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1.1 Introduction

The human life in the twenty-first century is surrounded by technology. From household to

transportation, education to hobbies, and safety to sports, information technology plays a

major role in daily activities. Social interaction, education and health are few examples of

areas, where the rapid evolution of technology has had a major positive impact on the quality

of life. Companies are increasingly relying on embedded systems to increase productivity,
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efficiency and business value. In factories, the precision of robots tends to replace human

versatility. Connected devices such as drones, autonomous vehicles, smart watches or smart

houses have become increasingly popular in recent years, offering a variety of facilities with

high productivity. However, their integration requires to guarantee that there will not be any

catastrophic repercussions on the human life. To ensure these guarantees, the functioning of

such systems must be predictable over time through the application of temporal constraints

which must be verified to that end and we name here, the real-time systems. From this

perspective, one of the properties expected from a real-time system is to respond timely to

events from their environment.

Basically, these systems are composed of a large number of applications (tasks, programs)

that are continuously communicating by propagating input data from one to the other. The

communicating applications are organized into producers and consumers. Usually, communi-

cation between producers and consumers is done through communication registers or buffers.

Producer applications use these communication channels to write output data while con-

sumers use them to retrieve the required input data. A sequence of applications involved

in the definition of a specific function is called a functional chain. The data is propagated

through a functional chain and the delay between the time instant when the data is generated

(at the beginning of the functional chain) and the time instant when it is consumed (at the

end of the functional chain) is expected to be bounded. Associating a time delay to data

transform them in real-time data.

A system of applications can be composed of several functional chains where some of

the chains can propagate real-time data coming from different sub-systems or triggered by

different clocks. Additionally, a functional chain may be composed of applications executing

at different rates, resulting in under- or over-sampling of the data.

Evolving technologies within real-time embedded systems makes these systems intelli-

gent in the sense that, at a given time, they are mandated to perform targeted functions

autonomously. For example, autonomous vehicles have the ability to sense the surrounding

environment and navigate by themselves while making driving decisions. This autonomy in

decision making raises a particular interest on the data sharing management system between

applications since the correctness of the decisions highly depends on the quality of input data.
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Therefore, for these intelligent systems, it is not sufficient that all tasks are scheduled on time

to be sure that the overall functioning of the system is correct. It should be noted that task

scheduling consists in assigning to each application CPU time units necessary to complete its

execution, an execution order when executed in presence of other tasks in accordance with

a scheduling policy that are, often, priority-based. The schedulability of the task system is

confirmed if all tasks complete their executions before their deadlines.

Finally, the overall functioning correctness depends both on the system schedulability and

the quality of the input data, which is translated into a set of properties associated to these

data.

1.2 Real-time systems

Real-time systems are computing systems that must react timely to events in the environ-

ment. Consequently, the correct behavior of these systems depends not only on the value of

the computation but also on the time at which the results are produced. A reaction occurring

too late could be useless or dangerous [1]. Real-time systems are composed by large num-

ber of software applications each of them playing its own role or function. In the real-time

literature, the authors are also using terms like thread, task, program or simply application.

Within this thesis we use the term task to name them. The basic model of the real-time

system is introduced by Liu and Layland [2] and presented in Figure 1.1.

τ1

τ2 a b c d e

Figure 1.1: The main temporal characteristics of a real-time task.

The system of tasks denoted by T is composed by n tasks where each task τi ∈ T is

characterized by the tuples (Oi, Ci, Ti, Di), with ∀1 ≤ i ≤ n. Oi is the task offset. The

task offset, also called the phase, is the time instant at which the first instance of the task

is released. A task may execute without any offset and in this case we have Oi = 0. For
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instance, in Figure 1.1, the offset of the task τ1 is equal to 0, while the offset of the task

τ2 is equal to a. The time instant r2 = a is also known as the release time of the first

instance of task τ2. Ci is the task worst-case execution time (WCET). Ci represents the

maximum time needed to execute the task non-preemptively. C2 = b + d. The time instant

at which a task finishes its execution is called the completion time, represented here by the

time instant t = a + b + c + d. The amount of time between the task’s release time and the

task completion time is called the response time and denoted by Ri. Considering the same

model, the response time of τ2 is given by R2 = b + c + d. The WCET is obtained after

analysis, e.g. static or measurement-based, and most of the time the WCET is difficult to be

accurately determined. At the opposite side, we encounter the notion of best-case execution

time (BCET) which represents the minimum time length required for a task to execute.

A detailed survey regarding the WCET static is provided by Wilhelm et al in [3] and a

corresponding one on measurement-based analyses by Davis and Cucu-Grosjean [4]. Ti is the

task’s period. The period is the time between the releases of two consecutive instances of a

periodic task. For sporadic task systems, the value of Ti is the minimum inter-arrival time

between the releases of two consecutive instances of tasks. Di is the task’s deadline. The

deadline indicates the time at which the task must have finished its execution for the correct

functioning of the system. ∀τi ∈ T , if Di < Ti then τi is a constrained deadline task, Di = Ti

τi is an implicit deadline task and Di > Ti τi is an arbitrary deadline task. The system

can be extended with an other parameter called jitter. It is the deviation from the task’s

periodicity. For a task τi, the processor utilization, denoted by ui is given by Ci

Ti
whereas

the total utilization of all the set of task T is given by
∑

1≤i≤n

Ci
Ti

, where n is the number of

task comprising T . The execution of the task system is said synchronous if all the tasks are

released simultaneously. For constrained and implicit deadline tasks, the response time of

the instance released synchronously with all other task instances is the largest. The impact

of the execution of higher priority tasks over lower priority task τi is called the interference

and denoted by Ii. The largest response time of τi is called the worst-case response time and

denoted by Ri [5]. For synchronous constrained and implicit deadline tasks, the worst-case
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response time is computed recursively as follows:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
∗ Cj (1.1)

where hp(i) is the set of higher priority tasks than τi and j one of them. The interference Ii
from the j higher priority tasks is expressed within the part

∑
j∈hp(i)

⌈
Ri

Tj

⌉
∗Cj of Equation 1.1.

Notice 1 In this thesis we consider implicit deadline periodic tasks.

1.2.1 Uniprocessor vs Multiprocessor platforms

Depending on the execution platform, the real-time system is called uni-processor if the

tasks run on a single-processor computer and multiprocessor if the tasks run on a computer

equipped with more than one processor. Multiprocessor systems are in their turn classified

into heterogeneous, homogeneous and uniform. For heterogeneous, the processors are different

and the execution rate of a task depends on both the processor and the task, homogeneous

are made of identical processors which results in a same execution rate for all the tasks on all

the processors. Finally, for uniform multiprocessor, the rate of execution of a task depends

only on the speed of the processor. In this thesis, we consider homogeneous multiprocessor

systems comprised of m processors.

1.2.1.1 Multiprocessor scheduling techniques classification

In Davis and al. [6] the authors classify real-time scheduling techniques in multiproces-

sor architectures according three categories: partitioned, global and hybrid. Under

partitioned scheduling, tasks are assigned to processors, and the tasks within each pro-

cessor are scheduled by a local scheduler. Regarding the global scheduling, all tasks are

scheduled by a single scheduler, where a single queue is used to allocate tasks to processors.

Tasks are dynamically allocated with inter-processor migration allowed. Hybrid scheduling

combines the strengths of both partitioned and global scheduling. It can be further catego-

rized into semi-partitioned scheduling and clustering. In semi-partitioned scheduling,

most tasks are allocated to specific processors to reduce the number of migrations, while
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other tasks are allowed to migrate to balance processors utilization. Clustering methods

group a smaller number of faster processors into a cluster, and each cluster is scheduled with

a different global scheduler. Among these scheduling techniques, partitioned scheduling is

adopted and supported by domain-specific standards such as AUTOSAR [7] and commercial

real-time operating systems (e.g. VxWorks, LynxOS and ThreadX).

Notice 2 In this thesis we consider partitioned homogeneous multiprocessor platform. Shared

resources are organized such that only tasks mapped on a same processor can communicate.

1.2.1.2 The tasks models classification

Most of the research carried out on multi-processor systems focus on two main task models:

periodic models and sporadic models. In both cases, each task τi generates an infinite number

of successive jobs and, for simplicity, in the reminder of this thesis, we do not focus on specific

jobs. Therefore, τi has the meaning of any of its jobs. We define the hyper-period as the least

common multiple of the periods of all tasks and we denote it by H = lcm {Ti}
∣∣∣i = 1, · · · , n.

When the tasks are released simultaneously and have implicit deadlines, the interval (0, H)

is a feasibility interval for the task system T [8]. By feasibility interval we understand the

smallest time interval such that if all deadlines are met within this interval, then all deadlines

are met for the entire system. In the periodic task model, the jobs of a task arrive strictly

periodically, spaced by a fixed time interval (period). In the sporadic task model, each job

of a task can arrive at any time once a minimum interval time has elapsed since the arrival

of the previous job of the same task. Task scheduling on a multiprocessor system involves

solving the task allocation and priority assigning problems. The former consists in allocating

a given task to a given task while the latter defines when and in what order each job should

execute with respect to the jobs of other tasks.

1.2.2 Scheduling algorithms classifications

In Carpenter and al. [9] the authors classify the multiprocessor scheduling algorithms into

migration-based and priority-based. Regarding the migration-based algorithms, there may be

no migration; each task is allocated to a processor and no migration is permitted, task-level
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migration; the jobs of a task may execute on different processors where each job can only

execute on a single processor, and job-level migration when a single job can migrate to and

execute on different processors with no parallel execution of a job permitted. As for the

priority-based algorithms, we may list:

• Fixed task priority algorithm: It assigns the same priority to all the jobs of each task.

To this category belong the rate monotonic algorithm (RMA) [2] and the Deadline

Monotonic (DMA) [10] Algorithms. The RMA assigns priorities to tasks according to

their request rates. The higher priority is assigned to the task with higher request rate;

that is, with shorter period. For the DMA, the higher priority is assigned to the task

whose value given Di − Ci is shorter.

• Fixed job priority algorithm: The jobs of a task may have different priorities, but each

job has a fixed priority. The Earliest Deadline First (EDF) algorithm belongs to this

category.

• Dynamic priority algorithm: A single job may have different priorities at different times.

An example of such algorithm is the least laxity first (LLF).

A scheduling policy allowing jobs of higher priority tasks to suspend the execution of

jobs of lower priority tasks in progress is called preemptive priority-driven or simply

preemptive scheduling policy. The action of suspending the execution of the lower priority

tasks by higher priority tasks is referred to as preemption. When a job continues its execution

after being preempted by the execution of jobs of high priority tasks, it is said that this

job resumes its execution. On the other hand, a scheduling policy which does not allow the

preemption of the jobs of lower priority tasks by the jobs of higher priority tasks is accordingly

referred to as non-preemptive scheduling policy. Preemptions by higher priority jobs are

covered by the priority-driven preemptive scheduler [2] while satisfying timing constraints

and precedence constraints if any.

Notice 3 In this thesis we consider a preemptive fixed task priority scheduling policy.

For its practical relevance the majority of automotive controls are designed with static

priority-based job scheduling. The operating system standards OSEK [11] and AUTOSAR [7].
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1.2.3 The tasks scheduling transition state diagram

The real-time system tasks are managed by a dedicated operating system called a real-

time operating system, shortly RTOS. The tasks are given the right to execute based on the

predefined criterion called scheduling policy. The set of rules that, at any time, determines the

order in which tasks are executed is called a scheduling algorithm. Within real-time literature,

tasks are, often, given execution priorities according to a given scheduling algorithm. The

specific operation of allocating the CPU to a task selected by the scheduling algorithm is

referred as dispatching. Depending on the task’s execution state, a task can be in any of

these states:

Sleeping: The task has completed the execution of its latest released job and it is waiting

for a new release, thus, for starting a new execution, or, it has never been executed.

Ready: The task can potentially execute if no task of higher priority executes. Ready tasks

are put into the waiting queue and re-dispatched once the CPU is available.

Running: The task is currently executing. The scheduling algorithm may allow or not the

tasks of higher priority to suspend the running lower priority. Accordingly, the scheduling

algorithm is said preemptive and non-preemptive, respectively. The preempted task is inserted

into the ready queue and the next time that the preempted task returns into the running

state it resumes from where it was at the preemption time instant. The time instant when

the task gets ready for execution independently on the CPU availability is called the release

time, the time when a task enters the running state is called the activation time while the

time when all task’s instructions are executed corresponds to the completion time.

sleeping ready

Ready queue

runningrelease

queuing activation

preemption

completion

Figure 1.2: The tasks scheduling transition state diagram
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1.2.4 Real-time tasks precedence constraints

Basically, real-time systems are composed of large number of tasks being in a permanent

communication by sharing data in a way that the output of one task is used as input for

another task and so on and so forth. The inter-tasks communications must fellow a strict

order imposed by the designer. In other words, they must satisfy some communication

ordering constraints. In the real-time literature, such constraints are widely referred to as

precedence constraints and represented in the form of the directed acyclic graph (DAG). The

directed acyclic graph is the graph G = (V,E) where V is the set of tasks {τ1, · · · , τn} ∈ T

and E is the set of edges. The precedence constraints are established between a pair of tasks

both connected by the same edge. We use the right arrow −→ to represent the precedence

relation between two tasks. For instance, the notation (τi, τj) ∈ E indicates that tasks τi
and τj are in a precedence relation. The task being at the left of the arrow is called a

predecessor while the one at the right of the arrow is a successor. In the literature, a task

that has no predecessor is often called a sensor task task, while a task that has no successor

is called an actuator task.

τ1

τ2

τ3

τ4

τ5

τ6

Figure 1.3: Example of the communication order between tasks.

In order to illustrate the precedence constraints between tasks, let us consider the model

presented in Figure 1.3. Herein, we have τ1 which is a predecessor to τ2 and τ3 ,τ2 which is

a predecessor to τ4 and so on and so forth. The precedence constraints can be of two types:

scheduling order and communication order.

An execution order constraint must be satisfied between two tasks if the execution of one

task depends on the execution state of another. For instance, considering two tasks τi and τj
such that τi → τj, scheduling order constraints are required to be satisfied if the execution

of τj can start only when τi has completed. In such situation τi and τj are said dependent
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tasks. Reversely, if each task executes at its own pace based on its priority, such tasks are

referred to as independent tasks.

On the other hand, the communication order constraint between two tasks must be sat-

isfied if the precedence constraints between these tasks have the sense of the producer-

consumer relation. Clearly, such constraints have the meaning of showing, for each tasks,

the task producing the required input data. Accordingly, the task being at the left of the

arrow is called a producer task while the one at the right side of the arrow is called a

consumer task. The output data of the producer task is the input data for the consumer

task, which is the producer for another consumer and so on and so forth.

1.3 Resource sharing and arbitration mechanisms

The tasks composing the real-time system are permanently communicating where some tasks

produce the output data required by others tasks for their computations. The element

through which the inter-task communications are performed is called resource. A resource

can be a data structure, a set of variables, a main memory area, a file, a piece of program,

or a set of registers of a peripheral device.

Notice 4 In this thesis, by shared resources, we understand the data structures or other

variables used to store the data into the memory; a shared resource has the meaning of a

communication variable.

Resources can be private or shared. A resource that can only be accessed by a single task

is said private resource. Comparatively, if a given resource can be accessed by more than

one task then this resource is called a shared resource. Depending on how shared resources

are accessed by the competing tasks, shared resources are divided into non-blocking and

exclusive resources. Speaking of the non-blocking resources, the competing tasks access

the resource based on their scheduling priority no matter if the source is being used by other

tasks. That to say that the resource can be accessed simultaneously by more than one task

at a given time instant. For the exclusive resource, the situation is totally different; the

competing tasks can’t access the shared resource simultaneously. Each time a resource is
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being used by one of the competing tasks this resource is locked for the rest competing tasks

until this resource is released. Accordingly, the competing tasks are said to be in a mutual

exclusion on a given resource. A set of instructions to be executed during the mutually

exclusive time interval is called critical section. In Figure 1.4 we depict the state transition

diagram for the set of tasks communication in the presence of the mutual exclusion on the

shared resources.

sleeping ready

ready queue

running

waiting

release

queuing activation

preemption

waitfree

completion

Figure 1.4: The state transition diagram in the presence of resource sharing constraints

Herein, supplementary to the scheduling state transition diagram presented in Figure 1.2,

when the tasks communicate in the presence of mutual exclusion constraints on shared re-

sources, another state referred to as waiting is introduced. Contrarily to the preemptions

which are taken care by the scheduler, the mutual exclusion constraints are taken care by

the operating system which arbitrate the access to such resources by means of semaphore

per resource [12, 13]. Each exclusive resource is protected by two primitives: wait is placed

at the beginning of the critical section to lock it when there is a task having entered this

section. The primitive free is used to unlock the resource and is placed at the end of the

resource critical section.

Any task attempting to access the shared exclusive resource is blocked until the completion

of the concurrent task entered the critical section related to that resource. All tasks blocked

on a given resource are inserted into the queue associated with this resource. In contrast to

preemption, a higher priority task can be blocked by a lower priority task that has entered into

the critical section regarding that exclusive shared resource. When the resource is available,
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waiting tasks are not immediately granted an access to the resource. They are first inserted

in the ready state and the scheduler decides to activate them according to their priorities.

For instance, let us consider two tasks τ1 and τ2 released simultaneously while competing

on the mutual exclusion resource r such that τ1 has a higher priority than τ2. This situation

is illustrated in Figure 1.5. Each white box with a number in it indicates the time period

during which the task whose number is written in it was executing the critical section.

Herein, τ1,1 executes until its completion due to its high priority. The interval b corre-

sponds to the time τ1,1 uses to execute the critical section instructions. The number in the

white box corresponds to the index of the task holding the resource r at that instant.

τ1

1 1

τ2

2 2

a b τ1 blocked

c d e

Figure 1.5: Effects of the mutual exclusion constraint.

The first job of τ2 denoted τ2,1 (released after τ1,1 frees r) enters the critical section at

the beginning of the interval c. Some time later τ1,2 preempts τ2,2 which still holds r. τ1,2

executes until it requests to access to r which is still blocked by τ2,1. Unfortunately, τ1,2 has

to wait until r gets free. In this situation, τ2,1 resumes while τ1,2 is blocked. The blocking

time is denoted by e. In the priority-driven real-time systems this situation leads to the so

called priority inversion when the execution of a higher priority is blocked by the one of

lower priority. The priority inversion phenomenon can lead to unpredictable system behavior

or just force some jobs to miss their deadlines. To illustrate it, let us assume that τ1 and

τ2 are released simultaneously. Normally, the worst-case response time corresponds to the

response of the first job of each task [5].



R1,1 = a+ b

R1,2 = a+ e+ b

R1,1 < R1,2

(1.2)
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From the model presented in Figure 1.5, the blocking time is equal to e time units. Let

us add to the system (Figure 1.6) a new task τm such that priority(τ1) > priority(τm) >

priority(τ2) , Om = 9 and τm doesn’t compete on r. According to its offset, we observe that

it is released while τ2,1 is still inside the critical section related to r. Obviously, τm,1 preempts

τ2,1 and executes for the f time units. At its completion τ2,1 resumes and executes until its

completion and only at that time τ1,2 resumes and completes.

τ1
1 1

τm

τ2
2 2 2

τ1 blocked

e1 f e2

Figure 1.6: Extending the model on Figure 1.5 with an intermediate priority task .

Thus, a blocked job due to the mutual exclusion resource is blocked not only by the

blocking job but also by all the jobs that can preempt the blocking job. For instance,

considering the model in Figure 1.6, the blocking time of τ1,2 became e + f where e =

e1 + e2. Basically, real-time systems are composed of several tasks. The situation may end

with unbounded response times if there are many mutual exclusion resources with many

preemptions during the job blocking time on the resource. For instance, if the blocking job

on the resource r1 is preempted by a job competing on the resource r2 which is also preempted

while still holding this resource, and so on and so forth. This corresponds to the so called

chained blocking. Bounding the functional chained blocking time is a challenging task

in complex systems. Hence, using arbitration mechanisms such as semaphores to protect

the mutual exclusion resources may have negative impact on the system schedulability with

prospect of leading to an unpredictable system behavior as they may provoke not only the

priority inversion problem but also other possible deadlock situations [14–18].



16 CHAPTER 1. THE REAL-TIME DOMAIN

1.4 Real-time data properties constraints

With the evolution of technologies, real-time embedded systems are getting more and more

intelligent in the sense that, at some point, they acquire the capability to achieve targeted

functions autonomously. For instance, the autonomous vehicles or drones are extended with

capability of sensing the surrounding environment and navigating on their own by making

driving decisions. The correctness of such decisions depends not only on the system schedu-

lability but also on the quality of the data being used. The system schedulability is verified

in order to guarantee that none of the jobs will miss its deadline whereas the quality of the

data is expressed in terms of a variety of data properties that must be preserved throughout

the inter-tasks communications for the correct functioning of the system. Speaking of the

inter-tasks communications, in the literature a wide range of models, paradigms and policies

are proposed.

Considering that predictability is a mandatory property for real-time systems, these com-

munication models and policies can also be evaluated from this perspective. To that end,

numerous constraints must be verified to guarantee the communication predictability as well

as the correct functioning of the real-time embedded system. These constraints regard both

the schedulability of the system and the quality of the data being used throughout the com-

munications between the tasks. Several techniques are proposed in the real-time literature to

analyze the system schedulability such as the task response time analysis technique [5], the

processor utilization analysis technique [2] and the processor demand analysis technique [19].

These techniques efficiently handle the timing and precedence constraints while abstracting

from the resource constraints even if the latter are on the basis of the scheduling problems

such as priority inversion problem, the chained blocking or deadlocks formation [14–18]. Ad-

ditionally to the scheduling problems, the lack of informations regarding the communication

strategy plays an important role when it comes to maintain the properties of the data, es-

pecially the data consistency property. The constraints applied to this property require the

protection of the data being used from any alteration/modification. To ensure this pro-

tection, one may choose to use mutual exclusive shared resources (i.e register of size one)

which eventually leads to the memory space economy while still exposing the system schedu-
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lability at risk (high consumption of the CPU resource). Conversely, it may be preferred

to use buffers of larger sizes with an asynchronous non-blocking access while guaranteeing

that none of the data will ever be corrupted. This strategy is safer in the sense that it

does not induce unforeseen cpu time units compared to the utilization of mutual exclusive

resource. Subsequently, the trade-off must be found between the cpu overhead or memory

overhead. Last but not least, abstracting from the resource constraints verification may lead

to a high variability of the tasks timing characteristics (when estimating/measuring the the

tasks worst-case execution times) which ends up with significantly larger worst-case execution

time. Therefore, the probability of appearance of a worst-case execution time is extremely

low [20]. Approaches taking into account this probability have been the topic of last years

research either by measurement-based reasoning for instance in [21] or static reasoning in [22,

23].

1.4.1 Towards the functional chain formation

The inter-tasks communications are carried out via shared variables such that the output

data of one task is used as the input data for another task and so on and so forth until the

expected action (function) is triggered. A sequence of the tasks, involved in the definition

of a given function, forms the so-called functional chain [24–28] or the cause-effect

chain [29–33]. In the reminder of this thesis we use "functional chain" to refer to such

sequence of tasks that we denote by C. Mainly, we model C as

C = τi
ri−→ τi+1

ri+1−−→ · · · rn−2−−→ τn−1
rn−1−−→ τn

where n is the number of tasks composing C and τi is any of the n tasks provided 1 ≤ i ≤ n.

ri is the resource shared between the tasks τi and τi+1 such that τi writes into ri and τi+1

reads from ri. Throughout the functional chain the data written into r1 is propagated by

n − 1 tasks before reaching the task τn being at the end of the functional chain and the

propagation delay must be bounded [24, 31]. Hence, the constraints applied to these data

must be satisfied not only by considering a given relation τi
ri−→ τi+1 where the tasks τi and

τi+1 compete on the resource ri but also they must be applied to the entire functional chain
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with the purpose to verify the end-to-end data temporal properties. Subsequently, different

data properties must be ensured at different levels of the functional chain. For instance, it

may be required that the content of the resource ri should not be overwritten/modified by

a job of τi if there is a job of τi+1 still performing computations using the data read from

ri (data consistency maintenance) while, on the other hand, it can be required that the

propagation delay of a data read from ri until the last task of the functional chain must be

within a bounded time interval (end-to-end propagation delay).

On this basis, we examine the data properties into two groups, task-to-task and

end-to-end data properties. The first group concerns the data properties to be verified

considering the pairs of adjacent tasks within the functional chain, while the second group

concerns the data properties to be verified at the level of the functional chain. There may be

a wide list of data properties falling into each of the categories. In the following section, we

mention only those properties that are, directly or indirectly, relevant while expressing the

contributions of this thesis.

