
HAL Id: tel-03789700
https://theses.hal.science/tel-03789700v1

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient obfuscation for HLS security : application to
cloud security, birthmarking and hardware Trojan

defense
Hannah Badier

To cite this version:
Hannah Badier. Transient obfuscation for HLS security : application to cloud security, birthmarking
and hardware Trojan defense. Cryptography and Security [cs.CR]. ENSTA Bretagne - École nationale
supérieure de techniques avancées Bretagne, 2021. English. �NNT : 2021ENTA0012�. �tel-03789700�

https://theses.hal.science/tel-03789700v1
https://hal.archives-ouvertes.fr

LOIRE MATHSTIC

THÈSE DE DOCTORAT DE

L’ECOLE NATIONALE SUPÉRIEURE
DE TECHNIQUES AVANCÉES BRETAGNE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Hannah BADIER

Transient Obfuscation for HLS Security

Application to Cloud Security, Birthmarking and Hardware Trojan Defense

Thèse présentée et soutenue à ENSTA Bretagne, Brest, le 29/04/2021
Unité de recherche : Laboratoire Lab-STICC, UMR 6285

Rapporteurs avant soutenance :

Lilian BOSSUET Professeur des Universités, Université Jean Monnet, Laboratoire Hubert Curien, Saint-Etienne
Roselyne CHOTIN Maître de Conférences, HDR, Sorbonne Université, LIP6 Paris

Composition du Jury :

Président : Régis LEVEUGLE Professeur des Universités, Université Grenoble Alpes, TIMA
Examinateurs : Christian PILATO Assistant Professor, Ecole Polytechnique de Milan, Italie

Bertrand LE GAL Maître de Conférences, ENSEIRB Matmeca, Laboratoire IMS, Talence
Dir. de thèse : Guy GOGNIAT Professeur des Universités, UBS Lorient, Lab-STICC
Co-dir. de thèse : Philippe COUSSY Professeur des Universités, UBS Lorient, Lab-STICC
Encadr. de thèse : Jean-Christophe LE LANN Enseignant-Chercheur, ENSTA Bretagne, Lab-STICC, Brest

Contents

Contents iii

List of Figures v

List of Tables vii

Introduction 1

1 Background and Related Work 7
1.1 Hardware Design Process . 7

1.1.1 IC Design Cycle . 7
1.1.2 HLS . 12
1.1.3 Hardware IPs . 14
1.1.4 Hardware Design Threats 15

1.2 Hardware IP Protection . 18
1.2.1 Foundry . 18
1.2.2 Layout Level and Gate-Level Netlist 19
1.2.3 RTL . 24
1.2.4 Behavioral . 26
1.2.5 Threats and Countermeasures 28

1.3 Software Obfuscation . 29
1.3.1 Definition and Principles . 29
1.3.2 Threat Models and Use cases 31
1.3.3 Taxonomy and Common Transformations 32
1.3.4 Commercial and Open-source Tools 35

iii

iv CONTENTS

1.3.5 Evaluation Metrics . 36
1.4 Conclusion . 37

2 Transient Obfuscation against IP Theft during Cloud-based HLS 39
2.1 Threat Model . 40

2.1.1 HLS-as-a-Service . 40
2.1.2 Threat Model . 41

2.2 Related Work and Background . 42
2.2.1 Cloud Computing Challenge: Ensuring Data Security 42
2.2.2 Algorithm Level Obfuscation 43

2.3 Proposed Approach: Transient Obfuscation 44
2.3.1 Transient Obfuscation . 44
2.3.2 Complete Flow . 46

2.4 Proposed Obfuscation Techniques 48
2.4.1 Bogus Code Insertion . 48
2.4.2 Control Flow Flattening . 52
2.4.3 Further Hiding of the Control Flow 54
2.4.4 Data Obfuscation by Literal Replacement 55

2.5 De-obfuscation: Making the Process Transient 56
2.5.1 Pedagogical Example . 57
2.5.2 Naive Key Injection . 58
2.5.3 Targeted RTL Modification 60
2.5.4 Full RTL De-obfuscation . 61

2.6 KaOTHIC: Key-based Obfuscating Tool for HLS In the Cloud . . . 62
2.6.1 Obfuscation Flow . 62
2.6.2 Adding Randomness . 63
2.6.3 Obfuscation Parameters . 64

2.7 Experimental Setup and Results . 65
2.7.1 Test Flow . 65
2.7.2 Overhead - Results and Analysis 66
2.7.3 Transience and Security: Discussion 71

2.8 Conclusion . 73

CONTENTS v

3 Transient Obfuscation for BIP Birthmarking 75
3.1 Threat Model and Background . 76

3.1.1 Threat Model . 76
3.1.2 Watermarking . 77
3.1.3 Effects of Code Transformations on High-Level Synthesis . . 78

3.2 Related Work . 79
3.2.1 BIP Watermarking Techniques 79
3.2.2 Software Watermarking Techniques 79

3.3 Proposed Approach . 80
3.3.1 Complete Flow and Notations 80
3.3.2 Watermark Insertion . 82
3.3.3 Watermark Verification: Birthmarking Concepts 83

3.4 Metrics for Watermark Verification 87
3.4.1 Scheduling . 87
3.4.2 Dataflow . 91

3.5 Implementation and Experimental Setup 96
3.5.1 Experimental Setup and Dataset 96
3.5.2 Scheduling . 97
3.5.3 Dataflow . 97
3.5.4 Crokus . 98

3.6 Results and Analysis . 99
3.6.1 Scheduling . 99
3.6.2 Dataflow . 105
3.6.3 Benchmark Results . 108

3.7 Conclusion . 110

4 Transient Obfuscation against Hardware Trojan Insertion 111
4.1 Threat Model and Definitions . 112

4.1.1 Hardware Trojans . 112
4.1.2 Threat Model . 113
4.1.3 Examples of HTs in BIPs . 116

4.2 Hardware Trojan Countermeasures: Related Work 118
4.2.1 Detection and Run-time Monitoring 118

vi CONTENTS

4.2.2 Design for Security . 120
4.3 Proposed Countermeasures for Hardware Trojan Insertion during

HLS . 121
4.3.1 Payload: Removal by De-obfuscation 121
4.3.2 Combinational Trigger: Detection during De-obfuscation . . 124

4.4 Experimental Setup and Preliminary Results 127
4.4.1 "Collatz" Hardware Trojan 127
4.4.2 HT Removal . 129
4.4.3 Discussion . 132

4.5 Conclusion . 133

Conclusion 135

List of published contributions 139

Bibliography 141

List of Figures

1.1 Gajski-Kuhn Y chart. 8
1.2 IC design flow. 10
1.3 HLS design flow. 13
1.4 HT attacks at different design stages. (from [Bhu+14]) 17
1.5 Standard and camouflaged cell layouts for NAND [(a) and (c)] and

NOR [(b) and (d)] gates. (from [Raj+13]) 21
1.6 Logic locking example on c17 benchmark. The correct key inputs

are k0=1, k1=0, k2=1. (from [DF19]) 22
1.7 Active hardware metering design flow. (from [CZZ17]) 23
1.8 FSM watermarking example: (a) original FSM, (b) adding transi-

tions, (c) augmenting input and adding transitions. (from [TC00])
. 24

1.9 Modified FSM for key-based RTL obfuscation. (from [CB10]) . . . 25
1.10 Classification of obfuscating transformation mechanisms. (from [Hos+18])

. 33

2.1 Vulnerable HLS in the cloud design flow. 42
2.2 HLS in the cloud design flow secured by KaOTHIC, where the ex-

ternal HLS is considered untrusted. 47
2.3 Behavioral and dataflow representation of a code with bogus code

insertion. 49
2.4 Basic block example before and after obfuscation: insertion of two

bogus expressions. 50
2.5 Different obfuscation techniques applied by KaOTHIC to a function

calculating the gcd of two numbers. 51

vii

viii LIST OF FIGURES

2.6 Example CFG before and after obfuscation by adding bogus basic
blocks. 52

2.7 Example CFG before and after obfuscation by control flow flattening. 53
2.8 Example CFG before and after obfuscation by adding bogus tran-

sitions. 55
2.9 Example of a de-obfuscation by forcing input values. 57
2.10 Example RTL datapath before and after de-obfuscation. 59
2.11 Obfuscation flow in KaOTHIC compiler. 62
2.12 Average design overhead per obfuscation level, for bogus expression

insertion - ASIC. 68
2.13 Average design overhead per obfuscation level, for bogus expression

insertion - FPGA. 68
2.14 Design overhead per branching degree, for bogus basic block inser-

tion - FPGA - obfuscated. 69
2.15 Design overhead per branching degree, for bogus basic block inser-

tion - FPGA - de-obfuscated. 70
2.16 Cyclomatic complexity increase of Needwun source code after ob-

fuscation per obfuscation level. 72

3.1 Watermarking Threat Model. 76
3.2 Watermarking Flow. 81
3.3 Birthmark Extraction Flow. 85
3.4 Two scheduling examples. 89
3.5 Partial DFG of original and obfuscated code. 91
3.6 Example of dataflow sequences for two designs. 94

4.1 HT Taxonomy - Trust-Hub.org . 114
4.2 HT insertion by HLS tool - threat model. 115
4.3 Simple example of a HT inserted in a BIP. (from [VS16]) 117
4.4 HT removal by de-obfuscation flow. 122
4.5 HT detection during de-obfuscation. 125
4.6 No Trojan, these lines are removed during de-obfuscation. 126
4.7 Key1 and Input1 are used as triggers for the Trojan. 126

LIST OF FIGURES ix

4.8 Code example of a Collatz HT inserted in a greatest common divisor
calculation. 128

4.9 Theoretical and experimental HT removal rate. 131

List of Tables

1.1 Common hardware threats and countermeasures. 28

2.1 Average design overhead on ASIC. 66
2.2 Average design overhead on FPGA. 66

3.1 Similarity and containment of scheduling: experimental results. . . 99
3.2 Using scheduling containment as classifier: experimental results. 101
3.3 Using scheduling similarity as classifier: experimental results. . . 102
3.4 Similarity and containment of scheduling: experimental results with

obfuscation level ≥ 50%. 103
3.5 Using scheduling similarity and containment as classifier: ex-

perimental results with obfuscation level ≥ 50%. 103
3.6 Similarity and containment of scheduling: experimental results with

5% bogus operators. 104
3.7 Using scheduling similarity and containment as classifier: experi-

mental results with 5% bogus operators. 105
3.8 Containment of dataflow: experimental results with obfuscation

level ≥ 50%. 106
3.9 Similarity (Levenshtein) of dataflow: experimental results with

obfuscation level ≥ 50%. 106
3.10 Similarity (subsequence) of dataflow: experimental results with

obfuscation level ≥ 50%. 107
3.11 Using dataflow containment and similarities as classifiers: experi-

mental results. 107

xi

xii LIST OF TABLES

3.12 Similarity and containment of scheduling: experimental results with
obfuscation level ≥ 50% for adpcm. 108

3.13 Similarity and containment of scheduling: experimental results with
obfuscation level ≥ 50% for AES. 108

3.14 Using scheduling similarity and containment as classifier: experi-
mental results for adpcm. 109

3.15 Using scheduling similarity and containment as classifier: experi-
mental results for AES. 110

4.1 HT Removal Rate: Experimental Results. 130

Introduction

Context

In 1959, Jack Kilby at Texas Instruments and Robert Noyce of Fairchild Semi-
conductor Corporations both worked independently and received patents for the
invention of the first integrated circuit (IC). Made of a large number of transis-
tors and based on semiconductor material such as silicon, the IC quickly became
the basis of almost all modern electronics. Today, this invention has changed not
only the world of electronics, but every aspect of our society. Computers, mobile
phones and other portable devices, gaming consoles, modern cars, and even house-
hold appliances all rely on ICs. Semiconductors are now present everywhere, at
an incredible amount. No other device in history has been manufactured as often
as the transistor1. The global IC market has reached $360 billion in 20202, and is
expected to grow to $468 billion by 2025. The main growth driver nowadays is the
increasing use of connected devices and the widespread adoption of the internet of
things (IoT) in everyday life. This continuous increase of sales can also be linked to
the significant leaps that the industry continues to make in regards to ever higher
performances and always smaller size.

However, this frantic market growth and continuing improvements have also
lead to tighter time-to-market constraints, while ICs have steadily become more

113 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufac-
tured Human Artifact in History. https: // computerhistory. org/ blog/ 13-sextillion-
counting-the-long-winding-road-to-the-most-frequently-manufactured-human-
artifact-in-history/

2Integrated Circuits Global Market Report 2021. https: // www.
thebusinessresearchcompany. com/ report/ integrated-circuits-global-market-
report

1

https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/
https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/
https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/
https://www.thebusinessresearchcompany.com/report/integrated-circuits-global-market-report
https://www.thebusinessresearchcompany.com/report/integrated-circuits-global-market-report
https://www.thebusinessresearchcompany.com/report/integrated-circuits-global-market-report

2 INTRODUCTION

complex, time-consuming and expensive to produce. These factors have lead to
a globalization and a fragmentation of the whole IC supply chain, including both
manufacturing and the design process.

Most semiconductor companies used to be integrated device manufacturers
(IDM), meaning that they were responsible for both design and manufacturing.
Nowadays, the cost of building new foundries to keep up with technological ad-
vances has become prohibitively expensive: market leader TSMC’s newest foundry
for 3nm technology, expected to start production in 2022, has been estimated to
cost up to $20 billion3.Today, it is no longer economically viable for most companies
to build and maintain their own foundries. Only a few IDMs such as Texas Instru-
ments and Intel remain. Most of the industry has evolved to a dual model, where
design and manufacturing are completely separated: fabless companies, such as
Nvidia or AMD, are responsible for design of new ICs, while pure-play foundries
such as TSMC or UMC manufacture the devices for them. Moreover, test, as-
sembly and packaging are increasingly getting outsourced as well, to so-called
outsourced semiconductor assembly and test (OSAT) vendors.

This fragmentation of the supply chain is also directly affecting the design
houses. To be able to keep up with increasingly tight time-to-market constraints,
many rely on third party intellectual properties (IPs), reusable blocks of hardware
designs sold by specialized vendors. In 2020, the worldwide semiconductor IP
market is estimated at $5.6 billion4. Design teams themselves are more and more
spread out around the world, with the creation of one design potentially involving
specialists located in different countries or even on different continents. Finally, the
complexity of modern ICs has imposed the use of elaborate toolchains involving
several distinct tools sold by different specialized electronic design automation
(EDA) vendors.

This ongoing globalization has opened up many possibilities for industry ad-
vancement, but has also created several vulnerabilities to attacks. IP theft and
illegal reuse, reverse-engineering, overproducing and counterfeiting are all known

3TSMC Completes Its 3nm Multi-Billion Fab. https: // www. tomshardware. com/ news/
tsmc-3nm-fab-completed

4Semiconductor Intellectual Property (IP) Market - Global Forecast to 2025.
https: // www. marketsandmarkets. com/ Market-Reports/ semiconductor-silicon-
intellectual-property-ip-market-651. html

https://www.tomshardware.com/news/tsmc-3nm-fab-completed
https://www.tomshardware.com/news/tsmc-3nm-fab-completed
https://www.marketsandmarkets.com/Market-Reports/semiconductor-silicon-intellectual-property-ip-market-651.html
https://www.marketsandmarkets.com/Market-Reports/semiconductor-silicon-intellectual-property-ip-market-651.html

CONTRIBUTIONS 3

challenges that the IC supply chain faces today. For example, it is estimated that
counterfeit ICs represent up to 1% of semiconductor sales ([KP13]), leading to a
loss of about $100 billion of revenue for electronics companies ([PT06]). Mali-
cious modifications of ICs during design or manufacturing in the form of hardware
Trojans are also a growing concern. Several incidents that probably constitute
hardware Trojan attacks have already been reported: the critical failure of Syria’s
air defense system during an Israeli air strike in 2017 is reported to have been
intentionally triggered remotely through a so-called kill switch hidden in a micro-
processor ([Ade08]).

Research efforts in the past years have been concentrated on securing all steps
of the IC design cycle, with special focus brought to manufacturing. However, not
much attention has been brought so far to the security issues and protection possi-
bilities linked with behavioral synthesis. High-level synthesis (HLS) is a technique
that aims at converting untimed, behavioral level descriptions of circuits (e.g. in
C/C++) to register transfer level (RTL) descriptions, written in hardware descrip-
tion languages such as VHDL or Verilog. While HLS has been a promising research
subject since the 1980’s, it has gained renewed attention in the last ten years and
is now increasingly adopted by design houses as powerful leverage for increasing
design productivity. However, using HLS also introduces new vulnerabilities and
new attack vectors in the IC design cycle. While most works consider HLS to
be a secure design step, done in-house with trusted tools, some recent publica-
tions have raised concerns about security risks at the behavioral level: [Pil+18a]
[Bas+19] [VS17a]. It is thus imperative to address the potential threats introduced
in the design cycle by HLS, as well as the risks that behavioral level IPs face.

Contributions

This thesis studies different security issues related to behavioral level IPs and
synthesis. It focuses on a novel obfuscation concept and its applications towards
security during untrusted, in-house or external HLS, as well as towards securing
behavioral IPs before, during and after HLS. The main contributions of this thesis
are as follows:

4 INTRODUCTION

– A novel concept for high-level, key-based hardware obfuscation: transient ob-
fuscation, which involves an obfuscation and a de-obfuscation step to protect
IPs at design time, specifically during HLS.

– Several practical techniques for transient obfuscation, created or adapted
from existing software obfuscation techniques.

– A fully automated toolset, KaOTHIC, that implements the previous obfus-
cation techniques, as well as several tools for de-obfuscation.

– Three applications of transient obfuscation, with for each a detailed threat
model, a characterization of the approach, a practical implementation and
experimental validation:

1. A low overhead design flow for untrusted, cloud-based HLS, secured
through transient obfuscation.

2. A method for exploiting transient obfuscation side effects as a birthmark
to identify stolen behavioral IPs.

3. Two methods for using transient obfuscation against hardware Trojan
insertion during HLS.

Outline

Chapter 1 begins by presenting the IC design cycle, with the different steps
and actors involved. We give a more in-depth explanation of high-level synthesis,
which is the main focus of this thesis. We then give an overview of different security
threats, as well as a state-of-the-art of existing IP protection methods at different
abstraction levels. Finally, since our focus in this work is on hardware protection at
the behavioral source code level, we also give a presentation of software obfuscation
principles and techniques.

In Chapter 2, we focus on the risk of IP theft during cloud-based HLS. We
start by explaining why cloud-based HLS is a likely scenario and giving the se-
curity risks involved with this model. After a quick overview of relevant related
work and background information on cloud security, we introduce our approach:

OUTLINE 5

transient obfuscation. We enumerate several obfuscation techniques and explain
different methods for de-obfuscation. This chapter also presents a tool, KaOTHIC,
implemented to apply transient obfuscation on C code, and finishes with a series
of experiments to test our approach.

Chapters 3 and 4 extend the previous work by showing how transient obfus-
cation can also be used for other security purposes. In Chapter 3, we focus on
the subject of stolen behavioral IP identification through watermarking, and in
particular birthmarking. After presenting the threat model, as well as background
and related work on watermarking, we propose a birthmark-based approach that
uses the side-effects of transient obfuscation. We give a detailed presentation of
this approach, before providing an experimental setup to validate our method.
The end of the chapter presents the experimental results.

Chapter 4 in turn focuses on the subject of protection against hardware Tro-
jans. We start by introducing the threat model, based on the risk of Trojan
insertion by a malicious HLS tool, and by presenting related work on Trojan coun-
termeasures. Then we explore two different methods for using transient obfus-
cation against Trojan insertion. An experiment to validate the first method is
described and its results are presented. We also introduce a tool for hardware
Trojan insertion in source code, used in the experimental setup.

Chapter 1

Background and Related Work

The hardware design process is more fragmented and complex than ever. The inte-
grated circuit (IC) design cycle involves a multitude of design and validation steps
at different abstraction levels, several actors working together, as well as complex
toolchains and methodologies. In this chapter, we start by presenting background
information about the IC design cycle, as well as the actors and concepts involved.
We also give a short introduction into high-level synthesis, which is the step in the
hardware design cycle we focus on in this work. The aforementioned complexity
of the hardware design ecosystem has lead to the identification of several security
threats. We present three of the main threats: reverse-engineering, piracy and
hardware trojan insertion. To thwart these security issues, many methods have
been developed. We give an overview of the protection techniques at different
abstraction levels, while pointing out works that are relevant to the subject stud-
ied in this thesis, security during HLS. Finally, since our work aims at protecting
high-level source code, we draw parallels with the software protection world by
presenting software obfuscation principles and methods.

1.1 Hardware Design Process

1.1.1 IC Design Cycle

Integrated Circuits (ICs), also called chips, are electronic devices based on semi-
conductors (silicon) and mainly made of transistors. Nowadays, with the advances

7

8 CHAPTER 1. BACKGROUND AND RELATED WORK

of very-large-scale integration (VLSI), there are well over ten billion transistors on
one chip, with the most recent progress in technology nodes as of 2020 being 3nm
transistors. Several different types of ICs are fabricated. SoCs (system on chip)
combine all or most components of a computer on a single chip. They contain a
processor, memory units and advanced peripherals such as a GPU. ASICs (appli-
cation specific integrated circuit) were initially ICs without a processor, designed
for one specific application, for example in routers or switches. Nowadays most
ASICs also have a SoC-type architecture, with one or several processors embedded
on the chip. Their topology is decided in advance and not reconfigurable, but they
can be parametrized to provide higher flexibility. They are usually manufactured
in high volume, since their design cycle is time and resource consuming. In recent
years, there has also been increasing interest for FPGAs (field programmable gate
array). Contrary to ASICs, FPGAs are reconfigurable and programmable. They
are for example used in digital signal processing (DSP) and for prototyping other
ICs.

Design Levels

Behavioural Domain Structural Domain

Physical Domain

Systems

Algorithms

Register transfers

Logic

Transfer functions

Processors

ALUs, RAM, etc.

Gates, flip-flops, etc.

Transistors

Physical partitions

Floorplans

Module layout

Cell layout

Transistor layout

Figure 1: Gajski-Kuhn Y-chartFigure 1.1 – Gajski-Kuhn Y chart.

IC design cycles are complex and can be separated into several steps at different

1.1. HARDWARE DESIGN PROCESS 9

abstraction levels. These levels have been popularized by Gajski and Kuhn in
1983 in the so-called Y diagram, depicted on Figure 1.1. This chart shows three
different domains used to describe hardware development: behavioral, structural
and physical. Each axis on the diagram represents one domain in a top-down
approach.

On Figure 1.2, the full design cycle with following abstraction levels is depicted:

• System level: during system specification, the functional requirements and
external interfaces of the system (IC) are defined.

• Behavioral level: at this level, the function of the IC is described as an
algorithm using high level languages such as C/C++ or SystemC. High-level
synthesis (see Section 1.1.2) is used to convert this description into RTL.

• Register-Transfer Level (RTL): the complete IC design is captured using
hardware description languages (HDLs) such as Verilog or VHDL. At this
level, the circuit is modeled using sequential logic (registers) and combina-
tional logic. The circuit is timed and its interfaces (input/output pins) and
connectivity are defined. Logic synthesis is used to convert a RTL description
into a gate-level netlist

• Gate-level netlist: at this level, the IC is implemented for a specific tech-
nology library in terms of interconnected logic gates, memory elements (flip-
flops) and inverters. The netlist contains all the components of the circuit
and their connectivity. A physical synthesis is then used to further specify
the design.

• Layout level: during physical synthesis, several technology-specific steps
such a floorplanning, partitioning, place-and-route are performed. These re-
sult in a low-level netlist, and finally in a graphical database system (GDSII)
file, a binary file used to describe the full IC which can be sent to the foundry.

IC Design Actors

The ever-growing complexity and worldwide distribution of the IC supply chain
means that there is a growing number of distinct actors involved in the design of

10 CHAPTER 1. BACKGROUND AND RELATED WORK

Figure 1.2 – IC design flow.

1.1. HARDWARE DESIGN PROCESS 11

an IC. Each of these actors adds new vulnerabilities to the whole design flow.

• Customer: the customer orders an IC by giving the specifications, usually
at system level, to a design house.

• Design house: the design house defines the IC’s specifications and performs
the different design steps up to the physical layout, including several testing
and verification steps. During this process, reusable intellectual property
(IP) blocks from external vendors can be bought and combined with in-
house components. The biggest design houses include Broadcom, Qualcomm,
Nvidia and AMD.

• Third-party IP (3PIP) vendors: these vendors sell specialized IP blocks
at different abstraction levels (see Section 1.1.3). The IPs are already opti-
mized and are widely used nowadays: the global IP market is expected to
reach $8.81 billion by 20261. By using 3PIPs, the design house can reduce
design costs and reach better time to market thanks to faster design cycles.

• Foundry: Foundries are responsible for manufacturing wafers and dies. The
cost of building a new fab has been steadily increasing, reaching over $1
billion. The latest foundries for 3nm technology have been estimated to cost
up to $20 billion2. Due to this high entry cost, most design houses have
moved to a fabless model, meaning that they outsource IC fabrication to
specialized foundries instead of having an in-house foundry. Most of the
foundries, e.g. TSMC, are located in China and Taiwan.

• Assembly: After fabrication, a separate actor is often responsible for pack-
aging and testing of the IC, before shipping it to the design house or directly
to market.

• EDA tool vendors: The growing complexity of IC design has led to the
need for specialized tools such as high-level and logic synthesis tools or sim-

1Global Semiconductor Intellectual Property (IP) Market Analysis 2020. https: //
www. researchandmarkets. com/ reports/ 5236592/ global-semiconductor-intellectual-
property-ip

2TSMC Completes Its 3nm Multi-Billion Fab. https: // www. tomshardware. com/ news/
tsmc-3nm-fab-completed

https://www.researchandmarkets.com/reports/5236592/global-semiconductor-intellectual-property-ip
https://www.researchandmarkets.com/reports/5236592/global-semiconductor-intellectual-property-ip
https://www.researchandmarkets.com/reports/5236592/global-semiconductor-intellectual-property-ip
https://www.tomshardware.com/news/tsmc-3nm-fab-completed
https://www.tomshardware.com/news/tsmc-3nm-fab-completed

12 CHAPTER 1. BACKGROUND AND RELATED WORK

ulation tools. Electronic design automation (EDA) tool vendors sell their
tools to design houses. The best known vendors include Synopsys, Cadence
and MentorGraphics.

1.1.2 HLS

To deal with the ever growing complexity of hardware systems and need for better
design productivity, abstraction levels have been raised several times over the years,
along with an increased automation of design methods and tools. Since the 1980s,
low-level design at the gate and layout level has been replaced with the use of
dedicated hardware description languages (HDL), mostly at register transfer level
(RTL). The two most used HDLs are VHDL and Verilog. More recently, there has
been a trend towards using new HDLs based on domain specific languages (DSLs)
hosted by mainstream programming languages [Ker+19][LBK20]. At even higher
abstraction level, high-level synthesis (HLS) has been a serious research subject
since the 1990s, when the first commercial tools were made available [Kna96]. HLS
tools transform an algorithmic level, usually untimed, description of an application
into a fully timed hardware implementation at RTL. The resulting architecture,
usually described using a HDL such as Verilog or VHDL, contains a controller, a
data path, memory banks and communication interfaces [Cou+09].

As shown on Figure 1.3, HLS tools perform the following tasks: parsing the
source code, generating internal representations (IR, CDFG), allocation, schedul-
ing, binding, and RTL generation. Allocation, scheduling and binding are usually
performed in sequence, but the particular order can vary depending on the HLS
tool [WC12]. These steps are detailed below.

Front- and Middle-end

The first HLS step starts with a algorithm’s source code written in a high level
language such as C, C++ or SystemC. A compiler front-end parses this code into
an abstract syntax tree (AST), and then elaborates an intermediate representation
(IR), which is chosen to ease development of most optimization passes. IRs such as
LLVM or Gimple present themselves as assembly code independent from the final
target. They provide an unlimited amount of registers and usually take a static

1.1. HARDWARE DESIGN PROCESS 13

Figure 1.3 – HLS design flow.

14 CHAPTER 1. BACKGROUND AND RELATED WORK

single assignment (SSA) form, which explicitly describes dataflow relationships
between variable definitions, assignments and uses. At this level, several optimiza-
tion passes such as for example dead code removal or loop unrolling are performed.
Finally a control and data flow graph (CDFG) is built to formally represent all
data dependencies (in the form of basic blocks) and control dependencies (in the
form of edges between the basic blocks).

Scheduling, Allocation and Binding

During the scheduling step, each operation is scheduled into one or several clock
cycles. Several operations can be scheduled in parallel as long as there are no data
dependencies between them. During allocation, the hardware resources necessary
for the design are selected from an RTL component library. These resources include
functional units and storage units. During binding, each operation is bound to one
of these functional units, and each variable to one of the storage units. Resources
can be shared by several operations or variables. Detailed presentations of these
steps and the algorithms used for optimizing them can be found for instance in
[Gaj+92].

Back-end

During the back-end step, the RTL architecture in form of a datapath and a
controller is generated according to the design decisions taken during scheduling,
allocation and binding. The datapath is made of functional units and registers
and other storage elements, while the controller is a finite state machine (FSM)
which controls the data flow. Finally, RTL code, usually written in a HDL such
as Verilog is generated.

1.1.3 Hardware IPs

Intellectual Property (IP) blocks, i.e. reusable components, are now widely inte-
grated into hardware design cycles.

Different IP block types have been defined at different abstraction levels, as
shown on Figure 1.2:

1.1. HARDWARE DESIGN PROCESS 15

• Hard IPs: these IPs are mapped to a specific technology and are fully op-
timized in terms of performance. They are usually sold as low level circuit
descriptions, for example in the form of fully placed and routed netlist, or
full physical layouts.

