z → Xn by

fn(s, t) =

{
(s, t) if t > d2n
t if t ≤ d2n .
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We note that fn ◦ i0 = fn ◦ c0 and K(fn) = [0, d2n]. The final topology of fn is generated by the
subsets of the form

Oα,A :=


B if A ⊆

[
0, d2n

[
B ⊔

(
S1 × C

)
if d2n ∈ A

α× C if A ⊆
]
d2n, 1

]
with α proper open arc, A an open interval of I, B := A∩

[
0, d2n

]
and C := A∩

]
d2n, 1

]
. In order

to define a (strict) ordered basis on Xn that makes the map fn a morphism of locally ordered
spaces, we only consider the intervals A whose length is (strictly) less that d2n−1 − d2n. The
order ≤α,A on Oα,A is then defined as the equality in the first and second cases, and matches
the order described at (4.3) in the third case. In particular, the condition on the length of A
guarantees that the order on B ⊔ (S1 × C) on one hand, and the order on α × A from the
ordered basis of Z on the other hand (for any proper open arc α), both match on α × C: this
key observation ensures that fn is indeed a morphism of locally ordered spaces.

4.4 Rational based cylinder

Previously, we saw that coequalizers in the category of locally ordered spaces may behave differ-
ently than in the category of topological space because of the collapsing spreading described in
Lemmas 4.2.2 and 4.3.1. These latter rely on the fact that the directed loops are continuous (i.e.
they are indexed by

−→
S1). In this section we replace

−→
S1 by some of its dense totally disconnected

subspace. Then we exhibit a pair of morphisms whose coequalizer exists, and whose underlying
space matches with the topological coequalizer.

Definition 4.4.1. The subspace { eix ; x ∈ Q } of S1 is denoted by S1
Q . The directed rational unit

circle
−→
S1

Q is the subspace S1
Q with the locally ordered space structure inherited from the directed

unit circle, see Remark 4.1.1.

We overload the denotations i0 and c0 which now designate the mappings

s ∈ S1
Q 7→ (s, 0) ∈

−→
S1

Q × I and s ∈ S1
Q 7→ (1, 0) ∈

−→
S1

Q × I

As before we identify all the points of the section S1
Q × {0}. We now describe the resulting

coequalizer in the category of topological spaces. The underlying set is the disjoint union

{0} ⊔ S1
Q × ]0, 1] ,

and the quotient map is denoted by

q : S1
Q × [0, 1] → {0} ⊔ (S1

Q×]0, 1]) .

A basis of open neighbourhoods of (s, t) with t > 0 is given by the traces of the products α×]a, b[
with s ∈ α proper open arc and 0 < a < t < b. The associated order is given by the restriction
of the product order ≤α × =.

The neighbourhoods of 0 are a bit harder to describe. We provide a basis of open neighbour-
hoods whose elements will be the supports of the orders around 0. To this aim, we consider the
set H of all functions h : S1

Q → [0, 1] which are continuous, strictly positive, and such that

inf h = 0 .

For every function h ∈ H, we define the set

Oh = {0} ⊔
{
(s, t) ∈ S1

Q×]0, 1] ; t < h(s)
}

.

We note that H is a inf-semilattice7 with the minimum being computed pointwise. Moreover,
the map h 7→ Oh is a morphism of inf-semilattices. We are going to prove that the set of all Oh

is a basis of open neighbourhoods of 0.
7Any pair of elements has a meet.
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Firstly, in order to prove that Oh is an open subset, we show that q−1(Oh) = {(s, t) ∈
S1

Q × I ; t < h(s)} is an open subset of S1
Q × I. Let (s, t) ∈ q−1(Oh), since t < h(s), there exists

two disjoint open intervals A and A′ of I such that A < A′ 8, t ∈ A and h(s) ∈ A′. By continuity
of h, there is an open subset O of S1

Q containing s such that h(O) ⊂ A′. Therefore, O × A is an
open neighbourhood of (s, t) included in q−1(Oh).

Secondly, in order to prove that any open neighbourhood of 0 contains some Oh, we use the
following lemma:

Lemma 4.4.2. Let O be an open neighbourhood of i0(S1
Q). Let (sn)n∈N be an enumeration of

S1
Q . We inductively define a family (Aj , tj)j∈J (with J ⊆ N) such that

- for all j ∈ J :

· the set Aj is open,

· the real number tj belongs to ]0, 1], and

· the product Aj × [0, tj [ is included in O,

- the sets Aj form a partition of S1
Q , and

- the greatest lower bound of the set { tj ; j ∈ J } is 0.

Then, for any open neighbourhood U of 0, the set q−1(U) is an open neighbourhood of
i0(S

1
Q). Therefore, by applying the lemma, we get a family (Aj , tj) from which we define the

map h : S1
Q → [0, 1] which sends s ∈ Aj to tj . We observe that it belongs to H, and that

q−1(Oh) ⊂ q−1(U). Consequently, we get Oh ⊂ U . This concludes the proof that the set of all
Oh is a basis of open neighbourhoods of 0.

Proof of Lemma 4.4.2. Since O is open and contains (s0, 0), there exists an open neighbourhood
of (s0, 0) of the form A0 × [0, t0[. Taking A0 to be the trace of a proper open arc whose extremi-
ties are eia and eib with a and b in R/Q, we obtain a clopen subset of S1

Q . Moreover, we choose
A0 so that A0 ̸= S1

Q . Define J0 = {0}.

Suppose that we have already defined Aj and tj for j ∈ JN , with N + 1 denoting the cardi-
nality of JN . We actually suppose that the following stronger hypotheses are satisfied:

- each Aj is a clopen, we have tj <
1

j+1 , and

- the family of sets Aj , with j ∈ JN , does not cover S1
Q though it contains {s0, . . . , sN}.

Let n be the smallest integer such that sn does not belong to the union UN of the sets Aj for
j ∈ JN . We have n > N and we define JN+1 = JN ∪ {n}. We can find a clopen An which
contains sn and a number tn < 1

n+1 so that An× [0, tn[ is included in O. The union UN is closed
because so is each Aj , so we can suppose that An does not meet UN . Of course we can also
restrict An so that UN ∪An ̸= S1

Q .

We equip the sets Oh with orders ≤h so that they become the elements of the expected
ordered basis containing 0.

By definition, we have (s, t) ≤h (s′, t′) when t = t′ and there exists a proper open arc α such
that s ≤α s′ and (α ∩ S1

Q)× {t} ⊂ Oh (and of course 0 ≤h 0).
Let h, h′ ∈ H. Since Omin(h,h′) is the intersection of Oh and Oh′ , the order ≤min(h,h′) matches

the restrictions of both ≤h and ≤h′ .
The collection of ordered sets α×]a, b[ (with s ∈ α proper open arc and 0 < a < b) and Oh

(with h ∈ H) thus forms a (strict) ordered basis. We denote by W the corresponding locally
order space on {0} ⊔ S1

Q×]0, 1].

Proposition 4.4.3. The quotient map q induces the coequalizer of i0 and c0.
8i.e. a < a′ holds for all a ∈ A and a′ ∈ A′.
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Proof. One easily checks that the map q is locally increasing. Let f :
−→
S1

Q × I → X be a locally
increasing map such that f ◦ i0 = f ◦ c0. The underlying topology of W is the final one so we
have a unique continuous map g from the underlying space of W to that of X such that f = g◦q.
The only point of W around which g is not trivially increasing is 0. This latter case has to be
treated carefully. Let U ∈

−→
O(X) such that g(0) ∈ U . Let (sn)n∈N be an enumeration of S1

Q . We
construct by induction a family (αj , tj)j∈J (with J ⊆ N) such that

- for all j ∈ J :

· αj is a proper open arc of the form
>
ajbj with aj , bj ∈ R/Q.

· the number tj belongs to ]0, 1],

· f((α ∩ S1
Q)× [0, tj [) ⊂ U , and

· one has f(s, t) ≤U f(s′, t) when s ≤αj
s′ for s, s′ ∈ αj ∩ S1

Q and t ∈ [0, tj [

- the sets αj ∩ S1
Q form a partition of S1

Q .

Since f is locally increasing at (s0, 0), there exists an open neighbourhood of (s0, 0) of the form
A0 × [0, t0[ such that the restriction of f to A0 × [0, t0[ with values in U is increasing. Taking
A0 to be the trace of a proper open arc α0 =

>
a0b0 with a0 and b0 in R/Q, we obtain a clopen

subset of S1
Q . Define J0 = {0}. Suppose that we have already defined αj and tj for j ∈ JN , with

N + 1 denoting the cardinality of JN . If the union UN of the sets αj ∩ S1
Q for j ∈ JN is S1

Q , then
J := Jn and the construction is over. Otherwise, let n be the smallest integer such that sn does
not belong to UN . We have n > N and we define JN+1 = JN ∪ {n}. We can find a clopen An

which contains sn and a number 0 < tn ≤ 1 so that the restriction of f to An× [0, tn[ with values
in U is increasing.

The union UN is closed because so is each αj ∩S1
Q , so we can suppose that An does not meet

UN . Finally, we can assume that An is the trace of a proper open arc αn =
>
anbn with an and bn

in R/Q.
For each j ∈ J , consider a continuous map ϕj : αj → [0, tj ] that is strictly positive, and

tends to 0 on aj and bj (basically a bump function would be more than enough). Then let h be
the map whose restriction to αj is

x 7→ ϕj(x) with x ∈ αj

One readily deduces from the definition of h that it belongs to H and satisfies g(Oh) ⊂ U . We
now check that the restriction of g : W → X to Oh is order-preserving from ≤h to ≤U . Suppose
that we have (s, t) ≤h (s′, t) in Oh. By definition of the order ≤h there exists an open proper
arc α such that s ≤α s′ and (α ∩ S1

Q) × {t} ⊆ Oh. Let j ∈ J be such that s ∈ αj . Recall that α
and αj are the images of ]a, b[ and ]aj , bj [ under the complex exponential map t ∈ R 7→ eit ∈ S1

with b− a < 2π, bj − aj < 2π. Moreover, once a and b are fixed, one can choose aj and bj such
that s = eix for some x ∈ ]a, b[ ∩ ]aj , bj [. We also have x′ in ]a, b[ such that x ≤ x′ and eix

′
= s′.

We cannot have bj < x′ otherwise the interval ]x, bj [ would be included in ]a, b[ so we would
have x′′ ∈ ]a, b[ ∩ Q with h(eix

′′
) arbitrarily small. In particular (eix

′′
, t) would not belong to Oh.

Moreover we have bj ̸= x′ because one is rational while the other is not. Since the standard
order on R is total, we have x′ < bj . Hence both x and x′ belong to ]aj , bj [, and we have x ≤ x′

so s ≤αj s′. Moreover t < h(s) ≤ tj . It follows that f(s, t) ≤U f(s′, t).



Chapter 5

T -topological spaces

In this chapter we introduce all the basic notions that are used throughout the rest of the
manuscript. Inspired by the commonalities between the definitions of the bases of topology
and of the (strictly) ordered bases (4.1.1), we provide an unified framework: the topological
theories. From such a theory T , we naturally derive the basic notions of bases of T -topology, of
T -topological spaces, of T -openness, of T -neighbourhoods, and of (pointwise) T -continuity. With
a well chosen theory, these notions match with their classical analogues or with the (strictly)
locally ordered version developed in the previous chapter.

Two notions of morphism between topological theories arise: one that can be considered as
‘semantic’ since it only involves the T -topological spaces, and the other that can be considered
as ‘syntactic’ since it directly lives at the level of the topological theories. We describe the fun-
damental operator Sem that associates each morphism of the second kind with a well-behaved
morphism of the first kind without modifying the domain and the codomain.

We finally provide another operator Loc that associates each morphism of the first kind with
a morphism of the second kind. This operator will be a major source of instances of well-behaved
topological theories which are more thoroughly study in later chapters.

5.1 Topological theories

Definition 5.1.1 (Lax functors). A lax functor1 from Set to the ordered category Mod is an ap-
plication T , which associates each set X with a preordered set (T (X),⊂T (X)) and each function
f : X → Y with a module T (f) : (T (X),⊂T (X)) −→◦ (T (Y ),⊂T (Y )), such that:

- for every set X, (⊂T (X)) ≤ T (IdX), and

- for every functions f : X → Y and g : Y → Z, T (g) ◦ T (f) ≤ T (g ◦ f).

Any functor from Set to Mod is in particular a lax functor.
For any lax functor T and any set X, we identify T (X) and its underlying set, and we denote

by ⊂T (X) (or by ⊂T if there is no risk of confusion) its preorder, to emphasize the fact that
(T (X),⊂T ) is thought as an abstraction of the ordered set (P(X),⊂). However we avoid using
the symbols ∪ and ∩ to denote, when they exist, joins and meets in T (X) since in some examples
the members of T (X) have underlying sets which are not preserved by joins or meets.

Definition 5.1.2 (Topological theories). A topological theory is a pair (T,∈T ) where T is a lax
functor from Set to Mod and ∈T= (∈X

T : (X,=) −→◦ T (X))X∈Set is a family of modules such
that, for every function f : X → Y , for every x ∈ X, and for every B ∈ T (Y ),

if ∃A ∈ T (X) such that x ∈X
T A and A T (f)B , then f(x) ∈Y

T B (5.1)
1It is a particular instance of [Bor94a, 7.5.1] considering Set and Mod as particular 2-categories. See also [HST14,

II.4.6].
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Remark 5.1.1. The previous condition is equivalent to the inequality relation in the following di-
agram in the ordered category Mod, where the sets X and Y are identified with the preordered
sets (X,=) and (Y,=), and the function f with the module f∗ :

T (X)

T (f)

''
X

∈X
T

77

f
''

≤ T (Y )

Y
∈Y

T

66
(5.2)

Remark 5.1.2. We often identify the topological theory (T,∈T ) with the lax functor T and ∈X
T

with ∈T if there is no risk of confusion.

Definition 5.1.3 (Topological theories with strong membership). A topological theory with strong
membership is a topological theory (T,∈T ) such that, for every sets X and Y , every function
f : X → Y , every x ∈ X, and every B ∈ T (Y ), the converse implication of (5.1) is true. In
other words, the diagram in the above remark is commutative.

Remark 5.1.3. The family ∈T is in fact just a lax transformation in the sense of [HST14, II.4.6]
or of [Bor94a, 7.5.2] from the canonical functor Eq introduced at the very end of Section 3.1
to the lax functor T . The theory is with strong membership precisely when ∈T is a natural
transformation.

Definition 5.1.4 (Topological theories with representable membership). A topological theory
with representable membership is a topological theory (T,∈T ) such that, for every set X, there is
a map σX : X → T (X) such that ∈X

T = (σX)∗ (see 3.1.2); the map σX is then unique modulo
equivalence.

In a topological theory with representable membership, the assumption (5.1) is equivalent
to

if σX(x) T (f)B then f(x) ∈Y
T B .

Examples 5.1.1.

- Let V be a quantale (see Appendix A). For every set X, denote by TV(X) the set of all V-
preordered sets (Definition A.0.7) whose underlying set is X. Endow TV(X) with equality
to obtain an ordered set. We define ∈X

TV
as the classical set membership relation, i.e.

it is the relation which is always true in our case. Let f : X → Y be a function, let
(X,R) ∈ TV(X) and let (Y, S) ∈ TV(Y ), define the relation TV(f) by (X,R) TV(f) (Y, S)
when f is a V-increasing map (Definition A.0.8) from (X,R) to (Y, S). One readily checks
that one gets a topological theory. The membership relation is strong and is representable
only if V = 1; in that case, for every set X, T (X) is a singleton set, and, for every function
f , T (f) is the relation which is always true.

- We also consider a variant T l
V of the previous topological theory, where, for every set X,

the equality on TV(X) is substituted by the V-monotonicity of the identity map, and a
variant TS

V where, for every set X, TS
V (X) is the subset of V-ordered sets.

- For every set X, endow the powerset P(X) with the inclusion relation. For every function
f : X → Y , denote by P(f) : P(X) −→◦ P(Y ) the module defined, for all A ⊂ X and
B ⊂ Y , by A P(f) B when f(A) ⊂ B. The pair (P,∈) is then a topological theory whose
membership is strong and representable by x 7→ {x}. We also denote by Loc(T1) this
theory for a reason explained in Section 5.4.
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- For every set X, denote by Pfin(X) the set of all finite subsets of X, ordered by inclusion.
For every function f : X → Y , define the module Pfin(f) : Pfin(X) −→◦ Pfin(Y ) as
the restriction of P(f). The pair (Pfin,∈) is then a topological theory with strong and
representable membership.

- For every set X, denote by PRel(X) the set of all subsets P of X equipped with a relation
P →p P . The set PRel(X) is ordered by (P,R) ⊂PRel(X) (P ′, R′) when P ⊂ P ′ and
R ⊂ R′. For every function f : X → Y , the module PRel(f) : PRel(X) −→◦ PRel(Y ) is
defined, for every (P,R) ∈ PRel(X) and (Q,S) ∈ PRel(Y ), by (P,R) PRel(f) (Q,S) when
f(P ) ⊂ Q and when, for all x, x′ ∈ P , R(x, x′) implies S(f(x), f(x′)). The pair (PRel,∈)
is then a topological theory whose membership relation is strong and is represented by
x 7→ ({x}, ∅).

- Similarly denote by (PrRel,∈) the variant of the previous theory defined in the same way
except that all the relations are assumed to be reflexive. The theory is with strong and
representable membership.

- For every set X, define T∅(X) := ∅, and, for every function f , define T∅(f) as the sole
possible relation. The pair (T∅,∈) is a topological theory with strong membership but not
with representable membership.

- Let C be a category and U : C → Set be a faithful functor whose fibres2 are small. Let
X be a set, define TU(X) as the fibre of U on X and define ∈TU

X as the relation which is
always true. Let f : X → Y be a function, define a relation TU(f) by, for every A ∈ TU(X)
and B ∈ TU(Y ), A TU(f) B when there exists a (unique) morphism f : A → B such that
U(g) = f . On TU(X), we consider two preorders: the equality and TU(IdX). We easily
verify that we get then two topological theories TU and T l

U. We recognize the first two
examples by taking for U the forgetful functor UV : V-Ord → Set.

Definition 5.1.5. Let T = (T,∈T ) be a topological theory and let X be a set. Given x ∈ X and
A ∈ T (X), when x ∈T A, we say that x is a T -element of A. On T (X), we define an equivalent
relation "having the same T -elements"

A ≃T A′ when, for all x ∈ X, (x ∈T A ⇔ x ∈T A′)

Conversely, given x, x′ ∈ X, we say that x and x′ are ∈T -indistinguishable when, for all A ∈
T (X), x ∈T A ⇔ x′ ∈T A.

If T is with a representable membership, x and x′ are ∈T -indistinguishable if and only if σ(x)
and σ(x′) are equivalent in T (X) for the preorder ⊂T .

5.2 Basic definitions and properties

Fix a topological theory T = (T,∈T ).
In order to avoid confusion, from now on, we will call "member" an element of a T (X),

"point" an element of a T -topological space once they have been defined, and reserve the term
"element" for the element of any sets.

Definition 5.2.1 (T -topologies). Let X be a set. A basis of T -topology on X is a subset B of
T (X) such that, for every element x ∈ X :

- there is B ∈ B such that x ∈T B, and

- for all B,B′ ∈ B such that x ∈T B and x ∈T B′, there is B′′ ∈ B such that x ∈T B′′,
B′′ ⊂T B, and B′′ ⊂T B′.

2Recall that the fibre of a set X along U is the collection of all objects A of C satisfying U(A) = X.
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A member O ∈ T (X) is T -open for the basis B when, for all x ∈ X, if x ∈T O, then there is
B ∈ B such that x ∈T B ⊂T O.

We denote by OT (B) the set of all members of T (X) which are T -open for B. Two bases B
and B′ on X are equivalent when OT (B) = OT (B′).

A T -topology on X is given by an equivalent class of bases of T -topology on X. A T -
topological space is a pair (X, E) with X a set and E a T -topology on X.

As usual, when there is no risk of confusion, we identify a T -topological space and its under-
lying set. In particular, we denote by OT (X) the set of all members of T (X) which are T -open
for any basis among the T -topology of a T -topological space X.

Let (X, E) be a T -topological space, and let B be a basis of T -topology on X, we say that B
generates the T -topology of X when B ∈ E .

Remark 5.2.1. More concisely, let X be a set and let B ⊂ T (X). The set B is a basis of T -topology
on X if, for every x ∈ X, the preordered subset x/B := {B ∈ B ; x ∈T B} is cofiltered.

Remark 5.2.2. Let X be a set. A member A ∈ T (X) which has no T -element is T -open for any
T -topology on X. In particular, on the empty set, there is only one T -topology. For the latter, all
members of T (∅) are T -open.

Since we assume that T (X) is a preordered set and that ∈X
T is a module, we can generalize

classical results about bases of topology.

Lemma 5.2.2. Let B be a basis of T -topology on a set X. One has B ⊂ OT (B).

Proof. Let B ∈ B and x ∈ X such that x ∈T B. Since ⊂T is reflexive, one has x ∈T B ⊂T B
therefore B is T -open.

Lemma 5.2.3. Let B1 and B2 be two bases of T -topologies on a set X. If B1 ⊂ OT (B2) then
OT (B1) ⊂ OT (B2).

Proof. Assume that B1 ⊂ OT (B2), and let O1 ∈ OT (B1) and x ∈ X such that x ∈T O1.
There is B1 ∈ B such that x ∈T B1 ⊂T O1. Since B1 is T -open for B2, there is B2 ∈ B2 such

that x ∈T B2 ⊂T B1. We deduce that x ∈T B2 ⊂T O1, so that O1 is T -open for B2, and finally
that OT (B1) ⊂ OT (B2).

Corollary 5.2.4. Let B1 and B2 be two bases of T -topologies on a set X. The bases B1 and B2

are equivalent if and only if B1 ⊂ OT (B2) and B2 ⊂ OT (B1).

Proof. The direct implication comes from Lemma 5.2.2. One deduces the converse implication
from the previous lemma.

Lemma 5.2.5. Let B be a basis of T -topology on a set X. Then OT (B) is a basis of T -topology
and OT (OT (B)) = OT (B).

Proof. Let x ∈ X. There is B ∈ B such that x ∈T B because B is a basis. By Lemma 5.2.2,
B ∈ OT (B). Let O,O′ ∈ OT (B) such that x ∈T O,O′. Since O and O′ are T -open for B, there is
B,B′ ∈ B such that x ∈T B ⊂T O and x ∈T B′ ⊂T O′. Since B is a basis, there is B′′ ∈ B such
that x ∈T B′′ ⊂T B et x ∈T B′′ ⊂T B′. We deduce that x ∈T B′′ ⊂T O and x ∈T B′′ ⊂T O′. We
conclude as before by Lemma 5.2.2. Thus OT (B) is a basis of T -topology and then, by applying
the result at OT (B), OT (OT (B)) is also a basis.

It remains to show that OT (OT (B)) = OT (B). By Lemma 5.2.2, one has OT (B) ⊂ OT (OT (B)).
Conversely, by the previous lemma, one has OT (OT (B)) ⊂ OT (B).



5.2. BASIC DEFINITIONS AND PROPERTIES 39

Corollary 5.2.6. Let X be a T -topological space. The set OT (X) is the greatest basis for inclu-
sion in the T -topology of X.

In other words, for every T -topological space, there is a canonical basis of T -topology that
generates it.

Examples 5.2.1.

- Let V be a quantale and let X be a set. The bases of TV-topology are the singleton subsets
of TV(X) and two bases are equivalent if and only if they are equal. In other words,
one can identify the TV-topologies on X and the V-preordered sets whose underlying set
is X. Similarly, one can identify the TS

V -topologies on X and the V-ordered sets whose
underlying set is X.

- More generally, let U : C → Set be a faithful functor whose fibres are small. Let X be
a set. If X is empty, there is only one TU-topology on X and if X is not empty, one can
identify the TU-topologies on X and the members of the fibre of X along U.

- For the topological theory (P,∈), the notions of basis of (P,∈)-topology, of (P,∈)-openness
and of (P,∈)-topological spaces coincide with the classical notions of basis of topology, of
open subset and of topological space.

- For the topological theory (Pfin,∈), the Pfin-topological spaces are the topological spaces
which have a basis of topology whose all members are finite subsets.

- For the topological theory (T∅,∈), the only (T∅,∈)-topological space is the empty set with
the unique T∅-topology on it.

5.2.1 T -neighbourhoods

In this part, we introduce the T -neighbourhoods, we prove some of their basic properties, and
we give a characterization of T -topological spaces via the T -neighbourhoods.

Definition 5.2.7 (T -neighbourhoods). Let X be a T -topological space and let x ∈ X. A member
V of T (X) is a T -neighbourhood of x in X when there is O ∈ OT (X) such that x ∈T O ⊂T V .
The set of all T -neighbourhoods of x is denoted by VX

T (x), or more simply by VT (x).

Lemma 5.2.8. Let X be a T -topological space. A member O of T (X) is T -open if and only if,
for every T -element x of O, O is a T -neighbourhood of x.

Proof. The condition is clearly necessary by definition of the T -neighbourhoods and it is suffi-
cient because the set OT (X) is a basis which generates the T -topology of X.

Proposition 5.2.9. Let X be a T -topological space and let x ∈ X. The subset VT (x) is a filter
of T (X) such that:

- VT (x) is cofiltered,

- for all V ∈ VT (x), x ∈T V , and

- for all V ∈ VT (x), there is W ∈ VT (x) such that W ⊂T V and such that, for every y ∈ X
satisfying y ∈T W , one has W ∈ VT (y).

Proof. Let (Vj)j∈J a finite family of T -neighbourhoods of x. By definition of T -neighbourhoods,
for all j ∈ J , there is Oj ∈ OT (X) such that x ∈T Oj ⊂T Vj . Since OT (X) is a basis of T -
topology, there is O ∈ OT (X) such that, for every j ∈ J , x ∈T O ⊂T Oj . Thus, O is a lower
bound of (Vj)j∈J and, by the previous lemma, O ∈ VT (x). Therefore VT (x) is cofiltered.

Let V ∈ VT (x) and let A ∈ T (X) such that V ⊂T A. One readily deduces that A ∈ VT (x),
hence VT (x) is a filter because VT (x) is cofiltered.

For every V ∈ VT (x), there is O ∈ OT (X) such that x ∈T O ⊂T V . Since ∈T is a module, we
deduce that x ∈T V . From the previous lemma, we deduce that O ∈ VT (x) and that, for every
y ∈ X satisfying y ∈T O, one has O ∈ VT (y).
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Conversely, the T -topologies on a set X can be expressed via T -neighbourhoods:

Proposition 5.2.10 (T -topologies via T -neighbourhoods). Let X be a set, and, for each x ∈ X,
let F(x) be a filter on T (X) satisfying the three assumptions of the preceding proposition. Then
there exists a unique T -topology such that, for every x ∈ X, the filter F(x) is the filter of
T -neighbourhoods of x.

Proof.

- Unicity: if there is a T -topology on X such that, for every x ∈ X, F(x) is the filter of
T -neighbourhoods of x. A member O of T (X) is T -open if and only if, for every x ∈ X
such that x ∈T O, O ∈ VT (x). This is equivalent to, for every x ∈ X such that x ∈T O,
O ∈ F(x).

- Existence: write B := {A ∈ T (X); ∀x ∈ X, x ∈T A ⇒ A ∈ F(x)}.

Let x ∈ X and let (Bj)j∈J be a finite family of B such that, for all j ∈ J , x ∈T Bj . For
each j ∈ J , one has a fortiori Bj ∈ F(x). Since F(x) is cofiltered, there is A ∈ F(x) such
that, for all j ∈ J , A ⊂T Bj . By hypothesis, there exists B ∈ F(x) such that B ⊂T (X) A
and such that, for every y ∈ B, y ∈T B implies B ∈ F(y). Furthermore, from B ∈ F(x),
we deduce x ∈T B. Hence B ∈ B is a lower bound of the Bj whose x is a T -element.
Consequently, B is a basis of T -topology on X.

One easily checks from the definition of B, from the last hypothesis on the F(x), and from
there upward closedness, that they are the filters of T -neighbourhoods for T -topology
defined by B.

5.2.2 T -openness properties

In this part, we prove some stability properties of T -openness and we give a characterisation of
T -topological spaces via the T -open members when T and ∈T have sufficiently good properties.

Proposition 5.2.11 (Stability under finite meets of T -openness). Let X be a T -topological space
and let (Oj)j∈J be a finite family of OT (X). Every meet

∧
j∈J Oj of (Oj)j∈J in T (X) is T -open

in X.

Proof. Let x ∈ X such that x ∈T

∧
j∈J Oj . For each j ∈ J , one has

∧
j∈J Oj ⊂T Oj , hence

x ∈T Oj because ∈T is a module. Since OT (B) is a basis of X and since J is a finite set,
there is O ∈ OT (X) such that x ∈T O, and, for all j ∈ J , O ⊂T Oj . We finally deduce that
x ∈T O ⊂T

∧
j∈J Oj , thus

∧
j∈J Oj is T -open in X.

Definition 5.2.12 (Supercompact T -membership). Let X be a set, the membership module ∈X
T

is supercompact when, for every x ∈ X, for every family (Ai)i∈I , if x is a T -element of every
upper bound of (Ai)i∈I , then there exists i ∈ I such that x ∈X

T Ai.

When T is a topological theory with representable membership (see 5.1.4), the module ∈X
T

is supercompact when, for every x ∈ X, σ(x) is supercompact (see 3.3.5).

Proposition 5.2.13 (Stability under joins of T -openness). Let X be a T -topological space and
let (Oi)i∈I be a family of OT (X). Assume that ∈T

X is supercompact. Every join
∨

i∈I Oi of
(Oi)i∈I in T (X) is T -open in X.

Proof. Let x ∈ X such that x ∈T

∨
i∈I Oi. Since ∈T is supercompact, there is Oi such that

x ∈T Oi. Thus, one has x ∈T Oi ⊂T (X)

∨
i∈I Oi hence

∨
i∈I Oi is T -open.

Remark 5.2.3. In the previous proposition, it is enough to assume that the set of all T -elements
of
∨

i∈I Oi is equal to the union of the sets of all T -elements of the Oi to conclude, even if ∈T
X is

not supercompact.
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Proposition 5.2.14 (Upward stability for members with the same T -elements). Let X be a
T -topological space, O ∈ OT (X) and A ∈ T (X). If O ⊂T A and if O ≃T A, then A is T -open.

Proof. Let x ∈ X such that x ∈T A. Since O ≃T A, one has x ∈T O. Hence x ∈T O ⊂T A and
thus we conclude that A is T -open because OT (X) is a basis which generate the T -topology of
X.

Conversely, if T (X) is complete and if the module ∈X
T preserves finite meets in the sense

of the following definition, the three stability properties above are sufficient to characterize the
T -open members of any T -topology.

Definition 5.2.15. Let X be a set. The module ∈X
T preserves (finite) meets when, for every

x ∈ X, for every (finite) family (Ai)i∈I of T (X) which has a meet, x ∈X
T

∧
i∈I Ai if and only if,

for all i ∈ I, x ∈X
T Ai.

When ∈X
T is representable, ∈X

T preserves meets.

Proposition 5.2.16 (Definition of T -topologies via T -openness). Let X be a set. Assume that
T (X) is complete and that ∈X

T preserves finite meets. Every subset U of T (X) which satisfies
the three preceding stability properties is a basis of T -topology and U = OT (U).

Proof. Let x ∈ X and let (Uj)j∈J be a finite family of U such that x ∈T Uj for all j ∈ J . Since U
is stable under finite meets and since ∈X

T preserves the finite meets, the meet
∧

j∈J Uj belongs
to U , x ∈T

∧
j∈J Uj , and, for every j ∈ J ,

∧
j∈J Uj ⊂T Uj . Thus U is a basis of T -topology, and

moreover, by Lemma 5.2.2, one has the inclusion U ⊂ OT (U).
Conversely, let O ∈ OT (U). Consider

UO :=
∨

{ U ⊂T O ; U ∈ U } .

Then one has UO ∈ U by stability of U under joins, and UO ⊂T O. It remains to show that
UO ≃T O in order to be able to conclude by upward stability of U for ≃T -equivalent members
of T (X).

Let x ∈ X. If x ∈T UO then x ∈T O because UO ⊂T O. If x ∈T O, since O is T -open for the
basis U , there is U ∈ U such that x ∈T U ⊂T O. By definition of UO, one has U ⊂T (X) UO and
finally x ∈T UO.

Proposition 5.2.17. Let X be a set such that T (X) is complete and ∈X
T preserves meets. Then

∈X
T is representable.

Proof. Let x ∈ X. Define σ(x) =
∧

{A ∈ T (X) ; x ∈T A}. By definition of σ(x), for every
A ∈ T (X), if x ∈T A then σ(x) ⊂T A. Since ∈X

T preserves meets, one has x ∈X
T σ(x). Hence,

for every A ∈ T (X), if σ(x) ⊂T A then x ∈T A.

5.2.3 T -continuous maps

Definition 5.2.18 (T -continuity). Let X and Y be two T -topological spaces. A function f :
X → Y is T -continuous at x ∈ X when, for every VY ∈ VY

T (f(x)), there exists VX ∈ VX
T (x) such

that VX T (f) VY . The function f is T -continuous when f is T -continuous at every x ∈ X.

Proposition 5.2.19 (T -continuity via bases). Let X and Y be two T -topological spaces and let
BX and BY be bases belonging to the topologies of X and Y respectively. A function f : X → Y
is T -continuous at x ∈ X if and only if, for every BY ∈ BY such that f(x) ∈Y

T BY , there exists
BX ∈ BX such that x ∈X

T BX and BX T (f)BY .