1.4.2 Task-to-task data properties

For task-to-task data properties, we focus on the freshness and consistency of the data.

Generally speaking, a data sample is said to be "fresh" if, at the time it is read by a job of

the consumer task, it is not yet obsolete [34]; that is, it is still temporally valid. In Ricardo

et al. [35] the authors define the worst freshness of a data sample as the maximum age that

a data sample can attain. It gets older between the moment when the task producing it is

activated and during the time interval when it can be used by the task having consumed

it, i.e., until the moment when the next sample of the data is consumed by this task. In

Forget et al. [24], the authors examine the data freshness from a functional chain perspective.

Accordingly, considering for a functional chain τ1 → · · · → τn comprised of n tasks such that

the data samples produced by the jobs of τ1 propagate until τn. At any time t, the freshness

is the difference t − t1, where t1 is the reading date of the value of τ1 used to compute the

current value of τn. It has the meaning of the last to last delay as defined in [36]. In [37,

38] the freshness property is used to express the timing gap between the extraction of data

from the source and its delivery to the user. In this context, freshness has the meaning of
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currency [39]. On the other hand, data freshness has the meaning of timeliness [40, 41]

when expressing the age of the data at the reading time instant by a job of a given task. In

this context, the age of the data defines the amount of time elapsed between the data writing

and the data reading time instants. In this thesis, the meaning of the freshness is closer to

timeliness. Precisely, for a pair of tasks τi and τj such that τi → τj, for two data samples

produced by τi at the time instants t1 and t2, respectively, the freshness of the data sample

produced at t1 is maintained if the reading of the a job of τ2 happens at a time instant t

such that t1 ≤ t < t2. Also, for the data produced at t1 time instant, the interval [t1, t2) is

its validity interval. For task-to-tasks category of properties, we consider that the most

recently produced data is always the best.

Regarding the data consistency property, in Hamann and al. [29] the authors categorize

this property into two dimensions: consistency in value and consistency with other

variables. The first dimension requires that the value of a variable should not be affected by

action outside the current execution context. The second dimension considers that multiple

variables are only valid if all are stemming from the correct (same) point in time. The

first dimension represents the integrity/fullness of the data. In this context, preserving

data consistency means protecting the structure of the shared resource against corruption or

modification when the data is still being used by at least one consumer. As for the second

dimension, the data consistency property has the meaning of coherence between the values

of variables in the shared resource structure. Subsequently, for each of member of the shared

resource, it must be ensured that only the values produced during the same execution step

of the producer task job are consumed.

Example 1 (Data consistency illustrating example) We consider the example taken

from [42] to motivate the necessity of ensuring each of the aforementioned dimensions of

the data consistency property. In this example, two tasks τw and τd cooperate to track the

coordinate of a moving object and a point is plotted on a screen to display the object trajectory.

Precisely, τw gets the object coordinates from a sensor and writes them into a shared buffer

r where r is a data structure having as members the variable x to store the abscissa and y to

store the ordinate of the object in the space. The task τd reads the object coordinate from r

and plots a corresponding point on the screen, as shown in Figure 1.7.
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τw r = (x, y) τd

Figure 1.7: Data consistency motivating example

In this example it is considered that τd has a higher priority over τw and the system is

scheduled following a preemptive scheduling policy. In Figures 1.8 & 1.9, r is not mutual

exclusive, meaning that any released task can access the resource freely any time while in

Figure 1.10 r is mutual exclusive; the resource is blocked to other tasks as long as the first

task having started the execution of the critical section hasn’t yet completed. The gray box

corresponds to the task computation time while the blue and the yellow boxes correspond to

the reading from/writing into the variables x and y, respectively. The initial position of the

object is assumed to be (1,2) and, at the execution completion of the first job of τw, the

object is assumed to have moved to the position (4,8). At the end of the gray box this new

position has been already sensed (remained only to written into x and y) and the object has

already moved. That to say that, at the execution completion of the job of τd, the correct

coordinate to be displayed is (4,8). The scheduling results presented in Figures 1.8 and 1.9

show how each of the data consistency dimension may be violated when the shared resource is

access free; that is, each of the task access it on its own pace based on its scheduling priority.

τd

τw

Figure 1.8: Violation of con-
sistency with other variables ex-
ample

τd

τw

Figure 1.9: Violation of con-
sistency in value example

τd

τw

Figure 1.10: Maintaining data
consistency using mutual exclu-
sive resource

In Figure 1.8 (r=(4,2)), τd preempts τw after x is updated and before y gets updated.

Further, τd executes until its completion and displays the position of the object which is the

combination of the new value of x and the old value of y; (4, 2). Here the value of x and y are

not coherent with respect the exact position of the object. On the other hand, in Figure 1.9

we present the case where τd preempts τw while still updating x. In this case, τd will use the

corrupted value of x and the initial value of y, r=(?,2).

Finally, in Figure 1.10 with r = (4, 8) we present the situation where both the data
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integrity/fullness and the coherence between variables are ensured by using the mutual ex-

clusive r. Herein, τd preempts τw after τw has entered the critical section and has already

updated x which has the value 4. By the time τd requests the access to r to read and the

point is plotted on the screen it finds that the resource is still blocked by τw. τw resumes and

updates the value of y. In result, at the completion of τd, it displays the correct coordinate

of the object. Although this ensures the consistency of the data, it may lead to undesirable

scheduling situations such as priority inversion, deadlocks formation, chained blocking,· · · .

In other words, this solution must be avoided for its negative impacts on the system schedu-

lability. In the scope of this thesis we aim to propose solutions ensuring the data consistency

in both dimensions when the shared resource is access free (asynchronous access).

1.4.2.1 Lock-based mechanisms

A mechanism is "lock-based" if and only if a task, accessing a shared resource locked by

another task, is blocked. When the lock is released, the task is restored in the ready state

and can access the resource. Protocols falling into this category of mechanisms are mostly

based on the protocols used in uniprocessor systems. The most popular and accepted of

these protocols in the literature include the Priority Inheritance Protocol (PIP) [16], Priority

Ceiling Protocol (PCP) [16] and Stack Resource Policy (SRP) [43]. The PIP avoids endless

priority inversion by changing the priority of tasks that provoke blocking. Specifically, when a

task τi blocks one or more higher-priority tasks, it temporarily assumes (inherits) the highest

priority of the blocked tasks. By doing so, it prevents medium-priority jobs from preempt-

ing τi and prolonging the blocking time of higher-priority jobs. Although the PIP bounds

the priority inversion phenomenon, the blocking duration for a task can still be substantial

because a chain of blocking can be formed. Another problem is that the protocol does not

prevent deadlocks. The Priority Ceiling Protocol is used to bound the priority inversion

phenomenon and prevents the formation of deadlocks and chained blocking. The basic idea

of this method is to extend the Priority Inheritance Protocol with a rule for granting a lock

request on a free semaphore. To avoid multiple blockings, this rule does not allow a task to

enter a critical section if there are locked semaphores that could block it. This means that

once a task enters its first critical section, it can never be blocked by lower priority tasks until
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its completion. For that purpose, each semaphore is assigned a priority ceiling equal to the

highest priority of the tasks that can lock it. Then, a task τi is allowed to enter a critical sec-

tion only if its priority is higher than all priority ceilings of the semaphores currently locked

by tasks other than τi. The Stack Resource Policy extends the Priority Ceiling Protocol in

three essential points: it allows the use of multi-unit resources, it supports dynamic priority

scheduling and allows the sharing of run-time stack-based resources. From a scheduling point

of view, the essential difference between the PCP and the SRP is on the time at which a

task is blocked. Whereas under the PCP a task is blocked at the time it makes its first

resource request, under the SRP a task is blocked at the time it attempts to preempt. This

early blocking slightly reduces concurrency but saves unnecessary context switches, simplifies

the implementation of the protocol, and allows the sharing of run-time stack resources [42].

Regarding the multi-processor platforms, the last two mechanisms are extended to the multi-

processor priority ceiling protocol (MPCP) [44] and the multiprocessor stack resource policy

(MSRP) [45] and they are the most popular for guaranteeing a predictable worst-case block-

ing time. A significant difference between MSRP and MPCP is that, when a task is blocked

on a global resource under MSRP, it busy waits and is not preemptable. This behavior is

referred to as a spin-lock. A FIFO queue is again used to grant access to tasks waiting on

a global resource when it is unlocked. MSRP provides both a bounded blocking time and

bounded increases in task execution times due to the spin-locks. The flexible multiprocessor

locking protocol (FMLP) [46] has been proposed. It is deemed to manage short resource

requests using a busy-wait mechanism (as in MSRP) and long resource requests using a sus-

pension approach (as in MPCP). Parallel-PCP is proposed in [47] for tasks scheduled using a

global fixed-priority preemptive algorithm. The multiprocessor hierarchical synchronization

protocol (MHSP) [48] is used to manage resource sharing for both partitioned and global

scheduling approaches.

1.4.2.2 Lock-free mechanisms

The Lock-free mechanisms appear as an alternative to lock-based mechanisms. Specifically,

lock-free mechanisms allow each reader to access the communication data without blocking.

A lock-free algorithms is proposed by Anderson et al. in [49] which are similar to those
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used in optimistic concurrency control in database systems. They allow immediate access

to the resource, but latter check to see if there was a conflict over this access. If there

was, then computations are abandoned and the resource is re-accessed. These algorithms

are therefore lock-free, but can involve looping while the task is waiting to gain conflict-free

access. To preserve the data consistency property, the µORB communication mechanism [50]

implements a lock-free mechanism. The issue regarding the bounding of the number of

retries (loop) is addressed in [49, 51]. Both mechanisms (lock-based and lock-free) have

in common that they are susceptible to causing some blocking of scheduling depending on

the working conditions. For lock-based, this would come from the blocking of the shared

resource while there is a task which has already entered the critical section. For lock-free, if

the communication is causally dependent, the one considered in [24, 52] for instance, where,

for a task τi to start its execution, a task τj must have already produced an output (dependent

tasks). Thus, if τi is late to produce the output (due to an eventual high number of retries)

then τj has to wait, and if the same happens repeatedly for the output of τj, this behavior

may turn into a blocking chain. In consequence, the use of lock-free mechanisms in both

hard real-time systems and model-based design is unsuitable, because of the large worst-case

blocking time limit and the high time penalty induced by the need to repeat the operation

in case of concurrent access. Therefore, in comparison to other mechanisms, there has been

only few results on the use of lock-free mechanisms for hard real-time systems since the lat

’90s [53].

1.4.2.3 Wait-free mechanisms

Wait-free mechanisms consider the shared resource to be a communication buffer capable

of holding more than one copy of data such that access to these data is possible with no

waiting (asynchronously) time while avoiding possible corruption of such data. Precisely,

the data producer and consumers are protected against concurrent access by replicating

the communication buffer and by leveraging scheduling information such as tasks temporal

characteristics, priority and scheduling priority [54, 55]. In wait-free mechanisms, the only

shared resource is the buffer index, which can be updated atomically or with a short critical

section. This way, these mechanisms avoid possible blocking of resources on writing or reading
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the data. Each job (whether of the producer task or of the consumer task) accesses the buffers

at its own pace based on its priority. In fact, it is ensured that every time a producer needs

to update the communication data, there is always a booked unused buffer slot to write in.

In other words, all the jobs having read from this slot will have completed their executions.

The solutions proposed in the literature falling into this category vary mainly in terms of

the buffer access policy and the required size per proposed solution. In [54] the authors

introduce a single-writer, multiple-reader wait-free algorithm using the Compare-and-Swap

(CAS) instruction which takes three operands as follows Compare-and-Swap (mem, v1, v2)

where the value v2 is written into the memory location mem only if the current value of mem

is equal to v1. Otherwise, the value at mem is left unchanged. It uses a global variable,

Latest, that indexes to the most recently written message buffer. Additionally, each reader

has an entry in a usage array indicating the buffer it is using. When the reader reads, it

first clears its entry, and then uses CAS to atomically set this to Latest if it is still cleared.

It then reads back the value from its entry, and can then safely read from the indicated

buffer. Chen’s algorithm requires p + 2 message buffers, where p is the number of reader

tasks. In [55], the authors propose three algorithms intended to improve the Chen’s wait-

Free algorithms proposed in [56], namely, the Improved Chen’s Algorithm, Double Buffer

algorithm and Improved Double Buffer Algorithm. These algorithms have the vocation

of taking advantage of the real-time properties of the communicating tasks to reduce both the

time and space overheads of class of wait-free single writer, multiple-reader inter-

process communication algorithms. According to the authors, at that time, the existing

wait free asynchronous algorithms have higher space overheads with a significant execution

overheads than the synchronization-based algorithms such the ones proposed in [56–59].

With consideration of the real-time properties of communicating tasks, the improved

Chen algorithm partitions the set of readers into two sets: the fast readers and the slow

readers. By doing so, this algorithm reduces the space required from p+2 to m + max(2;

n) where m is the number of slow readers and n is the number of buffers required by the

fast readers. Given that n is chosen to be less than or equal to the number of fast readers

(i.e. n ≤ p − m), the improved algorithm requires no more buffer space than the original

algorithm. In the worst-case (i.e., all readers are slow readers), the improved algorithm simply
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degenerates into the original algorithm. Also, the run-time overheads will be greatly reduced,

since the fast readers use the non-blocking writer mechanism [58] and the writer overhead

is linear to the number of slow readers only, rather than to all readers. Therefore, space

and time overheads can be reduced. In general, regarding the computation of the required

size of the buffer, two methods are mainly used, namely, the reader instance [54] and the

lifetime bound [54, 58] methods. The former relies on the computation of an upper bound

for the maximum number of buffers that can be used at any given time by reader tasks

while the latter is based on the computation of an upper bound on the number of times the

writer can produce new values while a given data item is used by at least one reader. The

reader instance method requires a buffer size equal to the maximum number of read task

instances that can be active at any one time (the number of read tasks if the delays of the

delays are not greater than the periods), plus two additional buffer. When all readers have a

lower priority than the writer, then only n+1 buffers are needed. This is taken into account

by the Dynamic Buffering Protocol, DBP, which ensures the data consistency with an

execution complexity of 0(n). On the other hand, regarding the lifetime bound method,

it is considered by the so-called Temporal Concurrency Control Protocol (TCCP). The

corresponding run-time complexity is evaluated to 0(1) while the number of required buffers

depends on the lifetime of the data.

Notice 5 In this thesis we consider the wait-free mechanism and the computation of the

required buffer sizes is based on the lifetime bound method especially for its lower run-time

complexity.

1.4.2.4 Read-Execute-Write mechanism

This mechanism is based on the read-execute-write semantic. According to this semantic,

each reader task makes a copy of each of its input resources which are used throughout the

execution including when the the task resumes after being preempted by higher priority tasks.

At the execution completion, the output data are written back to the corresponding shared

variable. So, instead of allowing an explicit (direct) access to the communication resource, this

mechanism envisages an implicit (indirect) access. The communication models resulting from

these data access strategies are referred to as explicit and implicit communication models.
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For explicit communication models the data consistency is ensured either by setting the

shared resource mutual exclusive and then applying the lock-based mechanisms or setting

the shared resource non-mutual exclusive and using the lock-free mechanisms. Herein,

the executing task is allowed to access directly the shared resource to read/write the values

anytime a read or write operation to the resource is demanded. This results in uncertainty,

since the exact point in time the resource access is performed depends on the respective

execution path of the task [60]. An example of an explicit inter-tasks communication model

is presented in Figure 1.11 where 3 tasks τ1, τ2, and τ3, communicate through the shared

resource r1 such that τ1 is the producer, τ2 and τ3 are the consumers. All the tasks are assumed

to have implicit deadlines, scheduled using the task-level fixed priority policy. The followings

are their timing parameters values: τ1(1, 3), τ2(1, 5) and τ3(5, 15); the first parameter is the

worst-case execution time while the second is the task period. The notations fr(t1, t2, · · · )

where t1 and t2 are the time instants such that t1 < t2, correspond to the different activation

time instants (the first activation). Analogically, since we consider a preemptive scheduling

algorithm, rs(t1, t2, · · · ) corresponds to the time instants where the jobs of a given task

resume from being preempted by the ones of the higher priority tasks. The same applies to

the writing time instants of the producer tasks denoted by wr(t1, t2, · · · ). To preserve data

consistency, τ1 must be denied permission to write into r1 if there is a job of τ2 or τ3 currently

executing, otherwise, it may cause data overlapping.

τ1 r1

τ2

τ3

· · ·

· · ·

fr: first reading instant
rs: resume instants
wr: writing instants

wr(1,4,7,10)

fr
(1

,5
,1

0)

fr(2)

rs(4,7,11)

Figure 1.11: Example of an explicit access to the shared register.

Data overlapping occurs if, by the time a job of the consumer resumes and needs to read

the data, it finds that the producer has already overwritten the data initially used. The

lock-free mechanisms address this problem but may cause blocking with the possibility of
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disturbing the scheduling of tasks. For a single size shared resource, an other alternative

avoiding any interference to the tasks scheduling is the implicit communication model. The

implicit communication model is ensured in a way that, before using a data, each job of the

consumer task must first copy the data from the global variable into a location accessible for

this job only (a local copy of the variable). Further, during the execution run-time this job

uses the data from the local copy. In Figure 1.12 we depict the stages involved in the implicit

communication. In this figure we have 3 tasks τ1, τ2 and τ3 communicating via a shared

resource r1. The figure is divided into two parts by the horizontal axis. The part below the

axis shows what happens at the activation and completion times for a job of a consumer task.

The upper part of the figure shows the handling of the copied data during the job run-time

interval. So, considering the shared global resource r1, at the very first activation, each job

of its jobs it makes a copy (cIni) of the data being into the shared global variable r1. During

the execution time, including resumes from preemptions, this job will continue to use the

copied data. So, even if the τ1 generates new data, it simply overwrites the value within the

global variable r1. At the execution completion, the output result written into the cOuti
is copied back to the corresponding shared global variable. The implicit communication

model is implemented in AUTOSAR [7].

τ1 r1 τ2

τ3

cIn2 exc2 cOut2

· · · · · ·

cIn3 exc3 cOut3

Run-time interval
Activation/completion

fr: first reading instant
rs: resume instants
cIni: Copy of R1 made by τi
cOuti Output result copy of τi
wr: writing instants

wr(1,4,7,10)

fr(1,5,10)

fr(2)

rs(4,7,11)

Figure 1.12: Example of an implicit access to the shared register.
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Although guaranteeing data consistency, this communication model has some drawbacks

such as dynamic memory allocation of local variables that is not predictable but also the

significant access latency which dependent on multiple factors including, the cost of access to

remote and local memory, number of accesses to the label during one execution to the local

memory, and the period/activation rate of the task. However on the memory storage front,

more local storage is required, since for every task which accesses the label, an extra local

copy is required [29]. This result in long buffering segments [61].

Into this category falls also the Logical Execution Time (LET) [62] paradigm. LET

considers that the reading of the data is done at the job release time whereas the generated

output data is available only at the end of the period. Precisely, a data produced during the

kth period can only be read by a job activated at the beginning of the (k+ 1)th period. LET

paradigm stems from the Giotto [63] programming formalism. This communication model

is deemed to be predictable provided that the writing and the reading instants happen at

predictable instants (at the beginning of the period and at the end of the period). That being,

LET suffers from the largest propagation delays [30, 64] and, the same way as the implicit

communication model [7], LET requires local copies to temporally store the produced output

data until the next period.

1.4.3 End-to-end data properties

The data properties required to be maintained at the level of the functional chain, also

referred to as end-to-end properties, determine the amount of time required for a data

to propagate from the first task until the last one with a positive (correct) impact on the

system functioning. This amount of time, also referred to as end-to-end propagation delay,

must be within a bounded time interval. Over the last decades the verification of the end-

to-end data properties constraints has been the subject of several results in the literature,

where authors are interested in computing the worst-case, the best-case or the average end-to-

end propagation delays for a given functional chain. In [36] the authors propose a framework

distinguishing different meanings of end-to-end timing depending on the system requirements.

For instance, control engineers are mostly concerned with the maximum age of data which

is the worst-case timing of the latest possible signal while in the body electronics, the first
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reaction is key, i.e., the worst-case timing of the earliest possible signal. Herein, four different

end-to-end timing semantics to characterize the timing delays of effects in the context of multi-

rate tasks communicating through shared register are described and computed. Generally,

the end-to-end properties regarding a single functional chain are verified on the basis of

different end-to-end delay metrics such as age latency and reaction latency.

On the other hand, verifying end-to-end data properties goes beyond the consideration of

a single functional chain by examining the end-to-end properties of data propagating through

different functional chains. As an example, in [27] the authors propose two configurations

of functional chains, namely the divergent and convergent functional chains.

An example of the divergent functional chains is shown in Figure 1.13 while an example

of the converging functional chains is shown in Figure 1.14.

τi

τ1,i+1 · · · τ1,n1 : C1
r1,i+1 r1,n1−1

τ2,i+1 · · · τ2,n2 : C2
r2,i+1 r2,n2−1

...

τk,i+1 · · · τk,nk
: Ck

rk,i+1 rk,nk−1

Figure 1.13: Example of k diverging functional
chains.

C1 : τ1,1 · · · τ1,n1−1
r1,1 r1,n1−2

C2 : τ2,1 · · · τ2,n2−1 τn
r2,1 r2,n2−2

...

Ck : τk,1 · · · τk,nk−1
rk,1 rk,nk−2

Figure 1.14: Example of k converging func-
tional chains.

From the example presented in Figure 1.14, a converging task τn reads the data propa-

gating through k functional chains where each of the functional chains has a different source

task. Each functional Cj, ∀2 ≤ j ≤ k is composed of nj tasks. Reversely, from the example

presented in Figure 1.13, the data produced by the task τi propagate from τi until the last

task τj,nj
, ∀2 ≤ j ≤ k where nj is the number of tasks composing the functional chain Cj.

In both examples, rj,i is the resource shared between the tasks τi and τi+1 both belonging to

the same functional chain Cj, ∀j ≤ k.

Regarding the verification of different end-to-end constraints for the convergent and di-

vergent functional chains, authors in [25] addressed the latency and freshness analysis applied

to the Integrated Modular Avionics (IMA) architectures. Herein, the latency corresponds to

the time elapsed between an event at the beginning of a functional chain and the first event
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depending on it at the end of the chain while freshness is looked at as the time between an

event at the end of a functional chain and the earliest dependent event at the beginning of

the chain. In [26], the authors address the worst-case temporal consistency in Integrated

Modular Avionics Systems. A temporal consistency constraint verification is required be-

tween divergent functional chains sharing at least a data at their beginning. A temporal

consistency requirement between convergent functional chains is expressed on chains sharing

at least a data (and the function processing the data) at their end. Although the authors

address the problem related to the verification of the aforementioned end-to-end data prop-

erties constraints, it follows that each of the verification of theses properties for convergent

and divergent functional chains is dealt with in isolation.

Moreover, in the practice, both the convergent and divergent functional chains may be met

in one configuration that we referred to as the spindle propagation chains. An example

of such a configuration is presented in Figure 1.15. For such a configuration, the data to

be used by the converging task should be originally produced by the diverging task (with

reference to convergent and divergent functional chains).

τi

τ1,i+1 · · · τ1,n1−1
r1,i+1 r1,n1−2

τ2,i+1 · · · τ2,n2−1
r2,i+1 r2,n2−2

...

τk,i+1 · · · τk,nk−1
rk,i+1 rk,nk−2

τn

r i

ri

r
i

r1,n1−1

r2,n2−1

r k,n
k
−1

Figure 1.15: Example of the spindle propagation chains

Regarding a spindle, the goal of this thesis is to guarantee that the spindle fine task will

associate only data resulting from the same execution step of the spindle source task. This

property consisting in associating only the data resulting from the same execution step of

the producer is referred to as data matching property. To ensure such a property, we

first need to compute the end-to-end latency and the sizes of the waiting buffers at the end

of each chain. In the real-time literature several solutions regarding the end-to-end latency
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τsensor β1

τcdc

β2

τipa
img

im
g p

imgc

img
p ’

img
p ’

img: Image sensed by τsensor
imgp: The peripheral part of img
imgp’: The peripheral part of img
imgc: The central part of img

imgc + imgp’

Figure 1.16: Data matching motivating example.

computation exist such as those presented in [25]. As for the data matching issue, this

problem has been addressed by Pontesso and al. in [65, 66] in a context different from that

of this thesis while considering different assumptions.

To illustrate the need to guarantee this property, we present below the example of the

FADE system [67] which is considered in RTMaps tools [68].

Example 2 (Data matching property example) FADE is a vehicle detection and track-

ing system composed of a set of image processing components in charge of detecting the

characteristics (detection of shadows, headlights, etc.) related to the presence of a vehicle in

the neighborhood (Figure 1.16).