• Firm IPs: these IPs are less specific than hard IPs, while still optimized for
performance. They are sold as detailed floorplans combined with a netlist
and usually synthesizable RTL. Contrary to hard IPs, firm IPs are not routed
and are less technology dependent.

• Soft IPs: these IPs are defined at high level and usually sold in the form of
synthesizable HDL (Hardware Description Language) code. They are more
flexible and easier to modify and adapt than other IPs, but also offer less
predictable performances in terms of timing, area, power consumption etc.

• Behavioral IPs (BIPs): BIPs have similar properties to soft IPs, but are sold
as a description at behavioral level.

1.1.4 Hardware Design Threats

The complexity and distributed character of hardware design cycles, with the
involvement of several different actors, creates several different threats on design
data and ICs.

Reverse-Engineering

Reverse-engineering an IC means trying to identify its functionality, design and
structure. It can have several goals such extracting the transistor-level or gate-level
netlist [VD01], identifying what technology is used, or understanding the func-
tionality. Several tools and techniques have been developed to facilitate reverse-
engineering. Reverse-engineering can be performed by several actors:

• IC user: the end user can de-package and delayer an IC, capture images of
these layers and then using them to extract the netlist.

• Foundry: an attacker in the foundry can use the IC layout to reverse-engineer
it.

16 CHAPTER 1. BACKGROUND AND RELATED WORK

• Higher level: during earlier design steps, for example during SoC integration,
external IPs can also be reverse-engineered.

Design steps earlier in the flow are particularly vulnerable to reverse-engineering,
for example BIPs and soft IPs, due to their better readability and high level of ab-
straction. Once reverse-engineering has been successfully performed, the IC or IP
can easily be modified, copied and/or illegally resold. A design house or IP vendor
can also use it for corporate espionage and to gain knowledge about a competitor’s
technology.

IC Piracy, Overbuilding and Counterfeiting

The high complexity and cost of fabrication has lead to a fabless model where
design companies are no longer able to afford an in-house foundry: instead, they
rely on external foundries. This model leads to several security risks during fabri-
cation. IC descriptions can be stolen during fabrication and adjusted for another
foundry [RKM08], which can use them to illegally produce ICs. The attacker can
then claim ownership of the stolen ICs. At higher level, IP vendors can also be
victims of illegal copying of their IPs, which can be resold on the market or copied
and modified by their competitors.

Another possible threat is overbuilding or overproducing, where a foundry sim-
ply produces more chips and sells them on the black market without authorization
from the design company.

On top of the previous risks, counterfeiting, where faulty or outdated ICs are
sold as new, is also a threat. According to the authors in [Gui+14], more than
80% of all counterfeit ICs are recycled components that are sold as new after being
remarked and repackaged. These counterfeit ICs represent up to 1% of all IC sales
[KP13], causing an estimated loss of revenue of $100 billion [PT06].

1.1. HARDWARE DESIGN PROCESS 17

Hardware Trojan Insertion

Figure 1.4 – HT attacks at different design stages. (from [Bhu+14])

Hardware Trojans are malicious modifications of a circuit, where the attacker
surreptitiously inserts additional logic into the circuit. Hardware Trojans (HTs)
can have several goals, such as leaking sensitive information, lowering the perfor-
mance of the circuit, or creating unwanted behavior and causing errors. HTs can
be inserted during manufacturing, but also at earlier design stages, by EDA tools
or in 3PIPs, as illustrated on Figure 1.4. HTs are hard to detect during validation
and testing, and can have significant impact on the circuit.

18 CHAPTER 1. BACKGROUND AND RELATED WORK

1.2 Hardware IP Protection

To prevent IP theft, counterfeit and other security issues, several different pro-
tection methods have been extensively studied. These methods can be classified
according to the technique used: watermarking, obfuscation, locking, etc. They
can also be divided into passive and active methods, where passive methods are
used to detect if an illegal action such as copying of the circuit has occurred,
while active methods are used to prevent such actions. In this section, we give
an overview of different design protection methods classified by abstraction level.
We focus mainly on active methods. A more in-depth review of some protec-
tion mechanisms, in particular at behavioral level, can be found in Section 2.2.2,
Section 3.2.1 and Section 4.2.

1.2.1 Foundry

To prevent IP theft and other attacks at the foundry level, split manufacturing
has been proposed as a patent in [JM07]. With this technique, designs layouts
are split into two parts: Front End Of Line (FEOL) layers and Back End Of Line
(BEOL) layers, which are then fabricated in two different, independent foundries.
The FEOL is made of the lower layers such as transistors, capacitors and resistors.
These expensive layers need to be fabricated in a high-end foundry capable of
fabricating the finest components. Most, if not all design houses, have to outsource
this fabrication to an untrusted foundry. On the other hand, the BEOL layers
(top metal layers, interconnects) can be manufactured in a lower end, but trusted
foundry. Larger design houses can even use their own, in-house foundry. The
BEOL can either be built directly on top of the previously fabricated FEOL, or
both can be manufactured separately and then combined. By splitting designs in
such a manner, the untrusted foundry does not have access to the full design, and
specifically to the interconnect network.

However, research has demonstrated that it is possible for an attacker to recover
the missing BEOL connections by reverse-engineering and analyzing the FEOL.
This proximity attack [RSK13] relies on the following heuristic used in most floor-
planning and replacement tools: FEOL features are usually connected close to one

1.2. HARDWARE IP PROTECTION 19

another, in order to reduce the wiring. With this attack, up to 96% of the BEOL
interconnects can be recovered [RSK13]. Even more accurate results have been
achieved by using deep learning techniques [Li+19a]. Split manufacturing thus
needs to be combined with other defense mechanisms to ensure proper security.

1.2.2 Layout Level and Gate-Level Netlist

Physical Unclonable Functions

Physical unclonable functions (PUFs) are entities that, when given a challenge, i.e.
an input and conditions, produce a response as output. Each PUF has different
physical characteristics, due to random variations during the manufacturing pro-
cess. These characteristics are impossible to duplicate and lead to each PUF giving
a unique and unpredictable response to a challenge. The PUFs thus each have a
set of unique challenge-response pairs (CRP). Due to fhe variations introduced
by manufacturing, it is impossible to obtain two PUFs with the same CRP. This
means that a PUF can be used as a means to uniquely identify and authenticate
an IC. This method is called challenge-response authentication.

PUFs were first introduced in 2002 in [Gas+02] and have been gaining more
and more interest over the last 20 years. Several desirable properties have been
defined for PUFs [CZZ17]:

• Unclonability: each PUF has a number of unique CRPs, which cannot be
duplicated in another PUF.

• Unpredictability: the other CRPs of a PUF cannot be used to predict the
response to a challenge.

• Reliability: the PUF should always produce the same response to a given
challenge.

• Physical unbreakability: the PUF should be tamper-proof.

Several different types of PUFs have been proposed such as arbiter PUFs
[Lim+05], ring-oscillator PUFs [SD07] or SRAM PUFs [HBF08]. Detailed sur-
veys and state of the art studies can be found for example in [MV10] or [BS19].

20 CHAPTER 1. BACKGROUND AND RELATED WORK

In recent years, several vulnerabilities and weaknesses of PUFs have been stud-
ied. For instance, PUFs are vulnerable to side-channel attacks [DV13], as well as
machine learning (ML) based attacks [Her+14], where an algorithm is trained with
a subset of CRPs of a PUF to predict responses to unknown challenges.

Watermarking

Watermarking relies on applying slight modifications to a design by inserting a wa-
termark, then later extracting and verifying this watermark as a means of claiming
ownership of a stolen IP (for a more detailed definition, see Section 3.2.1). Water-
marking can be applied at all abstraction levels, with the watermark propagating
to later design stages.

With constraint-based watermarking [Kah+98], the design house’s signature
is converted into a set of constraints. These constraints are added to the original
design’s constraints. This reduces the solution space available for a given optimiza-
tion problem. The resulting design after synthesis and optimizations is a unique
solution that it is highly unlikely to obtain without the watermarking constraints.
Constraints can be added for several different optimization problems, such as:

• Adding clauses to a satisfiability problem such as 3SAT [Kah+98].

• Adding unique timing constraints to the timing constraints of a path by
breaking it into subpaths [Jai+03].

• Modifying the routing of a design, for example by modifying the number of
bends used to route the nets of the design [Nar+01].

The main drawback of low-level, constraint-based watermarks is that they are
hard to detect and verify after fabrication of the IC [ATA03].

Fingerprinting

Fingerprinting is a method used to trace stolen IPs [Cal+04]. Each instance of
the IP core is assigned a unique identifier, contrary to watermarking where all
instances of the IP share the same identifier. In case of a stolen IP, this identifier
can then be used to find who stole the IP. In [Cal+04], fingerprinting is combined

1.2. HARDWARE IP PROTECTION 21

with a previous constraint-based watermarking scheme. The IP buyer transmits
a signature (public key) to the IP designer. This signature is converted into fin-
gerprinting constraints and added to the design house’s watermarking constraints.
These constraints are taken into account during synthesis. The resulting design
has both the designer’s watermark and the buyer’s fingerprint.

Camouflaging

The goal of camouflaging is to prevent reverse-engineering of an IC by hindering
image-based extraction of the netlist. Several different techniques for camouflaging
are possible:

Figure 1.5 – Standard and camouflaged cell layouts for NAND [(a) and (c)] and
NOR [(b) and (d)] gates. (from [Raj+13])

• Using filler cells to fill any empty space in the IC [Cho+12].

• Adding dummy contacts [CBC07] to the layout: these dummy contacts fake
a connection between two layers but have a gap in the middle to prevent
forming a real electrical connection.

• Using logic gates that are all designed to look identical.

An example for logic cells with identical layouts is given on Figure 1.5 as
depicted in [Raj+13]. The figure first depicts standard NAND (Figure 1.5(a)) and
NOR (Figure 1.5(b)) gates. These cells have different layouts and are easy to
differentiate during reverse-engineering. On the other hand, (Figure 1.5(c)) and
(Figure 1.5(d)) show camouflaged layouts for NAND and NOR gates which look
identical.

22 CHAPTER 1. BACKGROUND AND RELATED WORK

Obfuscation and Logic Locking

Figure 1.6 – Logic locking example on c17 benchmark. The correct key inputs are
k0=1, k1=0, k2=1. (from [DF19])

Hardware obfuscation aims at hiding the functionality and implementation of
designs. With logic locking, the circuit operates in a locked mode until the correct
input key is applied and restores functionality. A simple example can be found
on Figure 1.6. The terms "logic obfuscation" , "logic locking" and "logic masking"
are often used interchangeably, depending on the author. A formal definition and
clearer distinction between these techniques can be found in [CBH16]. In the rest
of this work, we will refer to logic locking for techniques applied at gate level, and
obfuscation for higher level techniques.

In [RKM08], the authors propose a combinational logic locking method. Sup-
port for public-key cryptography, a public key and some circuitry to support a
locking mechanism are added to the RTL description. This enriched RTL is then
synthesized into a gate-level netlist. At this level, combinational locking is per-
formed on the circuit by adding XOR and XNOR gates. A random key is generated
and sent to the IP rights holder. After fabrication, a key exchange mechanism with
the foundry leads to the right locking key being produced by the chip. Once this
correct key appears, the circuit is unlocked and behaves as expected. With any
other key, the circuit malfunctions. Because this technique is vulnerable to at-
tacks such as oracle-based attacks ([Raj+12]) and SAT attacks ([SRM15]), several
improvements have been proposed. A detailed overview of such techniques can be

1.2. HARDWARE IP PROTECTION 23

found in [DF19]. Another systematic analysis of the back-and-forth between re-
search on locking techniques and new attacks, as well as a critique of logic locking
evaluation, is presented in [Tan+20].

Instead of combinational locking, other works such as [CB09] or [AKP07] pro-
pose sequential locking, by adding a Finite State Machine (FSM) to the circuit. At
power-up, this FSM locks the design. The correct sequence of inputs is necessary
to unlock it. In [CB09], the proposed method, on top of locking the circuit until
authentication, also obfuscates it’s design to provide protection against reverse-
engineering.

Hardware Metering

Figure 1.7 – Active hardware metering design flow. (from [CZZ17])

With hardware metering, the design house has access to the ICs after fabri-
cation and can identify each IC individually. This method is used to track all
manufactured ICs and can thus detect overproduced and cloned ICs. With active
metering approaches, each IC is locked after fabrication and can only be unlocked
by the design house. A unique key is used for each IC, contrary to logic locking
where all produced ICs are locked with the same key. An example of such a flow
is shown on Figure 1.7, as depicted in [CZZ17]: a lock and a PUF are embedded
in the circuit before layout generation. After fabrication, a challenge given by

24 CHAPTER 1. BACKGROUND AND RELATED WORK

the designer is applied to each IC and the response to this challenge is sent to
the design house. Here, the PUF is used to uniquely identify each IC. With this
response, the designer can authenticate each IC and send an activation key back
to the foundry. The IC is only unlocked with the correct key.

1.2.3 RTL

Watermarking

Figure 1.8 – FSM watermarking example: (a) original FSM, (b) adding transitions,
(c) augmenting input and adding transitions. (from [TC00])

Watermarks can also be embedded at RTL, for example to protect soft IPs.
One added challenge compared with lower level watermarking schemes is that the
watermark must resist synthesis without being removed or modified by the tool.
Some techniques rely on modifying the finite state machine (FSM) of a design.
The approach introduced in [TC00], relies on adding bogus transitions on unused
input/output pairs, as illustrated on Figure 1.8(b). On Figure 1.8(c), the previous
method is extended by first augmenting the number of input bits and then adding

1.2. HARDWARE IP PROTECTION 25

bogus transitions. In [Oli01], the FSM is also used to hide a watermark. With this
approach, the owner’s signature is encrypted, hashed and divided into a sequence
of input combinations to the design. Then the state transition graph (STG) is
modified by adding extra states and transitions, so that when this sequence of
inputs is followed, the design reaches a particular sequence of states, exhibiting a
specific property. Ownership is proven by providing both the input sequence and
the specific property defined by the owner.

Instead of modifying the FSM, in [Cas+07], the authors propose to form a
watermark by spreading a signature throughout the design, in memory structures
or existing combinational logic. To be able to extract the watermark at layout level,
their method requires adding some dedicated circuitry to the existing design.

The test circuit of an IP can also be used for watermarking. In [FT03], a
watermark generating circuit is added to the test circuit before logic synthesis.
After fabrication, when the IP is run in test mode, the watermark generating
circuit is activated and a watermark is sent out with the test pattern. This method
has the advantage that the watermark extraction process is much simpler than for
other techniques. However, it fails if the attacker simply removes the test circuit
[ATA04].

A full survey of IP watermarking techniques can be found for example in
[ATA04].

Obfuscation

Figure 1.9 – Modified FSM for key-based RTL obfuscation. (from [CB10])

26 CHAPTER 1. BACKGROUND AND RELATED WORK

Similarly to logic locking at the gate level, key-based obfuscation can also be
applied at RTL. In [CB10], the CDFG of an RTL IP is extracted. A "mode-control
FSM" is then added to the IP, see Figure 1.9. This ensures that the circuit falls
by default into an obfuscated mode, and only reaches normal mode if the correct
input key sequence is applied (P0 =⇒ P1 =⇒ P2 on Figure 1.9).

Other approaches focus on obfuscating the HDL source files to reduce their
readability, by reusing classic software obfuscation techniques: [BY07], [Mey+11].
However, these techniques do not prevent illegal copying and reuse, provide lit-
tle resistance against automatic software de-obfuscation tools, and are sometimes
removed by logic synthesis tools.

1.2.4 Behavioral

In this subsection, we quickly present an overview of a few approaches for IP
protection at the behavioral level, before and during HLS. More detailed analyses
of existing methods are given in Section 2.2.2, Section 3.2.1 and Section 4.2.

Watermarking

In [KHP05], the authors present a method to perform constraint-based watermark-
ing during different steps of the HLS process. In particular, they detail how to
insert a watermark during register allocation. However, they note that this method
can also be used for other HLS tasks such as scheduling or partitioning. For reg-
ister allocation, an interval graph is used to represent all the program variables as
nodes, and their overlapping lifetimes as edges. A graph coloring algorithm is then
used to solve the problem. The watermark is embedded by first encrypting and
encoding the IP owner’s signature. Then, edges are added to the interval graph
according to this encoded signature. The additional edges result in additional
constraints for the graph coloring problem. These specific constraints result in a
design that is highly unlikely to obtain by coincidence, thus forming a watermark.
[SBM16] proposes to improve the previous method by decreasing the watermark
embedding cost and increase the resistance to attacks. By using particle swarm
optimization (PSO) to explore watermarking solutions, the authors are able to
find a low-cost optimal solution.

1.2. HARDWARE IP PROTECTION 27

Several approaches for watermarking at the behavioral level targeting specif-
ically digital signal processing (DSP) have been published, e.g. in [CD00] and
[Ras+99]. In both cases, the watermark is embedded by performing minor changes
in the requirements of filters. Verification is done by observing the slight modi-
fications in the filter’s response. These approaches are however highly sensitive
[ATA04] to low-level design fluctuations as well as watermark removal attacks,
since a minimal change in the filter’s response can be enough to hide the water-
mark.

Obfuscation

Obfuscation can be applied at behavioral level, either on the algorithmic-level
source code, or during HLS using a modified HLS tool. In [VS17a], the authors
use traditional software obfuscation techniques applied on the source code before
HLS. They then study the impact of this method on the HLS quality of results
and propose two methodologies to find the optimal obfuscation. However, they
only test basic layout obfuscation techniques, which make the code harder to read
but do not affect functionality. Their techniques do not provide protection against
IP theft and reuse, only reverse-engineering.

Similarly, in [SR17], the authors use compiler-based, high-level transformation
to obfuscate IP cores. Their techniques are applied on the DFG and include
redundant operation elimination, tree height reduction and logic transformation,
where functions are replaced with other, logically equivalent functions. These
techniques all change readability and hide the structure of the IP, but do not
modify functionality.

In both [IK18] and [Pil+18b], the authors propose to modify an in-house HLS
tool to apply obfuscation during HLS. This results in an obfuscated RTL descrip-
tion, which is protected both against IP theft at high level and against theft and
reverse-engineering at foundry level. In [IK18], the obfuscation passes are applied
on the CDFG during scheduling and datapath generation. In [Pil+18b], obfus-
cation is performed during all steps of the HLS flow, at front-end, mid-level and
back-end. Both approaches offer key-based obfuscation, which, similar to logic
locking at lower design levels, provides protection against illegal reuse.

28 CHAPTER 1. BACKGROUND AND RELATED WORK

1.2.5 Threats and Countermeasures

Reverse-
engineering

Hardware
Trojans

IP Piracy &
Overbuild-

ing
Counterfeiting

Possible attackers
Customer & End
User X

Design House &
SoC Integrator X X X X

3PIP Vendor X
Foundry X X X X
Test & Assembly X X
EDA Tool X X

Countermeasures
Split Manufactur-
ing X X

PUF X
Watermarking X X
Fingerprinting X X
Camouflaging X X
Hardware Meter-
ing X X

Obfuscation X X X X

Table 1.1 – Common hardware threats and countermeasures.

The previously presented hardware IP protection methods can be used at differ-
ent abstraction levels and against different threats. Table 1.1 sums up the different
threats and their countermeasures. It also indicates which actors can be involved
in each attack.

In this work, we focus on threats introduced by the use of EDA tools, in par-
ticular HLS tools. In Chapter 2, we present an obfuscation-based solution against
IP piracy during cloud-based HLS. In Chapter 4, we focus on the risk of hardware
trojan insertion by a malicious HLS tool. Finally, in Chapter 3, we show how our
methods can also be applied as a watermarking countermeasure against reverse-
engineering, IP piracy, overbuilding and counterfeiting at later design stages.

1.3. SOFTWARE OBFUSCATION 29

1.3 Software Obfuscation

Our focus in this work is on how to protect IPs against theft, counterfeiting and
other threats at the behavioral level. Since behavioral IPs are usually provided
in high level source code such as C/C++, protection methods can be strongly
similar to those used for software protection. Software obfuscation specifically is
of particular interest to our work. In this section, we thus give an overview of
software obfuscation principles and techniques.

1.3.1 Definition and Principles

Informally, obfuscating a program means rendering a program unintelligible while
keeping it functionally and semantically equivalent with the original program. Ob-
fuscation is based on the paradigm of security through obscurity. The idea was
introduced in 1984 at the International Obfuscated C Code Contest, and first
mentioned in literature by Collberg et al. in [CTL97] in 1997.

More formally, O is an obfuscator if O takes as input a program P and produces
as output a program O(P) such as:

• O(P) has the same functionality as P

• O(P) is harder to understand than P

Program obfuscation is mainly used with the goal of protecting software intel-
lectual property. It can be used to prevent reverse-engineering, but also to protect
software watermarks or hide critical constants or predicates.

Most well known and used software obfuscation techniques rely on the predicate
security through obscurity. The security of these techniques cannot be proven
because they do not rely on a formal definition of obfuscation, since the notion of
harder to understand has no clear formal foundation.

Practical program obfuscation is also called code-based obfuscation, opposed
to model-based obfuscation [Xu+17]. Code-based obfuscation techniques focus
on usability and are not provably secure. No metrics are known as of today to
formally evaluate the security of these techniques. On the other hand, model-
based obfuscation techniques are based on a strong theoretical background and

30 CHAPTER 1. BACKGROUND AND RELATED WORK

focus strongly on security. However, this comes with significant overhead and a
lack of usability.

A formal description of what is called virtual black box obfuscation is given by
Barak et al. in [Bar+12]. According to this definition, if a program is obfuscated,
it should not be possible to gain more information from seeing the obfuscated code
than from interacting with the unobfuscated code in a black box. In other words,
other than observing inputs and outputs, there should be no information whatso-
ever to gain about the obfuscated program. With this definition, an obfuscator O
can be formally defined by two conditions:

• The obfuscated program O(P) satisfies the previously mentioned virtual
black box property.

• The obfuscated program O(P) has the same functionality as the unobfus-
cated program P .

In [Bar+12], the authors prove that black box obfuscation is impossible, in the
sense that it is impossible to have one obfuscator that can obfuscate all programs
of a certain class. However, they also give a new possible definition for obfuscation,
indistinguishability obfuscation:

• The obfuscated program O(P) has the same functionality as the unobfus-
cated program P .

• Indistinguishability: given two functionally equivalent programs P1 and P2

of approximately the same size, the obfuscated programs O(P1) and O(P2)
are computationally indistinguishable from one another.

While this definition is slightly weaker than full black-box obfuscation, research
has revealed encouraging progress in this direction: a first candidate for building
indistinguishable obfuscators was published in 2013 [Gar+13].

While there are some papers proposing implementations of indistinguishability
obfuscators, they are as of now unusable in a real-life application [Xu+17]. A
strong gap can thus be found between theoretical software obfuscation research
and practical obfuscation implementations. Furthermore, it should be noted that

1.3. SOFTWARE OBFUSCATION 31

these two subjects involve two different research communities: code-oriented obfus-
cation papers are usually published by the software security research community,
while model-oriented obfuscation is more a focus in cryptography and theoretical
computation research communities. To conclude, there are nowadays no obfusca-
tion approaches that are both provably secure and usable. In the rest of this work,
we will focus only on practical, code-oriented obfuscation.

1.3.2 Threat Models and Use cases

There are two main users of obfuscation: software developers trying to protect
the intellectual property of their programs from theft and misuse, and malicious
actors trying to protect their malware from detection.

Defensive Obfuscation

Obfuscation is mainly used by software developers and companies to prevent so-
called Man-At-The-End (MATE) attacks [Fal+11][Akh+15]: with this type of sce-
nario, the attacker has physical access to the software and can inspect it, modify it
and run it at will. This includes any software running on devices such as personal
computers, smartphones etc., but also remote execution in potentially hostile en-
vironments such as cloud computing [HE12]. Several threats are involved with
MATE attacks:

• Reverse-engineering:

– Extracting intellectual property such as proprietary algorithms and im-
plementations.

– Finding critical information such as cryptographic keys, static integers
[SL12].

– Discovering vulnerabilities in the program that can be exploited in fu-
ture attacks, for example code injection where malicious code is injected
into the program [BS05].

32 CHAPTER 1. BACKGROUND AND RELATED WORK

• Cloning:

– Making and distributing illegal copies.

– Circumventing Digital Rights Management (DRM) measures.

– Finding and breaking license checking mechanisms [KM14].

• Tampering [Got+01]: modifying the software in ways unintended by the
developer.

Black-hat Obfuscation

Obfuscation is also used by malware authors as a protective measure [YY10]
against defensive threats such as:

• Detection by automated defense mechanisms such as anti-virus scanners.
Obfuscation can be used to hide key-words, code snippets or patterns known
in malware databases.

• Reverse-engineering and analysis by security researchers: understanding how
a malware works is often an essential step for preventing its execution and
spread. It can also be used to identify the malware authors.

• Take-down of the malware: by searching for specific strings such as URLs,
researchers can identify what server the malware communicates with and
how it spreads.

1.3.3 Taxonomy and Common Transformations

Obfuscating transformations have long been classified by their target, in other
words by what they are modifying. In [CTL97], the authors proposed a now widely
used taxonomy where obfuscating transformations target either layout, data or
control flow of the program. A detailed classification of common obfuscating
transformations following this taxonomy can be found in Figure 1.10.

1.3. SOFTWARE OBFUSCATION 33

Figure 1.10 – Classification of obfuscating transformation mechanisms. (from
[Hos+18])

Layout Obfuscation

Layout obfuscation mainly aims at making the code harder to read for humans. It
targets a program’s structure and decreases readability by for example removing
any formatting (line breaks, indentation, etc) from the source code, changing iden-
tifier names or deleting comments. Layout obfuscation is considered irreversible,
since the original formatting cannot be recovered once removed. These techniques
have no significant influence on the size of the obfuscated program or on the speed
of execution. However, they are usually not resistant against automated tools such

34 CHAPTER 1. BACKGROUND AND RELATED WORK

as disassemblers.

Control Flow Obfuscation

Control flow obfuscation aims at altering and/or hiding the control flow of a pro-
gram. This can make the code harder to read and understand for a human, but can
also prevent disassembly and reverse engineering with automated tools. Among
the most common control flow transformations, following can be cited:

• Dead or redundant code insertion: bogus operands, statements, blocks, con-
trol flow transfers, classes, etc.

• Breaking computations up or merging them together

• Loop modifications: unrolling, extending termination condition

• Reordering instructions or computations

• Inlining functions

• Opaque predicates: predicates whose value is known at obfuscation time,
but hard to evaluate for an attacker.

Data Obfuscation

Data obfuscation aims at hiding data and data structures. It usually [CTL97]
affects the ordering, aggregation, storage or encoding of data. A few common data
obfuscation techniques include:

• Splitting variables into two or several variables

• Aggregating several variables into one variable or array

• Restructuring arrays: merging, splitting, folding (increasing the number of
dimensions of the array), flattening

• Reordering declarations, variables or arrays

• Modifying the encoding of variables

• Encrypting parts of the data

1.3. SOFTWARE OBFUSCATION 35

1.3.4 Commercial and Open-source Tools

Several academic and/or open-source obfuscation tools at varying levels of matu-
rity can be found online. Among the better known tools, the following should be
cited:

• Obfuscator-LLVM [Jun+15]: Swiss project based on the LLVM compila-
tion suite. It provides a fork of LLVM that adds obfuscation to the code. The
obfuscation passes are added at IR (Intermediate Representation) level. A
commercial version with more advanced obfuscation techniques was sold by
Strong.codes (now bought by Snapchat). The available obfuscation passes
include control flow flattening, bogus control flow (adding a new basic block
containing an opaque predicate that makes a conditional jump to the original
basic block) and instructions substitutions (replacing binary operators with
more complicated instructions).

• Tigress [Col]: source-to-source obfuscator for C mainly developed by Chris-
tian Collberg, written in OCaml. This tool is not open source, but can be
freely downloaded for tests. Tigress has several classic obfuscating trans-
formations such as control flow flattening, function splitting and merging,
control flow splitting and encoding of literals and data. It also offers the
possibility to virtualize a function by turning it into an interpreter, or to
transform a function so that it is dynamically compiled to machine code
(just-in-time compilation).

Commercial obfuscation tools are also sold by several companies. In most cases,
the exact obfuscation techniques used are not publicly revealed and information
about the inner workings of these tools is kept secret. Following tools are well
known:

• Stunnix [Stu]: obfuscator for C/C++, Perl, VBScript and JavaScript. This
tool mainly performs layout obfuscation, e.g. renaming symbols, removing
comments, removing spaces and tabs, etc.

• Cloakware [Ird]: obfuscator sold by Irdeto, a company specializing in digital
security.

36 CHAPTER 1. BACKGROUND AND RELATED WORK

• Quarks AppShield [Qua]: formerly known as Epona, solution sold by
Quarkslab. Among several other protection mechanisms, it offers more than
30 different obfuscation techniques for C/C++.

1.3.5 Evaluation Metrics

To evaluate the quality of obfuscation techniques, 4 metrics have been proposed
in [CTL98] and are now used in most works on obfuscation:

• Potency: how much more complex to understand the obfuscated program
is compared with the unobfuscated program. Several software complexity
measures such as McCabe complexity, cyclomatic complexity, data structure
complexity can been used to estimate potency of an obfuscation technique.
Empirical studies where for example groups of students [Cec+14] are asked
to attack obfuscated code have also been conducted to evaluate potency.

• Resilience: difficulty faced by an automatic de-obfuscator or disassembler
in breaking the obfuscation. This metric is complementary to potency: ob-
fuscated code can have high complexity but still be very easy to de-obfuscate
with an automated tool.

