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Part I

LARGE SCALE COMPARATIVE GENOMICS OF
BACTERIAL GENOMES





INTRODUCTION

"Large scale comparative genomics of bacterial genomes": six words
encompassing a wide range of subjects. This opening chapter relates, in a way, the story that
leads to the birth of my PhD project. In order to make it accessible to non-biologists, I start
from the very beginning... which corresponds to the two last words of the title: "bacterial
genomes".

In this first part, Bacterial genomes, I focus on bacteria, from their external appearance
to their innermost components, introducing the fundamental notion of genome. This is of
course a short introduction to some notions that I use in the following parts, and in no
instance a full course on bacteria.

The second part, Genome evolution, tackles the main mechanisms by which the previously
described bacterial genomes evolve to adapt over time and environmental conditions.

The third and last part, Comparative genomics, combines biology with computer science
and mathematics to introduce different Bioinformatics methods by which we can compare
these evolving genomes. The increasing number of genomes available, now reaching hundreds
of thousands, explains the last two words of this introducing chapter title: large-scale.

Providing unrivalled information, this huge amount of data nonetheless requires the de-
velopment of methods handling extremely large datasets. The first methods, developed in
the last two decades, have reached their limits both in terms of computation time and space.
Generic and automatic methods able to reliably handle such amount of data in a reasonable
amount of time have to be developed, which has spurred the birth of this PhD.





1 BACTERIAL GENOMES

In this first chapter, I will introduce the main protagonists of our story: Bacteria. I will start
from a general overview of these living organisms as seen from the human perspective (part
1.1), and progressively zoom in at ever smaller scales until the most basic elements composing
them (part 1.2). Then, I will make the link between the two scales, to understand how the
basic elements can influence observed behaviors, called phenotypes (part 1.3). In doing so,
I will define the basic notions and vocabulary of microbiology necessary to understand the
rest of this manuscript.

Before going further, I want to clarify one point. The style of this first chapter is purposely
not in a classical PhD thesis style. I know that reading a PhD manuscript is not particularly
pleasant (if not boring), as it is a rather long document, on a very specific subject. However,
it is a quite important document for its author and potentially for the scientific community,
which deserves to be read. It is relating several years of work of a growing researcher. In
order to lighten the reading, I added figures when possible, and wrote it in a more lively (and
thus less formal) style. I hope this will make it a bit less painful to read.

While the main text contains the essential elements, some figures provide a few more
details, for those who want a more advanced understanding of the mechanisms. However, if
you are already familiar with terms such as (in random order, and non-exhaustive) capsule,
genetic code, bp, binary fission, plasmid, replicon, translation, operon, cocci and nucleotide,
you might want to skip this chapter. In that case, let’s directly meet in chapter 2. Otherwise,
let me introduce you to the fascinating bacterial world.

1.1 Bacterial ID card

1.1.1 Age, Address and Population

Inhabiting Earth for billions of years, these microscopic living organisms are ubiquitous. They
are found almost everywhere: soil, ocean, rocks, on or inside other living organisms (includ-
ing bacteria), and can even adapt to extreme environments. For example, some bacteria
found in Arctic ocean waters can grow at very low temperatures, but die when temperature
exceeds 20°C. On the contrary, other bacteria, living in hot springs, have adapted to live
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with temperatures higher than 60°C. The number of bacteria on Earth nowadays has been
estimated to be approximately 1030 [199]. Well, I know that this kind of numbers have no
real meaning, as they are just unimaginable. Let’s try to make an analogy.

Figure 1.1: Seen on Pinterest.
Unidentified artist(s), but con-
gratulations to him/her!

I once saw this nice sandcastle Eiffel Tower (see on the
right). Apart from the fact that there are bacteria living
on sand, I guess you are wondering what is the connection
with the total number of bacteria. Now, imagine that we
make a full-size sandcastle of this same shape (to simplify,
we consider it as a square pyramid of 324m high, with base
sides of 125m). You can imagine this would require a huge
number of sand grains. Considering that a grain of sand is
a sphere of around 0.05mm of diameter (this is the diameter
of small particles of sand in Sahara), this would require 10
billions times less sand grains than there are bacteria on
Earth. In other words, each grain of sand would represent
more bacteria than the total number of human on Earth!
This is of course an approximation to give an idea of the huge
number. The shape of the Eiffel Tower has been simplified,
real sand grains are not all spherical and their size can vary
of an order of magnitude.

I agree that it is still unimaginable, but maybe a bit more manageable than a crude "1030"
number? Anyway, despite this huge population, the existence of bacteria was totally ignored
before 1684, when Leeuwenhoek discerned ’animacules’ through his homemade microscope
on a sample of mouth biofilm [115].

1.1.2 Size

If a microscope was needed to see them, it is because bacteria are... microscopic. A typical
bacteria like Bacillus subtilis, Staphylococcus aureus or Escherichia coli has a volume between
0.4 and 3 µm3 [118]. If we go back to our grains of sand, the volume of a single grain is
equivalent to the volume of more than 500 millions of bacteria taken together. In other
words, more bacteria (of a "standard" size) than there are inhabitants in the USA fit in a
single sand grain.

However, the size of bacteria varies by many orders of magnitude. The smallest bacteria
observed so far, which are marine ultramicrobacteria called Candidatus Actinomarina, have
an average volume of 0.013 µm3, which is 100 times smaller than E. coli. In contrast, giant
bacteria Thiomargarita namibiensis can be up to 0.22 mm3, being eight orders of magnitude
bigger than E. coli, or in other words, in the same order of magnitude as our grain of sand.
Obviously, like sand, these giant bacteria can be seen by the naked human eye. Levin et
al. illustrate the difference of sizes between the smallest and the biggest bacteria as being
equivalent to the difference of sizes between a mouse and the Empire State Building [118].



1.1 Bacterial ID card 17

1.1.3 Relationships

As already mentioned, bacteria are found on or inside other organisms, including for example
plants, animals, but also other bacteria. This close relationship between bacteria and another
organism, called symbiosis, can have advantages and disadvantages for both the bacterium
and its host.

Figure 1.2: A few examples of the complex symbiosis relationships between some bacteria and
other living organisms (human, animals and plants). Black arrows show examples of environmental
habitats of several bacteria.

For instance, although they are invisible to the naked human eye, bacteria are generally
seen as the "bad guys". And indeed, we cannot deny it: nobody is spared by diseases caused
by bacteria. Even if some of them, like pneumonia, meningitis or diphteria, are less common,
I would not believe that you never caught any bacterial infection. What about sinusitis,
otitis, or urinary tract infections? Or maybe gastroenteritis, food poisoning and/or diarrhea?
Well, they definitely deserve some place in our worst memories and nightmares. This is the
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parasitism side of symbiosis : bacteria take benefit from their host(s) to the detriment of the
latter (see fig.1.2).

But, hopefully, not all bacteria are (always) like that. Even if we ignore it (or tend
to), bacteria are also more than our best friends: we could not even live without them.
For instance, we could not breathe if cyanobacteria had not played a crucial role in the
production of oxygen in the atmosphere [161]. We could not assimilate most food if some
bacteria, our gut microbiome, were not continuously helping us with digestion. Like so, we
host approximately as many bacteria in our gut than we have human cells in our whole body.
These commensal (we take benefit without penalizing them) and mutualist (mutual benefit)
residents can weight up to 200g [164].

Also, less vital but still enjoyable, bacteria are used in food industry to make many key
ingredients. They are for example helpful to convert milk into yogurts, cheese or cream by
fermentation. Yes, you can even thank bacteria for your ice-cream!

I must clarify one last thing: a microbe is not necessarily a bacteria. Microbe, meaning
micro-organism, is a generic term to define any living organism too small to be seen with
an unaided eye. Together with bacteria, protists (like Plasmodium), fungi (like Candida),
some plants (like some green algae) and even micro-animals (like dust mites) are part of the
microbial world... and are also responsible for several diseases (see figure 1.3)! Bacteria are
far from being the only disease-causing micro-organisms. Malaria, mycosis, toxoplasmose,
but also some pneumonia and otitis are caused by other types of microbes. Besides, although
their "living organism" status (and consequently their affiliation to microbes) is controversial,
we cannot omit viruses (like the too famous SARS-CoV-2 causing covid-19, but also common
flu viruses) from our list of agents of infectious diseases. Finally, infectious diseases can even
be caused by non-living molecules: Creutzfeldt–Jakob disease is caused by a prion, which is
no more than a misfolded protein.

Figure 1.3: Different types of microbes others than bacteria: protists, fungus (including yeast),
viruses. Pictures from science photo library

Whatever their nature, these other pathogens do not seem really nicer than bacteria, do
they?

So, I hope I reconciled you, at least a little, with bacteria, because they will be with us
in the whole manuscript.
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1.1.4 ID photo

I previously mentioned that Leeuwenhoek saw bacteria with his microscope. But what did
he see exactly, what does a bacterium look like? Concretely, he saw, or rather barely distin-
guished nothing more than little rods. And many scientists observed the same after him, to
the extent that in 1838, Ehrenberg gave them their name bacteria, from the Greek βακτρoν
meaning stick.

Later, improvements not only in microscopy but also in laboratory techniques unveiled
a wide diversity of bacterial shapes. Indeed, on top of the low magnification of microscopes
at that time, bacteria were also difficult to observe because they blend in with the tissue
cells. In 1884, Hans Christian Gram, who was working on lung tissue from patients suffering
from pneumonia, developed a staining method aimed at bacterial cells to make them more
visible. During his experimentation, he discovered that some bacteria retain the stain even
after decolorization, due to the characteristics of their cell wall [75]. His method, originally
designed for observing bacterial shape, turned into a routine laboratory technique which
has been used for decades to quickly classify bacteria into two main groups: Gram-positive
(hereafter Gram+, retaining the stain) and Gram-negative (Gram-) bacteria (see figure 1.5).

Figure 1.4: Different morphologies of bac-
teria, with example of a species for each
one.

Better conditions for the observation of bacteria
thus allowed researchers to distinguish many differ-
ent shapes. The most common are spherical (Cocci)
and rod-shaped (Bacilli) bacteria, but they can also
be spiral-shaped (Spirochaetes) or comma-shaped
(Vibrio). Some have fancier shapes like corkscrews,
helices or stars, and others can even exhibit different
forms over time (pleomorphic).

Beyond their individual shape, some bacteria
also have specific group arrangements. For exam-
ple, some bacteria live in pairs (Diplo), some grow
in chains (Strepto), and others group together in
grape-like clusters (Staphylo). Observed morpholo-
gies are thus a combination of an individual shape
and an arrangement. For example, Streptobacilli are
chains of rod-shaped bacteria, while Staphylococci
are groups of spherical bacteria.

Figure 1.4 gives an idea of this diversity.
Zooming in a little more on the cell membrane

reveals the presence of appendages on some bac-
teria (see figure 1.6). Long hollow tube-shaped ap-
pendages called flagella are mostly dedicated to bac-
terial motility. Some bacteria also have pili or fim-
briae, smaller hair-like appendages used for cell ad-
hesion. They are, for example, responsible for the

formation of biofilms when attaching on infected host surfaces [148]. They are also involved
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in the exchanges of DNA by attaching to other bacteria, as we will see in 2.2.1. In that case,
they are called pili or sexpili.

However, observing bacteria is not enough to explain their behavior. Neither their mor-
phology (shape, appendages, arrangement) nor their chemical characteristics (Gram stain)
can give us a clue on how the bacterium will behave. For example, pneumonia can be
caused by Streptococcus pneumoniae (chain of spheres, Gram+), Haemophilus influenzae
(coccobacilli, Gram-) or Klebsiella pneumoniae (rods, Gram-). Conversely, the same bac-
terium can cause multiple diseases. For example, Streptococcus pneumoniae is responsible
for pneumonia, but also for otitis or sinusitis [31]. Other examples are showed in figure 1.2.
Even more stunning, the behavior of a bacteria evolves over time. For example, E. coli,
a widespread commensal inhabitant of our intestine, can sometimes turn into a dangerous
pathogen in this same environment, causing various forms of diarrhea, or even sepsis. It
is also responsible for several extra-intestinal diseases like skin infections or urinary tract
infections (see figure 1.2) [49]. Another example is the acquisition of antibiotic resistance by
bacteria which were previously sensitive to these same drugs.

If the external properties like morphology are not enough to understand the different
phenotypes of bacteria, we can suggest that the latter are the result of events happening
inside the bacterium. So, let’s cross the membrane and explore the inside of bacteria!

1.2 Inside the bacterium

Well, wait a little... Going inside a bacterium is not always that easy! Some bacteria are
protected by a capsule, a solid layer of polysaccharides, which are complex sugars (like starch
in potatoes or cellulose in vegetables) (see figure 1.6). They are tightly packed according to
a well-organized structure which makes it hard to wash away the capsule, and provides a real
shield to the bacteria.

Behind the capsule, the bacterial cell wall also has different architectures defining two
types of bacteria (see figure 1.5). Monoderm bacteria have a cytoplasmic cell membrane
surrounded by a thick cell wall composed of peptidoglycans. As the latter often retains the
Gram stain, monoderm bacteria are often assimilated to Gram+. On the contrary, diderm
bacteria have two cell membranes (cytoplasmic and outer membrane), but with a thin cell
wall in between. The thinness of the latter makes it permeable to the Gram stain, such that
diderm bacteria appear in pink on Gram-stained culture, and are often assimilated to Gram-
(see figure 1.5). However, some monoderm bacteria can also appear in pink on Gram-stained
cultures. For example, Mycoplasma bacteria lack a cell wall around their single membrane,
and thus do not retain the Gram stain. On the other way around, Deinococcus bacteria have
a thick cell wall between their two membranes, making them retain the Gram stain (Gram+).
Nowadays, bacteria are rather distinguished by the nature of their cell envelop than by their
Gram-staining response. This has been shown to be more relevant to explain the evolution
of bacteria over time [83].
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Figure 1.5: Typical cell envelop composition of Monoderm and Diderm bacteria. Because of varia-
tions in monoderm and diderm structures, the association monoderm/Gram+ versus diderm/Gram-
is not always true. Gram-stained culture photos are from CDC and Riraq25/Wikimedia. LPS means
lipopolysaccharides.

The cell wall has a role in protecting the bacterium from its environment, but also in giving
the bacterium its shape (rods, spheres...). For information, peptidoglycans (cell wall shaping
bacteria) are composed of peptides (parts of proteins) and sugars. The outer membrane of
diderms often contains lipopolysaccharides (LPS) in its outer leaflet. These are composed of
lipids (fatty acids) and... sugar again! Who would have thought? With their cell wall and
capsule, bacteria are sometimes sweet in both senses of the word!

1.2.1 Swimming in the cytoplasm

Now that we have passed through the cell walls, we can finally dive inside the bacterium.
The most striking thing you would notice while entering this gel-like matrix called cytoplasm
is the simplicity of the structure of the organism. Like so, bacteria belong to prokaryotes,
unicellular organisms devoid of any internal membrane-bound compartment (as opposed to
eukaryotes which contain several specialized sub-units called organelles, like the nucleus). All
steps for bacterial replication and growth occur in the same medium (see figure 1.6).

Despite I said there are no compartments, there is still a condensed irregularly shaped
region in the cytoplasm. It corresponds to the main genetic material of the bacterium, which
is localized (but not separated by any membrane) in this small region called nucleoid.

Apart from this localized genetic material, the cytoplasm contains enzymes, gases, nu-
trients, and more complex structures like ribosomes (used for protein synthesis, see 1.3.2)
and plasmids (small extra-chromosomal DNA molecules). Recently, small organelles (like
carboxysomes used for carbon fixation) have also been observed, but only in specific bacte-
ria [33].
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Figure 1.6: Inside the bacterial cell. Colors used are the same as figure 1.5: sugars, proteins, and
lipids. Figure adapted from biologyease.com, with a photo from [179].

1.2.2 Genetic material

Let’s zoom in one last time, to see how the genetic material we saw in the nucleoid is made.
Bacteria have most of (or sometimes all) their genetic material in a single circular DNA
molecule called chromosome. DNA (Deoxyribonucleic acid) is composed of four different
nucleotides (see figure 1.7): Adenine, Thymine, Cytosine, Guanine. A small detail: each
nucleotide is actually composed of a base, a phosphate group and... a sugar (deoxyribose)!
In practice, the term nucleotide is used interchangeably with base. The most stable form
of DNA, called double-stranded DNA (or dsDNA), is a double helix made of two chains
(strands) of nucleotides coiled around each other according to pairing rules: A with T and C
with G. The latter was put forward by Watson and Crick in 1953, based on Rosalind Franklin
experimental observations [197]. This 3D structure with paired bases is essential for most
cellular functions (like protein synthesis or bacterial reproduction, as we will see in part 1.3).

The size of a dsDNA molecule is given in base pairs (bp), corresponding to the number of
bases in one strand. Due to the asymmetry of deoxyribose sugar, each DNA strand has two
distinct extremities (3’ and 5’, see figure 1.7), imposing a direction for many mechanisms, as
we will see in part 1.3.1.

Many bacteria host, in addition to their chromosome, one or several extra-chromosomal
DNA molecule(s) (mostly circular, but sometimes linear) like plasmids or secondary chromo-
somes [128] [87] (see figure 1.6). All these molecules contain genetic information, instructions
necessary for all cellular functions, from basal functions like growth to specific ones like
molecule secretion.

A typical bacterial genome, like E. coli K12, contains around 4.6Mbp. However, this size
is highly variable, from a hundred kbp (like Candidatus Nasuia) to more than 14Mbp (like
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Sorangium cellulosum) [178] [109]. This includes the potential plasmid(s), which range from
2kb to up to 10% of their host chromosome [16]. However, even those particularly "large"
genomes remain relatively small compared to most eukaryotic genomes. For example, the
human genome is around 3300Mbp.

Figure 1.7: Detailed composition of nucleotide-based molecules found in bacteria: DNA
and RNA (Deoxy)ribose sugars have five carbons, numbered from 1’ to 5’. Phosphate group is
bound to carbon 5’, and carbon 3’ binds to the phosphate of the next nucleotide: molecules are
oriented from 5’ to 3’. A double-stranded DNA consists of antiparallel strands of nucleotides held
to one another according to the pairing rules. RNA molecule differs from DNA in 3 ways: it is
single stranded, the thymine base is replaced by uracil, and the nature of the sugars is different.
All together, these DNA molecules form the bacterial genome. Figure adapted from Encyclopaedia
Britannica.

Now that we have seen the smallest components (bases) of bacteria necessary to under-
stand the rest of the manuscript, we can take a very little step back. A DNA molecule is
composed of several genes, DNA sequences of typically 1000 nucleotides carrying information
to make specific products. The latter can be proteins or RNA (see figure 1.9B), two essential
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Figure 1.8: Color code common to figures 1.9, 1.11 and 1.12.

molecules that will be described in the next parts.
While the chromosome carries the essential house-keeping genes, plasmids encode dis-

pensable (but sometimes beneficial for the host) genes. For example, antibiotic resistance
genes are often encoded on plasmids rather than on the chromosome [16].

Unlike most eukaryotes, bacteria have a very high density of genes in their genome (see
figure 1.9A), with in average more than 87% of coding content (compared to 2% for some
eukaryotes like humans) [109].

Figure 1.9: A. Bacterial DNA at the gene scale (for details at the nucleotide scale, see figure 1.7).
B. Operon organization of bacterial genes (see part 1.3.4). The mechanisms for transcription and
translation are detailed in figures 1.11 and 1.12 respectively. For color code, see legend in figure 1.8.
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1.2.3 Proteins

Apart from the genetic material, we observed many proteins scattered throughout the cy-
toplasm. Together with nucleotides (DNA and RNA), fatty acids and sugars, proteins are
major types of molecules essential for life.

Products of gene expression, they are made of chains of amino-acids (aa). There are 20
standard amino-acids used by all living organisms (several more have already been observed
in some bacteria [5]). Each amino-acid is coded by a codon, a group of three nucleotides.

Figure 1.10: The "universal" genetic code em-
ployed by most organisms. Green dots corre-
spond to alternative start codons used by some
bacteria. Picture adapted from Wikimedia Com-
mons.

The universal genetic code (see figure 1.10)
determines which amino-acid corresponds to
each codon of nucleotides. As there are 64
different triplets of nucleotides but only 20
amino acids to encode, the genetic code is de-
generated: a given aa can be encoded by sev-
eral codons. On the other hand, each codon
encodes a unique aa (except three which are
stop codons). This property is very important
for genome analyses, as some species preferen-
tially use one specific codon for a given amino-
acid.

As we said, genes are DNA sequences car-
rying information to make a product. When
this product is a protein, the portion of the
gene coding for the protein itself is called CDS,
for Coding DNA Sequence. Except for partic-
ular cases out of our scope, this coding region
must fulfill specific conditions: have a multi-
ple of 3 nucleotides, start with a start codon
(most of the time ATG, but sometimes GTG
or TTG for some bacteria [14]), and end with
a stop codon (TAG, TAA or TGA) (see gene
and CDS in figure 1.8 and 1.9).

Proteins affect the bacterial phenotype at different levels. Some of them directly con-
tribute to cell morphology (like flagellin forming the flagellum), while others take part in
complexes of proteins.

Some of them can be used by the bacterium to harm its host. For example, some Vib-
rio cholerae strains are able to synthesize the different proteins forming the cholera toxin,
causing the typical watery diarrhea of Cholera infection [196]. In addition to damaging the
host, some bacteria also produce proteins to protect themselves. To take a trendy example,
some bacterial genomes contain bla genes, which code for β-lactamases proteins. Interact-
ing with other elements, these enzymes break the structure of β-lactam antibiotics (such as
penicillins), preventing them from harming the bacterium, and thereby making it resistant
to these antibiotics [153].
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Another example, shared by all living organisms, is that the mechanism used to synthesize
proteins is itself dependent on several proteins. Speaking about this mechanism, you might
understandably wonder how a DNA sequence can be transformed into a protein. This is
precisely the purpose of the next chapter.

1.3 From DNA to phenotype

Synthesis of proteins starting from a DNA gene is not straightforward. It requires two main
steps, which are common to all living organisms: transcription and translation (see figure
1.9B). Some organisms (mainly eukaryotes) use additional mechanisms, resulting in the same
gene potentially coding for many different proteins. However, as bacteria usually do little
more than those two main steps, I will not tackle the others in this manuscript. I will just
very briefly describe the two main processes, in order to introduce some vocabulary needed
thereafter.

1.3.1 Transcription

The gene is first copied (or transcribed) into a short-lived RNA molecule, called messenger
RNA (mRNA). The mRNA molecule differs from DNA in 3 ways: it is single stranded,
the thymine base is replaced by uracil, and the nature of the sugars is different (ribose vs
deoxyribose) (see figure 1.7). During transcription, one strand of the bacterial dsDNA is
used as a template, and is complemented by RNA nucleotides (present in the cytoplasm as
Nucleoside Triphosphate (NTPs) according to the previously cited pairing rules (A with U
or T and C with G). If you want, you will find more details on this process in figure 1.11.

Figure 1.11: Transcription of a gene into a mRNA. For color code of DNA/RNA molecules, see
figure 1.8.
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1.3.2 Translation

Barely transcribed, the mRNA already serves as a template for the second step of protein
synthesis: translation. This step takes place inside of structures called ribosomes (see figure
1.6), which are themselves composed of (r)RNA and proteins. The mRNA is read by the
ribosome, and each codon is translated (giving its name to the process) according to the
genetic code: the corresponding amino-acid, brought by a tRNA (transfer RNA), is added
to the growing protein. More details on this process are provided in figure 1.12. Due to its
single-stranded state, the mRNA is quickly degraded by specific enzymes (RNase) after a few
rounds of translation.

Figure 1.12: Translation of a mRNA into a protein. For color code of DNA/RNA molecules, see
figure 1.8. Ribosome and tRNA shapes from Wikipemedia Commons.

Let’s go back to our bacterium secreting the Cholera toxin. We now understand how this
protein is synthesized from the bacterial gene. However, given the size of the human intestine,
if only one bacterium was producing this toxin, it would not cause significant damage. So, it
is quite obvious that in a sick intestine, there is not only one, but a huge quantity of bacteria
having these same genes. But how do they manage to have such a huge population with the
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exact same genes? In other words, how do bacteria reproduce?

1.3.3 Bacterial reproduction

Just like their internal structure, many bacteria have quite simple life cycles. They use
an asexual mechanism called binary fission: they first grow, copy their genetic material
(replication), and divide into two daughter cells, each one having one copy of the genome
(duplication). In most cases, the two daughter cells are identical, and are ready to re-initiate
a replication step. However, some species like Caulobacter crescentus asymmetrically divide,
leading to two cells physiologically and morphologically distinct: one can directly replicate
whereas the other has to go through a differentiation step before [170]. Other species have
even more complex life cycles, involving several development phases for each cell. One of the
best known is Myxococcus, with its well studied fruiting-body state [166].

Population growth is generally characterized by the generation time or doubling time
(DT), which corresponds to the time required for one division. It varies widely among
bacteria and according to the conditions (e.g. temperature, oxygen, nutrients or nature of
environment). For example, in optimal growth conditions, a typical E. coli strain has a DT
of 20 minutes, while Syntrophobacter fumaroxidans divides every 140h [72].

For the first step, replication, there are several different mechanisms. The most common,
sometimes called Theta replication, starts at a single site on the chromosome (locus called
Ori), and then proceeds in both directions in parallel, until the two replication forks meet
at the terminal site (see figure 1.13 for more details). For example, the main chromosome
replicates by this mechanism. Incidentally, a DNA or RNA molecule able to autonomously
replicate is commonly called replicon. A bacterium can have several replicons: its chromo-
some(s) and its plasmid(s).

DNA replication must be initiated as often as the cell divides. In rapidly growing bacteria,
a new round of chromosomal replication begins before an earlier round is even completed,
resulting in nested replication bubbles. Other species, like Caulobacter, have a strict once-
and-only-once replication behaviour [170].

Another common mechanism is Rolling circle replication. This system, much simpler, is
particularly used for plasmid replication. It only replicates one strand at a time [157].

During both types of replication, new DNA is synthesized thanks to polymerases. Many
of the latter self-check the base they just added, and immediately replace it if they detect a
mis-pairing. However, a few errors can still slip through this proofreading system. To rectify
this, the mismatch repair system (MMR) performs a second check right after replication [69].
In addition to replacing wrongly paired bases like proofreading process, it can also correct
some small insertions or deletions that may happen if the polymerase slid on the template
strain. MMR is also used to repair some DNA damages, and a defecting MMR system can
have high impacts for the bacterium (see 2.3.1).

After the end of replication of all replicons, and before cell division, the latter must be
partitioned. Like so, each daughter cell receives one copy of each replicon, leading to identical
daughter cells.
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Figure 1.13: Replication of bacterial DNA, also called Theta replication. 1 Initiator protein binds
on a particular locus of the chromosome called Ori. 2 The dsDNA is unzipped by a DNA helicase,
creating two forks of replication in opposite directions. Each strand serves as a template to synthesise
a new complementary DNA strand. A "proofreading" process checks each newly added base. 3
Replication stops at the ter locus, leaving two interlinked circles. 4 Both replicons are separated by
a type II topoisomerase. Figure adapted from figures 7.6 and 7.7 of [12].

1.3.4 Organisation

To allow fast growth, these different processes (replication, transcription, translation) occur
at the same time, as showed in figure 1.13 step 3. Moreover, bacterial genomes are highly
organized. For instance, most bacterial genes are grouped in operons, condensed arrays
of genes (usually sharing complementary functions) transcribed as a single unit (see figure
1.9B). One of the most famous operons is the lac operon of E. coli [96]. The expression
of the genes of this operon allows the bacterium to assimilate lactose. However, if lactose
is not present in the environment, bacteria do not need these genes to be expressed... and
they actually do not express them. Indeed, bacterial genomes have a powerful system of
regulation: the expression of operons and individual genes is regulated by other genes called
regulatory elements, themselves optimized [149]. Like so, a given regulatory element can
regulate several genes, being on the same DNA molecule (cis regulation) or on another DNA
molecule via an intermolecular interaction (trans regulation). Conversely, a gene can depend
on several regulatory elements.

The genome is also highly organized in relation to the replication mechanism. For ex-
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ample, as mentioned before, fast-growing bacteria usually have nested replication bubbles,
each one being translated at the same time. Like so, genes near the origin of replication
are over-expressed compared to the others. The distribution of genes along the chromosome
follows this characteristic: highly expressed genes tend to be near the origin of replication in
fast growing bacteria (those with multiple replication bubbles) [155].

1.4 Classification

There is no consensus on how to class bacteria. They can be classified according to their
pathogenicity, their membrane structure (mono/diderm), their growth temperature range or
any other trait like those tackled in parts 1.1.4 and 1.2. However, the names given to bacteria
are regulated by the International code of nomenclature of prokaryotes (ICNP) and indexed
in the official LPSN database (List of Prokaryotic names with Standing in Nomenclature)
[138] [58]. Bacterial names follow a rank-based classification, or taxonomy, a system proposed
by Carl Linnaeus to classify all living organisms in the 18th century. This classification is
based on a wide range of criteria. Those include morphology, Gram-staining, physiology
(temperature of growth, need of oxygen etc.) but also genetics (DNA properties, proteins
synthesized etc.) and, above all, thanks to the sequencing technologies, genome comparison.

Along with Eukaryota and Archea, Bacteria constitute one of the three domains (the
highest taxonomic rank) of the famous "tree of life" devised by Woese et al. in 1990 [202].
Figure 1.14 shows one of its most recent version, with details for the bacterial branch. Each
domain is then divided into hierarchical ranks: phylum, class, order, family, genus, species.
Bacteria are commonly named using their genus and species name.

However, for bacteria, this taxonomy is still controversial in the microbiology community.
And I did not know how right I was by the time I wrote the previous sentence: a month
later, an emendation of some rules of the ICNP regarding the phylum rank was published
[136]. This means that maybe, if you are reading this manuscript many years after 2022, you
may not recognize the names I use. Do Firmicutes and Bacteroidetes still exist?

Beyond the name, the definition of the different ranks, and in particular that of a species
remains an ongoing debate. This will be quickly tackled in chapter 3.3.

For now, let’s make an assessment on what we have seen so far. We know how the
bacterial genetic material (its genome) affects its phenotype, how genomes are organised to
optimize this expression, and how bacteria reproduce to spread in the environment. We can
also easily observe that those genomes evolve over living conditions and time.

For example, even if most bacteria studied, like E. coli or Listeria monocytogenes are
mesophiles (growing with moderate temperatures), other bacteria have adapted to extreme
environments.

Regarding evolution over time, the arrival and spread of antibiotic resistance is a good
witness of it. At the beginning of the antibiotic era, bacteria were all sensitive to antibiotics,
and they progressively adapted to escape their attacks.
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Figure 1.14: The tree includes 92 named bacterial phyla, 26 archaeal phyla and all five of the Eukary-
otic supergroups. Major lineages are assigned arbitrary colours and named, with well-characterized
lineage names, in italics. Figure from [92]

However, these observations lead to a paradox. Can you see why? Well, a high diversity
of organisms still evolving over time is quite easy to understand with organisms growing by
sexual reproduction (most eukaryotes): two cells exchange genetic material, giving a third
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organism different from its two parents. But bacteria do not exchange genetic material during
replication. Even worse, their binary fission mode of reproduction implies that they are all
clones. So, how all these differences are possible? Where do those new genes come from?
What are the mechanisms allowing such evolution? Let’s meet in the next chapter to see
that!



2 GENOME EVOLUTION

A characteristic of bacteria is the high plasticity of their genome, despite their binary fission
mode of reproduction supposed to create clones. They have a high ability to adapt when
facing environmental changes (like new soil, air composition or temperature changes) or
stressful events (presence of antibiotics, heavy metals).

The first mechanism coming to mind while speaking about genome changes is mutation.
And yes, bacteria are affected by mutations. These can range from local changes, affecting a
specific nucleotide, to larger scale mutations involving longer DNA sequences called mobile
genetic elements (hereafter called MGEs), including deletions, inversions and duplications.
However, this is not the main mechanism driving bacterial genome evolution.

A particularity of bacteria is that some of their mobile genetic elements can not only
move within the bacterial genome, but also between organisms, by horizontal gene transfer
(hereafter called HGT). This unidirectional process allows bacteria to acquire new genetic
information at high rates. In addition to MGEs coming from other cells, the newly acquired
DNA sequences can also be taken up from the environment, increasing the diversity of new
genes acquirable.

It is now known that HGT (bringing new DNA), and not mutations, is the main process
responsible for bacterial genome versatility [174]. A trendy example of the consequences of
HGT is the rapid spread of antibiotic resistance genes, threatening human health.

In this chapter, I first present mobile genetic elements, which can be responsible for large
changes in gene repertoires. Then, I describe by which mechanisms they can move within
and between organisms, with an accent on the main mechanisms allowing HGT.

2.1 Mobile Genetic Elements

The generic definition of a Mobile Genetic Element (MGE) is a DNA sequence able to move
within and/or between genomes. Some MGEs are autonomous, meaning that they encode
all genes necessary for their own transfer from a genome to another one. Among them, we
can cite conjugative elements and bacteriophages, who are driving bacterial evolution by
generating HGT events (see 2.2). Their presence in bacterial genomes is highly variable.

For example, small plasmids (a few kbp) are sometimes over 100 copies per cell, whereas
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larger ones are only a few copies per cell [183]. Regarding phages, a study on 2110 bacterial
genomes found that 46% of them host at least one phage, with up to 15 prophages per genome
[188].

Other mobile elements need systems encoded in trans to move within/between replicons,
and/or to take advantage of self-transmissible MGEs (or other HGT mechanisms) to be
horizontally transferred.

2.1.1 Conjugative elements

There are two main types of conjugative elements: Conjugative Plasmids (CPs) and Inte-
grative and Conjugative Elements (ICEs). Although ICEs are the most abundant systems
found in bacteria, CPs have been much more studied [81]. This is due to historical reasons,
but also to the fact that plasmids are widely used in microbiology experiments, mainly for
DNA cloning.

Conjugative Plasmids (CP)

As a reminder, a plasmid is an extra-chromosomal DNA molecule capable of self-replication
(see chapter 1.3.3). They do not encode genes involved in essential processes, but often
encode genes that can be beneficial for their host under certain circumstances.

Beyond their capacity to autonomously replicate, some plasmids also encode genes nec-
essary for their own transfer from a donor cell (their host) to a recipient cell. Those plas-
mids are called self-transmissible or Conjugative Plasmids (CPs), as they are involved in the
eponymous mechanism of HGT: conjugation (see 2.2.1). While transferring to a recipient
cell, conjugative plasmids bring with them all the beneficial genes, providing new functions
to their new host. For example, conjugative plasmid pOLA52 found in E. coli confers the
capacity to form type III fimbriae upon bacteria carrying it, enhancing biofilm formation
[133]. Like any plasmid, CPs are also replicated and partitioned between the daughter cells
during cell division. Thereby, conjugative plasmids are transmitted both vertically (parent
to offspring) and horizontally (via conjugation), making them important actors of genome
evolution.

Microbiologists use CPs as vectors to introduce new genes (like antibiotic resistance genes,
capsule genes...) in another bacterium. With the expression of those new genes in the
bacterium, they can study their impact on the bacterium phenotype [38] [37].

Integrative and Conjugative Elements (ICE)

Many elements were described in the literature as being able to be horizontally transferred
via a secretion system while being, unlike CPs, integrated into the bacterial chromosome.
Those conjugative transposons, integrative ’plasmids’, genomic islands and other unnamed
elements were finally unified by the term Integrative and Conjugative Elements (ICE), coined
by Burrus et al in 2002 [23].

The Integrative part of "ICE" describes their latent phase: integrated in the bacterial
genome. In this state, they are passively replicated with the chromosome and vertically
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transferred to the daughter cells. However, ICEs can also be induced, explaining the Con-
jugative part of their name. Upon induction, ICEs "excise by site-specific recombination,
transfer the resulting circular form by conjugation and integrate by recombination between a
specific site of this circular form and a site in the genome of their new host" [23] (see 2.2.1 for
conjugation mechanism and 2.3.2 for site-specific recombination). In this way, they are also
horizontally transmitted, increasing their spread in the bacterial population. They encode
their own system of transfer, similar to the one found in CPs, but with additional genes for
their specific excision and integration. In addition to those genes linked to their life style,
ICEs code for other cargo genes, usually conferring new phenotypes to host cells.

A conjugation system is composed of at least four essential elements, responsible for the
main steps of a conjugation event:

- an origin of transfer (oriT )
- a relaxase (also called mob gene)
- the Type 4 Coupling Protein (T4CP)
- the Type 4 secretion system (T4SS). This multi-molecular system is responsible for

transferring macro-molecules through the bacterial membrane. Above its use in conju-
gation systems, it also has two other functions described [29]. It can be used for the
transport of DNA and/or proteins to eukaryotic infected cells and it is also involved in
exchanges of DNA (imports or exports) with the extracellular space (see transformation
2.2.2).

Also widely found in bacterial genomes, Integrative and Mobilizable Elements (IMEs)
encode, as ICEs, their own excision and integration system. However, unlike ICEs, they do
not have their own conjugation system, but use the conjugation machinery of their host for
their own transfer [80].

However, the distinction between CPs and ICEs could be less obvious than commonly
thought. Indeed, it has been suggested that ICEs could switch into CPs and stabilize in
this state, even if the evolutionary pressures driving this phenomenon remain unknown [28].
At the other end, plasmids (like, for example, the F-plasmid or sex factor) can sometimes
be integrated in the chromosome, in strains then called high-frequency recombination (Hfr)
bacteria [77]. Those strains can transfer the entire chromosome by conjugation.

2.1.2 Phages

As already mentioned at the very beginning, human infectious diseases are not always due
to bacteria: they can also be caused by viruses. I am mentioning this here because we are
not the only ones suffering from viruses: bacteria also have theirs! In 1915, Twort discovered
that small organisms were killing the Micrococcus bacteria he was studying [193]. Due to
World War I, he was not able to investigate the nature of those organisms. Independently,
D’Herelle discovered them in 1917 at Institut Pasteur Paris, while studying Shigella dysente-
riae. Considering them as "bacteria eaters", he called them bacteriophages (phágos meaning
eater in Greek), or phages for short [45] [46]. As for human (and any other living organism),
they are submicroscopic parasites, only capable of reproducing if they enter host cells and
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harness the transcription, translation and replication machinery of this host. Even if they are
not as known as bacteria and viruses, probably because they do not directly infect human,
bacteriophages are the most abundant life forms on Earth. There are ≃ 1031 individuals, and
they are responsible for ≃ 1025 infections per second [89].

Phages encapsulate their genome inside a capsid. This genome can be single or double-
stranded DNA or RNA, linear or circular. It ranges between a few kb to hundreds of kb in
length. The majority of laboratory-studied phages have genomes of a few tens of kb. One
of the shortest known phage genome, phage MS2, contains a single-stranded RNA genome
of less than 5 kb, and encodes for only three proteins [60]. On the other hand, jumbo phages
refer to phages with genomes larger than 200 kb, and megaphages those larger than 500kb.
The largest genome sequenced so far is more than 700 kb [165].

Several ways have been suggested to classify phages. The International Committee on
Taxonomy of Viruses (ICTV) proposes a classification into orders and hundreds of families
according to their morphology and nature of genetic material [116]. More than 95% of the
phages currently described belong to Caudovirales order (or tailed phages, cauda meaning
"tail" in Latin). Those dsDNA phages have a typical morphology. Each virion has an
icosahedral head capsule attached to a flexible tail through which the phage introduces its
DNA into the infected bacteria. They are sub-divided into families, according to their tail
particularities (contractility, size...). Other phages, like the above mentioned MS2 phage
(Norzivirales order), also encapsulate their ssRNA inside an icosahedral capsule, but do
not have any tail. On their side, filamentous phages (Tubulavirales order, with Inoviridae
the most known family), called after their long and thin shape, directly encapsulate their
circular ssDNA genome into their filamentous coat. Figure 2.1 shows the main morphologies
of bacteriophages.

Figure 2.1: Different phage morphologies according to ICTV classification [116]. Figure adapted
from [203].
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A few essential genes are required for a phage to be functional. Among them, we can find
gene(s) to bind and enter the host cell, genes to hijack the host replication machinery (or
sometimes their own replication machinery), and gene(s) for DNA packaging [66].

Phages (especially dsDNA ones) can also be classified in function of their behavior during
infection: temperate and virulent phages.

Virulent phages have the typical behaviour we have in mind when thinking
of a virus: they infect a bacteria, and end by killing it. To do so, they enter
the cell and harness the bacterial machinery to reproduce extensively. Once
replicated, they package their DNA into particules called virions, and ulti-
mately cause the cell lysis, spilling out its content (bacterial DNA and phage
particules) in the environment. The new phage particules released will be able
to infect other bacteria, and reproduce this lytic cycle. Coliphage T4 is one of

the best known virulent phage [129].
Temperate phages, in contrast, lead a dual life. When entering a bac-

terium, they have two possible behaviors. On the one hand, they can act in
the same way as virulent phages, resulting in the cell lysis, the bacterium
death, and many new viral particles infecting other cells. On the other
hand, they can reversibly integrate into the host chromosome as prophages
or remain in a plasmid-like form [112] [17]. In both cases, they enter their
"latent" phase, also called lysogenic cycle. Some phages need a specific
insertion site, and integrate by site-specific recombination. Others can in-
tegrate almost any place in the chromosome by transposition (see 2.3.2). During lysogeny,
the prophages provide new traits such as protection from other phages to their host. For
example, lysogens (bacteria containing at least one prophage) are often found in unstable
environments (low temperature, few nutrients, environmental stress...). In those poor growth
conditions, it can be beneficial for the phage to remain integrated and keep the few hosts
alive, in anticipation of better conditions to induce the lytic cycle. Thus, lysogeny can be ben-
eficial for both the phage and its host. Replicated with the bacterial chromosome, prophages
are vertically transmitted to the offspring. Later, the prophage can be induced by an en-
vironmental stimulus (ex: DNA damaging agents like UV or high temperatures, antibiotic
treatment...). Upon this signal, it will excise from the chromosome, and switch to the lytic
cycle. Therefore, temperate phages fluctuate between antagonistic and mutualistic (or at
least commensal) relationship with their host. They code for genes to protect themselves
(and by extension the host bacteria) from other viruses, but also for genes to bypass the host
defense system to enter the lytic cycle. According to the state of the phage (lysogeny or lysis),
different genes are expressed [25]. Temperate phages are quite common in bacterial genomes
[188] [160]. Two model temperate prophages are λ [112], a prophage which integrates inside
E. coli genome, and P1 [17], which lysogenizes E. coli as a plasmid.

Being temperate or lytic, the very first step of phage infection is the same. Indeed,
before being able to inject its genome, the phage has to recognize and bind to the bacterium
membrane. The bacterial population on which a given phage is able to bind determines its
host range [94]. Some phages, like the previously mentioned λ phage, are specific to a few
hosts [32]. They only infect a bacterial species (or even only some strains) having a specific
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Figure 2.2: Phage behavior during infection. Figure from [189]

receptor on which they can bind. For temperate ones, they can even have a unique insertion
site in the bacterial chromosome. Other phages have a wider host range. When they are
temperate, they can insert almost anywhere in the host genome. This is for example the case
with phage Mu, which can infect, among others, bacteria of genera Escherichia or Salmonella
[86].

Finally, phages (mostly virulent ones) are also studied in the aim of fighting against
pathogenic bacteria. This application, called phage therapy, was already proposed by D’Herelle
himself, who cured a 12-year-old boy from severe dysentery in 1919 [177]. However, with the
development of antibiotics, phage therapy trials ceased, at least in Western Europe. Nowa-
days, with the alarming emergence and spread of (multi) antibiotic resistant bacteria, this
field is progressively gaining a new momentum [177]. Phages have the advantage, among
others, to be more specific than antibiotics, which could avoid the destruction of the whole
microflora of the patient during treatment. However, even if many successful experiments
have been reported, many challenges remain to be solved in this "new" field [25]. For instance,
as bacterial genomes constantly evolve, emergence of phage-resistant strains is unavoidable.

And to end, guess what? The Russian doll of viruses does not end with phages: they
also have their own parasites! Those so called phage satellites do not even have genes to
self-mobilize. They hijack the phage (then called helper-phage) to make virions and allow
their spread. The most famous phage satellite is P4, using P2 as a helper phage, which is
itself using E. coli to replicate [169].
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2.1.3 Jumping DNA

So far, I have presented MGEs able to move between cells, as they are the ones driving
genome evolution by bringing new genes to bacteria. However, bacterial genomes also host
other types of MGEs, which can move from place to place in the genome, but cannot transfer
themselves to other cells [168]. Even if they do not bring new genes to the bacteria, they
still have an important impact on the genome evolution. For example, they can increase
(or decrease) the amount of DNA, and/or generate mutations potentially leading to gene
inactivation (see 2.3.2).

Those elements, called with the generic term of Transposable Elements (TEs), are DNA
sequences which can repeatedly move within a chromosome (or between two replicons when
there are several in the cell), via a mechanism called transposition (see 2.3.2) [9]. The
discovery of those "jumping genes" in 1983 by Barbara McClintock earned her a Nobel Prize
[124].

There are several categories of TEs. Insertion Sequences (IS) are the simplest MGE. They
only code for a transposase, an enzyme required for their transposition, and are flanked by
short inverted repeats (IR), used by the transposase to initiate transposition [168] [121]. A
bacterial genome can contain hundreds of copies of a same IS.

Two IS flanking several accessory (not essential for transposition) genes can constitute a
DNA compound transposon or composite transposon (Tn). Genes in the intervening DNA
segment are called passenger genes, or cargo. The composite transposon is transposed as a
unit, thanks to the transposases of the two flanking IS acting in concert (see 2.3.2). Tn10
(flanked by IS10 ) and Tn5 (flanked by IS50 ) are among the most famous composite trans-
posons, as they carry antibiotic resistance genes [9]. Another common type of Tn are non-
composite or unit transposons, like Tn3 family. Contrary to composite ones, they are not
flanked by IS, but encode their own transposase among their passenger genes.

Figure 2.3: Different types of transposons

Whatever the type of transposon, passenger genes are often beneficial for the bacteria.
For example, studies on high-level vancomycin-resistant Staphylococcus aureus strains re-
vealed that this resistance was provided by genes coded in transposon Tn1546 [200]. As for
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conjugative elements, the distinction between the different TE types is becoming less clear
with the discovery of new elements. In this way, some unit transposons lack passenger genes,
some are instead devoided of transposase (MICs for Mobile Insertion Cassettes), and others
lack both (MITEs for Miniature Inverted repeats Transposable Elements) [167].

Even if TEs do not carry genes necessary to move between genomes, they are still ac-
tively participating to genome evolution via intercellular exchanges. To do so, they use self-
transmissible elements such as plasmids and phages, by "jumping" and integrating inside
their DNA sequence (see 2.3.2).

Integrons, known for their important role in antibiotic resistance dissemination, also par-
ticipate to intracellular diversity. Those adaptive elements are not mobile by themselves, but
they are managing an array of gene cassettes, which are the smallest mobile genetic elements
known so far. Those cassettes, able to move within and between integrons, usually carry
a single gene, most of the time conferring antibiotic resistance to the host [53]. Thanks to
a specific integrase intI, integrons are able to capture, remove and reorganise the cluster of
cassettes (which are flanked by attC recombination sites) [53] (see figure 2.4). Besides, inte-
grons (in particular class 1 integrons) can even be captured and integrated into transposons
and/or plasmids, providing them intra and inter-cellular mobility [119].

Figure 2.4: Schema of a typical integron. (1) The integrase can excise a cassette (2) and/or integrate
it at the attI recombination site. Figure from [44]

Our little meeting with the main actors of genomic diversity comes to an end. We saw
that genes carried by MGEs provide new traits to their hosts to adapt to their environment:
resistance to antibiotics, use of new nutrients as food, resistance to heavy metals, etc. Those
MGEs have a very important consequence on bacterial phenotype, sometimes at the cost of
humans. For example, the only difference between a harmless commensal bacterium and a
deadly pathogen can be the presence of a bacteriophage (diphteria [65]) or a plasmid (antrax
[134]). But how do these little pieces of DNA end up in those strains? How do they manage to
transfer between bacteria? I guess that you are suspecting the already mentioned "Horizontal
Gene Transfer". And yes, HGT is (part of) the answer. Thus, I think that it is now the right
time to explore a little bit what is hidden behind those three words.
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2.2 Horizontal Gene Transfer

Horizontal Gene Transfer (HGT) is the mechanism by which bacteria can acquire new DNA
(being integrated into the chromosome or as a free replicon) from their environment and/or
neighbouring bacteria [174].

HGT can happen within but also between two different bacterial species. Although it was
first considered as a side mechanism of genome evolution, it is now known as the most impor-
tant mechanism driving bacterial diversity. There are three major HGT process: conjugation,
transduction and transformation.

And last but not least: several mechanisms need those much-vaunted MGEs!

2.2.1 Conjugation

Conjugation, often referred as "bacterial sex", is a mechanism by which two cells directly
exchange DNA. It was discovered in the late 40s, while Lederberg et al. studed recombination
(see 2.3.2) on a mixed culture of E. coli strains [113]. Observing the recombined mutants,
they saw unexpected ones. The genomes of the latter were the result of recombination of
genes, but those genes were not from the same initial strain. They concluded that this implied
a "sexual process" in the bacterium: two different cells were exchanging their DNA. At this
point, they did not know how this ’cell fusion’ could happen. Further studies clarified this
process, which was called conjugation [47].

Figure 2.5: E. coli strains un-
dergoing conjugation via a pilus
©Dennis Kunkel Microscopy

This mechanism is not species specific. Even if it is less fre-
quent, two bacteria from two different species can exchange
DNA via conjugation, as long as they are in close contact
[79] [48]. It has even been shown to participate to trans-
kingdom horizontal gene transfer. First experiments in the
late 80s reported that Escherichia coli can transfer DNA to
Saccharomyces cerevisiae yeast [88]. Many years after, in the
early 2020s, a trans-kingdom conjugation was observed in na-
ture, where it was shown that virulent strains of Agrobacterium
tumefaciens cause tumours in plants [147]. Briefly, thanks to
the expression of genes coded on the bacterium Ti plasmid,
a DNA region is transferred via the T4SS (see below) to the
plant, and integrated into its chromosome. This DNA region
contains genes which, once translated by the host, generate en-
zymes who induce tumor growth. Hence, more than a simple
transfer of DNA, trans-kingdom conjugation can even change
the phenotype of the eukaryotic host.

Compared to the two other HGT mechanisms, conjugation is the one which can transfer
the largest amount of DNA per event (up to almost an entire chromosome, e.g. for E. coli
Hfr strains), and over the broadest range of organisms [192].

We already met the two MGE responsible for conjugation in 2.1.1: conjugative plasmids
(extra-chromosomal system) and ICEs (integrated inside the bacterial chromosome).
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1. The first step for conjugation of an ICE is to excise from the chromosome and circu-
larise, to become a "plasmid-like" independent DNA molecule. Apart from this pre-requiste
(and its re-integration to the chromosome after), the conjugation process is the same for both
ICEs and plasmids.

2. At first, in the host cell, the relaxase introduces a specific nick (cutting one strand of
the DNA) next to the oriT, unwinds the nicked strand from the unbroken one, and binds to
it [24].

3. The T4CP protein brings the complex oriT/relaxase to the T4SS. If another bacteria
is nearby, the latter uses its appendage (called pilus or sex pilus), to create an ’inter-cellular
cytoplasmic bridge’ between the donor cell and its recipient, forming a mating pair. This
process is consequently called the mating pair formation (Mpf) [162]. The single-stranded
DNA complex is secreted through the membrane pore created by the T4SS to enter the
recipient cell, in an unidirectional way [48].

4. Once in this new host cell, the relaxase detaches from oriT and helps to circularise
the ssDNA.

5. Both circular single-stranded DNAs (remaining strand in donor and transferred strand
in recipient cell) are replicated to get back to their dsDNA state.

Finally, if the MGE involved is an ICE, it is (re-)integrated in (the donor and) the recipient
chromosomes.

The process is depicted in figure 2.6.

Figure 2.6: Conjugation process. See detailed steps above. Grey arrows represent optional steps
(only for ICEs).
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At the end of conjugation, both the donor and recipient bacteria have the plasmid or
ICE, and are able to spread it to their progeny by vertical transmission (or of course again
by HGT). In that way, conjugative systems are major players in the spread of antibiotic
resistance, metabolic pathways, symbiotic traits, and even other mobile genetic elements like
TEs (carrying themselves potentially pathogenic genes) [15] [117].

2.2.2 Transformation

Unlike conjugation, transformation does not require cell-to-cell interactions, as it consists of
importing DNA fragments released in the environment.

