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RÉSUMÉ

Les travaux de recherche présentés dans cette thèse ont permis de développer une méthodolo-
gie pour étudier de manière numériquement efficace les interactions en contact de disques
aubagés désaccordés présentant un comportement géométriquement non linéaire. Cette
méthodologie basée sur des techniques de réduction de modèles permet de contourner la
difficulté liée au coût numérique exorbitant des simulations numériques non linéaires pour
décrire précisément la dynamique des structures industrielles.

Dans un premier temps, une méthodologie est développée pour étudier les interactions en
contact d’une aube unique en rotation avec non-linéarités géométriques. La procédure de
réduction est basée sur le concept de dérivées modales qui est ici adapté pour permettre de
conserver des degrés de liberté physiques dans l’espace réduit pour l’implémentation du con-
tact. Un critère de sélection des dérivées modales est proposé pour limiter la taille du modèle
réduit. La projection dans l’espace réduit des forces non linéaires dues aux grands déplace-
ments est évaluée avec la stiffness evaluation procedure. Le contact est traité numériquement
avec multiplicateurs de Lagrange. La méthodologie est ensuite généralisée au cas des roues
aubagées complètes en utilisant des méthodes de synthèse modale avec interfaces fixes. La
méthodologie finale est compatible avec l’introduction de désaccordage dans le modèle réduit.

Dans ce travail, la méthodologie est appliquée au cas du rotor 37 de la NASA. Il s’agit d’un
modèle ouvert d’un étage de compresseur permettant la reproductibilité des résultats et leur
comparaison. Les résultats obtenus et, lorsque c’est possible, leur comparaison avec les résul-
tats obtenus avec le modèle éléments finis non réduit, donnent confiance dans la méthodologie.
Des analyses plus poussées relatives à la consommation du jeu et à l’utilisation d’un algo-
rithme de continuation séquentielle pour déterminer les courbes de réponses en fréquence
permettent de comprendre et caractériser l’influence des non-linéarités géométriques sur la
dynamique en contact de la structure.

En plus de fournir une description précise de la dynamique de la structure dans le temps, la
méthodologie développée permet aussi d’extraire des quantités d’intérêt utiles aux chercheurs
et motoristes comme les cartes d’interactions au contact, les cartes d’usure, les vitesses de
rotation critiques et les champs de contraintes dans la structure. La stratégie développée
est dite non intrusive et peut donc être combinée à n’importe quel logiciel éléments finis
commercial.



v

ABSTRACT

This thesis introduces a new methodology to study the dynamics of mistuned bladed disks
with geometric and contact nonlinearities in a numerically efficient way. The methodology is
based on a reduction procedure. This allows to overcome the difficulties related to the high
computational costs of nonlinear dynamic simulations performed on industrial finite element
models.

First, a methodology is developed to study the contact interactions of a single rotating
blade with geometric nonlinearities. The reduction method is based on the modal derivative
approach, which is adapted to retain physical degrees-of-freedom in the reduced space for the
implementation of contact. In order to limit the size of the reduced system, a modal derivative
selection criterion is proposed. The nonlinear internal forces due to large displacements
are evaluated in the reduced space using the stiffness evaluation procedure. Contact is
numerically handled using Lagrange multipliers. The methodology is then generalized to
full bladed disk structures using component mode synthesis techniques with fixed interfaces.
Mistuning can also be included in the reduced space.

Through this work, the numerical strategy is applied to an open industrial compressor bladed
disk model based on the NASA rotor 37 in order to promote the reproducibility of results.
The obtained results and, when applicable, their comparison with full-order model results
give confidence in the methodology. In-depth analyses, including clearance consumption
computations and frequency analyses with a continuation procedure, allow to understand and
characterize the combined influence of contact and geometric nonlinearities on the structure’s
dynamics.

Besides providing an accurate description of the time dynamics of the structure, the new
methodology also allows to extract quantities of interest that are relevant for both researchers
and industrial designers such as contact interaction maps, contact wear maps, critical angular
speeds or stress fields in the structure. This non-intrusive strategy can be used in combination
with any commercial finite element software.
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q Vector of generalized coordinates in reduced space



xx

r Residue
s Displacement vector in Rm

t Vector of surface tractions in Rm

tc Vector of contact forces in Rm

tc,T Vector of tangential contact forces in Rm

u Relative displacement vector around prestressed equilibrium
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CHAPTER 1 INTRODUCTION

General context

In the general movement towards greener aviation and in the framework of the new envi-
ronmental regulations, engine manufacturers aim at drastically reducing their environmental
footprint [4,88]. New engine architectures are therefore being considered to improve the per-
formance of turbojet engines and cut their fuel consumption. Economic reasons also motivate
these new developments. The design of the rotating bladed disks considered in this thesis is
expected to greatly contribute to these general objectives.

Energy efficiency can be improved by controlling the clearance between the blade-tips and the
stationary surrounding casing in order to reduce aerodynamic leaks. This strategy inherently
leads to more frequent occurrences of direct contacts between the rotating blades and the
casing, even in nominal operating conditions, that may induce nonlinear vibrations [165,180,
189]. Blades are also designed increasingly lighter and more flexible to be in line with the tight
weight constraints [79, 178, 223]. Large displacements and large deformations, leading to a
geometrically nonlinear behavior of the structure, can therefore no longer be neglected [244].

Because of the high costs associated to full-scale experimental setups, it is particularly impor-
tant that accurate predictive numerical strategies are available to engine manufacturers [7].
However, as the use of thinner blades with reduced clearance with respect to the surrounding
casing leads to large amplitude vibrations and contact events, classical linear models may
yield inaccurate results. While geometric nonlinearities have been the subject of research
works focusing on fan stages, contact induced vibrations have been mostly investigated within
low- and high-pressure compressor stages. The combined effects of these two kinds of non-
linearities are therefore not well characterized. New numerical tools allowing to account for
these nonlinear structural considerations from the beginning of the design process are thus
needed.

Besides these nonlinear considerations, it should be noted that in practice, real bladed disks
differ from their nominal cyclically periodic designs [45]. Manufacturing or wear can cause
small random blade-to-blade variations. The representation of this so-called mistuning in
numerical models also requires the development of dedicated methods.

Turbomachines bladed structures are generally modeled by 3D finite element models with
very accurate geometric details and material distribution. Current industrial numerical mod-
els of bladed structures are therefore characterized by a huge number of degrees-of-freedom
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and their direct use in dynamic analysis requires high computational capabilities. This is
particularly true in a nonlinear context and for mistuned structures. This is the reason
why many recent works are devoted to the construction of nonlinear reduced-order models
that can be used to reduce the computational burden in a design process, but also as fast
executing replacements of the full-order model or to extract relevant information hidden in
the full-order model. Different categories of reduction methods can be identified, from goal-
oriented reduction approaches [37], where the entire finite element model is directly reduced
to a cost-function that does not contain any information about the physical properties of the
model, to physical reduction methods. Among the existing physical reduction methods, the
projection on a reduced space is widely used in the literature because of its ease of imple-
mentation, but also because it preserves the general expression of the equation of motion so
that the same time integration algorithms as those used for the full-order model can be used.

In a linear context, the dynamics of cyclically symmetric structures is generally studied in
the harmonic space where the dynamic problem can be written as a set of sub-problems
for each harmonic using Fourier formalism [30, 166, 222]. This cyclic symmetry formulation
can be used in classical linear reduced-order modeling techniques (such as Craig-Bampton or
Craig-Martinez reduction methods [53,55,192]) to efficiently compute the reduction basis [15].

The linear reduced-order modeling techniques that allow to keep physical degrees-of-freedom
in the reduced space can be combined with penalty methods [201] or Lagrange multiplier
approaches [42] to efficiently account for contact nonlinearities. These reduction methods
have proven to provide accurate prediction of contact dynamics, and in particular of rubbing
events between blades and casings [21].

These linear reduction techniques may however be ill-suited in the case of severe localized
nonlinearities or in the case of distributed nonlinearities (as geometric nonlinearities). In-
deed, even if some high-frequency linear modes could capture the nonlinear behavior of the
structure, these modes are truncated in the reduction procedure. Including these modes in
the reduction basis would lead to reduction bases of large size and the benefit of the reduction
procedure would be lost [149,229].

In the case of strong contact nonlinearities, the nonlinear nature of the system may be
included in the reduction basis, for instance by the use of nonlinear complex modes [103,104].

The model order reduction of mechanical systems undergoing large displacements started to
gain the attention of researchers in the last few years. The different projective reduction
methods differ by the choice of the reduction basis and by the way the nonlinear internal
forces are evaluated in the reduced space. Different projection bases have been investigated
in a nonlinear context: linear bases [13,66], bases obtained from Proper Orthogonal Decom-



3

position (POD) [115, 178], linear bases augmented with modal derivatives [109, 235, 242] or
with dual modes [149, 171], bases composed of Ritz vectors [108] and Krylov bases [12] for
instance. The reduced nonlinear forces can be identified with intrusive and non-intrusive
methods. In intrusive methods, reduced nonlinear forces are obtained by direct projection
of the full-order nonlinear forces [40, 46, 220]. These methods are based on the relationship
between the finite element tensors and their modal counterparts. However, the expression
of the full-order nonlinear forces cannot always be extracted from commercial finite element
software packages. Non-intrusive methods compatible with standard finite element software
packages have therefore been derived. In such methods, the reduced nonlinear forces are ex-
pressed as a polynomial form of the reduced coordinates whose coefficients are identified with
nonlinear static evaluations with imposed displacements (enforced displacement method or
STiffness Evaluation Procedure (STEP) [155]) or imposed forces (applied force method [146]).
There is a need to assess the applicability of these methods to the analysis of the combined
effect of geometric and contact nonlinearities on industrial structures.

Objectives

In this context, the objective of this research work is to develop a methodology to study
in a numerically efficient way the contact interactions of bladed disks with the surrounding
casing accounting for their geometrically nonlinear behavior. The methodology is based on
reduction techniques to allow the efficient analysis of industrial structures. For more realism,
the methodology needs to be compatible with the introduction of mistuning in the reduced
space. In this work, computations are carried out in the time domain in order to capture
transient phenomena, which are key for the rise of some critical interactions [152]. We show
that the methodology can be easily extended to the frequency domain.

From the industrial point of view, the objective of this work is also to develop practical
and easy to use tools for the design of turbomachines. Nowadays, the preliminary design of
turbomachines in industry is mainly driven by aerodynamic considerations and the absence
of contact occurrence is only checked at the end of the process. The new tools in development
will allow to provide guidelines to engineers to account for nonlinear structural aspects in
an accurate way from the beginning of the design. This will allow to accelerate the design
phase, to design safer engines, but also to avoid oversizing of aircraft engines.
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Outline

In chapter 2, the relevant background about the dynamics of tuned and mistuned bladed
disks is summarized. The sources of nonlinearities are also detailed, together with the mod-
eling of the subsequent nonlinear behavior in structural dynamics, and in particular in rotor
dynamics.

Chapter 3 is dedicated to the numerical simulation of multi-nonlinear dynamic systems. It
highlights the existence of two paradigms for solving the equation of motion: time domain
methods and frequency domain methods.

In chapter 4, various existing reduced-order modeling techniques developed for the efficient
analysis of structures with geometric nonlinearities are presented. Some personal adjustments
of these methods to better fit the dynamics of bladed disks are also detailed.

In chapter 5, three different reduction methods are selected as interesting candidates. They
are applied to an industrial test case subjected to an equivalent aerodynamic loading without
contact interactions. The performance and robustness of each method are assessed. These
studies allow to highlight the strengths and weaknesses of the different methods. Parametric
reduced-order models are also built to account for the effect of rotation in a numerically
efficient way.

In chapter 6, the selected reduction methods are used to study contact interactions of a
rotating blade. The most suitable reduction method is selected and used to perform detailed
time and frequency analyses, focusing on rubbing interactions. Two contact scenarios are
investigated, one with direct contact between the blade and the casing, and one with an
abradable coating deposited on the casing.

In chapter 7, the methodology is generalized to study the dynamics of full bladed disks. The
methodology is first validated without contact nonlinearities and then applied to an industrial
bladed disk model with both geometric and contact nonlinearities. The chapter ends with a
discussion regarding the introduction of mistuning in the reduced-order model.
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CHAPTER 2 DYNAMICS OF BLADED DISKS

This first part of the presented research work summarizes the theoretical background about
the dynamics of bladed disks required to understand the studies described in the following
parts. The industrial context of the research is first introduced with some generalities on
turbomachines and on the design of bladed disks, at the heart of the present work. The second
section focuses on the modeling of bladed disks. The subsequent two sections highlight that
the actual behavior of bladed disks departs from the theoretical, linear and symmetrical
one. The fourth section introduces the concept of mistuning, breaking the symmetry of
bladed disks and the fifth section describes the different kinds of nonlinearities arising in
turbomachines and their influence on the dynamics. The chapter ends with a summary of
the main assumptions made in this work.

2.1 Industrial context

2.1.1 Generalities on turbomachines

The term turbomachine refers to any device that extracts energy from or imparts energy to a
moving stream of fluid [183]. More precisely, a turbomachine is a power- or heat-generating
machine that employs the dynamic action of a rotating element called the rotor in order to
change the energy content of the fluid continuously flowing through the machine. Applications
can be found in various fields of engineering such as power generation or transport.

Turbomachines are used for the generation of power in different ways [36]. Wind turbines have
the ability to efficiently use the wind to generate electricity. Hydroelectric turbomachines
use the potential energy stored in water to turn a generator and produce electricity. In
steam turbines, high pressure steam is forced over blades attached to a shaft which turns a
generator. Gas turbines work like steam turbines.; air is forced in through a series of blades
that turn a shaft. Fuel is then mixed with the air and the power is increased by a combustion
reaction. Steam and gas turbines are also present in marine applications [111].

Most aeronautical engines (as turbojet, turboprop, or turboshaft engines) are also turboma-
chines [181]. These turbomachines are composed of one or several compressor and turbine
stages that allow for the compression and expansion of the gas flux passing through the
engine (Fig. 2.1). Fuel is injected between the last compression stage and the first turbine
stage. Each compressor and turbine stage is made up of a fixed part linked to the casing and
a rotating part linked to the shaft. These parts carry blades, whose aerodynamic profile is
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defined in the design phase of the engine in order to optimize the compression and expansion
of the gas. These turbomachine components comprising both rotor disk and blades are called
bladed disks.

Figure 2.1 – Cut view of an aircraft engine [20].

2.1.2 Bladed disks design

Traditionally, bladed disks are manufactured as bladed-disk assemblies [203]. The blades are
individually attached to a bare disk. Weight-intensive blade root constructions are therefore
necessary such as screws, bolts or dovetail attachments. These attachments are prone to
crack initiation and subsequent propagation.

A blade integrated disk (blisk) consists of a single part, instead of an assembly of a disk
and individual, removable blades [27]. Blisks may be additively manufactured, 3D-printed,
integrally cast, machined from a solid piece of material or made by friction welding of the in-
dividual blades to the rotor disk. Blisk technology is therefore a lightweight solution. Because
of the lack of friction between blades’ roots and the disk, blisks are characterized by small me-
chanical damping compared to bladed disk assemblies. A stress-optimized design is achieved
which allows to reach higher rotation speeds and thus higher compression ratios compared to
conventional disks with separate blades. This leads to more powerful engines [208,209,233].
However, any damage to the blades requires the full removal of the engine. The mainte-
nance of such elements cannot be done on the flight line and must often be performed at a
specialized facility. Such maintenance is often more costly than for traditional bladed disks.

While in service, bladed disks are subjected to various static and dynamic loads that can be
detrimental for the engine integrity and cause accelerated fatigue and wear if they are not
controlled.
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On the one hand, bladed disks are subjected to excitations from mechanical sources that
cause vibrations of the structure. In the case of uneven distribution of the mass around the
axis of rotation, the rotating bladed disks can be excited by imbalance forces whose pulsation
corresponds to the rotation speed. In accidental configurations, such as a blade-loss event,
bladed disks can also be subjected to shock excitations. Moreover, bladed disks can undergo
contact events, as described in section 2.4.3.

On the other hand, bladed disks are also subjected to aeroelastic excitations. Fixed and
rotating turbomachines stages are subjected to the pressure fluctuations caused by the up-
stream and downstream stages. These excitations take the form of engine order excitations,
whose frequencies are integer multiples of the angular speed, directly related to the number
of obstacles in the flow. Moreover, the acceleration of the fluid from subsonic to transonic
regimes can result in sonic shocks that induce unsteady loadings on the blades. Due to the
high Reynolds numbers involved, complex aerodynamic computations are required to accu-
rately capture turbulent effects. Vibration energy of a particular blade can also be transferred
to other blades by means of pressure waves in the surrounding flow field. This phenomenon
is typically referred to as aerodynamic coupling [26,85,107,118,162].

From a structural point of view, the mechanical behavior of blades is of the utmost interest
for designers. Blade damage, or worse, blade loss, is very detrimental for the engine. It does
not only lead to a decrease in the efficiency of the engine, but also to an unbalance of the
rotating system that may cause significant stresses transmitted to the shaft bearings. High-
cycle fatigue (HCF) failures of blades is one of the major causes of blade loss. The vibratory
behavior of blades is therefore a major concern when dealing with turbomachines design.
HCF is a major cost, safety and reliability issue for gas-turbine engines [43, 45, 94]. Because
of the high costs associated to full-scale experimental setups, it is particularly important for
manufacturers to rely on accurate numerical models. Comprehensive modeling, analysis and
understanding of bladed disks vibration are critical to reduce the occurrence of HCF and
improve the performance and reliability of turbine engines.