• Stealth: how well the obfuscated code blends in with the rest of the program.
If code added during obfuscation looks very different from the original code,
it can be easy to detect and remove for a human attacker.

• Cost: computational overhead added to the obfuscated program. This over-
head mainly comprises increases in run time, memory usage, CPU usage and
program size [Hos+18].

1.4. CONCLUSION 37

1.4 Conclusion

In this chapter, we presented background and related work relevant for this thesis.
In particular, we introduced the hardware design cycle, with an overview of the dif-
ferent steps and actors involved, as well as the possible security threats. We also fo-
cused on software obfuscation for protecting programs against reverse-engineering
and theft, giving a presentation of the principles and techniques involved.

Finally, we presented various approaches for protecting hardware against dif-
ferent threats. Most threat models focus on risks during or after manufacturing,
or at lower abstraction level. At the behavioral level, many methods rely on the
HLS tool to add a protection mechanism such as watermark or obfuscation. None
of the techniques focus on a threat model where the HLS tool itself or its runtime
environment is a security risk. In this work on the other hand, we focus specifically
on the scenario of an untrusted HLS, either because the tool is hosted in the cloud
(cf. Chapter 2), or because the tool itself is potentially compromised (cf. Chap-
ter 4). Any protection technique relying on HLS for insertion thus cannot be used
here. Furthermore, the techniques presented in this chapter that can be applied
at behavioral level all rely on idea that the security is transmitted throughout all
design steps. This process makes sense since the main goal is to provide protection
at foundry level. However, in our case, since we only focus on protection during
HLS, we propose a method called transient obfuscation that does not persist at
lower design levels and thus does not have an impact on the final design in terms of
functionality or performance. This method can be used both as protection against
BIP theft and reverse-engineering (Chapter 2), and as defense against hardware
trojan insertion during HLS (Chapter 4). The side-effects of this method can
additionally be used to watermark BIPs in a novel manner (Chapter 3).

Chapter 2

Transient Obfuscation against IP
Theft during Cloud-based HLS

Modern hardware designs have reached a fantastic degree of complexity. To sustain
this industrial challenge, design flows are increasingly distributed, with companies
relying on third parties for IP development, manufacturing and testing. This leads
to substantial cost reductions, but also a growing amount of security issues. In
particular, threats at early design stages are coming more and more into focus: the
widespread use of third-party Behavioral IPs (BIPs), as well as the trend towards
external Computer-Aided Design (CAD) tools, have created new attack surfaces.

In this chapter, we aim at ensuring the security of BIPs, and in particular
at protecting them against theft during HLS. We focus on the case of a cloud-
based HLS service. With the recent surge in cloud computing capabilities, and the
growing trend of complex computations being outsourced to dedicated Software-
as-a-Service (SaaS) platforms, a HLS as a Service scenario becomes more likely.
However, broad adoption of such a service is slowed down by legitimate security
concerns. While encryption is widely used to ensure data security in the cloud, a
complex operation such as HLS cannot be performed on encrypted code without
decrypting the code at some point during the operation.

We propose transient obfuscation, a new method combining software obfus-
cation techniques with key-based hardware protection techniques to provide a
temporary protection during untrusted, cloud-based HLS. This method relies on

39

40 CHAPTER 2. TRANSIENT OBFUSCATION

a two-step process: applying obfuscation to behavioral level source code, before
HLS, and de-obfuscating the resulting design after HLS, at a trusted point in the
design flow.

In this chapter, we introduce the concept of transient obfuscation for cloud-
based HLS. We show how traditional software obfuscation techniques can be mod-
ified to become key-based and transient [Bad+21a]. Finally, we present prac-
tical implementations of these techniques as well as experimental results: some
techniques, such as bogus code insertion, presented at DATE2019 [Bad+19], are
particularly well suited, while others are only partially transient.

2.1 Threat Model

2.1.1 HLS-as-a-Service

With the recent surge in cloud computing capabilities, and the growing trend of
complex computations being outsourced to dedicated Software-as-a-Service (SaaS)
platforms, EDA industry leaders are increasingly moving to the cloud. For exam-
ple, Synopsys now offers a solution1 to use their EDA tools for IC design and
verification online. Intel, with its DevCloud [Dev], also offers a platform to de-
velop, compile, test and run programs and IPs fully in the cloud. Moreover, their
solution promises the possibility to implement and test solutions on FPGA boards.
Similarly, the French cloud computing and hardware acceleration companies OVH
and Accelize have recently proposed2 what they call Acceleration-as-a-Service: by
leveraging cloud computing, FPGA-based acceleration becomes accessible to a
larger audience without hardware specific expert knowledge. Hastlayer [Has], a
solution developed by Lombiq Technologies company, offers .NET software devel-
opers the means to accelerate their programs by automatically generating FPGA-
based hardware implementations of parts of their application.

1Synopsys Announces Collaboration with Samsung Foundry to Offer Secure and Scalable
Environment on the Cloud for IC Design and Verification. https: // www. design-reuse. com/
news/ 45852/ synopsys-samsung-foundry-cloud-ic-design-verification. html

2OVH launches Acceleration-as-a-Service Leveraging the New Intel Programmable Accelera-
tion Card and App Store from FPGA Acceleration Partner Accelize. https: // www. design-
reuse. com/ news/ 42929/ ovh-acceleration-as-a-service-intel-accelize. html

https://www.design-reuse.com/news/45852/synopsys-samsung-foundry-cloud-ic-design-verification.html
https://www.design-reuse.com/news/45852/synopsys-samsung-foundry-cloud-ic-design-verification.html
https://www.design-reuse.com/news/42929/ovh-acceleration-as-a-service-intel-accelize.html
https://www.design-reuse.com/news/42929/ovh-acceleration-as-a-service-intel-accelize.html

2.1. THREAT MODEL 41

Given these successful recent examples, an HLS-as-a-Service scenario becomes
more likely [DRA15]. A cloud-based HLS service offers several advantages:

• Contrary to the existing, often expensive licensing schemes for most com-
mercial HLS tool, cloud-based HLS could offer a better economic model
with flexible pricing and a pay-per-use system. This would also allow better
accessibility for small design companies or individual designers.

• For design companies, HLS-as-a-Service requires no complex installation or
time-consuming maintenance. It allows easier integration in existing complex
and distributed industrial design flows.

• For the HLS tool providers, a cloud-based service could act as a showcase
for their product, allowing users to easily perform tests and comparisons
between different tools.

• The large computational power available in the cloud could be used to pro-
pose advanced HLS tools using resource-expensive approaches such as Ma-
chine Learning or Design Space Exploration.

2.1.2 Threat Model

Broad adoption of cloud-based HLS is slowed down by legitimate security concerns.
While encryption is widely used to ensure data security in the cloud, a complex
operation such as HLS cannot be performed on encrypted code without decrypting
the code at some point during the operation.

How to protect behavioral IPs against theft has been a growing concern. In this
work, we focus on the scenario, illustrated on Figure 2.1, of a design house using
an external cloud-based HLS tool for their BIPs. We assume that the attacker
is either an insider of the HLS service, or an outsider who has been able to gain
access to the service, and is able to steal the BIP code. We envision three types
of risks in this scenario:

1. Espionage: the attacker, working for example for a competing company
or an adverse government, gains valuable information about what type of
algorithms or applications the design house is working on.

42 CHAPTER 2. TRANSIENT OBFUSCATION

Figure 2.1 – Vulnerable HLS in the cloud design flow.

2. BIP theft: the attacker is able to understand the stolen BIP and can modify
or directly counterfeit it.

3. Black-box usage: even without full insight into how the stolen BIP works,
the attacker can still reuse it as a black-box.

Because we cannot prevent theft on the HLS provider’s side, our approach aims at
minimizing the previously enumerated risks. Using software obfuscation can reduce
the ability of an attacker to understand and modify a stolen design. However,
on its own, software obfuscation does not modify functionality and thus does not
prevent black-box usage. By adding hardware IP protection principles such as logic
locking, we can provide a transient, key-based obfuscation scheme that protects
BIPs against all three risks during HLS.

2.2 Related Work and Background

2.2.1 Cloud Computing Challenge: Ensuring Data Secu-
rity

How to secure data in the cloud has been an ongoing concern for both industry
players and researchers. Some topics such as ensuring strict separation of different
user’s data, and avoiding accidental loss of data already have many existing mature
solutions [Rya13]. One challenge in particular remains: any data in the cloud can

2.2. RELATED WORK AND BACKGROUND 43

be accessed by the cloud provider, or potentially an outside attacker in case of
a security breach. In cases of a simple storage service, data can be encrypted to
limit security risks. However, in the case of Software-as-a-Service (SaaS), where
the cloud provider is expected to perform calculations on the data, conventional
encryption methods cannot be used.

Among the technical solutions that have been proposed on how to guarantee
data confidentiality while performing calculations in an untrusted cloud environ-
ment, homomorphic encryption offers the highest level of security. Introduced as a
concept in 1978 [R+78], homomorphic encryption was first applied to cloud com-
puting security in 2012 [TEE12]. The idea is that operations can be performed
on encrypted data, and the resulting data, once decrypted by the client, is exactly
the same as if the operations had been performed on the raw, unencrypted data.
While ongoing research on homomorphic encryption is producing increasingly ef-
ficient and scalable encryption schemes, the current state of the art systems still
lead to gigantic overhead both for data size and computation speed. However,
the general principle of homomorphic encryption, i.e. performing computations,
in our case HLS, on unreadable data, has served as a basis for our idea of transient
obfuscation, as shown in Section 2.3.1.

2.2.2 Algorithm Level Obfuscation

Obfuscation has been widely studied to protect IPs at RTL or lower design levels
as shown in Section 1.2.3. So far, and to the best of our knowledge, only a few
works focus on using obfuscation at algorithmic level and/or for BIP protection.

In [VS17a], a study of the impact of commercial and free software obfusca-
tors on HLS quality of results (QoR) is presented. The authors note that the
different (often in-house) front-ends used in HLS tools often fail to perfectly deal
with obfuscated source code. This results in missing optimizations and thus vary-
ing, sometimes strong, impact on the quality of results, in particular a significant
increase in area, delay and latency of the resulting circuits. The authors then
propose two methods for minimizing QoR degradation while also maximizing ob-
fuscation level: a Genetic Algorithm based approach, and a fast iterative-greedy
method. With both methods, the goal is to determine which lines of the source

44 CHAPTER 2. TRANSIENT OBFUSCATION

code should be obfuscated and which lines should stay untouched. The overall
focus of the paper is on optimizing obfuscation with an existing, basic software
obfuscation tool, and not on proposing any new or modified obfuscation techniques
adapted to a hardware context. The obfuscator used in the experiments, Stunnix
C/C++, only applies layout obfuscation techniques such as modifying identifiers
or replacing numbers with mathematical expressions. While these techniques have
a strong impact on code readability, they do not provide reliable or quantifiable
safety, especially against automated reverse-engineering tools. Moreover, these
kind of techniques do not affect functionality of the obfuscated code, and thus do
not provide any protection against black-box usage of the resulting IPs.

Other works such as [Pil+18b] propose adding obfuscation during HLS. In this
work, an academic HLS tool, Bambu, is extended with obfuscating transformations
that aim at protecting ICs later in the design cycle. In particular, the threat
model focuses on untrusted foundries as the main threat for IP theft and reverse-
engineering. HLS itself, on the other hand, is considered fully trustworthy, contrary
to our threat model. The advantage of this method, in contrast to obfuscation
applied on the source code before HLS, is that obfuscation is fully integrated in the
HLS process and applied at the IR level. This means that there are no optimization
issues due to the parser used, as underlined in [VS17a], and the overall process is
more efficient and results in less overhead. However, it does require full trust in the
security of the HLS tool and thus cannot be applied in our context of cloud-based,
untrusted HLS. In a similar approach, the authors in [IK18] extend an in-house
HLS tool with an obfuscation pass performed during scheduling and datapath
generation phases. Here as well, the result is an obfuscated RTL design which is
protected during fabrication. HLS is considered a fully trusted design step.

2.3 Proposed Approach: Transient Obfuscation

2.3.1 Transient Obfuscation

As presented in our threat model in Section 2.1.2, in this work we focus only on
protecting a BIP during HLS. We assume that both before HLS, at source code
level, and after HLS, at RTL, the BIP is secure. This is quite different from

2.3. PROPOSED APPROACH: TRANSIENT OBFUSCATION 45

traditional threat scenarios, where the attacker is usually located at foundry level.

Since the BIP we are trying to protect is initially in the form of high-level
source code (written in C/C++), but the whole design flow is still situated in a
hardware context, the protection method we propose is situated at the intersection
of traditional software and hardware protection methods.

On one hand, as suggested in [VS17a], we could simply apply software code
obfuscation to our BIP. However, this leads to several issues. First, software ob-
fuscation, by definition, is used to prevent reverse-engineering, while maintaining
full functionality of the code. This means that it cannot prevent illegal reuse of
the BIP in a black-box manner. Moreover, traditional software obfuscation does
not usually take into account any overhead except runtime. In a hardware con-
text where performance is critical, using software obfuscation techniques can result
in designs with unacceptable area and timing overhead. Finally, applying strong
obfuscation to the source code can perturb the HLS tool and the frontend parser.

On the other hand, most existing hardware obfuscation techniques are meant
for lower level IPs. Logic locking, which is successfully used to prevent black-box
usage, has for example been applied to RTL IPs, but never, to the best of our
knowledge, at behavioral level before HLS. Due to the better readability of high
level code compared to HDL or even a netlist, protection methods that are normally
added later in the design cycle could be trivial to remove at the behavioral level.
Moreover, existing locking techniques work under the constraint that unlocking
can only be done after fabrication. In our case, we have the possibility of applying
a protection that is only temporary, during HLS, and can be removed immediately
afterwards, at RTL.

We thus introduce the concept of transient obfuscation, which combines soft-
ware obfuscation techniques with key-based hardware locking concepts to form a
temporary protection during HLS. This method takes into account hardware per-
formance issues, provides protection both against reverse-engineering of the source
code and black-box usage of the resulting IP, and is unlocked after HLS to ensure
a low design overhead and correct functionality.

This concept is inspired by the idea of homomorphic encryption introduced in
Section 2.2.1:

46 CHAPTER 2. TRANSIENT OBFUSCATION

1. The source code is obfuscated, instead of encrypted, with a series of secret
keys

2. HLS is run on the obfuscated code, similarly to how calculations are run on
homomorphically encrypted data

3. The resulting RTL is de-obfuscated with the correct secret keys. The recov-
ered design has the exact same functionality as the original design would
have after HLS without obfuscation.

To be fully transient, an obfuscation technique has to respect two criteria:

• After de-obfuscation, original functionality should be fully restored. This
means that transient obfuscation should have no impact on functionality of
the design.

• After de-obfuscation and synthesis, the design should not have higher area
or timing than the original, unobfuscated design. The cost of transient ob-
fuscation is thus zero.

2.3.2 Complete Flow

The goal of this work is to protect a design house against BIP theft and black-box
usage during HLS. We propose a transient protection method by adding two steps
to the conventional design flow, before and after HLS:

1. Obfuscation: the original C code is obfuscated, making it harder to under-
stand for an attacker. We use key-based obfuscation which modifies the
design’s functionality by tying the correct behaviour to a set of obfuscation
keys. This prevents black-box usage of the design.

2. De-obfuscation: after HLS, the resulting RTL code still relies on keys to
function correctly and contains all the obfuscated code. Directly synthesizing
the IP at this point would result in a malfunctioning, oversized design. By
de-obfuscating with the correct keys, we obtain a cleaned-up design which no
longer relies on keys to function correctly and where any unnecessary logic

2.3. PROPOSED APPROACH: TRANSIENT OBFUSCATION 47

has been removed. Original functionality is thus recovered and the design
overhead is strongly reduced.

RTL

HLS

C obfuscation

de-obfuscation
key injections

keys

C

RTL

external

obf

obf

internal
design house

process

Figure 2.2 – HLS in the cloud design flow secured by KaOTHIC, where the external
HLS is considered untrusted.

By combining these two steps, as shown on Figure 2.2, our protection method
becomes transient. When using carefully selected and adapted obfuscation tech-
niques, this method has no significant lasting impact on the design. Both steps
have been implemented in a fully automated way in an open-source tool, KaOTHIC
(Key-based Obfuscating Tool for HLS in the Cloud), and are detailed in the next
subsections.

48 CHAPTER 2. TRANSIENT OBFUSCATION

2.4 Proposed Obfuscation Techniques

2.4.1 Bogus Code Insertion

This set of techniques is based on control flow splitting, as presented in [CTL97]. It
relies on a simple principle: bogus code is added to the design. A set of predicates,
in the form of If/Else statements, is then added to split the control flow between the
correct, original code and the bogus code. The goal is to make it near impossible
for the attacker to guess which part of the code is fake. This means that the bogus
code should be stealthy by strongly resembling the original code, but still provide
enough differences to have a real impact on the circuit’s behavior.

Key-based Predicates

In conventional control flow splitting implementations, opaque predicates [CTL98]
are used to split the control flow: for example based on complex mathematical
expressions, the value of opaque predicates is known at obfuscation time, but hard
to evaluate for an attacker. In this chapter, we propose instead to use key-based
predicates, where an input value is tested against a constant. Similar to logic
locking techniques used for hardware obfuscation, only the correct combination of
inputs will allow the code to execute correctly. A simplified example in form of a
Data-Flow Graph (DFG) is given in Figure 2.3. The input variable "key" is tested
against the value "42". If the test is True, the original code branch is executed.
Else, a bogus code branch is executed. It should be noted that while on this figure,
the original code is assigned to the True branch and the bogus code is assigned
to the False branch, this is not always the case. We chose to randomly assign the
original and one or several bogus code branches to the keys test branches. This
means that an attacker has no means of guessing the correct key value simply by
reading the test values in the code.

Bogus Expressions

This obfuscation technique, illustrated on Figure 2.4, can be directly performed
at AST level. Candidate AST nodes for obfuscation are binary expressions of the
form:

2.4. PROPOSED OBFUSCATION TECHNIQUES 49

Figure 2.3 – Behavioral and dataflow representation of a code with bogus code
insertion.

<binaryExpression>::=<expression><op><expression> , where op is a bitwise
or arithmetic operator. For each selected binary expression, several similar bogus
expressions are created with slight variations, see Figure 2.5(b). The order of
the operands in the original expression is randomly shuffled. Furthermore, the
operators are randomly replaced by other, similar operators. For example:

a = (b+ c) ∗ 2 =⇒ a = (2− c) + b

The choice of the operators added in the bogus expressions has some importance
in improving security but also in reducing overhead. The chosen operators have
to be computationally similar to increase stealth (a bitwise operator should not be

50 CHAPTER 2. TRANSIENT OBFUSCATION

basic block

L1 :

L1' :

etc

obfuscation

statement

source

L2' : L2' : L2' :

L3' :

cond branch

branch branch branch

dummy statementskey

α β γ

Figure 2.4 – Basic block example before and after obfuscation: insertion of two
bogus expressions.

added for an operation between two integers for example) and of equal or lower
complexity. Special care has to be given to the fact that the added bogus code,
which is generated in a completely automated way by our obfuscation tool, should
still be compilable. Applying careful, small modifications to existing expressions
significantly eases this process and decreases the risk of adding code leading to
compilation errors, while still maintaining a high level of stealth.

Bogus Basic Blocks

In order to diversify and improve upon the previously presented technique, we also
propose to insert complete bogus basic blocks, instead of just individual bogus ex-
pressions. For this technique, the first step builds the CFG of the source program.
A list of candidate basic blocks for obfuscation is then established. For each se-
lected basic block, one or several bogus basic blocks are created, as illustrated on
Figure 2.6. The creation of these basic blocks relies on the same principles as for
bogus expressions, presented in Section 2.4.1:

• In individual expressions, order of the operands and operations are shuffled.

• Operators are randomly replaced in each expression.

2.4. PROPOSED OBFUSCATION TECHNIQUES 51

(a) No obfuscation (b) Bogus Expression Insertion

(c) Control Flow Flattening (d) Key-based Control Flow Flattening

Figure 2.5 – Different obfuscation techniques applied by KaOTHIC to a function
calculating the gcd of two numbers.

52 CHAPTER 2. TRANSIENT OBFUSCATION

Figure 2.6 – Example CFG before and after obfuscation by adding bogus basic
blocks.

• The order of all the expressions in the block is shuffled.

As before, key-based predicates are then added to split the control flow. Finally,
an AST is rebuilt from the modified CFG and C-level source code is returned.
The success of this technique relies on correctly identifying in an automated way
which basic blocks can be obfuscated without preventing the correct rebuilding of
the AST, and carefully selecting which basic blocks should be obfuscated without
hindering HLS optimizations. For example, the increment instruction of a For-
loop is usually represented as a basic block when a CFG is generated. However,
duplicating and modifying this block during obfuscation would prevent correct
rebuilding of the loop when printing the obfuscated C code.

2.4.2 Control Flow Flattening

We also studied another technique for hiding the control flow. Control flow flatten-
ing is a technique first introduced in [Wan+00] for software obfuscation. Control
flow structures that are easily identifiable such as loops or if/else statements are
replaced by one global switch statement. The goal is to hinder static analysis of

2.4. PROPOSED OBFUSCATION TECHNIQUES 53

the program by hiding the targets of the code branches. This technique is usually
used in a pure software context and does not take any hardware and EDA specific
constraints into account.

source

L2 :

L3 : L4 :

L5 :

L1 :

obfuscation

cond branch

L1 :

L6:

L3 : L5 :L4 :L2 :

Figure 2.7 – Example CFG before and after obfuscation by control flow flattening.

Key-based Control Flow Flattening

An algorithm to flatten the control flow of a C++ program was presented in
[LK09]. The first step generates the control flow graph of the original program by
separating it into basic blocks. Next, each basic block is rewritten as a case in one
global switch statement. This switch statement is embedded in a loop. A routing
variable is used to direct the control flow of the program. At the end of each case,
a new value is attributed to the routing variable to indicate the next state. When
the value 0 is given, the exit condition for the surrounding loop is reached. An
illustration of control flow flattening can be found on Figure 2.7.

One of the vulnerabilities and easiest attack vectors for de-obfuscation of classic
control flow flattening is the fact that the routing variable is not hidden, as shown
in the example Figure 2.5(c). An attacker can thus follow the code execution and
reconstruct the original control flow. Several techniques to hide the values assigned
to the routing variable have been proposed, for example by using a computationally

54 CHAPTER 2. TRANSIENT OBFUSCATION

hard problem in the dispatcher [Cho+01], or by using a one-way function to update
the routing variable [CP10].

In accordance with our threat model, we only want to secure one design step,
HLS, which is why transient obfuscation can be used. To increase security of
control flow flattening without further increasing overhead, we propose a key-based
control flow flattening method.

We propose to replace the literal values assigned to the routing variable by
variables that are inputs to the function, as can be seen on Figure 2.5(d). This
means that if the wrong inputs, or keys, are given, the basic blocks will be executed
in the wrong order. Only the exact correct sequence of inputs can ensure correct
code execution. A code example with classic and key-based control flow flattening
can be found in Figure 2.5(d).

Partial Control Flow Flattening

When using control flow flattening, every loop gets broken up and transformed
into individual basic blocks. This means that HLS tools are no longer able to
perform common optimizations on loops (unrolling, pipelining...). Without these
optimizations, the final overhead can be too high for some users.

An additional feature in KaOTHIC was added to enable users to fine-tune
which parts of the code should be flattened. By placing pragmas in the code, a
user can for example choose to flatten everything except for a particular loop. An
other option is to perform what we called “coarse flattening”: instead of creating a
case for each basic block, several basic blocks can be grouped together in one case,
for example all the blocks inside a loop. This selective control flow flattening can
help improving the results in terms of design overhead, but comes with a decrease
in security.

2.4.3 Further Hiding of the Control Flow

To further improve the security level of the previous obfuscation techniques, sev-
eral variations as well as new transformations can be proposed. For example, in
Section 2.4.2, we used a Switch statement as dispatch, i.e. as method for select-
ing which basic block to execute next in a flattened CFG. In our environment

2.4. PROPOSED OBFUSCATION TECHNIQUES 55

obfuscationsource
L1 :

L2 :

L3 : L4 :

L5 :

L6 :

cond branch

L1 :

L2 :

L3 : L4 :

L5 :

L6 :

Figure 2.8 – Example CFG before and after obfuscation by adding bogus transi-
tions.

KaOTHIC, we implemented another type of dispatch, goto dispatch, where Goto
statements are used to direct the control flow. This involves labeling each state-
ment of the original code, then adding Goto statements at the end of each basic
block to lead to the next block. Instead of directly pointing to the label of the next
block, our Goto statements point to a key input, making it once again hard for an
attacker to find the correct control flow. To further increase opaqueness for attack-
ers, we also propose to add bogus transitions (cf. Figure 2.8) between basic blocks,
i.e. bogus Goto statements, which can be removed during de-obfuscation with the
correct keys. It should furthermore be noted that all of the transformations here
can be combined in different orders to increase robustness of the obfuscation.

2.4.4 Data Obfuscation by Literal Replacement

To enhance the previous work in KaOTHIC, mainly focused on hiding the control
flow of a program, basic data obfuscation was also added. One of the first steps in
data obfuscation is often to hide literals by replacing them with opaque expressions.
In our case, we can take advantage of the fact that the obfuscation is temporary.
Instead of using opaque expressions, which a motivated attacker might be able to
break given enough time, we simply remove literals completely from the code and

56 CHAPTER 2. TRANSIENT OBFUSCATION

replace them with placeholder variables. During de-obfuscation, the key values are
added again, ensuring correct functionality of the circuit.

In practice, we implemented a basic transformation that parses the whole code
at Abstract Syntax Tree (AST) level and flags all integer literals. Depending on
the obfuscation level desired by the user, part or all of the integer literals are
replaced by variables. These variables are added as inputs to the main function.
The real integer values are stored in a file that stays on the user’s machine. During
de-obfuscation, the values provided by the user are hard-coded as inputs to the
circuit. During logic synthesis, constant propagation will lead to the removal of
these now unnecessary inputs and the recovery of the original integer literals. The
same process can be applied for other literals such as string literals.

2.5 De-obfuscation: Making the Process Tran-
sient

To protect BIPs during cloud-based HLS, we aim at proposing a transient pro-
tection scheme. To achieve this, we have added a de-obfuscation step after HLS.
When the correct obfuscation keys are provided, this step performs two functions:
it recovers correct functionality of the IP, and limits design overhead. Most im-
plemented obfuscation techniques rely on adding bogus code, and then using key-
based predicates to choose what code to execute, see Section 2.4.1. In that case,
de-obfuscation removes all bogus code. For other techniques, such as key-based
control flattening, apart from the key logic, there is no bogus code to remove. In
that case, the only result of de-obfuscation is recovering the original functionality.

De-obfuscation is performed on the obfuscated RTL code resulting from HLS,
usually VHDL or Verilog code. At RT level, the keys that were added as argu-
ments to the main obfuscated function in C are now inputs to the component.
For all implemented obfuscating transformations, the resulting RTL code contains
the same artifacts: comparisons between key signal and an expected value, and
obfuscation multiplexers that select what code should be executed based on the
results of these comparisons.

In this section, we propose three different approaches for de-obfuscation. The

2.5. DE-OBFUSCATION: MAKING THE PROCESS TRANSIENT 57

Figure 2.9 – Example of a de-obfuscation by forcing input values.

first two work by injecting the keys in different manners at RTL, and then relying
on logic synthesis to remove any dead logic. These two techniques can easily be
adapted to different HLS tools and are, thanks to modern powerful logic synthesis
techniques, able to remove most, if not all bogus code. The downside is that the
de-obfuscated design is only available after synthesis and the designer thus does
not have access to the de-obfuscated RTL. With the third approach, de-obfuscation
is fully performed on the RTL code, using source-to-source transformations. The
designer thus has access to the cleaned-up RTL. However, from a practical stand-
point, this technique is harder to implement and requires strong modifications for
each different HLS tool used.

2.5.1 Pedagogical Example

On Figure 2.9, we present a simple pedagogical example to illustrate the de-
obfuscation process. The figure presents a multiplexer piloted by a comparator.
An input key k is compared to a value v. Depending on the result of the compar-
ison, a or b is routed to f . In the case of a simple obfuscation with bogus code
insertion (Section 2.4.1), a might for example represent the result of the correct

58 CHAPTER 2. TRANSIENT OBFUSCATION

code branch, to be executed if the correct key value is provided, while b is the
result of the bogus code branch.

The full obfuscation logic, i.e. key comparison + obfuscation multiplexer, rep-
resents approximately 300 logic gates in this example. During de-obfuscation, a
constant is used as input for k. If this forced input equals v, then the result of
the comparison is always 1. During logic synthesis, due to constant propagation,
the whole obfuscation logic gets removed (as shown on the bottom of Figure 2.9),
resulting in 0 remaining gates. Furthermore, it should be noted that since b is no
longer connected, the added bogus code can also be removed by the synthesis tool.

This simple example shows how, by simply forcing the key input value, the
whole obfuscation logic can theoretically be fully and automatically removed dur-
ing logic synthesis. In this case, our obfuscation process is fully transient and
would result in no design overhead. This example works perfectly because the
logic is fully combinatorial. In reality, we show in the next section how full con-
stant propagation is prevented by the sequential logic.

2.5.2 Naive Key Injection

This first approach consists in injecting the correct obfuscation keys at the circuit
interfaces in the RTL code. During logic synthesis, the following behaviour is
then expected: if the correct keys are injected, through constant propagation
the predicates should evaluate correctly, and the bogus code branches should be
removed by logic simplification. The circuit would then function correctly and the
design overhead compared to the original, unobfuscated circuit should be close to
null.

