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Résumé

La surface du cortex cérébral est très convoluée, avec un grand nombre de plis, les sil-

lons corticaux. Ces plis sont extrêmement variables d’un individu à l’autre. Cette grande

variabilité constitue un problème pour de nombreuses applications en neurosciences et en

imagerie cérébrale. Un problème central est que les sillons cérébraux ne sont pas la bonne

unité pour décrire les plis sur la surface corticale. En particulier, leur géométrie (forme) et

leur topologie (branches, nombre de pièces) sont très variables. Les ”Plis de passages” (PPs)

peuvent expliquer une partie de cette variabilité. Le concept de PPs a été introduit pour la

première fois par Gratiolet (1854) pour décrire les gyri transversaux qui interconnectent les

deux côtés d’un sillon, sont fréquemment enfouis dans la profondeur de ces sillons, et sont

parfois apparents sur la surface corticale. En tant que caractéristique intéressante du pro-

cessus de plissement cortical, la connectivité structurelle sous-jacente des PP a également

suscité beaucoup d’intérêt. Cependant, la difficulté d’identifier les PPs et le manque de

méthodes systématiques pour les détecter automatiquement ont limité leur utilisation.

Cette thèse vise à détecter et à caractériser les PPs sur la surface corticale tant du

point de vue de la morphologie que de la connectivité. Elle s’articule autour de deux

axes de recherche principaux : 1. Définition d’un processus de détection des PPs basé

sur l’apprentissage automatique et utilisant leurs caractéristiques géométriques (ou mor-

phologiques). 2. Étudier les relations entre les PP et leur connectivité structurelle sous-

jacente, et poursuivre le développement de modèles d’apprentissage automatique multi-

modaux.

Dans la première partie, nous présentons une méthode de détection automatique des

PP sur le cortex en fonction des caractéristiques morphologiques locales proposées dans

(Bodin et al., 2021), Pour enregistrer les caractéristiques morphologiques locales de chaque

sommet de la surface corticale, nous avons utilisé la méthode de profilage de la surface

corticale (Li et al., 2010). Ensuite, le problème de reconnaissance tridimensionnelle des PP

est converti en un problème de classification d’image bidimensionnelle avec un déséquilibre

de classe où plus de points dans le STS sont des non-PP que des PP. Pour résoudre ce cas,

nous proposons un modèle “Ensemble SVM” (EnsSVM) avec une stratégie de rééquilibrage.

Les résultats expérimentaux et les analyses statistiques quantitatives montrent l’efficacité

et la robustesse de notre méthode. Dans la deuxième partie, nous étudions la connectivité

structurelle, en particulier les fibres U à courte portée, qui sous-tend la localisation des PPs,

et proposons une nouvelle approche pour étudier la densité des terminaisons des fibres U

sur la surface corticale. Nous émettons l’hypothèse que les PPs sont situés dans des régions

de haute densité de terminaisons de fibres U croisées. En effet, nos analyses statistiques
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montrent une corrélation de robustesse entre les PPs et la densité de terminaisons des fibres

U. De plus, nous discutons de l’impact de l’hétérogénéité de la connectivité dans le STS sur

les résultats de l’apprentissage automatique. Enfin, nous investiguons l’utilisation de cartes

de myéline comme un complément à la connectivité structurelle.

Mots clés : Cerveau, machine learning, plis de passages, IRM, connectivité structurelle
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Abstract

The surface of the cerebral cortex is very convoluted, with a large number of folds, the

cortical sulci. Moreover, these folds are extremely variable from one individual to another.

This great variability is a problem for many applications in neuroscience and brain imaging.

One central problem is that cerebral sulci are not the good unit to describe folding over

the cortical surface. In particular, their geometry (shape) and topology (branches, number

of pieces) are very variable. “Plis de passages” (PPs) or “annectant gyri” can explain part

of the variability. The concept of PPs was first introduced by Gratiolet (1854) to describe

transverse gyri that interconnect both sides of a sulcus, are frequently buried in the depth of

these sulci, and are sometimes apparent on the cortical surface. As an interesting feature of

the cortical folding process, the underlying structural connectivity of PPs also generated a

lot of interest. However, the difficulty of identifying PPs and the lack of systematic methods

to automatically detecting them limited their use.

This thesis aims to detect and characterise the PPs on the cortical surface from both

morphology and connectivity aspects. It was structured around two main research axes:

1. Definition of a machine learning-based PPs detection process using their geometrical (or

morphological) characteristics. 2. Investigate the relationships between PPs and their un-

derlying structural connectivity, and further development of multi-modal machine learning

models.

In the first part, we present a method to detect the PPs on the cortex automatically

according to the local morphological characteristics proposed in (Bodin et al., 2021), To

record the local morphological patterns for each vertex on the cortical surface, we used

the cortical surface profiling method (Li et al., 2010). After that, the three-dimensional

PP recognition problem is converted to a two-dimensional image classification problem of

class-imbalance where more points in the STS are non-PPs than PPs. To solve this case,

we propose an ensemble SVM model (EnsSVM) with a rebalancing strategy. Experimental

results and quantitative statistics analyses show the effectiveness and robustness of our

method. In the second part, we study the structural connectivity, particularly short-range

U-fibers, underlying the location of PPs, and propose a new approach to study the density

of U-fiber terminations on the cortical surface. We hypothesize that the PPs are located in

regions of high density of intercrossing U-fibers termination. Indeed, our statistical analyses

show a robustness correlation between PPs and U-fibers termination density. Moreover, we

discuss the impact of connectivity heterogeneity in the STS on the machine learning results,

and the myelin map is then used as a supplement to the structural connectivity.

Key words: Brain, machine learning, annectant gyri, MRI, structural connectivity

iii



Contents

Résumé i

Abstract iii

Table des matières iv

Introduction 1

1 Context 3

1.1 The human brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Brain anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cellular components . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Cortical folding and variability . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Inter-individual variability . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Brain Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Definition: short association fibers and U-shaped fibers . . . . . . . . 9

1.3.2 U-shaped fibers in human brain . . . . . . . . . . . . . . . . . . . . . 12

1.4 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Construction and physics . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 MRI imaging sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Plis de Passage: a morphological view 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Variation of sulcal depth and PPFM . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 PPs and sulcal root . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 PPs and sulcal pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 New characteristics: “wall pinches” . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Automatic detection of Plis de passage from morphology 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Subjects and image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Image preprocessing and identification of PPs . . . . . . . . . . . . . . . . . 40

iv



3.3.1 Anatomical images and related maps . . . . . . . . . . . . . . . . . . 40

3.3.2 STS identification and drawing . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 PPs identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Feature extraction and feature images . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Cortical surface profiling . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Morphological feature maps of cortical surface . . . . . . . . . . . . . 46

3.4.3 Feature images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Data preprocessing: the imbalanced property of PPs datasets . . . . . . . . . 49

3.5.1 Imbalanced datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Evaluation measures with class-imbalance . . . . . . . . . . . . . . . . . . . 69

3.8 Ensemble learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.1 The Bagging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.2 Ensemble Support Vector Machine . . . . . . . . . . . . . . . . . . . 73

3.8.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 PPs regions and post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9.1 False positive PPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9.2 PPs regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9.3 Validation on TVA Data . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Plis de Passage, short-range U-fibers connectivity and myelin maps 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Image acquisition and preprocessing . . . . . . . . . . . . . . . . . . . 89

4.2.2 U-fibers extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Density map generation . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.4 Crossing-Connectivity map: a new visualization of various U-fibers . 93

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 U-fibers termination maps . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.2 PPs and their underlying U-fibers . . . . . . . . . . . . . . . . . . . . 98

4.3.3 PPs: the termination of intercrossing short-range U-fibers . . . . . . 104

v



4.4 Automatic detection of PPs using connectivity maps . . . . . . . . . . . . . 109

4.4.1 EnsSVM with conectivity maps . . . . . . . . . . . . . . . . . . . . . 109

4.4.2 Connectivity heterogeneity in the STS . . . . . . . . . . . . . . . . . 110

4.5 Myelin maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 Myelin map generation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.2 Automatic detection of PPs using myelin maps . . . . . . . . . . . . 115

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Intercrossing fibers, 3-hinged gyri and “wall pinches” . . . . . . . . . 116

4.6.2 Local connectivity networks underlying the PPs in STS . . . . . . . . 117

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

General conclusion 120

vi



Introduction

The surface of the cerebral cortex is very convoluted, with a large number of folds, the

cortical sulci. Moreover, these folds are extremely variable from one individual to another.

This large variability is a problem for many applications in neuroscience and brain imaging:

because it is difficult to define an interval of normal variability; it is difficult to detect

abnormal folding that could be associated to a pathology; also, the large inter-subject

differences induced by this variability makes neuroscience group studies very difficult when

it comes to compare hundreds of individuals; finally, it is difficult, and sometimes impossible,

to use folds as landmarks in order to localize information (e.g. functional activity) on the

cortical surface.

One central problem is the fact that cerebral sulci might not be the good unit to de-

scribe folding over the cortical surface. In particular, their geometry (shape) and topology

(branches, number of pieces) are very variable. Nevertheless, some models state that they

can be subdivided in sub-units that are more reproducible (Regis et al., 2005; Ochiai et al.,

2004) across individuals. The difficulty to implement such models is to find how to subdi-

vide folds properly. Some specific landmarks buried within the folds have been proposed for

this subdivision and are called “annectant gyri” or “plis de passages” (PPs) (Ochiai et al.,

2004; Cunningham, 1892). These landmarks have been successfully used to describe cortical

folding and its variability (Ochiai et al., 2004; Zlatkina and Petrides, 2010). Annectant gyri

are difficult to detect and the geometry of the cortical surface alone is not enough to prop-

erly locate them. Nevertheless, we know that they can be characterized by a multi-modal

set of features, such as the local geometry (Bodin et al., 2021; Song et al., 2021), cortical

depth variations (Cykowski et al., 2008; Le Guen et al., 2018), or the structure of the fiber

bundles in the underlying white matter(Bodin et al., 2021).

This main objective has been the guiding thread of this thesis, which has been organized

around two research lines:

The first one is the definition of a machine learning-based PPs detection process using

their geometrical (or morphological) characteristics. The aim is to detect all PPs in the

superior temporal sulcus using triangular mesh models of the cortical surface. The second

line of research is to investigate the relationships between PPs and their underlying struc-

tural connectivity, and further development of multi-modal machine learning models using

morphology, connectivity, myelin content, etc.

The writing of this manuscript has been done as follows:

The first chapter will introduce the essential neuroanatomical concepts for better un-

derstanding the brain anatomical principles. Then, we describe the main anatomical issue
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of our interest, namely the variability of cortical foldings, and some regions of interest or

folding patterns proposed in the literature to explain this. After that, we introduced the

definition of the brain white matter connectivity, particularly the U-fibers, and a general

introduction of the data used in our work.

In the second chapter, we focus on the PPs from a morphological methodology perspec-

tive. We will describe in detail the concept of PPs and then discuss the morphological clues

used for identifying the PPs, from the observer-dependent definition of “sulcal roots”(Regis

et al., 2005), to the variation of sulcal depth profile (Cykowski et al., 2008; Leroy et al.,

2015; Le Guen et al., 2018), and finally to the presence of features called “wall pinches”

(WPs)(Bodin et al., 2021).

The third chapter will present our method to automatically detect the PPs in the su-

perior temporal sulcus (STS) by using the morphological features “WPs” in (Bodin et al.,

2021). For this purpose, we will introduce the cortical surface profiling method (Li et al.,

2010), which has been used to generate new feature maps and record the local geometri-

cal information. After that, the three-dimensional PP recognition problem is converted to

a two-dimensional image classification problem with class-imbalance where more points in

the STS are non-PPs than PPs. To solve this case, we propose an ensemble SVM model

(EnsSVM) with a rebalancing strategy. Experimental results and statistical analyses of our

method will be discussed.

Finally, the fourth chapter will be dedicated to the PPs and their underlying connectivity

of short-range U-fibers. We will first introduce the pipeline of U-fibers extraction (Bodin

et al., 2021; Pron et al., 2021). To further investigate the location of PPs and U-fibers,

we propose a new density map of U-fibers terminations on the cortical surface. Several

experiments and quantitative statistical analyses will be discussed to reveal that the PPs

are located in the regions where intercrossing U-fibers terminate. After that, we will study

the results of the EnsSVM trained on connectivity maps and connectivity heterogeneity

in the STS. Finally, we investigate the use of myelin map as as a marker of connectivity.

In order to put in relation the literature and the new results brought by my work, I will

conclude this manuscript by a general discussion.
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1 Context

1.1 The human brain

The human brain is the central organ of the human nervous system and it is an immensely

complex structure. Even so, there are ways we can divide up its anatomical structure into

more discrete parts, e.g. the left and right hemisphere, or the parietal, temporal, occipital,

and frontal lobes in each hemisphere. Another common divider is to separate the brain’s

gray and white matter. In this section, we present some essential concepts of brain anatomy,

its variability, as well as the modality we use, i.e. Magnetic Resonance Imaging.

1.1.1 Brain anatomy

Gyri and Sulci

The telencephalon or brain, the main organ of the central nervous system, is responsible

in humans for integration, processing of sensory information, motor control, and cognition.

Located in the cranium and bathed in cerebrospinal fluid, the brain is composed of two

similar hemispheres, incompletely separated by the longitudinal fissure. In neuroanatomy,

a sulcus (pl. sulci) is a depression or groove in the cerebral cortex. It surrounds a gyrus

(pl. gyri), creating the characteristic folded appearance of the brain in humans and other

mammals. The larger sulci are usually called fissures. The human brain has a wrinkled,

walnut-like external appearance resulting from the complex spatial arrangement of convo-

lutions (gyri) bounded by sulci (Ono et al., 1990). These gyri and sulci form important

landmarks that allow us to separate the brain into functional centers.

Figure 1: Sulcus and gyrus

The principal sulci and gyri, and the resulting division into lobes (frontal lobe, parietal

lobe, temporal lobe, occipital lobe, limbic lobe and insula) are shown in Figure 2.

3



Figure 2: Principal sulci and gyri of the human brain and division into lobes: frontal lobe
(red), parietal lobe (grey), temporal lobe (yellow), occipital lobe (green), limbic lobe (pink).
Lateral (left) and medial (right) views. Figures adapted from (Jones et al., 2013).

White matter and Grey matter

The average volume of the adult human brain is about 1170 cm3 (Ritchie et al., 2018),

which can vary according to gender (Ritchie et al., 2018) and age (Cox et al., 2016). On

a macroscopic scale, the telencephalon appears to be essentially composed of two tissues,

named after their visual appearance, grey matter and white matter. A distinction is made

between the cortical grey matter, located in the cerebral cortex, a peripheral layer 1 to

4.5mm thick (e.g. (Fischl and Dale, 2000)), and the subcortical grey matter, which is more

central and composed of the symmetrical paired structures of the hippocampus, amygdala,

caudate nucleus, putamen, and pallidum. The white matter occupies the space between the

cerebral cortex, the subcortical structures and the cerebrospinal fluid of the ventricles (see

Figure 3).

1.1.2 Cellular components

The human brain is composed of neurons and neuroglial cells. Neurons are considered the

structural and functional units of the nervous system. A neuron consists of a cell body and

two types of cytoplasmic extensions, the dendrites and the axon, whose role is to integrate

and transmit, respectively, the bioelectric potentials known as action potentials. The axon,

when present, starts from the cell body at the level of the emergence cone and describes a

tortuous trajectory of variable length (from a few micrometers to more than a meter) before

branching (terminal arborization). Approximately one-third of the axons in the brain are

surrounded by myelin sheaths, a lipidic insulating substance that increases the speed of
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Figure 3: White and Grey matter (cerebral cortex and subcortical structures) of the human
brain in coronal section. Left: dissection; right: annotated diagram. Figures adapted from
(Mai et al., 2015).

propagation of action potentials. The diameter of the cell body of a neuron varies from 5

to 120µm, while that of the axon is in the order of 0.3 to 10µm, depending on whether it

is myelinated or not. Neuroglial cells are not directly involved in the transmission of action

potentials. Neuroglia is divided into macroglia, composed of astrocytes, oligodendrocytes,

and microglia, a collection of star cells smaller than the macroglia cells. Glial cells are smaller

in size than neurons. The number of neurons in the central nervous system, estimated at

one hundred billion, represents about 10% of the number of cells in the central nervous

system, the remaining cells being glial cells.

The grey matter is mainly composed of the cell bodies and dendrites of neurons as well

as glial cells, notably oligodendrocytes. The white matter contains axons, both myelinated

and unmyelinated, as well as neuroglial cells. The white matter owes its color to the myelin

sheaths of the axons, an unmyelinated axon being transparent. The white matter is there-

fore mainly responsible for transporting bioelectrical information, while the grey matter is

mainly responsible for integrating and processing this information. The connectivity within

the cerebral cortex is called intrinsic connectivity, that via the white matter, extrinsic con-

nectivity.

1.2 Cortical folding and variability

Cortical folding, an essential characteristic of the brain cerebral cortex, shows variability

across individuals. This variability is very disturbing when trying to project an atlas of the

sulci onto a specific brain (Mangin et al., 2015). As an instance of folding pattern variability,

Figure 5 shows twelve individual manually labeled sulci. The morphology of folding is the
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Figure 4: Cellular components of white matter. Image adapted from (Johansen-Berg and
Behrens, 2013).

most basic and direct way to describe the geometric information of various folding patterns.

In the last decades, the descriptors of cortical folding have been widely studied (Ono et al.,

1990; Ochiai et al., 2004; Mangin et al., 2015, 2019). Quantitative descriptions of folding

patterns(Zilles et al., 1988; Yu et al., 2007; Toro et al., 2008; Li et al., 2010; Le Guen

et al., 2018) and understanding of the underlying mechanisms(Van Essen, 1997; Toro and

Burnod, 2005; Geng et al., 2009; Auzias et al., 2015; Chen et al., 2017) progressively become

important research topics.

1.2.1 Inter-individual variability

There are clear similarities when looking at the cortical anatomy of several individuals. The

spatial arrangement of sulci and gyri as well as their temporal development show common

patterns (Borrell and Reillo, 2012; Welker, 1990). However, these similarities mainly con-

cern the primary folds, and there is considerable variability left unexplained in the cortical

anatomy between individuals (see Figure 5). As this variability is a hindrance to the identifi-

cation of anatomical-functional relationships, several models have emerged to try to explain

it and to extract consistent patterns of folding across individuals.

According to the “radial unit” hypothesis, cortical expansion during evolution would

be the result of changes in cell proliferation during development, increasing the number of

radial unit columns in the forming cortex (Rakic, 1988, 1995). These radial units would also

constitute a “protomap” where the future cytoarchitectonic organization of the cortex would

be recorded. Far from explaining the complete organization of the cortex, this hypothesis
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Figure 5: Twelve left lateral cortical surfaces with elementary folds manually labeled
according to the sulcus atlas of BrainVISA (http://brainvisa.info). Figure adapted
from (Perrot et al., 2011).

suggested above all a common base on which individual variability would be affixed. This

idea has given rise to more recent models of cortical variability. For example, the sulcal root

model introduced by Regis et al. (2005) advocated a common pattern of sulcus and gyri

organization across individuals. As on a geographical map, sulcal roots can be arranged

on a flat representation of the cortical surface according to a system of meridians and

parallels. Each sulcal root is bordered by two parallel gyri and two gyri orthogonal to

it. This organization is visible from the fetal stage but changes with cortical expansion

until adulthood. The orthogonal gyri often lay deeper than those parallel to the sulcus.

An example is the superior temporal sulcus (STS) framed by the parallel superior and

middle temporal gyri and sometimes interrupted orthogonally by annectant gyri, or “plis-

de-passage” (Ochiai et al., 2004) (see Figure 6). More recently, the sulcal root model has

made it possible to establish a coordinate system that allows better localization of sulci and

inter-subject comparison (Clouchoux et al., 2010; Auzias et al., 2013).

The depth of cortical surface appears to be an important feature in characterizing indi-

7
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Figure 6: Example of interrupted STS. The black double-headed arrow shows the “plis-de-
passage”.

vidual variability. In parallel with investigations of superficial landmarks such as “plis-de-

passage”, others have focused on the deeper points of the cortex. The sulcal basins have

thus been described by (Lohmann et al., 1999) as the deep parts of the sulci and can be

linked to sulcal roots. In line with this work, algorithms have been developed to extract the

deepest points located at the bottom of sulcal basins (Im et al., 2010; Meng et al., 2014;

Auzias et al., 2015). Known as “sulcal pits”, these points are more stable across individuals

compared to more superficial points (Lohmann et al., 2008). Their location has been shown

to be robust across MRI sessions, different scans and surface extraction methods (Im et al.,

2013). Furthermore, these regions appear to be governed by important genetic constraints

as their configuration has been shown to be more consistent in monozygotic twins than in

unrelated individuals (Im et al., 2010), with deeper sulci being more similar than shallow

sulci (Lohmann et al., 1999). The regions of interest in cortical surface discussed above (plis-

de-passage, sulcal pits, sulcal roots) are shown in Figure 7 using the STS as an example.

More details about these cortical folding pattern will be discussed in chapter 2.

1.3 Brain Connectivity

Brain connectivity refers to a pattern of anatomical links (“anatomical connectivity”), of

statistical dependencies (“functional connectivity”) or of causal interactions (“effective con-

nectivity”) between distinct units within a nervous system (Sporns, 2007). The units cor-

respond to individual neurons, populations of neurons, or anatomically separated brain

regions. The pattern of connectivity is formed by structural links such as synapses or fi-

bre pathways, or it represents a statistical or causal relationship, measured in terms of

cross-relationships, coherence or information flow. Neural activity, and by extension neural

codes, are constrained by connectivity. Brain connectivity is thus crucial to elucidating
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Figure 7: Regions of interest in the cortical surface illustrated on the Superior Temporal
Sulcus (STS, shown in 3D in white) of a subject. The sulcal pits (in circles) are the deepest
points of the sulcal roots (different parts of the STS delimited by the dotted lines), them-
selves delimited by the passage folds (dotted lines). The surface represents the grey/white
material interface reconstructed with BrainVisa software, on which the depth map has been
projected (in red the deepest regions).

how neurons and neural networks process information. The structural connectivity, which

can be defined as the existence of white matter tracts physically interconnecting brain re-

gions (Sporns et al., 2005; Uddin, 2013), arouses great interest in but not limited to the

neurodevelopmental process (Dubois et al., 2014), functional organization (Saygin et al.,

2012; Wendelken et al., 2017) and brain diseases (Griffa et al., 2013). The remainder of this

work will focus on the anatomical connectivity or structural connectivity, in particular the

short-range U-fibers, because, as it will be discussed after, they have a specific link with

cortical morphology.

1.3.1 Definition: short association fibers and U-shaped fibers

The distinction between short and long association bundles was originally proposed by

Meynert (1885):

‘The cortex exhibits on the convexity of each convolution the shape of an inverted U,
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which is changed in the next adjoining fissure to an upright U (top and bottom of the cor-

tical wave). The depressed surface of a cortical wave can be easily dissected out as from a

smooth medullary groove, which on closer inspection is seen to consist of U-shaped medullary

fibers.The U-shaped bundles of the cortex do not necessarily extend simply from one convo-

lution to the one next adjoining, but they may skip one, two, three, or an entire series of

convolutions.The shortest fibrae propriae lie nearest to the cortex.’

Meynert adopted a macroscopic definition of short association bundles based on the U-

shaped geometry of these fibers, in relation to the folding of the cerebral cortex, rather than

on a criterion of proximity of connected cortical territories. Meynert also reported a link

between cortical proximity and length for U-shaped fibers but does not make explicit the

distribution and terminations of these fibers (e.g. symmetry of these fibers with respect

to the bottom of the sulcus, terminations on the walls or near the crests of the gyri). In

addition, the distinction between some long, arcuate association bundles, e.g. bundle 4

(blue, bottom of Figure 8) and short association bundles (red, top of Figure 8) appears

ambiguous. In this sagittal cross-sectional representation, it is also noticeable that the U-

shaped fibers are shown connecting the outer walls of adjacent convolutions, as the two walls

of the same groove are not connected.

Figure 8: Distinction of association fibers proposed by Meynert into short association fibers
(red) and long association fibers (blue). Figure adapted from (Jones and Cercignani, 2010).

Meynert’s original definition was taken up and refined by Dejerine (Dejerine et al., 1895):

‘Les courtes fibers d’association relient deux circonvolutions ou deux lobes voisins [...]

elles forment quelquefois, presque à elles seules, la masse blanche de certaines circonvolu-

tions [...] et en général de tous ces plis plus ou moins complexes, irréguliers et variables
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d’un individu à l’autre, d’un hémisphère à l’autre, qui compliquent l’étude des circonvolu-

tions du manteau cérébral. Les fibers les plus courtes et les plus superficielles de ces plis

tapissent le fond des sillons, les plus longues naissent du sommet du pli anastomotique pour

se rendre à une circonvolution plus éloignée.[...] La direction des fibers en U est toujours

perpendiculaire au grand axe du sillon qu’elles tapissent.’