The lifespan of industrial bladed disks can be very sensitive to mistuning effects (more details
in section 2.3) combined to the presence of nonlinearities (more details in section 2.4). For a
long time, numerical simulations of bladed-disk assemblies or blisks have been carried out with
very simple numerical models. Security factors were added to take into account the unknown
impact of mistuning and nonlinearities. This led to oversized engines and required costly
experimental certification [32]. Nowadays, the objective is to introduce all these complex
phenomena in a systematic and accurate way in numerical models.
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2.2 Modeling of bladed disks

2.2.1 Finite element modeling

Industrial turbomachines bladed disks are generally described by 3D finite element mod-
els that typically comprise several thousands of elements, such as tetrahedral volume el-
ements [24, 177] or hexahedral quadratic elements [13]. Such 3D models are required to
have an accurate description of the structure dynamics but require high computational ca-
pabilities [72]. These models are also called full-order models (FOMs) in contrast to the
reduced-order models (ROMs) introduced in chapter 4 that allow to lower the computation
time by reducing the number of parameters used to describe the dynamics.

The equation of motion of a rotating structure spatially discretized according to its finite
element model is mathematically established in Appendix A. The discretized equation of
motion governing the relative displacement u around an initial prestressed static equilibrium
state us induced by the rotation of the structure (and function of the constant rotation speed
Ω) writes

Mü+[D + G(Ω)] u̇+
[
K(e) + K(c)(Ω) + K(g)(us)

]
u+gnl(u, us) = fe(t)+fc(u + us, u̇). (2.1)

This equation balances the inertial term (M is the mass matrix with symmetry and positive
definiteness properties.), the linear damping term (D is the viscous damping matrix with
symmetry and positive semi-definiteness properties.), the gyroscopic coupling term (G(Ω) is
the gyroscopic coupling matrix with antisymmetry property.), the elastic stiffness term (K(e)

is the elastic stiffness matrix with symmetry and positive definiteness properties.), the cen-
trifugal stiffness term (K(c)(Ω) is the centrifugal stiffness matrix with symmetry and negative
definiteness properties.), the geometric stiffness term (K(g)(us) is the geometric prestressed
stiffness matrix with symmetry and positive definiteness properties.), the nonlinear inter-
nal forces gnl(u, us), the external force vector fe(t) and the nonlinear forces due to contact
fc(u + us, u̇).

The viscous damping matrix D accounts for viscous damping effects. It is generally built
based on a damping model, such as the Rayleigh structural damping model [73]. In such a
model, the damping matrix is built as a linear combination of the mass and linear elastic
stiffness matrices

D = αM + βK(e), (2.2)

where the parameters α and β are parameters that need to be identified, for instance based
on experimental modal analysis [2].
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The gyroscopic coupling and the centrifugal stiffness terms allow to account for the rotation
of the structure.

The geometric stiffness term is based on the constraints acting on the structure. Commercial
finite element software can be used to compute the prestressed state of the blades and disk at
a given rotation speed through a linear static analysis [177] or a nonlinear static analysis [104]
in order to build the geometric stiffness matrix K(g)(us).

For the sake of conciseness, the equation of motion (2.1) can be rewritten as

Mü + C(Ω)u̇ + K(Ω, us)u + gnl(u, us) = fe(t) + fc(u + us, u̇), (2.3)

where the equivalent damping and stiffness matrices are respectively defined as

C(Ω) = D + G(Ω) and K(Ω, us) = K(e) + K(c)(Ω) + K(g)(us). (2.4)

The classical approach to study the dynamics of rotating structures considers that the vi-
brations u around the prestressed equilibrium state us remain small and that the geometric
nonlinearities are only induced by the effect of rotation [87]. This is equivalent to neglecting
the nonlinear term gnl(u, us) in (2.1) and (2.3). The nonlinear forces due to contact are also
generally not considered in a first step. The effects of these nonlinearities will be discussed
in section 2.4.

2.2.2 Cyclic symmetry formulation

In the absence of mistuning, turbomachine bladed disks are cyclically periodic structures,
i.e. structures composed of a finite number of identical sectors coupled together. A tuned
Ns-blade bladed disk is composed of Ns identical sectors defined as the combination of one
blade and the corresponding disk segment (see Fig. 2.2). Such structures are characterized by
specific properties that can be exploited to facilitate and accelerate their dynamic analysis.
They should not be confused with rotationally symmetric structures, such as circular plates
or space antennas.

In a linear context, mode shapes of cyclically periodic structures consist of identical dis-
placements in each sector (same motion amplitude) except for a fixed sector-to-sector phase
difference. The vibratory energy is uniformly distributed over the structure and the mode
shapes are sinusoidal in the circumferential direction. The mode shapes of bladed disks are
therefore characterized by zero displacement lines across the disk called nodal diameters. Be-
cause the number of sectors is a discrete quantity, the maximum number of nodal diameters
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Figure 2.2 – Schematic view of a turbomachine bladed disk with one disk sector (■) and
the corresponding blade (■) highlighted.

of a Ns-bladed disk is ⌊Ns/2⌋ according to the Nyquist-Shannon sampling theory [195]. Most
natural frequencies ωk of tuned bladed disks appear in pairs due to the perfect symmetry of
the problem. For a bladed disk with Ns blades,

ωk = ωNs−k, k = 1, . . . , ⌊Ns/2⌋. (2.5)

Such solutions are called degenerate solutions. The associated mode shapes are characterized
by the same number of nodal diameters but are shifted by a quarter of a period. The solutions
related to ω0 (vibration in phase of all sectors) and to ωNs/2 if Ns is even (vibration in phase
opposition of the sectors) do not appear in pairs and are called nondegenerate solutions [213].

The cyclic symmetry formulation can be used to study the linear dynamics of a cyclically
symmetric structure [215]. As the mode shapes of the structure have identical motion am-
plitudes in each sector and a fixed sector-to-sector phase difference, the modeling of a single
reference sector allows to reconstruct the dynamics of the complete structure [34,35,98,226].
The displacement vector of the structure u can be written as

u =


u1

u2

...
uNs

 , (2.6)

where uk stands for the displacement of the k-th sector. Using the discrete Fourier transform,
the displacement vector uk can be related to the cyclic components ǔj (j = 1, ..., Ns) as

uk = 1
Ns

Ns∑
j=1

ǔje
i

2π(j−1)(k−1)
Ns and, conversely, ǔj =

Ns∑
k=1

uke−i
2π(j−1)(k−1)

Ns . (2.7)
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These equations can be written as the outer products

u = 1
Ns

(F⋆
C ⊗ I)ǔ and ǔ = (FC ⊗ I)u, (2.8)

where ǔ is the vector of cyclic components and the Fourier matrix FC is built from the Fourier
vector

wj =
[
1 e−i

2π(j−1)
Ns · · · e−i

2π(j−1)(Ns−1)
Ns

]
(2.9)

as
FC =

[
wT

1 wT
2 · · · wT

Ns

]T
. (2.10)

The use of the discrete Fourier transform allows to express the equation of motion written in
the physical space (2.3) in the cyclic basis as a set of uncoupled subproblems (one equation
for each harmonic) [105]. The quantities (displacements, forces) in physical coordinates for
the Ns disk sectors are expressed as a linear combination of the corresponding quantities in
cyclic coordinates for the fundamental disk sector [32]. Due to the discrete character of the
problem, this description is fully equivalent.

Anticipating on section 2.4, it should be stressed that this cyclic symmetry formulation is
only applicable for linear structures. Nonlinearities induce a coupling between the harmonic
components so that the subproblems are no longer decoupled in this case.

2.3 Mistuned bladed disks

In practical applications, bladed disks differ from their nominal cyclically periodic designs.
They show small random blade-to-blade variations breaking the symmetry of the structure so
that the cyclic symmetry formulation introduced in section 2.2.2 can no longer be used. Such
variations are referred to as mistuning when the phenomenon is not intentional and to detun-
ing when it is intentional. These variations are usually small (leading to differences on the
blade natural frequencies on the order of a few percent of the nominal values). Symmetrical
physical systems tend however to be extremely sensitive to perturbations of their symmetry,
as observed in atomic physics by Cohen-Tannoudji [51], in solid physics by Anderson [10] and
also in several studies dedicated to the dynamics of periodic and cyclic structures [91–93,179].
Hodges showed that mistuning is a kind of Anderson localization, characterized by increas-
ing mode localization levels in case of increased disorder of substructures [91]. It is therefore
important to be able to account for mistuning in the numerical simulations.
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2.3.1 Causes

Various parameters whose spatial variations have a significant impact on the behavior of
the tuned structure have been identified from lumped parameter models as well as more
realistic bladed disk models. Random blade-to-blade geometry variations can be the direct
consequence of the manufacturing process and the associated tolerances [39]. They can also
appear due to a nonuniform operational wear or an accidental scenario such as a foreign object
impact [70,136]. The presence of irregularities in the material properties is another cause of
mistuning. The strain gage instrumentation of the structure also affects its symmetry [25,
119]. These parameters variations directly affect the mass, the damping and the stiffness of
the structure [44,106,150,175,246].

2.3.2 Consequences

Several surveys on mistuning can be found in the literature [45, 203, 207]. The experimen-
tal, numerical and analytical study of mistuned bladed disks allows to highlight the main
consequences of mistuning on the dynamics of the structure.

Frequency splitting The degenerate natural frequencies of the tuned structure separate
in distinct natural frequencies for the mistuned structure. Zenneck showed both analytically
and experimentally that the degenerate mode pairs split into two distinct modes [248]. Ewins
demonstrated that these two modes can be observed separately if the frequency separation is
greater than the modal damping factor [70]. Mistuning therefore leads to an increase of the
bandwidth of eigenfrequencies so that the bandwidth of possible resonance enlarges, which
has to be taken into account during the design to avoid critical resonances in operation.

Maximum forced response amplitude increase Mistuning causes an increase of the
amplitude of the maximum forced response. This dynamic amplification has been highlighted
with simple numerical models [68,238], advanced industrial models [45,119] and experimen-
tally [69, 70]. The amplification factor is usually defined as the ratio between the largest
amplitude response of the mistuned bladed disk and the largest amplitude response in the
tuned case [161, 238]. Since mistuning is a random phenomenon, the amplification factor
distribution and its maximal value may be estimated using statistical approaches. Increase
of blade amplitudes ranging between 20% and 400% compared to the tuned case have been
observed in the literature [27,69,172,238].
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Mode localization The mode shapes of a mistuned structure present a localization of
the energy on a subset of blades rather than being uniformly distributed throughout the
system. This leads to an amplification of the vibration levels and stresses of these blades
compared to their tuned nominal counterpart and increases the risk of HCF failures [106,114].
Certain blades may exhibit a much shorter lifespan than would be predicted by a fatigue life
assessment based on the nominal assembly.

Aerodynamic stability Mistuning can have beneficial effects in case of aeroelastic insta-
bilities, such as aerodynamic flutter. Mistuning is therefore often intentionally introduced to
stabilize the vibrations in the case of blade flutter [29,112,196].

2.3.3 Modeling

Due to the random nature of mistuning, stochastic analyses are required to quantify its
effect on the bladed disk dynamics. Different approaches can be used such as Monte Carlo
simulations [167], polynomial chaos expansions [67, 200] or asymptotic expansions to derive
analytic solutions [41,148,199,236].

2.4 Nonlinear dynamics

Linearization is an idealization, an exception to the rule: nonlinearity is a frequent occurrence
in real-life applications [116]. In structural dynamics, different mechanisms are responsible
for nonlinear behavior.

While a linear material model relies on the assumption that stresses are proportional to
strains, this is not the case in general. Material nonlinearities thus refer to material laws
such that stresses are not proportional to strains (nonlinear elastic law) or such that there
exist permanent irreversible deformations (elasto-plasticity or elasto-viscoplasticity). Then,
geometric nonlinear behavior occurs when the system experiences large displacements or de-
formations. Material and geometric nonlinearities are two kinds of distributed nonlinearities.
Nonlinearity may also result from nonlinear boundary conditions or nonlinear external body
forces. In particular, contact nonlinearities occur at the interface between components. This
is a kind of localized nonlinearity. Fluid/structure interaction is also an essentially nonlinear
phenomenon.

These different kinds of nonlinearities exist in turbomachines and the analysis of nonlinear
phenomena in aeronautical turbomachines is a research field in expansion, especially in the
current environmental context. This research project mainly focuses on geometric nonlinear-
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ities and contact nonlinearities that are described in more details in the next paragraphs.

The dynamics of nonlinear periodic structures can significantly differ from the dynamics of
linear periodic structures. For instance, nonlinear mode localization may occur in perfectly
cyclic nonlinear systems (tuned bladed disk) if the ratio between the coupling of the sub-
structures and the nonlinearity is small [223]. These nonlinear vibrations can have an effect
on the life duration of the structure, or even be detrimental for the structural integrity of
the engine. It is therefore very important to be able to model and predict with accuracy the
nonlinear behavior of mechanical structures, with the final objective of accounting for these
nonlinear considerations in the design.

2.4.1 Nonlinear modal analysis

In linear systems, the modal parameters (mode shapes, natural frequencies, damping ra-
tios) are computed by solving an eigenvalue problem. In nonlinear systems, the definition
and computation of the modal parameters of the structures differ from the linear context.
In particular, the concept of nonlinear modes has been extensively studied during the last
decades.

Nonlinear modes were first introduced by Rosenberg in the 1960s [185]. He defined a normal
mode as a vibration in unison of the system, i.e. a synchronous motion, and presented a
geometric method to compute these nonlinear modes. The definition was then extended to
a (not necessarily synchronous) periodic motion of the conservative system. This definition
of nonlinear normal modes (NNMs) allows to account for the modal interactions (inter-
nal resonances) which lead to nonsynchronous periodic motions of the structure. Different
numerical algorithms for the computation of NNMs of conservative systems have been devel-
oped [80,101,116,158,170]. Laxalde and Thouverez then introduced the concept of complex
nonlinear modes as an extension of NNMs to nonconservative systems [129]. Complex non-
linear modes of motion are defined as oscillations of the autonomous damped system with
potentially a phase difference between its degrees-of-freedom.

The properties of nonlinear modes differ in several points from the properties of linear normal
modes [116, 224, 225]. First, nonlinear modes have a fundamental limitation compared with
their linear counterpart. Because of the lack of orthogonality relations between nonlinear
modes, the general motion of a nonlinear system cannot be expressed as a superposition of
individual nonlinear modes. This complicates their exploitation as bases for order reduction of
the nonlinear dynamics. It should be noted that nonlinear modal superposition has however
been investigated by several authors based on the single nonlinear mode method [49, 75,
193, 214]. Contrary to linear modes, nonlinear modes can therefore be coupled: they may
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interact through an exchange of energy. These internally resonant nonlinear modes are
generated through bifurcations. Then, nonlinear mode shapes are dependent on the energy
of the system and vary with the amplitude of vibration. Lastly, while linear modes are always
neutrally stable, nonlinear modes can be stable or unstable [157]. Unstable nonlinear modes
are however not physically realizable as small perturbations of the initial conditions that
generate the motion lead to the elimination of the mode oscillation. The stability of periodic
solutions can be determined by the Floquet theory.

2.4.2 Geometric nonlinearities

Geometric nonlinearities are encountered when the structure undergoes large displacements
or large deformations. Such behavior is known as geometrically nonlinear because the geom-
etry of the structure changes significantly. It is particularly pronounced for thin and slender
structures. Note that this geometrically nonlinear behavior can also be exploited for a desired
function. For instance, in the MEMS and NEMS domains, mechanical frequency dividers are
achieved by chaining components working in the nonlinear regime [130,212].

Geometric nonlinearities in turbomachines In the past, the level of vibration of the
blades in nominal conditions remained most of the time sufficiently small to study the defor-
mation and displacement of the structure accurately with linear tools. In classical approxima-
tions, geometric nonlinearities are therefore only considered when computing the prestressed
state induced by rotation and the linear vibrations around this nonlinear prestressed equi-
librium state are studied. Large displacements were only observed in exceptional operating
regimes of bladed disks. For instance, in the case of flutter, very low damping levels and
nearly unstable situations can occur for which the linear theory does not provide accurate
results.

The current environmental concerns lead engine manufacturers to drastically reduce their
impact on the environment [88]. To achieve this, new engine architectures are being consid-
ered to improve the performance of turbojet engines and reduce their fuel consumption. This
is also motivated by economic factors. For turbofan engines, one of the avenues considered to
improve the performance is to increase the dilution ratio of the engine, i.e. the ratio between
the flow of cold air and the flow of hot air through the combustion chamber. In order to
compensate for the increase in size of the propeller, lightweight materials such as carbon
fiber are used to manufacture the blades. The use of lighter and more slender and flexible
blades can lead to large strain/displacements which require to consider nonlinear dynamic
equations involving geometric nonlinearities.
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Modeling It is important to get a good understanding of these phenomena in order to
improve the design of the structures in terms of weight, materials and dimensions. Differ-
ent authors studied the effects of geometric nonlinearities on thin structures such as thin
rectangular plates [28], circular shells [219] and beams [135].