In practice however, this technique does not perform well: the sequential datap-
ath created by the HLS tool scheduling prevents full de-obfuscation. Experiments
performed on several benchmarks have shown that the obfuscation multiplexer
is often scheduled in a different clock cycle than the corresponding comparison
between key input and value, as shown on Figure 2.10(b). This means that a
dedicated register is used to store the result of the key comparison ("reg1" on Fig-
ure 2.10). Injecting the correct key value as a constant input results in a constant
value in the comparison register. However, logic synthesis tools have no way of

2.5. DE-OBFUSCATION: MAKING THE PROCESS TRANSIENT 59

Figure 2.10 – Example RTL datapath before and after de-obfuscation.

60 CHAPTER 2. TRANSIENT OBFUSCATION

knowing that the register always contains the same value and could thus be re-
moved. As a consequence, the obfuscation multiplexer is not removed either, and
most of the bogus code added by obfuscation remains.

While the final circuit is functionally correct, the remaining bogus code causes
a significant design overhead.

2.5.3 Targeted RTL Modification

We propose to improve upon this first, naive approach, by using a more targeted
and in-depth de-obfuscation method, illustrated on Figure 2.10(c). Instead of in-
jecting the keys externally and relying purely on logic collapsing, we locally modify
the RTL code itself by performing the following operations for each obfuscation
key:

• The given key and its expected value in the code are compared;

• The result of this comparison is stored as "0" or "1". This is the value that
would during execution be in the aforementioned comparison register;

• The key comparison and the comparison register are completely removed
from the RTL code;

• The stored result, "0" or "1", is directly injected into the obfuscation multi-
plexer;

• Logic synthesis is performed as for a normal RTL design.

This more targeted approach enables logic synthesis tools to completely collapse
and remove any remaining obfuscation artifacts, resulting in close to no overhead.
This guarantees that our obfuscation process is transient.

This second approach was fully automated for VHDL code, and could easily
be extended for Verilog as well.

2.5. DE-OBFUSCATION: MAKING THE PROCESS TRANSIENT 61

2.5.4 Full RTL De-obfuscation

Our third method is a full de-obfuscation at RTL, before synthesis. We perform a
source-to-source modification of the HDL code. This method is more error-prone
and difficult to automate, but provides more flexibility for the design house since
it now has access to the fully de-obfuscated RTL IP. Moreover, it is less reliant on
the code format generated by a specific HLS tool, and should be usable for any
HLS tool with no or just small adjustments.

For this approach, we also start by comparing the input keys with the obfus-
cation key values given in a file and storing the result of this comparison. We
then perform a fixed-point analysis on the RTL design. In this phase, we keep
track of the signals to which constant values have been assigned, and perform
both forward and backward analysis. During forward analysis, all constant values
are propagated to existing signals and any now useless elements are removed. For
example, a multiplexer with a constant selector can be removed by connecting its
output directly to the correct input. During backward analysis, we also remove
parts of the circuit that are no longer used. For example, the other input of the
previously removed multiplexer becomes unconnected: the logic generating this
value can thus be removed, as long as it is not used in other parts of the circuit.

This method was implemented for Verilog code generated by Vivado HLS, using
PyVerilog [Tak15] as a parser for HDL manipulation.

62 CHAPTER 2. TRANSIENT OBFUSCATION

2.6 KaOTHIC: Key-based Obfuscating Tool for
HLS In the Cloud

All of our proposed obfuscation techniques have been implemented as code trans-
formations in an in-house source-to-source compiler for C, KaOTHIC, written in
Python.

2.6.1 Obfuscation Flow

Figure 2.11 – Obfuscation flow in KaOTHIC compiler.

The complete obfuscation flow is illustrated on Figure 2.11. Our tool takes as
input the original BIP in form of C source code. It can then be guided with a
series of parameters: obfuscation level, applied transformations, order of transfor-
mations. The tool outputs the obfuscated BIP again as C code, as well as the list
of obfuscation keys. In detail, following steps are performed:

1. The C files are parsed and an Abstract Syntax Tree (AST) is generated;

2. The AST is traversed to build the Control Flow Graph (CFG) of the program;

3. From the CFG, a list of "candidate" basic blocks that can be obfuscated is
built;

4. Based on the desired obfuscation level and/or detailed user instructions,
basic blocks are randomly selected among the candidates;

2.6. KAOTHIC 63

5. Each selected candidate is obfuscated and replaced in the original code;

6. For each selected candidate, a key variable is added as input to the obfuscated
function and a random value is generated as key;

7. The AST is rebuilt from the modified CFG;

8. From the modified AST, the final, obfuscated C code is recreated.

This generic flow can be adapted to different code transformations. A detailed
presentation of all implemented obfuscation techniques can be found in Section 2.4.

2.6.2 Adding Randomness

Since KaOTHIC is open-source, we assume that an attacker also has access to it
and thus cannot rely on the secrecy of the process to ensure security. To prevent an
attacker from reproducing obfuscation results, randomness is introduced wherever
possible in the obfuscation flow:

• Based on user input, a certain number of elements (basic blocks, expressions,
etc.) are chosen to be obfuscated among all obfuscation candidates. This
choice is usually performed randomly, meaning that running the exact same
obfuscation pass on the same code will result in different parts of the code
being obfuscated each time. For experimental purposes (reproducibility of
results) and to allow better control by the user, it also remains possible to
manually choose the obfuscation candidates.

• For each obfuscated item, the correct key value is randomly attributed to ei-
ther the original or the bogus code. This means that the key-based predicate
does not always evaluate to True with the correct, original code branch. The
attacker thus has no direct indication in the code for guessing which code
branches are real and should be executed, and which are bogus and should
be removed.

• The obfuscation keys are numbered in random order and their values are
chosen randomly as well.

64 CHAPTER 2. TRANSIENT OBFUSCATION

• The added bogus code is generated according to a set of rules, in order to
closely resemble real code and avoid detection, but the exact sequences of
instructions, operators and operands is also generated at random.

2.6.3 Obfuscation Parameters

We defined two parameters that can be adjusted by the user to choose the right
balance between security level, obfuscated code size and final design overhead.

Obfuscation Level

We call obfuscation level the ratio of effectively obfuscated expressions or basic
blocks with respect to the total number of such items in the design. For bogus
basic block insertion for example, an obfuscation level of 100% means that all
possible basic blocks were obfuscated. Increasing the obfuscation level results in
an increased number of obfuscation keys to guess for an attacker, and thus in a
higher level of security. Ideally, we should always choose an obfuscation level of
100%.

Branching Degree

We call branching degree the number of bogus elements added for each obfuscated
expression or basic block. A higher branching degree increases the amount of
choices an attacker has for each obfuscated item. By combining the maximum
obfuscation level, and a high branching degree, security can be significantly in-
creased.

2.7. EXPERIMENTAL SETUP AND RESULTS 65

2.7 Experimental Setup and Results

2.7.1 Test Flow

To validate our transient obfuscation approach, we tested the different obfusca-
tion techniques applied individually to 5 benchmarks from MachSuite [Rea+14]
and CHStone [Har+08]: advanced encryption standard (AES), adaptive differen-
tial pulse code modulation encoder (Adpcm), optimal sequence alignment algorithm
(Needwun), mergesort algorithm (Merge_sort) and three-dimensional stencil com-
putation (Stencil3d).

For each benchmark, we applied HLS followed by logic synthesis once to obtain
a baseline report on design size and timing. Next we obfuscated each benchmark
with a single obfuscating transformation, followed by HLS with the same parame-
ters as for the original, unobfuscated design. Then de-obfuscation was applied to
the resulting obfuscated RTL IP, followed by logic synthesis. The results of these
syntheses were used to calculate design overhead of the different approaches.

We also varied the two following parameters for bogus code insertion tech-
niques:

• Obfuscation level: percentage of candidate AST nodes or CFG basic blocks
that are obfuscated. 100% means that all possible candidates are obfuscated,
leading to the highest level of security.

• Branching degree: amount of bogus expressions or blocks added for each
obfuscated item. Increasing it has a strong impact on number of guesses
necessary to find the correct key combination.

We used Xilinx Vivado HLS as a HLS tool. Logic synthesis was performed
with Synopsys Design Compiler, targeting the Synopsys SAED 90nm educational
library for ASIC, as well as with Xilinx Vivado for a Nexys 4 DDR Artix-7 FPGA
board.

66 CHAPTER 2. TRANSIENT OBFUSCATION

2.7.2 Overhead - Results and Analysis

In order to analyze the different parameters at play during obfuscation, as well
as the validity of our whole process, we performed more detailed tests for one
transformation in particular, bogus expression insertion.

Benchmark No Deobfuscation Naive Deobfuscation Full Deobfuscation
Area(%) Delay(%) Area(%) Delay(%) Area(%) Delay(%)

Adpcm 2.61 -0.06 2.29 -0.08 -0.08 -0.01
AES 0.3 <0.01 0.31 <0.01 0.03 2.72
Merge Sort 0.07 <0.01 0.07 <0.01 0.03 0.01
Mips 1.14 0.5 1.45 0.5 -1.12 -7.47
Needwun 9.01 11.69 8.39 11.69 0.26 <0.01
Stencil3d 9.38 0.73 9.2 0.73 1.54 -0.14

Table 2.1 – Average design overhead on ASIC.

Benchmark No Deobfuscation Naive
Deobfuscation Full Deobfuscation

LUT(%)FF(%) Delay(%)LUT(%)FF(%) Delay(%)LUT(%)FF(%) Delay(%)

Adpcm 5.82 28.9 15.9 -0.08 -0.2 10.85 -0.12 -0.2 11.06
AES 29.0 20.0 1.98 7.05 0.42 3.35 8.97 0.42 4.49
Merge
Sort -1.37 18.7 2.57 -6.18 4.08 -1.27 -5.99 4.08 -3.77

Mips 45.9 210 7.51 1.46 -1.39 4.51 1.78 -1.39 4.61
Needwun 23.9 33.5 -4.22 0.79 0.01 -2.78 -0.6 -0.25 -1.98
Stencil3d 20.7 22.4 -9.44 1.38 4.56 -3.78 -1.25 5.57 -0.86

Table 2.2 – Average design overhead on FPGA.

De-obfuscation

To prove that any additional logic added by obfuscation is removed, and to show
the benefit of our de-obfuscation approach, we extended the previously presented
test flow by performing in total 4 logic syntheses per test:

• The original, never obfuscated RTL IP, used as baseline.

2.7. EXPERIMENTAL SETUP AND RESULTS 67

• The obfuscated RTL IP, with no de-obfuscation.

• The obfuscated RTL IP, with naive de-obfuscation.

• The obfuscated RTL IP, with full de-obfuscation.

The overheads in percent when compared to the original IP are presented for each
benchmark and for both ASIC and FPGA on Table 2.1 and Table 2.2. These
tables contain the results with a branching degree of 1, meaning that for each
obfuscated expression, one bogus expression was added. These results show that
with no de-obfuscation, design overhead is usually high, up to 12% on ASIC and up
to more than 200% on FPGA. Increasing the branching degree during obfuscation
would automatically further increase the area overheads, since adding additional
expressions in C code results in additional logic in the final design.

When using naive de-obfuscation, results indicate that overall overhead de-
creases slightly, but is still significant. On the other hand, de-obfuscating the IPs
in a targeted way with our proposed full de-obfuscation method strongly reduces
overhead. This proves that we are successfully able to remove the code added
during obfuscation.

In some cases, the overhead is already close to 0% (e.g. AES on ASIC) without
any de-obfuscation. With de-obfuscation, overhead can even be negative. This
may happen when the obfuscated code, greatly increased in size due to added
bogus code, forces the HLS tool into different, sometimes better optimization
choices. In some cases, the different choices thus result in overall smaller final
designs. In other cases, the small remaining overhead after full de-obfuscation
(e.g. Stencil3D) is in our opinion also due to the choices made by the HLS tool:
adding code at behavioral level will for example cause the tool to handle resource
sharing differently. Furthermore, the syntactic variances caused by the obfuscation
process can also have a significant impact on the HLS tool, see [CGR93].

Obfuscation Level

We studied the impact of obfuscation level, as defined in Section 2.6.3, on overhead
using the bogus expression insertion technique as an example. By doing a series of
tests with the obfuscation level varying from 5% to 100%, we established whether

68 CHAPTER 2. TRANSIENT OBFUSCATION

0 10 20 30 40 50 60 70 80 90 100−15

−10

−5
0

5

10

15

Obfuscation Level (%)

Av
er
ag
e
O
ve
rh
ea
d
(%

) Area
Delay

Figure 2.12 – Average design overhead per obfuscation level, for bogus expression
insertion - ASIC.

0 10 20 30 40 50 60 70 80 90 100−15

−10

−5
0

5

10

15

Obfuscation Level (%)

Av
er
ag
e
O
ve
rh
ea
d
(%

)

LUT
Register
Delay

Figure 2.13 – Average design overhead per obfuscation level, for bogus expression
insertion - FPGA.

2.7. EXPERIMENTAL SETUP AND RESULTS 69

2 4 6 8 10 12 14 16 18 20−8
−4

0
4
8

12
16
20

Branching Degree

O
ve
rh
ea
d
(%

)
LUT

Register
Delay

Figure 2.14 – Design overhead per branching degree, for bogus basic block insertion
- FPGA - obfuscated.

there is a correlation between obfuscation level and overhead. The results, shown
on Figure 2.12 and Figure 2.13 for ASIC and FPGA respectively, indicate that
there is no such correlation, and in particular that area overhead does not increase
with obfuscation level. This positive result demonstrates that our de-obfuscation
process is effective no matter what amount of code is obfuscated. We conclude
that the maximum level of obfuscation and thus of security, i.e. 100%, can always
be chosen.

Branching Degree

We also studied the impact of branching degree, as defined in Section 2.6.3. Pre-
liminary tests were made for one obfuscation technique in particular, bogus basic
block insertion. On Figure 2.14 and Figure 2.15, results for Adpcm benchmark,
which are representative of results found with other designs, are given. They show
that with a higher obfuscation degree, meaning a higher amount of bogus basic
blocks added, the design size increases for the obfuscated design. This is to be
expected since the number of basic blocks in the obfuscated design is much higher.
For the de-obfuscated design however, while the number of registers slightly in-
creases with a high branching degree, overall overhead remains below a threshold

70 CHAPTER 2. TRANSIENT OBFUSCATION

2 4 6 8 10 12 14 16 18 20−8
−4

0
4
8

12
16
20

Branching Degree

O
ve
rh
ea
d
(%

)

LUT
Register
Delay

Figure 2.15 – Design overhead per branching degree, for bogus basic block insertion
- FPGA - de-obfuscated.

of around 5%. These results show that for each obfuscated basic blocks, up to 20
bogus blocks can be added without any significant impact on design performances
and size.

Obfuscation Techniques

We have so far performed in-depth testing mainly for bogus code insertion and
control flow flattening techniques. For all of these tests, average runtime overhead
for HLS is negligible, at under 5%. For bogus code insertion techniques (bogus
expressions and bogus basic blocks), the design overhead after logic synthesis is
overall satisfactory. In the majority of tests, area and delay overhead are below
5%, which we consider an acceptable threshold. For some benchmarks, overhead
can be higher than tolerable. However, this can be mitigated by choosing carefully
which obfuscation technique to apply, and which values to use for obfuscation level
and branching degree.

For key-based control flow flattening, the results are not as encouraging. When
used for software obfuscation, control flow flattening has been shown to result in
a high overhead: in [LK09], the authors explain that on average, runtime and
size of a program double. In an HLS context, this problem becomes even more

2.7. EXPERIMENTAL SETUP AND RESULTS 71

predominant. Not only does control flow flattening hinder compiler front-end
optimizations, but it can also severely impact later stages of the HLS process. For
example, since loops are no longer easily identifiable in the code, any loop-related
optimizations such as loop pipelining or unrolling cannot be performed anymore.
This issue can be mitigated by using coarser control flow flattening and leaving
some control flow structures intact instead of flattening everything. This does
however decrease the level of security. There is thus a trade-off between overhead
and security, that has to be balanced for each individual design.

We have also noticed that the dispatch structure used for control flow flatten-
ing, either in the form of a global Switch-case statement, or in the form of a series
of Goto and labeled statements, has a severe impact on overhead. Flattening the
control flow at behavioral source code and rewriting the BIP with such a dispatch
structure is effectively equivalent to creating a Finite State Machine (FSM). How-
ever this FSM-like structure is not recognized as such by HLS tools, which results
in an additional FSM being created on top of the first one. The final overhead due
to this behavior is significant (up to 35% on FPGA and 45% on ASIC) and can,
in our opinion, not be avoided. It should be noted however that switching from
classic control flow obfuscation to key-based control flow obfuscation, which highly
improves the security level, does not have any further negative effect on overhead.

Key-based control flow flattening technique, especially when used in conjunc-
tion with bogus code insertion techniques, can strongly decrease readability of the
code and thwart static code analysis tools. From a security point of view, this is a
powerful technique that could be used to secure cloud-based HLS flows. However,
it can lead to significant design overhead when used in a hardware context, and
should thus be applied only on select designs.

2.7.3 Transience and Security: Discussion

In order for our obfuscation process to be fully transient, two criteria have to
be met. First of, the full process, i.e. obfuscation + HLS + de-obfuscation,
should ideally not have any impact in terms of design overhead. The results
presented in the previous section demonstrate that while the final design is never
fully identical to the original one without protection, the difference between both

72 CHAPTER 2. TRANSIENT OBFUSCATION

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

Obfuscation Level (%)

C
om

pl
ex
ity

In
cr
ea
se

(%
)

Figure 2.16 – Cyclomatic complexity increase of Needwun source code after obfus-
cation per obfuscation level.

is usually negligible. For most transformations, the obfuscation overhead is very
low. This is however not the case for control flow flattening, which is not well
adapted to a hardware context. Second, our process is only transient if the final
design has the exact same functionality as the initial design. To verify this, we
simulated each circuit before and after de-obfuscation using GHDL [Gin], an open-
source simulator for VHDL language, as well as the co-simulation tool provided by
Vivado HLS. These simulations show that before de-obfuscation, the obfuscated
circuits only perform correctly when the exact right key sequence is applied as
inputs. After de-obfuscation, the keys are no longer necessary and the circuit
always behave as expected. This proves that our obfuscation process is transient
where functionality is concerned, and that the automated de-obfuscation tool does
not remove any needed logic.

To evaluate the security of transient obfuscation, we calculated the cyclomatic
complexity. While not a precise indicator of the difficulty of attack, a higher com-
plexity does usually imply that the code is more difficult to understand. Our
results for bogus expression insertion show that after obfuscation, the complex-
ity increases on average by 109%. Furthermore, the increase in complexity is

2.8. CONCLUSION 73

positively correlated with the level of obfuscation, see Figure 2.16 for an exam-
ple with Needwun benchmark, which is representative of the results obtained for
other benchmarks. Increasing the level of obfuscation can thus be a simple way to
improve security without incurring a significant increase in overhead.

2.8 Conclusion

In this chapter, we explained why HLS-as-a-Service seems a likely scenario. We
presented the security concerns, in particular BIP theft and reuse, that can slow
down adoption. To secure such a cloud-based HLS flow during design time, we
introduced transient obfuscation, a novel obfuscation concept which combines soft-
ware obfuscation techniques and key-based hardware protection methods. By de-
obfuscating designs after HLS, at RTL or during logic synthesis, we ensure that
this protection is transient and does not cause too high overhead. We imple-
mented this concept using an in-house tool, KaOTHIC, which allowed us to run
test campaigns with Vivado HLS. Experimental results show that some techniques
are better suited to a hardware design context than others, and that simply reusing
known software obfuscation techniques is not enough to ensure satisfactory results.
In the following chapters, we will base our experiments on bogus code insertion,
since this technique is fully transient and does not present any performance issues.

Chapter 3

Transient Obfuscation for BIP
Birthmarking

Watermarking can be used to prove ownership by embedding and then extracting a
signature in a design. At the behavioral level, existing solutions require modifying
commercial or in-house HLS tools by adding a specific watermark embedding step.
In this chapter, we propose a solution that is HLS-tool agnostic and relies on side
effects of the transient obfuscation techniques presented in the previous chapter.
Our solution is based on a software identification technique called birthmarking:
by extracting intrinsic properties of a design, instead of a previously embedded
signature used in classic watermarking approaches, we are able to prove ownership
of a stolen design.

We base our approach on the assumption that our transient obfuscation pro-
cess creates a form of signature: the sequence of obfuscation, HLS, and then de-
obfuscation with specific keys and specific obfuscation parameters results in designs
that are unique from a micro-architectural point of view. Two designs, originat-
ing from the same C level source code, that have gone through this transient
obfuscation process, have identical functionality but present noticeable structural
differences. We propose to exploit these differences to identify stolen designs.

After presenting the threat model used for this work and giving background
information about watermarking, we explore what effects code transformations
such as transient obfuscation can have on HLS results. Next we present related

75

76 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

work on both BIP and software watermarking. We then introduce our approach,
based on hardware birthmarking concepts, to uniquely identify IPs after HLS.
We study two identifying metrics, based on analysis of a design’s scheduling and
dataflow. Finally, we provide a detailed experimental setup and in-depth results
to validate the approach. The positive results obtained during this work have been
published in [Bad+21b].

3.1 Threat Model and Background

3.1.1 Threat Model

Figure 3.1 – Watermarking Threat Model.

In this work, we focus on the case of a design house using an HLS-based design
flow to create IPs that will be sold directly at RTL, or at lower level. A potential
attacker, as shown on Figure 3.1, is trying to steal this IP with the goal of making
illegal copies and/or reselling the design. The design house on the other hand is
trying to protect its IP and wants to be able to claim ownership of a potentially
stolen design.

We work with following assumptions:

3.1. THREAT MODEL AND BACKGROUND 77

• The attacker has access to the RTL design (soft IP) or can reverse-engineer
the gate-level netlist (firm IP) to extract the corresponding RTL description.

• The attacker can apply some functionality-preserving modifications to the
stolen IP to thwart identification.

• The defender (IP vendor/designer) can add proprietary information in form
of a watermark to the design, with the goal of later identifying and claiming
ownership of the design.

• The defender is using a commercial HLS tool, which cannot be modified to
add a watermark.

3.1.2 Watermarking

Hardware watermarking is a technique used to protect hardware designs from theft
and illegal reuse by embedding a unique identifier, or signature, that can later be
extracted to claim ownership of the stolen IP. The watermarking process is usually
comprised of two steps, or functions:

1. Embed: this functions takes a design IP as input and adds a watermark w,
using a secret key key: embed(IP, w, key) =⇒ IPw

2. Extract: this function extracts the watermark from a design when given the
correct key: extract(IPw, key) =⇒ w

The IP watermark added as defense by the design house should respect follow-
ing properties [ATA03][Pil+19]:

• Ownership Credibility: the IP ownership is easy to verify, with a minimal
probability of collision (low false-positive rate)

• Resilience against following attacks:

– New Watermark Insertion: the attacker adds his own watermark

– Transformations: the attacker applies some transformations to the
design, with the goal of hindering watermark extraction

78 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

– Removal: the attacker finds and removes the watermark

– Re-synthesis: the watermark is removed by a synthesis tool

• Low Design Degradation: the watermark does not affect functionality of
the design and has a minimal impact on design performance

3.1.3 Effects of Code Transformations on High-Level Syn-
thesis

Even without introducing deep transformations in the source code, expressing the
same algorithm using an alternative syntax can result in considerable differences
in the RTL design: the HLS process is notably sensitive to so-called “syntactic
variance”. This phenomenon has been studied since the early 90s [CGR93], where
forms of canonical representation to minimize this effect were soon proposed. How-
ever, to the best of our knowledge, none of these representations has proven to be
fully effective in practice, despite continuous interest from the HLS community.
Even intermediate representations based on static single assignment (SSA) form,
commonly employed in modern HLS front-ends, and which tend to reinforce the
dataflow exposition of the whole program, do not fully suppress this effect.

More recently, some authors [Hua+13] have studied the impact of optimizations
performed by the compiler front-end on HLS quality of results. They demonstrate
that the choice of optimization passes and of pass ordering can significantly affect
the area and latency of the resulting circuits. However, they also note again
that this impact is strongly influenced by the input design: an identical set of
optimization passes can lead to very different results depending on the input design.

In [VS17a], the authors focus on how software obfuscation techniques, when
applied to behavioral source code, can negatively affect HLS quality of results.
They show that by obfuscating behavioral IPs using conventional software obfus-
cation tools, the compiler front-ends used in HLS tools fail to correctly optimize
the code. This in turn results in a degradation of the synthesis results.

These different works confirm our intuition that by applying transformations
on behavioral level source code, transient obfuscation has a direct effect on the
HLS process. Even after de-obfuscation, once original functionality is recovered,

3.2. RELATED WORK 79

the design keeps traces of the obfuscation process in its structure. These traces
are unique for each design and each individual sequence of obfuscating transfor-
mations.

3.2 Related Work

3.2.1 BIP Watermarking Techniques

While many publications exist on how to watermark IPs at lower design levels,
in recent years there has been an increased focus on watermarking IPs at the be-
havioral level. Most techniques rely on modifying a HLS tool by adding specific
security passes, with the goal of inserting a watermark in a design during HLS.
In [KHP05], the authors propose to insert a watermark during register allocation
and/or binding: watermark constraints, in the form of fictional edges, are added
to the interval graph used to represent the variable lifetimes. These additional
constraints modify the final design by leading to a different solution for register al-
location. In [SB16], watermarks are also embedded as additional constraints during
register allocation. However, the authors propose to use design space exploration
(DSE) to find an optimal watermark that still respects user constraints for latency
and area. Several similar constraint-based approaches have been proposed, both
at lower and at behavioral level. In [Cui+11], the watermark is embedded directly
into the FSM, specifically in the state transition graph (STG), by modifying some
of the STG edges without changing functionality.

In [Pil+19], the authors introduce the idea of benevolent Trojans: watermarks
are hidden in designs during HLS by reusing Hardware Trojan (HT) concepts. Just
as HTs, the watermarks are composed of a trigger and a payload, and are added
before the backend phase of HLS.

3.2.2 Software Watermarking Techniques

Software watermarking was first introduced in 1996 as a patent [DM96], with a
technique based on basic block reordering. Several other methods based on re-
ordering, applied for example to operations [SS08], operand coefficients [SJX09],

80 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

function declarations or constants [Gon+08], have also been proposed. How-
ever, reordering-based watermarking techniques have very low resilience to attacks
where semantics preserving transformations are applied [DBC19]: since the wa-
termark extraction step relies on checking the order of items (e.g. basic blocks,
operations) in the program, an attacker simply has to reorder the items to thwart
correct watermark extraction.

In [QP98], the authors introduce QP, an algorithm that embeds a watermark
by modifying the register allocation of the program: by adding additional con-
straints representing a watermark to the interference graph, the registers assigned
to variables are changed. Several improvements on the initial algorithm, with
stronger credibility and resilience, have been proposed in later years, such as QPS
[MC03] or QPI [ZT05].

Other graph-based approaches, where a watermark in form of an integer is
encoded in a graph structure, have also been proposed. In [VVS01] for example,
bogus control flow is added to hide the watermark in the CFG.

Several other approaches can also be noted. In [Arb02], the constants in opaque
predicates are used to hide a watermark. In [Zen+10], watermarking based on
obfuscated interpretation is proposed.

More detailed overviews and surveys of existing software watermarking tech-
niques can be found for instance in [HD11] or [DBC19].

3.3 Proposed Approach

3.3.1 Complete Flow and Notations

Let C be the original design in C. By applying KaOTHIC obfuscation with a key
Ki and a series of parameters P i we get an obfuscated design Ci

obf .

Then we apply HLS to the original and the obfuscated design to get RTL
designs. Next de-obfuscation is applied.

3.3. PROPOSED APPROACH 81

Ci
obf = Obf(C,P i, Ki) (3.1)

RTLi
obf = HLS(Ci

obf) (3.2)

RTLi
deobf = Obf−1(RTLi

obf , K
i) (3.3)

The resulting design, RTLi
deobf , has the same functionality as the original de-

sign RTL. However, the micro-architecture of this design is different due to dif-
ferent HLS design choices. On the other hand, both RTLi

obf and RTLi
deobf have

the same architecture: the only differences between these two designs is the logic
removed during de-obfuscation.

We postulate that our 3 step process (obfuscation + HLS + de-obfuscation)
creates a design that is unique and could not have been created by someone else.
These architectural differences can thus be used as an identifying watermark.

Figure 3.2 – Watermarking Flow.

In our updated threat scenario, shown on Figure 3.2, the potential IP thief
only has access to RTLi

deobf , while the design house has sole access to RTLi
obf .

Verifying the watermark can be reduced to following problem: proving a relation-
ship between RTLi

obf and RTLi
deobf . More precisely, by proving that RTLi

deobf

originates from RTLi
obf , and by being the only entity with access to

82 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

RTLi
obf , the design house can prove ownership of the design.

3.3.2 Watermark Insertion

Our watermark insertion process is made of three steps: obfuscation of the source
code (behavioral level), HLS, de-obfuscation of the design (RTL). For HLS, our
method does not rely on a specific, modified tool: while the de-obfuscation pro-
cess might require some adjustments depending on the HLS tool used, the overall
method stays the same. Our process thus becomes an extension of a classic HLS
flow with two extra steps before and after HLS.