Dejerine reported a main trajectory of U-shaped fibers approximately orthogonal to

the main axis of the sulcus, implying that these fibers connect cortical territories that are

quasi-symmetrical with respect to this same axis. Dejerine refined the relationship between

length and depth noted by Meynert, with the longest fibers explicitly associated with the

peaks of the gyri while the shortest fibers are concentrated in the bottom of the sulci. This

affirmed the predominant role of the sulcus and suggested a laminar organisation of the

U-shaped fibers, intrinsically linked to the geometry of the cortex. This observation would

preclude having U-shaped fibers connecting two cortical territories located on the same wall

of a sulcus. However, it also raised the question of an objective criterion for distinguishing

between short and long association fibers. Schmahmann et al. (2009) proposed a more

restrictive definition of U-shaped fibers in their monograph on the study of anatomical

connectivity in the macaque:

‘Local association fibers, or U-fibers, leave a given area of cortex and travel to an adjacent

gyrus, running in a thin, identifiable band immediately beneath the sixth layer. Neighborhood

association fibers arise from a given cortical area and are directed to nearby regions but are

distinguishable from the local U-fibers that run immediately beneath the cortex.’

As summarised in Figure 9, and visible at the microstructural level in Figure 10, the

U-shaped fibers of the rhesus macaque are located immediately below the cerebral cortex,

in a band estimated to be 0.5mm thick according to the scale of the sample in Figure 10.

This proximity to the cortex, rather than the length of these fibers, would allow them to be

distinguished from so-called neighbourhood association fibers, although as noted by Dejerine

and Meynert length and depth are related. Thus Meynert and Dejerine’s definition of U-

shaped fibers potentially includes long and neighbouring fibers in the sense of Schmahmann

et al. (2009). Furthermore, the representation in Figure 9 suggests that these fibers connect

the two walls of a groove but does not specify the maximum spatial extension of these fibers.

Schüz and Braitenberg (2002) defined a U-shaped fiber as a short fiber of less than 30mm

in length that connects two nearby cortical territories and remains in a band of superficial

white matter located at a distance of 1.5mm from the cortex. And they estimated approx-

imately the U-shaped fibers would represent more than ninety percent of the association

fibers of the percent of the association fibers in the human brain.

The lack of consensus on an objective definition of a short association fiber in humans
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Figure 9: LEFT: Classification and simplified representation of fiber bundles in the macaque
suggesting that U-shaped fibers connect the two walls on either side of a sulcus with a high-
angle turn at the entrance (exit) of the cortex. RIGHT: Dark-field photomicrograph of a
coronal section of the rhesus macaque brain after injection of a radioactive isotope into the
caudate region of the inferior parietal lobule. Figures adapted from (Schmahmann et al.,
2009).

is probably indicative of the high variability of these fibers (Dejerine et al., 1895), but

also of the limitations of the different techniques used to study them, such as post-mortem

dissection.

1.3.2 U-shaped fibers in human brain

Since their first description by Meynert (1885) at the end of the 20th century, few studies

have been devoted to the short association fibers of the human white matter (Catani et al.,

2012). A detailed atlas of the main association fibers of the occipital lobe was compiled by

Heinrich Sachs on the basis of dissections (Sachs, 1893; Forkel et al., 2015). A longitudinal

U-shaped fiber system connecting the frontal lobe gyri and short association bundles con-

necting the precentral and postcentral gyrus were described by Christfried Jakob (Jakob,

1906; Theodoridou and Triarhou, 2012). Joshua Rosett established an atlas of most of the

short association fibers of the human brain in 1933 (Rosett, 1933), but using a dissection

technique that did not allow the isolation of the entire trajectory of these fibers and their

terminations. Following the development of diffusion-weighted MRI (Le Bihan and Breton,

1985), several preliminary estimates of U-shaped fiber trajectories have been made (e.g.

(Conturo et al., 1999; Catani et al., 2002; Oishi et al., 2008). A mapping of short associa-

tion fibers in the frontal and parietal lobes has been proposed (Catani et al., 2012; Catani,
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Figure 10: Light field photomicrographs prepared with Nissl stain. (A) is a coronal section
of the parietal lobe (Magnification = 0.5×, bar = 0.5cm); (B) is a high power photomicro-
graph of the rectangular area outlined in (A) (Magnification = 2×, scale = 1mm); (C) is a
higher power magnification of the area outlined in (B) showing the differential arrangement
of glia in the inferior longitudinal fascicle (ILF) and U-fibers (U-fib) (Magnification = 4×,
scale = 0.5mm). The latter scale is to be related to the spatial resolution of diffusion MRI
e.g. 1.25mm for the Human Connectome Project (HCP) and the integration step used in
tractography (the order of 0.125mm). Figure adapted from (Schmahmann et al., 2009).

2017). These bundles, reconstructed from diffusion-weighted magnetic resonance imaging

(dMRI) data were confirmed by Klingler postmortem dissection. Other U-fiber delineations

and association bundle atlases containing U-fibers have been constructed from dMRI data,

including (Guevara et al., 2017; Román et al., 2017; Yeh et al., 2018; Avila et al., 2019),

however the existence of the fibers in these atlases has not been extensively confirmed by

dissection.

U-shaped fibers and neurodevelopment

Diffusion MRI has been used to assess the evolution of U-shaped fibers during devel-

opment (Lebel et al., 2019) and particularly during gestation (Dubois et al., 2014). The

presence of short association fibers along the anteroposterior axis in the dorsal regions of

the brain as well as in the inferior frontal lobe was demonstrated during the 24th gestational

week, prior to cortical folding (Takahashi et al., 2012). At 31 weeks, U-shaped fibers were

observed in the bottom of the first furrows formed, such as the central and parieto-occipital

furrows, and these U-shaped fibers continue to be established until 40 weeks of gestation.

Myelination of these fibers is later and can extend up to two years of age for fibers in the

anterior part of the frontal lobe and up to forty years of age for those with the longest

myelination time (e.g. (Dubois et al., 2014; Lebel et al., 2019)). Changes in the diffusion

properties of the superficial white matter structure (and thus possibly of the U-fibers) or

directly of the U-fiber structure have been reported in neurodevelopmental disorders such

as autism spectrum disorder (e.g. (Thompson et al., 2017; Hau et al., 2019)).
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Figure 11: Mapping of short association fibers (red) in the frontal lobe obtained by trac-
tography tractography and confirmed by Klingler dissection. Figure adapted from (Catani
et al., 2012).

U-shaped fibers and white matter pathologies

Pathologies affecting white matter can be divided into three categories: pathologies af-

fecting fiber myelin structure, those affecting myelin metabolism and vascular pathologies

(Riley et al., 2018). Due to their late myelination, U-shaped fibers are generally unaffected

by pathologies affecting fiber myelin metabolism. Riley et al. (2018) have shown that the

structure of these fibers is an indicator for differential diagnosis of white matter patholo-

gies. O’Halloran et al. (2017) reported in non-lesional epilepsy a decrease in the number of

streamlines of U-shaped bundles located in the ipsilateral hemisphere at the origin of the

crisis.

1.4 Magnetic resonance imaging

The phenomenon of nuclear magnetic resonance (NMR) was first observed in 1945 (Bloch,

1946; Purcell et al., 1946). It was the injection of radio frequency engineering expertise and

the availability of stable new frequency sources, both byproducts of the wartime development
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of radar, which may have made the demonstration of NMR possible. In 1973, Mansfield and

Grannell (1973); Lauterbur (1973) first reported the MR imaging (MRI), and by the end

of that decade, the first human in vivo MR images were produced. MR images of the head

provided excellent anatomical detail and strong grey/white matter contrast when compared

to the images from other modalities. Flow-sensitive techniques, developed in the mid-1980s,

measured blood flow velocity: these were the first MR images that were not considered to

be purely structural in nature (Moran, 1982). The spectacular advent of functional MR

imaging (fMRI) two decades ago revolutionised MRI to such an extent that in current MRI

practice (Matthews and Jezzard, 2004), the definition of structural MRI seems to have

shifted to mean “not functional” MRI (Symms et al., 2004). In our work, we will focus on

structural MRI, although there is controversy over whether diffusion MRI is structural MRI

(Symms et al., 2004).

MRI uses magnetic fields and radio waves to produce high quality two- or three-dimensional

images of brain structures without the use of ionizing radiation (X-rays) or radioactive trac-

ers. MRI is one of the most commonly used tests in neurology and neurosurgery. For ex-

ample, the contrast provided between grey and white matter makes MRI the best choice for

many conditions of the central nervous system, including demyelinating diseases, dementia,

cerebrovascular disease, Alzheimer’s disease and epilepsy (Love, 2006; Mosconi et al., 2007;

Sadek, 2012). MRI provides exquisite detail of brain, spinal cord and vascular anatomy, and

has the advantage of being able to visualize anatomy in all three planes: axial, sagittal and

coronal (see Figure 12). By using different software or algorithms for different MRI images,

we can obtain various brain anatomical structures, such as the cortical surface, fibres, myelin

maps, etc.

Figure 12: Example of brain MRI images. Three plane from left to right: axial, sagittal
and coronal.
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1.4.1 Construction and physics

MRI is based on the magnetization properties of atomic nuclei (Vlaardingerbroek and Boer,

2013). A powerful, uniform, external magnetic field is employed to align the protons that

are normally randomly oriented within the water nuclei of the tissue being examined. This

alignment (or magnetization) is next perturbed or disrupted by introduction of an external

Radio Frequency (RF) energy, which is measured by a receiving coil. The nuclei return to

their resting alignment through various relaxation processes and in so doing emit RF energy.

After a certain period following the initial RF, the emitted signals are measured. Fourier

transformation is used to convert the frequency information contained in the signal from

each location in the imaged plane to corresponding intensity levels, which are then displayed

as shades of gray in a matrix arrangement of pixels. By varying the sequence of RF pulses

applied and collected, different types of images are created. Repetition Time (TR) is the

amount of time between successive pulse sequences applied to the same slice. Time to Echo

(TE) is the time between the delivery of the RF pulse and the receipt of the echo signal.

Tissue can be characterized by two different relaxation times – T1 and T2. T1 (longi-

tudinal relaxation time) is the time constant which determines the rate at which excited

protons return to equilibrium. It is a measure of the time taken for spinning protons to

realign with the external magnetic field. T2 (transverse relaxation time) is the time con-

stant which determines the rate at which excited protons reach equilibrium or go out of

phase with each other. It is a measure of the time taken for spinning protons to lose phase

coherence among the nuclei spinning perpendicular to the main field.

1.4.2 MRI imaging sequences

T1 and T2 images

The most common MRI sequences are T1-weighted and T2-weighted scans (see Figure 13).

To create a T1-weighted image, magnetization is allowed to recover before measuring the

MR signal by changing the TR. This image weighting is useful for assessing the cerebral

cortex, identifying fatty tissue, characterizing focal liver lesions, and in general, obtaining

morphological information, as well as for post-contrast imaging. To create a T2-weighted

image, magnetization is allowed to decay before measuring the MR signal by changing the

TE. This image weighting is useful for detecting edema and inflammation, revealing white

matter lesions, and assessing zonal anatomy in the prostate and uterus.

In our work, the T1-weighted images are imported into the BrainVisa (BV) software

(http://brainvisa.info) (Mangin et al., 2004a) to generate individual triangular mesh

representations of the grey/white matter interface.
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Figure 13: Examples of T1-weighted, T2-weighted images

Diffusion-weighted MRI

The development of diffusion-weighted magnetic resonance imaging (dMRI) (Le Bihan and

Breton, 1985), a non-invasive imaging modality, has led to a new boom in the exploration

of the white matter structure of the human brain (Assaf et al., 2019). dMRI is the use of

specific MRI sequences as well as software that generates images from the resulting data

that uses the diffusion of water molecules to generate contrast in MR images (Le Bihan and

Breton, 1985; Merboldt et al., 1985; Taylor and Bushell, 1985). It allows the mapping of the

diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively

(Posse et al., 1993). Direct microscopic and macroscopic models of diffusion in complex

media have been proposed including partial reflection Brownian motion (Grebenkov, 2006).

Molecular diffusion in tissues is not random, but reflects interactions with many obstacles,

such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can

therefore reveal microscopic details about tissue architecture, either normal or in a diseased

state. The trajectories of water molecules diffusing in human brain white matter indirectly

reflect the structure of the white matter and its constituents, e.g., diameter of cell bodies,

axons, arrangement of oligodendrocytes (see (Novikov et al., 2019)). In particular, dMRI

has led to a deeper understanding of the main white matter bundles and opened the way

to characterise their inter-individual (e.g. (De Schotten et al., 2011)) and temporal (e.g.

(Steele and Zatorre, 2018; Lebel et al., 2019)) variability. This imaging modality also plays

a prominent role in the understanding of pathologies affecting the white matter such as

cardiac arrest (e.g. (Velly et al., 2018)) or the so-called disconnection syndromes (Assaf

et al., 2019).

In our work, we use dMRI images for tractography, a technique to extract fibers of
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interest. Tractography is a 3D modeling technique used to represent nerve tracts using data

collected by dMRI (Basser et al., 2000). Results are presented in two- and three-dimensional

images called tractograms (see Figure 14).

Figure 14: Principal white matter fiber bundles estimated by tractography from diffusion-
weighted MRI data. SLF: superior lateral fasciculus. Figure adapted from (Assaf et al.,
2019).
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1.5 Conclusion

In the beginning of this chapter, we introduced the essential neuroanatomical concepts

for better understanding the brain anatomical principles. Then, we described the main

anatomical issue of our interest, namely the variability of cortical foldings, and some regions

of interest or folding patterns proposed in the literature to explain this. In particular, our

work focuses on one of these patterns called “Plis-de-passage” and we will study it from

both a morphological and a connectivity points of view, using MRI data (anatomical and

diffusion MRI). The next chapter presents in details the concept of Plis-de-passage.
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2 Plis de Passage: a morphological view

2.1 Introduction

The cerebral cortex is a very convoluted surface that folds itself into gyri and sulci, which

vary a lot across individuals. As early as the 19th century, anatomist were interested in its

organisation and features. They observed that many long primary sulci could be subdivided

into several pieces but sometimes appeared as a whole. Thses variabilities lead to many

unusual folding patterns while creating difficulties for the systematic study of gyri and sulci

across different brains (Ono et al., 1990; Regis et al., 2005).

The concept of “Pli de passage” (PPs) was introduced by Gratiolet (1854) to describe

transverse gyri that interconnect both sides of a sulcus, are frequently buried in the depth

of these sulci, and are sometimes apparent on the cortical surface. These buried gyri were

supposed to be related to the U-fibers that bridge the wall of the sulci (Regis et al., 2005).

Later on, this term was used by Broca (1888) to depict three transverse gyri that connect

the pre- and post-central gyri along the central sulcus(CS): PPs frontal superior, middle

and inferior. After that, Cunningham’s work of cortical developemnt more clearly showed

such sulcal segmentation (Cunningham, 1890a,b, 1897). He described how the central sulcus

appeared from two separated folding seeds and then merged with cortical expansion at later

stages (Figure 15).

Figure 15: Six hemispheres between the 5th and 7th months of development by D. J.
Cunningham. These figures illustrate the apparition of the central sulcus from two separated
folding seeds r1, r2. Figures adapted from Mangin et al. (2019)

The PPs, called as “deep annectant gyri” (Cunningham, 1890a,b, 1897), early appeared
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as bridges over two isolated parts of sulci eventually buried deep into the bottom of sulci,

presented as elevations of fundus or interlocking gyri (Figure 16 (a)). In some cases, this

gyrus corresponds to “PPs fronto-parietal moyen”(PPFM) that a type of gyrus exists along

the brain development and separate the central sulcus (Cunningham, 1897; Regis et al.,

2005; Cykowski et al., 2008)(see Figure 16 (b)). Furthermore, the PPFM or interrupted

central sulcus provides a link to the hand motor areas (Boling et al., 1999; Cykowski et al.,

2008).

(a)

(b)

Figure 16: Different central sulcus morpholgies. In most cases, the PPs were buried
in the bottom of sulci as deep annectant gyri in (a), but in less than 1%, the PPs were
appeared on the cortical surface as the brain development (Waterston, 1907). (b) Left shows
a illustration of interrupted central sulcus Cachia et al. (2003), two parts of central sulcus
R,R′ are separated. Right shows an hemisphere of the HCP dataset with an interrupted
central sulcus viewed in BrainVISA software (Le Troter et al., 2011), the figure adapted
from Mangin et al. (2019).

Jean Régis drew the first distribution map of PPs over the entire brain in his MD thesis

(Regis, 1994). This map gives the approximate locations of PPs (in Figure 17), which
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were deduced from the frequent interruptions of folding patterns within specified brain

localization and generally consistent with the initial folding patterns during development

(Mangin et al., 2019). As the sulcal variabilities across individuals, the map cannot exactly

contain all the PPs, however, it still can be taken as a guideline when we try to explain

the individual differences. Jean Régis developed the generic model “Sulcal Root” inferred

from the map of the PPs in a hypothetical configuration where each pli de passage reaches

the cortical surface, forming a partially interrupted folding pattern (Regis et al., 2005;

Régis et al., 1995). Based on the “Sulcal Root” model, Taku Ochiai provided a roughly

model to classify the PPs in superior temporal sulcus (STS) according to their location and

relative depth of the sulcus (Ochiai et al., 2004). In many recent works of literature, the

PPs were gradually studied with name as annectant gyrus, gyral bridge, submerged gyrus

(Germann et al., 2005), submerged gyral passage (Zlatkina and Petrides, 2010; Sprung-Much

and Petrides, 2018) or transition (Huntgeburth and Petrides, 2012). Several authors have

pointed out that the PPs provided an understanding of the variable interruptions in sulci

across individuals, and it was recently demonstrated that they can be a useful morphological

landmark for models of cortical foldings (Regis et al., 2005; Zlatkina and Petrides, 2010;

Mangin et al., 2019; Bodin et al., 2021).

In this section, we study the morphological clues used for identifying the PPs, from the

observer-dependent definition “sulcal roots”(Regis et al., 2005), to the variation of sulcal

depth profile (Cykowski et al., 2008; Leroy et al., 2015; Le Guen et al., 2018), and finally to

the latest characteristics “wall pinches”(Bodin et al., 2021). After that, we will discuss the

latest reasearch on the relationship between PPs and U-shaped fibers connnectivity.

(a) (b) (c)

Figure 17: Map of the plis de passage denoted by double arrows. Figures adapted from
Mangin et al. (2019)
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2.2 Variation of sulcal depth and PPFM

Cortical folding, an essential characteristic of the brain cortex, shows variability across

individuals. The morphology of folding is the most basic and direct way to describe the

geometric information of various folding patterns. In last decades, the descriptors of cortical

folding have been widely studied. Quantitative descriptions of folding patterns(Zilles et al.,

1988; Yu et al., 2007; Toro et al., 2008; Li et al., 2010) and understanding of the underlying

mechanisms(Van Essen, 1997; Toro and Burnod, 2005; Geng et al., 2009; Auzias et al., 2015;

Chen et al., 2017) progressively become important research topics. Among the available

folding pattern studies, due to the lack of explicit geometrical definition of the PPs, the

PPs have been little studied, mostly in the central sulcus (CS) and superior temporal sulcus

(STS). This section introduce the key works related to the morphology of the PPs and their

utilization to identify the PPs in CS and STS.

2.2.1 PPs and sulcal root

The concept of PPs was introduced to describe transverse gyri that interconnect both sides of

a sulcus, are frequently buried in the depth of these sulci, and are sometimes apparent on the

cortical surface (Gratiolet, 1854). In general, the cortical gyri are continous with each other

and lack of elementary building blocks, so it’s difficult to have an explicit definition even the

major gyri (Mangin et al., 2019), let alone the various small gyri like the PPs. Consequently

the research of anatomy initially more concentrated on the main cortical sulci. Through

the summary of 10 years work on various data from literatures and experiments, a putative

model “Sulcal Root” map was proposed by Jean Régis (Regis, 1994; Régis et al., 1995; Regis

et al., 2005) (see Figure 18). It is important to note that the sulcal root map takes into

account the PPs, i.e. the sucal roots are separated by the PPs that reach the cortical surface

and cause a local interruption of the folding patterns. Based on this hypothesis, the sulcal

root can be represented by the connected parts of the folding pattern this virtual map given

the maximum number of interruptions (Mangin et al., 2019).

According to the sulcal root map, Ochiai et al. (2004) analysed the sulcal pattern and

morphology of the STS ,and proposed that the 3D architecture of the STS was consistent

with their generic model in four sulcal roots and four PPs (see Figure 19 (a)). In their

opinion, these gyri were revealed by two kinds of clues: local minima of the geodesic depth

along the bottom of the fold and points with negative Gaussian curvature on the gray/white

boundary. Herein, the nomenclature of the PPs was derived from its relative height to the

sulcal depth and location on the STS respectively. In more detailed, the PPs were separated

as follow.
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Figure 18: Generic description of cerebral cortex anatomy. The Talairach grid system
represents precursors of the sulcal roots in the right hemisphere. The 57 sulcal roots of the
lateral aspect are displayed schematically. Figures adapted from Regis et al. (2005)

The height,

• The PPs“superficial”: reach 76–100% of the depth of the sulcus

• The PPs “intermediate”: reach 26–75% of the depth of the sulcus

• The PPs “deep”: reach 1–25% of the depth of the sulcus

• The PPs “invisible”: no clear distortion of the bottom of the sulcal shape was visible.

and the location,

• Pli de passage “antero-polar”: before anterior sulcal root of the STS

• Pli de passage “anterior”: between anterior and middle sulcal root of the STS

• Pli de passage “intermediate”: between middle and posterior sulcal root of the STS

• Pli de passage “posterior”: between posterior and horizontal sulcal root of the STS

24



• Pli de passage “ascending anterior”: between horizontal and anterior ascending ter-

minal branch sulcal roots of the STS

• Pli de passage “ascending posterior”: between horizontal and posterior ascending

terminal branch sulcal roots of the STS.

In this model, the initial unitary landmarks are the sulcal roots appearing distinctly at

the beginning of the gyration (see Figure 19 (b)). Depending on the relative development

of adjacent cortical areas, some less-developed gyri can be enfolded by the more developed

ones (see Figure 20). As we can see from that, this mechanism leads to the fusion of several

sulcal roots into the same furrows in some individuals, while interruption in some others.

Furthermore, in fact, the fusion or interruption is caused by the PPs’ variability across

individual.

(a) Sulcal roots and the PPs of the STS. (b) Aspect of the 36-week fetus cortex.

Figure 19: (a) The superficial aspects of the sulcal roots and the topography of the PPs
are displayed on the surface rendering of the left hemisphere of a normal subject. The
first three PPs here are superficial, giving an aspect of interruption. Only the posterior
PP is buried (annectant gyrus) requiring the analysis of the 3D shape of the sulcus to
be visualized. (b) The first cortical folds that appear on the fetus cortex, called sulcal
roots, seem to be especially stable (in number position and orientation) across individuals.
During the following gyral expansion, these sulcal roots become buried into the depth of
the cortex after having merged with each other to build larger folds. At this early age, the
surface rendering allows to visualize very clearly the still superficial sulcal roots of the STS
complex. Later, depending on a variety of merging events occurring, a great number of
pattern should be observed. (Ochiai et al., 2004)

As an observation-based empirical model, to a large extent, the quality and quantity of

data determine the generalizability of the sulcal root map. While more data provides stabil-

ity, it also inevitably brings more variability. Without accurate standards of measurement,
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Figure 20: Several different patterns of surfacic drawing of the STS complex. The variability
of the superficial aspect of the lateral aspect of the STS complex is presented through the left
hemisphere of five normal subjects. This figure attempt to demonstrate that in fact beyond
this aspect is hidden in the same generical structure of sulcal roots and PPs. The variability
of the depth of the PP and the variability in size of the adjacent gyrus (operculation) are
accounting for the difference in the superficial aspect. Figures adapted from Ochiai et al.
(2004)

it’s difficult to test and extend the sulcal root map. Nevertheless, the concept of sulcal roots

still provides a convincing way to understand the folding patterns variability.

2.2.2 PPs and sulcal pits

In line with the assumptions of one-to-one correspondence of sulcal roots across individuals,

recently, Auzias et al. (2015) proposed a optimization framework to enhance the algorithem

of sulcal pits extraction. Sulcal pits are generally known as an explicit aspect of the sulcal

roots model (see Figure 21). They are defined as the points of maximum depth within folds,

also corresponding to the locally deepest points of cortical surface (Im et al., 2010; Auzias

et al., 2015; Im and Grant, 2019), while the interruptions between them are corresponding

to the local minimum depth. Hence, back to the definition of the PPs, it is clearly to

see that the presence of the PPs can lead to a variation of local sulcal depth. Intuitively,
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Figure 21: Illustration of sulcal pits in red and corresponding basins for an individual
surface (slightly smoothed for visualization purpose). Figures adapted from Auzias et al.
(2015)

the sulcal depth is not only related to the sulcal pits/roots but also can be selected as a

measurement to identify the PPs. Although very few PPs have been widely studied as

the lack of explicit definition, the “Plis de passage frontal moyen” (PPFM), which shows

a impressive relationship to the hand sensorimotor areas, raised a lot of interest (Yousry

et al., 1997; Boling et al., 1999; Boling and Olivier, 2004).