Proof. Assume that f is T -continuous at x. Let BY ∈ BY such that f(x) ∈Y
T BY . By Lemma

5.2.2, BY is T -open in Y and a fortiori is a T -neighbourhood of f(x). Thus, by T -continuity of f
at x, there is a T -neighbourhood VX of x such that VX T (f)BY . Since VX is a T -neighbourhood
of x, there is OXOT (X) such that x ∈X

T OX ⊂T VX . Since BX is a basis of X, there is BX ∈ BX

such that x ∈X
T BX ⊂T OX . Hence one has x ∈X

T BX ⊂T VX . Finally, since T (f) is a module,
given that one has BX ⊂T VX and VX T (f)BY , we obtain BX T (f)BY .
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Conversely, assume that, for every BY ∈ BY such that f(x) ∈Y
T BY , there is BX ∈ BX

such that x ∈X
T BX and BX T (f) BY . Let VY be a T -neighbourhood of f(x). There is OY ∈

OT (Y ) such that f(x) ∈Y
T OY ⊂T VY . Since BY is a basis of Y , there is BY ∈ BY such that

f(x) ∈Y
T BY ⊂T OY . Then one has f(x) ∈Y

T BY ⊂T VY . By hypothesis, there is BX ∈ BX

such that x ∈X
T BX and BX T (f) BY . Since T (f) is a module, given that one has BX T (f) BY

and BY ⊂T VY , we obtain BX T (f) VY . We can conclude because BX , as a member of a
basis of T -topology of X, is T -open and x is a T -element of it (by Lemma 5.2.2) hence is a
T -neighbourhood of x.

Since the set of all T -open members is a basis, we also obtain, thanks to the previous propo-
sition, a characterisation of the T -continuity in terms of T -openness.

Definition 5.2.20 (Inverse image). Let X and Y be sets and let f : X → Y be a function. A
map f−1 : T (Y ) → T (X) is an inverse image of T (f) if the module T (f) is corepresented by f−1

(see 3.1.2) and if, for every x ∈ X and every B ∈ T (Y ),

x ∈T f−1(B) if and only if f(x) ∈T B .

When T is a topological theory with strong membership (5.1.3), the last condition is redun-
dant:

Lemma 5.2.21. Assume that T is a topological theory with strong membership. Let X and
Y be two sets and let f : X → Y be a function. If the module T (f) is corepresented by
f−1 : T (Y ) → T (X) then f−1 is an inverse image of T (f).

Proof. Let x ∈ X and let B ∈ T (Y ). Assume that x ∈X
T f−1(B). Since f−1(B) T (f) B, we

deduce, by hypothesis on ∈T , that f(x) ∈Y
T B. Conversely, assume that f(x) ∈Y

T B. Since T
is with strong membership, there is A ∈ T (X) such that x ∈X

T A and A T (f) B. Since f−1

corepresents T (f), we deduce from AT (f)B that A ⊂T f−1(B). Then we deduce from x ∈X
T A

that x ∈X
T f−1(B).

Conversely

Lemma 5.2.22. Assume that, for every function f : X → Y , T (f) has an inverse image f−1 :
T (Y ) → T (X). Then T is a topological theory with strong membership.

Proof. Let f : X → Y be a function, let x ∈ A and B ∈ T (Y ) such that f(x) ∈T B. Then one
has x ∈T f−1(B) and f−1(B) T (f)B because f−1(B) ⊂T f−1(B).

When T (f) has an inverse image, T -continuity can be characterised thanks to it:

Proposition 5.2.23. Let X and Y be T -topological spaces and let f : X → Y be a function.
Assume that T (f) has an inverse image f−1 : T (Y ) → T (X). Let B be a basis of that generates
the T -topology of Y . Then f is T -continuous if and only if, for all B ∈ B, f−1(B) is T -open in
X.

Proof. Assume that f is T -continuous. Let B ∈ B and let x ∈ X such that x ∈X
T f−1(B).

Then one has f(x) ∈Y
T B. By T -continuity of f at x and by the previous proposition, there is

O ∈ OT (X) such that x ∈X
T O and O T (f)B. The latter assertion implies O ⊂T f−1(B).

Conversely, let x ∈ X and let B ∈ B such that f(x) ∈Y
T B. Then f−1(B) is T -open in X,

x ∈X
T f−1(B) and f−1(B) T (f)B. Finally we can conclude by the previous proposition.

T -continuity is stable under composition:

Proposition 5.2.24. Let X, Y and Z be T -topological spaces, and let f : X → Y and g : Y → Z
be two functions. If f is T -continuous at some x ∈ X and if g is T -continuous at f(x) then the
composite g ◦ f is T -continuous at x.

Proof. Let VZ be a T -neighbourhood of g(f(x)) in Z. By T -continuity of g, there is a T -
neighbourhood VY of f(x) such that VY T (f)VZ . By T -continuity of g, there is a T -neighbourhood
VX of x such that VX T (f)VY . Then one has VX (T (g) ◦T (f))VZ , hence VX T (g ◦ f)VZ because
T (g) ◦ T (f) ⊂ T (g ◦ f).
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Moreover, the identity maps are T -continuous:

Proposition 5.2.25. Let X be a T -topological space. The map IdX : X → X is T -continuous.

Proof. Let x ∈ X. Let V be a T -neighbourhood of x in X. One has V ⊂T (X) V , hence V T (IdX)V
because (⊂T (X)) ⊂ T (IdX).

Hence one has a category TopT of T -topological spaces and T -continuous maps. The cat-
egory TopT is a concrete category: one has a trivial forgetful functor UT from TopT in the
category of sets Set which consists in taking the underlying sets of T -topological spaces.

Examples 5.2.2 (Continuation of Examples 5.1.1).

- Let V be a quantale. The category TopTV
is the category V-Ord of V-preordered sets and

the forgetful functor UTV matches with the one given in Appendix A. In particular, TopT1

is the category Set, TopTB
is the category Ord of preordered sets and increasing maps,

and TopTS
B

is the full subcategory SOrd of ordered sets.

- More generally, let U : C → Set be a faithful functor whose fibres are small, whose fibre of
the empty set ∅ is a singleton set and whose unique member of this fibre is an initial object
in the category C. By identifying, for every set X, the TU-topological spaces on X and the
members of the fibre of X, the TU-continuity of a function corresponds to the existence of
a (unique) lifting along U.

- The category TopP is the category of standard topological spaces and continuous maps
Top.

- The category TopT∅
has a unique object (∅, {∅}) and a unique morphism Id∅.

5.3 Morphisms between topological theories

Two notions of morphisms between topological theories naturally arise. The first one derives
from the idea that T -topological spaces are ‘models’ of a topological theory T .

Let T = (T,∈T ), T ′ = (T ′,∈T ′), and T ′′ = (T ′′,∈T ′′) be three topological theories.

Definition 5.3.1 (Semantic transformations). A semantic transformation from T to T ′ is a func-
tor from TopT to TopT ′ which commutes with the forgetful functors3. We denote by STopTh
the category of topological theories and semantic transformations; it comes along with a canon-
ical functor from STopTh to the slice-category Cat/Set.

The category STopTh is a preordered category with, for every pair of semantic transfor-
mations F,G : T → T ′, F ≤ G when, for every T -topological space (X,OT (X)), the map IdX
is T ′-continuous from F (X,OT (X)) to G(X,OT (X)). In other words, F ≤ G when there is a
natural transformation from F to G whose image under the forgetful functor UT ′ is the identity
natural transformation UT (since UT ′ is faithful, the natural transformation is unique when it
exists).

Example 5.3.1. The functor that associates every set X with the topological space X endowed
with the discrete topology and the one that associates every set X with the topological space X
endowed with the coarsest topology are semantic transformations from T1 to P. In STopTh,
the former is lesser than the latter.

Let (Ti = (Ti,∈Ti))i∈I be a family of topological theories. For every set X, denote by(∏
i∈I Ti

)
(X) the set

∏
i∈I Ti(X) equipped by the preorder ⊂(

∏
i∈I Ti)(X) defined by

(Ai)i∈I ⊂(
∏

i∈I Ti)(X) (Bi)i∈I when, for every i ∈ I, Ai ⊂Ti(X) Bi ,

3In other words, it is a concrete functor.
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and denote by ∈X∏
i∈I Ti

the module defined by

x ∈X∏
i∈I Ti

(Ai)i∈I when, for every i ∈ I, x ∈X
Ti

Ai .

For every function f : X → Y , define the module
(∏

i∈I Ti

)
(f) by

(Ai)i∈I

(∏
i∈I

Ti

)
(f) (Bi)i∈I when, for every i ∈ I, Ai Ti(f) Bi .

One easily checks that
∏

i∈I Ti = (
∏

i∈I Ti,∈∏
i∈I Ti

) is a topological theory and that the pair
(Top∏

i∈I Ti
,U∏

i∈I Ti
) is the product in the slice-category Cat/Set of the family (TopTi

,UTi
).

Therefore

Proposition 5.3.2. The category STopTh has all products.

A particular kind of products that will be useful later (in 7.6) are the one of the form P × T .
In particular, the category of (P × TS

B )-topological spaces matches with the category of ordered
spaces (Definition 4.1.5) and continuous and increasing maps.

There is a second notion of morphism between topological theories that we shall consider.
It is directly defined at the topological theories level, unlike semantic transformations that are
defined using the spaces associated to the corresponding topological theories.

Definition 5.3.3 (Changing of bases data). A changing of bases datum from T to T ′ is a family
of increasing maps υ = (υX : T (X) → T ′(X)) such that:

- For every sets X and Y , for every function f : X → Y , for every A ∈ T (X), and for every
B ∈ T (Y ),

if A T (f)B then υ(A) T ′(f) υ(B) .

- For every set X, for every x ∈ X, and for every A ∈ T (X),

x ∈T A if and only if x ∈T ′ υ(A) .

Examples 5.3.1.

- Let V and W be two quantales and let υ : V → W be a quantales morphism. By propositions
A.0.12 and A.0.13, the map (X,R) 7→ (X, υ(R)), for all X and all (X,R) ∈ TV(X), is a
changing of bases datum , still denoted by υ, from TV to TW, and from T l

V to T l
W.

- Let V be a quantale. The identity maps allow us to define a changing of bases datum from
TV to T l

V.

- More generally, let T = (T,∈T ) be a topological theory. We define a new lax functor T l as
follow:

· For every set X, T l(X) has the same members as T (X) and the preorder ⊂T l is
defined by A ⊂T l B when A T (IdX)B.

· For every function f : X → Y , T l(f) := T (f).

One easily checks that (T l,∈T ) is a topological theory and that the identity maps allow us
to define a changing of bases datum from (T,∈T ) to (T l,∈T ).

- For every set X and for every A ∈ T (X), define the subset !TX(A) as {x ∈ X ; x ∈X
T A}.

Obviously, for all x ∈ X, x ∈ !TX(A) if and only if x ∈T A. The function !TX is an increasing
map. For every function f : X → Y , for every A ∈ T (X) and B ∈ T (Y ), if AT (f)B, then,
for all x ∈ X, x ∈X

T A implies f(x) ∈Y
T B; hence !TX(A) P(f) !TY (B). Thus !T is a changing

of bases from T to (P,∈).
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- Since every finite set is a fortiori a set, one has an obvious changing of bases from (Pfin,∈)
to (P,∈).

- For every topological theory T , there is a unique changing of bases datum ∅T : T∅ → T .

Definition 5.3.4 (Composition of changing of bases data ). Let υ : T → T ′ and ν : T ′ → T ′′ be
two changing of bases data. The composite ν ◦ υ is defined by (νX ◦ υX)X . One readily checks
that it is a changing of bases datum from T to T ′′.

Moreover, let υ and υ′ be two changing of bases data from T to T ′. Define υ ≤ υ′ when, for
every set X and every member A ∈ T (X), υ(A) ⊂T ′ υ′(A).

Lemma 5.3.5. Let υ, υ′ : T → T ′ and ν, ν′ : T ′ → T ′′ be changing of bases data . If υ ≤ υ′ and
ν ≤ ν′ then ν ◦ υ ≤ ν′ ◦ υ′.

Proof. Let X be a set and let A ∈ T (X). Since υ ≤ υ′, one has υ(A) ⊂T ′(X) υ′(A). Then
ν′(υ(A)) ⊂T ′′(X) ν′(υ′(A)) because ν′X is increasing. Since ν ≤ ν′, one has ν(υ(A)) ⊂T ′′(X)

ν′(υ(A)). Finally, one obtains ν(υ(A)) ⊂T ′′(X) ν
′(υ′(A)).

Thus we define

Definition 5.3.6 (Preordered category of changing of bases data ). The preordered category of
changing of bases data TopTh is the category whose objects are the topological theories and
morphisms are the changing of bases data .

Example 5.3.2. The operator (_l) is a 2-functor from the category TopTh into itself.

We construct now a 2-functor Sem : TopTh → STopTh such that, for every topological
theory T = (T,∈T ), Sem(T ) = T . Let υ : T → T ′ be a changing of bases datum .

Lemma 5.3.7. Let X be a set and let B be a basis of T -topology on X. Then

υ(B) := {υ(B) ; B ∈ B}

is a basis of T ′-topology on X.

Proof. Let x ∈ X and let (Bj)j∈J be a finite family of B such that, for all j ∈ J , x ∈T ′ υ(Bj).
Then one has, for every j ∈ J , x ∈T Bj . Since B is a basis, we deduce that there is B ∈ B
such that x ∈T B and such that, for all j ∈ J , B ⊂T Bj . From the assumptions on υ, we easily
deduce that x ∈T ′ υ(B) and that, for all j ∈ J , υ(B) ⊂T ′ υ(Bj).

Lemma 5.3.8. Let X be a set, let B be a basis of T -topology on X and let O ∈ OT (B). Then
υ(O) is T ′-open for υ(B).

Proof. Let x ∈ X such that x ∈T ′ υ(O). Then one has x ∈T O and, since O belongs to OT (B),
there is B ∈ B such that x ∈T B ⊂T O. We deduce that x ∈T ′ υ(B) ⊂T ′ υ(O) and then that
υ(O) is T ′-open for υ(B).

Corollary 5.3.9. Let X be a set. The T ′-topology generated by υ(B) only depends on the
topology generated by B.

Proof. Clear consequence of the previous lemma and of Corollary 5.2.4.

Let X be a T -topological space, we denote by Sem(υ)(X), or more simply by υ(X) if there
is no risk of confusion, the set X endowed with the T ′-topology generated by υ(B), for any basis
of T -topology B that generated the T -topology of X.

Corollary 5.3.10. Let X be a T -topological space, let x ∈ X and let V ∈ T (X). If V is a
T -neighbourhood of x in X then υ(V ) is a T ′-neighbourhood of x in υ(X).

The converse of the previous lemma and of the previous corollary hold when υX is fully
faithful.
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Proposition 5.3.11. Let X be a T -topological space, let x ∈ X and let V ∈ T (X). Assume that
υX is fully faithful. If υ(V ) is a T ′-neighbourhood of x in υ(X) then X is a T -neighbourhood of
x in X.

Proof. If υ(V ) is a T ′-neighbourhood of x in υ(X) then there is O ∈ OT (X) such that x ∈T ′

υ(O) ⊂T ′ υ(V ). Thus we conclude that x ∈T O ⊂T V because υX is fully faithful.

Since a member O of T (X) is T -open if and only if it is a T -neighbourhood of each of its
T -elements by Lemma 5.2.8, we deduce:

Corollary 5.3.12. Let X be a T -topological space and let O ∈ T (X). Assume that υX is fully
faithful. If υ(O) is T ′-open in υ(X), then O is T -open in X.

Concerning T -continuity, we have:

Proposition 5.3.13. Let X and Y be two T -topological spaces and let f : X → Y be a function.
If f is T -continuous at x ∈ X, then f : υ(X) → υ(Y ) is T ′-continuous at x.

Proof. Let W ′ be a T ′-neighbourhood of f(x) in υ(Y ). Then there is a T -neighbourhood W
of f(x) in Y such that υ(W ) ⊂T ′ W ′. Since the function f is T -continuous at x, there is a
T -neighbourhood V of x in X such that V T (f) W . We deduce that υ(V ) T ′(f) υ(W ). Then
υ(V )T ′(f)W ′ because υ(W ) ⊂T ′(X) W

′. Finally, by Corollary 5.3.10, υ(V ) is a T -neighbourhood
of x in υ(X).

Thus we can set the following

Definition 5.3.14. The changing of bases functor associated to υ is the semantic transformation
(5.3.1)

Sem(υ) : (X ∈ TopT ) 7→ (υ(X) ∈ TopT ′)

from the theory T to the theory T ′.

The changing of bases functors are better behaved than mere semantic transformations in
the sense that they often preserve (or reflect depending on the case) the T -topological properties
as we will show in the following chapters.

Proposition 5.3.15. The map Sem is a 2-functor from the preordered category TopTh to the
preordered category STopTh.

Proof. Let υ : T → T ′ and ν : T ′ → T ′′ be two changing of bases data. Let X be a T -topological
space. The set {υ(O) ; O ∈ OT (X)} is a basis of T ′-topology that generates the T ′-topology of
υ(X), and consequently {ν(υ(O)) ; O ∈ OT (X)} is a basis of T ′′-topology that generates the
T ′′-topology of ν(υ(X)). However, since ν(υ(O)) = (ν ◦ υ)(O), for all O ∈ O(X), it is also a
basis of T ′′-topology that generates the T ′′-topology of (ν ◦ υ)(X).

Let υ, υ′ : T → T ′ be two changing of bases data such that υ ≤ υ′. Let X be a T -topological
space. We are to show that the identity map IdX is T ′-continuous from υ(X) to υ′(X). Let
x ∈ X and let W be a T ′-neighbourhood of x in υ′(X). There exists a T -neighbourhood V of
x in X such that υ′(V ) ⊂T ′ W . By Corollary 5.3.10, υ(V ) is a T ′-neighbourhood of x in υ(X).
Since υ ≤ υ′, one has υ(V ) ⊂T ′ υ′(V ), hence υ(V ) ⊂T ′ W . Finally, since (⊂T ′(X)) ⊂ T ′(IdX),
we deduce that υ(V ) T ′(IdX)W and that IdX is T ′-continuous.

Let υ : T → T ′ be a changing of bases datum. Like any semantic transformation, the change
base functor Sem(υ) is faithful. Concerning its fullness, one has the following:

Proposition 5.3.16. Let υ : T → T ′ be a changing of bases datum. Let X and Y be two T -
topological spaces and let f : X → Y be a function. Assume that, for all A ∈ T (X) and all
B ∈ T (Y ), A T (f) B if and only if υ(A) T ′(f) υ(B). Then the function f is T -continuous at
x ∈ X if and only if it is T ′-continuous at x.
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Proof. The implication corresponds to Proposition 5.3.13. Conversely, if f is T ′-continuous at x.
Let W be a T -neighbourhood of f(x) in Y . By Corollary 5.3.10, υ(W ) is a T ′-neighbourhood of
f(x) in υ(Y ). Hence, by T ′-continuity, there is a T ′-neighbourhood V ′ of x in υ(X) such that
V ′ T ′(f) υ(W ). There is a T -neighbourhood V of x in X such that υ(V ) ⊂T ′ V ′. Therefore, one
has υ(V ) T ′(f)υ(W ), and finally, by hypothesis, V T (f)W .

Corollary 5.3.17. Assume that, for every set X and Y , for every function f : X → Y , for every
A ∈ T (X), for every B ∈ T (Y ), one has A T (f) B if and only if υ(A) T (f) υ(B). Then the
changing of bases functor Sem(υ) is fully faithful.

The changing of bases datum !T defined at the beginning of the section (5.3.1) plays a special
role:

Theorem 5.3.18. The theory (P,∈) is a final object in the category TopTh4.

Proof. Let T be a topological theory. Then !T is a changing of bases datum from T to (P,∈).
Conversely, let υ : T → (P,∈) be another changing of bases datum. Let X be a set and let
A ∈ T (X). Given x ∈ X, x ∈ υ(A) is equivalent to x ∈T A, then to x ∈ !TX(A). Hence
υ(A) = !TX(A).

Hence there is a canonical forgetful functor from TopT into Top; given a T -topological
space X, the topology of !T (X) is called the underlying topology of X. The changing of bases
datum !T will allow us to compare the classical notions of topology and their generalization to
T -topological spaces.

The changing of bases datum ρ : T ′ → T is a right adjoint of λ : T → T ′ in the preordered
category TopTh when, for every set X, for every A ∈ T (X),

A ⊂T ρ(λ(A)) ,

and, for every A′ ∈ T ′(X),
λ(ρ(A′)) ⊂T ′ A′ .

In other words, ρ is a right adjoint of λ in the preordered category TopTh if and only if, for
every set X, the increasing map ρX is a right adjoint of λX .

Similarly,

Proposition 5.3.19. Let ρ : T ′ → T and λ : T → T ′ be two changing of bases data such that,
for every set X and Y , for every A ∈ T (X), for every B′ ∈ T ′(Y ), for every function f : X → Y ,

λ(A) T ′(f)B′ if and only if A T (f) ρ(B′) .

Then the changing of bases functor Sem(ρ) is a right adjoint of the changing of bases functor
Sem(λ) in the preordered category STopTh.

Proof. Let X be a T -topological space, let Y be a T ′-topological space, let f : X → Y be a
function, and let x ∈ X.

Since, for every T ′-neighbourhood V ′ of x in λ(X), there is a T -neighbourhood V of x in X
such that λ(V ) ⊂T ′(X) V

′, the function f is T ′-continuous at x from λ(X) to Y if and only if, for
every W ′ ∈ VY

T ′(f(x)), there is V ∈ VX
T (x) such that λ(V ) T ′(f)W ′.

Since, for every T -neighbourhood W of f(x) in ρ(Y ), there is a T ′-neighbourhood W ′ of
f(x) in Y such that ρ(W ′) ⊂T (X) W , the function f is T -continuous at x from X to ρ(Y ) if and
only if, for every W ′ ∈ VY

T ′(f(x)), there is V ∈ VX
T (x) such that V T (f) ρ(W ′).

By the hypothesis, we deduce that f is T ′-continuous at x from λ(X) to Y if and only if it is
T -continuous at x from X to ρ(Y )

Remark 5.3.1. One easily checks that if ρ is a right adjoint of λ in the preordered category
TopTh then ρ and λ satisfies the assumption of the previous proposition.

The following lemma will be useful later:

4Therefore the functor Sem does not preserve products.
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Lemma 5.3.20. Let X be a set. For every x, y ∈ X, if x and y are ∈T ′ -indistinguishable (Defi-
nition 5.1.5) then x and y are ∈T -indistinguishable. The converse is true when υX is essentially
surjective.

Proof. Assume that x and y are ∈T ′ -indistinguishable. Let A ∈ T (X). If x ∈T A, then x ∈T ′

υ(A), hence y ∈T ′ υ(A), and finally y ∈T A. Similarly, one shows that y ∈T A implies x ∈T A.
Conversely, assume that υX is essentially surjective and that x and y are ∈T -indistinguishable.
Let A′ ∈ T ′(X). Since υX is essentially surjective, there is A ∈ T (X) such that υX(A) and A′ are
⊂X

T ′ -equivalent, a fortiori υX(A) and A′ have the same T ′-elements. If x ∈T ′ A′, then x ∈T A,
hence y ∈T A, and finally y ∈T ′ A′. Similarly, one shows that y ∈T ′ A′ implies x ∈T ′ A′.

5.4 Loc(T )-spaces

Let T = (T,∈T ) be a topological theory.
In this section, we define a functor Loc : STopTh → TopTh in such a way that Sem ◦

Loc is a monad on STopTh. The functor Loc allows us to define many useful and well-
behaved examples of topological theories; indeed, we will see in following chapters that various
structures and properties of TopT (and of the forgetful functor) can be lifted to TopLoc(T ).

In general, the topological theories T and Loc(T ) differ.
For every set X, we consider the preordered set whose underlying set is

Loc(T )(X) := {(A, E) T -topological space ; A ⊂ X}

endowed with the preorder defined by (A, E) ⊂Loc(T )(X) (A
′, E ′) if A ⊂ A′ and if the inclusion

is T -continuous.
For every sets X and Y , and every function f : X → Y , define the module

Loc(T )(f) : Loc(T )(X) −→◦ Loc(T )(Y )

by A Loc(T )(f) B if f(A) ⊂ B and if the function f can be restricted to a T -continuous map
fA : A → B, for every A ∈ Loc(T )(X) and B ∈ Loc(T )(Y ).

Clearly Loc(T ) is a lax functor from Set to Mod such that, for every set X,

Loc(T )(IdX) = ⊂Loc(T )(X) ,

and (Loc(T ),∈) is a topological theory.
We apply the Loc construction to some of the topological theories introduced in Examples

5.1.1, 5.2.1, and 5.2.2:

Examples 5.4.1.

- Since TopT1 = Set, one readily checks that Loc(T1) = P.

- The Loc(TB)-topological spaces are similar to the locally ordered spaces defined in 4.1.6
except that preorders are used instead of orders; therefore we call locally preordered spaces
the Loc(TB)-topological spaces. More generally, we call locally V-preordered spaces the
Loc(TV)-topological spaces, for any quantale V.

- The category of Loc(TS
B )-topological spaces matches with the category of locally ordered

spaces (Definition 4.1.6) and locally increasing maps.

- For every set X, Loc(T∅)(X) is a singleton set whose unique member is the empty set
endowed with the unique T∅-topology on it. So there exists a Loc(T∅)-topology on X
if and only if X is the empty set. Thus, the topological theories T∅ and Loc(T∅) are
isomorphic in the category STopTh but not in the category TopTh.

Let T ′ = (T ′,∈T ′) be another topological theory and let F : T → T ′ be a semantic transfor-
mation. For every set X, define Loc(F )X : Loc(T )(X) → Loc(T ′)(X) by

Loc(F )X(A) := F (A) .
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Since F is a semantic transformation, for every set X, Loc(F )X is an increasing map, and,
for every x ∈ X and every A ∈ Loc(T )(X), x ∈ A if and only if x ∈ F (A). Moreover, let
f : X → Y be a function and let A ∈ Loc(T )(X) and B ∈ Loc(T )(Y ) such that A Loc(T )(f)B,
i.e. f can be restricted to a T -continuous map from A to B. Since F is a semantic transforma-
tion, we deduce that f can be restricted to a T ′-continuous map from F (A) to F (B), i.e. that
F (A) Loc(T ′)(f) F (B).

Thus Loc(F ) is a changing of bases datum from Loc(T ) to Loc(T ′). One readily checks that
Loc(F ) is a functor.

Let F,G : T → T ′ be two parallel semantic transformations such that F ≤ G. Let X
be a set and let A ∈ Loc(T )(X). Then IdA is a T ′-continuous map from F (A) to G(A), so
Loc(F )X(A) ⊂Loc(T ′) Loc(G)X(A). Hence Loc(F ) ≤ Loc(G) in TopTh.

Therefore, we defined a 2-functor Loc from the preordered category TopTh to the pre-
ordered category STopTh.

Let (X, E) be a T -topological space, denote by ηT (X, E) the Loc(T )-topological space X
endowed with the Loc(T )-topology generated by the basis {(X, E)}.

Proposition 5.4.1. η is a natural transformation from IdSTopTh to Sem ◦ Loc.

Proof. Let X and Y be T -topological spaces and let f : X → Y be a T -continuous map. Then
f is a Loc(T )-continuous map from ηT (X) to ηT (Y ) by the characterization of the Loc(T )-
continuity via the bases (Proposition 5.2.19) and by definition of Loc(T )(f). Thus ηT is a
semantic transformation from T to Loc(T ).

Let F : T → T ′ be a semantic transformation and let X be a T -topological space.
On the one hand, {F (X)} is a basis that generates the Loc(T ′)-topology of ηT ′(F (X)).
On the other hand, since {X} is a basis that generates the Loc(T )-topology of ηT (X) and,

since Loc(F ) is a changing of bases datum , {Loc(F )X(X)} = {F (X)} is a basis that generates
the Loc(T ′)-topology of Loc(F )(ηT (X)). Thus

ηT ′(F (X)) = Loc(F )(ηT (X)) .

Therefore η is a natural transformation from IdSTopTh to Sem ◦ Loc.

Proposition 5.4.2. For every topological theory T , ηT : TopT → TopLoc(T) is a fully faithful
functor.

Proof. Immediate consequence of the definition of TLoc(T ), of ηT , and of the characterization of
the Loc(T )-continuity via the bases (Proposition 5.2.19).

Thus, for every topological theory T , one can see TopT as a full subcategory of TopLoc(T).
We now describe the product of the monad Sem ◦ Loc.

Let T = (T,∈T ) be a topological theory and let n ∈ N∗, write

Locn(T ) := (Loc ◦ · · · ◦ Loc)(T )︸ ︷︷ ︸
n-times

.

In the same way, write

(Sem ◦ Loc)n := (Sem ◦ Loc) ◦ · · · ◦ (Sem ◦ Loc)︸ ︷︷ ︸
n-times

.

Let (X,OLoc2(T )(X)) be a Loc2(T )-topological space and let B be a basis that generates this
space. Define

µT (B) := {A ∈ Loc(T )(X) ; ∃A′ ∈ B such that A ∈ OLoc(T )(A
′)} .

Lemma 5.4.3. The set µT (B) is a basis of Loc(T )-topology on X.
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Proof. Let x ∈ X and let (Aj)j∈J be a finite family of µT (B) such that, for all j ∈ J , x ∈ Aj . By
definition of µT (B), for each j ∈ J , there is A′

j ∈ B such that Aj ∈ OLoc(T )(A
′
j). Then one has,

for every j ∈ J , x ∈ A′
j , so, since B is a basis, there is A′ ∈ B such that x ∈ A′, and, for every

j ∈ J , A′ ⊂Loc2(T )(X) A
′
j . So, for each j ∈ J , the inclusion ij of A′ into A′

j is Loc(T )-continuous
at x hence there is Bj ∈ OLoc(T )(A

′) such that x ∈ Bj and Bj Loc(T )(ij)Aj . Since OLoc(T )(A
′)

is a basis, there is A ∈ OLoc(T )(A
′) such that x ∈ A and A ⊂Loc(T )(A′) Bj . We deduce that

A ∈ µT (B), that, for all j ∈ J , A ⊂ Bj ⊂ Aj , and that the inclusions are T -continuous, hence
A ⊂Loc(T )(X) Aj for any j.

Lemma 5.4.4. Let O′ ∈ OLoc2(T )(B) and let O ∈ OLoc(T )(O
′) then O ∈ OLoc(T )(µT (B)).

Proof. Let x ∈ X such that x ∈ O. One has x ∈ O′, so, since O′ ∈ OLoc2(T )(B), there is A′ ∈ B
such that x ∈ A′ and A′ ⊂Loc2(T )(X) O

′. Thus A′ ⊂ O′ and the inclusion is Loc(T )-continuous
at x. Hence there is A ∈ OLoc(T )(A

′) such that x ∈ A and A Loc(i) O, where i denotes the
inclusion of A′ into O′. Therefore, one has A ⊂ O and the inclusion is T -continuous. In other
words, A ⊂Loc(T )(X) O.

Corollary 5.4.5. Let B and B′ be two bases that generate the Loc2(T )-topology of the space
(X,OLoc2(T )(X)). The bases µT (B) and µT (B′) are equivalent.

Proof. It is a clear consequence of the previous lemma and of Corollary 5.2.4.

We denote by µT (X,OLoc2(T )(X)) (or more simply by µT (X)) the set X endowed with the
Loc(T )-topology generated by the basis µT (OLoc2(T )(X)).

Proposition 5.4.6. µ is a natural transformation from (Sem ◦ Loc)2 to Sem ◦ Loc.

Proof. Let X and Y be two Loc2(T )-topological spaces and let f : X → Y be a Loc2(T )-
continuous map. Let x ∈ X and let OY ∈ µT (OLoc2(T )(Y )) such that f(x) ∈ OY . There is
O′

Y ∈ OLoc2(T )(Y ) such that OY ∈ OLoc(T )(O
′
Y ). So one has f(x) ∈ O′

Y , then, by Loc2(T )-
continuity of f at x, there exists O′

X ∈ OLoc2(T )(X) such that x ∈ O′
X and O′

X Loc2(T ) O′
Y .

Thus f(O′
X) ⊂ O′

Y and f can be restricted to a Loc(T )-continuous map f|O′
X

from O′
X to

O′
Y . By Loc(T )-continuity of the map at x, there exists OX ∈ OLoc(T )(O

′
X) such that x ∈ OX

and OX Loc(T )(f|O′
X
)OY . Thus f|O′

X
(OX) ⊂ OY , and a fortiori f(OX) ⊂ OY , and f|O′

X
, and a

fortiori f , can be restricted to a T -continuous map from OX to OY . Therefore OXLoc(T )(f)OY ,
and then f is Loc(T )-continuous at x from µT (X) to µT (Y ).

The map µT is then a semantic transformation. It remains to prove the naturality of µ
in T . Let T ′ = (T ′,∈T ′) be another topological theory and let F : T → T ′ be a semantic
transformation. Let X be a Loc2(T )-topological space.

By Corollary 5.4.5 and since (Sem ◦ Loc)(F ) is a changing of bases functor,

B1 := {F (O) ; O ∈ Loc(T )(X) such that ∃O′ ∈ OLoc2(T )(X) verifying O ∈ OLoc(T )(O
′)}

is a basis that generates (Sem ◦ Loc)(µT (X)).
Similarly, again by Corollary 5.4.5 and since (Sem◦Loc)2(F ) is a changing of bases functor,

B2 := {U ∈ Loc(T ′)(X) ; ∃O′ ∈ OLoc2(T )(X) such that U ∈ OLoc(T ′)(Loc(F )(O′))}

is a basis that generates µT ′((Sem ◦ Loc)2(X)).
It is enough to show that the two bases are equivalent to conclude.
Let O′ ∈ OLoc2(T )(X) and let O ∈ OLoc(T )(O

′). Since (Sem◦Loc)(F ) is a changing of bases
datum, by Lemma 5.3.8 and by definition of Loc(F ), F (O) is Loc(T ′)-open in Loc(F )(O′).
Hence the inclusion B1 ⊂ B2 holds.

Conversely, let O′ ∈ OLoc2(T )(X), let U ∈ OLoc(T ′)(Loc(F )(O′)), and let x ∈ X such that x ∈
U . By definition of Loc(F )(O′), there is O ∈ OLoc(T )(O

′) such that x ∈ O and F (O) ⊂Loc(T ′) U .
Hence one has U ∈ OLoc(T ′)(B1) and thus B2 ⊂ OLoc(T ′)(B1).

We conclude by Lemma 5.2.2 and Corollary 5.2.4.