Obfuscation

The first step, obfuscation, applies code transformations to the original source
code, with the goal of influencing the design choices made by the HLS tool. We
propose to reuse transient obfuscation methods presented in the previous chapter
(Chapter 2). In particular, we focus on Bogus Basic Block Insertion, as introduced
in Section 2.4.1: a list of all eligible basic blocks in the original code is established.
Some or all of these blocks are selected to be obfuscated. Before each obfuscated
block, an If/Else statement with an input key as condition is inserted. Then, one
or several bogus basic blocks are added next to each existing obfuscated block.
These bogus blocks are copies of the original blocks, with following modifications:
change of operators, switching of operands, switching of instruction order. These
modifications are light enough to make the bogus blocks hard to distinguish from
real blocks (thus preventing an attack by deobfuscation), but still have a strong
impact on the HLS design choices (thus creating a strong watermark). The overall
important amount of bogus code added ensures that the design differences are
significant.

De-obfuscation

After HLS has been performed on the obfuscated source code, the resulting RTL
design is still obfuscated, meaning that it still contains large amounts of bogus
code and has an altered functionality. By de-obfuscating, we ensure that original

3.3. PROPOSED APPROACH 83

functionality is recovered and that any bogus logic is removed to minimize resource
overhead. The resulting de-obfuscated design has the same functionality as the
original design and a similar size, but has a different micro-architecture, which we
exploit as a watermark. Since the watermark should be recoverable directly at
RTL, we cannot rely on logic synthesis to remove any dead code. Instead, we use
the full RTL de-obfuscation method presented in Section 2.5.4: the key values are
propagated as constants throughout the design, and any dead code is removed.

3.3.3 Watermark Verification: Birthmarking Concepts

As explained in Section 3.3.1, our watermark verification relies on following idea:
proving that one design (RTLi

deobf) was obtained from another design (RTLi
obf)

by removing part of the logic (de-obfuscation step). Proving this relationship is
closely related to problems of circuit similarity and containment. A direct link
with software birthmarking, where the goal is to determine if two programs share
a common origin, can also be established. In this subsection, we propose to explore
what software birthmarking is, how it translates to the hardware domain, and how
its principles can be applied to our watermark verification problem.

Software Birthmarking

Software birthmarking was first mentioned in [Gro89], where it was used for pro-
gram identification. In [Tam+04], the authors proposed different birthmarking
techniques to detect the theft of JAVA programs. The idea was further detailed
and studied in [MC04].

In these works, a birthmark is defined as a set of characteristics that can be
extracted from a program. These characteristics are chosen with the goal of being
used as identification: by definition, if two programs have the same birthmark,
then one has to be a copy of the other.

Two properties should be verified by birthmarking techniques:

1. Credibility: The fact that two programs have the same function does not
imply that one is a copy of the other. A birthmarking technique is considered
credible if two independently writing programs with the same functionality
result in two different birthmarks.

84 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

2. Resilience to transformations: Birthmarks should be resistant to semantics-
preserving transformations such as obfuscation.

It should be noted that birthmarking can only prove that two programs share
the same origin. It does not provide a direct proof of authorship, contrary to
watermarking. Moreover, whereas watermarking relies on embedding and then
extracting a specific mark in a program, birthmarking is based solely on extracting
intrinsic properties of a program and thus does not have an embedding step.

Hardware Birthmarking

Software birthmarking principles can be applied to hardware designs, as demon-
strated in [ZA15]. In this work, birthmarks are used to assess the similarity of cir-
cuits, with the goal of improving productivity by suggesting existing and reusable
similar designs during the hardware design process. A hardware birthmark is de-
fined as a set of characteristics that give both functional and structural information
about a circuit. Just as software birthmarks, hardware birthmarks can be defined
in the following way:

Let a and b be two circuits, and bm a birthmark extraction function. bm(a) is
a birthmark of circuit a if and only if:

1. bm(a) is obtained only from a itself

2. a and b are copies of each other =⇒ bm(a) = bm(b)

Extraction Principles

We propose to apply these hardware birthmarking principles to our watermark
verification process: as explained above, ownership proof is established by match-
ing a de-obfuscated RTL design with the obfuscated design it originates from.
These two designs are not direct copies of each other as is the case when using
birthmarking, but they are closely tied together, share the same origin and are
highly similar from a structural point of view. Moreover, since the transformation
from obfuscated to de-obfuscated design (de-obfuscation) is well known, we can
state that the de-obfuscated design is contained in the obfuscated design (barring
some additional transformations done by the attacker).

3.3. PROPOSED APPROACH 85

Figure 3.3 – Birthmark Extraction Flow.

Proving this specific type of similarity, or this specific relationship between two
designs, can be done by using the same process as for traditional birthmarking:
by extracting a set of design characteristics and comparing them, see Figure 3.3.

We propose to find a set of metrics that can be used, individually or combined,
as birthmarks. For each of these metrics, it is unlikely that the birthmarks of two
designs will be identical. Therefore a similarity, or containment measure has to
be defined and computed for each metric. These measures should have following
properties:

∀i ∈ N, containment(bm(RTLi
deobf), bm(RTLi

obf)) = 100%

∀i, j ∈ N, similarity(bm(RTLi
deobf), bm(RTLi

obf))

� similarity(bm(RTLi
deobf), bm(RTLj

obf))

(3.4)

We note that the two properties used to evaluate birthmarking techniques can
also be adapted to our watermarking context:

1. Credibility: Our watermark extraction technique should only detect direct
obfuscated-deobfuscated pairs. If two designs originate from the same origi-
nal C code, but were obfuscated differently, then they should not be matched
by our technique.

2. Resilience to transformations: Our technique, by definition, matches two
designs where one was transformed by de-obfuscation, i.e. removing part of
the logic. However it should be resilient to additional transformations: it
should also match if the attacker performs transformations such as inserting

86 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

his own watermark or renaming all signals in the design.

3.4. METRICS FOR WATERMARK VERIFICATION 87

3.4 Metrics for Watermark Verification

Our goal is to find several metrics that can be extracted from design pairs and
used as birthmarks. Some of these metrics will result in birthmarks with a perfect
similarity score as long as no modification is made to the de-obfuscated design,
for example the number of states in the FSM. However, they might not resist
against modifications of the design (attacker applying his own watermark, etc.).
This means that the robustness of each metric has to be studied individually, and
also explains the need for a combination of these metrics instead of relying on just
one of them.

3.4.1 Scheduling

Definitions and Assertions

An algorithmic level design contains a given set of operations, which are spread
throughout the basic blocks. During HLS, these operations are scheduled in dif-
ferent clock cycles.

Let OP = {oi | 1 ≤ i ≤ n} be the set of operations in an original, un-obfuscated
C design. When obfuscating a design, several bogus operations are added. We note
OPobf = {oi | 1 ≤ i ≤ m} the set of operations in an obfuscated design, where
m ≥ n. We also define OPbogus as the set of bogus operations added to a design
during obfuscation. Following relations can be noted:

OPobf = OP ∪ OPbogus (3.5)

OP ⊂ OPobf (3.6)

When de-obfuscating a design, most, if not all operations added during obfus-
cation are removed. However, all operations present in the original design remain
in the de-obfuscated design (by definition of our de-obfuscation method, which
preserves design functionality). It should also be noted that no new operations are
added during de-obfuscation. We can thus add:

OP ⊂ OPdeobf ⊂ OPobf (3.7)

88 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

During HLS, operations are scheduled in a set of control steps, or states, S =
{sj | 1 ≤ j ≤ r}. Each state thus contains a subset of operations OP (sj) ⊂ OP .

The bogus operations and control flow introduced by obfuscation have a direct
impact on the scheduling choices made by any HLS tool. This means that an
obfuscated design has a different scheduling in regards to the original design. These
differences are also reflected in the deobfuscated design: our de-obfuscation method
removes bogus logic, but does not modify the scheduling.

∀sj ∈ Sdeobf , OPdeobf (sj) ⊆ OPobf (sj) (3.8)

In other words, a de-obfuscated design’s scheduling is contained in the obfus-
cated design’s scheduling. This assertion is only always true for an obfuscated-
deobfuscated design pair, i.e. with two different obfuscated versions of the same
original design, the scheduling differs. For example, starting from one design ob-
fuscated in two different versions with parameters 1 and 2, we have:

∀sj ∈ S1
deobf , OP

1
deobf (sj) ⊆ OP 1

obf (sj)

∀sj ∈ S2
deobf , OP

2
deobf (sj) ⊆ OP 2

obf (sj)

∀sj ∈ S1
deobf , OP

1
deobf (sj) 6⊂ OP 2

obf (sj)

∀sj ∈ S2
deobf , OP

2
deobf (sj) 6⊂ OP 1

obf (sj) (3.9)

Scheduling Similarity and Containment

In order to find a measure that allows to verify the properties given in Equa-
tion (3.9), we study two potential metrics:

1. The similarity between two designs’ schedulings.

2. The containment of one design’s scheduling in another.

These metrics are designed to have following properties:

• Both metrics are scores normalized between 0 and 1.

• Similarity is symmetric, i.e. similarity(A,B) = similarity(B,A).

3.4. METRICS FOR WATERMARK VERIFICATION 89

• Both metrics are defined as the average of that metric applied to individual
states:

similarity(SA, SB) =

rmax∑
j=1

similarity(sA
j , s

B
j)

rmax

containment(SA, SB) =

rmax∑
j=1

containment(sA
j , s

B
j)

rmax

where rmax = max(rA, rB) (3.10)

It should be noted that SA and SB can have a different number of states rA and
rB. For ease of calculation, we pad the design with less states by adding empty
states.

In our threat model, the attacker can rename any signal in the design. We
thus cannot rely on variable names to recognize, which makes it hard to match
individual operations between two designs. We simplify this problem by focusing
only on operation types. This means that two states are considered identical if
they contain the same amount of each operation type.

Figure 3.4 – Two scheduling examples.

On Figure 3.4, two simple scheduling examples are given. State s1 and s4 are

90 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

identical in both examples. s2 and s3 of design (b) are contained in design (a).
Following properties should be verified by the chosen similarity and containment
measures:

similarity(sa
1, s

b
1) = 1

similarity(sa
3, s

b
3) = 0.5

similarity(sa
5, s

b
5) = 0

containment(sa
2, s

b
2) = 0.5

containment(sb
2, s

a
2) = 1

containment(sa
5, s

b
5) = 0

containment(sb
5, s

a
5) = 1

By applying the similarity and containment measures of two documents given
in [Bro97] to sets of operators in each state, we obtain the following formulas:

similarity(sa, sb) = |OP (sa) ∩OP (sb)|
|OP (sa) ∪OP (sb)| (3.11)

containment(sa, sb) = |OP (sa) ∩OP (sb)|
|OP (sa)| (3.12)

This similarity measure is commonly known as Jaccard similarity coefficient.

It should be noted that, since we only focus on operation types and not individ-
ual operations, OP (sx) is actually a multiset, i.e. a set that can contain multiple
instances of each element, in this case multiple instances of each operation type. To
illustrate, applying these definitions to the examples in Figure 3.4 gives following
results:

similarity(sa
3, s

b
3) = |{−, ∗} ∩ {−}|

|{−, ∗} ∪ {−}|
= |{−}|
|{−, ∗}|

= 1
2

containment(sa
2, s

b
2) = |{∗,+} ∩ {∗}|

|{∗,+}| = |{∗}|
|{∗,+}| = 1

2

containment(sb
2, s

a
2) = |{∗} ∩ {∗,+}|

|{∗}|
= |{∗}|
|{∗}|

= 1

3.4. METRICS FOR WATERMARK VERIFICATION 91

3.4.2 Dataflow

When adding bogus code to a C level design, the resulting RTL design’s dataflow
graph (DFG) also contains an amount of bogus dataflow. However, even after
removing any bogus logic, the dataflow can still be different from the original,
unobfuscated one: the added bogus code results in different compiler frontend
optimizations, as well as different design choices by the HLS tool. Our goal is to
leverage this difference whenever possible.

Figure 3.5 – Partial DFG of original and obfuscated code.

The example in Figure 3.5 demonstrates how, by obfuscating the code, the
dataflow was modified: while the overall behavior remains the same, the operators
are chained in a different order.

Let DFG = (V,E) be the dataflow graph of a design, with V as set of vertices
and E a set of edges. In particular, DFGi

obf is the DFG of a design obfuscated
with parameters i, and DFGi

deobf is the DFG obtained after de-obfuscating the
previous design. Our de-obfuscating process removes signals and operators of the
design, in other words it removes part of the vertices and edges of the DFG. There
are no new vertices added. However, there can be some new edges, which are used
to link two vertices that were previously separated by one or several now deleted
vertices.

92 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

V i
deobf ⊆ V i

obf

DFGi
deobf ⊆ DFGi

obf (3.13)

The result is that the de-obfuscated DFG should be overall contained in the
obfuscated DFG. In order to extract a watermark, we thus aim at calculating
similarity and/or containment between two dataflow graphs.

Graph Edit Distance

To calculate the similarity of two graphs, the Graph Edit Distance (GED) can
be used. This measure is the minimum of graph edit operations necessary to
transform one graph into another. Among these operations are vertex and edge
insertion, deletion and substitution. In our case, there are two drawbacks with
using GED as a similarity measure between two DFGs.

• GED is a NP-complete problem, and even approximate algorithms are com-
putationally heavy for more complex graphs.

• During de-obfuscation of a heavily obfuscated design, large amounts of logic
are removed. This results in a design that is much smaller, and thus has
a DFG that is highly different. In that case, the GED is large and does
not adequately reflect the fact the containment of the smaller, de-obfuscated
design in the obfuscated one.

Datapath Extraction

Instead of considering the complete DFG of a design, we propose to focus on
individual datapaths leading from circuit inputs to outputs. As proposed in [ZA15],
we represent each datapath as a sequence. Each node in this datapath becomes a
letter in the sequence, with different letters assigned for each node type: operators,
register, signal, etc.. Comparing two datapaths extracted from two designs thus
becomes comparing two sequences of letters. Various techniques can be used to
evaluate containment and similarity of sequences, such as Levensthein distance, or

3.4. METRICS FOR WATERMARK VERIFICATION 93

sequence alignment techniques, often used in bioinformatics or natural language
processing.

Let I = {i1, . . . , im};O = {o1, . . . , on} be the set of inputs and outputs of
a design. For each pair of input and output, we extract a datapath D(ix, oy) =
{n1, ..., np} where each ni is a node in the datapath, n1 is the input node ix, and np

is the output node oy. For each design, we thus obtain a set of possible datapaths
from inputs to outputs: D = {D(ix, oy) | ∀x ∈ I,∀y ∈ O}. There are m × n

possible datapaths in D, where m is the number of inputs, and n is the number of
outputs.

Next, for each node nx in a datapath, we assign a letter depending on the node
type. The datapaths D thus become sequences of letters S. The result for each
design is a set of sequences S = {Si | 1 ≤ i ≤ p}, where p = m× n is the number
of input/output pairs.

Datapath Comparison

On Figure 3.6, two designs with each two inputs and one output are illustrated
as an example: the figure shows the shortest path from each input to each output
for both designs. Below, using a simple alphabet, each path is converted into a
sequence of letters. We cannot rely on naming of inputs and outputs for similarity
analysis. The sequences are hence arbitrarily numbered and the names of the I/Os
(here i1, i2, o1) are discarded. Following sequences are obtained:

SA
1 = “IAFCO′′

SA
2 = “IGCMHO′′

SB
1 = “IGCMO′′

SB
2 = “IAHCO′′

(3.14)

Our goal is to compare two DFGs by calculating different metrics such as
similarity, distance, or containment. We start with the set of datapath sequences
extracted for each design: SA, SB. For each sequence SA

i of design A and each

94 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

Figure 3.6 – Example of dataflow sequences for two designs.

sequence SB
j of design B, we calculate a score for each metric, e.g. similarity:

sim(SA
i , S

B
j). We thus obtain a total of pA × pB scores, where p is the number of

inputs times the number of outputs of a design.

For the example in Figure 3.6, we obtain 4 similarity scores:

3.4. METRICS FOR WATERMARK VERIFICATION 95

sim(SA
1 , S

B
1) = 60%

sim(SA
1 , S

B
2) = 80%

sim(SA
2 , S

B
1) = 83%

sim(SA
2 , S

B
2) = 50%

(3.15)

To obtain a global similarity score, we choose to keep the sequence pairs with
the highest similarity score. In the case of the example studied here, we keep the
pairs (SA

1 , S
B
2) and (SA

2 , S
B
1). The overall similarity is then calculated by taking

the average of these pairs similarities:

sim(SA, SB) = avg(sim(SA
1 , S

B
2), sim(SA

2 , S
B
1))

= avg(80%, 83%)

= 81.5%

(3.16)

Datapath Comparison Metrics

We propose to calculate three different metrics to compare two datapath sequences:

1. Levenshtein distance / similarity: this is a metric commonly used to
measure the distance between two sequences. It can be defined as the number
of editing operations (insertion, substitution, deletion) necessary to obtain
one sequence from the other. Similarity between two sequences p and q can
be defined as follows:

similarity(p, q) = 1− distance(p, q)
max(|p|, |q|) (3.17)

2. Longest Common Subsequence (LCS): this similarity metric is based on
finding the longest common subsequence between two sequences, i.e. finding

96 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

the length of the longest subsequence present in both sequences. A similarity
score is then calculated by calculating the ratio of the sum of all found
subsequences and the total number of letters in both sequences.

3. Containment: for scheduling containment, we focused on the containment
of a set in another. Here, we calculate containment for sequences: the order
of items in the sequences has to be taken into account. We say that a
sequence p is fully contained in a sequence q if p can be obtained from q only
by removing zero or more items: no items can be added, and the order of
the items cannot be changed. We defined containment of a sequence p in a
sequence q as the ratio of letters in p that can be found in the correct order
in q divided by the total number of letters in p. For example:

containment(“abc′′, “abcd′′) = 3
3 = 1 (3.18)

containment(“abcd′′, “abc′′) = 3
4 = 0.75

containment(“acb′′, “abcd′′) = 2
3 = 0.67

3.5 Implementation and Experimental Setup

The goal of this experiment is to verify if the aforementioned metrics can be used
as birthmarks, i.e. if their credibility and resilience are satisfactory.

3.5.1 Experimental Setup and Dataset

We start with a set of C designs. These designs are then obfuscated with vary-
ing parameters, resulting in several different obfuscated C designs for each original
design. HLS is performed on these N obfuscated designs, resulting in N still obfus-
cated RTL designs. Finally de-obfuscation is applied, leading to N de-obfuscated
designs. Both the obfuscated and the de-obfuscated designs form a pool of 2N
RTL designs, for which each metric is calculated individually. All of the obfuscated

3.5. IMPLEMENTATION AND EXPERIMENTAL SETUP 97

and de-obfuscated designs are combined pair-wise to form a dataset of N ∗N de-
sign pairs. These pairs are labeled positive if both designs share a common origin,
i.e. one was obtained by de-obfuscating the other, and else negative. The resulting
dataset contains N design pairs labeled positive, and N ∗ (N − 1) pairs labeled
negative.

In order to have a sufficiently sized dataset, we use C programs automatically
generated with Crokus (presented in Section 3.5.4). The same methodology is
then applied to benchmarks from CHStone and MachSuite in order to validate our
approach.

For now, the testing pool is composed of 5 original C codes, each obfuscated
with 20 different parameters. These different parameter sets are obtained by vary-
ing both obfuscation level and branching degree. There are thus 100 obfuscated
and 100 corresponding de-obfuscated designs. The dataset counts 100 positive
design pairs, and 9900 negative design pairs. This strong imbalance of the dataset
is taken into account when evaluating each metric.

3.5.2 Scheduling

For each RTL design, we start by extracting the list of states and operations. Then
a script automatically lists which operation is scheduled in which state. Similarity
and containment are computed, as explained in Section 3.4.1, by comparing the
operations scheduled state by state.

To test resilience of this metric against transformations such as obfuscation
or the attacker adding his own watermark, we randomly add noise in the form
of bogus operators to the de-obfuscated designs. In this case, the de-obfuscated
design’s scheduling is no longer 100% contained in the obfuscated design. However,
the overall containment score, combined with the similarity score, should still be
high enough to have a significant probability of correct detection.

3.5.3 Dataflow

We use Yosys [WGK13], an open-source synthesis tool, to obtain the DFG of each
tested design in the form of a DOT file. Then for each input-output pair, when
possible, we extract the shortest dataflow path using Networkx, a Python library

98 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

for graph manipulation. These paths are converted into letter sequences using
a pre-defined alphabet, with one letter assigned to every node type. We thus
store for each design a list of input-output pairs and a sequence standing for their
shortest path.

Next we compare two designs by calculating several metrics pairwise for all
possible input-output pairs. Finally, for each design pair and each metric, we
retrieve both the average and the maximum value across all input-output pair
combinations. We thus obtain two possible values for each design pair and each
metric.

The three metrics studied are calculated as follows:

• Containment: an in-house script is used to calculate the containment of one
sequence inside another.

• Similarity: a Python library is used to calculate the Levenshtein distance
between two sequences. The similarity is directly obtained from this distance,
as explained in Section 3.4.2

• LCS (Longest Common Subsequence): a Python function calculates the sim-
ilarity of two sequences based on their longest common subsequence.

3.5.4 Crokus

Crokus is a parser and source-to-source code manipulation tool for a large subset
of C language. It was developed in Ruby at ENSTA Bretagne by JC Le Lann
with the goal of easing code manipulation for various experiments, at AST, IR
and CFG level. For the purpose of this thesis, we added several specific additional
passes. For this chapter, we added the ability to automatically generate random C
programs, starting from a series of parameters such as the number of basic blocks,
the average number of instructions per basic block, the presence of loops, etc.
This functionality enables us to quickly generate large amounts of C programs,
to be used for statistical experiments relying on large datasets. Crokus also has
the ability to automatically insert hardware Trojans into C programs. A more
detailed presentation of this functionality is provided in Section 4.4.1. Crokus is
fully open-source and available for reuse on GitHub [Le].

3.6. RESULTS AND ANALYSIS 99

3.6 Results and Analysis

In this section, we present results for different containment and similarity mea-
sures for both proposed birthmarks: scheduling and dataflow. We show how these
birthmarks can be used to classify design pairs to verify whether a watermark
is present. Furthermore, we demonstrate how initial results can be improved by
changing obfuscation parameters, and we discuss the credibility and resilience to
attacks of our approach.

3.6.1 Scheduling

Initial Results

Similarity Containment
Min Max Avg Min Max Avg

All pairs (10000 pairs) 0.0% 99.8% 4.7% 8.3% 100% 51.1%
All correct pairs (100
pairs) 89.9% 99.8% 97.8% 100% 100% 100%

All wrong pairs (9900
pairs) 0.0% 99.6% 3.8% 8.3% 100% 50.6%

Wrong pairs but same
original C code (1900
pairs)

0.9% 99.6% 11.2% 14.2% 100% 54.1%

Different original C code
(8000 pairs) 0.0% 18.8% 2.0% 8.3% 91.4% 49.7%

Table 3.1 – Similarity and containment of scheduling: experimental results.

In Table 3.1, we present experimental results for similarity and containment
of different combinations of obfuscated - deobfuscated designs. Similarity values
vary between 0% and 99.8%, with a low average of 4.7%. Containment values vary
between 8.3% and 100%, but with a higher average of 51.1%. As expected, all de-
obfuscated schedulings are fully contained in their obfuscated origin’s scheduled
(correct pairs: obfX − deobfX). Their similarity is also high, with an average
of 97.8%, but can be as low as 89.9%. For incorrect pairs (obfX − deobfY), the
minimum and average similarity and containment values are much lower. However,

100 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

the maximum values, at respectively 99.6% and 100%, are close to the results
obtained for correct pairs. This means that there is a risk of having some false
positives when using these metrics for watermark detection.

We also calculated results for pairs of designs that do not have the same obfus-
cation (obfX − deobfY), but share the same original C design before obfuscation.
These pairs have a higher likelihood of having close schedulings, but should not
be detected as correct pairs, i.e. they should not have the same birthmark. This
concept was defined in Section 3.3.3 as credibility of a birthmark. Here we note
that both similarity and containment are on average quite low for these specific
pairs, at 11.2% and 54.1%. This means that both metrics have a high credibility.
However, the maximum value (99.6% and 100%) show that the aforementioned
risk of false positives is due to these same origin pairs in particular, which slightly
diminishes the overall credibility.

Similarity and Containment as Classifiers

To complete the experimental results, we tested how scheduling similarity and
containment perform as binary classifiers: all design pairs with a similarity or
containment above a chosen threshold are classified as positive (correct pairs),
while all pairs with results below this same threshold are classified as negative.
We counted correct (true positive (TP), true negative (TN)) and incorrect (false
positive (FP), false negative (FN)) results for varying thresholds. For each classifier
version, we then calculated following metrics:

• Recall, also known as true positive rate or sensitivity, is the fraction of correct
pairs that were actually identified as positive: Recall = TP/(TP + FN).

• Precision, also known as positive predictive value, is the fraction of correct
pairs among all pairs identified as positive: Precision = TP/(TP + FP).

• Accuracy is the proportion of correctly classified pairs among all pairs:
Accuracy = (TP + TN)/(TP + TN + FP + FN)

• Balanced accuracy is used for imbalanced datasets, and takes into account
the fact that one class (in our case negative) has more items than the other
class (positive).

3.6. RESULTS AND ANALYSIS 101

Containment
threshold = 0.8 threshold = 0.9 threshold = 1

True Positive 100 100 100
False Positive 452 22 3
True Negative 9448 9878 9897
False Negative 0 0 0
Precision 18.1% 82.0% 97.1%
Recall 100% 100% 100%
Accuracy 95.5% 99.8% 100%

Balanced accuracy 97.72% 99.89% 99.99%

Table 3.2 – Using scheduling containment as classifier: experimental results.

For containment, the results given in Table 3.1 show that the minimum value
for correct pairs is 100%. This means that 100% can directly be used as a threshold:
only pairs with a containment of 100% are presumed correct. The results given in
Table 3.2 confirm this choice: all correct pairs are classified as positive, resulting
in 0 false negatives. The recall is thus at 100%. However, the small amount of
false positives means that the precision, and overall accuracy, are slightly lower.
A close examination of the testing dataset shows that all false positives are pairs
where both designs originate from the same original C design, and were obfuscated
with a low obfuscation level (25%). By forcing the use of a higher obfuscation
level, the differences between obfuscated designs are heightened. In this manner,
the previous results can be significantly improved, and the risk of false positives
strongly decreased.

For similarity, experimental results show that the minimum value for correct
pairs is 89.9%. By setting this value as threshold, we can ensure that the clas-
sifier has no false negatives, and a recall of 100%. However, this relatively low
threshold means that some pairs are inaccurately classified as positive, resulting
in lower precision and accuracy. On the other hand, experimental results show
that the maximum similarity value for incorrect pairs is 99.6%. Setting this value
as threshold can guarantee that there are no false positives, as shown in Table 3.3.
However, this higher threshold results in almost all correct pairs being incorrectly
classified as negative. While the overall accuracy is still high at 99% due to the
imbalance of the dataset, the balanced accuracy, at 50.5%, shows that this clas-

102 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

Similarity
threshold = 0.8 threshold = 0.89 threshold = 0.997

True Positive 100 100 1
False Positive 8 3 0
True Negative 9892 9897 9900
False Negative 0 0 99
Precision 92.6% 97.1% 100%
Recall 100% 100% 1%
Accuracy 99.9% 99.97% 99.0%

Balanced accuracy 99.96% 99.99% 50.5%

Table 3.3 – Using scheduling similarity as classifier: experimental results.

sifier does not perform well. Finding the best performing classifier, by choosing
the best threshold value, is thus a trade-off between recall and sensitivity. In this
case, the same conclusion can be reached as for containment: the results can be
improved by adding a constraint on obfuscation level, which has to be at minimum
50%.

Similarity and containment perform well as classifiers for a
scheduling-based birthmark, with both reaching a balanced accu-
racy of 99.99% when using well-chosen threshold values: 0.89 for
similarity, and 1 for containment. In both cases, the precision is
slightly lower (97.1%), due to a small amount of false positives.
These false positives have been identified as designs with a low level
of obfuscation.

Results with Higher Obfuscation Level

As explained above, the previous results can be improved by mandating a mini-
mum obfuscation level of 50%. This minimizes the amount of false positives. By
removing all tests with an obfuscation level below 50%, the maximum similarity
value for incorrect pairs is 35.1%, and the maximum containment value for incor-
rect pairs is 91%, as shown in Table 3.4. By choosing thresholds higher than these
two values, we can ensure that there are no false positives for our testing dataset.

3.6. RESULTS AND ANALYSIS 103

Similarity Containment
Min Max Avg Min Max Avg

All pairs (5625 pairs) 0.0% 99.7% 4.8% 8.7% 100% 51.1%
All correct pairs (75
pairs)

91.3% 99.7% 97.7% 100% 100% 100%

All wrong pairs (5550
pairs)

0.0% 35.1% 3.5% 8.7% 91.0% 50.4%

Wrong pairs but same
original C code (1050
pairs)

0.9% 35.1% 10.1% 16.9% 86.4% 53.4%

Different original C code
(4500 pairs)

0.0% 18.8% 2.0% 8.7% 91.0% 49.7%

Table 3.4 – Similarity and containment of scheduling: experimental results with
obfuscation level ≥ 50%.

Similarity Containment
threshold = 0.36 threshold = 0.92

True Positive 75 75
False Positive 0 0
True Negative 5550 5550
False Negative 0 0
Precision 100% 100%
Recall 100% 100%
Accuracy 100% 100%

Balanced accuracy 100% 100%

Table 3.5 – Using scheduling similarity and containment as classifier: exper-
imental results with obfuscation level ≥ 50%.

For both metrics, any threshold value chosen between the maximum value for
incorrect pairs and the minimum value for correct pairs will lead to a classification
with 100% accuracy. In both cases, we propose to use the lowest possible value.
This means that in degraded conditions where the de-obfuscated design was altered
and its similarity or containment to the obfuscated design is lower than expected,
our classification is still highly likely to detect it. In other words, we aim above all
to minimize the amount of false negatives. In Table 3.5, we show the classification

104 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

results for similarity and containment with a threshold of respectively 0.36 and
0.92: for both metrics, the classification is 100% accurate.