The dynamics of structures with geometric nonlinearities can be described with second order
nonlinear differential equations. If a finite element model of the structure is built, the semi-
discretized equation of motion corresponding to the spatial discretization takes the general
form (2.3), where gnl(u, us) accounts for the geometrically nonlinear behavior. Going back
to the mathematical establishment of the equation of motion in appendix A, this term is
directly linked to the strain energy

V = 1
2

∫
V
σ : ϵ dV, (2.11)

where σ and ϵ respectively stand for the stress and strain tensors. Different measures of
stress and strain, which are equivalent in a linear context, can be defined. In the case of 3D
elements, it can be shown that when defining the stress tensor as the second Piola-Kirchhoff
stress tensor, measuring the strain with the Green-Lagrange tensor (see appendix A) and
considering a hyperelastic material model such as Saint Venant-Kirchhoff model, i.e. a linear
relation between the strain and the stress tensors, the nonlinear stiffness term gnl(u, us) is
composed of a quadratic and a cubic parts [76,149,220] and writes

gnl(u, us) = A(u, u) + B(u, u, u), (2.12)

using the functional notation A(·, ·) and B(·, ·, ·) for the quadratic and cubic terms with
coefficients gathered in the third-order tensor1 A(us) and the fourth-order tensor B(us) [230].
In the following, the elements of the tensors will be denoted by

Am
ij = A[i, j, m] and Bm

ijk = B[i, j, k, m]. (2.13)

The explicit indicial expression of the nonlinear internal forces writes

gm
nl(u) =

NDOF∑
i=1

NDOF∑
j=i

Am
ij uiuj +

NDOF∑
i=1

NDOF∑
j=i

NDOF∑
k=j

Bm
ijk uiujuk, (2.14)

with m = 1, 2, . . . , NDOF. The limited ranges of the indices can be exploited to reduce
computational and storage requirements. The third- and fourth-order tensors A(us) and

1The term ‘tensor’ used here simply refers to a multidimensional array with more than two dimensions.
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B(us) can generally not be extracted from standard finite element software used in industry.
Specific methods can be used to interpolate the nonlinear stiffness term between known
values [14,46].

In practice, commercial finite element software is often based on updated Lagrangian for-
mulations so that the linearity between the Green-Lagrange strain tensor and the second
Piola-Kirchhoff stress tensor is not guaranteed [232]. Because of this inconsistency between
the general elasticity formulation and the finite element formulation, the expression of the
nonlinear internal forces (2.12) is not exact in this case.

Example 2.1 – Clamped-clamped von Kàrmàn beam

The influence of geometric nonlinearities can be illustrated on a simple academic struc-
ture: a clamped-clamped beam, as shown in Fig. 2.3. This test case is largely used
in a geometrically nonlinear context [78, 109, 142]. The beam has a uniform square
cross section. The geometric and material properties of the beam are summarized in
Table 2.1. The strains are measured with the Green-Lagrange tensor with the von
Kàrmàn approximation, which consists in neglecting the nonlinear terms except the
quadratic term in the transverse displacement for the axial deformation [159]. Under
the assumption of an Euler-Bernoulli beam, the shear is also neglected.

L/2

L/3

P1P2

ex

ey

ez

Figure 2.3 – Finite element model of the clamped-clamped beam.

Based on these assumptions, a finite element model of the beam is built using beam
elements with three degrees-of-freedom per node (axial displacement u, transverse
displacement v and in-plane rotation θ) [78]. The transverse and axial displacements
are interpolated using Hermite polynomials. Rayleigh damping is assumed, with C =
3M. The beam is divided into 30 elements. The frequency of the first bending mode
of the beam, which is purely transverse, equals 160 Hz.
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Parameter Symbol Value Units

Density ρ 7,800 kg/m3

Young’s modulus E 210 GPa
Poisson’s ratio ν 0.3 [-]
Length L 1 m
Side of the section a 3 cm

Table 2.1 – Material and geometric properties of the beam.

The beam is excited by a harmonic excitation of amplitude Ae = 200 N at its center
(node P1) in the transverse direction ey to mainly excite its first bending mode. The
frequency response curve (FRC) is obtained by increasing/decreasing progressively
the frequency of the excitation and extracting the amplitude of the response of the
beam. More details regarding the nonlinear simulations are provided in chapter 3. The
FRC corresponding to the transverse displacement at P1 and the axial displacement
at P2 (see Fig. 2.3) are shown in Fig. 2.4. The results accounting for the geometric
nonlinearities are compared with the results obtained by neglecting them.
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(a) Transverse displacement at P1.
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(b) Axial displacement at P2.

Figure 2.4 – Frequency response curves (upward (+) and downward ( ) frequency
sweeps), without (+/ ) and with (+/ ) geometric nonlinearities.
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The analysis of the FRC related to the transverse displacement in Fig. 2.4a demon-
strates the influence of geometric nonlinearities. In the linear case, resonance, where
the maximal amplitude is reached, occurs at the first natural frequency (160 Hz). In
the nonlinear case, the FRC is inclined to the right and resonance occurs at 180 Hz.
Also, the analysis highlights the existence of several solutions for a given frequency.

In the linear case, the displacement is purely transverse: the axial displacement is
equal to zero on the whole frequency range (see Fig. 2.4b). In the nonlinear case,
non-zero axial displacements are observed. In this case, geometric nonlinearities are
therefore responsible for a coupling between pure transverse bending modes and axial
(or membrane) modes. The transverse and axial components of the displacement along
the beam at the linear and nonlinear resonances are shown in Fig. 2.5.
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(a) Transverse displacement.
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(b) Axial displacement.

Figure 2.5 – Beam displacement at linear resonance ( ) and nonlinear reso-
nance ( ).

2.4.3 Contact nonlinearities

Contact nonlinearities are the second kind of nonlinearities studied in this work.

Contact nonlinearities in turbomachines In turbomachinery design, energy efficiency
can be improved by controlling the clearance between the blade-tips and the stationary sur-
rounding casing in order to reduce aerodynamic leaks. In practice, decreasing the clearance
by 25% allows to increase the engine efficiency by 1%, saving 200, 000 liters of fuel per year
for a middle-range aircraft [128]. As a consequence, structural contacts between rotating
and stationary components, i.e. between blade-tips and the casing, can occur in nominal
operating conditions and can no longer be neglected [8, 189]. Because some blades are now
made of lighter composite materials featuring lower admissible stress than titanium alloys,
these contact interactions can damage the structure [165]. In order to mitigate damaging
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vibratory phenomena, an abradable coating is usually added along the casing contact sur-
face. This coating acts as a sacrificial material that is worn out in the case of blade/casing
contacts [180, 247]. The abradable coating should be resilient enough in order not to be
damaged by the gas flow, but should also have good abrasive properties when impacted by
the blades [182]. In practice, these coatings are often laid by plasma praying of composite
powders comprising a metal base (providing good cohesion) and a polymer filler generating
porosities (providing good abrasion).

Apart from blade/casing contacts, other kinds of contact nonlinearities exist in turbomachines
(see the contact interfaces in Fig. 2.6). In bladed disk assemblies, nonlinearities are for
instance present at the friction interfaces at the joint between the different blades and the disk
where energy dissipation is important [191]. Contact may also occur between two neighboring
blade’s shrouds [6] or between shaft and bearings [48].

Figure 2.6 – Main contact interfaces in aircraft engines: blade/blade ( ), blade/casing ( ),
shaft/bearing ( ) and blade/disk ( ).

Modeling Because full-scale experiments are extremely costly, test benches usually focus
on the characterization of specific phenomena such as the wear mechanisms of the abradable
layer [144,249] or the blade dynamics [58,163]. From a numerical standpoint, the understand-
ing of the blade-tip/casing contact interactions has therefore motivated many research works
initiated by different manufacturers [151, 174, 216, 240]. Different numerical strategies have
been developed to model and predict contact interactions [151,174] as penalty methods [201],
Lagrange multipliers [42] or the augmented Lagrangian approach [139].
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In the field of turbomachinery, each contact interface is characterized by its own specificities,
which require dedicated modeling tools. In particular, blade-tip/casing contacts may yield
several types of interactions, namely rubbing interactions [16], modal interactions [134] and
whirl motions [190], each of them requiring a specific numerical framework. For instance,
rubbing interactions involve large amplitude vibrations of a single blade, without significant
vibration of the disk and the casing. In this case, the casing is usually supposed to be
rigid but a very precise modeling of the blade/casing interface is required [132, 180, 240].
In modal interactions, the modes of the full bladed disk and of its surrounding casing are
characterized by the same number of nodal diameters so that both structures may exchange
energy through repeated contacts. The flexibility of the casing has therefore to be considered
in the simulations [17]. Lastly, whirl motions correspond to orbital motions of the shaft that
can arise in accidental configurations, for instance following bearing failures. The study of
whirl motions requires the modeling of the full bladed disk, the shaft and the casing and
a precise modeling of inertial effects [169, 190]. Note that these three types of interactions
can also be combined. Different numerical strategies for the modeling of the removal of an
abradable coating on the casing have also been developed [8, 165,180].

Blade-tip/casing contact can be described as a unilateral contact between a flexible body
(the blade) and a rigid obstacle (the casing). Let’s denote by Γc the contact surface of the
flexible body and introduce the gap function g(x), defining the distance between each point
M of Γc with vector position x and its closest counterpart on the rigid obstacle. The contact
conditions take the form of Kuhn-Tucker optimality conditions

∀x ∈ Γc, tc,N(x) ⩾ 0, g(x) ⩾ 0 and tc,N(x)g(x) = 0, (2.15)

where tc,N(x) stands for the contact pressure, normal to Γc at x. Friction is usually managed
with the Coulomb law. The relative tangential (or sliding) velocity vT is null while

∥tc,T∥ ⩽ µstc,N, (2.16)

where tc,T is the vector of tangential contact forces and µs is the static friction coefficient.
This corresponds to a sticking phase. When motion is initiated,

tc,T = −µtc,N
vT

∥vT∥ , (2.17)

where µ is the dynamic friction coefficient. This is the sliding phase.
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2.5 Partial conclusions

The dynamics of bladed disks is generally studied with finite element models that can be
derived from the weak form of the dynamic problem. This chapter highlights the complex
nature of the dynamics of bladed structures in turbomachines. First, bladed disks differ
from their nominal cyclically periodic designs and present blade-to-blade variations known
as mistuning. Second, the dynamics of bladed disks is fundamentally nonlinear.

In the following, different assumptions are made regarding the modeling of bladed disks:

• the material is homogeneous, isotropic, non-dissipative and elastic;

• the angular speed is supposed to remain constant in module and in direction;

• in nonlinear studies, both the prestressed state us and the displacement u with respect
to the prestressed state are considered as geometrically nonlinear.
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CHAPTER 3 MULTI-NONLINEAR DYNAMIC SIMULATION

In general, the equations of motion of mechanical structures take the form of coupled sec-
ond order differential equations. In the specific case of rotating structures, such as bladed
disks, the equations of motion are given by (2.3). Two paradigms are available to solve
these nonlinear equations, namely time integration based methods and frequency methods.
In this chapter, these two families of methods are presented, together with the associated
implementation challenges. The content of this chapter is very general, and not restricted to
turbomachines dynamics.

3.1 Time methods

The time response can be computed using time integration schemes [73]. In such methods,
the time interval of interest is discretized in a finite number of instants tn and the solution at
each instant is computed using the solutions at previous instants. Some integration schemes,
such as the Euler explicit and implicit methods and the family of Runge-Kutta methods [194]
require to rewrite the second order differential problems (2.3) into first order ordinary dif-
ferential equations. Other integration schemes directly work with the second order ordinary
differential equations, such as the explicit central difference time integration scheme, where
the first and second derivatives are approximated by central finite differences. The linear
and nonlinear Newmark-β algorithms [160] are also often implemented in commercial finite
element software as in the nonlinear module Mecano of SAMCEF used in this work [197]. The
family of generalized-α methods [89], that allows to combine an integration scheme of second
order accuracy with a numerical damping in the high frequency range [50], is also widely
used.

3.1.1 Accounting for contact

The numerical strategy adopted here is based on the work of Carpenter and relies on the
explicit central difference time integration scheme with the handling of contact using Lagrange
multipliers [42]. Friction is described by a Coulomb law, under the assumption of sliding
friction. In the specific case of rotating bladed disks, the assumption is well justified as
the tangential speed due to rotation is significantly larger than the vibration speed of the
structure.
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By noting un, the numerical approximation of the exact value of the displacement field u(tn),
the equation of motion (2.3) at time step tn is written as

Mün + Cu̇n + Kun + gnl(un) = fe(tn) + CT
NTλ, (3.1)

where λ is the vector of Lagrange multipliers, corresponding to the contact forces in the
normal direction, and the matrix CNT is the sum of the contact constraint matrices in the
normal direction CN and in the tangential direction CT (obtained from the Coulomb law).
This equation must be solved with the non-penetration constraint

dn = d0 − CNun ⩾ 0, (3.2)

where dn stands for the distances between the blade-tip nodes and the casing at time step
tn and d0 for the initial distances between the structures1.

The classical explicit central finite difference scheme used in this work yields

ün = un+1 − 2un + un−1

h2 and u̇n = un+1 − un−1

2h
, (3.3)

where h is the time step of integration.

The algorithm is based on a prediction/correction scheme. The displacement un+1 is given
by

un+1 = up
n+1 + uc

n+1, (3.4)

i.e. the sum of the predicted displacement up
n+1 computed without contact constraints and

of the corrected displacement uc
n+1 accounting for the contact constraints.

At each time step tn+1 = tn + h, the displacement field is first predicted without accounting
for possible contact interaction as

up
n+1 = (2M + hC)−1

[
2h2 [fe(tn) − gnl(un)] +

(
4M − 2h2K

)
un + (hC − 2M) un−1

]
. (3.5)

The correction part of the displacement is given by

uc
n+1 = 2h2 (2M + hC)−1 CT

NTλ, (3.6)

where λ is still unknown at this step of the procedure.

The predicted displacement field up
n+1 is then used to evaluate the gap dp

n+1 between the Nb

1This vectors inequality should be interpreted component-wise.
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impacting nodes (on the blade) and the contact surface (the rigid casing) as

dp
n+1 = d0 − CNup

n+1. (3.7)

Given (3.4) and (3.7), the non-penetration constraint (3.2) is rewritten in an equivalent form

dp,−
n+1 − CNuc

n+1 = 0, (3.8)

where dp,−
n+1 is the projection on RNb

− of dp
n+1.

Comparing (3.6) and (3.8), the Lagrange multipliers are given by

λ =
[
2h2CN (2M + hC)−1 CT

NT

]−1
dp,−

n+1. (3.9)

If penetration is detected between the blade and the rigid casing, contact forces are therefore
introduced in the normal and tangential directions through the Lagrange multipliers to cancel
the penetration at the impacting nodes. These contact forces are then used to correct the
displacement at all nodes with (3.6).

3.1.2 High performance implementation

When the number of degrees-of-freedom increases, the evaluation of the nonlinear internal
forces with (2.12) can become computationally expensive as the size of the tensor B increases
with the fourth power of NDOF.

The contact algorithm described in section 3.1.1 takes the form of a time loop with a succes-
sion of matrix/vector products. At each time step, the nonlinear internal forces due to large
displacements are evaluated in the prediction step given by (3.5). The prediction step of the
contact algorithm can be rewritten as

up
n+1 = X0fe(tn) + X1un + X2un−1 + X 3 (un, un) + X 4 (un, un, un) , (3.10)

where up
n+1 is the prediction of the displacement at time tn+1, fe is the vector of external

forces, un and un−1 are the displacements computed at time tn and tn−1 and where

X0 = 2h2 (2M + hC)−1 , (3.11)

X1 = (2M + hC)−1 (4M − 2h2K), (3.12)

X2 = (2M + hC)−1 (hC − 2M) , (3.13)
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X 3(·, ·) = −2h2 (2M + hC)−1 A(·, ·), (3.14)

and
X 4(·, ·, ·) = −2h2 (2M + hC)−1 B(·, ·, ·). (3.15)

Coefficients of functional forms X 3(·, ·) and X 4(·, ·, ·) are gathered in the third-order tensor
X3 and the fourth-order tensor X4. Matrices and tensors Xi (i = 0, . . . , 4) are constant and
can be computed once at the beginning of the simulation. Preliminary simulations using
this algorithm based on Lagrange multipliers show that a small time step of integration of
the order of 10−7 second has to be considered, so that a huge number of evaluations of the
nonlinear internal forces are required to reach the steady-state regime. The implementation
described in the next paragraph allows to reduce the computational burden.

At each time step, the matrices and tensors Xi (i = 0, . . . , 4) are transferred from the memory
to the processor, they are respectively multiplied by fe(tn), un, un−1 and used in the nonlinear
functions (that can be seen as ‘tensors products’), and the resulting quantities are summed
up. These two steps (transfer from RAM and mathematical operations) have to be considered
when optimizing the code to reduce computation times. In practice, on powerful computation
servers, computations are often limited by the DRAM bandwidth, more than by the number
of operations that can be done per second. In the matrix/vector products in (3.10), each
element of the matrices is used only once in the multiplications, which is not very efficient. In
practice, different simulations are required to capture the dynamics of the system at different
angular speeds, or for different contact conditions. Instead of running these simulations
sequentially, independently from each other, we suggest to run them in parallel, advancing in
time the different solutions all together, which allows a repeated and hence more efficient use
of the data in memory. Provided the matrices and tensors Xi (i = 0, . . . , 4) are the same for
each simulation, the prediction step of the contact algorithm given by (3.10) can be rewritten
as

Up
n+1 = X0Fe(tn) + X1Un + X2Un−1 + X 3 (Un, Un) + X 4 (Un, Un, Un) , (3.16)

where the matrices Up
n+1, Fe, Un and Un−1 are respectively the concatenations of the vectors

up
n+1, fe, un and un−1 related to each simulation and where

{X 3 (Un, Un)} [m, p] =
NDOF∑

i=1

NDOF∑
j=i

X3 [m, i, j] Un [i, p] Un [j, p] (3.17)
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and

{X 4 (Un, Un, Un)} [m, p] =
NDOF∑

i=1

NDOF∑
j=i

NDOF∑
k=j

X4 [m, i, j, k] Un [i, p] Un [j, p] Un [k, p] . (3.18)

In this way, the matrix/vector products are replaced by matrix/matrix products where the
elements of the matrices loaded from the memory are used several times, which is more
efficient and can theoretically accelerate the computation. As the Xi (i = 0, . . . , 4) only de-
pend on the time step of integration and on the structural matrices, the different simulations
performed together can be characterized by different contact conditions, such as different
friction coefficients or clearance values for instance, or different angular speeds. As shown
in chapter 6, this can be particularly beneficial to build interaction maps as it requires to
perform contact simulations on a wide range of angular speeds.