Theorem 5.4.7. The triple ((Sem ◦ Loc), µ, η) is a monad on STopTh.
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Proof. Let T = (T,∈T ) be a topological theory.
Firstly, we are to show that µT ◦ µLoc(T ) = µT ◦ Loc(µT ).
Let X be a Loc3(T )-topological space and B be a basis that generates X.
On the one hand, by the previous corollary,

µLoc(T )(B) = {A′ ∈ TLoc2(T )(X) ; ∃A′′ ∈ B such that A′ ∈ OLoc2(T )(A
′′)}

is a basis that generates µLoc(T )(X), then

µT (µLoc(T )(B)) = {A ∈ TLoc(T )(X) ; ∃A′ ∈ µLoc(T )(B) such that A ∈ OLoc(T )(A
′)}

= {A ∈ TLoc(T )(X) ; ∃A′′ ∈ B,∃A′ ∈ OLoc2(T )(A
′′) such that A ∈ OLoc(T )(A

′)}
is a basis that generates µT (µLoc(T )(X)).

On the other hand,

Loc(µT )(B) = {Loc(µT )X(A′′) ; A′′ ∈ B} = {µT (A
′′) ; A′′ ∈ B}

is a basis of Loc(µT )(X), then, by the previous corollary,

µT (Loc(µT )(B)) = {A ∈ TLoc(T )(X) ; ∃A′ ∈ Loc(µT )(B) such that A ∈ OLoc(T )(A
′)}

= {A ∈ TLoc(T )(X) ; ∃A′′ ∈ B such that A ∈ OLoc(T )(µT (A
′′))}

is a basis that generates µT (Loc(µT )(X)).
Since µT (OLoc2(T )(A

′′)) ⊂ OLoc(T )(µT (A
′′)), one has µT (µLoc(T )(B)) ⊂ µT (Loc(µT )(B)).

Conversely, let A ∈ TLoc(T )(X), A′′ ∈ B such that A ∈ OLoc(T )(µT (A
′′)), and x ∈ A. Since

µT (OLoc2(T )(A
′′)) is a basis of µT (A

′′), there is A′ ∈ OLoc2(T )(A
′′) and B ∈ OLoc(T )(A

′) such
that x ∈ B ⊂Loc(T ) A, hence µT (Loc(µT )(B)) ⊂ OLoc(T )(µT (µLoc(T )(B))). Therefore, by
Lemma 5.2.2 and Corollary 5.2.4

µT (µLoc(T )(X)) = µT (Loc(µT )(X)) .

Secondly, we are to prove that µT ◦ ηLoc(T ) = IdLoc(T ).
Let X be a Loc(T )-topological space. The set {X} is a basis that generates ηLoc(T )(X), then,

by the previous corollary,

µT ({X}) = {A ∈ TLoc(T )(X) ; ∃A′ ∈ {X} such that A ∈ OLoc(T )(A
′)}

= {A ∈ TLoc(T )(X) ; A ∈ OLoc(T )(X)}
= OLoc(T )(X)

is a basis that generates µT (ηLoc(T )(X)) hence µT (ηLoc(T )(X)) = X. Thus

µT ◦ ηLoc(T ) = IdLoc(T ) .

Finally, we are to show that µT ◦ Loc(ηT ) = IdLoc(T ).
Let X be a Loc(T )-topological space. The set

Loc(ηT )(OLoc(T )(X)) = {Loc(ηT )X(O) ; O ∈ OLoc(T )(X)}
= {ηT (O) ; O ∈ OLoc(T )(X)}

is a basis that generates Loc(ηT )(X). Then, by the previous corollary,

µT (Loc(ηT )(OLoc(T )(X)))

= {A ∈ TLoc(T )(X) ; ∃A′ ∈ Loc(ηT )(OLoc(T )(X)) such that A ∈ OLoc(T )(A
′)}

= {A ∈ TLoc(T )(X) ; ∃O ∈ OLoc(T )(X) such that A ∈ OLoc(T )(ηT (O))}

is a basis that generates µT (Loc(ηT )(X)).
Let O ∈ OLoc(T )(X). On the one hand, O is Loc(T )-open in ηT (O). On the other hand, let

A ∈ TLoc(T )(X) such that A is Loc(T )-open in ηT (O). So A and O have the same underlying
sets and O ⊂Loc(T )(O) A then O ⊂Loc(T )(X) A, hence, by the stability property 5.2.14, A is
Loc(T )-open in X. Therefore, one has X = µT (Loc(ηT )(X)), and then

µT ◦ Loc(ηT ) = IdLoc(T ) .
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Chapter 6

Generalization of notions of
point-set topology

For this whole chapter, set two topological theories T = (T,∈T ) and T ′ = (T ′,∈T ′) and a
changing of bases datum υ : T → T ′.

We generalize some classical notions of point-set topology to T -topological spaces and we
study their preservation (or reflection) by changing of bases functors.

For the sake of concision, we assume classical topological properties to prove their T -topolo-
gical counterparts, though direct proofs are possible. This approach is mainly based on the final
changing of bases datum !T .

6.1 Closedness

Until now, we generalized the notions of open subset and of neighbourhood. In this section,
we generalize the closed subsets. An issue is that a member of (T (X),⊂T (X)) does not have a
complement in general (unlike members of (P(X),⊂)).

We fix two T -topological spaces X and Y .

Definition 6.1.1 (Adherent points). A point x ∈ X is an adherent T -point of A ∈ T (X) when,
for every O ∈ OT (X) such that x ∈T O, there is xO ∈ X such that xO ∈T O and xO ∈T A.

Remark 6.1.1. A T -element of A ∈ T (X) is a fortiori an adherent T -point of A.

We can then give a natural definition of

Definition 6.1.2 (T -closedness). A member A ∈ T (X) is T -closed when every adherent T -point
of A is a T -element of A.

Concerning the preservation of these notions by the change base functors, one has

Proposition 6.1.3. Let x ∈ X and let A ∈ T (X). The point x is an adherent T -point of the
member A in X if and only if it is an adherent T ′-point of υ(A) in υ(X).

Proof. Assume that x is an adherent T -point of A in X. Let O′ ∈ OT ′(υ(X)) such that x ∈T ′ O′.
So there is O ∈ OT (X) such that x ∈T O and υ(O) ⊂T ′ O′. Then, there is y ∈ X such that
y ∈T O and y ∈T A. Hence y ∈T ′ υ(O) ⊂T ′ O′ and y ∈T ′ υ(A).

Conversely, assume that x is an adherent T ′-point of υ(A) in υ(X). Let O ∈ OT (X) such
that x ∈T O. Then υ(O) is T ′-open in υ(X) and x is a T ′-element of it by Lemma 5.3.8. Hence,
there is y ∈ X such that y ∈T ′ υ(O) and y ∈T ′ υ(A). Therefore y ∈T O and y ∈T A.

Corollary 6.1.4. Let A ∈ T (X). Then A is T -closed in X if and only if υ(A) is T ′-closed in
υ(X).

53
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In particular, the two results can be applied to the final changing of bases datum !T : T → P
(see Examples 5.3.1). Thus, a point x ∈ X is an adherent T -point of a member A ∈ T (X) if and
only if x is an adherent point of the set of all T -elements of A for the underlying topology of X,
and A is T -closed if and only if the set of all its T -elements is closed for the underlying topology
of X. Therefore, there is no real gap between these notions and the classical ones. Hence, when
there is no risk of confusion, we also say that a member of T (X) is closed when it is T -closed.

This allows us to deduce the following properties of T -adherent points and of T -closeness
from the properties of adherent points and closed subsets.

Lemma 6.1.5. Let A,A′ ∈ T (X) such that A ⊂T A′ and let x ∈ X. If x is an adherent T -point
of A, then x is an adherent T -point of A′.

Proof. Assume that x is an adherent T -point of A. Then x is an adherent point of !TX(A) for
the underlying topology of X by Proposition 6.1.3. Since A ⊂T A′, one has !TX(A) ⊂ !TX(A′),
hence x also an adherent point of !TX(A′). Again by Proposition 6.1.3, we conclude that x is an
adherent T -point of A′.

Lemma 6.1.6. Let A,A′ ∈ T (X) such that A ≃T A′, and let x ∈ X. If x is an adherent T -point
of A, then x is an adherent T -point of A′.

Proof. Clear by Proposition 6.1.3 because !TX(A) =!TX(A′).

Proposition 6.1.7 (Stability of T -closedness under meets). Let (Ai)i∈I be a family of T -closed
members of T (X) which has a meet

∧
i∈I Ai in the preordered set T (X). Assume that ∈X

T

preserves meets. Then
∧

i∈I Ai is T -closed.

Proof. The assumption implies that !TX(
∧

i∈I Ai) =
⋂

i∈I !
T
X(Ai). Then we conclude by Corollary

6.1.4.

Proposition 6.1.8 (Stability of T -closedness under finite joins). Let (Aj)j∈J be a finite fam-
ily of T -closed members of T (X) which has a join

∨
j∈J Aj in T (X). Assume that the ∈X

T is
supercompact (see 5.2.12). Then

∨
j∈J Aj is T -closed.

Proof. The assumption implies that !TX(
∨

j∈J Aj) =
⋃

j∈J !
T
X(Aj). We conclude again by Corol-

lary 6.1.4.

Proposition 6.1.9 (Stability of T -closedness under ≃T -equivalence). Let A,A′ ∈ T (X) such
that A′ ≃T A. If A is T -closed then so is A′.

Proof. Immediate consequence of Corollary 6.1.4 given that !TX(A) =!TX(A′).

Unlike the case of topological spaces, given a set X, the datum of T -closed members of
T (X) is generally not enough to specify a T -topology on X. This is notably due to the stability
under T -equivalence, which is true for the T -closed members of T (X) but not in general for the
T -open members.

When a T -open member has a ‘complement’, the latter is T -closed:

Proposition 6.1.10. Let O ∈ OT (X) and let A ∈ T (X) such that, for every x ∈ X, x ∈T A is
equivalent to x ̸∈T O. Then A is T -closed in X.

Proof. By Lemma 5.3.8, the subset !TX(O) is open for the underlying topology of X. Hence
its complement, which matches with !TX(A) by hypothesis, is closed. We conclude again by
Corollary 6.1.4.

Proposition 6.1.11. Let A ∈ T (X) and let A ∈ T (X) such that the T -elements of A match with
the adherent T -points of A in X. Then A is T -closed in X.

Proof. By Proposition 6.1.3, the subset !TX(A) is the closure of !TX(A) for the underlying topology
of X, hence it is closed. We conclude by Corollary 6.1.4.

The two previous propositions are particularly interesting when !TX is surjective.
Concerning T -continuity, one has
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Proposition 6.1.12. Let f : X → Y be a T -continuous map, let A ∈ T (X), and let x ∈ X. If x
is an adherent T -point of A, then, for every B ∈ T (Y ) such that A T (f) B, f(x) is an adherent
T -point of B.

Proof. Let B ∈ T (Y ) such that A T (f)B and let OY ∈ OT (Y ) such that f(x) ∈T OY . Since f is
T -continuous at x, there is OX ∈ OT (X) whose x is a T -element such that OX T (f) OY . Since
x is an adherent T -point of A, there is x′ ∈ X such that x′ ∈T OX and x′ ∈T A. Since A T (f)B
and OX T (f)OY , we finally deduce that f(x′) ∈T OY and f(x′) ∈T B.

Corollary 6.1.13. Let f : X → Y be a T -continuous map such that T (f) has an inverse image
f−1. Then, for every T -closed member B ∈ T (Y ), f−1(B) is T -closed in X.

Proof. Let B ∈ T (Y ) T -closed and let x ∈ X be an adherent T -point of f−1(B). Since
f−1(B) T (f) B, by the previous proposition, we deduce that f(x) is an adherent T -point of
B. Therefore f(x) ∈T B because B is T -closed. Since f−1 is an inverse image, we deduce that
x ∈T f−1(B).

6.2 Convergence and adherent T -points of parts of T (X)

In this section, we define the notion of convergence in a T -topological space. A difficulty comes
from the fact that, in the case of topological spaces, we generally exclude the filters that contain
the empty set because they would converge to any point. Therefore we need a good notion
of "set of subsets that does not contain the empty set" in our framework. This notion leads us
to another issue: it is not generally preserved by taking the generated filter. Thus, we cannot
restrict ourself to the sole consideration of filters on T (X): we have to provide a notion of
convergence which makes sense for any part of T (X).

Definition 6.2.1. Let X be set. A part P of T (X) is finitely T -pointable when, for every finite
family (Aj)j∈J of P , there is x ∈ X such that, for every j ∈ J , x ∈T Aj .

Remark 6.2.1. Let X be a set. A cofiltered subset P of T (X) is finitely T -pointable if and only
if, for every A ∈ P , there is x ∈ X such that x ∈T A.

Example 6.2.1. In a T -topological space, the T -neighbourhoods filters are finitely T -pointable.

Lemma 6.2.2. Let X be a set and let P and P ′ be two parts of T (X) such that P ′ ⊂ P . If P is
finitely T -pointable then so is P ′.

Proof. Obvious.

Remark 6.2.2. Let X be a set. If X is empty, ∅ ⊂ T (∅) is not finitely T -pointable but if X ̸= ∅,
∅ ⊂ T (X) is finitely T -pointable.

Under some conditions, a part of T (X) is finitely T -pointable if and only if the filter that it
generates is finitely T -pointable.

Lemma 6.2.3. Let X be a set and let P ⊂ T (X). Assume that one of the two following statement
is true:

- The module ∈X
T is representable.

- The preordered set T (X) is finitely complete and ∈X
T preserves finite meets.

Then P is finitely T -pointable if and only if the filter generated by P is finitely T -pointable.

Proof. Write F the filter generated by P . Since P ⊂ F , by the previous lemma, if F is finitely
T -pointable then so is P .

Conversely, assume that P is finitely T -pointable. Let (Aj)j∈J be a finite family of F . For
each j ∈ J , there is a finite family (Aj,k)k∈Jj

of P such that Aj is an upper bound of the set of
all lower bounds of (Aj,k)k∈Jj

. Since (Aj,k)j∈J,k∈Jj
is a finite family of P , there is x ∈ X such

that, for all j ∈ J and for all k ∈ Jj , x ∈T Aj,k.
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If the membership module is represented by σ : X → T (X), we deduce that for all j ∈ J
and all k ∈ Jj , σ(x) ⊂T Aj,k. For each j ∈ J , σ(x) is then a lower bound of (Aj,k)k∈Jj

, hence
σ(x) ⊂T (X) Ai, i.e. x ∈T Aj .

If T (X) is finitely complete and if ∈X
T preserves finite meets. Since x ∈T Aj,k for all j ∈ J

and k ∈ Jj , x is a T -element of a meet ∈T

∧
j∈J,k∈Jj

Aj,k. Given j ∈ J , since, for every k ∈ Jj ,∧
j∈J,k∈Jj

Aj,k ⊂T Aj,k, one has
∧

j∈J,k∈Jj
Aj,k ⊂T Aj , hence x ∈T Aj .

This lemma allows us, under some assumptions, to restrict ourself to the case of filters. In
the general case, we have to define the following notions for any parts of T (X) rather than for
the filters.

Proposition 6.2.4. Let X and Y be two sets and let f : X → Y be a function. Let P be a finitely
T -pointable part of T (X). Then PT (f), the image of P under the module T (f) (see 3.2.5), is
finitely T -pointable.

Proof. Let (Bj)j∈J be a finite family of T (Y ) such that, for every j ∈ J , there is Aj ∈ P such
that Aj T (f) Bj . Since P is finitely T -pointable, there is x ∈ X such that, for every j ∈ J ,
x ∈T Aj . Given j ∈ J , since Aj T (f) Bj , we deduce that f(x) ∈T Bj .

Corollary 6.2.5. Let X and Y be two sets and let f : X → Y be a function. Let F be a filter
on T (X). Assume that Y satisfies one of the two statements of Lemma 6.2.3. If F is finitely
T -pointable, then the direct image filter of F under T (f) is finitely T -pointable.

Concerning changing of bases functors, given a set X, define the following operators:

- For every P ⊂ T (X), write

υ(P ) := {A′ ∈ T ′(X); ∃A ∈ P such that υ(A) ⊂T ′ A′} .

- For every P ′ ⊂ T ′(X), write

υ−1(P ) := {A ∈ T (X); ∃A′ ∈ P ′ such that A′ ⊂T ′ υ(A)} .

Proposition 6.2.6. Let X be a set and let P ⊂ T (X). Then P is finitely T -pointable if and only
if υ(P ) is finitely T ′-pointable.

Proof. Assume that P is finitely T -pointable. Let (A′
j)j∈J be a finite family of T ′(X) such that,

for every j ∈ J , there is Aj ∈ P such that υ(Aj) ⊂T ′ A′
j . Since P is finitely T -pointable, there is

x ∈ X such that, for every j ∈ J , x ∈T Aj . Then one has, for every j ∈ J , x ∈T ′ υ(Aj) ⊂T ′ A′
j ,

hence υ(P ) is finitely T ′-pointable.
Conversely, assume that υ(P ) is finitely T ′-pointable. Let (Aj)j∈J be a finite family of T (X).

Then (υ(Aj))j∈J is a finite family of υ(P ), so there is x ∈ X such that, for every j ∈ J ,
x ∈T ′ υ(Aj). Thus, one has, for every j ∈ J , x ∈T Aj .

In particular, a part P of T (X) is finitely T -pointable if and only if the filter of P(X) gen-
erated by !T (P ) does not contains the empty set. However the image under !T of the filter
generated by P does not necessary match with the filter generated by !T (P ).

Proposition 6.2.7. Let X be a set and let P ′ ⊂ T ′(X). If P ′ is finitely T ′-pointable then υ−1(P ′)
is finitely T -pointable. Conversely, assume that υX : T (X) → T ′(X) is essentially surjective, if
υ−1(P ′) finitely T -pointable then P ′ finitely T ′-pointable.

Proof. Assume that P ′ is finitely T ′-pointable. Let (Aj)j∈J be a finite family of T (X) such that,
for every j ∈ J , there is A′

j ∈ P ′ such that A′
j ⊂T ′ υ(Aj). Since P ′ is finitely T ′-pointable, there

is x ∈ X such that, for every j ∈ J , x ∈T ′ A′
j ⊂T ′ υ(Aj). Hence one has, for every j ∈ J ,

x ∈T Aj .
Conversely, assume that υX is essentially surjective and that υ−1(P ′) is finitely T -pointable.

Let (A′
j)j∈J be a finite family of P ′. Since υ is essentially surjective, there exists a finite family

(Aj)j∈J of T (X) such that, for every j ∈ J , υ(Ai) is ⊂T ′(X)-equivalent to Bj . The family
(Aj)j∈J is then a finite family of υ−1(P ′), so there is x ∈ X such that, for every j ∈ J , x ∈T Aj .
Therefore, one has, for every j ∈ J , x ∈T ′ υ(Aj), hence x ∈T ′ Bj , since υ(Aj) is ⊂T ′(X)-
equivalent to Bj .
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Definition 6.2.8 (Adherent T -points of a part). Let X be a T -topological space. A point x ∈ X
is an adherent T -point of a part P ⊂ T (X) when, for every finite family (Aj)j∈J of P , for every
O ∈ OT (X) such that x ∈T O, there is y ∈ X such that y ∈T O and y ∈T Aj , for every j ∈ J .

Remark 6.2.3. In other words, since the T -neighbourhoods filter of x is cofiltered, x is an ad-
herent T -point of P when VT (x) ∪ P is finitely T -pointable. In particular, a part of T (X) which
has an adherent T -point is finitely T -pointable.

Remark 6.2.4. Let X be a T -topological space. Let P be a part of T (X) and let x ∈ X. If P is
cofiltered, then x is an adherent T -point of P if and only if x is an adherent T -point of every
member of P .

Proposition 6.2.9. Let X be a T -topological space and let P and P ′ be two parts of T (X) such
that P ′ ⊂ P . Let x ∈ X. If x is an adherent T -point of P , then x is an adherent T -point of P ′.

Proof. Trivial.

As for the finitely T -pointable parts, when one of the hypothesis of Lemma 6.2.3 are satisfied,
we can restrict ourself to the case of filters:

Lemma 6.2.10. Let X be a T -topological space, let x ∈ X and let P be a part of T (X). Assume
that one of the two following statements is true:

- The module ∈X
T is representable.

- The preordered set T (X) is finitely complete and ∈X
T preserves finite meets.

Then x is an adherent T -point of P if and only if x is an adherent T -point of the filter generated
by P .

Proof. Denote by F the filter generated by P and by F ′ the filter generated by VT (x)∪P . Assume
that x is an adherent T -point of F . Since P ⊂ F , by the previous proposition, we deduce that
x is an adherent T -point of P . Conversely, assume that x is an adherent T -point of P . Then
VT (x) ∪ P is finitely T -pointable. By Lemma 6.2.3, we deduce that F ′ is finitely T -pointable.
Since VT (x)∪F ⊂ F ′, VT (x)∪F is finitely T -pointable, hence x is an adherent T -point of F .

Concerning changing of bases functors, one has:

Proposition 6.2.11. Let X be a T -topological space and let P ⊂ T (X). Let x ∈ X, then x is an
adherent T -point of P if and only if x is an adherent T ′-point of υ(P ).

Proof. Assume that x is an adherent T -point of P . Let (A′
j)j∈J be a finite family of T ′(X) such

that, for every j ∈ J , there is Aj ∈ P such that υ(Aj) ⊂T ′ A′
j , and let O′ ∈ OT ′(υ(X)) such that

x ∈T ′ O′. There is O ∈ OT (X) whose x is a T -element such that υ(O) ⊂T ′ O′. Then there is
y ∈ X such that y ∈T O and, for every j ∈ J , y ∈T Aj . Therefore, one has y ∈T ′ υ(O) ⊂T ′ O
and, for every j ∈ J , y ∈T ′ υ(Aj) ⊂T ′ A′

j . We conclude that x is an adherent T ′-point of υ(P ).
Conversely, assume that x is an adherent T ′-point of υ(P ). Let (Aj)j∈J be a finite family of

P and let O ∈ OT (X) such that x ∈T O. Then υ(O) is T ′-open in υ(X), x is a T ′-element of
it, and (υ(Aj))j∈J is a finite family of υ(B), hence there is y ∈ X such that y ∈T ′ υ(O) and, for
every j ∈ J , y ∈T ′ υ(Aj). Hence y ∈T O and, for every j ∈ J , y ∈T Aj .

Proposition 6.2.12. Let X be a T -topological space, let P ′ ⊂ T ′(X) and let x ∈ X. If x is
an adherent T ′-point of P ′ then x is an adherent T -point of υ−1(P ′). Conversely, assume that
υX : T (X) → T ′(X) is essentially surjective, if x is an adherent T -point of υ−1(P ′) then x is an
adherent T ′-point of P ′.

Proof. Assume that x is an adherent T ′-point of P ′. Let (Aj)j∈J be a finite family of T (X) such
that, for every j ∈ J , there is A′

j ∈ P ′ such that A′
j ⊂T ′ υ(Aj) and let O ∈ OT (X) such that

x ∈T O. Then υ(O) is T ′-open in υ(X), x is a T ′-element of it, and (υ(Aj))j∈J is a finite family
of P ′. Therefore, there is y ∈ X such that y ∈T ′ υ(O) and, for every j ∈ J , y ∈T ′ υ(Aj). Thus
y ∈T O and, for every j ∈ J , y ∈T Aj .
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Conversely, assume that υX is essentially surjective and that x is an adherent T -point of
υ−1(P ′). Let (A′

j)j∈J be a finite family of P ′ and let O′ ∈ OT ′(υ(X)) such that x ∈T ′ O′.
Since υ is essentially surjective, there is a finite family (Aj)j∈J such that, for every j ∈ J , υ(Aj)
is ⊂T ′(X)-equivalent to A′

j . Besides, there is O ∈ OT (X) whose x is a T -element such that
υ(O) ⊂T ′ O′. Since x is an adherent T -point of υ−1(P ′), we deduce that there exists y ∈ X such
that y ∈T O and, for every j ∈ J , y ∈T Aj . Then y ∈T ′ υ(O) ⊂T ′ O′, so y ∈T ′ O′, and, for every
j ∈ J , y ∈T ′ υ(Aj), so y ∈T A′

j , because υ(Aj) is ⊂T ′(X)-equivalent to A′
j .

Definition 6.2.13 (Parts convergence). Let X be a T -topological space. A part P ⊂ T (X)
converges to a point x ∈ X when VT (x) ⊂ P .1

Remark 6.2.5. Only the convergence of finitely T -pointable parts is interesting because, for any
topological space X, P(X) converges to all the points of X.

Proposition 6.2.14. Let X be a T -topological space and let P and P ′ be two parts of T (X) such
that P ⊂ P ′. Let x ∈ X. If P converges to x then P ′ converges to x.

Proof. Obvious.

Thus, if P ⊂ T (X) converges to x in a T -topological space X, then the filter generated by P
also converges to X.

Proposition 6.2.15. Let X be a T -topological space and let P, P ′ ⊂ T (X) such that P ′ ⊂ P .
Let x ∈ X. If P is finitely T -pointable and converges to x then x is an adherent T -point of P ′.

Proof. Since P ′ ⊂ P and VT (x) ⊂ P , one has P ′ ∪ VT (x) ⊂ P . Since P is finitely T -pointable,
we deduce that P ′∪VT (x) is finitely T -pointable then that x is an adherent T -element of P ′.

Conversely

Proposition 6.2.16. Let X be a T -topological space and let P ′ ⊂ T (X). Let x ∈ X. If x is an
adherent T -element of P ′ then there is P ⊂ T (X) finitely T -pointable such that P ′ ⊂ P and P
converges to x.

Proof. Write P := P ′ ∪ VT (x). Since x is an adherent T -element of P ′, P is finitely T -pointable.
The fact that P ′ ⊂ P and that P converges to x is clear.

Like in the case of topological spaces, we can characterize the T -closedness by the conver-
gence of some parts.

Proposition 6.2.17. Let X be a T -topological space. A member F of T (X) is T -closed if and
only if, for every P ⊂ T (X) such that there is a T -element xA of F and of A for all A ∈ P , and
for every x ∈ X, if P converges to x then x ∈T F .

Proof. Assume that F is T -closed. Let P ⊂ T (X) such that, for all A ∈ P , there is a T -element
xA of F and of A. Let x ∈ X such that P converges to x. Let O ∈ OT (X) such that x ∈T O.
Since P converges to x, one has O ∈ P , hence, by assumption, there is a T -element xO of O and
of F . Thus x is an adherent T -point of F . Consequently x ∈T F because F is T -closed.

Conversely, assume that for every P ⊂ T (X) such that, for all A ∈ P , there is a T -element
xA of F and of A, for every x ∈ X, if P converges to x then x ∈T F . Let x ∈ X such that x is
an adherent T -point of F . Consider the filter VT (x). For all V ∈ VT (x), since x is an adherent
T -point of F , there is a T -element xV of F and of V . Since VT (x) converges to x, we conclude
that, par hypothesis, x ∈ F .

Remark 6.2.6. By the previous proposition, it is enough to verify the hypothesis for the cofiltered
and finitely T -pointable filters because the T -neighbourhoods filters satisfy those statements,
and they are the ones that are used in the preceding proof of the converse implication.

Concerning T -continuous maps,

1We could have defined the convergence of part P to a point x by requiring that VT (x) is included in the filter
generated by P but then Proposition 6.2.15 does not hold without additional assumptions.
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Proposition 6.2.18. Let X and Y be T -topological spaces, let f : X → Y be a function T -
continuous at x ∈ X, and let P ⊂ T (X). If x is an adherent T -point of P , then f(x) is an
adherent T -point of PT (f), where PT (f) is the image of P under the module T (f) (Definition
3.2.5).

Proof. Let (Bj)j∈J be a finite family of T (Y ) such that, for every j ∈ J , there is Aj ∈ F such
that Aj T (f) Bj . Let VY ∈ VT (f(x)). Since f is T -continuous at x, there is VX ∈ VT (x) such
that VX T (f) VY . Since x is an adherent T -point of P , there is y ∈ X such that y ∈T VX and,
for every j ∈ J , y ∈T Aj . Since VX T (f) VY and, for every j ∈ J , Aj T (f)Bj , one deduces that
f(y) ∈T VY and, for every j ∈ J , f(y) ∈T Bj .

Proposition 6.2.19. Let X and Y be two T -topological spaces and let f : X → Y be a function.
The function f is T -continuous at x ∈ X if and only if, for every P ⊂ T (X) converging to x,
PT (f) converges to f(x).

Proof. Assume that f is T -continuous at x ∈ X and let P ⊂ T (X) converging to x. Let VY ∈
VT (f(x)). Since f is T -continuous at x, there is VX ∈ VT (x) such that VX T (f) VY . Since P
converges to x, one has VX ∈ P , then VY ∈ PT (f).

Conversely, assume that for every P ⊂ T (X) converging to x, PT (f) converges to f(x). Let
VY ∈ VT (f(x)). Since VT (x) converges to x, by hypothesis, VY belongs to the image of VT (x)
under the module T (f), i.e. there is VX ∈ VT (x) such that VX T (f) VY .

Concerning changing of bases functors:

Proposition 6.2.20. Let X be a T -topological space, let P ⊂ T (X) and let x ∈ X. If P converges
to x in X then υ(P ) converges to x in υ(X). Conversely, if υX : T (X) → T ′(X) is fully faithful
and if P is upward closed, the convergence of υ(P ) to x in υ(X) implies the convergence of P
to x in X.

Proof. Assume that P converges to x in X. Let V ′ ∈ VT ′(x). There is V ∈ VT (x) such that
υ(V ) ⊂T ′ V ′. Since P converges to x in X, one has V ∈ P , and then, by definition of υ(P ),
V ′ ∈ υ(P ).

Conversely, assume that υX is fully faithful, that P is upward closed, and that υ(P ) converges
to x in υ(X). Let V ∈ VT (x). Then υ(V ) ∈ VT ′(x) by Corollary 5.3.10, hence υ(V ) ∈ υP because
υ(P ) converges to x in υ(X). Therefore, there is A ∈ P such that υ(A) ⊂T ′ υ(V ). Since υX is
fully faithful, we deduce that A ⊂T V . Finally V ∈ P because P is upward closed.

Proposition 6.2.21. Let X be a T -topological space, let P ′ ⊂ T ′(X) and let x ∈ X. If P ′

converges to x in υ(X) then υ−1(P ′) converges to x in X. Conversely, if υX : T (X) → T ′(X)
is fully faithful and essentially surjective, and if P ′ is upward closed, then the convergence of
υ−1(P ′) to x in X implies the convergence of P ′ to x in υ(X).

Proof. Assume that P ′ converges to x in υ(X). Let V ∈ VT (x). Then υ(V ) ∈ VT ′(x), hence
υ(V ) ∈ P ′ since P ′ converges to x in υ(X). By definition of υ−1(P ′), we deduce that V ∈
υ−1(P ′).

Conversely, assume that υX : T (X) → T ′(X) is fully faithful and essentially surjective, that
P ′ is upward closed, and that υ−1(P ′) converges to x in X. Let V ′ ∈ VT ′(x). Since υX is
essentially surjective, there is V ∈ T (X) such that υ(V ) and V ′ are ⊂T ′(X)-equivalent. Since V ′

is a T ′-neighbourhood of x in υ(X), so is υ(V ). By proposition 5.3.11, since υX is fully faithful,
one has V ∈ VT (x). Since υ−1(P ′) converges to x, one has V ∈ υ−1(P ′). Consequently, there
is A ∈ P ′ such that A ⊂T ′ υ(V ). Since υ(V ) and V ′ are ⊂T ′(X)-equivalent, we deduce that
A ⊂T ′ V ′. Finally, since P ′ is upward closed, V ∈ P ′.

6.3 Separation properties

We study the generalization of some separation properties to T -topological spaces.
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6.3.1 Specialization preorder and associated separation properties

The specialization preorder naturally generalizes to T -topological spaces:

Definition 6.3.1 (Specialization preorder). Let X be a T -topological space. The T -specializa-
tion preorder is a preorder ⪯X

T (or more simply ⪯T ) on X defined by x ⪯T y if VT (x) ⊂ VT (y).

Remark 6.3.1. Let X be a T -topological space and let x, y ∈ X. If, for every A ∈ T (X), x ∈T A
implies y ∈T A, then x ⪯T y. For every A ∈ T (X), if x ⪯T y and if y is an adherence T -point of
A then x is an adherence T -point of A.

From this generalization of the specialization preorder, one easily derives generalizations of
the separation axioms T0, R0, and T1.

Definition 6.3.2 (Indistinguishable elements). Let X be a T -topological space. Two elements
x and y of X are T -indistinguishable in the T -topological space X when they are equivalent for
the T -specialization preorder, i.e. if VT (x) = VT (y).

Definition 6.3.3 (T -T0 spaces). Let X be a T -topological space. The space X is T -T0 when,
for every elements x and y of X, if x and y are T -indistinguishable in X then x = y. In other
words, X is T -T0 when the T -specialization preorder is an order.

Equality between points of a T -topological space may be a too strong notion; this justifies
the following definition.

Definition 6.3.4 (Weakly T -T0 spaces). Let X be a T -topological space. The space X is weakly
T -T0 when, for every elements x and y of X, if x and y are T -indistinguishable in X then
x and y are ∈T -indistinguishable (Definition 5.1.5). In other words, the space X is weakly
T -T0 when the T -specialization preorder is an order relatively to the equivalence relation of
∈T -indistinguishability.

Remark 6.3.2. A T -topological space X is T -T0 if and only if X is weakly T -T0 and the relation
of ∈T -indistinguishability is the equality relation.

Example 6.3.1. With the topological theory P, the two notions matches with the classical sep-
aration axiom T0 in point-set topology.

Definition 6.3.5 (T -R0 spaces). A T -topological space X is T -R0 when the T -specialization
preorder is an equivalence relation, i.e. when for every x, y ∈ X, if VT (x) ⊂ VT (y) then VT (x) =
VT (y).

Remark 6.3.3. Let X be a T -topological space T -R0. Given x, y ∈ X, if, for every A ∈ T (X),
x ∈T A implies y ∈T A, then x and y are T -indistinguishable in X.