The system is composed of the image acquisition component, the crop and decimate

component and the image processing component denoted, respectively by τsensor, τcdc and

τipa, respectively.

The task τsensor captures the image of the object in the neighbourhood in high resolution.

The central part of the image is more clear (imgc) and easily identifiable while the periphery

of the image (imgp) not very clear. In order to increase the object identification accuracy, the

task τcdc gets the imgp as input data, performs a deep analysis on it and the output result,

denoted by impp’ is written into the buffer β2. Finally, the task τipa combines imgc and imgp’

and infers the identity of the crossing object.

Obviously, the associated parts of the image are shifted by a certain delay induced by

the processing of the τcdc depending on the sampling periods of all the tasks involved in this

identification. In order to avoid potential performance degradation, the τipa instances must
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read the data resulting from the same execution step of the τsensor. Otherwise this may lead

to incorrect results. However, the challenge here is twofold:

• the system of tasks may be multi-rate; that is, the communicating tasks have different

periods which may leads the lost of some unused data. That being, it follows that the

concerned functional chains may have different propagation delays. Assuming that the

propagation delay of τsensor
β1−→ τcdc

β2−→ τipa is always that the one of τsensor
β1−→ τipa,

at the release of a job of τipa it may happen that the corresponding part of imgp’ is

already overwritten from β1. So, what should be the size of β1 and the data access

strategy guaranteeing that τipa always finds the corresponding parts of the image and

of-course retrieves the ones resulting from the same execution step of τsensor.

• if the system of tasks is scheduled preemptively, how to guarantee that none of the

combined data is corrupted as shown in Figure 1.9. Data corruption here means com-

bining the old and the new parts of the data (data overlapping). Of-course this is an

undesirable case as it might lead to erroneous results or performance degradation.
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2.1 Related work

Unmanned aerial vehicles (UAVs) are an important tool for both military and civil areas.

These machines are characterised by their agility, versatility, low cost and easy-to-deploy

properties. According to their usage, UAVs can vary in size, shape, computational power,

number of sensors and cameras, speed and maneuverability. Whatever the features they

have, each UAV can be interpreted as a cyber-physical system (CPS) which executes the

internal loop consisting of initial data acquisition, information exchanging, decision making
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and the final execution. CPS achieves the tight coupling between the cyber domain and the

physical domain by strictly embedding the cyber processes into the physical devices. Thus,

the reliable, real-time and efficient monitoring, coordination and control to the physical

entities can be conducted through the closed loop. For example, in the UAV networks, the

data sensed by the sensors originate from the physical world (i.e., its mission circumstance),

and the final decisions, made by computation and conveyed by communication, are translated

into instructions and eventually take effects on the physical world through the actuators.

In this chapter we present related work with respect to the contributions on UAV as

cyber-physical systems while concentrating on the communication and network components.

Nowadays, the use of CPSs evolved from military to almost every domain of our life,

like transportation, energy, healthcare and manufacturing [69]. The principle of CPS is to

monitor and control the physical world by integrating the cyber processes, including sensing,

communication, computation and control, into physical devices. All these functionalities can

be seen as an extension of control systems and embedded systems [70].

The belonging of UAVs to the cyber world can be proven by the UAV’s features and

functionalities. Usually, an UAV has an on board unit responsible for computation, one

or multiple sensors and actuators used mainly for navigation, and a network capable of

transmitting data between the others components of the UAV or towards exterior devices.

For a better formalisation, we present in the following the main components of an UAV:

• the hardware, belonging to the physical domain, which directly interacts with the cyber

and physical world by sensing and actuating, or provide computation and communica-

tion capabilities. It may include the sensors, actuators, computation chips, communi-

cation equipment and so on;

• the software, belonging to the cyber domain, which is used to manipulate the hardware,

as well as analyze the data and make decisions. It may include the embedded operating

systems, application programs, functional algorithms and so on;

• the wireless communication network, belonging to the cyber domain, which is respon-

sible for exchanging and sharing information among the entities in the system. It may

include the communication modules, standards and protocols (e.g.,the medium access

control (MAC) and routing protocol);
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• the cloud service platform, belonging to the cyber domain, which is a highly integrated,

open and shared data service platform. It can be a cross-system, cross-platform and

cross-domain information center which incorporates data distribution, storage, analysis

and sharing.

2.1.1 Communication and control system in UAVs

From the CPS perspective, an UAV network is an integration of sensing, communication,

computation and control. In detail, sensing introduces the original data in to the UAV net-

work from the physical world. Communication drives the data to flow inside of the UAV

network, which guarantees the information distribution and sharing, and thus a global ana-

lyzing and deciding. Computation is the key of analyzing and decision making based on all

the acquired information, while control focuses on translating the decisions into instructions

through the actuators acting on the real world finally. We observe that the communication is

the link between the other three elements of the system while the control is the one allowing

the UAV to function properly. Communication and control play a major role in safe and

efficient coordination of the UAV.

We can divide the external communication in two categories: (i) UAV to UAV commu-

nication and (ii) GCS (ground control system). For both of these communication types,

different data are exchanged and according to the data type, in [71] the author presents a

classification of three types: control traffic, coordination traffic and sensed traffic. The con-

trol traffic exchange enables the GCS to monitor and influence the behaviors of the UAVs.

It includes the mission commands and flight control messages from the GCS to UAVs and

the status data of the UAVs (e.g., the health status and telemetry data,including the inertial

measurement unit (IMU) and global position system (GPS) information). The coordination

traffic means any data that needs to be exchanged for local decision making, cooperation and

collision avoidance, without explicit input from the GCS. This kind of traffic may include

the telemetry data, way point, mission plan and so on. The sensed traffic encompasses the

on board sensor data used to measure the physical environment, which is transmitted to the

GCS considering that on board analysis of the sensor data may not be reasonable. It in-

cludes data transmission of various size (from weather sensor readings to high-quality images
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and videos) for real-time monitoring on the front line, and decision making or post-mission

analysis in the GCS.

In the survey papers [72] and [73] the authors underline the communication challenges

caused by the high mobility and energy constraints of UAVs. Some examples of such chal-

lenges are: intermittent links, fluid topology, Doppler effect, complicated antenna alignment

and vanishing nodes.

The control is responsible for the precise execution, which is embodied in a series of ac-

tions that affect the UAVs themselves and the physical world. The closed-loop data flow ends

at control, and the previous sensing, communication and computation make sense only when

the decisions are translated into instructions on the actuators and finally make a difference.

In the rest of this section, we care more about the flight control of the UAVs, which is the

precondition of the task execution.

The control to the UAVs varies with the UAV forms, such as the fixed-wing, multirotor,

monorotor/single-rotor, airship and flapping wing. They would suffer different aerodynamics,

and are designated with different missions according to their characteristics as mentioned in

[74, 75]. For the specific missions, the control may include the macro flight control decisions

(e.g., the path planning and formation control) and the micro executions of the actuators

(e.g., the motors and rotors) according to the generated instructions.

The flight controller, also known as autopilot system, is the core component of an UAV.

It is normally used to realize the autonomous flight control, including the attitude stabiliza-

tion, fight waypoint generation, mission planning and so on [76]. In order to achieve these

functions, the flight controllers need the hardware and software supports concurrently. The

former mainly contains the on board computers,inertial measurement units, various sensors,

GPS modules, communication devices, power management modules and so on [77], and the

latter usually includes the task allocation, path planning, waypoint generation, attitude con-

trol and signal processing algorithms [78]. The flight controllers enable the UAVs to develop

from the simple remote-controlled aircrafts to the fully autonomous and intelligent aircrafts.

Some examples of open-source flight controllers are: Paparazzi, PIXHAWK, Phenix Pro,

OcPoC, DJI A2, NAVIO2 and Trinity. These controllers are reviewed in [76, 79, 80], while

the PIXHAWK is detailed in this document being the chosen platform for the experimental
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part of the thesis.

In order to guaranty a stable, smooth and safe flight from take off to landing, the control

relies on flight control algorithms. Depending on the type of UAV and the mission

supposed to accomplish, these algorithms vary in functionality, size and reliability. In [81–

83], the authors survey the existing algorithms and present the main challenges that they

encounter (e.g. static instability, need of fast control response) for both linear and non-linear

approaches.

2.1.2 Coupling effect in UAVs

In the UAV networks, with a data flow-based closed loop being built, the cyber-domain

components and the physical-domain components are tightly coupled. In this section we

present the three types of coupling: computation-communication, computation-control and

communication-control. For each of these relations we describe the main influences as well

as the existing literature improving the UAV’s performance relying on these couplings.

2.1.2.1 Computation and communication

Computation and communication are promoting each other through the fact that communi-

cation contributes to computation while computation boosts communication.

The impact of communication on computation is straight forward by the fact that the

input and output of computation are obtained and announced through communication flows.

In a hard real-time system, the performance of communication has a high impact on com-

putation, with tasks that need to finish execution between a certain deadline and for which

an abnormal jitter can hinder the success of the task. Moreover, in a large scale network

consisting of UAVs with high computation power, the cooperative computing and the swarm

intelligence could be boosted by the communication network among the individuals.

Moreover, computation enhances communication, and is expected to unlock, at least ap-

proach, the communication bound. There are many researches focusing on embedding the

computation into communication to improve the communication and the networking perfor-

mance for the UAVs, in other words, exchanging for communication using the computation.

They can be classified into two categories, which adopt quite different methods. The first
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category enhances the performance of the exact communication and networking themselves,

from different layers of the network. Some intelligent algorithms are adopted to cope with the

challenges, such as low latency and high transmission rate requirements, which are brought

by the intrinsic features of the UAVs (e.g., the frequent topology changes and status interac-

tions, and also the high-resolution image or video transmissions). In the second category, the

results concern on lessening the communication quantity and overhead in the whole system,

considering the cost of communication. The agent decision technology is introduced to let

UAVs decide whether to, when to, what to, and whom to communicate [84–88].

2.1.2.2 Computation and control

In the UAV networks, control highly depends on computation since the control decision

making are usually undertaken by the on board computer, and the computation outputs, are

directly translated into continuous signals and fed to the actuators. One method to boost the

computation and, subsequently the control, is for the UAVs to be equipped with performant

hardware (e.g. high-performance processors, fast and large memory).

Another possible approaches decreasing the complexity of the nonlinear control design

is to adopt learning algorithms, allowing the training of suitable control actions. Such al-

gorithms that enhance the flight control through computation belong (and are not limited)

to classes of algorithms like fuzzy logic-based flight control algorithms [89–91], artificial neu-

ral network-based flight control algorithms [92, 93] and reinforcement learning-based flight

control algorithms [93–95].

The enhancement of control for UAVs in formation can be achieved through bio-inspired

algorithms [96] or through artificial intelligence algorithms [97].

2.1.2.3 Communication and control

Communication and control are also two tightly coupled components, and they constrain

and promote each other. As the intrinsic feature of the UAVs, the three-dimension mobility

is dominated by the flight control, which brings more challenges to the communication and

networking. In return, the flight control also creates a novel method to solve the problems in

communication by integrating the physical domain, e.g., location changes, other than only
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adjusting the communication parameters.

It has been shown that a communication scheme needs to be adopted to increase the

aggregated maneuverability of mobile agents [98]. At the same time, the performance of the

communication has a significant effect on the flight control of the UAVs. For example, the

communication delay may bring the risk of collisions in a UAV swarm [99]. In return, the

communication also rely on the flight control. The communication network among the UAVs

is guaranteed by the optimal topology control, or at least, the proper distance maintenance

between each node, which should be considered when doing the formation control.

Communication and control also promote and benefit from each other. Intuitively, the

performance improvement of the communication motivates the formation control by effi-

ciently delivering the status among the UAVs. Thus, dramatically, flight control of the UAVs

may benefit a lot from the existing researches which focus on dealing with the communication

challenges exactly brought by it [100, 101].

In Section 2.2 we present the PX4 autopilot which is the main component of PIXHAWK

control system. We use this autopilot to exemplify the coupling between the control, com-

munication and computation for a precise use case.

2.2 The PX4 autopilot

PX4 is an autopilot developed by world-class developers from industry and academia, and

supported by an active world wide community, it powers all kinds of vehicles from racing

and cargo drones through to ground vehicles and submersibles [52]. Being an open source

autopilot flight stack, it has been considered by the CEOS project partners with the intention

of carrying out the critical missions on the highly reliable drones. The main improvement

expected at the end of this project is to transform the current version of PX4 into a real-time

version that further called PX4-RT. This task is being accomplished within INRIA 1 research

center by the KOPERNIC 2 team.

1French Institute for Research in Computer Science and Automation
2Keeping worst-case reasoning appropriate for different criticalities. The KOPERNIC team deals with

the problem of studying time properties (execution time of a program or the schedulability of communicating
programs, etc.)
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The PX4 structure consists of two main layers: the flight stack and the middleware.

The flight stack is an estimation and flight control system while the middleware is a general

robotics layer that can support any type of autonomous robot, providing internal/external

communications and hardware integration.

All PX4 air-frames share a single code base, including other robotic systems like boats,

rovers, submarines etc. The complete system design is reactive; all functionality is divided

into exchangeable and reusable components and communication is done by asynchronous

message passing.

The diagram in Figure 2.1 provides a detailed overview of the building blocks of PX4.

The top part of the diagram contains the middleware blocks, while the lower section shows

the components of the flight stack.

2.2.1 The Flight Stack

The flight stack is a collection of guidance, navigation and control algorithms for autonomous

drones. It includes controllers for fixed wing, multirotor and VTOL airframes as well as

estimators for attitude and position.

The diagram in Figure 2.2 shows an overview of the building blocks of the flight stack. It

contains the full pipeline from sensors, RC input and autonomous flight control (Navigator),

down to the motor or servo control (Actuators). We enumerate the roles of the main sub-

systems:

• An estimator takes one or more sensor inputs, combines them, and computes a vehicle

state (for example the attitude from IMU sensor data).

• A controller is a component that takes a setpoint and a measurement or estimated

state (process variable) as input. Its goal is to adjust the value of the process variable

such that it matches the setpoint. The output is a correction to eventually reach that

setpoint. For example the position controller takes position setpoints as inputs, the

process variable is the currently estimated position, and the output is an attitude and

thrust setpoint that move the vehicle towards the desired position.

• A mixer takes force commands (e.g. turn right) and translates them into individual

motor commands, while ensuring that some limits are not exceeded. This transla-



2.2. THE PX4 AUTOPILOT 41

Figure 2.1: The PX4 High-Level Software Architecture
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Figure 2.2: The PX4 flight stack diagram

tion is specific for a vehicle type and depends on various factors, such as the motor

arrangements with respect to the center of gravity, or the vehicle’s rotational inertia.

In the following sections we present the diagrams for the main PX4 controllers.

2.2.2 The middleware architecture

In this section, we describe the internal communication middleware architecture of the

PX4 system, consisting of the internal and external communication mechanisms. The in-

ternal communication mechanism ensures communications between the PX4 modules/tasks

while the external communication mechanisms enable communication between the system

PX4 systems and the off-board companion computers as well as the Group Control System

(GCS). The PX4 internal communications are based on the µORB (micro Object Request

Brocker) [50] communication mechanism, while the external communications are handled by

the MAVLink or RTPS communication mechanisms. Given that in this thesis we focus on the

internal communications, their management within the PX4 system is going to be extensively

described in the following section. Regarding the external communications, the readers are

invited to refer to [102] for MAVLink and [103] for RTPS for more details.

The µORB is an asynchronous messaging API following following the publish/subscribe

paradigm [50, 104–107]. Modules communicate by passing or receiving messages where each

message is called topic. Publish and subscribe communication systems are widely used in

distributed systems. In contrast to the traditional point-to-point model such as client-server,

the publication/subscription model decouples the publisher and the subscriber in time, space,

and synchronization [106]. The producer publishes the topics to which consumers of these
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topics will subscribe. Precisely, when the producer publishes new news events related to a

specific topic, the server (the event brokerage system) distributes and notifies the consumers

of the arrival of the new events. Therefore, each consumer can access the publications asyn-

chronously, anytime and anywhere, at their convenience. The publish/subscribe model is

relevant when the date transfer is shared out between of many consumers, events or data

updates are not frequent, when events are common interest or when the deadline is shorter.

Conversely, the public/sub model is not appropriate when consumers rarely use published

data. While the publish/subscribe model is widely used in distributed systems, its imple-

mentation is domain-dependent. For instance, Tripakis and al. [107] has implemented it in a

real-time system in a completely different manner compared to the one adopted in PX4 [52],

which is not subject to real-time constraints. And, of course, this is also true for the costs

in terms of memory and CPU overhead. Accordingly, below we describe the implementation

of the publish/subscribe model within the PX4 system. This description is made having in

mind the calculation of the memory space consumption, the ease of implementation in an

embedded real-time system and the cost to be paid to guarantee the data properties deemed

necessary for the efficient functioning of the entire system according with respect to this

thesis purposes.

2.2.2.1 The µORB topics management

As an example of topic data structure, it is shown in the figure 2.3 where the follow_target

topic is considered. All topics are stored locally in the directory "msg/". This directory

contains as many files as there are topics in the system provided that there is one file per topic.

Each topic file has the extension .msg. The naming of these files follows the following rule:

for a subject named topic_name the name of the corresponding file will be topic_name.msg.

For example, considering the topic vehicle_attitude_setpoint, its corresponding file is

named vehicle_attitude_setpoint.msg. Besides the list of files per topic, the directory

"msg/" contains also the file CMakeLists.txt. A non-exhaustive list of topic files contained

in the "msg/" directory is shown in Figure 2.3.

The file CMakeLists.txt is the debugging entry. Basically, once the system is debugged,

each topic file is converted to a C/C++ header using the genmsg_cpp library. The correspond-
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ing headers are stored in the "uORB/topics/" directory. A list of the corresponding C/C++

headers is shown in Figure 2.4.

Figure 2.3: The non-exhaustive list of
the µORD topics in the local directory

Figure 2.4: The C/C++ header de-
rived from the topic depicted in Fig-
ure 2.3

The µORG communication mechanism is internally based on the read, write and ioctl

file descriptors used to manage the subscription to topics.

2.2.2.2 The µORB topic implementation

The code generator (genmsg_cpp) transforms each topic file content in a structure that the

compiler C/C++ can recognize. Such transformation follows a number of implementation rules

set to enhance and manage the communication between modules/tasks. Before going into

detail, let us examine the content of the topic file follow_target depicted in Figure 2.5 and

its corresponding C/C++ header shown in Figure 2.6.
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Figure 2.5: The follow_target.msg file content

1 s t r u c t fo l low_target_s

2 {

3 uint64_t timestamp ;

4 double l a t ;

5 double lon ;

6 f l o a t a l t ;

7 f l o a t vx ;

8 f l o a t vy ;

9 f l o a t vz ;

10 uint8_t esc_cap ;

11 uint8_t _padding [ 7 ] ; // r equ i r ed f o r l o gg e r

12 } ;

13 ORB_DECLARE( fo l l ow_targe t ) ; // Reg i s t e r s the ORB s t r u c t .

14

Figure 2.6: Exploring the follow_target.h header content

The statement 12 of the code shown in Figure 2.6 is used for registering a topic meta-

data structure . In the present case this metadata is for the topic named follow_target.

The structure of an orb_metadata 3 is shown in Figure 2.7. Each orb_metadata struc-

ture encapsulates another structure for storing the topic data values like the one depicted

in Figure 2.6 namely follow_target_s. Each nested data structure must comprise the

uint64_t timestamp field used for logging during the data publication. Additionally, the

_padding0[x] field member is included to store the structure padding addresses 4.

3orb_metadata= object request broker metadata
4In order to align the data in memory, one or more empty bytes (addresses) are inserted (or left empty)

between memory addresses which are allocated for other structure members while memory allocation. This
concept is called structure padding.
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2.2.2.3 The topic implementation cost

Within this section we show how expensive in terms of memory used to implement a single

orb_metadata. For that purpose we use the follow_target topic as an example while

considering the main structure of the orb_metadata which is presented on the Figure 2.7.

1 s t r u c t orb_metadata

2 {

3 const char ∗o_name ;

4 const uint16_t o_size ;

5 const uint16_t o_size_no_padding ;

6 const char ∗ o_ f i e l d s ;

7 } ;

8

Figure 2.7: The structure of the orb metadata

where

• o_name is a unique name assigned to each orb_metadata. In the present case this name

is follow_target. The memory space allotted to store this name is equal to 14bits.

• o_size is the size of follow_target_s. The size required to store this structure

including the padding addresses while no leaving free addresses between members (using

of the pragma 5 directive) is 384 bits.

• o_size_no_padding is the object size without padding at the end needed. In result,

328 additional bits are required.

• o_fields is the semicolon separated list of fields with their types. The array of all

fields in a semicolon separated list. In our example this chain of characters contains

the following elements:

uint64_t timestamp;double lat;double lat;float alt;float vy;float vx;float vz;uint8_t

est_cap. This array costs 760 bits of memory space.

The memory space consumed by the only follow_target metadata is equal to 1486 bits,

which is too much.
5#pragma directive can be used for arranging memory for structure members very next to the end of

other structure members.
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2.2.2.4 Communication management between modules

The purpose of this section is to analyze the easiness/complexity of the implementation

of such a mechanism and its ability to comfortably satisfy the data property constraints

considered in this thesis with respect to the real-time version of the PX4 system.

2.2.2.4.1 Notions and formalization

As previously mentioned, the µORB communications are based on shared files in which new

data samples are published and from which subscribers read the necessary input data. The

reading of the data is performed over an active pooling on the file, i.e. when a subscriber

module task is triggered, it tries to read from each of its input files and, if there is no new

data published since its previous completion, this task pins down until new data is produced.

One of the consequences of this operating strategy is that it may lead to chain blocking,

which is not desirable for real-time systems where the tasks are scheduled in a timely and

predictable manner.

As for file management, within the µORB API, each topic owns a unique file used to store

the data samples related to the corresponding metadata. Consequently, the system contains

as many files as there are topics. These files are contained in a file map that we refer to as

F = {fi, fi+1, · · · , fmf}

where fi is the file related to the metadata of index i and mf is the maximum number of files

that can be contained in F . As a matter of fact, maximum number of files (topics) supported

by the PX4 system is 365. Each fi has the capacity of storing a number qSize of nodes at

a time instant such that

fi = {nodei,0, · · · , nodei,qSize−1}

where nodei,j|j∈[0,qSize−1] is the node located in the jth part of fi. A node consists in a set

of a data sample and its handler. That is, each produced data sample is associated with its

handler to form a node which is registered and published.

Accordingly, let datapi be the pth produced data sample related to the metadata of index i,
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∀p ∈ N+. Assuming that the handler of this data is dHandler, the corresponding is denoted

by nodepi such that

nodepi = 〈datapi , dHandler〉

For a good understanding of the meaning of datapi , we refer to the example presented

in Figure 2.6 where the follow_target topic is considered. The corresponding metadata

has a nested data structure named follow_target_s comprised of the following members:

timestamp, lat, lon, alt, vy, vx, vz, esc_cap and _padding0. A data sample (i.e datapi ) is

made up of the values assigned to each of these variables except the one of _padding0.

2.2.2.4.2 The µORB data management life-cycle

The Figure 2.8 depicts the data state transition diagram for the µORB communication

mechanism. The µORB data state transition diagram is composed of 3 main steps, namely

Node registering/unregistering, communication broking and data unpacking and reading.

At the execution completion or during the context switch the module publishing the data

samples related to the metadata of index i writes a new data sample, that we denote by datapi
where p stands for the pth produced data, ∀p ∈ N+. The data handler generator associate

to this data a handler dHandler that will be referencing this data throughout its existence.

The combination of this data sample and its handler form a node which is copied into the

corresponding waiting queue denoted by pQueuei. In order to avoid redundant publications

of a same node, by default, each node inserted into this queue has the publication status

set false. A published node has the pStatus status set to true and should no more be

published. This is represented by 〈nodei,p, pStatus〉. At this same stage, all the nodes that

were containing the data used by the latter during its execution are destroyed/unregistered.

The communication broker server periodically checks for new nodes and publishes them

and, when a node is successfully published, all the subscribers are informed of the availability

of this new data. From this moment, subscribers that are waiting for the new data to

be published can start their executions (Execution start stage). Precisely, publishing a

node consists in copying the node from the publication queue to the file associated with

the corresponding metadata considering that each metadata owns a separate file. So for a
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metadata of index i the file meant to store its nodes is presented as sQueuei.

At the execution start stage, each module subscribes to all the topics it is supposed

to subscribe to. So regarding the metadata of index i, the released module retrieves the node

nodesi from the file fi ∈ Queuei. During the module execution time, if no new data samples

are published (with respect to a topic/metadata), the corresponding file keeps the uStatusi 6

set to false, by default.

nodeReg nodepi

Completion or

Context Switch

pQueuei

sQueueinodei,s

Execution start

da
ta

p
i

dHandler 〈nodepi , pStatus〉

〈fi, uStatusi〉

Publication

data
si

Update Check

Subscription

unreg.