This was the first HGT mechanism discovered, in 1928, when Frederick Griffith was
studying virulent (S strains) and harmless (R strains) Streptococcus pneumoniae bacteria by
observing their effect on mice [76]. While inoculating some mice with both alive R strains,
and heat-killed S strains, he observed that the mice died of pneumonia, while they survived
to the injection of each of these two types of strains separately. Even more stunning, he
discovered that the live bacteria he took up and plated from the dead mice blood were of the
virulent type. He concluded that such apparently haphazard results should be due to some
"transforming principle" being taken up from the heat-dead cells to convert R strains into
virulent ones.

It is only after Griffith’s death, in 1944, that Avery, McCarty, and MacLeod identified the
"transforming principle" as being the genetic material (i.e. the DNA) of the dead S strains.
The process of integrating free DNA into a bacterial genome is now known as transformation,
in reference to Griffith’s "transforming principle" [8].

Natural transformation does not require any MGE: it is a property inherent to the bac-
terium. Even if a bacterium is transformable, it does not necessarily mean that it can uptake
DNA from its environment at any time and anywhere [173]. Indeed, this capacity to capture
DNA, named competence, depends on the expression of a specific set of genes, called com
regulons [98]. Most naturally transformable bacteria are not permanently expressing those
genes, but rather need some specific conditions to become competent (i.e. cell-cell signalling,
stressful conditions, nutritional depletion, high cell density...) [98] [173].

The process of natural transformation consists in three main steps.
1. First, for transformation to be able to occur, some naked DNA is required. The

latter is most of the time in the environment following the lysis of a dead cell. However,
other mechanisms have been described. Some bacteria, like Neisseria gonorrhoeae, "donate"
their DNA on purpose, via autolysis, or via type IV secretion (through the T4SS already
described in 2.2.1) [85]. Other bacteria commit fratricide: they kill their siblings (cells
genetically identical) by allolysis. This has been described on the Gram-positive Streptococcus
pneumoniae species, where some genes of the com regulon, expressed in the competent state,
code for products killing the non-competent sister cells [36].

2. The second step is on the competent bacterium side, and consists in up-taking the
environmental DNA. Elements forming the transformation system vary a lot according to
bacteria, and little is known about most of them. However, it has been described that the
process of transformation generally involves a transformation pilus, Tfp. The latter binds to
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the exogenous dsDNA (with a specific sequence or not), and, thanks to other little known
proteins, imports it in the cytosol and processes it as a single-stranded form [98].

3. The last step is the integration of the ssDNA in the chromosome, often by homologous
recombination (see 2.3.2).

Figure 2.7: Transformation process. See detailed steps above.

Beyond facilitating genetic material exchanges, the role of transformation is still, nowa-
days, not completely known. It was thought to be used for nutrition [61] [152], for genome
maintenance [130] or else for genome diversification [98]. As any other HGT mechanism,
transformation enables bacteria to acquire new genes. The latter can help them to adapt to
their environment (virulence genes, resistance to antibiotics or else evasion of vaccines) [76]
[175] [195].

2.2.3 Transduction

The third HGT mechanism, transduction, is the transfer of DNA from a donor to a re-
cipient bacterial cell via a viral vector, the latter being none other than the much-vaunted
bacteriophage [189] (see 2.1.2 p.35).

Transduction was discovered and named in 1952 by Zinder and Lederberg. The latter, also
being the discoverer of bacterial conjugation on E. coli six years before (see 2.2.1), decided
to do the same experiments but with two mutants of Salmonella typhimurium strains [210].
Similar to with E. coli strains, recombination events between the two mutants were observed
while plating both strains together. They wanted to go further by doing an experiment
following Davis nonfiltrability U-tube design [47]. A U-tube consists in two pieces of curved
glass tubes (each one receiving one of the two mutants) fused at their base, forming a ’U’
shape. This time, the result was more disconcerting. Despite the filter (with pores smaller
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than a bacterium) they inserted between the two tubes, they observed recombination events.
This meant that what they called a ’filtrable agent’ acted as a vector between the two cells.
By varying the size of the pores, they identified this agent to be about the size of the P22
temperate phage of Salmonella, and further studies confirmed the viral nature of the agent
[210].

As we already saw in 2.1.2, phages package their genetic material into their head or capsid.
However, while doing so, they sometimes erroneously take some of the bacterial DNA with
them. This accidentally packaged DNA is at the origin of transduction. Due to the different
lifestyles of phages, we can distinguish two types of transduction.

Figure 2.8: Transduction process

First, when a phage, being virulent or temperate, enters its lytic cycle, it harnesses the
cell machinery to replicate and create new virions. This leads to the bacterial lysis, with
the bacterial DNA being fragmented into many small pieces. While encapsulating their
genetic material, some phages may take, instead, some of those random DNA fragments with
them. This mechanism is called generalized transduction, as it can transduce any region
of the bacterial genome [27] (see figure 2.8). The amount of DNA generally transduced is
variable. It can be up to tens of genes co-packaged, depending on the capsid size. Generalized
transduction frequency is also very variable according to species, due to the different types of
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prophages they carry [30]. Some species have a majority of their phages capable of generalized
transduction. For example, a study showed that 99% of the phages of Salmonella they used
are able to perform generalized transduction, partly due to their permissive pac packaging
system [160]. Other phages (like λ of E. coli) use a packaging system much more specific,
almost always preventing generalized transduction [95] [143]. Besides, during an infection,
only a small fraction of the phages able to generally transduce are packaging some bacterial
DNA [102], which also reduces final generalized transduction frequency.

Another type of transduction exists, this one only being possible with temperate phages.
When it is induced, the temperate prophage must excise from the chromosome to enter its
lytic cycle. Sometimes, this excision is inaccurate, and the phage also takes with it a few
genes flanking its attachment site attB [27] (see figure 2.8). Those bacterial genes will be co-
packaged with the phage DNA in the virion, the volume of the capsid being large enough for
a DNA molecule longer than the phage DNA itself [59]. This mechanism, called specialized
transduction as it can only transduce specific parts of the bacterial DNA, has been described
in a few phages, the most studied being λ phage of E. coli [59].

There is a third phage-mediated HGT mechanism. When (generally or specialized) trans-
duced fragments are packaged in a temperate phage, this one can later lysogenize as a
prophage in a new bacteria (see 2.1.2), and provide those new genes to the host (see fig-
ure 2.8). In that way, transduction contributes significantly to the genetic diversity of many
bacteria. When the expression of those new genes engenders phenotypic changes to the
bacteria, we talk about lysogenic conversion. This mechanism can potentially transform a
harmless bacteria into a dangerous pathogen. For example, presence of corynephage β allows
previously inoffensive Corynebacterium diphteria strains to produce a new toxin, causing
diphteria [65]. Although the role of transduction in the spread of antibiotic resistance is less
clear than the role of conjugation, a few studies found ARGs in phages or prophages [39].

As transformation, transduction does not need any cell-to-cell contact. This allows trans-
fers of genetic material over longer distances, and longer time periods than the two other
HGT mechanisms. Indeed, conjugation is limited both in space (cell-to-cell contact needed)
and in time (the pore opened between the two cells does not stay for a long time). Regarding
transformation, it is less constrained in space, as free DNA can move in the environment, and
potentially come from a cell which died a bit further. However, DNA alone in the environ-
ment is quickly degraded by deoxyribonucleases (DNase), so transformation must happen in
a quite restricted area and time period. Regarding transduction, DNA can stay longer in the
environment and travel along longer distances, because it is protected by the phage capsid.
On the other hand, transduction has the narrowest host range of the HGT mechanisms, due
to the limited host range of most temperate phages [94].

2.3 Intragenomic evolution

Even if Horizontal Gene Transfer is the main mechanism driving bacterial evolution, other
mechanisms can impact the evolution of genomes. Contrary to HGT where bacteria acquire
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new DNA sequences, these other mechanisms reshuffle the existing genome of a bacterium:
they introduce mutations. With the advent of the Covid19 pandemic, mutations is quite
frequently used in everyday conversations. This makes sense, as mutations are the main
motor of evolution in viruses. And it was, for a long time, also considered as the main
mechanism of bacterial genome evolution before it became clear that gene repertoires are
mostly modified by HGT.

By definition, a mutation is any heritable change in any part of the genome sequence
(chromosome or plasmid), inducing or not a phenotypic change. (As an aside, this means
that the broadcasted SARS-Cov2 mutations are only a few of all mutations really occurring.
The ones not causing any phenotypic change do not deserve to be named.) Mutations can
affect regions of different sizes and have diverse consequences. Those mutations are then
spread in the population via vertical descent, which can also itself introduce a few changes.

2.3.1 Point mutations

Point mutations are the major source of Single Nucleotide Polymorphism (SNPs). Their
different types are detailed below, and illustrated in figure 2.9.

Figure 2.9: Different types of point mutations. See
text on the right for more details.

Silent (or synonymous) mutations
have no effect on the amino acid com-
position of the protein, as, thanks to the
redundancy of the genetic code, they re-
place a codon with another one coding
for the same amino-acid. On the other
side, non-synonymous mutations change
the protein sequence and can have a high
impact on its function. They can replace
a codon by another one coding for a dif-
ferent amino-acid (missense mutation)
or by a premature stop codon (non-sense
mutation). This type of mutation are
very rarely adaptive. They sometimes
have a neutral effect (if the new amino-
acid is close enough from the original
one), but are most of the time deleterious
(result in the loss of the gene function).

Other point mutation types, like in-
sertions or deletions of a nucleotide in-
side a gene, are most of the time deleteri-
ous: they lead to a frameshift, generally
inactivating the gene (see figure 2.9).

At first, mutations were assumed to
appear randomly. However, although
spontaneous mutations exist, they are
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most of the time the result of an event (during DNA replication, following an erroneous
DNA repair, or induced by a DNA damaging agent like X-rays or UV) [114].

Most mutations, being deleterious, tend to be counter-selected and to disappear from
the bacterial populations. Sometimes, they can be affected by reverse mutations (reversions)
especially by DNA repair systems (see 1.3.3). In both scenarios, they are not kept and spread
into the population. Yet, for some strains, called mutators, mutations fixed in the population
are more frequent. Those strains have a particularly high rate of mutations, most of the time
as a consequence of a defective DNA repair system [50] (see 1.3.3). Mutating frequently has
the advantage to faster explore many combinations. Like so, there is a higher opportunity
to find positive mutations that can be latter transmitted to progeny and thus fixed in the
population. However, this does not change the fact that the vast majority of those mutations
are deleterious, meaning that being a mutator still has a real cost.

2.3.2 Large scale mutations

Large scale mutations involve not only one nucleotide but whole DNA segments that are
rearranged. We will from now on use the term rearrangement instead of large scale mutation,
to avoid confusion with point mutations. Those rearrangements, including translocations,
inversions or duplications of DNA, can lead to gene function loss. This can occur when the
sequence of a gene is directly affected (insertion of DNA in the middle of the gene, moving
only a part of the gene etc). When it does not affect the sequence of the gene by itself, the
rearrangement can still have an impact on gene expression. For example, an insertion can
split an operon, or change a promotor sequence. Therefore, even if, as for point mutations,
some rearrangements can be silent, the majority have a high phenotypic impact. For example,
large-scale rearrangements can help pathogenic bacteria bypass their host defences [139].

Rearrangements are mainly the result of recombination, a process consisting in joining two
DNA segments which were previously separated. Horizontal gene transfer, however powerful
to exchange genetic material between cells, would not be that effective without the help of
recombination. Indeed, except for autonomous plasmid-like MGEs, horizontally transferred
DNA must integrate the host chromosome to be able to persist in the next generations. This
can be done by several recombination processes.

Homologous recombination

The most famous is probably homologous recombination (HR), which consists in the exchange
of two DNA sequences (not necessarily on the same replicon) flanked by nearly identical
regions. It is sometimes called general recombination. Originally described in the late 40s,
homologous recombination was at the origin of the discovery of an horizontal gene transfer
mechanism: conjugation (see 2.2.1) [113].

Homologous recombination naturally occurs not only in bacteria, but also in eukaryotes
and even some viruses. Whether responsible for new DNA combinations during eukaryotic
meiosis (cell-division used for sexual reproduction) or for integration of DNA after HGT
in prokaryotes (see figure 2.10), homologous recombination has an universal critical role in
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producing genetic diversity.
It was thus considered for many years as an equivalent of the eukaryotic sexual process,

which role is to mix DNA in order to diversify genomes. In the mid 60s, while observing that
recombination-deficient mutants were more sensible to DNA damage, scientists realised that
the molecular mechanism behind DNA repair could have common steps with homologous re-
combination [34]. Subsequent studies finally revealed that, in fact, homologous recombination
is primarily a major DNA repair system [107]. Therefore, even if they are often associated,
it is important to understand that HGT and HR are distinct mechanisms. Unlike HGT
which brings new DNA material, HR only exchanges two existing homologous sequences, not
necessarily provided by an HGT event.

Figure 2.10: Insertion of a MGE by
Homologous Recombination

The molecular mechanism has been originally studied
in E. coli, which remains the reference for HR [105]. This
process is catalyzed by several sets of enzymes, the central
one being the recombinase RecA. Its sequence is highly
conserved among all organisms, even beyond bacteria do-
main [154]. Homologous recombination mechanism in-
volves three main stages, each one involving multiple en-
zymes assembled in complexes [35]. First, presynaptic
enzymes prepare the parent sequence by unwinding an
extremity, converting it to a partially single-stranded se-
quence. In our case, this parent sequence can be, for
example, some DNA introduced by a phage after gen-
eralized transduction (see Transduction). Recombinase
RecA, who has access to the single-stranded parts, coats
them, forming a nucleoprotein filament. In the second
phase (synapsis), the coated presynaptic complex will
scan the host replicons for homologous regions, and bind to it. This results in a joint molecule
made of four dsDNA arms, called Holliday structure. Finally, postsynaptic resolvases cleave
and join the appropriate strands to resolve the Holliday junction, and get a viable hybrid
recombinant.

Specialised recombination mechanisms

In addition to homologous recombination, other mechanisms are commonly reshuffling bac-
terial DNA. Contrary to HR, those specialized recombination mechanisms do not rely on
extensive homologous sequences, and use relatively simple machineries.

Site-specific recombination needs precise DNA sequences of tens of bp. The latter, called
recombination sites, define the specific positions at which the site-specific recombination
occurs.

The process is much simpler than HR mechanism (see figure 2.11a). Most of the time, it
only requires one enzyme, called site-specific recombinase (SSR), and two specific recombi-
nation sites. Two different types of SSRs have been described in literature. Although they
have different mechanisms to execute each step, the processes are analogous. The SSR first
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binds to the two specific recombination sites on the sequence, forming a synaptic complex.
It then catalyzes the cleavage of the DNA sequence at both bound sites, exchanges the DNA
segment in between, and rejoins the DNA strands [78].

Site-specific recombination is a conservative mechanism: it does not involve any DNA
gain or loss. The original configuration can be re-established by a reciprocal recombination.
This mechanism is used by most ICEs and most prophages to reversibly integrate or excise
the bacterial chromosome at specific sites [26].

(a) Site-specific recombination

(b) Transposition

Figure 2.11: Specialised recombination mechanisms. Figures adapted from [2]

Transposition is another recombination mechanism, by which transposable elements (see
2.1.3) move within or between replicons (see figure 2.11b). Transposases, enzymes catalysing
transposition, are generally self-encoded by the TE.

Conservative (or non-replicative) transposition is a "cut-and-paste" mechanism by which
the TE excises from the chromosome, and inserts into a new non-homologous genome locus
called target site. This process is catalysed by the transposase, which binds on the inverted
repeats flanking the TE, and cleaves the dsDNA strand to excise it. Cleaved ends at the donor
site will be joined by cell repair systems like HR. On the other hand, replicative transcription
requires the replication of the TE before its transposition. The copy is inserted at the target
site, while the original element remains in place, leading to an increase of the genetic material
(duplication of the transposon DNA) [84].

In both types of transposition, the transposase cuts the two DNA strands of the target site
a few base pairs from each other. Once it has inserted the TE between the two overhangs, the
host repair system fills the gaps on the two complementary staggered strands.This introduces
direct repeats of a few nucleotides on each side of the newly inserted element. Presence of
those direct repeats in a genome are a signature of transposition events, as they stay in
place if the TE is transposed to another locus. As a consequence, contrary to site-specific
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recombination, transposition is not conservative [168] .
Selectivity and nature of the target site are very different according to the transposase

used. Some elements are inserted in quite specific target sites, whereas others show very
little obvious patterns of target selection, while not being totally random either. Regarding
the mechanism of target selection, some transposases directly interact with specific DNA
structures, while others use intermediate proteins making the link between them and specific
DNA sequences [140]. Transposition is used by some phages which can integrate in many
places in their host, like bacteriophage Mu. The term illegitimate recombination is sometimes
used to refer to transposition, as this recombination process is independant of any DNA
sequence homology [86].

As a conclusion, bacterial genome evolution relies on a wide variety of mechanisms. On
the one hand, horizontal gene transfer, with conjugation, transformation or transduction,
results in the acquisition of new genes (from another bacteria or the environment). Those
new elements (except extra-chromosomal ones) are integrated in the host genome via recom-
bination mechanisms. The latter, together with other mutation mechanisms, reshuffle the
genomes, potentially modifying the amount of DNA. All these mechanisms allow the bacterial
genomes to evolve, and acquire new traits. On the other hand, vertical transfer consists in the
transfer of genetic information, including those changes, from parent to offspring, through
cell division (see 1.3.3). Rapid bacteria multiplication makes the spread of those changes
even quicker.

Now that we understand the mechanisms by which a single genome evolves, the next step
would be to study the evolution of a given population of genomes. Indeed, in everyday life,
we are witnesses of the effects of genome evolution. For example, some epidemics are caused
by a bacterial species which is normally commensal or even mutualist. From there, multiple
questions can be raised: how did they become pathogens? Are these changes reversible? Can
we prevent them? The answers to these questions all require a common initial step: finding
the differences between the genomes of the pathogen and non-pathogen individuals. For that,
one needs to compare the different genomes. This is from where comes the last part of our
chapter: comparative genomics.
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3 COMPARATIVE GENOMICS

In the previous chapters, we saw what is a bacterium (beyond the "little bug making ill" pre-
conception), how its phenotype is regulated by its genome content and organisation (chapter
1), as well as the mechanisms by which its genome can evolve over time (chapter 2).

We now want to understand the evolution of not only one bacterium, but a whole popula-
tion. To do so, we need to compare the different individuals, and in particular their genomes.
But what does "comparing genomes" mean?

3.1 Retrieving the bacterial genome

Concretely, the bacterial genome is one or several DNA molecule(s), made of thousands to
millions of nucleotides linked together (see figure 1.7). In practice, the bacterial genome is
represented by a sequence of letters based on an alphabet depending on the type of molecule:
A, T/U, C and Gs for DNA/RNA, or 20 different letters for proteins (see the outside ring
of figure 1.10). This binary information is saved in computer files, which are used for the
analyses.

Before starting to compare the genomes, it can be important to understand how they were
generated, as an analysis can sometimes depend on the method used to obtain the genomic
sequence. First of all, how is the molecular genetic material of a bacterium converted into a
sequence of letters?

3.1.1 DNA sequencing

The first step to obtain a file with the full sequence of a genome is DNA sequencing. It
consists in "reading" the DNA molecule to determine the order of its nucleotides, and store
this information into computer file(s). As sequencing is a whole field on its own, I will just
touch upon the subject, to introduce the notions needed for the analyses done in this thesis.
Likewise, as this is what I use for my PhD subject, I will only deal with DNA sequencing,
but I must mention that sequencing can also be done with other biochemical molecules like
RNA (after a reverse-transcription to DNA) or proteins.

Bacteriophage ΦX174 ssDNA genome was the first full DNA genome to be sequenced. Its
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almost 5400 bases were deciphered by Sanger et al in 1977 [158], using a method based on
DNA replication (see figure 1.13). The results were manually analysed to recover the initial
sequence. Later, a new version of this method was developed, introducing fluorescent signals
which can be detected and directly analysed by a computer. The latter was implemented in
the first automated DNA sequencer: ABI 370 [171]. In 1995, the first genome of a free-living
organism was sequenced: bacterium Haemophilus influenzae, with its almost 2 Mbp circular
chromosome [63]. This marked the beginning of automated whole-genome sequencing, which
culminated with the sequencing of the first human genome in 2001 [43].

Ten years later, 454 Life Sciences company implemented a new sequencing technique in
a highly parallel manner, marking the beginning of a new era in the sequencing world [156]:
Next Generation Sequencing (NGS). In order to be able to analyse millions of sequencing re-
actions at the same time, these High-Throughput methods require a preparation step (a.k.a.
library preparation), consisting in a random fragmentation of the extracted DNA, followed
by an amplification of this sheared DNA. The proper sequencing step then depends on the
technology (see figure 3.1). Most of the latter still rely on DNA replication. However, instead
of a posteriori analysing partially replicated DNA fragments, the latter are fully replicated
and the system detects and stores the signals emitted by each new base incorporated. This
signal can be, for instance, a light produced by the release of a phosphate (pyrosequencing
[156]), a proton released (Ion Torrent [151]) or the wavelength of a fluorescent nucleotide
(Illumina [70]). These second generation methods allow much higher throughput at much
lower-cost and have progressively supplanted Sanger-like methods [109]. However, they rely
on much shorter reads (a few hundreds of nucleotides compared to the almost 1000 bp of
Sanger method) and have an intrinsically higher error rate, caused by the additional library
preparation step (errors during amplification, nonuniform coverage of amplified sheared re-
gions, difficulties to amplify regions with high GC%, ...) [51] [151]. For these reasons, Sanger
technologies remain in use (as of 2021) for small sequencing projects.

Trying to solve the above-mentioned drawbacks of NGS technologies while still keeping
a lower cost than Sanger methods, third-generation sequencing (TGS) methods emerged in
the last ten years. The latter are distinguishable from NGS methods by the fact that they
sequence 1) in real-time (NGS technologies mark a short pause after each base incorporation)
2) a single-molecule which does not need to be amplified (more uniform coverage over the
sequence and less GC biased), and 3) produce long reads [51]. These "long-read sequenc-
ing technologies" (LRS) are nowadays dominated by Pacific Biosciences (PacBio) [151] and
Oxford Nanopore technologies, and produce reads of tens of kbp in average, and up to the
current record of 2.3 Mb for Nanopore (although at the cost of a high error rate for the latter)
[97] [142].

For now, LRS has not supplanted NGS technologies, which still remain, in spite of huge
improvements, cheaper, faster and more accurate (see figure 3.1). Moreover, NGS technolo-
gies like Illumina, which already dominates by far the market as of 2021, propose alternatives
with "synthetic long reads", using a system of barcodes to pool their short reads into longer
fragments [125]. As of 2021, most genomes are still sequenced by NGS, sometimes associated
with partial Long-Read sequencing [4]. Thus, most of the genomes I used for my PhD project
have been sequenced by NGS methods.
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Figure 3.1: Comparison of first, second and third generation sequencing. Figure inspired from
[141]. Sanger-sequencing: uses ddNTPs (dideoxynucleotides), which lack the hydroxyl groups
required to bind to the next nucleotide (see 1.7): the random integration of a ddNTP prematurely
ends replication. The resulting set of nested truncated sequences (all starting with the primer, but
randomly ending by the insertion of a ddNTP) is analysed to recover the initial sequence.

3.1.2 Assembly

By the time I am writing this thesis, it is not (yet) possible to sequence accurately a full
genome in a single read: an assembling step is required to reconstruct the original sequence.
This step is often compared to solving a giant puzzle. However, this "puzzle" has some
particularities: pieces are overlapping (sequences are randomly sheared and amplified, so
that a single nucleotide can be sequenced multiple times), some parts can be missing (parts
not read by the sequencer), some can be wrong (sequencing errors), and some can come
from other puzzles (contamination). On top of these peculiarities, the difficulty also varies
according to the complexity of the organism. One of the biggest challenges is the number of
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repeat sequences in the genomes, the latter being indistinguishable while trying to assemble
the pieces, especially when repeats are longer than the reads (see figure 3.2) [51]. Most of the
time, often due to the aforementioned reasons, the output of the assemblers is not a complete
genome, but a collection of smaller sequences called contigs. The set of contigs is called a
draft genome. If the contigs from a draft genome are ordered, we call the result a scaffold.

Figure 3.2: Example showing the resolution of
a repeated genome region by short-read assem-
bly or long reads. Sequencing a region with two
nearly identical repeats (blue) separated by a
unique sequence will generate reads correspond-
ing to the upstream region (yellow), the repeats,
the sequence between (green), and the down-
stream region (black), and some reads will over-
lap the boundaries. Assembly programs cannot
assign reads falling in the repeats to unique posi-
tions and will assemble those reads into a single
contig. The sequence between the repeats can-
not be assigned to a unique position either, as it
can be placed either upstream or downstream of
the ‘blue’ region. Due to this ambiguity, the se-
quences upstream of, between, and downstream
of the repeats will be assembled into separate
contigs. Similar problems arise with structural
variants that involve repetitive regions. Figure
from [51].

We saw in the previous part that there exist a wide range of sequencing technologies,
each one with its own advantages and drawbacks (read length, error rate, error type etc.).
Likewise, there are many assemblers, each one adapting its method in such a way that some
tools perform better than others on a particular technology, but are less efficient than the
latter on other technologies. For example, Canu is specialized in long-read technologies,
providing a method able to handle high-noise sequences [104], whereas Velvet is designed for
short read sequencing data [206]. Tools like Unicycler are designed for hybrid assemblies,
combining short and long-read inputs [201]. SPAdes, first released in 2012 for bacterial
genomes assembly based on NGS reads like Illumina or Ion torrent [11], now also provides
hybrid assembly methods combining Nanopore, PacBio or Sanger reads with the short-read
sequences.

We can classify assemblers into two main categories: de novo assemblers and reference
based assemblers. De novo tools take a set of reads as input and output a complete or draft
genome. On the other hand, reference based assemblers take, in addition to the reads, a
reference genome as input. This reference is used as a backbone or template to assemble
the reads. While using inherently different algorithms to assemble the reads, both types
of assemblers share the same computational background: graph data structures that they
traverse to extract sequences longer than the reads.
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All genomes that I used during my thesis are genomes already assembled by others and
registered on the Genbank database (see 3.1.4). Information on the sequencing technol-
ogy and assembly pipeline used is sadly seldom given, but the vast majority was probably
sequenced using Illumina and assembled with SPAdes like assemblers [11].

3.1.3 Annotation

Once the DNA sequences are assembled, the next step, called annotation, consists in identi-
fying genes in these sequences.

One can distinguish two stages in annotation. First, a syntactic annotation (also called
structural annotation) identifies the genes encoding proteins. It is based on its definition
(presence of start and stop codon, and a length between the two of a multiple of three nu-
cleotides), but also on other criteria like presence of transcription promotors, Shine-Dalgarno
sequences and codon usage. Prodigal is a widely used tool for prokaryotic gene prediction [93].
Other features like genes coding for tRNA, rRNA, or CRISPRs are searched with specific
prediction software using sequence similarity or structural information [111] [131].

Once genes have been identified, its functional annotation can be performed. This is
the most time-consuming step. Basically, it consists in comparing each identified CDS to
a database of known proteins, using methods described in 3.2. The reference databases
can range from custom databases of private proteins to publicly available databases like the
Universal Protein Resource (UniProt, which provides a huge amount of protein sequences with
functional annotations), or Pfam (which provides protein families represented by multiple
alignments generated using HMM, briefly described in 3.2.2) [182] [62]. Both are used by
Prokka, one of the most employed softwares for prokaryotic genome annotation [163].

3.1.4 Databases of bacterial genome sequences

The main databases of publicly available bacterial genomes are housed by the National Center
for Biotechnology Information (NCBI). Its major database, GenBank, daily receives original
submissions (annotated or not) from individual laboratories and sequencing centers from all
over the world [159]. Created in 1982 with a few hundreds of sequences, it now (December
2021) contains more than 1 million bacterial DNA sequences, from more than 65.000 differ-
ent species, and is still growing very fast. Together with the EMBL Nucleotide Sequence
Database (from the European Nucleotide Archive, ENA) and DDBJ (DNA Data Bank of
Japan), GenBank participates in the International Nucleotide Sequence Database Collabora-
tion (INSDC) aiming at providing DNA sequences available for free [99] [68] [6]. Daily data
exchange between the three partners ensures worldwide coverage and synchronicity.

Also widely used for bacterial comparative genomics, RefSeq database is a curated subset
of Genbank introduced in 2000, providing a unique record for each organism [150]. All
genomes of Refseq have standardized syntactic and functional annotation, either propagated
from the Genbank submission, or calculated by a NCBI annotation pipeline. As of today
(December 2021), there are more than 231.000 bacterial genomes in refseq, from more than
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40.000 named species. Due to the wide use of NGS methods, only a bit more than 20.000
are completely assembled genomes.

The NCBI assigns a unique identifier (taxid) to each species, and an accession number to
each original sequence.

Even if the number of bacterial species sequenced is huge, it must be mentioned that it
is biased towards bacteria easily cultivable, and/or with a medical or economic interest. As
illustrated by figure 1.14, they represent a very small fraction of the bacterial world.

We now know how we can get DNA sequences of genomes, either starting from their bio-
logical strain, or directly downloading them from public databases. This is an essential step,
but it is only the beginning, as we still do not know how to compare these sequences. Inci-
dentally, if a functional annotation is needed, comparing sequences is already a required step
while retrieving the bacterial genome sequences! But how can we compare sequences, identify
and quantify differences, and understand the evolution history leading to these differences?
This led to the arrival of a new field in bioinformatics: comparative genomics.

3.2 Comparing genomic sequences

Once we have bacterial genomes in computer files (either from sequencing 3.1.1 or by down-
loading existing ones in public databases 3.1.4), we need to define methods to compare them.
As already mentioned, a bacterial genome is represented by a sequence of letters. From a
computational point of view, the most intuitive idea coming to mind while speaking of com-
paring genomes is thus to compare the strings (or bits, depending on their representation).
This chapter will give an overview of the main methods used to compare genome sequences,
starting from the less complicated: comparing two genome sequences.

3.2.1 Pairwise comparisons

Optimal alignments

A pairwise alignment is a way of arranging two sequences in order to highlight similarity
regions. Intuitively, it can be represented by placing the two sequences one above the other,
such that each residue of the first sequence is above either a residue of the second sequence
or a gap (represented by a −) that has been added to the latter, and conversely (see figure
3.3). With this definition, there exist many different ways to align two given sequences, i.e.
to arrange the successive columns of nucleotides and/or gaps. On top of the alignment itself,
one can also define a scoring system per column of the alignment. For example one can define
that a column composed of a residue and a gap scores -1 point, a column with two identical
letters scores +1 point and a column with a mismatch (i.e. two different letters) scores 0
point. The sum of scores of all pairs of characters gives a score for the whole alignment (see
figure 3.3).

One can also define more complex scoring systems. Substitutions scores can be rep-
resented by a similarity matrix, where the cell (i,j) contains the score to attribute when
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character i is aligned with character j. The most famous, used to align proteins, is the
family of BLOSUM matrices [90]. A gap-penalty scoring system can be associated to this
matrix, defining the cost of a gap, potentially varying according to its situation (after other
gaps or isolated for example). However, given two sequences and one same scoring scheme,
many alignments are possible, some of which having higher scores than others (see figure
3.3). We define the alignment with the best score as the optimal alignment.

Figure 3.3: A. Two different scoring systems: 1) fix match/mismatch score. 2) with a nucleic
similarity matrix. B. Example of three possible pairwise alignments for sequences "AGATGGC"
and "AATTACC", with the two different scoring systems.

In 1970, Needleman and Wunsch published an algorithm (today called NW for Needleman-
Wunch algorithm) to compute, for a given pair of sequences, the best global alignment score
and, at the same time, construct the corresponding alignment(s) [132]. This algorithm needs
to score all the positions of the first sequence with all the positions of the second one. Thereby,
if the sequences have sizes n and m respectively, the algorithm needs to compute n×m local
scores. To compute the global score, all the intermediate scores are stored in a matrix of size
n×m, called the dynamic programming matrix.

However, biological sequences can share common substrings while being very different at
the other positions. For example, a Mobile Genetic Element of genome A transmitted to
genome B by HGT can be inserted in a region of B which is very different from that of A.
In that case, the alignment done by the NW algorithm will give a very bad score and the
HGT event can be invisible in the alignment. To take into account such cases, Smith and
Waterman presented a variation of NW algorithm, SW, that guaranties to find at least one
of the best local alignment(s) [172]. The main idea is based on the fact that the scores cannot
be negative: bad alignments are scored 0. Thanks to this modification, local alignments are
bounded by regions of null scores in the alignment matrix.

These two dynamic programming methods guaranty to reach the best possible score (and
consequently the best alignment based on this scoring system), but are time and memory
consuming for large DNA or amino acid sequences because they require quadratic time to
compute.
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Alignment approximations

For large scale analysis, performing alignment by dynamic programming is very expensive in
terms of computation time and space. To tackle this problem, fast approximation methods
(heuristics) have been developed. During the alignment process, most of the time is spent
on filling the dynamic programming matrix. The key idea behind fast heuristics is to quickly
define which slice(s) of the sequences are close enough to be aligned to each other or, in
other words, select which cells of the matrix "deserve" to be filled. Thus, the not promising
alignment slices (corresponding to too different slices of sequences) can be skipped and the
time can be spent on parts that will have a good local alignment score.

Most of the computationally efficient algorithms, like FASTA and its extension BLAST
developed in the 1990’s [120] [3], are based on a seed and extend strategy. Before performing
any alignment, these algorithms search local high score for words of fixed length k that are
called k-mers. The first step consists in extracting all the k-mers from a query sequence.
Then, each k-mer is used as a seed : it is mapped on the second sequence, only allowing
matches or substitutions. Each mapped position is scored using a similarity matrix like the
BLOSUM matrix, and only the best positions are kept. The best hits are then extended on
both sides as long as the score keeps increasing. Finally, if the extended hit has a sufficient
score, a local exact alignment is performed. Given that it performs SW computations only
from the best local score(s), this process does not guaranty to find THE best alignment of
the two given sequences. However, it allows the possibility to compare large genomes, where
it was impractical using pure SW.

Figure 3.4: Overview of the MMseqs2 algorithm (Figure from [176]).

Such methods continue to be developed and recent works like MMseqs2 and DIAMOND
are now outperforming BLAST-like algorithms [176] [22]. The main idea remains the same
as for the previous heuristics: fast seeding, extending, and running a SW-like algorithm on
the resulting slices. MMseqs2 uses multiple techniques to improve sensibility while keeping
the same computation time (see figure 3.4).

The k-mers used as seeds are spaced k-mers (k-mers including "joker positions" which can
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map to any nucleotide), which gives the possibility to include errors in the middle of the seed
(in addition to the substitutions), and to use bigger k-mers (which are thus more specific to
their sequence). Two consecutive shared k-mers lying on the same diagonal (the gap between
the shared k-mers is the same in both sequences) are paired and extended to generate pre-
alignments. Finally the pre-aligned diagonals are linked using a very well engineered SW
algorithm (see figure 3.4a). Concretely, to speed-up the k-mer sets comparisons, most tools
index them in a Hash table (briefly, each k-mer is associated to a binary value, which is further
affected to a memory slot). It is easier to compute k-mer intersections using hash values
because the computer can directly check their presence/absence at the right memory slot
instead of permorming multiple comparisons. To be even faster, the authors of DIAMOND
index spaced k-mers of both sequences and merge the indexes efficiently to find common
k-mers. It is faster than checking independently all the entries.

As for the previous algorithms, these heuristics do not guaranty to find the optimal align-
ment. Both MMseq2 and recent DIAMOND versions are showing very good performances to
generate alignments. They are at least 10 times faster than the other methods for the same
accuracy. However, the computation time is still prohibitive to make a all vs all comparison
of tens of thousands of genomes.

Pairwise comparison without alignment

Since the alignment process needs to fill a matrix (or a submatrix for heuristics), the time
complexity will always be proportional to n×m. To bypass this limit, new algorithms have
been developed to compare sequences without the need of an alignment step.

The main idea is that two sequences for which we can obtain a very good alignment have
a high probability of sharing multiple substrings. Alignment-free methods are based on this
observation, which they take on the other way around: two sequences sharing a high number
of substrings (of fixed size k for better algorithm properties) have a high probability to be
very similar. In this way, comparing the k-mer content of the two sequences should be a
good proxy for sequence alignment. However, generating efficiently the sets of all k-mers of a
sequence is not that easy: even if the algorithm is linear in time, it requires a lot of memory
(although still a lot less than the full dynamic programming matrix). To limit the memory
requirement, sketching softwares have been developed: they take advantage of that time
property to be fast and only store a subset of the k-mers to be compact in memory. Tools
like Mash or sourmash carefully select the subset of k-mers to truly represent the original
datasets [135] [186]. If two initial datasets A and B share p% identical k-mers (p represented
by the Jaccard index J), they construct subsbets SA ans SB such that the probability of
collision (meaning of getting the same k-mer) between any k-mer of SA and any k-mer of
SB is roughly similar to p (see figure 3.5). Other tools like Hyperminhash and Dashing
propose memory optimizations [205] [10] and tools like BinDash propose construction time
optimizations [207].

However, they produce a degree of divergence that is not linear with the accumulation
of sequence substitutions, and tend to over-estimate long genetic distances. Very fast in
practice they can be used to quickly estimate a similarity metric between two sequences.
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Figure 3.5: Overview of the strategy of sketching softwares. 1. The two input sequences are
decomposed into 2. their constituent k-mers. The latter are passed through a hash function h to
obtain 3. two sets A and B of 32- or 64-bit hashes, depending on the input k-mer size. The Jaccard
index J is the fraction of shared hashes out of all distinct hashes. As storing all hashes requires
too much memory, subsets of both hash-sets, SA and SB, must be selected. 4. Two different sketch
strategies: little circles represent A and B, and filled circles represent SA and SB. Strategy a) takes
the last 4 hashes of each hash-set, and leads to a biaised subset. Strategy b) takes the four smallest
hash values, corresponding to MinHash strategy. Because S(A∪B) is a random sample of A∪B, the
fraction of elements in S(A∪B) that are shared by both S(A) and S(B) is an unbiased estimate of
J(A,B). Figure adapted from [135].
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3.2.2 Other comparison methods

In part 3.2.1, we saw how to obtain the optimal alignment between two sequences given a
scoring system. It is possible to extend these exact pairwise alignment algorithms to produce
an optimal alignment over n sequences (n > 2). Similarly to pairwise alignment, we can
represent it with a matrix of n rows. One can then define a score for the alignment of the n
nucleotides (or gaps) of column i, and sum all local scores to get the full MSA score. However,
the score matrix requires as many dimensions as the number of sequences to align, and could
only be computed in exponential time (the exponent being n). As this is not applicable in
practice, MSA tools using approximations have been developed.

Most of the current tools have similar approaches to solve the MSA problem. They first
determine all pairwise distances (or good approximations of the latter) of the n sequences.
Then, they add sequences in the whole alignment one by one, starting from the closest
ones. This method, called progressive alignment, is performed by tools like Clustal-Omega
[184], Mafft [100] and some versions of MUSCLE [56]. Very recent work (late 2021, not
yet published) on MUSCLE v5 introduced parameter perturbation (bootstrap) to improve
alignments and seems to be better than previous methods on MSA benchmarks [55].

Figure 3.6: Example of a MSA and its corresponding profile-HMM. The boxes in orange are the
match states (M). In the M state the probability distribution is the frequency of the amino acids in
that position. The row of blue diamond shapes are insert states (I) which are used to model highly
variable regions in the alignment. The row of red circular shapes are delete states (D). These are
called silent states since they do not match any residues. The final probabilistic model conveys the
estimation of the observed frequencies of the amino acids in each position, as well as the transitions
between the amino acids derived from the observed occupancy of each position in a multiple sequence
alignment. In this model, we show all possible transitions, but with the example above, grey arrows
never happen. Figure from https://www.ebi.ac.uk/training/online/
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MSA can also be used to build profile-HMMs, which are used to search for homology in
databases. Compared to classical MSA, their particularity is their ability to capture position-
specific changes in amino-acid sequences. Indeed, protein sequences do not evolve uniformly:
some parts of a protein evolve faster than others, and are thus less conserved. Profile-HMMs
represent this particularity by providing a position-specific scoring scheme instead of a global
alignment score. They are a sort of generalisation of consensus sequences that allow insertions
and deletions. They associate each position of the sequence to three different types of states: a
match state (the probability of finding an amino-acid or another), a deletion state (probability
of matching no residue), and an insertion state between two positions (probability of having
an insertion). All states are linked by transition probabilities, following a first-order Markov
chain: each transition from a state to another on the profile only depends on the result of
the preceding transition, and not on past transitions. An example is given in figure 3.6.

Softwares like HMMER use profile-HMMs to perform profile-sequence alignments [54].
This allows to align distantly related sequences, by identifying conserved domains. As already
mentioned in 3.1.4, Pfam is the biggest public database of profile-HMMs, which are used to
search homology for protein functional annotation.

3.3 Comparing a whole set of genomes

Once we know how to compare genomic sequences, we could imagine that comparing a full
set of genomes is quite straightforward: comparing their respective sequences. However, even
if many bacteria have their genome in a single replicon, a significant number have several
replicons. In that case, which ones should be compared together? Even within a group of
genomes having a single replicon, we will see that comparing their whole genomic sequences is
not always consistent with expected relationships, mostly due to the effects of HGT. Finding
a good way to compare individuals is far from being simple.

3.3.1 Back to the definition of a bacterial species

To start, let’s go back to the definition of a species. In general, it is defined as a group of
organisms able to reproduce between each other, typically by sexual reproduction. However,
for bacteria, as they reproduce asexually (see Bacterial reproduction), the concept of species
is more complicated, and is still up for debate in the microbiologist community, as already
mentioned in chapter 1.4. When the first "animacules" were observed through a microscope
in the 17th century, they were considered as a single species of pleomorphic individuals. Since
then, the concept of bacterial species has progressively evolved in parallel to the development
of new laboratory techniques, which allowed the retrieval of novel information. In this part,
I will quickly go over the main steps shaping the notion of bacterial species, in order to
understand the current situation and its new challenges.

In 1872, Ferdinand Cohn first tried to distinguish groups of bacteria according to their
microscopic morphology (see figure 1.4) [91]. However, the relative simplicity of bacterial
shapes was not adapted to describe the wide diversity of bacteria.
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In the early 50s, with the development of pure cultures of bacteria microbiologists trans-
posed the "reproduction compatibility" criterion of the original definition of a species (i.e.
organisms able to reproduce between each other) to "culture compatibility". Thus, bacteria
were considered to belong to the same species if they can culture together and "are accepted
by bacteriologists as sufficiently related" [91], this relatedness being based on phenotypic,
physiological and biochemical characteristics of the culture. However, even with the many
possible combinations of these new criteria, the bacterial diversity was still underestimated.

A little later, microbiologists suggested that bacteria might be better classified by di-
rectly considering the source of these observable traits: their DNA. With the discovery of
the structure of DNA, DNA-DNA hybridization (DDH) became the "gold-standard" to de-
termine the relatedness between strains [198]. Briefly, this method consists in mixing DNA
molecules (previously separated as ssDNA) from two individuals, and observing renewed ds-
DNA molecules. Indeed, two sequences with a high degree of similarity will tend to bind
together, even if they come from two different genomes (see figure 3.7). The percentage of
hybrids (two strands from two different organisms) is used to estimate the degree of similarity
between the two strains. With the development of sequencing technologies, the standard 70%
or greater DDH species delineation was progressively replaced, first by rRNA (mostly 16S
rRNA) sequence comparison, and later by whole genome sequence comparison.

Figure 3.7: DNA-DNA hybridization. DNA double helices can re-form from their separated strands
in a reaction that depends on the random collision of two complementary DNA strands. The vast
majority of such collisions are not productive, as shown on the left, but a few result in a short region
where complementary base pairs have formed (helix nucleation). A rapid zippering then leads to
the formation of a complete double helix. Figure from [2].

However, in the early 90s, a study of strains from the genus Aeromonas highlighted a
puzzling inconsistency between the last two methods: although they observed nearly identical
16S rRNAs, the DNA-DNA re-association values were very low [123]. This lack of congruence
between the two methods, suggesting that some DNA regions were not shared by all strains,
was confirmed by several studies among which a study of six newly sequenced strains of
Streptococcus agalactiae. The annotation of these sequences revealed a serendipitous variety
of genes, many of which being present only in one strain [180]. Supporting the importance of
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HGT, responsible for gene content variability in addition to the expected sequence variability,
these observations led to a change of paradigm in comparative genomics: comparing common
and specific genes of a set of genomes instead of their whole sequences.

3.3.2 Moving towards the pangenome concept

In the early 2000s, Konstantinidis et al introduced the Average Nucleotide Identity definition,
based on the comparison of conserved regions between a pair of strains. [103] They showed
that a species can often be defined by a group of organisms within which all pairs of DNA
sequences have an ANI higher than 94%. In their case, regions are genes, and they are
conserved between two genomes if they have a BLAST match of at least 60% overall sequence
identity. The ANI value is then the mean of all these BLAST matches. Since then, many
other algorithms have been developed to calculate or approximate the average nucleotide
identity of the total genomic sequence (not necessarily genes) shared between two strains
[204].

Pushing the reflection further, Tettelin et al coined the term pangenome (from the Greek
παν, meaning "whole") to describe the complete inventory of genes in their group of Strep-
tococcus agalactiae strains [180]. They showed that a bacterial species can be described by
its pangenome, which includes a core genome (genes shared by all strains) and a dispensable
or accessory genome (divided into genes shared by two or more strains and strain-specific
genes) (figure 3.8A). Biologically, core genes are most likely to be essential for survival and
growth (aka housekeeping genes), whereas dispensable genes provide supplementary functions
with potential selective advantages (ecological adaptation, virulence mechanisms, antibiotic
resistance, colonisation of new host. . . ) to some strains [127].

This pangenome definition of a bacterial species led to another important discovery. Al-
though we can describe a species by its gene repertoire, we do not know how many strains are
needed to be sequenced in order to fully describe the species. Based on datasets of species
for which several sequences were available, Medini et al showed that, in most cases, each
new strain added to a dataset increased the gene pool [127]. Although they did their study
on less than ten strains per dataset, mathematical extrapolations surprisingly showed that
this would still be the case even after sequencing hundreds or even thousands of genomes,
leading to the term ’open pangenome’ (see figure 3.8B). As an example, a study on 1294
E. coli strains found a pangenome of more than 75000 families of homologous genes, 44%
of which are singletons (genes present in only one of the 1294 strains). Even if the number
of new genes decreases while considering more and more strains, it has been estimated that
each newly included strain would still increase the pangenome by 26 genes on average [190].

This behavior is mostly due to Horizontal Gene Transfer, which constantly brings new
genes from unrelated organisms (within but also between bacterial species). Tettelin et al
showed that the pangenome size p as a function of the number of strains in the dataset n can
fit a Heaps’ law, such that p is proportional to nα [181]. Finding the parameter α for a given
species dataset amounts to estimate the openness of its pangenome, i.e. the species diversity.
However, it must be mentioned that these models do not (yet) account for phylogenetic
structure and can be affected by sampling biases.
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Figure 3.8: Pangenome concept of a bacterial species. A. Composition of a pangenome. B.
Pangenomes vary extensively in size and in proportion of core vs accessory (or dispensable) gene
content. They can be either open (each new strain adds new genes) or closed (after a certain number
of strains, new ones do not add new genes). Figure adapted from [126] and [74].

The term pangenome was further extended to broader taxonomic groups (genus, phylum,
and even all bacteria [110]) and to all living organisms (including eukaryotes) [40]. This term
is now used to describe the inventory of sequence entities in a group of organisms, and not
necessarily of a given species. While the first and most intuitive representation of a bacterial
pangenome is a set of individual proteins (as most of the bacterial genome codes for proteins,
see figure 1.9), this extended definition allows new representations of a pangenome. Hence,
instead of being a gene, the sequence entity can be a protein, an arbitrary sequence chunk,
a k-mer or else a group of concatenated genes (like operons).

For example, Panseq identifies pangenomic regions by aligning each sequence of the
dataset to a reference sequence, using the MUMmer algorithm [108] [106]. Using a refer-
ence free approach, Splitmem represents the entire population as a pangenome encoded in a
compacted de Bruijn graph [122]. These two softwares define pangenomes as the complete
non-redundant set of sequences found in all individuals. This sequence-centric approach is
widely used in eukaryotic pangenomics, as the major part of eukaryotes DNA is non-coding,
but their intergenic regions fulfil important functions [40]. Even more distant from the clas-
sic gene-centric approach used for prokaryotes, Piggy generates pangenomes based only on
intergenic regions [185].

From now on, in this manuscript, we will stay with the term pangenome applied to
bacterial coding genes.
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3.3.3 Pangenome families computation

Mathematically, the pangenome is the union of gene families in a group of bacteria. It
is composed of the core-genome, the intersection of these gene families, and the accessory
genome, its complement. That being said, I want to raise an ambiguity. Many pangenome
studies use the term "genes" in place of "gene families". For example, Tettelin et al found a
pangenome of 2713 genes. In reality, there are a lot more than 2713 genes in eight strains,
as the genome of one Streptococcus agalactiae strain already contains more than 2100 genes.
So, it is important to understand that a bacterial pangenome is made of gene families, and
not individual genes. In comparative genomics, a gene family is a set of homologous genes,
meaning genes with high similarity due to a shared ancestry. So, before any core genome can
be computed, one must define these pangenome families.

Here, we are starting from a set of n genomes which have already been assembled (at least
as drafts) and annotated (at least syntactically). Thus, we have a set of g genes, g being the
sum of genes from all genomes. For each gene, we have its nucleic and protein sequences, as
well as all information on its origin (which genome, on which contig and which position on
the latter). From there, pangenome computation can be divided into two main steps. First,
all pairs of genes are compared. These g2 comparisons can be represented by a symmetric
matrix, which is then used (as it is or after some modifications) to cluster the different genes
into homologous families. Figure 3.9 shows this process on a toy example. Table 3.1 (page
76) shows the different methods employed by several pangenome tools.

Comparing genes from all genomes

The first main step of pangenome construction is thus inferring similarity between sequences.
There are many different ways to do so. The most intuitive one, which is used by many
tools, is to compare all pairs of genes from all genomes. For that, as we saw in the previous
part, we can use alignment methods which calculate the optimal alignment score between
two sequences, using a deterministic algorithm (like Smith-Waterman). To compute the first
bacterial pangenome, made from 6 Streptococcus agalactiae strains, Tettelin et al used SW
to compare all proteins [180].

In the following years, the first pangenome tools developed, like GET_HOMOLOGS
(a pangenome analysis platform accessible to researchers with few computational skills),
PanOCT, PGAP or the first version of EDGAR also used the all-against-all comparison
method, calling BLAST [41] [64] [208] [18]. In addition to be faster than SW for each align-
ment, BLAST algorithm is optimized to skip the alignment of too different genes (whereas
SW has to align all pairs of genes). However, the number of comparisons is still proportional
to the square of the number of genes (and thus of genomes). This makes these tools unable
to handle datasets of hundreds of genomes.

To adapt to the increasing dataset size, new tools, like Roary, PIRATE or MetaPGN,
introduced a pre-filter step before using these alignment methods [137] [13] [144]. Indeed,
as we are looking for genomes from a same species, many genes are nearly identical. Taking
advantage of this property, these tools use a quick clustering method, CD-Hit, to remove
redundancy [67]. This greedy clustering algorithm first determines a centroid gene (here,
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Figure 3.9: General method for pangenome families computation. 1. Pairwise comparisons of all
genes. Results can be represented in a matrix or as a graph (2.). 3. Optional: filtering the resulting
graph. 4. Clustering genes based on similarity to get clusters of homologous gene families. The
output gene families are represented by different shapes on the input genomes. Table 3.1 shows the
methods employed for each of these steps by several pangenome tools.
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the longest sequence), and aggregates all genes within at least n% similarity from it into a
cluster. Genes with lower similarity are considered as new centroids. For the pre-filter, the
similarity threshold n is generally fixed at 98 to 100%. This leaves a substantially smaller set
of genes (being the set of centroids of the clusters) to be compared all-against-all with the
time consuming alignment method. However, when the pangenome is open (which is the case
for most species), the higher number of genomes in the dataset, the bigger the pangenome.
This implies that new accessory gene families (and consequently new strain-specific genes)
will emerge with each new strain added. By definition, these new genes will be different from
those previously included, and thus not filtered out by the pre-filtering step, increasing the
all-against-all comparisons needed to be computed.