Definition 6.3.6 ((weakly) T -T1 spaces). A T -topological space X is (weakly) T -T1 when it is
T -R0 and (weakly) T -T0.

Example 6.3.2. Let V be a quantale. All TV-topological spaces are weakly TV-T1 but only the
ones whose underlying set is the empty set or a singleton set are TV-T1.

Lemma 6.3.7. Let X be a T -R0 space. Assume that ∈X
T is represented by σ : X → T (X).

Then, for every x and y ∈ X, x is an adherent T -point of σ(y) if and only if x and y are
T -indistinguishable in X.

Proof. Assume that x is an adherent T -point of σ(y). Let O ∈ OT (X) such that x ∈T O. Then
there is z ∈ X such that z ∈T O and z ∈T σ(y). For every A ∈ T (X) such that y ∈T A. So
one has σ(y) ⊂T A then z ∈T A. Thus y ⪯T z, hence z ⪯T y because X is T -R0. Since
z ∈T O and since O is T -open, we deduce that y ∈T O. Hence x ⪯T y, and then x and y
are T -indistinguishable in X since X are T -R0. The converse implications are obvious because
since y ∈T σ(y).
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Proposition 6.3.8. Let X be a T -R0 space. Assume that ∈X
T is represented by σ : X → T (X).

The space X is T -T1 if and only if, for every x, y ∈ X, if x is an adherent T -point of σ(y) in X
then x = y. The space X is weakly T -T1 if and only if, for every x, y ∈ X, if x is an adherent
T -point of σ(y) in X then x and y are ∈T -equivalent.

Corollary 6.3.9. Let X be a weakly T -T1 space such that ∈X
T is represented by σ. For every

x ∈ X, σ(x) is closed.

Concerning changing of bases functors, one has

Proposition 6.3.10. Let X be a T -topological space and let x, y ∈ X. One has x ⪯T y in X if
and only if x ⪯T ′ y in υ(X).

Proof. Assume that x ⪯T y in X. Let O′ ∈ OT ′(υ(X)) such that x ∈T ′ O′. Hence there is
O ∈ OT (X) such that x ∈T O and υ(O) ⊂T ′ O′. Since x ⪯T y, one has y ∈T O, then
y ∈T ′ υ(O), and finally y ∈T ′ O′.

Assume that x ⪯T ′ y in υ(X). Let O ∈ OT (X) such that x ∈T O. Then υ(O) is T ′-open in
υ(X) and x is an T ′-element of it. Since x ⪯T ′ y in υ(X), one has y ∈T ′ υ(Oy), then finally
y ∈T Oy.

Corollary 6.3.11. Let X be a T -topological space. The space X is T -T0 (resp. T -R0, T -T1) if
and only if υ(X) is T ′-T0 (resp. T ′-R0, T ′-T1).

Corollary 6.3.12. Let X and Y be T -topological spaces and let f : X → Y be an injective
T -continuous map. If Y is T -T0 (resp. T -T1), then X is T -T0 (resp. T -T1).

Remark 6.3.4. A priori this result does not hold in general for the weak versions since we do
not have interesting map between T (X) and T (Y ), just a module. Even when the spaces X
and Y are isomorphic in the concrete category TopT , it may be possible that X is weakly T0
(respectively weakly T1) whereas Y is not. It illustrates a particular phenomenon which is
due to the fact that T is only a lax functor: two isomorphic T -topological spaces may be quite
different, even when the concerned isomorphism is an identity function2. This will be a major
source of complexity in the following chapters.

In particular, with the final changing of bases datum !T , we deduce that a T -topological
space X is T -T0 (resp. T -R0, T -T1) if and only if the underlying topological space !T (X) is T0
(resp. R0, T1). Therefore, only weak versions of the separation axioms really differ from their
classical counterparts.

Corollary 6.3.13. Let X be a T -topological space. If υ(X) is weakly T ′-T0 (resp. weakly
T ′-T1) then X is weakly T -T0 (resp. weakly T -T1). Assume that, for every x, y ∈ X, the ∈T -
indistinguishability of x and y implies the ∈T ′ -indistinguishability of x and y. Then the converse
implication holds.

Proof. It clearly follows from the previous proposition and from Lemma 5.3.20.

6.3.2 T -Hausdorff and T -compact spaces

Now we have generalized the notion of convergence and adherent points of filters, we can
naturally generalize the notion of Hausdorff and compact spaces.

Definition 6.3.14. Let X be a T -topological space. The space X is T -Hausdorff (or T -T2) when,
for every finitely T -pointable part P ⊂ T (X), for every x, y ∈ X, if P converges to x and to
y in X then x = y. Similarly X is weakly T -Hausdorff when, for every finitely T -pointable
part P ⊂ T (X), for every x, y ∈ X, if P converges to x and to y in X then x and y are ∈T -
indistinguishable.

The classical characterizations of Hausdorff spaces holds.

2In univalent foundations, it seems to correspond to the distinction between precategories and categories (see [Uni13,
9.1]).
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Proposition 6.3.15. Let X be a T -topological space. The following statements are equivalent:

1. The space X is (weakly) T -Hausdorff.

2. For every x, y ∈ X, if for every Vx ∈ VT (x) and Vy ∈ VT (y), there is z ∈ X satisfying
z ∈T Vx and z ∈T Vy, then x = y (respectively, x and y are ∈T -indistinguishable).

3. For every part P ⊂ T (X), for every x, y ∈ X, if P converges to x and if y is an adherent
T -point of P , then x = y (respectively, x and y are ∈T -indistinguishable).

Proof.

- 1. ⇒ 2.: Let x and y be two elements of X such that, for every Vx ∈ VT (x) and Vy ∈ VT (y),
there is z ∈ X satisfying z ∈T Vx and z ∈T Vy. Write P := VT (x) ∪ VT (y). Then P
converges to x and y in X. By 1., it is enough to show that P is finitely T -pointable to
conclude.

Let (Aj)j∈Jx∪Jy
be a finite family of T (X) such that, for every j ∈ Jx, Aj ∈ VT (x), and

that, for every j ∈ Jy, Aj ∈ VT (y). Since the filter VT (x) is cofiltered, there is Vx ∈ VT (x)
such that, for every j ∈ Jx, Vx ⊂T Aj . In the same way, since VT (y) is cofiltered, there is
Vy ∈ VT (y) such that, for every j ∈ Jy, Vy ⊂T Aj . Par hypothesis, there is z ∈ X satisfying
z ∈T Vx and z ∈T Vy. We finally deduce that, for every j ∈ Jx ∪ Jy, z ∈T Aj .

- 2. ⇒ 3.: Let Vx ∈ VT (x) and Vy ∈ VT (y). Since P converges to x, one has Vx ∈ P . Since
y is an adherent T -point of P and since Vx ∈ P , there is z ∈ X such that z ∈T Vx and
z ∈T Vy. By 2. allows us to conclude.

- 3. ⇒ 1.: It is a clear consequence of Proposition 6.2.16 and of Proposition 6.2.14.

Remark 6.3.5. When one of the two statements of Lemma 6.2.3 is satisfied, we can restrict
ourself to the filters.

Concerning changing of bases functors, one has

Proposition 6.3.16. Let X be a T -topological space. The space X is T -Hausdorff if and only if
the space υ(X) is T ′-Hausdorff.

Proof. Assume that X is T -Hausdorff. Let x, y ∈ X. Let P ′ ⊂ T ′(X) be a finitely T ′-pointable
part that converges to x and to y in υ(X). Then, by Propositions 6.2.7 and 6.2.21, υ−1(P ′) is
finitely T -pointable and converges to x and to y in X. Hence x = y because X is T -Hausdorff.

Assume that υ(X) is T ′-Hausdorff. Let x, y ∈ X. Let P ⊂ T (X) be a finitely T -pointable part
that converges to x and to y in X. Then, by Propositions 6.2.6 and 6.2.20, υ(P ) is finitely T ′-
pointable and converges to x and to y in υ(X). Hence x = y because υ(X) is T ′-Hausdorff.

In particular, it applies to the final changing of bases datum !T : A T -topological space is
T -Hausdorff if and only if its underlying topological space is Hausdorff.

Corollary 6.3.17. Let X and Y be T -topological spaces and let f : X → Y be an injective
T -continuous map. If Y is T -Hausdorff, then so is X.

Remark 6.3.6. A priori, as Corollary 6.3.12, this result does not hold in general for weak T -
Hausdorff spaces.

Corollary 6.3.18. Let X be a T -topological space. If the space X is T -Hausdorff, then it is T -T1.

This result remains true for the weak versions:

Proposition 6.3.19. Let X be a T -topological space. If the spaces X is weakly T -Hausdorff,
then it is weakly T -T1.
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Proof. Let x, y ∈ X such that x ⪯T y. Let Vx be a T -neighbourhood of x and Vy be a T -
neighbourhood of y. Since x ⪯T y, Vx is a T -neighbourhood of y. Then y ∈T Vx, Vy. Hence x
and y are ∈T -indistinguishable by Proposition 6.3.15 because X is weakly T -Hausdorff.

Proposition 6.3.20. Let X be a T -topological space. If the space υ(X) is T ′-Hausdorff then
the space X is T -Hausdorff. The converse implication holds when, for every x, y ∈ X, the
∈T -indistinguishability of x and y implies the ∈T ′ -indistinguishability of x and y.

Proof. The proof is similar to the one of Proposition 6.3.16 using Lemma 5.3.20.

Now that we defined the Hausdorffness as the unicity of elements to which a finitely T -
pointable part converges, we define compactness.

Definition 6.3.21 (T -compact spaces). Let X be a T -topological space. The space X is T -
compact when every finitely T -pointable part of T (X) has an adherent T -point.

Remark 6.3.7. When any of the statements from Lemma 6.2.3 is satisfied, it is enough to verify
the hypothesis for filters.

Like in classical point-set topology, modulo the choice axiom, T -compactness is equivalent
to the convergence of some parts.

Definition 6.3.22 (T -ultraparts). Let X be a set. A T -ultrapart of T (X) is a maximum in the
set of finitely T -pointable parts of T (X) ordered by inclusion.

In other words, a finitely T -pointable part of T (X) is a T -ultrapart when every part that
strictly contains it is not finitely T -pointable.

Remark 6.3.8. Let X be a set. A finitely T -pointable part P ⊂ T (X) is a T -ultrapart if and only
if, for every A ∈ T (X), if P ∪ {A} is finitely T -pointable, then A ∈ P .

Lemma 6.3.23. Let X be a set and let P0 ⊂ T (X) be a finitely T -pointable part. The set
of all finitely T -pointable parts of T (X) containing P0, ordered by inclusion, is an inductive
preordered set.

Proof. Let S be a chain of the set of all finitely T -pointable parts of T (X) containing P0 ordered
by inclusion. Let S′ := S ∪{P0} and write PS′ :=

⋃
P∈S′ P . One has, for every P ∈ S′, P ⊂ PS′ .

To conclude, it is enough to show that PS′ is finitely T -pointable.
Let (Aj)j∈J be a finite family of PS′ . Since S′ is clearly a non empty chain, there is P ∈ S′

such that, for every j ∈ J , Aj ∈ P . Since P is finitely T -pointable, there is x ∈ X such that, for
every j ∈ J , x ∈T Aj .

We deduce that:

Corollary 6.3.24. [Assuming the choice axiom] Let X be a set. For every finitely T -pointable
part of P ⊂ T (X), there is a T -ultrapart U of X such that P ⊂ U .

Remark 6.3.9. By Lemma 6.2.3, when one of its two statements is true, every T -ultrapart is a
filter (we call it then a T -ultrafilter).

Lemma 6.3.25. Let X be a set, let U be a T -ultrapart on T (X) and let A,A′ ∈ T (X). If, for
every x ∈ X, x ∈T A or x ∈T A′, then A ∈ U or A′ ∈ U .

Proof. If A ̸∈ U , there is a finite family (Uj)j∈J of U such that, for every x ∈ X, if, for every
j ∈ J , x ∈T Uj then x ̸∈T A. In the same way, if A′ ̸∈ U , there is a finite family (Uj)j∈J′ of U
such that, for every x ∈ X, if, for every j ∈ J ′, x ∈T Uj then x ̸∈T A′. Hence, if A, A′ ̸∈ U ,
the family (Uj)j∈J⊔J′ is a finite family of U and there does not exist x ∈ X such that, for every
j ∈ J ⊔ J ′, x ∈T Uj; this contradicts the assumption that U is finitely T -pointable.

Proposition 6.3.26. Let X be a set and let U be a T -ultrapart. Then U is upward closed.
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Proof. Let A,A′ ∈ T (X) such that A ⊂T A′ and A ∈ U . Since U is a T -ultrapart, it is enough to
show that U∪{A′} is finitely T -pointable. Let (Aj)j∈J be a finite family of U . Define J ′ := J⊔{⋆}
and (Bj)j∈J′ with, B⋆ := A and, for every j ∈ J , Bj := Aj . Since U is finitely T -pointable, there
is x ∈ X such that, for every j ∈ J ′, x ∈T Bj . Since A ⊂T A′, one has x ∈T Aj and x ∈T A′ for
every j ∈ J .

Proposition 6.3.27. Let X be a T -topological space. If the space X is T -compact then every
T -ultrapart of T (X) converges to some point of X.

Proof. Let U be a T -ultrapart of T (X). A fortiori U is finitely T -pointable, so, since X is T -
compact, there is x ∈ X such that x an adherent T -point of U . By Proposition 6.2.16, there is a
finitely T -pointable part P ⊂ T (X) such that U ⊂ P converging to x in X. However, since U is
a T -ultrapart, one has P = U , hence U converges to x in X.

If we assume the choice axiom, the converse implication is true:

Proposition 6.3.28. [Assuming the choice axiom] Let X be a T -topological space. The space
X is T -compact if and only if every T -ultrapart of T (X) converges to some point of X.

Proof. The direct implication corresponds to the previous proposition. The converse implication
is a trivial consequence of Proposition 6.2.15 and of Corollary 6.3.24.

Basic properties of compact spaces can be adapted to our context:

Proposition 6.3.29. Let X be a T -compact space. Let P be a finitely T -pointable part of T (X)
whose members are T -closed. Then, there is x ∈ X such that, for every A ∈ P , x ∈T A.

Proof. Since X is T -compact, there is x ∈ X such that x is an adherent T -element of P . A
fortiori, for every A ∈ P , x is an adherent T -element of A, hence x ∈T A because A is T -
closed.

Proposition 6.3.30. Let X be a T -compact space. Let (Oi)i∈I be a family of OT (X). Assume
that, for every i ∈ I, there is Ai ∈ T (X) such that, for every x ∈ X, x ∈T Ai if and only if
x ̸∈T Oi. If, for every x ∈ X, there is i ∈ I such that x ∈T Oi, then there exists a finite subset
J ⊂ I such that, for every x ∈ X, there is i ∈ J such that x ∈T Oi.

Proof. By Proposition 6.1.10, for every i ∈ I, Ai is T -closed. For every x ∈ X, by hypothesis,
there is i ∈ I such that x ∈T Oi, hence x ̸∈T Ai. By the contraposed of the previous proposition,
there is a finite subset J ⊂ I such that, for every x ∈ X, there is i ∈ J such that x ̸∈T Ai. In
other words, for every x ∈ X, there is i ∈ J such that x ∈T Oi.

The previous proposition is similar to a kind of Borel-Lebesgue axiom. We can define more
generally:

Definition 6.3.31 (T -Borel-Lebesgue spaces). Let X be a T -topological space. The space X is
a T -Borel-Lebesgue space when, for every family (Oi)i∈I of OT (X) satisfying

∀x ∈ X,∃i ∈ I such that x ∈T Oi ,

there is a finite subset J ⊂ I satisfying

∀x ∈ X,∃i ∈ J such that x ∈T Oi .

Concerning changing of bases functors, one has the following results:

Proposition 6.3.32. Let X be a T -topological space. If υ(X) is T ′-compact then X is T -compact.
If υX is essentially surjective, then the converse is true.
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Proof. Assume that υ(X) is T ′-compact. Let P be a finitely T -pointable part of T (X). Then,
by Proposition 6.2.6, υ(P ) is a finitely T ′-pointable part of T ′(X). Since υ(X) is T ′-compact,
there is x ∈ X an adherent T ′-point of υ(P ). Thus, x is an adherent T -point of P by Proposition
6.2.11.

Assume that υX is essentially surjective and that X is T -compact. Let P ′ be a finitely T ′-
pointable part of T ′(X). Then, by Proposition 6.2.7, υ−1(P ′) is a finitely T -pointable part of
T (X). Since X is T -compact, there is x ∈ X an adherent T -point of υ−1(P ′). Since υX is
essentially surjective, by Proposition 6.2.12, x is an adherent T ′-point of P ′.

Proposition 6.3.33. Let X be a T -topological space. Then X is a T -Borel-Lebesgue space if and
only if υ(X) is a T ′-Borel-Lebesgue space.

Proof. Assume that X is a T -Borel-Lebesgue space. Let (O′
i)i∈I be a family of OT ′(υ(X)) such

that, for every x ∈ X, there is i ∈ I such that x ∈T ′ O′
i. For every i ∈ I, for every x ∈T ′ O′

i,
there is Oi,x ∈ OT (X) such that x ∈T ′ υ(Oi,x) ⊂T ′ Oi. Hence, for every x ∈ X, there is
i ∈ I such that x ∈T Oi,x. Since X is a (T )-Borel-Lebesgue space, there is a finite subset
J ⊂

⊔
i∈I{x ∈ X; x ∈T ′ O′

i} such that, for every x ∈ X, there is (i, y) ∈ J such that x ∈T Oi,y.
Write J ′ := {i ∈ I; ∃y ∈ X such that (i, y) ∈ J}. Since J is finite, J ′ is also finite. Given x ∈ X,
there is (i, y) ∈ J such that x ∈T Oi,y, then one has x ∈T ′ O′

i and i ∈ J ′.
Conversely, assume that υ(X) is a T ′-Borel-Lebesgue space. Let (Oi)i∈I be a family of OT (X)

such that, for every x ∈ X, there is i ∈ I such that x ∈T Oi. Then, by Lemma 5.3.8, (υ(Oi))i∈I

is a family of OT ′(υ(X)) such that, for every x ∈ X, there is i ∈ I such that x ∈T ′ υ(Oi). Since
υ(X) is a T ′-Borel-Lebesgue space, there is a finite subset J ⊂ I such that, for every x ∈ X,
there is i ∈ J such that x ∈T ′ υ(Oi), so such that x ∈T Oi.

Corollary 6.3.34. Let X be a T -topological space. If X is a T -Borel-Lebesgue space then X is
T -compact. The converse is true when !TX is essentially surjective.

Proof. Just apply the two previous propositions to the final changing of bases datum !T , given
the fact that for the classical topological spaces, i.e. the (P,∈)-topological space, compactness
is equivalent to the Borel-Lebesgue axiom.

Examples 6.3.1.

- Let V be a quantale. Any TV-topological space has a unique TV-open member, therefore it
is a TV-Borel-Lebesgue space, and thus a TV-compact space.

- For the topological theory (P,∈), the notions of P-Borel-Lebesgue spaces and of P-compact
spaces match with the classical notion of compact spaces.

- Let X be a Pfin-topological space and let P ⊂ Pfin(X) finitely Pfin-pointable. If P is
empty, then X ̸= ∅ and all elements of X are adherent Pfin-points of P . If P ̸= ∅, there
exists A0 ∈ P with the smallest cardinal among the members of P . Since P ⊂ Pfin and P
is Pfin-pointable, the cardinal of A0 is a positive integer. Since the membership module
is representable, we can assume that P is a filter. For every A ∈ P , one has A ∩ A0 ∈ P
and its cardinal is smaller than the one of A0, consequently the two cardinals are equal.
Since A0 is finite, it follows that A0 = A ∩ A0. Hence every element of A0 is an adherent
Pfin-element of P . Thus, every Pfin-topological space is Pfin-compact.

The dual of Corollary 6.3.17 is harder.

Proposition 6.3.35. Let X and Y be two T -topological spaces and let f : X → Y be a surjective
T -continuous map. Assume that T (f) has an inverse image f−1 : T (Y ) → T (X). If X is T -
compact then so is Y .

Proof. Let PY be a finitely T -pointable a part of T (Y ). Write

PX := {f−1(B) ; B ∈ PT } .
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Let (Bj)j∈J be a finite family of PY . Given that PY is finitely T -pointable, there is y ∈ Y such
that, for every j ∈ J , y ∈T Bj . Since f is surjective, there is x ∈ X such that f(x) = y. Since
f−1 has an inverse image, it follows that, for every j ∈ J , x ∈T f−1(Bj).

Thus PX is finitely T -pointable. Given that X is T -compact, there is x′ ∈ X such that x′ is
an adherent T -point of PX . By Proposition 6.2.18, since f is T -continuous, f(x′) is an adherent
T -point of PX

T (f), image of PX under the module T (f).
Let B ∈ PY , one has f−1(B) ∈ PX and f−1(B) T (f) B because f−1(B) ⊂T f−1(B), hence

B ∈ PX
T (f). Thus PY ⊂ PX

T (f), so, by Lemma 6.2.9, f(x′) is an adherent T -point of PY .

The result of the previous proposition still holds with other assumptions:

Proposition 6.3.36. Let X and Y be two T -topological spaces and let f : X → Y be a T -
continuous function which has a section s : Y → X such that T (f ◦ s) = T (f) ◦ T (s). If X is
T -compact then so is Y .

Proof. Let P be a finitely T -pointable part of T (Y ). Then the image PT (s) of P under T (s) is
finitely T -pointable by Proposition 6.2.4. Therefore, given that X is T -compact, there is x ∈ X
which is an adherent T -point of PT (s) in X. By Proposition 6.2.18, since f is T -continuous,
f(x) is an adherent T -element of (PT (s))T (f), image of PT (s) under T (f). By Lemma 6.2.9, it is
enough to show that P ⊂ (PT (s))T (f).

Let B ∈ PY . One has B ⊂T (Y ) B, hence

B T (IdY )B .

In other words, since f ◦ s = IdY ,
B T (f ◦ s)B .

Given that
T (f ◦ s) = T (f) ◦ T (s) ,

there is A ∈ T (X) such that B T (s)A and AT (f)B. From B T (s)A, we deduce that A ∈ PT (s),
then, from A T (f)B, we deduce that B ∈ (PT (s))T (f).

6.3.3 T -Alexandroff spaces

Definition 6.3.37 (T -Alexandroff spaces). Let X be a T -topological space. The space X is a
T -Alexandroff space when, for every x ∈ X, there is V 0

x ∈ VT (x) such that, for every V ∈ VT (x),
one has V 0

x ⊂T V .

Remark 6.3.10. Since every T -neighbourhood contains a member of OT (X), V 0
x is T -open in X.

Proposition 6.3.38. Let X be a T -Alexandroff space, let (Oi)i∈I be a family of OT (X) which
has a meet

∧
i∈I Oi in T (X). Then

∧
i∈I Oi is T -open in X.

Proof. Let x ∈ X such that x ∈T

∧
i∈I Oi. For every i ∈ I, one has x ∈T Oi, hence x ∈T V 0

x ⊂T

Oi. It follows that x ∈T V 0
x ⊂T

∧
i∈I Oi.

Proposition 6.3.39. Let X and Y be two T -topological spaces and let f : X → Y be a T -
continuous map which has a T -continuous section g. Assume that T (IdY ) = (⊂T (Y )). If X is a
T -Alexandroff space, then so is Y .

Proof. Let y ∈ Y and let W ∈ VY
T (y). Denote by V 0 the smallest member of VX

T (g(y)). Since
g is T -continuous at y, there is W 0 ∈ VY

T (y) such that W 0 T (g) V 0. Since f is T -continuous
at g(y), one has V 0 T (f) W . Then one has W 0 T (f ◦ g) W , hence W 0 T (IdY ) W . Given that
T (IdY ) = (⊂T (Y )), we finally deduce that W 0 ⊂T W .

Proposition 6.3.40. Let X be a T -topological space. If X is a T -Alexandroff space, then υ(X)
is a T ′-Alexandroff space. If υX is fully faithful, then the converse implication holds.
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Proof. Assume that X is a T -Alexandroff space. Let x ∈ X and let V 0
x be a smallest member

of VT (x). Then υ(V 0
x ) is a T ′-neighbourhood of x in υ(X). Let V ′ be a T ′-neighbourhood of x

in υ(X). Then there is a T -neighbourhood of x in X such that υ(V ) ⊂T ′ V ′. By hypothesis,
V 0
x ⊂T V , hence υ(V 0

x ) ⊂T ′ υ(V ), and finally υ(V 0
x ) ⊂T ′ V ′.

Conversely, assume that υX is fully faithful and that υ(X) is a T ′-Alexandroff space. Let
x ∈ X and let V ′0

x be a smallest member of VT ′(x). Then there is a T -neighbourhood V 0
x of

x in X such that υ(V 0
x ) ⊂T ′ V ′0

x . Let V be a T -neighbourhood of x in X. Then υ(V ) is a
T ′-neighbourhood of x in υ(X), hence, by assumption, V ′0

x ⊂T ′ υ(V ), then υ(V 0
x ) ⊂T ′ υ(V ).

Finally, given that υX is fully faithful, V 0
x ⊂T V .
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Chapter 7

Limits and colimits in the category
of T -topological spaces

For this whole chapter, set a topological theory T = (T,∈T ).
Initial and final topologies play a major role: the induced topology and the product topology

are special cases of initial topology, while the quotient topology is a special case of final topology.
They are also used to prove that the forgetful functor into Set is a topological functor. In this
chapter, we intent to generalize this notions to the T -topological spaces. In order to fix the
terminology, we first recall some definitions, with U : C → D a functor:

Definition 7.0.1 (Initial lifting). Let D ∈ D, and let (di : D → U(Ci)) be a family of morphisms.
An U-initial lifting of the cone (D, (di)) is a pair (C, (ci : C → Ci)) such that U(C) = D,
U(ci) = di for every i, and, for every pair (C ′, (c′i : C ′ → Ci)) and every f : U(C ′) → U(C)
verifying U(ci) ◦ f = U(c′i), there is a unique h : C ′ → C such that U(h) = f and ci ◦ h = c′i for
every i.

Similarly,

Definition 7.0.2 (Final lifting). Let D ∈ D, and let (di : U(Ci) → D) be a family of morphisms.
An U-final lifting of the cocone (D, (di)) is a pair (C, (ci : Ci → C)) such that U(C) = D,
U(ci) = di for every i, and, for every pair (C ′, (c′i : Ci → C ′)) and every f : U(C) → U(C ′)
verifying f ◦U(ci) = U(c′i), there is a unique h : C → C ′ such that U(h) = f and h ◦ ci = c′i for
every i.

There is three special cases that will interest us:

Definition 7.0.3 (Topological functors). The functor U is a topological functor when every cone
has an U-initial lifting or, equivalently, when every cocone has an U-final lifting.

Definition 7.0.4 (U-discrete and U-indiscrete objects). Let C be an object of C and let D be
an object of D. C is U-indiscrete (respectively U-discrete) over D when (C, ∅) is an U-initial
(respectively U-final) lifting of (D, ∅).

Definition 7.0.5 (Fibration). The functor U is a fibration when every cone of the form (D, f :
D → U(C)) has an U-initial lifting. When (C ′, h : C ′ → C) is an U-initial lifting of (U(C ′),U(h))
with U(h) a monomorphism, we say that h (or C ′ when there is no risk of confusion) is a re-
striction of C.

For results about this notions, we refer to [Bor94b, 7.3 and 8] or to [HST14, II.5.6]. We
avoid using the terminology ‘initial structure’ as in [HST14, II.5.6] because of the weakness of
the property of being isomorphic in the category TopT , see Remark 6.3.4. For the same reason,
we do not use the notion of ‘topological functor’ developed in [AHS06, V.21] which is too strong.
The fact that T is only a lax functor is a source of difficulties; the first paragraph is dedicated to
this concern.
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7.1 Inverse images relative to T and saturation

Let X and Y be two sets and let f : X → Y be a function. We defined in 5.2.3 the notion
of inverse image. In some sense, this concept is pointwise because it refers to the sole module
T (f), not to the other modules of the form T (g). In the following, we need a more global variant
of this notion.

Definition 7.1.1 (Inverse images relative to T ). Let X and Y be two sets and let f : X → Y be
a function. An inverse image of T (f) relative to T is an increasing map f−1 : T (Y ) → T (X) such
that

- for every function g : W → X, for every A ∈ T (W ), for every B ∈ T (Y ),

A T (g) f−1(B) if and only if A T (f ◦ g)B

- for every x ∈ X, for every B ∈ T (Y ),

x ∈T f−1(B) if and only if f(x) ∈T B

As with inverse images, when the membership is strong (5.1.3), the first hypothesis implies
the second one

Lemma 7.1.2. Let X and Y be two sets and let f : X → Y be a function. Assume that the
theory T is a theory with strong membership. Let f−1 : T (Y ) → T (X) be an increasing map
that satisfies the first hypothesis of the previous definition. For every B ∈ T (Y ), one has

f−1(B) T (f)B .

Proof. Let B ∈ T (Y ). One has f−1(B) ⊂T (X) f
−1(B), hence f−1(B)T (IdX)f−1(B), and finally

f−1(B) T (f ◦ IdX)B.

Lemma 7.1.3. Let X and Y be two sets and let f : X → Y be a function. Assume that T is a
theory with strong membership. Let f−1 : T (Y ) → T (X) be an increasing map that satisfies the
first hypothesis of the previous definition. Then f−1 : T (Y ) → T (X) is an inverse image T (f)
relative to T .

Proof. Let x ∈ X and let B ∈ T (Y ). Assume that x ∈T f−1(B). Since f−1(B) T (f) B by the
previous lemma, it follows that f(x) ∈T B.

Conversely, assume that f(x) ∈T B. Given that T is with strong membership, there is
A ∈ T (X) such that x ∈T A and A T (f) B. Consequently, one has A T (IdX) f−1(B). Finally,
because x ∈T A, we get x = IdX(x) ∈T f−1(B).

Conversely,

Lemma 7.1.4. Assume that, for every function f : X → Y , T (f) has an inverse image f−1 :
T (Y ) → T (X) relative to T . Then T is a topological theory with strong membership.

Proof. Let f : X → Y be a function, let x ∈ X, and let B ∈ T (Y ) such that f(x) ∈T B. Then
one has x ∈T f−1(B) and f−1(B) T (f)B by Lemma 7.1.2.

Remark 7.1.1. Let X and Y be two sets and let f : X → Y be a function. Let f−1 : T (Y ) → T (X)
be an increasing map.

- Assume that T (IdX) = (⊂T (X)). If f−1 is an inverse image of T (f) relative to T , then it is
also an inverse image of T (f).

- Assume that, for every function g : W → X, T (f ◦ g) = T (f) ◦ T (g). If f−1 is an inverse
image of T (f) then it is also an inverse image of T (f) relative to T .

- If T (f) has an inverse image relative to T , then, for every g : W → X, T (f ◦ g) =
T (f) ◦ T (g).
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In particular, when T is a functor, the two notions match.

Examples 7.1.1.

- For the topological theory (P,∈), the inverse image of subsets, in classical sense, allows
us to define an inverse image f−1 : P(Y ) → P(X) in the previous sense for every function
f : X → Y . Since P is a functor, the inverse images are also inverse images relative to P.

- Let V be a quantale. For the theory (TV,∈) (Examples 5.1.1, 5.2.1, 5.2.2), the inverse
image V-preorder (A.0.9) allows us to define, for every function f : X → Y , an inverse
image of TV(f) relative to TV. The inverse images relative to TV are not in general inverse
images. However the distinction vanishes when TV is replaced by T l

V, and the inverse
images relative to TV are also inverse images relative to T l

V.

Inverse images relative to T are functorial (while inverse images may not be):

Proposition 7.1.5. Let X, Y and Z be three sets and let f : X → Y and e : Y → Z be two
functions. If f−1 and e−1 are inverse images of respectively T (f) and T (e) relative to T , then
f−1 ◦ e−1 is an inverse image of T (e ◦ f) relative to T .

Proof. Let g : W → X be a function, let A ∈ T (W ) and let B ∈ T (Z). The statement
A T (g) f−1(e−1(B)) is equivalent to A T (f ◦ g) e−1(B) then to A T (e ◦ f ◦ g)B.

In order to use the notion of inverse image relative to T , we need an analogue of Proposition
5.2.23. For this, we use the following notion:

Definition 7.1.6 (Pseudo-T -openness). Let X be a T -topological space. A member A ∈ T (X)
is pseudo-T -open in X when

∀x ∈ X, (x ∈T A) ⇒ (∃O ∈ OT (X) such that x ∈T O T (IdX)A)

Denote by Osat
T (X) the set of all members of T (X) that are pseudo-T -open in X.

Examples 7.1.2.

- For the topological theory (P,∈), since P is a functor, openness and pseudo-openness
match.

- Let V be a quantale. For the theory (T l
V,∈), since T l

V is a functor, T l
V-openness and pseudo-

T l
V-openness match. Let X = (X, {(X,R)}) be a TV-topological space. (X,R) is the only

member which is TV-open in X and the (X,R′) ∈ TV(X) satisfying R ≤ R′ are the only
members which are pseudo-TV-open.

- More generally, in a T l-topological space (Examples 5.3.1), T l-openness and pseudo-T l-
openness match. In a T -topological space X, the pseudo-T -open members in X are the
T l-open members in X seen as a T l-topological spaces; they form a basis of T l-topology
but not always of T -topology.

Remark 7.1.2. Since (⊂T (X)) ⊂ T (IdX), every A ∈ T (X) which is T -open is a fortiori pseudo-
T -open, i.e. OT (X) ⊂ Osat

T (X). The converse inclusion is true when (⊂T (X)) = T (IdX).
We get then the following characterization of T -continuity:

Proposition 7.1.7. Let X and Y be two T -topological spaces and let f : X → Y be a function.
Assume that T (f) has an inverse image f−1 relative to T . Let B be a basis of T -topology that
generates Y . If, for every B ∈ B, f−1(B) is T -open in X, then f is T -continuous. Conversely, if
f is T -continuous, then, for every B ∈ B, f−1(B) is pseudo-T -open in X.