By forcing the design house to use a higher obfuscation level (min-
imum 50%), previously found false positives can be avoided and a
100% classification accuracy can be reached for both similarity and
containment.

Testing Resilience: Results with Added Noise

Similarity Containment
Min Max Avg Min Max Avg

All correct pairs (75
pairs) - 5% noise

46.4% 83.1% 65.7% 69.4% 94.4% 83.3%

All correct pairs (75
pairs) - no noise

91.3% 99.7% 97.7% 100% 100% 100%

Wrong pairs (5550 pairs)
- no noise

0.0% 35.1% 3.5% 8.7% 91.0% 50.4%

Table 3.6 – Similarity and containment of scheduling: experimental results with
5% bogus operators.

To test resilience of scheduling as a birthmark, we add noise in the form of 5%
random bogus operators to each de-obfuscated design. In Table 3.6, we give sim-
ilarity and containment values for correct pairs, formed by an obfuscated design
and its corresponding de-obfuscated design with and without added noise, as well
as values for wrong pairs, without noise. The idea is that correct pairs, even with
noise added, should have higher containment and similarity values than incorrect,
no noise, pairs. As explained above, we restrict results to designs with an obfus-
cation level of at least 50%. Experimental results indicate that both containment
and similarity of correct pairs are lower when noise is added to the de-obfuscated
design. However, both are still on average significantly higher than for wrong
pairs.

To test the resilience of similarity and containment as classifiers, as shown
in Table 3.7, we reuse the threshold values obtained previously. For similarity,

3.6. RESULTS AND ANALYSIS 105

Similarity Containment Containment
threshold = 0.36 threshold = 0.75 threshold = 0.92

True Positive 75 74 1
False Positive 0 302 0
True Negative 5550 5248 5550
False Negative 0 1 74
Precision 100% 19.7% 100%
Recall 100% 98.7% 1.3%
Accuracy 100% 94.6 % 98.7%

Balanced accuracy 100% 96.61% 50.67%

Table 3.7 – Using scheduling similarity and containment as classifier: experimental
results with 5% bogus operators.

with the previous threshold at 36%, the classification of designs with noise in the
form of 5% bogus operators results in perfect accuracy, with no false positive or
false negative. However, for containment, since the values for correct pairs are
now between 69.4% and 94.4%, with an average of 83.3%, reusing the previous
threshold of 92% results in a large amount of false negatives: in fact, as shown in
Table 3.7, only one of 75 positive pair is classified correctly. Lowering the threshold
value can decrease the number of false negatives, but will also increase the number
of false positives. The best overall accuracy is obtained by choosing a threshold
value of 75%.

By adding noise in the form of 5% bogus operators, we tested re-
silience of the two birthmarks. While the results with containment
as a classifier are slightly less good, overall both metrics still perform
well. We can thus conclude that both containment and similarity are
highly resilient. Future work to improve these results could include
combining similarity and containment into a single metric.

3.6.2 Dataflow

To test whether our dataflow birthmarking approach is valid, we use the same
analysis as for scheduling in the previous subsection. Each of the three metrics

106 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

Containment
Min Max Average

All pairs (3136 pairs) 20.0% 100% 73.5%
All correct pairs (56 pairs) 67.0% 100% 93.0%
All wrong pairs (3080 pairs) 20.0% 100% 73.2%

Wrong pairs but same original C code (740 pairs) 64.0% 100% 88.7%
Different original C code (2340 pairs) 20.0% 100% 68.3%

Table 3.8 – Containment of dataflow: experimental results with obfuscation level
≥ 50%.

Levenshtein
Min Max Average

All pairs (3136 pairs) 15.0% 100% 54.7%
All correct pairs (56 pairs) 72.0% 100% 93.2%
All wrong pairs (3080 pairs) 15.0% 100% 54.0%

Wrong pairs but same original C code (740 pairs) 62.0% 100% 88.9%
Different original C code (2340 pairs) 15.0% 80.0% 43.0%

Table 3.9 – Similarity (Levenshtein) of dataflow: experimental results with
obfuscation level ≥ 50%.

(containment, Levensthein, subsequence similarity) is tested individually: for every
correct and incorrect design pair, the three metrics are calculated. Then the
minimum, maximum and average value for every metric and every class (correct
pairs, incorrect pairs) are obtained. Finally, the accuracy of these metrics as binary
classifiers is tested with different threshold values. Given the results obtained for
scheduling, we opt to restrict the test set to designs with an obfuscation level of
at least 50%.

In Table 3.8, Table 3.9 and Table 3.10, we present experimental results for
the three metrics. In all three cases, the average metric value for correct pairs is
significantly higher than the average for incorrect pairs. This indicates that the
metrics could all potentially be used to distinguish between correct and incorrect
pairs. However, contrary to the results obtained for scheduling, the overlap of
values for incorrect and correct pairs is much more important. This means that
there is a high risk of getting incorrect classifications, with either false positives or

3.6. RESULTS AND ANALYSIS 107

Subsequence
Min Max Average

All pairs (3136 pairs) 27.0% 100% 63.7%
All correct pairs (56 pairs) 79.0% 100% 94.9%
All wrong pairs (3080 pairs) 27.0% 100% 63.2%

Wrong pairs but same original C code (740 pairs) 70.0% 100% 91.8%
Different original C code (2340 pairs) 27.0% 88.0% 54.1%

Table 3.10 – Similarity (subsequence) of dataflow: experimental results with
obfuscation level ≥ 50%.

false negatives, depending on the chosen threshold value.

Containment Similarity Similarity
(Levensthein) (subsequence)

threshold = 0.94 threshold = 0.81 threshold = 0.82
True Positive 44 50 55
False Positive 867 573 828
True Negative 2213 2507 2252
False Negative 12 6 1
Precision 4.8% 8.0% 6.2%
Recall 78.6% 89.3% 98.2%
Accuracy 72% 81.5% 73.6%

Balanced accuracy 75.21% 85.34% 85.67%

Table 3.11 – Using dataflow containment and similarities as classifiers: experimen-
tal results.

In Table 3.11, containing the results of using each metric as a binary classifier,
we display only the ideal threshold value for each metric, chosen after performing
tests with a range of values with the goal of maximizing balanced accuracy.

The results given in Table 3.11 show that all three metrics perform reasonably
well as classifiers. The balanced accuracy for containment is lowest, at 75.2%,
while it is slightly higher for the two similarity metrics, at respectively 85.3% and
85.7%. In all three cases, the main issue is a high number of false positives, i.e.
incorrect pairs that are falsely classified as correct. This is likely not due to the
choice of metrics but rather to the abstractions we used to analyze the dataflow. In

108 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

particular, we chose to focus only on the shortest path between each input-output
pair, which was the most straightforward to calculate practically. By restricting
our study to shortest paths, it is likely that significant information contained in
each dataflow was not included in the resulting paths. To improve these results,
we thus suggest to extract other paths from the global dataflow to complete the
information.

In conclusion, the results obtained here demonstrate that dataflow
can potentially be used as a birthmark. However, more study is
needed to find a better abstraction containing all the dataflow in-
formation.

3.6.3 Benchmark Results

To further validate the previous results, obtained for purely artificial designs gen-
erated with Crokus, we also tested our approach using scheduling as a metric on
well-known benchmarks: adpcm and AES.

Similarity Containment
Min Max Avg Min Max Avg

All pairs (225 pairs) 5.8% 98.8% 31.7% 19.7% 100% 57.8%
Correct pairs (15 pairs) 89.5% 98.8% 95.9% 100% 100% 100%
Wrong pairs (210 pairs) 5.8% 94.5% 27.1% 19.7% 99.5% 54.8%

Table 3.12 – Similarity and containment of scheduling: experimental results with
obfuscation level ≥ 50% for adpcm.

Similarity Containment
Min Max Avg Min Max Avg

All pairs (225 pairs) 4.2% 91.6% 15.7% 20.4% 100% 51.9%
Correct pairs (15 pairs) 85.5% 91.6% 89.3% 100% 100% 100%
Wrong pairs (210 pairs) 4.2% 25.8% 10.4% 20.4% 79.5% 48.5%

Table 3.13 – Similarity and containment of scheduling: experimental results with
obfuscation level ≥ 50% for AES.

3.6. RESULTS AND ANALYSIS 109

For each benchmark, we created several different obfuscated versions, by vary-
ing obfuscation level and branching degree. Given the results obtained on artificial
benchmarks, we set the minimum required obfuscation level to 50%. Then we ap-
plied HLS, followed by de-obfuscation, to each new design. The goal of our tests
was to determine whether our birthmarking approach is able to distinguish between
different obfuscated versions of a same initial benchmark, and correctly identify
pairs of obfuscated-deobfuscated RTL designs.

Experimental results presented in Table 3.12 and Table 3.13 show that for
both similarity and containment, there is a clear distinction between correct and
incorrect pairs for the two benchmarks: both values are close to 100% for all
correct pairs, and on average much lower for incorrect pairs. This mirrors the
results obtained for artificial benchmarks.

Similarity Containment
threshold = 0.36 threshold = 0.75

True Positive 15 15
False Positive 32 30
True Negative 178 180
False Negative 0 0
Precision 31.9% 33.3%
Recall 100% 100%
Accuracy 85.8% 86.7%

Balanced accuracy 92.38% 92.86%

Table 3.14 – Using scheduling similarity and containment as classifier: experimen-
tal results for adpcm.

We test if adpcm pairs can be correctly classified by reusing the threshold
values found for Crokus-generated benchmarks with noise (cf. Table 3.7): 0.36 for
similarity, and 0.75 for containment. The results given in Table 3.14 show that
most pairs are classified correctly, with a small amount of false positives. The
overall balanced accuracy is high for both metrics: 92.4% for similarity and 92.9%
for containment.

The same approach is used for AES: the results in Table 3.15 show that in this
case, all pairs are correctly classified for similarity. For containment, a few false

110 CHAPTER 3. OBFUSCATION FOR BIP BIRTHMARKING

Similarity Containment
threshold = 0.36 threshold = 0.75

True Positive 15 15
False Positive 0 4
True Negative 210 206
False Negative 0 0
Precision 100% 78.9%
Recall 100% 100%
Accuracy 100% 98.2%

Balanced accuracy 100% 99.05%

Table 3.15 – Using scheduling similarity and containment as classifier: experimen-
tal results for AES.

positives can be noted, but the balanced accuracy is still at over 99%.

These test results show that our approach, validated on fictional
designs, can also be applied to real, well-known benchmarks. Further
study is necessary to find the ideal threshold values for classification
with each metric.

3.7 Conclusion

In this chapter, we introduced a novel way to watermark IPs at the behavioral level,
without requiring any modifications to existing HLS tools. We show how software
birthmarking and existing hardware birthmarking concepts can be adapted to our
context. We leverage the side effects of previously studied transient obfuscation
techniques on the HLS input code. These side effects lead to different RTL designs
that are hard to replicate without knowing the exact sequence and parameters of
applied obfuscating transformations. We demonstrate that by extracting birth-
marks based on scheduling and datapath information of the RTL designs, we are
able to analyze the similarity and containment of designs. These metrics can then
be used to prove a relationship between two designs, and thus identify stolen BIPs
with an accuracy of over 96%, with an overall low resource overhead (below 6%).

Chapter 4

Transient Obfuscation against
Hardware Trojan Insertion

With the ongoing globalization and outsourcing of hardware circuit manufacturing,
concerns about an emerging security threat are being raised: Hardware Trojans
(HT), which can take the form of malicious modifications or insertions in a circuit,
have been garnering increasing attention. While research has mainly focused on
HT insertion during manufacturing in untrusted foundries, the risks of attacks at
earlier design stages have also been investigated. In particular, [Pil+18a] demon-
strates how a malicious High-Level Synthesis tool can inject HTs into behavioral
IPs. These Trojans, which can take diverse forms and affect different parts of the
IP, are particularly difficult to detect, and pose a clear security threat.

Defense against HT insertion has already been studied by the scientific com-
munity at different design stages. Countermeasures can broadly be divided into
3 categories, as presented in [Bhu+14]: detection approaches, where the goal is
to detect a HT after it was inserted, run-time monitoring, which aims at pro-
viding surveillance of running circuits after manufacturing with potentially active
Trojans, and Design For Security (DFS), where IPs are designed specifically to
facilitate Trojan detection or prevent Trojan insertion.

To the best of our knowledge, no work has yet presented any countermeasures
against HTs inserted by a malicious HLS tool. In this chapter, we aim at providing
a design methodology to prevent HT insertion during HLS with a high degree of

111

112 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

confidence and minimal impact on HLS Quality of Results (QoR) and overall
IP performance. Obfuscation has successfully been used on hardware designs to
thwart HT insertion during manufacturing and at lower design levels, as shown
for example in [YDZ17]. Our goal is to verify whether transient obfuscation,
which already provides protection against reverse-engineering and theft, can also
be used to protect behavioral IPs against Trojan attacks during HLS. To this end,
we explore two different approaches, for HT detection and for prevention of HT
insertion.

4.1 Threat Model and Definitions

4.1.1 Hardware Trojans

The goal of HT attacks is to maliciously modify a circuit. This modification can
have several purposes:

• leak sensitive information (e.g. a secret key) through a back-door or side-
channel

• decrease performance of the circuit (denial of service)

• create unwanted behavior in the circuit (change of functionality)

A HT should not be detected during tests after its insertion, but it should be
possible to activate it by a trigger during normal execution. HTs can be inserted by
untrusted actors at several stages of the design process, or during manufacturing.
The increasing decentralization of the different steps of IC life cycle has strongly
increased the risk of HT insertion. For example, delegating manufacturing to
external, untrusted foundries has exposed design companies to the threat of HT
insertion by these foundries. The reliance on third party IPs and several complex
EDA software tools has also added to the risk of HT attacks. Contrary to software
Trojans, an inserted HT cannot be removed after manufacturing, which makes it
difficult to counter its effects during normal operation.

Traditional post-manufacturing testing cannot be relied upon to detect HTs
inserted during manufacturing or earlier design steps. Hardware verification tech-
niques normally rely on using a golden model. In the case of third-party IPs,

4.1. THREAT MODEL AND DEFINITIONS 113

golden models are often not available. Simulation or emulation, which is used to
validate a design, can only prove the correct behavior of a design according to given
functional specifications. It does not prove that there is no additional unwanted
behavior due to an added HT.

To avoid detection, the area and power overhead caused by a Trojan insertion
are usually very low. To ensure this low overhead, the HT can take advantage of
unused FSM states and reuse existing logic.

A HT is usually composed of two parts: an activation mechanism, called trigger,
and a payload, which modifies the circuit behaviour. HTs are often classified based
on their trigger condition:

• Analog HTs: activated by on-chip sensors, for example by temperature or
delay

• Digital HTs: activated by logic function

– Combinational HTs: simultaneous occurrence of several conditions, for
example a specific user input

– Sequential HTs: sequence of state transitions, or when an internal
counter reaches a certain value

As shown in the taxonomy presented in Figure 4.1, HTs can also be classified
based on their insertion phase, abstraction level, function, location or physical
characteristics.

4.1.2 Threat Model

There are several different threat models for HT attacks, as presented most recently
in [Xue+20]. The most commonly studied attack scenarios are at the fabrication
level, with an untrusted manufacturer, or at the design level, with an in-house
attacker. However, CAD tools are also a possible attack vector. Maliciously modi-
fying a CAD tool to insert HTs in design files is considered more difficult [Xue+20]
than an attack during design or fabrication. On the other hand, it also offers the
advantage of inserting a HT that is stealthier and harder to remove.

114 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

Figure
4.1

–
H
T

Taxonom
y
-Trust-H

ub.org

4.1. THREAT MODEL AND DEFINITIONS 115

While it is unlikely that a CAD tool vendor himself would try to inject HTs,
given the high risk of eventual detection and subsequent loss of customers, there
is a real risk of outside attacks due to the complexity and modularity of modern
CAD tools and their configuration. A motivated attacker could for example pro-
vide a modified version of one of the tool’s modules, or change the tool’s settings
to encourage HT insertion [PBR16]. A theoretical explanation of how a generic
CAD tool could automatically insert HTs is given in [PBR16]. A more practical
implementation of these ideas in an HLS tool specifically is proposed in [Pil+18a],
where 3 realistic examples of HT insertions are given (see Section 4.1.3).

Figure 4.2 – HT insertion by HLS tool - threat model.

In this work, we focus on the risk of HT insertion by a maliciously modified
HLS tool. We assume that this tool is able to insert a HT in a fully automated way
in any conventional design, without the need for insider knowledge. The design
house has access to the design files both before and after HLS, and uses an external,
untrusted HLS tool. While the original, behavioral level design is well-known and
verified, the design house has no way of verifying with complete certainty that no
HT has been inserted during HLS.

The complete affected design flow, with all involved actors, is represented on
Figure 4.2. The first step involves an HLS tool modified by an attacker at the EDA
tool vendor: a HT generator is inserted into the tool. When this compromised

116 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

tool is then used by a design house to create an IP, a HT is automatically inserted
during HLS into the resulting IP. This modified IP is sold to a SoC integrator.
The resulting SoC, containing the compromised IP, is finally fabricated and sold
to the end user. At this point, the HT can be activated either by the attacker or
by a trigger mechanism (internal counter, random input, ...) and its payload is
executed. All these steps take place without any of the actors being aware of the
HT insertion.

Following the taxonomy given by Trust-Hub [Tru] (cf. Figure 4.1), we focus on
a digital HT that is:

• Inserted at design time.

• At algorithmic or register-transfer level.

• Triggered externally by a specific input or triggered internally, for example
by a counter.

4.1.3 Examples of HTs in BIPs

In this section, we present a few practical implementations of HTs inserted in
BIPs. In [Pil+18a], the authors propose 3 different HT attacks added stealthily
to a design by a maliciously modified HLS tool. The attacks are implemented as
additional passes during HLS optimizations in an open-source HLS tool, Bambu
[PF13]. These Trojans do not modify the functional behavior of the IP, and add a
very low area overhead, which means that they are hard to detect by the designer:

• Degradation attack: The goal of this Trojan is to degrade the performance
of the IP component. The authors propose to add bogus paths containing
empty states (so-called bubbles) to the design’s FSM. When the HT is ac-
tivated, these new paths are executed. This leads to a clear degradation of
performance since the number of cycles necessary to complete the computa-
tion increases.

• Battery exhaustion attack: This Trojan strongly increases power con-
sumption, leading to faster battery usage. After scheduling and resource

4.1. THREAT MODEL AND DEFINITIONS 117

binding steps, idle functional units are identified for each clock cycle. Bo-
gus computations are then added to be performed by these functional units
whenever the Trojan is activated. This can strongly increase the overall
power consumption of the design.

• Downgrade attack: The goal of this Trojan is to reduce the security level of
round-based cryptographic algorithms. In the presented example, when the
HT is activated, the number of executed rounds for a SHA-256 algorithm
is reduced. The security of the algorithm is thus severely compromised.
This attack however requires that a malicious actor from the design house
cooperates with the HLS developer to indicated precisely which modifications
are necessary for the HT.

Figure 4.3 – Simple example of a HT inserted in a BIP. (from [VS16])

In [VS16], the authors introduce several HTs inserted in BIPs. An example of
a simplified HT inserted in a FIR filter and triggered with an If/Else statement
can be found on Figure 4.3. The authors give several practical examples using
benchmarks such as AES, UART and sobel filter. For each type of HT, they pro-
vide several trigger mechanisms (combinational or sequential), as well as different
payloads (with memory or without).

• Change in functionality: used on the sobel filter, this HT modifies it so
that when activated, the filter output is overwritten with bogus values. It is
activated either when certain input values are given (combinational trigger),
or when a certain number of inputs has been given (sequential trigger based
on a counter).

118 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

• Information leakage: applied on an AES circuit, this HT aims at leaking
the secret key used in the encryption algorithm.

• Denial of service: this HT is inserted in a UART circuit, specifically in the
transmitter block. It is activated once an internal counter value is reached
and degrades performance by delaying the transmission, thus leading to data
loss.

These HTs are all easy to implement in BIPs, requiring only a few lines of code.
Furthermore, they only cause a small increase in area of the design and are thus
hard to detect after synthesis. The authors extend their work in [VS17b], where
they present S3CBench, a new benchmark suite of SystemC designs containing
different variations of HTs.

4.2 Hardware Trojan Countermeasures: Related
Work

Countermeasures are usually divided into three broad categories [Bhu+14] [LLZ16]:
detection, run-time monitoring, and design-for-security (DFS). In this section, we
focus particularly on techniques that can be used to thwart HTs at earlier design
stages, before manufacturing.

4.2.1 Detection and Run-time Monitoring

At low abstraction levels, several pre-silicon HT detection approaches based on
formal methods have been proposed. For example, in [Raj+16] and [RVK15],
model checking is used to detect if there is any leakage of critical information or
malicious modification of critical registers. These techniques rely on the IP vendor
and user agreeing upon a set of security properties. A discussion of methods based
on theorem proving and equivalence checking can be found in [Guo+15].

Instead of formal methods, post-silicon methods such as functional testing or
side-channel analysis can also be used. Testing approaches usually focus on gen-
erating specific test patterns that can detect inserted HTs ([Ban+08] [Dup+15]),

4.2. RELATED WORK 119

whereas side-channel analysis rely on measuring parameters such as delay [CG13],
power [Aar+10] or temperature to detect the side-effects induced by Trojans in
infected ICs. Side-channel analysis approaches are most effective for large HTs,
but are vulnerable to process noise and can fail to detect smaller HTs. They also
rely on access to a Trojan-free golden IC for comparison. On the other hand,
functional testing approaches are more efficient for small HTs, but the generation
of useful test vectors is much more challenging [Cha+09].

While HT detection becomes harder the more abstract the design level is
[PBR16], several methods for HT detection in RTL IPs have nevertheless been
proposed in recent years. For example, in [PMP17], the authors show how a con-
trol flow subgraph matching algorithm can be used to detect various HTs in RTL
designs, based on their structure. Their work is based on a library containing basic
RTL HTs implementations as well as several modifications of the implementations
to form more complex variants. In [Cho+20], the authors use machine learning
to detect HTs in RTL designs. They extract all branching statements from the
design and form a feature vector based on branching probability for each branch.
Their assumption is that HT statements have a low chance of execution and thus a
low branching probability since they are usually activated by rare conditions. This
feature vector is then used to classify all branches using a decision tree classifier.
The authors are thus able to accurately identify the majority of branches contain-
ing a HT trigger. Formal methods can also be used at high abstraction levels: in
[VS16], the authors use property checking to detect HTs in BIPs. They identify
potential HTs by using software profiling to identify unexecuted parts of the code.
Then specific test vectors are created using formal verification methods, with the
goal of forcing the testbench to execute the code identified earlier as potential HT.

Most detection methods are only designed to work for a small set of known
HTs, for example those in benchmarks such as Trust-Hub [Tru]. This means that
there is no proof that these methods are also effective at detecting unknown HTs.
Furthermore, detection methods do not prove with full certainty that there are no
Trojans present in a design [Bhu+14]. Run-time monitoring can be used as an
additional countermeasure after fabrication. These approaches rely on monitoring
the computations of an IC and potentially disable the chip if a HT is detected.
Among the solutions explored are for example adding a software module outside

120 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

the processor to detect HT activation [BNS09], or adding reconfigurable logic to
monitor security in real time [AB09].

4.2.2 Design for Security

To avoid the many challenges faced by Trojan detection methods and to pro-
vide countermeasures at earlier design stages, several design approaches have been
created specifically for security against HTs. Design-for-Security (DFS) methods
usually have one of two objectives: preventing HT insertion, or facilitating HT
detection.

To facilitate detection, [Zho+14] and [STP11] propose to insert test points
in the circuit which increase observability and controllability of nodes in the de-
sign. This in turn increases the probability of activating a Trojan during testing.
Other methods aim at facilitating side-channel analysis, for example by minimiz-
ing background side-channel signals [ST11], or by adding structures [Raj+11] or
sensors [Nar+12] that lead to higher sensitivity of the circuit to Trojans .

To prevent insertion, many techniques rely on removing any unused space
on the design. In [BDA19], the authors propose to identify unused resources after
routing. Dummy logic is then inserted to fill empty space in the design. Finally
the design is encrypted using AES to prevent the attacker from replacing the non-
functional part of the design with a Trojan. In [XT13], filler cells in the design
are replaced with functional standard cells. Additionally, these cells are connected
with a self-authenticating mechanism in order to prevent tampering. The other
main approach relies on logic obfuscation: by hiding functionality and structure of
designs, the difficulty of Trojan insertion is greatly increased for attackers. [YDZ17]
gives an overview of several published obfuscation methods against Trojans, with
a focus on HTs inserted at low design levels. In [LW14], the authors propose to
further obfuscate the design by adding reconfigurable logic: this embedded logic is
unknown to the actors of the supply chain and only the end user knows the right
configuration to establish normal circuit functionality.

Several papers also propose methods that combine both objectives: facilitating
detection and preventing insertion. In [CB11], a key-based obfuscation technique
is proposed against Trojans triggered by rare internal events, based on two mod-

4.3. PROPOSED COUNTERMEASURES 121

ifications of the state transition graph: extra states are added to exponentially
increase the size of the reachable state space, and an obfuscated mode is added.
The extra states prevent the attacker from finding rare events in the circuit to use
as trigger for the Trojan. The Trojan is thus inserted in non-ideal locations and
easier to detect by post-silicon testing methods. Additionally, some inserted Tro-
jans will only be activated when the circuit is in obfuscated mode. During normal
mode, they are thus benign and have no effect on the circuit. This technique is
applied on gate-level netlists.

4.3 Proposed Countermeasures for Hardware Tro-
jan Insertion during HLS

Our main goal is to prevent HT insertion by a malicious HLS tool. We propose to
study how transient obfuscation can be used as countermeasure. This obfuscation
method relies on adding a significant amount of bogus code to a C-level design.
After HLS, the designer can remove the bogus code, either by directly manipulating
the RTL code, or by using constant propagation during logic synthesis. In the
end, while a small overhead due to different design choices made by the HLS tool
remains, all of the bogus logic is removed. We postulate that this process of adding
and then removing bogus code can be used in different ways to thwart HTs.

4.3.1 Payload: Removal by De-obfuscation

The first proposed method has the goal of removing or mitigating the effect of a HT
inserted during HLS, at RTL, by using transient obfuscation. It relies on following
idea, illustrated on Figure 4.4: during obfuscation, large amounts of bogus code
are added to the design. If the HT payload is inserted in a bogus basic block, then
it is highly likely that the payload will be automatically removed alongside the
bogus logic during de-obfuscation. Increasing the proportion of bogus code directly
improves the likelihood of HT payload removal. This idea presents similarities to
the approach presented in [CB11], where some inserted Trojans become benign by
only being activated in an obfuscated mode, and not in the normal mode.

122 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

Figure 4.4 – HT removal by de-obfuscation flow.

Proposed Flow and Notations

Let C be the original design at behavioral level. By applying obfuscation using
KaOTHIC’s Bogus Basic Block Insertion (Section 2.4.1), we obtain an obfuscated
design Cobf , containing both real and bogus basic blocks. Next HLS is applied.
If the tool has been compromised or maliciously modified, a HT is inserted in
the design, resulting in: RTLHT

obf . Finally de-obfuscation is applied. If the HT
was inserted in a bogus basic block, it gets deleted during de-obfuscation and we
obtain RTLdeobf , a design that is functionally fully identical to the original design.
If on the other hand the HT was inserted in a real basic block, the resulting design
RTLHT

deobf still contains the HT and our process has failed to protect the design.
To improve the likelihood of successful HT removal, it is thus crucial to increase

the proportion of bogus code. While our process will never be able to guarantee a
100% success rate, we aim at reaching an acceptable, satisfyingly high HT removal
rate.

4.3. PROPOSED COUNTERMEASURES 123

Probability of HT removal

In this section, we aim at calculating a theoretical probability of HT removal.
This probability can then be compared to the real removal rate obtained during
an experimental phase.

We define following additional notations:

• b basic blocks in the original code

• bobf basic blocks in the obfuscated code

• bbogus = bobf − b bogus basic blocks in the obfuscated code

• Obfuscation level λ: ratio of effectively obfuscated basic blocks with respect
to the total number of basic blocks in the design.

• Branching degree δ: number of bogus basic blocks per obfuscated basic block.

• P (λ, δ) probability of HT removal for a given obfuscation level and branching
degree

For each basic block that is obfuscated, several new blocks are added: a condi-
tional block based on an input key, as well as one or several bogus blocks, depend-
ing on the branching degree δ. This means that after obfuscation, each obfuscated
block adds 1 + δ blocks to the code. The total amount of bogus blocks can thus
be calculated as follows:

bbogus = b× λ× (1 + δ) (4.1)

We assume here that whenever a HT is inserted in a bogus code block, it will
be removed during de-obfuscation. The probability P that a HT is removed can
thus be defined as the ratio of bogus code against the total obfuscated code:

P = bbogus

bobf

(4.2)

124 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

Using these two equations, we can thus calculate:

P (λ, δ) = bbogus

bobf

= bbogus

b+ bbogus

= b× λ× (1 + δ)
b+ b× λ× (1 + δ)

= λ(1 + δ)
1 + λ(1 + δ)

= 1− 1
1 + λ(1 + δ)

(4.3)

This resulting formula confirms the intuition that to maximize probability of
HT removal, branching degree and/or obfuscation level should be as high as pos-
sible. Per definition, the maximum possible obfuscation level is 100%. Previous
experimental results (see Section 2.7.2) have demonstrated that this maximal value
can always be used without incurring any significant design overhead. The previ-
ous formula can thus be simplified by replacing λ with 1:

P (δ) = 1− 1
δ + 2 (4.4)

With a branching degree of 8, a probability of removal of 90% can theoreti-
cally be reached. To reach a 95% chance of removal, a branching degree of 18 is
necessary.