Most early studies of CS or PPFM are obersever-dependent (Amunts et al., 1996, 2000;

Davatzikos and Bryan, 2002). As far as we known, Cykowski et al. (2008) proposed the

first obersver-independent quantitive study of CS using automated depth profile tool. They

applied a novel method combining automated sulcus reconstruction, surface parameteriza-

tion, and an observer-independent depth measurement to study the CS. This facilitated the

quantitative assessment of the spatial position and intersubject variability of several sulcal

landmarks. Furthermore, they developed an algorithm to clearly identification the sulcal

landmarks, including the PPFM.

The main processes were demonstrated in Figure 22. The central sulci surface meshes

were generated by the BrainVISA sulcal extraction and identification pipeline, and recon-

structed as the medial surfaces of 2 opposing gyral banks (Mangin et al., 2004b). The edges

and end points of the reconstructed sulcus were determined using topological criteria with-

out manual specificaiton (Malandain et al., 1993; Mangin et al., 1995, 2004b). The top ridge

of a sulcus corresponded to a series of points at the junction of the reconstructed sulcus and

the brain envelope. Similarly, the bottom ridge of the sulcus was formed from the points at

the sulcal fundus. Finally, the intersection of these top and bottom ridges formed the end

points of the sulcus (Cykowski et al., 2008).

The reconstructed CS meshes are parameterized into a normalized x − y coordinate
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Figure 22: (A) Superficial appearance of the CS. (B) Landmarks of the CS. (C) Sulcal
surface parameterization. (D) Depth measure. Figures adapted from Cykowski et al. (2008)
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system on their surface (Coulon et al., 2006) (see Figure 22 (C)). The coordinate system

extended along the length of the CS from the superior (y = 0) to the inferior end of the

sulcus (y = 100), and from the lateral surface (x = 0) to the sulcal fundus (medial edge of

the sulcus). The depth was measured at 99 sulcal length positions (hereafter, “positions”)

in a superior-to-inferior progression along the parameterized sulcal mesh surface. Position

1 was adjacent to the interhemispheric fissure and position 99 was adjacent to the Sylvian

fissure (Figure 22 (B)). As shown in Figure 22 (D), sulcal depth at each position is defined

as the distance between paired points at the sulcal fundus (x′′) and brain envelope (x′) with

the same y coordinate.

The Figure 23 shows the analysis results of the landmarks, including Superior Peak

(SP), Inferior Peak (IP) and PPFM, in CS depth profiles. Herein, the SP was determined

to be the maximum depth value in the superior 50% of positions in the depth profile. The

IP was recognized as the maximum depth value in the inferior 50% of the depth profile.

Bounding the search with these markers, the PPFM was recognized as the minimum depth

value between the SP and IP (see Figure 22 (B), 23 (A)). The main limitation of this work

is the interruption cases of CS (Figure 16 (b)) since the CS was extracted as a continuous

entire surface mesh. Consider the CS that were split into two parts, we cannot paramterize

it. Hence, this kind of method cannot be applied to the sulcus with several interruption

cases such as STS. Similar works of the PPFM detection using profiles of sulcal depth along

the CS have been published later (Hopkins et al., 2010, 2014; McKay et al., 2013; Coulon

et al., 2011).

With the development of sucal landmarks extraction algorithms (Im et al., 2010; Auzias

et al., 2015; Im and Grant, 2019) and the definition of sulcal fundi proposed by Shattuck

et al. (2009), Le Guen et al. (2018) developed an automatic method to extract PPs across

the cortex based on a highly reproducible grid of sulcal pits across individuals. Instead of

sulci reconstruction, they directly extracted the sulcal depth profiles. First, they identified

the sulcal pits from the brain white matter meshes for each individual by the algorithm

in Auzias et al. (2015) using the BrainVISA toolbox, and then extracted the sulcal fundus

between each pair of sulcal pits. Herein, the sulcal fundus is defined as the shortest path on

the white matter mesh following the extremal values of DPF between two extremity points

(Shattuck et al., 2009). After the above steps, the PPs were identified as local minima on

the two-dimensional depth profile of the sulcus and then binarized and sorted into “true”

and “false” PPs depending on their absolute depth value. Some examples are shown in

Figure 24.
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Figure 23: Patterns seen in individual sulcal depth profiles. Sulcal depth profiles of single
sulci are shown that are representative of (A) bimodal, (B) trimodal, and (C)unimodal peak
distributions. On the profile of a sulcus with a bimodal peak distribution, the superior peak
(SP), PPFM, and inferior peak (IP) are labeled. (B) The trimodal profile exemplifies a
sulcus for which no PPFM was identified (2 shallow points of nearly equal depth between
3 surrounding peaks). (C) The unimodal profile was seen in only a few subjects. As our
algorithm searched the 2 halves of the depth profile for distinct depth peaks, these cases
were recognized as a single peak at the middle of the profile with no clear SP, IP or PPFM.
(D) The position and depth of the SP, IP and PPFM are shown for the left and right CS.
Figures adapted from Cykowski et al. (2008)
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Figure 24: Some examples from Le Guen et al. (2018). Black arrows indicate the pli de
passage position on the mesh. Valleys were detected as local minima along sulcal depth
profiles with a constraint on both the minimum gap between two valleys and minimum
DPF height of the valley floor.
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2.3 New characteristics: “wall pinches”

As we can see from the above work, the distinct variation of sulcal depth along the sulcal

fundus can help us to detect the “superficial” or “intermediate” PPs (according to the

definition of PPs in Ochiai et al. (2004)). However, for the points in the deep of sulcal

fundus, the specified thresholds of depth are not enough to distinguish the PPs and small

fluctuations of fundus, especially the very deep PPs, i.e. “deep” or “invisible” PPs in

Ochiai et al. (2004) (see Figure 25). The neglect of these deep buried PPs potentially

lose information of sulcus. Furthermore, the binary classification of PPs to as “present”

or “absent” from STS depth variations (as in (Leroy et al., 2015; Le Guen et al., 2018)) is

insufficient to characterize their topography, namely the spatial arrangement of the different

PPs and their respective depth levels (Ono et al., 1990; Ochiai et al., 2004).

Figure 25: Some depth profiles of STS. The blue arrows indicate the PPs position on the
sulcal fundus. The red arrows indicate the points of local minima where it is uncertain
whether is PPs. Also, it is common to have many small fluctuation along the depth profile
of sulcal fundus. This increase the difficulty to detect the PPs in these regions. Most study
based on the depth profile usually discard these points.

Indeed, the PPs are a three-dimensional structures, the identification based on a two-

dimensional depth profile is certainly deficient to capture all the PPs (Bodin et al., 2021).
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Back to the definition of the PPs (as shown in Figure 16 (a)), the deep buried PPs presented

as elevations of fundus or interlocking gyri (Cunningham, 1890a,b, 1897). The elevations

of fundus have already been widely studied and successfully used in some kinds of PPs

extraction, while the PPs with interlocking gyri has been little studied until recently (Zlatk-

ina et al., 2016; Bodin et al., 2021). Zlatkina et al. (2016) identified deeper PPs which

were only 1 mm in depth variation by observing an unusual curved sulcus, and the newly

founded deep PPs improved the corresponding with motor funcutions in the post-central

sulcus. Inspired by the interlocking gyri, Bodin et al. (2021) mentioned that the PPs were

three-dimensional structure whose cortical deformations can be located on the walls of the

STS and thus ”missed” by the depth profile trajectory. They named the new characteristics

of the PPs as “wall piniches” (WPs), moreover, they found the correlation between the PPs

and their underlying U-shape fibers connectivity. Figure 26 illustrates the WPs, and all the

PPs can be characterized by this local deformation. The “pinching” of the STS walls can be

clearly oberved for the superficial PPs but also true for the deep PPs with a lesser degree,

and they are exactly the interlocking gyri.

Figure 26: Local cortical morphology observed for superficial and deep PPs (colored areas)
illustrated in two example subjects. Only the superficial PP causes a clear separation of
the main STS furrow. However, a thorough observation (from above: a,c or lateral: b,d)
reveals a pinching of the adjacent walls in both cases, whose visibility is a matter of degree.
Figures adapted from Bodin et al. (2021).

Since the PPs were characterized by two corresponding WPs on the adjacent gyri walls,

several criteria were used in Bodin et al. (2021) to facilitate the identification of the WPs
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(see Figure 27). For a good visualization of the distortion of the cortical sheet, the DPF

and curvature thresholds were carefully selected for each individual surface maps. As shown

in Figure 27 (B), the superficial PPs, clear sulcal interruptions, showed a strong decrease

of the DPF within the sulcus and a high curvature forming a thick and continuous line on

the map. However, the deep PPs were less visible and needed more observations based on

variable thresholds of the DPF and curvature maps. A typical morphlogical characteristic

of the deep PPs is that the WPs are “facing each other” and form a superfical crest and

a convex angle respectively. This can be easily observed on the DPF and curvature maps

(Figure 27 (B) Deep PPs). Based on the observation above, Bodin et al. (2021) hypothesized

that WPs of deep PPs were of the same nature than those observed for superficial PPs and

that the former constitute a less connected variant of the latter. If the two WPs are well

connected each other they constitute a superficial Pli-de-passage (PP), whereas if they are

not (or too deeply) connected they constitute a deep PP.

Bodin et al. (2021) identified from 2 to 8 (Mean = 4.5) PPs in the left STS against 1

to 7 (Mean = 4.3) in the right STS, and there is no significant difference across individuals

(p = 0.1, Wilcoxon). In order to differentiate the superficial and deep PPs, they used

the similar standard of DPF in Le Guen et al. (2018) but with slight differences. The

PPs were classified into a “superficial” (DPF≤ 0.42) and a “deep”(DPF> 0.42) category

instead of “true” or “false” PPs. Based on this classification, the individual proportions of

deep and superficial PPs differed significantly (p < 0.05, Wilcoxon) between left and right

hemispheres. Thus, while the absolute number of PPs does not seem to vary much from one

hemisphere to another, their depth is asymmetrical with a greater proportion of superficial

PPs in the left STS. It should be noted that this asymmetry of PPs also reinforce the well-

known landmarks “superior temporal asymmetrical pit”(STAP) (Leroy et al., 2015), that

is the PPs in the right STS are located in deeper regions than the left and is in agreement

with the fact that the right STS is notoriously deeper than the left STS (Bodin et al., 2021;

Song et al., 2021).
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Figure 27: Methods for PPs identification, illustrated for one subject in the left hemisphere.
(A) Surface maps generated in BrainVisa and projected on the white matter surface. DPF
(depth potential function) map shows an increasing depth from blue to red color. Curvature
(finite element method) map shows an increasing curvature from blue to red color. (B)
Morphological criteria used to characterize PPs (white dotted lines). Zoom windows of the
surface maps illustrate the manual drawing of one superficial (in red) and deep PPs (in
blue) as well as controls generated automatically. Once detected from depth and curvature
criteria, PPs were drawn by selecting the two intersections (two vertices) between the PPs
crest and gyri crests. A line is then automatically generated between this pair of vertices
passing by the shortest past and constrained by minimal DPF values (line crest). Controls
(in green) are generated using a similar procedure except that their position is generated
automatically into the gaps separating PPs locations. If there is enough space, several
controls are generated with different orientations. White numbers below color bars indicate
the DPF and curvature thresholds employed for each representation. Figures adapted from
Bodin et al. (2021).
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2.4 Conclusion

The PPs, a classical anatomical phenomenon well described during the 19th century, was

little studied for a long time afterwards due to the lack of a clear and specific definition until

the end of 20th century. With the developments of image processing, computer graphics

and visualizations, more and more tools were created to help us understand more about the

brain morphology patterns including the PPs.

The PPFM has become a subject of interest with the advent of functional imaging,

because several studies have shown striking relationships with the hand sensorimotor areas

(Yousry et al., 1997; Boling et al., 1999; Boling and Olivier, 2004; Cykowski et al., 2008;

Coulon et al., 2011; Mangin et al., 2019). The STAP, a human-specific asymmetry in the

STS at the heart of the communication regions, is deeper in the right hemisphere than in

the left. It was explained in part by the larger number of sulcal interruptions, namely the

PPs, in the left than in the right hemisphere (Leroy et al., 2015; Bodin et al., 2018; Le Guen

et al., 2018; Bodin et al., 2021; Song et al., 2021).

Furthermore, the clear relationship between these PPs and the local regional cortical

functional organization lead to more exploration of the potential meaning of the PPs both

in human and non-human species. Hopkins et al. (2010) studied the PPFM in the CS of

the chimpanzee brain. Sprung-Much and Petrides (2018) found a submerged gyral passage

were always appeared in the Broca’s area, which is known as the motor speech area. Cachia

et al. (2018) has shown that a superficial PPs in the visual word form area has a positive

impact on reading skills. Mangin et al. (2019) mentioned a quasi-interrupted central sulcus

after browsing the chimpanzee brain collection of W. Hopkins.

Containing the studies mentioned in this chapter, there is a growing body of research

showing that the PPs not only can constitute landmarks for a better understanding of the

inter-individual variability, but also relate to some brain functional areas. To reveal the

nature of the PPs, much more work is needed. Including but not limited to the tension-

based morphogenesis (TBM) based on physical forces (Van Essen, 1997; Llinares-Benadero

and Borrell, 2019; Van Essen, 2020; Garcia et al., 2020), and the U-shape fibers connectivity

structures underlying the PPs or cortical foldings (Mangin et al., 1998; Bodin et al., 2021;

Pron et al., 2021; Zhang et al., 2014, 2020a).

In particular, readers interested in a detailed discussion can refer to (Regis et al., 2005;

Ochiai et al., 2004; Cykowski et al., 2008; Le Guen et al., 2018; Bodin et al., 2021). Also,

several very interesting studies based on local folding patterns to depict the specific config-

uration of regional PPs have been proposed (Germann et al., 2005; Zlatkina and Petrides,

2010; Zlatkina et al., 2016; Huntgeburth and Petrides, 2012; Sprung-Much and Petrides,
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2018).

In this chapter, we mainly discussed the PPs from a morphological methodology perspec-

tive. Some of these morphological clues have been implemented in automated algorithms

or pipelines (Cykowski et al., 2008; Le Guen et al., 2018) but limited to depth based defi-

nitions, most have not. As the development of machine learning methods, most computer

graphics, computer visualization and vision problems have been well solved, and even out-

performed than experts. In the next chapter, we will proposed the machine learning method

to automatic detect the PPs based on the newest characteristic WPs in (Bodin et al., 2021).
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3 Automatic detection of Plis de passage from mor-

phology

3.1 Introduction

Plis de passages (PPs), namely annectant gyri buried inside the fold, can explain part of the

sulcal variability. To our best knowledge, the only existing automated detection methods

of PPs are based on the depth profiles of sulcal funudi. The PPs have been described

as protrusions in the fundus of sulci between the two walls, and were therefore generally

extracted as local minima of the sulcal depth along the fundus, with a threshold on the

depth value (Cykowski et al., 2008; Le Guen et al., 2018). Unfortunately, these algorithms

are also affected by the drawback of the two-dimensional depth profile, i.e. it is not enough

to identify all the PPs by only using the variation of depth in sulcal fundus (Bodin et al.,

2021). In particular, they missed a significant number of deep buried PPs that are without

clear depth variations or not within the specified thresholds. This led to controversial results

such as an asymmetry of the number of PPs in the superior temporal sulcus (STS) between

the left and right hemispheres (Bodin et al., 2021; Leroy et al., 2015; Le Guen et al., 2018;

Song et al., 2021).

Figure 28: Local morphology to identify the superficial and deep PPs. (a) Superficial PPs;
(b) Deep PPs. The wall pinches can be observed clearly for superficial PPs but also exist
for the deepest buried PPs.

To overcome this drawback, Bodin et al. (2021) proposed a new three-dimension morpho-

logical characterization of PPs in the STS using the surrounding surface geometry, named
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“wall pinches” (WPs) (see Figure 28). The concept of WPs is similar to the “interlocking

gyri” (Cunningham, 1890a,b, 1897), and establishes a continuum from a superficial apparent

transverse gyrus to a completely buried PP with only wall deformations left. In our work,

we propose to automate the detection of PPs in the STS using machine learning and this

new morphological characterization.

In this chapter, we first present the data and the preprocessing steps. Particularly, we

use the same manually labelled PPs in (Bodin et al., 2021) and the detection of PPs will be a

classification of the STS fundus points and we want to decide if they are on a PP or not. Then

we will introduce the morphological tools we used to capture the characteristics mentioned

in (Bodin et al., 2021), named “Cortical surface profiling”(Li et al., 2010). By using this

tool, for each point of STS fundus, we generate the feature vector (2-dimensional image).

Hence, the detection of PPs is converted to a supervised image classification problem. After

that, we propose the machine learning models in our study to solve this problem. At last,

we will present the experimental results and discussions.

3.2 Subjects and image acquisition

In this work, we used two completely independent datasets, where one is used for train-

ing and testing the machine learning models and the other for empirically evaluating the

performance of our methods.

Human Connectome Project dataset

The first dataset is composed of structural T1 MR images of 100 subjects from the Human

Connectome Project (HCP) database, for which detailed information is available: 900 Sub-

jects Data Release Reference. Subjects were randomly having completed the full diffusion

and structural acquisitions, being non-twins, right-handed, between 22 and 40 years old.

Data taken from the HCP database were acquired as follows: structural images were

acquired using a modified version of Siemens Skyra 3T scanner (Siemens, Erlangen, Ger-

many) with a maximum gradient strength of 100mT/m, slew rate of 200T/m/s (reduced to

91T/m/s for diffusion due to peripheral nerve stimulation limits) and a 32-channel head coil.

T1-weighted images were acquired using 3D MPRAGE sequence (TR/TE = 2400/2.14ms,

flip angle = 8, FOV = 224×224mm2, resolution = 0.7mm isotropic). Note that this dataset

have been already used in (Bodin et al., 2021).
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Temporal Voice Areas dataset

The second dataset is composed of structural T1 MR images of 92 subjects, aged between

17 and 44 years old, from the Temporal voice areas (TVA) dataset previously used in Bodin

et al. (2018). The origin dataset contains one-hundred and sixteen healthy subjects that

were scanned (n = 116; 53 males, 63 females; mean age 23.7 ± 5.8) as part of published

and unpublished experiments of the Voice Neurocognition Laboratory (http://vnl.psy.

gla.ac.uk/) of the Institute of Neuroscience and Psychology at University of Glasgow.

Participants, drawn mostly from the Glasgow student population, were of various ethnic

backgrounds, education and manual lateralization and all provided written informed consent

prior to participation. The experiments were approved by the local ethics committee at

University of Glasgow. Exclusion of subjects was due to the failure for the depth profile

extraction.

All scans were acquired on a 3T Siemens (Erlangen, Germany) Tim Trio scanner at the

Centre for Cognitive Neuroimaging (http://www.ccni.gla.ac.uk/), University of Glas-

gow. High-resolution 3D T1-weighted sagittal scans were acquired for each subject (voxel

size 1 mm3 isotropic; acquisition matrix 256× 256× 192).

3.3 Image preprocessing and identification of PPs

3.3.1 Anatomical images and related maps

All individual T1-images were first segmented using Freesurfer (https://fsl.fmrib.ox.

ac.uk/fsl/fslwiki), and then imported into the Morphologist pipeline of the BrainVisa

(BV) software (http://brainvisa.info) (Mangin et al., 2004a) to generate triangular

meshes of the grey/white matter interface for both hemispheres of all subjects (see Figure

29 (a)). These surfaces will be further referred to as “cortical surface”.

Then, we generated several morphological surface maps used for anatomical analysis

including sulcal depth, depth potential function (DPF) and curvature map. The depth map

for each individual surface was computed as the geodesic distance from the sulcal fundus to

the outer cortex (see Figure (Rettmann et al., 2002) 29 (b)).

The DPF map is used the depth potential function (Boucher et al., 2009), as already

done in (Auzias et al., 2015). It is known to provide a regularized estimation of the sulcal

depth that considers the information from both convexity and curvature. Importantly, it

was also shown independent of brain size and therefore does not require a normalization

procedure (Auzias et al., 2015). DPF measure can be either negative or positive depending

on whether the vertex is superficial or located in the depth of a sulcus (see Figure 29 (c)).

40

http://vnl.psy.gla.ac.uk/
http://vnl.psy.gla.ac.uk/
http://www.ccni.gla.ac.uk/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://brainvisa.info


The curvature used in this study is the mean curvature. For all cortical surfaces, we

generated their curvature maps using a finite element method as implemented in BrainVisa.

In general, the vertices in the sulcal fundus have low curvature value while gyri crowns show

high curvature (see Figure 29 (d)).

(a) cortical surface mesh (b) Depth map

(c) DPF map (d) curvature map

Figure 29: Examples of anatomical images and maps.

3.3.2 STS identification and drawing

The STS is a highly distinguishable fold separating the superior temporal gyrus (STG)

from the middle temporal gyrus (MTG) in the temporal lobe (see Figure 30 (a)). The

STS fundi were drawn semi-automatically on the cortical surface for both hemispheres and

all subjects of both datasets using the SurfPaint module of the Anatomist visualization

software (Le Troter et al., 2011). This was performed by C. Bodin in the context of Bodin

et al. (2018, 2021). We manually selected the anterior and posterior extremities based on

anatomical landmarks identifiable in each subject as described in Bodin et al. (2018). The

anterior extremity was chosen as the tip of the temporal pole, posterior to polar temporal

sulcus. In most cases, this sulcus was perpendicular to the STS and a clearly visible PP
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separates these two folds (Ochiai et al., 2004). The posterior extremity was chosen at the

intersection between the STS horizontal main branch and its posterior ascending branches

(Segal and Petrides, 2012). The fundus of the STS was drawn automatically between the two

extremities as the shortest path that minimizes the DPF between the extremities(Le Troter

et al., 2011).

3.3.3 PPs identification

Herein, the PPs were manually labeled on the HCP dataset by C. Bodin in the context of

Bodin et al. (2021) according to the morphological criteria described in (Bodin et al., 2021).

In order to identify the PPs, we need to find the WPs first. Hence, the WPs were first

highlighted by carefully varying the DPF and curvature thresholds on the cortical surface

maps. Once detected from depth and curvature criteria, PPs were drawn by selecting the

two intersections (two vertices) between the extremities of WPs and gyri crests. A line

is then automatically generated between this pair of vertices passing by the shortest past

and constrained by minimal DPF values (see Figure 27). For both hemispheres of the

100 subjects of HCP data, Bodin et al. (2021) identified individually all PPs in the STS

that connect the two adjacent gyri crest (STG, MTG) and traverse the STS fundus (some

examples in Figure 30 (c)). For all points of the STS fundus, those at the intersection with

PPs lines were labelled “PP” and the rest were labelled “non-PP” (see Figure 30 (d)).

3.4 Feature extraction and feature images

Compared to the previous work using the 2D information of sulcal depth or DPF(Cykowski

et al., 2008; Le Guen et al., 2018), the advent of WPs led to a more reliable way to identify

the PPs, but automating it is also challenging. In order to automatically detect the PPs for

all the brain, it is important to make the PPs comparable first. Meanwhile, the drawbacks

of the DPF and curvature maps, i.e. the need for various thresholds to identify different

WPs, motivated us to find better representation of WPs. In this section, we introduced

the method used to generate new feature maps of cortical surface, called cortical surface

profiling (Li et al., 2010). Furthermore, by using this method, we generated the feature

images recording the local geometric informations as the data used in automatic detection

of PPs.

3.4.1 Cortical surface profiling

If we consider the vertex at the intersection of a PP and the sucal fundus, the WPs are

always located between this vertex and the two surrounding gyri. Hence, we need to define
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(a) STS

(b) STS fundus

(c) Labeled PPs in STS

(d) Vertices labelled as PPs in STS fundus

Figure 30: (a) Examples of three different STS. The model in red is the STS. Figures
adapted from Lefèvre and Mangin (2010) (b) Example of STS fundus (in red) generated by
the semi-automatic methods. (c) Examples of labeled PPs in STS. Figures adapted from
Bodin et al. (2021) (d) Examples of labelled PPs vertices (in white) in STS fundus.
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local morphological features that can capture the presence of WPs around a STS fundus

vertex. As the cortical surfaces were generated as triangle meshes, the simplest method

is to get sub-meshes that define regions of interest within a specified geodesic distance

or n-ring neighborhood of each sulcal fundus vertex. However, it is difficult to ensure

all sub-meshes containing the same number of vertices because of the complexity of gyral

folding leading to imperfect reconstruction of the cortical surface. This prevents comparison

between different sub-regions. Although many reparameterization methods of triangle mesh

can project different meshes onto a unit shape (a circle or square) to make them comparable,

the deformation and ambiguity brought by the parameterization still needs to be treated

according to the practical issues. Instead of defining a sub-mesh, we used a sampling method

on the cortical surface called “cortical surface profiling” (Li et al., 2010), which was inspired

by the methodology on folding pattern analysis of rocks in geology .