Proof. Assume that, for every B ∈ B, f−1(B) is T -open in X. Let x ∈ X and let O ∈ OT (Y )
such that f(x) ∈T O. There is B ∈ B such that f(x) ∈T B ⊂T O. Then f−1(B) is T -open in X,
x is a T -element of it, and f−1(B) T (f)B by Lemma 7.1.2, therefore f−1(B) T (f)O.

Conversely, assume that f is T -continuous. Let O ∈ OT (Y ) and let x ∈ X such that x ∈T

f−1(O) because f is T -continuous in x. One has f(x) ∈T O, hence there is O′ ∈ OT (X)
such that x ∈T O′ T (f) O. Consequently, since f−1 is an inverse image of T (f) relative to T ,
x ∈T O′ T (IdX) f−1(O).
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There is an analogue of Proposition 6.3.35.

Proposition 7.1.8. Let X and Y be two T -topological spaces and let f : X → Y be a surjective
T -continuous map. Assume that T (f) has an inverse image f−1 relative to T . If X is T -compact
then so is Y .

Proof. Let PY be a finitely T -pointable part of T (Y ). Write

PX := {f−1(B) ; B ∈ F}

Let (Bj)j∈J be a finite family of PY . Since PY is finitely T -pointable, there is y ∈ Y such
that, for every j ∈ J , y ∈T Bj . Given that f is surjective, there is x ∈ X such that f(x) = y.
Consequently, one has, for every j ∈ J , x ∈T f−1(Bi). Thus PX is finitely T -pointable.

Since X is T -compact, there is x′ ∈ X such that x′ is an adherent T -point of PX . By
Proposition 6.2.18, given that f is T -continuous, f(x′) is an adherent T -point of PX

T (f), image
of PX under T (f). Let B ∈ PY , one has f−1(B) ∈ PX and, by Lemma 7.1.2, f−1(B) T (f) B,
hence B ∈ PX

T (f). Consequently PY ⊂ PX
T (f), and then, by Lemma 6.2.9, f(x′) is an adherent

T -point of PY .

Many of the following statements require that the pseudo-T -open members form a basis of
T -topology.

Definition 7.1.9 (Saturated and saturable T -topological spaces). Let X be a T -topological
space. The space X is saturated when OT (X) = Osat

T (X) and is saturable when Osat
T (X) is

a basis of T -topology on X. When X is saturable, write Xsat := (X,Osat
T (X)) and call this

space the saturated of X.

Remark 7.1.3. Since OT (X) ⊂ Osat
T (X), X is saturable if and only if, for every x ∈ X, for every

A,A′ ∈ Osat
T (X) such that x ∈T A,A′, there is A′′ ∈ Osat

T (X) such that x ∈T A′′ ⊂T A,A′.

Example 7.1.1. Let V be a quantale and let X = (X, {(X,R)}) be a TV-topological space. The
space X is saturable if and only if R is a maximal V-preorder on X. In this case Xsat = X.

Lemma 7.1.10. Let X be a T -topological space. If X is saturable then OT (Osat
T (X)) = Osat

T (X).

Proof. Let O′ ∈ OT (Osat
T (X)) and let x ∈ X such that x ∈T O′. There is then A ∈ Osat

T (X) such
that x ∈T A ⊂T O′. It follows that, since A is pseudo-T -open in X, there is O ∈ OT (X) such
that x ∈T O T (IdX)A. Since T (IdX) is a module, we deduce that x ∈T O T (IdX)O′. Thus O′ is
pseudo-T -open in X, hence O′ ∈ Osat

T (X).

The following proposition justifies the name given to Xsat.

Proposition 7.1.11. Let X be a T -topological space. If X is saturable then the saturated Xsat

of X is a saturated T -topological space.

Proof. Let A′ ∈ Osat
T (Xsat) and let x ∈ X such that x ∈T A. Then, there is A ∈ OT (Osat

T (X))
such that x ∈T A ⊂T A′. By the previous lemma, A is pseudo-T -open in X. Thus, there is
O ∈ OT (X) such that x ∈T O T (IdX) A. Consequently x ∈T O T (IdX) A′ and then A′ is
pseudo-T -open in X.

Proposition 7.1.12. Let X be a T -topological space. If X is saturable, then the map IdX is an
isomorphism in TopT between X and Xsat.

Proof. Given that OT (X) ⊂ Osat
T (X), the map IdX is T -continuous from Xsat to X. Conversely,

let x ∈ X and let A ∈ Osat
T (X) such that x ∈T A. By definition of pseudo-T -openness, there is

O ∈ OT (X) such that x ∈T O T (IdX)A. Thus the map IdX is T -continuous from X to Xsat

Thus, concerning T -continuity, and in particular for Proposition 7.1.7, if a T -topological
space X is saturable, we can assume that the pseudo-T -open members in X match with the
T -open members.
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Definition 7.1.13 (Saturable and saturated topological theories). A topological theory T is
saturable (respectively saturated) when every T -topological space is saturable (respectively sat-
urated).

We have the following sufficient condition for saturability:

Lemma 7.1.14. Let X be a T -topological space. Assume that T (IdX) has an inverse image i−1.
Let A ∈ T (X). Then A is pseudo-T -open if and only if i−1(A) is T -open.

Proof. Indeed, given x ∈ X and O a T -open member of X, one has x ∈T O T (i)A if and only if
x ∈T O ⊂T i−1(A).

Proposition 7.1.15. Let X be a T -topological space. Assume that T (X) is finitely complete and
that T (IdX) has an inverse image i−1 preserving finite meets, then X is saturable.

Proof. Let (Aj)j∈J be a finite family of pseudo-T -open members of X. Denote by
∧

j∈J Aj a
meet of the Aj in T (X). Since every i−1(Aj) is T -open by the previous lemma and since i−1

preserves finite meets, by Proposition 5.2.11, i−1(
∧

j∈J Aj) =
∧

j∈J i−1(Aj) is T -open, hence∧
j∈J Aj is pseudo-T -open.

Pseudo-T -openness is preserved by changing of bases:

Proposition 7.1.16. Let T = (T,∈T ) and T ′ = (T ′,∈T ′) be two topological theories and let
υ : T → T ′ be a changing of bases datum. Let X be a T -topological space and let A ∈ T (X). If
A is pseudo-T -open in X then υX(A) is pseudo-T ′-open in υ(X).

Proof. Let x ∈ X such that x ∈T ′ υX(A). Then x ∈T A, hence there is O ∈ OT (X) such that
x ∈T O T (IdX)A. It follows that x ∈T ′ υX(O) T (IdX) υX(A).

7.2 Final T -topology

Assume that, for every function f : X → Y , the module T (f) has an inverse image f−1 relative
to T .

Let (Xi)i∈I be a family of T -topological spaces, let X be a set, and let (fi : Xi → X)i∈I be a
family of functions. Also assume that T (X) is finitely complete, that every f−1

i preserves finite
meets, that xX

T preserves finite meets (Definition 5.2.15), and that every space Xi is saturable.
Write

B := {B ∈ T (X) ; ∀i ∈ I, f−1
i (B) ∈ OT (X

Sat
i )} .

Lemma 7.2.1. The set B is a basis of T -topology on X.

Proof. Let x ∈ X and let (Bj)j∈J be a finite family of B such that, for every j ∈ J , x ∈T Bj .
Given that ∈X

T preserves finite meets, one has x ∈T

∧
j∈J Bj , where

∧
j∈J Bj is a finite meet of

(Bj)j∈J in the finitely complete preordered set T (X). It is enough to show that
∧

j∈J Bj ∈ B to
conclude.

Let i ∈ I. Since f−1 preserves finite meets, one has f−1
i (
∧

j∈J Bj) =
∧

j∈J f−1
i (Bj). By

definition, the f−1
i (Bj) are T -open in Xsat

i , hence, by stability of T -openness under finite meets
(Proposition 5.2.11),

∧
j∈J f−1

i (Bj) ∈ OT (X
Sat
i ).

Call this T -topology the final T -topology on X associated to the fi and call X endowed with it
the final T -topological space associated to the (fi). From now on, we assume that X is endowed
with this topology.

Lemma 7.2.2. The functions fi : Xi → X are T -continuous.

Proof. Let i ∈ I. Since Xi is saturable, the map IdXi
is an isomorphism in TopT between Xi

and Xsat
i . It follows that each fi : Xi → X is T -continuous if and only if fi : Xsat

i → X is
T -continuous. The map fi is T -continuous fromXsat

i to X by Proposition 7.1.7.
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Corollary 7.2.3. The subset B is equal to the subset OT (B).

Proof. Indeed, given O ∈ OT (B), by Proposition 7.1.7, since the fi are T -continuous, the f−1
i (O)

are pseudo-T -open, hence O ∈ B.

Let Y be a T -topological space, and, for every i ∈ I, let gi : Xi → Y be a T -continuous map.
Let h : X → Y be a function such that, for every i ∈ I, gi = h ◦ fi. Then h is T -continuous.
Indeed, given O ∈ OT (Y ), by Proposition 7.1.7, it is enough to show that h−1(O) is T -open
in X. Let i ∈ I, since f−1

i ◦ h−1 is an inverse image of T (h ◦ fi) relative to T by Proposition
7.1.5 and since gi = h ◦ fi is T -continuous from Xi to Y , by Proposition 7.1.7, f−1

i (h−1(O)) is
pseudo-T -open in Xi. Then, by definition of the final T -topology of X, h−1(O) is T -open in X.

Thus X endowed with the final T -topology and the fi seen as T -continuous maps are a
UT -final lifting of the cocone (X, (fi)) in the sense of Definition 7.0.1. Therefore, we have the
following theorem:

Theorem 7.2.4. Assume that the theory T is saturable, that, for every set X, T (X) is finitely
complete and ∈X

T preserves finite meets, and that, for every function f : X → Y , T (f) has an inverse
image relative to T which preserves finite meets. Then the forgetful functor UT : TopT → Set is a
topological functor.

Remark 7.2.1. The assumptions of the previous theorem are in particular satisfied when, for
every set X, T (X) is finitely complete and ∈X

T preserves finite meets, for every function f :
X → Y , T (f) has an inverse image which preserves finite meets, and T commutes with ◦.

Example 7.2.1. Let V a be quantale. One easily checks, since T l
V is a functor and thanks to

results of Section A, that T l
V satisfies the assumptions as the previous theorem and thus that UT l

V

is a topological functor.

Hence, by Propositions [Bor94b, 7.3.7 and 7.3.8], we deduce the

Corollary 7.2.5. With the same assumptions as the previous theorem, the category TopT is
complete and cocomplete, the forgetful functor preserves limits and colimits, and has fully faith-
ful left and right adjoints.

7.3 Discrete and coarsest T -topologies

We can give a more concrete description of the adjoints of the forgetful functor, which holds
with weaker assumptions.

Definition 7.3.1 (Discrete T -topology). A set X has a discrete T -topology when T (X) is a basis
of T -topology on X. The T -topology T (X) is than called discrete T -topology and the space
(X,T (X)) is called the discrete T -topological space on X.

Proposition 7.3.2. Let X be a set. Assume that one of the two following assumptions is true:

- The preordered set T (X) is finitely complete and ∈X
T preserves finite meets.

- The membership module ∈X
T est representable.

Then X has a discrete T -topology.

Proof. Trivial.

Proposition 7.3.3. Let X and Y be two T -topological spaces with X endowed with the discrete
T -topology and let f : X → Y be a function. Moreover, assume that one of the following
statements is true:

- The topological theory T is with strong membership.

- The module T (f) has an inverse image.
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- The module T (f) has an inverse image relative to T .

Then f is T -continuous.

Proof. Let x ∈ X and let O ∈ OT (Y ) such that f(x) ∈T O.
Assume that the topological theory T is with strong membership. Given that f(x) ∈T O,

there is A ∈ T (X) such that x ∈T A T (f) O, and moreover, by definition of the discrete T -
topology, A ∈ OT (X).

Now, assume that f−1 an inverse image or has an inverse image relative to T f−1 of T (f).
In both cases, one has x ∈T f−1(O) T (f) O and f−1(O) ∈ OT (X) by definition of the discrete
T -topology.

Hence, when one of the three statements of the previous proposition is satisfied, X endowed
with the discrete T -topology (when is exists) is a UT -discrete object as defined in 7.0.4.

Corollary 7.3.4. Assume that every set has a discrete T -topology and that one of the two fol-
lowing statements is true:

- The topological theory T is with strong membership.

- For every function f , T (f) has an inverse image or has an inverse image relative to T .

Then the forgetful functor UT : TopT → Set has a left adjoint given be the discrete T -
topological spaces.

Corollary 7.3.5. With the same hypothesis as in the previous corollary, the forgetful functor
UT : TopT → Set preserves limits.

Definition 7.3.6 (Indiscrete T -topology). Let X be a set such that the preordered set T (X) has
greatest members. Then the set of all greatest members of T (X) is a basis of T -topology. This
T -topology is called the coarsest or indiscrete T -topology on X and the set X equipped with this
T -topology is called the coarsest or indiscrete T -topological space on X.

Proposition 7.3.7. Let X and Y be two T -topological spaces with Y endowed with the indis-
crete T -topology and let f : X → Y be a function. If, for every x ∈ X, there is O ∈ OT (X) and
B ∈ T (Y ) such that x ∈T O and O T (f)B, then f is T -continuous.

Proof. Let x ∈ X and let W ∈ VT (f(x)). Then W is a greatest member of T (Y ). Par hypothesis,
there is O ∈ OT (X) and B ∈ T (Y ) such that x ∈T O and OT (f)B. Given that T (f) is a module
and that B ⊂T W , one has O T (f)W .

Hence, X endowed with the indiscrete T -topology (when it exists) is a UT -indiscrete object
as defined in 7.0.4 when the assumption of the previous proposition is satisfied for every X-
valued function.

Corollary 7.3.8. Assume that, for every set Y , T (Y ) has greatest members, and that, for every
function f : X → Y , if 1X and 1Y are greatest members of T (X) and T (Y ) respectively, then
1X T (f) 1Y (the latter implication is true in particular when T (f) has an inverse image or has
an inverse image relative to T which preserves greatest elements). Then the forgetful functor
UT : TopT → Set has a right adjoint given by the indiscrete T -topological spaces.

Corollary 7.3.9. If T satisfies the same hypothesis as the previous corollary, then the forgetful
functor preserves colimits.

7.4 Initial T -topology

Assume that the topological theory T est saturable, that, for every set X, T (X) is finitely com-
plete and ∈X

T preserves finite meets, and that, for every function f : X → Y , T (f) has an inverse
image f−1 relative to T which preserves finite meets.

Let (Xi)i∈I be a family of T -topological space, let X be a set and let (fi : X → Xi)i∈I be a
family of functions.
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Write

B := {
∧
j∈J

f−1
j (Oj) ; J ⊂ I finite, Oj ∈ OT (Xj)} .

Lemma 7.4.1. The set B is a basis of T -topology on X.

Proof. Let x ∈ X. By taking J = ∅, one has 1T (X) ∈ B and x ∈T 1T (X) since ∈X
T preserves finite

meets, where 1T (X) is a greatest member of T (X).
Let J and J ′ be two finite subsets of I, and let (Oj)j∈J and (O′

j)j∈J′ be such that, for
every j ∈ J , Oj ∈ OT (Xj), for every j ∈ J ′, O′

j ∈ OT (Xj), x ∈T

∧
j∈J f−1

j (Oj) and x ∈T∧
j∈J′ f

−1
j (O′

j). Write J ′′ := J ∪ J ′, O′′
j := Oj if j ∈ J \ J ′, O′′

j := O′
j if j ∈ J ′ \ J , O′′

j = Oj ∧O′
j

if j ∈ J ∩ J ′. One has
∧

j∈J′′ f
−1
j (O′′

j ) ∈ B by stability of T -openness under finite meets
(Proposition 5.2.11). Since the f−1

j preserve finite meets,∧
j∈J′′

f−1
j (O′′

j ) =
∧
j∈J

f−1
j (Oj) ∧

∧
j∈J′

f−1
j (O′

j) .

Since ∈X
T preserves finite meets, x ∈T

∧
j∈J′′ f

−1
j (O′′

j ). By definition of meets,
∧

j∈J′′ f
−1
j (O′′

j ) ⊂T∧
j∈J f−1

j (Oj) and
∧

j∈J′′ f
−1
j (O′′

j ) ⊂T

∧
j∈J′ f

−1
j (O′

j).

We call the T -topology generated by B the initial T -topology on X associated to (fi)i∈I and
we call the set X endowed with it the initial T -topological space associated to (fi)i∈I .

Lemma 7.4.2. When X is endowed with the initial T -topology, the functions fi are T -continuous.

Proof. Trivial by Proposition 7.1.7.

Remark 7.4.1. Unlike the case of the final T -topology, in general the basis B does not match
with OT (B).

Proposition 7.4.3. Let W be a T -topological space, (gi : W → Xi)i∈I be a family of T -
continuous maps and let h : W → X be a function such that, for every i, gi = fi ◦ h. Then
h is T -continuous with X endowed with the initial T -topology.

Proof. Let J ⊂ I be a finite subset and let (Oj)j∈J be a family such that, for every j ∈ J , Oj is
T -open in Xj . Given that h−1 preserves finite meets, one has

h−1(
∧
j∈J

f−1
j (Oj)) =

∧
j∈J

h−1(f−1
j (Oj)) .

However, the h−1(f−1
j (Oj)) are pseudo-T -open in W by Proposition 7.1.7, i.e. are T -opens in

W sat, because the functions fj ◦ h = gj are T -continuous from W to Xj and the composites
h−1 ◦ f−1

i are inverse images relative to T of the T (fi ◦ h) by Proposition 7.1.5. Thus, by
Proposition 5.2.11, h−1(

∧
j∈J f−1

j (Oj)) is T -open in W sat and then h is T -continuous from
W sat to X, again by Proposition 7.1.7. Since the map IdW is T -continuous from W to W sat, we
finally get the T -continuity of h from W to X.

Therefore X endowed with the initial T -topology and the fi seen as T -continuous maps is
an UT -initial lifting of the cone (X, (fi)) as defined in 7.0.2.

Proposition 7.4.4. Let x ∈ X and let V ∈ T (X) such that x ∈T V . Then V is a T -neighbourhood
of x for the initial T -topology if and only if there is a finite subset J ⊂ I and, for every j ∈ J ,
Vj ∈ VXj

T (fj(x)), such that
∧

j∈J f−1
j (Vj) ⊂T V .

Proof. Assume that V is a T -neighbourhood of x for the initial T -topology. Then, there is a finite
subset J ⊂ I, and, for every j ∈ J , Oj ∈ OT (Xj), such that x ∈T

∧
j∈J f−1

j (Oj) ⊂T (X) V . From
x ∈T

∧
j∈J f−1

j (Oj), we deduce, for every j ∈ J , that x ∈T f−1
j (Oj), then that f(x) ∈T Oj .

Therefore, for every j ∈ J , Oj is a T -neighbourhood of fj(x) in Xj .



7.4. INITIAL T -TOPOLOGY 77

Conversely, let J ⊂ I be a finite subset and let, for every j ∈ J , Vj ∈ VXj

T (fj(x)), such that∧
j∈J f−1

j (Vj) ⊂T V . Let j ∈ J , there is Oj ∈ OT (Xj) such that fj(x) ∈T Oj ⊂T Vj . Then∧
j∈J f−1

j (Oj) is T -open in X. For every j ∈ J , fj(x) ∈T Oj hence x ∈T f−1
j (Oj). Since ∈X

T

preserves finite meets, x ∈T

∧
j∈J f−1(Oj). Moreover,

∧
j∈J f−1

j (Oj) ⊂T

∧
j∈J f−1(Vj) and∧

j∈J f−1
j (Vj) ⊂T V , then finally

∧
j∈J f−1

j (Oj) ⊂T V .

Proposition 7.4.5. Let P ⊂ T (X) and let x ∈ X. If the part P converges to x in X then,
for every i ∈ I, the part PT (fi), image of P under T (fi) (Definition 3.2.5), converges to fi(x).
Conversely, when P is a filter such that, for every A,A′ ∈ T (X),

(A ∈ P and A T (IdX)A′) ⇒ A′ ∈ P ,

the converse implication is true.

Proof. If P converges to x in X, for every i ∈ I, since fi is T -continuous, by Proposition 6.2.19,
PT (fi) converges to fi(x).

Conversely, assume that P satisfies the assertions of the proposition and assume that, for
every i ∈ I, the part PT (fi) converges to fi(x). Let V be a T -neighbourhood of x in X. By the
previous proposition, there is a finite subset J ⊂ I and, for every j ∈ J , Vj ∈ VXj

T (fj(x)), such
that

∧
j∈J f−1

j (Vj) ⊂T (X) V . Given j ∈ J , since PT (fj) converges to fj(x), Vj ∈ P . In other
words, there is Aj ∈ P such that Aj T (fj) Vj . It follows that Aj T (IdX) f−1

j (Vj), hence, by
hypothesis on P , one has f−1

j (Vj) ∈ P . Then
∧

j∈J f−1(Vj) ∈ P because P is a filter. Finally,
since

∧
j∈J f−1(Vj) ⊂T (X) V , we conclude that V ∈ P .

We use this proposition to show a kind of Tychonoff theorem. To this aim, we first give
a sufficient condition for the image of a T -ultrapart to be a T -ultrapart: Lemma 7.4.6 and
Corollary 7.4.7 are valid without the assumptions made at the beginning of this section.

Lemma 7.4.6. Let X be a T -topological space such that !TX is surjective, and let U be a finitely
T -pointable part of T (X). If, for every A,A′ ∈ T (X) such that X = !TX(A) ⊔ !TX(A′), A ∈ U or
A′ ∈ U , then U is a T -ultrapart of T (X).

Proof. Let A ∈ T (X) such that {A} ∪ U is finitely T -pointable. Since !TX is surjective, there is
A′ such that X = !TX(A) ⊔ !TX(A′). We cannot have A′ ∈ U because it would contradict the fact
that {A} ∪ U is finitely T -pointable. Then one has A ∈ U , consequently U is a T -ultrapart of
T (X).

Corollary 7.4.7. Let X and Y be two T -topological spaces such that !TY is surjective, let f :
X → Y be a T -continuous map which has an inverse image f−1 relative to T , and let U be a
T -ultrapart of T (X). Then UT (f), image of U under T (f), is a T -ultrapart of T (Y ).

Proof. Since !TY is surjective, we can use the previous lemma to show that UT (f) is a T -ultrapart
of T (Y ). Given that U is a T -ultrapart of T (X), it is finitely T -pointable, hence, by Proposition
6.2.4, UT (f) is finitely T -pointable. Let A,A′ ∈ T (Y ) such that Y = !TY (A) ⊔ !TY (A

′). Then one
has

!TX(f−1(A)) ⊔ !TX(f−1(A′)) = X ,

hence, by Lemma 6.3.25, given that U is a T -ultrapart of T (X), f−1(A) ∈ U or f−1(A′) ∈ U .
Since f−1(A) T (f)A and f−1(A′) T (f)A′, one has A ∈ UT (f) or A′ ∈ UT (f).

Corollary 7.4.8 (Tychonoff Theorem). [Assume the axiom of choice] If all Xi are T -compacts,
if all !TXi

are surjective, and if, for every family (xi ∈ Xi)i∈I , there is x ∈ X such that, for every
i ∈ I, fi(x) = x, then X is T -compact.

Proof. Since we assume the axiom of choice, to prove that X is T -compact, we are to show the
every T -ultrapart of T (X) converges to some point of X.

Let U be a T -ultrapart of T (X). Firstly, we are to show that we can apply the previous
proposition. Since we assumed at the beginning of the section that T (f) is finitely complete
and that ∈X

T preserves finite meets, by Remark 6.3.9, U is a filter. Let A,A′ ∈ T (X) such that
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A T (IdX) A′ and A ∈ U . Since U is a T -ultrafilter, to prove that A′ ∈ U , it is enough to show
that U ∪{A′} is finitely T -pointable. Let (Aj)j∈J be a finite family of U . Write J ′ := J ⊔{⋆} and
(Bj)j∈J′ with, B⋆ := A and, for every j ∈ J , Bj := Aj . Since U is finitely T -pointable, there is
x ∈ X such that, for every j ∈ J ′, x ∈T Bj . Given that A T (IdX) A′, one has, for every j ∈ J ,
x ∈T Aj , and x ∈T A′. Therefore U satisfies the assumptions of the previous proposition. Let
i ∈ I, by Corollary 7.4.7, the part UT (fi), image of U under T (fi), is a T -ultrapart. Since Xi is
T -compact, there is xi ∈ Xi such that UT (fi) converges to xi. There exists x ∈ X such that, for
every i ∈ I, fi(x) = xi, and, by the previous proposition, the T -ultrafilter U converges to x.

We conclude this section addressing the issue of initial T -topology preservation under chang-
ing of bases functors.

Proposition 7.4.9. Let T ′ another saturable topological theory such that, for every set X, T ′(X)
is finitely complete and ∈X

T ′ preserves finite meets, and that, for every function f : X → Y ,
T ′(f) has an inverse image f ′−1 relative to T ′ which preserves finite meets. Let υ : T → T ′ be
a changing of bases datum such that, for every set X, υX preserves finite meets, and that, for
every function f : X → Y ,

υX ◦ f−1 = f ′−1 ◦ υY .

If X is the initial T -topological space associated to (fi : X → Xi)i∈I , then υ(X) is the initial
T ′-topological space associated to (fi : X → υ(Xi))i∈I .

Proof. Let x ∈ X and V ∈ T ′(X) such that x ∈T ′ V .
Assume that there is a finite subset J ⊂ I, and that, for every j ∈ J , there is Oj ∈ OT (Xj)

whose fj(x) is a T -element, such that υ(
∧

j∈J f−1
j (Oj)) ⊂T ′ V . Since υX preserves finite meets,∧

j∈J υ(f−1
j (Oj)) ⊂T ′ V . Then

∧
j∈J f ′−1

j (υ(Oj)) ⊂T ′ V , because υX ◦ f−1
j = f ′−1

j ◦ υXj
for

every j ∈ J .
Conversely, assume that there is a finite subset J ⊂ I, and that, for every j ∈ J , there is

O′
j ∈ OT ′(υ(Xj)) whose fj(x) is a T ′-element, such that

∧
j∈J f ′−1

j (O′
j) ⊂T ′ V . For every j ∈ J ,

by definition of υ(Xj), there is Oj ∈ OT (Xj) such that fj(x) ∈T Oj and υ(Oj) ⊂T ′ O′
j . Then

one has
∧

j∈J f ′−1
j (υ(Oj)) ⊂T ′ V . Since, for every j ∈ J , υX ◦ f−1

j = f ′−1
j ◦ υXj , and since υ

preserves finite meets, υ(
∧

j∈J f−1
j (Oj)) ⊂T ′ V .

The assumptions of the previous proposition are in particular satisfied for the topological
theory (P,∈) and for the changing of bases datum !T .

7.5 Induced T -topology and T -topological subspaces

Some initial T -topologies exist even when not all the T (X) are finitely complete and not all the
T (f) have inverse image relative to T .

Let X be a set, let Y be a T -topological space, and let f : X → Y be a function. Assume that
T (f) has an inverse image f−1 relative to T .

Consider the following subset of T (X):

B := {f−1(O) ; O ∈ OT (Y )} .

Lemma 7.5.1. The set B is a basis of T -topology on X.

Proof. Let x ∈ X and let (f−1(Oj))j∈J be a finite family of B such that, for every j ∈ J ,
x ∈T f−1(Oj). Then one has f(x) ∈T Oj for every j ∈ J . Therefore, since OT (Y ) is a basis,
there is O ∈ OT (Y ) such that f(x) ∈T O and, for every j ∈ J , O ⊂T Oj . Since f−1 is an inverse
image of T (f) relative to T and a fortiori is an increasing map, it follows that x ∈T f−1(O) and
that, for every j ∈ J , f−1(O) ⊂T f−1(Oj).

Lemma 7.5.2. When X is endowed with the T -topology generated by B, the function f is
T -continuous.

Proof. It is a clear consequence of Proposition 7.1.7.
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Lemma 7.5.3. Let W be a T -topological space and let h : W → X be a function such that the
composite f ◦ h is T -continuous. Then h is T -continuous.

Proof. Let w ∈ W and let O ∈ OT (Y ) such that h(w) ∈T f−1(O). Then one has f(h(w)) ∈T O.
Hence, by T -continuity of f ◦ h at w, there is U ∈ OT (W ) whose w is a T -element such that
U T (f ◦ h) O. It follows that U T (h) f−1(O).

The set X is endowed with the T -topology generated by B and the T -continuous map f
form a UT -initial lifting of the pair (X, f). Therefore, we call the T -topology OT (B) the initial
T -topology associated to f or the T -topology induced by f on X. When X is a subset of Y and
when f is the inclusion, we say that X, endowed with this T -topology, is a T -topological subspace
of Y .

Therefore, one has:

Theorem 7.5.4. Assume that every function has an inverse image relative to T . Then the forgetful
functor UT : TopT → Set is a fibration.

When, for a topological theory T , all injections have an inverse image relative to T , we can
say that a subset P of a T -topological space X is T -compact, T -T0, etc, when so is the space
given by the T -topology induced by X on P .

Proposition 7.5.5. Let x ∈ X and let V ∈ T (X) such that x ∈T V . Then V is a T -neighbourhood
of x for the T -topology induced by f on X if and only if there is V ′ ∈ VT (f(x)) such that
f−1(V ′) ⊂T V .

Proof. Assume that V is a T -neighbourhood of x for the initial T -topology associated to f . Then
there is O ∈ OT (Y ) such that x ∈T f−1(O) ⊂T V . Since x ∈T f−1(O), f(x) ∈T O. Hence O is
a T -neighbourhood of f(x) in Y .

Conversely, let V ′ ∈ VT (f(x)) such that f−1(V ′) ⊂T V . Then one has O ∈ OT (Y ) such
that f(x) ∈T O ⊂T V ′. It follows that x ∈T f−1(O) and f−1(O) ⊂T f−1(V ′). Moreover,
f−1(V ′) ⊂T V , hence f−1(O) ⊂T V .

Proposition 7.5.6. Let P ⊂ T (X) and let x ∈ X. If the part P converges to x in X then the
part PT (f), image of P under T (f), converges to f(x). If we have

(A ∈ P and A T (IdX)A′) ⇒ A′ ∈ P ,

for every A,A′ ∈ T (X), then the converse is true.

Proof. Assume that P converges to x in X then, by Proposition 6.2.19, PT (f) converges to f(x)
in Y , since f is T -continuous.

Conversely, assume that P satisfies the statement of the proposition and that PT (f) converges
to f(x) in Y . Let V be a T -neighbourhood of x in X. By the previous proposition, there is
a T -neighbourhood V ′ of f(x) in Y such that f−1(V ′) ⊂T V . Since PT (f) converges to f(x),
V ′ ∈ PT (f). In other words, there is A ∈ P such that AT (f)V ′. It follows that AT (IdX)f−1(V ′).
Given that f−1(V ′) ⊂T V , one has A T (IdX) V , then, by assumption on P , V ∈ P .

Proposition 7.5.7. Let T ′ = (T ′,∈T ′) be another topological theory such that, for every function
f , T ′(f) has an inverse image f ′−1 relative to T ′. Let υ : T → T ′ be a changing of bases datum
such that υ ◦ f−1 = f ′−1 ◦ υ. If X is the initial T -topological space associated to f , then υ(X) is
the initial T ′-topological space associated to f .

Proof. Let O ∈ OT (Y ). Then, one has υ(O) ∈ OT ′(υ(Y )) and υ(f−1(O)) = f ′−1(υ(O)).
Conversely, let O′ ∈ OT ′(Y ) and let x ∈ X such that x ∈T ′ f ′−1(O′). Then one has f(x) ∈T ′

O′, hence there is O ∈ OT (Y ) such that f(x) ∈T O and υ(O) ⊂T ′ O′. It follows that x ∈T ′

f ′−1(υ(O)) ⊂T ′ f ′−1(O′). However f ′−1(υ(O)) = υ(f−1(O)), hence x ∈T ′ υ(f−1(O)) ⊂T ′

f ′−1(O′).

The assumptions of the previous proposition are in particular satisfied by the topological
theory (P,∈) and the final changing of bases datum !T .
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Corollary 7.5.8. If, for every inclusion i : X → Y , T (i) has an inverse image relative to T , then
every pair of T -continuous maps f, g : Y → Z has an equalizer in TopT .

Proof. Just endow the subset {x ∈ X ; f(x) = g(x)} with the T -topology induced by X.

Proposition 7.5.9. Assume that, for every inclusion i : X → Y , T (i) has an inverse image
relative to T . Let X and Y be two T -topological spaces, let f : X → Y be a T -continuous map
and let P ⊂ X. If f has an inverse image relative to T and if P is T -compact (for the T -topology
induced by X) then f(P ) := {f(x); x ∈ P} is T -compact (for the T -topology induced by Y ).

Proof. Denote by i : P → X the inclusion. Then the surjective function f ◦ i is T -continuous
from P to f(P ) and T (f ◦ i) has an inverse image relative to T because T (f) and T (i) have one.
We conclude then by Proposition 7.1.8.

Proposition 7.5.10. [Assuming the axiom of choice] Suppose that, for every inclusion i : X →
Y , T (i) has an inverse image i−1 relative to T . Let X be a T -compact space and let W ⊂ X.
Denote by i : W → X the inclusion. If W is closed (in !T (X)) and if !TX is surjective then P is
T -compact.

Proof. Let U be a T -ultrapart of W . To show that U converges to some element of W , we are
going to use Proposition 7.5.6.

Firstly, we are to show that U satisfies the assumption of the proposition. Let A,A′ ∈ T (W )
such that A T (IdW ) A′ and let A ∈ U . Since U is a T -ultrapart, to prove that A′ ∈ U , it is
enough to show that U ∪ {A′} is finitely T -pointable. Let (Aj)j∈J be a finite family of U . Define
J ′ := J ⊔ {⋆} and (Bj)j∈J′ by B⋆ := A and, for every j ∈ J , Bj := Aj . Since U is finitely
T -pointable, there is x ∈ X such that, for every j ∈ J ′, x ∈T Bj . Since A T (IdW ) A′, one has,
for every j ∈ J , x ∈T Aj and x ∈T A′. Thus U satisfies the assumption of Proposition 7.5.6.