To overcome this new road block, new pangenome tools use ultra fast all-vs-all sequences
comparison algorithms. For example, panX uses DIAMOND, and Sonic Panaroid uses MM-
Seqs2 to search for homology between all pairs of genes [52] [22] [42] [176]. Even if the latter
is not strictly speaking a pangenome tool, and not specific to bacteria, it infers similarity
between sequences, which is an essential step for the definition of gene families. Given the
important increase of speed of these new similarity search algorithms, pangenome computa-
tion time using such tools is similar or even faster than the one of computing a pangenome
with a pre-filter followed by a slower similarity search method like BLAST. Moreover, the
absence of a pre-filter avoids the potential bias introduced by the choice of the representative
sequence of such pre-filter clusters. However, a few tools like PIRATE or PEPPAN combine
both methods: a pre-filter step using CD-hit or Linclust [176] with a combination of BLAST
and faster all-vs-all comparisons tools like DIAMOND on the representative sequences.

Post-process of pairwise comparison scores

The results of this first step can be summarized in a symmetric matrix of size g (see step 1
of figure 3.9): whatever the method used, each pair of genes has a score (alignment score,
percentage of similarity/identity, distance between sequences, number of k-mers shared, or
any other metric). The value of this score depends on the comparison method, as well as
on the parameters used to run it: we cannot directly compare two similarity matrices to
compare pangenome tools.

This matrix can also be represented as a graph, where each node is a gene, and the edge
between two genes represents their comparison score. Strictly speaking, this corresponds to a
weighted graph: each edge has a weight, corresponding to the score between the two nodes it
connects. However, other types of graph can be computed from the same similarity matrix.

Some tools choose a threshold above which an edge is added between two genes. A pair
of genes with a score lower than this threshold will not be connected in the graph. The
resulting graph is thus not weighted, but some of its edges have been filtered. This threshold
is most of the time a pre-defined value. For example, to compute the pangenome of their six
strains of Streptococcus agalactiae, Tettelin et al kept only alignments with a minimum of
50% identity over more than 50% protein/gene length before the clustering step [180]. PGAP,
PIRATE and PEPPAN kept the same values as default thresholds to filter their BLAST or
Diamond hits. On the other hand, MetaPGN uses more stringent values: it keeps only BLAT
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(Blast-like Alignment Tool) hits with identity higher than 95% and more than 90% overlap
[101]. Other tools like EDGAR 2.0 do not fix a default value, but use a statistical method
to automatically adapt the threshold to the dataset [19].

Sometimes, the similarity threshold is only the beginning of a more complex matrix
filtering process. For example, PanOct starts with eliminating very divergent pairs of genes
by excluding BLAST hits with less than 20% identity and less than 1% of match length, but
then performs many other operations, in order to separate paralogs (see 3.3.4) [64].

Clustering into families

Once the (potentially filtered) similarity graph is built, the next main step of pangenome
computation is to group (i.e. cluster) genes into homologous families. Again, clustering
methods vary a lot between the different pangenome programs, and also depend on the
type of graph previously constructed (weighted or threshold graph for instance). Pangenome
computation is a very complicated problem because it is computationally very expansive and
also because the "truth" is not known. All algorithms have their advantages and drawbacks,
but it is not trivial to determine which one is better. Furthermore, the relevant definition
of pangenome and the method to identify it can differ according to the related biological
application.

Sometimes, the filtering step is sufficient to determine the gene families. For example,
EDGAR or MetaPGN clustering step "only" consists in retrieving the connected components,
each one forming a pangenome family. This can be done by transitivity, sometimes called
single-linkage algorithm: two nodes are in the same cluster if there is at least one path to
connect these two nodes. When the matrix is not filtered, or this filter is not considered as
enough to determine the homologous families, other clustering methods are applied.

Some tools, like BPGA or PanOct, use greedy clustering algorithms like CD-HIT (ex-
plained in 3.3.3) or USearch (same as CD-HIT, but with a predefined order of the sequences
instead of taking the longest sequence). These tools must provide a similarity threshold to
determine if a new sequence can be assigned to an existing cluster, or create a new one. They
have the advantage to be quite fast and intuitive. However, they depend on the choice of the
centroid, which can sometimes induce biases.

Instead of agglomerating sequences around a centroid, the Markov CLustering MCL algo-
rithm starts from the complete graph, and tries to detect and split the different communities
[57]. This algorithm is based on a weighted version of the similarity graph, where the weight
of an edge between two homologous genes i and j is the probability of stepping on node j
from node i in random walks. Two processes are alternatively applied to the corresponding
Markov matrix P . First, a process of expansion consists in calculating the probabilities for a
random walk of size r (r pre-defined). Then, an inflation step is performed on the resulting
matrix, in order to enhance the differences between low and high probabilities, and remove
the less probable edges. The two steps are repeated until reaching a stable state. Finally, the
pangenome families are the resulting connected components. This algorithm is widely used
among pangenome tools (PIRATE, Roary, PGAP, panX...). However, it requires an inflation
parameter, which is way less intuitive to impose than the similarity threshold of a CD-Hit-
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like methods. It is thus very difficult to determine, and the results are more complicated to
interpret.

3.3.4 Determine categories of each pangenome family

Once clusters (i.e. homologous families) are defined, they can be classified into core families,
accessory families or strain-specific genes, based on their prevalence in the different genomes.
The theoretical definition of the core genome, being ’the intersection of genes shared by
all genomes’ is now much clearer: we can consider as core all families having a member
in all genomes. Similarly, families coming from one single genome are strain specific, and
the remaining ones are accessory families. But, here again, there are some hidden subtleties,
making the core families determination difficult. I will here mention only two main problems,
with a few ideas on how to deal with them.

Dealing with paralogs

As already mentioned, two sequences are called homologs if their high similarity is due to a
shared ancestor. But this shared ancestor can come from three main phenomena (see figure
3.10). When the two genes come from a speciation event (creation of a new species), they
are called orthologs and are transmitted by vertical transfer. On the other hand, xenologs
come from an horizontal gene transfer. Finally, paralogs arise from a gene duplication event.
As shown in figure 3.10, in addition to the ortholgs, some pangenome families can contain
paralogs or xenologs, leading to the presence of several genes for a same genome. Even if, at
first sight, it does not seem to be a problem, this raises several questions. Indeed, most of
the time, a core genome is computed to consequently build a phylogeny of the genomes in
the dataset. To do so, one needs one gene per genome, in order to give even size alignments
for each genome to the phylogeny tree inference software. The question is thus on which of
the genes should be kept in a genome with paralogs. As all sequences are very similar by
construction, a simple way could be to choose any of the two (or more) genes for the genome
with paralogs. However, paralogs usually diverge after duplication to take different functions,
and their sequence may vary according to this new function. Including paralogs instead of
orthologs in phylogenetic analyses could thus lead to mis-interpretation [64].

Although very common in comparative genomics, differentiating paralogs and orthologs
remains a difficult problem. This problem can be handled at different steps of the pangenome
computation.

A first helpful assumption is that genes which have been duplicated many generations ago
have diverged: although they are similar enough to be considered as homologs, the pairwise
distance between a paralog and an ortholog should be smaller than between two orthologs.
Based on this, tools like PanOct, GET_HOMOLOGS and Pandelos filter their similarity
matrix by identifying Reciprocal Best Hits (RBH), and removing unidirectional best hits, as
exemplified in figure 3.11. However, very recent duplications can be indistinguishable, even
with this method (see blue gene in figure 3.11).

To handle these situations some tools use, instead of or in addition to RBH, a genome
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Figure 3.10: Relationships between similar sequences. A pangenome of species B, C and D would
contain two different homologous families: squares and circles.

context criterion: two orthologs are more likely to be between the same genes in different
genomes, while paralogs can be inserted somewhere else, their different function potentially
requiring different regulation paths. This gene co-linearity criterion can be incorporated at
different stages of the pangenome computation. PanOct and GET_HOMOLOGS add this
condition to their similarity matrix filtering step, to keep only edges between genes having
a conserved neighborhood [64] [41]. Other tools, like Roary or MetaPGN post-process the
pangenome families obtained after the clustering step, to re-split those having several genes
in a same genome [137] [144]. A problem of this approach is that duplications tend to be
created in tandem which renders this criterion useless [191].

panX uses a completely different approach to post-process its pangenome families. For
each family, a phylogenetic tree is inferred, and branches are pruned according to a given
paralogy score. Subtrees define the orthologous families.

Pandelos only post-processes inconsistent families: families which contain two genes be-
longing to the same genome but are not accounted as paralogs (i.e. not connected by an edge)
[21]. It performs the Girvan-Newman algorithm to separate the communities, by removing
the edges which are most likely to be "between" two communities, based on the betweenness
scores (number of shortest paths passing through this edge) [73]. As such, post-processed
families can still have several genes in a same genome.

Dealing with annotations

So far, we have seen that the pangenome is influenced by many aspects: alignment method,
similarity parameters (%identity, coverage), clustering method, and the way to deal with
paralogs. But we must not forget that, first of all, the pangenome definition is based on
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Figure 3.11: Example of Reciprocal Best Hits. A. Hits with a high similarity (obtained by any
comparison method, with or without alignment) are represented by arrows. Black arrows represent
the best match for each pair of genes. B. A pangenome tool using a filter based on Reciprocal Best
Hits would keep these three edges. Cyan and orange genes are likely to be orthologs, but blue genes
are rather paralogs.

genes: it is thus annotation-dependant [194]. Hence, inconsistent annotations can greatly
impact it, and this will affect the identification of the core genome.

One of the "easiest" ways to limit annotation inconsistency is to make sure that all
genomes were annotated with the same pipeline. Indeed, each annotation software has its
own criteria regarding the minimum length of a gene, the choice between alternative starts,
codon usage etc. To control this variation, some pangenome tools, like MetaPGN and panX
include annotation steps.

Independently of the annotation method, the increasing number of draft genomes makes
the core genome determination even more difficult. Indeed, poor quality sequencing/assembly
can lead to many errors. Genes can be split between two or more contigs and thus detected
as two different genes by the annotation tool, corresponding to two parts of the gene. Other
genes are only partly assembled, and the assembled part is too short to be recognized as a
CDS. Single-base insertions/deletions sequencing/assembly errors can also lead to consider
artificial indels as frameshifts, thus missing the gene. This means that some pangenome
families which do not have genes in a few genomes might, in reality, be part the core genome.
In 2005, Tettelin et al already tried to limit this problem, by running gene-against-genome
tblastn to compare genes of a gene family against the genomes missing in it [180]. PIRATE
software also performs a DNA search to try to recover miss-annotated genes when they have
"almost-core" families. However, if the genome is too fragmented, even the DNA search
would fail to recover its gene. Also, this method may result in the inclusion of pseudo-genes
in the core genome.

Moving from core to persistent genome

When inferring pangenomes of thousands of genomes, the probability that at least one genome
has a problem becomes quite high, and the size of the core genome decreases drastically,
sometimes down to zero (see figure 3.12).

To tackle this problem, in very big datasets, the core genome is usually replaced by
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Figure 3.12: Evolution of the core genome size (dark blue zone) with the number of genomes in the
dataset (number of circles). When the core genome is too small, one can use the persistent genome
(light blue).

the persistent genome, a less stringent notion proposed by Acevedo et al in 2013 to design
families with genes present in at least N% of the genomes [1]. However, as any threshold-
based method, the choice of the threshold is difficult, and is most of the time arbitrary.
Peppan considers a family in the "relaxed core" if it contains members in at least 95% of the
genomes [209]. PPanGGoLiN proposes a statistical method to infer it [71].
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4 CONCLUSION

This introducing chapter draws to a close. Its six-worded title, large scale comparative ge-
nomics of bacterial genomes, is now much clearer. Bacteria are very diverse micro-organisms,
and their phenotypes result from the expression of their genes, strategically distributed along
one or several DNA molecule(s). These molecules are far from being fixed: many mobile ge-
netic elements are exchanged, within and between different replicons. These elements can
also be transferred across cells. Constantly varying the gene content of bacterial genomes,
horizontal gene transfer is the main mechanism responsible for the emergence of novel func-
tions in genomes. Thus, the methods for whole genome sequence alignments done so far
to compare genomes had to be revised to take into account this process. This spurred the
apparition of the pangenome concept. However, due to the high number of comparisons re-
quired, its computation is far from being trivial, and requires a lot of time. As a consequence,
the development of the first tools to generate pangenomes was quickly caught up by the very
fast increase of number of bacterial genomes sequenced. The first methods, developed for a
few tens of genomes, did not scale up: new heuristics had to be developed.

When I arrived in GEM (Microbial Evolutionary Genomics) team, projects with several
hundreds of genomes were becoming more and more common, and the methods used at that
time started to reach their limits. Most evolution studies require fundamental blocks of
data to be performed: annotated genomes, pan and core genomes, and alignments per gene
family. Even if a few tools existed to compute pangenomes of quite big datasets, none were
able to build all the fundamental blocks of data mentioned above. The need to use different
programs, and develop methods to link them engenders several problems when it comes to
simplicity, efficacy and/or reproductibility. Among others, it requires the installation of these
different softwares, it depends on multiple versions of each software, and the outputs of a tool
potentially need modifications to be compliant with the inputs of the next step. Moreover,
with the tools existing at that time, computing the pangenome was becoming too slow for
the analysis of thousands of genomes (10h on an example of 1000 E. coli genomes). Finally,
the increasing proportion of drafts in genome datasets also required changes in the methods,
to account for the existence of multiple contigs and missing information.

The challenge was set: propose a standardization for the basis of comparative genomics
studies, by developing a tool able to do all steps, accurately and in a reasonable amount of
time.
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This PhD project gave birth to PanACoTA (for PANgenome with Annotations, COre iden-
tification, Tree and corresponding Alignments), a new tool now available to the comparative
genomics community [146]. In the next chapter, you will find the paper corresponding to the
publication of this tool. It describes the method, illustrated by an application on a dataset
of almost 4000 Klebsiella pneumoniae genomes. During the development of PanACoTA, large-
scale comparative genomics projects did not take a break. We took advantage of these
projects to test and improve the method. Chapter III shows different studies on which the
application of PannaCotta has been fruitful.

https://github.com/gem-pasteur/PanACoTA/tree/cream-recipe/README.md
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PANACOTA: A MODULAR TOOL

FOR MASSIVE MICROBIAL
COMPARATIVE GENOMICS

This paper presents the main part of my PhD, consisting in developing a bioinformatics
tool. The development of this new software was motivated by the need of a fast but reliable
pangenome computation tool. For this, we had several requirements.

First, we wanted to minimize the annotation inconsistencies (problem stated in chapter
3.3). For that, the tool had to be able to handle large datasets, check the quality of the
sequences and filter out genomes not respecting the given criteria, and uniformly (with the
same software) annotate the remaining sequences. Then, we wanted a pangenome compu-
tation method able to scale to many thousands of genomes in a reasonable amount of time
(i.e. less than several hours). Dealing with large-scale datasets, the notion of core genome
had to be adapted, and the tool had to give the possibility to use different definitions of
pangenome. As most of the comparative genomic studies need a phylogenetic tree, the tool
had to output the MSA of all core or persistent genome families. Moreover, we wanted the
tool to be modular: one should be able to re-run a step to try new parameters, to start at
any step with its own data as an input, and to run other softwares directly from the output
of this tool. Finally, the aim was to make this tool freely available to the community.

Based on these requirements, I developed PanACoTA, which is presented in the following
paper.
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ABSTRACT

The study of the gene repertoires of microbial
species, their pangenomes, has become a key part
of microbial evolution and functional genomics. Yet,
the increasing number of genomes available compli-
cates the establishment of the basic building blocks
of comparative genomics. Here, we present PanA-
CoTA (https://github.com/gem-pasteur/PanACoTA),
a tool that allows to download all genomes of a
species, build a database with those passing qual-
ity and redundancy controls, uniformly annotate and
then build their pangenome, several variants of core
genomes, their alignments and a rapid but accurate
phylogenetic tree. While many programs building
pangenomes have become available in the last few
years, we have focused on a modular method, that
tackles all the key steps of the process, from down-
load to phylogenetic inference. While all steps are in-
tegrated, they can also be run separately and multiple
times to allow rapid and extensive exploration of the
parameters of interest. PanACoTA is built in Python3,
includes a singularity container and features to facil-
itate its future development. We believe PanACoTa
is an interesting addition to the current set of com-
parative genomics tools, since it will accelerate and
standardize the more routine parts of the work, al-
lowing microbial genomicists to more quickly tackle
their specific questions.

INTRODUCTION

Low cost of sequencing and the availability of hundreds of
thousands of genomes have made comparative genomics a
basic toolkit of many microbiologists, geneticists, and evo-
lutionary biologists. Many bacterial species of interest have
now over 100 genomes publicly available in the GenBank
RefSeq reference database, and a few have more than ten
thousand. This trend will increase with the ever decreasing

costs of sequencing, the availability of long-read technolo-
gies, and the use of whole-genome sequencing in the clinic
for diagnostics and epidemiology. As a result, researchers
that would like to use available assemblies are faced with
extremely large amounts of data to analyze. Comparative
genomics has spurred important contributions to the un-
derstanding of the organization and evolution of bacterial
genomes in the last two decades (1,2). It has become a stan-
dard tool for epidemiological studies, where the analysis of
the genes common to a set of strains –– the core or per-
sistent genome –– provides unrivalled precision in tracing
the expansion of clones of interest (3,4). The use of routine
sequencing in the clinic will further require rapid and re-
liable analysis tools to query thousands, and soon possibly
millions of genomes from a single species (5). Population ge-
netics also benefits from this wealth of data because one can
now track in detail the origin and fate of mutations or gene
acquisitions to understand what they reveal of adaptive or
mutational processes (6). Finally, genome-wide association
studies have been recently adapted to bacterial genetics, to
account for variants in single nucleotide polymorphism and
gene repertoires (7). They hold the promise of helping biol-
ogists to identify the genetic basis of phenotypes of interest.
Given the high genetic linkage in bacterial genomes, these
studies may require extremely large datasets to detect small
effects. More specifically, reverse vaccinology is also a note-
worthy application of these pangenomics methods, to iden-
tify novel potential antigens among core surface-exposed
proteins of a given clade (8).

The availability of large genomic datasets puts a heavy
burden on researchers, especially those that lack extensive
training in bioinformatics, because their analysis implicates
the use of automatic processes, efficient tools, extensive
standardization and quality control. Many tools have been
recently developed tomake rapid searches for sequence sim-
ilarity with excellent recall rates for highly similar sequences
(9–11).

Other tools providemethods to rapidly cluster large num-
bers of sequences in families of sequence similarity, to get
the families common to a set of genomes, to align them, or
to produce their phylogeny, four cornerstones of compara-
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tive genomics. A number of recent programs have recently
been published that include some of these tools to compute
bacterial pangenomes (for a review, see (12)). Many of these
programs compute alignments and clusters of families using
programs that are very fast. They use tools that make some
compromises between accuracy and speed, such as DIA-
MOND (9), USEARCH (13) and CD-HIT (14). The lat-
ter is used, among others, by Roary (15), which is currently
the most popular tool to compute pangenomes, and Pana-
roo (16), a very recent tool aiming at reducing the impact of
erroneous automated annotation of prokaryotic genomes.
BPGA (17), using USEARCH or CD-HIT to cluster pro-
teins, also provides some downstream analyses. PanX (18),
which has an outstanding graphical interface, uses DIA-
MOND to search for similarities among genes.

More recently, SonicParanoid introduced the use of the
highly efficient and accurate program mmseqs2 to build
pangenomes, and PPanGGOLiN used the same tool to
provide a method to statistically class pangenome fami-
lies in terms of their frequency (19–21) . Some recent pro-
grams also use graph-based approaches to further refine the
pangenomes, such as PPanGGOLiN and Panaroo (16). For
that matter, the analysis of a dataset of 319 Klebsiella pneu-
moniae genomes by both tools provided similar results (16).
Some tools, such as PIRATE (22) have also been recently
developed to cluster orthologues between distant genomes.
However, all these programs lack some or all of initial and
final steps that are essential in comparative genomics, in-
cluding download, quality control, alignment and phylo-
genetic inference. This spurred the development of PanA-
CoTA (PANgenomewithAnnotations, COre identification,
Tree and corresponding Alignments). To take advantage
of the vast amount of genomic information publicly avail-
able, one needs six major blocks of operations. (i) Gather
a set of genomes of a clade automatically. This requires
some quality control, to avoid drafts with an excessive num-
ber of contigs. It is also often convenient to check that the
genomes are not too redundant, tominimize computational
cost and biases due to pseudo-replication. On the other side,
it is important to check that genomes are neither too unre-
lated, to eliminate genomes that were misclassified in terms
of bacterial species (or the taxonomic organization of rel-
evance). (ii) Define a priori an uniform nomenclature and
annotation, without which the calculation of pangenomes
and core genomes becomes unreliable for large datasets.
(iii) Produce the pangenome, a matrix with the patterns of
presence/absence of each gene family in the set of genomes,
using an accurate, simple and fast method. (iv) Use the
pangenome to identify sets of core or persistent genes. (v)
Produce multiple alignments of the gene families of the
core or persistent genomes. (vi) Finally, produce quickly a
reasonably accurate phylogeny of the set of core/persistent
genes. These four collections of data, pangenome, core
genome, alignments and phylogenetic tree, are the basis of
most microbial comparative genomics studies. At the end of
this process, the researcher can produce more detailed anal-
yses, specific to the questions of interest, which often lead
to changes such as including/excluding taxa, changing the
thresholds of sequence similarity, increasing alignment ac-
curacy, or rebuilding phylogenies using different methods.
Such re-definitions can be achieved more efficiently when

pipelines are modular and allow to restart the analyses at
several key points in the process.

Considering the current availability of pipelines for mi-
crobial comparative genomics, we have built one that is
modular, easy to setup, uses state-of-the-art tools and al-
lows simple re-use of intermediate results. The goal was
to provide a pipeline that allows to download all genomes
from a taxonomic group andmake all basic comparative ge-
nomics work automatically. The pipeline is entirely built in
a single language, Python v3, and uses modern methods to
facilitate its future maintenance and to limit unwanted be-
havior. PanACoTA is freely available under the open source
GNU AGPL license. Here, we describe the method and
illustrate it with an analysis of two datasets of 225 com-
plete and 3980 complete or draft genomes ofK. pneumoniae.
This species is interesting for our purposes because there are
many genomes available and it has a very open pangenome
(23). The first dataset describes a situation where sequence
quality is usually high, and the second illustrates how the
method scales-up to a very large dataset where some se-
quences and assemblies are of lower quality. The procedure
is detailed in the Materials and Methods section, whereas
the illustration of its use, and how it changes in relation to
key options in the two datasets, is detailed in the Results
section.

MATERIALS AND METHODS

PanACoTa is implemented in six independent sequential
modules, described in the sections below. This allows to
start or stop at any step and re-run an analysis with other
parameters (see overview in Figure 1 and key parameters in
Table 1). It also provides amodule all, which allows to run
all modules in a single-command.

Datasets

The first module prepare fetches the com-
pressed non-annotated fasta files assemblies from
the NCBI matching a given taxonomy ID using
the scripts from ncbi genome download library
(https://github.com/kblin/ncbi-genome-download).

We use two datasets of K. pneumoniae genomes to illus-
trate how PanACoTA functions. DTS1 contains all com-
plete and draft assemblies from the NCBI refseq database
on 10 October 2018. DTS2 is the subset of DTS1 con-
taining only the complete genomes (genomes with assem-
bly level = Complete Genome, based on the NCBI
summary file).

Quality control procedure

PanACoTA removes assemblies that do not conform with
basic requirements in terms of assembly and taxonomy.
This is done by thepreparemodule after downloading the
genomes, or by the annotate module before the annota-
tion step (if the user did not use the prepare module).

The first control procedure filters genomes in terms of
sequence quality. Since there is usually no standard de-
scription of the quality of the sequence assembly in RefSeq
genomes, the program infers it from the sequences. First, it

83



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 3

Figure 1. Overview of PanACoTA method.

is common usage to put stretches of ’N’ to separate con-
tigs in a same fasta sequence. Hence, PanACoTA splits se-
quences at each stretch of at least a given number of ’N’
to get one fasta entry per contig. Assuming that the user is
analyzing genomes from the same species, those genomes
should have relatively similar characteristics in terms of
number of contigs and length. Hence, PanACoTA calcu-
lates the total number of contigs, and the L90 (theminimum
number of contigs necessary to get at least 90% of the whole
genome). Very high values of these two variables are usually
an indication of low quality of sequencing or assembling,
resulting in genome exclusion.

The second procedure filters redundant and misclassified
genomes. This is done based on the genetic distance be-
tween pairs of genomes, as calculated by Mash (24), which
can be computed very fast and is accurate for closely re-

lated genomes. Mash reduces each genome sequence to a
sketch of representative k-mers, using the MinHash tech-
nique (25). It then compares those sketches, instead of the
full sequences. TheMash distance D strongly correlates with
alignment-based measures such as the Average Nucleotide
Identity (ANI) based on whole-genome sequence compar-
isons using the blast algorithm (26):D≈ 1−ANI. For ANI
in the range of 90–100%, the correlation with Mash dis-
tance is even higher when increasing the sketch size. Since
pangenomes are typically computed for a single bacterial
species, we are here using Mash to discriminate genomes
having at least 94% identity. A few recent programs have
been published showing slightly more accuracy thanMash,
but we found them too slow for the use as a systematic fil-
ter when performing millions of pairwise genome compar-
isons. For example, using 15 cores, FastANI (27) requires
around 1h15 to compare all pairs of 200 genomes (40 000
pairwise comparisons), where Mash with a sketch size of
106 does the task in less than 3 min. The program dRep
(28) usesMash as a pre-filter and then makes more accurate
and time-consuming analyses. This is very useful when com-
paring draft genomes of very different sizes, like metage-
nomic assembled genomes, but less so for the analysis of
within-species complete genomes. Users requiring a finer
grade study of ANImaywish to post-analyze their genomes
using these programs.

Bacterial species are usually defined as groups of genomes
at more than 94% identity (29), which sets the default
threshold for D (max mash dist = 0.06). On the other
extreme, genomes with very high similarity (low Mash
distances) provide very similar information. Their exclu-
sion decreases the time required for the analysis and di-
minishes over-sampling of certain clades. PanACoTA sets
min mash dist to 10-4 by default. This represents one
point change every 10 genes, which may be close to
the sequencing and assembling accuracy of many draft
genomes.

The two procedures, quality control and Mash filtering,
are linked together. The information on the number of con-
tigs and L90 is useful to chose the genome that is kept be-
tween a pair of very similar genomes. In summary, the con-
trol procedure works as follows:

1. Genomes with an excessively high number of contigs or
L90 are excluded.

2. Genomes are primarily sorted by increasing L90 value,
and secondarily by increasing number of contigs to pro-
duce a list ordered in terms of quality.

3. The genomes are comparedwithMash. For that, the first
genome of the ordered list (the one with best quality)
is compared to all the others. The ones which do not
obey to the distance thresholds are discarded. The pro-
cedure then passes to the subsequent genome in the or-
dered list (if not rejected before), compares it to all re-
maining genomes, and discards those not respecting the
thresholds. The process continues until the ordered list
is exhausted.

The output of the prepare module is a database with
the genomes that passed the two steps of the quality con-
trol procedure: 3980 genomes for DTS1 and 225 complete
genomes for DTS2 (accession numbers in Supplementary
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Table 1. Key parameters for each module of PanACoTA

Module Key parameters Short description Default values

prepare NCBI species taxid If user wants to download
NCBI species Genomes from NCBI
- -cutn n Split contig when there are at least ‘n’ N in a row 5
- -l90 x Discard genome(s) with L90 higher than x 100
- -nbcont x Discard genome(s) with more than x contigs 999
- -min dist x Discard genome(s) closer than a Mash distance of x 10-4

- -max dist x Discard genome(s) with a Mash distance higher than x 0.06
annotate - -l90 x Discard genome(s) with L90 higher than x 100

- -nbcont x Discard genome(s) with more than x contigs 999
- -prodigal Use only prodigal instead of Prokka False

pangenome -i x Minimum sequence identity to be considered in the
same family

0.8

-c x Clustering mode (0 for ‘set cover’, 1 for ‘single-linkage’,
2 for ‘CD-Hit’)

1

corepers -t tol Min % of genomes having at least 1 member in a family
to consider the family as persistent

1 (core-genome)

-M ‘Multiple persistent genome’ False
-X ‘Mixed persistent genome’ False

align -c file File containing core genome
tree -s software Software to infer phylogeny IQtree

Table S1). PanACoTA also provides a file listing the dis-
carded genomes and why they were discarded.

Annotation

The annotatemodule provides uniform gene annotation.
It takes as input a database of fasta sequences, from the
prepare module or provided by the user. If no informa-
tion is given on the quality control of those genomes (num-
ber of contigs and L90), this quality control is done here
(see previous section for more information on the quality
control step).

PanACoTA annotates all genomes with Prokka (30). The
latter uses Prodigal (31) to identify gene positions. It then
adds functional annotations using a series of programs, in-
cluding BLAST+ (32) to search for homologs in a database
of proteins taken from Uniprot and HMMER3 (33) to
search for proteins hitting selected profiles fromTIGRFAM
(34) and PFAM (35). All annotated sequences are renamed
using a standard sequence header format. The header of
each gene contains 20 characters and provides human read-
able information on the genome and contig of the gene, its
relative position in the genome and if it is at the border of a
contig (see Figure 2).

If the user does not need the functional annotation, the
module gives the possibility of running only the gene find-
ing part, i.e. only running Prodigal. For very large datasets
it is much faster to use this option and annotate a posteriori
only one gene per family of the pangenome using Prokka or
more complete annotation systems like InterProScan (36).
The output of this step consists in five files per genome: the
original sequence, the genes, the proteins (all in fasta for-
mat), a gff file containing all annotations and a summary
information file.

Identification of the pangenome

The pangenome module of PanACoTA computes the set
of all protein families in the genomes (on the ’Proteins’
folder generated by the annotate module).

The inference of the pangenome involves comparisons
between all pairs of proteins, i.e. its complexity is to the
square of the number of genes (and thus of genomes). To
generate a reliable pangenome in a reasonable time, PanA-
CoTA calls theMMseqs2 suite (20). The mmseqs search
module has a very good speed/sensitivity trade-off. In or-
der to reduce time, it uses three consecutive search stages,
with increasing sensitivity and decreasing speed. Everything
is highly parallelized and optimized on multiple levels. The
first step filters up to 99.9% of the sequences by eliminating
high dissimilarities, i.e. sequences not having at least two
consecutive kmer matches. The second step filters out an-
other 99% of the remaining sequences using an ungapped
alignment. This leaves a small amount of sequences to pro-
cess with an optimized version of the Smith–Waterman
alignment, where only scores are calculated, and not the full
alignments.

We used the mmseqs cluster module included in
MMseqs2 suite, with the default Cascaded cluster-
ing option. This module works in two main steps. It
first clusters proteins using linclust (37), a linear time pro-
tein sequence clustering algorithm as a prefilter. Then,
the representative sequences of this first step are han-
dled by the mmseqs search module and clustered.
This second step is repeated three times, each time with
a higher sensitivity at the mmseqs search algorithm
module.

PanACoTA uses the Connected component mode
for clustering, because it has provided results consistent
with our previous methods. This mode uses transitive con-
nections to merge pairs of homologous genes. Alternatively,
two other clustering modes (Greedy Set cover, or
Greedy incremental) are available in the pangenome
module. Importantly, the tuning of the options of mm-
seqs2 allows the sequence similarity analyses to be exceed-
ingly fast or extremely sensitive (20). In PanACoTA the user
can change the key parameters --min-seq-id and --
cluster-mode, and re-run the mmseqs clustermod-
ule to explore their effect on the results. More specific mm-
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Figure 2. Description of the standard output header format for proteins annotated by PanACoTA.

seqs2 parameters have, for the time being, to be used with
the standalone version of the program.

This step outputs files containing one line per family of
the pangenome and indicating the gene identifiers, the pres-
ence of the gene family (binary matrix), or the number of
elements. The latter can be used as input for TreeWAS (38).

Panacota does not take into account synteny between
genes in the genomes, which has limited interest in draft
genomes. Several programs can do such analyses, e.g.
panOCT (39,40), SynerClust (41) or PANINI (42).

Identification of core and persistent genomes

The classification of gene families present in a large num-
ber of taxa is done by the corepers module using a
file generated by the pangenome module. In early stud-
ies, the pangenome matrix was used to identify the gene
families present in all genomes in a single copy: the core
genome. However, the increase of the number of genomes
in the dataset tends to decrease drastically the size of the
core genome. This is because sequencing or annotation er-
rors as well as rare deleterious polymorphism in the pop-
ulations lead to the rapid decrease of the number of core
genes with the increase in the number of input genomes. To
overcome this problem, one commonly identifies the persis-
tent genome, which is more robust to rare (true or artifac-
tual) variants. PanACoTA defines three types of persistent
genomes (see Figure 3):

1. Strict-persistent: a family that contains exactly one
member in at least N% genomes (N = 100 means it is a
core-family). This definition is particularly practical to
reconstruct phylogenies without having to handle the ex-
istence of multiple copies per genome.

2. Mixed-persistent: a family where at least N% of the
genomes have exactly one member, and other genomes
have either zero, either several members in the family.
This definition is intermediate between the other two,
i.e. it includes the strict-persistent and is included by the
multi-persistent.

3. Multi-persistent: a family with at least one member in
N% of the genomes. This definition is interesting to ana-
lyze patterns of diversification of nearly ubiquitous pro-
tein families.

The module corepers uses the pangenome instead of a
reference genome (whose choice can be questionable). Re-
running the module is very fast, because it only requires the
re-analysis of the pangenome matrix and can be done mul-
tiple times with different parameters.

The output of this module is a file containing the persis-
tent families of proteins.

If the user wants to identify the persistent genome us-
ing a statistical approach rather than using fixed thresholds,
the gff file generated by annotate module is compatible
with PPanGGOLiN (21). This software generates themulti-
persistent version of the persistent genome (multigenic fam-
ilies are allowed).

Multiple alignments of the persistent gene families

The alignment of the persistent gene families is done by
the align module using the persistent genome coming
from the corepersmodule, or independently provided by
the user. When using the strict-persistent genome, all genes
are aligned. When using the other definitions of persistent
genomes, some genomes can lack a gene or have it in mul-
tiple copies and must be handled before phylogenetic infer-
ence. When a genome lacks a member or has more than one
member (mixed or multi persistent) of a given gene family,
PanACoTA adds a stretch of gaps (‘-’) of the same length as
the other aligned genes. Adding a few ‘-’ has little impact on
phylogeny reconstruction. For example, it has been showed
that adding up to 60% of missing data in the alignment ma-
trix could still result in informative alignments (43). In our
experience, when this approach is applied to within-species
persistent genomes, it usually incorporates <1% of gaps.
The effect of missing data should thus be negligible relative
to the advantage of using the phylogenetic signal frommany
more genes (i.e. in contrast to using the strict-persistent
genome). Alignments are more accurate when done at the
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Figure 3. Different types of persistent genomes proposed by PanACoTA, with a threashold of N = 90%.

level of the protein sequence. This has the additional advan-
tage of producing codon-based nucleotide alignments that
can be used to study selection pressure on coding sequences.
Hence, PanACoTA translates sequences, aligns the corre-
sponding proteins and then back-translates them to DNA
to get a nucleotide alignment. This last step constitutes in
the replacement of each amino acid by the original codon.
Hence, at the end of the process, the aligned sequences are
identical to the original sequences.

PanACoTA does multiple sequence alignment using
MAFFT (10) as it is often benchmarked as one of the most
accurate multiple alignment programs available and one of
the fastest (44). It has options that allow to make much
faster alignments, at the cost of some accuracy, to handle
very large datasets. This loss of accuracy is usually low for
very similar sequences as it is the case of orthologous gene
families within species, andmeans that PanACoTAcan very
rapidly align the persistent genome.

This module returns several output files: the concatenate
of the alignments of all families to be used for tree inference,
and, for each core/persistent genome family, a file with its
gene and protein sequences aligned.

Tree reconstruction

The phylogenetic inference is done with the tree module
of PanACoTA. It uses as input the alignments of the align
module or any other alignments in Fasta format.

This is the part that takes most time in the entire pipeline,
because the time required for phylogenetic inference grows
very fast with the size of the dataset. Even efficient imple-
mentations of the maximum likelihood analyses scale with
the product of the number of sites and the number of taxa,
which is a problem in the case of large datasets (thousands
of taxa, with more than ten thousands sites for each one).
PanACoTA proposes several different methods to obtain a
phylogeny: IQ-TREE (45), FastTreeME (46), fastME (47)
and Quicktree (48). According to its needs, the user can
choose one of these methods to infer its phylogenetic tree.
These trees can be used to build more rigorous phyloge-
netic inference using methods that are more demanding in
computational resources, e.g. by changing the options of
IQ-TREE. Whatever the software used, the tree mod-
ule takes as input a nucleotide alignment in Fasta format
(like, for example, the output of align module), and re-
turns at least a tree in Newick format. According to the
software and options used, other output files may be gen-
erated, like bootstrap trees for example. IQ-TREE also re-
turns the BIONJ tree from which it started tree search,

as well as the pairwise distance matrix corresponding to
the output tree. Recombination is known to affect phyloge-
netic reconstruction (49,50). To tackle this problem, some
researchers detect and then remove recombination tracts
from genomes before inferring the phylogeny. This can be
done outside PanACoTA by modifying the multiple align-
ments before proceeding to the phylogenetic inference. We
have not implemented in PanACoTA the detection or ex-
clusion of recombination tracts. Several studies have shown
that removing the identifiable recombination tracts tends to
distort phylogenetic inference at a larger extent than sim-
ply using all the information in the multiple alignments
(51,52). This is probably because available methods miss
many events of homologous recombination, leading to bi-
ases in phylogenetic inference. When relevant, one can use
methods that simultaneously infer recombination and phy-
logenetic history, altough these tend to be computationally
costly.

Implementation and availability

PanACoTA was developed in Python3, trying to follow the
best practices for scientific software development (53,54).
For that, the software is versioned using git, allowing the
tracking of all changes in source code during PanACoTA’s
development. It is freely distributed under the open-source
AGPL v3 licence (making it usable by many organiza-
tions) and can be downloaded from https://github.com/
gem-pasteur/PanACoTA. The software can be installed
directly from the git repository, or using pip or conda
package-management systems. A singularity image, includ-
ing all needed dependencies, is also hosted via Docker Hub.
By downloading this image, the user can run PanACoTA
without installing anything. This is of particular use for run-
ning on clusters, where there is usually no root access.

Hosting PanACoTA onGitHub allows for issue tracking,
i.e. users can report bugs, make suggestions or, for develop-
ers, participate to the software improvement. To provide a
maintainable and reliable software, we set up continuous in-
tegration process: each time a modification is pushed, there
is an automatic software installation checking, unit tests are
done, and, if necessary, an updated version of the documen-
tation is generated, as well as an update of the docker image
on Docker Hub (which can be used as a singularity image
as described previously).

As introduced just before, we also provide a complete
documentation, including a step by step tutorial, based on
provided genome examples, so that the user can quickly
get started. It also contains more detailed sections on each
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Table 2. Summary of execution times by (sub)module

MODULE STEP DTS1 (3980 genomes) DTS2 (225 genomes)

prepare Downloading 1 h (5805 genomes) 3 min (266 genomes)
Quality control <4 min ∼15 s

Filter 20 min ∼1 min
annotate With Prokka 5 days 10 h

With Prodigal 6 h 30 min
pangenome 30 min 1 min
corepers (1 CPU) 1 min 5 s
align Strict persistent 3 h 10 min

Mixed-persistent 7 h 11 min
tree (IQ-TREE2) (28 CPUs) Strict-persistent 7 h (40 GB RAM) 3 min 10

Mixed-persistent 24 h (90 GB RAM) 3 min 30

module, aiming at helping users to tune all parameters, in
order to adapt the run to more specific needs. This docu-
mentation also includes a ’developer’ section, addressed to
developers wanting to participate in the project.

During its execution, PanACoTA provides logging infor-
mation, so that user can see real-time execution progress (a
quiet parameter is also proposed for users needing empty
stdout and stderr). This also provides log file(s) to keep
track on what was ran (command-line used, time stamp, pa-
rameters used etc.).

RESULTS AND DISCUSSION

All execution times mentioned in this section correspond to
wall clock time on eight CPUs (except when the number of
CPUs is given). A summary of all execution times can be
found in Table 2.

Download and preparation of genome sequences

The first module of PanACoTA was used to download all
genomes of K. pneumoniae using the TaxID 573. It took ∼1
h to download the 5805 K. pneumoniae genome sequences
(including 266 complete genomes). We used the module
annotate to make the quality control (L90 < 100 and
number of contigs < 999), which took less than 4 min. This
step discarded 233 draft genomes, leaving 5572 for further
analysis (see Figure 4). When the threshold on the number
of contigs was decreased by half (number of contigs < 500),
only 52 more genomes were removed (see Figure 4B). To
define the best thresholds to the analysis, the user can pre-
view its dataset quality with a ’dry-run’ of the annotate
module. Then, the user can launch the real analysis, from
prepare or annotate with the adapted thresholds.

We removed the very distantly related and redundant
genomes using Mash (K-mer size of 21 (default), and
sketches of at most 10 000 non-redundant min-hashed
k-mers). A total of 1592 genomes (including 41 com-
plete genomes) did not respect the distance thresholds
(max mash dist = 0.06 and min mash dist = 1e-4).
Most (1448) were too similar to other genomes, whereas 144
were too distantly related with the K. pneumoniae genomes
(Figure 5).

Expert analysis can lead to the definition of nar-
rower ANI values. For example, Kleborate (https://github.
com/katholt/Kleborate) (55) defines strong K. pneumoniae
matches for distances ≤ 0.01 and weak matches between

B

A

Figure 4. Histograms describing the features of the 5805 Klebsiella pneu-
moniae genomes downloaded fromRefseq. (A) Distribution of L90 values.
(B) Distribution of the number of contigs per genome.

0.01 and 0.03. In our dataset, Kleborate would have only
removed 22 additional genomes, that it identifies as K.
quasipneumoniae subspecies similipneumoniae. The default
method of Panacota, which is designed for any species, is
thus consistent with Kleborate results regarding the spe-
cific case of K. pneumoniae genomes when starting from the
NCBI taxonomy ID.

Three genomes showed an ANI <84% identity, mean-
ing they may not even be from the same genus, which
emphasizes the necessity of this kind of analysis be-
fore computing a pangenome. They were removed from
the analysis (GCF 900451665.1, GCF 900493335.1 and
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Figure 5. Distribution of Mash distances for the 5572 genomes respecting the L90 and number of contigs thresholds, but having a Mash distance higher
than the threshold (0.06).

GCF 900493505.1). A neighbor-joining tree generated
from Mash distance matrix with scikit-bio (https://github.
com/biocore/scikit-bio) confirmed the gap between those
three genomes and the others (see Supplementary Figure
S1, where genomes kept in DTS1 are in green, while those
discarded are in red).

Finally, these filters left 3980 genomes in the analysis,
with an average of 5307 genes per genome, which will be
called the reference database DTS1. Among them, there are
225 complete genomes that form the dataset DTS2 (see Fig-
ure 6).

We then proceeded to the functional annotation, which
is by far the slowest of the first tasks. The annotation of the
genomes with Prokka 1.11 took ∼1 min 50 s per genome,
i.e. around 5 days for the whole dataset. For comparison,
the annotation using only prodigal 2.60 took less than 6 h
(annotation + formatting of all 3980 genomes), i.e. 6 s per
genome. Assuming that genes from the same pangenome
family have similar functions, one can annotate one protein
per family at the end of the process and save considerable
time.

Building pangenomes

The 3980 DTS1 genomes contain 20 765 062 proteins. It
took less than 30 minutes to create the protein database
in the MMseqs2 format (Release 11-e1a1c), cluster them
(with at least 80% identity and 80% coverage of query and
target), and retrieve the pangenome matrices. The DTS1
pangenome has 86607 families. Among them, 35 348 (40%)
are singletons (found in a single genome), which is con-
cordant with values observed in Escherichia coli (56). The
pangenome of DTS2, 1 190 485 proteins, was computed in
<1 min. It contains 24 473 families, including 8975 (37%)
singletons.

The comparison of these two pangenomes is interesting
because it reveals the robustness of themethod to changes in
sampling size, as summarized in Figure 7. A total of 2147
families contain only members present in both DTS1 and
DTS2. Among these, 2122 families are exactly the same in
both pangenomes, whereas only 25 were split in the DTS1
pangenome family relative to the DTS2 pangenome. In
most of the latter, they are split in two different families of
DTS1. This shows that the clustering procedure is quite ro-
bust to the addition of a very large number of genomes.

Most important, 22 744 families (that is more than
92% of all DTS2 families) are identical in DTS1 and
DTS2 pangenomes. Identical here means that the DTS2
pangenome gene family is included in a DTS1 pangenome
gene family, and the other members of this DTS1
pangenome family are only members of genomes not
present in DTS2. Furthermore, around half of the remain-
ing families from the DTS2 pangenome are included in a
DTS1 pangenome gene family, which contains a few other
proteins from DTS2 genomes. Finally, only 187 gene fami-
lies of the DTS2 pangenome were split into two or three dif-
ferent families of DTS1 pangenome. In other words, 24 286
families (more than 99%) of DTS2 pangenome are subsets
of DTS1 gene families. In conclusion, the construction of
pangenome families is robust to large variations in the num-
ber of input genomes (see Figure 7).

Core and persistent genomes

This part of the analysis is very fast. Using only one
CPU, it took around 1 min to generate a core or persis-
tent genome from DTS1 pangenome. PanACoTA provides
a core genome and three different measures of persistent
genome (see Figure 3). The strict-persistent genome corre-
sponds to cases when the family is present in a single copy in
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Figure 6. Summary of the procedure to construct DTS1 and DTS2.

Figure 7. Comparison of the pangenomes generated by PanACoTA for
both DTS1 and DTS2.

99% genomes and absent from the others. In DTS2, the set
of complete genomes, the difference between the core and
strict-persistent genome is appreciable (2238 versus 3295
families), i.e. the persistent genome is 50% larger (see Fig-
ure 8). The difference becomes huge when the analysis is
done on the much larger (and less accurate) DTS1 dataset,
where the two datasets vary bymore than one order of mag-
nitude (79 versus 1418 families). In such large datasets of

draft genomes the core genome is not biologically mean-
ingful.

The mixed-persistent genome includes the families
present in a single copy in 99% genomes and present (poten-
tially in several copies) or absent from the others. It includes
the strict-persistent genome. Its size is close to the latter in
the small DTS2 dataset, but much larger in DTS1 (see Fig-
ure 8). While the mixed-persistent genome is 65% percent
of the average genome in DTS1, the strict-persistent is only
27%percent in the same dataset. This shows the relevance of
using definitions of the core genome adapted to the dataset
in order to build robust phylogenetic trees or to analyze pat-
terns of genetic diversification and natural selection.

Finally, PanACoTA also computes a multi-persistent
genome that includes all gene families present in at least
99% of the genomes, independently of their copy number
(see Figure 8). Its analysis reveals many genes encoding reg-
ulators, transporters and enzymes that are nearly ubiqui-
tous, but often present in multiple copies. As a rule, this def-
inition is interesting to study gene families present in most
genomes, but present in very different copy number. On the
other hand, it is typically not very useful for phylogenetic
inference.

Phylogenetic tree inference

PanACoTA ran mafft v.7.467 using –auto option to align
all families. For DTS1, it selected the FFT-NS-2 method,
while for DTS2, it selected FFT-NS-i method. This was
done with both the strict-persistent (1418 families, 3 h) and
the mixed-persistent (3441 families, 7h).

PanACoTA used the multiple alignments as input to IQ-
TREE multicore version 2.0.6, with the -fast option. For
the tree based on the alignment of the strict-persistent (1 438
179 positions), it took around 7 h on 28 CPUs and required
38 GB of RAM. For the tree based on the alignment of the
mixed-persistent (3 393 006 positions), it took 24 h using 28
CPUs and required 88 GB of RAM.

We wished to understand the differences in phylogenetic
inference in terms of the method used to define the per-
sistent genome (strict and mixed persistent). We computed
the patristic distance matrix for each tree and a Pearson
correlation test showed that they are strongly correlated
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Figure 8. Comparison of the sizes of the core genome and the 3 different types of persistent genomes, for both DTS1 and DTS2. Areas of circles are
proportional to the size of the dataset.

(cor = 0.99138, P < 2.2e−16). This shows that the distances
provided by the two methods are very similar. Hence, if
the strict persistent is large enough to generate a phyloge-
netic tree, it provides adequate distances between genomes.
Aligning all mixed persistent families would just take much
more time, for a similar result. However, if one is interested
in having a robust tree topology, one should use the larger
(and computationally costlier) dataset. Indeed, the analy-
ses of Robinson–Foulds distance with R phangorn pack-
age shows a branch-weighted distance of 0.43 and an ab-
solute distance of 2892 (57). This is because some lineages
of K. pneumoniae account for a large fraction of the data
and these parts of the tree require long informative mul-
tiple alignments to produce accurate topologies. Accord-
ingly, the differences in topology between the trees using
the DTS2 dataset, which have much larger average branch
lengths, show much smaller values of topological distances
between the two datasets of persistent genome (RF = 78,
wRF = 0.027).

CONCLUSION

PanACoTA is a pipeline for those wanting to test hypothe-
ses or explore genomic patterns using large scale compara-
tive genomics. We hope that it will be particularly useful for
those wishing to use a rapid, accurate and standardized pro-
cedure to obtain the basic building blocks of typical anal-
yses of genetic variation at the species level. We built the
pipeline having modularity in mind, so that users can pro-
duce multiple variants of the analyses at each stage. We also
paid particularly care with the portability and evolvability
of the software. These two characteristics, modularity and
evolvability, will facilitate the implementation of novel pro-
cedures in the future.

DATA AVAILIBILITY

The two datasets of K. pneumoniae genomes used to il-
lustrate PanACoTA were downloaded from the NCBI ref-
seq. Their accession numbers are indicated in Supplemen-
tary Table S1. PanACoTA source code is freely avail-
able from https://github.com/gem-pasteur/PanACoTA un-

der AGPLv3 license. More information in the last part of
Materials and Methods section.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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The tool is now released on https://github.com/gem-pasteur/PanACoTA. The develop-

ment of the method was interspersed by several comparative genomic studies, which allowed
to test the method, and add the subsequent improvements to the tool. The next chapter
presents three different applications of PanACoTA to which I contributed, as well as their
input to PanACoTA.

https://github.com/gem-pasteur/PanACoTA


Part III

APPLICATIONS TO COMPARATIVE GENOMICS
STUDIES





INTRODUCTION

This part presents three different comparative genomics studies to which I participated, and
where the use of PanACoTA (or its developing version) brought interesting results.

The first one corresponds to the study of an outbreak in Wisconsin (chapter 6) [145]. The
second one aims at characterizing the genomic diversity of E. coli species (chapter 7) [190].
The third one, still in progress, explores an emerging pathogen (chapter 8).
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6 Elizabethkingia anophelis
OUTBREAK IN WISCONSIN

Our lab had recently published a paper on the evolution of Elizabethkingia anophelis species
when an atypically large epidemic due to this bacterium was declared in Wisconsin. The
CDC asked for help on the comparative genomics analysis. I participated to this study
by computing and analysing pan and core genomes adapted to different questions. This
allowed the discovery of an ICE which was (reversibly) inserted in a DNA repair region, and
responsible for the outbreak.

I hereafter include the paper which describes this study. For space purposes, I only
added the two most important (about my contribution) supplementary figures. However, all
supplementary material (tables and figures) can be seen here: https://doi.org/10.6084/
m9.figshare.c.3674146.v5.

https://doi.org/10.6084/m9.figshare.c.3674146.v5
https://doi.org/10.6084/m9.figshare.c.3674146.v5
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A
n outbreak of 66 laboratory-confirmed infections caused
by the bacterial pathogen Elizabethkingia anophelis
occurred in 2015–2016 in the USA states of Wisconsin

(63 patients), Illinois (2 patients) and Michigan (1 patient). This
was the largest ever documented Elizabethkingia outbreak, and
the only one with illness onsets occurring primarily (89% of
Wisconsin patients) in community settings. Isolates obtained
from patients shared a unique genotype as defined by pulsed field
gel electrophoresis, and the localized distribution of early cases
was suggestive of a point source. A joint investigation by the
Wisconsin Division of Public Health, Wisconsin State Laboratory
of Hygiene and the Centers for Disease Control and Prevention
(CDC) assessed many potential sources of the outbreak, including
health-care products, personal care products, food, tap water and
person-to-person transmission. The outbreak appeared to wane
by mid-May 2016, and a source of infection had not yet been
identified by September 2016. The ongoing investigation and
updates on this outbreak are described by Centers for Disease
Control and Prevention (https://www.cdc.gov/elizabethkingia/
outbreaks/) and Wisconsin Department of Health Services
(https://www.dhs.wisconsin.gov/disease/elizabethkingia.htm).