The basic idea of cortical surface profiling is, for each point of the cortical surface,

to represent the 3D shape information of a cortical surface patch around the point, with

modeling parameters of a series of 2D profiles. For each vertex on a cortical surface, Li

et al. (2010) combines a 3D Cartesian coordinate system (Tao et al., 2002) and a 2D polar

coordinate system to built a new local 3D coordinate system (see Figure 31). For a vertex O

on the cortical surface S, we can get its normal direction N and tangent plane P . Consider

the normal direction N as the Z-axis in a 3D Cartesian coordinate system and the tangent

plane P as the space of a polar coordinate system, with an arbitrary orientation origin

R0. Note that there is no specific given X-axis or Y-axis in this 3D coordinate system in

comparison with the 3D Cartesian coordinate system.

Based on this 3D coordinate system, for a given vertex and its local cortical surface

patch, the profiling process is as follow. First we randomly select the starting direction R0

and set the rotation angle as α. Rα is the radial direction after rotating to an angle α from

R0. The profile of the local surface patch in the direction Rα is recorded as C(α, x, y), where

x is the radial distance of a point on profile to the normal direction N , and y is the normal

distance of the point to the plane P The profiling process is conducted every θ degrees

around the circle direction, which will generate 360/θ profiles for the local cortical surface

patch. Each profile is sampled with a radial step s, and the sampling stops when reached

the maximum number of sampling points M . Figure 32 shows an example of sampling result

and one profile. The essence of cortical surface profiling is using a collection of 2D profiles

to sampling the 3D local surface patch. By specifying the sampling parameters, we generate

comparable profiles of same size.
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Figure 31: An illustrative figure to show the coordinate system. O is any vertex on the
cortical surface S; P is the tangent plane; N is the normal direction of vertex O; R0 is the
starting direction of sampling; Rα is the sampling direction with α degree away from R0; C
is the sampling profile at direction Rα. Figures adapted from Li et al. (2010)

Figure 32: An example of profiles. Sampling parameters: θ = 5◦, s = 0.1, and M = 45
Figures adapted from Li et al. (2010)
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3.4.2 Morphological feature maps of cortical surface

After we get the local cortical surface patches by surface profiling method, the next step

is to select or create a cortical surface feature map that clearly identifies the WPs on the

gyri walls. In (Bodin et al., 2021), the DPF and curvature maps were used to facilitate the

identification of PPs. For a visual impression, Figure 33 illustrates the same anatomical

maps with various selected thresholds. As we can see, the thresholds of both two maps need

to be carefully selected in order to distinguish the WPs from the surrounding flat areas

for each individual. In details, the variation of DPF values (from blue to white) is more

responsive to the depth variation from gyral crest to the sulcal bottom than the distortion

of gyral wall. In comparison to the DPF, the curvature maps show a better distinguishment

between the WPs and surrounding flat regions, but it is still difficult to find the WPs

of deep PPs without a proper threshold. Herein, the regions with positive curvature value

correspond to the gyri crests or wall pinches. As shown in Figure 33 (b) the initial curvature

map without varying thresholds, only few scattered positive curvature areas can be seen on

the STG walls. Besides, the irregular gyral walls with small sags and crests also increase

the difficulties. Notably these uncertainties make it ambiguous to detect all the PPs only

by setting thresholds for all the individuals.

To solve these uncertainty of DPF and curvature maps, we select two geometrical

maps computed from the cortical surface profiling, namely the AverSampleDis (ASD)

and SulciOrGyri (SOG) (see Figure 34). The ASD map is generated by computing the

average of the first order moment of all profiles about tangent plane for each vertex. Herein,

the first order moment of profile is computed as follow,

Fprofile =
1

M

M∑
i=1

yi (1)

where M is the maximum number of points, yi is the distance of each profile sampling

point to the tangent plane. For the SOG map, that was originally proposed to distinguish

sulci from gyri Li et al. (2010), a vertex with more profile points above its tangent plane

will be considered as a sulcus vertex, and otherwise as a gyrus vertex. Therefore the SOG

map is a binary maps with “sulci” points (0) and “gyri” points (1). As we can see from

the Figure 34, these two geometrical maps, ASD and SOG, capture the properties we are

interested in and clearly display the presence of wall pinches.
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(a) The DPF maps with three different thresholds

(b) The curvature maps with three different thresholds

Figure 33: The anatomical maps with various thresholds. For a better visualization,
we used the “Green-Blue Fusion” palette in Anatomist visualization software (Le Troter
et al., 2011). For both (a) and (b), the top figures give the anatomical maps of the whole
hemisphere, while the bottom show a local area of STS with a superficial PP (represented by
white solid line) and a deep PP (white dotted line). (a) Results of DPF maps. Herein, the
DPF minima (in blue) corresponds to the gyri, while the maxima corresponds to sulci. In
this example, the left shows the map with initial DPF while the middle shows the suggested
DPF threshold (0.42) in (Le Guen et al., 2018; Bodin et al., 2021) and the right DPF is
set to the mean of DPF minma and 0.42. The lower the maxima, the less gyri crests are
covered in blue. (b) Results of curvature maps. The regions with positive curvature value
correspond to the gyri crests or wall pinches. From left to right, the curvature values of
lower bounds are selected as the initial minima, 0.0 and 0.1. The higher the lower bound,
the less regions are covered in blue.
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Figure 34: The comparison of different feature maps. All the feature maps are shown
without any limit of threshold. The DPF and curvature maps were used in (Le Guen et al.,
2018; Bodin et al., 2021). The ASD and SOG maps were in (Li et al., 2010). In the pictures
in the second and third rows, the dotted ellipses mark the WPs for the identification of PPs.
In the last row, the dotted curve label a superficial PPs. Clearly, the ASD and SOG maps
can better differentiate the WPs than the other two maps.
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3.4.3 Feature images

After building the geometrical maps ASD and SOG, we now extract local feature of interest

for each vertex on the fundus of the STS. An illustration of the method is shown in Figure 35

with an ASD map. The method is as follow: we first compute the geometrical map (ASD or

SOG) on the mesh of an hemisphere (see Figure 35 (a)). For each vertex on the STS fundus,

we then use a new cortical surface profiling process to build a feature vector: values around

the vertex are sampled using surface profiling in a disk of radius r = 13.5mm with sampling

parameters θ = 5◦, s = 0.3, and M = 45 (see Figure 35 (b)). The disk is aligned such

that angle 0◦ corresponds to the direction of the fundus in the antero-posterior direction,

which normalizes the orientation of the features across locations and subjects. The profiling

results in a circular feature map (with ASD or SOG values) that is then transformed into a

rectangular feature image as shown in (Figure 35 (c)). This feature image therefore captures

the geometry of the surrounding surface, in particular the potential presence of wall pinches

(visible in blue on Figure 35 (c)).

On account of the high sampling density, for any given local surface patches, the num-

ber of sampling points is larger than the vertices of cortical surface. Hence, the feature

values of each sampling point was interpolated by their barycentric coordinates of cortical

surface. After the feature image extraction, each vertex of the STS fundus corresponds to

a local feature image. We therefore propose to use these feature images to solve the 3D PP

recognition problem as a 2D image supervised classification problem.

3.5 Data preprocessing: the imbalanced property of PPs datasets

As we mentioned before, for all points of the STS fundus, those at the intersection with plis-

de-passage were labelled “PP” and the rest were labelled “non-PP”. On the selected HPC

dataset, we got a total of 15703 vertices of STS fundus, where only 865 of them were labelled

as PPs, and 14208 were not. The unbalanced ratio is 1 : 16. This is a typically imbalanced

dataset, with PP as the minority class, which lead to difficulties as many algorithms perform

better on a balanced dataset.

3.5.1 Imbalanced datasets

A dataset is imbalanced if the classification categories are not approximately equally rep-

resented. Many real-world problems are imbalanced as their datasets are highly skewed,

where most of interested cases belong to the smaller class. However, a standard two-class

classification method usually hypothesise that the classes to be discriminated should have
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Figure 35: The framework of local feature extraction. (a) Surface with feature map ASD;
(b) Surface profiling on a local region. Sampling parameters: θ = 5◦, s = 0.3, and M = 45;
(c) Feature images; These two feature images contain the same geometrical information,
while the disk feature image shows better visualization of wall pinches. (d) STS fundus
(dark red). Steps: (1) Cortical surface profiling; (2) Generate feature images.
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a comparable number of instances. In accordance, most current classification systems are

designed to optimize the overall performance rather than considering the relative distribu-

tion of each class (Chawla, 2009; Liu et al., 2011). As more application of the machine

learning methods to the real world problem, the issue with imbalance became more pro-

nounced. Notice that an imbalanced data does not absolutely mean that the learning task

suffer from class-imbalance. If the majority class is more important than the minority class,

it is not a problem for the majority class dominating the learning. The class-imbalance

learning is needed only when the minority class is more important and cannot be sacrificed

(Zhou, 2019). We always assumed that the minority class has higher cost than the majority.

Examples of applications with such datasets include searching for oil spills in satellite radar

images (Kubat et al., 1998), telephone fraud detection (Fawcett and Provost, 1997), credit

card fraudulent detection (Chan and Stolfo, 1998; Chen et al., 2009), diagnosis of weld flaws

(Liao, 2008), and text categorization (Dumais et al., 1998; Ertekin et al., 2007; Stamatatos,

2008). A number of solutions to the imbalance problem were previously proposed both at

the data and algorithmic levels(Chawla et al., 2004). In this part, we mainly focused on

the data preprocessing methods. The algorithm based approaches will be discussed in later

section.

At the data level, the sampling strategies including over and under-sampling methodolo-

gies have received significant attention to counter the effect of imbalanced datasets (Chen

et al., 2004; Guo and Viktor, 2004; Kubat et al., 1997; Ling and Li, 1998; Solberg and Sol-

berg, 1996; Sun et al., 2009; Wilson and Martinez, 2000; Phua et al., 2004; Jo and Japkowicz,

2004). As the sampling strategy simply re-balanced the data at the data preprocessing stage,

it can be deployed on top of many existing classification approaches. ALthough good, sam-

pling approaches have their various short-comings. Under-sampling majority instances may

discard potential important informations against the negative class, while over-sampling

positive class by forcing the classifier deliberately to learn from redundant duplicates would

induce a problem of overfitting. Various studies in imbalanced datasets have used different

variants of over and under sampling, and have presented sometimes conflicting viewpoints

on usefulness of oversampling versus undersampling (Chawla, 2003; Maloof, 2003; Drum-

mond et al., 2003; Batista et al., 2004). However, there has been progress in both under

and over sampling methods. Meanwhile, many studies considered a combination of the two

sampling approaches (Ling and Li, 1998; Japkowicz, 2000; Batista et al., 2004; Liu et al.,

2011).
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3.5.2 Sampling strategy

SMOTE

Back to our PPs classification task, it is clear that we need an over-sampling or augmen-

tation strategy to increase the PPs instances. A well-known and widely used oversampling

method is SMOTE (Synthetic Minority Oversampling TEchnique) proposed by Chawla et al.

(2002). The algorithm starts with searching for the K-nearest neighbors for the minority

class sample. Depending upon the amount of over-sampling required, neighbors from the

k nearest neighbors are randomly chosen. Then, for each neighbor, it randomly selects a

point from the line connecting the neighbor and the instance itself. Finally, this data point

is included as a new minority instance (Chawla et al., 2002). By adding the “new” minority

instances into training data, it is expected that the over-fitting problem can be alleviated.

Many imbalanced class studies using SMOTE achieved favorable results have be reported

(Chawla et al., 2002, 2003).

An example is illustrated in Figure 36. For a sample xi (in blue), the 3-nearest neighbors

are included in the light blue circle. Then, one of these nearest neighbors xzi is selected and

the new sample is generated by computing the interpolation as follow:

xnew = xi + λ× (xzi − xi) (2)

where λ is a random number in the range [0, 1]. A pseudo-code for SMOTE is presented

in Algorithm 1. Some feature disks of generated new PPs instances are shown in Figure 37.

Morphological augmentation strategy

Although many studies have shown the good results of SMOTE without over-fitting problem,

one major advantage of our PPs study can lead to more confused results when generating

new samples by SMOTE. Herein we only divided the points of STS fundus into two categories

(PP and non-PP) rather than three categories (superficial PP, deep PP and non-PP) because

of the similar characteristics of WPs between superficial and deep PP. This similarity not

only gives an explanation for the links between superficial and deep PPs (Bodin et al.,

2021), but also generalize the identification of PPs. However, the slightly differences between

superficial and deep PPs may create unreliable samples when using the SMOTE.

In addition of the artificially over-sampling methods, such as SMOTE, we also proposed

to augment the PPs instances by considering their nearest neighbours. If a point is a PP,

then its two nearest neighbours on the STS fundus also can be considered as PPs since their

surrounding cortical geometry is similar (see Figure 38 (a), (b)). More generally, we can
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Figure 36: Illustration of new instance generated by SMOTE. Figures adapted from
(Lemâıtre et al., 2017).

Figure 37: New feature disk generated by SMOTE. 10-nearest neighbors was selected to
generate the new PPs feature disks. The wall pinches were visible in blue.
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consider the K nearest neighbours as PPs, provided a certain threshold of similarity. Here

we consider only K = 2.

Unlike the SMOTE, this augmentation strategy will not lead to the over-fitting problem

as we directly used the morphological characteristics. Also it increases the number of PPs

instances while reducing the number of Non-PPs. Furthermore, we initially selected the

intersection vertices between the STS fundus and manual labeled PPs lines as the PPs’

vertices in order to facilitate the analysis of PPs, however, the definition of PPs as a small

area (called “PPs region”) around the vertex instead of a single point provided more PPs

instances and benefits for their detection. In order to compare two different augmentation

methods, we built two new PPs class with the same size. One used the morphological

strategy to augmented the PPs and the other used SMOTE to generate a PPs class of same

size.

(a) Superficial PPs

(b) Deep PPs

(c) Non-PPs

Figure 38: Feature images of neighbouring vertices on STS fundus. The white points are
corresponding to the middle feature images, and the arrows show the direction from anterior
to posterior part of STS fundus.

Under-sampling and balanced dataset

Besides of the PPs, the similarity between non-PPs vertices also provides a support for

the under-sampling process in non-PPs data (see Figure 38 (c)). Hence, the non-PPs class
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is under-sampled by randomly choosing the samples from it until the new one has the

same number of samples with the augmented PPs class. As we considered the two nearest

neighbours of PPs as PPs, it should be noted that all the augmented PPs data were not

taken into account in the under-sampling process. Combine the two over-sampled PPs

datasets and the under-sampled non-PPs dataset respectively, we got two balanced datasets

used for training machine learning models. In the balanced dataset, we have a total of 4462

feature images which contains 2231 PPs samples and 2231 non-PPs samples.
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Algorithm 1: SMOTE(T,N, k)

Input: Number of minority class samples T ; Amount of SMOTE N%; Number of
nearest neighbors k

Output: (N/100) ∗ T synthetic minority class samples
1 (* If N is less than 100%, randomize the minority class samples as only a random

percent of them will be SMOTEd*);
2 if N < 100 then
3 Randomize the T minority class samples;
4 T = (N/100) ∗ T ;
5 N = 100

6 end
7 N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples

of 100.*);
8 k = Number of nearest neighbors;
9 numattrs = Number of attributes;

10 Sample[][] : array for original minority class samples;
11 newindex : keeps a count of number of synthetic samples generated, initialized to 0;
12 Synthetic[][] : array for synthetic samples;
13 (* Compute k nearest neighbors for each minority class sample only. *);
14 for i← 1 to T do
15 Compute k nearest neighbors for i, and save the indices in the nnarray;
16 Populate (N, i, nnarray)

17 end
18 while N 6= 0 do
19 Choose a random number between 1 and k, call it nn. This step chooses one of

the k nearest neighbors of i;
20 for attr ← 1 to numattrs do
21 Compute: dif = Sample[nnarray[nn]][attr]− Sample[i][attr];
22 Compute: gap =random number between 0 and 1;
23 Synthetic[newindex][attr] = Sample[i][attr] + gap ∗ dif
24 end
25 newindex+ +;
26 N = N + 1

27 end
28 return (* End of Populate. *)
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3.6 Machine learning methods

After the feature image extraction, the 3D morphological characteristics were recorded in

the 2D feature images. The detection of PPs problem is converted to a binary supervised

classification task of 2D feature images. To deal with our imbalanced PPs dataset, we

investigated and combined two over-sampling and one under-sampling strategies to build a

balanced dataset.

In this section, we will test two machine learning algorithms used for PPs classification

and discuss their prediction results based on the following issues:

1. Impact of imbalanced dataset;

2. Impact of different feature maps (DPF, curvature, SOG, ASD);

3. Comparison of two over-sampling strategies;

3.6.1 Algorithms

K-nearest neighbors

The k-nearest neighbors algorithm (k-NN) is a non-parametric supervised classification

method first developed by Evelyn Fix and Joseph Hodges in 1951 (Fix and Hodges, 1989)

and later expanded by Thomas Cover (Altman, 1992). The k-NN algorithm relies on the

principle that similar objects in the input space are also similar in the output space (Zhou,

2019). Hence, it is considered as a lazy learning approach since it does not have an explicit

training process but simply stores the training dataset instead. For classification, a simple

k-NN learner identifies the k instances closest to the test instance from the training data,

and then classifies the test instance to the majority class among the k instances.

As a variant of the basic k-NN, a weighted k-NN algorithm was proposed and successfully

used in the local pattern recognition of magnetic resonance imaging (Coupé et al., 2011;

Rousseau et al., 2011). This weighted k-NN algorithm assigned a weight that measures the

similarity to the test instances for all selected nearest neighbors. In more details, for a input

instance i, let Li as the prediction label, so we have

Li =

∑
j∈Ik

si,jLj∑
j∈Ik

si,j
(3)

where si,j is the similarity between input instance i and selected instance j, and Lj is

the manual label of j. Consider that the labels L belong to {0, 1}, the Li was rounded by
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Li =

{
1 Li ≥ 0.5

0 Li < 0.5
(4)

Distance metrics

When doing classification using k-NN, it is often necessary to estimate the similarity between

two samples (similarity measurement), which often uses the “distance” between the two

samples, and what method is used to calculate the distance is very delicate, and even

related to the correct classification or not. In this part, we introduce some distance used in

our study.

Structural SIMilarity (SSIM)

The structural similarity is a well-known measurement in the image quality assessment

and it also can be used to estimate the similarity of images (Wang et al., 2004; Coupé et al.,

2011).

Given two images (or vectors) x and y, we have

SSIM(x,y) = [l(x,y)]α[c(x,y)]β[s(x,y)]γ (5)

where α, β, γ > 0, and

l(x,y) =
2µxµy + c1
µ2
x + µ2

y + c1
(6)

c(x,y) =
2σxy + c2

σ2
x + σ2

y + c2
(7)

s(x,y) =
σxy + c3
σxσy + c3

(8)

l(x,y) is the luminance comparison, where µx, µy are the mean values of x, y respectively.

c(x,y) is the contrast comparison and s(x,y) is the structural comparison, where σx, σy are

the stand deviation respectively and σxy is the co-variance of x and y. c1, c2, c3 are constant

used to avoid the errors when the denominator is very close to zero. In practice, we set

α = β = γ = 1 and c3 = c2/2, so the SSIM can be simplified as follow,

SSIM(x,y) =
(2µxµy + c1) (σxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) (9)

Furthermore, the equation (9) is usually used to compare two windows of images instead

of the entire, so we compute the mean SSIM (MSSIM) to compare the whole images:
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MSSIM(x,y) =
1

M

M∑
j=1

SSIM (xj,yj) (10)

where xj and yj are the image contents at the j-th window and M is the number of

windows in the image.

The SSIM value can vary between -1 and 1, where 1 indicates perfect similarity. This

method has been implemented in scikit-image (van der Walt et al., 2014).

Cosine similarity and mean squared error

Besides, we also use two common similarity measures, cosine similarity and mean squared

error (MSE), as a comparison. Given two vectors x and y, the cosine similarity is represented

using a dot product and magnitude as

cos (x,y) =
x · y
‖x‖‖y‖

=

n∑
i=1

xiyi√
n∑
i=1

x2i

√
n∑
i=1

y2i

(11)

where xi and yi are components of vector x and y respectively. Suppose the image size

is m× n, the MSE is computed as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2 (12)

where x(i, j) and y(i, j) represent the value of the pixel (i, j). The MSE computes the

strict differences between two corresponding pixels in location, so a value of 0 for MSE

means perfect similarity.

Support Vector Machine

Support Vector Machines (SVMs, also support-vector networks (Cortes and Vapnik, 1995))

are supervised learning models with associated learning algorithms that analyze data used

for classification and regression analyse. SVM is firstly designed for binary classification

tasks. Given a training dataset of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn

and y ∈ {1,−1}l, the SVM require the solution of the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi
(
wTφ (xi) + b

)
≥ 1− ξi

ξi ≥ 0

(13)
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where φ (xi) maps xi into a higher-dimensional space and C > 0 is the penalty parameter

of the error term. Due to the possible high dimensionality of vector variable w, the dual

problem was usually solved

min
α

1
2
αTQα− eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, . . . , l

(14)

where e = [1, . . . , 1]T is the vector of all ones, Q is an l by l positive semidefinite matrix,

Qij ≡ yiyjK (xi,xj), and K (xi,xj) ≡ φ (xi)
T φ (xj) is called the kernel function.

After problem (14) is solved, using the primal-dual relationship, the optimal w satisfies

w =
l∑

i=1

yiαiφ(xi) (15)

and the decision function is

sgn
(
wTφ(x) + b

)
= sgn

(
l∑

i=1

yiαiK (xi,x) + b

)
(16)

Different kernel functions allow the SVM to fit various data, hence a proper selection of

kernel function can improve the performance of SVM. However, it’s not easy to choose or

devise a proper function for a specific problem. There are four basic kernels:

• linear: K (xi,xj) = xTi xj.

• polynomial: K (xi,xj) =
(
γxTi xj + r

)d
, γ > 0.

• Gaussian radial basis function (RBF): K (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, γ > 0.

• sigmoid: K (xi,xj) = tanh
(
γxTi xj + r

)
.

Here, γ, r and d are kernel parameters. The degree d is specified for polynomial kernel and

r is usually set to zero.

For all parameters mentioned above, the C parameter trades off correct classification of

training examples against maximization of the decision function’s margin. For larger values

of C, a smaller margin will be accepted if the decision function is better at classifying all

training points correctly. A lower C will encourage a larger margin, therefore a simpler

decision function, at the cost of training accuracy. Intuitively, the γ parameter defines how

far the influence of a single training example reaches, with low values meaning far and high
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values meaning close. The γ parameters can be seen as the inverse of the radius of influence

of samples selected by the model as support vectors.

In SVM, the support vectors are important to the training set. Theoretically, the sup-

port vectors lie closest to the decision boundary and form the margin between two sides.

Moreover, if we removed all other training data and repeated the training process, we could

get the same separating hyperplane. This fact gives us the advantage of classifying by learn-

ing with only a small number of support vectors, as all we need to know is the position of

the decision boundary and other training data can be considered redundant. In addition,

it is most significant in the imbalanced problem, as the SVMs can be less affected by the

large number of negative instances far from the decision boundary (Liu et al., 2011).

3.6.2 Experiments and results

Data

In order to investigate strategies for imbalanced data, we used the following datasets

1. Balanced datasets generated by SMOTE with feature map ASD;

2. Balanced datasets generated by morphological strategy with feature maps ASD, SOG,

DPF and curvature;

3. Imbalanced dataset with feature map ASD.

The original imbalanced dataset contains 15703 feature images, with 865 PPs and 14208

non-PPs. As mentioned for the morphological over-sampling strategy, we considered the

two nearest neighbors of PP vertices also as PPs, leading to a total of 2231 PP samples.

Herein, the number of augmented PPs is not exactly twice as much as the manually labeled

PPs because some neighboring vertices overlapped on the STS fundus. To compare two

over-sampling strategy, we used the SMOTE to generate the same number of PPs as the

morphological one. Therefore, both two balanced datasets contain 4462 feature images with

2231 PPs and 2231 non-PPs instances. Here we named the balanced datasets generated by

SMOTE as the SMOTE dataset, and the morphological strategy datasets as MorS dataset.

In this section, we randomly selected 500 instances as TEST data and the rest data used

to train the machine learning models. Hence, the data was divided as follow:

1. Test dataset: 500 images with 250 PPs and 250 non-PPs;

2. Balanced training dataset: 3962 images with 1981 PPs and 1981 non-PPs;

3. Imbalanced training dataset: 12565 images with 1981 PPs and 10484 non-PPs.
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Base level models and experiments

k-NN: We implemented the weighted k-NN in Python. The SSIM was computed with

the scikit-image package (van der Walt et al., 2014). The cosine similarity and MSE were

computed with the scikit-learn package (Pedregosa et al., 2011). The best parameter k was

tested on k = 5, 10, 15, 20, 25, 30, 35 by training models on balanced datasets of ASD feature

maps.