By Corollary 7.4.7, the part UT (i), image of U under T (i), is a T -ultrapart. Given that X is
T -compact, there is x ∈ X such that the part UT (i) converges to x. To conclude, it is enough to
show that x ∈ W . Let V be a T -neighbourhood of x in X. Since UT (i) converges to x, one has
V ∈ UT (i), hence there is A ∈ U such that A T (i) V . It follows that A T (IdW ) i−1(V ), then, as
we previously show, V ∈ U . Since the part U is finitely T -pointable, there is y ∈ W such that
y ∈ i−1(V ). Then one has y ∈ V . Since W is closed, we finally conclude that x ∈ W .

Proposition 7.5.11. Assume that for every inclusion i : X → Y , T (i) has an inverse image
relative to T . Let X be a T -topological space T -Hausdorff and let W ⊂ X. If W is T -compact
(and also T -Hausdorff by 6.3.17) then W is closed.

Proof. Denote by i : W → X the inclusion. Assume that x ∈ X is an adherent T -point of W .
Then i−1(VX

T (x)) := {i−1(V ); V ∈ VX
T (x)} is finitely T -pointable. Since W is T -compact, there

is y ∈ W an adherent T -point of i−1(VX
T (x)). By Proposition 6.2.18, y is an adherent T -point of

i−1(VX
T (x))T (i), image of i−1(VX

T (x)) under T (i).
One has VX

T (x) ⊂ i−1(VX
T (x))T (i) because, for every V ∈ VX

T (x), i−1(V ) T (i) V , by Lemma
7.1.2. Given that X is T -Hausdorff, that the filter i−1(VX

T (x))T (i) converges to x and that y is
an adherent T -point of i−1(VX

T (x))T (i), by Proposition 6.3.15, x = y hence x ∈ W .

Thus, we can define the following separation axioms:

Definition 7.5.12 (T -t2 spaces). Assume that for every inclusion i : X → Y , T (i) has an inverse
image relative to T . Let X be a T -topological space. The space X is T -t2 when, for every T -
topological space K T -compact and T -Hausdorff, for every T -continuous map f : K → X such
that T (f) has an inverse image relative to T , the subset f(K) := {f(x); x ∈ K} of X is closed
for the underlying topology of X.

Definition 7.5.13 (T -KC spaces). Assume that for every inclusion i : X → Y , T (i) has an
inverse image relative to T . Let X be a T -topological space. The space X is T -KC when every
subset K ⊂ X which is T -compact for the induced T -topology is closed.

By the previous proposition, every T -T2 space is T -KC. By Proposition 7.5.9 and Proposition
6.3.17, every T -KC space is T -t2.
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7.6 Back to Loc(T )

Let X and Y be two T -topological spaces, and let f : X → Y be a function. Write X ⊂str
T,f Y

when f is T -continuous and (X, f) is an UT -initial lifting of the cone (UT (X), f). When f is an
inclusion, we rather write X ⊂str

T Y . One easily checks that, for every T -continuous functions
f : X → Y and g : Y → Z,

(X ⊂str
T,f Y and Y ⊂str

T,g Z) implies X ⊂str
T,g◦f Z ,

and that, for every T -topological space X,

X ⊂str
T X .

Definition 7.6.1 (C-fibrations). Let C be a class of functions and let T = (T,∈T ) be a topological
theory. The forgetful functor UT is a C-fibration when, for every set X, for every T -topological
space (Y, E), and for every function f : X → Y belonging to C, the cone (X, f) has a (chosen)
UT -initial lifting. When there is no risk of confusion, we identify such a lifting ((X, Ef ), f) and
the space (X, Ef ). Note that when C is the class of all functions, a C-fibration is just a fibration
as defined in 7.0.5.

Proposition 7.6.2. Let C be a class of functions such that, for every f : X → Y ∈ C, for every
B ⊂ Y , the restriction f−1(B) → B belongs to C. Assume that UT is a C-fibration. Then, for
every function f ∈ C, Loc(T )(f) has an inverse image relative to Loc(T ).

Proof. Let X and Y be two sets and let f : X → Y be a function belonging to C. Let B ∈
Loc(T )(Y ). The restriction of f to {x ∈ X; f(x) ∈ B} (with codomain B) belongs to C, it
is still denoted by f . Hence there is a T -topological space f−1(B) whose underlying set is
{x ∈ X; f(x) ∈ B} such that f−1(B) ⊂str

T,f B. We easily check that we defined an inverse image
of Loc(T )(f) relative to Loc(T ).

Therefore, for every function f : X → Y ∈ C, for every Loc(T )-topology on Y , we can use
the Loc(T )-topology induced by f on X as defined in the previous section. In particular, the
classes of all functions and of all inclusions satisfy the assumption of the previous proposition.

Corollary 7.6.3. Assume that UT : TopT → Set is a fibration. Then ULoc(T ) : TopLoc(T ) →
Set is a fibration.

Proof. Consequence of the previous proposition applied to the class of all functions and of The-
orem 7.5.4.

Proposition 7.6.4. Let T ′ = (T ′,∈T ′) be another topological theory and let F : T → T ′ be
a semantic transformation (Definition 5.3.1). Let C be a class of functions such that, for every
f : X → Y ∈ C, for every B ⊂ Y , the restriction f−1(B) → B belongs to C. Assume that UT and
UT ′ are C-fibrations, and that, for every continuous map f : X → Y belonging to C, X ⊂str

T,f Y

implies F (X) ⊂str
T ′,f F (Y ). Then

Loc(F )X ◦ f−1 = f ′−1 ◦ Loc(F )Y ,

for every function f : X → Y ∈ C, where f−1 (respectively f ′−1) denotes the inverse image
of Loc(T )(f) relative to Loc(T ) (respectively of Loc(T ′)(f) relative to Loc(T ′)) defined as in
Proposition 7.6.21. Then, Loc(F ) preserves the T -topologies induced by a function belonging
to C.

Proof. Clear consequence of the construction of f−1 in the previous proof and of Proposition
7.5.7.

Corollary 7.6.5. Assume that UT and UT ′ are fibrations and that F is a semantic transformation
and a morphism of fibrations. The changing of bases functor associated to Loc(T )(F ) is a
morphism of fibrations.

1More precisely, since the exact definitions of f−1 and f ′−1 depend on the choice of the initial liftings, the proposition
says that the initial liftings can be chosen so that the equality holds.
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Proposition 7.6.6. Assume that the forgetful functor UT : TopT → Set is a topological functor.
Then Loc(T ) is with strong and representable membership, for every set X, T (X) is complete,
and, for every function f : X → Y , f−1 preserves limits.

Proof. Let X be a set. For every x ∈ X, define σX(x) as the set {x} endowed with a T -topology
that makes it a UT -discrete object on {x}. One readily checks that ∈X

T is represented by σX .
Let Y be another set, let f : X → Y be a function, let x ∈ X and let B ∈ Loc(T )(Y ). If

f(x) ∈T B, one easily verifies that x ∈ σ(x) and σ(x) Loc(T )(f) B. Therefore T is with strong
membership.

Let (Bi)i∈I be a family of Loc(T )(Y ), one easily checks that
⋂

i∈I Bi, endowed with a T -
topology for which it is an UT -initial lifting of the cone formed by the inclusions (

⋂
i∈I Bi ⊂

Bi)i∈I , is a meet of (Bi)i∈I in Loc(T )(Y ). The underlying subsets of f−1(
⋂

i∈I Bi) and of⋂
i∈I f

−1(Bi) match. Let A ∈ Loc(T )(X) such that A ⊂ f−1(
⋂

i∈I Bi). One easily checks
that the inclusion is T -continuous from A to f−1(

⋂
i∈I Bi) if and only if f can be restricted

to a T -continuous map from A to
⋂

i∈I Bi if and only if, for every i ∈ I, f can be restricted
to a T -continuous map from A to Bi if and only if the inclusion is T -continuous from A to⋂

i∈I f
−1(Bi). Thus f−1 preserves meets.

Corollary 7.6.7. If UT : TopT → Set is a topological functor then so is UT : TopLoc(T ) → Set.

Proof. Indeed, thanks to the two previous propositions, T satisfies the assumptions of Theorem
7.2.4.

Proposition 7.6.8. If UT : TopT → Set is a topological functor then, for every set X, for every
x ∈ X, σ(x) is supercompact in the preordered set Loc(T )(X).

Proof. Let (Ai)i∈I be a family of Loc(T )(X). One easily checks that (Ai)i∈I has a least upper
bound given by

⋃
i∈I !

Loc(T )
X (Ai) endowed with a T -topology for which it is a final UT -final lifting

associated to the inclusions of Ai into
⋃

i∈I Ai. We immediately get the desired result.

When UT is a topological functor, we can generalize the Sierpiński space: we can endow
{0, 1} with the Loc(T )-topology generated by the basis formed by two members: {0, 1} and {1}
endowed with T -topologies that make them UT -indiscrete objects.

Definition 7.6.9 (Loc(T )-topological spaces with stable indistinguishability). A Loc(T )-topo-
logical space X is with stable indistinguishability when, for every points x, y ∈ X, if x and y are
Loc(T )-indistinguishable in X, then, for every O ∈ OLoc(T )(X) whose x and y are elements, x
and y are T -indistinguishable in O.

Definition 7.6.10 (Locally P Loc(T )-topological spaces). Let P be a predicate on the class
of T -topological spaces. A Loc(T )-topological space X is locally P when, for every x ∈ X,
for every O ∈ OLoc(T )(X) such that x ∈ O, there is O′ ∈ OLoc(T )(X) satisfying P such that
x ∈ O′ ⊂Loc(T ) O. In other words, X is locally P when there is a basis of Loc(T )-topology on
X whose members satisfy P that generates X.

Let P be a predicate on the class of T -topological spaces. We define a topological theory
LocP (T ) in the same way as Loc(T ) except that, for every set X, Loc(T )(X) is replaced by the
set of all members of Loc(T )(X) satisfying P . One easily check that, via the obvious changing of
bases datum from LocP (T ) to Loc(T ) and via Proposition 5.3.16, we can identify TopLocP (T )

and the full subcategory of TopLoc(T ) formed by the locally P spaces.

Examples 7.6.1.

- We can define this way the locally T -compact spaces, the locally T -Hausdorff spaces, the
locally T -T0 spaces, the locally T -R0 spaces, etc.

- The locally ordered spaces defined in 4.1.6 matches with the Loc(TS
B )-topological spaces

(Examples 5.4.1) and with the locally ordered Loc(TB)-spaces.

The following definition allows us to express as a special case the strictly locally ordered
spaces (Definition 4.1.6) from the locally ordered spaces.
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Definition 7.6.11 (Strict Loc(T )-topological spaces). A Loc(T )-topological space X is strict
when there is a basis B generating X such that, for every x ∈ X, for every B,B′ ∈ B such that
x ∈ B,B′, there is B′′ ∈ B such that x ∈ B′′ ⊂str

T B,B′. We call such a basis a strict basis of X.

Define the topological theory Locs(T ) in the same way as Loc(T ) except that, for every set
X, the preorder on Loc(T )(X) is replaced by the preorder ⊂str

T . One easily checks that, via the
obvious changing of bases datum from Locs(T ) to Loc(T ), we can identify TopLocs(T ) and the
full subcategory of TopLoc(T ) formed by the strict spaces.

One may think that two non-equivalent bases of Locs(T )-topology can be equivalent when
they are seen as bases of Loc(T )-topology but it fact this cannot happen:

Proposition 7.6.12. Two ordered bases of Locs(T )-topology
−→
B and

−→
B

′
on a set X are equiva-

lent if and only if they are equivalent as bases of Loc(T )-topology2.

Proof. If
−→
B and

−→
B

′
are equivalent as bases of Locs(T )-topology then they are equivalent as

bases of Loc(T )-topology because the relation ⊂str
T is stronger than the relation ⊂Loc(T ).

Conversely, assume
−→
B and

−→
B

′
are equivalent as bases of Loc(T )-topology. We use Lemma

5.2.3. Let B ∈
−→
B

′
containing a point x ∈ X. There exist A ∈

−→
B such that x ∈ A ⊂Loc(T ) B, and

B′ ∈
−→
B

′
such that x ∈ B′ ⊂Loc(T ) A. Since the basis

−→
B

′
is strict, there is B′′ ∈

−→
B

′
such that

x ∈ B′′ ⊂str
T B, B′. Once again, since

−→
B and

−→
B

′
are equivalent as bases of Loc(T )-topology,

there is A′ ∈
−→
B such that x ∈ A′ ⊂Loc(T ) B

′′. Since
−→
B is a strict basis, there is A′′ ∈

−→
B such

that x ∈ A′′ ⊂str
T A, A′. We now check that A′′ ⊂str

T B. Since A′′ ⊂str
T A ⊂Loc(T ) B, we have

A′′ ⊂Loc(T ) B. Let W be a T -topological space and let f : W → A′′ be a function which is
T -continuous from W to B. Since B′′ ⊂str

T B, it follows that f is T -continuous from W to B′′.
Then the function f is T -continuous from W to A because B′′ ⊂str

T B′ ⊂Loc(T ) A. Finally, since
A′′ ⊂str

T A, we deduce that f is T -continuous from W to A′′. The other direction is obtained by
symmetry.

Remark 7.6.1. We easily combine, for every predicate P , the notions of locally P spaces and
of strict spaces. We thus define the notion of strict locally P spaces, the topological theory
LocsP (T ) and the obvious changing of bases data from LocsP (T ) to LocP (T ) and from LocsP (T )
to Locs(T ). Then the diagram commutes in TopTh:

LocP (T )

((
LocsP (T )

55

))

Loc(T )

Locs(T )

66

For the strict spaces, we have the following characterization of the Loc(T )-continuity:

Proposition 7.6.13. Let X and Y be two Loc(T )-topological spaces such that Y is strict and
let f : X → Y be a function. Let x ∈ X and let B be a strict basis of Y . The function f is
Loc(T )-continuous at x if and only if f is continuous at x from !Loc(T )(X) to !Loc(T )(Y ) and
there is O ∈ OLoc(T )(X) and B ∈ B such that x ∈ O, f(x) ∈ B and O Loc(T )(f)B.

Proof. The condition is clearly necessary. Conversely, assume that f is continuous at x from
!Loc(T )(X) to !Loc(T )(Y ) and that there is O ∈ OLoc(T )(X) and B ∈ B such that x ∈ O, f(x) ∈ B
and O Loc(T )(f) B. Let B′ ∈ B such that f(x) ∈ B′. Since B is a strict basis, there is B′′ such
that B′′ ⊂str

T B,B′. By continuity of f at x, there is O′ ∈ OLoc(T )(X) such that x ∈ O′ ⊂Loc(T ) O
and f(O′) ⊂ B′′. To conclude, since B′′ ⊂str

T B′, it is enough to show that the restriction f|O′

of f to O′ is T -continuous from O′ to B′′. Since B′′ ⊂str
T B′, it is enough to show that f|O′

is T -continuous from O′ to B. Since O Loc(T )(f) B and O′ ⊂Loc(T ) O, we get the desired
result.

2This is a generalization of Proposition 4.1.2.
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In the case of locally ordered spaces, this proposition corresponds to Proposition 4.1.10.
Denote by I the class of all inclusions. When UT is a I-fibration, we can define the following

construction. Recall that P × T denotes the cartesian product of the theory P and of the theory
T in the category STopTh (Proposition 5.3.2). Since Sem(!T ) is a morphism from T to P in
the category STopTh, we get a canonical semantic transformation ιT : T → P × T , natural
in T , which associates every T -topological space with the pair (!T (X), X). Assume that UT

is a I-fibration. Let X be a set, O be a topology on X, and E be T -topology on X, define
γT ((X,O), (X, E)) as the set X endowed with the Loc(T )-topology generated by the basis of all
O ∈ O endowed with a T -topology EO such that (O, EO) ⊂str

T (X, E). This basis is clearly a strict
basis.

Lemma 7.6.14. Let (X,O(X)), (X, E(X)) and (Y,O(Y )), (Y, E(Y )) be two (P × T )-topological
spaces and let f : X → Y a (P × T )-continuous function. Then f is Loc(T )-continuous.

Proof. Let OY ∈ O(Y ) such that f(x) ∈ OY . Since f is continuous at x ∈ X, there is OX ∈
O(X) such that x ∈ X and f(OX) ⊂ OY ; denote by f|OX

: OX → OY the restriction of f .
Also denote by E(X)OX

(respectively E(Y )OY
) a T -topology on X (respectively Y ) such that

(OX , E(X)OX
) ⊂str

T (X, E(X)) (respectively (OY , E(Y )OY
) ⊂str

T (Y, E(Y ))). The function f|OX

is T -continuous from (OX , E(X)OX
) to (Y, E(Y )) because (OX , E(X)OX

) ⊂str
T (X, E(X)) and f

is T -continuous from (X, E(X)) to (Y, E(Y )). Since (OY , E(Y )OY
) ⊂str

T (Y, E(Y )), we deduce
that f|OX

is T -continuous from (OX , E(X)OX
) to (OY , E(Y )OY

), i.e. that

(OX , E(X)OX
) Loc(T )(f) (OY , E(Y )OY

) .

Hence, we defined a semantic transformation γT : P × T → Loc(T ). Therefore the composite
γT ◦ ιT : T → Loc(T ) is a semantic transformation.

Examples 7.6.2.

- The ordered spaces seen as locally ordered spaces in Remark 4.1.4 correspond to an ap-
plication of γTS

B
.

- Recall the topological theory (PrRel,∈) defined in Examples 5.1.1. The lp-spaces defined
in [Gra03, 1.4.(b)] match with the locally transitive Loc(PrRel)-topological spaces of the
form γPrRel

(X)



Chapter 8

T -streams

For the whole chapter, set a topological theory T = (T,∈T ). Assume that, for every set X, T (X)
is complete and ∈X

T preserves meets (5.2.15). A fortiori, by Proposition 5.2.17, T is a theory
with representable membership.

Though T -topological spaces can be very wild, the T -stream construction provides a core-
flexive full subcategory of TopT whose spaces are much better behaved.

8.1 Basic definitions

Definition 8.1.1 (Fundamental T -open members). Let X be a T -topological space. A T -open
member O of X is fundamental when, for every O′ ∈ OT (X) such that O ≃T O′, one has
O ⊂T O′.

Proposition 8.1.2. Let X be a T -topological space and let O,O′ ∈ OT (X) such that O is
fundamental. Then O ⊂T O′ if and only if, for every x ∈ X, x ∈T O implies x ∈T O′.

Proof. The condition is clearly necessary. Conversely, assume that, for every x ∈ X, x ∈T O
implies x ∈T O′. Since ∈X

T preserves meets, O ∧ O′ is T -open in X by Proposition 5.2.11 and
has the same T -elements as O. Given that O is fundamental, one has O ⊂T O ∧ O′ hence
O ⊂T O′.

Corollary 8.1.3. Let X be a T -topological space, let O ∈ OT (X) fundamental, and let (Oi)i∈I

be a family of OT (X) every member of which is fundamental. If !TX(O) =
⋃

i∈I !
T
X(Oi), then O is

a join of the Oi in T (X).

Proof. For each i, one has !TX(Oi) ⊂ !TX(O), hence, by the previous proposition, Oi ⊂T O. Let O′

be a T -open member such that, for every i, Oi ⊂T O′. Then one has !TX(O) =
⋃

i∈I !
T
X(Oi) ⊂ O′,

hence, again by the previous proposition, O ⊂T O′.

Corollary 8.1.4. Let X be a T -topological space such that ∈X
T is supercompact. Let (Oi)i∈I be

a family of OT (X) every member of which is fundamental. Then any join
∨

i∈I Oi of the Oi in
the complete preordered set T (X) is a fundamental T -open member.

Proof. The member
∨

i∈I Oi is T -open in X by stability of T -openness under joins (Proposition
5.2.13). Let O ∈ OT (X) such that

∨
i∈I Oi ≃T O. For each i ∈ I, one has !TX(Oi) ⊂ !TX(O),

hence Oi ⊂T O because Oi is fundamental. It follows that
∨

i∈I Oi ⊂T O.

Definition 8.1.5 (T -streams). Let X be a T -topological space. The space X is a T -stream when,
for every O ∈ OT (X), there is a fundamental T -open member Of such that O ≃T Of .

Proposition 8.1.6. Let X be a T -topological space. Then X is a T -stream if and only if, for every
family (Oi)i∈I of OT (X) whose members are ≃T -equivalent, the meets

∧
i∈I Oi are T -open in

X.

85
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Proof. Assume that X is a T -stream. Let (Oi)i∈I be a family of OT (X) whose members are
≃T -equivalent. If I is empty, then

∧
i∈I Oi is T -open by Proposition 5.2.11. Otherwise, let i ∈ I,

since X is a T -stream, there is O ∈ OT (X) fundamental such that O ≃T Oi. Since all Oi have
the same T -elements, for every i ∈ I, O ≃T Oi, hence O ⊂T Oi, then O ⊂T

∧
i∈I Oi. Therefore

O and
∧

i∈I Oi have the same T -elements because there is i ∈ I such that O ≃T Oi. It follows
that, by Proposition 5.2.14,

∧
i∈I Oi is T -open in X.

Conversely, let O ∈ OT (X). Then a meet of all members of OT (X) which have the same
T -elements as O is T -open, is fundamental, and have the same T -elements as O because ∈X

T

preserves meets.

Thus, by Proposition 6.3.38, a T -Alexandroff space is a T -stream.

Proposition 8.1.7. Let X be a T -topological space. The space X is a T -stream if and only if
there is a basis of T -topology that generates X and whose members are fundamental in X.

Proof. Assume that X is a T -stream. Then

B := {O ∈ OT (X) ; O is T -open and fundamental}

is a basis of T -topology that generates X and whose members are fundamental in X.
Conversely, assume that there is a basis B which generates X and whose members are fun-

damental in X. Let O ∈ OT (X), write

O′ :=
∧

{O′′ ∈ OT (X) ; O′′ ≃T O} .

To conclude, it is enough to show that O′ is T -open.
Let x ∈T O′. One has x ∈T O, hence there is B ∈ B such that x ∈T B ⊂T O because B

generates X and because O is T -open,. Let O′′ ∈ OT (X) such that O′′ ≃T O. By Proposition
8.1.2, since B is fundamental, one has B ⊂T O′′. It follows that x ∈T B ⊂T O′. Since B is a
basis that generates X, O′ is T -open in X.

Proposition 8.1.8. Let X be a T -topological space. The space X is a T -stream if and only if
there is a basis of T -topology B that generates X such that, for every B ∈ B, for every family
(Bi)i∈I of B, if

⋃
i∈I !

T
X(Bi) = !TX(B), then B is a join of the Bi in T (X).

Proof. If X is a T -stream, then

B := {U ∈ OT (X) ; U T -open and fundamental}

is a basis that generates X and that satisfies the assumption of the proposition by Corollary
8.1.3.

Conversely, assume that there is a basis B satisfying the assumption of the proposition. Let
B ∈ B and let O ∈ OT (X) such that O ≃T B. For every x ∈ X such that x ∈T O, there is
Bx ∈ B such that x ∈T Bx ⊂T O. Then one has

⋃
x∈!TX(B)!

T
X(Bi) = !TX(B), hence B is a join of

the Bx in T (X) and consequently B ⊂T O. Therefore B is a basis that generates X and whose
members are fundamental in X. We conclude by the previous proposition.

Corollary 8.1.9. Let T ′ = (T ′,∈T ′) be another topological theory such that, for every set X,
T ′(X) is complete and ∈X

T ′ preserves meets, let υ : T → T ′ be a changing of bases datum such
that, for every set X, υX preserves joins, and let X be a T -topological space. If X is a T -stream
then υ(X) is a T ′-stream.

Proof. It obviously follows from the previous corollary.

Examples 8.1.1.

- Let V be a quantale. We can identify the T l
V-streams with the TV-topological spaces, i.e.

with the V-preordered sets.

- Every (P,∈)-topological space, i.e. every classical topological space, is a (P,∈)-stream.
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8.2 The original example

Sanjeevi Krishnan [Kri09] introduced the notions of stream and of prestream as models of ‘locally
directed spaces’. This justifies the terminology of ‘T -stream’ as we are going to see. We recall
here some basic notions of [Kri09]:

Definition 8.2.1 (Precirculations). A precirculation on a topological space (X,O(X)) is a func-
tion which associates every open subset O with a preorder ≤O on it such that, for every
O,O′ ∈ O(X) satisfying O ⊂ O′, for every x, x′ ∈ O, x ≤O x′ implies x ≤O′ x′. A precir-
culation is a circulation when, for every open subset O, for every open cover (Oi)i∈I of O, the
preorder ≤O is the preorder generated by the relation

⋃
i∈I ≤Oi

1 (see Proposition A.0.10).

Definition 8.2.2 ((pre)streams). A (pre)stream is a topological space equipped with a (pre)cir-
culation.

Definition 8.2.3 (Morphisms of (pre)streams). Let (X,≤_) and (Y,≤′
_) be two prestreams. A

function f : X → Y is a morphism of prestreams when it is continuous and, for every open subset
U of Y , for every x, x′ ∈ f−1(U), x ≤f−1(U) x

′ implies f(x) ≤′
U f(x′).

Let ((X,O(X),≤_) be a prestream. One readily checks that the set B of all (O,≤O) with
O ∈ O(X) is a basis of Loc(TB)-topology on X. The underlying topology of the Loc(TB)-
topological space that B generates is O(X). The major issue with the notion of prestream
morphisms is that it is not local. For example, on R endowed with its usual topology, define two
precirculations, with O an open subset of R:

- ≤1
O is the restriction on O of the usual order of R, and

- ≤2
O=≤1

O unless O = R; in this case, ≤2
R is the coarsest preorder R.

The identity map IdR is a morphism of prestreams from (R,≤1
_) to (R,≤2

_) but not from (R,≤2
_)

to (R,≤1
_) whereas both induce the same Loc(TB)-topology on R. This phenomenon vanishes

with streams:

Proposition 8.2.4. Let (X,≤_) and (Y,≤′
_) be two streams. A function f : X → Y is a morphism

of prestreams if and only if it is Loc(TB)-continuous.

Proof. Denote by B and B′ the bases of Loc(TB)-topology generated by ≤_ and ≤′
_ respectively

and let x ∈ X. Assume that f : X → Y is a morphism of prestreams. Let U be an open subset
of Y such that f(x) ∈ U . Then one has x ∈ f−1(U), (U,≤′

U ) ∈ B′, (f−1(U),≤f−1(U)) ∈ B, and
(f−1(U),≤f−1(U)) Loc(TB)(f) (U,≤′

U ).
Conversely, assume that f is Loc(TB)-continuous. Let U be an open subset of Y . For every

x ∈ f−1(U), by Loc(TB)-continuity of f at x, there is an open subset Ox containing x such that
(Ox,≤Ox)Loc(TB)(f) (U,≤′

U ). Since (Ox)x∈f−1(U) is an open cover of f−1(U) and since ≤_ is a
circulation, we deduce that (f−1(U),≤f−1(U)) Loc(TB)(f) (U,≤′

U ).

Therefore, we can identify the category of streams and morphisms of streams with a full
subcategory of TopLoc(TB). This subcategory is the category of Loc(TB)-streams. Indeed, the
Loc(TB)-topological space induced by a stream is a Loc(TB)-stream by Corollary 8.1.4. Con-
versely, from every Loc(TB)-streams one builds a usual stream as follows: each open subset U
of the induced topology is equipped with the preorder associated to the fundamental Loc(TB)-
open member on U , see Corollary 8.1.3.

8.3 Construction of a coreflection

Under the assumption that the topological theory T satisfies (8.1) or (8.2), we construct a
coreflection of the full subcategory of T -streams.

1the ≤i are seen as subsets of O ×O.
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The first one

for every function f : X → Y ,
T (f) has an inverse image f−1 that preserves meets of T (Y ). (8.1)

The second one

for every function f : X → Y ,
T (f) has an inverse image f−1 relative to T that preserves meets of T (Y ), and

every T -stream is saturable and its satured is also a T -stream.
(8.2)

By Proposition 7.1.15, if the assumption (8.1) is true, then every T -stream is saturable.
Moreover, one has

Proposition 8.3.1. Let X be a T -stream. Assume (8.1). Then the saturated of X is also a
T -stream.

Proof. Denote by i−1 the inverse image of T (IdX). Let A be a pseudo-T -open of X and let
A′′ :=

∧
{A′ ∈ Osat

T (X) ; A′ ≃T A}. We are to show that A′′ is pseudo-T -open in X. To show
that, by Lemma 7.1.14, it is enough to prove that i−1(A′′) is T -open. For every A′ ∈ Osat

T (X)
such that A′ ≃T A, one has i−1(A′) ≃T i−1(A) and i−1(A′) is T -open, hence, by Proposition
8.1.6 is i−1(A′′) is T -open because X is a T -stream. We conclude that A′′ is fundamental and
that the saturated is a T -stream because OT (Osat

T (X)) = Osat
T (X) by Lemma 7.1.10.

By Lemma 5.2.22 or 7.1.4, the assumptions (8.1) and (8.2) imply that T is a topological
theory with strong membership.

The construction of the coreflection we propose is based on a transfinite recursion. At each
step, we add members which should be T -open in a T -stream. But, doing this, new members
have to be added.

Let X be a T -topological space. Write

B+(X) :=
{∧

{O′ ∈ OT (X) ; O′ ≃T O} ; O ∈ OT (X)
}

.

Lemma 8.3.2. Let X be a T -topological space. Then B+(X) is a basis of T -topology on X.

Proof. Let x ∈ X and let (O′′
j )j∈J be a finite family of B+(X) such that, for every j ∈ J , x ∈T O′′

j .
By definition of B+(X), for every j ∈ J , there is Oj ∈ OT (X) such that

O′′
j =

∧
{O′

j ∈ OT (X) ; O′
j ≃T Oj} .

Then, by stability of T -openness under finite meets (Proposition 5.2.11), O :=
∧

j∈J Oj is T -
open. Then one has O′′ :=

∧
{O′ ∈ OT (X) ; O′ ≃T O} ∈ B+(X). Since ∈X

T preserves meets,
x ∈T O then x ∈T O′′. Let j ∈ J and let O′

j ∈ OT (X) such that O′
j ≃T Oj . Write O′ := O′

j ∧O.
One has O′ ∈ OT (X) and O′ ≃T O hence O′′ ⊂T O′. Since O′ ⊂T O′

j , it follows that O′′ ⊂T O′
j .

Since O′′
j =

∧
{O′

j ∈ OT (X) ; O′
j ≃T Oj}, we conclude that O′′ ⊂T O′′

j .

Lemma 8.3.3. Let X be a T -topological space. Then OT (X) ⊂ OT (B+(X)).

Proof. Let O ∈ OT (X). Then O′′ :=
∧
{O′ ∈ OT (X); O′ ≃T O} ∈ B+(X), O′′ ⊂T O, and

O′′ ≃T O because ∈T
X preserves meets, hence, by Proposition 5.2.14, O is T -open for B+(X).

In case of a limit ordinal, we apply the following lemma:

Lemma 8.3.4. Let (I,≤) be a filtered preordered set and let (Bi)i∈I be a family of bases of T -
topology on X such that for every i, i′ ∈ I satisfying i ≤ i′, one has Bi ⊂ Bi′ . Then B :=

⋃
i∈I Bi

is a basis of T -topology on X.

Proof. Let x ∈ X and let (Bj)j∈J be a finite family of B such that, for every j ∈ J , x ∈T Bj .
Since I is filtered, there is i ∈ I such that, for every j ∈ J , Bj ∈ Bi. Given that Bj is a basis of
T -topology, there is B ∈ Bi ⊂ B such that x ∈T B and, for every j ∈ J , B ⊂T Bj .
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Lemma 8.3.5. Let X be a T -topological space. The space X is a T -stream if and only if B+(X) ⊂
OT (X).

Proof. Assume that X is a T -stream. Let O ∈ OT (X). Let O0 ∈ OT (X) fundamental in X
such that O0 ≃T O. Then

∧
{O′ ∈ OT (X) ; O′ ≃T O} = O0 ∈ OT (X). It follows that

B+(X) ⊂ OT (X).
Conversely, assume that B+(X) ⊂ OT (X). Let O ∈ OT (X). Then the member O0 :=

∧
{O′ ∈

OT (X) ; O′ ≃T O} is T -open in X and is ≃T -equivalent to O because ∈X
T preserves finite meets.

We easily check that O0 is T -open and is fundamental.

Let X be a T -topological space. We define be recursion, for every ordinal α, a basis of
T -topology Bα(X) on X by:

- B0(X) := OT (X).

- Bα+1(X) := B+(X,OT (Bα(X))).

- If α is a limit ordinal, Bα(X) :=
⋃

β<α Bβ(X)

By the previous lemmas, (OT (Bα(X)))α ordinal is a family of T -topology on X such that,
for every pair of ordinals (α, α′) such that α ≤ α′, OT (Bα(X)) ⊂ OT (Bα′

(X)) and such that
OT (B0(X)) = OT (X). Since P(T (X)) is a set, there is an ordinal αm such that OT (Bαm(X)) =
OT (Bαm+1(X)). By the previous lemma, (X,OT (Bαm(X))) is a T -stream. Define

StmT (X) := (X,OT (Bαm(X)))

Since OT (X) ⊂ OT (Bαm(X)), the map IdX is T -continuous from StmT (X) to X. It remains
the question of the T -continuous maps.

Lemma 8.3.6. Let X and let Y be T -topological spaces and let f : X → Y be a function.
Assume (8.1) or (8.2). If X is a T -stream and if f is T -continuous from X to Y , then f is
T -continuous from X to (Y,OT (B+(Y ))).

Proof. The assumptions (8.1) and (8.2) both imply that X is saturable and that its saturated is
also a T -stream. Thus we can assume that X is saturated because the identity is an isomorphism
between a space and its saturated.

Let U ′′ ∈ B+(Y ). There is U ∈ OT (Y ) such that

U ′′ =
∧

{U ′ ∈ OT (Y ) ; U ′ ≃T U} .