Node registering

Communication
broking

Data retrieving/reading

Node
unregistering

Figure 2.8: The µORB data state transition diagram

As for publications, this mechanism is used to monitor whether there have been any

new publications since the beginning of the reading process. Therefore, with respect to the

execution of a given module, at the end of reading, the module checks if there are no new

publications regarding this metadata. With respect to this metadata and this module, if

uStatusi is still false it shows that no new data have been published since the beginning of
6uStatusi is the update status of the file of index i
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the previous reading and the module can continue processing the module codes. Conversely,

if uStatusi status has changed to true, it shows that there have been new publications and

the module must start reading again until the end of the reading happens before any new

publication.

On the other hand, from the notation nodesi , the value of s is the number of the node

recently inserted into fi. In fact, since there may be numerous nodes queued into fi, s is the

number of the last published node with s ≤ p. At a time instant t, the equality s = p shows

that, since the reading of the sth data sample (with respect to a given subscribing module),

no other data sample is been produced after the registration of the node encapsulating the

datai,p data sample. Similarly, if s < p, it means that there p−s data samples registered into

pQueuei (and probably having been published sQueuei and waiting to be consumed) since

the beginning of the sth data sample reading.

2.2.2.4.3 Data freshness and consistency maintenance

The data freshness property is easily guaranteed based on the data handler number. In-

deed, each time a subscriber is triggered, it retrieves the node with the highest publication

number (s) from each input queue (sQueuei for instance). Regarding the data consistency

property, the µORB mechanism being managed asynchronously, this property ensured by

implementing a lock-free mechanism [52]. No doubt about the feasibility of this mecha-

nism in terms of maintaining this property and the µORB mechanism, in parallel to this

lock-free mechanism, it uses a double buffering; separate buffer between a publisher and a

subscriber [52].

However, as we are moving from a non-real time version to a real-time one, below we try to

evaluate the efficiency of such an implementation, for a system subjected to strict real time

constraints. In the real-time literature the lock-free mechanisms refers to the mechanisms

that manage the shared resource in a way that each reader accesses the communication

data without blocking and, at the end of the reading operation, it performs a check to see

if no concurrent operations by the writer have happened in order to guarantees the data

consistency without blocking on the shared resource. In the cases that these operations have

taken place, the reader repeats the operation with the possibility of upper bounding these
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retries [49, 51]. Although these tries can be bounded, it can only be possible if the system is

predictable, which is not the case for the non-real time version of the PX4 system.

2.3 The thesis context

This thesis is carried out within the CEOS project intended to generate a real-time version

of the PX4 autopilot system, named PX4-RT for PX4 Real-time system. PX4 is an autopilot

developed by world-class developers from industry and academia, and supported by an active

world wide community, it powers all kinds of vehicles from racing and cargo drones through to

ground vehicles and submersibles. The PX4 structure consists of two main layers: the flight

stack and the middleware. The flight stack is an estimation and flight control system while

the middleware is a general robotics layer that can support any type of autonomous robot,

providing internal/external communications and hardware integration. The transformation

from PX4 to PX4-RT is carried out within the INRIA KOPERNIC team.

The PX4 system consists of a set of modules communicating by transmitting/receiving

messages on the basis of publish/subscribe communication semantic. Speaking of real-time

task scheduling, a module can be considered as a task. Each module is considered as a task

in the NuttX operating system and is assigned a certain priority. The modules are scheduled

according to a fixed priority scheduling algorithm. At each call of the scheduler, the module

with the highest priority is executed. A running module can be preempted if there is a

higher-priority module activated and returned to the ready queue.

Modules are scheduled based on the first in, first out policy. Moreover, the execu-

tion of the modules is subject to precedence constraints while being triggered according to a

mixed mechanism provided that, by default, the modules are triggered periodically and, at

release time, it is required to check if there are new data produced between the previous and

current triggering time with respect to each of the topics it consumes (within PX4, almost

each module produce and consume several topics). That is, if there is at least one topic for

which no new output has been produced, the module waits (in an active polling) until there

is a new data. During this waiting period, all modules waiting for data are blocked for the

same reason (they can continue only when the module in progress will have produced new
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data). Due to the lack of assurance or predictability regarding the data propagation, this

operating mode constitutes a last option. The communication is done into three steps: (i)

each module writes the data into a given buffer (at the execution completion or during the

context switch) and, periodically, (ii) the written data are published (written into an other

buffer from where the subscribers will read it) by a communication broker server, finally,

(iii), once the data are produced an advertising signal is sent to all the modules waiting

form this data. Advertising topic consists in sending signal to all the subscriber that may

be waiting for the venue of these data. From the above, it can be concluded that the PX4

system is designed on the basis of informatics and automatism theory, and therefore it cannot

be predicted as required for a real time system.

Regarding the internal communications, PX4 uses the the so-called µORB (micro Object

Request Brocker) communication mechanism, while the external communications are handled

by the MAVLink or RTPS communication mechanisms. In this thesis the concern is on the

internal communications. The µORB is an asynchronous messaging API following following

the publish/subscribe paradigm.

2.3.1 The PX4-RT system

The original PX4 autopilot program is a set of modules. Each module is a thread managed

by the NuttX operating system using a priority. The thread repeats itself indefinitely and

activates the wait ("poll") on a data provided by another module. The modules that manage

the sensors operate periodically and therefore periodically produce data for the other modules.

These modules also operate periodically by inheriting periods from the modules managing

the sensors and synchronizing with them via the data accesses they exchange. Also, the

modules synchronize with each other in the same way.

Within the KOPERNIC team, studies and experiments aimed at transforming the PX4

system into a real time system (PX4-RT) have been carried out in the following way: the

modules have been transformed into a set of dependent real time tasks, with temporal char-

acteristics (activation periods and WCET as well as the deadline) according to the theory of

real time task scheduling. Due to the fact that NuttX does not provide a function to create

periodic tasks, the semaphores and the HRT function of PX4 have been used to periodically
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lift interruptions. For each task, activated at a given period using an HRT function, an inter-

rupt routine was created in which a semaphore is used to lock/unlock the task periodically,

switching from the "locked" state to the "unlocked" and "ready to run" states. Each task has a

period equal to its deadline. A priority was also assigned to each task, inversely proportional

to its period, according to a "Rate Monotonic" scheduling algorithm. Each data exchange

between modules represents a dependency between tasks.

2.3.2 The thesis goals

From the management and scheduling point of view, the transformation of the PX4 system

to the PX4-RT has been successfully achieved. However, the PX4-RT system tasks continue

to communicate using the uORB, which was not originally designed to be used with a system

subject to strict timing constraints. This may not guarantee the data properties required

for correct data quality which can only be ensured if, and only if, the communication does

not induce additional constraints that would be inconsistent with the scheduling policy by

avoiding any blocking semaphores on shared resources.

In this thesis, the aim is to propose a communication mechanism suitable for the PX4-RT

system scheduling while taking into account the major specificities of the uORB communica-

tion. In order to guarantee a good data quality, the proposed communication solution must

check a number of constraints to be verified through the preservation of a certain number

data properties required based on the system requirement.

2.3.3 Identifying data constraints covered in this thesis

Before identifying the data constraints to be verified in this thesis, below we present some

specificities regarding the communication model to be taken into account.

2.3.3.1 Communication system specifications and assumptions

Specification 1 Communications between tasks is done via communication variables (non-

mutual exclusive shared variables) which may be composed of several member variables. For

instance, considering the data structure of message vehicle_attitude_setpointp, it is



54 CHAPTER 2. UNMANNED AERIAL VEHICLES (UAVS)

made of the following variables:

timestamp, timeOfIssue, roll_body, pitch_body, yaw_sp_move_rate, yaw_body, q_d,

q_d_valid, thrust_body, fw_control_yaw, roll_reset_integral, pitch_reset_integral,

yaw_reset_integral, apply_flaps, FLAPS_LAND, FLAPS_TAKEOFF, and FLAPS_OFF.

Specification 2 The communication system is based on the "one producer, many readers"

principle where only one task can write (modify) data while multiple consumers can read from

the same communication variable. However, it is also possible that some tasks can produce

data related to the same communication variable. In order to control who produced what

when, each of these tasks will write into a separate location from the others. Therefore, each

task consuming the data related to this communication variable will have to read from each

of the locations.

Specification 3 The access to the communication variable is asynchronous with no blocking.

That is to say that a task in progress of reading or writing can be preempted by the jobs of

higher priority tasks and resume when it returns into active mode. Each task writes or reads

data based on its priority.

Specification 4 The communication between the producer and consumers of the data is

isolated in the sense that the producer is not aware of who consumes the data it produces

likewise the consumers are not aware of the producers of the data they use.

Specification 5 A task can produce data related to different messages. The data related

to all these messages are not mixed; each of these messages has a separate communication

variable. Then, each of the communication variables can be accessed by different consumers.

As a result, through a given communication variable, a task may be in communication with

a different number of consumers compared to those in communication through another com-

munication variable.

Specification 6 A job of each task reads the input data at the activation and writes the

output data at its execution completion. Thus, unlike the LET model [62], once a data is

successfully written, it becomes available and any task activated immediately can consume it.
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Data access is explicit, meaning that data is read directly from the main memory. No shared

variables local copies are required, contrary to the implicit communication model [7] proposed

in AUTOSAR.

2.3.3.2 Data constraints and properties identification

In this section we describe the constraints to be satisfied to guarantee the quality of the data

used in an embedded real-time system. Speaking of data quality, it is translated into a list of

properties that the data must have and on which basis it is possible to determine the correct-

ness of such data in accordance with the system requirements. Accordingly, in this thesis,

we consider four data properties, namely, data consistency, data local coherence, data

freshness and data global matching.

Property 1 (Data consistency) In accordance with the Specification 1, the data consis-

tency property of a data related to a communication variable is ensured if, and only if, each

job of the consumer tasks uses exclusively (during its execution step) the values resulting from

the same execution step of the producer.

This property covers the consistency in value and consistency with other variables

as presented in Figures 1.8 and 1.9, respectively. In other words, for a communication

variable comprised of several variables receiving each a data at the execution completion of

the producer task, the consumer should only consume the values ( per variable) produced at

the execution completion of the job of the data producing task. Otherwise, this would lead

to an overlapping situation where an instance resuming after the production of new data is

likely to use part of the old data together with part of the new data produced during the

preemption period.

Property 2 (Data freshness) For a task consuming data related to one or several com-

munication variables, the data freshness property is maintained if this task always consumes

only recently written data by the producer for each communication variable.

Property 3 (Data local coherence) According to Specification 2, if the data related to a

communication variable are produced by different tasks, local data local coherence property is
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ensured, if and only if, for each of the related communication variables, the consumer task

reads data verifying freshness property (Property 2).

Property 4 (Data global matching) This property derives from the end-to-end properties

forming a spindle. Thus, the global data matching property is ensured if and only if the

spindle sink task always reads data samples resulting from the same execution step of the

spindle source task.

Guaranteeing the data matching property may be an indispensable mandatory require-

ment for smart systems (drone autopilot, autonomous vehicles,· · · ) which make driving deci-

sions based on the sensed information. For a correct functioning of the system in accordance

with its requirements, several of these properties aforementioned can be required all together

or separately. Consequently, to guarantee a good quality of data both locally (by requiring

task-to-stain properties) and globally (by requiring end-to-end properties), it is necessary to

verify a couple of constraints, namely, local consistency data constraint and global consistency

data constraint, defined below:

Constraint 1 (Local consistency constraint) Considering two tasks τi and τj commu-

nicating through a shared resource r such that τi r−→ τj a local consistency constraint denoted

LocalCC〈τi, r, τj〉 is verified if, all the data samples written by τi into r, the jobs of τj always

read data samples that are consistent, fresh and locally coherent.

Precisely, a data sample is said to be consistent if it has the property 1, fresh if it has the

property 2 and locally coherent if it has the property 3.

Constraint 2 (Global consistency constraint) We consider two tasks τsrc and τsink

and q functional chains propagating the data produced by τsrc until τsink forming a spindle

S(τsrc, τsink) where τsrc and τsink are the spindle source task and the spindle sink task, respec-

tively. Let rc be a resource shared between the second-to-last task of a chain of index c and τsink
provided 1 ≤ c ≤ q. The global consistency constraint, denoted by GlobalCC〈τsink, {rc}q1〉,

is verified if the jobs of τsink always read from all the q resources the data samples having the

Property 4 such that for each of the data read from rc is Property 1-guaranteed.
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Regarding the global matching constraint, it is essential to preserve the consistency of each

data since we have no arbitration mechanism for the access to the communication variables.

Therefore, the sizes of the buffers at the end of each spindle chain have to take into account

not only the global matching property (Property 4) but also the consistency (Property 1) of

the data exchanged between each second-to-last task of each chain and the spindle sink task.
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Figure 2.9: Data constraints and properties overview
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We present within this chapter our first contributions of this thesis. We begin by present-

ing our model of tasks systems and the inter-tasks communication model.

3.1 The tasks system model

We consider a periodic time-triggered system consisting of a set T of n tasks executing

upon a uni-processor or partitioned multiprocessor platform. The tasks are independent and

scheduled preemptively based on a fixed-priority scheduling policy such as rate monotonic [2]

or deadline monotonic [10]. As shown previously, the system predictability implies both

the scheduling and the communication predictability. To that end, regarding the system

scheduling, additionally to meeting the deadline requirements, Ndoye and Al. in [108, 109],
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modify the Liu and Layland’s model [2] by adding a scheduling state parameter (further

denoted by θ) indicating if the job to be executed belongs to the task that is in a sleeping state

or if this job exits the preemption state in order to calculate the cost of the preemptions.

Precisely, the task execution state value is 1 if it is a new job of τi and 0 if the job of τi
resumes from a preemption. However, it should be noted that this enhancement gives no

information about the state of writing or reading data. In order to enhance the inter-tasks

communication predictability, we consider a task communication state parameter that we

denote by $. Thus, each task τi is now described by the tuple (ci, Ci, Ti, θi, $i), where ci and

Ci are the best- and the worst-case execution times, Ti the period, θi the scheduling state and

$i the task communication state. We assume that all the tasks are released simultaneously,

have implicit deadlines (Ti = Di), and no offset is considered (Oi = 0, ∀i). The parameter

$i may have the following values depending on the task communication state: (i) $i = −1

corresponds to the state when the job of τi is busy with reading the required inputs or no job

of τi is executing at all ( τi is sleeping), (ii) $i = 0 when the job of τi has finished reading the

input data and is busy with processing the task program, including when the job is preempted

by the jobs of the higher priority tasks and (iii) $i = 1 when the job currently executing is

busy with writing the output data. In order to control the writing instants, at the end of the

task program, we add the endProcc instruction line. Once this line is executed, it triggers

the writing of the output data. With the help of this parameter no job is able to write during

the context switch or from any other point within the job execution window.

Basically, each job is supposed to start its execution (at its activation) by a reading from

all the input resources and completes its execution by a successful writing into the output

resources. The job execution completion corresponds to the time instant when an output data

is correctly inserted into the corresponding resource. Only at the job execution completion

instant the value of $i changes from 1 to -1. The exact execution duration of the pth job

of τi, denoted by Cp
i is such that ci ≤ Cp

i ≤ Ci. The execution of a job is considered as

the sum the CPU time units spent on the reading of input data, the processing time of the

task program and the time spent on writing output data. In Figure 3.1 the reading time

interval (r) is represented by the blue box, the processing time (p) by the gray box while the

writing time (w) is represented by the yellow box. The upper plot describes a situation where
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the task job executes for its best-case execution time (ci) while the down plot concerns the

worst-case execution time (Ci).

ci

Ci

r p w

r p w

Figure 3.1: The task execution time is the sum r+p+w

Without any loss of generality, we consider that the tasks are ordered from the highest

priority to the lowest priority. Hence, if i < j, then τi has a higher priority than τj.

3.2 The communication model

The tasks communicate through the bounded FIFO circular buffer known to be a FIFO data

structure that considers memory managed cyclically and it may offer several advantages.

For instance, contrarily to the sequential buffer, no shifting of the data from slot to slot is

required; each data sample remains in the initial slot until it is overwritten. Thus, depending

on the size of the buffer, the largest time a data can remain into the buffer before being

overwritten is referred to as the data lifetime bound [54, 58]. Our choice of the circular

buffer is motivated by the fact that it guarantees a deterministic data management.

3.2.1 A basic organization of the buffer

We understand by a buffer, a reserved memory space storing communication data related to

a given message. The communication between tasks is ensured via a communication resource

denoted by ∇. In this thesis a communication resource is a circular buffer. We associate

a communication resource ∇m to each message m and we characterize it by following tuple

(Dm, size, head, tail), where:

• Dm is an array containing the data carried by the message m.

• size = |Dm| is the cardinality of Dm, for any message m. So, size is the maximum

number of different data copies that can be hold into Dm at the same time. Each copy
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of the data, referred to as data sample, is denoted by ∂m.

Each data sample is constituted by the values assigned to all variables forming the

structure of the corresponding message. Each ∂m occupies a single slot (cell) in Dm.

Slots are numbered from 0 → size − 1, where size is fixed for each ∇m and assigned

at the system run. We do not consider any dynamic memory allocation.

• head is an integer indicating, to the running job of a given producer task of a message

m, into which slot (in Dm) to write the output result at the end of the execution.

• a tail value indicates, for the tasks reading from Dm, from which slot of Dm to read.

The values of tail and head indicate the buffer locations respectively for reading and

writing operations and loop back to 0 after their values reach the size of the buffer [58, 110,

111].

Circular

management

τ2 reading

τ1 writing

Figure 3.2: An example of a circular buffer shared between two tasks

The access to the communication resources follows the single writer many readers

principle, where only one task can write into a given communication resource while several

tasks may concurrently read from it. Each reader task owns its separate "tail" value. Hence,

there are no dependencies with other reading tasks. In fact, this principle allows two or more

tasks to perform the reading action from different slots at a given time instant, thus, a purely

asynchronous communication is ensured.

The circular buffer offers the possibility to each of the q consumers to read from different

slots at a same time instant. Hence, tail is a array of q integer values. The value of tail

pointer indicates to each of the q consumers which slot sl ∈ {s0, · · · , ssize−1} to access for the

reading action. Thus, at the activation time, a job of each task τc ∈ {τ1, · · · , τq} reads from ∇

the data sample of the buffer slot pointed by the current value of its tail. After a successful

read, the current value of tail is incremented such that tailc,current ← (1 + tailc,previous)
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mod size. Likewise, the value of head is incremented at each execution completion of a job

of τp in the following way: headcurrent ← (1+headprevious) mod size. This new value of head

points to the slot where the next job of τp writes at its completion. Finally, in the essence, the

circular buffer is organized in a way that the jobs of each τc ∈ {τ1, · · · , τq} should consume

all the produced data from slot to slot.

For instance, let us consider the model presented in Figure 3.3 where the task gps produces

data samples to be used by the tasks cmdr and nav.

cmdr
(2, 10)

nav
(2, 50)

gps
(1, 5)

veh_pgs_pos

veh_pgs_pos home_pos

Figure 3.3: Tasks used to check the age of the data within the circular buffer

In this example, we assume that the data samples related to the messages veh_gps_pos

and home_pos are written to communication resources named ∇1 and ∇2, respectively. Fur-

thermore, each task is described by its worst-case execution time and a period. Tasks are

scheduled according to the rate monotonic policy [2]. Assuming that ∇1 and ∇2 are suffi-

ciently large, the sixth job of cmdr consumes the sixth data sample produced by gps while

the second job of nav consumes the second data sample. However, by the time the jobs in

cmdr and nav are activated, 5 and 9 data samples are added into communication resource.

gps

cmdr

nav

6th data, age6 = 25

2nd data, age2 = 47

Figure 3.4: Example displaying the age of the data within the circular buffer
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Consequently, this type of data management results in larger data ages (25 and 47, respec-

tively) and may not be suitable for systems requiring newly generated data. Thus, will

such data still be useful for the functional correctness of the system? Later

in this thesis (Section 4.2), we propose a mechanism adapting the circular buffer to the

constraints imposed in embedded real-time systems.

3.2.2 Message characterization

Compared to the original PX4, the PX4-RT drone autopilot system keeps the same µORB

communication mechanism. The latter considers a message or topic as the communication

unit. As indicated previously, the µORB mechanism supporting the PX4 system [52] does

not fulfill the requirements of a real-time system.

Therefore, although PX4-RT is a real-time system which guarantees the schedulability

of the system of tasks, unfortunately, it doesn’t ensure a quality of the data shared by

these tasks. Basically, this conclusions motivates the contribution presented in this thesis:

the proposition of a communication mechanism (API) guaranteeing the quality of the data

within the PX4-RT and similar systems.

The novel communication mechanism keeps the message as the communication unit and it

proposes data management policy different from publish/subscribe paradigm. We start by

formalizing all the communication particularities regarding the organization of the message

as the communication unit.

The set of all messages shared by the tasks of T is denoted byM and the set of the input

messages and, respectively, the output messages for each task τi, is denoted byMi, provided

that Mi ⊂ M and Mi = MI
i ∪MO

i . We denote by MI
i and MO

i the input and output

messages for the task τi, respectively.

Definition 1 (Input message, MI
i ) : ∀(τi ∈ T ∧ Mi ⊂ M), MI

i is given by MI
i =

{mI,1
i , · · · ,mI,nI

i } where nI is the total number of input messages for τi.

Analogically we define the τi output messages as follows:

Definition 2 (Output message, MO
i ) : ∀(τi ∈ T ∧Mi ⊂ M), MO

i is given by MO
i =

{mO,1
i , · · · ,mO,nO

i } where nO is the total number of output messages for τi.
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The Figure 3.5 presents the input and output messages regarding the task position_ctrl

where, on the left side, we have the list of input messages and, on the right side, the output

messages. Here position_ctrl has 11 different input messages (nI=11) and 6 different

output messages (nO=6).

position_ctrl

parameter_update

veh_control_mode
veh_status
veh_manual

battery_status
veh_attitude

veh_motor
veh_attitude_sp

landing_gear_state
sensor_correction
veh_land_detected

veh_manual
pos_state
veh_command

trajectory_sp
landing_gear
v_local_position_sp

Figure 3.5: Example of input and output messages for the task position_ctrl

We implement each message as a unique buffer managed following the single writer

many readers principle as previously mentioned. However, within PX4-RT, we have cases

where the same message is produced by different tasks. An example of such a case is presented

in Figure 3.6 where the message vehicle_attitude_setpointp is produced by three different

tasks, namely, mc_position_ctrl, gnd_position_ctrl and navigator.

vehicle_attitude_setpointp

mc_position_ctrl

navigator

gnd_position_ctrl

Figure 3.6: An example of a multi-source message

On this basis, all the messages are classified into single-source and multi-source

messages.

Definition 3 (Uni-source message) A message is said uni-source if it is produced by a

single task.
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Definition 4 (Multi-source message) A message is said multi-source if it is produced

by more than one task.

One of the unaddressed cases in the µORB mechanism regards the multi-source message

data management. Precisely, as we can read from the µORB documentation, "any number

of advertisers may publish to a topic, publications are atomic but co-ordination

between publishers is not provided by the ORB" 1. Subsequently, guaranteeing the

properties like data consistency is quite impossible in such working conditions.

3.2.3 Data sample characterization

Each message is a data structure comprising several variables as depicted in Figure 3.7. The

data carried by a a message m are stored into the corresponding Dm which has a fixed size

|Dm|. Each data sample ∂mi ∈ Dm, provided 1 ≤ i ≤ |Dm|, is constituted by the values

assigned to each of the variables forming the structure of the corresponding message.

Figure 3.7: The vehicle_attitude_setpointp message

For instance, considering the example presented in Figure 3.7, each data sample carried

by the message V AS ( vehicle_attitude_setpointp), ∂V AS is constituted by the values

assigned to all the 16 variables composing the structure of the message V AS.
1This statement in the double quote is taken from the µORB documentation
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Notice 6 In this thesis, to accurately track the propagation of different data samples we

consider that each data sample is double time-stamped. To that end, we use two parameters

named timestamp and timeOfIssue. From the fact that each data sample in propagation has

a nearby or far away origin, the timestamp is the intrinsic date of birth of a data sample.

It assigned by the sensor task. This date is not modified throughout the propagation until

the data sample is overwritten. Therefore, each job executing using a time-stamped data,

indicates the output date of a data sample. we call this date the timeOfIssue. For the

sensor task, timestamp=timeOfIssue.