Linear terms The products X0Fe(tn), X1Un and X2Un−1 in (3.16) involve 2D matrices
and can be computed easily. The gain in computation time can though be illustrated with
this simple products. For instance, consider the product X1un, to be computed for 1,000
samples of vector un, corresponding to different simulations at different angular speeds, for
a constant matrix X1 of order NDOF. The products can be computed in two different ways:

(i) As 1,000 independent matrix/vector products;

(ii) As 1 matrix/matrix product, i.e. by computing X1Un where Un is the concatenations
of the 1,000 samples of un.

The products are carried out in Python, on NumPy arrays, for 50 different values of NDOF

between 42 and 45. The products are also computed using the compiler Numba. The corre-
sponding computation times are shown in Fig. 3.1a. The results correspond to mean values
over 200 realizations and are obtained on 10 cores. Note that the maximal value NDOF = 45

considered here is small compared to the number of degrees-of-freedom of typical industrial
structures. However, the numerical strategy will be applied here on reduced-order models
whose size does not exceed this value.

The results confirm that even for simple 2D products, performing a matrix/matrix prod-
uct instead of a succession of matrix/vector products allows to decrease the computation
time between one and two orders of magnitude. The use of the compiler Numba allows to
considerably accelerate the computation.

The same results are presented in Fig. 3.1b in terms of the number of operations per second.
The horizontal asymptote in the matrix/vector product curve confirms that in this case, the
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Figure 3.1 – Performance for the computation of X1un for 1,000 samples of un: ma-
trix/vector products ( ) and matrix/matrix product ( ); without Numba ( ) and
with Numba ( ).

computation speed is restricted by the speed of the memory. The use of a matrix/matrix
product allows to considerably increase the number of operations per second as the elements
of the matrix X1 are used several times in the multiplication.

Nonlinear terms The functional forms X 3 (Un, Un) and X 4 (Un, Un, Un) are kinds of
products of 3D tensors and 4D tensors whose computation has to be optimized to avoid losing
the benefit of the numerical strategy. In order to remove useless monomials redundancy in
the products, the tensors X3 and X4 are first transformed to ‘upper triangular’ or ‘upper
pyramidal’ tensors, i.e. X3[m, i, j] = 0 except for i ⩽ j and X4[m, i, j, k] = 0 except for
i ⩽ j ⩽ k. An adapted tensor multiplication function, accounting for the particular sparse
structure of tensors X3 and X4, has been implemented on top of the BLIS framework to
perform efficiently the products [227]. The multi-threaded implementation is inspired from
the BLIS implementation of the product of triangular matrices [204].

In order to illustrate the efficiency of the procedure, consider that the nonlinear part of (3.10),
X 3 (un, un) + X 4 (un, un, un), has to be evaluated for 1,000 values of un, for constant func-
tional forms X 3(·, ·) and X 4(·, ·, ·). These nonlinear term is computed in two ways:

(i) As 1,000 independent evaluations of X 3 (un, un) + X 4 (un, un, un), with the functional
forms evaluated as in (2.14), and using the compiler Numba;



29

(ii) As 1 evaluation of X 3 (Un, Un) + X 4 (Un, Un, Un) where Un is the concatenations of
the 1,000 samples of un, with the adapted tensor multiplication function implemented.

The corresponding computation times are given in Fig. 3.2 for NDOF between 42 and 44.
Again, the results correspond to mean values over 200 realizations and are obtained on 10
cores. They show that the strategy is very efficient to compute the nonlinear forces, as a
reduction of computation time larger than two orders of magnitudes is achieved.
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Figure 3.2 – Computation time of X 3 (un, un) + X 4 (un, un, un) for 1,000 samples of un:
independent evaluations ( ) and tensor products ( ).

The results presented here are only related to the gain in computation time for the evaluation
of matrix products, and do not consider all the steps of the contact algorithm presented
in section 3.1.1. When applied to the full contact algorithm, the numerical strategy with
memory sharing presented in this section allows to considerably reduce computation times
(by a factor between 5 and 15, depending on the processor). More details regarding the
actual acceleration of the simulations will be provided further when presenting the results on
industrial structures (see section 6.5.4).

3.2 Frequency methods

When only the permanent regime is studied, the time integration methods presented in sec-
tion 3.1 are not well suited as they first have to go through the transient regime before
reaching the steady-state response. In contrast, frequency methods, as the Harmonic Bal-
ance Method (HBM), are very efficient for the computation of the steady-state response of
nonlinear systems [33,125,129].
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3.2.1 Harmonic balance method

The HBM consists in writing the solution u(t) of the equation of motion (2.3) as a Fourier
series truncated at harmonic H as

u(t) = a0

2 +
H∑

k=1
[ak cos(kωt) + bk sin(kωt)] , (3.19)

where ω is the fundamental pulsation and the coefficients ak (k = 0, . . . , H) and bk (k =
1, . . . , H) are the Fourier coefficients of the displacement u. This equation can be written in
the form of a Galerkin projection as

u(t) = T(t)û, (3.20)

where
T(t) =

[1
2 cos(ωt) sin(ωt) · · · cos(Hωt) sin(Hωt)

]
⊗ INDOF (3.21)

and
û =

[
aT

0 aT
1 bT

1 · · · aT
H bT

H

]T
. (3.22)

The velocity and acceleration can therefore be computed as

u̇(t) = T(t)∇û and ü(t) = T(t)∇2û, (3.23)

where

∇ = diagblock (0, ∇1, . . . , ∇H) and ∇2 = ∇∇, with ∇k =
 0 kω

−kω 0

⊗ INDOF .

(3.24)
Injecting the approximations (3.20) and (3.23) in (2.3) provides the residue

r = MT∇2û + CT∇û + KTû + gnl − fe − fc. (3.25)

The HBM then consists in orthonormalizing the residue with respect to the harmonic func-
tions in T(t), using the scalar product

⟨f |g⟩ = 2
T

∫ T

0
f(t)g(t)dt. (3.26)
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The projections of the residue on the test functions write

⟨r|1/2⟩ = Ka0 + ⟨gnl|1/2⟩ − ⟨fe|1/2⟩ − ⟨fc|1/2⟩ (3.27)
⟨r| cos(kωt)⟩ =

[
K − (kω)2M

]
ak + kωCbk + ⟨gnl| cos(kωt)⟩ − ⟨fe| cos(kωt)⟩ − ⟨fc| cos(kωt)⟩

⟨r| sin(kωt)⟩ =
[
K − (kω)2M

]
bk − kωCak + ⟨gnl| sin(kωt)⟩ − ⟨fe| sin(kωt)⟩ − ⟨fc| sin(kωt)⟩

Cancelling these projections gives the HBM equation in the frequency domain

Z(ω)û + ĝnl(û, ω) = f̂e(ω) + f̂c(û, ω), (3.28)

where the new unknowns are the NDOF(2H + 1) Fourier coefficients û, where

Z(ω) = diagblock (K, Z1, . . . , ZH) with Zk =
K − (kω)2M kωC

−kωC K − (kω)2M

 , (3.29)

and where ĝnl, f̂c and f̂e are respectively the vectors of Fourier coefficients related to the
forces gnl, fc and fe.

When the pulsation ω is fixed, the nonlinear algebraic system of equations (3.28) can be
solved using iterative methods such as Newton-Raphson method [245], quasi-Newton method
or Newton-Krylov method [120]. When the parameter ω varies, continuation algorithms can
be used to follow the solutions branches, for instance to build frequency response curves.

3.2.2 Treatment of nonlinear forces

The analytical determination of the harmonic coefficients related to the nonlinear forces, ĝnl

and f̂c, is only possible in very simple cases, such as polynomial nonlinearities, and leads
to long expressions. It is however possible to use the Alternating Frequency/Time (AFT)
numerical method to evaluate the nonlinear forces in the frequency domain, based on their
knowledge in the time domain [38].

3.2.2.1 Alternating Frequency/Time method

At each iteration of the iterative method used to solve (3.28), the displacement and velocity
fields are computed in the time domain on one or several periods using the inverse discrete
Fourier transform matrix F−1

R as

u = F−1
R û and u̇ = F−1

R ∇û, (3.30)
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where

F−1
R =


1/2 cos(ωt1) sin(ωt1) · · · cos(Hωt1) sin(Hωt1)
... ... ... . . . ... ...

1/2 cos(ωtNh
) sin(ωtNh

) · · · cos(HωtNh
) sin(HωtNh

)

⊗ INDOF , (3.31)

where Nh is the number of time steps in the temporal signal. Based on the knowledge of the
displacement and velocity fields, the nonlinear forces gnl(u) and fc(u, u̇) are then computed
in the time domain. The nonlinear forces can then be computed in the frequency domain
using the direct discrete Fourier transform matrix FR as

x̂ = FRx, (3.32)

where x stands for gnl or fc and

FR = 2
Nh



1 . . . 1
cos(ωt1) . . . cos(ωtNh

)
sin(ωt1) . . . sin(ωtNh

)
... . . . ...

cos(Hωt1) . . . cos(HωtNh
)

sin(Hωt1) . . . sin(HωtNh
)


⊗ INDOF . (3.33)

3.2.2.2 Accounting for contact

Penalty approaches, where contact forces are defined proportionally to the computed in-
terpenetrations of the structures, are particularly well suited when using an AFT scheme.
However, when dealing with structural contacts, it has been shown that the HBM is prone
to the Gibbs phenomenon, which is related to the non-uniform convergence of Fourier series
for the approximation of nonsmooth functions [147]. This translates into spurious oscilla-
tions appearing in the vicinity of discontinuities. Without adjustment, this method performs
poorly.

A methodology has been recently proposed to smoothen contact management [52]. First,
the penalty contact law is regularized in order to mitigate the Gibbs phenomenon [241]. The
normal components of the contact forces are evaluated as

tc,N(t) = κ
g(t)

2 +

√√√√[κ g(t)
2

]2

+ γ2, (3.34)
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where g(t) is the distance between the contact node and the casing, κ ∈ R+ is the penalty
coefficient and γ ∈ R+ is a smoothing parameter. This regularization of the contact law
greatly increases the numerical robustness of the HBM but does not prevent spurious oscil-
lations on the displacements, velocities and contact forces. To further mitigate the effects of
the Gibbs phenomenon, filtering techniques may be employed with the aim of altering the
Fourier coefficients to make them decay faster. In particular, the Lanczos filtering technique
in the frequency domain is found to provide the best compromise between spurious oscilla-
tions mitigation and an accurate approximation of the original waveform in the vicinity of
discontinuous areas [100]. With this filtering technique, the contact forces write

fc(u, u̇) = ac
0

2 +
H∑

k=1
ζk [ac

k cos(kωt) + bc
k sin(kωt)] , (3.35)

where ζk are the Lanczos factors and the coefficients ac
k and bc

k are the Fourier coefficients of
the contact forces. This methodology is known as the Regularized-Lanczos HBM (RL-HBM).

3.2.3 High performance implementation

In this frequency methodology, nonlinear internal forces due to large displacements and
their first derivatives have to be evaluated at each iteration of the iterative method used to
solve (3.28). As explained in section 3.1.2, this can become computationally expensive when
the number of degrees-of-freedom increases. Similarly to what is done in section 3.1.2, the
methodology can be used to solve (3.28) for different contact configurations at the same time,
i.e. to solve

Z(ω)Û + Ĝnl(Û, ω) = F̂e(ω) + F̂c(Û, ω), (3.36)

where the matrices Û, Ĝnl, F̂e and F̂c are respectively the concatenations of the vectors
û, ĝnl, f̂e and f̂c related to each simulation. In this way, the nonlinear internal forces and
their derivatives are evaluated by matrix/matrix products, which is more profitable and can
accelerate the computation.

3.3 Partial conclusions

In practice, both time and frequency strategies are required. On the one hand, time methods
allow to compute any type of response of the system: diverging solutions, chaos, as well as
transient phenomena. They are also more easily compatible with multiphysics algorithms.
However, time integration does not provide the required qualitative understanding of the
system. On the other hand, frequency methods provide this qualitative view of the system
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and easily allow to assess the stability of a solution but are currently not compatible with
large numerical models and do not capture transient phenomena.

In this work, computations are made in the time domain in order to capture transient phe-
nomena due to the occurrence of contact events, which are key for the rise of some critical
interactions [152]. Nonetheless, as shown further, most developments are compatible with
frequency methods.
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CHAPTER 4 REDUCED-ORDER MODELING

Nowadays, it is relatively fast and easy to build finite element models of 3D structures that are
very accurate in geometric details and material distribution. These finite element models are
generally characterized by a high number of degrees-of-freedom. In the absence of symmetry
(for mistuned bladed disks in particular), the cyclic symmetry formulation introduced in
section 2.2.2 cannot be used and the whole finite element model must be considered. This is
also true for nonlinear systems as mode shapes are not pure nodal diameter modes. The time
integration of the corresponding equations therefore requires high computational capabilities.
Many efforts are nowadays dedicated to the construction of reduced-order models (ROMs)
using modal analysis and substructuration techniques.

The final objective of the reduction techniques is to decrease the number of parameters
describing the system while ensuring that the reduced-order model is able to represent with
a good accuracy the dynamics of the full-order model. Complex phenomena such as mistuning
or nonlinearities must therefore be taken into account in the reduced-order models of bladed
structures.

Reduced-order models can be beneficial for various reasons. They are used to reduce the
computational burden in a design process, but also as fast executing substitutes of the full-
order model or to extract pertinent information hidden in the full-order model. Recent
studies also show that reduced-order models can be advantageously used to create digital
twins of real structures [83]. Such digital twins can be updated based on measurements on
the physical structure and used for predictive maintenance to detect abnormal behavior or
estimate the remaining lifetime of the structure [5].

There are already tendencies to anticipate a further surge in computational power and a
corresponding decline of the need for reduced-order models [86]. However, for the near
future, it seems that the demand for more accurate simulations is still growing much faster
than the available computational capacity.

This chapter starts with some generalities on model order reduction and, in particular, in-
troduces the concept of reduced-order modeling by subspace projection. This introduction
is followed by a review of the most popular reduced-order modeling techniques developed for
nonlinear systems. The reduction methods presented are very general and not restricted to
turbomachines dynamics.
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4.1 Generalities on model order reduction

Model order reduction consists in reducing the physical degrees-of-freedom u into a smaller
set of generalized coordinates q through a linear or nonlinear mapping Γ. In projection
methods, the equation of motion is then projected onto a reduced space. In the case of a
nonlinear mapping, the projection is often executed on the tangent space around an equi-
librium position, as in the quadratic manifold approach [99]. Conversely, invariant manifold
methods avoid this projection by assuming the reduced dynamics form to be known a pri-
ori [82, 218]. In such methods, the shape of the mapping has to be guessed so that such
methods are generally applied to known polynomial nonlinearities. In this work devoted to
geometric and contact nonlinearities, only projection methods are considered.

Different approaches exist to define the mapping, i.e. the change of coordinates between full
space and reduced space. On the one hand, the mapping can be defined based on the physics
of the problem through the computation of intrinsic characteristics of the system (linear
or nonlinear normal modes for instance) [219]. On the other hand, data-driven methods
can be used. Such methods require samples of system trajectories obtained from numerical
simulations or experiments to train the system [71]. Machine learning techniques, as neural
networks, are more and more used in this context [59].

4.1.1 Model order reduction by Galerkin projection

Let’s define u ∈ RNDOF as the exact solution of the equation of motion (2.3). The Galerkin
approach consists in finding an approximate solution uROM lying in a subspace of RNDOF

spanned by a basis Φ. The reduction writes

u(t) ≈ uROM(t) = Φq(t) =
r∑

j=1
ϕjqj(t), (4.1)

where q ∈ Rr are the new unknowns of the problem, known as the generalized coordinates,
with r ⩽ NDOF (in practice r ≪ NDOF). Because of the approximation, injecting (4.1) in
(2.3) leads to the definition of the residue

r = MΦq̈ + C(Ω)Φq̇ + K(Ω, us)Φq + gnl(Φq, us) − fe(t) − fc(Φq + us, Φq̇). (4.2)

The procedure consists in finding the solution q such that the residue is orthogonal to a
subspace of RNDOF spanned by a basis Υ, i.e.

ΥTr = 0. (4.3)
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The procedure is known as the Petrov-Galerkin method when Φ ̸= Υ and the Galerkin
method when Φ = Υ. For the Galerkin method, that will be used through this work,
Eq. (4.3) writes

M̃q̈ + C̃(Ω)q̇ + K̃(Ω, us)q + g̃nl(q, us) = f̃e(t) + f̃c(q, q̇), (4.4)

where the projected matrices take the expressions

M̃ = ΦTMΦ, C̃ = ΦTCΦ, K̃ = ΦTKΦ (4.5)

and the projected vectors are defined as

g̃nl(q, us) = ΦTgnl(Φq, us), f̃e = ΦTfe, f̃c = ΦTfc. (4.6)

The initial conditions on the generalized coordinates related to the reduced model are ob-
tained from the initial conditions on the degrees-of-freedom of the full-order model by a
least-squares approximation, i.e.

q(0) =
(
ΦTΦ

)−1
ΦTu(0) and q̇(0) =

(
ΦTΦ

)−1
ΦTu̇(0). (4.7)

The different existing projection-based reduced-order modeling methods differ by the choice
of the projection basis and by the way the nonlinear forces are evaluated in the reduced
space. Various approaches to identify the nonlinear forces in the reduced space are described
in section 4.2 and a review of the projection bases used in the literature is proposed in
section 4.3.