E. anophelis is a recently recognized species1. Despite recent
genomic and experimental work2–6, virulence factors or
mechanisms of pathogenesis by E. anophelis are yet to be
discovered. Knowledge of the ecology and epidemiology of this
emerging pathogen is also in its infancy. All previously reported
Elizabethkingia outbreaks have been health-care associated7–9

although sporadic, community-acquired cases have been
occasionally reported10, as has a single instance of transmission
of E. anophelis from mother to infant at birth11. Human
infections have varied presentations, including meningitis and
septicaemia12–15. Strains have been isolated from diverse
environments such as hospital sinks (E. meningoseptica and
E. anophelis)6,7, the mosquito mid-gut (E. anophelis)1 and the
space station Mir (E. miricola)16. Therefore, Elizabethkingiae are
generally regarded as environmental, and although E. anophelis
has been recovered from the mid-gut of wild-caught Anopheles
and Aedes mosquitoes1, there is no indication that mosquitoes
serve as a vector to transmit the bacteria to humans. E. anophelis
is naturally resistant to multiple antimicrobial agents and
harbours several genetic determinants of antimicrobial
resistance, including multiple beta-lactamases and efflux
systems2,4,6,17,18. Elizabethkingia species are phenotypically very
similar, leading to misidentifications that compromise our
understanding of the relative clinical importance of each
species. Previously reported E. meningoseptica outbreaks may in
fact have been caused by E. anophelis, as this latter species was
recently reported to be the primary cause of clinically significant
Elizabethkingia infections in Singapore15.

The unique magnitude and setting of the Wisconsin outbreak
and its elusive source prompted us to explore the genomic
features of the outbreak strain, and compare them to other
Elizabethkingia strains. We found that the outbreak strain
represents a novel phylogenetic sublineage of E. anophelis and
has unique genomic regions. Furthermore, it displayed excep-
tional evolutionary dynamism during the outbreak, likely caused
by the insertion of the mobile integrative and conjugative element
(ICEEa1) into the mutY DNA repair gene.

Results
The outbreak is caused by a novel E. anophelis sublineage.
A phylogenetic analysis was performed with the 69 Wisconsin
outbreak isolates (from 59 patients) and 45 comparative strains of E.
anophelis and other Elizabethkingia species (Supplementary Fig. 1a).
The tree revealed three major branches, each containing one of the

three Elizabethkingia species (E. meningoseptica, E. miricola and E.
anophelis). The E. miricola branch was the most heterogeneous and
comprised, in addition to E. miricola strains, reference strains of the
distinct genomospecies defined by DNA–DNA hybridization19:
G4071 (genomospecies 2), G4075 (genomospecies 3) and G4122
(genomospecies 4). We, therefore, labelled this branch, which may
comprise several species, as the E. miricola cluster. The type strain
JM-87T of E. endophytica was placed within the E. anophelis
branch, consistent with a recent report20. Eight clinical strains
initially identified as E. meningoseptica were in fact members of
the E. anophelis species. Additional discordances found between
the phylogenetic position of several strains and their initial
taxonomic designation (Supplementary Data 1) underscore the
uncertainty associated with species determination for
Elizabethkingia isolates20.

The outbreak isolates made up a compact phylogenetic group
within E. anophelis (sublineage 15 in Supplementary Fig. 1b),
indicating that the outbreak was caused by a single ancestral
strain. The long branch that separated the outbreak strain from
all other sequenced E. anophelis strains showed that the outbreak
strain is derived from a unique sublineage of E. anophelis that had
not been previously described. The other E. anophelis strains were
highly diverse, forming 14 other sublineages. Strains CIP 79.29
and GTC 09686 (sublineage 14) were most closely related to the
outbreak strain but had a nucleotide divergence of B1%. These
results show that the currently known sublineages of E. anophelis
are not close relatives of the outbreak strain.

Phylogenetic diversity and temporal and geographic dynamics.
Phylogenetic analysis of the Wisconsin isolates disclosed a highly
dynamic outbreak, with a conspicuous genetic diversification into
several sub-clusters (Fig. 1, Supplementary Fig. 2). Except for
three outliers, all outbreak isolates derived from a single ancestor
(node I, Fig. 1). We defined six main sub-clusters (sc1 to sc6,
Fig. 1) based on visual inspection of the tree. Whereas sc1
branched off early, sub-clusters sc2 to sc6 shared a common
ancestor (node II, Fig. 1).

Several patients were sampled on multiple occasions from 1 to
21 days apart, and from up to four different sites per patient. The
cgMLST (core genome multilocus sequence typing) loci of groups
of isolates from single patients were always identical, except for
one single-nucleotide polymorphism (SNP) observed between
isolate CSID 3000515962 and the three other isolates from the
same patient. These results indicate that the pathogen population
that infected each individual patient was dominated by a single
genetic variant. In addition, these results underline the high
reproducibility of the sequencing and genotyping processes.

The phylogenetic diversity within the outbreak clade provides
an opportunity to estimate the temporal dynamics of the
diversification of the outbreak strain. We first tested whether
there was a temporal signal, that is, whether the root-to-tip
distance was correlated with the date of sampling of bacterial
isolates. Bayesian analysis with BEAST using randomized tip
dates demonstrated a significant temporal signature
(Supplementary Fig. 3), implying that the outbreak strain
continued diversifying in a measurable way over the course of
the outbreak. We next estimated a mean evolutionary rate of
5.98� 10� 6 nucleotide substitutions per site per year (95% HPD
(highest posterior density)¼ 3.47, 8.61) based on cgMLST genes,
corresponding to 24 substitutions per genome per year. This
analysis placed Node I, from which all but three (including the
hypermutator, see below) infectious isolates were derived, at
around July 2015, and the last common ancestor of all outbreak
isolates at the end of December 2014 (95% HPD¼ January 2014,
July 2015) (Supplementary Fig. 4). Using an independent whole-
genome SNP approach, the evolutionary rate estimate was
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6.35� 10� 6 nucleotide substitutions per site per year (95%
HPD¼ 3.66, 9.07), and the date of the last common ancestor was
estimated at August 2014 (95% HPD¼ June 2013, June 2015).
These two approaches thus provided concordant results and
suggested that the initial diversification of the outbreak strain
predates the first identified human infection in this outbreak by
approximately one year. Because the retrospective epidemiologi-
cal analysis demonstrates that human cases of E. anophelis
infection were likely not missed, these results suggest that the
strain evolved in its reservoir during an approximately one-year

interval before contaminating the source of infection, and that
further diversification occurred, either in the reservoir or in the
source of infection, as the outbreak was ongoing.

Phylogenetic diversification followed both temporal and
geographic trends (Fig. 2). Sub-cluster sc1 appeared first, in
multiple locations during the first week, and was later
supplemented by the other clusters, with an initial south-east
drift of cases during the first 6 weeks. Sc6 appeared later and
became the most common of the sub-clusters after February 1,
coinciding with concentration of cases in the south-eastern-most
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Figure 1 | Phylogenetic tree of the outbreak isolates. Maximum likelihood phylogenetic tree inferred from 3,411,033 aligned nucleotide characters

(1,137,011 codons) based on cgMLST data. The tree was rooted based on phylogenetic analyses using epidemiologically unrelated E. anophelis strains as an

outgroup. Thick branches have bootstrap support480% (200 replicates). The scale bar represents substitutions per site. Sub-clusters (sc) 1 to 6 are

represented by coloured boxes. Counties A to L (and U for ‘unspecified’, attributed to the strains from outside of Wisconsin) are represented by coloured

circles (see key on the left). Sets of isolates gathered from the same patient are indicated with vertical black lines after the isolate codes. Median Bayesian

estimates of the month and year are provided for major internal branches (with 95% HPDs in square brackets). The branching position of the mutS isolate

CSID 3015183688, denoted by the dashed branch line, was defined based on a separate analysis (using the same methods) and its branch length was

divided by 5 for practical reasons.
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corner of the 12 county outbreak region during the outbreak peak
and followed by a wider geographic spread of sc6 after March 1.
This is consistent with the relative branching order and estimated
ages of sc1 and sc6 inferred from the phylogenetic analysis of
genomic sequences (Fig. 1). The fit between the temporal pattern
of the outbreak and the evolutionary origins of isolates provides
further support to the hypothesis of genomic diversification
during the outbreak. In addition, the shift from sc1 to sc6 as the
dominant contributing sub-cluster may be indicative of ongoing
adaptation or increasing pathogenicity of the outbreak strain.

Mutation spectrum and DNA repair defects. Three atypically
divergent isolates were recognized. The isolates CSID 3000516276
and CSID 3015183683 likely represent remnants of early diverged
branches. In contrast, isolate CSID 3015183688 was placed at the
end of a long branch (Fig. 1), suggesting an acceleration of its
substitution rate. This isolate was determined to have a mutation
in its mutS gene, leading to a hypermutator phenotype (see
Supplementary Method 3.1).

Excluding the hypermutator, 247 nucleotide positions (out of
3,411,033 in the 3,408 concatenated cgMLST gene alignments;

0.0072%) were polymorphic among the outbreak isolates. Similar
nucleotide variation was demonstrated using the assembly-free
approach, which detected 290 SNPs (out of 3,571,924 sites;
0.0081%). We further identified one 2 bp deletion, one 4 bp
deletion, one 7 bp insertion, and five 1 bp deletions. This
estimated evolutionary rate (5.98� 10� 6 substitutions per
site per year within core genes, and 6.35� 10� 6 substitutions
per site per year over the entire genome) is exceptionally high
for a single-strain bacterial outbreak. We, therefore, analysed the
mutational spectrum within the outbreak and compared it with
the spectrum of the other E. anophelis sublineages, using the
assembly-free approach. Strikingly, 253 out of 290 (87%)
nucleotide substitutions along the branches of the outbreak
tree were G/C-4T/A transversions. This is a highly unusual
pattern of mutation, and was significantly different from the
mutational spectrum in the wider E. anophelis tree (11% G/C-
4T/A; Fig. 3). We noted that the mutational spectrum within
the outbreak corresponds to mutations caused by the oxidative
lesion 8-oxodeoxyguanosine (8-oxodG), suggesting either muta-
genic growth conditions for the strain resulting from a high-
oxidative stress environment, or impairment of the base excision
repair pathway for 8-oxodG (the ‘GO system’), which corrects
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these lesions21–24. We, therefore, inspected the genes that pertain
to the GO system, and found that mutY was interrupted at
position 841 in all outbreak isolates by the insertion of the
62,849 bp Integrative and Conjugative Element ICEEa1 (for
integrative and conjugative element 1 of E. anophelis, see below)
(Fig. 4). This insertion resulted in a premature stop codon
truncating the 57 terminal amino acids (aa) of the 342 aa-long
MutY protein. MutY is an adenine glycosylase that functions
in base excision repair to correct G-A mismatches25. Thus,
MutY inactivation could explain the large number and atypical
pattern of nucleotide substitutions observed within the outbreak.
The ICE was not observed at this position in non-outbreak
E. anophelis strains. Analysis of the mutational spectrum of
substitutions on the branch leading to the outbreak strain (before
its diversification started) revealed that it was very similar to
that of the wider E. anophelis species tree (Fig. 3). This

indicates that the interruption of mutY via insertion of ICEEa1
occurred shortly before the last common ancestor of the outbreak
isolates.

ICEEa1’s integrase is 64% similar to the integrase of CTnDOT,
a well-studied ICE26,27. We identified a potential integration site
(TTT^TT) at position 841 of the mutY gene, flanked by inverted
repeats in the ICEEa1 and in the wild-type (WT) mutY gene
(Fig. 4). We provide a model of the insertion of the ICE in a wild-
type mutY gene (steps A and B, Fig. 4), which explains the
position of the ICE in the outbreak strain. Simulating further
steps of the ICE’s lifecycle suggests that the ICEEa1 insertion
should be reversible and that the excision would reconstitute the
original and functional mutY sequence (steps C and D, Fig. 4).

Evidence for positive selection. The atypical mutation spectrum
attributed to the mutY truncation resulted in a very high non-
synonymous to synonymous substitution ratio (ns/s¼ 21.4,
excluding SNPs present only in the MutS- isolate), with most
mutations causing amino-acid sequence alterations in the enco-
ded proteins. Of the 49 nonsense mutations found in mutS
competent isolates, 45 resulted from transversions unrepaired by
the defective mutY (for example, GAA-4TAA, GAG-4TAG,
and so on), including the mutS gene mutation resulting in the
hypermutator phenotype of isolate CSID 3015183688. The sub-
stitution ratio of SNPs unique to this isolate (ns/s¼ 3.75) and its
overall mutation spectrum (Fig. 3) were different from those of
other outbreak isolates, as would be expected due to the high rate
of base transition mutations in mutS-deficient isolates28.

Among the 213 inferred protein changes (Supplementary Data
2, non-synonymous and nonsense mutations), some may have
had important consequences regarding the virulence or resistance
of the outbreak isolates, or on the fitness of the outbreak strain in
its reservoir or source. We noted that the serine-83 of DNA
gyrase gyrA, which is associated with quinolone resistance, was
altered in one isolate (CSID 3000521792). Protein changes in the
branch leading to node I, from which most outbreak isolates
derived, may have contributed to the early adaptation of the
outbreak strain to its reservoir or source. They occurred in genes
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coding for a TonB-dependent siderophore, a peptidase, a two-
component regulator, a cysteine synthase and two ABC-
transporters (Supplementary Data 2).

To detect positive selection during the course of the outbreak,
we looked for genes with multiple parallel mutations. We found
27 genes that had two or more protein-altering mutations (either
a non-synonymous or a nonsense mutation leading to protein
truncation) that arose independently in separate branches of the
tree. Prominent among these were three genes that each had five
or six protein parallel mutations (Supplementary Data 2): the wza
(A2T74_09840) and wzc (A2T74_09845) capsular export genes,
and the gene A2T74_10040, which codes for a member of the
SusD (Starch Utilization System) family of outer membrane
proteins involved in binding and utilization of starch and other
polysaccharides29,30. These observations are best explained by
a strong selective pressure to abolish the function of the
corresponding gene products. In light of the predominance of
sub-cluster 6 towards the end of outbreak, it is interesting to note
that the two changes that were specific to this sub-cluster (present
in all 26 members of sc6, but in no member of other sub-clusters)
were nonsense mutations in the genes wza and susD
(Supplementary Data 2).

Genomic features of the outbreak strain. To define the unique
genomic features of the outbreak strain, an analysis of the entire
complement of protein families in E. anophelis genomes (that is,
the E. anophelis pan-genome) was conducted (Supplementary
Table 1). The E. anophelis pan-genome comprised 8,808 protein
families, whereas only 3,637 protein families were observed
among the 69 outbreak isolates (Supplementary Fig. 5). Further,
the core-genome of the outbreak isolates represented 97% of the
average number of proteins per genome, and 94% of the outbreak
pan-genome. These results underline the strong homogeneity of
the gene content of the outbreak isolates as compared with the
extensive diversity observed within the E. anophelis species as a
whole. Four isolates had a 77 kbp deletion affecting 75 genes;
these were all from the same patient (Fig. 5; Supplementary Fig. 6;
Table 1; Supplementary Data 3).

E. anophelis genomes are well known to harbour multiple
genes putatively implicated in antimicrobial resistance. We found
(Supplementary Data 4) that the outbreak isolates harboured
resistance-associated genes previously observed in other
E. anophelis2,4,6,17, coding for multiple efflux systems, class A
beta-lactamases, metallo-beta-lactamases and chloramphenicol
acetyltransferase. Therefore, the Wisconsin outbreak strain
possesses an array of antimicrobial genes similar to other
E. anophelis strains, consistent with its multiple antimicrobial
resistance phenotype (see below).

A search for putative virulence genes led to the identification
of 67 genes (Supplementary Data 5). Among these, genes that
were highly associated to the outbreak strain as compared with
other E. anophelis isolates, included a CobQ/CobB/MinD/ParA
nucleotide-binding domain protein located on the ICEEa1
element (see below) and five genes involved in capsular
polysaccharide synthesis. Capsules are important virulence
factors of bacterial pathogens31. We, therefore, extended the
search for other capsular synthesis associated genes (see
Methods) and identified an identical Wzy-dependent capsular
polysaccharide synthesis (cps) cluster in all outbreak isolates
(Supplementary Fig. 7). As previously reported2, the region of
the cps locus that encodes for secretory proteins such as Wza
and Wzc is highly conserved in Elizabethkingia, whereas the
proteins involved in generating the specific polysaccharidic
composition of the capsule are encoded in a highly variable

region (outbreak-specific region 5; Fig. 5). Within the 114
Elizabethkingia genomes, 17 different cps cluster types
were defined based on their gene composition pattern
(Supplementary Fig. 7). Remarkably, the Wisconsin strain
shared its cps cluster (type I) with sublineage 2 isolates, which
were associated with an earlier outbreak in Singapore2,6. This
result suggests that horizontal gene transfer of the cps region
between E. anophelis sublineages may drive the emergence of
virulent lineages. The cps gene cluster type I has so far only
been observed in these two human outbreak E. anophelis strains
(that is, the Singapore outbreak2,6 and the Wisconsin outbreak
reported here). Altogether with our observation of multiple changes
of the cps region during the diversification of the Wisconsin
outbreak strain these data suggest a possible pathogenic role for the
capsular polysaccharide in the outbreak strain.

To identify genomic regions unique to, or strongly associated
with, the outbreak strain, we analysed the distribution of the pan-
genome protein families within E. anophelis and found 13 gene
clusters that were conserved among outbreak isolates (present in at
least 67/69 outbreak isolates) but absent in most other E. anophelis
sublineages (Fig. 5, Supplementary Fig. 6). The functional
annotations of genes located in these genomic regions suggest
they may confer to the outbreak strain improved capacities to
tolerate heavy metals, acquire iron, catabolize sugars or urate and
synthesize bacteriocins (Table 1; Supplementary Data 3).

Most notably, the integrative and conjugative element ICEEa1
was present in all outbreak isolates but was absent in most other
E. anophelis strains (region 2 in Fig. 5 and Supplementary Fig. 6).
ICEEa1 belongs to the Bacteroidetes type 4 secretion system
(T4SS-B) class32. It encodes the full set of components required
for integration/excision and conjugation, including an integrase
(tyrosine recombinase), 12 genes coding for the type IV secretion
apparatus (including a VirB4 homologue and the type IV
coupling protein), a relaxase (MOBP1), an ATPase (virB4)
and two genes encoding for RteC, the tetracycline regulator of
excision protein (Supplementary Fig. 8). Among its cargo genes
(Supplementary Data 3), ICEEa1 carried genes putatively coding
for a RND-family cation export system composed of a cobalt-
zinc-cadmium efflux pump of the czcA/cusA family (which was
affected by two distinct non-synonymous mutations during the
outbreak), followed by genes with the following annotations:
nickel and cobalt (cnrB) and mercury (merC) resistance, a P-type
ATPase associated with copper export (copA), a receptor-binding
hemin, a siderophore that may allow the bacteria to fix iron from
the environment (hemR) and a solitary N-6 DNA methylase
(MTase) that might be involved in protection from restriction
systems. These annotations warrant future research on a possible
contribution of the ICEEa1 element to detoxification of divalent
cations and to acquire iron from the host during infection.
Within the wider E. anophelis genome set, the ICEEa1 element
was observed in only six non-Wisconsin outbreak isolates: four
isolates associated with the Singapore outbreak and strains CIP
60.59 and NCTC 10588 (Supplementary Figs 8 and 9), which
were both isolated from patients with severe human infections
during the 1950’s (Supplementary Data 1). The association of
ICEEa1 with virulence deserves further functional investigation.
In the six other strains, the ICEEa1 element was inserted in
genomic locations distant from mutY (Supplementary Fig. 8b).
We could not find any other mobile genetic element (that is,
prophages, integrons and plasmids) in the genomes of outbreak
strains.

Finally, one of the outbreak-associated genomic regions com-
prises genes for a sodium/sugar co-transporter, a xylose isomerase
and a xylose kinase (region 9, Fig. 5, Supplementary Data 3). This
region was also present in the mosquito gut isolates Ag1 and R26
(region 9, Supplementary Fig. 6, Supplementary Fig. 9)11.
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Antimicrobial susceptibility of outbreak isolates. Antimicrobial
susceptibility testing (Supplementary Data 6) revealed a strong
homogeneity among outbreak isolates. A low susceptibility
against most beta-lactams was found; isolates were resistant
against ceftazidime and imipenem, but susceptible to piperacillin,
piperacillin-tazobactam and cefepime. Outbreak isolates were also
resistant to aminoglycosides (amikacin, gentamycin, tobramycin)
and showed low in-vitro susceptibility to chloramphenicol, fos-
fomycin, tetracycline and vancomycin. These phenotypes
demonstrate the high level of antimicrobial resistance of E. ano-
phelis Wisconsin outbreak isolates, consistent with previous data

on other E. anophelis isolates6,14,15,33. In contrast, outbreak
isolates were susceptible to quinolones (ciprofloxacin,
levofloxacin) and showed high in-vitro susceptibility to
trimethoprim-sulfamethoxazole and to rifampicin. Variation in
resistance among outbreak isolates was found only for
chloramphenicol and for quinolones: first, isolate CSID
3000521792 was resistant to quinolones, consistent with its
amino-acid alteration at position 83 of DNA gyrase subunit A
(Supplementary Data 2). Second, resistance of isolate CSID
3000516072 to chloramphenicol was decreased compared with
other isolates (Supplementary Data 6). Interestingly, CSID
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3000516072 had an arginine to leucine alteration at position 164
of the chloramphenicol acetyltransferase, which may impact the
function of this chloramphenicol resistance enzyme. As compared
with the African isolates, Wisconsin outbreak isolates were more
resistant to cefoxitin, amikacin and isepamycin, but less resistant
to chloramphenicol, rifampicin and tetracycline. Outbreak
isolates differed from the Singapore isolates by their lower
resistance level to macrolides and to isepamycin. However, in the
absence of interpretative breakpoints for Elizabethkingia
anophelis antimicrobial resistance, the clinical significance of
the above differences is unclear.

Discussion
We defined the phylogenetic diversity and genomic features of
a strain of E. anophelis that caused an exceptionally large and
primarily community-associated outbreak. Our phylogenetic
analyses clearly established that the outbreak was caused by a
single strain. The phylogenetic analysis showed that the
outbreak strain represents a previously undescribed sublineage
within E. anophelis. The nucleotide distance that separates the
outbreak strain from the closest sublineages of E. anophelis with
available genome data is nearly 1%, similar to the distance that
separates, for example, clonal groups of Klebsiella pneumoniae
with very distinct virulence properties34,35. These results raise
the possibility that the sublineage to which the outbreak strain
belongs may have evolved distinctive virulence or ecological
properties, which could have contributed to the atypical size
and community occurrence of the Wisconsin outbreak. For
example, as xylose is one of the most abundant sugars on Earth,
the genes for xylose utilization might provide a growth
advantage to the outbreak strain in a reservoir, possibly in
the presence of vegetation-derived nutrients. Although it is
tempting to speculate on the possible link between the genomic
features of the outbreak strain and the magnitude and setting of
the outbreak, it is difficult to assess whether the strain has
enhanced virulence in humans. The morbidity and mortality
potentially attributable to E. anophelis infection was

confounded by serious co-morbid conditions existing in
patients affected by this outbreak. This work nevertheless
suggests multiple avenues of research regarding the potential
impact of the outbreak strain’s unique capsule structure, cation
detoxification capacity and sugar metabolism on its
pathogenicity.

The phylogenetic position of Elizabethkingia strains selected
for comparative purposes revealed the need for taxonomic
reassignment for a large number of strains, as expected given
recent taxonomic changes and the difficulty in differentiating
Elizabethkingia species based on phenotypic characteristics.
We found that several strains initially identified as E. meningo-
septica are in fact E. anophelis. E. anophelis can be identified
using matrix-assisted laser desorption ionization - time of flight
(MALDI-TOF) analysis, but requires updated reference spectrum
databases as found here and in a previous work15. This further
indicates that the clinical importance of E. anophelis was
previously underestimated, in agreement with results of a recent
study15. These observations call for more research regarding
E. anophelis ecology, epidemiology and virulence mechanisms.

Our results highlight important temporal and spatial patterns
of the outbreak. They suggest that the bacteria may have been
growing in a contaminated reservoir for nearly one year before
the first infections occurred. No confirmed E. anophelis case
could be retrospectively associated with the outbreak before
November 2015. This suggests occurrence of either silent
propagation resulting in human cases that remained undiagnosed
or diversification of the strain in the unidentified source(s) before
the initial infection of a patient. Further, the notable evolution of
the pathogen during the outbreak, demonstrated by the temporal
accumulation of substitutions, suggests that the source must be
permissive to strain growth. Alternately, a long incubation period
might precede the onset of disease, thus providing a possibility for
the isolates to evolve within the patients, but the lack of diversity
among multiple isolates from a single patient argues against this
possibility. The uniformity of isolates from single patients also
shows that although the outbreak strain has diversified, either
patients were exposed to sources contaminated by a low-diversity

Table 1 | Genomic features associated with the Wisconsin outbreak isolates*.

Name Start End Size
(nt)

Size
(CDS)

Remarkable features of genomic region

Region 1 3,926,747 10,253 10,564 11 Type I restriction/modification system; DNA-invertase
Region 2 292,287 354,501 62,215 62 ICEEa1; metal resistance, hemin receptor precursor; mercury resistance; enterobactin exporter
Region 3 599,595 606,529 6,935 5 Tetratricopeptide repeat protein
Region 4 1,200,465 1,219,016 18,552 13 CTP pyrophosphohydrolase
Region 5 214,2546 216,0415 17,870 17 Putative polysaccharide synthesis clusters (capsule and LPS)
Region 6 217,9815 219,3156 13,342 13 Putative polysaccharide synthesis clusters (capsule and LPS)
Region 7 2,367,659 2,378,760 11,102 8 Putative deoxyribonuclease RhsC
Region 8 2,705,573 2,710,635 5,063 5 Glycosyl hydrolase, beta-glycosidase and beta-glucosidase
Region 9 2,898,750 2,904,987 6,238 5 Xylulose kinase, xylose isomerase, sodium/glucose co-transporter
Region 10 3,097,180 3,118,179 21,000 21 Transposase; FAD-dependent urate hydroxylase (flavoprotein involved in urate degradation to

allantoin)
Region 11 3,477,609 3,483,251 5,643 7 Hypothetical proteins
Region 12 3,506,671 3,521,185 14,515 10 Starch-binding outer membrane protein; Ferrienterobactin receptor precursor; Susd/RagB outer

membrane lipoprotein; Nisin biosynthesis protein NisC; Putative lantibiotic biosynthesis protein
Region 13 3,727,334 3,744,334 17,001 15 Transposase, IS200-like
Deletionw 3,779,205 3,856,342 77,138 75 Multidrug resistance protein MdtE and efflux pump membrane transporter BepE; HopJ type III

effector protein (found in plant pathogens); ABC-2 family transporter protein; Cytochrome c551
peroxidase precursor; H(þ )/Cl(� ) exchange transporter ClcA; Sulfite exporter TauE/SafE;
Bicarbonate transporter BicA; Vitamin B12 transporter BtuB precursor; Putative transporter
YycB; beta-lactamase

CTP, cytidine triphosphate; FAD, flavin adenine dinucleotide; LPS, lipopolysaccharide.
Positions refer to the genome of reference strain CSID 3015183678.
*Present in at least 90% of outbreak genomes and in o20% of the other E. anophelis.
wAbsent in four E. anophelis outbreak genomes (patient 30).
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population, or the colonization and infectious process involves
a bottleneck resulting in single clonal infection, even from a
multi-contaminated source. This work thus provides a striking
additional example of the now well-established power of genomic
sequencing to facilitate critical re-examination of epidemiologic
hypotheses and outbreak patterns36,37.

Outbreak isolates differed by a large number of polymorph-
isms, and the spectrum of mutations among the outbreak isolates
was unlike normal variation among other E. anophelis. Much less
diversity is typically observed during bacterial outbreaks lasting
less than one year37,38. Because the intra-outbreak diversity was
so unusual, we confirmed it by two independent approaches:
gene-by-gene analysis (cgMLST) and mapping-based SNP
analysis. We identified a probable cause of this atypical
mutation pattern: the disruption of the mutY gene coding for
adenine glycosylase. Anecdotally, one strain further developed a
hypermutator phenotype through a disruption of its mutS gene,
which encodes a nucleotide-binding protein involved in the DNA
mismatch repair system.

Beneficial mutations in the outbreak strain could have been
selected under conditions encountered in the reservoir or the
source, or during colonization or infection. Our results strongly
suggest that disruptions of genes encoding proteins involved in
polysaccharide utilization or capsule secretion were positively
selected. Multiple outbreak isolates had alterations in the starch
utilization SusD protein, and/or partial or complete disruption of
either the Wza or Wzc polysaccharide transport proteins. The
success of sub-cluster 6 during the later weeks of the outbreak
might have resulted from the combined effect of complete
disruption of both SusD and Wza. How the disruption of these
functions could result in a competitive advantage for the outbreak
isolates is not immediately apparent. We can speculate that the
loss of capsular polysaccharides may facilitate adhesion and
colonization, lead to reduced antigenicity or allow the bacteria to
disperse more readily due to modified adherence to surfaces.
Regardless, our results depict a dynamic outbreak strain that
continued evolving while the outbreak was ongoing. One notable
outcome of the exceptional genome dynamics of the outbreak
strain was the replacement of sub-cluster 1 by sub-cluster 6 as the
dominant subtype infecting the patients.

It is likely that the mutY phenotype resulted in an increased
adaptive capacity of the outbreak strain. For example, the short-
term advantage conferred by mutator phenotypes was previously
documented in Pseudomonas aeruginosa infections among
patients with cystic fibrosis39. Therefore, the integration of the
ICEEa1 in the mutY gene was likely favoured by hitchhiking with
a positively selected mutation caused by the lack of this repair
mechanism. In the longer run, defective DNA repair genes are
counter-selected because of mutational load or because they
diverge from optimal fitness peaks once the environment is
stabilized40,41. Based on the structure of the integration site, we
hypothesize that the outbreak strain could revert to a functional
mutY sequence by losing the ICEEa1 through excision, thus
recovering a full capacity to repair DNA. This reversible switch of
hyper-mutagenesis might have important implications regarding
the future survival and possible resurgence of the Wisconsin
outbreak strain. We, therefore, urge healthcare and public health
systems to establish a laboratory based surveillance for
Elizabethkingia infections, and to be particularly vigilant for a
possible re-emergence of the unique E. anophelis strain that
caused the Wisconsin outbreak.

Methods
Bacterial isolates. Wisconsin clinical laboratories were asked to submit any
confirmed or suspect Elizabethkingia isolates to Wisconsin State Laboratory of
Hygiene for identification and pulsed-field gel electrophoresis subtyping. Isolates

were initially identified as E. meningoseptica using conventional biochemical assays
and the Bruker MALDI-TOF spectral library. Pulsed-field gel electrophoresis
subtyping using an in-house developed protocol, modified after consultation with
CDC, was used to determine genetic relatedness among all suspect outbreak iso-
lates. All isolates determined to be Elizabethkingia species were submitted to CDC
for further characterization. Upon arrival, bacteria were cultivated on heart infu-
sion agar supplemented with 5% rabbit blood agar at 35 �C. The outbreak strain
isolates were correctly identified as E. anophelis using an expanded MALDI-TOF
spectral library, genome sequencing and optical mapping. Conventional bio-
chemical testing was restricted to oxidase, catalase and Gram stain after the
MALDI-TOF spectral library provided by the CDC Special Bacteriology Reference
Laboratory proved to be a reliable method of identification.

Outbreak isolates (Supplementary Data 1; labelled as Wisconsin outbreak) were
primarily derived from blood (54 isolates), and also from sputum (3), bronchial
wash (3), pleural fluid (1), synovial fluid (1) and other sites (7) from patients
residing in 12 different counties in Southeast Wisconsin, 1 county in Illinois and 1
county in Michigan. Specimen collection dates ranged from November 2015
through March 2016. DNA was extracted using the Zymo Fungal/Bacterial DNA
Microprep Kit (Zymo Research Corporation, Irvine, CA). Libraries were prepared
using the NEBnext Ultra DNA Library Prep Kit for Illumina (New England
Biolabs, Ipswich, MA), and sequence reads were generated with the Illumina MiSeq
Reagent Kit v2 and MiSeq instrument (Illumina, Inc., San Diego, CA).

For comparative purposes, we included seven isolates stored in the Pasteur
Institute’s collection (Collection de l’Institut Pasteur or CIP; Supplementary Data 1,
isolate names starting with CIP). Strains were cultivated on trypticase soy agar at
30 �C. DNA extraction was performed using the MagNA Pure 96 robotic System
with the MagNA Pure 96 DNA and Viral Nucleic Acid small volume kit (Roche
Diagnostics). Libraries were constructed using the Nextera XT DNA Library
Preparation kit (Illumina, Inc., San Diego, CA) and sequenced on a NextSeq-500
instrument using a 2� 150 paired-end protocol.

We also downloaded and included all Elizabethkingia genome sequences
(n¼ 28 as of 28th April 2016) and sequencing read data sets (n¼ 10 as of 28th
April 2016) available in sequence repositories (Supplementary Data 1).

The complete 114 Elizabethkingia isolate data set contained 69 Wisconsin
outbreak isolates from 59 different patients (one to four isolates per patient, see
Supplementary Data 1), 29 historical E. anophelis strains, one strain initially
classified as E. endophytica that has been shown to belong in fact to E. anophelis20,
5 E. meningoseptica strains, and 10 strains that belonged to the E. miricola cluster
(see Results and Supplementary Fig. 1).

Genome assembly and annotation. For each outbreak isolate, an initial assembly
was generated using the Celera De Bruijn graph assembler (Celera Genomics
Workbench v8, Alameda, California). Isolate CSID 3015183678 was selected as
reference for comparative genomics analyses because of its central position in an
optical mapping cluster analysis of early outbreak isolates. Its contigs were ordered
and oriented based on the NcoI optical map to generate a complete circularized
genome, which was confirmed based on a PacBio genome sequence42. Complete
circularized genomes from the other outbreak strain isolates were generated by
mapping reads to the reference genome using CLC Genomics Workbench v8 (CLC
bio, Waltham, MA), and manually aligned using BioEdit43. Indels in the
circularized genomes were located using BioEdit’s Positional Nucleotide Numerical
Summary function.

Assemblies of the seven genomes from the CIP and from publicly available data
sets for which only sequence reads were available (see Supplementary Data 1), were
generated using SPAdes v.3.6.2 (ref. 44) on pre-processed reads, that is, trimming
and clipping with AlienTrimmer v.0.4.0 (ref. 45), sequencing error correction with
Musket v.1.1 (ref. 46), and coverage homogenization with khmer v.1.3 (ref. 47).

To obtain uniform and consistent annotations for core and pan-genome
analyses, all 114 genome sequences were annotated using PROKKA v.1.11 (ref. 48).
The main characteristics for each genome assembly are described in Supplementary
Data 1. However, in discussion of the various loci throughout this paper, the locus
tags from NCBI’s Prokaryotic Genome Annotation Pipeline annotation of
reference isolate CSID 3015183678 are used.

Core-genome identification. We built two core-genomes (that is, sets of ortho-
logous proteins present in all genomes compared). The first one contained the
proteins common to all E. anophelis genomes, while the second one contained the
proteins common to all outbreak genomes. Orthologues were identified as bidir-
ectional best hits, using end-gap free global alignment, between the reference
outbreak proteome (CSID 3015183678) and each of the 98 other E. anophelis
proteomes (for the E. anophelis core-genome) or each of the 68 other outbreak
proteomes (for the outbreak core-genome). Hits with less than 80% similarity in
amino-acid sequence or 420% difference in protein length were discarded.
Because genomes from the same species typically show low levels of genome
rearrangements at these short evolutionary distances, and horizontal gene transfer
is frequent, proteins outside a conserved neighbourhood shared by different strains
are likely to be xenologs or paralogues. Thus, for each of the previous pairwise
comparisons, the list of orthologues was refined using information on the con-
servation of gene neighbourhood. Positional orthologues were defined as bidirec-
tional best hits adjacent to at least four other pairs of bidirectional best hits within a
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neighbourhood of ten genes (five upstream and five downstream). Finally, only the
proteins having positional orthologues in 100% of the compared genomes (all
E. anophelis genomes or all outbreak genomes) were kept. This resulted in a total of
2,530 proteins for the E. anophelis species core-genome, and 3,434 proteins for the
Wisconsin outbreak core-genome (see Supplementary Fig. 5).

cgMLST analysis. For the core-genome MLST (cgMLST) analysis, we used two
cgMLST schemes (sets of genes present in most isolates and selected for geno-
typing): one for the Elizabethkingia genus, and one for the Wisconsin outbreak
isolates. The Elizabethkingia cgMLST scheme used was reported previously2 and
contains 1,546 genes. For the novel, Wisconsin outbreak cgMLST scheme, we
started from the list of positional orthologues of the outbreak genomes (described
above, in the outbreak core-genome part), and added the following conditions to
ensure maximum discriminatory potential for genotyping purposes. First, we used
the protein-coding sequences (coding DNA sequence, or CDS) having positional
orthologues in at least 80% of the outbreak genomes. The use of this lower
threshold (instead of 100% for the core-genome), allowed the use of more markers.
Next, we removed from this list very small CDS (o200 bp) and genes with closely
related paralogues (genes in the same genome with 480% similarity in amino-acid
sequence and o20% difference in protein length). All genes already present in the
Elizabethkingia cgMLST scheme were also discarded. These resulted in a set of
1,862 genes for the Wisconsin cgMLST scheme. These protein-coding genes,
together with the 1,546 genes of the genus cgMLST scheme, constitute a total of
3,408 loci used for genotyping Wisconsin outbreak isolates of E. anophelis. The two
cgMLST schemes are implemented in the Institut Pasteur instance of the BIGSdb
database tool49. Allele sequences and their corresponding numerical designations
are publicly accessible at http://bigsdb.pasteur.fr.

Phylogenetic analysis of cgMLST data. CDSs corresponding to the cgMLST
schemes loci were aligned at the amino-acid level with MAFFT v.7.245 (ref. 50),
back-translated to obtain multiple codon-based sequence alignments, and finally
concatenated to obtain supermatrices of characters. This procedure was performed
for (i) the entire Elizabethkingia sample (114 genomes) with the genus cgMLST
scheme (1,546 loci, 554,224 aligned codons), and (ii) the Wisconsin outbreak
isolates (69 genomes) by adding the dedicated cgMLST scheme to the genus one
(total of 3,408 loci, 1,137,011 aligned codons). For each supermatrix of characters,
the phylogenetic analysis was performed using IQ-TREE51 with the codon
evolutionary model being selected to minimize the BIC criterion, that is,
GYþ FþG4 and GYþ F52 for the Elizabethkingia and for the Wisconsin outbreak
samples, respectively.

Mapping-based SNP analysis. To assess variation of the entire genome including
intergenic regions for phylogenetic analysis of the outbreak isolates, we used a read
mapping approach. All read sets were mapped against the same reference outbreak
genome sequence (CSID 3015183678) as used for core-genome and cgMLST locus
definitions. Read mapping, SNP calling and preliminary filtering were completed
using the RedDog phylogenomics pipeline (https://github.com/katholt/RedDog)53.
Because we were primarily interested in phylogenetic analysis of the conserved
regions of the Elizabethkingia genomes, SNP sites at which mapping and base
calling could be confidently conducted in o95% of isolates were excluded from
further analysis (most of these were located in a 77 kbp region that was deleted in
four isolates that were derived from the same patient), as were SNPs located in
either putative phage-associated or repeated regions of the reference genome, as
detected by Phaster54 or the nucmer algorithm of MUMmer v3 (ref. 55),
respectively. We initially identified 467 SNP loci among the 69 outbreak isolates,
and generated an alignment of concatenated SNP alleles at these loci. The spatial
distribution of SNPs was visually inspected using Gingr56. A B2 kbp cluster of
SNPs was identified (density 40.1, compared with density o0.01 across the rest of
the genome), affecting the protease A2T74_14135 in a subset of isolates. Spatially
clustered SNPs are typically introduced together via homologous recombination
and thus reflect horizontal rather than vertical evolution; hence, this region was
excluded from phylogenetic analysis. This yielded a final set of 374 SNPs
representing changes that arose within the population of outbreak isolates, within a
total core-genome of 3,571,924 bp in size (90.9% of the reference sequence).

The concatenated alignment of these SNP alleles was used to generate a
maximum likelihood phylogenetic tree for the outbreak isolates using IQ-TREE51

(see Supplementary Fig. 2, Supplementary Method 3.2 and Supplementary Data 7).
SNPs were mapped back to the tree using FastML v3.1 and the details of each
substitution mutation (branch, ancestral allele, derived allele) were extracted from
the marginal sequences output file (Supplementary Data 2). The coding effects of
the SNPs, inferred using the annotated reference genome, was defined using the
parseSNPtable.py script in RedDog and analysed using R.

BEAST analyses. Date estimates of all nodes were derived using BEAST v.2.3.1
(refs 57,58) on the cgMLST supermatrix of aligned nucleotide characters
(Supplementary Data 8) with the GTRþG4þ I nucleotide evolutionary model
(one per codon position) and lognormal relaxed-clock model. Constant population
size was selected as a tree prior, and BEAST was run with 108 chains in order to
obtain large effective sampling size values. For comparison, the BEAST analysis was

also conducted on the SNP alignment (Supplementary Data 9), using a HKY
substitution model and a lognormal relaxed-clock model with constant population
size (Supplementary Method 3.3). The significance of the temporal signal in each
analysis was assessed using the tip-date randomization technique59–61 based on 30
samples with reshuffled dates.

Pan-genome analysis. Pan-genomes were built by clustering homologous CDSs
into families. We determined the lists of putative homologs between pairs of
genomes with BLASTP v.2.0 and used the E-values (o10� 4) to perform single-
linkage clustering with SiLiX v.1.2 (ref. 62). A CDS was included in a family if it
was homologous to at least one CDS already in the family. SiLiX parameters were
set to consider two CDSs as homologs if their aligned part had at least 60%
(Elizabethkingia genus) or 80% (E. anophelis) sequence identity and included
480% of the smallest CDS. The pan-genomes of Elizabethkingia and of the
outbreak isolates were determined independently.

Detection of capsular gene clusters. To identify capsular gene clusters, we used
our previous approach2. In brief, we performed a keyword search of the Pfam
database v.29.0 (http://pfam.xfam.org) for protein profiles involved in capsular
polysaccharide production such as glycosyl transferases, ABC transporters, Wzx
flippase and Wzy polymerase. We then performed a search of these profiles in
Elizabethkingia genomes using HMMER3 v.3.1b1 (ref. 63) with the E-values
o10� 4 and a coverage threshold of 50% of the protein. After the identification of a
putative capsular cluster across all genomes, several proteins within the cluster did
not match any of the previously selected protein profiles. For completeness, we
searched these proteins for known functional domains against the PFAM database
using the command hmmscan included in the software HMMER3, and recorded
their family and/or annotation (see Supplementary Fig. 7, and regions 5 and 6 of
Supplementary Data 3).

Antimicrobial resistance and virulence-associated genes. Acquired anti-
microbial resistance genes were detected using HMMER3 v.3.1b1 to screen genome
sequences against the ResFams (Core v.1.2), a curated database of antimicrobial
resistance protein families and associated profile hidden Markov models with the
cut_ga option64 (Supplementary Data 4). Virulence-associated genes were
identified by screening genome sequences against the VFDB 2016 (ref. 65) using
BLASTP v.2.0 (minimum 40% identity with E-value o10� 5), as in (ref. 5)
(Supplementary Data 5).

Detection of mobile genetic elements. ICEs were identified and classified using
MacSyFinder v.1.0.2 (ref. 66) with TXSScan profiles67. CRISPR-Cas systems were
searched using MacSyFinder v.1.0.2 with Cas-Finder profiles66 and CRISPR-
Finder68, with default parameters. Integrons were searched using IntegronFinder
v.1.4 with –local_max option69, and prophages using VirSorter v.1.0.3 on
RefSeqDB only70 and PhageFinder v.4.6 (ref. 71).

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was
performed by Kirby Bauer disk diffusion method (http://www.eucast.org/filead-
min/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Break-
point_table.pdf)72. As no interpretative criteria exist for Elizabethkingia, results
were interpreted according to European Committee on Antimicrobial
Susceptibility Testing (EUCAST) criteria for Pseudomonas spp. We tested a broad
range of antibiotics: beta-lactams (piperacillin, cefotaxime, ceftazidime, imipenem,
ampicillin, amoxicillin, amoxicillin-clavulanic acid, cephalexin, cefuroxime,
cefoxitin, cefepime, cefoperazone-sulbactam, piperacillin-tazobactam),
aminoglycosides (streptomycin, amikacin, isepamycin, tobramycin, gentamicin,
kanamycin), quinolones (nalidixic acid, ciprofloxacin, pefloxacin, levofloxacin,
moxifloxacin), macrolides (erythromycin, clarithromycin, spiramycin,
azithromycin) and other classes (chloramphenicol, sulfamethoxazole-
trimethoprim, fosfomycin, rifampicin, linezolid, tetracyclin, vancomycin and
tigecyclin).

Data availability. Reads for all outbreak isolates and complete genome sequences
of outbreak isolates CSID 3015183678, CSID 3015183684, CSID 3000521207 and
CSID 3015183681 were submitted to NCBI, associated with project ID
PRJNA315668. Reads and draft genome sequences for strains Po0527107 and
V0378064 (ref. 2) were submitted to the European Nucleotide Archive and are
available under their respective project IDs, PRJEB5243 and PRJEB5242. Reads for
strains CIP 78.9, CIP 60.59, CIP 104057, CIP 108654, CIP 79.29, CIP 80.33 and
CIP 108653 were submitted to the European Nucleotide Archive and are available
under project ID PRJEB14302. In addition, every genome sequence assembled
during this study is available in the Institut Pasteur instance of the BIGSdb
database tool dedicated to Elizabethkingia (http://bigsdb.web.pasteur.fr/
elizabethkingia). Supplementary data, tables and high resolution figures are avail-
able through FigShare at this link (https://doi.org/10.6084/m9.figshar-
e.c.3674146.v5). We also created a project on microreact, available at this link:
https://microreact.org/project/SyaeGCjvg.
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112 CHAPTER 6. Elizabethkingia anophelis OUTBREAK IN WISCONSIN

Supplementary figure 8 : Circular representation of gene conservation between the reference outbreak
isolate E. anophelis CSID 3015183678 and other E. anophelis genomes. Circles are numbered from 1
(innermost circle) to 26 (outermost circle). Circle 1: scale of the CSID 3015183678 genome. Circle
2: GC skew (positive GC skew, green; negative GC skew, violet). Circle 3: G+C content (above
average, external peaks; below average, internal peaks). Circle 4: all Wisconsin outbreak isolates
except the 4 isolates in circle 5. Circle 5: Wisconsin outbreak isolates CSID 3000515962, CSID
3000521207, CSID 3000521208, CSID 3000521210, which are deleted for a 77 kb region (Deletion,
last circle). Circle 6: strain GTC09686. Circle 7: strain PW2809. Circle 8: strain 0422. Circle 9:
strain CIP60.59. Circle 10: strain FDAARGOS_132. Circle 11: strain CIP104057. Circle 12: strain
NCTC10588. Circle 13: strain R26. Circle 14: strain 12012-2PRCM. Circle 15: strain E27107.
Circle 16: strain NUHP1. Circle 17: strain NUH4. Circle 18: strain NUH6. Circle 19: strain
FMS-007. Circle 20: strain CIP78.9. Circle 21: strain JM87. Circle 22: strain PW2810. Circle
23: strain B2D. Circle 24: strain GTC10754. Circle 25: strain 502. Circle 26: outbreak-associated
genomic regions 1 to 13, and deletion. This representation was performed using BRIG with options:
blastn -F F -e 0.001 –W 10.
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Supplementary figure 10 : Circular representation of the integrative and conjugative element ICEEa1
and gene conservation and ICE localization among representative E. anophelis genomes. (A) ICEEa1
content among representative genomes. Circles are numbered from 1 (innermost circle) to 6 (outer-
most circle). The protein coding genes of ICEEa1 in the reference genome CSID 3015183678 (Circle
6) are compared to: Circle 1: Singapore outbreak strain NUH4; Circle 2: Singapore outbreak strains
NUH1, NUHP1, NUHP2 and NUHP3 (all identical). Circle 3: strain NCTC 10588; Circle 4: strain
CIP60.59; Circle 5: the 68 other Wisconsin outbreak isolates. On circle 6, genes of the conjugative
system are colored in blue, those with a known function in black, and those with unknown function
in gray. The figure was obtained using BRIG with option: “blastp –evalue 0.001 –seg no”, and
representing, for each genome, only the proteins resulting from bidirectional best hit (BBH) with
80% similarity or more, and showing synteny (at least 4 syntenic proteins among a radius of 5)
with the reference ICE proteins. Identity percentage in the legend is given for deduced amino acid
sequences. (B) Relative position on the reference genome of the ICEEa1 element in all the strains
that harbor it (same color code as in (A)).
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7 THE DIVERSITY OF E. coli SPECIES

A collaboration with an Australian team gave us the opportunity to analyse the genomic
diversity of E. coli species, thanks to a dataset of over one thousand of highly diverse envi-
ronmental and host-associated strains. I participated to the very beginning (mainly consisting
in the preparation of the dataset) and the very end (uploading sequences on ENA platform)
of this study.

The first step was the curation of the original dataset, which was made of genomes from
many different sequencing, assembling and annotation methods, in order to provide more
consistency. This was done thanks to what became the annotate module of PanACoTA,
which includes a quality control step before the uniform annotation.

Next steps were pan, core and persistent genome computations, which were also done
thanks to the embryo of PanACoTA. Before this study, we had tested our pangenome method
under construction on datasets of several hundreds of genomes. This study gave us the
opportunity to check the behavior of the method at a larger scale: a dataset of thousands of
genomes. The test was conclusive: we did not have difficulties in generating the pangenome.

As the core genome of this dataset was too small to infer a reliable phylogeny, we used the
persistent genome. Performing MSA on persistent families raised questions on how to handle
genomes without any gene, or with several genes in the family. This led to the definition of
three types of persistent genomes, now implemented in corepers module of PanACoTA (see
chapter 5): strict, mixed and multi persistent [146]. The align module was also adapted to
these new definitions.
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Abstract

Escherichia coli is mostly a commensal of birds and mammals, including humans, where it

can act as an opportunistic pathogen. It is also found in water and sediments. We investi-

gated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates repre-

sentative of the phylogenetic diversity of more than 5,000 isolates from the Australian

continent. Since many previous studies focused on clinical isolates, we investigated mostly

other isolates originating from humans, poultry, wild animals and water. These strains repre-

sent the species genetic diversity and reveal widespread associations between phylogroups

and isolation sources. The analysis of strains from the same sequence types revealed very

rapid change of gene repertoires in the very early stages of divergence, driven by the acqui-

sition of many different types of mobile genetic elements. These elements also lead to rapid

variations in genome size, even if few of their genes rise to high frequency in the species.

Variations in genome size are associated with phylogroup and isolation sources, but the lat-

ter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow

reinforces the association of certain genetic backgrounds with specific habitats. After a

while, the divergence of gene repertoires becomes linear with phylogenetic distance, pre-

sumably reflecting the continuous turnover of mobile element and the occasional acquisition

of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest

rates of gene repertoire diversification and fewer but more diverse mobile genetic elements.

This suggests that smaller genomes are associated with higher, not lower, turnover of

genetic information. Many of these genomes are from freshwater isolates and have peculiar

traits, including a specific capsule, suggesting adaptation to this environment. Altogether,

these data contribute to explain why epidemiological clones tend to emerge from specific

phylogenetic groups in the presence of pervasive horizontal gene transfer across the

species.
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Author summary

Previous large scale studies on the evolution of E. coli focused on clinical isolates empha-

sizing virulence and antibiotic resistance in medically important lineages. Yet, most E. coli
strains are either human commensals or not associated with humans at all. Here, we ana-

lyzed a large collection of non-clinical isolates of the species to assess the mechanisms of

gene repertoire diversification in the light of isolation sources and phylogeny. We show

that gene repertoires evolve so rapidly by the high turnover of mobile genetic elements

that epidemiologically indistinguishable strains can be phenotypically extremely heteroge-

neous, illustrating the velocity of bacterial adaptation and the importance of accounting

for the information on the whole genome at the epidemiological scale. Phylogeny and

habitat shape the genetic diversification of E. coli to similar extents. Surprisingly, freshwa-

ter strains seem specifically adapted to this environment, breaking the paradigm that E.

coli environmental isolates are systematically fecal contaminations. As a consequence, the

evolution of this species is also shaped by environmental habitats, and it may diversify by

acquiring genes and mobile elements from environmental bacteria (and not just from gut

bacteria). This may facilitate the acquisition of virulence factors and antibiotic resistance

in the strains that become pathogenic.