∇m

Dm

tail

head

size

Dm
vm1 , v

m
2 , · · · , vmn

timestamp timeOfIssue

double timestamping

At the writing instant
Communication resource

structure

Dm = 〈timestamp, timeOfIssue, vm1 , · · · , vmn 〉

Figure 3.8: Example of a data double stamping process
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3.3 The communication graph

One of the problems complicating the management of the data within the PX4-RT system re-

sides in the fact that a single task can produce numerous different messages where each of the

messages may in turn be consumed by several tasks and so on and so forth. This results in a

complex network of connections between tasks. For a real-time system, such communicating

tasks are mostly represented in the form of a directed acyclic graph (DAG) [112, 113]. There-

fore, a DAG can be used to represent both the scheduling order and the communication

order for a set of tasks. Regarding the scheduling order, for a pair of tasks (τi, τj) such that

τi → τj, the DAG indicates the precedence constraints between τi and τj; meaning that the

execution of τj can start only if τi has completed. Also, when the DAG is used to show the

communication order, τi → τj indicates that τj uses the data produced by τi.

Since there may be cycles between two tasks, the PX4-RT system cannot be represented by

a classical DAG. Subsequently, in order to explicitly consider all the possible communications

between tasks, we propose to model the PX4-RT by a bipartite graph [114] consisting of two

disjoints sets, namely T andM such that every edge connects a vertex (task) in T to one inM

and E is the set of linking edges. By doing so, we discard any direct communication between

tasks while keeping the graph acyclic. Henceforth, the tasks in T can only communicate

through the messages inM in a way that the producer task is not aware of the consumers

of the messages it produces and vice versa. Accordingly, the access to the message buffers is

fully asynchronous non-blocking in the sense that each task reads and writes on its own

pace regardless of the execution state of the other tasks.

Finally, the resulting graph is referred to as the communication graph and an example of

such a graph is presented in Figure 3.9. Herein, tasks are represented by ellipse and messages

by rectangles.

Definition 5 (The communication graph) The communication graph is a bipartite graph

G = (T ,M, E) such that T is the set of tasks, M is the set of messages and E is the set of

linking edges between the tasks in T and the messages inM.

In the example depicted in Figure 3.9 it is shown that τ1 communicates with τ2, τ3, τ4 and
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τ1

m1

m2

m3

τ3

τ4

τ5

m6

m7

m8

τ2 m4

m5
τ6

Figure 3.9: An example of the communication graph

τ5 by means of the message buffers m1, m2 and m3. Due to the one writer, many readers

principle and to the data lifetime method calculating the sizes of different buffers, the fact

that these four readers may have different worst-case response times leads to the conclusion

that the corresponding buffers may also be of different sizes. Without any other arbitration

mechanism, a sufficient size, also referred to as optimal (Def. 13), is the one guaranteeing that

all the data, which may be produced during the execution of a job of each of the consumers,

must not overwrite the data used at the execution start. In order to cover all scenarios by

formally being able to calculate the sizes of the buffers used by the producer based on timing

parameters of the consumers reading the input data from a given buffer, we introduce the

concept of domain message as follows:

Definition 6 (Message domain) The message domain denoted by E∗ is the set comprised

of a producer task and the consumer tasks for a given message, where the asterisk represents

any message.

Notation: E∗{producer|consumers}

For instance, for the communication graph presented in Figure 3.9, we obtain the following

message domains (Figure 3.10):

In the remainder of this thesis, we use the general notation; E∗ without specifying the

message name. To each message domain E∗ corresponds a unique buffer that we denote by

∇∗.



3.3. THE COMMUNICATION GRAPH 71

G = (T ,M, E) =



Em1 = {τ1|τ3, τ4, τ5}
Em2 = {τ1|τ2, τ3}
Em3 = {τ1|τ4}
Em4 = {τ2|τ4, τ6}
Em5 = {τ2|τ5, τ6}
Em6 = {τ3|τ6}
Em7 = {τ4|τ6}
Em8 = {τ5|τ6}

Figure 3.10: Example of the message domains

3.3.1 Shared variables management

To correctly ensure the data integrity asynchronously without any arbitration mechanism for

accessing data, only the structural variables (tail,head and size) are openly shared, while,

regarding the data variable data variable (∇), a pointer to the memory space, where it is

located, is shared.

τ1 τ2

E∗ = {τ1|τ2}

tail
head
size
D

∇∗

Figure 3.11: An example displaying communi-
cation variables shared between adjacent tasks

D

Location of D in the memory

Figure 3.12: Example showing the memory
space allocated to the data variable D (the
first bit of the first byte). D occupies con-
tiguous addresses

The grey circles in Figure 3.11 represent each task code program. The white part shows

the common or shared elements. Within the same message domain, the producer uses the

value of head to target the cell where the next output should be written. In other words,

the recently produced value is located into the slot number (currentV alueOfHead(∇∗)− 1)

mod |∇∗|. The value of head increments after a successful writing of the data and, at this

instant, its current value is given by (previousV alueOfHead(∇∗) + 1) mod |∇∗|. On the
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other hand, each consumer reads the data in the cell pointed by the current value of his own

tail. The value of tail increments after a successful reading with respect to a given input

buffer; when a task reads from different buffers, after a successful read from each of them,

the corresponding value of tail is updated. So, at that instant, the current value of tail

is given by (previousV alueOfTail(∇∗) + 1) mod |∇∗|. Therefore, when it happens that a

producing task preempts a consuming one, or when the preemption is performed by another

consumer, there is no blocking on the data variable, since the access routes do not cross.

3.3.2 Inter-task communication relations

On the basis of a message domain organization, the communicating tasks may be in linear

relation or a fork relation as defined in the Definitions 7 and 8 , respectively.

Definition 7 (Linear relation) We consider the message domain E∗ such that E∗ =

{τi|τj1 , · · · , τjk}. A linear relation exists between τi and {τj1 , · · · , τjk} if k = 1.

Analogically,

Definition 8 (Fork relation) We consider the domain E∗ such that E∗ = {τi|τj1 , · · · , τjk}.

A fork relation exists between τi and {τj1 , · · · , τjk} if k > 1.

Figure 3.13: A linear relation Figure 3.14: A fork relation

Not all the vertices in T have corresponding vertex in M. Accordingly, we classify the

tasks in sensor, internal, sensor tasks (Def. 9), middle tasks (Def. 11) and actuator

tasks (Def. 10).

Definition 9 (Sensor task) A task τi is a sensor task iffMIn
i = ∅.

Definition 10 (Actuator task) A task τi is an actuator task iffMOut
i = ∅.
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Definition 11 (Inner task:) A task τi is an inner task iffMIn
i 6= ∅ ∧MOut

i 6= ∅.

Considering the communication graph presented in Figure 3.9, τ1 is a sensor task, τ6 is an

actuator task while τ2, τ3, τ4 and τ5 are middle tasks. Each pair of producer and consumer

tasks belonging to a same message domain are said to be adjacent and defined as follows.

Definition 12 (Adjacent tasks)

Two tasks τi and τj are adjacent iffMOut
i

⋂MIn
j 6= ∅.

The set of messages produced by τi and consumed by τj is given byMOut
i

⋂MIn
j . We note

that two tasks may be adjacent on different messages.
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In this chapter we present our solutions regarding the data properties constraints formal-

ized in the previous chapter. To this end, we recall the main assumptions considered herein:

(i) the communication between the producer and the consumer tasks is isolated; that is, the

producer task is not aware of the tasks consuming the data it produces and vice-versa, (ii)

the communications between producers and consumer tasks is ensured through shared mes-

sage buffers with fixed size, (iii) writing and reading the data into/from the shared buffers

is asynchronous non-blocking; that is, each task accesses the shared buffer on its own pace

based on its scheduling priority, (iv) the access to the shared buffers is based on the single

writer many readers principle and (v) finally, each task reads all the required input

data at the activation time and writes the output data at the execution completion.

Constraints related to data properties are taken into account starting with those required
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at the local level (task level) and ending with those required at the global level (functional

chain level). We show that verifying the global properties, also, maintains the task-level

properties constraints. For each property level (task-/functional chain-), the verification of

the required constraints follows the following steps: (i) computing the optimal size (Def. 13)

for the inter-task shared buffer, (ii) proposing a suitable mechanism taking into account the

assumptions considered in this thesis and, (iii), lastly, proposing an algorithm capable of

efficiently implementing this mechanism.

Definition 13 (Buffer optimal size) We consider a communication resource ∇∗ such that

∃E∗ = {τi|τi1 , · · · , τik} where k is the number of consumer tasks. The optimal size of ∇∗,

denoted by |∇∗|, is the smallest size guaranteeing that any data sample read from ∇∗ is never

overwritten before the execution completion of the job(s) of any of the τi1 , · · · , τik tasks still

processing this data.

Computing such buffer size referrers to the data lifetime bound method [54, 58]. The

latter relies on the computation of an upper bound of the number of times the writer can

produce new values while a given data sample is being used by at least one reader. Given that

a task can produce several different messages which can be consumed by different readers

having different time periods, then the output buffers for a given task can have different

sizes. Therefore, in order to efficiently calculate the required size for each of the buffers,

we refer to the corresponding message domain indicating in a precise and clear way which

are the tasks accessing this buffer. For instance, let us consider the system below where the

task τ1 produces two messages m1 and m2 shared with τ2 and τ3 as shown in Figure 4.1.

Here the message domains are as follows: Em1 = {τ1|τ2} and Em2 = {τ1|τ3}. The Figure 4.2

presents a situation regarding a multi-source message. A same message m is produced by

two different tasks τ1 and τ2. As previously mentioned, in such a situation each producer

writes into a separate array vector of the same bi-dimensional array buffer that we denoted,

respectively, by ∇1,1 and ∇1,2. So, depending on the periods of τ1 and τ2, |∇1,1| and |∇1,2|

may be different. The corresponding message domain becomes E∗ = {τ1, τ2|τ3}.

Considering that the communication resources consist of composite data structures, the

local coherence and freshness constraints require that only recently produced data should
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τ1

∇1 τ2
m1

m1

∇2 τ3

m
2 m2

T2 6= T3

Figure 4.1: Example of two buffers
written by a same task but likely to have
different sizes.

τ1

∇

τ2

τ3

m
1 m

2

m

T1 6= T2

Figure 4.2: Example of a bi-dimensional
multi-source buffer where each of the vectors
may have different sizes.

be entirely consumed (only the data values resulting from the same execution step of the

producer can be considered together) given that the communication buffer is managed cycli-

cally and may have a storing capacity of more than one data sample, whether the latter is

single- or multi-source one. Obviously, given the circularity of the buffer, it is impossible

to implicitly know in which slot such a data is located (the one fulfilling the property con-

straint), as it can be in any of the buffer slots; and not at the front or back as in sequential

buffers. Finally, for multi-source messages, it must be ensured that the reader task retrieves

the recently produced data from each vector of the two-dimensional array.

In the first part of this section, we calculate the required sizes for each of the buffers

independently of each of the data property constraints mentioned above; we refer only to the

data lifetime bound method. Throughout the second part, we propose a mechanism that,

while taking into account the calculated sizes, guarantees the maintenance of all the con-

straints considered at this level. This mechanism is called sub-sampling rate mechanism.

An algorithm implementing this mechanism is also proposed here. Finally, we demonstrate

how this mechanism verifies each of the data property constraints.

4.1 Computing the buffers optimal size

The data lifetime bound method computes the upper bound of the number of times the

writer can produce new values while a given data sample is still in use. On the other hand,

the largest amount of time it can take for a job of a given task corresponds to the task worst-

case response time. For a preemptive scheduling, such a value corresponds to the execution
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completion of the first job of each task when the latter is released simultaneously with all its

higher priority tasks [5]. The access to shared buffers being subject to the single writer

many readers principle, the amount of used time a data sample depends on the execution

of competing tasks on the shared buffer. Subsequently, we calculate below the required size

for each of the communication buffers for both the linear and forked relationships between

tasks as defined in Section 3.3.2.

Theorem 1 (Linear relation) We consider a communication resource ∇∗ such that ∃E∗ =

{τi|τj}. The optimal size of ∇∗ denoted by |∇∗| is given by

|∇∗| =
⌈
Rj

Ti

⌉
(4.1)

where |∇∗| is the cardinality of ∇∗, Ti is the period of τi, Tj and Rj are the period and

the worst case response time of τj, respectively.

Proof 1 In this thesis we consider that the writing of a new data sample coincides with the

execution completion of the task job that produced this data, where the access to the shared

buffer is asynchronous non-blocking. Subsequently, in order to guarantees the protection of

the data being used by a job of τj, all the data samples that may be produced at the execution

completion of the job(s) of τi must not overwrite the data being used. The number of jobs of

τi than can complete within Rj time unites is equal to
⌊
Rj

Ti

⌋
. To that number we add one in

order to protect the slot containing the data being used.

For a task consuming several different messages whose related data samples are stored in

separated buffers, thus Equation 4.1 remains valid. Hence, for a set of tasks {τj,1, · · · , τj,k}

producing, respectively, the set of messages {mj,1, · · · ,mj,k} consumed by the task τj, the size

of the corresponding buffers is computed as |∇mj,i | =
⌈
Rj

Tj,i

⌉
provided 1 ≤ i ≤ k where k is

the number of messages that τj consumes. The tasks being into the linear relation may have

different periods.

If Tji = Tj, it means that τji and τj jobs are always released at a same time instant.

Though, the data item produced by a job of τji is consumed by a job of τj before the next

release of τji. If the idea is to protect a data read by a job of τj that could be overwritten

by a job of any τji ,∀1 ≤ i ≤ k, if priority(τj) > priority(τji), the job of τji is able to start
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its execution only when the one of τj has finished. Considering that in such a configuration

the next job of τj is also the first to start its execution, we can conclude that a buffer size of

one is sufficient since a job of τji never overwrites a data consumed by the one of τj. This

is also valid if priority(τj) < priority(τji). If Tji > Tj, then a data sample produced by a

job of τji can be read by several jobs of τj and a job of τji can execute only if there is no

active job of τj considering that the executing job of τj always preempts the execution of a job

of τji, if any, due to the high priority of τj over τji. Therefore, a buffer of size one is also

sufficient. Finally, if Tji < Tj, then new data samples related to mji are likely to be produced

between the activation and the completion of a job of τj considering that the executing job of

τji always preempts the execution of a job of τj, if any, due to the higher priority of τji over

τj. Utmost, within Rj time units
⌈
Rj

Tji

⌉
new data samples can be produced by τji .

Theorem 2 (Fork relation) We consider a communication resource ∇∗ such that E∗ =

{τi|τi1 , · · · , τik} where k is the number of tasks reading from ∇∗ . The optimal size of ∇∗

denoted by |∇∗| is equal to the number of data samples that can be written by τi before the

execution completion of a job of the slowest among all τij plus one.

Hence,

|∇∗| = max
1<j≤k

{⌈
Rij

Ti

⌉}
(4.2)

where |∇∗| is the cardinality of ∇i, Ti is the period of τi and Rij the worst case response time

of the task τij .

Proof 2 When a given data sample is consumed by several tasks likely having different pe-

riods, the length of time window within which each of the consumer tasks requires the data

sample may be different from one consumer to another. Thus, for the faster consumers this

window is shorter compared to the slower consumers. Based on the data management applied

to the circular buffer, at a time instant t, two tasks read of the data located in different slots

of the buffer (as one of the advantages of such a buffer) or from the same buffer slot. Being

that way, considering the case two or more tasks (possibly with different periods) are reading

from the same slot, the buffer size computed by Equation 4.2 guarantees that the data used

by the slowest among the consumers; which fits perfectly with the intention of Theorem 2. Of
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course, during this time window the quicker tasks read more than one data samples without

worrying about a possible overwriting of a data sample in use. Hence, Equation 4.2 is correct.

Notice 7 (Case of multi-source messages) Regarding the multi-source message, each buffer

vector is considered as a separate buffer and managed based on the timing parameters of each

of the message producers and the ones of this message consumers. Therefore, for the latter,

the situation is as follows:

For a communication resource ∇∗ storing the data samples related to the message m such

that E∗ = {τp,1, · · · , τp,k|τc,1, · · · , τc,k}

|∇∗p,i| = max
1<j≤k

{⌈
Rc,j

Tp,i

⌉}
,∀1 < i ≤ l (4.3)

where (p, i) is a given producer of the message m and l the total of them. Accordingly, (c, j)

is a task among the ones consuming the data samples related to the message m. If l = 1,

Equation 4.3 becomes the same as Equation 4.2.

From what precedes, in the remainder of this thesis, we use the term message to refer

to any type of messages. Hence, the prefixes uni-/multi- are explicitly used if the proposed

solution cannot hold for both categories.

We describe within Algorithm 1 how to calculate the size allocated to each of the cor-

responding data variables. This algorithm considers both single-source and multi-source

messages. The steps and clarifications related to this algorithm are explained progressively

within the rest of this chapter.
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Algorithm 1 The circular buffer data variable memory allocation
1: Require G = (T ,M, E) . The communication graph G returns sets of tasks and messages as well as links between them.
2: Compute the worst-case response time, Ri, for each τi ∈ T . Required to compute and bound the buffer sizes.
3: Retrieve from G the set of message domains E
4: Split E into message domains E1, · · · , E |M| . Within E there are as many message domains as there messages inM, |M|.
5: for each Em such that 1 ≤ m ≤ |M | do . Each message m inM has its own message domain denoted by Em.
6: int size = 0
7: for each vk ∈ Dm such that 1 ≤ k ≤ nV do . ∀m, there ∃ a data variable Dm made of nV member variables.
8: if type of vk is static then . Memory allocation size is a-priori known and never changes (int, float,· · · ).
9: size← size+ SizeOf(type)
10: else . The required memory size depends on the value to be written (char for instance).
11: Set the maximum length (maxLength) to be allocated. For such types, set the maximum length to be allocated.
12: size← size+maxLength
13: end if . The value of size is the number of bytes requires to store a single data sample related to m.
14: size← size+ paddingAddr1(Dm)
15: end for
16: Separate the sets of producers and consumers for the message m
17: Compute the number of producers and consumers: nP ← |producers| and nC ← |consumers|
18: for each Em(i) such that 1 ≤ i ≤ nP do. Here i is one of the producers for m and writes into a separate buffer, ∇m(i)
19: if nC = 1 then
20: |∇m(i)| =

⌈
Rconsumers[0]

Tproducers[i−1]

⌉
. Equation 4.1

21: else

22: |∇m(i)| = max
1<c≤nC

{⌈
Rconsumers[c]

Tproducers[i−1]

⌉}
. Equation 4.2

23: end if . Here |∇m(i)| is the maximum number of data samples that can be hold into the corresponding Dm

24: Allocate (size× |∇m(i)|) bytes for Dm . The data variable occupies size× |∇m(i)| contiguous bytes
25: end for
26: end for

4.2 The sub-sampling rate mechanism

The circular buffer offers many advantages, including the ability of different tasks to read

from different locations of the buffer at a same time instant. The reason for this lies in the

fact that each consumer task accesses the data stored in the buffer simply by selecting the

data being into the slot pointed by the value of its own tail. This ability makes it much

more suitable for use in systems where it may be necessary to use all the data produced (no

sample data should be overwritten/lost before use). Each consumer has the possibility to

consume the data, one by one, at its own pace. Such an implementation of the circular buffer

is integrated in the RTMaps 2 [68] environment tool. That being, for the pairs of producer

and consumer tasks with different periods, such an implementation would require the use

of unbounded buffers while leading to the data aging before use. For embedded real-time

systems where the data are subject to constraints such as data freshness, this operating mode
2RTMapsT M stands for Real-Time Multisensor Applications, it is a highly-optimized component-based

development and execution software tool. Thanks to RTMaps™ you can design, develop, test, benchmark and
validate multisensor applications for Advanced Driver Assistance Systems (ADAS) and Highly Automated
Driving (HAD) software functions but also advanced features in other domains such as autonomous and
mobile robotics, energy, system monitoring, complex instrumentation and human factors.
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may not implicitly meet the timing requirements applied to these data. This can be seen as

a weakness in terms of meeting timing constraints imposed on the data. In this thesis, we

exploit the best of what the circular buffer management may offer with several adaptations

for a reliable and efficient asynchronous access to communication buffers. The goal is to have

sufficient flexibility so as to preserve all the data properties under consideration. From this

perspective, we propose a mechanism defining the communication buffer access rules, referred

to as sub-sampling rate mechanism. We provide below its description.

4.2.1 Introduction

Before going more into details regarding the functioning of this mechanism, let us consider

an example of three tasks τ1(1, 3), τ2(2, 8) and τ3(3, 12) communicating through a shared

communication resource ∇∗ such that E∗ = {τ1|τ2, τ3}. These tasks have implicit deadlines

and are scheduled in accordance with the assumptions considered in this thesis. The first

value within the pair of temporal parameters of a task is its worst-case execution time,

while the second is the task period. The worst-case response time for τi, denoted by Ri are

R2 = 3 and, respectively, R3 = 8. From Equation 4.2, the size of ∇∗ is computed as follows:

|∇∗| = max
{⌈

R2
T1

⌉
,
⌈
R3
T1

⌉}
= max

{⌈
3
3

⌉
,
⌈

8
3

⌉}
= 3 slots. In Figure 4.3 we present the scheduling

results for these tasks and highlights the expected results with regard to the sub-sampling

rate mechanism.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1
0 1 2 0 1 2 0 1 2 0

τ2
0 2 2 2 2

τ3
1 1 1 1 0

Figure 4.3: The sub-sampling rate mechanism expected results

The buffer slots are numbered 0, 1 and 2. The task τ1 writes in these slots, circularly

from the slot number 0 to the slot number 2 and loops back each time the maximum length
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is reached. Likewise, each of τ2 and τ3 accesses the data from slot to slot. In this figure,

the index of the slot into/from which the writing or reading operation took place is shown

within the boxes indicating the execution window of the task. The blue lines above the boxes

indicate the amount of time elapsed between the activation of the consumer task job and the

release of the next job of the producer task. The down to upstream dotted arrows point to

the execution completion of the producer task job generating the data sample consumed by

the pointing job of the consumer task.

Basically, the purpose behind the sub-sampling mechanism is to ensure that at the con-

sumer job activation time, this job ignores all the data samples produced between the previous

and the current activation with respect to a given consumer task. So, for a consumer task τi,

we denote by ηpi,p−1, the number of data samples produced within the time window from the

activation of the (p− 1)th to the (p)th jobs of τi. As for instance, considering the example

presented in Figure 4.3, we have η2
2,1 = 2, η3

2,2 = 3, η4
2,3 = 3, η2

3,1 = 3 and η3
3,2 = 5. The

value of ηpi,p−1 is likely to be different from one activation to another. The sub-sampling

rate mechanism ensures that the jobs of the consumer tasks always access the most recently

written data sample by jumping to the
(
ηpi,p−1

)th
one.

4.2.2 Formalization and implementation

We consider a communication resource ∇∗ such that E∗ = {τi|τi1 , · · · , τik} where k is the

number of consumers. For a task τij ∈ {τi1 , · · · , τik}, its (p)th job is activated at a time

Start(p, ij) such that

Start(p, ij) = Release(p, ij) + Ipij ,h (4.4)

with

Release(p, ij) = (p-1)× Tij (4.5)

Ipij ,h =
∑Start(p,ij)

Release(p,ij)
h∈hp(ij)

⌈
∆T (p, ij)

Th

⌉
× Cp

h (4.6)
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and

∆T (p, ij) = Start(p, ij)-Release(p, ij) (4.7)

where

• hp(ij) is the set of higher priority tasks than τij executed within the time interval

between the release time of the (p)th job of τij and its activation time Start(p, ij),

denoted by ∆T (p, ij).

• Ipij ,h is the interference induced by all the hp(ij) tasks over τij within ∆T (p, ij).

• Cp
h is the exact execution duration of each of the

⌈
∆T (p,ij)

Th

⌉
jobs of τh that may have

executed within ∆T (p, ij) such that ch ≤ Cp
h ≤ Ch where ch and Ch are the best- and

worst-case execution times for each τh.

Notice 8 In this thesis, it is not necessary to know how long it takes for a job to be

completed. Instead, we set up a control mechanism allowing to condition the execution

completion of a job by a successful writing of the data into all output buffers.