Contrary to obfuscation level, increasing the branching degree can quickly lead
to a strong design overhead. This means there is a trade-off between cost and
security.

4.3.2 Combinational Trigger: Detection during De-obfuscation

In the previous section, we showed how HTs can be removed by our de-obfuscation
process. However, during our experiments, we have also noticed that in some cases,
the inserted HT prevents normal de-obfuscation. In particular, if the circuit inputs

4.3. PROPOSED COUNTERMEASURES 125

Figure 4.5 – HT detection during de-obfuscation.

that are used as obfuscation keys are also used as part of the HT trigger, then our
automated de-obfuscation tool cannot fully remove the obfuscation keys.

For this approach, which is intended to be complementary to the first method
we presented, we thus focus on HTs with combinational triggers based on design
inputs: the Trojan is activated when the correct input combination is entered. The
approach is illustrated on Figure 4.5: during key injection while de-obfuscating the
RTL (1), the logic added during obfuscation is removed (2). Normally, through
constant propagation and dead code elimination, this should enable our tool to
remove the obfuscation key input (3). However, if this key input is also used as
part of a combinational Trojan trigger (4), then the remaining data dependency
prevents the input key removal. It should be noted that the design is normally not
modified between obfuscation and de-obfuscation. This means that the only case
where the obfuscation keys are also used in other parts of design is when unwanted
behavior was added during HLS. By slightly modifying our de-obfuscation tool
to raise an error whenever this scenario occurs, we are thus able to detect that
unwanted logic was inserted. By knowing which obfuscation key is involved, we

126 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

are then able to follow the trigger and detect the full HT.

Figure 4.6 – No Trojan, these lines are removed during de-obfuscation.

Figure 4.7 – Key1 and Input1 are used as triggers for the Trojan.

Figure 4.6 and Figure 4.7 show two VHDL code snippets as an example. On
the first figure, the design has 5 obfuscation keys (key1 - key5), which are de-
sign inputs. These inputs are each compared to a constant and the result of the
comparison is sent to a functional unit. This result is then used as input to the
obfuscation multiplexer, which decides if the correct or bogus code block is ex-
ecuted. During de-obfuscation, since the obfuscation key values are known, the
result of the comparisons are also fixed and the whole logic on Figure 4.6 can be
removed. On the other hand, on Figure 4.7, key1, as well as another circuit input
input1, are used as inputs for a combinational Trojan trigger. In this case, key1
has an additional data dependency and is thus not removed by our de-obfuscation
tool. The tool raises an error, flagging the location of this particular line. The
unexpected behavior can then be closely examined by the design house, leading to
detection of the HT.

By applying a light modification to our de-obfuscation tool, we are
able to raise a flag whenever a Trojan uses obfuscation keys as trig-
ger. The tool points to the exact variable that is involved, thus
allowing a design house to easily retrace the problem, detect the
Trojan trigger and remove it.

4.4. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS 127

It should be noted that in this section, we focus only on the case of a com-
binational HT trigger reusing obfuscation keys as inputs. However, several other
types of HT triggers or payloads interwoven with the obfuscation logic could also
prevent de-obfuscation. Our method can easily be extended by studying other
examples of HTs.

4.4 Experimental Setup and Preliminary Results

For our experiments, we do not have access to a malicious HLS tool. There are
two possibilities to imitate insertion of a HT by an HLS tool: simulating a HT
inserted by HLS front-end, by using a modified source-to-source compiler for high
level source code, or adding the HT after HLS, in the RTL description (e.g. us-
ing VHDL or Verilog source-to-source transformations). Because it is simpler to
manipulate high level source code, and we already have access to several in-house
tools for C code manipulation, we chose to focus on a tool for HT insertion in C
code. In particular, we implemented a tool that inserts a HT based on the Collatz
conjecture.

4.4.1 "Collatz" Hardware Trojan

We created a HT based on following requirements:

• The HT is inserted by a source-to-source compiler, before HLS.

• The trigger is combinational and uses a combination of circuit inputs.

• The payload induces a performance degradation: the circuit performs un-
necessary calculations, leading to higher latency.

• The HT is not removed by the HLS tool (or logic synthesis tools) during
optimizations and dead code elimination.

• The HT does not modify circuit functionality and thus cannot be detected
during functional testing.

128 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

• For experimental purposes, we do not focus on stealth of the HT. However,
it should require a minimal amount of code.

Figure 4.8 – Code example of a Collatz HT inserted in a greatest common divisor
calculation.

On Figure 4.8, we give a code sample where a “Collatz” HT was inserted into
a function calculating the greatest common divisor of two integers m and n. This
HT has a combinational trigger based on an If/Else statement, activated when
a combination of two inputs has a certain value. In the case of the example on
Figure 4.8, the Trojan is activated only when m& n = 42. It does not modify the
circuit’s functionality, but slows it down by performing an unnecessary calculation
when activated. The payload is embedded at a random place in the code. It takes
one of the original codes’ variables (result in the example Figure 4.8), performs

4.4. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS 129

some calculation involving this variable and then returns it. The result of this
calculation is used in the original circuit to ensure that the compiler does not
remove the payload as dead code. The result of the calculation is exactly the same
as the original value, in order to ensure correct functionality of the circuit. On the
other hand the calculation is complex enough to ensure that a dataflow analysis
by the compiler is not able to simplify and remove it. In our case, the calculation
is based on the Collatz conjecture (also known as Syracuse problem). The result
is known at design time, but a compiler will not be able to find and simplify it.

This HT insertion was fully automated and added as a pass to
Crokus (Section 3.5.4). A test performed with the HT inserted at
random in AES benchmark shows no increase of C simulation time
as long as the HT is not activated. When the Trojan is activated
with the trigger inputs, the simulation time increases by 334%. Af-
ter HLS, when simulating the VHDL design, the number of cycles
also increases by 219% only when the HT is activated. Tests with
other benchmarks yielded similar results.

4.4.2 HT Removal

Experimental evaluation of our approach focuses on following problem: proving
that the previously calculated probability of removal is close to the real removal
rate.

Our goal is thus to experimentally calculate, for different obfuscation level and
branching degree values, the HT removal rate. We start by generating several C
codes with Crokus: test_X. For each original C code, we apply obfuscation with
varying obfuscation level and branching degree using KaOTHIC: test_X(λ,δ).
Next, for each obfuscated C code, we perform several instances of Trojan inser-
tion with Crokus: test_X(λ,δ,troj_Y). To avoid having to perform HLS, de-
obfuscation and checking for the Trojan at RTL, which are time consuming and
more complex to set up, we use a shortcut method that yields the same results: for
each C code, we hardcode the correct obfuscation key values as inputs to the func-
tion. This is functionally equivalent to performing de-obfuscation by key injection

130 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

on the RTL design. Then we use Clang (a compiler front-end for LLVM: [Cla])
and opt (an optimizer for LLVM: [opt]) to parse and optimize the C code. In par-
ticular, by using interprocedural sparse conditional constant propagation (-ipsccp
option), the key constants are propagated throughout the obfuscated function and
any dead code is removed. This operation is equivalent to what the logic synthesis
tool would perform at lower level after de-obfuscation. Finally, we use a regular
expression to check if the Trojan is still present in the IR of the optimized code.
By using this method, we are able to verify for each code if the Trojan would have
been removed during de-obfuscation or not.

test
case

obf.
level

branch.
degree

test A test B test C test D average
removal
rate

theoretical
removal
rate

1 25% 1 0.11 0.0 0.20 0.10 0.14 0.33
2 25% 3 0.20 0.0 0.40 0.60 0.40 0.50
3 25% 5 0.15 0.0 0.05 0.45 0.22 0.60
4 25% 7 0.50 0.0 0.40 0.60 0.50 0.67
5 25% 9 0.35 0.0 0.60 0.74 0.56 0.71
6 50% 1 0.20 0.20 0.50 0.55 0.42 0.50
7 50% 3 0.50 0.40 0.60 0.80 0.63 0.67
8 50% 5 0.75 0.55 0.60 0.60 0.65 0.75
9 50% 7 0.75 0.68 0.75 0.80 0.77 0.80
10 50% 9 0.85 0.50 0.80 0.70 0.78 0.83
11 75% 1 0.65 0.30 0.45 0.55 0.55 0.60
12 75% 3 0.65 0.70 0.70 0.70 0.68 0.75
13 75% 5 0.50 0.75 0.85 0.65 0.67 0.82
14 75% 7 0.65 0.55 0.70 0.90 0.75 0.86
15 75% 9 0.90 0.60 0.80 0.75 0.82 0.88
16 100% 1 0.70 0.47 0.55 0.70 0.65 0.67
17 100% 3 0.80 0.50 0.70 0.80 0.77 0.80
18 100% 5 0.90 0.85 0.85 0.80 0.85 0.86
19 100% 7 0.90 0.70 0.95 0.85 0.90 0.89
20 100% 9 0.90 0.80 0.90 0.85 0.88 0.91

Table 4.1 – HT Removal Rate: Experimental Results.

We do a series of tests with 4 automatically generated C codes of varying sizes
and properties: test A -> test D on Table 4.1. For each of these initial C codes,

4.4. EXPERIMENTAL SETUP AND PRELIMINARY RESULTS 131

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Test case

Tr
oj
an

re
m
ov
al

ra
te

Theoretical Rate
Experimental Rate

Figure 4.9 – Theoretical and experimental HT removal rate.

we obfuscate with 4 different values of obfuscation level and 5 different values of
branching degree, resulting in 20 obfuscated designs per original code and thus
20 test cases. This means tests are done with a total of 80 different obfuscated
designs. Next, for each of these 80 obfuscated designs, we try 20 instances of
HT insertion. This results in a total of 1600 obfuscated designs with Trojan.
Then we verify for each of these designs if the Trojan would be removed during
de-obfuscation. For each original design and each test case, we can thus give a
HT removal rate calculated over 20 Trojan insertions. These values are given in
Table 4.1 in the four columns test A -> test D. In this table, we also indicate the
average removal rate for each test case, i.e. for each combination of obfuscation
level and branching degree. For each test case, this average is calculated over 80
(4x20) individual tests. Finally, using the formula established in Equation (4.3),
we give the theoretical removal rate for each test case.

To evaluate the correctness of the removal probability (Equation (4.3)), we
calculated the correlation between this theoretical rate and the experimental rate
obtained during experiments.

132 CHAPTER 4. OBFUSCATION AGAINST HT INSERTION

The resulting correlation coefficient, taken over a range of 20 test
cases with varying obfuscation levels and branching degrees, is 0.93.
This means that there is a strong correlation between the theoret-
ical and real rate. The two rates are represented graphically on
Figure 4.9. This same correlation is also visible when examining the
graph. It is noticeable that for most test cases, experimental results
are slightly less good than the theoretical rate, while the overall ten-
dency remains the same. This strong correlation is very encouraging
and indicates that our method is highly likely to successfully remove
hardware Trojans of the form studied here.

4.4.3 Discussion

The positive results presented in the previous section demonstrated that our
method is a valid technique for removing Trojans inserted during HLS. The close
correlation between theoretical and experimental Trojan removal rate validates our
approach. However, these results are only preliminary and several further experi-
ments could be designed. First, the tests were only done on synthetic benchmarks
generated with a random code generation tool. Tests with real benchmarks should
also be performed. Moreover, tests with a wider range of obfuscation levels and
branching degrees could be used to further verify the removal rate. Finally, tests
so far were all done with one Trojan: “Collatz” HT. For more realistic results,
further tests with other behavioral level Trojans should also be done.

The basic approach presented in this work can be further improved: so far, we
have assumed that the HT payload is inserted in a block chosen at random. How-
ever, many automated HT insertions rely on an algorithm to automatically choose
the best point of insertion. For example, in the degradation attack presented
in [Pil+18a], bubbles are inserted in the FSM to slow down computation. An
algorithm which calculates a cost function for each basic block (BB) is used to de-
termine between which states the bubbles should be inserted. By adding fake BBs
and/or fake transitions between existing BBs, it is possible to skew the computa-
tion of this cost function, thus resulting in an increased likelihood of the algorithm

4.5. CONCLUSION 133

inserting the bubbles between bogus states. This in turn means an increased like-
lihood of HT removal during de-obfuscation. Another potential approach could
be based on exploiting the work in [ST13]: this paper focuses on soft IPs in HDL
and their vulnerability to HT insertion, by identifying potential HT insertion lo-
cations. The authors note that Trojans are usually inserted in statements that are
rarely executed or on signals that are hard to observe. In particular, highly nested
statements and low observability signals are a likely target for HT insertion. By
adding bogus code that fulfills these properties, Trojan insertion algorithms could
be lured to insert the HTs there instead of on real code. Overall, this more precise
approach requires detailed study of automated HT insertion algorithms, and has
no guarantee of satisfying results when applied on yet unknown HTs.

4.5 Conclusion

In this chapter, we explored how transient obfuscation can be used for protection
against HLS-based hardware Trojan attacks. We designed two methods which can
be used in a complimentary way. The first approach focuses on preventing HT
insertion: by adding large amounts of bogus code to a design during obfuscation,
the chance that a Trojan is inserted in a bogus code block is increased. This
code, including the HT, is then removed during de-obfuscation. A preliminary
experimental study showed that we are able to successfully remove HTs in this way.
We established a theoretical study the HT removal rate, and confirmed it with high
certainty during experimental study. This chance of removal can be increased by
using high obfuscation level and branching degree. Our second approach can be
used to detect HTs that have not been removed. It focuses in particular on HTs
with a combinational trigger that reuses design inputs. These types of trigger can
lead to abnormal behavior during de-obfuscation due to unexpected remaining data
dependencies. By modifying our de-obfuscation tool, we are able to successfully
pinpoint this behavior and raise an alert leading to detection of the HT.

These two approaches with promising results show that transient obfuscation
is a good candidate for protection against hardware Trojans. Further work should
study these approaches more closely, by exploring other types of Trojans and
providing more in-depth experimental studies.

Conclusion

Summary of contributions

In Chapter 2, we presented the case for a HLS-as-a-Service scenario, and ex-
plained why widespread adoption is slowed down by security concerns: BIP theft
and reverse-engineering. We introduced transient obfuscation, a novel concept
for BIP protection. This idea relies on two separate steps, to be performed re-
spectively before and after HLS. The first step, key-based obfuscation, hides the
structure of the IP and locks it to prevent illegal reuse. During the second step, by
using the correct obfuscation keys, the IP is de-obfuscated. Our method is consid-
ered transient because of two factors: after de-obfuscation, original functionality
is restored, and the design overhead is negligible. We studied several different
obfuscation techniques that can become transient, and implemented them in a
new tool, KaOTHIC. During experimental validation, we analyzed the different
techniques and their impact on several known benchmarks through HLS and logic
synthesis for FPGA and ASIC using industrial tools. The results show that some
techniques are better suited than others for transient obfuscation, with bogus code
insertion techniques being ideal candidates. Using transient obfuscation, we are
thus able to present a secure, low overhead design flow for cloud-based HLS.

In Chapter 3, we extended the scope of the previous chapter by focusing on
the problem of stolen BIP identification. We exploited a side-effect of transient
obfuscation: after de-obfuscation, while original design functionality is restored,
structural differences in the micro-architecture of the design remain, due to the
effects of the obfuscating transformations on HLS results. We propose a flow where
these differences are used as birthmarks to identify stolen designs. In particular, we

135

136 CONCLUSION

created two metrics that can be extracted from any design at RTL to characterize
their dataflow and scheduling. During a test campaign, we successfully used these
metrics to identify stolen designs with an accuracy of over 96%. The extensive
tests were first done on synthetic benchmarks that we generated for the purpose
of this work, and then validated on well-known benchmarks.

In Chapter 4 finally, we focused on another security threat introduced by
untrusted behavioral synthesis tools: the risk of hardware Trojan insertion by a
compromised HLS tool. We proposed two methods that use transient obfuscation
against this threat, with different purposes. The first method relies on the de-
obfuscation step to automatically remove hardware Trojans inserted in bogus code
blocks. We provided a theoretical approach for estimating the chance of removal of
a Trojan depending on the obfuscation parameters. Then, using an in-house tool to
insert a Trojan in C level designs, we validated this approach with a test campaign.
Experimental results showed that the real removal rate is closely correlated to
the theoretical one. These tests demonstrated that, with a high enough level of
obfuscation and branching degree, there is a high likelihood of Trojan removal.
The second method we presented took advantage of the de-obfuscation step to
detect inserted hardware Trojans. By modifying our de-obfuscation tool, we were
able to detect Trojans with a specific type of trigger: combinational trigger that
uses design inputs. This method could likely be extended to other types of triggers
and payloads.

Perspectives

We identified several perspectives to extend the different contributions in this
thesis.

First of all, the experimental study of transient obfuscation techniques could
be extended in several ways. Closer attention could for example be brought to
analyzing the resilience of our approach against manual or automated attacks.
Several security metrics proposed in other works on obfuscation could thus be
adapted and reused for our research. Moreover, de-obfuscation has only been
automated for code generated by Xilinx VivadoHLS so far. By extending our
method to code generated by other HLS tools such as Bambu, Gaut or Catapult,

137

the experimental study could be broadened, leading to more extensive results.
Another possible extension of the work on transient obfuscation could focus

on exploring more obfuscation techniques, either by reusing and adapting known
software and hardware obfuscation methods, or by creating new techniques. This
extension could also aim at further improving the transience of existing techniques,
for example by better taking into account the effects of control flow transformations
on HLS quality of results.

Finally, the key locking mechanism could be improved: in this work, we only
paid reduced attention to issues of stealth and resilience. By using a more complex
key mechanism, or by focusing on how to better integrate and hide it in the existing
design, the risk of detection and removal could be reduced.

Concerning our birthmarking approach, future work needs to focus on improv-
ing the two presented birthmarking metrics, or on providing new metrics that
would characterize design architectures with more precision. This would allow
higher accuracy during birthmark extraction, and also lead to better resistance
against attacks. Research efforts could for example concentrate on improving the
datapath metric, which in this work has given slightly less satisfying results and
does not represent the full datapath information that is available.

During our work on birthmarking, we also tried a machine learning (ML) based
approach for birthmark extraction and verification, which did not yield sufficient
results and was much more complicated to put into place that initially expected.
This approach failed mainly due to one issue: a lack of good RTL representations
that can be used as input for a machine learning method. While there have been
some recent studies ([Zha+19]) of metrics that can be extracted from RTL design
and used as input features for ML algorithms, there appears to be still a lot of
research missing on this topic. In particular, graph-based neural networks, which
have shown promising results for ML on software codes ([Li+19b]), appear to be
a promising research direction for ML on RTL designs.

Finally, while our research on using transient obfuscation against hardware
Trojans gave some promising preliminary results, a more thorough study of the
subject is necessary: an extension to other types of Trojans, a better study of
automated Trojan insertion algorithms, or a focus on attack surface expansion to
confuse these algorithms, are all topics that require more work.

List of published contributions

[Bad+19] H. Badier, J.-C. Le Lann, P. Coussy, and G. Gogniat. “Transient key-
based obfuscation for HLS in an untrusted cloud environment”. In:
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2019, pp. 1118–1123 (cit. on p. 40).

[Bad+21a] H. Badier, J.-C. Le Lann, P. Coussy, and G. Gogniat. “Protecting
Behavioral IPs during Design Time: Key-Based Obfuscation Tech-
niques for HLS in the Cloud”. In: Behavioral Synthesis for Hardware
Security. Springer, 2021 (cit. on p. 40).

[Bad+21b] H. Badier, C. Pilato, J.-C. Le Lann, P. Coussy, and G. Gogniat.
“Opportunistic IP Birthmarking using Side Effects of Code Trans-
formations on High-Level Synthesis”. In: 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2021 (cit. on
p. 76).

[Ker+19] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann. “LiteX:
an open-source SoC builder and library based on Migen Python DSL”.
In:OSDA’2019 Open Source Design Automation, colocated with DATE’19.
2019 (cit. on p. 12).

[LBK20] J.-C. Le Lann, H. Badier, and F. Kermarrec. “Towards a Hardware
DSL Ecosystem: RubyRTL and Friends”. In:OSDA’2020 Open Source
Design Automation, colocated with DATE’20. 2020 (cit. on p. 12).

139

Bibliography

[Aar+10] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic. “Detecting
Trojans Through Leakage Current Analysis Using Multiple Supply
Pad IDDQS”. In: IEEE Transactions on information forensics and
security 5.4 (2010), pp. 893–904 (cit. on p. 119).

[AB09] M. Abramovici and P. Bradley. “Integrated circuit security: new threats
and solutions”. In: Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies. 2009, pp. 1–3 (cit.
on p. 120).

[Ade08] S. Adee. “The hunt for the kill switch”. In: IEEE Spectrum 45.5
(2008), pp. 34–39 (cit. on p. 3).

[Akh+15] A. Akhunzada, M. Sookhak, N. B. Anuar, A. Gani, E. Ahmed, M.
Shiraz, S. Furnell, A. Hayat, and M. K. Khan. “Man-At-The-End
attacks: Analysis, taxonomy, human aspects, motivation and future
directions”. In: Journal of Network and Computer Applications 48
(2015), pp. 44–57 (cit. on p. 31).

[AKP07] Y. Alkabani, F. Koushanfar, and M. Potkonjak. “Remote activa-
tion of ICs for piracy prevention and digital right management”. In:
2007 IEEE/ACM International Conference on Computer-Aided De-
sign. IEEE. 2007, pp. 674–677 (cit. on p. 23).

[Arb02] G. Arboit. “A method for watermarking java programs via opaque
predicates”. In: The Fifth International Conference on Electronic Com-
merce Research (ICECR-5). 2002, pp. 102–110 (cit. on p. 80).

[ATA03] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid. “IP water-
marking techniques: Survey and comparison”. In: The 3rd IEEE In-
ternational Workshop on System-on-Chip for Real-Time Applications,
2003. Proceedings. IEEE. 2003, pp. 60–65 (cit. on pp. 20, 77).

141

142 BIBLIOGRAPHY

[ATA04] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid. “A survey on
IP watermarking techniques”. In: Design Automation for Embedded
Systems 9.3 (2004), pp. 211–227 (cit. on pp. 25, 27).

[Ban+08] M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao. “Guided test
generation for isolation and detection of embedded Trojans in ICs”.
In: Proceedings of the 18th ACM Great Lakes symposium on VLSI.
2008, pp. 363–366 (cit. on p. 118).

[Bar+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang. “On the (im) possibility of obfuscating programs”.
In: Journal of the ACM (JACM) 59.2 (2012), pp. 1–48 (cit. on p. 30).

[Bas+19] K. Basu, S. M. Saeed, C. Pilato, M. Ashraf, M. T. Nabeel, K. Chakrabarty,
and R. Karri. “CAD-Base: an attack vector into the electronics supply
chain”. In: ACM Transactions on Design Automation of Electronic
Systems (TODAES) 24.4 (2019), pp. 1–30 (cit. on p. 3).

[BDA19] N. K. Brar, A. Dhindsa, and S. Agrawal. “Impact of Dummy Logic
Insertion on Xilinx Family for Hardware Trojan Prevention”. In: In-
ternational Conference on Advanced Informatics for Computing Re-
search. Springer. 2019, pp. 64–74 (cit. on p. 120).

[Bhu+14] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. “Hardware
Trojan attacks: threat analysis and countermeasures”. In: Proceedings
of the IEEE 102.8 (2014), pp. 1229–1247 (cit. on pp. 17, 111, 118,
119).

[BNS09] G. Bloom, B. Narahari, and R. Simha. “OS support for detecting
Trojan circuit attacks”. In: 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust. IEEE. 2009, pp. 100–103 (cit.
on p. 120).

[Bro97] A. Z. Broder. “On the resemblance and containment of documents”.
In: Proceedings. Compression and Complexity of SEQUENCES 1997
(Cat. No. 97TB100171). IEEE. 1997, pp. 21–29 (cit. on p. 90).

[BS05] A. Balakrishnan and C. Schulze. “Code obfuscation literature sur-
vey”. In: CS701 Construction of compilers 19 (2005) (cit. on p. 31).

[BS19] A. Babaei and G. Schiele. “Physical unclonable functions in the in-
ternet of things: State of the art and open challenges”. In: Sensors
19.14 (2019), p. 3208 (cit. on p. 19).

[BY07] M. Brzozowski and V. N. Yarmolik. “Obfuscation as intellectual rights
protection in VHDL language”. In: 6th International Conference on
Computer Information Systems and Industrial Management Applica-
tions (CISIM’07). IEEE. 2007, pp. 337–340 (cit. on p. 26).

BIBLIOGRAPHY 143

[Cal+04] A. E. Caldwell, H.-J. Choi, A. B. Kahng, S. Mantik, M. Potkonjak, G.
Qu, and J. L. Wong. “Effective iterative techniques for fingerprint-
ing design IP”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 23.2 (2004), pp. 208–215 (cit. on
p. 20).

[Cas+07] E. Castillo, U. Meyer-Baese, A. Garcia, L. Parrilla, and A. Lloris.
“IPP@ HDL: efficient intellectual property protection scheme for IP
cores”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 15.5 (2007), pp. 578–591 (cit. on p. 25).

[CB09] R. S. Chakraborty and S. Bhunia. “HARPOON: An obfuscation-
based SoC design methodology for hardware protection”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28.10 (2009), pp. 1493–1502 (cit. on p. 23).

[CB10] R. S. Chakraborty and S. Bhunia. “RTL hardware IP protection using
key-based control and data flow obfuscation”. In: 2010 23rd Interna-
tional Conference on VLSI Design. IEEE. 2010, pp. 405–410 (cit. on
pp. 25, 26).

[CB11] R. S. Chakraborty and S. Bhunia. “Security against hardware Trojan
attacks using key-based design obfuscation”. In: Journal of Electronic
Testing 27.6 (2011), pp. 767–785 (cit. on pp. 120, 121).

[CBC07] L.-w. Chow, J. P. Baukus, and W. M. Clark Jr. Integrated circuits
protected against reverse engineering and method for fabricating the
same using an apparent metal contact line terminating on field oxide.
US Patent 7,294,935. 2007 (cit. on p. 21).

[CBH16] B. Colombier, L. Bossuet, and D. Hély. “From secured logic to IP
protection”. In: Microprocessors and Microsystems 47 (2016), pp. 44–
54 (cit. on p. 22).

[CD00] R. Chapman and T. S. Durrani. “IP protection of DSP algorithms
for system on chip implementation”. In: IEEE Transactions on signal
processing 48.3 (2000), pp. 854–861 (cit. on p. 27).

[Cec+14] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, and P.
Tonella. “A family of experiments to assess the effectiveness and effi-
ciency of source code obfuscation techniques”. In: Empirical Software
Engineering 19.4 (2014), pp. 1040–1074 (cit. on p. 36).

144 BIBLIOGRAPHY

[CG13] B. Cha and S. K. Gupta. “Trojan detection via delay measurements:
A new approach to select paths and vectors to maximize effectiveness
and minimize cost”. In: 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2013, pp. 1265–1270 (cit. on
p. 119).

[CGR93] V. Chaiyakul, D. D. Gajski, and L. Ramachandran. “High-Level Trans-
formations for Minimizing Syntactic Variances”. In: 30th ACM/IEEE
Design Automation Conference. IEEE. 1993, pp. 413–418 (cit. on
pp. 67, 78).

[Cha+09] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia.
“MERO: A statistical approach for hardware Trojan detection”. In:
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer. 2009, pp. 396–410 (cit. on p. 119).

[Cho+01] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. “An Approach to
the Obfuscation of Control-Flow of Sequential Computer Programs”.
In: International Conference on Information Security. Springer. 2001,
pp. 144–155 (cit. on p. 54).

[Cho+12] L. W. Chow, J. P. Baukus, B. J. Wang, and R. P. Cocchi. Camou-
flaging a standard cell based integrated circuit. US Patent 8,151,235.
2012 (cit. on p. 21).

[Cho+20] H. S. Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, and C. H.
Kok. “Register-Transfer-Level Features for Machine-Learning-Based
Hardware Trojan Detection”. In: IEICE TRANSACTIONS on Fun-
damentals of Electronics, Communications and Computer Sciences
103.2 (2020), pp. 502–509 (cit. on p. 119).

[Cla] Clang. C language family frontend for LLVM. https://clang.llvm.
org/. Accessed: 2021-02-20 (cit. on p. 129).

[Col] C. Collberg. Tigress. https://tigress.wtf/. Accessed: 2021-01-22
(cit. on p. 35).

[Cou+09] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach. “An introduc-
tion to high-level synthesis”. In: IEEE Design & Test of Computers
26.4 (2009), pp. 8–17 (cit. on p. 12).

[CP10] J. Cappaert and B. Preneel. “A General Model for Hiding Control
Flow”. In: Proceedings of the tenth annual ACM workshop on Digital
rights management. 2010, pp. 35–42 (cit. on p. 54).

[CTL97] C. Collberg, C. Thomborson, and D. Low. A Taxonomy of Obfuscating
Transformations. 1997 (cit. on pp. 29, 32, 34, 48).

https://clang.llvm.org/
https://clang.llvm.org/
https://tigress.wtf/

BIBLIOGRAPHY 145

[CTL98] C. Collberg, C. Thomborson, and D. Low. “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs”. In: Proceedings of the
25th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. 1998, pp. 184–196 (cit. on pp. 36, 48).

[Cui+11] A. Cui, C.-H. Chang, S. Tahar, and A. T. Abdel-Hamid. “A robust
FSM watermarking scheme for IP protection of sequential circuit de-
sign”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 30.5 (2011), pp. 678–690 (cit. on p. 79).