Introduction

The integration of epidemiology and genomics has greatly contributed to our understanding

of the population genetics of epidemic clones of pathogenic bacteria. However, the forces driv-

ing the emergence of these lineages in species where most clades are dominated by commensal

or environmental strains remain unclear. Escherichia coli is a commensal of the gut microbiota

of mammals and birds (primary habitat) [1–3], and has been found in host-independent sec-

ondary habitats including soil, sediments, and water [4–7]. Yet, some E. coli strains produce

virulence factors endowing them with the ability to cause a broad range of intestinal or extra-

intestinal diseases (pathotypes) in humans and domestic animals [8–13]. Many of these are

becoming resistant to multiple antibiotics at a worrisome pace [14, 15].

Studies on E. coli were seminal in the development of bacterial population genetics [16].

They showed moderate levels of recombination in the species [3, 17–19], and a strong phyloge-

netic structure with eight main phylogroups, among which four (A, B1, B2 and D) represent

the majority of the strains and four others (C, E, F and G) are rarer [20–22]. Strains differ in

their phenotypic and genotypic characteristics within and across phylogroups [2, 3, 23, 24],

and their isolation frequency depends on factors such as host species, diet, sex, age [25–27],

body mass [28], but also climate [29, 30], and geographic location [31]. Strains of phylogroups

A and B1 appear to be more generalists since they can be isolated from all vertebrates [2] and

are often isolated from secondary habitats [7, 32–35]. E. coli strains able to survive and persist

in water environments usually belong to the B1 phylogroup [7, 33, 34]. In contrast, the extrain-

testinal pathogenic strains usually belong to phylogroups B2 and D [36–38]. Genome size also

differs among phylogroups, with A and B1 strains having smaller genomes than B2 or D

strains [23].

The phylogenetic vicinity of geographically remote E. coli isolates, and the co-isolation of

phylogenetically distant strains, supports the hypothesis that strains circulate rapidly across

the globe [39, 40]. The genome of the species is also remarkably plastic, since only about half of

the average genome is present across most strains of the species and the pan-genome vastly
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exceeds the size of the typical genome [41–44]. Interestingly, the rapid circulation of strains

and the high plasticity of their genomes have not erased the associations of certain clades with

certain isolation sources. These associations might reflect local adaptation to the isolation habi-

tat [16, 45], which would suggest frequent genetic interactions between the novel adaptive

changes and the strains’ genomic background.

Understanding how the evolution of gene repertoires is shaped by population structure and

habitats requires large-scale comparative genomics of samples with diverse sources of isolation

representative of natural populations of E. coli. Most of the efforts of genome sequencing have

been devoted to study pathogenic lineages and very few genomic data are available for com-

mensal strains, especially in wild animals, and environmental strains. Here, we analysed the

genomes of a large collection of E. coli strains collected across many human, domestic and

wild animal and environmental sources in different geographic locations from the Australian

continent. This collection is dominated by non-clinical isolates, corresponding to the main

habitats of the species. We sought to understand the dynamics of the evolution of gene reper-

toires and how it was driven by mobile genetic elements. The analysis of the isolation sources

in the light of phylogenetic structure and genome variation suggests that rates and mechanisms

of adaptation vary with the habitat and the phylogenomic background. This contributes to

explain why known epidemiological clones of the species emerge from specific phylogenetic

groups, even though virulence strongly depends on the acquisition of virulence factors by hori-

zontal gene transfer.

Results

The large and little known pan-genome of E. coli
We sequenced and annotated the genomes of 1,294 E. coli sensu stricto strains selected from

more than 3,300 non-human vertebrate hosts, 1,000 humans and 800 environmental samples

between 1993 and 2015, chosen to represent the phylogenetic diversity of the species (Materials

and Methods, Fig 1A, S1 Text). All samples were collected by a single team, spanning a 20

year-period, from different regions in a single isolated continent (Australia). The origin of

each strain was accurately characterized and the genomes were uniformly annotated and ana-

lyzed using the same bioinformatics processes. The strains were isolated from humans, domes-

ticated and wild animals, representing the primary habitat of E. coli, and from freshwater,

representing its secondary habitat [3]. Less than 22% of the samples were recovered from clini-

cal situations. A series of controls confirmed that the sequences were of high quality and con-

tained the known essential genes (S2 Text). The genomes varied widely in size from 4.2 to 6.0

Mb (average 5 Mb), but had similar densities of protein-coding sequences (~87%) and GC

content (50.6%, S1 Fig and S1 Table).

The pan-genome contains 75,890 gene families, which is over 16 times the average genome

size. The core genome is very small (295 genes), a feature typical of comparisons involving

many genomes. As a result, we have opted to focus, whenever possible, on the persistent

genome. This corresponds to gene families present in at least 99% of the genomes of the sam-

ple. This provides some flexibility to account for sequencing or assembling artifacts and to

account for the odd genome that may have recently lost a few core genes. The pan-genome

families were classified as part of the persistent genome (3%), singletons (44%, present in a sin-

gle genome), or accessory genome (the remaining) (Fig 1B, S2 Fig). The persistent gene families

are a tiny fraction of the pan-genome, but account for half of the average genome (Fig 1B).

They were used to build a robust phylogeny of the species (S3 Fig), which was rooted using

genomes from other species in the genus (S4 Fig). In contrast, singletons are almost half of the

gene families of the pan-genome, but less than 1% of the average genome. As a consequence,

PLOS GENETICS E. coli genetic diversification
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the pan-genome is open, as measured by the fit to a Heaps’ law model [46], and increases on

average by ~26 protein coding genes with the inclusion of a new genome (S2 Fig). Singletons

are smaller than the other genes and tend to be located at the edge of contigs (44%). Hence,

some of these singletons may result from sequencing and assembly artifacts (S3 Text and S5

Fig). When all the singletons were excluded, the pan-genome still remained open (S2 Fig).

Fig 1. The genetic diversity of Australian E. coli. A. Distribution of isolates per region and per source. B. The pan-genome is composed of 75,890 gene families,

of which 33,705 are singletons (in green, present in a single genome), 2,486 persistent (in gold, present in at least 99% of genomes), the remaining being accessory

(in grey). 29,657 gene families (39% of the pan-genome) were related to mobile genetic elements (MGE). C. Functional EggNOG categories of pan-genome gene

families. The ratio observed/expected (O/E) for the frequency of non-supervised orthologous groups (NOGs, shown as capitalized letters) is reported for all

comparisons with a color code ranging from blue (under-representation) to red (over-representation). The level of significance of each Fisher’s exact test was

indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed on each 2�2 contingency table. Gene families lacking matches to the EggNOG

functional categories were discarded. D. Percentage of the different EggNOG categories (see insert) in the persistent, accessory and singleton gene families and

among genes associated to MGE.

https://doi.org/10.1371/journal.pgen.1008866.g001
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To obtain a better understanding of the functional classifications of genes in the pan-

genome, we annotated them using the EggNOG categories (Fig 1C). As expected, the persis-

tent genome over-represented typical housekeeping functions, whereas the accessory genome

over-represented cell motility, intracellular trafficking and secretion, carbohydrate transport

and metabolism and secondary metabolism. Singletons over-represented defense systems and

genes related with the cell envelope. Most singletons (80%) and accessory (74%) gene families,

but also a surprisingly high number of persistent gene families (24%), lacked a clear functional

assignment as given by the EggNOG database [47] (Fig 1D). Hence, we are still ignorant of the

function, or even the existence, of many genes of the species.

Very rapid initial divergence of gene repertoires becomes linear with time

Traditional epidemiological studies of E. coli focused on multilocus sequence types (ST) and/

or the O-serogroups and H-types (the O:H combination corresponding to the serotype). These

epidemiological units regroup strains in terms of sequence similarity in a few persistent genes

(ST) or in key traits related to the cell envelope (the LPS structure for the O-group and the fla-

gellum for the H-type). However, it is unclear if these types systematically regroup strains with

similar gene repertoires. We identified 442 distinct STs, of which 61% are represented by a sin-

gle strain. A few STs are very abundant in our dataset: 20 include more than 10 genomes each

and encompass 40% of the dataset. STs are usually regarded as very recently diverged strains.

Indeed, the intra-ST genetic distances are 10-times smaller those between the other pairs of

genomes (0.003 vs. 0.03, Fig 2A). Yet, 6% of intra-ST comparisons have more than 0.01 substi-

tutions per position showing extensive genetic diversity at the genome level (Fig 2B). Some O-

groups are abundant, e.g., O8, O2 and O1 (each present in >50 genomes) but almost half of

the groups occur in a single genome and 43% of the strains could not be assigned an O-group

(even when the wzm/wzt and wzx/wzy genes were present). In contrast, most H-types were

previously known (87%). We found 311 O:H serotypes among the 726 typeable genomes. Of

these, 64% are present in only one genome, 17% are in multiple STs and 7% in multiple phy-

logroups (e.g. O8:H10). Conversely, half of the 95 STs with more than one genome have multi-

ple O:H combinations, e.g. ST10 has 24. These results confirm that surface antigens and their

combinations change quickly and are homoplasic. They also show significant sequence diver-

gence in persistent genes within STs.

We then aimed at assessing if genomes within STs also show extensive variation of gene

repertoires. For this, we computed the gene repertoire relatedness (GRR) between genomes

(see Methods). Genes from the same gene family are on average 98.3% identical (S2 Fig). Since

the threshold to be part of the family is 80% identity, rapid sequence evolution will very rarely

lead a gene to be classed apart from its orthologs. As a result, variations in GRR result from

gain and loss of genes, not sequence divergence. The GRR values decrease very rapidly with

patristic distance (the sum of branch lengths in the path between two genomes in the phyloge-

netic tree) for closely related strains, as revealed by spline fits (Fig 2A). Similar results were

observed when removing singletons, which only account for on average 0.5% of the genes in

genomes, suggesting that this result is not due to annotation or sequencing errors (S6 Fig). As

a consequence, 85% of the intra-ST comparisons have a GRR lower than 95% (corresponding

to ~235 gene differences per genome pair), and some as little as 77% (Fig 2C). These results

reveal that even genomes of the same ST can differ substantially in terms of their gene

repertoires.

To check if the dataset is representative of the species and can be used to assess its diversity,

we compared it with the ECOR collection [48] and the complete genomes available in RefSeq

(Materials). All datasets had similar nucleotide diversity (S7A Fig and S1 Table). Using rarefied
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datasets, to compare sets of same size, ours had the largest pan-genome, partly because of a

larger number of singletons (S7 Fig). Our dataset also had the highest α-diversity for the three

typing schemes (STs, O-groups, H-types, S1 Table). Since the gene repertoire diversity of E.

coli in Australia is at least as high as that of ECOR and RefSeq, we studied the variation in gene

repertoires beyond the intra-ST level. After the rapid initial drop in GRR described above, the

values of this variable decrease linearly with phylogenetic distances (Fig 2A). The average val-

ues of GRR given by the regression vary between 90% for very close genomes and 80% for the

most distant ones. The variance around the regression line is constant and a spline fit shows

few deviations around the regression line. This is consistent with a model where initial diver-

gence in gene repertoires is driven by rapid turnover of novel genes. After this initial process,

divergence in gene repertoires increases linearly with patristic distance.

Rates of gene repertoire diversification vary across phylogroups

We used the species phylogeny to study the associations between phylogroups and genetic

diversity (Fig 3A). The tree showed seven main phylogenetic groups very clearly separated by

nodes with 100% bootstrap support. The 17 phylogroup C strains were all included within the

B1 phylogroup and were thus grouped with the latter in this study. For the rest, the analysis

showed a good correspondence between the assignment into the known phylogroups—A, B1,

B2, D, E, F, and G–and the different clades of the species tree. The tree splits the species ini-

tially in a clade with phylogroup B2, F and G on one side and the remaining on the other side.

In line with the literature [40], four major phylogroups were very abundant—A (24% of the

dataset), B1 (24%), B2 (25%) and D (14%)–whereas the others were rarer. The nucleotide

Fig 2. Evolution of Gene Repertoire Relatedness (GRR) with time. A. [Top] Violin plots of the patristic distance computed between pairs of intra-ST (in blue),

inter-ST (in purple), and inter-phylogroup (in water green) genomes. [Bottom] Association between GRR and the patristic distance across pairs of genomes. Due to

the large number of comparisons (points), we divided the plot area in regular hexagons. Color intensity is proportional to the number of cases (count) in each

hexagon. The linear fit (black solid line, linear model (lm)) was computed for the entire dataset (1,294 genomes, Y = 90.2–75.7�X, R2 = 0.49, P<10−4). The spline fit

(generalized additive model (gam)) was computed for the whole (in black dashed line) or the intra-ST (in blue solid line) comparisons. There was a significant

negative correlation between GRR and the patristic distance (Spearman’s rho = -0.67, P<10−4). B. Stacked bar plot of the number of intra-ST (in blue) and inter-ST

(in purple) comparisons at short evolutionary scales. C. Violin plots of the intra-ST, inter-ST and inter-phylogroup GRR (%). (A-B-C)All the distributions were

significantly different (Wilcoxon test, P<10−4), the same color code was used and described in panel A.

https://doi.org/10.1371/journal.pgen.1008866.g002
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diversity of the phylogroups is very dependent on their phylogenetic structure, since some

clades have more closely related clusters of strains than others (S8 Fig). Nevertheless, nucleo-

tide diversity, patristic distances, and Mash distances revealed similar trends: the phylogroup

D exhibited the highest genetic diversity, followed by F, E, and then by the most abundant

groups–A, B1 and B2 –which all have similar levels of diversity (S8 Fig). The phylogroup G

was the least diverse, but it is also poorly represented in our dataset (33 genomes from three

STs). Overall, genetic diversity is proportional to the depth of the phylogroup, i.e. the average

tip-to-MRCA distance, except for phylogroup F which is more diverse than expected (Fig 3B).

These results suggest that genetic diversity varies between phylogroups and that within phy-

logroups it is strongly affected by the time of divergence since the most recent common

ancestor.

The sets of genomes of each phylogroup have large and open pan-genomes (S9 Fig and S2

Table). The sizes of these pan-genomes differ widely across phylogroups and are partly corre-

lated to the number of genomes in the phylogroup, explaining why the phylogroup G has the

smallest pan-genome (S9 Fig). To control for the effect of sample size, we computed pan-

Fig 3. The genetic and ecological structure of Australian E. coli population. A. Phylogenetic tree of E. coli rooted using the genomes of other Escherichia (only shown

in S4 Fig for clarity). From the inside to the outside: the 7 main phylogroups (arcs covering the tree), the source of each genome (seven rows), and the size of the genomes

(outer row, see insert legend). B. Association between the nucleotide diversity per site (Pi, average and s.e) within phylogroup and their distance to their most recent

common ancestor (MRCA). In each pylogroup, we averaged the nucleotide diversity (π) obtained for 112 core-genes, and the length branches (from tip-to-MRCA) of the

species tree. C. Association between the rarefied pan- and persistent-genomes in each phylogroup. We used 1,000 permutations (genomes orderings) of 50 randomly

selected genomes (rarefied datasets) to compute the pan- and the persistent-genomes in each phylogroup (ignoring the G group), and then averaged the results. D.

Principal component analysis of the pan-genome (matrix of presence/absence of each gene family across genomes). Each dot corresponds to a genome in the two first

principal components (PC). The ellipse (90%) and barycenter of each phylogroup are reported. The percentages in the axis labels correspond to the fraction of variation

explained by the PC. All panels follow the color code of A.

https://doi.org/10.1371/journal.pgen.1008866.g003
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genomes from 1,000 random samples of 50 genomes for each phylogroup (ignoring the few

strains of the G phylogroup, Fig 3C and S2 Table). This revealed larger pan-genomes for phy-

logroups A, D, and B1 followed by E, B2 and F. Intriguingly, the larger the pan-genome of a

phylogroup, the smaller the fraction of its genes that are part of the persistent genome (Fig

3C). This suggests that differences of pan-genome sizes across phylogroups are caused by dif-

ferent rates of gene turnover, which seems to affect, at different extent, both genes present in

most strains and genes present in very few.

To quantify the similarities in gene repertoires, we analyzed the GRR values between phy-

logroups. The smallest values were observed when comparing B2 strains with the rest (S10A

Fig). Accordingly, a principal component analysis (PCA) of the presence/absence matrix of

the pan-genome shows a first axis (accounting for 23.6% of the variance) clearly separating the

B2 from the other phylogroups (Fig 3D). This shows that gene repertoires of B2 strains are the

most distinct from the other major phylogroups. The large phylogroups A and B1 are very

close in the GRR and in the PCA analyses, showing high similarity in terms of gene repertoires.

Interestingly, the phylogroups D and F, which are not close in the species tree, cluster together

in terms of gene repertoires. This may explain the conflicting results of our phylogenetic analy-

sis, which places with high confidence the phylogroup D in the same partition of A and B1,

and works based on ancestral gene repertoires that place them as a basal group in the tree (not

far from F and G) [49]. Hence, phylogroups differ in terms of their gene repertoires and in

their rates of genetic diversification, but while some are quite similar (A and B1), others (B2)

stand aside from the remaining phylogroups.

Mobile genetic elements drive rapid initial turnover of gene repertoires

Different mechanisms can drive the rapid initial diversification of gene repertoires. Mobile

genetic elements encoding the mechanisms for transmission between genomes (using virions

or conjugation) or within genomes (insertion sequences, integron cassettes) are known to

transfer at high rates and be rapidly lost [50–52]. We detected prophages using VirSorter [53],

plasmids using PlaScope [54], and conjugative systems using ConjScan [55] (S11–S13 Figs).

These analyses have the caveat that some mobile elements may be split in different contigs,

resulting in missed and/or artificially split elements. This is more frequent in the case of plas-

mids, since they tend to have many repeated elements [56]. Only two genomes lacked identifi-

able prophages and only 9% lacked plasmid contigs. We identified 929 conjugative systems,

with some genomes containing up to seven, most often of type MPFF, the type present in the F

plasmid. On average, prophages accounted for 5% and plasmids for 3% of the genomes (Fig

4A). Together they account for more than a third of the pan-genomes of each phylogroup. We

also searched for elements capable of mobilizing genes within genomes: Insertion Sequences,

with ISfinder [57], and Integrons, with IntegronFinder [58]. Even if ISs are often lost during

sequence assembly, some genomes had up to 152 identifiable ISs representing ~1% of the

genome (Fig 4A and S13 Fig). A fourth of the ISs were in plasmids and very few were within

prophages. We found integron integrases in 14% of the genomes, usually in a single copy. It is

interesting to note that even if the frequency of each type of MGE varies across strains, each of

them is strongly correlated with the frequency of the other elements (Fig 4B). Hence, the typi-

cal E. coli genome has at least one transposable element, a prophage and a plasmid, the key

tools to move genes between and within genomes. This means that when genomes are

enriched in one type of MGE, they tend to get simultaneously enriched in the remaining types

of MGEs.

What is the effect of these MGEs in the dynamics of E. coli genomes? First, none of the

MGEs gene families is present in more than 99% of the strains (i.e. none qualifies as persistent

PLOS GENETICS E. coli genetic diversification

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008866 June 12, 2020 8 / 43

123



genes) at the species or at the phylogroup level. Instead, they are systematically at low fre-

quency in the pan-genome, even at the phylogroup level. Hence, these genes rarely rise to high

frequency in the species. Second, when we inferred the events of gene gain and loss in the spe-

cies tree using Count (see Methods), we found that half of the recent gene acquisitions, i.e.,

those that took place at the level of the terminal branches of the species tree, were MGE genes.

Conversely, the acquisitions at the terminal branches correspond to 40% of the MGE genes of

the species. Third, the acquisition of MGEs affects the size of the genome. Those identified in

this study account for ~8% of the genome size (Fig 4C and S14 Fig), and the number of genes

associated with MGEs is strongly correlated with genome size for every type of element (Fig

4B). Fourth, MGEs increase the variability of genome sizes, since removing them decreases the

coefficient of variation of the size of gene repertoires by 34% (expected increase of 4% under a

Poisson model, Fig 4C). Fifth, the increase in variance in terms of genome size caused by

MGEs is amplified by their rapid loss after acquisition (short persistence times in the genome).

No MGE-associated gene family is sufficiently frequent to be part of the persistent genome,

and most (85%) are present in less than 1% of the genomes. For example, 41% of the IS gene

families are singletons (S14 Fig).

These results are consistent with the analysis of the variation in GRR with patristic distance,

where some genes have extremely rapid turnover. Here we show that many of them are MGEs.

The lack of fixation of MGE-associated genes suggests that the long-term cost of MGEs them-

selves is significant and/or their contribution to fitness is low (or temporary). But even if most

genes associated with MGEs are eventually lost, their cargo genes may be adaptive, remain in

the genomes for long periods and eventually become fixed. In conclusion, MGEs have a key

role in the initial rapid turnover of genes in genomes because they are aquired at high rates,

even if most of their genes are eventually lost.

The smallest genomes have the highest gene turnover

Is the distribution of specific MGEs and their rates of transfer strongly associated with specific

traits of genomes, like their phylogroup or isolation source? And if so, is this leading to

Fig 4. Frequency of mobile genetic elements (MGEs). A. Percentage of genes associated with MGEs per genome (sum in first graph). B. Spearman’s rank

correlation matrix between the number of genes related to MGE and the genome size (in Mb and number of genes). The shades of the grayscale and the size of the

circle are proportional to the correlation coefficients. All values are significantly positive (P<10−4). C. Differences in genome size when MGE genes are included

or removed.

https://doi.org/10.1371/journal.pgen.1008866.g004
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preferential paths of gene transfer within the species? It has been suggested that homologous

recombination is much rarer between than within phylogroups [18]. To test if this applies to

the transfer of MGEs, we analyzed the distribution of the pan-genome gene families that are

part of MGEs (excluding singletons, for the separate analysis of prophages and plasmids, see

S15 Fig). There is a small but significant tendency of gene families of MGEs to cluster in a sin-

gle phylogroup (Z-score>20, see Methods). However, 75% of the phage and plasmid gene fam-

ilies were found in more than one phylogroup and 8% were found in all phylogroups (Fig 5A).

Hence, MGEs are key players in genome diversification at the micro-evolutionary scale. Above

we showed that they were acquired independently multiple times and most of them have just

arrived in their host genome. We now show that they are often transferred across

phylogroups.

One might expect more genetic diversity in phylogroups with more MGEs and larger

genomes. In apparent agreement with this hypothesis, genomes from phylogroups A and B1

are significantly smaller than the others (Fig 5B, col 1, ANOM tests, P<10−3) and have fewer

MGE-associated genes (Fig 5B, col 2, ANOM tests, P<0.05). However, these phylogroups also

have the largest diversity of gene families associated to MGEs (Fig 5B, col 3, in both the full

and rarefied datasets, both ANOM tests, P<10−3), i.e. they encode fewer but more diverse

MGEs. Furthermore, the phylogroups A and B1, in spite of having among the most recent

common ancestors of the phylogroups (Fig 3B), have the largest pan-genomes, the smallest

persistent genomes, and the largest diversity of STs, and serotypes (Fig 5B, in both the full and

rarefied datasets, cols 4,5,9,10, ANOM tests, P<10−3). This intriguing pattern suggests that the

smallest genomes have the highest turnover of genes, not the lower rates of transfer. To test

this hypothesis, we took the quantification of gene gains and losses at the terminal branches of

Fig 5. Genetic diversification across phylogroups. A. Number of accessory gene families associated to MGE present in one (i.e., phylogroup-specific) to seven

phylogroups. The color code used corresponds to the Z-score obtained for the observed number (O) with respect to the expected distribution (E) (see Methods) for each

case with a color code ranging from blue (under-representation) to red (over-representation). The level of significance was reported: |Z-score|: � ([1.96–2.58[), �� ([2.58–

3.29[, ���([3.29). B. Heatmap where a cell represents the deviation (the difference) of the phylogroup to the rest. All values were standardized by column. The color code

ranging from blue (lower) to red (higher), with white (overall mean). The level of significance of each ANOM test was reported: � (P<0.05), �� (P<0.01), ��� (P<0.001).

C. Network of recent co-occurence of gains (co-gains) of accessory genes within and between phylogroups. Nodes are phylogroups and edges the O/E ratio of the

number of pairs of accessory genes (from the same gene family) acquired in the terminal branches of the tree. Only significant O/E values (and edges) are plotted (|Z-

score|>1.96). Under-represented values are in dash blue and over-represented in red (see Methods).

https://doi.org/10.1371/journal.pgen.1008866.g005
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the species tree, computed with Count (see above), and computed the number of these events

per phylogroup. We found that phylogroups A and B1 have the highest number of gene gains

and losses per terminal branch (Fig 5B, cols 6–7). Hence, these phylogroups have the smallest

genomes but the most frequent events of gene gain and loss.

To study recent gene flow between different phylogroups, we took the genes inferred to be

acquired in the terminal branches of the species trees. Among these recently acquired genes

we selected the gene pairs from the same gene family (co-gains) that were from the same phy-

logroup (Fig 5B, col 8) and those corresponding to recent acquisition of the same gene family

in two different phylogroups (see Methods, Fig 5C). The results were represented as a graph

where the edges represent significantly fewer (dashed lines) or higher (solid lines) number of

co-gains than expected by chance. We found that phylogroup B1 has significantly more co-

gains of genes with other phylogroups than expected, while the inverse was observed for phy-

logroup B2. We reached similar results when considering only the co-gains associated with

MGEs (S16 Fig). These results are consistent with the separation of the B2 phylogroup from

the others in the PCA analysis (Fig 3D). They show that such separation is due to lower rates

of transfer in B2, which leads to fewer co-gains within the phylogroup and between this and

the other phylogroups. In summary, phylogroups differ in terms of their genome size and in

their rates of genetic diversification, the two traits being inversely correlated within the

species.

Not everything is abundant everywhere: the interplay between phylogroups

and sources in genetic diversification

Frequent horizontal transfer across phylogroups could result in adaptation being independent

of the strain genetic background. While we observed that strains from all phylogroups could

be isolated in all different sources (Fig 6A), different phylogroups are typically over-repre-

sented in some sources and rare in others (Fig 6B). These observations match previous studies

[3], and show an association between the phylogenetic structure of populations and the natural

habitats of the strains.

How much of the variability in genome size is explained by the source of isolation of the

strains? Genome sizes vary significantly across isolation sources. Strains isolated from poultry

meat had the largest average genomes, followed by human ExPEC strains. In contrast, strains

from wild birds’ feces and freshwater had the smallest genomes (Fig 3A and Fig 6C, col 1,

ANOM tests, P<10−3). We showed above that genome size also varies across phylogroups. To

understand the relative role of the two variables, isolation source and phylogroup, we made

two complementary analyses. First, we compared the genome size of strains from different

sources within each phylogroup. Even if the statistical power was sometimes low, this revealed

trends similar to the ones observed across phylogroups (S17 Fig). Second, we used stepwise

multiple regressions to assess the effects of phylogroup and the strains’ source on its genome

size. Both variables contributed significantly, and in almost equal parts, to the statistical model

and together explained 36% of the variance (R2 = 0.36; P<10−4, S3 Table). We found similar

results after removing MGE-associated genes (Fig 6D and S4 Table). We conclude that both

isolation source and phylogroup are equally associated with genome size.

Adaptation to a habitat depends on HGT, which is driven by MGEs. This led us to study

the distribution of MGEs in relation to isolation sources. There are fewer MGE genes in strains

isolated from freshwater and wild birds’ feces, which have smaller genome sizes, and more in

strains from human ExPEC and poultry meat (Fig 6C, col 2, ANOM tests, P<10−3, and S5

Table). We observed similar trends within each phylogroup even if the statistical power was

low (S17 Fig). The analysis of the relative contribution of phylogroups and isolation sources to
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the number of MGE genes showed that the source of the strain accounted for the vast majority

of the explained variance (90%, full model: R2 = 0.19; P<10−4, Fig 6D and S6 Table). Accord-

ingly, the number of MGE gene families present in a single source of isolation was higher than

expected (Z-score >17, S15 Fig), and nearly one third of these were observed in multiple phy-

logroups. To quantify this trend, we counted recent independent gains (co-gains, see definition

above) of the same gene family (see Methods). This was done for pairs of genomes within the

Fig 6. Genetic diversification across sources. A. Distributions of the sources in each phylogroup. B. Association between phylogroups and sources. The ratio of the

number of observed (O) genomes divided by the expected (E) number was reported for all comparisons with a color code ranging from blue (under-representation) to

red (over-representation) (Fisher’s exact tests performed on each 2�2 contingency table). C. Heatmap showing the associations between isolation sources and a number

of traits. Each cell indicates the deviation (the difference) to the overall mean (in white). All values were standardized by column. Tests: standard ANOM (1), non-

parametric ANOM tests (2, in presence of deviations from Gaussian distributions), ANOM for proportions (3). We represented the (O/E) ratio of the co-occurrence of

gene pairs recently acquired (Co-gains) in each phylogroup with the same color code as in panel B (4). D. Contribution of each variable (phylogoup and source) to the

variance explained by the stepwise multiple regressions of genome size (for the component of MGEs or the remaining genome) on phylogroup and the isolation source.

E. Differences in diversity of gene families recently acquired across phylogroups (in black) and sources (in grey) for gene families associated to MGE or the remaining

gene families (Wilcoxon tests, red dots (means)). In all panels: the level of significance of each test was reported: � (P<0.05), �� (P<0.01), ��� (P<0.001).

https://doi.org/10.1371/journal.pgen.1008866.g006
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same source and between different sources. The analysis revealed that co-gains were more fre-

quent than expected within the same isolation source. (Fig 6C, col 16, see Methods). These

results suggest that the contribution of MGEs to genome size is primarily driven by the source

of the isolate rather than phylogroup membership.

The previous result could arise from preferential co-gains of MGEs in an isolation source

relative to a phylogroup, i.e. to frequent transfer of a few MGEs in the multiple isolates from

the same type of source. To test this hypothesis, we used the results from Count and built a

matrix where for each gene family we indicate the acquisition or not of a gene in each of the

terminal branches of the phylogenetic tree. We then compared the clustering of these recent

acquisitions by phylogroup and by isolation source using Shannon indexes (see Methods). If

the hypothesis is correct, we expected higher clustering (lower diversity) across sources than

across phylogroups. We observed slightly higher clustering across phylogroups than across

sources, both for MGE and for the other genes (Fig 6E). We conclude that the contribution of

MGEs to genome size depends largely on the isolation source but that this does not reflect sys-

tematic gains of the same MGE genes in the same source. Instead, the higher frequency of

MGEs in genomes of certain sources may result from higher density of MGEs in those habitats

(higher infection rates), or from higher probability of acquiring MGEs with adaptive traits at

certain sources (higher selection rates).

It is tempting to speculate that the association between the number of MGE genes and isola-

tion sources reflects selection for the acquisition of locally adaptive functions that are trans-

ferred by these MGEs. To test this, we searched for the presence of a trait—antibiotic

resistance–that has become adaptive only recently and that is frequently transferred by MGEs.

We searched for antibiotic resistance genes (ARGs) in our dataset using the reference data-

bases. Many of these ARGs were in integrons (~3 per integron), which is well documented

[59], and genomes carrying integrons had more ARGs than the others (Wilcoxon test,

P<10−4, S18 Fig). Expectedly, integrons and ARGs were more prevalent in human ExPEC and

in poultry meat isolates (Fig 6C, cols 7–8) and S5 Table). Similar results were observed in the

analyses at the level of each phylogroup (S18 Fig). The clear association of integrons and ARGs

with human (or domesticated animals) isolates of E. coli independently of the phylogroups’

genetic background reinforces the idea that source-specific MGEs provide locally adaptive

traits.

Functional differences across phylogroups and isolation sources

Several of the previous results suggest an accumulation of adaptive genes as patristic distances

increase. We used a gene-based GWAS to search for functions enriched in phylogroups or in

isolation sources (see Methods). The first analysis revealed many gene families (2,754, S2 Data-

set) positively and negatively associated with the phylogroups (Fig 7A). While in most cases

these associations link a gene family to a phylogroup, the phylogroup A and B1, which are

close in the phylogeny (Fig 3A) and in terms of gene repertoires (Fig 3D), have many associa-

tions in common (53%). The phylogroup with the largest number of associated genes is B2,

which is also in accordance with the PCA analysis that revealed distinct gene repertoires in

this phylogroup (Fig 3D). We characterized the functional categories of these associated gene

families using EggNOG classification (as previously, S2 Dataset). In general, the categories

over-represented are related to genes involved in metabolism (Fig 7B), which is in agreement

with previous studies [60, 61].

The genes that were identified in the GWAS often concerned degradation processes, nota-

bly aromatic compound degradation (S2 Dataset) [62]. For example, PP (phenylpropionic

acid) and HPP/HCI (hydroxyphenylpropionic and hydroxycinnamic acid) degradation
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Fig 7. Genetic determinants of each phylogroup. A. Number of gene families positively (in red) and negatively (in blue) associated with each phylogroup. Altogether,

they represent 7% of the accessory gene families of the dataset (note that some gene families are associated with several phylogroups). B. Observed/expected (O/E) ratios

of non-supervised orthologous groups (NOGs, shown as capitalized letters, same code as shown in Fig 1C) in the positively or negatively associated gene families. For

example, in phylogroup A there is an over-represents of positive associations in class Q, whereas in class L for the same phylogroup A there is under-represention for

both positive and negative associations. The ratio (O/E) was reported for all comparisons with a color code ranging from blue (under-representation) to red (over-

representation). The level of significance of each Fisher’s exact test was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed on each 2�2

contingency table. Gene families lacking matches to the EggNOG functional categories (57%) were discarded. C. Genomic organization of some regions enriched in

genes positively (in red) or negatively (in blue) associated with a phylogroup (indicated on the left). Genes shown in grey are not significantly associated. The name of the

gene (when available) is shown above it, its EggNOG functional category (when known) below it.

https://doi.org/10.1371/journal.pgen.1008866.g007
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pathways are negatively associated with B2 strains, while PA (phenylacetate acid) and HPA

(hydroxyphenylacetic acid) degradation are positively associated with B1 strains (S2 Dataset,

Fig 7C). These results are consistent with recent phenotypic tests (growth on specific sub-

strates) [61]. Interestingly, B1 strains are positively associated with genes involved in rham-

nose, sucrose, xylose, glycerate, and tartrate degradation pathways, while B2 are negatively

associated with traits associated with plant colonization such as the Hyf system (involved in

control and pH control), melibiose, cyanate, putrescine, and D-malate degradation pathways

(S2 Dataset, Fig 7C). These pathways are involved in alternate carbon source metabolism, and

may reflect functional adaptations to different nutritional environments, as proposed previ-

ously [63]. These results suggest that B1 strains, contrary to B2, tend to carry traits facilitating

adaptation to environmental niches, such as soil and water (where aromatic compounds are

highly abundant) or to colonize plants, as previously suggested [64].

The same analysis made at the level of the isolation sources revealed fewer genes (Fig 8A).

The different fecal isolates almost lacked associated genes, presumably because this is the most

typical and the ancestral environment of the species and it may have adapted to it for a long

time. We therefore focused our analysis on genes involved in virulence. The analysis of human

ExPEC isolates revealed many associated genes (S2 Dataset), including well-known virulence

factors such as ABC-dependent capsule systems, the motility repressor papX, the P fimbriae,

yersiniabactin, colibactin and multiple type 5a protein secretion systems (Fig 8C). To comple-

ment this analysis, we searched specifically for known virulence factors from VFDB [65].

Indeed, they are more prevalent in human strains, and especially in ExPEC isolates (ANOM

test, P<10−3), while being rare in strains isolated from freshwater and wild birds’ feces

(ANOM test, P<10−3, Fig 6C, col 9). While these virulence factors are more concentrated in

phylogroups B2, D, E and F (ANOM test, P<10−2) as previously shown [37], the trends regard-

ing isolation sources are conserved within each phylogroup (S19 Fig). In particular, within

phylogroup B2, only human strains have a significantly higher average number of virulence

factors (S19 Fig) as previously suggested [26].

While virulence factors were associated with human isolates, we oberved associations

between certain isolate sources and mechanisms used in antagonistic interactions with other

bacteria. This includes overpresentation of type VI secretion systems (T6SSi) in ExPEC, type

5b secretion systems (often associated with contact-dependent inhibition) in poultry meat iso-

lates, and bacteriocins in several isolation sources (S2 Dataset). To detail these results, we

searched specifically for colicin gene clusters [66], using BAGEL3 [67] (some of which are also

included in VFDB). We found from an average of 2.8 genes in B2 strains to 0.4 in B1 strains.

Interestingly, the water isolates have the fewest colicin genes, presumably because free diffu-

sion of these proteins in water makes them inefficient tools of bacterial competition (Fig 6C,

col 10 and S19 Fig). Thus, local adaptations resulting from the acquisition of novel genes by

HGT, involving antagonistic interactions with other bacteria are associated preferably with

certain phylogroups.

E. coli from freshwater are different

E. coli has usually been regarded as a contaminant from animal, mostly human, sources and

used to test water quality. Yet, recent data suggests that some strains could inhabit aquatic

environments [68]. Given the contrast between the primary and secondary habitats of E. coli,
respectively guts of endotherms and aquatic environments, this would imply marked differ-

ences between the 285 freshwater strains and the others. Indeed, our results show that these

strains are systematically different. They are over-represented in phylogroup B1 (43%), a phy-

logroup under-represented in all other sources of isolation (Fig 6A and Fig 6B). On the other
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hand, they are under-represented in B2 (13%), a phylogroup over-represented in strains iso-

lated from humans (this study) and other mammals [2]. The genome size of freshwater strains’

is the smallest among all groups of isolates and across phylogroups (Fig 6C, col 1, S17 Fig).

Importantly, these strains show average pan-genome sizes in the rarefied dataset, suggesting

that adaptation is not exclusively due to genome reduction (Fig 6C, col 12). This is also sup-

ported by the high number of gains and losses observed (Fig 6C, cols 14,15), although these

genomes have the fewest MGEs and often lack plasmids (Fig 6C, cols 2–6). Consistent with

adaptation to this habitat, they have the smallest number of antibiotic resistance genes, viru-

lence factors, and bacteriocins (Fig 6C, cols 7–10, S18 and S19 Figs). In contrast, these strains

show the highest diversity of STs and O:H serotypes (Fig 6C, cols 17,18, and S5 Table), and the

highest number of capsule systems (Fig 6C, col 12, S20 Fig).

The extreme genomic traits of isolates from water strongly suggest they are not the result of

recent fecal contamination from other sources. Instead, they strongly suggest that these strains

have changed to adapt to water environments. This change seems to have involved the loss of

many genes, and this is apparent from the GWAS analysis, which shows many more negative

than positive associations with this isolation source (contrary to all the others) (Fig 8A). Many

of them correspond to the virulence factors described above (Fig 8C). The few gene families

positively associated with freshwater are over-represented in the EggNOG category M (cell

envelope, Fig 8B). Many of these correspond to genes encoding the Group IVe capsular genes

(Fig 8C), which contrasts with ABC-dependent capsules that are positively associated with

Human ExPEC strains (S2 Dataset). Capsules have been proposed to allow cells to withstand

biotic and abiotic challenges, and these results suggest that they are an important component

of E. coli adaptation to freshwater environments. Overall, these results show that E. coli in

these environments endured some horizontal gene transfer and important genome streamlin-

ing, i.e. a high turnover of gene repertoires that resulted in genomes smaller than the average

carrying a few specific adaptations to the environment.

Discussion

Many of the recent advances in the understanding of E. coli evolution focused on clinical iso-

lates and placed a lot of emphasis on virulence and antibiotic resistance in a few clinically

important lineages [69–74]. Yet, most strains of the species are commensal. Hence, most of the

evolution of the species takes place in biotic contexts not associated with pathogenesis. Fur-

thermore, while a lot of attention has been given to the rates of homologous recombination in

core genes, it is now clear that the acquisition of novel genes drives the evolution of virulence

[12, 42, 75, 76] and antibiotic resistance [77–79] in pathogenic strains as well as that of many

other traits in commensal strains [12]. For example, MGEs were recently shown to be more

important than point mutations for the colonization of the mouse gut by E. coli commensals

[80]. Here, we aimed at providing a global picture of the evolution of the E. coli genomes with

an emphasis on the variation of gene repertoires in strains from a variety of sources (environ-

mental and geographic) across a single continent. This allowed us to study the joint effect of

population structure and habitat on the variation of gene repertoires. Our study focused on E.

Fig 8. Genetic determinants of each isolation source. A. Number of gene families positively (in red) and negatively (in blue) associated with each source. B.Observed/
expected (O/E) ratios of non-supervised orthologous groups (NOGs, shown as capitalized letters, same as in Fig 1C) in the positively or negatively associated gene families.
The ratio (O/E) was reported for all comparisons with a color code ranging from blue (under-representation) to red (over-representation). The level of significance of each
Fisher’s exact test was indicated (P> = 0.05: ns; P<0.05: �; P<0.01: ��; P<0.001: ���). It was performed on each 2�2 contingency table. Only gene families with known
functions were considered in this analysis.Gene families lacking matches to the EggNOG functional categories were discarded.C. Genomic organization of regions
enriched in genes strongly positively (in red) or negatively (in blue) associated with a source. Genes shown in grey are not significantly associated. The name of the gene
(when available) is shown above it, its functional category (when known) below it.

https://doi.org/10.1371/journal.pgen.1008866.g008
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coli isolates from Australia, but its genetic diversity was higher or comparable to other world-

wide genome datasets, and its population structure was consistent with previous works [16, 40,

81]. This indicates that what we have observed is likely to be representative of the species as a

whole. It also confirms previous reports of the large genetic diversity of the species and of the

planetary circulation of all major lineages [39, 45, 82]. Finally, the functional annotation of the

pan-genome shows that in spite of over 375,000 papers citing E. coli in PubMed in 2019, we

are still far from having discovered the full genetic diversity of E. coli and from knowing the

function of many of its most frequent gene families.

We started our study by quantifying gene repertoire diversification, which we found to fol-

low a two-step dynamic. The very rapid initial diversification, where GRR quickly decreases to

~90%, implicates substantial heterogeneity in terms of gene repertoires for strains that are

from the same sequence type and are almost identical in the sequence of persistent genes.

Some of the rapid initial divergence of GRR may be due to genome sequencing or assembling

artifacts producing singletons and thus inflating pan-genomes. Yet, we have annotated all

genomes in the same way. We also confirmed key results by excluding singletons, by showing

that singletons represent only ~0.5% of a typical genome, and that many of them have homo-

logs in the databases. The frequency of singletons is only weakly correlated with the number of

contigs in draft assemblies, a further sign that they are not just caused by sequencing or assem-

bly issues (S3 Text). Furthermore, our analysis of ancestral genomes showed that a large frac-

tion of well-known MGEs, including phages, ISs and plasmids, were acquired very recently

(inferred acquisition at the terminal branches of the phylogenetic tree). Some of these are sin-

gletons, whereas others are present across a few genomes of many phylogroups. They contrib-

ute directly to the very rapid divergence of gene repertoires between separating lineages.

Hence, we do not think that technical issues alone explain the existence of rapid gene reper-

toire differentiation between recently divergent strains. This raises the question of how much

these processes reflect natural selection on incoming genes or high rates of gene loss by drift.

Previous population genetics models applied to other clades observed the existence of genes

that have rapid turnover in genomes, i.e. that are rapidly lost after being acquired [83, 84]. Our

results show that frequent acquisition of MGEs drives rapid diversification of gene repertoires

even between strains that are almost indistinguishable by classical typing schemes. In the pres-

ent context, this suggests that either many integrations of genetic material are deleterious and

get rapidly purged by natural selection or that they are of no lasting adaptive value and get rap-

idly deleted by genetic drift. The first hypothesis is consistent with the fitness costs associated

with the acquisition of many MGEs [85–87], with our observation that most MGEs present in

a genome were very recently acquired, and with the abovementioned rapid loss of GRR for

small patristic distances. The second hypothesis is consistent with previous works suggesting

the existence of mechanistic biases towards gene deletion in bacteria that quickly remove

genes without adaptive value from the genome [88, 89]. It is also consistent with the observa-

tion that some classes of functions, like defense systems [90] or specific components of the cell

envelope [91], are subject to fluctuating selection dynamics and become neutral or slightly del-

eterious (because costly) after a short period where they are selected for.

After the initial period of rapid GRR decrease with phylogenetic distance, GRR decreases

linearly with divergence time, a trend that was not quite clear when we first analyzed this ques-

tion a decade ago with a much smaller set of genomes [42]. Importantly, this linear decay is

not suggestive of the existence of a point beyond which relatedness and gene flow change

abruptly. Hence, these results do not suggest incipient sexual isolation within the species from

the point of view of horizontal gene transfer. This is confirmed by our analysis that some

MGEs are present in many phylogroups and by the finding that many gene families of the

pan-genome were recently acquired independently by distantly related strains. An interesting
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feature of the comparisons of GRR in function of phylogenetic distances is the large variance

around the regression line. This variance may result from very different processes. One of

them may be preferential transfer of genes across strains within the same habitat, as observed

for the isolates from the same type of source in this work. This type of transfer will lead to

pairs of strains with more similar gene repertoires than expected given their patristic distance.

Conversely, bacteria shifting from one habitat to another may endure an acceleration of their

divergence in terms of gene repertoires. This will be a consequence of selection for different

traits, acquired by HGT, and of changes in its preferential gene flow towards strains from the

novel habitat.

The rapid evolution of gene repertoires by HGT is consistent with the observation that plas-

mids, prophages and ISs are almost ubiquitous among E. coli. These elements contribute sig-

nificantly to genome size and even more to the variability of genome size across strains, which

supports our previous results [51, 92]. While most MGEs are quickly lost from lineages, or

drive the lineage extinct, the large influx of such elements can bring adaptive accessory traits

such as antibiotic resistance genes [78] and virulence factors [93, 94]. They also pave the way

for cooption processes [95]. The contribution of the MGE genes to genome size across the spe-

cies is more strongly associated with the isolation source of the strains than with the phy-

logroup. However, the recent co-acquisition of MGEs by different strains is also associated

with the phylogroup. This is consistent with a scenario where the abundance of MGEs in a

genome is strongly dependent on the habitat, but their diversity also depends on the phy-

logroup. Since most MGE genes arrived in the genome very recently, this suggests that habitat

exerts a strong constraint on the flow of gene exchanges across the species, in line with the

view that bacteria exchange more genes with those they coinhabit with [96, 97].

The adaptive novel genetic information being acquired with MGEs must be integrated in

the cell functioning. This need of favorable genetic backgrounds for certain local adaptation

processes could explain the observed over-representation of some phylogroups in certain isola-

tion sources. Virulence factors and antibiotic resistance genes provide relevant examples. In

our dataset, the plasmids encoding virulence factors are often conjugative and should be able

to circulate widely, but the virulent clones often concentrate in a few phylogroups. Selection

for antibiotic resistance is expected to be higher in human-associated clones, and especially the

virulent ones, because these are the most targeted in the clinic. Hence, they endure stronger

selection to keep the ARGs arriving in MGEs. These causal links result in preferential associa-

tions of genetic backgrounds with virulence factors and ARGs, and therefore with the fre-

quency of human isolates in a given phylogroup. It remains to be quantified the degree to

which these trends are due to epistatic interactions between novel genes and the genetic back-

ground and to the availability of specific genes by horizontal transfer in certain sources. In

conclusion, these results contribute to explain why epidemiological clones tend to emerge

from specific phylogenetic groups even in the presence of massive horizontal gene transfer.

Genetic diversity, created by HGT, recombination, or mutation, affects a species’ ability to

adapt to novel ecological opportunities. The higher the diversity of gene repertoires in a popu-

lation, the more likely that one of those genes will prove helpful in the face of environmental

challenges such as antibiotics. We observed that the generalist phylogroups, such as A and B1,

have larger pan-genomes than specialist phylogroups like B2. This was not expected based on

their smaller genome sizes or the lower frequency of MGEs in their genomes. We propose that

this reflects the high variability of the environments where they circulate—in terms of condi-

tions, other strains and MGEs—and the associated diversity of local adaptation processes. Phy-

logroup B1, in particular, is associated with the presence of a number of metabolic traits

suggesting interactions with plants. Phylogroup B2 strains, by comparison, have developed

specific traits that may let them take advantage of some particular resources, e.g. they are better
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adapted to the mammal gut environment [2]. This has resulted in large genomes that are quite

different from the other major phylogroups of E. coli, as revealed by the phylogeny of the spe-

cies based on the polymorphism on persistent genes, the PCA analysis of the pan-genome

matrix, the GWAS analysis, and the large number of MGEs identified in their genomes. Yet,

they are overall more conserved (largest persistent-genome, smaller pan-genomes, fewer

recent gene acquisitions). This may explain why it has been suggested that strains from phy-

logroups A, D and B1 derived from an ancestral B2-like genetic background. The conservation

of a larger core genome is consistent with our quantification of genetic exchanges: B2 strains

exchange less genetic material with strains from its own and from other phylogroups than the

remaining large phylogroups. This has placed it apart in terms of gene repertoires and in terms

of preferential habitats. Altogether, these results suggest that the habitat and the phylogenetic

structure jointly determine the size of genomes. The results also suggest the hypothesis that the

large genomes of some phylogroups, like B2, may be caused by a relative decrease in the rate of

gene loss, and not necessarily by an increase in the rate of gene gain.

The integration of information on gene repertoires, population structure and isolation

sources sheds some light on the origin of environmental strains. This is illustrated by the iden-

tification of genomic traits in freshwater E. coli isolates that are very different from the average

traits of the species and that suggest adaptation of certain lineages to this environment. For

bacteria, freshwater environments are much more nutrient poor than the guts of endotherms,

and it’s interesting to note that strains associated with this environment have more streamlined

genomes. This may represent, at the micro-evolutionary scale, an adaptation similar to that

observed in other bacteria adapted to poor nutrient environments that also have small

genomes and few MGEs [98, 99]. These results are also consistent with recent studies showing

that E. coli B1 strains can persist longer in water than strains of the other phylogroups, and

that B1 strains isolated repeatedly in water often encode very few virulence factors and antibi-

otic resistance genes [7, 33, 34]. Interestingly these strains have been shown to be able to grow

at low temperatures [7]. The prevalence of B1 isolates has been observed in other environmen-

tal samples, such as drinking water and plants [64]. The characteristics observed in freshwater

isolates might be general to this environment, since they were observed in strains from the B1

and from other phylogroups (S16–S20 Figs). If some E. coli lineages are indeed adapted to

freshwater this radically changes the range of environments from where they can acquire

novel genes and the selection pressures that shape their subsequent fate. This finding also

implies that environmental isolates are not necessarily the result of source-sink dynamics

where E. coli strains evolve in relation to selection pressures linked to the host and environ-

mental strains are just sinks where such strains find evolutionary dead-ends. Instead, the envi-

ronment outside the host could have a significant impact on the evolution of E. coli
subsequently colonizing human hosts.

Materials and methods

Strains

We used different collections of E. coli strains recovered in Australia between 1993 and 2015

(for a more detailed description, see S1 Text and S1 Dataset). The subset of strains selected for

whole genome sequencing includes: (1) faecal strains isolated from various birds (N = 195

strains), non-human mammals (N = 135), and humans living in Australia (N = 93); (2) clinical
strains isolated during intestinal biopsies of patients with inflammatory bowel disease

(N = 172), or corresponding to human ExPEC strains collected from urine or blood (N = 112);

(3) poultry meat strains isolated from chicken meat products from diverse supermarket chains
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and independent butcheries (N = 283); (4) and freshwater strains isolated from diverse loca-

tions across Australia (N = 285).

Sequencing

Of the 1,304 isolates, 70 were sequenced at Broad institute using the Roche 454 GS FLX system

(this was done 10 years ago, detailed in [100]), 70 were sequenced by GenoScreen (Lille,

France) using the HiSeq2000 platform. The rest were sequenced at the Australian Cancer

Research Foundation (ACRF) Biomolecular Resource Facility (BRF) of the Australian National

University, using the Nextera XT sample preparation kit (Illumina) and the Illumina Miseq

(paired-end sequencing), as detailed in [101].

Assembling

Paired-end read files were processed and assembled with CLC Genomics Workbench v.9.5.3

(Illumina) using their de novo assembly algorithm with default parameters.