4.1.2 Distinction between offline and online stages

Projection-based model order reduction methods discriminate between an expensive offline
stage where the projection basis is computed and the reduced-order model is built and an
efficient online stage where the problem is solved. Figure 4.1 schematically represents the
distinction between offline and online stages. The offline stage takes the full-order finite
element model as an input. In this stage, the reduction basis is built, the full-order matrices
are projected onto the reduction basis and the expression of the nonlinear internal forces is
identified with an appropriate method. Numerical simulations are performed in the online
stage. In this stage, the initial conditions and the excitation are first projected onto the
reduced space. The equation of motion in the reduced space is then numerically integrated
in time before the solution may be re-projected onto the full-order space.
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OFFLINE STAGE

Construction of the
reduced-order model

High fidelity
model

ONLINE STAGE

Numerical simulations with
the reduced-order model

Excitation and
initial conditions

Φ
g̃nl(q)

M̃, C̃,
K̃

Dynamic
response

Figure 4.1 – Offline and online stages in model order reduction.

A large variety of reduced-order modeling techniques applicable to a broad range of engineer-
ing problems can be found in the literature. The trade-off between gain in computational
effort and error committed defines the success of the application of the reduced-order model
(ROM). The order r of the ROM defines its size and has to be chosen so that the ROM can
retain the crucial properties of the finite element model. For some techniques, the computa-
tional cost of the transformation between the full-order model (FOM) and the ROM (i.e. the
offline cost) can exceed the computational cost of a single FOM computation. However, one
has to keep in mind that the offline stage is performed only once for a given reduction basis,
while the reduced-order model can be used in the online stage to study different excitation
conditions and therefore replace several FOM computations.

4.1.3 Contact interfaces in ROMs

As reduced-order models will be used in this work in combination with contact algorithms,
it is interesting to focus on techniques that allow to keep the physical contact interface in
the reduced space. Indeed, retaining the physical degrees-of-freedom corresponding to the
contact interface in the reduced coordinates q allows to easily check the contact conditions
without having to go back in the full-order space, which would be computationally inefficient.
Existing reduction methods therefore have to be adapted (when required) in order to retain
physical degrees-of-freedom in the reduced space.

The physical displacement vector u is therefore partitioned into its inner degrees-of-freedom
and boundary interface degrees-of-freedom, ui and ub,

u =
ui

ub

 . (4.8)
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The boundary interface degrees-of-freedom should be included in the reduced basis. The
structural matrices M, C and K and the force vectors gnl, fe and fc are partitioned accordingly
with respect to inner (subscript i) and boundary (subscript b) degrees-of-freedom

X =
Xii Xib

Xbi Xbb

 and x =
xi

xb

 , (4.9)

where X stands for the mass, damping or stiffness matrix and x stands for the nonlinear,
external or contact force vector. This partitioning and the associated notations will be used
for the presentation of the reduction methods in the next sections.

4.1.4 Multi-nonlinear simulations

Model order reduction by projection preserves the general form of the equation of motion,
i.e. (2.3) and (4.4) have the same structure. When the reduction methods are adapted to keep
physical degrees-of-freedom among the generalized coordinates, as detailed in section 4.1.3,
the usual algorithms defined for high fidelity finite element models introduced in chapter 3
can therefore be directly applied in the reduced space.

In practice, the time algorithm defined in section 3.1 and the frequency method based on the
HBM described in section 3.2 can also be used to compute the solution q(t) of the reduced
equation of motion (4.4) instead of u(t), by replacing matrices M, C and K and vectors gnl,
fc and fe by their projections M̃, C̃ and K̃ and vectors g̃nl, f̃c and f̃e and considering the size
of the reduced space r instead of the total number of degrees-of-freedom NDOF.

Once a reduced-order model has been built, it can be used for computations in the time
domain with classical time integration schemes or in the frequency domain with the HBM
for instance. As mentioned in the introduction of this work, we will focus in the following
on the comparison of the reduction methods in the time domain, keeping in mind that their
use in frequency domain could be the subject of future works.

4.2 Reduced nonlinear internal forces

Different methods have been developed to evaluate g̃nl(q, us), the nonlinear internal forces
due to large displacements in the reduced space. These methods are classified as intrusive
(or direct, explicit) and non-intrusive (or indirect, implicit) methods.
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4.2.1 Intrusive methods

In intrusive methods, the projected nonlinear term is directly computed from the knowledge
of the finite element tensors and the projection basis [40, 220]. These methods are based on
the relationship between the finite element tensors and their modal counterparts. However,
the finite element tensors of quadratic and cubic stiffness terms cannot always be extracted
from commercial finite element software. Even when the full finite element model is available,
these intrusive methods are computationally inefficient because the computational complexity
of Galerkin projection of the nonlinear terms still depends on the total number of degrees-
of-freedom.

The Discrete Empirical Interpolation Method (DEIM) has been proposed to reduce the com-
putational effort [46]. In the DEIM, the Galerkin projection of the nonlinear internal forces
is obtained by interpolation of the nonlinear forces computed with the high fidelity model at
a given number of chosen interpolation points.

4.2.2 Non-intrusive methods

The methods used to evaluate g̃nl(q, us) are classified as non-intrusive when they do not
require the knowledge of the finite element formulation used in the software and to extract
information from the source code. Such methods are compatible with standard finite element
packages as the nonlinear internal forces are identified based on inputs/outputs from the
software. Among them, the stiffness evaluation procedure and its variants are largely used
in structural dynamics. Data-driven methods are also developed, based on experimental
measurements or simulated signals.

4.2.2.1 Stiffness evaluation procedure

The stiffness evaluation procedure (STEP) was first introduced by Muravyov and Rizzi [155].
It consists in imposing static displacement fields and determining the corresponding nonlinear
internal forces. In the STEP, the nonlinear reduced term is assumed to be a polynomial of
degree 3 in terms of the generalized coordinates q. Depending on the formulation of the
geometric nonlinearities in the finite element discretization, this expansion can be exact or
truncated [76]. The polynomial formulation reads

g̃nl(q) =
∼

A (q, q)+
∼
B(q, q, q), (4.10)



41

using a functional notation for the quadratic and cubic terms with coefficients gathered in
the third-order tensor Ã and the fourth-order tensor B̃. In the following, the elements of the
tensors will be denoted by

Ãm
ij = Ã[i, j, m] and B̃m

ijk = B̃[i, j, k, m]. (4.11)

Single-dimension tensors extracted from the tensors Ã and B̃ are denoted by

Ãij = Ã[i, j, :] and B̃ijk = B̃[i, j, k, :]. (4.12)

The explicit indicial expression of the nonlinear internal forces writes

g̃m
nl(q) =

r∑
i=1

r∑
j=i

Ãm
ij qiqj +

r∑
i=1

r∑
j=i

r∑
k=j

B̃m
ijk qiqjqk, (4.13)

with m = 1, 2, . . . , r.

Coefficients Ãm
ij and B̃m

ijk from Eq. (4.13) are determined by nonlinear forces static evaluations
performed on the full-order finite element model. First, the coefficients with equal indices
Ãm

ii and B̃m
iii (i = 1, . . . , r) are determined by imposing displacements of the form

u = +qiϕi and u = −qiϕi (i = 1, . . . , r), (4.14)

where ϕi is the ith mode of the reduction basis Φ, and computing the associated nonlinear
forces

FNL
a = gnl (u = +qiϕi) and FNL

b = gnl (u = −qiϕi) . (4.15)

The absolute values of the modal coordinates qi imposed must be chosen sufficiently large
to activate the nonlinear behavior of the structure but sufficiently small to remain in the
convergence limit of the finite element software. The Galerkin projections of these forces
provide the reduced nonlinear forces

F̃NL
a = ΦTFNL

a = ΦTgnl (u = +qiϕi) = g̃nl
(
q = [0 · · · + qi · · · 0]T

)
(4.16)

and
F̃NL

b = ΦTFNL
b = ΦTgnl (u = −qiϕi) = g̃nl

(
q = [0 · · · − qi · · · 0]T

)
. (4.17)
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Combining (4.13), (4.16) and (4.17) yields the system of equations
F̃NL

a = Ãiiq
2
i + B̃iiiq

3
i

F̃NL
b = Ãiiq

2
i − B̃iiiq

3
i

(4.18)

where qi, F̃NL
a and F̃NL

b are known. The vectors Ãii and B̃iii can therefore be identified as


Ãii = F̃NL
a + F̃NL

b

2q2
i

B̃iii = F̃NL
a − F̃NL

b

2q3
i

(4.19)

The coefficients with two unequal indices Ãm
ij , B̃m

iij and B̃m
ijj (i < j) can be identified in the

same way by imposing displacements of the form

u = +qiϕi + qjϕj, u = −qiϕi − qjϕj

and u = +qiϕi − qjϕj (i, j = 1, . . . , r ; i < j). (4.20)

The coefficients with three unequal indices B̃m
ijk (i < j < k) can be identified by imposing

displacements of the form

u = +qiϕi + qjϕj + qkϕk (i, j, k = 1, . . . , r ; i < j < k). (4.21)

The total number Nstatic of required nonlinear forces static evaluations is given by

Nstatic = r3

6 + r2 + 5r

6 , (4.22)

where r is the number of modes retained in the reduction basis. This number can be viewed
as a measure of the fixed cost of the reduced-order analysis as the model reduction must be
performed regardless of the simulated response time to be computed.

Theoretically, the identified coefficients are independent of the level at which the data are
obtained. In practice, however, this may not be the case due to the inconsistency between
the general elasticity formulation and the finite element formulation in the commercial soft-
ware. Wang et al. proposed a multiple-level identification strategy to reduce this inconsis-
tency [231]. The coefficients are identified at a series of displacement levels. For each stiffness
coefficient, a local relative gradient metric is used to find the displacement level at which the
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coefficient has the least variation. The value at this level is taken as the identified coefficient.

When the basis of the reduced-order model is large, this identification method requires a
large number of simulations. A method using the tangent stiffness matrix

KT (u) = K + ∂gnl

∂u (4.23)

instead of the force in the identification has been developed [171]. This method relies on
the availability of the tangent stiffness matrix for each imposed displacement but allows a
reduction of the computational effort to the order of r2.

4.2.2.2 Data-driven methods

The nonlinear parameters of the reduced-order model can also be identified experimentally.
For instance, Spottswood and Allemang proposed a method based upon the Nonlinear Iden-
tification through Feedback of the Outputs (NIFO) method that allows to simultaneously
identify multiple nonlinear relationships between measurement locations [1, 206].

Recently, it has also been suggested that the reduced nonlinear operator could be identified
using machine learning techniques, such as artificial neural networks [90].

4.3 Reduction basis

Structures with nonlinearities have been studied with the harmonic balance method by pro-
jecting the system on the nonlinear degrees-of-freedom in order to reduce the size of the
model [156, 173]. This method is suitable for relatively small systems with localized nonlin-
earities (such as contact interfaces). For large systems, or in the case of distributed nonlin-
earities (such as geometric nonlinearities), the size of the resulting system is still too large to
be studied. Specific nonlinear reduction methods, characterized by specific reduction bases,
are therefore developed.

4.3.1 Linear reduction basis

Before presenting reduction methods specifically developed for the study of geometrically
nonlinear systems, it is interesting to see the limitations of traditional reduction bases largely
used in a linear context. Three different families of reduction methods are presented here.
Their use in a nonlinear context is described at the end of the section.
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4.3.1.1 Linear normal modes

The most intuitive model order reduction technique is the modal truncation. In this reduction
method, the full-order finite element model is projected onto a subset of the linear normal
modes (LNM) of the structure ϕ̂j, defined as

[
K − ω2

j M
]
ϕ̂j = 0, j = 1, 2, · · · , NDOF. (4.24)

The choice of the modes included in the reduction basis can be based on frequency criteria.
This method does not allow to keep physical degrees-of-freedom in the reduced space and is
therefore not suitable for the implementation of contact.

4.3.1.2 CMS methods with fixed interface

The development of Component Mode Synthesis (CMS) techniques was initiated by the work
of Hurty [96]. Three sets of modes were considered for the reduction: fixed interface normal
modes, static constraint modes and rigid body modes. Then, Craig and Bampton formulated
a simplified CMS technique [54] that does not consider the rigid body modes of Hurty. The
physical degrees-of-freedom u of the structure are separated in inner degrees-of-freedom ui

and boundary interface degrees-of-freedom ub according to (4.8) and the stiffness and mass
matrices are partitioned accordingly.

In the Craig-Bampton reduction method, each substructure is reduced using a projection
basis Φ composed of rb constraint modes Ψ and rc fixed interface linear normal modes Θ of
the substructure. The displacement of the substructure in the full-order finite element model
is approximated as

u = Φq = [Ψ Θ]
ub

ηc

 , (4.25)

where the generalized coordinates q are composed of the boundary interface degrees-of-
freedom ub and the modal coordinates ηc. The number of vectors in the projection basis is
r = rc + rb. The constraint modes, also called Guyan static modes, correspond to the static
deformation of the structure to unitary displacement at the boundary degrees-of-freedom.
They can be written as

Ψ =
Ψi

I

 , (4.26)
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where Ψi is the solution of

KΨ =
Kii Kib

Kbi Kbb

Ψi

I

 =
0
R̄

 , (4.27)

which gives
Ψi = −K−1

ii Kib. (4.28)

The fixed interface linear normal modes correspond to the modes of the structure clamped
at the boundary interface degrees-of-freedom. They can be written as

Θ =
Θi,rc

0

 , (4.29)

where Θi,rc is formed by truncating to the first rc modes the solution Θi of the eigenvalue
problem

KiiΘi = MiiΘiω
2, (4.30)

where ω2 is the diagonal matrix of the eigenfrequencies squared.

This reduction method has been widely used and applied to a wide range of engineering
structures [18, 31, 124, 221]. An advantage of this method is that it captures with accuracy
the motion at the boundary degrees-of-freedom because there is a one-to-one correspondence
between the constraint modes and physical degrees-of-freedom in each interface between
components. The principal drawback of the method is the use of fixed interface modes while
experimental data are often obtained for free interface conditions. A convergence analysis is
required to select the number of modes used in the reduction [73]. A criterion relevant to
the problem must be chosen (such as a cutoff frequency or a limit effective modal mass).

4.3.1.3 CMS methods with free interface

Further developments of CMS techniques have been proposed in the literature. Goldman
was the first to formulate a CMS technique with free interface normal modes [77]. MacNeal
proposed a hybrid CMS technique with mixed interface representation [141]. He was also
the first to account for the residual flexibility from the unused component modes to improve
accuracy. Rubin included residual inertial and dissipative effects in addition to the residual
flexibility [186]. Craig and Chang proposed an exceptionally compact residual flexibility
CMS technique [55] where only the generalized coordinates pertaining to the free interface
component normal modes appear in the assembled system of equations of motion. The Craig-
Martinez reduction method considers a pseudo-static correction in order to keep physical
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degrees-of-freedom in the reduced space [145]. Attachment modes, corresponding to the
static deformation of the structure to unitary forces at the boundary degrees-of-freedom, can
also be added to enrich the reduction basis [56].

4.3.1.4 Application in a nonlinear context

The reduction bases presented in the previous paragraphs have been widely used in structural
dynamics and are well established in a linear context. It can be tempting to directly use these
linear projection bases in combination with the methods presented in section 4.2 to project
the nonlinear internal forces to reduce the full nonlinear finite element model. However,
different studies have shown that, without correction, these linear reduction bases are not
suitable for the modeling of geometric nonlinearities [13, 79]. They rely indeed on intrinsic
properties such as eigenvalues or eigenmodes that, as explained in section 2.4, do not exist
for nonlinear systems or are hard to compute. Even if some high-frequency linear modes
could capture the geometrically nonlinear behavior of the structure, these modes are often
truncated in the reduction procedure. Including these modes in the reduction basis would
lead to reduction bases of large size and the benefit of the reduction procedure would be
lost [149,229]. When the structure exhibits a nonlinear behavior due to large displacements or
due to contact/friction effects, the reduced-order model should integrate these nonlinearities
into its construction to get a better representativeness of the reduction basis, as shown in
the next sections.

Example 4.1 – Craig-Bampton reduction

The Craig-Bampton reduction method is applied to the clamped-clamped beam in-
troduced in example 2.1 in section 2.4.2. The reduced nonlinear internal forces are
evaluated with the STEP. The degree-of-freedom corresponding to the transverse dis-
placement at node P1 is kept in the reduced space. As a first step, only the correspond-
ing constraint mode and the first two fixed interface linear normal modes are added to
the reduction basis. These modes, represented in Fig. 4.2 are purely transverse.

The nonlinear frequency response curve obtained with this reduced-order model is
shown in Fig. 4.3 and compared with the reference solution obtained with the full-
order model. This reduction basis does not allow to correctly capture the resonance.
Adding more transverse constraint modes does not significantly improve the results.
This is not surprising as geometric nonlinearities induce in this case a coupling between
the transverse and axial displacements, as highlighted in section 2.4.2.
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(a) Constraint mode.
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(b) Fixed interface LNM 1.
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(c) Fixed interface LNM 2.
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(d) Fixed interface LNM 14.