Besides, we compared the feature images with different cortical surface profiling sampling

distances (9mm, 13.5mm, 18mm).

SVM: We trained the SVM models using the SVM package of scikit-learn, which in-

ternally used libsvm (Chang and Lin, 2011) and liblinear (Fan et al., 2008) to handle all

computations. Also, the implements of SVM in scikit-learn package provided a probability

for each predicted samples. The linear, polynomial and RBF kernels were used and the op-

timal parameters were selected by a five folds cross-validated grid-search over a parameter

grid. For the polynomial kernel, the parameter degree d was selected from {2, 3, 4, 5}, and

γ was varied from 10−3 to 10 by factors of 10. For the RBF kernel, the parameter C was

selected from 2−5 to 8 by factors of 2 and γ was from 10−9 to 1000 by factors of 10.

In our experiments, the SVM with linear, polynomial and RBF kernels were trained on

the balanced datasets. Besides, a weighted SVM provided in scikit-learn to deal with the

imbalance problem was trained on the imbalanced dataset. In this model, the labels are

weighted inversely proportional to class frequencies in the original data. The RBF kernel of

default parameter settings in scikit-learn were selected for this model.

Evaluation measures

In machine learning, evaluation measures are based on the ConfusionMatrix, a two-class

problem confusion matrix with positive and negative values is illustrated in Table 1

Table 1: Prediction results with different training datasets

Ground-truth Positive Ground-truth Negative
Predicted Positive TP (True Positive) FP (False Positive)
Predicted Negative FN (False Negative) TN (True Negative)

To evaluate the model performance, we computed the accuracy of entire data, PPs data

and non-PPs data. For the overall accuracy, we have:

ACC =
TP + TN

TP + TN + FP + FN
(17)
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For PPs data,

ACCpp =
TP

TP + FN
(18)

and non-PPs,

ACCnon−pp =
TN

TN + FP
(19)

In particular, we also computed the accuracy of PPs across different ranges of depth.

Here the depth is assigned for the intersected points between PPs lines and STS fundus.

This measure allows us to study the detection performances as a function of depth, to see

how algorithms perform on superficial or deep PPs.

Results and analyses

k-NN

Surface profile sampling size and similarity measures: The radius of profile sampling

is related to the size of the feature images. The feature images generated with a larger

sampling radius capture larger cortical surface areas, again containing more geometrical

information and noise. Before training the machine learning models, we first tested the

influences of various sampling radii, and compared the various similarities measures.

Table 2 - 4 shows the prediction results on the feature images whose profiling radius are

9mm, 13.5mm, 18mm respectively and the best results are bold. Here we used the 10-NN

models. As we can see from these tables, the SSIM performs well on the 9mm and 13.5mm

dataset and worst on the 18mm dataset. Then the cosine similarity also gets good results

that are close to the SSIM, while performing better than SSIM on the 9mm dataset. All

models using MSE performs worst. However, these three sampling distances do not result in

a change in the accuracy, where the accuracy of SSIM is around 75%, the Cosine similarity

is from 72.3% to 76%. Obviously, compared to the other two similarities, the models using

SSIM have the most consistent performance to the sampling distance. Thus, we chose the

SSIM as the similarity measures of k-NN models. Among these models using SSIM, we

chose the profile sampling radius as 13.5mm to generate the feature images.

Optimal k: To facilitate comparison of other issues, we selected the optimal k of

weighted k-NN models. The best choice of k depends upon the data, generally larger

values of k reduce effect of the noise on the classification (Everitt et al., 2011). Herein, we

used the feature images built by ASD feature maps and selected the SSIM as the similarity

measure to training the models. Table 5 gives the accuracy of models with different k from
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Table 2: The accuracy of 10-NN method (9mm)

Similarity Entire data(%) PPs data (%) Non-PPs data (%)
SSIM 75 70.8 79.2
Cosine 76 68 84
MSE 72.6 69.6 75.6

Table 3: The accuracy of 10-NN method (13.5 mm)

Similarity Entire data (%) PPs data(%) Non-PPs data(%)
SSIM 75.4 70.8 80.0
Cosine 73 69.6 76.4
MSE 66.4 61.6 71.2

Table 4: The accuracy of 10-NN method (18mm)

Similarity Entire data(%) PPs data(%) Non-PPs data(%)
SSIM 74.4 70.4 78.4
Cosine 72.4 70.8 74
MSE 66 57.2 74.8

5 to 35. Among these k values, the prediction accuracy reaches a local maximum at k = 10

and k = 25 both in the entire and PPs dataset, and the model with k = 10 performs best in

PPs cases. Then, we compared the accuracy of PP detection across different depth ranges

using 10-NN and 25-NN models. As shown in Table 6, the model with k = 10 performed

better on most deep PPs, instead the model with k = 25 gets better on superficial PPs.

Since deep PPs are more difficult to detect than superficial ones, we selected the k = 10 as

the benchmark used for training weighted k-NN models.

Table 5: The accuracy of different selected k (SSIM, r = 13.5mm)

k values Entire data (%) PPs data (%) Non-PPs data(%)
5 71.6 58.8 84.4
10 75.2 70.4 80
15 73.8 65.9 81.6
20 73.8 66.4 81.2
25 76 69.2 82.8
30 75.8 68.4 83.2
35 75.4 67.2 83.6

Table 6: The accuracy of PPs in different depth ranges (%)

k values d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
10 87.5 83.3 70.8 56.8 67.4
25 91.7 86.7 60.4 56.8 65.1

Feature maps: We trained weighted 10-NN models on the feature images of four
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different feature maps (ASD, SOG, DPF and Curvature) using the SSIM similarity measure.

In the following, curvature is abbreviated to “CURV”. Table 7, 8 show the results. Clearly

the models using DPF and curvature maps only predict few PPs, while the models with

ASD maps performed best. This is consistent with the fact that it is difficult to visually

identify wall pinches using DPF and curvature maps without any threshold.

Table 7: Prediction results with different feature maps

Feature map Entire data (%) PPs data (%) Non-PPs data(%)
ASD 75.2 70.4 80
SOG 67.6 70.8 64.4
DPF 52.8 6.0 99.6
CURV 53.8 8.8 98.8

Table 8: The accuracy of PP detection in different depth ranges (%)

Feature map d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
ASD 87.5 83.3 70.8 56.8 67.4
SOG 85.4 73.3 75 65.4 58.1
DPF 8.3 16.7 6.3 2.5 2.3
CURV 25.0 6.7 6.3 4.9 2.3

Imbalanced, SMOTE and morphological balanced data: We trained weighted 10-

NN models on the three different datasets using the ASD feature maps and SSIM similarity

measure. Here the sampling radius of each feature image is 13.5mm. Table 9, 10 show the

results. As we can see, the weighted k-NN model failed to predict the PPs on the imbalanced

data, which means there are more non-PPs samples than PPs in the 10 nearest neighbors in

the imbalanced data. This result is understandable considering the ratio of PPs: non-PPs

≈ 1 : 16. Besides, we got a better prediction results on the balanced dataset generated using

the morphological strategy (MorS) than SMOTE. Both strategies lead to a better detection

of superficial PPs but the MorS strategy is consistently better at all depths.

SVM

For comparison with the weighted k-NN models, we used the same data to train the SVMs.

The SVMs with optimal parameters and their prediction results were shown in Table 11,

12. As in k-NN, the weighted SVM was trained on the imbalanced dataset. As can be seen

from the tables, the best prediction result of SVM is better than the k-NN. Among various

SVMs, it can be seen that the SVM trained on the balanced dataset using MorS performs

better than imbalanced dataset and SMOTE dataset, and this is consistent with the results

of k-NN models. However, the SVM trained on the SMOTE dataset failed to predict the
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Table 9: Prediction results with different training datasets

Training data Entire data (%) PPs data (%) Non-PPs data(%)
MorS data 75.2 70.4 80
SMOTE data 60.0 60.0 60.0
Imbalanced data 50.0 0.0 100.0

Table 10: The accuracy of PPs in different depth ranges (%)

Training data d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
MorS data 87.5 83.3 70.8 56.8 67.4
SMOTE data 79.2 70.0 54.2 54.3 48.8
Imbalanced dataset 0 0 0 0 0

PPs. This may be caused by the nearest neighbors of PPs, which are very similar to PPs

as shown in 38. Unlike MorS, these neighbors are labelled as non-PPs when training ML

models on SMOTE data. The SVM using RBF kernels perform better than linear and

polynomial kernels.

In comparison of four feature maps, different from k-NN models, the DPF and curvature

maps show good performances, and in particular the DPF got the best prediction results

on this TEST data. Herein, for convenience, we use feature map names to represent the

corresponding models. As we can see from Table 12, all the models have good predictions

for very superficial PPs whose depth is below 5mm and the SOG perform best. The ASD

got the best results for the PPs whose depth from 5 to 20mm, while the DPF performed

best for the PPs whose depth more than 10mm.

We should note that all the results above only show the performances of models on the

balanced TEST data designed by a hold-out strategy that splits the data into a training

and test set. Although it can be used to compare these models, the results do not exactly

reflect the general situation where the ratio of PPs : Non-PPs ≈ 1 : 5 after augmentation

of PPs. Hence, to further compare the SVM models with four feature maps, we trained

and tested SVM models with a 5-fold cross-validation. In each fold, the training data is

a balanced dataset and the test data has the same distribution of PPs and Non-PPs as

the original data. The mean of prediction accuracy results are shown in Table 13, 14. In

this cross-validation, the DPF and SOG fail to predict the PPs instances, while the CURV

predicts a majority of PPs. Only ASD leads to a good prediction result for all types of

data. Notably, the overall accuracy of DPF and SOG is high but the accuracy for PPs data

is low, which is common in imbalanced datasets. In fact, it is meaningless to achieve high

overall accuracy when the data is highly imbalanced because the prediction results of PPs

are more important for us. In addition, we find that the CURV gives better results as the
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Table 11: Prediction results of SVM

SVM Entire data(%) PPs data(%) Non-PPs data(%)
RBF (C=2.0, γ = 0.001), MorS, ASD 78.4 80.8 76
RBF (C=4.0, γ = 0.001), MorS, SOG 66.0 68.4 63.6
RBF (C=4.0, γ = 0.001), MorS, DPF 82.4 82.8 82.0
RBF (C=2.0, γ = 0.001), MorS, CURV 78.6 80.0 77.8
polynomial (degree = 3), MorS, ASD 74.6 66.4 82.0
linear, MorS, ASD 61.2 61.6 60.8
RBF, weighted SVM, IMB, ASD 76.8 68.4 85.2
RBF, SMOTE, ASD 50.0 0.0 100.0

IMB: imbalanced data.

Table 12: The accuracy of PPs in different depth ranges on SVM (%)

SVM d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
RBF (C=2.0, γ = 0.001),∗, ASD 91.7 86.7 81.25 79.0 70.7
RBF (C=4.0, γ = 0.001),∗, SOG 100 76.7 68.75 53.1 55.8
RBF (C=4.0, γ = 0.001),∗, DPF 93.75 80.0 81.25 79.0 81.4
RBF (C=2.0, γ = 0.001),∗, CURV 85.4 80.0 81.25 76.5 79.1
polynomial (degree = 3),∗, ASD 81.3 76.7 62.5 56.8 65.1
linear,∗, ASD 75.0 63.3 70.8 51.9 53.4
RBF, weighted SVM, IMB, ASD 77.1 70 66.7 69.1 58.1
RBF, SMOTE, ASD 0 0 0 0 0

IMB: imbalanced data; ∗ : MorS.
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depth increases. This is due to the fact that the curvature gets more negative as you get

deeper, and the WP stands out more even it show a slightly positive curvature value.

Table 13: Prediction results with different training datasets

Feature map Entire data (%) PPs data (%) Non-PPs data(%)
ASD 75.2 77.3 74.7
DPF 82.2 3.7 98.6
SOG 82.5 0.4 99.7
CURV 21.9 67.8 12.3

Table 14: The accuracy of PPs in different depth ranges (%)

Feature map d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
ASD 85.7 75.8 78.3 71.6 77.4
DPF 13.7 8.6 2.8 0 0
SOG 1.6 1.3 0.3 0 0
CURV 28.12 57.6 70.6 81.2 81.9

3.6.3 Summary

In this section, we focused on the three issues raised at the beginning. Several machine

learning models were trained to help us learn more about the ML models and the effects of

imbalanced data. First, among all our experiments, the SVM with RBF kernel using the

MorS training dataset got the best result, and the ASD seems to be the optimal feature

map. Then, directly training a machine learning model on imbalanced data will fail to

classify the minority class, and the over-sampling methods can improve the prediction results

by reducing the skew of the data. However, different over-sampling strategies have been

tested for our problem, and the well-known SMOTE method performed worse than the

morphological strategy we proposed. Concerning the feature maps used to train the machine

learning models, we got similar results as described in the section3.4, namely the DPF and

curvature maps were not optimal neither for observation nor for training machine learning

models. Moreover, the variabilities of DPF and curvature values across different WPs also

make their application difficult in general. Here, we only used the general accuracy, the

accuracy of PPs and Non-PPs to evaluate performances. Clearly, it is not optimal for

evaluating class-imbalance learning. In the next sections, we discuss how to address the

imbalanced issue in a more appropriate way. In particular we present evaluation metrics

and algorithmic improvements to the classification process, both designed specifically for

imbalanced data learning.
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3.7 Evaluation measures with class-imbalance

The choice of a performance index is critical to evaluate the goodness of a classifier. As we

mentioned in previous sections, in machine learning, evaluation measures are based on the

ConfusionMatrix, a two-class problem confusion matrix with positive and negative values

is illustrated in Table 1 Traditionally, the overall performance of machine learning algorithm

is usually evaluated with the “accuracy”:

ACC =
TP + TN

TP + TN + FP + FN
(20)

However, it is often meaningless to achieve high accuracy when the data is highly im-

balanced. As the PPs problem in our study, the ratio of PPs : Non-PPs ≈ 1 : 16, a

straightforward method of guessing all instances as Non-PPs would achieve an accuracy

93.75%, though the accuracy seems high, we can not detect any PPs. Therefore a high over-

all accuracy may mislead the performance of classifiers in the context of imbalanced class

problem, moreover, the higher rate of correct detection on the minority class is particular

required (Liu et al., 2011; Maratea et al., 2014; Zhou, 2019).

Several common measures can be defined from Confusion Matrix:

• The Recall (or true positive) measures the accuracy of positive instances.

Recall =
TP

TP + FN
(21)

• The Precision

Precision =
TP

TP + FP
(22)

• The Specificity (or true negative) measures the accuracy of negative instances.

Specificity =
TN

TN + FP
(23)

• The false positive rate

FPR =
FP

FP + TN
(24)

Some measures were proposed for imbalanced class problems:

• The G-mean (or Geometric mean) is the geometric mean of the accuracy of each class.

G-mean =
√
Specificity ×Recall (25)
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where the sizes of different classes have already been considered so it is a good mea-

surement for class-imbalanced learning.

• The F-measure (or balanced F1-score)

F-measure = 2× Precision×Recall
Precision+Recall

(26)

is designed as the harmonic mean of precision and recall, and it can be generalized in

Fβ

Fβ = (1 + β2)× Precision×Recall
β2 × Precision+Recall

(27)

where β is a weight for precision and recall. The greater the β, the higher the domi-

nation of recall.

• The Adjusted F-measure (AGF ) (Maratea et al., 2014)

AGF =
√
F2 × InvF0.5 (28)

where F2 is computed by setting β = 2 in Fβ and InvF0.5 is computed on the following

confusion matrix:

Ground-truth Negative Ground-truth Positive
Predicted Positive TN (True Negative) FN (False Negative)
Predicted Negative FP (False Positive) TP (True Positive)

Compare to 1, this confusion matrix switches the class labels of each samples (positive

samples become negative and vice versa). With the confusion matrix in table 3.7, the

InvF0.5 is computed as the standard F0.5

Besides, the ROC curve (Swets, 1988) was used to assist the evaluation. “ROC” is the

abbreviation fro Receiver Operating Characteristic. A ROC curve demonstrates a trade-off

between true positive and false positive rates provided with different classification param-

eters, and illustrates how the accuracy on positive instances drops with the error rate on

majority instances. Informally, one point in ROC space is superior to another if it is closer

to the upper-left corner (TP is higher, but FP is lower). Thus, ROC curves allow for a visual

comparison of classifiers: the larger the area below the ROC curve, the higher classification

potential of the classifier.

Hence, in the later sections, we chose Recall, G-mean, F-measure and AGF as the

performance measures. We also use the ROC curve as an assistance to the evaluation.
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3.8 Ensemble learning methods

To solve the imbalanced class learning problem, two categories of techniques have been pro-

posed: sampling approaches and algorithm-based approaches. In section 3.5.2, we discussed

some sampling approaches and demonstrated the performance improvements to the algo-

rithm by using them on the imbalanced data. Algorithm-based approaches are twofold. The

first category aim at improving a classifier’s performance based on its inherent characteris-

tics. For example, methods that are particular tailored for Decision Trees, Neural Networks

(MLPs), Naive Bayes systems, etc. The second category is ensemble learning methods,

which intergrates several weak classifiers to improve the generalization or robustness over a

single estimator (Opitz and Maclin, 1999; Polikar, 2012; Rokach, 2010).

In classification problems, ensemble methods contain a number of classifiers called base

classifiers. Ensemble methods are appealing mainly because they are able to boost weak

classifiers which perform slightly better than random guess in oprder to get a strong classifier

with high accuracy. Hence, sometimes base classifiers are also referred to as weak classifiers.

In order to further improve the performance of prediction results on the imbalanced data

sets, ensemble learning methods have been widely studied and applied (Chawla et al., 2003;

Chen et al., 2004; Guo and Viktor, 2004; Liu, 2009; Liu et al., 2011).

In this section, we first quickly introduce some ensemble methods and then we apply

these methods to our problem. We then propose an ensemble SVM algorithm for automatic

detection of PPs. Finally,experimental results are presented and discussed.

3.8.1 The Bagging Algorithm

The name Bagging was the abbreviation of Bootstrap AGGregatING (Breiman, 1996). As

the name implies, two key processes of Bagging are bootstrap and aggregation. Bagging is

a famous representative of parallel ensemble learning methods, and it is directly based on

bootstrap sampling.

Given a dataset D that contains n samples, Bagging randomly generates T new training

datasets Di of size m by sampling from D uniformly and with replacement, a sampling

method known as bootstrap sample (Efron and Tibshirani, 1994). In each Di, some samples

are repeated and others are unselected.

Then we use these T datasets to generate T models and combine them by voting the

prediction results. Although it is usually applied to decision tree methods, it can be used

with any type of classification method. A general Bagging algorithm is shown in Algorithm

2.
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Algorithm 2: Bagging

Input: Data set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, y ∈ {−1, 1} ;
Base learning algorithm L; Number of base learners T .

1 for i← 1 to T do
2 li = L(D,Dbs) (* Dbs is the bootstrap distribution *)
3 end

Output: Majority vote of predict label sgn(
∑T

i=1 li(x)).

Random Forest

(Breiman, 2001). It operates by constructing a multitude of decision trees. The decision

tree consists of a set of tree-structured decision tests working in a divide-and-conquer way.

Each non-leaf node is associated with a feature test called split ; data falling into the node

will be split into different subsets according to their different values on the feature test.

Each leaf node is associated with a label, which will be assigned to instances falling into

this node. In prediction, a series of feature tests is conducted starting from the root node,

and the result is obtained when a leaf node is reached (Rokach and Maimon, 2007; Zhou,

2019).

In RF, each tree in the ensemble is built from a sample drawn with replacement (i.e., a

bootstrap sample) from the training set. And furthermore, a random selection of features

is introduced into the training process. Specifically, the traditional decision tree greedily

chooses the best split feature from the current features set (suppose there are d features)

in the construction of the tree. However, the RF first randomly selects k features from

the current features set, and then choose the best split feature of the subset. Herein, the k

constrains the stochastic extent: If k = d, the base decision tree is the same as the traditional

decision tree; If k = 1, it means we randomly select one feature to split; In general, the

recommendation is k = log2 d.

Extremely Randomized Trees

The Extremely randomized trees (or Extra-Trees) builds an ensemble of unpruned decision

or regression trees according to the classical top-down procedure. Its two main differences

with RF are that it splits nodes by choosing cut-points fully at random and that it uses the

whole learning sample (rather than a bootstrap replica) to grow the trees (Geurts et al.,

2006). In other words, in extremely randomized trees, randomness goes one step further in

the way splits are computed. This usually allows to reduce the variance of the model a bit

more, at the expense of a slightly greater increase in bias.
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3.8.2 Ensemble Support Vector Machine

Although weak classifiers can be boosted by using ensemble methods, the resulting perfor-

mances are still related to those of the base classifiers. Generally the base classifiers are

also trained on balanced datasets. Hence, a general problem of bagging algorithms is the

neglect of potentially useful information contained in the majority class instances. To keep

a high efficiency of under-sampling but reduce the possibility of ignoring information, a

simple strategy was adopted in many ensemble methods (Liu, 2009; Liu et al., 2011). It

randomly genrates multiple subsets of samples {N1, N2, . . . , NT} from the majority class N .

The size of each subset is the same as the minority class P , i.e.|Ni| = |P |. Then, the union

of each pair of Ni and P is used to train the base classifiers.

We proposed the ensemble SVM (EnsSVM) algorithm by combining this sample strat-

egy and the morphological over-sampling strategy used in section 3.5.2. The algorithm is

illustrated in Figure 39. At first, we augment the PPs instance by labelling their two nearest

neighbors on the STS fundus as PPs (section 3.5.2), and get a total of S PPs. Here, the

rebalancing process is important to avoid learning from extremely imbalanced data, and a

certain amount of training data is necessary to get reliable base classifiers. We then divide

the data into training and test data. Note that this step is only needed for the algorithm

evaluation, while for a final model applied to detect PPs in new data, we learn from the full

dataset. After that, the majority (non-PP) data is under-sampled T times to generate T

bootstrap samples (sampling with replacement) and the size of each subset of samples is S.

Afterwards we combined each bootstrap samples with the over-sampled positive instance

(PPs) to form the balanced training data used to train the base SVM. Finally, for a test

instance, the classification decision was made through a majority voting. A formal EnsSVM

algorithm is shown in Algorithm 3.

3.8.3 Experiments and results

To assess the performance of the ensemble learning method presented in this section, we

trained and tested the algorithms on the HCP data with a 10-fold cross-validation. For the

models with parameters selection, we used the 10 × 10 nested cross-validation (or called

double cross-validation). Since the nested cross-validation integrates the model selection

procedure independently to prevent selection bias, it can further overcome the bias in per-

formance evaluation and reflect best practice in operational use (Cawley and Talbot, 2010).

Here, for each fold of cross-validation, the test data category has the same distribution as

the original data and the feature vectors (or images) are generated using ASD feature maps.

The performance of all algorithms was estimated with the evaluation measures presented in
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Figure 39: The ensemble SVM algorithm. (1) Augment the PPs instances by considering
the two nearest neighbors of PPs as also PPs; (2) Divide the data into training and test
data; (3) Build the base classifier; (4) The balanced datasets for training base classifiers.
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Algorithm 3: EnsSVM

Input: Data set D; Number of nearest neighbors: K; Number of base SVM: T .
1 Split D into minority class P and majority class N ;
2 N2, P2 = MorS (N,P,K) (* over-sample the P by the morphological strategy with

K = 2 *) ;
3 For all data, divide the data into training and test data with same distribution of

P2 and N2. Denoted as Dtrain = {(x1, y1), . . . , (xn, yn)},
Dtest = {(xn+1, yn+1), . . . , (xn+l, yn+l)};

4 S = Size(Ptrain) (* get the size of minority class in training data Ptrain *);
5 for i← 1 to T do
6 Ni = Bootstrap(Ntrain, S) (* get bootstrap datasets of Ntrain, and each set has

S instances *);
7 BTi = Ptrain ∪Ni (* form the balanced training dataset *);
8 Build a base classifier SVM i with BTi;
9 Feed SVM i with Dtest, and get a predicted class label array Arri;

10 end
11 for j ← 1 to l do
12 Get yn+j by casting a majority vote over Arr1, Arr2, . . . , Arri
13 end

Output: Predicted class label for Dtest.

section 3.7. The ensemble methods were trained as follow:

General bagging models: We trained the bagging methods using the base classifier of

k-NN, linear SVM and SVM with RBF kernel respectively. All bagging models were trained

on balanced datasets containing 4462 feature images of 2231 PPs and non-PPs.

Random Forest and Extra-trees: We trained RF and Extra-trees with 50, 200, 500

decision trees(DT). Suppose there are d features, the number of features considered at each

split k =
√
d. Both models were trained on the balanced dataset. As a comparison, we

also trained a RF model on the imbalanced dataset. Herein, we used the scikit-learn imple-

mentations of RF and Extra-trees. It should be noted that the implementations combine

the base classifiers by averaging their probabilistic prediction rather than doing a simple

majority vote.