All genomes sequenced by the Broad institute were available into the NCBI Assembly

(www.ncbi.nlm.nih.gov/assembly/) or SRA (www.ncbi.nlm.nih.gov/sra/) databases. While, the

rest of the assemblies was deposited into the European Nucleotide Archive (PRJEB34791). The

accession number of each genome is reported in S1 Dataset.

Datasets

We used 4 datasets in this study. (1) The Australian dataset described above is the main

(default) dataset. (2) RefSeq dataset: We retrieved 370 E. coli complete genomes from Gen-

Bank Refseq (available in February 2018). (3) ECOR dataset: We retrieved 72 draft genomes of

the E. coli reference (ECOR) collection from DDBJ/ENA/GenBank [48]. Strains in this collec-

tion were isolated from diverse hosts and geographic locations and have been used for more

than 30 years to represent the phylogenetic diversity of E. coli as they have been selected from

over 2,600 natural isolates based on MLEE data [17]. (4) Outgroup dataset: We retrieved 65

other closely related Escherichia genomes from ENA/GenBank and sequenced 21 others on

the Illumina MiSeq platorm (assembled as described above). They belong to Clade I (N = 14),

Clade II (N = 2), Clade III (N = 8), Clade IV (N = 2), Clade V (N = 14), E. fergusonii (N = 8)

and E. albertii (N = 38) species. Only five of them were complete, others were draft genomes.

In this study, these genomes (called hereafter outgroup genomes) were only used to root the

Australian E. coli species tree. The general genomic features and the sequencing status of these

1,832 genomes are reported in S1 Dataset.

Data formatting

In an attempt to overcome the bias from different annotations all genomes of the four datasets

were annotated using Prokka v.1.11 [102] which provided consistency across the entire data-

sets (with hmmer v.3.1b1, aragorn v.1.2.36, barrnap v.0.4.2, minced v.0.1.6, blast+ v.2.2.28,

prodigal v.2.60, infernal v.1.1, ncbi_toolbox v.20151127, and signalp v.4.0). We performed

three quality controls on genomic sequences of Australian and outgroup datasets (see S2

Text). A total of 10 E. coli draft genomes and one genome from clade V failed at least one of

these tests and were removed from further analysis, leading to a final dataset of 1,294 Austra-

lian E. coli genomes and 87 outgroup genomes. The main characteristics of each draft genome

are reported in S1 Dataset.

E. coli typing. Phylogroup. The phylogroup of each E. coli genome (from ECOR, RefSeq,

and Australian datasets) was determined using the in silico ClermonTyping method [20].
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Multilocus sequence typing (MLST). Sequence type (ST) was identified by the MLST scheme

of Achtman [10] using mlst v.2.16.1 (https://github.com/tseemann/mlst). We assigned STs for

a large majority of genomes, i.e., for 99%, 96% and 97% of the ECOR, RefSeq and Australian

genomes resp. Serotype. Serotype (O- and H-genotypes) was inferred with the EcOH database

[103] using ABRicate v.0.8.10 (https://github.com/tseemann/abricate)). Currently there are

220 E. coliO-groups and 53 H-types described in this database. While 99% of Australian

genomes had H-group assigned, only 57% had O-group assigned even if wzm/wzt and wzx/

wzy genes are present. All these results are reported in S1 Dataset.

Nucleotide diversity

The nucleotide diversity of the three datasets, i.e., ECOR, RefSeq and Australian, was com-

puted from the multiple alignments of 112 core gene families present in all E. coli genomes of

these three datasets, (see below), using the diversity.stats function from the PopGenome v.2.6.1

R package [104]. We also used these 112 core gene families to assess the nucleotide diversity

for each phylogroup of the Australian dataset.

ST and O:H diversity

The Shannon index was computed to assess the diversity of ST and O:H serotypes within each

phylogroup and source. For this, we calculated their relative frequency in each group and then

applied the function skbio.diversity.alpha_diversity from the skbio.diversity v.0.4.1 python

package (http://scikit-bio.org/docs/0.4.1/diversity.html).

Mash distances (M)

Genome similarity. Due to the high cost of computing ANI [105] via whole-genome align-

ment, we estimated genome similarity calculating the pairwise Mash distance (M) between all

Australian genomes using Mash v.2.0 [106]. Importantly, the correlation between the Mash

distances (M) and ANI in the range of 90–100% has been shown to be very strong, with M�

1-(ANI/100) [106]. All the resulting Mash distances between E. coli genomes are well below

0.05, in agreement with the assumption that they all belong to the same species. The median is

0.027 and the maximal value is 0.04 (S4 Fig). Australian E. coli reference genomes. The Mash

distance was strongly correlated to the patristic distance in our dataset (spearman’s rho = 0.92,

P<10−4). We used it to select 100 Australian E. coli strains representative of the species’ diver-

sity (called hereafter reference genomes). Such reference genomes were used to root the Austra-

lian E. coli tree (to drastically reduce the computational time required to build the rooted tree).

To select representative genomes, we performed a hierarchical WPGMA clustering from the

Mash distance matrix computed with all Australian E. coli genomes, and then we cut it off to

have only 100 clusters. In each of these clusters, the genome with the smallest L90 was selected.

This reference dataset contained all the phylogroups and was composed of: 15-A, 10-B1, 13-E,

39-D, 11-F, 10-B2 and 2-G genomes.

Identification of pan-genomes

Pan-genomes are the full complement of genes in the species (or dataset, or phylogroup) and

were built by clustering homologous proteins into families. We determined the lists of putative

homologs between pairs of genomes with MMseqs2 v.3.0 [107] by keeping only hits with at

least 80% identity and an alignment covering at least 80% of both proteins. Homologs proteins

were then clustered by single-linkage [108]. We computed independently the pan-genome of

each dataset, i.e., ECOR, RefSeq, Australian and of the 87 outgroups with the 100 Australian E.
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coli reference genomes. Each pan-genome was then used to compute a matrix of presence-

absence of gene families. Hence, gene copy number variations were not taken into account in

this part of the study. The alpha exponent of Heap’s Law was used to infer whether a pan-

genome is open or closed [46]. Thus, if α (alpha) < = 1, the pan-genome is open. In contrast, α
(alpha) > 1 represents a closed pan-genome. This coefficient was computed using the heaps
function of themicropan v.1.2 R package [109] with n.perm = 1000. Principal component

decomposition of the Australian pan-genome, i.e, the matrix of presence-absence of protein

families was computed using the prcomp function from the stats v.3.5.0 R package.

The pan-genome of each phylogroup and source was taken from the pan-genome of the

species. The pan-genome of the MGE (called Pan-MGE) was also taken from the species pan-

genome and contained only genes encoding for MGEs.

Rarefaction of pan-genomes

The number of singletons was strongly correlated to the number of genomes analyzed in each

phylogroup (Pearson’s correlation = 0.97, P<10−4), indicating that the pan-genomes size

depend on the number of genomes analyzed. Thus, to compare genetic diversity across data-

sets (e.g. phylogroups), we rarefied the genome datasets, i.e., each pan-genome was con-

structed with the same number of genomes in each comparison. To do this, 1,000 subsets of X

genomes (X depending on the analysis, specified in the results section) were randomly selected

for comparison in each group, resulting to datasets called hereafter rarefied datasets (S9 Fig).

Identification of persistent-genomes

Gene families that are persistent were taken from the analysis of pan-genomes. A gene family

was considered as persistent when it was present in a single copy in at least 99% of the

genomes. We found 2,486 persistent gene families when considering the 1,294 Australian

genomes, representing 52% of the average genome.

Identification of core-genome

The core genome was taken from the analysis of the pan-genome. A gene family was consid-

ered as core if it is present in one single copy in all the genomes. To assess the nucleotide diver-

sity, we built a core-genome with all the genomes of the ECOR, RefSeq, and Australian

datasets. It was composed of 112 core gene families. Each gene family was aligned with mafft

v.7.222 (using FFT-NS-2 method) [110], and used to compute the average nucleotide diversity

(π) in each dataset and within each phylogroup (see above).

Functional assignment of the pan-genome

Gene functional assignment was performed by searching for protein similarity with

hmmsearch from HMMer suite v.3.1b2 [111, 112] on the bactNOG subset of the EggNOG

v.4.5.1 database [47]. We have kept hits with an e-value lower than 10−5, a minimum alignment

coverage of 50% of the protein profile, and when the majority (>50%) of non-supervised

orthologous groups (NOGs) attributed to a given gene family pertained to the same functional

group (category). The gene families that cannot be classified into any existing EggNOG clus-

ters were grouped into the “unknown” category. Hits corresponding to poorly characterized

or unknown functional EggNOG clusters were grouped into the “poorly characterized”

category.
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Phylogenetic analyses

We built a rooted phylogeny of the species in two steps. The phylogenetic species tree of Aus-

tralian E. coli was reconstructed from the concatenated alignments of the 2,486 persistent

genes of the 1,294 Australian E. coli strains (see S3 Fig for a description of the method). The

alignment was done using the corresponding protein sequences with mafft v.7.222 (using

FFT-NS-2 method) [110]. Protein alignments are more accurate and produce codon-based

alignments that can be used for population genetics analysis. Since at this evolutionary dis-

tance the DNA sequences provide more phylogenetic signal than protein sequences, we back-

translated the alignments to DNA, as is standard usage. This involved replacing every amino

acid in the alignment by the original codon. Hence, the DNA sequence remains unchanged

after translation and back-translation. We built phylogenies from persistent genomes to avoid

the loss of signal associated with the small core genomes. When a genome lacked a member of

a persistent gene family, or when it had more than one member, we added a stretch of gaps

(‘-‘) of same length as the other genes for it in the multiple back-translated alignments. Adding

a few "-" has little impact on phylogeny reconstruction. For example, Filipski et al [113] showed

that adding up to 60% of missing data in the alignment matrix could be informative. In our

study, only 0.3% of the genes are missing in the matrix and the effect of missing data should be

negligible relative to the advantage of using the phylogenetic signal from 2,486 persistent genes

instead of only the one of 295 core genes (S3C Fig). We have not removed recombination

tracts from the multiple alignment because this has been shown to amplify errors in determin-

ing phylogenetic distances and it usually does not affect the topology of the tree [114, 115]. If

determination of the recombination was accurate in our >1,300 genomes dataset, this would

have led to the exclusion of almost all the genes. The length of the resulting alignment for the

species was 2,298,168 bp. Each tree was computed with IQ-TREE multicore v.1.6.7 [116]

under the GTR+F+I+G4 model. This model gave the lowest Bayesian Information Criterion

(BIC) among all models available (option–m TEST in IQ-TREE). We made 1,000 ultra-fast

bootstraps to evaluate node support (options–bb 1000 –wbtl in IQ-TREE) and to assess the

robustness of the topology of each tree [117].

The phylogenetic tree of Escherichia genus was inferred from the persistent-genome

obtained with the 87 outgroup genomes and the 100 E. coli reference genomes (see above)

using the same procedure as the species tree. In this case, the persistent-genome is composed

of 1,589 gene families, and the resulting alignment of 1,469,523 bp. The genus phylogenetic

tree was extremely well supported: all nodes had bootstrap support higher than 95%. Its topol-

ogy was consistent with a previous study [118] (S4C Fig). Then, we used it to precisely root the

species tree (S4D Fig).

The most recent common ancestor of each phylogroup: We identified the node corre-

sponding to the most recent common ancestor (MRCA) for each phylogroup from the rooted

species tree using the findMRCA function from the phytools v.0.6.44 R package. Then, the sub-

tree of each phylogroup was extracted using the extract.clade from the ape v.5.2 R package

[119]. The distance to the MRCA was computed from the length of branches in each subtree.

It corresponds to the average depth (distance from the MRCA) of all genomes (tips) within a

phylogroup and was inferred using the depthTips from the phylobase v.0.8.6 R package

(https://github.com/fmichonneau/phylobase).

Evolutionary distances

For each pair of genomes, we computed a number of measures of similarity: 1) The Patristic

distance was computed from the length of branches in the Australian E. coli species phyloge-

netic tree. The patristic distance is simply the sum of the lengths of the branches that link two
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genomes (tips) in the tree, and was inferred using the cophenetic function from the ape v.5.2 R

package [119]. They were computed between all pairs of genomes, of the same ST (intra-ST),

of different ST (inter-ST) within identical phylogroup, or of different phylogroups (inter-phy-
logroup). As expected, we found that the intra-phylogroup (both intra-ST and inter-ST) patristic

distances were significantly shorter than the inter-phylogroup (Wilcoxon test, P<10−4). 2) The

Gene Repertoire Relatedness index (GRR) between two genomes was defined as the number

of common gene families (the intersection) divided by the number of genes in the smallest

genome [120]. It is close to 100% if the gene repertoires are very similar (or one is a subset of

the other) and lower otherwise. 3) The Manhattan index between two genomes is the number

of different gene families. If two genomes have identical gene content, the corresponding Man-

hattan index is 0. 4) The Jaccard index between two genomes was defined as the number of

common gene families (the intersection) divided by the number of gene families in both (the

union). The Jaccard index between two genomes describes their degree of overlap with respect

to gene family content. If the Jaccard distance is 1, the two genomes contain identical protein

families. If it is 0 the two genomes are non-overlapping.

To characterize the genetic diversification of each phylogroup of the Australian dataset, we

computed the three different standard indexes: the GRR, the Jaccard, and the Manhattan

indexes. All these indexes were highly correlated (S10B Fig). Thus, only analyses with GRR

were reported and illustrated in the main text. Note that we always used the matrix of pres-

ence/absence of gene families to compute all these indexes, meaning that multiple occurrences

were not considered. This downplays the impact of IS on pan-genome size and makes more

conservative estimates of GRR divergence.

Reconstruction of the evolution of gene repertoires

We assessed the evolutionary dynamics of gene repertoires of the Australian genomes using

Count (downloaded in January 2018) [121] with the Wagner parsimony method. Due to the

size of our dataset it was not possible to do the analysis using birth-death models, but our pre-

vious analyses revealed very few differences between the two methods in smaller datasets

[122]. Wagner parsimony penalizes the loss and gain of individual family members (with rela-

tive penalty of gain with respect to loss of 1, option g = 1), and infers the history with the mini-

mum penalty. Thus, from the pan-genome, i.e., the matrix of presence-absence of gene

families, and the rooted species tree, Count inferred the most parsimonious gain/loss scenario

of each gene family along the tree. At each tree node, Count detailed information about indi-

vidual families: presence/absence, and family events on the edge leading to the node. Hence,

we have reconstructed the gene content of ancestral genome at each node. At each terminal

branch, the expected total number of recent acquisitions (HGT) was computed by summing

all family-specific gene gains obtained from the edge leading to the tip. Among them, we iden-

tified MGE associated genes that were recently acquired in each genome. We applied a similar

strategy to identify recent losses.

Distribution of accessory families across phylogroups (or sources)

We counted the number of MGE-associated gene families across phylogroups (Fig 5A) or

sources (S15 Fig). We excluded the singletons from this analysis to avoid over-estimation of

the number of families specific to one category. To test if some categories over-represented or

under-represented these genes, we made 1,000 simulations. In each simulation, we shuffled

the phylogroup (or source) assignment of the genomes while keeping the same number of taxa

in each category (phylogroups or sources). Thus, the presence of a gene family in a genome

and its frequency in the pan-genome remains the same, only the phylogroup (or the source) of
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genomes changes. The Z-score obtained for the observed number in the real data with respect

to the random distribution (from 1,000 simulations) was reported for each case with a color

code ranging from blue (under-representation, Z-score<-1.96) to red (over-representation, Z-

score>1.96).

Recent co-occurrence of gains (co-gains) of gene families within

phylogroups

We counted the number of recently acquired gene pairs (co-gains) from the same pan-genome

gene family (see above) within and between phylogroups. Recently acquired genes were

defined as those inferred as acquired in terminal branches using Count. To test if some phy-

logroups over-represented or under-represented these co-gains, we compared the observed

number (O) within each phylogroup to the expectation (E) given by 1,000 simulations. In each

simulation, we shuffle the phylogroup assignment of the taxa (same approach as for the acces-

sory gene families) and count the number of co-gains within and between phylogroups. For

each phylogroup, we then divided the number observed in the real data (O) by the average

number observed in the simulations (E), and computed the Z-score of the observed number

(O) with respect to the random distribution (E). We considered an over(under)-representation

significant when Z-score>1.96 (Z-score<-1.96). Note that the O and E numbers had to be pre-

viously normalized (divided by the total number of gene pairs, i.e. the sum of pairs within and

between phylogroups, in the real data, and in each simulation, resp.). We applied the same

approach (i) considering only gene pairs encoding for MGEs (similar result as in Fig 5), (ii) for

sources (instead of phylogroups, Fig 6).

Network of co-occurrence of gains (co-gains) of gene families across

phylogroups

All co-gains (see above) were split into all possible combinations of phylogroup pairs (21 com-

binations). To test if these co-gains are over- or under-represented between phylogroups, we

compared the observed number (O) between each phylogroup to the expectation (E) given by

1,000 simulations with the same strategy as above. As before, we normalized the observed and

expected numbers by the total number of co-gains in each simulation, calculated the (O/E)

ratio, and the Z-score of each observed value in the real data with respect to the random distri-

bution (E). The network was drawn using the igraph v.1.2.2 R package (https://igraph.org/r/)

with the circle layout option, where nodes are phylogroups, edges are (O/E) values for which

the Z-score is significantly different from zero. The width of the edges is proportional to the

(O/E) value and the color is blue for under- and red for over-representation (Fig 5C). We

applied the same approach considering only gene pairs encoding for MGEs (S16 Fig).

Gene family diversity

We computed Shannon indexes to assess the diversity of each gene family recently acquired

(terminal branches) across phylogroups and across sources (Fig 6E). If diversity is low, this

means that acquisitions are clustered by phylogroup or source (depending on the analysis).

For this, we calculated the relative frequency of each gene family recently acquired within each

phylogroup (vs. each source). It is simply the number of genomes (within a phylogroup) with

at least one acquisition divided by the total number of genomes in the phylogroup. We there-

fore obtained 2 vectors per gene family (one for phylogroups and one for sources) each con-

taining 7 frequencies (for each phylogroup or each source) and then applied for each vector

the function diversity from the vegan v.2.4.6 R package (https://github.com/vegandevs/vegan).
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If the index is 0, recent acquisitions of genes of the family are limited to a single group (phy-

logroup or source). The higher the index, the more scattered the acquisitions of the family’s

genes are (across phylogroups or sources).

GWAS

We studied the association between the pan-genome, i.e., the matrix of presence-absence of gene

families, and different phenotypes (i.e., phylogroups, and sources) using Scoary v.1.6.16 [123].

The method used the rooted species tree to correct for phylogenetic dependency. To correct for

multiple comparisons, only gene families with a Bonferroni-adjusted p-value< 10−10 were

selected. In the case of phylogroups, more stringent thresholds were applied, i.e., p-value 10−20.

We used the odds ratio (R) to determine whether the gene is positively (R>1) or negatively (R< =

1) associated with the tested phenotype. Analyses of the whole pan-genome or excluding all single-

tons produced similar results. A complete list of gene families positively and negatively associated

with each phenotype is described in S2 Dataset. The sequence of one gene from each family is also

available in the S2 Dataset, to facilitate the use of these results by the community.

Statistics

All basic statistics were performed using R v 3.5.0, or JMP-13. (i) Analysis of means: We used

ANOM to compare group means to the overall mean, when the data were approximately nor-

mally distributed. In cases where the data were clearly non-Gaussian and could not be trans-

formed, we used the nonparametric version of the ANOM analysis, i.e., ANOM with

Transformed Ranks. It compares each group’s mean transformed rank to the overall mean

transformed rank. In both, we used the methods implemented in JMP-13. (ii) Pairwise Wil-

coxon Rank Sum Tests were computed using the pairwise.wilcox.test function from the stats
v.3.5.0 R package. We used the Bonferroni correction during multiple comparison testing. (iii)

Fisher’s exact tests were computed using the fisher.test function from stats v.3.5.0 R package.

They were performed for testing the null of independence of rows (phylogroups) and columns

(sources) in a 2x2 contingency table. (iv) Correlation coefficients. Pearson’s and Spearman’s

rank correlation rho were computed using the cor function from stats v.3.5.0 R package. The

correlation matrices were represented using the corrplot v.0.84 R package (https://cran.r-

project.org/web/packages/corrplot/index.html). (v) Smooth regression: We used the general-

ized additive model (gam) smoothing method from themgcv v.1.8.23 R package (https://cran.

r-project.org/web/packages/mgcv/index.html). (vi) Stepwise multiple regressions were com-

puted with JMP-13. This standard statistical method consists in a stepwise integration of the

different variables in the regression by decreasing order of contribution to the explanation of

the variance of the data [124]. We used the forward algorithm and the BIC criterion for model

choice in the multiple stepwise regressions. The P-values associated with each variable were

assessed using an F-test.

Identification of Mobile Genetic Elements (MGEs)

Prophages: Prophages were predicted using VirSorter v.1.0.3 [53] with the RefSeqABVir data-

base in all genomes from Australian and RefSeq datasets, as a control. The least confident pre-

dictions, i.e., categories 3 and 6, were excluded from the analyses in both datasets. The

prophage-associated regions in drafts are more numerous and shorter than in complete RefSeq

genomes (S11 Fig). These results reveal that such regions are sometimes split in assemblies. In

complete genomes, the cumulative size of the prophage-associated regions (X) is highly corre-

lated with the number of prophages (Y) present in the genomes (Y = 1.2923362 + 1.6767.10−5

X, R2 = 0.91, P<10−4, S11 Fig). Hence, we used this linear equation to estimate the number of
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prophages in drafts using the cumulated size of prophage regions in the draft genomes. Plas-

mids: In the RefSeq dataset, all the extrachromosomal replicons were considered as plasmids.

In the Australian dataset, plasmid sequences were identified using PlaScope v.1.3 [54] with the

database dedicated to E. coli. PlaScope provides a method for plasmid and chromosome classi-

fication of E. coli contigs. It has the specificity to select a unique assignment to each contig of a

draft genome to plasmid, chromosome or unclassified. The number (~16, max: 124) and size

(~9 kb, max: 166 kb) of contigs predicted as plasmid were highly variable (S12 Fig) in the Aus-

tralian dataset. Their size is much smaller than that of the average plasmid in complete

genomes (~80 kb), reflecting the split of plasmids across different contigs because of the pres-

ence of repeated sequences, e.g. IS elements. Hence, we have not attempted to estimate the

exact number of plasmids per genome and focus our analysis on the number of genes pre-

dicted to be in plasmid contigs. MGEs (Plasmids + Prophages): We found 11,864 gene fami-

lies specifically related to plasmid elements, 14,188 to prophage elements, and 2,599 shared by

both (9% of the MGEs gene families). In complete genomes, prophage and plasmids elements

account for half of the pan-genome, of which 1 third were singletons. The large fraction of sin-

gletons from MGEs confirms that these elements are extremely diverse and evolved very rap-

idly, which underlines the difficulty of accurately detecting them and probably leads to their

under-estimation in draft genomes. Loci encoding conjugative or mobilizable elements were

detected with the CONJscan module of MacSyFinder [125], using protein profiles and defini-

tions following a previous work [55, 126]. 87% of conjugative systems and 75% of putative

mobilizable elements were located on contigs predicted as plasmids by Plascope. Integrons

were identified using IntegronFinder v.1.5 with the–local_max option [58]. 186 integron-inte-

grase (intI) were detected with one quarter located at the edges of contigs. We only found one

copy per genome. They were often located on very short contigs (20 proteins on average), and

five make all the contigs. Most (86%) were located on contigs predicted as plasmid by Plascope,

the remaining were on unclassified contigs. Except for the latter, intI genes were always located

next to ARGs. IS elements were identified using ISfinder [57]. Only hits with an e-value lower

than 10−10, a minimum alignment coverage of 50% and with at least 70% identity were selected,

we extracted the IS name of the best hit. Therefore, we identified 47,592 genes encoded for IS

elements, among them 43% were located at the edges of contigs (20,329/47,592). They repre-

sented 1,006 gene families (~1% of the pan-genome), of which 41% were singletons. Only 13%

were multigenic protein families (i.e., with more than one member in at least one genome).

Among them, 9 protein families were found in more than 10 copies in at least one genome, i.e.,

ISEc1 (10 copies), IS1397 (11), ISSoEn2 (11), IS621 (11), IS2 (15), IS629 (17), IS200C (17)

IS1203 (18), and the most extreme case IS1F (107). Very large numbers of ISs, usually a sign of

recent proliferation, was restricted to a small number of genomes (S1 Dataset), but this may be

an under-estimate caused by the loss of ISs in the assembling process. ISs were often frag-

mented, characterized by numerous singletons, and six times more frequently present at the

edges of contigs than expected by chance. All the results are reported in S1 Dataset.

Capsule systems

We used CapsuleFinder as published in [127] to search for Group I (Wzy-dependent), Group

II and III (ABC-dependent), Group IV (subtypes e, f and s), synthase-dependent (subtypes

cps3-like and hyaluronic acid) and PGA (Poly-γ-d-glutamate) capsules in the genome data-

base. This allowed the detection of 2,829 systems: 1,236 Group I, 123 Group II, 777 Group IV e

and 693 Group IV s. All the results are reported in S1 Dataset.

Antibiotic resistance genes (ARG) were detected using 2 curated databases of antibiotic

resistance protein: Resfinder v.3.1 [128] and ARG-ANNOT v.3 [129]. Therefore, we used
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BlastP and selected the hits with an e-value lower than 10−5, with at least 90% of identity and a

minimum alignment coverage of 50%. We found a strong positive correlation between the

number of ARGs per genome using each database (pearson’s r = 0.97, P<10−4). The main dif-

ference is the additional detection of three ARGs by ARG-ANNOT, i.e., AmpC2, AmpH, Mfd,

which are persistent in Australian dataset and normally do not confer antibiotic resistance in

E. coli. All the results are reported in S1 Dataset.

Virulence factors (VF) were identified using VFDB (downloaded in February 2018, [65]).

The two databases, i.e., VFDB_setA and VFDB_setB were used independently. We used BlastP

and selected the hits with an e-value lower than 10−5, at least 70% of identity and minimum

alignment coverage of 50%. We found 1,332 (vs. 3481) gene families encoding virulence factors

with the setA (vs. setB). In spite of these differences, we found qualitatively similar conclusion

with the 2 sets because they are very correlated (pearson’s r = 0.97, P<10−4). All the results are

reported in S1 Dataset.
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S1 Dataset. The main characteristics of each genome of this study.

(XLSX)

S2 Dataset. Association of the pan-genome with phylogroups and isolation sources: results

of the GWAS analyses.

(XLSX)

S1 Fig. General genomic characteristics of the 1,294 Australian E. coli genomes. A. Histo-

gram and boxplot of genomic features, i.e., the genome size (Mb), the number (#) of genes

encoding proteins, the GC content (GC%), the gene density, the number of essential genes, the

number of contigs and the L90 (Methods). For each case, the dash line corresponds to the

smoothed curve, the red arrow to the median and the blue arrow to the average of each distri-

bution. B. Strong positive correlation between the genome size and the number of genes

(spearman’s rho = 0.98, P<10−4). C. Weak positive correlation between the genome size and

the number of contigs (spearman’s rho = 0.23, P<10−4). The genomes with the greatest num-

ber of contigs were not necessarily the largest. Linear regression (dash line) and statistics were

reported.

(EPS)

S2 Fig. The large Australian E. coli pan-genome. A. Number of gene families according to

their occurrence in genomes. Singletons (in green), i.e., genes present in a single genome, rep-

resent 44% of the pan-genome. Persistent gene families (in gold), i.e., present in at least 99% of

genomes, represent only 3% of the pan-genome. B. Fraction of gene families (%) according to

their frequency among the pan-genome and the average genome. Frequencies were repre-

sented by a color code ranging from light grey (present in less than 1% of genomes) to black

(up to 99%), persistent genes (>99%) were represented in gold. 82% of the gene families are

rare, i.e., present in less than 1% of genomes including the 33,705 singletons. Persistent gene

families represent 53% of the average genome, while singletons less than 1%. C. Rarefaction

curve of the full pan-genome and of the pan-genome after removing the 33,705 singletons (wo.

S). In each case, we used 1,000 permutations (genomes orderings) and then averaged the

results. The alpha (inferred using the heaps’ law model) is lower than 1 in both, indicating that

the pan-genome is open in both. D. Rarefaction curve of the persistent genome (in gold) and

of the core genome (in red), i.e., the cumulative number of gene families shared by 100% of the

genomes. The evolution of the average number of new genes per genome is also reported (in

green). When considering 1,294 genomes, there is on average 2,486 persistent proteins and

only 26 singletons per genome. E. Violin-plots of the average sequence identity [left, mean],

and the minimal sequence identity [right, min] observed in each of the 2,486 persistent gene

families. The observed average sequence identity is 98.3% across families of persistent genes.

The average minimal value observed across persistent gene families is 95.5%.

(EPS)

S3 Fig. Construction of the concatenated alignments of persistent gene families. A. Graphi-

cal representation of the different steps of the phylogenetic trees build process from the persis-

tent genome. Among persistent gene families, there are families that are core (present in 100%

of the genomes, in red) and the remaining that have missing genes (not-core, in gold). B.

Number of persistent gene families according to their number of missing genes in the Austra-

lian dataset. Only 12% of families are core, i.e., present in all genomes (in red). C. Violin-plot

of the number of missing genes per genome in the Australian dataset. On average, the number

of missing genes is around 8 per genome. It can reach up 93 in a single genome, but this repre-

sents less than 4% of persistent families.

(EPS)
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S4 Fig. The genus and species phylogenetic trees. A. Distance tree of 1,294 Australian E. coli
and 86 outgroups genomes performed from the matrix of mash distances computed between

all pairs of genomes using bionj. The number of genomes in each species (or clade) was indi-

cated. The different phylogroups of E. coli were displayed: A (in blue), B1 (in green), E (in pur-

ple), D (in yellow), F (in orange), G (in brown) and B2 (in red). B. Boxplot of the mash

distances computed between all pairs of genomes belonging to the same species (or clades). In

both cases, the maximal mash distance was lower than 0.05. For E. coli species, the median was

around 0.027 and the maximal value was 0.04. C. Phylogenetic tree of 100 Australian E. coli
genomes representative to the diversity of the dataset and 86 outgroups genomes performed

from the persistent-genome of the genus with IQ-TREE under the GTR+F+I+G4 model. We

made 1,000 ultra-fast boostrap to assess the robustness of the topology of the tree. We found

that all boostrap supports were higher than 95%. D. We rooted the species phylogenetic tree

from the genus phylogenetic tree. The resulting rooted species tree was reported, and for sim-

plicity, the main phylogenetic groups were collapsed.

(EPS)

S5 Fig. Singleton characterization. A. Boxplots of gene size (bp) in the three categories of

gene families, i.e., persistent (in gold), accessory (in grey) and singleton (in green). The average

was represented by a black dot. The pairwise Wilcoxon Rank Sum test with bonferroni correc-

tion was applied to all comparisons (P<0.001 :���). B. Same analysis as in A, but distinguishing

the genomic location of the gene of each set : inside of contigs (I, dark color) or at the edge of

contigs (E, light color). The average gene size for each case was reported in the table. C. Per-

centage of genes located inside contigs (dark color) or at the edge of contigs (light color) in the

3 sets. The last column corresponds to the fraction of the 3 sets located at the edge of contigs.

D. Heatmap of the observed/expected (O/E) ratios of genes located inside or at the edges of

contigs in the 3 sets. The ratio (O/E) was reported for all comparisons with a color code rang-

ing from blue (under-representation) to red (over-representation). The level of significance of

each Fisher’s exact test was also indicated (P<0.001 :���). It was performed on each 2�2 contin-

gency table. E. Fraction of singletons with no hit (in light gey), with a small domain (in grey)

or fully included (black) in larger accessory or persistent gene families (S3 Text). F. Violin

plots of the number of singletons (in green) or persistent (in gold) observed in the rarefied

Australian and RefSeq datasets. In each case, 1,000 permutations of 50 randomly selected

genomes were performed (i.e., we used rarefied datasets). The boxplot is in white and the

mean is represented by a black dot. While the average number of singletons is significantly

higher (30% more) in the rarefied Australian dataset (Wilcoxon test, P<10−4), the average

number of persistent is also significantly higher (5% more, P<10−4) than the rarefied RefSeq

dataset. Singletons represent 43%, and 35% of the rarefied Australian and RefSeq pan-

genomes, resp.

(EPS)

S6 Fig. Association between GRR (%, Gene Repertoire Relatedness) and the patristic dis-

tance of each pair of genomes. Here, the GRR were computed excluding singletons in all

genomes. Due to the large amount of comparisons (points), we divided the plot area in regular

hexagons. Color intensity is proportional to the number of cases (count) in each hexagon. The

linear fit (full line, linear model (lm)) and the spline fit (dash line, generalized additive model

(gam)) were reported for the whole (in black, all the species) or the intra-ST (in blue) compari-

sons. There was a significant negative correlation between GRR and the patristic distance

(spearman’s rho = -0.69, P<10−4). The summary of the linear fit was: Y = 90.722391–
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76.2919X, R2 = 0.50,P<10−4. Hence, with or without singletons, the results were similar.

(EPS)

S7 Fig. Comparison of Australian, ECOR and RefSeq datasets. A. Violin plots of the nucleo-

tide diversity per site in the 3 datasets computed from the multiple alignments of 112 core

gene families (see Methods). The pairwise Wilcoxon Rank Sum test with bonferroni correction

was applied to all comparisons (P>0.05:ns). B. Rarefaction curve of the full pan-genomes of

the 3 datasets. In each case, we used 1,000 permutations (genomes orderings) and then aver-

aged the results. C. Violin plots of the size of the pan-genomes computed from the three rare-

fied datasets: In each case, 1,000 permutations of 50 randomly selected genomes were

performed to calculated the rarefied pan-genomes. The pairwise Wilcoxon Rank Sum test with

bonferroni correction was applied to all comparisons (P<10−3 :���). D. Average number of

persistent (in gold), accessory (in grey) and singleton (in green) in the rarefied pan-genomes

of each dataset.

(EPS)

S8 Fig. Intra- and Inter-phylogroup genetic diversity. A. Violin plots of the nucleotide diver-

sity per site (left), the MASH (center) and the patristic distances (right) computed with/

between genomes belonging to the same phylogroup (intra-phylogroup, in seagreen), to differ-

ent phylogroups (inter-phylogroup, in purple), or all together (ALL, in darkgrey). In all cases,

intra- and inter-phylogroup distributions were significantly different (Wilcoxon tests,

P<10−4). B. Boxplots of the nucleotide diversity (left), the MASH (center) and the patristic dis-

tances (right) computed with/between genomes in each phylogroup. The pairwise Wilcoxon

Rank Sum test with bonferroni correction was applied to all comparisons. Here, only the non-

significant (ns : P> = 0.05) comparisons were indicated, all other were higly significant

P<10−4. C. Density of the patristic distances between all pairs of genomes of the same phy-

logroup (intra-phylogroup). The dash vertical line corresponds to the median of each distribu-

tion. (A-B-C) In all cases, similar results were obtained with rarefied datasets (i.e., comparing

50 randomly selected genomes in each groups, thus ignoring the small G phylogroup).

(EPS)

S9 Fig. Pan-genomes, Pan-MGE, and rarefied Pan-genomes of each phylogroup and isola-

tion source. A. Size of the pan-genome in each phylogroup and in each isolation source. The

pan-genome sizes were correlated to the number of genomes in each group, even after exclud-

ing the singletons from the analysis (both, adjusted R2>0.88, P<10−4). The Rarefaction curve

of the pan-genomes of the full dataset was also reported (All, in black). B. Rarefaction curves of

the pan-genomes of each phylogroup and of the full dataset (All). C. Rarefaction curves of the

gene-families associated to MGE in each phylogroup and in the full dataset (All). D. Rarefac-

tion curves of the pan-genomes of each isolation sources. In each case, (i) we used 1,000 per-

mutations (genomes orderings) and then averaged the results (full line = mean, dash line = s.

d), (ii) the pan-genomes remained open (with an alpha lower than one, see methods) that we

considered them as a whole or without singletons, (iii) the boxplots of the rarefied pan-

genomes (using a number of genomes = 50) were reported. The color code used was displayed

in the insert (top right).

(EPS)

S10 Fig. Gene repertoire relatedness (GRR) within and between phylogroups. A. Average

GRR (%) computed between pairs of genomes belonging to the same phylogroup (intra-phy-

logroup) and to different phylogroups (inter-phylogroup). The color code used was displayed

in the insert (top right). B. Correlation between the different distances and indexes, i.e., GRR,

Manhattan, Jaccard, MASH and patristic, computed between pairs of genomes belonging to
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the same phylogroup (intra-phylogroup) with the whole dataset or excluding singletons (woS).

Spearman’s rank correlation rho matrix. Positive correlations were displayed in red and nega-

tive correlations in blue color. Color intensity and the size of the circle were proportional to

the correlation coefficients. The p-value of each correlation was highly significant (P<10−4).

We found similar results with rarefied datasets, i.e., considering only 50 randomly selected

genomes in each phylogroup. We also found higher correlation coefficients using all the com-

parisons (intra- and inter-phylogroup).

(EPS)

S11 Fig. Detection and Estimation of the number of prophages. A. Boxplot of the number

of regions detected as prophage-related by Virsorter in the 370 complete RefSeq GenBank

genomes and in the 1,294 draft Australian genomes. These distributions were significantly dif-

ferent, on average the number of regions detected was significantly higher in draft than in

complete genomes (Wilcoxon test, P<10−4). B. Boxplot and histogram of the size of the

detected regions in complete and draft genomes. These distributions were significantly differ-

ent (Wilcoxon test, P<10−4). On average the regions were almost 4 times larger in the com-

plete genomes than in draft genomes and few regions (644) in draft genomes had a typical size

of known dsDNA phages (around 44kb). (A-B) showed that prophage elements were less

assembled and were probably divided into several small contigs. The large regions (>60 kb) in

complete genomes corresponded to tandem elements (consecutive on the genomic sequence).

Thus, the number of detected regions did not correspond to the number of prophages either

in the complete genomes (due to tandem elements) or in the drafts genomes (the elements

being fragmented). C. Strong association between the cumulative size of the detected regions

(X) with the number of detected regions (Y). Linear regression (dash red line) and statistics

were reported. D. Boxplot of the predicted number of prophage elements in both the complete

and the draft genomes using the linear equation showed in (C) from the cumulative size of the

regions detected by VirSorter. These distributions were significantly different (Wilcoxon test,

P<10−4). On average, there was 6.0 prophages in complete genomes, and 4.25 in draft

genomes. The medians of the two data sets were closer reflecting probably the assembly prob-

lem related to the presence of prophages in tandem combined with the fact that they are often

genetically close (most of them are lambdoids). In each panel, the red arrow corresponds to

the median and the blue arrow to the average of each distribution.

(EPS)

S12 Fig. Detection of plasmid elements. A. Boxplot of the number of contigs classified as

plasmid by PlaScope in the 370 complete RefSeq GenBank (Complete) genomes and in the

1,294 draft Australian genomes (Draft). All the extrachromosomal replicons of the complete

genomes were perfectly identified as plasmid elements by PlaScope. Hence, results based on

the extrachromosomal replicons or on the contigs detected as plasmid by PlaScope were iden-

tical (Complete�). The average number of contigs was eight times larger in draft genomes than

in complete genomes (15.4 vs 1.9) and reached up to 124 contigs. B. Boxplot and histogram of

the size of the contigs detected as plasmid in complete and draft genomes. These distributions

were significantly different (Wilcoxon test, P<10−4). On average the contigs were almost 10

times larger in the complete genomes than in draft genomes (81 kb vs. 8.9 kb). We identified

2347, 562 and 53 contigs larger than 20, 50 and 100 kb, resp. (A-B) showed that plasmid ele-

ments were poorly assembled and probably divided into several small contigs. C. Boxplot of

the fraction of the proteome encoding plasmid elements per genome (i.e., the cumulative num-

ber of proteins located on contigs classified as plasmid divided by the total number of proteins

of the genome) in complete and draft genomes. These distributions were similar (Wilcoxon
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test, P>0.1) with an average of 3.2% in both.

(EPS)

S13 Fig. General genomic characteristics of the mobilome of Australian E. coli. Three types

of MGEs were detected, i.e., prophage (left column), plasmid (middle columns) and IS ele-

ments (right column). A. Histogram and boxplot of genomic features of each type of MGEs, i.
e, the cumulative size of the elements per genome (Kb), the total number (#) of genes encoded

by the elements per genome, the fraction of the genome encoding these elements per genome.

For each case, the dash line corresponds to the smoothed curve, the red arrow to the median

and the blue arrow to the average of each distribution. B. Histogram and boxplot of the num-

ber of conjugation systems per genome. C. Number of conjugative systems: (MPF) and iso-

lated relaxases (MOB) detected in our dataset. The different MPF types were indicated and

also their genomic location, i.e., located on a contig classified as plasmid or as chromosome by

PlaScope.

(EPS)

S14 Fig. Contribution of MGEs to genome size variation. A. Association between the

genome size (i.e., # of genes per genome) and the total number of genes associated to the MGE

elements. B. Histogram and boxplot of the genome size (in grey), and of the genome size with-

out MGE (in red), i.e., after removing all the genes encoding MGE elements (in red). These

distributions were significantly different (Wilcoxon test, P<10−4). C. Same representation as

in (a), but distinguishing the different types of MGEs, i.e., prophage, plasmid and IS elements.

(A-C) We found a strong correlation in each case. Linear regression (dash red line) and statis-

tics were reported. Similar results were obtained with the genome size (Mb). D. Number of

singletons (in green) and accessory gene families encoding MGEs. The fraction of the pan-

genome encoding such elements was reported in each case (%).

(EPS)

S15 Fig. Distribution of gene families related to MGEs across phylogroups and sources.

Number of accessory gene families associated to prophage and plasmid present in one (i.e.,

phylogroup-specific) to seven phylogroups (A), or in one (i.e., source specific) to seven sources

(B). The Z-score obtained for the observed number with respect to the expected distribution

(as in Fig 5A, we randomized 1,000 times, only the phylogroup (A) or the source (B) assign-

ment of genomes) was reported for each case with a color code ranging from blue (under-

representation) to red (over-representation). The frequency of these families (average number

of genomes) was also indicated in (C) for phylogroups, and in (D) for sources.

(EPS)

S16 Fig. Network of recent co-occurence of gains (co-gains) of MGE genes within and

between phylogroups. Nodes are phylogroups and edges the O/E ratio of the number of pairs

of MGE genes (from the same gene family) acquired in the terminal branches of the tree. Only

significant O/E values (and edges) are plottted (|Z-score|>1.96). Under-represented values are

in dash blue and over-represented in red (see Methods).

(EPS)

S17 Fig. Genome size and MGE content according to sources within each phylogroup. A.

Heatmap of the average genome size of strains from different sources in each phylogroup. The

deviation to the overall intra-phylogroup mean (i.e., the average genome size of all strains

belonging to a given phylogroup) was reported for all comparisons with a color code ranging

from blue (below average) to red (above average). The level of significance of each ANOM test

was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed within
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each phylogroup (each line). (B-C-D) Same representation as in (A), but in relation with the

average number of genes associated to MGEs (B), to prophage (C), or plasmid elements (D).

(EPS)

S18 Fig. Association of integrons and ARGs with human (or domesticated animals). A.

Violin plots of the number of ARGs in genomes encoding integron-integrase (int1+) or not

(int1-). The level of significance of the Wilcoxon test was indicated (P<10−3). B. Heatmap of

the proportion of genomes int1+ in each phylogroup and source. A cross marks the absence of

data. C. Same as in (B) but we merged sources related to human activity (with), or not directly

associated to human (without). The level of significance of each ANOM for proportions test

was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). Here, we compared

response proportions for the X levels to the overall response proportion from the contingency

table. This method uses the normal approximation to the binomial. Therefore, in some cases

sample sizes were too small to be tested. D. Heatmap of the average number of ARGs per

genome in each phylogroup and source. E. Heatmap of the average number of ARGs when we

merged sources related (with) or not (without) to human activity. The level of significance of

each non-parametric ANOM test (ANOM with Transformed Ranks) was indicated (P> = 0.05

: ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). The deviation to the overall mean (i.e., in all

genomes) was reported for all comparisons with a color code ranging from blue (below aver-

age) to red (above average). The color code used was displayed in the top of each panel.

(EPS)

S19 Fig. Distribution of VFs and Colicins MGEs across phylogroups and sources. (A-B).

Heatmap of the average number of VFs per strain from different sources in each phylogroup.

The deviation to the overall mean (i.e., whole dataset, in A) or to the intra-phylogroup mean

(i.e., the average number of all strains belonging to a given phylogroup, in B) was reported for

all comparisons with a color code ranging from blue (below average) to red (above average).

The level of significance of each ANOM test was indicated (P> = 0.05 : ns; P<0.05 : �; P<0.01 :
��; P<0.001 :���). It was performed within each phylogroup (each line, in B). C. Heatmap of

the average number of Colicins per genome in each phylogroup and source. D. Same represen-

tation as in (B), but in relation with the average number of Colicins per genome.

(EPS)

S20 Fig. Distribution of capsule systems across phylogroups and sources. A. Heatmap of

the average number of capsule systems per genome in each phylogroup and source. B. The

deviation to the intra-phylogroup mean (i.e., the average number of all strains belonging to a

given phylogroup) was reported for all comparisons with a color code ranging from blue

(below average) to red (above average). The level of significance of each ANOM test was indi-

cated (P> = 0.05 : ns; P<0.05 : �; P<0.01 : ��; P<0.001 :���). It was performed within each phy-

logroup (each line). C. Prevalence (%) of each capsule groups across phylogroups and sources.

(EPS)
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8
POPULATION STRUCTURE OF

CARBAPENEMASE-PRODUCING
Morganella SPECIES

I am currently participating to the analysis of the population of Morganella morganii species.
Very little studied so far, there is an increasing interest for this opportunistic pathogen, as
it is naturally resistant to many antibiotics. This study is in collaboration with the French
National Reference Center for Antibiotic Resistance dedicated to Carbapenemase-Producing
Enterobacteriaceae. My contribution to the study is on the bioinformatics side.

In order to analyse the whole species, I started by downloading all Morganella sequences
available in Refseq. As downloading reference genomes is quite recurrent while doing com-
parative genomics, we decided to add this functionality to PanACoTA. With the prepare
module, it is now possible to automatically download all available sequences in refseq or
genbank of a given genera, species or strain.

The prepare module provides, in addition to this downloading step, tools to filter the
dataset, mainly based on the alignment-free comparison tool Mash [135]. This was very
important here, as very little is known on the Morganella morganii species. Mash analysis
helped to organize its taxonomy, and highlighted the existence of two subspecies.

In order to better understand these subspecies, my work then consisted in computing the
species pangenome, as well as computing and comparing the two subspecies core genomes.

The following document is a draft for a paper which has just been submitted to Nature
Microbiology.
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ABSTRACT

Morganella are opportunistic pathogens involved in various infections. In Morganella,

intrinsic resistance to multiple antibiotics including polymyxin combined with the emergence

of carbapenemase-producers (CP) strongly limits the antimicrobial armamentarium.

We deeply characterized an international collection of

addition of L-

Ara4N on the lipid A highlighted the need to

refine the Morganella taxonomy. The

Epidemiological data allowed to decipher

that a single nucleotide polymorphism cut-off of 100 was accurate to identify outbreaks.

Finally, cefepime-zidebactam and ceftazidime-avibactam were the most potent last resort

antimicrobials towards CP except for metallo- -lactamase-producers.
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INTRODUCTION

Morganella morganii is a facultative anaerobic Gram-negative rod belonging to

Enterobacterales, firstly reported in 1907.1 Initially reported as Proteus morganii, it has been

reclassified as Morganella morganii gen nov in 1943.2 Currently, Morganella genus is

composed of two species: M. morganii and Morganella psychrotolerans.3 Whereas M.

morganii is frequently encountered in clinical specimen, the psychrotolerant M.

psychrotolerans is associated to seafood poisoning by production of histamine.4 In 1992,

using biochemical analysis, M. morganii has been divided into two subspecies based on the

differential utilization of trehalose.5 These two subspecies are the trehalose-fermentating M.

morganii subsp. sibonii and theM. morganii subsp. morganii unable to metabolize trehalose.

M. morganii is an opportunistic pathogen responsible for a wide variety of infections such as

urinary tract infections, septic shock, surgical site infections, osteomyelitis, and pneumonia.6,7

In addition, except for a cluster of M. morganii infections that has been reported in the late
8 no other outbreak has been studied at the microbial and genomic levels. Accordingly,

the molecular epidemiology of Morganella spp. recovered from clinical samples has never

been explored.

Morganella spp. isolates are intrinsically resistant to colistin, macrolides, fosfomycin,

amoxicillin, first- and second- -

lactamase) and possess decreased susceptibility to imipenem due to a low affinity of its

penicillin binding protein PBP-2.7 The treatment of infections caused by Enterobacterales

(including Morganella -lactams. However, since 1980s the dissemination of

extended-spectrum -lactamases (ESBLs) and acquired- or overproduced-cephalosporinase

(AmpC) has limited the therapeutic options with carbapenems remaining the only alternative

- the carbapenem resistance emerged in

Enterobacterales. Carbapenem resistance is due to (i) the production of ESBLs or

overproduced-AmpC associated with decreased outer-membrane permeability or (ii) to the

production of an enzyme with significant hydrolytic activity towards carbapenems and named

carbapenemases.9 In Enterobacterales, the main carbapenemases are Ambler class A enzymes

with mainly KPC-like enzymes, -lactamases (MBLs) (Ambler class B) of NDM-,

VIM- and IMP-type and Ambler class D carbapeneme-hydrolyzing -lactamases of OXA-48-

type.10 Carbapenemase-producing M. morganii are rarely reported. However, the most

prevalent carbapenemases produced by M. morganii are NDM-like enzymes.11 14 More

sporadically, OXA-48- and KPC-like enzymes have also been reported in M. morganii.15 18

To our knowledge, only one report of GES-5 carbapenemase in M. morganii has been
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published.19 In Morganella spp., combining intrinsic resistance (particularly to colistin) with
20

Here, we report a deep characterization of an international collection of carbapenemase-

producing Morganella spp. Whole genome sequencing (WGS) combined with biochemical

experiments, antimicrobial susceptibility testing and epidemiological data of several

outbreaks allowed not only to decipher several mechanisms responsible for intrinsic

characters of Morganella species, such as trehalose assimilation of M. sibonii and natural

resistance to colistin, but also to identify high-risk clones inside the Morganella genus.

RESULTS

Carbapenemase-producingMorganella spp. in France

From January 1st 2013 to March 1st 2021, a total of 68 non-duplicate carbapenemase-

producing M. morganii were collected at the French NRC among 14,672 carbapenemase-

producing Enterobacterales (CPE) isolates representing 0·46% of the French CPE. These

isolates were recovered from 8 different french regions (Supplementary Figure S1B). Of

note, 63·2% (43/68) of the M. morganii isolates were recovered from the same area in South-

West of France (Supplementary Figure S1B). Phylogenetic analysis performed on all the 68

M. morganii revealed that among the 51 NDM-1-producing M. morganii, 80·.4% (41/51)

belonged to the same clone recovered from 2013 to 2021 (Supplementary Figure S1A and

S1C). This clone included 39 isolates collected in three different cities located 22 km and 72

km away in South-West of France (suggesting patient-to-patient cross-contamination), and 2

isolates collected from a distant area in North-East of France (Supplementary Figure S1A).

The 41 isolates that composed this clone (clone I hereafter) were genetically very close with a

median of 25 SNPs (1st quartile = 16, 3rd quartile = 37) along their whole genome.

Resistome analysis demonstrated that the main clone identified in South-West of France

carried the blaNDM-1 carbapenemase encoding gene, the blaCTX-M-15 ESBL gene and two copies

of the blaDHA-like cephalosporinase gene. The first copy corresponded to the chromosome

encoded blaDHA-4 gene and the second copy was a truncated blaDHA-1 gene

end. -lactamases encoding genes was responsible for full resistance

-lactams -lactam-inhibitors associations (ceftazidime-avibactam,

ceftolozane-tazobactam, imipenem-relebactam and meropenem-vaborbactam) (Figure 1). In

addition, this clone I produced two 16S RNA methylase, ArmA and RmtC, and two

aminoglycoside-modifying enzymes ( -Ib and AAD-1) conferring resistance to all

aminoglycosides. Resistance to quinolones was mediated by mutations in GyrA (S83I), ParC
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(S84I and D313E), ParE (N84K and S459Y),21,22 associated with the production of QnrA1.