Figure 4.2 – Craig-Bampton modes of the clamped-clamped beam: transverse dis-
placement ( ) and axial displacement ( ).
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Figure 4.3 – Nonlinear frequency response curves (upward (+) and downward ( ) fre-
quency sweeps): reference solution (+/ ) and solutions obtained with Craig-Bampton
ROM with fixed interface LNM 1 and 2 (+/ ) and with fixed interface LNM 1, 2, and
14 (+/ ).
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Based on the analysis performed in example 2.1, the fourth axial fixed interface LNM,
corresponding to the fourteenth fixed interface LNM is added in the reduction basis.
This mode is represented in Fig. 4.2 and is very similar to the actual deformation of
the beam at resonance (see Fig. 2.5b). As shown in Fig. 4.3, much better results are
obtained.

For this simple test case, it is relatively simple to select by hand the linear modes to
include in the reduction basis. For more complex industrial structures, it is difficult to
predict the coupling between the modes and select a priori the high-frequency modes
to include in the reduction basis. Specific methods have therefore to be developed.

4.3.2 Proper and smooth orthogonal decomposition reduction methods

Proper and smooth orthogonal decomposition reduction methods are data-driven methods
which identify the optimal reduction subspace from the results of a training simulation per-
formed with the full-order finite element model.

4.3.2.1 Proper orthogonal decomposition

The Proper Orthogonal Decomposition (POD), also known as the Karhunen-Loève decompo-
sition, was proposed independently by several authors in the 40’s [110,122,137]. The model
reduction by POD is a data-driven method which identifies the optimal subspace from a set
of displacement snapshots obtained from simulations with the full-order model or from exper-
imental measurements. If the m displacement snapshots are denoted by u⋆(ti) (i = 1, . . . , m)
and collected in a matrix

U⋆ =
[
u⋆(t1) u⋆(t2) · · · u⋆(tm)

]
, (4.31)

the principle of the POD reduction method consists in finding the subspace Φ such that the
projection of the data matrix U⋆ onto Φ has maximal spatial variance. One way of finding
the solution of this optimization problem consists in solving the eigenvalue problem of the
autocovariance matrix, defined for zero mean data as

Σuu = U⋆TU⋆. (4.32)

The eigenvalues of the autocovariance matrix are called the proper orthogonal values (POVs)
and the eigenvectors are the proper orthogonal modes (POMs). The POMs may be used as
a basis for the decomposition of the response. The POM associated to the greatest POV
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is the optimal vector to characterize the ensemble of snapshots. The POM associated with
the second greatest POV is the optimal vector to characterize the ensemble of snapshots
but restricted to the space orthogonal to the first POM, and so forth. The reduction basis
Φ of the POD reduction method therefore consists in the first POMs corresponding to the
largest POVs. It should be noted that there is no general physical interpretation of the modes
extracted from the decomposition because of their signal-dependent nature.

The POD basis can also be obtained by solving the Singular Value Decomposition (SVD) of
the data matrix U⋆

U⋆ = ŪS̄V̄T. (4.33)

The left singular vectors contained in the orthogonal matrix Ū correspond to the POMs,
eigenvectors of the autocovariance matrix and the singular values σi contained in the diagonal
matrix S̄ correspond to the square roots of the POVs multiplied by the number of samples
m. The energy of the vector sequence u⋆(ti) collected in the matrix U⋆ is given by

Ē(U⋆) =
p∑

i=1
σ2

i , (4.34)

where p = min(NDOF, m), NDOF being the number of degrees-of-freedom of the struc-
ture [115]. This expression of the energy can be directly used to select the number of POD
modes to include in the reduction basis. A common practice consists in choosing the r

dominant modes that capture more than 99.9% of the energy of the training signal.

The POMs are orthogonal to each other while the mode shapes are orthogonal with respect to
the mass and stiffness matrices. The POD minimizes the average squared distance between
the original signal and its reduced linear representation, i.e. the projection basis Φ is solution
of the minimization problem

min
m∑

i=1
||u⋆(ti) − Φq(ti)||2. (4.35)

The reduction by proper orthogonal decomposition offers an optimal flexibility since it only
requires representative simulations of the high dimensional model. The reduced-order mod-
eling by proper orthogonal decomposition has therefore been widely applied in structural
dynamics, but also in fluid dynamics and aero-elasticity, electromechanical applications or
elasto-plastic problems. A more detailed overview of the POD and its history can be found
in the literature [115].
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One of the main drawbacks of this method is the need for training simulations performed
with the high fidelity model. In some applications, the simulation of the full finite element
model required to build the matrix of snapshots is not feasible or requires high computational
capabilities. Moreover, this method is very dependent on the initial simulation performed to
build the snapshots matrix, since the states that are not triggered by the initial simulation
are not included in the reduction basis and cannot be represented. In particular, the proper
orthogonal decomposition method is very sensitive to the excitation used in the training
simulation.

4.3.2.2 Smooth orthogonal decomposition

Keeping in mind the drawbacks of the POD, Chelidze and Zhou proposed a variant of the
POD which allows to build a more robust, i.e less sensitive to the initial training simulation,
reduced-order model called the Smooth Orthogonal Decomposition (SOD) [47]. The so-called
smooth orthogonal method consists in finding the basis Λ such that the projection of the data
matrix U⋆ onto Λ has maximal spatial variance and minimal time roughness, i.e. solving
the problem

max∥U⋆Λ∥2 subject to min∥V⋆Λ∥2, (4.36)

where V⋆ are the velocity snapshots from the training simulation.

The solution of the SOD problem can be obtained by solving the generalized eigenvalue
problem

Σvvλk = λkΣuuλk, (4.37)

where Σvv is the autocovariance matrix of the velocity matrix V⋆. The λk are the smooth
orthogonal values (SOVs) and the λk are the smooth projection modes (SPMs). Smooth
orthogonal modes (SOMs) are defined as the columns of

Φ = Λ−T, (4.38)

where Λ contains the SPMs. The reduction basis of the SOD reduction method therefore
consists in the first SOMs corresponding to the smallest SOVs.

4.3.2.3 ROM compatible with contact

In their general formulations, the POD and SOD methods do not allow to retain physical
degrees-of-freedom in the reduced space and are therefore not suitable for the implementation
of contact. In order to ease the implementation of contact interfaces, it is proposed in this
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work to adapt these reduction methods by defining the projection basis Φ as a combination
of constraint modes and POMs/SOMs.

The constraint modes Ψ correspond to the linear static deformation of the structure to
unitary displacement at the boundary degrees-of-freedom, as in the Craig-Bampton reduction
method. They are defined by (4.26) and computed using (4.27). The POMs/SOMs are
computed in the same way as described previously. According to the degrees-of-freedom
partitioning, they write

Φs =
Φs,i

Φs,b

 . (4.39)

The interface component of the POD/SOD basis is not zero since the interface is not
fixed. Since the interface motion is already fully represented by the constraint modes, the
POD/SOD vectors are turned into fixed interface modes by subtracting the component al-
ready present in the constraint modesΦPOD/SOD

0

 =
Φs,i

Φs,b

−
Ψi

I

Φs,b. (4.40)

The reduction basis is therefore composed of rb constraint modes and rPOD/SOD POD/SOD
modes and write

Φ =
Ψi ΦPOD/SOD

I 0

 . (4.41)

Example 4.2 – Proper orthogonal decomposition

The reduction by proper orthogonal decomposition compatible with contact proposed
in this work is combined with the STEP and applied to the clamped-clamped beam.
The snapshots are obtained by computing the dynamic response of the beam to a
harmonic excitation of amplitude At = 200 N and frequency ft = 160 Hz applied at
P1 in the transverse direction. The two dominant POD modes shown in Fig. 4.4 are
included in the reduction basis.

The nonlinear frequency response curve obtained with this reduced-order model is
shown in Fig. 4.5. A good match with the reference solution is obtained. It is remark-
able that the axial displacement of the first POD mode extracted with the singular
value decomposition is very close to the actual axial displacement of the beam (see
Fig. 2.5b).
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(a) POD mode 1.
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(b) POD mode 2.

Figure 4.4 – POD modes of the clamped-clamped beam: transverse displace-
ment ( ) and axial displacement multiplied by 100 ( ).
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Figure 4.5 – Nonlinear frequency response curves (upward (+) and downward ( )
frequency sweeps): reference solution (+/ ) and solution obtained with POD ROM
(+/ ).

4.3.3 Linear reduction basis with POD correction

As explained in section 4.3.1 and illustrated on a simple test case, linear reduction bases
composed of LNM or Craig-Bampton modes can prove ill-suited to the study of nonlinear
systems when a large number of degrees-of-freedom are impacted by strong nonlinearities
because of the lack of representativeness of the reduction basis.

It is possible to correct the evaluation of nonlinear internal forces based, for instance, on
a POD filtering approach [13]. In practice, the nonlinear forces are collected from a given
number of snapshots that represent a set of characteristic displacements in the response



53

u⋆
1, ..., u⋆

m,
G⋆

nl =
[
gnl(u⋆

1) gnl(u⋆
2) · · · gnl(u⋆

m)
]

. (4.42)

The nonlinear basis Φf used for the filtering is obtained by implementing the SVD of matrix
G⋆

nl. The nonlinear basis consists in the truncation to rf modes in the resulting left singular
vectors of the SVD basis. The nonlinear forces in the full-order model are then filtered with
this basis Φf as

gf
nl(u) = ΦfΦT

f gnl(u) (4.43)

and the resulting filtered forces gf
nl(u) are used as an input to the STEP method instead of

the exact nonlinear forces gnl(u).

Example 4.3 – Craig-Bampton with POD correction

A Craig-Bampton reduction basis with one constraint mode and two fixed interface
linear normal modes is built. As shown in section 4.3.1, this reduction basis does not
allow to capture the nonlinear resonance. The NFRC obtained without and with POD
correction are compared in Fig. 4.6. The reduction basis is the same in both cases
and only composed of purely transverse modes: it does not allow to represent axial
displacement. However, the POD correction allows to improve the results.
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Figure 4.6 – Nonlinear frequency response curves (upward (+) and downward ( ) fre-
quency sweeps): reference solution (+/ ) and solutions obtained with Craig-Bampton
ROM with fixed interface LNM 1 and 2 without POD correction (+/ ) and with POD
correction (+/ ).
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4.3.4 Modal derivatives

The nonlinear reduction methods presented in sections 4.3.2 and 4.3.3 highly depend on the
training simulations performed to define the singular value decomposition problems. The
different drawbacks associated with simulation-dependent reduction methods, i.e. reduction
methods that require the time integration of the full-order equation of motion, motivate
the development of simulation-free reduction methods. The enhancement of linear bases
with modal derivatives, which capture the nonlinear deflections by an asymptotic expansion
of the displacement in the direction of the retained linear modes, was first identified by
Idelsohn and Cardona as an efficient way of accounting for the nonlinear behavior of the
structures in a reduced space [97]. The method was then studied by different authors, with
the development of different strategies to compute these modal derivatives [57,202,217], and
applied to various academic and industrial structures with geometric nonlinearities [109,143].
This reduction approach was also extended to CMS techniques [235,237,242]. The reduction
method with modal derivatives has also proven to be efficient to study structures in the
frequency domain [234] and compute the nonlinear normal modes [205].

4.3.4.1 Linear normal modes and modal derivatives

As shown in section 4.3.1.1, the projection of the governing equations onto a reduction basis
formed by a reduced set of vibration modes is a well-known technique in linear structural
dynamics. The main limitation of the different approaches used to extend the vibration mode
projection methods to nonlinear analyses resides in the fact that the vibration basis changes
as the configuration of the system changes. When the displacements cannot be considered
as small, the displacement u can be expressed as a linear combination of rLNM instantaneous
vibration modes of the structure by

u =
rLNM∑
j=1

ϕ̃j(u)ηj, (4.44)

where the coefficients ηj are the modal coordinates (combined in a vector η) and the modes
ϕ̃j are the solutions of

[
KT (u) − ω2

j M
]
ϕ̃j(u) = 0, j = 1, 2, · · · , rLNM, (4.45)
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where the tangent matrix KT is defined by (4.23). Expanding u(η) in Taylor series around
the equilibrium position η = 0 gives

u =
rLNM∑
j=1

∂u
∂ηj

∣∣∣∣∣
η=0

ηj + 1
2

rLNM∑
j=1

rLNM∑
k=1

∂2u
∂ηj∂ηk

∣∣∣∣∣
η=0

ηjηk + · · · . (4.46)

The derivatives of the displacement vector with respect to the modal amplitudes ηj can be
computed from (4.44) and are given by

∂u
∂ηj

= ϕ̃j(u) +
rLNM∑
k=1

∂ϕ̃k

∂ηj

ηk. (4.47)

Evaluating this expression at the static equilibrium yields

∂u
∂ηj

∣∣∣∣∣
η=0

= ϕ̃j(0) = ϕ̂j. (4.48)

These derivatives correspond to the linear vibration modes ϕ̂j defined by (4.24). The second
order derivatives of the displacement vector with respect to the modal amplitudes are given
by

∂2u
∂ηj∂ηk

=
∂ϕ̃j

∂ηk

+ ∂ϕ̃k

∂ηj

+
rLNM∑
l=1

∂2ϕ̃l

∂ηj∂ηk

ηl. (4.49)

Evaluating this expression at the static equilibrium yields

∂2u
∂ηj∂ηk

∣∣∣∣∣
η=0

=
∂ϕ̃j

∂ηk

∣∣∣∣∣
η=0

+ ∂ϕ̃k

∂ηj

∣∣∣∣∣
η=0

. (4.50)

Injecting (4.48) and (4.50) in (4.46) and neglecting the higher-order terms gives

u =
rLNM∑
j=1

ϕ̂jηj + 1
2

rLNM∑
j=1

rLNM∑
k=1

 ∂ϕ̃j

∂ηk

∣∣∣∣∣
η=0

+ ∂ϕ̃k

∂ηj

∣∣∣∣∣
η=0

 ηjηk. (4.51)

The derivatives
ξjk =

∂ϕ̃j

∂ηk

∣∣∣∣∣
η=0

(4.52)

are called the modal derivatives. They represent how vibration modes change when the
system is perturbed in the shape of a vibration mode. Slaats et al. presented three approaches
to compute these modal derivatives [202]. The most commun way to compute the modal
derivatives ξjk is to differentiate the eigenvalue problem (4.45) with respect to the modal
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amplitudes ηk [
KT (u) − ω2

j M
] ∂ϕ̃j

∂ηk

+
[

∂KT

∂ηk

− ∂ω2
j

∂ηk

M
]
ϕ̃j(u) = 0. (4.53)

It has been shown that the terms associated to the mass can be neglected [97,202]. By doing
so, the problem becomes

KT (u)
∂ϕ̃j

∂ηk

= −∂KT

∂ηk

ϕ̃j(u). (4.54)

Evaluating this expression at the static equilibrium, the modal derivatives are therefore
computed by solving the linear systems

Kξjk = − ∂KT

∂ηk

∣∣∣∣∣
η=0

ϕ̂j. (4.55)

In the case where the finite element package provides the tangent stiffness matrix, the deriva-
tive of the tangent stiffness matrix can be computed by finite differences as

∂KT

∂ηk

∣∣∣∣∣
η=0

=
KT

(
ϵkϕ̂k

)
− K

ϵk

, (4.56)

where the coefficients ϵk should be carefully defined. These derivatives can also be evaluated
using central finite differences as

∂KT

∂ηk

∣∣∣∣∣
η=0

=
KT

(
ϵkϕ̂k

)
− KT

(
−ϵkϕ̂k

)
2ϵk

. (4.57)

This can modify the shape of the modal derivatives but does not seem to influence the results
of the dynamic simulations performed with the reduced-order model [142]. However, this
differentiation scheme requires twice more evaluations of the stiffness matrix. The right-hand
side of Eq. (4.55) can also be written in terms of the second derivative of the nonlinear internal
forces, which can be useful to evaluate the modal derivatives in the case where the finite
element package only outputs the reaction forces due to nonlinear static displacements [109].

It can be shown that static modal derivatives, computed by neglecting the inertia terms as
in (4.54), are symmetric [235], i.e.

ξjk = ξkj. (4.58)

According to (4.51), the displacement field u is written as a combination of linear normal
modes and modal derivatives. This expression of the displacement has led to studies on
quadratic manifolds for the reduced-order modeling of nonlinear structures [99, 188]. Here,
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the quadratic terms ηiηj are considered as linear generalized coordinates combined in vector
ηMD. The associate reduction writes

u = Φq =
[
Φ̂ Ξ

]  η

ηMD

 , (4.59)

where the reduction basis Φ includes a selection of rLNM vibration modes at equilibrium
(defined by (4.24) and combined in Φ̂) and the corresponding rLNM(rLNM + 1)/2 modal
derivatives (defined by (4.52) and combined in Ξ).

4.3.4.2 Craig Bampton modes and modal derivatives

The reduction method based on linear vibration modes and their modal derivatives does not
allow to keep physical degrees-of-freedom in the reduced space. One way to fix this issue is
to use modal derivatives in combination with the Craig-Bampton reduction basis [243].

As in (4.44), the displacement u is written as

u =
rb+rc∑
j=1

ϕ̆j(u)η̄j, (4.60)

where the generalized coordinates η̄j are composed of the boundary interface degrees-of-
freedom ub and the modal coordinates ηc (see section 4.3.1.2) and where ϕ̆j stands for the
jth mode of the reduction basis Φ̆(u), denoting the rb + rc Craig-Bampton modes computed
at a certain level of deformation u. In practice, the modes Φ̆(u) are computed in the same
way as the modes Ψ and Θ in (4.26) and (4.29) by using the tangent stiffness matrix KT (u)
instead of the stiffness matrix K in (4.27) and (4.30).