For the same τij ∈ {τi1 , · · · , τik}, the activation time of the previous job, the (p-1)th, is

denoted by Start(p-1, ij) and calculated analogically as

Start(p-1, ij) = Release(p-1, ij) + Ip-1
ij ,h

(4.8)

with

Release(p-1, ij) = (p-2)× Tij (4.9)

Ip-1
ij ,h

=
∑Start(p-1,ij)

Release(p-1,ij)
h∈hp(ij)

⌈
∆T (p-1, ij)

Th

⌉
× Cp-1

h (4.10)

and

∆T (p-1, ij) = Start(p-1, ij)-Release(p-1, ij) (4.11)

Analyzing from the producer task side, we consider that the data sample consumed by

the (p-1)th job of τij is produced by the qth job of τi at a time instant denoted by End(q, i)
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and calculated as

End(q, i) =
⌊
End(p-1, ij)

Ti

⌋
× Ti + Cq

i + Iqi,h (4.12)

with

Iqi,h =
∑End(q,i)

Release(q,i)
h∈hp(i)

⌈
∆T (q, i)
Th

⌉
× Cq

h (4.13)

and

∆T (q, i) = End(q, i)-Release(q, i) (4.14)

We now calculate the time elapsed from the activation of the (p-1)th job of τij (activated

at Start(p-1, ij); the one that consumed the data sample produced by the qth job of τi which

completed its execution at the time instant End(q, i)) to the release of the (q+ 1)th job of τi
occurred at a time Release(q+ 1, i). The resulting time delay is denoted by delayRelease(q+1,i)

Start(p-1,ij)

and computed as

delay
Release(q+1,i)
Start(p-1,ij) = Release(q + 1, i)-Start(p-1, ij) (4.15)

Such a delay is represented in Figure 4.3 by the blue line over the job execution window

box. When the activation of the (p-1)th job of τij happens immediately after the execution

completion of the qth job of τi, then we have delayRelease(q+1,i)
Start(p-1,ij) = Release(q+ 1, i)-Start(q, i).

For instance, using the same model, we have delayRelease(2,1)
Start(1,2) = 2, delayRelease(4,1)

Start(2,2) = 1, · · · .

Further, the delay separating the release time of the (q+ 1)th job of τi and the activation

time of the pth job of a task τij ∈ {τi1 , · · · , τik} is computed as follows

delay
End(p,ij)
Release(q+1,i) = End(p, ij)-

(
End(p-1, ij) + delay

Release(q+1,i)
End(p-1,ij)

)
(4.16)

Since the data consumed by the (p-1)th job of τij is produced during the (q)th period of τi
and each task produces only one data per period, then delayEnd(p,ij)

Release(q+1,i) is the effective time

that τi can use to generate new data samples from the release of its (q + 1)th job until the

activation of the (p)th job of τij . Accordingly, we formulate Theorem 3.
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Theorem 3 We consider a communication resource ∇∗ such that ∃E∗ = {τi|τi1 , · · · , τik},

where k is the number of consumer tasks. The number of data samples written into ∇∗ by τi
between the activation of the (p-1)th and pth jobs of τik , denoted by ηpij ,p-1, is given

ηpij ,p-1 =

delay

End(p,ij)
Release(q+1,i)

Ti

 (4.17)

Proof 3 Referring to the assumptions considered in this thesis, each job starts reading when

it enters the run state and continues to read the same data until it finishes. If this job happens

to be preempted before it finishes reading from all the input buffers (there may be more than

one input buffers), then when it resumes, it starts from where it was preempted. Regarding the

preemption, if a task of higher priority enters the running state, it preempts the one of lower

priority and executes until the completion if there is no other higher priority task released in

the meanwhile. Considering also that the job execution completion coincides with the end of

the data writing process, it is obvious that, within the delayEnd(p,ij)
Release(q+1,i), the producer task has

the capability of writing ηpij ,p-1 data samples, provided that the tasks are released periodically.

Hence, Theorem 3 is correct.

For instance, we illustrate the situation presented in Theorem 3 by considering the

scheduling results presented in Figure 4.3. We obtain the following results:



η2
2,1 = d (1×8+0)-(0×8+1+2)

3 e = d5
3e = 2

η3
2,2 = d (2×8+0)-(1×8+0+1)

3 e = d9
3e = 3

η4
2,3 = d (3×8+1)-(2×8+0+2)

3 e = d7
3e = 3

η2
3,1 = d (1×12+1)-(0×12+4+2)

3 e = d7
3e = 3

η3
3,2 = d (2×12+4)-(1×12+1+2)

3 e = d15
3 e = 5

(4.18)

Starting from the results of Lemma 3, we identify in Theorem 4 which buffer slot the

(ηpp-1)th data is written.

Theorem 4 We consider a communication resource ∇∗ such that ∃E∗ = {τi|τi1 , · · · , τik}

where k is the number of consumer tasks and ηpij ,p-1 is the number of generated data samples
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between the activation of the (p-1)th and the pth jobs of τij . The
(
ηpij ,p-1

)th
data sample is

written into the slot number given by

(
ηpij ,p-1 + tail (ij,∇∗)p-1

)
mod |∇∗| (4.19)

where tail (ij,∇∗)p-1 is the index of the slot of ∇∗ from where the (p-1)th job of a task τij
read.

Proof 4 The proof of this theorem is based on the organization of the circular buffer itself.

Indeed, such a buffer has a fixed size and the writing of data is organized in such a way

that the data writing loops back to 0 after the slot with the maximal index is reached. Thus,

knowing the number of data produced since the previous activation, the slot from which the

reading of the (p-1)th job of τij took place and the size of the buffer, we sum them and apply

the modulo operator to loop back in case
(
ηpij ,p-1 + tail (ij,∇∗)p-1

)
> |∇∗|; which confirms the

statement of Theorem 4.

Until now, we didn’t have any way to calculate this (slot) value because none of the

consumers know the producer of the data they are consuming and therefore it looks like it is

not possible to know exactly in which slot the
(
ηpij ,p-1

)th
data sample is located. Fortunately,

even though the communication is isolated, the sharing of the resources is organized in such

a way that the producer task has a full access to each of its output buffers and likewise do the

consumer task regarding its input buffers as shown in Figure 3.11. That to say that the two

buffer pointers (head and tail) remain accessible to the producer as well as to the consumer

tasks. By using this opportunity, the problem can be solved.

Indeed, from Theorem 4 we obtain that the
(
ηpij ,p-1

)th
data sample is produced by the(

q + ηpij ,p-1

)th
job of τi. The reason for this statement is that at the activation of the (p-1)th

job of a task τij , q jobs of τi had completed their executions. On the other hand, the(
ηpij ,p-1

)th
data sample is the recently produced by τi before the activation of the pth job

of τij . Accordingly, since the value of the head points to the slot where to write at the

completion of the next job of τi, we can conclude that the
(
q + ηpij ,p-1

)th
is located into the

slot of index given by head(∇∗)-1. However, in order to avoid the negative index values, the
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(
q + ηpij ,p-1

)th
data sample is located into the slot index given by

slotIndex = (-1 + head(∇∗) + |∇∗|) mod |∇∗| (4.20)

where |∇∗| is the size of the communication resource ∇∗. In conclusion, for this mechanism,

the objective is that each time a job of a given consumer task is activated, it must read the

data sample being into the buffer slot pointed by the result returned by Equation 4.20. We

implement this mechanism within Algorithm 2 and we add comments to each statement in

order to ease its understanding.

Algorithm 2 Implementation of the sub-sampling rate mechanism
1: return the higher priority task τprior, its input buffers BIn

prior and its output buffers BOut
prior

2: switch $prior do . Check the task communication state
3: case -1 . $prior = -1 if the job of prior has not yet finished reading all input data or if it leaves the sleeping mode.
4: for each ∇(i) ∈ BIn

prior do . The data variable V of each ∇ comprises i array vectors, numbered from 0 to i-1.
5: for j=0 To i-1 do . The readEnd boolean is prior have read from the jth vector at-least once.
6: if readEnd = False then . If it’s the 1st reading, prior points to the slot holding the freshly written value.
7: tail←(getHead(∇(j))-1+|∇(j)|) mod |∇(j)| . Equation 4.20
8: end if . If not, prior points to the slot used during the first reading round.
9: readFrom(prior,∇(j),V(j), tail) . In either cases, prior reads from the slot pointed by the value of tail
10: if readEnd 6= True then . After successful reading, set the slot to be read from during this execution
11: setTail(prior,∇(j), (1 + tail + |∇(j)|) mod |∇(j)|)
12: readEnd ← True . Mention the fact that reading has taken place for at-least one time.
13: end if
14: end for
15: end for
16: $prior ← 0 . Mention the fact that prior has finished to read from all buffers from BIn

prior.
17: case 0
18: Process using the read data . In the meanwhile, if the reading program is requested, return to Statements 3-16.
19: if procEnd = True then . Once processing is completed, output data must be written; no more reading.
20: $prior ← 1
21: end if
22: case 1 . prior enters the writing stage and must read from all the output buffers.
23: for each ∇ ∈ BOut

prior do
24: head←getHead(∇) . head has the value of the buffer slot to be written in with respect to ∇
25: writeIn(prior,∇,V, head) . prior performs the writing into the buffer slot pointed by head
26: setHead(prior,∇, (1 + head) mod |∇|) . Set new value of head to be used at the completion.
27: end for
28: $prior ← -1 . After writing completion, prior enters sleeping mode
29: procEnd← False . Reset to false the variable indicating the end of the processing stage.
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4.3 On the verification of local consistency constraints

In this section we present how the sub-sampling rate mechanism deals with each of the

local consistency constraints while considering an asynchronous non-blocking access to the

shared buffer. Precisely, as described in Section 2.3.3.2 the local consistency constraint

LocalCC〈τi, r, τj〉 is verified if, all the data samples written by τi into r, the jobs of τj
always read data samples that are consistent, fresh and locally coherent. Precisely, a data

sample is said to be consistent if it has the property 1, fresh if it has the property 2 and

locally coherent if it has the property 3.

4.3.1 Data freshness

The freshness property (Property 2) constraint requires that the jobs of the consumer tasks

for a given message should always consume the recently written data sample. The question

here is "does the sub-sampling rate mechanism ensures the data local freshness properties?".

In order to verify this constraint, we consider a communication resource ∇∗ such that

∃E∗ = {τi|τi1 , · · · , τik} where τi is the producer task and τij is a given consumer task provided

1 ≤ j ≤ k.

Considering the activation time of the (p− 1)th and (p)th jobs of τij such that the (p− 1)th

job consumes the data produced by the qth job of τi. Thanks to Equation 4.17 (resulting

from the Theorem 3) we obtain the number of data samples that can be written by the

producer task in a time interval between the activation of the (p− 1)th and the pth jobs of

any τij , denoted by ηpij ,p−1. In accordance with the sub-sampling rate mechanism, when the

(p)th job of τij is activated, it consumes the
(
ηpij ,p−1

)th
data sample produced by τi since the

activation of the (p− 1)th job of τij ; which is the recently produced data sample at this date.

So, we conclude that implementing the sub-sampling rate mechanism maintains the data

freshness property (Property 2).



4.3. ON THE VERIFICATION OF LOCAL CONSISTENCY CONSTRAINTS 89

4.3.2 Data local coherence

Considering the Specification 2, the data local coherence property is ensured if, for the

data samples related to a multi-source message, the consumer tasks for this message always

read, from the array vector where each producer writes, the data sample which is fresh

(Property 2).

We can affirm that the sub-sampling mechanism validates this property on the basis of

the following elements:

• The communication buffer is implemented by default in the form of a two-dimensional

array where each producer task writes in its own vector. If there is only one producer,

the array becomes an one-dimensional array. On the other hand, the algorithm imple-

menting the sub-sampling mechanism handles such an eventuality by providing each

consumer with the possibility to read from each of these vectors and the producers with

the possibility to write into their own vectors.

• There is no possibility of overlapping data resulting from different execution steps of

the producer(s). Also, each job is supposed to read its output data at its activation

time (Stat.6− 8) and, if it happens that a new reading is necessary, the job in progress

continues to use (Skip Stat.6 − 8) and it goes directly to Stat.9 the data read at the

very first moment of its execution (Stat.7)). By doing so, combining part of the old

data sample with part of the new data sample is avoided.

• Finally, as aforementioned, this freshness property is maintained by our mechanism.

Based on the above, we obtain that the data local coherence property is maintained.

4.3.3 Data consistency

The data consistency property constraint requires that no data samples in use should ever be

overwritten. We verify this hypothesis by deduction. First of all, for the data consistency to

be violated, the read data must be overwritten before the consuming job finishes its execution.

At worst, this is when the overwriting occurs before the end of a duration equal to the worst

response time of the corresponding task. The size of the buffers is calculated by taking into

account the worst-response time of the consuming task. These sizes ensure that while there is
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a job of the consumer task in progress, the generated data does not overwrite the read data.

From the foregoing, one can simply confirm that the data consistency property is preserved.

τi

τi jobs

sl

1
2

3

1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 4.4: An example showing the sub-sampling mechanism result

To illustrate the above, let us consider a communication resource ∇∗ such that E∗ =

{τ1|τ2, τ3} and |∇∗| = 3. The tasks have the following timing characteristics: τ1(1, 3), τ2(2, 8)

and τ3(3, 12). The first parameter is the worst-case execution time, the second is the period

and all the tasks have implicit deadlines. The scheduling results are presented in Figure 4.3.

The Figure 4.4 displays the slot into/from which the writing and reading operation of each of

the jobs happened. The Z-axis represents the tasks from τ1 to τ3, while the Y-axis represents

the slots of the buffer (there are three of them, each box represent a buffer slot). Finally, the

X-axis represents the list of jobs (from one to ten jobs).

As the communication buffer has a storing capacity of 3 data samples, the data consistency

is violated if and only if the τ1 can manage to generate more than 3 data samples within

the time interval bounded by the execution start and completion of a job of any of τ2 or τ3;

which is not possible according to Equation 4.2. In Figure 4.4, the green lines point to the

slots where each job of the producer task writes the output data samples represented by a

circle green ball. The buffer slot are presented on the Y-axis and are numbered from 1 to 3.

Herein, we can see that the new production of τ1 never overwrote the data being used any of

the jobs of τ2 and τ3, in red and black color lines, respectively.
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In this chapter, we present our solutions towards the verification of data properties global

consistency constraints. Our solutions can be useful for wide variety of domains including

data fusion for intelligent systems that infers the objects identity (or make some decisions)

on the basis of the sensed data. When these data are generated by the same sensor, the

part of the system (task) in charge of inferring (decision making) must be supplied with

the capability to associate only the data initially resulting from the same execution step of

the source (sensor) task. On the other hand, if the data to be combined are generated by

different sources, only the ones acquired within the same time window on both sides reflect the

same state of the environment. For example, autonomous vehicles (manned or unmanned),

intelligent robots, etc. are equipped with multiple camera sensors that continuously interact

with the surrounding environment. As aforementioned, an example of such application may
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concern the identity inference of the object in the neighborhood (face, sides, ...). Depending

on the collected data, a coherent decision must be taken with regard to the criticality of

such a decision, i.e., the level of harm that may result from mistaken identification. For

example, considering the autonomous vehicle, if the object in the neighborhood is another

vehicle moving in the same direction, the decision would be to adapt the speed to the speed

of the vehicle in front (accelerate or decelerate as appropriate) whereas as if the object in the

neighbourhood is a crossing human, the decision should be to suddenly stop the vehicle.

It is important to note that in these circumstances, accuracy is an important consideration

and all image sensors must synchronize or coordinate with each other. Nevertheless, the

heterogeneity of these image sources (camera, lidar, radar,· · · ) increases the complexity of

achieving an expected accuracy; they may have different delivery speeds, for instance. As

a result, the collected data may not reach the image processing task at the same time.

Subsequently, it must be ensured that the image processing task uses only data reflecting the

same state of the environment.

In this thesis, sets of data reflecting the same state of the environment are referred to

as matching data. We are concerned with data originating from same source, propagating

through different paths to converge on a same task. Matching data are those that originally

result from the same execution step of the data source task. Considering that the propagation

of the data samples resulting from the same execution step of the source task may reach the

associating task at different time instants, we aim to propose solutions/mechanisms allowing

to postpone the reading of the data that arrived early to make them wait for those arriving

later. These solutions have been addressed, previously, in the literature. For instance in [65,

66], the authors consider the assumption that the communication buffers are well configured

to handle the proposed solution. Therefore, the proposed solution overlooks the impact of

the communication system on the task system scheduling as well as on the maintenance of

the properties of the data exchanged between adjacent tasks such as the data consistency

property. In [68], the authors propose a synchronization mechanism associating the matching

data in the FADE system [67]. In contrast, they consider unbounded buffers and the tasks

execution order is not subjected to stringent real time scheduling requirements. The resulting

system ("RTMaps") is a black box with no possibility to examine the source code compared
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to PX4 which is an open source system. To the best of our knowledge, no solution considers

both local and global constraints applied to the data properties.

5.1 CPU and memory storage requirements

There is a wide variety of mechanisms to address both local and global constraints applied

to the data properties, but we need to estimate the costs they induce in terms of CPU and

memory overheads or the possibility that it may have a negative impact on the initial task

scheduling order or not. As for instance, the control of the disparities between ages is avoided

by using arbitration mechanisms on shared variables. As previously mentioned, this type of

solution is known to be potentially capable of perturbing the task scheduling order, which

can lead to scheduling problems such as priority inversions, the deadlocks formation and,

in extreme cases, to a chained blocking resulting in a non-schedulable system, especially

when the considered system is complex like the one considered in this thesis. Nevertheless,

despite the negative impact that this mechanism can have on the task scheduling order since

it requires a high CPU overhead, it is still less greedier in terms of required memory space.

On the other hand, there are other mechanisms called asynchronous that allow each task

to perform read/write operations when the scheduler allows it. This possibility of reading

and writing without blocking can be achieved either implicitly or explicitly. For the

former, each task is expected to have a local copy for each of the input variables it consumes.

Afterwards, at the release time of each of its jobs, values from the global variables are copied to

the corresponding local variables. These local variables are used by the current job whenever

reading operation is requested. It should be noted that the use of such local copies is restricted

to the area of adjacent tasks only. If the data propagation goes through intermediary tasks,

this would require each intermediary consumer to make his own copies and so forth until the

final destination. This mechanism doesn’t seem to affect the job scheduling order but it may

be extremely greedy in terms of memory space caused by the duplication of variables but

also requires additional processor cycles for copying in and writing out from global back to

local variables and from local to global variables. Regarding the explicit asynchronous

mechanisms, the only cost to be paid is the memory overhead. Therefore, this mechanism is
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preferable within our context, because we are concerned not to disrupt the task scheduling

order while assuming that there is sufficient memory space.

Considering the benefits and drawbacks of both categories of mechanisms, we prefer the

explicit asynchronous mechanisms and assume that there is sufficient memory space to store

all the produced data in such a way that it is always guaranteed that, in spite of gaps in terms

of delivery time, the consumer is able to select the temporally coherent data. In the remainder

of this chapter we verify the global coherence and freshness for data originating from the same

source. We call "spindle" the set of functional chains involved in the propagation of these

data from source to destination form a network of chains and present below a more formal

definition.

5.2 Spindle modeling and formalization

The global matching constraint concerns a task associating data originally produced

by the same task and which propagated through different chains. Accordingly, the global

matching constraint requires that only data samples resulting from the same execution step

of the source application must be associated. Moreover, this requirement may not concern

all the messages produced by the source task. As in [66], we use the term spindle to name

the set of functional chains involved into the propagation of the data samples related to a

given message from the source until the associating task.

Definition 14 (Spindle) A spindle S∗q (τsrc, τlast) is a set of q chains propagating the data

samples related to the message ∗ such that all these chains have the same source task

denoted by τsrc and the same matching task τlast task, with q ≥ 2.

Each chain in S∗q is denoted by C∗c:q with c the index of a specific chain, ∀1 ≤ c ≤ q. The

chains composing the spindle can be linear or branched.

Definition 15 (Linear chain) A chain C∗c:q ∈ S∗q is said linear iff ∀c, c′ : 1 ≤ c, c′ ≤

q ∧ c′ 6= c we have C∗c:q ∩ C∗c′:q = ∅.

Definition 16 (Branched chain) A chain C∗c:q ∈ S∗q is said branched iff ∃C∗c′:q ∈ S∗q such

that C∗c:q ∩ C∗c′:q 6= ∅ with 1 ≤ c, c′ ≤ q ∧ c′ 6= c.
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In the presence of one or many branched chains, the number of initial chains may differ

from the one of chains reaching the end of the spindle. Accordingly, we denote by p the

number of initial chains while q keeps the meaning of the number of the chains reaching the

spindle sink task. For instance, regarding the spindle in Figure 5.3, p = 2 while q = 3.

On this basis, we distinguish the following classes of spindles: Balanced, α-Balanced

and unbalanced spindles.

Definition 17 (Balanced spindle) S∗q is a balanced spindle iff p = q and all q chains are

linear.

τ1 m1

τ3

τ2

m3 τ5 m5

m2 τ4 m4

τ6

Figure 5.1: A balanced spindle example.

The example shown in Figure 5.1 is a balanced spindle since both its propagation chains

are linear.

Definition 18 (α-balanced spindle) S∗q is a α-balanced spindle iff p = q and there is a

number α of embedded balanced spindles in its composition.

τ1 m1

τ3 m3

τ2
τ4

m4

τ5 m5

τ6

m2

Figure 5.2: An α-balanced spindle example.

The spindle presented in Figure 5.2 has an inner balanced spindle regarding the message

m3 which propagates through the portions τ3
m3−→ τ4

m4−→ τ5 and τ3
m3−→ τ5. Although for the

spindle Sm1
2 p = q, having in its structure makes it an α−balanced spindle.

Definition 19 (Unbalanced spindle) S∗q is an unbalanced spindle iff p < q.
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τ1 m1

τ2

τ3

m4

m2 τ4 m3

m5 τ5 m6

τ6

Figure 5.3: An unbalanced spindle example.

All the above types of spindles have in common the fact that they all propagate the data

samples read from a same buffer and associated by a same task. Analogically, this source

buffer is named spindle source buffer where p is the number of tasks reading from this

buffer.

Notice 9 In this thesis we consider only balanced and unbalanced spindles with no nested

spindles. For the unbalanced spindle each branched chain is split into linear chains at

the last common task.

Definition 20 (Spindle source buffer) The communication resource ∇∗ is the spindle

source buffer if there exists a spindle S∗q such that E∗ = {τsrc|τ start1 , · · · , τ startp } provided

2 ≤ p ≤ q.

where τsrc is the producer into ∇∗ and τ start1 , · · · , τ startp are the corresponding consumer tasks.

The expression 2 ≤ p ≤ q considers that the number of tasks reading from the spindle source

buffer (p) may be less than the number of buffers from where the spindle sink task read (q) for

the reasons aforementioned. On the other hand, the spindle sink task reads from q different

buffers. Each of these buffers is written by the second to the last task in each chain. We

name such buffers as the spindle chain last buffer that we denote by ∇∗c , ∀1 ≤ c ≤ q.

Definition 21 (Spindle chain last buffer) ∇last∗c is a spindle chain last buffer there

exists a message last∗c such that E last∗c = {τ lastc |τsink} with 1 ≤ c ≤ p.

where τ lastc is the second to last task belonging to the functional chain of index c. Here

∇last∗c is a message originally resulting from the propagation of a message m produced by the

spindle source task τsrc.
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Definition 22 (Spindle inner buffers) For each spindle propagation chain C∗c:q such that

τ startc and τ lastc are the second and the second-to-last tasks belonging to C∗c:q. Any buffer placed

between τ startc and τ lastc is refereed to as a spindle inner buffers.

The goal of this section is twofold: (i) computing the optimal size for each of the categories

of buffers involved in data propagation and (ii) proposing suitable data access mechanisms

to correctly maintain the said properties. Specifically, we aim to ensure that the spindle

sink task (τsink) always reads, from each of the spindle chain last buffers, the data samples

resulting from the same execution step of the spindle source task (τsrc). This is based on a

general model where some parts (or sub-systems) may be concerned by the use of matching

data (involved in the spindle data propagation). The proposed mechanisms must provide

ways and means for the individual tasks to implement a data access behaviour taking into

account this aspect.

Discussing the sub-systems concerned with the spindle data propagation, the temporal

characteristics of the tasks and the composition of the spindle chains have an important im-

pact on the verification of global consistency constraints. For instance, the sequence of tasks

involved in the spindle data propagation across a given chain may have different sampling

periods. It is therefore possible to end up in so-called under-sampling pattern (the pro-

ducer task writes data samples faster than the consumer reads them, Tproducer < Tconsumer)

or over-sampling pattern (the consumer reads data samples faster than the producer writes

them, Tproducer > Tconsumer). Regarding the under-sampling pattern, the direct conse-

quence is that some data samples may be overwritten before being used, causing a rupture

in data propagation before reaching the spindle sink task. As a result, the sink task may

not find in each of the spindle chain last buffer the matching data samples produced during

the same execution step of the spindle source task, unless these buffers have unbounded size.