[CZZ17] C.-H. Chang, Y. Zheng, and L. Zhang. “A retrospective and a look
forward: Fifteen years of physical unclonable function advancement”.
In: IEEE Circuits and Systems Magazine 17.3 (2017), pp. 32–62 (cit.
on pp. 19, 23).

[DBC19] A. Dey, S. Bhattacharya, and N. Chaki. “Software watermarking:
Progress and challenges”. In: INAE Letters 4.1 (2019), pp. 65–75 (cit.
on p. 80).

[Dev] DevCloud. https://software.intel.com/content/www/us/en/
develop/tools/devcloud.html. Accessed: 2021-01-13 (cit. on p. 40).

[DF19] S. Dupuis and M.-L. Flottes. “Logic locking: A survey of proposed
methods and evaluation metrics”. In: Journal of Electronic Testing
35.3 (2019), pp. 273–291 (cit. on pp. 22, 23).

[DM96] R. I. Davidson and N. Myhrvold. Method and system for generat-
ing and auditing a signature for a computer program. US Patent
5,559,884. 1996 (cit. on p. 79).

[DRA15] M. Dashtbani, A. Rajabzadeh, and M. Asghari. “High Level Synthesis
as a service”. In: 2015 5th International Conference on Computer and
Knowledge Engineering (ICCKE). IEEE. 2015, pp. 331–336 (cit. on
p. 41).

[Dup+15] S. Dupuis, P.-S. Ba, M.-L. Flottes, G. Di Natale, and B. Rouzeyre.
“New testing procedure for finding insertion sites of stealthy hardware
Trojans”. In: 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2015, pp. 776–781 (cit. on p. 118).

[DV13] J. Delvaux and I. Verbauwhede. “Side channel modeling attacks on
65nm arbiter PUFs exploiting CMOS device noise”. In: 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST). IEEE. 2013, pp. 137–142 (cit. on p. 20).

[Fal+11] P. Falcarin, C. Collberg, M. Atallah, and M. Jakubowski. “Guest
editors’ introduction: Software protection”. In: IEEE Software 28.2
(2011), pp. 24–27 (cit. on p. 31).

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html

146 BIBLIOGRAPHY

[FT03] Y.-C. Fan and H.-W. Tsao. “Watermarking for intellectual property
protection”. In: Electronics Letters 39.18 (2003), pp. 1316–1318 (cit.
on p. 25).

[Gaj+92] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin. High-level
synthesis: introduction to chip and system design. 1992 (cit. on p. 14).

[Gar+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Wa-
ters. “Candidate Indistinguishability Obfuscation and Functional En-
cryption for all Circuits”. In: 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Computer Society.
2013, pp. 40–49 (cit. on p. 30).

[Gas+02] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. “Silicon physical
random functions”. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security. 2002, pp. 148–160 (cit. on
p. 19).

[Gin] T. Gingold. GHDL. http://ghdl.free.fr/. Accessed: 2021-01-22
(cit. on p. 72).

[Gon+08] D. Gong, F. Liu, B. Lu, P. Wang, and L. Ding. “Hiding information
in java class file”. In: 2008 International Symposium on Computer
Science and Computational Technology. Vol. 2. IEEE. 2008, pp. 160–
164 (cit. on p. 80).

[Got+01] H. Goto, M. Mambo, H. Shizuya, and Y. Watanabe. “Evaluation
of tamper-resistant software deviating from structured programming
rules”. In: Australasian Conference on Information Security and Pri-
vacy. Springer. 2001, pp. 145–158 (cit. on p. 32).

[Gro89] D. Grover. “Program identification”. In: The protection of computer
software—its technology and applications. Cambridge University Press.
1989, pp. 119–150 (cit. on p. 83).

[Gui+14] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y.
Makris. “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain”. In: Proceedings of the IEEE 102.8 (2014),
pp. 1207–1228 (cit. on p. 16).

[Guo+15] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra. “Pre-
silicon security verification and validation: A formal perspective”. In:
Proceedings of the 52nd Annual Design Automation Conference. 2015,
pp. 1–6 (cit. on p. 118).

http://ghdl.free.fr/

BIBLIOGRAPHY 147

[Har+08] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. “CH-
Stone: A Benchmark Program Suite for Practical C-based High-Level
Synthesis”. In: 2008 IEEE International Symposium on Circuits and
Systems. IEEE. 2008, pp. 1192–1195 (cit. on p. 65).

[Has] Hastlayer. https://hastlayer.com/. Accessed: 2021-01-13 (cit. on
p. 40).

[HBF08] D. E. Holcomb, W. P. Burleson, and K. Fu. “Power-up SRAM state
as an identifying fingerprint and source of true random numbers”. In:
IEEE Transactions on Computers 58.9 (2008), pp. 1198–1210 (cit. on
p. 19).

[HD11] J. Hamilton and S. Danicic. “A survey of static software watermark-
ing”. In: 2011 World Congress on Internet Security (WorldCIS-2011).
IEEE. 2011, pp. 100–107 (cit. on p. 80).

[HE12] M. Hataba and A. El-Mahdy. “Cloud protection by obfuscation: Tech-
niques and metrics”. In: Proceedings of the 2012 Seventh International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing.
2012, pp. 369–372 (cit. on p. 31).

[Her+14] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas. “Physical un-
clonable functions and applications: A tutorial”. In: Proceedings of
the IEEE 102.8 (2014), pp. 1126–1141 (cit. on p. 20).

[Hos+18] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie, S.
Hyrynsalmi, and V. Leppänen. “Diversification and obfuscation tech-
niques for software security: A systematic literature review”. In: In-
formation and Software Technology 104 (2018), pp. 72–93 (cit. on
pp. 33, 36).

[Hua+13] Q. Huang, R. Lian, A. Canis, J. Choi, R. Xi, S. Brown, and J. An-
derson. “The effect of compiler optimizations on high-level synthesis
for FPGAs”. In: 2013 IEEE 21st Annual International Symposium
on Field-Programmable Custom Computing Machines. IEEE. 2013,
pp. 89–96 (cit. on p. 78).

[IK18] S. A. Islam and S. Katkoori. “High-level synthesis of key based ob-
fuscated RTL datapaths”. In: 2018 19th International Symposium on
Quality Electronic Design (ISQED). IEEE. 2018, pp. 407–412 (cit. on
pp. 27, 44).

[Ird] Irdeto. Cloakware. https://irdeto.com/cloakware- software-
protection/. Accessed: 2021-01-22 (cit. on p. 35).

https://hastlayer.com/
https://irdeto.com/cloakware-software-protection/
https://irdeto.com/cloakware-software-protection/

148 BIBLIOGRAPHY

[Jai+03] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu. “Zero overhead water-
marking technique for FPGA designs”. In: Proceedings of the 13th
ACM Great Lakes symposium on VLSI. 2003, pp. 147–152 (cit. on
p. 20).

[JM07] R. W. Jarvis and M. G. Mcintyre. Split manufacturing method for
advanced semiconductor circuits. US Patent 7,195,931. 2007 (cit. on
p. 18).

[Jun+15] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. “Obfuscator-
LLVM–software protection for the masses”. In: 2015 IEEE/ACM 1st
International Workshop on Software Protection. IEEE. 2015, pp. 3–9
(cit. on p. 35).

[Kah+98] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe. “Watermarking
techniques for intellectual property protection”. In: Proceedings of
the 35th annual Design Automation Conference. 1998, pp. 776–781
(cit. on p. 20).

[KHP05] F. Koushanfar, I. Hong, and M. Potkonjak. “Behavioral synthesis
techniques for intellectual property protection”. In: ACM Transac-
tions on Design Automation of Electronic Systems (TODAES) 10.3
(2005), pp. 523–545 (cit. on pp. 26, 79).

[KM14] A. Kulkarni and R. Metta. “A new code obfuscation scheme for soft-
ware protection”. In: 2014 IEEE 8th International Symposium on
Service Oriented System Engineering. IEEE. 2014, pp. 409–414 (cit.
on p. 32).

[Kna96] D. W. Knapp. Behavioral synthesis: digital system design using the
synopsys behavioral compiler. Prentice-Hall, Inc., 1996 (cit. on p. 12).

[KP13] N. Kae-Nune and S. Pesseguier. “Qualification and testing process
to implement anti-counterfeiting technologies into IC packages”. In:
2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2013, pp. 1131–1136 (cit. on pp. 3, 16).

[Le] J.-C. Le Lann. Crokus. https://github.com/JC-LL/crokus. Ac-
cessed: 2021-02-20 (cit. on p. 98).

[Li+19a] H. Li, S. Patnaik, A. Sengupta, H. Yang, J. Knechtel, B. Yu, E. F.
Young, and O. Sinanoglu. “Attacking split manufacturing from a deep
learning perspective”. In: 2019 56th ACM/IEEE Design Automation
Conference (DAC). IEEE. 2019, pp. 1–6 (cit. on p. 19).

https://github.com/JC-LL/crokus

BIBLIOGRAPHY 149

[Li+19b] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. “Graph matching
networks for learning the similarity of graph structured objects”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 3835–
3845 (cit. on p. 137).

[Lim+05] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S.
Devadas. “Extracting secret keys from integrated circuits”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 13.10
(2005), pp. 1200–1205 (cit. on p. 19).

[LK09] T. László and Á. Kiss. “Obfuscating C++ Programs via Control Flow
Flattening”. In: Annales Universitatis Scientarum Budapestinensis de
Rolando Eötvös Nominatae, Sectio Computatorica 30 (2009), pp. 3–
19 (cit. on pp. 53, 70).

[LLZ16] H. Li, Q. Liu, and J. Zhang. “A survey of hardware Trojan threat
and defense”. In: Integration 55 (2016), pp. 426–437 (cit. on p. 118).

[LW14] B. Liu and B. Wang. “Embedded reconfigurable logic for ASIC design
obfuscation against supply chain attacks”. In: 2014 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2014,
pp. 1–6 (cit. on p. 120).

[MC03] G. Myles and C. Collberg. “Software watermarking through register
allocation: Implementation, analysis, and attacks”. In: International
Conference on Information Security and Cryptology. Springer. 2003,
pp. 274–293 (cit. on p. 80).

[MC04] G. Myles and C. Collberg. “Detecting software theft via whole pro-
gram path birthmarks”. In: International Conference on Information
Security. Springer. 2004, pp. 404–415 (cit. on p. 83).

[Mey+11] U. Meyer-Bäse, E. Castillo, G. Botella, L. Parrilla, and A. Garcia. “In-
tellectual property protection (IPP) using obfuscation in C, VHDL,
and verilog coding”. In: Independent Component Analyses, Wavelets,
Neural Networks, Biosystems, and Nanoengineering IX. Vol. 8058.
International Society for Optics and Photonics. 2011, 80581F (cit. on
p. 26).

[MV10] R. Maes and I. Verbauwhede. “Physically unclonable functions: A
study on the state of the art and future research directions”. In: To-
wards Hardware-Intrinsic Security. Springer, 2010, pp. 3–37 (cit. on
p. 19).

150 BIBLIOGRAPHY

[Nar+01] N. Narayan, R. D. Newbould, J. D. Carothers, J. J. Rodriguez, and
W. T. Holman. “IP protection for VLSI designs via watermarking of
routes”. In: Proceedings 14th Annual IEEE International ASIC/SOC
Conference (IEEE Cat. No. 01TH8558). IEEE. 2001, pp. 406–410
(cit. on p. 20).

[Nar+12] S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, and S. Bhunia.
“Improving IC security against Trojan attacks through integration of
security monitors”. In: IEEE Design & Test of Computers 29.5 (2012),
pp. 37–46 (cit. on p. 120).

[Oli01] A. L. Oliveira. “Techniques for the creation of digital watermarks
in sequential circuit designs”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 20.9 (2001), pp. 1101–
1117 (cit. on p. 25).

[opt] opt. LLVM optimizer. https://llvm.org/docs/CommandGuide/
opt.html. Accessed: 2021-02-20 (cit. on p. 129).

[PBR16] I. Polian, G. T. Becker, and F. Regazzoni. “Trojans in early design
steps—an emerging threat”. In: (2016) (cit. on pp. 115, 119).

[PF13] C. Pilato and F. Ferrandi. “Bambu: A modular framework for the
high level synthesis of memory-intensive applications”. In: 2013 23rd
International Conference on Field programmable Logic and Applica-
tions. IEEE. 2013, pp. 1–4 (cit. on p. 116).

[Pil+18a] C. Pilato, K. Basu, F. Regazzoni, and R. Karri. “Black-Hat High-
Level Synthesis: Myth or Reality?” In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 27.4 (2018), pp. 913–926 (cit.
on pp. 3, 111, 115, 116, 132).

[Pil+18b] C. Pilato, F. Regazzoni, R. Karri, and S. Garg. “TAO: techniques for
algorithm-level obfuscation during high-level synthesis”. In: Proceed-
ings of the 55th Annual Design Automation Conference. 2018, pp. 1–6
(cit. on pp. 27, 44).

[Pil+19] C. Pilato, K. Basu, M. Shayan, F. Regazzoni, and R. Karri. “High-
Level Synthesis of Benevolent Trojans”. In: 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2019,
pp. 1124–1129 (cit. on pp. 77, 79).

[PMP17] L. Piccolboni, A. Menon, and G. Pravadelli. “Efficient control-flow
subgraph matching for detecting hardware trojans in RTL models”.
In: ACM Transactions on Embedded Computing Systems (TECS)
16.5s (2017), pp. 1–19 (cit. on p. 119).

https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/opt.html

BIBLIOGRAPHY 151

[PT06] M. Pecht and S. Tiku. “Bogus: electronic manufacturing and con-
sumers confront a rising tide of counterfeit electronics”. In: IEEE
spectrum 43.5 (2006), pp. 37–46 (cit. on pp. 3, 16).

[QP98] G. Qu and M. Potkonjak. “Analysis of watermarking techniques for
graph coloring problem”. In: Proceedings of the 1998 IEEE/ACM in-
ternational conference on Computer-aided design. 1998, pp. 190–193
(cit. on p. 80).

[Qua] Quarkslab. Quarks AppShield. https://quarkslab.com/quarks-
appshield/. Accessed: 2021-01-22 (cit. on p. 36).

[R+78] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. “On data banks and
privacy homomorphisms”. In: Foundations of secure computation 4.11
(1978), pp. 169–180 (cit. on p. 43).

[Raj+11] J. Rajendran, V. Jyothi, O. Sinanoglu, and R. Karri. “Design and
analysis of ring oscillator based Design-for-Trust technique”. In: 29th
VLSI Test Symposium. IEEE. 2011, pp. 105–110 (cit. on p. 120).

[Raj+12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. “Security anal-
ysis of logic obfuscation”. In: Proceedings of the 49th Annual Design
Automation Conference. 2012, pp. 83–89 (cit. on p. 22).

[Raj+13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. “Security analysis
of integrated circuit camouflaging”. In: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. 2013,
pp. 709–720 (cit. on p. 21).

[Raj+16] J. Rajendran, A. M. Dhandayuthapany, V. Vedula, and R. Karri.
“Formal security verification of third party intellectual property cores
for information leakage”. In: 2016 29th International conference on
VLSI design and 2016 15th international conference on embedded sys-
tems (VLSID). IEEE. 2016, pp. 547–552 (cit. on p. 118).

[Ras+99] A. Rashid, J. Asher, W. H. Mangione-Smith, and M. Potkonjak. “Hi-
erarchical watermarking for protection of DSP filter cores”. In: Pro-
ceedings of the IEEE 1999 Custom Integrated Circuits Conference
(Cat. No. 99CH36327). IEEE. 1999, pp. 39–42 (cit. on p. 27).

[Rea+14] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks. “Mach-
Suite: Benchmarks for Accelerator Design and Customized Architec-
tures”. In: 2014 IEEE International Symposium on Workload Char-
acterization (IISWC). IEEE. 2014, pp. 110–119 (cit. on p. 65).

[RKM08] J. A. Roy, F. Koushanfar, and I. L. Markov. “EPIC: Ending Piracy
of Integrated Circuits”. In: 2008 Design, Automation and Test in
Europe. IEEE. 2008, pp. 1069–1074 (cit. on pp. 16, 22).

https://quarkslab.com/quarks-appshield/
https://quarkslab.com/quarks-appshield/

152 BIBLIOGRAPHY

[RSK13] J. Rajendran, O. Sinanoglu, and R. Karri. “Is split manufacturing
secure?” In: 2013 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE. 2013, pp. 1259–1264 (cit. on pp. 18,
19).

[RVK15] J. Rajendran, V. Vedula, and R. Karri. “Detecting malicious modi-
fications of data in third-party intellectual property cores”. In: 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE.
2015, pp. 1–6 (cit. on p. 118).

[Rya13] M. D. Ryan. “Cloud computing security: The scientific challenge,
and a survey of solutions”. In: Journal of Systems and Software 86.9
(2013), pp. 2263–2268 (cit. on p. 42).

[SB16] A. Sengupta and S. Bhadauria. “Exploring low cost optimal water-
mark for reusable IP cores during high level synthesis”. In: IEEE
Access 4 (2016), pp. 2198–2215 (cit. on p. 79).

[SBM16] A. Sengupta, S. Bhadauria, and S. P. Mohanty. “Embedding low cost
optimal watermark during high level synthesis for reusable IP core
protection”. In: 2016 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE. 2016, pp. 974–977 (cit. on p. 26).

[SD07] G. E. Suh and S. Devadas. “Physical unclonable functions for device
authentication and secret key generation”. In: 2007 44th ACM/IEEE
Design Automation Conference. IEEE. 2007, pp. 9–14 (cit. on p. 19).

[SJX09] Z. Sha, H. Jiang, and A. Xuan. “Software watermarking algorithm
by coefficients of equation”. In: 2009 Third International Conference
on Genetic and Evolutionary Computing. IEEE. 2009, pp. 410–413
(cit. on p. 79).

[SL12] P. Sivadasan and P. S. Lal. “Securing SQLJ source codes from busi-
ness logic disclosure by data hiding obfuscation”. In: arXiv preprint
arXiv:1205.4813 (2012) (cit. on p. 31).

[SR17] A. Sengupta and D. Roy. “Protecting IP core during architectural
synthesis using HLT-based obfuscation”. In: Electronics Letters 53.13
(2017), pp. 849–851 (cit. on p. 27).

[SRM15] P. Subramanyan, S. Ray, and S. Malik. “Evaluating the security of
logic encryption algorithms”. In: 2015 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST). IEEE. 2015,
pp. 137–143 (cit. on p. 22).

BIBLIOGRAPHY 153

[SS08] M. Shirali-Shahreza and S. Shirali-Shahreza. “Software watermark-
ing by equation reordering”. In: 2008 3rd International Conference
on Information and Communication Technologies: From Theory to
Applications. IEEE. 2008, pp. 1–4 (cit. on p. 79).

[ST11] H. Salmani and M. Tehranipoor. “Layout-aware switching activity
localization to enhance hardware Trojan detection”. In: IEEE Trans-
actions on Information Forensics and Security 7.1 (2011), pp. 76–87
(cit. on p. 120).

[ST13] H. Salmani and M. Tehranipoor. “Analyzing circuit vulnerability to
hardware Trojan insertion at the behavioral level”. In: 2013 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS). IEEE. 2013, pp. 190–195 (cit. on
p. 133).

[STP11] H. Salmani, M. Tehranipoor, and J. Plusquellic. “A novel technique
for improving hardware trojan detection and reducing trojan activa-
tion time”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.1 (2011), pp. 112–125 (cit. on p. 120).

[Stu] Stunnix. http://stunnix.com/. Accessed: 2021-01-22 (cit. on p. 35).
[Tak15] S. Takamaeda-Yamazaki. “Pyverilog: A python-based hardware de-

sign processing toolkit for verilog hdl”. In: International Symposium
on Applied Reconfigurable Computing. Springer. 2015, pp. 451–460
(cit. on p. 61).

[Tam+04] H. Tamada, M. Nakamura, A. Monden, and K.-i. Matsumoto. “Design
and evaluation of birthmarks for detecting theft of java programs.”
In: IASTED Conf. on Software Engineering. 2004, pp. 569–574 (cit.
on p. 83).

[Tan+20] B. Tan, R. Karri, N. Limaye, A. Sengupta, O. Sinanoglu, M. M. Rah-
man, S. Bhunia, D. Duvalsaint, A. Rezaei, Y. Shen, et al. “Bench-
marking at the Frontier of Hardware Security: Lessons from Logic
Locking”. In: arXiv preprint arXiv:2006.06806 (2020) (cit. on p. 23).

[TC00] I. Torunoglu and E. Charbon. “Watermarking-based copyright pro-
tection of sequential functions”. In: IEEE Journal of Solid-State Cir-
cuits 35.3 (2000), pp. 434–440 (cit. on p. 24).

[TEE12] M. Tebaa, S. El Hajji, and A. El Ghazi. “Homomorphic encryption
applied to the cloud computing security”. In: Proceedings of the World
Congress on Engineering. Vol. 1. 2012. 2012, pp. 4–6 (cit. on p. 43).

[Tru] Trust-Hub. https://www.trust- hub.org/. Accessed: 2021-02-17
(cit. on pp. 116, 119).

http://stunnix.com/
https://www.trust-hub.org/

154 BIBLIOGRAPHY

[VD01] W. M. Van Fleet and M. R. Dransfield. Method of recovering a gate-
level netlist from a transistor-level. US Patent 6,190,433. 2001 (cit. on
p. 15).

[VS16] N. Veeranna and B. C. Schafer. “Hardware Trojan detection in be-
havioral intellectual properties (IP’s) using property checking tech-
niques”. In: IEEE Transactions on Emerging Topics in Computing
5.4 (2016), pp. 576–585 (cit. on pp. 117, 119).

[VS17a] N. Veeranna and B. C. Schafer. “Efficient behavioral intellectual prop-
erties source code obfuscation for high-level synthesis”. In: 2017 18th
IEEE Latin American Test Symposium (LATS). IEEE. 2017, pp. 1–6
(cit. on pp. 3, 27, 43–45, 78).

[VS17b] N. Veeranna and B. C. Schafer. “S3CBench: Synthesizable security
systemC benchmarks for high-level synthesis”. In: Journal of Hard-
ware and Systems Security 1.2 (2017), pp. 103–113 (cit. on p. 118).

[VVS01] R. Venkatesan, V. Vazirani, and S. Sinha. “A graph theoretic ap-
proach to software watermarking”. In: International Workshop on
Information Hiding. Springer. 2001, pp. 157–168 (cit. on p. 80).

[Wan+00] C. Wang, J. Hill, J. Knight, and J. Davidson. Software Tamper Resis-
tance: Obstructing Static Analysis of Programs. Tech. rep. Technical
Report CS-2000-12, University of Virginia, 12 2000, 2000 (cit. on
p. 52).

[WC12] R. A. Walker and R. Camposano. A survey of high-level synthesis
systems. Vol. 135. Springer Science & Business Media, 2012 (cit. on
p. 12).

[WGK13] C. Wolf, J. Glaser, and J. Kepler. “Yosys - a free Verilog synthesis
suite”. In: Proceedings of the 21st Austrian Workshop on Microelec-
tronics (Austrochip). 2013 (cit. on p. 97).

[XT13] K. Xiao and M. Tehranipoor. “BISA: Built-in self-authentication for
preventing hardware Trojan insertion”. In: 2013 IEEE international
symposium on hardware-oriented security and trust (HOST). IEEE.
2013, pp. 45–50 (cit. on p. 120).

[Xu+17] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu. “On secure and usable
program obfuscation: A survey”. In: arXiv preprint arXiv:1710.01139
(2017) (cit. on pp. 29, 30).

[Xue+20] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill. “Ten years of hardware
Trojans: a survey from the attacker’s perspective”. In: IET Computers
& Digital Techniques 14.6 (2020), pp. 231–246 (cit. on p. 113).

BIBLIOGRAPHY 155

[YDZ17] Q. Yu, J. Dofe, and Z. Zhang. “Exploiting hardware obfuscation meth-
ods to prevent and detect hardware trojans”. In: 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWS-
CAS). IEEE. 2017, pp. 819–822 (cit. on pp. 112, 120).

[YY10] I. You and K. Yim. “Malware obfuscation techniques: A brief survey”.
In: 2010 International conference on broadband, wireless computing,
communication and applications. IEEE. 2010, pp. 297–300 (cit. on
p. 32).

[ZA15] K. Zeng and P. Athanas. “Discovering reusable hardware using birth-
marking techniques”. In: 2015 IEEE International Conference on In-
formation Reuse and Integration. IEEE. 2015, pp. 106–113 (cit. on
pp. 84, 92).

[Zen+10] Y. Zeng, F. Liu, X. Luo, and C. Yang. “Robust software watermark-
ing scheme based on obfuscated interpretation”. In: 2010 Interna-
tional Conference on Multimedia Information Networking and Secu-
rity. IEEE. 2010, pp. 671–675 (cit. on p. 80).

[Zha+19] J. Zhao, T. Liang, S. Sinha, and W. Zhang. “Machine learning based
routing congestion prediction in FPGA high-level synthesis”. In: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2019, pp. 1130–1135 (cit. on p. 137).

[Zho+14] B. Zhou, W. Zhang, S. Thambipillai, and J. Teo. “A low cost accel-
eration method for hardware Trojan detection based on fan-out cone
analysis”. In: Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis. 2014, pp. 1–10
(cit. on p. 120).

[ZT05] W. Zhu and C. Thomborson. “Algorithms to watermark software
through register allocation”. In: International Conference on Digital
Rights Management. Springer. 2005, pp. 180–191 (cit. on p. 80).

LOIRE MATHSTIC

Title: Transient Obfuscation for HLS Security: Application to Cloud Security, Birthmark-
ing and Hardware Trojan Defense

Keywords: High-level Synthesis, Hardware Security, Cloud, Obfuscation, Watermarking,
Hardware Trojans

Abstract: The growing globalization of the
semiconductor supply chain, as well as the in-
creasing complexity and diversity of hardware
design flows, have lead to a surge in secu-
rity threats: risks of intellectual property theft
and reselling, reverse-engineering and mali-
cious code insertion in the form of hardware
Trojans during manufacturing and at design
time have been a growing research focus in
the past years. However, threats during high-
level synthesis (HLS), where an algorithmic
description is transformed into a lower level
hardware implementation, have only recently
been considered, and few solutions have been
given so far.

In this thesis, we focus on how to se-
cure designs during behavioral synthesis us-
ing either a cloud-based or an internal but un-

trusted HLS tool. We introduce a novel design
time protection method called transient obfus-
cation, where the high-level source code is ob-
fuscated using key-based techniques, and de-
obfuscated after HLS at register-transfer level.
This two-step method ensures correct design
functionality and low design overhead. We
propose three ways to integrate transient ob-
fuscation in different security mechanisms.

First, we show how it can be used to pre-
vent intellectual property theft and illegal reuse
in a cloud-based HLS scenario. Then, we
extend this work to watermarking, by exploit-
ing the side-effects of transient obfuscation on
HLS tools to identify stolen designs. Finally,
we show how this method can also be used
against hardware Trojans, both by preventing
insertion and by facilitating detection.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Hardware Design Process
	IC Design Cycle
	HLS
	Hardware IPs
	Hardware Design Threats

	Hardware IP Protection
	Foundry
	Layout Level and Gate-Level Netlist
	RTL
	Behavioral
	Threats and Countermeasures

	Software Obfuscation
	Definition and Principles
	Threat Models and Use cases
	Taxonomy and Common Transformations
	Commercial and Open-source Tools
	Evaluation Metrics

	Conclusion

	Transient Obfuscation against IP Theft during Cloud-based HLS
	Threat Model
	HLS-as-a-Service
	Threat Model

	Related Work and Background
	Cloud Computing Challenge: Ensuring Data Security
	Algorithm Level Obfuscation

	Proposed Approach: Transient Obfuscation
	Transient Obfuscation
	Complete Flow

	Proposed Obfuscation Techniques
	Bogus Code Insertion
	Control Flow Flattening
	Further Hiding of the Control Flow
	Data Obfuscation by Literal Replacement

	De-obfuscation: Making the Process Transient
	Pedagogical Example
	Naive Key Injection
	Targeted RTL Modification
	Full RTL De-obfuscation

	KaOTHIC: Key-based Obfuscating Tool for HLS In the Cloud
	Obfuscation Flow
	Adding Randomness
	Obfuscation Parameters

	Experimental Setup and Results
	Test Flow
	Overhead - Results and Analysis
	Transience and Security: Discussion

	Conclusion

	Transient Obfuscation for BIP Birthmarking
	Threat Model and Background
	Threat Model
	Watermarking
	Effects of Code Transformations on High-Level Synthesis

	Related Work
	BIP Watermarking Techniques
	Software Watermarking Techniques

	Proposed Approach
	Complete Flow and Notations
	Watermark Insertion
	Watermark Verification: Birthmarking Concepts

	Metrics for Watermark Verification
	Scheduling
	Dataflow

	Implementation and Experimental Setup
	Experimental Setup and Dataset
	Scheduling
	Dataflow
	Crokus

	Results and Analysis
	Scheduling
	Dataflow
	Benchmark Results

	Conclusion

	Transient Obfuscation against Hardware Trojan Insertion
	Threat Model and Definitions
	Hardware Trojans
	Threat Model
	Examples of HTs in BIPs

	Hardware Trojan Countermeasures: Related Work
	Detection and Run-time Monitoring
	Design for Security

	Proposed Countermeasures for Hardware Trojan Insertion during HLS
	Payload: Removal by De-obfuscation
	Combinational Trigger: Detection during De-obfuscation

	Experimental Setup and Preliminary Results
	"Collatz" Hardware Trojan
	HT Removal
	Discussion

	Conclusion

	Conclusion
	List of published contributions
	Bibliography