As in (4.46), the displacement u can be expanded in Taylor series around the equilibrium
position η̄ = 0 as

u =
rb+rc∑
j=1

∂u
∂η̄j

∣∣∣∣∣
η̄=0

η̄j + 1
2

rb+rc∑
j=1

rb+rc∑
k=1

∂2u
∂η̄j∂η̄k

∣∣∣∣∣
η̄=0

η̄j η̄k + · · · . (4.61)

The derivatives of the displacement vector with respect to the modal amplitudes η̄j can be
computed from (4.60) and are given by

∂u
∂η̄j

∣∣∣∣∣
η̄=0

= ϕ̆j(0). (4.62)

These derivatives correspond to the linear Craig-Bampton modes. The second order deriva-
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tives of the displacement vector are defined as the modal derivatives

ζ̄jk = ∂2u
∂η̄j∂η̄k

∣∣∣∣∣
η̄=0

j, k = 1, · · · , rb + rc. (4.63)

The expression of the modal derivatives is here derived from the static problem [243]

Ku + gnl(u) = fe, (4.64)

where the imposed static load writes

fe = K
rb+rc∑
j=1

ϕ̆j(0)η̄j. (4.65)

Differentiating two times Eq. (4.64) with respect to the generalized coordinates yields

∂KT

∂η̄k

∂u
∂η̄j

+ KT
∂2u

∂η̄j∂η̄k

= 0. (4.66)

Evaluating this expression at the static equilibrium, the modal derivatives are therefore
computed by solving the linear systems

Kζ̄jk = − ∂KT

∂η̄k

∣∣∣∣∣
η̄=0

ϕ̆j(0). (4.67)

Considering the partitioning generally adopted for the Craig-Bampton method, the modal
derivatives can be expressed as

ζ̄jk =
ζ̄jk,i

ζ̄jk,b

 . (4.68)

The interface component of the modal derivatives ζ̄jk,b is not zero since the interface is not
fixed. Since the interface motion is already fully represented by the constraint modes, the
modal derivatives are turned into fixed interface modes by subtracting the component already
present in the constraint modesζjk

0

 =
ζ̄jk,i

ζ̄jk,b

−
Ψi

I

 ζ̄jk,b. (4.69)

It can be shown that modal derivatives are symmetric [235], i.e.

ζjk = ζkj. (4.70)
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The augmented Craig-Bampton reduction basis Φ and the associated reduction technique
write

u = Φq =
Ψi Θi,rc Z

I 0 0




ub

ηc

ηMD

 , (4.71)

where the modal derivatives ζjk are combined in Z and ηMD are the associated new gener-
alized coordinates. The reduction basis is therefore constructed with rb constraint modes,
rc selected internal vibration modes and the corresponding (rb + rc)(rb + rc + 1)/2 modal
derivatives.

Example 4.4 – Modal derivatives

The modal derivative approach is used to reduce the clamped-clamped beam. The
Craig-Bampton reduction basis composed of one static mode and two transverse fixed
interface LNM (see Fig. 4.2) is enriched with the modal derivative of the static mode
with respect to itself shown in Fig. 4.7. The axial component of this modal derivative
has the shape of a fourth membrane mode and is very close to the actual displacement
predicted at the nonlinear resonance with the full-order model (see Fig. 2.5b).

The nonlinear frequency response curve obtained is shown in Fig. 4.8. This reduced-
order model allows to accurately predict the nonlinear resonance.
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Figure 4.7 – Modal derivative of the constraint mode with respect to itself for the
clamped-clamped beam: transverse displacement ( ) and axial displacement ( ).

In this simple example, the Craig-Bampton basis is composed of 3 linear modes so
that 6 modal derivatives can be computed. Based on our knowledge of the system,
the modal derivative the closest to a fourth membrane mode has been selected. In
practice, for more complex industrial structures, it is not possible to select a priori
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the modal derivatives to include in the reduction basis by hand. Modal derivatives
selection criteria are therefore required. This is the subject of the next section.
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Figure 4.8 – Nonlinear frequency response curves (upward (+) and downward ( )
frequency sweeps): reference solution (+/ ) and solution obtained with the modal
derivative ROM (+/ ).

4.3.4.3 Selection of modal derivatives

The size of the reduction basis increases quadratically with the number of Craig-Bampton
modes. It is however expected that only a few modal derivatives are necessary to capture
the nonlinear behavior of the structure [217]. In order to limit the size of the reduction basis,
it is necessary to define a selection criterion that allows to determine a priori which modal
derivatives should be included in the reduction basis to achieve accurate results.

Different selection procedures are described in the literature but they are often limited to the
selection of modal derivatives of linear normal modes, and not of Craig-Bampton modes. As
orthogonality properties of linear normal modes do not hold for Craig-Bampton modes, these
selection criteria have to be adapted. Three selection criteria are presented here. They all
consist in associating a weight Wjk to each modal derivative ζjk and selecting the best modal
derivative subset based on the magnitude of these weights, the highest values of the weight
corresponding to the most relevant modal derivatives. The selection methods are purely
heuristic methods that differ by the definition of the weight. The choice of the number of
modal derivatives to include in the reduction basis will be discussed further, when presenting
the results on an industrial model (see section 5.4.3).
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Maximum Modal Interaction (MMI) The first approach is adapted from the works of
Tiso [217]. The linear response u(t) of the system to a given external loading is computed
with the full-order finite element model by solving Eq. (2.3) where the nonlinear terms are
neglected (gnl(u) = 0 and fc(u, u̇) = 0). The response is expressed in the Craig-Bampton
reduced space through Eq. (4.1), where Φ is the linear Craig-Bampton basis. Assuming that
the contribution of the modal derivatives is of second order, their mutual relevance can be
assessed by

W
(1)
jk = |ϕj| max(|qj(t)|) · |ϕk| max(|qk(t)|). (4.72)

The actual interaction between the modes is not quantified. It is only assumed that two Craig-
Bampton modes that contribute significantly to the reduced solution are likely to interact a
lot.

Modal Interaction (MI) Going one step further, Jain et al. proposed to consider the
complete interaction between the linear modes in the simulation of duration T [99]. The
weights are defined as

W
(2a)
jk =

∫ T

0
|qj(t)qk(t)|dt, (4.73)

with mass-normalized modes. Alternatively, the weights can also be defined as

W
(2b)
jk = |ϕT

j ϕk|
∫ T

0
|qj(t)qk(t)|dt, (4.74)

with no assumption on the modes normalization.

Symmetric Modal Virtual Work (SMVW) In this criterion, weights are assigned to
modal derivatives according to the virtual work done by the nonlinear linear elastic forces
arising from one linear mode upon another mode. This criterion has been introduced by
Jain et al. [99] and later adapted for static modal derivatives, i.e. obtained by neglecting the
inertial contribution as it is done here [187]. The criterion is used here with Craig-Bampton
modes. As above, a linear simulation allows to compute the time varying amplitude of each
linear generalized coordinate. For each pair of modes, the time tmax

jk is determined by

tmax
jk = arg max [qj(t)qk(t)]2 . (4.75)

The virtual work of mode pair ϕj and ϕk is defined in a symmetric way as

W
(3)
jk =

√[
ϕT

k gnl
(
ϕjqj(tmax

jk )
)]2

+
[
ϕT

j gnl
(
ϕkqk(tmax

jk )
)]2

. (4.76)
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Example 4.5 – Selection of modal derivatives

As shown in example 4.4, for simple academic models, the modal derivatives can be
selected based on our knowledge of the system. For the specific case of the clamped-
clamped beam with a Craig-Bampton basis composed of one static mode (SM) and
two fixed interface linear normal modes (or internal modes – IM), the modal derivative
of the static mode with respect to itself was added in the reduction basis. It could
be interesting to check that the selection criteria presented above lead to the same
conclusion.

The weights computed with each criterion for each modal derivative are shown in
Fig. 4.9. A logarithmic scale is used for the weights to better show the relative contri-
butions of the modes. In the four cases, the modal derivative of the static mode with
respect to itself is indeed characterized by the highest weight.

(a) Selection criterion 1. (b) Selection criterion 2a.

(c) Selection criterion 2b. (d) Selection criterion 3.

Figure 4.9 – Weights associated to each modal derivative (logarithmic scale).
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4.3.5 Nonlinear normal modes-based reduction methods

Nonlinear complex modes (defined in section 2.4) are interesting candidates in devising new
effective and efficient approaches to reduce nonlinear models as they are able to reflect strong
nonlinear behavior. The works of Laxalde and Thouverez [129] and Krack et al. [123] were
the first ones to show that nonlinear modes can be efficient in reduced-order modeling. Since
these works, different reduction methods have been developed by Joannin et al. [102–104].
These methods have only been applied to structures with friction contact nonlinearities but
it is expected that the versatility of nonlinear complex modes would also allow to tackle other
types of nonlinearities such as geometric nonlinearities.

4.4 Partial conclusions

This non-exhaustive literature review focuses on the reduced-order modeling techniques of
nonlinear structures by Galerkin projection. It shows that the different reduction meth-
ods differ by the choice of the reduction basis and how the geometrically nonlinear term is
evaluated in the reduced space. Two families of methods have been identified: data-driven
methods, which require training data obtained from simulations performed with the full-order
model or from experimental measurements, and methods relying on intrinsic modal charac-
teristics of the system. Some methods have been adapted to keep physical degrees-of-freedom
in the reduced space and allow the implementation of contact in an efficient way.

The application of the reduction methods to an academic test case, a clamped-clamped beam,
shows that they are good candidates for the reduction of geometrically nonlinear structures
and already allows to highlight some of their limitations. It is legitimate to ask how these
reduction methods perform for real 3D structures. In the following, the different reduction
methods are applied to an industrial blade structure (see chapter 5). Their use in contact
simulations is assessed in chapter 6 and their extension to cyclically symmetric structures is
studied in chapter 7.
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CHAPTER 5 SINGLE BLADE WITH GEOMETRIC NONLINEARITIES

The objective of this chapter is to develop a reduction methodology to study the dynamics
of single rotating blades with geometric nonlinearities. Three reduction methods are selected
as interesting candidates for the subsequent studies. The considered reduction methods are
applied to an industrial test case subjected to harmonic excitations and the accuracy and
versatility of the methods are assessed with a scalar performance indicator. The influence of
the rotation speed of the blade on its dynamics is also studied by the means of parametric
reduced-order models.

The results of this chapter have been partially presented at the conference ASME Turbo Expo
2020 [60].

5.1 Blade of interest

5.1.1 Open blade model description

The methodology is applied on an industrial blade model based on the NASA rotor 37.
NASA rotor 37 is a transonic axial flow compressor stage with 36 blades (see Fig. 5.1).
It was initially designed and tested at NASA’s Lewis Research Center in the late 70’s as
part of aerodynamic research [154, 184]. NASA rotor 37 notably served as a benchmark to
validate numerical methods and assess the performance of numerical solvers in the fields
of computational fluid dynamics throughout the 1990s [65]. More recently, NASA rotor 37
has been used as a benchmark in structural dynamics, and more specifically for contact
simulations [52, 153, 180]. Its open geometry easily allows methods validation and results
reproducibility and comparison.

Rotor 37 is made of 200-grade maraging steel, a nickel alloy [184], with Young’s modulus E =
180 GPa, Poisson’s ratio ν = 0.3, density ρ = 8, 000 kg/m3 and yield stress σY = 1.38 GPa.
The blade is 7 cm in height. The blade geometry is described with a finite element model
composed of quadratic pentahedral elements. The discretized mesh of the blade is represented
in Fig. 5.2. It counts 20, 657 nodes, i.e. 61, 971 degrees-of-freedom. The blade is clamped
at its root. The first three eigenfrequencies of the blades are f1 = 839 Hz, f2 = 2, 508 Hz
and f3 = 3, 035 Hz (corresponding pulsations: ω1 = 5, 272 rad/s, ω2 = 15, 760 rad/s and
ω3 = 19, 071 rad/s). The three associated mode shapes are represented in Fig. 5.3. They
correspond respectively to the first bending (1B), first torsion (1T) and second bending
(2B) modes. The damping matrix C is computed in the modal domain. Modal damping
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coefficients ξ1−3 = 5 ·10−4 for the first three modes and ξ4+ = 5 ·10−3 for the higher frequency
modes are considered in the whole study in agreement with previous studies performed on
the same structure [52].

Figure 5.1 – Picture of NASA rotor 37 [95].

LE

TE

ez

ex

ey

Figure 5.2 – Single blade of NASA rotor 37 with mesh used for the finite element simu-
lations. The red surface ( ) is clamped. The eight colored nodes are the blade-tip nodes
retained for contact simulations. Among those nodes, the node TE is located at the trailing
edge (•) and the node LE is located at the leading edge (•).

5.1.2 Geometric nonlinearities influence

Previous studies performed on the rotor 37 did not consider the influence of geometric non-
linearities [52,153,180]. In these studies, the dynamics of the structure is studied by solving
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(a) Mode 1 (1B). (b) Mode 2 (1T). (c) Mode 3 (2B).

Figure 5.3 – First three free vibration modes of the NASA rotor 37 blade.

the equation of motion

Mü + C(Ω)u̇ + K(Ω, us)u = fe(t) + fc(u + us, u̇), (5.1)

where the stiffness term is linearized, instead of Eq. (2.3).

However, numerical simulations performed on the finite element model of the rotor 37 blade
show that geometric nonlinearities may affect significantly the response of the structure, even
for small amplitudes of vibration. To illustrate this, the blade is excited at the leading edge
(node LE in Fig. 5.2) in the ey direction by a harmonic excitation of amplitude Ae = 300 N
and pulsation ωe = 2, 000 rad/s. The characteristics of this excitation are summarized in
Table 5.1 (excitation E1)1. Contact interactions are not considered, i.e. fc(u, u̇) = 0 in (2.3).

Amplitude Pulsation Number of Direction
[N] [rad/s] excited nodes

Excitation E1 300 2,000 1 ey

Excitation E2 300 4,000 1 ey

Excitation E3 300 2,000 8 ey

Table 5.1 – Definition of the excitation cases.

The response of the blade to this excitation is computed in the previously studied linear
context, i.e. by neglecting the geometric nonlinearities and solving Eq. (5.1), and in a
nonlinear context, accounting for the geometric nonlinearities. As a first step, the effects
of rotation are neglected, i.e. the structure is assumed to be at rest, with Ω = 0. The
time responses in the ex direction at node LE are compared in Fig. 5.4 both in transient and

1The other excitation cases are used further.
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steady-state regimes. Significant differences are observed between both signals. In particular,
the nonlinear response has a much richer frequency content than the linear one. This is patent
in Fig. 5.5 where the responses are compared in the frequency domain. For the transient linear
solution, energy is only localized at the frequency of the excitation and at the frequencies of
the excited mode shapes. For the transient nonlinear solution, harmonics and subharmonics
of the excitation pulsation and eigenfrequencies are also excited. In steady-state regime, the
linear response has only one harmonic component, as expected by linear theory, while some
harmonics of the excitation pulsation are also excited in the nonlinear case.
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(a) Transient response.
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(b) Steady-state response.

Figure 5.4 – Linear ( ) and nonlinear ( ) responses of the blade at node LE in
the ex direction (time-domain) computed with the full-order finite element model (external
excitation E1).

This example shows that geometric nonlinearities may have a strong effect on the dynamics
of the blade, even for displacement amplitudes smaller than 1 mm that could for instance be
induced by contact interactions with the casing. It is therefore of considerable importance to
be able to account for geometric nonlinearities in the reduced-order models used to predict
contact interactions.

5.2 Reduction methods selection

As detailed in chapter 4, nonlinear projection-based reduced-order modeling techniques differ
by the choice of the reduction basis and by the way the nonlinear forces are evaluated in
the reduced space. Based on the state-of-the-art analysis in chapter 4, three model order
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(a) Transient response.
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(b) Steady-state response.

Figure 5.5 – Linear ( ) and nonlinear ( ) responses of the blade at node LE in the
ex direction (frequency-domain) computed with the full-order finite element model (external
excitation E1).

reduction methods, characterized by different definitions of the reduction basis, are selected
as interesting candidates.

The first reduction method is based on the POD (see section 4.3.2). The second reduction
method is derived from the classical Craig-Bampton method with POD correction of the
nonlinear forces (see section 4.3.3). The third reduction method uses the concept of modal
derivatives (see section 4.3.4). These reduction methods are detailed in the next paragraphs.
The reduction approaches based on nonlinear normal modes have not been retained in this
work because the computation of these nonlinear modes is particularly costly for industrial
structures with geometric nonlinearities. As shown in section 4.1.4, the three reduction
methods are not restricted to simulations in the time domain but can be used in combination
with frequency methods.

5.2.1 Proper orthogonal decomposition

The first reduction method is based on the POD introduced in section 4.3.2. More precisely,
the modified version of the method, which allows to keep physical degrees-of-freedom in the
reduced space, is used. The reduction basis Φ is therefore defined by (4.41), combining
rPOD fixed interface POD modes and rb constraint modes. The nonlinear internal forces are
evaluated in the reduced space with the STEP (see section 4.2).
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5.2.2 Craig-Bampton with POD correction

In the second reduction method, the reduction basis is defined as the Craig-Bampton basis
given by (4.25) and composed of rc fixed interface linear normal modes and rb constraint
modes. The nonlinear internal forces are evaluated in the reduced space with the STEP with
a filtering of the input nonlinear forces through a POD basis, as detailed in section 4.3.3.

5.2.3 Modal derivatives

In the third reduction method, the projection basis is defined as Craig-Bampton modes and
a selection of their modal derivatives, as introduced in section 4.3.4. The reduction basis Φ is
given by (4.71) and composed of rc fixed interface linear normal modes, rb constraint modes
and rMD modal derivatives. The modal derivatives are selected with the selection criteria
introduced in section 4.3.4, as shown below. The nonlinear internal forces are evaluated in
the reduced space with the STEP.