On the other hand, regarding the over-sampling pattern, the consequences may not be

so fatal; each data sample written by the producer is ensured to continue its propagation (it

is read at least once or possibly several times by the job(s) of the adjacent consumer task)

which results in a no rupture of propagation. This being said, drawbacks may result from

the over-sampling pattern as there may be several output data resulting from the same

execution step of the spindle source task that may be buffered into a given spindle chain
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last buffer; leading then to unwanted memory overhead. The other constraint is that all

the spindle propagation chains may have different propagation delays for a data sample to

propagate from the spindle source until the spindle sink task.

Considering all the above, the objective is to manage the propagation of the data from

the source up to the spindle sink in such a way that when a job of the spindle sink task is

activated, it finds in each of the spindle chain last buffers, the data samples originally resulting

from the same execution step of the spindle source task and that, without using any type of

synchronization mechanism as they may have a negative impact on the schedulability of the

task system. In order to manage all the aforementioned particularities of the tasks system,

we present below the stages of the proposed resolution plan to achieve the goal of this thesis

with respect to the requirements and assumptions to be taken into account herein.

For a clear overview of the spindle model and related notations, we use the model shown

in Figure 5.4 and major notations used in the spindle data propagation management are

shown in Figure 5.5.

τsrc ∇∗

τ start1 · · · τ last1 ∇last∗1

τ start2 · · · τ last2 ∇last∗2

...... ... ...
τ startp · · · τ lastp ∇last∗q

τsink

τa · · ·

τb ∇5

Figure 5.4: A general configuration configuration of the spindle
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Symbol Definition

τsrc The spindle source task

τ startc The second task belonging to the cth spindle chain provided 1 ≤ c ≤ p where

p is the number of tasks involved in the spindle data propagation which read

from the spindle source buffer ∇∗.

LP
1≤c≤p

{
τ startc

}
The lower priority tasks among the {τ startc }, for all 1 ≤ c ≤ p

τsink The spindle sink task

τ lastc The second-to-last task belonging to the cth spindle chain provided 1 ≤ c ≤ q

where q is the number of chains outputting the data samples concerned by the

spindle data propagation.

∇last∗c The spindle chain last buffer belonging to the cth spindle chain provided 1 ≤

c ≤ q.

Ωmin
c:q The smallest amount of time it can take for a data sample read from the spindle

source buffer to propagate until the output of the related data sample into the

corresponding spindle source last buffer, with respect to the cth spindle chain.

Ωmax
c:q The smallest amount of time it can take for a data sample read from the spindle

source buffer to propagate until the output of the related data sample into the

corresponding spindle source last buffer.

Figure 5.5: Major notations used in the spindle data propagation

5.3 The solution overview

We underline that the peculiarities due to the structure of the tasks system timing charac-

teristics increase the complexity of verifying global consistency constraints especially where

it requires that only matching data samples must be associated. The goal being to associate

the data samples resulting from the same execution step of the spindle source task, there

is no way to achieve it implicitly. Therefore, one must find a way to filter the data from

the source task such that only the data samples that are likely to propagate until the sink

task are considered from the spindle source buffer. If such a way exists, it would not only

allow to find matching data samples in each of the spindle chain last buffers but also would



100 CHAPTER 5. GLOBAL CONSISTENCY CONSTRAINTS

reduce the overload which might result from the propagation of several unnecessary data 1

from the source buffer. Nevertheless, the solution must not be limited solely to the objective

of guaranteeing the data matching property; it must also have the ability of supporting the

heterogeneous properties (data consistency and freshness for instance), required at different

levels of the functional chain. We provide below the list of steps allowing to achieve this joint

objective.

Step 1 Force the jobs of each τ startc to propagate the same sample of data read from the

spindle source buffer until the job of LP
1≤c≤p

{
τ startc

}
, which has read, finishes its execution.

For a data sample reaching the end of a spindle chain, it increases the probability of finding

matching data samples into other spindle chain last buffers. Thus, not only we decrease the

size of the buffers at the end of each spindle chain, but also we avoid the propagation of data

samples with a high probability of being preempted.

Notice 10 For the spindle source task τsrc and the tasks τ start1 , · · · , τ startp we consider the

assumption that priority(τsrc) > priority(τ startc ) with 1 ≤ c ≤ p and p the number of tasks

involved in the spindle data propagation.

It should be noted that not all tasks reading from the spindle source buffer are auto-

matically part of the spindle chain; a functional chain is considered to be a spindle chain

if it is involved in the spindle data propagation. Therefore, the solution resulting from

Step 1 provides the necessary flexibility for other non concerned tasks. For instance, we

consider the model presented in Figure 5.4 where ∇∗ is a spindle source buffer such that

E∗ = {τsrc|τ start1 , · · · , τ startp , τa} where p is the number of tasks belonging to the functional

chains involved in the spindle. Referring to the Step 1 statement, the tasks {τ start1 , · · · , τ startp }

are mandated to always propagate the same data sample while the jobs of τa read the re-

quired input data on its own pace based on the τa scheduling priority. Given that these

p tasks do not have the same periods, it is then obvious that the smaller period tasks are

forced to propagate the same data many times until those proceeding slowly complete their

executions. To that end, we propose in the Section 5.4.1, a mechanism called "the last reader

tags mechanism".
1Data samples which don’t have the chance to propagate until the end of the corresponding chain due;

rupture of propagation due to data overwriting
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Step 2 Computing the optimal (minimal) size of spindle source buffer such that the data

consistency of the read data is always guaranteed.

Given that we consider that access to shared buffers is done asynchronously without

blocking, keeping a data read by one of the tasks until it is consumed by all the other tasks

imposes to this data to stay in the buffer longer than usually; a sufficient size to store it

before being overwritten must be computed. Such a size is computed in Section 5.4.2.

Step 3 Computing the propagation delay for each of the spindle chains.

Expecting to find corresponding data samples in each of the spindle chain last buffers

requires to understand how long it can take for a data to propagate from the spindle source

until the spindle sink if it is propagated through each of the spindle chains. Thus, in Sec-

tion 5.4.3 we formally calculate the shortest and largest data propagation delay for each of

the spindle chains.

Step 4 Computing the optimal size of each of the spindle chain last buffer guaranteeing that

a job of the spindle sink task will always find, in each of these buffers, at least one data

sample resulting from the same execution step of the spindle source task.

Using the results from Step 3, we can compute the size of each spindle chain last buffer.

Given that the spindle sink task may read some data that are not concerned by the global

matching property, it must be able to perform a correct reading depending on whether

or not the input buffer belongs to a spindle chain. For instance, referring to the exam-

ple in Figure 5.4, the computation of the size of each of the spindle chain last buffers

∇last∗1 ,∇last∗1 , · · · ,∇last∗q follows the Step 4 statement whereas the one of ∇5 is computed

using Equation 4.1 considering the message domain E∗ = {τb|τsink}. The above sizes are cal-

culated on the basis of worst-case propagation delays. So, they may be extremely large while

containing useless duplicates. By "duplicates", we mean the data samples resulting from the

same execution step of the spindle source task. To minimize these duplicates, leading to the

minimization of the spindle chain last buffer sizes, we introduce a novel mechanism, referred

to as scroll or overwrite mechanism regulating the data writing by each second-to-last

task with respect to each spindle data propagation chain.
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We present in Figure 5.6 a recapitulating diagram indicating which mechanism to apply

at each level of the spindle propagation chain.

τsrc τ startc

The last reader tags
mechanism

· · ·· · · τ lastc

Sub-sampling rate
mechanism

Scroll or overwrite
mechanism

τsink

Matching algorithm

Figure 5.6: The global consistency constraints verification scheme

Precisely, for each second task τ startc involved in spindle data propagation and belonging

to a chain of index c such that E∗ = {τsrc|τ start1 , · · · , τ startp } provided 1 ≤ c ≤ p where p

is the number of such tasks, we apply the last reader tags mechanism. Then, regarding

a spindle chain of index c, the data management for the tasks falling between its second

and its second-to-last tasks, we apply the so-called sub-sampling mechanism developed in

Section 4.2. Lastly, for each second-to-last task of each chain, the scroll or overwrite

mechanism is applied to minimize the waiting buffers at the end of each chain.

5.4 Verifying the global consistency constraints

5.4.1 The last reader tags mechanism

The main idea behind the last reader tags mechanism resides in modifying the rules under

which the access to the spindle source buffer is done. Generally the data reading is carried out

such that each consumer asynchronously reads the data by means of his tail value, making it

independent from the reading of another task. This property is acquired by considering the

execution of the producer and the consumers regarding a given message, which are organized

under the so-called message domain. When a job of the producer task, which must be the

only one writing into a buffer intended to store the data related to a specific message, finishes

its execution, it increments the head value which will be used to identify into which buffer slot

its next job is going to write the output data. As for the individual consumer, on activation
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date of each of its jobs, the latter consumes the data located into the buffer slot pointed

out by the current value of tail. Only at the reading completion from each input buffer, the

corresponding tail value is incremented to target the slot where the next job starts reading

the data at its activation date. Using this operating approach (presented in Section 4.2)

we ensure that the data constraints imposed at the local level (task-level data properties

constraints) are guaranteed with the help of the sub-sampling mechanism, which is relevant

only for inner buffers (not the source buffer or spindle chain last buffers).

For tasks released simultaneously, let us consider the following lemma, which regards

exclusively the data sample read by the first job of each of the consumer tasks that may be

reading from a given buffer said ∇∗.

Lemma 1 When tasks are released simultaneously, if a data sample must be consumed by all

the consumer tasks, then among the first jobs of each of the consumers, the job of the lower

priority is the last one to use the first read data sample.

Proof 5 We consider that the reading operation can be performed at any time instant within

the current job execution window, but the data to be read have to be the ones used at the

activation time. Therefore, we can say that a job can use a data for at most a duration equal

to its task worst-case response time, denoted by Ri. Further, given that a job is scheduled

based on the task priority, then the lower is its priority, the later the job is scheduled, and

subsequently, the longer this job can use the first data sample.

This is observable considering the example presented in Figure 5.7, where four tasks τ1,

τ2, τ3 and τ4, scheduled preemptively based on a fixed priority scheduling algorithm (rate

monotonic algorithm [2]). The tasks have implicit deadlines and are characterized by the

worst-case execution time and the period where their timing parameters are (1, 6), (1, 8),

(2, 12) and (3, 18), respectively. The corresponding message domain is E∗ = {τ1|τ2, τ3, τ4}.

The dotted arrows from τ1 downstream to τ2, τ3 and τ4 show which job read the first data

produced by τ1. Here the first job of τ4 completes its execution lastly at t = 8.

Based on Lemma 1 and in order to enforce all the consumers reading from the spindle

source buffer to propagate the same data sample, we need that all the concerned tasks use

the same data as long as the job of the lower priority among all these consumers has not
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τ1
R1

τ2
R2

τ3
R3

τ4
R4

Figure 5.7: Example showing the data tagging operation

yet completed its execution. For instance, considering the example presented in Figure 5.7,

each job of τ2 and τ3 that may be triggered at a time instant t such that 0 ≤ t ≤ R4 must

read the data sample produced by the first instance of τ1 at t = 1. Once the job of the lower

priority task among the consumers completes, a new data to be consumed further has to be

determined and must be that recently written by the spindle source task. The activity of

determining which data sample is now going to be consumed from the spindle source buffer

is called data tagging and, therefore, the data itself is called tagged data and the task

determining this data is the tagging task; which explains the naming of this mechanism as

the last reader tags.

Precisely, the tagging task is the lower priority task among the consumers reading from

the spindle source buffer; τ4 in the above example. The dotted arrow from the execution

completion time of the first job of τ4 upstream to τ1 shows which data sample must be

consumed by the jobs τ2, τ3 and τ4 that may execute within time interval being between this

completion time and the completion time of the next job of τ4.

To generalize the results of Lemma 1 to all the data samples produced by the spindle

source task, we consider a communication resource ∇∗ holding the data samples related to

the message ∗ such that ∇∗ is a spindle source buffer. The corresponding message domain is

E∗ = {τsrc|τ start1 , · · · , τ startp , τ1, · · · , τn} where p+ n tasks reading from ∇∗ among which only

p tasks are involved in the spindle data propagation operation. In Theorem 5 we provide this

generalization.

Theorem 5 We consider a message domain E∗ = {τsrc|τ1, · · · , τn, τ start1 , · · · , τ startp } such that

∇∗ is a spindle source buffer where there are p tasks concerned by spindle data propagation

and n tasks are not concerned. ∀i ∈ [1, n] ∧ c ∈ [1, p], the data sample to be read is located
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into the slot pointed out by the following values of tail

tail(τi,∇∗)← (head(∇∗)− 1 + |∇∗|) mod |∇∗| (5.1)

and

tail(τ startc ,∇∗)← tail
(

LP
1≤c≤p

{
τ startc

}
,∇∗

)
(5.2)

Proof 6 As previously mentioned, any type of task can be read from the buffer. For tasks

which are not part of the spindle, the case is addressed the same as in the previous chapter.

Here only the properties required at the local level are important. For this category of tasks,

the result of Equation 4.20 which is the same as those described by Equation 5.1.

As for tasks that are part of the spindle, they will only use data that has been tagged at

completion of the previous job of lower priority tasks among them. This data must be the

most recently produced by the spindle source task; which is also computed by Equation 4.20

considering only this lower priority task.

In Algorithm 3 we present a possible implementation of the last reader tags mechanism.

In other words, it basically gives the main steps and the logic behind its implementation pro-

cess. An effective implementation is indeed possible in compliance with specific programming

language specifications.

5.4.2 Computing the spindle source buffer size

The implementation of the last reader tags mechanism imposes that all the jobs of the

tasks that are part of the spindle data propagation keep reading the same data sample during

the time interval separating the completion time of two consecutive jobs of the lower priority

task among them. To ensure data consistency, there must be enough slots to hold new

data samples produced during this time interval otherwise the data sample being processed

may be overwritten before the completion of next job of this lower priority task. Therefore,

it is necessary to first compute the largest amount of time a tagged data can stay stored

within the source buffer before being overwritten. Such a delay is referred to as the spindle

source buffer data consistent interval which we denote by SCI, computed based on the data

lifetime bound method.
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Algorithm 3 Implementation of the last reader tags mechanism
1: function msgSPT(msgDomain) . Takes a message domain as argument.
2: return spindleTasks . Returns the set of tasks involved in the spindle data propagation.
3: end function
4: function LowerP(setOfTasks) . Takes the set of tasks as argument.
5: return LP . Returns the lower priority among them.
6: end function

———————————————–
7: return the higher priority task prior, its input buffers ∇In

prior and its output buffers ∇Out
prior

8: Task lp . Declare a task lp.
9: Buffer bf . Declare a buffer bf .
10: if $prior = −1 then . If the job of prior has not yet finished reading all input data or if it leaves the sleeping mode.
11: for each ∇m ∈ ∇In

prior such that 1 ≤ m ≤ |∇In
prior| do

12: if (∇m) is not a spindle source buffer or prior /∈ msgSPT (Em) then
13: Follow Algorithm 2 . If the current buffer isn’t the spindle source one or if prior is

not involved in the spindle data propagation. A task may read from spindle source buffer without being in the spindle data
propagation. In such cases, the Algorithm 2 holds.

14: else . If the buffer is a spindle source one and prior is involved in the spindle data propagation.
15: bf ← ∇m . bf is a spindle source buffer.
16: lp← LowerP (msgSPT (Em)). lp is the lower priority among the ones involved in the spindle data propagation.
17: tail←getTail(lp,∇) . Returns the tail value of lp in bf Equation 5.2
18: readFrom(prior, bf,D, tail) . prior inherits the tail value from lp in bf .
19: end if
20: end for
21: end if
22: if $prior = 1 then
23: for each ∇ ∈ ∇Out

prior do
24: head←getHead(∇) . head has the value of the buffer slot to be written in with respect to a communication

resource ∇
25: writeIn(prior,∇,D, head) . prior performs the writing into the buffer slot pointed by head
26: setHead(prior,∇, (1 + head) mod |∇|) . Reset to false the variable indicating the end of the processing stage.
27: end for
28: if prior ≡ lp then . If prior is the lp.
29: setTail(prior,bf, (|bf | − 1 + |bf |) mod |bf |) . Tags the new value to be read further from bf Equation 5.1
30: end if
31: end if
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Theorem 6 We consider a message domain E∗ = {τsrc|τ1, · · · , τn, τ start1 , · · · , τ startp } such that

∇∗ is a spindle source buffer where there are p tasks involved in data propagation through the

spindle and n tasks not involved.

SCI = max (a, b) (5.3)

with

a = T LP
1≤c≤p

{
τ startc

} −
c LP

1≤c≤p

{
τ startc

} + csrc

+R LP
1≤c≤p

{
τ startc

} (5.4)

b = max
1≤i≤n

{Ri} (5.5)

where csrc is the best-case execution time of spindle source task (τsrc), LP
1≤c≤p

{
τ startc

}
is the

lower priority task among the tasks involved in the spindle data propagation and, accordingly,

T LP
1≤c≤p

{
τ startc

} and R LP
1≤c≤p

{
τ startc

} are its period and its worst-case response time. Ri is the

worst-case response time of a task τi ∈ {τ1, · · · , τn}.

Proof 7 Regarding the tasks being part of the spindle, the lifetime of the data samples read

from the spindle source buffer goes from the completion of a job of the lower priority task to

the completion of the next job. It is intuitively fair to say that the largest time span can only

occur if for two instances p and p+ 1, p completes its execution as early as possible and p+ 1

as late as possible. One can also say that the largest duration can occur only if at tagging

date, this data had just been written and that the instance that produced this data lasted for

the shortest possible time. As we consider a pre-emptive system where tasks cannot run in

parallel, we combine these two scenarios and find the compromise based on the priority of the

producer (τsrc) and LP
1≤c≤p

{
τ startc

}
.

• priority(Tsrc) > priority( LP
1≤c≤p

{
τ startc

}
): In these conditions Tsrc is likely to preempt

LP
1≤c≤p

{
τ startc

}
and, logically, in order for LP

1≤c≤p

{
τ startc

}
to tag data freshly produced, the

execution of Tsrc must have occurred during the execution of LP
1≤c≤p

{
τ startc

}
given the

high priority of Tsrc over LP
1≤c≤p

{
τ startc

}
and, on the other hand, LP

1≤c≤p

{
τ startc

}
must have

completed immediately after the completion of Tsrc. Therefore, for the execution time
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of LP
1≤c≤p

{
τ startc

}
to be the shortest possible, the execution of LP

1≤c≤p

{
τ startc

}
must have

experienced the interference of τsrc only and the execution of this job of LP
1≤c≤p

{
τ startc

}
executes for its best-case execution time. Hence, the largest delay is computed using

Equation 5.4.

τsrc
SCI

τLP
cLP + csrc RLP

Figure 5.8: Example displaying SCI value for a set of tasks

Finally, in order to deal with all eventualities that could compromise data integrity, it should

not be overlooked that the lower priority task among {τ1, · · · , τn} may have a priority lower

than that of LP
1≤c≤p

{
τ startc

}
. In such a situation, the largest time delay a tagged data sample

may remain into the buffer is given by Equation 5.5. Subsequently, given that for the data

consistency property, the larger is the amount of time a data sample can remain inside the

buffer, the safer it is, taking the maximum of these two values is considered to be a safe

solution.

With respect to the life time bound method, the size of the spindle source buffer is

computed on the basis of Theorem 7.

Theorem 7 We consider ∇∗ a spindle source buffer written by τsrc provided the of value of

SCI. The optimal size of ∇∗ is computed as follows:

|∇∗| =
⌈
SCI

Tsrc

⌉
(5.6)

Proof 8 The data lifetime bound mechanism necessitates the longest amount of time that a

given data sample may be in use by some consumers. Such a time is normally defined by the

worst-case response time of a task. Following this logic, if one buffer is shared among several

consumers, this duration turns out to be the worst-case response time of the lower priority

task among these consumers. Nevertheless, in the case where coherent data matching is

required, the need goes beyond the simple tasks response times. In this case, the SCI value
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is the largest amount of time a data may remain in the spindle source buffer of the spindle.

Considering that tasks are triggered periodically and that access to the communication buffers

is based on the " single producer, several consumers " principle, the size required for such a

buffer is clearly the one capable to store all other data samples that may be produced between

the completions of the two consecutive jobs of the lower priority task among the ones involved

in the spindle data propagation.

In Equation 5.6 we compute the number of instances that can begin and complete their

executions in a time bounded by the SCI at the worst. Since each instance gives birth to only

one data sample which is written at its execution completion, this confirms that during the

DCI, the spindle source task may produce at most n samples provided n =
⌊
SCI
Tsrc

⌋
. On the

other hand, considering that the instance that marks the propagation of a new sample uses the

previously tagged data, which should not be overwritten until the execution completion of its

consuming instance, it is mandatory to enlarge the buffer size for one extra slot to maintain

the integrity of the data being propagated. For instance, for a buffer comprised of size where

the data sample being propagated is located into a slot si:i∈[0,size−1], if n data samples are

produced and size is equal to n, the nth data sample is written into the slot given by (si + n)

mod size. In other words, the writing of this nth data sample overwrites the content of si.

Given that these n samples have been written before the execution the completion of an job

of the tagging task that is propagating the sample currently located into the cell si, if size is

equal to n, the overwriting of the data within si would result in a data consistency property

violation. Therefore, another slot must be added.

5.4.3 Spindle chains propagation delays

In this section we calculate the time it can take for a data sample to propagate from the source

until the spindle sink task with respect to each of the chains involved in such a propagation.

As indicated previously, this only concerns the chains which are part of the spindle; for the

other chains, the data propagation continues to be carried out in an asynchronous way that

guarantees the maintenance of data properties required at the level of each pair of adjacent

tasks. For the chains involve in the spindle, knowing such delays is useful to determine

the data delivery rate for each chain compared to the other chains. These rates allow to
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calculate the size of the buffers located at the end of each chain, because this is where the

data association should be coherently matched. These time delays are evaluated in two steps:

• Delay 1 The time a data sample can be kept into the spindle source buffer provided

the additional delay that may be induced by the last reader tags mechanism. For con-

venience, this time is called source buffer waiting delay.

• Delay 2 The propagation time of a data sample produced by the second task until the

completion of the second-to-last task of each spindle chain, considering that the first

and last tasks are common for all chains and are the source and the sink tasks of the

spindle, respectively. This delay is referred to as inner propagation delay.

To formalize these delays, we consider the model example presented in Figure 5.4 where we

only focus on the chains being part of the spindle. To that end, we start by decomposing the

cth spindle chain belonging to the spindle S∗q as follows:

C∗c:q = τsrc →︸ ︷︷ ︸
Delay 1

τ startc → · · · → τ lastc →︸ ︷︷ ︸
Delay 2

τsink (5.7)

where

• τsrc and τsink are the spindle source task and the spindle sink tasks, respectively.

• τ startc and τ lastc are, respectively, the second and the second-to-last tasks belonging to

the cth chain of the spindle, provided 1 ≤ c ≤ p.

For each chain C∗c:q, we calculate the minimal and maximal propagation delay for each

segment of the chain, that we sum up to obtain the minimal and maximal propagation delay

of each chain that we note as Ωmin
c:q and Ωmax

c:q , respectively. By the chain segment we mean

the two delays, Delay 1 and Delay 2 associated to the following tasks:

• For the Delay 1, the amount of time that can separate the tagging instant and the

consumption of a given data by each task τ startc . This delay concerns the segment

τsrc → τ startc ,∀c ∈ [1, p]

The minimum and the maximum delays regarding this segment are denoted by swtminc

and swtmaxc , respectively.
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• Delay 2 concerns the segment being between the activation of τ startc and the completion

of τ lastc

τ startc → · · · → τ lastc

5.4.3.1 The source buffer waiting delay

The smallest amount of time a data sample can spend in the spindle source buffer before

being read by a job of τ startc such that τ startc 6= LP
1≤c≤p

{
τ startc

}
with 1 ≤ c ≤ p can be neglected

and set to zero. A possible scenario would occur if, on one hand, the job of LP
1≤c≤p

{
τ startc

}
is preempted by the job of τsrc, while the former had only one processor cycle left to run,

which is then executed immediately, to be followed immediately by the activation of the job

of τ startc . Accordingly, ∀1 ≤ c ≤ p

swtminc ≈ 0 (5.8)

In Figure 5.9 the execution window of the jobs of τsrc are colored such that one can see

which consumer jobs have used the data sample produced at the execution completion of

a corresponding instance of τsrc. For example, the execution windows of the jobs of τ startc

and LP
1≤c≤p

{τ startc } having consumed the data produced at the execution completion of the job

of τsrc colored in yellow are also of yellow color. At the execution completion of a job of

LP
1≤c≤p

{τ startc } a new data sample is tagged and all the other jobs activated after this tagging

instant start consuming the new tagged data. Moreover, the two rods represent scenarios

whereby the executions of the three jobs have the smallest variation between them which

can be approximated to zero. The red rod shows the case in which this small deviation has

separated the execution completion of the first job of τsrc, which is followed by the resume

and the completion of the first job of LP
1≤c≤p

{τ startc }, followed in its turn by the activation of the

first job of τ startc . Thus, the just released job of τ startc consume a data sample freshly written

by this job of τsrc and tagged at the execution completion of this instance of LP
1≤c≤p

{τ startc }.