EnsSVM: We used SVM with RBF kernels as the base classifiers of EnsSVM. The opti-

mal parameters of RBF kernels were selected by cross-validated grid-search over a parameter

grid of C and γ, where the parameter C was selected from a sequence of equal differences 1

to 10 by factors of 1 and the parameter γ was selected from a sequence of 10−4 to 10−3 by

factors of 10−4.

As a comparison, we also trained some single base classifiers including a single SVM

trained on the balanced data by MorS and a single SVM trained on the imbalanced data

after augmentation of PPs by Mors (imbalanced ratio ≈ 1 : 5); In addition, the other
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SVMs used the RBF kernel, and the training of General bagging models and EnsSVM was

performed using 21 component classifiers, which we determined empirically to be a high

enough number to get robust and high performances.

Table 15 presents the performance for all the methods. As visible, EnsSVM achieves the

best results in Recall, G-mean and AGF, and the Extra-trees of 500 desion trees performs

best in F-measure. In comparison with the single SVM, ensemble methods show improved

performances. Moreover, in RF and Extra-trees, as the number of decision tree increases,

the model results get better until the upper limit. Also, the results of Bagging 10-NN model

indicate that not all base classifiers can be boosted by the ensemble method.

Table 15: The Average value of model performance measures

Models Recall G-mean F-measure AGF
EnsSVM 0.811 0.773 0.527 0.774
Bagging SVM 0.786 0.764 0.520 0.764
SVM (balanced data) 0.781 0.764 0.522 0.764
SVM (imbalanced data) 0.298 0.540 0.423 0.550
Bagging linear SVM 0.715 0.487 0.291 0.540
Random Forest 500DT 0.749 0.762 0.528 0.760
Random Forest 200DT 0.746 0.759 0.523 0.758
Random Forest 50DT 0.732 0.751 0.516 0.749
Extra-trees 500DT 0.761 0.766 0.531 0.764
Extra-trees 200DT 0.757 0.765 0.531 0.764
Extra-trees 50DT 0.742 0.758 0.525 0.756
Bagging 10-NN 0.282 0.501 0.310 0.497

Besides the measures above, we depict the mean ROC curves created from 10-fold cross-

validation of 4 selected ensemble methods in Figure 40. Clearly, combining all measures,

the EnsSVM outperforms the other methods in general.

In order to better understand our results, we focused on the prediction results of our

EnsSVM model. Figure 41(a) shows the Recall rate across different ranges of depth. In-

tuitively, the deeper a PP the more buried it is and the more difficult it is to detect. Our

model yielded an excellent prediction (mean Recall > 90%) on the most superficial PPs with

depth ∈ [0, 5.0)mm. As depth increases, the prediction accuracy decreases. In particular,

for the deepest PPs, with depth ∈ [20,∞)mm, Recall falls below its overall mean (81.1%)

but is still high with a score of 78.5%. The mean recall is above 80% for all depth below

15mm. Using the same DPF-based criterion than (Bodin et al., 2021), we divided PPs in

two groups, superficial and deep, and calculated Recall (Figure 41(b)) for both groups. The

mean Recall of superficial PPs and Deep PPs is 92.4% and 78.98% respectively. The above

results indicate that the EnsSVM has a relatively good prediction accuracy for the detection
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Figure 40: ROC curve of ensemble methods. The AUC is the area under the curve.
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of PPs, including for the very difficult cases with PPs buried in the depth of the STS.

(a) Recall vs. Depth (b) Recall vs. Types of PPs

Figure 41: The Recall of EnsSVM across various categories of PPs.

3.9 PPs regions and post-processing

In the earlier sections, we compared a number of machine learning methods and finally

proposed the EnsSVM to solve our PPs detection problem. In addition to the correctly

predicted PPs (TP cases), the wrongly predicted PPs (FP cases) also need to be taken

carefully when putting the models into practice. In this section, we first study FP cases

produced by ensemble methods. Then, a post-processing method is proposed as a solution

to the FP cases. Finally, we apply our method on the TVA data without manual labelled

PPs for an empirically evaluation of the model performances, and a quantitative comparison

of PPs is presented with the manually identified PPs from the HCP data.

3.9.1 False positive PPs

Table 16: The false positive rate of four ensemble methods

EnsSVM Bagging SVM Random Forest 500DT Extra-trees 500DT
FPR 0.263 0.258 0.227 0.230

Table 16 shows the average false positive rates (FPR) of selected ensemble methods

among 10-fold cross-validations. Approximately 25% of Non-PPs instances were predicted

as PPs. We found that the number of FP instances was almost as much as the number

of PPs instances in each fold. In order to further analyse the FP instances, we randomly

chose 10 subjects from the HCP data as test data and used the rest 90 subjects to train
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the EnsSVM model. After getting the EnsSVM model, we applied it to the test data and

displayed the prediction result on the STS fundus using Anatomist visualization software

(Le Troter et al., 2011).

Figure 42: An example of predicted PPs using EnsSVM models. In the middle, the
prediction results were projected on the STS fundus. The LEFT without manual labelled
PPs and the RIGHT with the manual labelled PPs. In these figures, the predicted vertices
of PPs are colored in green and the non-PPs were in dark red. The dark blue lines across
the STS are manual labelled PPs lines. The intersection points between PPs lines and STS
fundus were marked with the white dots. Three different cases of prediction results are
marked in different box. (a) Black solid box: the manual labelled PPs are in the predicted
PPs regions; (b) Red solid box: the predicted PPs regions without manual labels; (c) Black
dotted box: the manual labelled PPs near the predicted PPs regions.

An example of prediction results of PPs is illustrated in Figure 42. As we can see from

it, instead of single vertex, most predicted results of PPs vertices were close to each other

and connected as a single region. The original PPs points (in white) were located in or

nearby the predicted regions. Actually, when we trained the machine learning models, we

also considered the two nearest neighbors of manual labelled PPs as the ground-truth and

these three points formed a manual PPs region.

When predicted regions include the original PP point, the model clearly detected the
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PP (Fig. 42(a), 43(a)). When predicted regions do not include the PPs points, but are

adjacent to it, the manual and predicted PPs regions were adjacent or partially overlapped

(see Figure 43). We believed these situations remained the cases for correct predicted PPs.

In addition to these two cases, we still detect regions that are far from any manually labelled

PP. See for instance Figure 42(b)-left in which the detected regions are indeed FP cases with

no sign of a WP.

Figure 43: Location of manual labelled and predicted PPs. In each sub-figure, the LEFT
shows the original manual labelled PPs and predicted PPs. The RIGHT shows the manual
PPs regions of three PPs instances used for training (in pink ellipse) and the region of
predicted PPs (in green dotted arrow). Here we take the manual PPs regions as the ground-
truth and have the following cases: (a) the ground-truth is well located in the predicted PP
region; (b), (c) the ground-truth and predicted PPs regions have overlapping parts; (d) No
overlap between the ground-truth and the predicted PP region, but they are adjacent to
each other.

Back to the FPR, as a evaluation measure, FPR is inappropriate as a major index in the

class-imbalance problem. For example, if we simply predicted all the samples as negative

class, the FPR is zero but no positive case detected. In our problem, the FP instances are

the points that are predicted as PPs but do not intersect with the ground-truth. However,

most FP instances are adjacent to the ground-truth, and some predicted regions include

both TP and FP instances. Hence, the FP cases inspired us to learn more about the PPs

regions and propose a post-processing strategy to refine the prediction results of EnsSVM.

3.9.2 PPs regions

After our data augmentation strategy, each ground truth PP region corresponds to a man-

ually labelled PP and contains three points: the manually labelled PP point and its two
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adjacent points on fundus (see Figure 43 Manual PPs regions). We therefore assume that

a PP region on the STS fundus is composed of at least three consecutive points, and a set

of more than 5 consecutive points should be considered as containing more than one PP

(e.g. when PPs are close enough they will be detected as a single region). For a better

understanding of the results, we used all HCP data to train a EnsSVM and applied it to

the TVA dataset. For each point, we got the predicted label and the associated probability

from the EnsSVM. Here the probability is the mean probability of all based SVM classifiers.

(a) Histogram: count of predicted PPs regions

(b) Box graph: average probability of predicted PPs regions

Figure 44: Statistics of predicted PPs regions using EnsSVM in TVA data. (a) we count
the number of predicted regions with different points; (b) the average probability of each
region is calculated by the average of the probabilities of the predicted PPs points in each
region.

Figure 44 shows the histogram of the number of points per PP region, as well as the

probabilities associated to regions of a certain size. As we can see, most predicted PPs
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regions contained 5 points or less, but some can contain up to 17 or more points. Regions

with one or two points are the most frequent, wit 274 and 200 occurrences respectively.

However, they also have the lowest associated probability, with a median probability of 0.56

and 0.61 respectively. It should be noted that the average probability of all predicted PPs

regions containing three or more points is higher, around 0.7. Therefore, we believed that

most of the predicted PPs regions with only one or two points were FP cases.

To further test our hypothesis, we randomly selected 10 subjects with manually labelled

PPs (both left and right hemispheres) and used the remaining data to train the EnsSVM

model. The results of PPs regions as shown in Figure 45. Similarly, the probability of a

region containing 1 or 2 vertices is significantly smaller than that of other regions. After

comparing with manual labels, the regions containing only 1 to 2 vertices are all FP cases.

(a) (b)

Figure 45: Statistics of predicted PPs regions using EnsSVM on test dataset of 10 sub-
jects. (a) we count the number of predicted regions with different points; (b) the average
probability of each region is calculated by the average of the probabilities of the predicted
PPs points in each region.

Besides, and as mentioned before, we also consider that predicted PPs region with more

than 5 points probably contain more than one PP (e.g. when PPs are close enough they will

be detected as a single region). Therefore, based on the definition and statistical analysis

of PPs regions, once the points of the STS fundus have been classified, we propose the

post-processing strategy to select the PPs from the PPs regions. The main steps of post-

processing are as follow:

1. For each vertex on STS fundus, get its prediction label and the associated probability

from the SVMs.

2. Compute PP regions as connected components of the PP label set.
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3. Discard all regions with less than 3 vertices.

4. For regions with 5 vertices or less, select the vertex with maximum probability to

represent the PP.

5. For regions with more than 5 vertices,

a. Split the region at the vertex with minimum PP probability.

b. If sub-region contains 5 vertices or less, go to step 4. Otherwise, iterate step 5.

The details are shown in Algorithm 4.

Algorithm 4: Post-processing

Input: Vertices of STS fundus V = {v1, v2, . . . , vn}; Predicted labels of vertices
L = {l1, l2, . . . , ln}; Probabilities of vertices P = {p1, p2, . . . , pn}

Output: Selected vertices as PPs points PPs.
1 PPs[]: array for selected PPs;
2 R = ConnectRegion(V, L) (* compute PPs regions as connected components of PP

label set *);
3 S = Size(R) (* get the number of points in each PP region *);
4 R′ = R−RS<3 (* discard all regions with less than 3 vertices *);
5 for r ∈ R′S≤5 do
6 (* regions with 5 vertices or less *);
7 Select the vertex with maximum probability Vmax(P ) to represent the PP;
8 PPs = PPs ∪ Vmax(P )

9 end
10 for r ∈ R′S>5 do
11 (* regions with more than 5 vertices *);
12 Rsubs = Split(r, Vmin(P )) (* Split the region at the vertex with minimum PP

probability and get two sub-regions *);
13 for rsub ∈ Rsubs do
14 if 0 < Size(rsub) ≤ 5 then
15 Select the vertex with maximum probability Vmax(P ) to represent the PP;
16 PPs = PPs ∪ Vmax(P )

17 else
18 R′S>5 = R′S>5 ∪ rsub (* Iterate step 10 *)
19 end

20 end

21 end
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3.9.3 Validation on TVA Data

We applied our method, including post-processing of regions, on the TVA data and quan-

titatively compared the distribution of PPs in the STS with the manually identified PPs

from the HCP data.

(a) HCP vs. TVA

(b) Left STS vs. Right STS

Figure 46: The prediction results of PPs

On both hemispheres of the 92 subjects of the TVA data, 1085 PPs were detected, with

540 PPs in the left STS and 545 PPs in the right hemisphere. We detected 2 to 11 PPs in

the left STS (Meanl = 5.86) against 3 to 10 in the right STS (Meanr = 5.92), and there was

no significant difference between left and right STS across individuals (p = 0.84; Wilcoxon

signed-rank test), which is identical to the manual results produced on the HCP data (Bodin

et al., 2021). It is noticeable that our automatic classification detected more PPs per

hemisphere than the manual identification on the HCP data (Meanl = 4.5, Meanr = 4.3).

Nevertheless, the distribution of the number of PPs across depth ranges or different types

of PPs is similar, as shown in Figure 46(a).

84



Again, PPs were subdivided into into superficial and deep ones. In the left STS, the

number of superficial PPs Ns = 125 and the number of deep PPs Nd = 415, with a ratio

of 1 : 3.32, while in the right STS, Ns = 67 and Nd = 478, with a ratio of 1 : 7.13. The

ratios of superficial PPs to deep PPs differed significantly between left and right STS across

individuals (p < 0.05; Wilcoxon) which is consistent with manual results presented in (Bodin

et al., 2021). This difference in distribution across depth ranges between left and right is

illustrated in Figure 46(b). It is visible that the PPs in the right STS are located in deeper

regions than the left (see Figure 47), which again is consistent with (Bodin et al., 2021) and

is in agreement with the fact that the right STS is notoriously deeper than the left STS

(Leroy et al., 2015).

Figure 47: Comparison of prediction results between left and right hemispheres. More
PPs in the anterior part of STS are detected in left-hemispheres than right-hemispheres. In
general, the posterior part of STS is deeper than the anterior part.
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3.10 Conclusion

PPs, an interesting benchmark for models of the cortical folding process, have been little

studied until the last decades. Nevertheless, most studies were mainly focused on the super-

ficial PPs instead of the deep PPs. The difficulty in identifying all the PPs, and furthermore

the lack of a systematic method of automatically detection blocked the further studies. In

this chapter, we presented a method to automatically detect the PPs by using the morpho-

logical characteristic “WPs” in (Bodin et al., 2021). At first, to better distinguish the new

characteristic, the cortical surface profiling method (Li et al., 2010) was used to generate

the new feature maps ASD and SOG. Both the results of experiments and visualisation

showed the superiority of new maps in PPs identification compared to the DPF and cur-

vature map. Then, for each vertex of the STS fundus, we used the same surface profiling

method to generate their feature images recording the local geometrical information. After

that, the 3D PP recognition problem is converted to a 2D image classification problem of

class-imbalance where more points in the STS are non-PPs than PPs. To solve this case,

an ensemble SVM model with a rebalancing strategy was proposed. Our results are very

consistent with manual labelling, and show similar distributions of PPs across two different

dataset.

Herein, we considered the vertices in STS as PPs or non-PPs, which makes the problem

a binary classification. As PPs have been divided into “Superficial” and “Deep” by setting a

DPF threshold in (Bodin et al., 2021), a multiclass classification (e.g. Non-PPs, Superficial

PPs and Deep PPs) can be further investigated but obviously multiclass will lead to more

unbalanced ratios among different classes. Also, as PPs have been shown to be associated

with a specific type of superficial white matter (Bodin et al., 2021; Pron et al., 2021), the

utilization of local connectivity information will not only give us a better understanding of

PPs, but may also improve our model results. In the next chapter, we will focus on the

local connectivity of short-ranged U-fibers.
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4 Plis de Passage, short-range U-fibers connectivity

and myelin maps

4.1 Introduction

Structural connectivity, which can be defined as the existence of white matter tracts physi-

cally interconnecting brain regions (Sporns et al., 2005; Uddin, 2013), arouses great interest

in but not limited to the neurodevelopmental process (Dubois et al., 2014), functional or-

ganization (Saygin et al., 2012; Wendelken et al., 2017) and brain diseases (Griffa et al.,

2013). Thanks to the development of modern in vivo brain imaging techniques in the last

few decades, studies of the link between structural connectivity and cortical folding patterns

have emerged (Li et al., 2010; Zhang et al., 2014; Shinohara et al., 2020; Van Essen, 2020;

Zhang et al., 2020a,b; Bodin et al., 2021; Pron et al., 2021).

In particular, the U-fibers, which are known to connect adjacent gyri and cover the

superficial layer of the brain (Oishi et al., 2008; Zhang et al., 2018; Shah et al., 2019), have

shown a potential relationship to the PPs (Bodin et al., 2021; Pron et al., 2021) and some

specific folding patterns, such as “Pyramid-Shape Crossings” (Shinohara et al., 2020) and “3-

hinge gyri”(Zhang et al., 2020a). In more details, Pron et al. (2021) proposed a description

of short-range U-fibers along the central sulcus (CS) at group level and provided the evidence

of a significant relationship between the position of three U-fiber bundles and the hand area,

which showed a relationship to the PPFM (Boling et al., 1999; Boling and Olivier, 2004;

Yousry et al., 1997; Cykowski et al., 2008). Bodin et al. (2021) extracted the U-fibers along

the superior temporal sulcus (STS) and found a co-localization of U-fibers and PPs, namely

a dense short-range U-fibers below PPs location. Shinohara et al. (2020) observed and

defined a novel anatomical structure called “pyramid-shape crossing” (see Figure 48(a)),

which can be seen as a junction of inter-gyral U-fibers and intra-gyral U-fibers, by using

fiber dissection and neuroimaging techniques. Zhang et al. (2020a) proposed a new method

to compared the location of “3-hinge gyri” and underlying structural connectivity across

individuals, and found a high dMRI-derived fiber density correlation.

As we can see from the Figure 48(a), the labelled junctional areas (3-way gyral junctions)

of white matter ridges reveal how U-fibers contribute to the formation of the “pyramid-shape

crossing” (Shinohara et al., 2020). For example, the area 18 was a convergence points of the

intra-gyral U-fibers from 19, 16 and the inter-gyral U-fibers from 7 and 26. Also, we can

clearly see the “wall pinches” (WPs) near the junctional area. In this example, moreover,

the arrow 20-28 labelled a superficial PP and arrow 18-26 labelled a deep PP. Figure 48(b)

show some examples of various gyral locations, and it visible in particular that the 3-hinge
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(a) (b)

Figure 48: (a) Examples of fiber dissection. The digital numbers label the pyramid-shape
crossings area of various types of U-fibers. The white arrows show the inter-gyral U-fibers
to connect between adjacent ridges, while the black arrows show the intra-gyral U-fibers to
connect adjacent crossing. Figure adapted from (Shinohara et al., 2020); (b) Examples of
N-hinge gyri. Small triangles denote the centers of detected gyri patterns. Figure adapted
from (Li et al., 2010).

gyri are at the junction of a gyrus and a PP. So it seems that although defined in different

nomenclatures, 3-way junctions (Shinohara et al., 2020), 3-hinge gyri (Li et al., 2010), and

wall pinches/PPs are actually referring to similar structures and that they all have a link

with underlying connectivity.

In this chapter, we study the structural connectivity, particularly short-range U-fibers,

underlying the location of PPs. We first introduce a method to extract U-fibers used in

this study and build density maps. Then, we carry out some machine learning experiments

using the obtained density maps and analyse their results. After that, the myelin map as a

supplement to the structural connectivity is discussed.
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4.2 Materials and methods

In this study, we use the same processing pipeline than (Bodin et al., 2021; Pron et al., 2021)

to process the diffusion MRI data and generate the streamlines or bundles of fibers, referred

to as fibers. After getting all the fibers, we extract the U-fibers in regions of interest(ROIs)

and separate them into different groups according to their pathways. Then, we generate

density maps of their terminations on the cortical surface. Finally, a clustering approach

is proposed to integrate the various density maps and generate a new one that shows the

distribution of different U-fiber terminations along the cortical surface. The pipeline is

illustrated in Figure 49 and described in the following sections.

Figure 49: Analysis pipeline of U-fibers extraction and density maps generation of an
example in STS. (a) Gyri identification, gyral crest lines of superior temporal gyrus(STG)
and middle temporal gyrus (MTG); (b) STG (red) and MTG(blue) surface areas; (c) Ex-
tracted U-fibers: intra-STG U-fibers (red), intra-MTG U-fibers (blue), inter STG-MTG
U-fibers (green); (d) Density maps of the U-fibers terminations; (e) Clustering results of
three different density maps. Step: (1) Generate the ROIs from the gyral crest lines of STG
and MTG; (2) Extract the different U-fibers depending on the area where their endpoints
terminate. (3) Generate the density maps of U-fibers endpoints along the cortical surface.
(4) Clustering the density maps of three different U-fibers.

4.2.1 Image acquisition and preprocessing

The structural MRI data of 100 HCP subjects used to generate cortical surfaces was pro-

cessed in the same way than in section 3.2.
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dMRI scans pre-processed by the HCP, i.e., corrected for subject movement, susceptibil-

ity induced artefacts, eddy-current induced distortions and gradients non linearities (Jenk-

inson et al., 2012; Glasser et al., 2013), were used to build whole brain tractograms with

Mrtrix3 (http://www.mrtrix.org)(Tournier et al., 2019). dMRI pre-processed scans were

first corrected for non-uniform intensity as recommended in (Jeurissen et al., 2014): for each

subject, a single multiplicative bias field map was estimated from the mean b = 0s.mm−2

volume adopting the ANTS (https://github.com/ANTsX/ANTs) N4 algorithm (Tustison

et al., 2010) and this bias field was used to correct intensity of the whole dMRI sequence.

For each subject, a multiple shell multiple tissue (MSMT) (cerebrospinal fluid, grey matter,

white matter) response function was derived from the FreeSurfer tissue segmentation rely-

ing on the dwi2response command with default parameters. The resulting response function

was used to fit a constrained MSMT spherical deconvolution model (Jeurissen et al., 2014)

on the brain diffusion signal. Whole brain probabilistic tractography (Tournier et al., 2010)

was performed with the tckgen command (algorithm = iFOD2, step = 0.625mm, angle =

45◦, nb streamlines = 5 × 106, minlength = 2.50mm, maxlength = 300mm) with seeding

from the grey matter/white matter (GM/WM) interface volume and anatomical constraints

(e.g., endings in the grey matter, see (Smith et al., 2012b)stemming from the FreeSurfer

tissue segmentation.

The generated tractograms were filtered within the Convex Optimization Modeling for

Microstructure Informed Tractography (COMMIT) framework (https://github.com/daducci/

COMMIT) (Daducci et al., 2013, 2014) to remove spurious or overrepresented streamlines with

respect to the dMRI signal. Stick-Zeppelin-Ball (Panagiotaki et al., 2012) with default dif-

fusivity parameters (parallel diffusivity= 1.7 × 10−3mm2.s−1, intracellular fraction = 0.7

, isotropic diffusivities = 1.7 × 10−3 and 3.0 × 10−3mm2.s−1) was selected as a forward

model (Daducci et al., 2014). The resulting tractograms contained an average of one million

streamlines, which corresponds to a reduction of eighty percent.

The association streamlines, i.e., connecting ipsilateral cortical territories, were extracted

from the filtered tractogram, using their endpoints and a binary mask of each hemisphere

cortical grey matter. These streamlines were further filtered with respect to the GM/WM

mesh as follows. The exact signed distance from the streamlines points to the GM/WM

mesh was computed relying on trimesh (https://github.com/mikedh/trimesh). Each

segment composing a streamline was classified into intersection, intracortical (grey mat-

ter) or subcortical (white matter) using the values of the signed distance at the mesh of

its endpoints. Streamlines with more than two intersections with the mesh were excluded.

Regarding streamlines with at most two intersections, only the intersections and the subcor-

tical components were retained, with the latter having a length greater than the minimum
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value of 2.50mm.

4.2.2 U-fibers extraction

According to the criteria in (Bodin et al., 2021; Pron et al., 2021), we extracted the U-fibers

in both central Sulcus(CS) and STS. At first, the extraction of specific cortical landmarks

related to these two sulci were semi-automatic generated by using the SurfPaint module

(Le Troter et al., 2011). This software can extract either gyral crest or sulcal fundus lines as

geodesic lines between two extremities, with these geodesic lines minimizing or maximizing,

respectively, the DPF along their path. The gyral lines extremities based on anatomical

landmarks identifiable in each subject as described in previous studies (Bodin et al., 2018,

2021; Pron et al., 2021), and the selections of extremities are as follow:

CS: The dorsal extremity of the gyral crest lines was set at the apex of the characteristic

notch made by the CS on the medial face of the GM/WM mesh. The ventral extremity was

set on the crest of the subcentral gyrus (SubCG).

STS: The anterior extremity was chosen at the tip of the temporal lobe excluding the

last polar sulcus that is often oriented transversally to the STS (Ochiai et al., 2004). The

posterior extremity was chosen at the intersection between the STS horizontal main branch

and its posterior ascending branches (Segal and Petrides, 2012).

After we manually determined the extremities, the fundus line and two gyral crest lines

were drawn automatically, following the deepest and shallowest path between their respec-

tive extremities (Le Troter et al., 2011; Bodin et al., 2021). Note that for the STS, two

adjacent gyri are STG and MTG, and for the CS, they are the pre-central gyrus (PreCG)

and the post-central gyrus (PoCG). Then, two ROIs corresponding to the adjacent gyri were

generated by using two crest gyral lines and the fundus line. The corresponding ROI was

defined as the GM/WM mesh vertices located closer to the crest line than the local geodesic

distance between the crest line and the fundus line (see Figure 49(b)).