Since f is T -continuous from X to Y , by Proposition 5.2.23 or Proposition 7.1.7, f−1(U) is
T -open in X. Hence there is O ∈ OT (X) fundamental such that O ≃T f−1(U) because X is a
T -stream.

For every U ′ ∈ OT (Y ) such that U ′ ≃T U , since f is T -continuous from X to Y , still by
Proposition 5.2.23 or Proposition 7.1.7, f−1(U ′) is T -open and the set of all its T -elements is
{x ∈ X; f(x) ∈T U ′}. Given that U ′ ≃T U , one has f−1(U) ≃T f−1(U ′). It follows that
O ⊂T f−1(U ′). Thus,

O ⊂T

∧
{f−1(U ′) ; U ′ ∈ OT (Y ) such that U ′ ≃T U}

Since, by assumption, f−1 preserves meets, we deduce that

O ⊂T f−1(
∧

{U ′ ∈ OT (X) ; U ′ ≃T U}) = f−1(U ′′)

Since O and f−1(U ′′) have the same T -elements, by Proposition 5.2.14, f−1(U ′′) is T -open in
X. Hence, by Proposition 5.2.23 or 7.1.7, f is T -continuous from X to (Y,OT (B+(Y ))).

Lemma 8.3.7. Let (I,≤) be a filtered preordered set, let (Bi)i∈I be a family of bases of T -
topology on Y such that for every i, i′ ∈ I satisfying i ≤ i′, one has Bi ⊂ Bi′ , let X be a
T -topological space, and let f : X → Y be a function. If, for every i ∈ I, f is T -continuous from
X to (Y,OT (Bi)), then f is T -continuous from X to (Y,OT (

⋃
i∈I Bi)).
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Proof. Let x ∈ X and let B ∈
⋃

i∈I Bi such that f(x) ∈T B. There is i ∈ I such that B ∈ Bi.
Given that f is T -continuous at x from X to (Y,OT (Bi)), there is O ∈ OT (X) such that x ∈T O
and O T (f)B. Thus f is T -continuous at x from X to (Y,OT (

⋃
i∈I Bi)).

Corollary 8.3.8. Let X be a T -stream, let Y be a T -topological space and let f : X → Y be
a function. Assume (8.1) or (8.2). Then f is T -continuous from X to Y if and only if f is
T -continuous from X to StmT (Y ).

Proof. Assume that f is T -continuous from X to StmT (Y ). The map IdY is T -continuous from
StmT (Y ) to Y , hence f is T -continuous from X to Y

Conversely, assume that f is T -continuous from X to Y . By transfinite induction, using
the two previous lemmas, we show that, for every ordinal α, f is T -continuous from X to
(Y,OT (Bα(Y ))). In particular, the function f is T -continuous from X to StmT (Y )

Therefore, assuming (8.1) or (8.2), the full subcategory StreamT of T -streams of TopT is
coreflexive.

The assumptions (8.2) make the constructions developed in 7.2 available, so more results
hold.

Proposition 8.3.9. Let X be a set, let (Xi)i∈I be a family of saturated T -topological spaces,
and let (fi : Xi → X)i∈I be a family of T -continuous maps. Assume that the T (fi) have inverse
images f−1

i relative to T that preserves meets. If the Xi are T -streams then so is X endowed
with final T -topology associated to the fi.

Proof. Let O ∈ OT (X). We are to show that O′′ :=
∧
{O′ ∈ OT (X) ; O′ ≃T O} is T -open

in X. Regarding the description of the final T -topology given in section 7.2 and since the Xi

are saturated, we have to show that, for each i ∈ I, f−1
i (O′′) is T -open in Xi. But, since fi

is T -continuous, f−1
i (O) is T -open in Xi. Moreover, since f−1

i preserves meets, f−1
i (O′′) =∧

{f−1
i (O′);O′ ∈ OT (X) such that O′ ≃T O}}. Finally, since, for every O′ ∈ OT (X) such that

O′ ≃T O, one has f−1
i (O′) ≃T f−1

i (O), and since Xi is a T -stream, we conclude that f−1
i (O′′)

is T -open in Xi by Proposition 8.1.6

Therefore, assuming (8.2) allows an alternative construction of the coreflection: given a T -
topological space X, we endow the underlying set of X with the final T -topology associated to
the family of all T -continuous maps from a saturated T -stream to the space X.

Moreover

Theorem 8.3.10. Assume (8.2) and assume that T is saturable. Then the restriction of the forgetful
functor UT : TopT → Set to the full subcategory StreamT is a topological functor.

Proof. Trivial consequence of the previous proposition and of 7.2.4.

Let V be a quantale. Since we can identify the T l
V-streams and the V-ordered sets, the previ-

ous theorem give us an alternative proof of Corollary A.0.11



Chapter 9

Products and exponential objects of
TopLoc(T )

Set a topological theory T = (T,∈T ).
The aim of this chapter is to study the exponential objects in (in subcategories of) of the

category TopLoc(T ).
For this, as in the case of classical point-set topology, we define the C-generated T -topological

spaces. This notion generalizes the compactly generated spaces. As in the classical case, when
T satisfies the assumptions used to show that UT is a topological functor in Chapter 7, we show
that the category of C-generated T -topological spaces is coreflexive.

Definitions and proof’s schemes are inspired from [GL13, 5.2-6] (see also [GL14]).

9.1 C-generated T -topological spaces

Let C be a class of T -topological spaces.

Definition 9.1.1 (C-continuous maps). Let X and Y be two T -topological spaces and let f :
X → Y be a function. The function f is C-continuous when, for every C ∈ C, for every T -
continuous map p : C → X, the composite f ◦ p is T -continuous from C to Y .

One readily checks that every T -continuous map is C-continuous and that the composite of
two C-continuous maps is C-continuous. We denote by C-Map the category of T -topological
spaces and C-continuous maps.

Definition 9.1.2 (C-generated T -topological spaces). Let X be a T -topological space. The space
X is C-generated when, for every T -topological space Y , for every function f : X → Y , the
function f is T -continuous if and only if it is C-continuous.

Remark 9.1.1. In the previous definition, the direct implication is always true.

Example 9.1.1. For the topological theory (P,∈), we recover the classical notion of compactly
generated spaces considering the class of all compact Hausdorff spaces.

Denote by C-TopT the full subcategory of TopT formed by the C-generated spaces. Clearly,
C-TopT is a full subcategory of C-Map.

We now assume that every space of C is saturable, that, for every set X, T (X) is finitely
complete and ∈X

T preserves finite meets, and that, for every function f : X → Y , T (f) has an
inverse image f−1 relative to T which preserves finite meets. Thanks to those assumptions, we
will be able to use the constructions of Section 7.2.

Let X be a T -topological space. Denote by CX the underlying set of X endowed with the
final T -topology associated to the class of all T -continuous maps p : C → X, for any C ∈ C.
By Proposition 7.1.7, one has OT (X) ⊂ OT (CX), then, a fortiori, the map IdX is T -continuous
from CX to X.

91



92 CHAPTER 9. PRODUCTS AND EXPONENTIAL

Lemma 9.1.3. Let C ∈ C and let p : C → X be a function. The function p is T -continuous from
C to X if and only if it is T -continuous from C to CX.

Proof. If p is T -continuous from C to CX, since IdX : CX → X is T -continuous, then p is T -
continuous from C to X. Conversely, if p is T -continuous from C to X then, by definition of the
T -topology of CX, p is T -continuous from C to CX because C ∈ C.

Corollary 9.1.4. The T -topological space CX is C-generated.

Proof. Let f : CX → Y be a C-continuous map. Let C ∈ C and let p be a T -continuous map from
C to X. By the previous lemma, p is T -continuous from C to CX. By C-continuity, the composite
f ◦p is then T -continuous. Thus, given that CX is endowed with the final T -topology associated
to the T -continuous maps to X whose domain is in C, it follows that f is T -continuous from CX
to Y .

Corollary 9.1.5. Let W be a C-generated space and let f : W → X be a function. The function
f is T -continuous from W to X if and only if it is T -continuous from W to CX.

Proof. Assume that f is T -continuous from W to CX. Then it is T -continuous from W to X
because IdX is T -continuous from CX to X.

Conversely, assume that f is T -continuous from W to X. Let C ∈ C and let p : C → W be a
T -continuous map. Then the composite f ◦p is T -continuous from C to X, hence by the previous
lemma, f ◦ p is T -continuous from C to CX. Thus f is C-continuous. Finally f is T -continuous
from W to CX because W is C-generated.

Corollary 9.1.6. The full subcategory C-TopT is coreflexive in TopT .

Thus X is C-generated if and only if IdX is T -continuous from X to CX. In other words

Corollary 9.1.7. A T -topological space X is C-generated if and only if, for every A ∈ T (X), if,
for every T -continuous map p : C → X with C ∈ C, p−1(A) is pseudo-T -open in C, then A is
pseudo-T -open in X.

Proposition 9.1.8. Let X and Y be two T -topological spaces and let f : X → Y be a C-
continuous function. Then f is T -continuous from CX to CY .

Proof. Given that CX is C-generated, f is T -continuous from CX to CY if and only if it is T -
continuous from CX to Y by Corollary 9.1.5. Let C ∈ C and let p : C → CX be a T -continuous
map. Then p is T -continuous from C to X, hence the composite f ◦ p is T -continuous from C
to Y because f is C-continuous from X to Y . Thus f is C-continuous from CX to Y . Given that
CX is C-generated, we deduce the T -continuity of f : CX → Y .

Lemma 9.1.9. Let X be a T -topological space. The map IdX is C-continuous from X to CX and
from CX to X.

Proof. Clear consequence of Corollary 9.1.5.

Lemma 9.1.10. Let X be a C-generated T -topological space. The map IdX is T -continuous
from X to CX and from CX to X.

Proof. Clear consequence of Corollary 9.1.5.

Corollary 9.1.11. The inclusion of C-TopT in C-Map is an equivalence of categories with C(_)
as quasi-inverse and the identity maps as units.

Now, as in the previous chapter, assume that all the T (X) are complete and all the ∈X
T

preserve meets and assume (8.2). Let C be the class of all T -streams.

Proposition 9.1.12. Let X be a T -topological space. Then CX is a T -stream.

Proof. It is a clear consequence of Proposition 8.3.9.

Hence the identity maps are isomorphisms between the T -streams and the C-generated
spaces and when every T -topological space is saturated, both notions match.
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9.2 Some (closed) monoidal structures on TopLoc(T )

9.2.1 Lifting of monoidal structures

From now on, assume that TopT is endowed with a monoidal structure (TopT ,⊗, IT ) such that
UT is a strict monoidal functor into (Set,×, {⋆}).
Remark 9.2.1. The assumption on the strictness of UT is used to simplify the following con-
structions. If UT is a strong monoidal functor, by changing the choice to the binary products of
of the final object of Set, it is always possible to assume that UT is strict.

Proposition 9.2.1. Let X and Y be sets, and let BX and BY be bases of Loc(T )-topology on X
and Y respectively. Then

BX ⊗ BY := {BX ⊗BY ; BX ∈ BX , BY ∈ BY }

is a basis of Loc(T )-topology on X × Y .

Remark 9.2.2. Since, for every BX ∈ BX and BY ∈ BY , UT (BX ⊗BY ) = UT (BX)×UT (BY ),
the underlying set of BX ⊗BY is indeed a subset of X × Y .

Proof. Let (x, y) ∈ X × Y and let (Bj
X ⊗ Bj

Y )j∈J be a finite family of BX ⊗ BY such that, for
every j ∈ J , (x, y) ∈ Bj

X ⊗ Bj
Y . By the previous remark, for every j ∈ J , one has x ∈ Bj

X and
y ∈ Bj

Y . Given that BX and BY are bases of Loc(T )-topology, there is BX ∈ BX and BY ∈ BY

such that x ∈ BX , y ∈ BY , and, for every j ∈ J , BX ⊂Loc(T ) Bj
X and BY ⊂Loc(T ) Bj

Y . It
follows that (x, y) ∈ BX ⊗ BY , BX ⊗ BY ∈ BX ⊗ BY , and that, for every j ∈ J , since UT is a
strict monoidal functor, BX ⊗BY ⊂Loc(T ) B

j
X ⊗Bj

Y .

Proposition 9.2.2. Let X and Y be sets, and let BX and BY be bases of Loc(T )-topology on
X and Y respectively. Let OX ∈ OLoc(T )(BX) and OY ∈ OLoc(T )(BY ). Then OX ⊗ OY ∈
OLoc(T )(BX ⊗ BY ).

Proof. Let (x, y) ∈ OX ⊗ OY . Then x ∈ OX and y ∈ OY . Consequently, there is BX ∈ BX

such that x ∈ BX ⊂Loc(T ) Ox and BY ∈ BY such that y ∈ BY ⊂Loc(T ) OY . Therefore
(x, y) ∈ BX ⊗BY ⊂Loc(T ) OX ⊗OY .

Corollary 9.2.3. Let X and Y be sets, let BX and B′
X be bases of Loc(T )-topology on X, and

let BY and B′
Y be bases of Loc(T )-topology on Y . If BX and B′

X are equivalent and if BY and
B′
Y are equivalent then BX ⊗ BY and B′

X ⊗ B′
Y are equivalent.

Let X and Y be two Loc(T )-topological spaces. Define X ⊗ Y the set X × Y endowed with
the Loc(T )-topology generated by OLoc(T )(X)⊗OLoc(T )(Y ).

Denote by ILoc(T ) the Loc(T )-topological space ηT (IT ) (5.4). One easily checks, thanks to
the previous corollary, that (TopLoc(T ),⊗, ILoc(T )) is a monoidal category such that the forgetful
functor ULoc(T ) is strictly monoidal. The functor ηT is then a fully faithful monoidal strict func-
tor from (TopT ,⊗, IT ) to (TopLoc(T ),⊗, ILoc(T )). Moreover, if, for every pair of T -topological
spaces X and Y , the function sX,Y : (x, y) 7→ (y, x) is an isomorphism between X⊗Y and Y ⊗X
in TopT , then, for every pair of Loc(T )-topological spaces X and Y , sX,Y is an isomorphism
between X ⊗ Y between Y ⊗X in TopLoc(T ).
Remark 9.2.3. If ⊗ is the cartesian product of TopT then ⊗ is the cartesian product of TopLoc(T ).

9.2.2 Lifting of (monoidal) closedness

From now on, assume that the forgetful functor UT is a topological functor. In particular, for
every set X, the module ∈: X → Loc(T )(X) is then supercompact and Loc(T )(X) is complete.

For every Loc(T )-topological space X, denote by Ofond
Loc(T )(X) the preordered subset of all

members of OLoc(T )(X) that are fundamental in X. By Corollary 8.1.4, the preordered set
Ofond

Loc(T )(X) is complete and, for every family (Oi) of Ofond
Loc(T )(X) and every O ∈ Ofond

Loc(T )(X),

O is a join of the Oi in Ofond
Loc(T )(X) if and only if the underlying set of O is the union of the

underlying sets of the Oi.
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Definition 9.2.4 (Loc(T )-core-compact spaces). A Loc(T )-topological space X is Loc(T )-core-
compact when the preordered set Ofond

Loc(T )(X) is continuous (Definition 3.3.3).

Remark 9.2.4. When X is a Loc(T )-stream, the relation ≪ on Ofond
Loc(T )(X) is the restriction of

the relation ≪ on OLoc(T )(X) and X is Loc(T )-core-compact if and only if its underlying space
is core-compact.

Example 9.2.1. Let X be a T -topological space. Then the space ηT (X) is a Loc(T )-stream with
Ofond

Loc(T )(X) = {X}, hence it is also a Loc(T )-core-compact space.

We characterize Loc(T )-core-compactness.

Proposition 9.2.5. Let X be a Loc(T )-topological space. Then, the space X is Loc(T )-core-
compact if and only if, for every U ∈ Ofond

Loc(T )(X) such that x ∈ U , there is V ∈ Ofond
Loc(T )(X)

such that x ∈ V ≪ U in Ofond
Loc(T )(X).

Proof. Assume that X is Loc(T )-core-compact. Let x ∈ X and let Ofond
Loc(T )(X) such that x ∈ U .

Since Ofond
Loc(T )(X) is continuous,

U =
∨

{V ∈ Ofond
Loc(T )(X) ; V ≪ U in Ofond

Loc(T )(X)} .

Then there is V ∈ Ofond
Loc(T )(X) such that x ∈ U ≪ V in Ofond

Loc(T )(X).

Conversely, let U ∈ Ofond
Loc(T )(X). Write

S≪(U) := {V ∈ Ofond
Loc(T )(X) ; V ≪ U in Ofond

Loc(T )(X)}.

This preordered subset is filtered by Proposition 3.3.2. For every x ∈ X such that x ∈ U , there
is Vx ∈ Ofond

Loc(T )(X) such that x ∈ Vx ≪ U in Ofond
Loc(T )(X). By Corollaries 8.1.3 and 8.1.4, U is a

join of the Vx hence, a fortiori, U is a join of S≪(U).

We will also use the following property of the Loc(T )-core-compact spaces, obtained by the
interpolation lemma 3.3.4.

Lemma 9.2.6. Let X be a Loc(T )-core-compact space. Let (Ui)i∈I be a family of Ofond
Loc(T )(X)

and let U ∈ Ofond
Loc(T )(X). If U ≪

∨
i∈I Ui in Ofond

Loc(T )(X), then there is a finite subset J ⊂ I such

that U ≪
∨

i∈J Ui in Ofond
Loc(T )(X).

Proof. Since Ofond
Loc(T )(X) is continuous, by the interpolation lemma 3.3.4, there exists U ′ ∈

OLoc(T )(X) such that U ≪ U ′ ≪
∨

i∈I Ui in Ofond
Loc(T )(X). Since U ′ ≪

∨
i∈I Ui, there is a

finite subset J ⊂ I such that U ′ ≤
∨

i∈J Ui. Since U ≪ U ′, it follows that U ≪
∨

i∈J Ui in
Ofond

Loc(T )(X).

From now on, assume that the monoidal category (TopT ,⊗, IT ) is biclosed and, for every
T -topological space A, denote by A ⊸ _ the right adjoint of A⊗ _. Moreover, assume that IT is
endowed with a T -topology that makes it a UT -discrete object on {⋆} (Definition 7.0.4).

One easily checks that ILoc(T ) is the singleton set {⋆} endowed with the discrete Loc(T )-
topology.

Let X, Y and Z be sets and let m : Y ×X → Z be a function. Denote by evalY,Z : Y ×ZY → Z
the canonical function (x, f) 7→ f(x) and by Λ(m) : X → ZY the canonical function x 7→ (y 7→
m(y, x)).

Let X, Y and Z be T -topological spaces and let m : Y ⊗ X → Z be a T -continuous map.
Denote by evalTY,Z : Y ⊗ (Y ⊸ Z) → Z and by ΛT (m) : X → (Y ⊸ Z) the canonical maps.
Since the underlying set of Y ⊗ (Y ⊸ Z) is Y × (Y ⊸ Z), the function u⊸

Y,Z := Λ(evalTY,Z) is
the unique function from Y ⊸ Z to ZY such that evalY,Z ◦ (IdY × u⊸

Y,Z) = evalTY,Z . Then one
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has Λ(m) = u⊸
Y,Z ◦ ΛT (m). Let f : Y → Z be a T -continuous map, then f ′ : (y, ⋆) 7→ f(y) is

T -continuous from Y ⊗ IT to Z, hence ⌈f⌉ := ΛT (f ′)(⋆) is an element of Y ⊸ Z. It follows
that u⊸

Y,Z(⌈f⌉) = f . Thus, we have a function f ∈ TopT (X,Y ) 7→ ⌈f⌉ ∈ X ⊸ Y such that
u⊸
X,Y (⌈f⌉) = f . Conversely, let e ∈ Y ⊸ Z, then the function ⋆ 7→ e is T -continuous from IT

to Y ⊸ Z because IT is a UT -discrete object on {⋆}. Hence g′ := evalTY,Z ◦ (IdY × (⋆ 7→ e)) is
T -continuous from Y ⊗ I to Z, then g : y 7→ g′(y, ⋆) is T -continuous from Y to Z. It follows that
g = u⊸

Y,Z(e) and ⌈g⌉ = e. Thus u⊸
Y,Z is a bijection (natural because all canonical morphisms are

natural) from Y ⊸ Z to TopT (X,Y ) with ⌈_⌉ as inverse.

Definition 9.2.7 (Core-open Loc(T )-topology). Let X and Y be two Loc(T )-topological spaces.
Let U ∈ Ofond

Loc(T )(X) and let V ∈ OLoc(T )(Y ), denote by W (U, V ) the set of all Loc(T )-

continuous maps f from X to Y such that there is U ′ ∈ Ofond
Loc(T )(X) whose underlying set

is {x ∈ X; f(x) ∈ V } satisfying U ≪ U ′ in Ofond
Loc(T )(X). In particular, one has U ⊂Loc(T ) U ′

and U ′ Loc(T )(f) V , hence the restriction of f to U is a T -continuous map from U to V . Then
one has a restriction map rU,V : W (U, V ) → TopT (U, V ). Endow W (U, V ) with a Loc(T )-
topology that turns it into a UT -initial lifting of the function ιU,V := f 7→ ⌈rU,V (f)⌉. The latter
is the composite of the restriction of W (U, V ) to TopT (U, V ) and of the canonical bijection from
TopT (U, V ) to U ⊸ V . The core-open Loc(T )-topology on TopLoc(T )(X,Y ) is the one gener-
ated by the finite meets of the W (U, V ). Denote by X ⊸ Y the set TopLoc(T )(X,Y ) endowed
with the core-open Loc(T )-topology.

We will show that Y ⊸ _ is right adjoint to Y ⊗_ when Y is a Loc(T )-core-compact Loc(T )-
stream.

One easily notes that for any U ∈ Ofond
Loc(T )(Y ) and any V , V ′ ∈ OLoc(T )(Z) such that

V ⊂Loc(T ) V ′ one has W (U, V ) ⊂Loc(T ) W (U, V ′) because canonical map ⌈_⌉ is natural.
Thus, for any T -topological spaces Y and Z, the Loc(T )-topology of ηT (Y ) ⊸ ηT (Z) is gen-
erated by the basis of Loc(T )-topology whose sole member is W (Y,Z), i.e. the set TopT (Y,Z)
endowed with the T -topology obtained by transporting the T -topology of Y ⊸ Z along the
canonical bijection. Therefore, this canonical bijection is also a natural isomorphism in the
category TopLoc(T ) between ηT (Y ) ⊸ ηT (Z) and ηT (Y ⊸ Z).

Proposition 9.2.8. Let Y and Z be two Loc(T )-topological spaces with Y a core-compact
Loc(T )-stream. Then the function evalY,Z is Loc(T )-continuous from Y ⊗ (Y ⊸ Z) to Y .

Proof. Let V ∈ OLoc(T )(Z) and let (y0, f) ∈ Y ⊗ (Y ⊸ Z) such that f(y0) ∈ V . Given that
f is Loc(T )-continuous, f−1(V ) is Loc(T )-open in Y . Therefore, since Y is a Loc(T )-stream,
there is U ′ ∈ Ofond

Loc(T )(Y ) whose underlying set is {y ∈ Y ; f(y) ∈ V }. Given that f(y0) ∈ V ,

one has y0 ∈ U ′. Then, by Proposition 9.2.5, there is U ∈ Ofond
Loc(T )(Y ) such that y0 ∈ U and

U ≪ U ′ in Ofond
Loc(T )(Y ) because X is Loc(T )-core-compact. Consequently f ∈ W (U, V ), then

(y0, f) ∈ U⊗W (U, V ). The restriction of evalX,Y to U×W (U, V ) is equal to evalTU,V ◦(IdU ×ιU,V )
hence is T -continuous from U ⊗ W (U, V ) to V . Thus evalX,Y is Loc(T )-continuous at (y0, f)
from X ⊗ (X ⊸ Y ) to Y .

Proposition 9.2.9. Let X,Y , and Z be three Loc(T )-topological spaces and let m : Y ×X → Z
be a Loc(T )-continuous map from Y ⊗X to Z. Let x ∈ X. Then Λ(m)(x) is Loc(T )-continuous
from Y to Z.

Proof. Since ILoc(T ) is the singleton subset {⋆} endowed with the discrete Loc(T )-topology, the
function cx : ⋆ 7→ x is Loc(T )-continuous from ILoc(T ) to X. Then the map IdY × cx is Loc(T )-
continuous from Y ⊗ILoc(T ) to Y ⊗X, hence the function (IdY , cx) is Loc(T )-continuous from Y
to Y ⊗X. Given that Λ(m)(x) = m◦(IdY , cx), we deduce the Loc(T )-continuity of Λ(m)(x).

Lemma 9.2.10. Let X,Y , and Z be three Loc(T )-topological spaces and let f : X → (Y ⊸ Z)
be a function. Let x ∈ X. The function f is Loc(T )-continuous at x if and only if, for every
U ∈ Ofond

Loc(T )(Y ) and every V ∈ OLoc(T )(Z) such that f(x) ∈ W (U, V ), there is O ∈ OLoc(T )(X)

such that x ∈ O and O Loc(T )(f)W (U, V ).
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Proof. Assume that, for every U ∈ Ofond
Loc(T )(Y ) and every V ∈ OLoc(T )(Z) such that f(x) ∈

W (U, V ), there is O ∈ OLoc(T )(X) such that x ∈ O and O Loc(T )(f)W (U, V ). Let (Uj , Vj)j∈J

be a finite family such that, for every j ∈ J , Uj ∈ Ofond
Loc(T )(Y ), Vj ∈ OLoc(T )(Z) and f(x) ∈

W (Uj , Vj). By assumption, for every j ∈ J , there is Oj ∈ OLoc(T )(X) such that x ∈ Oj and
Oj Loc(T )(f)W (Uj , Vj). Openness being stable under finite meets by Proposition 5.2.11, O :=∧

j∈J Oj is Loc(T )-open in X and x ∈ O. Since the inverse image preserves meets, one has

O :=
∧
j∈J

Oj ⊂Loc(T )

∧
j∈J

f−1(W (Uj , Vj)) = f−1(
∧
j∈J

W (Uj , Vj)) .

Since the finite meets of the W (U, V ) form a basis that generates the Loc(T )-topology of Y ⊸
Z, we conclude that f is Loc(T )-continuous at x. The converse is obvious.

Proposition 9.2.11. Let X,Y , and Z be three Loc(T )-topological spaces such that Y is a core-
compact Loc(T )-stream, and let m : Y ×X → Z be a Loc(T )-continuous map from Y ⊗X to
Z. The function Λ(m) : x 7→ (y 7→ m(y, x)) is Loc(T )-continuous from X to Y ⊸ Z.

Proof. To show the Loc(T )-continuity of Λ(m), use the previous lemma. Let x ∈ X, U ∈
Ofond

Loc(T )(Y ) and V ∈ OLoc(T )(Z) such that Λ(m)(x) ∈ W (U, V ).
Denote by U ′ the fundamental Loc(T )-open member of Loc(T )(Y ) whose underlying set

is {y ∈ Y ; Λ(m)(x)(y) ∈ V }. Since m is Loc(T )-continuous, for every y ∈ U ′, there is
Uy ∈ OLoc(T )(Y ) and Oy ∈ OLoc(T )(X) such that y ∈ Uy, x ∈ Oy and

Uy ⊗Oy ⊂Loc(T ) m
−1(V ) .

Since Y is a Loc(T )-stream, we can also assume that the Uy are fundamental in Y .
Let y ∈ U ′, one has x ∈ Oy and Uy ⊗Oy ⊂Loc(T ) m

−1(V ), hence Λ(m)(x)(y′) ∈ V for every
y′ ∈ Uy. Consequently, the underlying set of

∨
y∈U ′ Uy is {y ∈ Y ; Λ(m)(x)(y) ∈ V }. Since

U ′ is fundamental and since
∨

y∈U ′ Uy is also fundamental by Corollary 8.1.4, it follows that
U ′ =

∨
y∈U ′ Uy, and consequently that

U ≪
∨

y∈U ′

Uy in Ofond
Loc(T )(Y ) .

Since Y is Loc(T )-core-compact we deduce (by Lemma 9.2.6) that there is a finite subset J ⊂ U ′

such that
U ≪

∨
y∈J

Uy .

Then O :=
∧

y∈J Oy is Loc(T )-open in X, and it contains x by Proposition 5.2.11 because J is
finite and because, for every y ∈ U ′, x ∈ Oy.

Let x′ ∈ O, we want to show that Λ(m)(x′) ∈ W (U, V ). Since Λ(m)(x′) is Loc(T )-continuous,
(Λ(m)(x′))−1(V ) is Loc(T )-open in Y . Since Y is a Loc(T )-stream, there is U ′′ ∈ Ofond

Loc(T )(Y )

whose underlying set {y ∈ Y ; Λ(m)(x′)(y) ∈ V }. To prove that Λ(m)(x′) ∈ W (U, V ), it is
enough to show that U ≪ U ′′.

Let y ∈ J and let y′ ∈ Uy. Since x′ ∈ Oy and since Uy ⊗ Oy ⊂Loc(T ) m−1(V ), one has
m(y′, x′) ∈ V , i.e. Λ(m)(x′)(y′) ∈ V , and then y′ ∈ U ′′. By the above reasoning and the fact that
Uy is fundamental, we apply Proposition 8.1.2 to deduce that

Uy ⊂Loc(T ) U
′′ .

Consequently
U ≪

∨
y∈J

Uy ⊂Loc(T ) U
′′ ,

hence
U ≪ U ′′ .

Therefore, we have indeed Λ(m)(x′) ∈ W (U, V ).
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To conclude, it is enough to show that restriction Λ(m)|O of Λ(m) to O with codomain
W (U, V ) is T -continuous. Since the T -topology on W (U, V ) is such that ιU,V is a UT -initial
lifting with codomain U ⊸ V , it is enough to show that ιU,V ◦ Λ(m)|O is T -continuous from O
to U ⊸ V . Observe that ιU,V ◦ Λ(m)|O = ⌈_⌉ ◦ Λ(m|U×O), so for every y ∈ J , one has

Uy ⊗Oy ⊂Loc(T ) m
−1(V ) ,

and then
Uy ⊗O ⊂Loc(T ) m

−1(V ) ,

because O ⊂Loc(T ) Oy. Thus ∨
y∈J

(Uy ⊗O) ⊂Loc(T ) m
−1(V ) .

Since _ ⊗O has a right adjoint, we deduce that

(
∨
y∈J

Uy)⊗O ⊂Loc(T ) m
−1(V ) .

Since U ≤
∨

y∈J Uy, it follows that

U ⊗O ⊂Loc(T ) m
−1(V ) .

Thus m|U×O is a T -continuous map from U ⊗ O to V . Then one has ⌈_⌉ ◦ Λ(m|U×O) =
ΛT (m|U×O), hence ιU,V ◦ Λ(m)|O is T -continuous from O to U ⊸ V .

9.2.3 Application to the C-generated spaces of Loc(T )

From now on, we assume that ⊗ is the cartesian product of TopT , hence that ⊗ is the cartesian
product of TopLoc(T ).

Definition 9.2.12. A class C of Loc(T )-topological spaces is productive when

- Every C ∈ C is Loc(T )-core-compact.

- Every C ∈ C is a Loc(T )-stream.

- For every C,C ′ ∈ C, C × C ′ is C-generated.

We set a productive class C.
Let X and Y be two Loc(T )-topological spaces. Denote by X ⊸C Y the set C-Map(X,Y )

endowed with the initial Loc(T )-topology associated to (_ ◦ p) : C-Map(X,Y ) → C ⊸ Y , for
all C ∈ C and all p : C → X Loc(T )-continuous.

Proposition 9.2.13. Let X and Y be two Loc(T )-topological spaces. The function evalX,Y :
X × C-Map(X,Y ) → Y is C-continuous from X × (X ⊸C Y ) to Y .

Proof. Let C ∈ C and let p = (p1, p2) be a Loc(T )-continuous map from C to X × (X ⊸C Y ).
Since, by assumption, the projections are Loc(T )-continuous, p1 and p2 are Loc(T )-continuous.
Hence _ ◦ p1 is Loc(T )-continuous from X ⊸C Y to C ⊸ Y , then (_ ◦ p1) ◦ p2 is Loc(T )-
continuous from C to C ⊸ Y . Then the function (IdC , (_ ◦ p1) ◦ p2) : C → C × (C ⊸ Y )
is Loc(T )-continuous because the diagonal is Loc(T )-continuous. Since C is Loc(T )-core-
compact and is a Loc(T )-stream, evalC,Y is Loc(T )-continuous from C × (C ⊸ Y ) to Y . Thus
evalX,Y ◦ p = evalC,Y ◦ (IdC , (_ ◦ p1) ◦ p2) is Loc(T )-continuous from C to Y .

Proposition 9.2.14. Let X, Y , and Z be three Loc(T )-topological spaces. Let m : Y ×X → Z
be a C-continuous map. Then, for every x ∈ X, Λ(m)(x) is C-continuous from Y to Z.
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Proof. Let C ∈ C and let p : C → Y be a Loc(T )-continuous map. Since ILoc(T ) is the sin-
gleton set {⋆} endowed with the discrete Loc(T )-topology, the function cx : ⋆ 7→ x is Loc(T )-
continuous from ILoc(T ) to X. Therefore (p × cx) is Loc(T )-continuous from C × ILoc(T ) to
Y ×X. Since C× ILoc(T ) and C are isomorphic and since m is C-continuous, the map m◦ (p, cx)
is Loc(T )-continuous from C to Z. We can conclude because m ◦ (p, cx) = Λ(m)(x) ◦ p.

Proposition 9.2.15. Let X,Y and Z be Loc(T )-topological spaces. Let m : Y × X → Z be a
C-continuous map. Then Λ(m) is C-continuous from X to Y ⊸C Z.

Proof. It is enough to show that, for every C,C ′ ∈ C, for every Loc(T )-continuous maps p : C →
X and p′ : C ′ → Y , (_ ◦ p′) ◦ Λ(m) ◦ p is Loc(T )-continuous from C to C ′ ⊸ Z. However this
map is equal to Λ(m ◦ (p′ × p)). Since C ′ is Loc(T )-core-compact and is a Loc(T )-stream, it is
enough to show that m ◦ (p′ × p) is Loc(T )-continuous from C ′ ⊗ C to Z. Given that C ′ × C is
C-generated, it is enough to show that m ◦ (p′ × p) is C-continuous.