Combined with the intrinsic resistance to polymyxins and tigecycline, acquired resistance

determinants were responsible to full resistance to all commonly tested molecules. Attempts

to transfer the blaNDM-1 gene by conjugation or electrotransformation failed suggesting a

chromosome location of the blaNDM-1 gene. Long-read sequencing of the first isolate identified

in France confirmed the chromosomal location of blaNDM-1, inside a novel transposon Tn7340

described in Supplementary Figure S2.

Out of this clone I, the 27 remaining isolates sent to the NRC were polyclonal and carried

diverse carbapenemases (10 OXA-48, one OXA-162, twelve NDM-1, one NDM-7, one VIM-

4 and one NDM-1 + VIM-1 producers) (Supplementary Figure S1A and S1C).

Carbapenemase-producingMorganella spp. in Europe

To determine if the main clone (clone I) observed in France has already spread abroad, we

analyzed additional 104 Morganella spp. isolates with decrease susceptibility to ertapenem or

meropenem, collected from 7 reference centers across Europe from 2013 to 2021. Resistome

analysis allowed the identification of a wide variety of carbapenemases produced by these

isolates (Table 1). Of note, a wide diversity of carbapenemases was identified in Germany

including NDM-1, NDM-5, VIM-1, OXA-48, OXA-181 and OXA-641 (a variant of OXA-

372 reported only once in Citrobacter freundii).23 In contrast, in Czech Republic KPC-2

carbapenemase was highly prevalent (16/21) followed by OXA-48 (n=1). The resistomes of

all isolates are summarized in Supplementary Table S1.

On top of carbapenemases, several acquired -lactamases were also acquired. As previously

reported for other Enterobacterales,24 CTX-M-15 was the most prevalent ESBL identified in

34·9% (60/172) of the Morganella spp. isolates, followed by CTX-M-14, CTX-M-1, SHV-12

and VEB-6-like enzymes that were identified in four, one, six and one isolates, respectively.

Twelve isolates produced an acquired cephalosporinase of the CMY family (Supplementary

Table S1).

Regarding quinolones resistance, mutations in gyrase and topoisomerase IV were observed as

well as production of plasmid-mediated quinolone resistance determinants (43 qnrA1-like, 27

qnrD-like, 13 qnrB-like and 6 qnrS-like) (Table 1). The QepA quinolone efflux pump was

identified in two strains.

Regarding acquired aminoglycosides resistance genes, the prevalence of 16S rRNA

methylases encoding genes was high with 42 and 39 isolates carrying armA-like and rmtC-

like genes, respectively. In addition, several other genes encoding aminoglycosides modifying
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enzymes ( -Ib, -IIa, aadA, aadB, -I, -VI and -I) were also

identified in class 1 integrons. Accordingly, they were identified in isolates co-carrying other

integron-born resistance genes such as trimethoprim (dfrA-like), chloramphenicol (catA-like,

catB-like, cmlA-like) or sulfamide (sul1) resistance determinants (Table 1 and

Supplementary Table S1).

Antimicrobial alternatives for the treatment of highly drug resistant Morganella spp.

The treatment of infections caused by carbapenem-resistant Morganella spp. is of great

concern. Accordingly, we tested several last-resort antibiotics such as three carbapenems

(imipenem, ertapenem, meropenem), new -lactams- -lactamase inhibitor associations

(ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefepime-

zidebactam and ceftolozane-tazobactam), temocillin and two last-resort cyclins (eravacycline

and tigecycline).

For each antimicrobial, MICs distributions are presented in Figure 1 and interpreted

according to EUCAST guidelines. Carbapenemase producers (n=145) were separated

according to their carbapenemase class content and compared to isolates that do not produce

any carbapenemase (n=32). As expected, non-carbapenemase producers showed only a

moderate susceptibility to imipenem. The combination with relebactam did not significantly

increase the efficiency of imipenem. Surprisingly, MIC of ertapenem remained in the

susceptible range for 100% and 81·3% of Ambler class A and class D carbapenemase

producers and 93·8% of non-carbapenemase producers. As expected vaborbactam helped to

restore meropenem susceptibility for all KPC producers. But this association showed a

moderate effect on class D and no effect on MBL-producing isolates. The distribution of

MICs of ceftazidime was heterogeneous except for MBL producers that remained highly

resistant. The ceftazidime-avibactam was an accurate option for the treatment of infection

caused by Ambler class A or class D carbapenemase- and non-carbapenemase-producers with

100%, 95·5% and 96·9% of susceptibility respectively. As expected, all MBL-producers were

fully resistant to ceftazidime-avibactam. Temocillin showed a bi-modal distribution with

79·3% and 100% of MBL and class D carbapenemase producers being highly resistant,

respectively. Oppositely, 78·9% of the Ambler class A carbapenemase producers remained

susceptible. Cefepime/zidebactam demonstrated the highest efficacy with most of isolates

remaining below the resistance threshold . Zidebactam (formerly WCK 5222) is a

-lactamase inhibitor of the diazabicyclooctane (DBO) family and is used in combination

-lactam efficiency.25 In addition to its inhibition properties towards
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Ambler class A and class D -lactamases, zidebactam possesses intrinsic antimicrobial

activity through its binding to PBP-2 and PBP-3.26 However, this molecule does not show any

efficacy by itself against Proteae.25 Accordingly, 100%, 95% and 100% of Ambler class A

carbapenemase-producers, Ambler class D carbapenemase-producers and non-

carbapenemase-producers were susceptible to cefepime/zidebactam, respectively. Only 49%

of MBL-producing isolates were susceptible to cefepime/zidebactam. Of note, cefepime-

zidebactam susceptible isolates also exhibi confirming the

absence of intrinsic action of zidebactam towards the PBP ofMorganella spp.

Finally, MICs of last generation cyclines (tigecycline and eravacycline) demonstrated only

very moderate susceptibility to these molecules (2·3% to 31·8%).

Deciphering polymyxin resistance mechanism inMorganella spp.

Morganella spp. are known to be resistant to polymyxin at high-level. However, the

underlying mechanism remained unknown. Usually, resistance to polymyxins is mediated by

modifications of the lipid A, the membrane anchor of the lipopolysaccharide (LPS), through

covalent addition of phosphoethanolamine (pEtN) or 4-deoxyaminoarabinose (L-Ara4N). In

our collection two isolates (BEL-5 and BEL-6) exhibited pellicular susceptibility to

polymyxin with MICs to colistin at 2 and 0·5 mg/L respectively. To decipher the structure of

the lipid A, a MALDIxin test (mass-spectrometry assay dedicated to lipid A analysis) was

performed on 10 colistin-resistant isolates (MICs > 256 mg/L) (nine M. morganii subsp.

morganii and one M. sibonii) and BEL-5 and BEL-6. It clearly identified a strong decrease in

L-Ara4N-modified lipid A in susceptible isolates (Supplementary Figure S3). It

demonstrated that resistance to polymyxin is caused by addition of L-Ara4N in Morganella

genus and that some genetic events could occurred, leading to the decrease in L-Ara4N

modifications and acquired susceptibility to polymyxins. In K. pneumoniae, addition of L-

Ara4N is mediated by the up-regulation of the operon arnBCADTEF under the control of

different two-component systems (TCS) PhoP/Q and PmrA/B.27 By homology, nine similar

TCS have been identified in this study in Morganella spp including PhoP/Q and QseB/C.

Additionally, Guckes et al. demonstrated that QseB/C, involved in quorum sensing, could

also interfere on the PmrA/B regulon.28 Comparative genomics were performed on BEL-5

and BEL-6 isolates. In BEL-5 isolate colistin resistance was likely due to the insertion of

IS10R immediately upstream the arn operon leading to the truncation of the PmrA/Qse

binding site that likely modified the expression of the arn operon (Supplementary Figure

S4). In BEL-6, the PmrA/Qse binding site is intact but arn operon exhibited 10 times more
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SNPs in arnA, arnB & arnC than the whole bracketing region in comparison to the

polymyxin-resistant M. morganii subsp. morganii isolate 177A6 (Supplementary Figure

S5), suggesting an impact of these mutations in the function of the arn operon. However, the

role of each mutation remains to be elucidated.

- -producing Morganella spp.

from worldwide

First, phylogenetic analysis was conducted by creating a MASH distance similarity matrix

including the whole genome of 270 M. morganii (68 carbapenemase-producing and 2

susceptible isolates from France, 104 from Europe,

from Canada and 93 from NCBI) and 5 genomes of M. psychrotolerans from NCBI

(Supplementary Figure S6). Since, M. psychrotolerans was found to be very distant fromM.

morganii (less than 86% average nucleotide identity (ANI)) (Supplementary Figure S6), it

was discarded from the further whole-genome comparison and phylogenetic tree construction

(Figure 2).

Morganella isolates can be roughly separated into five subpopulations (Supplementary

Figure S6 and Figure 2). The first subpopulation corresponds to M. sibonii (formerly M.

morganii subsp. sibonii) including 23 isolates from our study and two reference strains

(CIP103648 and CIP 103649). Since, these 23 isolates possessed less than 92% ANI with the

M. morganii subsp. morganii and M. psychrotolerans, they were reclassified as an

independent species named M. sibonii instead of a subspecies of M. morganii. In agreement

with this new taxonomy, differential biochemical and phenotypic characteristics were

observed between M. morganii and M. sibonii (cf. below). The second and main

subpopulation (n=215) corresponds to M. morganii subsp. morganii. A 3rd subpopulation

included 31 isolates, that phylogenetically formed an independent group with

MASH distances of 94-95% with M. morganii subsp. morganii (Figure 2 and

Supplementary Table S2). This subpopulation was thus reclassified as a new subspecies of

M. morganii. Since some isolates of this subspecies possessed biochemical characteristics of

both M. morganii subsp. morganii and M. sibonii (cf. below), it was named M. morganii

subsp. intermedius. Finally, a unique isolate (Genbank accession number NRQY0000000) is

separated from the four other populations (less than 94% ANI). This peculiar isolate was

recovered from a grass grub Costelytra sp. in New Zealand and might be further recognized

as a novel Morganella species if several other isolates will be reported.
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As revealed by the phylogenetic tree, M. morganii subsp. morganii, which includes the

majority of clinical isolates, might be divided in a wide diversity of subclones (Figure 2).

Among them, five subclones (clone I to V) were more prevalent and disseminated worldwide.

The clone I, which includes the NDM-1-producing isolates of the French outbreak (n=39) also

includes unrelated carbapenemase-producing isolates from Germany (n=4), United-Kingdom

(n= 2), France (n=2) and Belgium (n=1). It confirms that this - clone I has already

disseminated in Europe. A sub-tree and a SNP matrix constructed with isolates of this clone I

revealed that this clone can be divided into three independent clusters (Figure 3). The cluster

A included the unique Belgian isolate, the cluster B included the French cluster (n=41) and

the cluster C included 7 isolates from Germany (n=4), France (n=1) and United-Kingdom

(n=2). Isolates of the cluster B, which are all epidemiologically related, had less than 50 SNPs

except for isolates 126H7 and 105F9 (ca. 70 to 100 SNPs). Accordingly, we decided to use a

reasonable cut-off at 100 SNPs to separate clusters based on genomic results and

epidemiological investigations. One French isolate 81B3 did not belong to the main French

cluster (cluster B). As expected, epidemiological data revealed that the patient travelled in

India and was not related to the outbreak. This strain was part of the cluster C that includes

German (n=3) and English (n=2) isolates. Despite a close genetic relationship, resistomes of

the isolates of this cluster C were different (Supplementary Table S2).

To dive deeper into the evolution of this clone I, a molecular clock was calculated using the

strains of the French outbreak (cluster B) by dividing the number of SNPs by number of days

that separate the collection dates from the 1st isolate of the outbreak considered to be collected

at Day 0 (24A3) (Supplementary Figure S7). A mean of ca. 3·9 SNPs per year was observed

(50% of isolates have a molecular clock comprise between 1·0 and 6·8 SNPS per year). This

result is in agreement with what we previously observed for Klebsiella pneumoniae (7·5

SNP/year) or Pseudomonas aeruginosa (7·0 SNP/year).29,30

Apart from the clone I which was overrepresented due to the French outbreak, four additional

prevalent clones were evidenced in our collection (Figure 2). We analyzed the subtree of each

clones and compared the results with epidemiological data (Supplementary Figure S8). The

clone III is mostly composed by KPC-producers from Czech Republic that have been reported

to be part of the same outbreak. Our genomic analysis confirmed epidemiological data with

SNPs ranging between of 21 to 70, which confirmed the robustness of our SNP cut-off of 100.

We identified several cross-country disseminations for each main clones. As example, inside

the clone IV we identified five isolates in Czech Republic carrying either OXA-48 or KPC-2

and close relationship between three isolates from France and Belgium (156C10, 249E6 and
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BEL-22, respectively). Out of the five main clones, we identified three isolates from United-

Kingdom (ANG-7, ANG-9 and ANG-12) with clear epidemiological link (44 to 81 SNPs)

(Supplementary Figure S9) that were previously confirmed to be part of the same outbreak

using PFGE (K. Hopkins personal data).

To better understand the spread of the five main clones their core genomes were compared to

the global core genome of M. morganii subsp. morganii. We identified 13, 13 and 1 unique

genes for the clone I, II and V respectively. No specific gene was identified for the clone III

and IV (Table 2). Most of these genes corresponded to hypothetical proteins. However, some

interesting genes might be involved in the international dissemination of these clones

including a putative colicin and a ferrochrome-iron receptor. However, their roles in fitness,

virulence and dissemination remain to be elucidated.

Core genome analysis of Morganella spp.

Phylogeny and MASH analysis demonstrated that Morganella genus could be separate into 4

species named M. psychrotolerans, M. sibonii, M. morganii and a new species represented by

a unique strain isolate from Costelytra sp. In addition, Morganella morganii can be split into

two subspecies named M. morganii subsp. morganii and a novel subspecies named M.

morganii subsp. intermedius (Figure 2). The core genomes of M. sibonii and M. morganii

subsp. morganii were compared (Figure 5A). Almost 2,700 genes were present in 95% of

both species whereas 47 genes were specific to M. morganii subsp. morganii and 63 were

predicted to be specific to M. sibonii (Figure 4A and Supplementary Table S3). As

demonstrated below, biochemical characterization, as well as intrinsic resistance profile to

refined taxonomy.

As previously described, M. sibonii (previously M. morganii subsp. sibonii) differs from M.

morganii subsp. morganii by assimilation of trehalose.31 The biochemical characterization

using Api20E and Api50CH galleries of all isolates of our collection confirmed that all M.

sibonii isolates were able to use trehalose as unique carbone source as opposed to M.

morganii subsp. morganii strains. Among M. sibonii specific genes we identified the presence

of an operon involved in sugar transport (Figure 4B). The expression of this entire operon in

a M. morganii subsp. morganii strain restore the ability of this strain to utilize trehalose as

sole carbon source, demonstrating the functionality of this operon. The supplementary
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Figure S10 summarizes the putative role of each partner of this operon in trehalose utilization

in M. sibonii.

In M. sibonii, immediately downstream of the trehalose operon, a putative type VI secretion

system (T6SS) has been systematically identified (Figure 4B). We also identified a putative

type III secretion system (T3SS) specific from M. siboni and absent from M. morganii subsp.

morganii genomes (Supplementary Table S2).

Sometimes wrongly considered as tetracycline resistant, M. morganii subsp. morganii is

intrinsically susceptible to tetracycline. Oppositely, M. sibonii possess in its core genome a

tetD-like resistance gene as well as its tetR regulatory gene that might lead to intrinsic

tetracyclin resistance (Figure 4C). Expressed in E. coli, we confirmed that tetD-like gene was

able to confer resistance to tetracycline (MIC > 128 mg/L) but not to tigecyline (MIC <0·25

mg/L) or eravacycline (MIC <0·25 mg/L). In M. sibonii, genetic environment surrounding

tetD-like gene did not show any mobile element indicating a recent acquisition. Accordingly,

partial loss of this tetD-like locus in M. morganii subsp. morganii might be the result of a

deletion/contraction at this locus (Figure 4C).

Persistent genome comparison identified several other genes specific of M. morganii subsp.

morganii (Table S2) including the whole locus mglB/A/C encoding the ABC transporter of

galactose/methyl galactoside and its transcriptional regulator encoded by galS (Figure 4E).

Of note, M. morganii subsp. intermedius is at the halfway between M. morganii subsp.

morganii and of M. sibonii. As example, all M. morganii subsp. intermedius isolates possess

the mglB/A/C locus specific to M. morganii subsp. morganii but few strains also possess the

trehalose operon, the T6SS and the resistance gene tetD associated to M. sibonii (Figure 2,

Supplementary Table S2). Of note, the trehalose operon was identified in the isolate 131E1

with a similar synteny but with only 88·2% nucleotide identity compared to the M. sibonii

reference strain CIP103648, indicating that this operon was not recently acquired but rather

has evolved in parallel within each species.

DISCUSSION

The starting point of this study was to compare and decipher an outbreak of NDM-1-

producing M. morganii subsp. morganii in France over a ten-year period. This analysis

revealed a longitudinal outbreak with the same genetic background. Surprisingly, the clone

was well conserved according to SNP analyses with, for some isolates, less than 20 SNPs

over a ten year-period (Figure 3). Using epidemiological data and SNP analyses, a cut-off

value of 100 SNPs along the whole genome was considered reasonable to discriminate
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outbreak-related strains from non-clonally related isolates. Recently, a cut-off value of 20

SNPs along the core-genome was advocated to decipher if the K. pneumoniae isolates were

clonally-related or not.32 This lower SNPs number might be explained by differences in

genome comparison processes used in both studies. Indeed, in our study whole genome

comparison was performed instead of a core genome comparison used for K. pneumoniae.

Besides, we determined that the molecular clock of M. morganii was around 3·9 SNPs/year,

slightly lower than K. pneumoniae and P. aeruginosa that possess evolution rates of 7·5 and

7·0 SNPs/years, respectively, calculated with the same approach.29,30

Comparison of carbapenemase-producing French Morganella spp. isolates (n=68) with an

international (mainly Europe) collection of multidrug resistant Morganella spp. (n=104) and

with genomes from the Genbank database (n=104), the population structure of Morganella

spp. was deciphered. Phylogeny and MASH analysis demonstrated that Morganella genus

could be separate into 4 species named M. psychrotolerans, M. sibonii, M. morganii and a

new species represented by a unique strain isolate from a grass grub Costelytra sp. In

addition, Morganella morganii could be split into two subspecies named M. morganii subsp.

morganii and M. morganii subsp. intermedius. Intrinsic resistance profile to tetracycline,

conservation of metabolic pathways, secretion systems, correlated this refined

taxonomy. Carbapenemase-producing Morganella spp. isolates were mostly identified among

five high-risk clones of M. morganii subsp. morganii that have already disseminated

worldwide.

Morganella spp. was well-known to be intrinsically resistant to polymyxins. However, the

molecular and biochemical mechanism remained unknown. In this study, the analysis of two

Morganella isolates susceptible to colistin allowed us to demonstrate that intrinsic addition of

L-Ara-4N on the lipid A via expression of arnBCADTEF leads to polymyxin resistance.

Finally, antimicrobial susceptibility testing allowed us to identify the best therapeutic options

for the treatment of infections caused by MDR Morganella spp. As expected, we identified

that relebactam do not restore imipenem susceptibility since Morganella spp. possess intrinsic

decreased susceptibility to imipenem through PBP with low affinity to this molecule. We also

demonstrated that the ceftazidime-avibactam, meropenem-vaborbactam and cefepime-

zidebactam are suitable options for the treatment of Ambler class A and D carbapenemase-

producing isolates as well as for non-carbapeneamse producers. Of note, as observed with

Enterobacterales, the novel -lactamase inhibitors (avibactam, relebactam, vaborbactam and

zidebactam) are inefficient to restore the activity of carbapenems (imipenem or meropenem)

or broad-spectrum cephalosporins (ceftazidime, cefepime) when a MBL (Ambler class B) was

172
CHAPTER 8. POPULATION STRUCTURE OF CARBAPENEMASE-PRODUCING Morganella

SPECIES



produced. Finally, despite the presence of tetD gene responsible for tetracycline resistance

(acquired or intrinsic in M. sibonii) but not to tigecycline and eravacycline, most of

Morganella spp. isolates were resistant to both molecules (Figure 1).

To conclude, this work deeply analyzed the largest collection of Morganella spp. ever

published leading to a reorganization in Morganella taxonomy using whole genome

sequencing data validated by key phenotypes (trehalose assimilation, tetracycline

Morganella

species (e.g. T6SS and T3SS in M. sibonii) that might be implicated the bacterial lifestyle.

Regarding the antimicrobial resistance potential of Morganella spp. (intrinsic resistance to

colistin, chromosome-encoded cephalosporinase associated, acquired carbapenemase

encoding genes), this genus might become a threatening issue in a next future.20 Accordingly,

Morganella deserve more comprehensive studies to understand its lifestyle and its ability to

acquire resistance. It includes a better knowledge of -

such as the one which was responsible for a large outbreak in France and that had already

spread at least in Europe.

ONLINE METHODS

Strains collections

All Morganella morganii isolates sent to the French National Reference Center (NRC) for

Antimicrobial Resistance from January 1st 2013 to March 1st 2021 were included (n=68). The

bacterial isolates referred to NRC were recovered from clinical and screening human

specimens collected in french microbiology laboratories. Additionally, 104 M. morganii

isolates referred to European antimicrobial resistance reference centers were added to the

collection: Germany (n=32), Belgium (n=26), England (n=17), Austria (n=3), The

Netherlands (n=4), Poland (n=1), Czech Republic (n=21). One additional carbapenemase-

producing M. morganii isolate was from Canada, two M. morganii subsp. sibonii reference

strains (CIP 103648 and CIP 103649) from the Pasteur Institute collection and two

susceptible isolates from Bicêtre Hospital. Genomes of all Morganella spp. isolates were

totally sequenced as described in supplementary methods.

Bacterial identification

The bacterial identification of all 172 Morganella spp. collection isolates was verified by

MALDI-TOF mass spectrometry (Biotyper, Bruker Daltonics).
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Biochemical characterization

Biochemical characterization of the collection was performed using Api20E and Api50CH

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by the disc diffusion method on Mueller-

Hinton (MH) agar (Bio-Rad, Marnes-La-Coquette, France) and interpreted according to

EUCAST guidelines as updated in 2021 (http://www.eucast.org). MICs of temocillin,

cefepime/zidebactam, ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam,

ertapenem, imipenem, imipenem/relabactam, meropenem, meropenem/vaborbactam, colistin,

eravacycline and tigecycline were determined by broth microdilution (SensititreTM

Thermofisher, France).

Carbapenemase detection.

Carbapenemase detection was performed using Carba NP-test as previously described,

followed by an immunochromatographic detection of the carbapenemase enzyme using NG-

Carba5 test (NG Biotech, Guipry, France). 33

Whole genome sequencing

All Morganella spp.

described.34 De novo assembly and read mappings were performed using CLC Genomics

Workbench v12.0 (Qiagen, Les Ulis, France). Long read sequencing was performed on M.

morganii ly. 29

Bioinformatic analysis

The acquired antimicrobial resistance genes were identified using Resfinder server v3.1

(https://cge.cbs.dtu.dk/services/ResFinder/).35

The genomes were annotated using RAST server.36,37 Phylogeny was performed using

CSIphylogeny v1.4 server (www.cge.cbs.dtu.dk/services/CSIPhylogeny/) and visualised

using iTOL software v4.38 Sequences alignments were performed using ClustalW

(https://www.genome.jp/tools-bin/clustalw). SNPs analysis was performed on whole genome

using CSIphylogeny V1.4 with parameters as follow select min depth at SNP position at 10X,

minimum distance between SNPs at 10 bp, minimum SNP quality at 30. Plasmid contents of
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clinical isolates were analyzed by searching replicase gene using PlasmidFinder v2.1 and

manual search for genes showing homology with a replicase gene.

Regarding Pangenome and persistent genomes determination, the 270 genomes of

Morganella morganii were annotated using PanACoTA v1.2.0.39 With default parameters

(max L90 = 100 and a maximum of 999 contigs), 42 genomes did not pass the quality control.

This gave our final dataset of 209 Morganella morganii genomes and 19 Morganella sibonii

genomes. All 228 genomes were annotated with Prokka.40 The pangenome of all 228

Morganella genomes was built,

mmseqs2 v.13-45111) with default parameters.41 Homologous families were determined by

keeping only hits with at least 80% identity and an alignment covering at least 80% of both

proteins. These proteins were then clustered by single linkage. This resulted into 22,952

families of homologous proteins. Persistent genomes were inferred from the pangenome

genome at 95% of the whole Morganella morganii species. This means that a gene is

considered as persistent if it is present in a single copy in at least 95% of the genomes. A total

of 2,697 persistent genes have been identified. Then, the persistent genome of the 2

subspecies was computed, from the M. morganii species pangenome. A total of 2,781

persistent genes in the 209 M. morganii genomes and 2,498 genes in the 19 M. morganii

subsp. siboni genomes were identified.

Dataset of Morganella spp. genomes

A dataset of 275 Morganella spp. genomes including 103 genomes from Genbank and 172

genomes from our collection were used for bioinformatics analysis. Genomes similarity was

estimated by calculating pairwise genetic distances with Mash v2.1.42 For very similar

genomes, the Mash distance D strongly correlates with alignment-based measures such as the

Average Nucleotide Identity (ANI) based on whole-

(ANI/100). Based on current taxonomy, 3 groups were identified: Morganella psychotolerans

(5 genomes), Morganella morganii subsp. sibonii (23 genomes) and Morganella morganii

subsp. morganii (247 genomes). Only genomes from Morganella morganii species were kept

for further analysis corresponding to 270 genomes. Bioinformatic analysis to assess acquired

antimicrobial resistance genes, phylogeny, single nucleotide polymorphisms (SNPs), plasmid

content, pangenome and persistent genome are described in supplementary methods.
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PCR and cloning experiments to assess trehalose assimilation and intrinsic tetracyline

resistance inMorganella siboni

Whole cell-DNA was extracted as previously described.43 DNA from M. sibonii GER-11 was

used as template for the amplification of the trehalose operon usin -

ATTTGCGGTCAACACTCTCC- -CGGCATCTGTTCTGATAACC-

tetracyline resistance gene tetD-likeF -CGGGCAAAAACGAAAAGTCGC - tetD-

likeR -ACGGTTCCTCTGTGTCTGAG -

polymerase (Thermo fischer scientific, Les Ulis, France) with an annealing temperature of

55°C respectively and an extended elongation time (5 minutes) to amplify the whole trehalose

operon (7,517 bp in size). These amplicons were cloned into the Zero Blunt pTOPO (KanR)

cloning vector (Thermo Fisher Scientific) and then transferred into electrocomptent E. coli

TOP10 as previously described.34 Plasmids were extracted from the recombinant E. coli using

the GeneJet Plasmid miniprep kit according to the manufacturer (Thermo fischer scientific)

and transferred into electrocompetent M. morganii O86D10. Electrocompetent M. morganii

were prepared using the standard procedure for E. coli as previously described. 43

MALDIxin test.

The protocol has been performed as previously described.44 Briefly, a 10 L inoculation loop of

bacteria, grown on Mueller-Hinton agar for 18-24 hours, was resuspended in 200 L of water.

Mild-acid hydrolysis was performed on 100 L of this suspension, by adding 100 L of acetic

acid 2 % v/v and incubating the mixture at 98°C for 30 min. Hydrolyzed cells were

centrifuged at 17,000 x g for 2 min, the supernatant was discarded, and the pellet was washed

3 times with 300 L of ultrapure water and resuspended to a density of McFarland 20 as

measured using a McFarland Tube Densitometer. A volume of 0.4 L of this suspension was

loaded onto the MALDI target plate and immediately overlaid with 1.2 L of a matrix

Norharmane (Sigma-Aldrich) solubilized in chloroform/methanol 90:10 v/v to a final

of calibration peptide was loaded

Daltonik, Germany). The samples were loaded onto a disposable MSP 96 target polished steel

BC (Bruker Part-No. 8280800).

The bacterial suspension and matrix were mixed directly on the target by pipetting and the

mix dried gently under a stream of air. The spectra were recorded in the linear negative-ion
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ion accumulation of 5,000 laser shots randomly distributed on the spot. The spectra obtained

were processed with default parameters using FlexAnalysis v.3.4 software (Bruker Daltonik,

Germany).
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Figure 1. MICs distribution of twelve last resort antimicrobials. MICs were obtained
using microbroth dilution. MIC distributions were separated according carbapenemase
content and is indicated on the histograms. Clinical breakpoints correspond to EUCAST
guidelines. S: Susceptible; R: Resistant.
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Class D = 40.9%
None = 40.6%

Class A = 100%
Class B = 3.4%
Class D = 95.5%
None = 96.9%

Class A = 0%
Class B = 96.6%
Class D = 4.5%
None = 3.1%

Class A = 100%
Class B = 44.8%
Class D = 81.8%
None = 93.8%

Class A = 0%
Class B = 55.2%
Class D = 18.2%
None = 6.2%

Class A = 5.3%
Class B = 0%

Class D = 59.1%
None = 65.6%

Class A = 94.7%
Class B = 100%
Class D = 40.9%
None = 34.4%

Class A = 0%
Class B = 50.6%
Class D = 4.5%
None = 0%

Class A = 100%
Class B = 49.4%
Class D = 95.5%
None = 100%

Class A = 78.9%
Class B = 20.7%
Class D = 0%
None = 68.8%

Class A = 21.1%
Class B = 79.3%
Class D = 100%
None = 31.2%

Class A = 89.5%
Class B = 97.7%
Class D = 72.7%
None = 96.9%

Class A = 10.5%
Class B = 2.3%
Class D = 27.3%
None = 3.1%

Class A = 68.4%
Class B = 93.4%
Class D = 68.2%
None = 84.4%

Class A = 31.6%
Class B = 6.9%
Class D = 31.8%
None = 15.6%
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Figure 2. Phylogenetic analysis of the 270 isolates of Morganella spp. Phylogenetic tree
was constructed using CSIphylogeny (cge.cbs.dtu.dk/services/CSIPhylogen) and visualized
using iTOL (itol.embl.de/). Produced carbapenemases are indicated by colored squares. The
number indicated the five main clones of M. morganii subsp. morganii.
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Figure 3. Phylogenetic analysis ofM. morganii subsp. morganii clone I.
This phylogenetic tree was obtained by comparing all isolates from M. morganii subsp.
morganii clone I. A SNP-based matrix was visualized. Year of isolation, Country and
carbapenemase of each isolate is indicated at the vicinity of the isolate name.
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Table 1: Genetic features and diversity of acquired resistance genes ofMorganella spp.
isolates

M. morganii M. sibonii M. psychrotolerans
Number of genomes 247 23 5
Mean genome size (Mbp) 3.97 4.14 4.21
Mean contig number 165.5 154.95 40.4
N50 (kbp) 597.97 308.89 386.40
-lactam resistance

Class A carbapenemases blaKPC-2 (n=26)
blaGES-5 (n=1)

None None

Class B carbapenamases blaNDM-1 (n=75)
blaNDM-5 (n=10)
blaNDM-7 (n=3)
blaVIM-1 (n=3)
blaVIM-1-like (n=1)
blaVIM-4 (n=2)
blaIMP-27 (n=1)

blaNDM-1 (n=6)
blaVIM-1 (n=1)

None

Class D carbapenamases blaOXA-48 (n=22)
blaOXA-162 (n=1)
blaOXA-181 (n=2)
blaOXA-204 (n=1)
blaOXA-641 (n=1)

blaOXA-48 (n=5) None

ESBLs/Cepahlosporinases blaCTX-M-3 (n=1)
blaCTX-M-14 (n=4)
blaCTX-M-15 (n=1)
blaCMY-2 (n=2)
blaCMY-4-like (n=6)
blaCMY-16-like (n=2)
blaDHA/MOR-like (n=247)
blaSHV-12 (n=6)
blaTEM-2 (n=1)
blaVEB-6-like (n=1)
blaOXA-35 (n=1)

blaCTX-M-1 (n=1)
blaCMY-16 (n=1)
blaDHA/MOR-like (n=23)

None

Penicillinases blaTEM-1-like (n=43)
blaTEM-110-like (n=2)
blaCARB-2-like (n=10)
blaOXA-1 (n=30)
blaOXA-9 (n=2)
blaOXA-10-like (n=5)

blaOXA-10 (n=1)

Non- -lactam resistance
Aminoglycosides aadA1-like (n=109)

aadA2-like (n=39)
aadA5 (n=19)
aadA7 (n=1)
aadA12-like (n=6)
aadA13-like (n=2)
aadA16-like (n=2)
aadA17-like (n=1)
aadA24-like (n=9)
aadB-like (n=13)
strA-like (n=37)
strB-like (n=36)

-II-like (n=44)
-IVa-like (n=6)

aac(6')Ib-like (n=116)
aac(6')-aph(2'')-like
(n=1)

aadA1-like (n=6)
aadA2-like (n=1)
aadA5 (n=1)
aadA24-like (n=1)
aadB-like (n=6)
strA-like (n=6)
strB-like (n=6)

-IVa-like (n=2)
aac(6')Ib-like (n=1)
aph(3')-Ic (n=2)
aph(4 )-Ia (n=1)
aph(3')-VIa-like (n=1)

None
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aph(3')-I-like (n=36)
aph(3')-VIa-like (n=16)
aph(4)-Ia (n=6)
armA-like (n=42)
rmtB-like (n=4)
rmtC-like (n=39)

Fluoroquinolones qnrA1-like (n=43)
qnrB1-like (n=2)
qnrB2 (n=1)
qnrB6 (n=1)
qnrB19 (n=1)
qnrB32-like (n=6)
qnrB58-like (n=1)
qnrB66-like (n=1)
qnrD-like (n=17)
qnrS1-like (n=5)
qnrS2-like (n=1)
qepA-like (n=2)

qnrD (n=10) None

Chloramphenicol catA1-like (n=63)
catA2-like (n=111)
catB2-like (n=8)
catB3-like (n=71)
florR-like (n=14)
cmlA-like (n=7)

catA2-like (n=16)
catB2-like (n=1)
catB3-like (n=3)
florR-like (n=4)

None

Tetracycline tetA-like (n=23)
tetB-like (n=124)
tetD-like (n=3)
tetL-like (n=1)
tetY-like (n=1)

tetA-like (n=1)
tetB-like (n=1)
tetD-like (n=23)
tetY-like (n=1)

None

Macrolides mph(A)-like (n=41)
mph(E)-like (n=52)
ere(A)-like (n=1)
ere(B)-like (n=10)
erm(42)-like (n=4)
erm(B)-like (n=9)
msr(E)-like (n=52)

mph(A) (n=2) None

Colistin mcr-1 (n=2) None
Rifampin arr-2 (n=2)

arr-3 (n=37)
None

Trimethoprime dfrA1-like (n=103)
dfrA7 (n=1)
dfrA12-like (n=14)
dfrA14-like (n=15)
dfrA15 (n=4)
dfrA17-like (n=19)
dfrA18-like (n=9)
dfrA24-like (n=1)
dfrA27-like (n=2)
dfrA30-like (n=1)

dfrA1 (n=7)
dfrA12 (n=1)
dfrA14-like (n=6)
dfrA16-like (n=3)
dfrA17 (n=1)

None

Sulfamides sul1-like (n=144)
sul2-like (n=46)
sul3 (n=3)

sul1 (n=3)
sul2 (n=8)

None
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Part IV

CONCLUSION AND PERSPECTIVES





CONCLUSION AND PERSPECTIVES

The main goal of my PhD was to develop a tool to generate the basic datasets required
for any large-scale bacterial comparative genomics study, namely, a set of quality controlled
annotated genomes, a pan and a core and/or persistent genome, and the MSA of each core
genome family.

More than 12000 lines of Python and 2000 commits later, the first version of PanACoTA
was released to the community. This version fulfilled the different requirements stated when
introducing PanACoTA’s paper on page 81.

To minimize the annotation inconsistencies, it provides a quality control module which
automatically removes the genomes not fulfilling the different criteria, and uniformly anno-
tates the remaining sequences of the dataset. As each dataset is different, the quality control
criteria can be adapted by the user: nothing is imposed.

Regarding the ability to handle large-scale datasets, I want to clarify something. When I
started my PhD (and thus the development of PanACoTA), we were considering as "large-
scale" datasets with several hundreds of genomes. For example, in February 2018, there were
437 complete Klebsiella pneumonia genomes in RefSeq. Today, there are more than 25000
strains of E. coli in Refseq, including more than 2000 complete genomes. And I can easily
predict that the increasing growth will continue. Regarding the pangenome computation,
the tool is even faster than our first expectations, as it can compute a reliable pangenome of
almost 4000 strains in 30 minutes. An analysis of the gene families showed a good consistency
with the functional annotations. Moreover, a comparison with a small subset of this huge
dataset showed that the construction of the pangenome is robust to large variations in the
number of input genomes.

The next point was the adaptation of the pangenome definition to large-scale datasets.
While the initial definition of a core genome required genes in all genomes, some tools now
use this term to refer to families with genes in most genomes but not necessarily all. For other
tools, such gene families are part of a soft core, relaxed core, or else persistent. Moreover,
there is no clear definition regarding the number of genes allowed per genome in these gene
families. Most of the time, it is not even specified by the tool. With PanACoTA, we propose a
standardization of these definitions. As the needs vary according to the underlying biological
question, we propose three different types of persistent genomes, clearly defined: strict, mixed
and multi persistent genome.

Finally, the tool is based on six different modules, which can be run separately, allowing
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the user to start/end where he needed, and/or to rerun some steps with new parameters.
Indeed, one may want to introduce different methods at one or more steps, while still using
as input a dataset generated by PanACoTA. We took care to produce file formats compatible
with the main existing tools.

As PanACoTA was developed alongside comparative genomics studies, we progressively
adapted the tool to concrete situations, and provided new useful outputs that we had not
thought about in the beginning. For example, for many studies (like Elizabethkingia anophe-
lis outbreak in Wisconsin or Population structure of carbapenemase-producing Morganella
species), we needed to download all sequences of a given species available on Refseq. We thus
developed a new module of PanACoTA to automatically download the sequences of a given
species.

PanACoTA has already demonstrated its usefulness in several comparative genomics stud-
ies (see chapter III).

For example, a few months before I started my PhD, an outbreak caused by Elizabethkingia
anophelis arose in Wisconsin. Even if there were "only" 66 confirmed cases, this was an ex-
ceptional number for an outbreak caused by this bacterium. Indeed, E. anophelis is a very
common environmental bacterium, most of the time harmless. Several cases of meningitis
caused by this bacterium had already been reported before, but they were health-care associ-
ated, and sporadic. This time, the bacterium was spreading across the population, its source
was unknown and, despite of the introduction of an antibiotic treatment, many patients lost
their lives. To understand the genomic features of this outbreak strain, we used our develop-
ing method to analyse outbreak strains provided by the CDC, together with other available
E. anophelis strains. The development of the tool at the moment of these analyses provided
mutual benefits: the pangenome computed thanks to the embryo of PanACoTA allowed to
discover the origin of the epidemic, and this study allowed us to improve the method, for
instance by providing more adapted formats for the pangenome results.

In the same vein, we used PanACoTA to explore the Morganella genus, an opportunistic
pathogen involved in various infections, and, above all, resistant to many (if not all) an-
tibiotics. Thanks to the results generated by PanACoTA, we could identify two subspecies,
which were confirmed by chemical tests. We could also identify an operon, only present in
M. siboni (one of the subspecies), explaining its capacity to use trehalose as a carbon source.

Our lab was contacted by an Australian team to help with the analysis of a very important
dataset of E. coli strains. Composed of thousands of strains with very diverse origins (healthy
or sick host, plants, food, water, soil etc.), this dataset was a good opportunity to study the
global genomic diversity of this species. This was possible thanks to the pan and persistent
genomes computed by PanACoTA. Thus, the ability of PanACoTA to handle very large
datasets can also allow to study the global genomic diversity of a species. To depict the
overall genomic diversity of thousands of strains, other tools propose graph-based approaches.
At the same time as we were developing PanACoTA, we collaborated with a team from
the Genoscope which was developing a method to represent the pangenome using a graph
structure (see Annexe on page 219). In PPanGGOLiN, PanACoTA’s method is used to build
a pangenome, which is then converted to a partitioned pangenome graph. They developed
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statistical methods to classify the different gene families based on the graph.
Thus, PanACoTA can be used in many different contexts, from short-term studies (like

an epidemic, to understand how the strain became pathogen) to long-term species evolution
studies. It can be used both directly, by analysing the pan and core/persistent genome
generated, or as an input for more specific methods.

We could imagine even more applications in which PanACoTA could be useful. For
example, the core genome is a fundamental basis for any Genome-Wide Association Studies.
GWAS aim at exploring the associations between genetic variations and observed traits and
have much more statistical power when using very large genome datasets. It can be used,
for example, to identify mutations causing antibiotic resistance. PanACoTA could be also be
used for reverse vaccinology: core genes are most likely the most desirable targets for novel
vaccine candidates. Actually, it is maybe already used for these kind of applications...and
you might be more aware than me if you are actually using it!

PanACoTA has been developed in the aim of being useful for the community. By useful,
I not only mean providing interesting scientific information, but above all providing them in
a reliable and upgradable manner. In a way, PanACoTA is the pipette of the bioanalyst: it is
used to prepare data, which will be used for further analyses. If the pipette is contaminated,
or if it does not precisely extract the right amount of product, the culture will be biased,
and the experiment will most likely fail. Similarly, if there is a mistake in the code of the
software, the generated datasets will be wrong, and will bias the subsequent analyses. Thus,
it is important to be thorough during the development to provide the most reliable tool
possible.

First, I hosted PanACoTA on a Github to track changes in the code throughout. As
science is constantly evolving, tools must be able to adapt: they must be easily maintainable
and upgradable. For example, as stated above, we added new input or output formats to be
compliant with other tools, or new features like the possibility to download genomes from
Refseq. This was possible thanks to the structure of the code, which allows to easily add new
features without the need to change everything. However, even if it is easy to add, it is also
easy to introduce unwanted behaviors in other parts of the code as side effects. To minimize
this risk, I set up a continuous integration process (CI), which is automatically run each time
new code is pushed to the git repository. This process checks the installation step, and, if it
is successful, runs tests to check each unit functionality.

Another important point is the accessibility of the software, which is essential for its
usefulness. With PAnACoTA, I developed a full documentation, which provides details on
each step, as well as a toy dataset to quickly get acquainted to the software. The latter is
automatically regenerated by the CI when a new version is pushed. I also provide several
means to install PanACoTA. The tool is available on conda and pip package-management
platforms, and a singularity image including all needed dependencies hosted in Docker Hub
provides the possibility to run PanACoTA without needing to install anything.

"Communication" with users is another important point for me. Providing a feedback to
the user is important. Sometimes, nothing but a little print on the terminal is helpful to know
at which step is the program, or even quite simply that it has not crashed. PanACoTA also
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outputs log files, in order to keep a trace of the commands and parameters used, to guarantee
reproductibility of the analysis. In the same vein, the issue tracking system of Github allows
users to report bugs, ask questions, make suggestions or, for developers, participate to the
software improvement. I have already handled several issues, some of which leading to the
addition of a new feature to the software. For example, one can now extract the core genome
of different subsets of genomes from a same pangenome. Since its first release, more than
8000 pip-package downloads of the tool have been identified.

In the short future, I would like to harness PanACoTA’s results to develop a method to
detect MGEs in bacterial genomes. Indeed, although MGEs are the main agents mediating
Horizontal Gene Transfer, the main mechanism driving bacterial genome evolution, they are
relatively little known. If we take the example of phages, in Refseq, only 200 genomes are
annotated as "Salmonella phages", compared to the more than 10000 bacterial genomes
of this gender (as of January 2022). Yet, understanding the evolution of bacterial genomes
requires to understand the functioning and evolution of the elements shaping it. For example,
the ICE discovered in the genomes of Elizabethkingia anophelis allowed to understand the
origin of the outbreak. So, why are they so little known?

Detecting MGEs is a difficult task, as they are "hidden" among the other bacterial genes.
MGEs identified so far are mostly plasmids and phages, partly because they are (or can be for
phages) independent replicons, and can thus be cultured and sequenced separately. Several
tools, like PHASTER and VirSorter2, propose the detection of prophages inside bacterial
genomes based on homology search against known databases [7] [82]. But what about the
unknown phages, absent from the databases? And the other MGEs, for which no database
is available?

There is, yet, no automatic tool available to precisely detect MGEs de novo. By definition,
MGEs are moving within and between genomes. Their short residence time implies that they
cannot be part of the core genome. Moreover, as we saw in the first chapter, many of them
need a more or less specific integration site to be inserted in the bacterial genome. Hence,
close MGEs are likely to be inserted in the same loci in different genomes [20]. I wish to use
the patterns of gene presence variation to identify the MGEs.

To start, we will try this method on the detection of prophages. We have a set of
Salmonella enterica genomes for which we already know some prophages, and will use them
to test the method. Having a method able to detect MGEs would open many new perspectives
in the bacterial genomics world.

As I am a permanent engineer at Institut Pasteur, I will be able to explore this new
horizon after my PhD defense. So, phages, take advantage of my holidays to find a good
hiding place, and be ready for a hide and seek game!
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Abstract

The use of comparative genomics for functional, evolutionary, and epidemiological studies

requires methods to classify gene families in terms of occurrence in a given species. These

methods usually lack multivariate statistical models to infer the partitions and the optimal

number of classes and don’t account for genome organization. We introduce a graph struc-

ture to model pangenomes in which nodes represent gene families and edges represent

genomic neighborhood. Our method, named PPanGGOLiN, partitions nodes using an

Expectation-Maximization algorithm based on multivariate Bernoulli Mixture Model coupled

with a Markov Random Field. This approach takes into account the topology of the graph

and the presence/absence of genes in pangenomes to classify gene families into persistent,

cloud, and one or several shell partitions. By analyzing the partitioned pangenome graphs of

isolate genomes from 439 species and metagenome-assembled genomes from 78 species,

we demonstrate that our method is effective in estimating the persistent genome. Interest-

ingly, it shows that the shell genome is a key element to understand genome dynamics, pre-

sumably because it reflects how genes present at intermediate frequencies drive adaptation

of species, and its proportion in genomes is independent of genome size. The graph-based

approach proposed by PPanGGOLiN is useful to depict the overall genomic diversity of

thousands of strains in a compact structure and provides an effective basis for very large

scale comparative genomics. The software is freely available at https://github.com/labgem/

PPanGGOLiN.
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Author summary

Microorganisms have the greatest biodiversity and evolutionary history on earth. At the

genomic level, it is reflected by a highly variable gene content even among organisms

from the same species which explains the ability of microbes to be pathogenic or to grow

in specific environments. We developed a new method called PPanGGOLiN which accu-

rately represents the genomic diversity of a species (i.e. its pangenome) using a compact

graph structure. Based on this pangenome graph, we classify genes by a statistical method

according to their occurrence in the genomes. This method allowed us to build pangen-

omes even for uncultivated species at an unprecedented scale. We applied our method on

all available genomes in databanks in order to depict the overall diversity of hundreds of

species. Overall, our work enables microbiologists to explore and visualize pangenomes

alike a subway map.

Introduction

The analyses of the gene repertoire diversity of species—their pangenome—have many applica-

tions in functional, evolutionary, and epidemiological studies [1, 2]. The core genome is defined

as the set of genes shared by all the genomes of a taxonomic unit (generally a species) whereas

the accessory (or variable) genome contains genes that are only present in some genomes. The

latter is crucial to understand bacterial adaptation as it contains a large repertoire of genes that

may confer distinct traits and explain many of the phenotypic differences across species. Most

of these genes are acquired by horizontal gene transfer (HGT) [3]. This usual dichotomy

between core and accessory genomes does not consider the diverse ranges of gene frequencies

in a pangenome. The main problem in using a strict definition of the core genome is that its

size decreases as more genomes are added to the analysis [4] due to gene loss events and techni-

cal artifacts (i.e. sequencing, assembly or annotation issues). As a consequence, it was proposed

in the field of synthetic biology to focus on persistent genes, i.e. those conserved in a large

majority of genomes [5]. The persistent genome is also called the soft core [6], the extended

core [7, 8] or the stabilome [9]. These definitions advocate for the use of a threshold frequency

of a gene family within a species above which it is considered as de facto core gene. Persistent

gene families are usually defined as those present in a range comprised between 90% [10] and

99% [11] of the strains in the species. This approach addresses some problems of the original

definition of core genome but requires the setting of an appropriate threshold. The gene fre-

quency distribution in pangenomes is extensively documented [7, 8, 12–16]. Due to the

variation in the rates of gene loss and gain of genes, the gene frequencies tend to show an asym-

metric U-shaped distribution regardless of the phylogenetic level and the clade considered

(with the exception of few species having non-homogeneous distributions as described in [17]).

Thereby, as proposed by Koonin and Wolf [12] and formally modeled by Collins and Higgs

[14], the pangenome can be split into 3 classes: (1) persistent genome, for the gene families pres-

ent in almost all genomes; (2) shell genome, for gene families present at intermediate frequen-

cies in the species; (3) cloud genome, for gene families present at low frequency in the species.

The study of pangenomes in microbiology now relies on the comparison of hundreds to

thousands of genomes of a single species. The analysis of this massive amount of data raises

computational and algorithmic challenges that can be tackled because genomes within a species

have many homologous genes and it is possible to design new compact ways of representing

and manipulating this information. As suggested by Chan et al. [18], a consensus representa-

tion of multiple genomes would provide a better analytical framework than using individual
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reference genomes. Among others, this proposition has led to a paradigm shift from the usual

linear representation of reference genomes to a representation as variation graphs (also named

“genome graphs” or “pangenome graphs”) bringing together all the different known variations

as multiple alternative paths. Methods [19–21] have been developed aiming at factorizing pan-

genomes at the genome sequence-level to capture all the nucleotide variations in a graph that

enables variant calling and improves the sensitivity of the read mapping (summarized in [22]).

The method presented here, named PPanGGOLiN (Partitioned PanGenome Graph Of

Linked Neighbors), introduces a new representation of the gene repertoire variation as a

graph, where each node represents a family of homologous genes and each edge indicates a

relation of genetic contiguity. PPanGGOLiN fills the gap between the standard pangenomic

approach (that uses a set of independent and isolated gene families) and sequence-level pan-

genome graph (as reviewed in [23]). The interest of a gene-level graph compared to a sequence

graph is that it provides a much more compact structure in clades where gene gains and losses

are the major drivers of adaptation. This comes at the cost of disregarding polymorphism in

genes and ignoring variation in intergenic regions and introns. However, the genomes of pro-

karyotes have very small intergenic regions and are almost devoid of introns justifying a focus

on the variation of gene repertoires [12], which can be complemented by analysis of intergenic

and intragenic polymorphism. PPanGGOLiN uses a new statistical model to classify gene fam-

ilies into persistent, cloud, and one or several shell partitions. To the best of our knowledge

three statistical methods are available to partition a pangenome. Two of them use probabilistic

models that partition dichotomously the pangenome only into core and accessory components

[24, 25]. Conversely, the method proposed and implemented by Snipen et al. [26, 27] (micro-

pan R package) classifies a pangenome in K partitions using a Binomial Mixture Model relying

on gene family frequencies. Unlike these three methods, PPanGGOLiN is not based on fre-

quencies but combines both the patterns of occurrence of gene families and the pangenome

graph topology to perform the classification. In the following sections we present an overview

of the method, an illustration of a pangenome graph and then the partitioning of a large set of

prokaryotic species from GenBank. We evaluate the relevance of the persistent genome com-

puted by PPanGGOLiN in comparison to the classical soft core genome. Next, we illustrate the

importance of the shell structure and dynamics in the study of the evolution of microbial

genomes. Finally, we compare GenBank results to the ones obtained with Metagenome-

Assembled Genomes (MAGs) to validate the use of PPanGGOLiN for metagenomic

applications.