After generating the ROIs, we projected the termination of fibers onto the GM/WM

mesh points by minimizing the Euclidean distance. U-fibers were then extracted as stream-

lines with their two terminations projected on two (identical or different) ROIs (STG and

MTG in STS or PreCG and PoCG in CS). The top one percent of the longest U-streamlines

in each sulcus were filtered out to remove obvious outliers such as looping streamlines. Then,

we selected the short-range U-fibers between 10 and 60mm in length (Shinohara et al., 2020;

Bodin et al., 2021). For all the extracted U-fibers, according to the locations where their

endpoints terminate, we divided them into three groups as follow:

CS:
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1. Intra-PreCG U-fiber: both two endpoints of the streamline terminate in the PreCG;

2. Intra-PoCG U-fiber: both two endpoints of the streamline terminate in the PoCG;

3. Inter-PreCG-PoCG U-fiber: one endpoint terminates in the PreCG and the other in

the PoCG.

STS:

1. Intra-STG U-fiber: both two endpoints of the streamline terminate in the STG;

2. Intra-MTG U-fiber: both two endpoints of the streamline terminate in the MTG;

3. Inter-STG-MTG U-fiber: one endpoint terminates in the STG and the other in the

MTG.

4.2.3 Density map generation

After U-fibers extraction, the next step is to generate the density maps of U-fibers on the

cortical surface. Herein, the density maps are computed as the streamline endpoints along

the GM/WM mesh, namely the intersection between the streamlines of U-fibers and the

GM/WM mesh. A well-known problem is that most streamlines stop in the middle of the

white matter without reaching the grey matter regions (Jbabdi and Johansen-Berg, 2011;

Smith et al., 2012a; Girard et al., 2014). An example is shown in Figure 50, most streamlines

are below the GM/WM mesh so that we can not generate a robust and convincing density

maps (see Figure 51). Moreover, the effects of the well-known gyral bias (Reveley et al., 2015)

prevent a good localization of the fiber terminations. In order to overcome these limitations,

we use the Surface-enhanced tractography (SET) method (St-Onge et al., 2018). Specifically,

we generated a smooth version of the surface using the positive constrained mass-stiffness

flow (time t = 5, step size s = 3). Then, we computed the number of U-fibers intersecting

each triangle of the the smoothed surface. Finally, we projected the resulting U-fiber density

map from the smoothed surface onto the original GM/WM mesh. For each vertex vi on the

GM/WM mesh, fiber density is computed as

Dmi =

nadj∑
i=1

Nfib,i

nadj∑
i=1

Areai

(29)

where nadj is the number of adjacent triangles around the vertex, Nfib,i is the number of

fibers intersected with the triangle i and Areai is the area of triangle i. Figure 51 shows an

92



example to compare the density maps generated with SET or not, clearly the SET method

increased the coverage and connectivity of U-fibers compared to the origin maps.

Figure 50: Example of streamlines stop below the GM/WM mesh. (a) Origin GM/WM
mesh. (b) Streamlines below the GM/WM mesh. (c) Smoothed GM/WM mesh using the
SET. The dotted squares show the extracted streamlines. Few streamlines arrived at the
surface of GM/WM mesh in (a), while more streamlines can be seen in the less-convoluted
surface from the positive constrained mass-stiffness flow in (c).

4.2.4 Crossing-Connectivity map: a new visualization of various U-fibers

After the extraction of different U-fibers (intra-gyral and inter-gyri) and generation of den-

sity maps, we obtained three types of U-fibers and the corresponding density maps in both

CS and STS. For simplicity, here we take the U-fibers in STS as an example. For each STS,

the extracted U-fibers are divided into three categories, including intra-STG, intra-MTG

and inter-STG-MTG U-fibers Hence, for each vertex vi, we get a U-fiber density vector

V eci = (Dmintra−STG,i, Dmintra−MTG,i, Dminter−STG−MTG,i) (30)

where Dm is the density value of specified U-fibers. Here we call them the “U-fiber

vector”.

Based on the U-fiber vector, we can classify vertices into six categories, as shown in Table

17. Here, the number “1” stands for the presence of fibers. According to the ROIs used

in U-fibers extraction, we can not get vectors containing both intra-STG and intra-MTG

U-fibers. However, we have vertices with U-fiber vectors showing intra-gyral U-fibers and

inter-gyral U-fibers (Category 4 and 5 in Table 17). These correspond to the location of

pyramid-shape crossings as defined in (Shinohara et al., 2020).

Except for the region without any types of U-fibers, the remaining categories are named

as follow:

1. intra-STG, the region has only intra-STG U-fibers.
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(a) density map without SET

(b) density map with SET

Figure 51: Example of density maps generated with SET or not. (a) show the density
map generated using the origin GM/WM mesh. (b) used the smoothing method in SET to
generate a less-convoluted surface.

Table 17: Six categories of U-fiber vectors
Category intra-STG intra-MTG inter-STG-MTG

0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1
4 1 0 1
5 0 1 1
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2. intra-MTG, the region has only intra-MTG U-fibers.

3. inter-STG-MTG(inter-SM ), the region has only inter-STG-MTG U-fibers.

4. crossing Fibers STG(cross-FS ), the region has both intra-STG and inter-STG-MTG

U-fibers.

5. crossing Fibers MTG(cross-FM ), the region has both intra-MTG and inter-STG-MTG

U-fibers.

There are many ways to quickly classify the U-fiber vectors into the five groups. For

example, we can classify them simply following their definitions (see Figure 52(a)). This

strategy is subject to noise since a single streamline can change the category of a vertex. For

example, with a U-fiber vector like (30, 0, 1) with one type of fibers largely dominating, we

prefer to classify this case in category one when it would actually be classified in category

4. Because of this, such strategy would over-represent categories 4 and 5. Hence, a better

solution is to use a clustering method. Figure 52(b) shows a clustering result using k-means

(6 clusters, Euclidean distance). Note that the points with no fibers belong to the category

0 and they are not drawn in Figure 52. The result looks like an even split of the samples, a

classic drawback of the k-means algorithm. Therefore, we used a kernel method to improve

the clustering result. For each element of U-fiber vector V eci, we compute its logarithmic

function

V ec′i = ln(V eci + 1) (31)

and then apply the k-means method on the new vectors V ec′. The clustering result is

shown in Figure 52(c). As we can see, the classification results of single type fibers in (c)

are closer to the coordinate axis compared to (b), while the crossing fibers occupies the

remaining position, solving the problem existing in (b). After getting the clustering results,

we project them onto the GM/WM mesh (see Figure 53). This feature map shows the

distribution of short-range U-fiber terminations along the cortical surface.
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Figure 52: Three different classification results of U-fiber vectors. (a) classification using
definition; (b) k-means on V ec; (c) k-means on V ec′.

Figure 53: Feature maps generated by three different classification method. (a) classifi-
cation using definition; (b) k-means on V ec; (c) k-means on V ec′. These maps are corre-
sponding to the results in Figure 52. The correspondence between colors and regions is as
follows, Blue: intra-STG; Cyan: intra-MTG; Yellow: inter-SM; Orange: cross-FS; Dark red:
cross-FM.

4.3 Experiments and results

4.3.1 U-fibers termination maps

We generated the U-fibers termination maps for both hemispheres of all the 100 HCP

subjects. Some examples are shown in Figure 54 and 55. As shown in these examples, the

intra-STG and intra-MTG regions cover most of the area of STG and MTG respectively,

while the inter-SM and cross-ROIs regions are more concentrated in the gyral junctions or

wall pinches (WPs).

In order to further quantify and evaluate the relation between U-fibers connectivity and

morphology, we used two surface maps AverSampleDis (ASD) and SulciOrGyri (SOG) (see

Figure 34). These two maps can capture the morphological areas of interest, i.e. gyri and

WPs. Moreover, the ASD maps have been successfully used in the automatic detection of

PPs(Song et al., 2021). Specifically, for the feature value of ASD maps, we have ASD(v) ∈
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Figure 54: Examples of U-fibers termination maps in STS.
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Figure 55: Examples of U-fibers termination maps in CS.

R, and the smaller the (negative) value of ASD, the more vertices are located in gyri crests

or WPs. For the SOG maps, we have SOG(v) ∈ {0, 1}. The larger the value of SOG, the

more vertices are located in gyri crests or WPs.

Table 18 - 21 shows the mean feature values of 5 U-fibers regions respectively on 100

subjects using three different classification methods. We also computed the mean feature

value of all U-fibers regions as a comparison (the last column in table 18 - 21). The most

significant values are bold in the tables. As we can see, the two crossing U-fibers regions

have larger feature values than other regions both in CS and STS. In contrast, the regions

of only inter-gyral U-fibers (inter-SM in STS and inter-Pre-PoCG in CS) have the lowest

significant feature values.

In addition, we can see that the crossing U-fibers regions appears more at the posterior

part of the STS than the anterior(see Figure 54), while this case does not exist in the CS.

4.3.2 PPs and their underlying U-fibers

In order to understand more about the relationship PPs and their underlying short-range

U-fiber connectivity, we used the 100 HCP subjects with manually labelled PPs in the STS.

This dataset has been labelled and used in (Bodin et al., 2021). We started by using the

same pipeline than the one presented in (Bodin et al., 2021) (see Figure 57) to extract

U-fibers associated with PPs, which consists in:
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Table 18: AverSampleDist of 5 U-fibers regions in STS
Methods intra-S intra-M inter-SM cross-FS cross-FM All
Default definition -0.123 -0.019 0.064 -0.193 -0.203 -0.095
K-means of V ec -0.139 -0.056 0.003 -0.144 -0.159 -0.099
K-means of V ec′ -0.132 -0.034 0.034 -0.175 -0.193 -0.1

Table 19: SulciOrGyri of 5 U-fibers regions in STS
Methods intra-S intra-M inter-SM cross-FS cross-FM All
Default definition 0.586 0.484 0.394 0.654 0.669 0.557
K-means of V ec 0.604 0.518 0.456 0.603 0.622 0.560
K-means of V ec′ 0.596 0.498 0.425 0.636 0.657 0.562

Table 20: AverSampleDist of 5 U-fibers regions in CS
Methods intra-PreC intra-PoC inter-Pre-PoCG cross-FPreC cross-FPoC All
Default definition -0.007 -0.044 0.117 -0.254 -0.221 -0.082
K-means of V ec -0.084 -0.109 0.056 -0.235 -0.220 -0.118
K-means of V ec′ -0.021 -0.056 0.111 -0.262 -0.230 -0.091

Table 21: SulciOrGyri of 5 U-fibers regions in CS
Methods intra-PreC intra-PoC inter-Pre-PoCG cross-FPreC cross-FPoC All
Default definition 0.470 0.505 0.349 0.724 0.688 0.547
K-means of V ec 0.548 0.572 0.414 0.709 0.683 0.585
K-means of V ec′ 0.485 0.518 0.357 0.732 0.695 0.557

• manual identification of PPs (see section 3.3.3) as lines joining the MTG and STG

gyral crests via WPs.

• at the intersection between each PP and the two gyral crest lines, define two disk like

seeds with a given radius. This radius will be varied from 8 to 16mm as a parameter

of the process.

• for each PP, extract streamlines from the tractogram that start and end in the asso-

ciated PP seeds, and whose length is half of the PP length, and less than three times

that length.

• count the number of streamlines associated to each PP for a given seed size.

We nevertheless added an additional constraint by selecting the subset of U-fibers that go

from STG to MTG, using gyral seeds as defined in the previous section. The reason for such

filtering is the fact that using the original algorithm in (Bodin et al., 2021), when PP seeds

were large enough to overlap (see Figure 56), some very short streamlines fully included

in the seeds intersection are extracted even though they are not joining the two gyri. By
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explicitly selecting only fibers going from one gyrus to the other, such short streamlines are

filtered out.

Figure 56: The overlap of two PPs seeds in (Bodin et al., 2021). Seed size = 16mm.

The results of the quantitative analysis of the U-fiber count underlying PPs are shown

in Figure 59. The PPs were classified as “superficial” or “deep” if their DPF was below or

above 0.42 respectively (Bodin et al., 2021). We studied U-fibers with length between 10 and

60mm. As we can see from Figure 59, the proportion of extracted U-fiber streamlines from

superficial and deep PPs is similar among all PPs seeds both in left and right hemi-spheres.

And the number of U-fibers underlying deep PPs is greater than superficial PPs, which is

different from the results in (Bodin et al., 2021). In our observation, this is due to the fact

that we filtered out the excess fibers in the intersection between PP seeds, but not joining

the gyral seeds. The geometry of the superficial PPS is more likely to let that happen,

which might explain the results (see Figure 43). These short fibers that were filtered out

are either real or artefactual.

To further investigate the relationship between PP morphology of and underlying U-

fibers, we divided the U-fibers into two groups. For each PP line, we selected the three

vertices located in the middle and set 3 spheres of radius 3.5mm centered on these vertices

(see Fig. 60(a)).We then selected U-fibers that pass through these spheres (Type 1), and

those that do not (Type 2). Type 1 fibers are clearly following the entire PP trajectory

(from one extremity to the other via the middle points), while Type 2 fibers might be

following a different trajectory between their two extremities. Several examples are shown

in Figure 60(b) and a quantitative analysis is presented in Fig. 61: we plot each PP (deep
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Figure 57: Analysis pipeline for U-shape fibers extraction illustrated for one subject in the
left hemisphere. Delimited in length by the STS and in width by the adjacent gyri (1), all
PPs are manually identified and drawn (2) on the individual’s surface. Their extremities
are used as seeds (3) to extract the underlying short-range connectivity (7). Each colored
bundle corresponds to the streamlines extracted from one pair of seeds (one PP). Figures
adapted from (Bodin et al., 2021).
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Figure 58: A schematic of various U-fibers extracted using the pipeline in (Bodin et al.,
2021). The green circle shows a middle area of the PP line. The green dotted curves are the
U-fibers crossing through the middle area of PP. The red dotted curves are the long-range
U-fibers extending along the sulcus. The blue dotted curves are the U-fibers near the PPs
lines.

Figure 59: Proportions of U-fiber streamlines found below superficial PPs (red), deep PPs
(blue) in the left (LH) and right (RH) hemisphere. X-axis indicates the different surface
seed sizes used to extract streamlines (in mm). Errors bars illustrate the standard error of
the mean (SEM).
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or superficial) with coordinates corresponding to the number of Type 1 and Type 2 fibers.

It is very visible that superficial PPs have more Type 2 fibers than Type 1. It suggests

that their associated U-fibers might not all follow the PP trajectory in superficial white

matter, or pass deeper in white matter. On the other hand, seep PPs seem to show more

fibers following their trajectory in superficial white matter (see illustration in Fig. 60(b)).

(a)

(b)

Figure 60: Examples of spherical filters and extracted U-fibers. (a) Spherical filters gener-
ated using the central three vertices of PPs lines. The radius of each sphere is 3.5mm. (b)
Extracted U-fibers: the pink streamlines are Type 1 and the blue are Type 2.

The above results show that not all extracted U-fibers underlying PPs follow the exact

pathway of PPs lines through the sulcal bottom and a lot of them are just terminated near

the location of PPs seeds. It should be noted that all underlying PPs U-fibers are the inter-

gyral U-fibers, and more U-fibers away from the PPs were extracted when we increased

the seed size. Imagine that the area with larger seed size will inevitably cover more flat

regions of gyral walls, and these U-fibers outside the PPs are more likely to terminate in

these flat regions, which may correspond to the regions with only inter-gyral U-fibers in

section 4.3.1. Therefore, although there is a correlation between PPs and their underlying
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Figure 61: Distribution of extracted U-fibers for all the PPs (Superficial PPs in red,
Deep PPs in blue) with different seed size: (a) 12mm; (b) 14mm; (c) 16mm. Each point
corresponds to a PP. The linear regressions of these points was computed to show the overall
proportion of U-fibers pass through or outside the filter.

inter-gyral U-fibers, the trajectory of these fibers alone is not enough to explain the shape

of PPs.

4.3.3 PPs: the termination of intercrossing short-range U-fibers

As mentioned in previous sections and literatures (Song et al., 2021; Bodin et al., 2021), the

WPs, particularly pairs of WPs in adjacent gyri, have been used as specific morphological

characteristics to identify the PPs (see Figure 26, 27, 34). In order to investigate further the

relationship between PPs, WPs and short-range U-fiber connectivity, we first extract the

WPs using their morphology and divide them into two groups according to whether they

contained manually labelled PPs or not. We then propose a quantitative statistical analysis

in order to understand the difference between cortical regions with crossing U-fibers and

those with only inter-gyral U-fibers.

“Wall pinches” extraction

Figure 62 shows the pipeline we used to extract the WPs on the cortical surface using the

morphological feature maps. As the WPs are distributed within the STS, we first generate

gyral masks for STG and MTG that cover only the inner gyral walls (see Fig. 62(A)). In

order to separate the WPs and gyral crests, we dilate the gyral crests lines (to a geodesic

distance of 4 mm) on the cortical surface to get the gyral crests regions. Then we substract

the gyral crest regions from the gyral masks (Figure 62(B)) in order to get only the inner

walls of the sulcus. The intersection of the resulting mask with the SOG feature map is

then computed in order to get the location of the WPs on the inner wall of the sulcus (see

Fig. 62(E)). At this stage, we get all the vertices in WPs and we need to divide them into
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several WPs (Figure 62(E) right). Thus, we use the DBSCAN clustering method to classify

the vertices into WPs and remove the anomalous vertices at the same time. The DBSCAN

algorithm can be abstracted into the following steps (Schubert et al., 2017):

1. Find the points in the small neighborhood (ε) of every point, and identify the core

points with more than a specific number of neighbors (minpoints);

2. Find the connected components of core points on the neighbor graph, ignoring all

non-core points;

3. Assign each non-core point to a nearby cluster if the cluster is an ε neighbor, otherwise

assign it to noise.

For the DBSCAN used in our experiments, we have ε = 2mm and minpoints = 4.

Finally, from the resulting WP regions, we select those that are intersected with the

manually labelled PPs lines. As illustrated in Fig. 63, manually labelled PPs correspond

to the presences of paired WPs on both adjacent gyral walls (STG and MTG), as defined

in (Bodin et al., 2021). It is interesting to note that we extracted more WPs than the

number of manual labelled PPs (Mean 20.9 to 5.5). Some PPs are clearly associated with

paired WPs (Figure 63-top), while some WPs are located in relatively flat areas with no

PPs (Figure 63 bottom).

At this stage we extracted the WPs of the STS that are associated with a PP, and in

the following section, we study the nature of these PPs.

Connectivity and “Wall pinches” location

As we discussed in section 4.3.1, the regions with crossing U-fibers are largely related to the

WPs but their relationships with PPs needs further studying. Therefore, our study focuses

on the relationship between WPs and crossing U-fibers regions, as opposed to regions with

only inter-gyral fibers. In the following, we quantitatively compare WPs and connectivity

regions by estimating their overlap. For this, we choose the statistical coefficient Jaccard

index (Jaccard, 1912) used for gauging the similarity and diversity of sample sets.

Given two finite sample sets X and Y , the Jaccard index is defined as the size of the

intersection divided by the size of the union of the sample sets,

J(X, Y ) =
|X ∩ Y |
|X ∪ Y |

(32)

If X and Y are both empty, the Jaccard is equal to 1. Here, the samples of each set

are the vertices on the cortical surface, namely the sample set X = {v1, v2, . . . , vm}. On
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Figure 62: The pipeline of WPs extraction. This figure show an example in STG of the
left hemi-sphere. (A) Mask of STG; This mask covers only the inner gyral wall of the STS.
(B) Gyral crest regions generated by expansion of gyral creat lines. (C) SOG feature maps.
(D) Extracted WPs. (E) Post-processing of WPs from (D). STEP: Here we use the set
operations to represent the region operations, where the set name is the image reference
(A,B,C,D) (1) Expansion of gyral crest lines, the distance is 4mm. (2) Discard the gyral
crest regions: A− B. (3) Extract the WPs: D = C ∩ (A− B) (4) Classify and remove the
outliers by DBSCAN method. The red dotted circle marks the small noise regions.
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Figure 63: Examples of WPs extracted by our method in STG (blue) and MTG (red).
The green dotted curves show the manual labelled PPs lines, and the top figures show the
paired WPs on STG and MTG. The red dotted boxes show the WPs without PPs.

107



top of measuring the overlap between WPs and connectivity-defined regions, we also define

the coverage of these regions (Regs) as the proportion of WPs that are intersected by a

connectivity region, as follows:

Coverage(WPs,Regs) =
|WPs ∩Regs|
|WPs|

(33)

where |WPs| is the number of extracted WPs (instead of the number of surface vertices),

and |WPs ∩Regs| is the number of WPs intersecting with U-fibers regions.

These coefficients were computed for connectivity regions with crossing-fibers, as well as

for regions with inter-gyral fibers only. Coefficients were computed for the subjects, both

left- and right-hemispheres. Results are shown in Fig. 64.

For both two coefficients, crossing U-fibers regions get significantly better results (p <

0.05; Wilcoxon signed-rank test) than regions with only inter-gyral regions. Mean values

are: Coverage: 79% > 65%; Jaccard index : 0.171 > 0.096.

This indicates WPs are preferably associated with regions of crossing U-fibers than

regions with inter-gyral U-fibers alone. These results are consistent with those of (Shinohara

et al., 2020) that presents 3-way gyral junctions (i.e. WPs) as convergence points of intra-

AND inter-gyral short range U-fibers. It further supports the hypothesis that PPs are

defined with WPs that are regions of high density of intercrossing U-fibers termination.

(a) (b)

Figure 64: The comparison of crossing U-fibers regions and regions with only inter-gyral
fibers. The red points are the coefficients of left- or right-hemispheres.
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4.4 Automatic detection of PPs using connectivity maps

4.4.1 EnsSVM with conectivity maps

In section 4.2 and 4.3, we proposed a method to generate the connectivity maps of different

short-range U-fibers and studied their relationships with the PPs. Quantitative and statistic

analyses show that the PPs are located preferably in regions of high density of intercrossing

U-fibers terminations. Therefore, based on our successful experience of automatic detection

of PPs using an EnsSVM on morphological feature maps (section 3.8.1), in this section we

train an EnsSVM models using the connectivity maps of U-fibers terminations (Connectivity

EnsSVM) using the same HCP dataset. The main steps of training the EnsSVM are as

follows: First, we generate the density maps of intercrossing U-fibers. Then, we generate

feature images by using cortical surface profiling. Finally, the EnsSVM is trained on these

feature images. The performance of EnsSVM using density maps were shown in Table 22

- 24. Here, we used the 10 × 10 nested cross-validation to train the models and select the

optimal parameters. The Gaussian radial basis function(RBF) was selected as the kernel

function for all based SVM classifiers. The results are compared with an EnsSVM models

trained on ASD feature maps.

Table 22: The average value of model performance measures

Feature maps Recall G-mean F-measure AGF
ASD 0.811 0.773 0.527 0.774
Connectivity 0.720 0.598 0.347 0.623

Table 23: Prediction results with ASD and Connectivity (%)

Feature maps PPs Non-PPs Superficial PPs Deep PPs
ASD 81.1 73.7 92.4 79.0
Connectivity 72.0 49.7 68.2 73.4

Table 24: The accuracy of PPs in different depth ranges (%)

Feature maps d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
ASD 91.5 82.8 80.5 79.4 78.5
Connectivity 59.1 77.4 77.0 73.0 71.5

As can be seen from the results, the connectivity maps of crossing fibers performed worse

than the ASD maps. In particular, it did not predict well for non-PPs (49.7%), superficial

PPs(68.2%) and PPs with depth ∈ [0, 5]mm (59.1%). The fact that the connectivity En-

sSVM perform worse on the non-PPs samples than PPs is understandable: there is little

crossing U-fibers regions over flat gyral walls with no WP, leading to feature images con-

taining hardly any information for non-PPs. However, the poor prediction results on the
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superficial PPs with depth ∈ [0, 5]mm attract our attention. It indicates a low density of

crossing U-fibers underlying superficial PPs. Moreover, the number of inter-gyral U-fibers

underlying superficial PPs is lower than for deep PPs (see Figure 59). In the next section,

we investigate the variability of the density of U-fibers in the STS.

4.4.2 Connectivity heterogeneity in the STS

To further investigate the location of PPs and the density of fibers, we first generate a region

around each PP, with a dilation of the PPs lines (distance = 2.5mm). Here again, we use

the superficial and deep PP lines that were drawn in (Bodin et al., 2021). Each of these PP

line has an intersection with the STS fundus, and this fundus is parameterized between 0

(anterior extremity) and 100 (posterior extremity), hence providing a normalized localization

(coordinate) of each PP between the two extremities of the sulcus (see (Bodin et al., 2021)).

Figure 65 shows their distribution along the STS coordinates, where 0 represented the

anterior extremity and 100 the posterior extremity of the STS fundus (Bodin et al., 2018).