Let C ′′ ∈ C and let p′′ : C ′′ → C ′ × C be a Loc(T )-continuous map. It follows that, since
p and p′ are Loc(T )-continuous, the product p′ × p is Loc(T )-continuous, then the composite
(p′ × p) ◦ p′′ is Loc(T )-continuous. Given that m is C-continuous, it follows that m ◦ (p′ × p) ◦ p′′
is Loc(T )-continuous.

Corollary 9.2.16. The category C-Map is cartesian closed: for every Loc(T )-topological space
X, X ⊸C _ is the right adjoint of X × _.

Regarding corollary 9.1.11, we can transport the structure of symmetric closed monoidal
category of C-Map along the equivalence of categories C(_), we get then

Corollary 9.2.17. The 4-tuple (C-TopLoc(T ), C(_×_), ILoc(T ), C(_ ⊸C _)) is a symmetric closed
monoidal category.



Appendix A

Quantales

Many interesting examples of the manuscript are based on a generalization of preorders where
the role played by the preordered set of booleans is replaced by a quantale. Some of the follow-
ing results can be found, with a different terminology, in [HST14] (see also [Ros90])

Definition A.0.1 (Quantales). A quantale1 V is a set ⌜V⌝ endowed with a structure of complete
preordered set (⌜V⌝,≤V,

∨
) and with a structure of monoid (⌜V⌝,⊗V, kV) such that, for every

family (ai)i∈I of ⌜V⌝ and for every a ∈⌜ V⌝,(∨
i∈I

ai

)
⊗ a =

∨
i∈I

(ai ⊗ a) and a⊗

(∨
i∈I

ai

)
=
∨
i∈I

(a⊗ ai) . (A.1)

A quantale is commutative when the product ⊗ is commutative.

When there is no risk of confusion, we identify a quantale V and its underlying set ⌜V⌝.
Intuitively, a quantale can be seen as some kink of object of truth values which will play a role
similar to the one play by the booleans.

Remark A.0.1. One deduce from Equations (A.1) that the function ⊗ is increasing in each vari-
able. By the adjoint functor theorem (see [Mac98, V.8], [Bor94a, 3.3.9.e], or [HST14, 2.1.8.3]),
for every a ∈ X, the maps (_ ⊗ a) and (a⊗ _) have right adjoints. When ⊗ is commutative, the
two adjoints are equivalent.

Examples A.0.1.

- The singleton set 1 := {⋆} with the unique preorder and the unique monoid structure on
it is a quantale.

- B := ({0, 1},≤,
∨
,∧, 1) is a quantale with ≤ the usual order and ∧ the binary meet.

- (R+,≥, inf,+, 0) is a quantale.

- (R+,≥, inf,×, 1) with, for all x ∈ X, x×+∞ = +∞× x := +∞, is a quantale.

- (R+,≥, inf,max, 0) is a quantale.

Definition A.0.2 (Quantale morphisms). Let V and W be two quantales. A quantale morphism2

from V to W is an increasing map f : V → W such that

kW ≤W f(kV) and ∀a, b ∈ V, f(a)⊗W f(b) ≤W f(a⊗V b) .

Examples A.0.2.

1All quantales considered here are unital in the sense of [Ros90, Definition 2.1.4].
2This notion corresponds to the closed unital maps of quantales of [Ros90, Definition 2.3.2]
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- For every quantale V, the constant map from V to {⋆} is the unique quantale morphism
from V to 1.

- The identity map IdR+
is a quantale morphism from (R+,≥, inf,max, 0) to (R+,≥, inf,+, 0).

- The function i defined by
{

i(0) = +∞
i(1) = 0

is a quantale morphism from B to (R+,≥

, inf,+, 0), from B to (R+,≥, inf,×, 1), and from B to (R+,≥, inf,max, 0).

One denotes by Qnt the category of quantales and quantale morphisms.

Definition A.0.3 (Relations on a quantale). Let V be a quantale and let X and Y be two sets. A
relation on V (alternatively, a V-relation) from X to Y is a function R : X × Y → V.

Examples A.0.3.

- For every sets X and Y , there is a unique 1-relation from X to Y .

- The B-relations are the classical relations recalled at the beginning of Chapter 3.

Definition A.0.4. Let V be a quantale, and let R and R′ be two V-relations from a set X to a
set Y . The relation R is lesser that the relation R′ (which is denoted by R ≤ R′) when, for all
x ∈ X and y ∈ Y , R(x, y) ≤ R′(x, y).

Definition A.0.5 (Composition of relations on a quantale). Let V be a quantale and let X, Y ,
and Z be sets. Let R be a V-relation from X to Y and R′ be a V-relation from Y to Z. The
composite V-relation R′ ◦R from X to Z is defined by

∀x ∈ X, ∀z ∈ Z, (R′ ◦R)(x, z) :=
∨
y∈Y

(R(x, y)⊗R′(y, z)) .

Proposition A.0.6. Let V be a quantale. With the above composition and the above preorder
between parallel V-relations, one gets a preordered category of sets and V-relations.

Proof. Let W,X, Y , and Z be sets. Let R be a V-relation from W to X, R′ be a V-relation from
X to Y et R′′ be a V-relation from Y to Z. For every w ∈ W and z ∈ Z, one has

((R′′ ◦R′) ◦R)(w, z) =
∨
x∈X

(R(w, x)⊗ (R′′ ◦R)(x, z))

=
∨
x∈X

R(w, x)⊗

∨
y∈Y

(R′(x, y)⊗R′′(y, z))


=

∨
x∈X,y∈Y

R(w, x)⊗R′(x, y)⊗R′′(y, z)

and

(R′′ ◦ (R′ ◦R))(w, z) =
∨
y∈Y

((R′ ◦R)(w, y)⊗R′′(y, z))

=
∨
y∈Y

(( ∨
x∈X

(R(w, x)⊗R′(x, y))

)
⊗R′′(y, z)

)
=

∨
x∈X,y∈Y

R(w, x)⊗R′(x, y)⊗R′′(y, z) .

Thus, the equality (R′′ ◦R′) ◦R = R′′ ◦ (R′ ◦R) holds.
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Let X be a set, denote by IdV
X the relation defined by

IdV
X(x, x′) :=

{
kV if x = x′

0V otherwise

where 0V is the least element of V.
Let X and Y be sets, and let R be a V-relation from X to Y . Let x ∈ X and y ∈ Y . Since, for

all a ∈ V, 0V ⊗ a = a⊗ 0V = 0V, one has

(R ◦ IdV
X)(x, y) =

∨
x′∈X

IdV
X(x, x′)⊗R(x′, y) = k ⊗R(x, y) = R(x, y) ,

and
(IdV

Y ◦R)(x, y) =
∨

y′∈Y

R(x, y′)⊗ IdV
Y (y

′, y) = R(x, y)⊗ k = R(x, y) .

One easily checks that the preorder between parallel V-relations is compatible with compo-
sition.

Let V be a quantale. We denote by V-Rel the preordered category of sets and V-relations.

Definition A.0.7 (Preorders on a quantale). Let V be a quantale and let X be a set. A V-preorder
on X is a V-relation R from X into itself such that

∀x ∈ X, kV ≤ R(x, x) ,

and
∀x, y, z ∈ X, R(x, y)⊗R(y, z) ≤ R(x, z) .

A V-preorder is a V-order when

∀x, y ∈ X, if kV ≤ R(x, y)×R(y, x), then x = y .

A V-(pre)ordered set is a pair (X,R) with X a set and R a V-(pre)order on X.

Definition A.0.8 (Increasing maps on a quantale). Let V be a quantale. Let (X,RX) and (Y,RY )
be V-preordored sets. A function f : X → Y is a V-increasing map from (X,RX) to (Y,RY ) if,

∀x, x′ ∈ X, RX(x, x′) ≤ RY (f(x), f(x
′)) .

Let V be a quantale. We immediately check that the composite of two V-increasing maps is
a V-increasing map and that the identity functions are V-increasing maps. We denote by V-Ord
the category of V-preordered sets and V-increasing maps, and by V-SOrd the full subcategory
of V-preordered set. There is an obvious forgetful functor UV : V-Ord → Set.

Examples A.0.4.

- The categories 1-Ord and 1-SOrd are (isomorphic to) the category Set.

- The category B-Ord is the category Ord and the category B-SOrd is the category SOrd.

- The category (R+,≥, inf,+, 0)-Ord is the category of Lawvere metric spaces (see [Law73]).

Proposition A.0.9 (Inverse image V-preorder). Let V be a quantale. Let X be a set, (Y,R) be a
V-preordored set and f : X → Y be a function. Then, the V-relation Rf defined by,

for all x, x′ ∈ X, Rf (x, x
′) := R(f(x), f(x′))

is a V-preorder on X, called the inverse image V-preorder of R under f , and the function f is a
V-increasing map from (X,Rf ) to (Y,R).
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Proof. Let x ∈ X, we have
k ≤ R(f(x), f(x)) = Rf (x, x) .

Let x, x′, x′′ ∈ X, we have

Rf (x, x
′)⊗Rf (x

′, x′′) = R(f(x), f(x′))⊗R(f(x′), f(x′′)) ≤ R(f(x), f(x′′)) = Rf (x, x
′′) .

The V-monotonicity of f from (X,Rf ) to (Y,R) is obvious.

Proposition A.0.10. Let V be a quantale, X be a set and R be a V-relation from X to X. There
is a least V-preorder R on X greater than R.

Proof. Let x, x′ ∈ X, write

R′(x, x′) :=

{
R(x, x′) ∨ k if x = x′

R(x, x′) otherwise

and
[[x, x′]] := {(x0, . . . , xn) ; n ≥ 1, x0, . . . , xn ∈ X,x0 = x, xn = x′} .

Then, define
R(x, x′) :=

∨
(x0,...,xn)∈[[x,x′]]

R′(x0, x1)⊗ . . .⊗R′(xn−1, xn) .

We clearly have
R ≤ R′ ≤ R .

Let x ∈ X, we have, by definition,

k ≤ R′(x, x) ≤ R(x, x′) .

Let x, x′, x′′ ∈ X. Let (x0, . . . , xn) ∈ [[x, x′]] and (y0, . . . , ym) ∈ [[x′, x′′]]. Define (z0, . . . , zn+m)
by

zi :=

{
xi if 0 ≤ i ≤ n

yi−n if n ≤ i ≤ n+m
.

We have (z0, . . . , zn+m) ∈ [[x, x′′]], so

R′(x0, x1)⊗ . . .⊗R′(xn−1, xn)⊗R′(y0, y1)⊗ . . .⊗R′(ym−1, ym)

= R′(z0, z1)⊗ . . .⊗R′(zn+m−1, zn+m) ≤ R(x, x′′) ,

thus, ∨
(x0,...,xn)∈[[x,x′]]

∨
(y0,...,ym)∈[[x′,x′′]]

R′(x0,x1)⊗ . . .⊗R′(xn−1, xn)

⊗R′(y0, y1)⊗ . . .⊗R′(ym−1, ym) ≤ R(x, x′′) ,

but ∨
(x0,...,xn)∈[[x,x′]]

∨
(y0,...,ym)∈[[x′,x′′]]

R′(x0, x1)⊗ . . .⊗R′(xn−1, xn)

⊗R′(y0, y1)⊗ . . .⊗R′(ym−1, ym)

=
∨

(x0,...,xn)∈[[x,x′]]

(
R′(x0, x1)⊗ . . .⊗R′(xn−1, xn)

)

⊗
∨

(y0,...,ym)∈[[x′,x′′]]

(
R′(y0, y1)⊗ . . .⊗R′(ym−1, ym)

)
,

hence
R(x, x′) ⊗ R(x′, x′′) ≤ R(x, x′′) .
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Therefore R is a V-preorder on X.
Let S be a V-preorder on X such that R ≤ S and let x, x′ ∈ X. Since S is a V-preorder, we

have R′ ≤ S.
Let (x0, . . . , xn) ∈ [[x, x′]]. Since R′ ≤ S and since S is a V-preorder, we have

R′(x0, x1)⊗ . . .⊗R′(xn−1, xn) ≤ S(x0, x1)⊗ . . .⊗ S(xn−1, xn) ≤ S(x, x′) ,

hence
R(x, x′) ≤ S(x, x′) .

This V-preorder is called the V-preorder generated by the V-relation R.

Corollary A.0.11. Let V be a quantale. The forgetful functor UV : V-Ord → Set is a topological
functor.

Proof. Let (Xi, Ri)i∈I a family of V-preordored sets, let X be a set, and let (fi : Xi → X)i∈I be
a family of functions. Write R the V-preorder on X generated by the V-relation

(x, x′) 7→
∨

i∈I,xi,x
′
i∈Xi/

fi(xi)=x,fi(x
′
i)=x′

Ri(xi, x
′
i) .

For each i ∈ I, the function fi is clearly a V-increasing map from (Xi, Ri) to (X,R).
Let (Y, S) be a V-preordored set and f : X → Y be a function such that, for all i ∈ I, f ◦ fi

is a V-increasing map. Let x, x′ ∈ X. Let i ∈ I, xi, x
′
i ∈ Xi such that fi(xi) = x and fi(x

′
i) = x′.

Since f ◦ fi is a V-increasing map, we have

Ri(xi, x
′
i) ≤ S(f(x), f(x′)) = Sf (x, x

′) .

Therefore ∨
i∈I,xi,x

′
i∈Xi/

fi(xi)=x,fi(x
′
i)=x′

Ri(xi, x
′
i) ≤ Sf (x, x

′) .

Since Sf is a V-preorder on X, we deduce that R ≤ Sf and then that f is a V-increasing map
from (X,R) to (Y, S).

Proposition A.0.12. Let V and W be two quantales, and υ be a quantale morphism from V to
W. Let (X,R) be a V-preordored set. Define, for all x, x′ ∈ X,

υ(R)(x, x′) := υ(R(x, x′)) .

Then (X, υ(R)) is a W-preordered set.

Proof. Let x ∈ X, we have kW ≤ υ(kV) and kV ≤ R(x, x), thus, since υ is increasing,

kW ≤ υ(R(x, x)) = υ(R)(x, x) .

Let x, x′, x′′ ∈ X. We have R(x, x′) ⊗ R(x′, x′′) ≤ R(x, x′′), thus, since υ is increasing, we
have υ(R(x, x′)⊗R(x′, x′′)) ≤ υ(R(x, x′′)). Therefore

υ(R)(x, x′)⊗ υ(R)(x′, x′′) = υ(R(x, x′))⊗ υ(R(x′, x′′))

≤ υ(R(x, x′)⊗R(x′, x′′)) ≤ υ(R(x, x′′)) = υ(R)(x, x′′) .

Proposition A.0.13. Let V and W be two quantales, and let υ be a quantale morphism from
V to W. Let (X,R) and (Y, S) be two V-preordored sets and let f : X → Y be a function. If
f is a V-increasing map from (X,R) to (Y, S) then f is a W-increasing map from (X, υ(R)) to
(Y, υ(S)).
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Proof. Let x, x′ ∈ X. Since f is a V-increasing map from (X,R) to (Y, S), we have R(x, x′) ≤
S(f(x), f(x′)). Since υ is increasing, we deduce υ(R(x, x′)) ≤ υ(S(f(x), f(x′))), in other words
υ(R)(x, x′) ≤ υ(S)(f(x), f(x′)).

Thus a quantale morphism υ : V → W induces a functor from V-Ord to W-Ord that com-
mutes with the forgetful functors.

Proposition A.0.14. Let V be a quantale and let (X,R) and (Y, S) be two V-preordored sets.
Denote by V-Ord((X,R), (Y, S)) the set of V-increasing maps from (X,R) to (Y, S). Define the
V-relation R ⊸ S from V-Ord((X,R), (Y, S)) into itself by

(R ⊸ S)(f, g) :=
∧
x∈X

S(f(x), g(x)), ∀f, g ∈ V-Ord((X,R), (Y, S)) .

Then R ⊸ S is a V-preorder on V-Ord((X,R), (Y, S)).

Proof. Let f ∈ V-Ord((X,R), (Y, S)). For all x ∈ X, we have k ≤ S(f(x), f(x)) so k ≤∧
x∈X S(f(x), f(x)) = (R ⊸ S)(f, f).

Let f, g, h ∈ V-Ord((X,R), (Y, S)). We have

(R ⊸ S)(f, g)⊗ (R ⊸ S)(g, h) =

( ∧
x∈X

S(f(x), g(x))

)
⊗

( ∧
x∈X

S(g(x), h(x))

)

≤
∧
x∈X

(S(f(x), g(x))⊗ S(g(x), h(x))) ≤
∧
x∈X

S(f(x), h(x)) = (R ⊸ S)(f, h) .

Denote by (X,R) ⊸ (Y, S) the V-preordered set (V-Ord((X,R), (Y, S)), R ⊸ S).

Proposition A.0.15. Let V be a commutative quantale and let (X,R) and (Y, S) be V-preordered
sets. We define a V-relation R⊗ S from X × Y into itself by

(R⊗ S)((x, y), (x′, y′)) := R(x, x′)⊗ S(y, y′), for every (x, y), (x′, y′) ∈ X × Y .

Then R⊗ S is a V-preorder on X × Y .

Proof. Let (x, y) ∈ X × Y . We have k ≤ R(x, x) and k ≤ S(y, y), so

k = k ⊗ k ≤ R(x, x)⊗ S(y, y) = (R⊗ S)((x, y), (x, y)) .

Let (x, y), (x′, y′), (x′′, y′′) ∈ X × Y . We have R(x, x′) ⊗ R(x′, x′′) ≤ R(x, x′′) and S(y, y′) ⊗
S(y′, y′′) ≤ S(y, y′′). Thus

(R⊗ S)((x, y), (x′, y′))⊗ (R⊗ S)((x′, y′), (x′′, y′′)

= R(x, x′)⊗ S(y, y′)⊗R(x′, x′′)⊗ S(y′, y′′)

= R(x, x′)⊗R(x′, x′′)⊗ S(y, y′)⊗ S(y′, y′′)

≤ R(x, x′′)⊗ S(y, y′′) = (R⊗ S)((x, y), (x′′, y′′)) .

Let V be a quantale, write IV := ({⋆}, (⋆, ⋆) 7→ k). For all V-preordered set (X,R), for all
x ∈ X, the function ⋆ 7→ x is a V-increasing map from IV to (X,R).

Proposition A.0.16. Let V be a commutative quantale. (V-Ord, IV,⊗,⊸) is a symmetric closed
monoidal category and the forgetful functor UV : V-Ord → Set is a strict monoidal functor from
(V-Ord, IV,⊗) to (Set, {⋆},×).



105

Proof. The fact that (V-Ord, IV,⊗) is a symmetric monoidal category and that the forgetful
functor UV : V-Ord → Set is a strict monoidal functor from (V-Ord, IV,⊗) to (Set, {⋆},×) is
clear. It remains to show the closedness.

Let (X,R) and (Y, S) be two V-preordered sets. We are to show that the function evalX,Y :
X × V-Ord((X,R), (Y, S)) → Y, (x, f) 7→ f(x) is a V-increasing map from (X,R) ⊗ ((X,R) ⊸
(Y, S)) to (Y, S). Let x, x′ ∈ X and f, f ′ ∈ V-Ord((X,R), (Y, S)). We have

(R⊗ (R ⊸ S))((x, f), (x′, f ′)) = R(x, x′)⊗ (R ⊸ S)(f, f ′)

= R(x, x′)⊗

( ∧
x∈X

S(f(x), f ′(x))

)
≤ S(f(x), f(x′))⊗ S(f(x′), f ′(x′)) ≤ S(f(x), f ′(x′)) .

Hence evalX,Y is a V-increasing map.
Let (X,R), (Y, S) and (Z, T ) be three V-preordered sets and let m : Y × X → Z be a V-

increasing map from (Y, S)⊗ (X,R) to (Z, T ). For every x ∈ X, write

Λ(m)(x) := y 7→ m(x, y) .

The function Λ(m)(x) is a V-increasing map from (Y, S) to (Z, T ). Indeed, let y, y′ ∈ Y , we have

S(y, y′) = S(y, y′)⊗ k ≤ S(y, y′)⊗R(x, x)

= (S ⊗R)((y, x), (y′, x))

≤ T (m(y, x),m(y′, x)) = T (Λ(m)(x)(y),Λ(m)(x)(y′)) .

It remains to show that Λ(m) is a V-increasing map from (X,R) to (Y, S) ⊸ (Z, T ). Let x, x′ ∈
X. Let y ∈ Y , we have

R(x, x′) = k ⊗R(x, x′) ≤ S(y, y)⊗R(x, x′)

= (S ⊗R)((y, x), (y, x′))

≤ T (m(x, y),m(x′, y)) = T (Λ(m)(x)(y),Λ(m)(x′)(y)) ,

hence

R(x, x′) ≤
∧
y∈Y

T (Λ(m)(x)(y),Λ(m)(x′)(y)) = (S ⊸ T )(Λ(m)(x),Λ(m)(x′)) .

Proposition A.0.17. Let V and W be two commutative quantales and let υ be a quantale mor-
phism from V to W. The functor induced by υ is a lax monoidal functor from (V-Ord, IV,⊗) to
(W-Ord, IW,⊗) that commutes with the forgetful functors.

Proof. The function Id{⋆} is a W-increasing map from IW to υ(IV).
Let (X,R) and (Y, S) be two V-preordered sets, let x, x′ ∈ X, and let y, y′ ∈ Y . We have

(υ(R)⊗ υ(S))((x, y), (x′, y′)) = υ(R)(x, x′)⊗ υ(S)(y, y′)

= υ(R(x, x′))⊗ υ(S(y, y′))

≤ υ(R(x, x′)⊗ S(y, y′))

= υ((R⊗ S)((x, y), (x′, y′))) = υ(R⊗ S)((x, y), (x′, y′)) .

Thus IdX×Y is a W-increasing map from (X, υ(R))⊗ (Y, υ(S)) to (X × Y, υ(R⊗ S)).



106 APPENDIX A. QUANTALES



Appendix B

Properties preserved or reflected by
changing of bases

Let υ : (T,∈T ) → (T ′,∈T ′) a changing of bases datum and let X be a T -topological space.

Preserved

Preserved
if υX
fully

faithful

Preserved
if υX es-
sentially
surjective

Reflected

Reflected
if υX
fully

faithful

Reflected
if υX es-
sentially
surjective

Reflected
if υX es-
sentially
surjective
and es-
sentially
surjective

Openness ✓ ✓ ✓ ✓ ✓

Neighbourhoods ✓ ✓ ✓ ✓ ✓

∈T -indistinguishability ✓ ✓ ✓ ✓ ✓

Adherent point of a member ✓ ✓ ✓ ✓ ✓ ✓ ✓

Closedness ✓ ✓ ✓ ✓ ✓ ✓ ✓

Finitely pointable by υ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Finitely pointable by υ−1 ✓ ✓ ✓ ✓ ✓

Adherent point of a part by υ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adherent point of a part by υ−1 ✓ ✓ ✓ ✓ ✓
Convergence of an upward

closed part by υ
✓ ✓ ✓ ✓ ✓ ✓ ✓

Convergence of an upward
closed part by υ−1 ✓ ✓ ✓ ✓

Specialization preorder ✓ ✓ ✓ ✓ ✓ ✓ ✓

T0, R0, T1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weakly T0, T1 ✓ ✓ ✓ ✓ ✓

Hausdorff ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weakly Hausdorff ✓ ✓ ✓ ✓ ✓

Compactness ✓ ✓ ✓ ✓ ✓

Borel-Lebesgue ✓ ✓ ✓ ✓ ✓

Alexandroff ✓ ✓ ✓ ✓ ✓

Pseudo-openness ✓ ✓ ✓
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Appendix C

Notations

Categories and functors:

Set Category of sets and functions 15
Cat Large category of sets and functions 43
Rel Ordered category of sets and relations 13
Mod Ordered category of preordered sets and modules 14
Ord Category of preordered sets and increasing maps 13
SOrd Category of ordered sets and increasing maps 13
Top Category of topological spaces and continuous maps 11
Qnt Category of quantales and quantale morphisms 100
V-Rel Preordered category of sets and relations on a quantale V 101
V-Ord Category of preordered sets and increasing maps on a quantale V 101
V-SOrd Category of ordered sets and increasing maps on a quantale V 101
STopTh Preordered category of topological theories and semantic transformations 43
TopTh Preordered category of topological theories and change base data 45
TopT Category of T -topological spaces and T -continuous maps for a topological

theory T
10

StreamT Category of T -streams for a topological theory T 90
C-Map Category of T -topological spaces and C-continuous map for a topological

theory T and for a class of T -topological spaces C
91

C-TopT Full subcategory of T -topological spaces C-generated and T -continuous
maps

91

(_)∗ Canonical contravariant functor from Ord to Mod 14
(_)∗ Canonical covariant functor from Ord to Mod 14
Eq Canonical covariant functor from Set to Mod 15
UV Canonical forgetful functor from V-Ord into Set 101
UT Canonical forgetful functor from TopT into Set 43
Sem Canonical 2-functor from TopTh to STopTh 46
Loc Canonical 2-functor from STopTh to TopTh 48
η Unity of the monad Sem ◦ Loc 49
µ Product of the monad Sem ◦ Loc 50
ιT Canonical semantic transformation from T to P × T for a topological the-

ory T
84

γT Canonical semantic transformation from P×T to Loc(T ) for a topological
theory T

84

C_ Coreflection of C-TopT in TopT 91
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List of symbols:

X →p Y Relation from a set X to a set Y
X −→◦ Y Module from a preordered set X to a preordered set Y∨

Join of a family of elements of a preordered set∧
Meet of a family of elements of a preordered set

V Any quantale
⊗ Monoidal product in a monoidal category (in particular, the product in a

quantale)
1 The final quantale
B The boolean quantale
T = (T,∈T ) Topological theory
∈T Membership module regarding a topological theory T = (T,∈T )
⊂T Inclusion module regarding a topological theory T = (T,∈T )
≃T "having the same T -elements" relation regarding a topological theory T =

(T,∈T )
P(X) Powerset of a set X
Pfin(X) Set of all finite subset of a set X
TV Topological theory of V-preordered sets for a quantale V
TS

V Topological theory of V-ordered sets for a quantale V
!T Final changing of bases datum from a topological theory T
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adherent T -point
of a member, 53
of a part, 57

T -Alexandroff space, 66

basis
filter, 16
of T -topology, 37

equivalence, 38
of topology, 39
ordered, 20

coarser, 20
equivalence, 20
strict, 20

strict, 83

category
ordered, 13
preordered, 13

changing of bases datum, 44
changing of bases functor, 46
circulation, 87
closed, 54
T -closed, 53
coarsest

T -topology, see indiscrete
compact

T -compact space, 63
order-theoretic, 17

continuous
map, 43
preordered set, 17

T -continuous, 41
convergence, 58
core-compact, 94
core-open Loc(T )-topology, 95

discrete
T -topology, 74
object, 69

T -element, 37

fiber, 37
fibration, 69
C-fibration, 81
filter, 15

T -ultrafilter, 63

basis, 16
coarser, 15
cofiltered, 16
direct image, 16
finer, 15
generated, 16

final
T -topology, 73
lifting, 69

finitely T -pointable, 55
functor

changing of bases, 46
fibration, 69
lax, 35
topological, 69

Hausdorff, 22, 61

increasing map, 13
locally, 22, 48
on a quantale, 101

V-increasing map, 101
indiscrete

T -topology, 75
object, 69

T -indistinguishable, 60
induced

T -topology, 79
initial

T -topology, 76, 79
lifting, 69

inverse image, 42
V-preorder, 101
relative to T , 70

Kowalsky sum, 16

lifting
final, 69
initial, 69

locally
P Loc(T )-topological space, 82
increasing map, 22, 48
Nachbin ordered, 22
ordered, 22, 23, 48

map
T -continuous, 41
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C-continuous, 91
increasing, 13
locally increasing, 22, 48

membership
T -element, 37
∈T -indistinguishable, 37
preserving meets, 41
representable, 36
strong, 36
supercompact, 40

module, 13
corepresentable, 14
representable, 14

monad, 50
morphism

of prestreams, 87
of quantales, 99
of streams, see morphism of prestreams

Nachbin ordered space, 21
T -neighbourhood, 39

open, 39
ordered subset, 22

T -open, 38
fundamental, 85
pseudo-, 71

order, 13
on a quantale, 101

V-preorder, 101
ordered set, 13
V-ordered set, 101
ordered space, 21, 44

precirculation, 87
preorder, 13

on a quantale, 101
specialization, 60

V-preorder, 101
generated, 103
inverse image, 101

preordered set, 13
cofiltered, 16
continuous, 17
filtered, 16

V-preordered set, 101
prestream, 87
productive class, 97
pseudo-T -open, 71

quantale, 36, 99

relation, 13
module, 13
on a quantale, 100
order, 13
preorder, 13

way-below, 17
V-relation, 100

saturable
T -topological space, 72
topological theory, 73

saturated
T -topological space, 72
topological theory, 73

semantic transformation, 43
space

T -KC, 80
T -R0, 60
T -T0, 60
T -T1, 60
T -t2, 80
T -Alexandroff, 66
T -Borel-Lebesgue, 64
T -compact, 63
T -stream, 85
T -topological, 38
C-generated, 91
coarsest, see indiscrete
discrete, 74
final, 73
indiscrete, 75
initial, 76
saturable, 72
saturated, 72
subspace, 79

Loc(T )-core-compact, 94
locally Nachbin ordered, 22
locally ordered, 22, 23, 48
Nachbin ordered, 21
ordered, 21, 44
prestream, 87
stream, 87
strictly locally ordered, 22
topological, 39
weakly T -T0, 60
weakly T -T1, 60
weakly T -Hausdorff, 61

specialization preorder, 60
stable indistinguishability, 82
stream, 87
T -stream, 85
strict

Loc(T )-topological space, 83
locally ordered space, 22
ordered basis, 20

supercompact, 17
membership, 40

topological theory, 35
with representable membership, 36
with strong membership, 36
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topology, 39
T -topology, 38, 40, 41

coarsest, see indiscrete
discrete, 74
final, 73
indiscrete, 75
induced, 79
initial, 76, 79

T -ultrafilter, 63
T -ultrapart, 63
upward closed, 15, 63
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Titre : Un cadre pour les espaces localement structurés - Application aux modèles géométriques de la concur-
rence

Mots clés : Concurrence, Modèles géométriques, Streams, Espaces localement ordonnés

Résumé : L’utilisation de méthodes provenant de
la topologie algébrique dans l’étude des proces-
sus concurrents ont été introduites en 1998. L’un
des ingrédients clef est la réalisation des ensembles
précubiques dans la catégories des espaces lo-
calement ordonnés. Cependant la formalisation du
concept d’espace localement ordonné n’est pas
consensuelle : plusieurs définitions non équivalentes
ont été proposées dans la littérature. C’est un in-
convénient majeur puisque, comme on le montre
dans le chapitre 3, les colimites d’espaces locale-
ment ordonnés sont très sensibles à des change-
ments apparemment mineurs dans les définitions. Il
existe ainsi une pléthore de notions mathématiques
similaires mais non équivalentes, toutes basées sur
la topologie, qui essaient de formaliser la même idée.
Dans cette thèse, on construit un cadre commun
pour pouvoir comparer ces notions. L’idée clef est
de remplacer, pour chaque ensemble X, l’ensemble
des parties de X ordonné par inclusion par un en-
semble préordonné T (X). Intuitivement, les membres

de T (X) correspondent à des parties de X équipées
d’une structure supplémentaire et on impose que les
inclusions tiennent compte de ces structures. T étant
fixé, on peut définir les espaces T -topologiques et
les application T -continues en remplaçant les sous-
ensembles par les membres des T (X) dans les
définitions classiques des espaces topologiques et
des applications continues en termes de bases de
topologie. En imposant des axiomes appropriés aux
T (X), on obtient une catégorie concrète. On montre
que beaucoup de notions standard de topologie,
comme la convergence, la compacité ou la topolo-
gie initiale, peuvent être étendues à ce cadre. Ainsi
T est une sorte de template qui fixe la forme des es-
paces qui lui sont associés, pour cette raison, on ap-
pelle théorie topologique un tel T .
Dans le chapitre 7, on développe une généralisation
naturelle des streams de Krishnan comme des es-
paces T -topologiques vérifiant une simple propriété
de stabilité supplémentaire. En effet, pour un T bien
choisi, on retrouve alors les streams usuels.

Title : A framework for locally structured spaces - Application to geometric models of concurrency

Keywords : Concurrency, Geometric models, Streams, Locally ordered spaces

Abstract : The usage of methods from Algebraic To-
pology in the study of concurrent processes was ini-
tiated in 1998. One of its key ingredient is the reali-
zation of precubical sets in the category of locally or-
dered spaces. Nevertheless, the formalization of the
concept of a locally ordered space is not firmly set:
various non-equivalent definitions have indeed appea-
red in the literature. This is a serious drawback, as we
see in the third chapter, because the colimits of locally
ordered spaces are extremely sensitive to seemingly
anodyne modification in their definition. We end up
with plethora of similar yet non-equivalent mathemati-
cal notions, all grounded on topology, intended to for-
malize the same idea.
In this thesis, we design a unified framework to com-
pare these notions. The key idea is to replace, for
every set X, the powerset of X ordered by inclusion
by a mere preordered set T (X). Intuitively, the mem-
bers of T (X) are to be thought as parts of X endowed

with an additional structure and we require that in-
clusions take these structures into account. Given T ,
we can define T -topological spaces and T -continuous
maps by replacing the subsets by the members of the
T (X) in the classic definitions of topological spaces
and of continuous maps in terms of topological bases.
By fixing the appropriate axioms on the T (X), we ob-
tain a concrete category. We show that many standard
notions of topology, like convergence, compactness,
or initial topology, can be extended to this framework.
Thus T is a kind of template which fix the form of the
spaces associated to it, that is why such a T is called
a topological theory.
In the seventh chapter, we develop a natural generali-
zation of Krishnan’s streams as T -topological spaces
satisfying a simple additional stability property. In-
deed, for a well choosen T , we recover standard
streams.
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