Results and discussion

Overview of the PPanGGOLiN method

PPanGGOLiN builds pangenomes for large sets of prokaryotic genomes (i.e. several thou-

sands) through a graphical model and a statistical method to classify gene families into three

classes: persistent, cloud, and one or several shell partitions. It uses as input a set of annotated

genomes with their coding regions classified in homologous gene families. As depicted in Fig

1, PPanGGOLiN integrates information on protein-coding genes and their genomic neighbor-

hood to build a graph where each node is a gene family and each edge is a relation of genetic

contiguity (two families are linked in the graph if they contain genes that are neighbors in the

genomes). Thanks to this graphical model, the structure of the pangenome is resilient to frag-

mented assemblies: an assembly gap in one genome can be offset by information from other

genomes, thus maintaining the link in the graph. To partition this graph, we established a sta-

tistical model taking into consideration that persistent genes share conserved genomic organi-

zations along genomes (i.e. synteny conservation) [28] and that horizontally transferred genes
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(i.e. shell and cloud genes) tend to insert preferentially in a few chromosomal regions (hot-

spots) [29]. Thereby, PPanGGOLiN favors two gene families that are consistent neighbors in

the graph to be more likely classified in the same partition. This is achieved by a hidden Mar-

kov Random Field (MRF) whose network is given by the pangenome graph. In parallel, the

Fig 1. Flowchart of PPanGGOLiN on a toy example of 4 genomes. The method requires annotated genomes of the same species with their genes

clustered into homologous gene families. Annotations and gene families can be predicted by PPanGGOLiN or directly provided by the user. Based

on these inputs, a pangenome graph is built by merging homologous genes and their genomic links. Nodes represent gene families and edges

represent genomic neighborhood. The edges are labeled by identifiers of genomes sharing the same gene neighborhood. In parallel, gene families

are encoded as a presence/absence matrix that indicates for each family whether or not it is present in the genomes. The pangenome is then

divided into K partitions (K = 3 in this example) by estimating the best partitioning parameters through an Expectation-Maximization algorithm.

The method involves the maximization of the likelihood of a multivariate Bernoulli Mixture Model taking into account the constraint of a Markov

Random Field (MRF). The MRF network is given by the pangenome graph and it favors two neighbors to be more likely classified in the same

partition. At the end of this iterative process, PPanGGOLiN returns a partitioned pangenome graph where persistent, shell and cloud partitions

are overlaid on the neighborhood graph. In addition, many tables, charts and statistics are provided by the software. The number of partitions (K)

can either be provided by the user or determined by the algorithm.

https://doi.org/10.1371/journal.pcbi.1007732.g001
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pangenome is also represented as a binary Presence/Absence (P/A) matrix where the rows cor-

respond to gene families and the columns to genomes. Values are 1 for the presence of at least

one member of the gene family and 0 otherwise. This P/A matrix is modeled by a multivariate

Bernoulli Mixture Model (BMM). Its parameters are estimated via an Expectation-Maximiza-

tion (EM) algorithm taking into account the constraints imposed by the MRF. Each gene fam-

ily is then associated to its closest partition according to the BMM. This results in a partitioned

pangenome graph made of nodes that are classified as either persistent, shell or cloud. The

strength of the MRF constraints increases according to a parameter called β (if β = 0, the effect

of the MRF is disabled and the partitioning only relies on the P/A matrix) and it depends on

the weight of the edges of the pangenome graph which represents the number of gene pairs

sharing the neighborhood. Another originality of our method is that, even if the number of

partitions (K) is estimated to be equal to 3 (persistent, shell, cloud) in most cases (see ‘Analyses

of the most represented species in databanks’ section), more partitions can be used if the pan-

genome matrix contains several contrasted patterns of P/A. These additional partitions are

considered to belong to the shell genome and reflect a heterogeneous structure of the shell (see

‘Shell structure and dynamics’ section).

Illustration of a partitioned pangenome graph depicting the Acinetobacter
baumannii species

We computed the pangenome of 3 117 Acinetobacter baumannii genomes from GenBank

using PPanGGOLiN. For the persistent, shell and cloud genomes, we obtained 3 084, 1 529

and 64 833 gene families, respectively. If we compare our results with those of Chan et al.
study [18], the size of the persistent genome predicted by PPanGGOLiN is included in their

soft core estimation ranging from 2 833 (95% of presence) to 3 126 (75% of presence) gene

families using 249 A. baumannii genomes. On the partitioned pangenome graph built with

PPanGGOLiN (Fig 2), the gene families classified as persistent (orange nodes) correspond to

the conserved paths that are interrupted by many islands composed of shell (green nodes) and

cloud genomes (blue nodes). These islands appear to be frequently inserted in hotspots of the

persistent genome thus pinpointing regions of genome plasticity. The average node degree

within the same partition is 2.80 for the persistent genome while the shell genome has a higher

average degree (3.95, P = 5.0e-6 with a bilateral unpaired 2-sample Student’s t test) and the

cloud a lower one (1.97, P = 3.3e-40 with the same test). The shell genome is the most diversi-

fied in terms of network topology with many interconnections between families reflecting a

mosaic composition of regions from different HGT events [29]. The major part of the cloud

has a shell-like graph topology with a large connected component containing 60% of the

nodes. In addition, the cloud also contains isolated components that are nearly linear (3 606

components having on average 4.25 nodes) and singletons (10 575 nodes), presumably because

it includes very recently acquired genetic material. Finally, large families of mobile genes,

mostly transposable elements, can be easily detected because they constitute hubs (i.e. highly

connected nodes) in the graph. They vary rapidly their genetic neighborhoods and can be

found in multiple loci.

As an example of a more detailed analysis that can be done using the graph, a zoom

on a region containing the genes required for the synthesis of capsular polysaccharides is

highlighted in Fig 2. A. baumannii strains are involved in numerous nosocomial infections

and their capsule plays key roles in the overall fitness and pathogenicity. Indeed, it protects the

bacteria against environmental stresses, host immune responses and can confer resistance to

some antimicrobial compounds [30]. Over one hundred distinct capsule types and their corre-

sponding genomic organization have been reported in A. baumannii [31]. A zoom on this

PLOS COMPUTATIONAL BIOLOGY A partitioned pangenome graph to depict microbial diversity
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region of the graph shows a wide variety of combinations of genes for the synthesis of capsular

polysaccharides. Based on the 3 117 A. baumannii genomes available in GenBank, we detected

229 different paths, sharing many common portions, but only a few are conserved in the spe-

cies (only 24 paths are covered by more than 10 genomes). Among them, two alternative shell

Fig 2. Partitioned pangenome graph of 3 117 Acinetobacter baumannii genomes. This partitioned pangenome graph of PPanGGOLiN

displays the overall genomic diversity of 3 117 Acinetobacter baumannii strains from GenBank. Edges correspond to genomic colocalization and

nodes correspond to gene families. The thickness of the edges is proportional to the number of genomes sharing that link. The size of the nodes

is proportional to the total number of genes in each family. The edges between persistent, shell and cloud nodes are colored in orange, green and

blue, respectively. Nodes are colored in the same way. The edges between gene families belonging to different partitions are shown in mixed

colors. For visualization purposes, gene families with less than 20 genes are not shown on this figure although they comprise 84.68% of the

nodes (families mostly composed of a single gene). The frame in the upper left corner shows a zoom on a branching region where multiple

alternative shell and cloud paths are present in the species. This region is involved in the synthesis of the major polysaccharide antigen of A.
baumannii. The two most frequent paths (Sv12/PSgc12 and Sv9/PSgc9) are highlighted in khaki and fluo green. The Gephi software (https://

gephi.org) [32] with the ForceAtlas2 algorithm [33] was used to compute the graph layout with the following parameters: Scaling = 8000,

Stronger Gravity = True, Gravity = 4.0, Edge Weight influence = 1.3.

https://doi.org/10.1371/journal.pcbi.1007732.g002
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paths seem to be particularly conserved (from the gnaA to the weeH genes in the figure 3 of

[31]). Based on the nomenclature of [31], one (colored in khaki green in the Fig 2) corresponds

to the serovar called PSgc12, contains 14 gene families of the shell genome and is fully con-

served in 581 genomes. The other (colored in fluo green in the Fig 2) corresponds to the sero-

var PSgc9 (equivalent to PSgc7), contains 11 gene families of the shell genome and is fully

conserved in 408 genomes. This analysis illustrates how the partitioned pangenome graph of

PPanGGOLiN can be useful to study the plasticity of genomic regions. Thanks to its compact

structure in which genes are grouped into families while preserving their genomic neighbor-

hood information, it summarizes the diversity of thousands of genomes in a single picture and

allows effective exploration of the different paths among regions or genes of interest.

Analyses of the most represented species in databanks

We used PPanGGOLiN to analyze all prokaryotic species of GenBank for which at least 15

genomes were available. This is the minimal number of genomes we recommend to ensure a

relevant partitioning. The quality of the genomes was evaluated before their integration in the

graph to avoid taxonomic assignation errors and contamination that can have a major impact

on the analysis of pangenomes (see Materials and methods). This resulted in a dataset of 439

species pangenomes, whose metrics are available in S1 File. We focused our analysis on the 88

species containing at least 100 genomes (Fig 3). This data was used for in-depth analysis of per-

sistent and shell genomes (see the two next sections). Proteobacteria, Firmicutes and Actino-

bacteria are the most represented phyla in this dataset and comprise a variety of species,

genome sizes and environments. In contrast, Spirochaetes, Bacteroidetes and Chlamydiae

phyla are represented by only one or two species (Leptospira interrogans, Bacteroides fragilis,
Flavobacterium psychrophilum and Chlamydia trachomatis). For each species, we computed

the median and interquartile range of persistent, shell and cloud families in the genomes. As

expected, we observed a large variation in the range of these values: from pathogens with

reduced genomes such as Bordetella pertussis or C. trachomatis which contain only a small

fraction of variable gene families (less than�5% of shell and cloud genomes) to commensal or

environmental bacteria such as Bifidobacterium longum and Burkholderia cenocepacia whose

shell represents more than�35% of the genome. Furthermore, for a few species the number of

estimated partitions (K) is greater than 3 (11 out of 88 species), especially for those with a

higher fraction of shell genome. Hence, our method provides a statistical justification for the

use of three partitions as a default in pangenome analyses, while indicating that species with

large shell content might be best modeled using more partitions (see ‘Shell structure and

dynamics’ section).

Estimation of the persistent genome in comparison to the soft core

approach

To demonstrate the added value of PPanGGOLiN, we compared our statistical method to a

classical approach where persistent genes are those present in at least 95% of the genomes

(generally called the soft core approach). Indeed, this threshold is very often used in pange-

nomic studies probably because it is the default parameter in Roary [34] which is to date the

most cited software to build bacterial pangenomes. In the 88 studied species, the number of

persistent gene families is greater than or equal to the soft core with an average of 11%

(SD = 9%) of additional families (see Fig 3 and S1 File). Furthermore, persistent gene families

include those of the soft core with the exception of very few gene families (12 families in total

for all studied species). The gene family frequencies in each of the 88 pangenomes are available

in S1 Fig. For four species, Pseudomonas stutzeri, Clostridium perfringens, Clostridium

PLOS COMPUTATIONAL BIOLOGY A partitioned pangenome graph to depict microbial diversity
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Fig 3. Distribution of PPanGGOLiN partitions in the genomes of the most represented species in GenBank. Each

horizontal bar shows the median number of gene families per genome among the different PPanGGOLiN partitions

(persistent, shell and cloud) in the 88 most represented species in GenBank (having at least 100 genomes). The error

bars represent the interquartile ranges. Hatched areas on the persistent genome bars show the median number of gene

families for the soft core (⩾95% of presence). The species names are colored according to their phylum and sorted by

taxonomic order and then by decreasing cumulative bar size. Next to the species names, the number of genomes is

indicated in brackets and the number of partitions (K) that was automatically determined by PPanGGOLiN is also

shown.

https://doi.org/10.1371/journal.pcbi.1007732.g003
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botulinum and Colinsella sp., the size of the soft core genome is unexpectedly small and repre-

sents less than 55% of the genomes whereas it is above 75% for the PPanGGOLiN persistent.

For the first three species, this could be due to sampling effects and species heterogeneity. For

the last one (Colinsella sp.), this could be explained by the fact that the species is made of

incomplete genomes from metagenomes (i.e. MAGs) that were submitted as complete

genomes in GenBank.

For an in-depth comparison of these approaches, we performed multiple resamplings of the

genome dataset for each species in order to measure the variability of the pangenome metrics

and the impact of genome sampling according to an increasing number of genomes consid-

ered in the analyses (hereafter called rarefaction curves, see Materials and methods for more

details and S2 Fig as an example for Lactobacillus plantarum). These rarefaction curves indi-

cate whether the number of families tends to stabilize, increase or decrease. To this end, the

curves were fit with the Heaps’ law where γ represents the growth tendency [35] (hereafter

called γ-tendency). The persistent component of a pangenome is supposed to stabilize after the

inclusion of a certain number of genomes, which means it has a γ-tendency close to 0. In addi-

tion, interquartile range (IQR) areas along the rarefaction curves were computed to estimate

the variability of the predictions in relation to the sampling. Small IQR areas mean that the

predictions are stable and resilient to sampling. Using these metrics, the PPanGGOLiN predic-

tions of the persistent genome were evaluated in comparison to the soft core approach.

We observed that the γ-tendency of the PPanGGOLiN persistent is closer to 0 than that of

the soft core approach (mean of absolute γ-tendency = 9.1e-3 versus 2.5e-2, P = 1.5e-9 with a

one-sided paired 2-sample Student’s t-test) with a lower standard deviation error too

(mean = 5.3e-04 versus 2.1e-03, P = 9.5e-11 with one-sided paired 2-sample Student’s t-test)

(see Fig 4 and S1 File). A major problem of the soft core approach is that the γ-tendency is

high for many species (32 species have a γ-tendency above 0.025), suggesting that the size of

the persistent genome is not stabilized and tends to be underestimated. Besides, the IQR area

of the PPanGGOLiN prediction is far below the one of the soft core genome (mean = 4906.6

versus 11645.9, P = 8.9e-07 with a unilateral paired 2-sample Student’s t test). It can be partially

explained because the threshold used in the soft core method induces a ‘stair-step effect’ along

the rarefaction curves depending on the number of genomes sampled. This is illustrated on S2

Fig showing a step every 20 genomes (i.e. corresponding to 20 ¼ 100

100� 95
where 95% is the

threshold of presence used) on the soft core curve of L. plantarum. We found a total of 20 spe-

cies having atypical values of γ-tendency (absolute value above 0.05) and/or IQR area (above

15 000) for the soft core and only 2 species for the persistent genome of PPanGGOLiN, which

are Bacillus anthracis and Burkholderia cenocepacia. For B. cenocepacia, it could be explained

by the high heterogeneity of its shell (see next section), which is made of several partitions and

complicates its distinction from the persistent genome during the process of partitioning. For

Bacillus anthracis, the source of variability to define the persistent genome is a result of an

incorrect taxonomic assignation in GenBank of about 17% of the genomes that are, according

to the Genome Taxonomy DataBase (GTDB) [36], actually B. cereus or B. thuringiensis. This

issue was not detected by our taxonomy control procedure because these species are at the

boundary of the conspecific genomic distance threshold used (see Materials and methods).

Some of persistent gene families of bona fide B. anthracis may therefore shift between persis-

tent or shell partitions depending on the resampling. Excluding these misclassified genomes,

we predicted a larger persistent genome than the one of the initial full set of genomes (about a

thousand gene families more) with a γ-tendency much closer to 0 (-0.017 versus a γ-tendency

of 0.036 for the soft core genome) and a lower IQR area (8367.0 vs 32167.1). Altogether, these

results suggest that our approach provides a more robust partitioning of gene families in the

PLOS COMPUTATIONAL BIOLOGY A partitioned pangenome graph to depict microbial diversity
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persistent genome than the use of arbitrary thresholds. Indeed, the statistical method behind

PPanGGOLiN uses directly the information of the gene family P/A whereas the soft core is

based only on frequency values. PPanGGOLiN can then classify families with similar frequen-

cies in different partitions by distinguishing them according to their pattern of P/A in the

Fig 4. γ-tendencies and IQR areas of the persistent and the soft core rarefaction curves. Each of the 88 most abundant species in GenBank are represented by

two points: orange points correspond to the PPanGGOLiN persistent values and yellow points to the ones of the soft core (⩾95% of presence). A dashed line

connects the 2 points if either the soft core or the persistent values are not in the range of the grey area (−0.05 ⩽ γ ⩽ 0.05 and 0 ⩽ IQRarea ⩽ 15000). The colored

horizontal bars show the standard errors of the fitting of rarefaction curves via the Heaps’ law.

https://doi.org/10.1371/journal.pcbi.1007732.g004
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matrix and their genomic neighborhood. The main drawback of using family frequency to par-

tition pangenomes is that even if it was possible to determine the best threshold for each spe-

cies it would still not take into account that some persistent gene families may have atypically

low frequency. This may be due to high gene losses in the population or technical reasons like

belonging to a genomic region that is difficult to assemble (i.e. genes that are missing or frag-

mented in draft genome assemblies).

Shell structure and dynamics

Two types of pangenome evolution dynamics are generally distinguished: open pangenomes

and closed ones [1, 2, 35]. From rarefaction curves, the dynamics of pangenomes can be

assessed using the γ-tendency of a Heaps’ law fitting (see Materials and methods). A low γ-ten-

dency means a rather closed pangenome whereas a higher γ-tendency means a rather open

pangenome. A closed pangenome rigorously means a stabilized pangenome and we found no

species obeying this strict criterion (that is to say γ = 0). This suggests that instead of using

binary classifications for pangenomes, it is more useful to quantify the degree of openness of

pangenomes given the flux of horizontal gene transfers and gene loss [7]. We computed rare-

faction curves for the 88 studied species and determined the γ-tendency for different pangen-

ome components (see S1 File and S3 Fig). The distribution of γ values of the PPanGGOLiN

shell genome shows a greater amplitude of values than the other components of the pangen-

ome such as the whole pangenome or the accessory component. This indicates that the main

differences in terms of genome dynamics between species seem to reside in the shell genome.

As expected, we found a positive correlation (Spearman’s ρ = 0.46, P = 8.2e-06) between the

total number of shell gene families in a species and the γ-tendency of the shell (S4 Fig). This

means that species with high γ-tendency do accumulate genes that are maintained and

exchanged in the population at relatively low frequencies, suggesting they may be locally adap-

tive. More surprisingly, although one could expect that larger genomes have a larger fraction

of variable gene repertoires, the fraction of shell and cloud genes per genome does not corre-

late with the genome size (Spearman’s ρ = 0.007, P = 0.95, Fig 5). The results remain qualita-

tively similar when analyzing the shell or the cloud separately (see S5 and S6 Figs). During this

analysis, we noticed that, among host-associated bacteria with relatively small genomes

(between�2000 and�3000 genes), three species (Bifidobacterium longum, Enterococcus fae-
cium and Streptococcus suis) have a high fraction of shell genes (> 28%) but low shell γ-ten-

dency. Two of them (B. longum and E. faecium) are found in the gut of mammals and the third

(S. suis) in the upper respiratory tract of pigs. They differ from other host-associated species in

our dataset that are mainly human pathogens (e.g. bacteria of the genus Corynebacterium,

Neisseria, Streptococcus, Staphylococcus) and have a low fraction of shell genes (< 20%). It is

possible that these three species have specialized in their ecological niches while maintaining a

large and stable pool of shell genes for their adaptation to environmental stress. Further analy-

sis would be required to confirm this hypothesis.

We then investigated the importance of the phylogeny of the species on the patterns of P/A

of the shell gene families (shell structure). To this end, Spearman’s rank correlations were

computed between a Jaccard distance matrix generated on the basis of patterns of P/A of the

shell gene families and a genomic distance obtained by Mash pairwise comparisons between

genomes [37]. Mash distances were shown to be a good estimate of evolutionary distances for

closely related genomes [38]. This correlation was examined in relation to the fraction of gene

families that are part of the shell genome for each species (Fig 6). We observed that species

with a high fraction of shell (> 20% of their genome) have a shell structure that is mainly

explained by the species phylogeny (i.e. shell P/A are highly correlated with genomic distances,
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Spearman’s ρ> 0.75). In addition, PPanGGOLiN predicts a number of partitions (K) for these

species often greater than 3. Hence, their shell is more heterogeneous between subclades and

becomes structured in several partitions whereas for species with a single shell partition the

shell is less structured, possibly indicating many gene exchanges between strains from different

Fig 5. Fraction of the variable (shell + cloud) families per genome compared to the number of gene families. The results for the 88 most abundant species in

GenBank are represented. The error bars show the interquartile ranges of the two variables. The points are colored by phylum and their size corresponds to the

number of partitions (K) used.

https://doi.org/10.1371/journal.pcbi.1007732.g005
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lineages. Among the nine species with a large shell genome (excluding B. anthracis due to taxo-

nomic assignation errors), only two of them (Shigella sonnei and Lactobacillus reuteri) showed

a relatively low correlation of their shell structure with the phylogeny (Fig 6). For S. sonnei,
this could be explained by a high number of gene losses in the shell of this species that result

Fig 6. Spearman’s ρ correlation coefficients between the shell genome presence/absence patterns and the MASH genomic distances compared with the shell

fraction per genome. The results for the 88 most abundant species in GenBank are represented. The error bars show the interquartile ranges of the shell fraction.

The points are colored by phylum and their size corresponds to the number of partitions (K) used.

https://doi.org/10.1371/journal.pcbi.1007732.g006
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from convergent gene loss mediated by insertion sequences (preprint: [39]). For L. reuteri,
these bacteria colonize the gastrointestinal tract of a wide variety of vertebrate species and have

diversified into distinct phylogenetic clades that reflect the host where the strains were isolated,

but not their geographical provenance [40]. As illustrated in S7 Fig, the shell of L. reuteri
shows patterns of P/A that are only partially explained by the species phylogeny. Indeed, we

observed clusters of families present across strains from distinct lineages that could contain

factors for adaptation to the same host. In contrast, the shell structure of B. longum strongly

depends on phylogenetic distances showing a clear delineation of adult and infant strains that

have specialized into two subspecies (see S8 Fig).

We would like to stress the importance of the shell in the study of the evolutionary dynam-

ics of bacteria. The shell content reflects the adaptive capacities of species through the acquisi-

tion of new genes that are maintained in the population. We found that the proportion of shell

genes does not increase with the genome size. Instead, the shell accounts for a large fraction of

the genomes of species when it is structured in several partitions. We can assume that those

species are made of non-homogeneous subclades harboring specific shell genes which contrib-

ute to the specialization of the latter. Finally, it could be of interest to associate phenotypes to

patterns of shell families that co-occur in different lineages independently of the phylogeny.

Analysis of Metagenome-Assembled Genomes in comparison with isolate

genomes

The graph approach should make our tool robust to gaps in genome data, making it a useful

tool to analyze pangenomes obtained from MAGs. To test this hypothesis, we built the pangen-

omes of the Species-level Genome Bins (SGBs, clusters of MAGs that span a 5% genetic diver-

sity and are assumed to belong to the same species) from the recent paper of Pasolli et al. [41].

This study agglomerated and consistently built 4 930 SGBs (154 723 MAGs) from 13 studies

focussed on the composition of the human microbiome. We skipped the quality control step

(already performed by the authors), and computed the pangenomes following the procedure

we used for the GenBank species. The only parameter which differs is the K value which is set

to 3 as the detection of several shell partitions is difficult for MAGs because of their incom-

pleteness. To make the comparison with GenBank species, SGBs were grouped according to

their estimated species taxonomy (provided by the supplementary table S4 of [41]). In this

table, we noticed potential errors in the taxonomic assignation of two species (Blautia obeum
and Chlamydia trachomatis corresponding to SGBs 4844 and 6877, respectively) and thus

excluded them from the analysis. Keeping the same constraint as previously, only species with

at least 15 genomes in both MAGs and GenBank were used for the comparison. A total of just

78 species (corresponding to 151 SGBs) could be analyzed as a lot of microbiome species are

laborious to cultivate and thus less represented in databanks (see S2 File). Then, we compared

the MAG pangenome partitions predicted by PPanGGOLiN with those obtained with Gen-

Bank genomes. To perform this, we aligned MAG and GenBank families for each species and

computed the percentage of common families for each partition (see Materials and methods

for details and S2 File for detailed results).

We observed that the size of the estimated persistent genome of MAGs is similar to the one

of GenBank genomes for most species (Fig 7). In 55 out of the 78 species, the absolute fold

change of persistent size is less than 1.2 and 90% (SD = 5%) of its content is common between

MAGs and GenBank genomes. The 23 other species with more important differences showed

smaller persistent genomes with only 60% (SD = 15%) of the persistent genome of GenBank

being found in MAGs. For these species, the PPanGGOLiN method missed a fraction of

the persistent genome due to the incompleteness of MAGs. Indeed, in such cases, the
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missing gene families are mostly classified in the shell of the MAGs which contains 32%

(SD = 11%) of the GenBank persistent families. Nevertheless, 89% (SD = 9%) of the MAG per-

sistent families match the GenBank ones, meaning that PPanGGOLiN correctly assigned per-

sistent families for MAGs even if the persistent genome of these 23 species is incomplete.

Fig 7. Illustration of the persistent genome overlaps between GenBank genomes and MAGs. Results for 78 species are represented. The colors of the

hemispheres provide the percentage of common persistent gene families among the total persistent of MAGs (left hemisphere) or GenBank genomes (right

hemisphere). The solid, dashed and dotted lines indicate the identity, a fold change of 1.1 and a fold change of 1.2 between the persistent genome sizes.

https://doi.org/10.1371/journal.pcbi.1007732.g007
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However, two species, Bifidobacterium longum and Faecalibacterium prausnitzii, have less

than 75% of their MAG persistent families in common with GenBank ones. For B. longum,

this could be explained by the fact that the MAGs were obtained mostly from human adult

samples while this species in databanks are from a broader host range (infants and pigs). It

means that the MAG persistent might contain additional genes related to host-specificity. As a

matter of fact, 412 gene families from the MAG persistent (25% of the total MAG persistent)

are found in the GenBank shell which supports our hypothesis. For F. prausnitzii, the differ-

ences might be explained by a poor estimation of the persistent using GenBank data due to the

low number of considered genomes (17 genomes versus 4232 MAGs). As expected, the soft

core (based on the usual threshold of 95% presence) is unrealistically low in the MAG species

with only�98 gene families on average and only 4 species out of 78 having more than 500

families classified in the soft core (see S2 File). Hence, the soft core approach is not well

adapted to the analysis of MAGs. Furthermore, using lower thresholds of presence is not ade-

quate because defining a unique threshold for all the families misses the heterogeneity of gene

family presence in MAGs.

To explore the diversity within the pangenome of each species, we compared the shell of

GenBank genomes and MAGs for the 55 ones with similar persistent genomes. Interestingly,

we observed for all the 55 species only a partial overlap between the MAGs and GenBank shells

(see S9 Fig). Indeed, as the MAGs are obtained only from a specific environment (i.e. the

human microbiome), the diversity of GenBank is not fully captured by MAGs. It is especially

the case for most of the Firmicutes and Proteobacteria. Conversely, most of the MAGs of Bac-

teroidetes phylum cover more than half of GenBank diversity while containing a large fraction

of shell genes that are lacking in the shell of isolate genomes (i.e. less than 45% of the families

are represented in the shell of GenBank). As already reported by Pasolli et al. [41], this con-

firms that the MAGs considerably improve the estimate of the genetic diversity of Bacteroi-

detes which are key players in the gut microbiome.

In summary, we have shown that PPanGGOLiN is able to provide an estimation of the per-

sistent genome even using MAGs, which may miss significant numbers of genes and be con-

taminated by fragments from other genomes. This is especially the case for the accessory

genome because its assembly coverage and nucleotide composition generally differ from those

of the persistent genome making the binning of these regions more difficult. Nevertheless,

PPanGGOLiN is able to find shell gene families in MAGs bringing new genes that may be

important for species adaptation in the microbiome. Hence, it enables further analyses, even

for uncultured species lacking reference genomes, such as the reconstruction of the core

metabolism from the persistent genome to predict culture media or the study of the landscape

of horizontally transferred genes within species.

Conclusion

We have presented here the PPanGGOLiN method that enables the partitioning of pangen-

omes in persistent, shell and cloud genomes using a gene family graph approach. This compact

structure is useful to depict the overall genomic diversity of thousands of strains highlighting

variable paths made of shell and cloud genes within the persistent backbone. The statistical

model behind PPanGGOLiN makes a more robust estimation of the persistent genome in

comparison to classical approaches based on gene family frequencies in isolate genomes and

also in MAGs. The definition of shell partitions based on statistical criteria allowed us to

understand genome dynamics within species. We observed different patterns of shell with

regard to phylogeny that may suggest different adaptive paths for the diversification of the spe-

cies. It should be stressed that genome sampling is one of the main limitations of pangenome
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studies and can therefore influence PPanGGOLiN partitioning especially for the shell genome.

An improvement in the method could be to normalize the data to remove sampling bias. But

as suggested by Brockhurst et al. [42], this issue should first be examined from a biological per-

spective by collecting and analyzing genomes from ecologically coherent microbial popula-

tions or ecotypes.

Future applications of PPanGGOLiN could include the prediction of genomics islands

within the shell and cloud genomes. A first version of this application (Bazin et al., in prepara-

tion) is already integrated in the MicroScope genome analysis platform [43]. Next, it would be

interesting to determine the architecture of these variable regions by predicting conserved

gene modules using information on the occurrence of families and their genomic neighbor-

hood in the pangenome graph. Regarding metagenomics, pangenome graphs of PPanGGOLiN

could be used as a reference (i.e. instead of individual genomes) for species quantification by

mapping short or long reads on the graph to compute the coverage of the persistent genome.

Indeed, each gene families of the partitioned pangenome graph could embed a variation graph

as an alignment template [19]. Moreover, coverage variation in the shell or cloud genomes

could allow the detection of strain-specific paths in the graph that are signatures of distinctive

traits within microbiotes.

To conclude, the graph-based approach proposed by PPanGGOLiN provides an effective

basis for very large scale comparative genomics and we hope that drawing genomes on rails

like a subway map may help biologists navigate the great diversity of microbial life.

Materials and methods

To explain the partitioning of pangenomes, we first need to describe the method based on the

P/A matrix only (BinEM) and then the method built upon it that uses the pangenome graph to

improve the partitioning (NEM).

Modeling the P/A matrix via a multivariate Bernoulli Mixture Model

PPanGGOLiN aims to classify patterns of P/A of gene families into K partitions (K 2 N; K ⩾
3). Input data consists of a binary matrix X in which a xij entry is 1 if family i is present in a

genome j and 0 otherwise (Fig 1) where 1 ⩽ i ⩽ F in each of the F gene families and 1 ⩽ j ⩽ N
in each of the N genomes. A first approach for partitioning the data relies on a multivariate

Bernoulli Mixture Model (BMM) estimated through the Expectation-Maximization (EM)

algorithm [44] (named the BinEM method). The number of partitions K may be greater than 3

(persistent, shell and cloud) due to the possible presence of antagonist P/A patterns among the

different strains of a species. Therefore, two of the partitions will correspond to the persistent

and cloud genome and a number of K − 2 partitions will correspond to the shell genome. The

value of K can be either provided by the user or determined automatically (see next section).

In the BMM, the matrix comprises data vectors Xi = (xij)1⩽j⩽N describing P/A of families,

which are assumed to be independent and identically distributed with a mixture distribution

given by:

PðXi ¼ ðxijÞ1⩽j⩽NÞ ¼
XK

k¼1

pk

YN

j¼1

�
jxij � mkjj
kj ð1 � �kjÞ

1� jxij � mkjj

where π = (π1, . . ., πk, . . ., πK) denotes the mixing proportions satisfying πk 2 [0, 1];

ð
PK

k¼1
pkÞ ¼ 1 and where πk is the unknown proportion of gene families belonging to the kth

partition. Moreover, μk = (μkj)1⩽j⩽N 2 {0; 1}N are the centroid vectors of P/A of the kth partition

representing the most probable binary states and �k ¼ ð�kjÞ1⩽j⩽N 2 0; 1

2

� �N
are the unknown
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vectors of dispersion around μk. The default values of the dispersion vector �k associated to

each centroid vector μk are constrained to be identical for all the �kj of a specific k partition (for

all the genomes of a specific partition) in order to avoid over-fitting but it is possible to release

this constraint. The parameters of this model, as well as corresponding partitions, are esti-

mated by the EM algorithm. To speed up the computation of the EM algorithm, a heuristic is

used to initialize the BMM parameters in order to converge to a relevant partitioning using

fewer EM-steps. This heuristic consists in setting πk with equiprobable proportions equal to

1/K while the �kj and μkj parameters are initialized triangularly.

Given s = 1/dK/2e, the triangular initialization consists of:

fmkjg1⩽k⩽K=2;1⩽j⩽N
¼ 1

fmkjgK=2<k⩽K;1⩽j⩽N
¼ 0

f�kjg1⩽k⩽K=2;1⩽j⩽N
¼ s � k

f�kjgK=2<k⩽K;1⩽j⩽N
¼ s � ðK � kþ 1Þ

An interesting consequence of this initialization is that the persistent genome will be the first

partition (k = 1) while the cloud genome will correspond to the last partition (k = K). This par-

ticular initialization solves the classical label switching problem in our context.

Partitioning of the P/A matrix

To perform the partitioning of the P/A matrix, each gene family i must be allocated to a single

partition. The variables {Zi}1⩽i⩽F with a state space {1, . . ., K} indicate the partition to which

each gene family i belongs. Therefore, once the NEM parameters are optimized, the method

automatically assigns the gene families to their most probable partition zi according to the

model if their estimated posterior probability is above 0.5. If no partition can be assigned in

this way, then the gene family is assigned to the shell (partition with intermediate frequency).

Selection of the optimal number of partitions (K)

To determine the optimal K, named K̂ , the algorithm runs multiple partitionings with increas-

ing values of K. After a few steps of the EM algorithm (10 steps by default), the Integrated

Completed Likelihood (ICL) [45] is computed for each K. The ICL corresponds to the Bayesian

Information Criterion (BIC) [46] penalized by the estimated mean entropy and is calculated

as:

ICLðKÞ ¼ BICðKÞ �
XK

k¼1

XF

i¼1

pðzi j X; ŷ; kÞ log ðpðzi j X; ŷ; kÞÞ; 8pðzi j X; ŷ; kÞ > 0

and

BICðKÞ ¼ logPKðX j ŷÞ � 1=2dimðKÞ logF

where logPKðX j yÞ is the data log-likelihood under a multivariate BMM with K partitions

and θ = ({πk}1⩽k⩽K, {μkj}1⩽k⩽K,1⩽j⩽N, {�kj}1⩽k⩽K,1⩽j⩽N). This log-likelihood can be calculated as

follows:

logPKðX j yÞ ¼
XF

i¼1

log
XK

k¼1

pq

YN

j¼1

�
jxij� mkjj
kj ð1 � �kjÞ

1� jxij � mkjj

 !

Moreover, ŷ is the maximum likelihood estimator (approximated through the BinEM
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algorithm) and dim(K) is the dimension of the parameter space for this model. Here,

dim(K) = K(N + 2) if the dispersion vector �k associated to each centroid vector μk is con-

strained to be identical for all the �kj of a specific k partition and dim(K) = K(2N + 1) if the dis-

persion vector �k is free. Relying on this criterion, the best number of partitions is selected as

K̂ ¼ arg min
K
ðð1 � dICLÞICLðKÞÞ where δICL is a sufficiently small margin to avoid choosing a

too high K value that would provide no significant gain compared to a lower value of K (by

default δICL = 0.05 × (max(ICL) −min(ICL))).

Generation of the pangenome graph

PPanGGOLiN uses a graph-based representation to store and visualize pangenomes. In this

graph, the nodes correspond to gene families and the edges to genetic contiguity (i.e. genes

that are direct neighbors in a genome). Two nodes are connected if the corresponding gene

families contain at least one pair of genes that are adjacent in a genome. Edges are labeled with

the corresponding genome identifiers and weighted by the proportion of genomes sharing that

link. This process results in a pangenome graph (see Fig 2 as an example).

Formally, a pangenome graph G = (V, E) is a graph having a set of vertices V = {(vi)(1⩽i⩽F)}

where F is the number of gene families in the pangenome associated with a set of edges E =

{ei*i0} = {(vi, vi0)}, vi 2 V, vi0 2 V where the couple of vertices (vi, vi0) are gene families having

their genes (vi,j, vi0,j) adjacent on the genome j and where the function countNeighboringGenes
(vi, vi0) counts the adjacency occurrences in the N genomes. Each edge {ei*i0} has a weight

wi*i0 where wi�i0 ¼
1

N

PN
j¼1

countNeighboringGenesðvi;j; vi0 ;jÞ.

Partitioning via Neighboring Expectation-Maximization

From the graph previously described, the neighborhood information of the gene families is

used to improve the partitioning results. Indeed, the BinEM approach described above is

extended by combining the P/A matrix X with the pangenome graph G. This relies on a hidden

Markov Random Field (MRF) model whose graph structure is given by G. In this model, each

node belongs to some unobserved (hidden) partitions which are distributed among gene fami-

lies according to a MRF which favors two neighbors to be more likely classified in the same

partition. Conditional on this hidden structure, the binary vectors of P/A are independent and

follow a multivariate Bernoulli distribution with proportion vectors depending on the associ-

ated partition. This approach is called NEM, as it relies on the Neighboring Expectation-Maxi-

mization algorithm [47–49]. As such, NEM tends to smooth the partitioning by grouping gene

families that have a weighted majority of neighbors belonging to the same partition. The previ-

ously introduced latent variables {Zi}1⩽i⩽F, that indicate the partition to which each gene family

belongs are now distributed according to a MRF. More precisely, they have the following

Gibbs distribution:

PðfZig1⩽i⩽FÞ ¼W � 1
b

exp ð
XF

i¼1

XK

k¼1

pk1Zi¼k
þ b

F
P

i�i0wi�i0

X

i�i0
wi�i01Zi¼Zi0

Þ

where 1A is the indicator function of event A and the second sum concerns every pair (i* i0)
of neighbor gene families. The parameter β� 0 corresponds to the coefficient of spatial regu-

larity. The FPE

i�i0
wi�i0

is a corrector term ensuring that the strength of the spatial smoothing is

balanced regardless of the number of gene families. Indeed, when the number of genomes (N)

increases, the number of gene families (F) tends to be higher than the sum of the edge weights.
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Finally,

Wb ¼
X

f~z ig2f1...KgF
exp ð

XF

i¼1

XK

k¼1

pk1~z i¼k
þ b

F
P

i�i0wi�i0

X

i�i0
wi�i01~z i¼~z i0

Þ

is a normalizing constant. Note that Wβ cannot be computed, due to a large number of possible

configurations. The degree of dependence between elements is controlled by the parameter β.

Neighboring elements will be more inclined to belong to the same group with a higher value of

this parameter. Here, the data vectors (Xi)1⩽i⩽F are not independent anymore. However, con-

ditional on the latent groups (Zi)1⩽i⩽F, they are independent and follow the multivariate Ber-

noulli distribution:

PðfXig1⩽i⩽FjfZig1⩽i⩽FÞ ¼
YF

i¼1

YN

j¼1

�
jxij� mZi ;j j
Zi ;j ð1 � �Zi ;j

Þ
1� jxij� mZi ;j j:

Many different techniques may be used to approximate the maximum likelihood estimator in

the hidden MRF. NEM relies on a mean-field approximation for the distribution of the latent

random variables Zi1⩽i⩽F conditional on the observations. It should be noted that the optimal

number of partitions (K) is not determined automatically using NEM and is therefore first esti-

mated using the BinEM approach.

Issues resulting from high-dimensional statistics and parallelization

As plenty of statistical approaches, NEM is not adapted to high dimensional settings (i.e.

whenever the condition F>> N is not satisfied). This can occur in pangenomics as the dis-

covery rate of new families in the pangenome slightly decreases when new genomes are added.

Mathematical solutions to this problem seem to exist [50–52] for example via the weighting of

genomes (based on their respective contribution to the pangenome diversity) or via sparse par-

titioning methods. An improvement of NEM should include these solutions and could be a

perspective of this work.

Pangenome software must be designed to scale up to thousands of genomes. NEM scales

quadratically with the number of genomes and is hard to parallelize. Thus, it leads to intensive

computations when thousands of genomes are included in the analysis.

Our solution to the mentioned issues is to sample the genomes in chunks and to perform

multiple partitioning in parallel. Each family must be involved in at least Ntotal/Nsamples sam-

plings and will be partitioned only if it is classified in the same partition in at least 50% of the

samplings where it is present (absolute majority). If some families do not respect this condi-

tion, we continue sampling until all gene families have been partitioned. Chunks have to be

large enough to be representative, therefore a size of at least 500 genomes is advised.

Analysis of isolate genomes and Metagenome-Assembled Genomes

To obtain the set of isolate genomes to be analyzed, we downloaded all archaeal and bacterial

genomes (220 561 genomes) of the GenBank database at the date of the 17th of April 2019. We

removed genome assemblies that do not respect quality control criteria defined by GenBank.

They correspond to entries with an assembly status flag different from “status = latest” in the

“assembly_status.txt” files. In addition, genomes were discarded if they had more than 1000

contigs or a L90 > 100. These filters allowed us to exclude poor quality assemblies, some of

which may correspond to contaminated genomes and others to incomplete ones. For each spe-

cies (identified by its NCBI species taxid), a pairwise genomic distance matrix was computed

using Mash (version 2.0) [37]. To avoid redundancy, if several genomes are at a Mash
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distance < 0.0001, only one was kept (the one having the lowest number of contigs). A single

linkage clustering using SiLiX (version 1.2.11) [53] was then performed on the adjacency

graph of the Mash distance matrix considering only distances below or equal to 0.06. This

Mash distance corresponds to a 94% Average Nucleotide Identity (ANI) cutoff which is a

usual value to define species [54]. Genomes that were not in the largest connected component

were discarded to remove potential taxonomic assignation errors. Only species having at least

15 remaining genomes were then considered for the analysis. The list of all the GenBank

assembly accessions used after filtering is available in S3 File. This dataset consists of 439 spe-

cies encompassing 136 287 genomes (see S1 File). MAGs from the Pasolli et al. study [41] were

downloaded from https://opendata.lifebit.ai/table/SGB. In this dataset, the genomes are

already grouped in Species Genome Bins. These SGBs do not exactly match the GenBank tax-

onomy. Thus, SGBs assigned with the same species name (column “estimated taxonomy” in

the supplementary table S4 of [41]) were merged to allow comparison with GenBank. SGBs

that do not have a taxonomy assigned at the species level were not considered. A total of 583

species encompassing 698 SGBs and 71 766 MAGs were analyzed but only MAGs from 78 spe-

cies were finally compared to GenBank genomes. To avoid introducing a bias in our analysis

due to heterogeneous gene calling, GenBank annotations were not considered as they were

obtained using a variety of annotation workflows. Genomes from GenBank and Pasolli et al
were consistently annotated using the procedure implemented in PPanGGOLiN. Prodigal

(version 2.6.2) [55] is used to detect the coding genes (CDS). tRNA and tmRNA genes are pre-

dicted using Aragorn (version 1.2.38) [56] whereas the rRNA are detected using Infernal (ver-

sion 1.1.2) [57] with HMM models from Rfam [58]. In the case of overlaps between a RNA

and a CDS, the overlapping CDS are discarded. Homologous gene families were determined

using MMseqs2 (version 8-fac81) [59] with the following parameters: coverage = 80% with

cov-mode = 0, minimal amino acid sequence identity = 80% and cluster-mode = 0 corre-

sponding to the Greedy Set Cover clustering mode. PPanGGOLiN partitioning was executed

on each species using the NEM approach with a parameter β = 2.5. The nodes having a degree

above 10 (which is the default parameter) were not considered to smooth the partitioning via

the MRF. The number of partitions (K) was determined automatically for each NCBI species

using a δICL = 0.05 and iterating between 3 and 20 for the possible values of K. K was fixed at 3

for the MAG analysis. The partitioning was done using chunks of 500 genomes when there

were more than 500 genomes in a species. To compare PPanGGOLiN results between

MAGs and GenBank genomes for each species, the representative sequences of each MAG

gene family (extracted using the mmseqs2 subcommand: “result2repseq”) were aligned (using

mmseqs2 “search”) on those of GenBank genomes. If the best hit of the query had a sequence

identity > 80% and a coverage > 80% of the target, the 2 corresponding gene families of each

dataset were associated.

Rarefaction curves

To represent the pangenome evolution according to the number of sequenced genomes, a

multiple resampling approach was used. For each species with at least 100 genomes, 8 rarefac-

tion curves showing the evolution of the pangenome and the persistent, shell, cloud, soft core,

soft accessory, exact core and exact accessory components were computed for sample sizes of 1

to 100 genomes randomly drawn from the set of all genomes of the species. Each sample size

was analyzed using 30 different samples. For each sample, the number of partitions K is auto-

matically determined between 3 and the K obtained on all the genomes of the species. A non-

linear Least Squares Regression was performed to fit the rarefaction curves with Heaps’ law

F = κNγ where F is the number of gene families, N the number of genomes, γ the tendency of
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the evolution and κ a proportional factor [35]. Subset sizes� 15 were not used for the fitting

as they are sometimes too variable to ensure a good fitting. The function “scipy.optimize.cur-

ve_fit” of the Python scipy package (version 1.0.0), based on the Levenberg-Marquardt algo-

rithm, was used to fit the rarefaction curves. For each subset size, the median and quartiles

were calculated to obtain a ribbon of interquartile ranges (IQR) along the rarefaction curves.

We call the area of this ribbon the IQR area (see S2 Fig as an example).

PPanGGOLiN software implementation

PPanGGOLiN was designed to be a software suite performing the annotation of the genomic

sequences, building the gene families and the pangenome graph before partitioning it. Users

can also provide their own annotations (GFF3 or GBFF format) and gene families. The appli-

cation stores its data in a compressed HDF5 file but can also return the graph in GEXF or

JSON formats and the P/A matrix with the partitioning in CSV or Rtab files (similarly to the

ones provided by Roary [34]). It also generates several illustrative figures, some of which are

presented in the article. PPanGGOLiN was developed in the Python 3 and C languages and is

intended to be easily installable on Linux and Mac OS systems via a BioConda package [60]

(see https://bioconda.github.io/recipes/ppanggolin/README.html). The code is also freely

available on the GitHub website at the following address: https://github.com/labgem/

PPanGGOLiN.

Supporting information

S1 Fig. Density distributions of the gene family frequencies of each partition. Results for

the 88 most abundant species in GenBank are represented in addition with a global distribu-

tion of the gene family frequencies from all the species. Density values of the cloud genome

above 100 (y-axis) were trimmed for visualization purpose. The dashed yellow vertical bars

indicate the threshold of frequency (⩾95%) used to delimit the soft core genome.

(PDF)

S2 Fig. Evolution of the persistent, shell, soft core and exact core metrics of Lactobacillus

plantarum compared to the number of genomes. The rarefaction curves represent the evolu-

tion of the partition sizes as a function of an increasing number of genomes in random subsets

of genomes. Plain lines connect the medians while colored areas represent the interquartile

ranges. A regression curve (bold dashed line) is drawn fitting all the points of each partition by

the Heaps’ law (F = κNγ). The total area of the interquartile ranges (IQR) is indicated for each

partition.

(TIF)

S3 Fig. Density distributions of the Heaps’ law γ-tendencies. These γ-tendencies were

obtained by fitting a Heaps’ law on rarefaction curves between subset sizes of 15 to 100

genomes in the 88 most abundant species in GenBank. The exact core median and exact acces-

sory are not shown.

(TIF)

S4 Fig. Shell γ-tendency compared to the total number of shell families normalized by the

median number of gene families per genome in each species. Results for the 88 most abun-

dant species in GenBank are represented. The points are colored by phylum and their size cor-

responds to the number of partitions (K) used.

(TIF)
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S5 Fig. Fraction of shell families per genome compared to the number of gene families.

Results for the 88 most abundant species in GenBank are represented. The points are colored

by phylum and their size corresponds to the number of partitions (K) used.

(TIF)

S6 Fig. Fraction of cloud families per genome compared to the number of gene families.

Results for the 88 most abundant species in GenBank are represented. The points are colored

by phylum and their size corresponds to the number of partitions (K) used.

(TIF)

S7 Fig. Presence/Absence matrix of the shell genome of L. reuteri ordered by a Neighbor

Joining tree based on the MASH distances. The leaves of the tree are colored by host or ori-

gin. This information was obtained from the metadata in GenBank files (host and isolation

source qualifiers).

(TIF)

S8 Fig. Presence/Absence matrix of the shell genome of B. longum ordered by a Neighbor

Joining tree based on the MASH distances. The leaves of the tree are colored by species clus-

ters defined by the GTDB database (release R04-RS89), namely (B. infantis or B. longum).

“NA” values correspond to genomes not available in GTDB.

(TIF)

S9 Fig. Illustration of the shell genome overlaps between MAGs or GenBank of 55 species.

The x-axis represents the percentage of common shell of the GenBank shell while the y-axis

corresponds to the percentage of common shell of the MAGs shell. Diamonds and squares rep-

resent MAGs and GenBank genomes, respectively. They are colored by phylum and their size

indicates the number of genomes.

(TIF)

S1 File. Table compiling all the metrics obtained from the pangenomes of the 439 Gen-

Bank species. This is a CSV file.

(CSV)

S2 File. Table compiling all the metrics obtained from the comparison of PPanGGOLiN

results between MAGs and GenBank genomes in 78 species. This is a CSV file.

(CSV)

S3 File. List of GenBank assembly accessions for the 439 studied species. This is a TSV file

where each line corresponds to all the GenBank assembly accession used in this study for each

‘species id’ in the NCBI taxonomy.

(TSV)
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lot, Mathieu Dubois, Amandine Perrin.

Formal analysis: Guillaume Gautreau, Adelme Bazin.

Investigation: Guillaume Gautreau, Adelme Bazin.

Methodology: Guillaume Gautreau, Catherine Matias, Christophe Ambroise.

Software: Guillaume Gautreau, Adelme Bazin.

Supervision: David Vallenet.

Visualization: Guillaume Gautreau.

Writing – original draft: Guillaume Gautreau, Adelme Bazin, Eduardo P. C. Rocha, David

Vallenet.

Writing – review & editing: Guillaume Gautreau, Adelme Bazin, Mathieu Dubois, Claudine
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RÉSUMÉ/ABSTRACT

Outils pour la génomique comparative des bactéries à large échelle : développement et
applications.

Résumé:
La génomique comparative bactérienne consiste à comparer les contenus en gène des différentes souches : leur

pangenome. Avec le nombre croissant de séquençages, les logiciels existants au début de cette thèse arrivaient
à leurs limites en termes de temps de calcul et de mémoire. L’enjeu était de passer à l’échelle de milliers de
génomes dans un temps raisonnable, en gardant une précision correcte. De plus, à notre connaissance, aucun
logiciel ne permettait d’effectuer toutes les étapes clés d’une étude de génomique comparative. C’est dans
ce contexte que nous avons développé PanACoTA, un outil ayant pour but de standardiser et automatiser
la préparation de données pour ces études, depuis le téléchargement des génomes et leur contrôle qualité
jusqu’à l’inférence de l’arbre phylogénétique du core génome (gènes communs à tous les génomes). Son im-
plémentation sous forme de modules a été pensée pour permettre de s’adapter aux besoins spécifiques de
certaines études (exploration de paramètres, étapes supplémentaires). Concernant le module « pangenome »,
nous avons développé une nouvelle méthode, s’appuyant sur des outils récents de comparaison et clustering
de séquences. Robuste aux changements d’échelle, elle permet de calculer un pangénome de 4000 souches
en 30 minutes. Au cours de son développement, nous avons appliqué PanACoTA dans différents contextes.
Nous avons montré l’utilité de l’outil sur des études à court terme (recherche de la particularité d’une souche
épidémique d’E. anophelis), sur du long terme (étude de la diversité génomique de l’espèce E. coli), ou encore
pour différencier différentes espèces d’un genre peu connu (Morganella).

Mots clés : [bactéries, génomique comparative, pangenome, développement et génie logiciel]

Tools for massive bacterial comparative genomics: Development and Applications.

Abstract:
Bacterial comparative genomics consists in comparing the gene contents of different strains: their pangenome.

With the increasing number of strains sequenced, the tools available when I started this PhD were reaching
their limits in terms of computation time and space. The aim was to develop a method able to handle thou-
sands of genomes, accurately and in a reasonable amount of time. Besides, to our knowledge, no tool was
able to do all key steps of any comparative genomics study. This spurred the development of PanACoTA, a
tool to standardize and automatize the process to build the key collections of data needed for these studies.
This includes all steps from downloading genomes with a quality control until the inference of a phylogenetic
tree based on the core genome (genes shared by all strains). In order to be able to adapt to specific needs
(exploration of parameters, additional steps), we implemented it in a modular way. For the “pangenome”
module, we developed a new method, based on recent tools of genome comparison and clustering. Robust to
changes in sampling size, this method can infer a pangenome of 4000 strains in 30 minutes. During its devel-
opment, we applied PanACoTA to different kinds of studies. We showed its usefulness for short-term studies
(find specificity of a pathogenic strain of E. anophelis), long-term (genomic diversity of E. coli species), or
to identify different species in an little-known genus (Morganella).

Keywords: [bacteria, comparative genomics, pangenome, software development]
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