Figure 65: Distribution of PPs along the STS.

As visible, superficial PPs are located preferentially in the anterior part of the STS,

while the deep PPs are located more towards the posterior part. This heterogeneity of

distribution of the two types along the STS might have some consequences on the quality

of the connectivity features associated to both types of PPs.

We then extract and count the U-fibers (intra- and inter-gyri) terminating in these PP

regions with length between 10 and 60mm (Figure 66). For each fiber with a termination in

a PP area, we find the other termination and we classify the fiber depending on where is that

termination: same PP region, elsewhere in the STG, elsewhere in the MTG, or outside the

STS. For this classification we used the same ROI that were defined in section 4.2. Figure

67 shows the average number of streamlines associated to PPs at each position along the
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STS.

Figure 66: Extraction of the streamlines of fibers in the expanded PPs areas. (1) Generate
the expansion area of PPs lines, the distance is 2.5mm. (2) Extract the fibers with length
between 10 and 60mm. Here, we used the same ROIs as in section 4.2.

Figure 67: Average number of streamlines along the STS.

It is visible that when going from the anterior (coord. 0) to the posterior (coord. 100)

extremities, the number of stremlines increases. This is the case for fibers associated to

deep PPs, and one could think that it is related to the lower number of deep Pps in the

anterior part of the sulcus, but this is actually also the case for streamlines associated to

superficial PPs, despite the fact that these PPs are more numerous in the anterior part.

We can conclude that there is a general lower number of intra- and inter-gyral U-fibers
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streamlines in the anterior part of the sulcus, increasing as one moves towards the posterior

part.

This heterogeneity of connectivity along the STS is probably impairing the performances

of the EnsSVM trained on connectivity maps. So, although there is a correlation between

PPs and U-fiber connectivity, using connectivity maps alone it is difficult to identify all

PPs in the STS. In the next section, we investigate the possibility to use another marker

of fiber termination density in order to attempt to overcome the streamline heterogeneity

along the STS. We introduce the use of myelin maps, computed as the ratio of T1w/T2w

image intensities (Glasser and Van Essen, 2011).
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4.5 Myelin maps

Myelin is a fatty substance that forms a protective layer around axons and enhances axonal

conductance (Heath et al., 2018; van der Weijden et al., 2020). A myelin map, actually

a proxy of myelin content, can be derived from the MR signal intensity of a T1-weighted

(T1w) image normalized (divided) by a T2-weighted (T2w) image registered into the same

space. It has been found that spatial distribution of signal intensities from this map co-

localise with myelin-stained histology of the cortex (Glasser and Van Essen, 2011). This

method of myelin mapping was shown to delineate boundaries of cortical areas in population-

average maps as well as individual subjects, albeit with less precision. The benefit of this

approach is that the structural images typically acquired in a routine MR exam (i.e. for

segmentation, registration, and screening of incidental findings) can also be used to estimate

myelin content. It is also possible to get very high resolution images (∼ 1mm cubic) in a

reasonable scan time. This may be important for looking at cortical myelination, rather

than WM, where higher resolution is necessary to accurately delineate the folded cortical

surface. A detailed review of studies investigating correlations of biological features with

cortical myelin mapping can be found in (Glasser et al., 2014). Moreover, higher SWM

iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas,

potentially reflecting high fiber density or late myelination in these areas (Kirilina et al.,

2020), which means U-fibers are associated with high myelin, and an increase of the density

of U-fiber terminations can be expected to increase values in the myelin maps. Therefore,

if WPs are linked with a high density of U-fiber terminations, myelin maps should help to

localize them.

In this section, we first introduce the method we used to generate myelin maps. Then a

statistical analyses of the link between myelin and morphology maps is performed. Finally,

we train an EnsSVM using myelin maps and discuss the prediction results.

4.5.1 Myelin map generation

On the same HCP dataset that we used for U-fibers extraction, myelin maps are computed

as follows for each subject:

1. Preprocessing of T1 and T2 images: the T1 and T2 images are denoised, bias-corrected

(N4), and coregistered rigidly using the ANTS software.

2. Division between T1 and T2 images: we use fslmaths (https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/FSL) to divide the two images voxel-by-voxel.
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3. Project 3D volume T1/T2 images to white matter (WM) mesh for each individuals

using the Brainvisa (BV) software (http://brainvisa.info). Note that we exclude

the cingular pole in this step.

Figure 68 shows some examples of myelin maps we generated for the HCP subjects of

left- and right-hemispheres. As we can see, the WPs seem to have a higher myelin content,

which may fit with our prior hypotheses that the myelin maps should help to localize the

WPs. Also the gyral crests have a higher myelin content, in order to further investigate

the relationships between myelin maps and STS morphological features such as WPs, we

computed the Pearson correlation coefficient (PCC) between myelin maps and ASD maps

in different regions for all subjects.

Figure 68: Examples of myelin maps. From blue to red represents an increase in the value
of myelin maps.

As shown in Table 25, we selected three regions: the cortical surface (exclude the cingular

area); STG and MTG gyral walls in STS; STG and MTG gyral crests regions. Here, the

gyral crests regions are the regions in Figure 62 (B). The gyral walls are generated using the

inside vertices in STS of gyri masks (shown in Figure 62 (A)) and remove the gyral crest

regions (B).

As we can see from the results in Table 25, there is a very significant correlation for

the whole cortical surface, which means the link between morphology as depicted by ASD
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and mylein content. However, the correlation is low. This is probably due to the fact that

myelin content has strong variations depending on regions. For instance as can be seen on

Figure 68, the motor cortex (and primary areas in general) has a very high myelin content

but the temporal lobe has a rather low myelin values.

For the region of gyral walls, we got a higher and very significant correlation compare

to the other two regions. This is consistent with what we observed in Figure 68. Moreover,

since the ASD can indicate the presence of WPs (Song et al., 2021), it would mean that

variations of myelin indicate the presence of WPs.

Table 25: The PCC of myelin and ASD maps

Brain areas Mean PCC
Cortical surface (exclude the cingular area) -0.373 (∗)
STG, MTG walls -0.509 (∗)
STG, MTG gyral crests(4mm) -0.432 (∗)
(∗)p < 0.0001

4.5.2 Automatic detection of PPs using myelin maps

In the same way as the connectivity maps, we trained an EnsSVM model with the myelin

maps (MYL). Its performance are shown in Table 26 - 28. Here, we used the 10× 10 nested

cross-validation to train the models and select the optimal parameters. The Gaussian radial

basis function(RBF) was selected as the kernel function for all based SVM classifiers. Also,

we take the EnsSVM models using ASD feature maps as a comparison.

As shown in Table 26, the EnsSVM models trained with myelin maps shows slightly worse

results than the connectivity maps in terms of performance. Prediction results (Table 27) are

also similar for PPs and non PPs. But, it should be noted that the prediction performance

is higher for myelin maps than connectivity maps for superficial PPS (82.8% > 68.2%). On

the other hand, for deep PPs it is the opposite (65.5% < 71.5%). Also, as shown in Table

28, the MYL perform better for the PPs with depth between 0 and 10mm.

Unfortunately, neither model can accurately predict the non-PPs (49.7% and 41.2%) and

they do not compare with ASD-based EnSVM that performs better in almost all categories.

It appears to be that the connectivity maps cannot detect superficial PPs and non-PPs,

while MYL cannot detect the deep PPs and non-PPs.

115



Table 26: The average value of model performance measures

Feature maps Recall G-mean F-measure AGF
ASD 0.811 0.773 0.527 0.774
Connectivity 0.720 0.598 0.347 0.623
MY L 0.712 0.542 0.314 0.580

Table 27: Prediction results with ASD, connectivity and myelin maps (%)

Feature maps PPs Non-PPs Superficial PPs Deep PPs
ASD 81.1 73.7 92.4 79.0
Connectivity 72.0 49.7 68.2 73.4
MY L 71.2 41.2 82.8 65.5

Table 28: The accuracy of PPs in different depth ranges (%)

Feature maps d ∈ [0, 5] d ∈ (5, 10] d ∈ (10, 15] d ∈ (15, 20] d ∈ (20,+∞]
ASD 91.5 82.8 80.5 79.4 78.5
Connectivity 59.1 77.4 77.0 73.0 71.5
MY L 85.0 86.5 67.8 67.4 61.1

4.6 Discussion

4.6.1 Intercrossing fibers, 3-hinged gyri and “wall pinches”

In this chapter, we studied the PPs from the point of view of connectivity, particularly the

connectivity of short-range U-fibers. In fact, few studies have correlated the morphology

of PPs and U-fibers connectivity (Bodin et al., 2021; Pron et al., 2021). Bodin et al.

(2021) proposed that PPs are short-range U-fiber connectivity pathways, and studied the

high density of U-fibers underlying PPs in the STS. Pron et al. (2021) found an overlap

between a cluster of dense U-fibers and the location of PPFM in CS. Both studies revealed

some correlations between PPs and connectivity of U-fibers, while one limit they have in

common is that they only extracted the inter-gyral U-fibers that connect the adjacent gyri.

In this study, we studied different types of U-fibers (inter-gyral and intra-gyral U-fibers)

simultaneously. Our results suggest that the WPs associated with PPs are regions where

intercrossing U-fibers terminate, rather than the pathways connecting the adjacent gyri.

This is similar to what was suggested in the dissection study presented in (Shinohara et al.,

2020).

Actually, similar results have been shown in (Li et al., 2010; Ge et al., 2018; Zhang et al.,

2020a,b) where they defined regions named “cortical 3-hinges” or “3-hinge Gyri” based on

their morphology. These 3-hinge gyri have a striking similarity with the 3-way junctions

defined in (Shinohara et al., 2020), and both type of landmarks seem to correspond to

the intersection between gyri and wall pinches (see Figure 48 (b)). A strong structural

116



connectivity was found in these 3-hinges areas. Both PPs and 3-hinge gyri are defined

from the brain morphology. Shinohara et al. (2020) also defined 3-way junctions from

morphological observations and found they correspond to the convergence area of intra-

and inter-gyral short range fibers, leading to the definition of “pyramid-shape crossings”.

As mentioned, in fact, it seems that although defined in different nomenclatures, 3-way

junctions (Shinohara et al., 2020), 3-hinge gyri (Li et al., 2010), and wall pinches/PPs

are actually referring to similar structures and that they have a link with the underlying

connectivity.

4.6.2 Local connectivity networks underlying the PPs in STS

If we admit that WPs/PPs are the same objects, and that they are the convergence areas

of inter- and intra-gyral U-fibers, an interesting hypothesis has been proposed by Shinohara

et al. (2020) based on observations during Klingler’s dissections. They propose that 3-way

junctions are the hubs of local short-range connectivity networks around sulci, with longer

fibers coursing deeper within white matter to connect junctions that are further away from

each other. This hypothesis is illustrated in 69. For inter-gyral U-fibers, most short U-fibers

cross through the STS along the PPs lines, while the longer ones cross through the STS

under the short fibers and span over several location of PPs. Intra-gyral U-fibers pave the

gyral walls and connect two close location of PPs in the same side.

So if WPs are considered as nodes a local network of structural connectivity based on

these nodes could emerge. Detecting WPs/PPs could therefore be a way to have access

to these networks and WPs could serve as anchors for superficial structural connectivity

inference. Figure 70 show an example of a local network generated using the inter-crossing

fiber regions proposed in this study.

Besides, such local networks have been suggested as an explanation for the shift of

functional localization, or cortical plasticity, that takes place from the original locus to its

peripheral loci with the progression of brain tumors or the progressive stages of ischemic

expansion. For instance, Kristo et al. (2015); Saito et al. (2016); Magill et al. (2017) some-

times encounter patients with brain tumors whose function is relatively normal even though

the brain tumor is invading a functional brain locus, such as a motor or language area. Also,

recent studies using fMRI or intra-operative direct electrical stimulation revealed that the

brain function of patients with tumor can shift to another place from an original position

(Jang et al., 2002; Kawashima et al., 2013; Hayashi et al., 2014). Other resting-state fMRI

studies found that functional connectivity could change according to functional recovery by

increasing connections to neighboring gyri via U-shaped fibers or strengthening connections
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Figure 69: A summary sketch of extracted short-range U-fibers in STS. These fibers
form a local structural connectivity network. The red and blue hollow circles represent
the intersection of the PPs with the gyri on each side. (1) intra-gyral U-fibers with length
∈ (10, 20]mm, they connect the closest two regions in the same side; (2) intra-gyral U-
fibers with length ∈ (20, 40]mm, they connect two regions in the same side; (3) intra-gyral
U-fibers with length ∈ (40, 60]mm, they span over several location of PPs; (4) inter-gyral
U-fibers with length ∈ (10, 20]mm, the PPs pathways; (5) inter-gyral U-fibers with length
∈ (20, 40]mm; (6) inter-gyral U-fibers with length ∈ (40, 60]mm.

Figure 70: An example of local connectivity networks. Here we only show a bipartite
network, which corresponds to the connection of intral-gyral fibers. (a) the network in 3D
brain. This figure was generated using Mayavi(https://docs.enthought.com/mayavi/
mayavi/). (b) the bipartite graph of the network.

118

https://docs.enthought.com/mayavi/mayavi/
https://docs.enthought.com/mayavi/mayavi/


to the contralateral cerebral-hemisphere (Vassal et al., 2017; Bramati et al., 2019).

4.7 Conclusion

In this chapter, we first studied the PPs from the point view of connectivity, particularly the

short-range U-fibers. Instead of learning using only the inter-gyral fibers as in (Bodin et al.,

2021; Pron et al., 2021), we tried learning from both intra-gyral and inter-gyral U-fibers as

proposed in (Shinohara et al., 2020).

To meet this requirement, we proposed a new map to visualise the distribution of various

U-fibers terminations on the cortical surface. and we segmented this new map into several

regions containing different types of U-fibers, and analysed them separately. Based on

that, we showed a correlation between regions with crossing fibers and WPs. Therefore, we

hypothesize that the PPs are located in the regions where intercrossing U-fibers terminate.

Then, we tried to use the connectivity maps to detect PPs, and an EnsSVM model using

density maps of crossing fibers was trained. Although it showed a certain prediction accuracy

on deep PPs, the connectivity heterogeneity in the STS made it difficult to distinguish

between superficial PPs and non-PPs. In order to avoid the issues in connectivity maps, we

proposed to use myelin maps, which have shown correlations with various biological features

(Glasser et al., 2014). An EnsSVM using the myelin maps was trained, but unfortunately

the results went from one extreme to the other, namely the MYL models perform well on the

superficial PPs while unable to distinguish between deep PPs and non-PPs. A limitation

of our work is that we applied the same pipeline to train machine learning models with

different types of features. Even though the pipeline was successful in predicting PPs using

morphology, it did not perform for connectivity and myelin. Clearly, more work needs to

be done to exploit both connectivity and myelin maps and further work should attempt to

use them in conjunction with morphological feature maps such as ASD.
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General conclusion

In this thesis, we were interested in the “annectant gyri” or “plis de passages” (PPs), which

have been regarded as a specific landmark to partly explain the variability of cortical foldings

across individuals. The PPs describe transverse gyri that interconnect both sides of a sulcus,

are frequently buried in the depth of these sulci, and are sometimes apparent on the cortical

surface. Based on this definition, the PPs are classified into two categories, namely the

“Superficial PPs” and the “Deep PPs”. For the superficial PPs, they always appeared

with a clear variation of sulcal depth so that some automated algorithms or pipelines were

implemented (Cykowski et al., 2008; Le Guen et al., 2018) but limited to depth based

definitions. Also, a strict thresholds of depth is necessary in these method, which led to the

difficulty to distinguish the PPs and small fluctuations of fundus, especially the very deep

PPs in Ochiai et al. (2004). For the deep PPs, inspired by the description of interlocking

gyri (Cunningham, 1890a,b, 1897), a new three-dimensional characteristic, named “wall

piniches” (WPs), was proposed by Bodin et al. (2021). This local geometrical clue laid the

foundation for the automatic detection of deep PPs.

Selection of feature maps and machine learning methods

Since the PPs were characterized by two corresponding WPs on the adjacent gyri walls,

several criteria were used in Bodin et al. (2021) to facilitate the identification of the WPs in

the manual labelling. For a good visualization of the distortion of the cortical sheet, the DPF

and curvature were selected. However, the drawbacks of these two maps themselves prevent

them to be applied to the automatic detection. For the curvature map, one of the most

convoluted area of the cortical surface is the gyri crests, which led to higher curvature values

in gyri crests regions compared to the WPs. Thus, most small WPs on the gyri wall cannot

be identified as their show too small variations of curvature values in their neighborhood.

For the DPF, although it combines depth and curvature information, the DPF used in

our study is still mostly representing variations of depth. Since depth represents geodesic

distances from sulcal bottom to the gyral crown, it means the main direction of variation

of the DPF is orthogonal to the WPs. To overcome this, we implemented the cortical

surface profiling method (Li et al., 2010) and generated two feature maps AverSampleDis

(ASD) and SulciOrGyri (SOG). Both the results of experiments and visualisation showed

the superiority of new maps in PPs identification compared to the DPF and curvature map.

Besides morphological maps, we tested connectivity maps and myelin maps on our mod-

els, but none is better than the ASD maps. For the connectivity map of U-fibers termi-

nations, connectivity heterogeneity in the STS led to the worse prediction results for the
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PPs in the anterior part of STS. For the myelin map, it indeed got good results on the

superficial PPs. A limitation of our work is that we applied the same pipeline to train ma-

chine learning models with different types of features. As the correlation between these two

maps and PPs does exist from both observation and quantitative statistical analyses, more

study should focus on how to use them. Moreover, a multi-modal machine learning-based

detection process can be a further way to ensemble the clues related to PPs mentioned in

the literature.

Use and acquisition of data

Back to the supervised classification problem of PPs in our study, we divided the data

into two categories, namely PPs and non-PPs, according to whether the points on the STS

fundus are intersected with manual labelled PPs lines or not. In fact, there are various

ways to classify PPs (Ochiai et al., 2004; Bodin et al., 2021). We finally considered the

detection of PPs as a binary classification problem for the following reasons: First, the

dataset is an imbalanced dataset with a ratio of PPs to non-PPs around 1 : 16. This

typically imbalanced property, with PP as the minority class, leads to difficulties to directly

use many machine learning methods. Second, according to the morphological description of

the WPs in (Bodin et al., 2021), the WPs can be observed clearly for superficial PPs but

also exist for the deepest buried PPs, which means the morphological clues are similar for

two types of PPs.

For example, if we divided the PPs into superficial and deep PPs, the problem is con-

verted to a 3-classification problem (superficial PPs, deep PPs and non-PPs). We note that

the ratio of superficial PPs to deep PPs in the manually labelled PPs is approximately 2 : 7,

which means the imbalanced ratio among these three categories is much higher than that

of the binary problem. Intuitively, this would have an impact on the prediction of both

superficial and deep PPs. However, how it affects the model’s classification of PPs, espe-

cially superficial PPs with ratio of 1 : 72, still need to be experimented. Taking a different

perspective on this 3-classification problem, although the WPs are present both in super-

ficial and deep PPs, there is a slight difference in their local feature images (vectors), i.e.

whether the WPs are linked or not. Based on this view, we remove the superficial PPs (with

depth less than 10mm) from the data since they can be easily detected by the variation of

sulcal depth, and trained the same pipeline using ASD maps, we truly found an improve-

ment of prediction results on the deep PPs with depth in 10− 15mm (89.6% > 80.4%) and

15 − 20mm (81.5% > 79.4%). More work has to be done to investigate a better usage of

the data.
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In addition, how to get more data of PPs is important for the improvement of prediction

results. A quick way would be to apply our method to more data, such as the TVA dataset,

in order to generate PPs that can be further refined but the biggest challenge is the manual

delineation of the STS fundus. Another possible way is to apply our method to other

brain regions and sulci. However, the variability between brain regions, such as a general

difference in sulcal depth, may affect the prediction results. Of course, other machine

learning methods, such as semi-supervised learning, can be a future attempt.

View of PPs: from morphology to connectivity

As we introduced in the second chapters, the morphology or geometry of the PPs has been

widely studied (e.g. (Cunningham, 1890a; Ochiai et al., 2004; Zlatkina and Petrides, 2010;

Bodin et al., 2021)). Bodin et al. (2021) proposed that the PPs are short-range U-fiber

connectivity pathways, and found a high density of U-fibers underlying PPs in the STS. By

following this work, we designed several experiments to further investigate the relationships

between short-range U-fibers and PPs. Different from (Bodin et al., 2021), we studied

both intra-gyral and inter-gyral U-fibers in (Shinohara et al., 2020) and proposed a new

density map as a visualization tool of various U-fibers terminations. Our results show that

PPs are located the regions where intercrossing U-fibers terminate, which is consistent with

the fibers dissection results in (Shinohara et al., 2020). Different from the description of

PPs as short-range U-fiber connectivity pathways in (Bodin et al., 2021), our results reveal

more general patterns of U-fibers passing through the white matter under the STS and

terminating in the WPs where they enter the grey matter. Because of the high density of

U-fibers termination, the WPs are extruded from the gyral wall. Moreover, we find that

the distribution of U-fiber in very superficial PPs is not entirely following the pathways of

inter-gyral U-fibers. Most U-fibers have one end point terminating in the bridging gyrus

of the superficial PPs and the other end at the adjacent gyrus. It would be interesting to

investigate the different patterns of underlying U-fibers distributions between the superficial

and deep PPs. Does this differences explain their morphological differences?

Besides, some literature shows similar results in the association between specific gyral

patterns and high density of fibers, such as the 3-hinge gyri (Li et al., 2010; Zhang et al.,

2020a,b) and the 3-way junctions (Shinohara et al., 2020). From morphological observa-

tions of the PPs, we suggest they are actually referring to similar structures with different

nomenclatures. At the end of our study, we proposed a local connectivity network based

on U-fibers underlying the PPs in STS according to the hypothesis in (Shinohara et al.,

2020). As a prototype, more work is still needed to propose a valid model. Since literature
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and our work both demonstrated that PPs are located in regions of high-density U-fibers,

which means the location of PPs are related to a specific structural connectivity, whether

this structural connectivity can be used to explain functional connectivity is an interesting

topic. Furthermore, many literatures have shown that superficial PPs in the STS are more

developed in the left hemisphere, hinting at a link with the language system (Ochiai et al.,

2004; Glasel et al., 2011; Segal and Petrides, 2012; Leroy et al., 2015; Le Guen et al., 2018).

A recent result, however, has shown that a superficial PPs in the visual word form area has

a positive impact on reading skills (Cachia et al., 2018). Could the U-fibers underlying the

bridging gyrus of superficial PPs bring a clue to this functional area? Now that we can get

more PPs using our machine learning models, much work can be done in the future.
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Zlatkina Veronika, Amiez Céline, and Petrides Michael. The postcentral sulcal complex and

the transverse postcentral sulcus and their relation to sensorimotor functional organiza-

tion. European Journal of Neuroscience, 43(10):1268–1283, 2016.

144


	Résumé
	Abstract
	Table des matières
	Introduction
	Context
	The human brain
	Brain anatomy
	Cellular components

	Cortical folding and variability
	Inter-individual variability

	Brain Connectivity
	Definition: short association fibers and U-shaped fibers
	U-shaped fibers in human brain

	Magnetic resonance imaging
	Construction and physics
	MRI imaging sequences

	Conclusion

	Plis de Passage: a morphological view
	Introduction
	Variation of sulcal depth and PPFM
	PPs and sulcal root
	PPs and sulcal pits

	New characteristics: ``wall pinches''
	Conclusion

	Automatic detection of Plis de passage from morphology
	Introduction
	Subjects and image acquisition
	Image preprocessing and identification of PPs
	Anatomical images and related maps
	STS identification and drawing
	PPs identification

	Feature extraction and feature images
	Cortical surface profiling
	Morphological feature maps of cortical surface
	Feature images

	Data preprocessing: the imbalanced property of PPs datasets
	Imbalanced datasets
	Sampling strategy

	Machine learning methods
	Algorithms
	Experiments and results
	Summary

	Evaluation measures with class-imbalance
	Ensemble learning methods
	The Bagging Algorithm
	Ensemble Support Vector Machine
	Experiments and results

	PPs regions and post-processing
	False positive PPs
	PPs regions
	Validation on TVA Data

	Conclusion

	Plis de Passage, short-range U-fibers connectivity and myelin maps
	Introduction
	Materials and methods
	Image acquisition and preprocessing
	U-fibers extraction
	Density map generation
	Crossing-Connectivity map: a new visualization of various U-fibers

	Experiments and results
	U-fibers termination maps
	PPs and their underlying U-fibers
	PPs: the termination of intercrossing short-range U-fibers

	Automatic detection of PPs using connectivity maps
	EnsSVM with conectivity maps
	Connectivity heterogeneity in the STS

	Myelin maps
	Myelin map generation
	Automatic detection of PPs using myelin maps

	Discussion
	Intercrossing fibers, 3-hinged gyri and ``wall pinches''
	Local connectivity networks underlying the PPs in STS

	Conclusion

	General conclusion