Accordingly, for such a scenario, the time variation between these three operations is closer

to one computed by Equation 5.8.

On the other hand, each τ startc such that τ startc 6= LP
1≤c≤p

{
τ startc

}
with 1 ≤ c ≤ p has a higher

priority over LP
1≤c≤p

{
τ startc

}
. That being, no job of LP

1≤c≤p

{
τ startc

}
can execute if there is one of
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τsrc SCI

τ startc

cLP + csrc

swtmaxc

LP
1≤c≤p

{
τ startc

} RLP

Figure 5.9: Example displaying the swtminc and swtmaxc values for each τ startc

τ startc still executing. On the other hand, a data sample to be propagated by the job(s) of any

τ startc must be kept in use until the completion of the current job of LP
1≤c≤p

{
τ startc

}
. Considering

that each job must read all the input data at the activation time, the largest amount of time

a data sample can remain into the spindle source buffer is closer to SCI−cstartc when the last

job of τ startc hasn’t encountered any interference from higher priority tasks and its execution

lasts for the best-case time value. Hence, ∀1 ≤ c ≤ p

swtmaxc ≈ SCI − cstartc (5.9)

where cstartc is the best-case execution time of τ startc .

The vertical blue rod shows the scenario in which the job of τ startc preempts a job of

LP
1≤c≤p

{
τ startc

}
such that at the end of its execution, the preempted job resumes, instantly

completes and tags the new data to be propagated. Therefore, the preempting job is the last

one of those having propagated the previously tagged data. If we consider that the reading

of the data is performed at the job activation time, if this preempting job executed for its

best-case time value with no interference from jobs of the higher priority tasks, then the

largest delay that this job consumed will have been into spindle source buffer for a time value

given by Equation 5.9.
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5.4.3.2 The inner propagation delay

The propagation delay that we calculate here concerns the segment τ startc → · · · → τ startc .

This delay consists of the time that can elapse from the moment a job of τ startc starts its

execution until a data related to the one read from the spindle source buffer is written by a

job of any τ lastc .

Regarding the minimal delay, we start from the activation of the first job of τ startc having

read a given data sample the earliest possible (Equation 5.8), whereas for the maximum delay

we start with the activation of the last job of τ startc having propagated the same data (Equa-

tion 5.9). Thus, for each pair of adjacent tasks τi and τj with (τi, τj) ∈ {τ startc → · · · → τ startc }

such that τi → τj, the smallest propagation delay of a data sample from the activation of

a job of τi until the completion of a job of τj, denoted by Delaymini,j , occurs if the jobs of

τi and τi are activated as soon as possible, run for their shortest time (best-case execution

time) such that the completion of the job of τi corresponds to the activation of the job of τi.

Formally,

Delaymini,j = ci + cj (5.10)

where ci and cj are, respectively, the best-case execution time of τi and τj.

Subsequently, for all {τi, τi+1, · · · , τn} ≡
{
τ startc , · · · , τ lastc

}
such that τi → τi+1, the small-

est delay being between the activation of a job of τi and

Delaymini,n =
∑

1≤i≤n
ci (5.11)

Likewise, we need to calculate the largest amount of time that can elapse between the

activation instant of a job of τ startc and the execution completion of a job of τ lastc which ends

with the writing of a new data sample (related to the message read from the source buffer)

into the corresponding spindle chain last buffer. At this stage we already know the largest

amount of time that a tagged data sample can pass before a job of of τ startc (or its last job

willing to read it) may be able to propagate it. We denoted this value as swtmaxc which we

computed using Equation 5.9.
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In the following, we analogically denote by Delaymaxi,n the largest propagation delay re-

garding the segment being between τ startc and τ lastc with respect to the cth spindle propagation

chain. To do so, we first respond to the following: "what is the largest amount of time a data

can remain available into the buffer before a new data sample is written" and, "when should

the consumer read this data for its propagation to be the largest possible". Responding to the

first question, Becker and al. in [31] studied the job-level data dependencies for automotive

multi-rate effect-chains. Therein, for each two adjacent tasks τi and τj such that τi produces

input for τj, the maximum delay a data sample produced by a job of τi can be available for

the job of τj is utmost 2Ti − Ci where Ci and Ti are the worst-case execution time and the

period of τi respectively. This delay becomes 2Ti − ci with ci if the execution lasts for the

best-case execution time. This corresponds to the scenario where, for two consecutive jobs

of τi, the first completes its execution as early as possible whereas the second completes as

late as possible. Thus, in order for the propagation of the data sample produced by a job

of τi to last for as long as possible, the job τj (if only one job can propagate that data) or

the last job of τj (if several jobs of τj can propagate a data sample produced by τi, at worst)

must be triggered after the data produced by the job of τi has spent 2Ti − ci time units into

the corresponding buffer and executes such that the data it will produce remain available for

the corresponding consumers for as log as possible.

To summarize all this, no matter whether a data is used by one or more jobs of the

consumer, the eligibility period for a data to be consumed depends on the time separating

two consecutive outputs of the producer. It is also obvious that the upper bound time

between the earliest activation of one job and the output of data by the next job ( which

generates a new data sample), related to a some task, is 2 times the period. Accordingly, for

all {τi, τi+1, · · · , τn} such that τi → τi+1, the largest delay being between the activation of a

job of τi and the one of τn is computed as follows:

Delaymaxi,n =
∑

1≤i≤n−1
2 ∗ Ti (5.12)

To conclude, for the cth spindle propagation chain, the smallest and largest time that may

separate the reading of a data sample from the spindle source buffer and the writing of a
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corresponding data sample into the spindle chain last buffer are, respectively, calculated as

follows

Ωmin
c:q = swtminc +Delaymini,n (5.13)

and

Ωmax
c:q = swtmaxc +Delaymaxi,n (5.14)

5.4.4 The scroll or overwrite mechanism

The scroll or overwrite mechanism (SorO) applies only to the second-to-last task of each

spindle chain provided that such tasks are the ones in charge of writing into the corresponding

spindle chain last buffers from where the jobs of the spindle sink task must retrieve matching

data samples. Depending on the propagation delay of each spindle chain, it is highly likely

that several data samples resulting from the same execution step of τsrc may be in the

spindle chain last buffers, thereby increasing the required space unnecessarily. The goal of

this mechanism consists in providing each spindle chain second-to-last task with the capability

to decide either to write into the next slot of the buffer or to overwrite the content of the

slot in which the previous writing took place. Hence the name "scroll or overwrite".

In other words, if the previously written data and the data ready to be written all initially

result from the same execution step of τsrc the previously written data sample by a job of a

given τ lastc is replaced by the new data (overwrite2), otherwise, write this new data sample

in the next buffer slot (scroll) in the sense of "move to the following slot".

Intuitively, all the data samples resulting from the same execution step of τsrc will oc-

cupy the same buffer slot by continuously overwriting each other until another data sample

resulting from another execution step (of τsrc) is generated.

5.4.4.1 Data sample tracking

The implementation of the SorO mechanism takes advantage on the data double timestamping

and the implementation scheme of the circular buffer as described in the Sections 3.2.3 and
2It may be decided to discard the writing while keeping the previous written data
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3.3.1, respectively. The data double timestamping scheme is depicted in Figure 3.8.

Speaking of the data double timestamp, within a spindle, it is considered that a timestamp

value is added to each data sample produced by the spindle source task and all the data

samples, resulting from it, own and keep this timestamp value unchanged until the spindle

sink task. While keeping the timestamp value constant, each task, involved in the propagation

of a timestamped data by the source task, adds to its output data a timeOfIssue which

normally corresponds to the job execution completion time. So, since data samples reaching

the spindle sink task will have a common faraway origin, the SorO mechanism acts in the

sense of giving the spindle sink task the possibility to match them on the basis of their

timestamps.

5.4.4.2 Computing the spindle chain last buffers size

According to this mechanism all data samples with the same timestamp will occupy alter-

nately the same buffer slot. Each output data at the end of each second-to-last task of each

chain will be available no earlier than a traversal time Ωmin
c:q and no later than a traversal

time Ωmax
c:q . Sometimes, while the chains with the longer propagation delay are still working

on producing the first output, the ones with shorter propagation delays may have produced

several outputs. Such output data, produced in the meantime by the chains with shorter

propagation delays, may originate from the same execution step of the spindle source task or

from different execution steps of the latter. In case they originate from the same execution

step of the spindle source task, they must have occupied the same buffer slot. At worst,

if they all came from different execution steps of the spindle source task, they would have

occupied the same number of different slots as there was output in the meantime. The size

required for each buffer at the end of each chain should be the one allowing to handle the

worst case: when all the output data are coming from different execution steps

of the spindle source task.

To guarantee that there will always be matching data, it is necessary to have cells where

each second-to-last task of each chain is going to write its new output data until the prop-

agation through the slowest path reaches the end of the corresponding chain. To meet this

requirement, we formulate Theorem 8.
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Theorem 8 We consider the spindle source τsrc, the spindle sink τsink and the tasks τ last1 , · · · , τ lastq

where q is the number of spindle chains propagating the data samples related to a given mes-

sage from τsrc until τsink. For each spindle chain C∗c:q, the optimal size of the corresponding

spindle chain last buffer denoted by |∇last∗c | is given by

|∇last∗c | = max


max
1≤c≤q

Ωmax
c:q

Ωmax
c:q

,
⌈
Rsink

T lastc

⌉ (5.15)

where

• max
1≤c≤q

Ωmax
c:q is the largest delay it can take to have an output data sample resulting from

a data sample read from the spindle source data, all the q spindle chains considered

together.

• Ωmin
c:q is the shortest delay it can take to have an output data sample resulting from a

data sample read from the spindle source data with respect to the cth chain out of q

chains.

• T lastc is the period of the second-to-last task belonging to the cth chain out of q chains.

• Rsink is the worst-case response time of the spindle sink task.

Proof 9 Each chain C∗c:q is compared with the chain with the largest propagation delay. The

latter is the one that is likely to be late while one or more output data may already have been

produced at the output of C∗c:q. On the other hand, since all data from the same execution

step of the spindle source task will occupy the same buffer slot, at worst,


max
1≤c≤q

Ωmax
c:q

Ωmax
c:q

 output

data resulting from different execution steps of the spindle source task are likely to have been

written at the end of C∗c:q when the slowest propagation of a single output data arrives at the

end of the its chain. Accordingly, the ratio between max
1≤c≤q

Ωmax
c:q and Ωmax

c:q represents the size

required for the spindle chain last buffer located at the end of the cth chain so as to ensure that

there will always be matching data in each input buffer for the sink task. To achieve this, the

output data from the fastest chains, resulting from other execution steps of the spindle source

task, must have a place to be buffered until there are such matching data in all input buffers

for the spindle sink task. On the other hand, it may happen that


max
1≤c≤q

Ωmax
c:q

Ωmin
c:q

 <
⌈
Rsink

T last
c

⌉
.

Therefore, considering that the access to the data is done asynchronously without blocking on
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the shared resource, it is mandatory to consider the maximum of these two ratios in order

to maintain the data consistency property as well. Implementation of this mechanism is

described by the Algorithm 4

Algorithm 4 Implementation of the scroll or overwrite mechanism
1: function previousTStamp(Buffer buf)
2: return previousTimestamp . Returns previous timestamp from buf.
3: end function———————————————–
4: return the higher priority task prior and its output buffers ∇Out

prior

5: if $prior = 1 then . We assume prior is a second-to-last task and it enters the writing stage.
6: int head
7: for each ∇ ∈ ∇Out

prior do
8: head← getHead(∇) . head points to the slot where to write normally (when the SorO mech. is not considered).
9: if D->timestamp = previousTStamp (∇) then . Do the previous and the current data have same timestamp?
10: head← (head− 1 + |∇|) mod |∇| . If true, don’t step forward, write where wrote previously.
11: end if . If false, consider the current value of head (Statement 8).
12: writeIn(prior,∇,D, head) . prior performs the writing into the buffer slot pointed by head
13: setHead(prior,∇, (1 + head) mod |∇|) . Reset temporally the new value of head where the next job will write.
14: end for
15: end if

Example 3 An application example is depicted on Figure 5.10 where all tasks have implicit

deadlines. For simplicity we consider that jobs are only characterized by the worst-case ex-

ecution times and the period. So wherever the best-case execution time is required, we’ll

substitute it by the worst-case execution time.

τ1(1, 6)

τ5(2, 14)

τ2(1, 8)

τ3(2, 12)

τ4(2, 12)

τ6(2, 18)
∇

1

∇1

∇3

∇2

∇5

∇
4

Figure 5.10: A balanced spindle application example.

Given that priority(τ5) < priority(τ2), to compute the following parameters the following

way: Using the ,



SCI = T5 − (C5 + C1) +R5 = 14− (2 + 1) + 10 = 21 , Equation 5.3

|∇1| =
⌊
SCI
Tsrc

⌋
+ 1 =

⌊
21
6

⌋
+ 1 = 4 , Equation 5.6

|∇2| =
⌈
R4
T2

⌉
=
⌈

6
8

⌉
= 1 , Equation 4.1

|∇3| =
⌈
R3
T5

⌉
=
⌈

4
14

⌉
= 1 , Equation 4.1
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From the spindle model presented in Figure 5.10, we retrieve the following spindle chains:


C∗1:2 = τ1

∇1−→ τ2
∇2−→ τ4

∇4−→ τ6

C∗2:2 = τ1
∇1−→ τ5

∇3−→ τ3
∇5−→ τ6

So, regarding the C∗1:2 we have the following results



swtmin1 = 0 , Equation 5.8

swtmax1 = SCI − C2 = 21− 1 = 20 , Equation 5.9

Delaymin2,4 = C2 + C4 = 1 + 2 = 3 , Equation 5.11

Delaymax2,4 = 2 ∗ T2 + 2 ∗ T4 = 16 + 24 = 40 , Equation 5.12

Ωmin
1:2 = swtmin1 +Delaymin2,4 = 3 , Equation 5.13

Ωmax
1:2 = swtmax1 +Delaymax2,4 = 20 + 40 = 60 , Equation 5.14

while for C∗2:2 we have



swtmax2 = 0 , Equation 5.8

swtmax2 = SCI − C5 = 21− 2 = 19 , Equation 5.9

Delaymin3,5 = C3 + C5 = 2 + 2 = 4 , Equation 5.11

Delaymax3,5 = 2 ∗ T3 + 2 ∗ T5 = 24 + 28 = 52 , Equation 5.12

Ωmin
2:2 = swtmin2 +Delaymin3,5 = 4 , Equation 5.13

Ωmax
2:2 = swtmax2 +Delaymax3,5 = 19 + 52 = 71 , Equation 5.14

We now compute the size of each of the spindle chain last buffer( ∇4 and ∇5) using

Equation 5.15 as follows


|∇4| = max

(
dmax(Ωmax

1:2 ,Ωmax
2:2 )

Ωmax
1:2

e, dR6
T4
e
)

= max
(
d71

60e, d
12
12e
)

= 2 slots

|∇5| = max
(
dmax(Ωmax

1:2 ,Ωmax
2:2 )

Ωmax
2:2

e, dR6
T3
e
)

= max
(
d71

71e, d
12
12e
)

= 1 slots
(5.16)
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From Equation 5.16 we know that the buffer being at the end of the spindle chain with

a largest propagation delay will always equal to one. We close this chapter by proposing the

Algorithm 5 allowing the spindle sink to associate only matching data.

As an illustrating example, we consider the scheduling results presented in Figure 5.11.

Here we can see the propagation path of each tagged data from the spindle source buffer

until the corresponding spindle chain last buffer. The vertical rods indicate the execution

completion of the job of τ5 that tagged the data sample previously written by the job of τ1.

Depending on the gaps between periods of the tasks constituting the inner segment of each

propagation chain, some data samples, even though they have been initially tagged, may be

overwritten before reaching the spindle sink task. Therefore, what is important for us is that,

for those who have reached the end of the chain, the sink task must be able to find there those

resulting from the same execution step of the source task. For instance, the propagation of

the data sample marked in red managed to reach the end of the chain C∗2:2 = τ1
∇1−→ τ5

∇3−→

τ3
∇5−→ τ6 while the propagation through the chain C∗1:2 = τ1

∇1−→ τ2
∇2−→ τ4

∇4−→ τ6 is suspended

by the fourth job of τ2, activated after the completion of the second job of τ5 (in red) which

tagged the green colored data sample.

τ1
∇1−→

τ2
∇2−→

τ5
∇3−→

τ4
∇4−→

τ3
∇5−→
τ6

Figure 5.11: The global consistency verification process example

As a result, at the activation time of the third job of τ6, it must read the data samples

resulting from the same execution step of τ1 still in buffers ∇4 and ∇5. Therefore, only the

green matches are available in both ∇4 and ∇5. In all the cases shown in this figure, at each

activation of a job of τ6 there were always matching data in each of the buffers (∇4 and ∇5)
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and between two successive activation of its jobs, the data samples having been written into

∇4 and ∇5 never exceed a maximum of two data samples into each.

Algorithm 5 Data matching algorithm for the spindle sink task
1: function previousTStamp(Buffer buf)
2: return previousTimestamp . Returns previous timestamp from buf.
3: end function
4: function SPLastBuffers(setOfinputBuffers) . Retrieves the set of spindle chain last buffers from a set of buffers.
5: return SCLB . SCLB= the set of Spindle Chain Last Buffers.
6: end function

———————————————–
7: return the higher priority task prior and its input buffers ∇In

prior

8: if $prior = −1 then . We assume that prior is the spindle sink task and it enters the reading stage.
9: Buffer SpLCB[ ]← SPLastBuffers(∇In

prior)
10: Buffer min∇ ← min (SpLCB) . SpLCB contains a list of spindle chain last buffers retrieved from the set ∇In

prior.
11: int timestamp← previousTStamp(min∇) . The timestamp of the recently inserted data into min∇.
12: int tail . The variable tail holds the number of the slot from where to read.
13: for each ∇m ∈ ∇In

prior such that 1 ≤ m ≤ |∇In
prior| do

14: if ∇m 6∈ SpLCB then
15: Follow Algorithm 2 . For buffers not involved in the spindle data propagation, refer to the Algorithm 2.
16: else . Otherwise, fetch and associate only matching data.
17: if readEnd = False then . If prior is just activated (is at the beginning of its execution), fetch matching data.
18: for each ∇ ∈ SpLCB do
19: if D->timestamp = timestamp then . Check the slot containing the sample with this timestamp.
20: tail← getTail(prior,∇) . Return the number of such a buffer slot.
21: readFrom(prior,∇,D, tail) . Read from this position with respect to ∇.
22: setTail(prior,∇, (1 + tail) mod |∇|). Set this value to be pointed to during this execution window.
23: end if
24: end for
25: else . Otherwise, read from the slot pointed by tail value previously set at Statement 22).
26: readFrom(prior,∇m,Dm, tail)
27: end if
28: end if
29: end for
30: readEnd ← True . Mention the fact that reading has taken place for at-least one time.
31: end if
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6
Conclusions and perspectives

Real-time embedded systems, despite their limited resources, are evolving very quickly. This

evolution is characterized by the consideration of increasingly intelligent functionalities aimed

at rendering their functioning completely autonomous. This applies, for instance, to au-

tonomous vehicles, drones, robots, etc. This functioning autonomy in terms of decision

making depends on the quality of the collected data regarding the surrounding environment

state. Therefore, for such systems, it is not enough to ensure that all jobs do not miss their

deadlines, it is also mandatory to ensure the good quality of the data being transmitted from

tasks to tasks. Speaking of the data quality constraints, they are expressed by the mainte-

nance of a set of properties that a data sample must exhibit to be considered as relevant. To

ensure the overall performance of these systems, designers must therefore solve the issue of

finding trade-offs between the system scheduling constraints and those applied to the data.

As the scheduler does not take into account data constraints, the operating system introduces

mechanisms aiming to arbitrate the access communication resources (shared resources). The

potential effects of introducing these mechanisms include the formation of deadlocks and sig-

nificant blocking times which, in turn, may negatively impact the system scheduling. After

investigating the mechanisms widely proposed in the literature, in this thesis, we opted for

the wait-free mechanism for their ability not to induce blockages between tasks accessing

the same communication resource. The size of each communication buffer is based on the

the lifetime bound method which relies on the timing parameters of the producer and the

consumers for a given type of message. The access to the communication buffer dedicated

to each type of message is done following the single writer, many readers. Afterwards,

we analyzed the specificities of the µORB communication system (implemented in the PX4

and PX4-RT) to propose the adaptations that are necessary to meet the data constraints
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considered in this thesis. Major specificities include the fact that a same task can produce

messages of different types and that, among these types of messages, the producer task can

send each type of message to a different list of consumer tasks (e.g. the message of type m1

can be sent to tasks τ1 and τ2, type m2 to τ1 and τ4, type m3 to τ4 and τ5, etc). Besides, it

is possible to find that a message of a given type can be produced by different tasks (multi-

source message). Due to these specificities and so as to bound the size of the buffers dedicated

to each type of message, we modeled the interactions between the tasks by a bipartite graph

that we called communication graph. Using this graph, for each type of message, the set

consisting of its producer and consumers is clearly identifiable. Such a set of tasks has been

named message domain and formalized. Still on the modeling dimension (task system and

communication system modeling), to enhance the predictability of inter-task communication,

we extend Liu and Layland model with the parameter communication state. The benefit

of this parameter lies in the fact that it allows to efficiently control at which execution points

the write/read operations are performed. Among the future perspectives, with the help of

this parameter, we plan to formally evaluate the communication cost of the communication

mechanisms proposed in this thesis.

The second part deals with the verification of the data constraints. We considered the

maintenance of data properties at the local level (between adjacent tasks) and at the global

level (considering the propagation of data throughout the functional chain). Consequently,

we set two constraints, namely, data local constraints and data global constraints.

The local constraint requires that the data exchanged between adjacent tasks must be fresh

(recently produced at the activation time of a job of a consuming task), locally matching

(for the category of multi-source messages, the consumer must take the fresh data from

each of the buffers written by these producers) and consistent (simply, a data sample in use

by at least one of the jobs of the consumer tasks must never be overwritten). Regarding the

data global constraint, it refers to the parts of the system (sub-systems) where a data

produced by a single task is propagated across various functional chains to converge on a

same task which associates the output data from each chain. The propagation paths (chains)

of these data form what we call a spindle and the chains involved in this propagation

are called spindle chains. The first task in the spindle is called the spindle source
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task while the task at the end of the spindle has been called the spindle sink task.

The global constraint is verified only if the sink task must associate the data originally

resulting from the same execution step of the spindle source task. To verify the data local

constraints we introduced a mechanism referred to as sub-sampling mechanism which

maintains the three data properties required at the local level (freshness, local matching and

consistency). The novelty of this mechanism is that, at the same instant, different tasks have

the possibility to read data from different slots in the buffer. In a multi-rate system the tasks

can have different periods. Therefore, this mechanism allows the tasks with smaller periods

to read newly produced data while the slower tasks may still be using other data (with no

arbitration mechanism required). Regarding the verification of data global constraint,

two other mechanisms have been introduced, the last reader tags mechanism (defining

which data produced by the spindle source task must be propagated) and the scroll or

overwrite mechanism (providing the second-to-last task on each spindle chain the data

writing guidelines). These two mechanisms are to some extent complementary. The first one

works at the beginning of the spindle while the second one works at the end of the spindle.

Considering that the propagation of some data produced by the spindle source task can be

disrupted before reaching the spindle sink task, the last reader tags mechanism filters

and allows the propagation of those having a high chance to reach the sink task. Furthermore,

thanks to the data double timestamping, all the data originating from a same data sample

produced by the spindle source task have a same timestamp value. Exploiting this property,

the scroll or overwrite mechanism provides the second-to-last task of each spindle chain

with the ability to decide if the new output data has to overwrite the recently written one

(if they have the same timestamp value) or has to be written in the next slot of the buffer

(otherwise). The key advantage of this approach lies in the minimisation of the size of the

buffers being at the end of each spindle chain by keeping only a single copy of data among

those resulting from the same execution step of the spindle source task. The sizes of the

buffers being at the end of each spindle chain are calculated so that, at the activation time of

a job of the spindle sink task, there are always matching data in each of them. An algorithm

allowing the association of matching data is proposed.

In the future we expect to extend the global constraint to α-balanced spindle where
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there are nested spindles within others. Also, the results will be extended to the association of

data from different sources. Last but not least, in the near future, we envisage to implement

the contributions of this thesis on the PX4-RT autopilot.
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