5.3 Performance indicator definition

In order to assess the performance of the reduction methods and ease their comparison, a
scalar performance indicator is defined. The indicator accounts for local and global compar-
ison criteria. It can be computed for each reduction method and for each size of the reduced
space.

The performance indicator I is defined is a weighted sum of Nc different criteria

I =
Nc∑
i=1

wiei. (5.2)

Each criterion ei varies between 0 (worst case) and 1 (perfect agreement between the solutions
obtained with the full- and reduced-order models). The sum of the weighting factors wi

equals 1. The relative magnitudes of the weighting factors reflect the relative influence of the
different criteria in the performance indicator definition. The performance indicator therefore
also ranges from 0 to 1, the higher the performance indicator, the better the reduction
method.

Four criteria are selected in order to account for the global and local differences between the
time solutions obtained with the full-order finite element model uFOM(t) and the reduced-
order model uROM(t) = Φ q(t) [138].
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• The first criterion is defined as the covariance criterion at maximal force amplitude

e1 =

[
xT

1 x2
]2

[xT
1 x1] [xT

2 x2]
, (5.3)

where x1 = uFOM(tmax), x2 = uROM(tmax) and tmax corresponds to the time when the
excitation reaches its first maximal value.

• The second criterion is computed from the relative error on the energy (defined as the
sum of the kinetic energy and the linear energy of deformation) and writes

e2 = max

0, 1 −

√∑
t

[
∆Ē(t)

]2
√∑

t

[
ĒFOM(t)

]2
 , (5.4)

where
Ē(t) = 1

2 u̇(t)TMu̇(t) + 1
2u(t)TKu(t) (5.5)

and
∆Ē(t) = ĒFOM(t) − ĒROM(t). (5.6)

• The third criterion is based on the relative oscillations deviation at blade-tip and is
defined as

e3 = max

0, 1 −

√√√√√ 1
3Ntip

∑
i∈indextip

(
oFOM

i − oROM
i

oFOM
i

)2
 , (5.7)

where Ntip is the number of nodes located at blade-tip, indextip stands for the indices
corresponding to the degrees-of-freedom of these blade-tip nodes and

oi = max[ui(t)] − min[ui(t)]. (5.8)

• The fourth criterion evaluates the relative error on the displacement at the blade-tip
nodes and is defined as

e4 = max
0, 1 −

√∑
t ∆ub(t)T∆ub(t)√∑

t uFOM
b (t)TuFOM

b (t)

 , (5.9)

where
∆ub(t) = uFOM

b (t) − uROM
b (t). (5.10)
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Criteria e1 and e2 are global criteria: they allow to account for the differences in shape and
in energy between the solutions obtained with the full-order and the reduced-order models
over the entire blade. Criterion e3 quantifies the error on the peak-to-peak amplitude of
the oscillations at the blade-tip. Criterion e4 quantifies the error on the amplitude of the
displacement at the blade-tip nodes. Criteria e3 and e4 allow to account specifically for the
local error at the tip. The local criteria are particularly important when considering contact
simulations as contact will occur at blade-tip. The weighting factors are defined such that
global factors (and therefore local factors) account for 50% (w1 = w2 = w3 = w4 = 0.25).

The computation time has voluntarily not been included in the performance indicator. As
shown further, the quantity of interest, i.e. the online computation time required to integrate
in time the equation of motion and re-project the response in the full-order space, is mainly
related to the size r of the reduction basis and nearly independent of the reduction method.
The computation time is the subject of a dedicated investigation in section 5.5.2.

5.4 Overview of reduction methods

The three reduction methods selected in section 5.2 are characterized by different parameters.
Some parameters directly influence the size of the resulting reduced-order model while other
parameters are internal to the methods. The influence of the latter is analyzed in this
section, individually for each reduction method. In order to ease the analysis, the physical
interface kept in the reduced space has only one node. The rb = 3 degrees-of-freedom
corresponding to the node LE at the blade-tip leading edge are kept in the reduced space.
The different reduction methods are used to compute the nonlinear response of the structure
to the harmonic excitation E1 (see Table 5.1). The influence of the reduction basis size will
be studied in section 5.5 when comparing the different reduction methods.

5.4.1 POD

The reduction method by POD is a data-driven method. The displacement snapshots used
to build the basis are obtained by computing the nonlinear response of the blade to a training
excitation with the full-order model during one period. As a first step, the training excitation
is defined as the harmonic excitation E1 in Table 5.1. A reduction basis composed of rb = 3
static modes and rPOD = 10 POD modes is built. According to Eq. (4.34), these 10 POD
modes capture 99.7% of the energy of the training data. The reduced-order model is used
to compute the response to the external excitation E1, i.e. the training excitation and the
external excitation have the same characteristics. The results are shown in Fig. 5.6. An
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excellent agreement between the solutions is observed, even after the first time period used
in the training phase.
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Figure 5.6 – Comparison of the reference
solution ( ) with the solution obtained
with the POD method with training excita-
tion E1 ( ).
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Figure 5.7 – Comparison of the reference
solution ( ) with the solutions obtained
with the POD method: At = 25 N ( ),
At = 300 N ( ), At = 500 N ( ).

As mentioned above, one of the main drawbacks of the POD reduction method is the de-
pendence of the reduced basis on the simulation training. Figures 5.7, 5.8 and 5.9 show the
sensibility to changes in the simulation training, respectively to changes in amplitude of the
training excitation, changes in pulsation of the training excitation and changes of excited
degrees-of-freedom.

Figure 5.7 has been obtained by modifying the amplitude At of the training excitation, all
other parameters keeping the same values as previously. It shows that changing the amplitude
of the training excitation does not have a negative effect on the capacity of the reduced basis
to represent the response of the structure, as long as the amplitude is sufficient to excite
the nonlinearities of the structure. Figure 5.8 suggests that the pulsation of the training
excitation ωt has also little influence on the results as long as it mainly excites the first mode
of the structure. Figure 5.9 has been obtained by modifying the number of nodes Nt on which
the external excitation is applied in the training excitation. The excited nodes are located
at the tip (colored nodes in Fig. 5.2, counted from the node LE). The figure shows that the
spatial shape of the excitation has an influence on the results. The more the spatial shape
of the training excitation differs from the external excitation applied, the worst the results
become.
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Figure 5.8 – Comparison of the reference
solution ( ) with the solutions obtained
with the POD method: ωt = 1, 000 rad/s
( ), ωt = 2, 000 rad/s ( ), ωt =
104 rad/s ( ).
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Figure 5.9 – Comparison of the reference
solution ( ) with the solutions obtained
with the POD method: Nt = 1 ( ), Nt =
2 ( ), Nt = 8 ( ).

5.4.2 Linear basis with POD correction

A Craig-Bampton reduction basis with rb = 3 constraint modes and rc = 10 internal modes is
considered. Without correction, this reduced model does not capture the nonlinear nature of
the system. This is illustrated in Fig. 5.10, which compares the reference nonlinear solution
of the structure with the solution obtained with the usual linear Craig-Bampton reduction
method where the nonlinear internal forces are evaluated with the STEP. Very poor results
are obtained, even worse than when geometric nonlinearities are simply neglected.

As explained in section 4.3.3, results can be enhanced by filtering the nonlinear internal forces
through a POD correction before applying the STEP. The training excitation used for the
POD filtering of the nonlinear internal forces is here defined as the excitation E1 in Table 5.1,
i.e. a harmonic excitation of amplitude At = 300 N and pulsation ωt = 2, 000 rad/s applied
at node LE in the ey direction.

Figure 5.11 shows the influence of the number of POD vectors rf retained for the forces
filtering. When the number of POD vectors is too small, the nonlinear internal forces are
over-filtered and therefore not well represented in the reduced basis. When rf is too large,
the solution tends toward the solution obtained without filtering. The optimal number of
POD vectors is found to be rf = 8 in this particular case.
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Figure 5.10 – Comparison of the nonlin-
ear reference solution ( ) with the solu-
tion obtained with the CB method without
POD correction ( ).
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Figure 5.11 – Comparison of the refer-
ence solution ( ) with the solutions ob-
tained with the CB method with POD cor-
rection: rf = 4 ( ), rf = 8 ( ) and
rf = 12 ( ).

Similarly to what has been observed in section 5.4.1, the amplitude and the pulsation of the
training solution have little influence on the reduced solution. The influence of the spatial
shape of the training excitation used for the POD filtering is more pronounced.

5.4.3 Modal derivatives

The blade is reduced through a basis composed of the Craig-Bampton modes and the asso-
ciated modal derivatives. In a first step, the reduction basis is composed of rb = 3 static
modes, rc = 5 internal modes and the rMD = 36 corresponding modal derivatives. It should
be noted that it is not guaranteed that the modal derivatives obtained with the methodology
described in section 4.3.4 are orthogonal and linearly independent. In order to avoid having
redundant information in the reduced basis, the modal derivatives are orthonormalized with
a modified Gram-Schmidt procedure which also allows to remove from the basis the linearly
dependent vectors. This transformation allows to get better results and to accelerate the
convergence of the nonlinear integration scheme. In practice, a mode is removed from the
basis when the ratio between the norm of the resulting orthogonolized mode and the norm
of the initial mode is less than 10−3. Here, the Gram-Schmidt procedure leads to remove two
modal derivatives from the basis.
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The reduction method does not depend on any training simulation but the resulting reduced
model has a larger size than reduced models obtained with the other reduction methods as
the number of modal derivatives increases quadratically with the number of linear modes.
It is however expected that all modal derivatives are not necessary to capture the nonlinear
behavior of the structure. A subset of modal derivatives needs to be selected a priori with
an appropriate selection criterion. In the following, the different modal derivatives selection
criteria defined in section 4.3.4 are applied to the blade model and compared.

Different reduced-order models are built with rb = 3 degrees-of-freedom (corresponding to
the node LE) kept in the reduced space. The reduction bases are composed of rc = 10
internal modes and rMD = 10 modal derivatives selected according to the different criteria.
As a reminder, the criteria consist in associating a weight Wjk to each modal derivative and
selecting the modal derivatives with the highest weights. The training excitation, used in
the dynamic simulation required for the weights computation, is defined as the harmonic
excitation E1.

The reduced-order models are used to compute the response of the structure to the excitation
E1. The transient responses at node LE obtained with the different selection criteria are
shown in Fig. 5.12a and Fig. 5.12b and compared with the reference nonlinear solution. The
response obtained with a reduction basis composed of rMD = 10 randomly chosen modal
derivatives is also represented in Fig. 5.12a.
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(a) With 10 randomly chosen MD ( ), the 10
MD selected with criterion 1 ( ).
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(b) With the 10 MD selected with criterion
2a ( ), criterion 2b ( ) and criterion
3 ( ).

Figure 5.12 – Comparison of the reference transient response of the structure ( ) with
the responses obtained with the modal derivative approach.
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Qualitatively, the results underline the importance of defining a good selection criterion
for the modal derivatives. Whereas a relatively good match is observed between the curves
corresponding to the selection criteria 1 to 3 and the reference nonlinear solution, the solution
obtained with the randomly chosen modal derivatives is very inaccurate. These results also
allow to quantitatively assess the relevance of each selection criterion. Among the studied
criteria, criteria 2a and 2b yield the best results, followed by criterion 1 and criterion 3.
All the criteria allow to capture the nonlinear features of the response. Quantitatively, the
performance indicator is given by I = 0.93 for criterion 1, I = 0.96 for criterion 2a, I = 0.97
for criterion 2b, and I = 0.91 for criterion 3. Other studies, that are not detailed here for
the sake of conciseness, have been performed with other external excitations and confirm the
choice of the selection criterion 2b for the next analyses.

The weights associated to each modal derivative (according to selection criterion 2b) and the
ranking of the 10 selected modal derivatives are shown in Fig. 5.13. The modal derivative
with the highest weight is the derivative of the second static mode with respect to itself,
the modal derivative with the second highest weight is the derivative of the second static
mode with respect to the third static mode, and so on. More generally, the modal derivatives
included in the reduction basis correspond to the derivatives of the static modes with respect
to themselves and of the static modes with respect to the first internal modes.
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Figure 5.13 – Weights W
(2b)
jk associated to each modal derivative and their ranking (loga-

rithmic scale).

The transient response obtained with criterion 2b is compared in Fig. 5.14a with the response
computed with a reduction basis where all rMD = 36 modal derivatives are included. The
addition of the remaining 26 modal derivatives in the reduction basis does not significantly
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enhance the performance of the reduction method. Indeed, the performance indicator is only
slightly increased to I = 0.98 while the size r of the reduction basis is multiplied by more
than 2. These results confirm that it is not necessary to include all modal derivatives in the
reduction basis to have good performance. This selection criterion is therefore a powerful tool
that allows to reduce the size of the reduction basis while ensuring an accurate prediction of
the structure dynamic response.
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(a) Transient regime.
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(b) Steady-state regime.

Figure 5.14 – Comparison of the reference transient response of the structure ( ) with
the responses obtained with the modal derivative approach with all rMD = 36 modal deriva-
tives ( ) and with the best 10 modal derivatives according to selection criterion 2b ( ).

The steady-state responses computed with the same reduction bases are shown in Fig. 5.14b
and compared with the reference nonlinear solution. The different reduced models provide
very accurate predictions and the initial errors do not build up during the simulation, which
underlines the relevance of the proposed selection criterion.

5.4.4 Reduced nonlinear internal forces

In the three selected reduction methods, the nonlinear internal forces due to large dis-
placements are evaluated in the reduced space with the STEP described in section 4.2.
This identification method is based on static analyses with imposed displacements of the
form (4.14), (4.20) and (4.21). According to the theoretical formulation of the ROM based
on the general elasticity theory, the identified coefficients are independent of the level at
which the data are obtained. In practice, however, this is not necessary the case due to
the possible inconsistency between the general elasticity formulation and the finite element
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formulation in the commercial software.The amplitude of the imposed displacement umax, i.e.
the absolute values of the modal coordinates qi, qj and qk, has to be sufficiently large to acti-
vate the nonlinear behavior of the structure, but sufficiently small to stay in the convergence
limit of the finite element software.

The reduction basis is built based on the modal derivative approach, with rb = 3 static modes,
rc = 5 internal modes and rMD = 10 modal derivatives. The nonlinear stiffness elements of
tensors Ã and B̃ in (4.10) are identified with the STEP by prescribing displacements of
amplitudes umax. The dominant coefficients are given in Fig. 5.15 for three values of umax

below the convergence limit of the finite element software. The identified values of the
coefficients are extremely close for the three values of umax considered. This confirms the
consistency between the general elasticity formulation and the formulation of the geometric
nonlinearities in the finite element software.
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(a) Quadratic stiffness.
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(b) Cubic stiffness.

Figure 5.15 – Dominant reduced nonlinear stiffness coefficients identified with the STEP:
umax = 0.1 cm ( ), umax = 5 cm ( ) and umax = 7 cm ( ).

5.5 Confrontation of reduction methods

Now that the three reduction methods selected have been presented and studied individually,
the indicator of performance introduced in section 5.3 is used to compare the three reduction
methods in terms of accuracy and versatility. The reduction methods are also compared in
terms of computational cost.

The reduced-order models are built in the offline stage of the numerical procedure. In order
to ease the comparison, the physical interface kept in the reduced space has only one node.
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The rb = 3 degrees-of-freedom corresponding to the node LE at the blade-tip leading edge
are kept in the reduced space. For the three reduction methods, the nonlinear internal forces
are evaluated with the STEP (see section 4.2). The training excitation used in the offline
stage for the construction of the POD reduction basis, for the POD filtering of the nonlinear
forces in the Craig-Bampton method and for the selection of the modal derivatives is defined
as the harmonic excitation E1.

The characteristics of the reduction bases are summarized in Table 5.2. In order to study
how richer reduction bases can enhance the accuracy of the predictions, different sizes r of
the reduction bases are considered for each method.

rb rc rMD rPOD

POD 3 / / r − 3
CB with POD correction 3 r − 3 / /

CB and MD 3 4 r − 7 /

Table 5.2 – Characteristics of the reduction bases.

5.5.1 Accuracy

As mentioned in section 2.1.2, the flow between the blades is particularly complex due to
the geometry of these elements, the relative movements between the rotor and the stator
and the extreme conditions in terms of pressure and temperature. This induces complex
unsteady loadings on the blades, which are coupled with the vibrations of the blades and
require aeroelastic analysis to be accurately predicted. The study of unsteady aerodynamics
is out of the scope of this thesis. The aerodynamic loading is here represented as a harmonic
external excitation at the tip of the blade.

The accuracy of the reduction methods is first assessed in the specific case where the external
excitation is defined in the same way as the training excitation. Although the training
excitation is limited to a single period, the external excitation is here extended to ten periods
in order to assess the capability of the reduced-order models to accurately predict nonlinear
transient phenomena.

The response of the structure is computed for each reduction method, for different sizes of
the reduction bases, and the performance indicator is evaluated for each case. The evolution
of I for each reduction method with the number of vectors in the reduction basis r is shown in
Fig. 5.16. The reduction bases built by POD clearly outperform the other reduction methods
in this particular case. Very good results are obtained with a small reduction basis size; the
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performance indicator takes values very close to 1 when r is larger than 10. According to
Eq. (4.34), these 10 POD modes capture 99.7% of the energy of the training data.
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Figure 5.16 – Evolution of the performance indicator for the different reduction methods
(POD (•), Craig-Bampton with POD filtering (♦), modal derivatives (▲)) as a function of
the size of the reduction basis (external excitation E1 and training excitation E1).

The Craig-Bampton basis with POD filtering and the modal derivative approach give slightly
less accurate results. Smaller reduction bases are required with the Craig-Bampton method
to provide satisfactory results (performance index larger than 0.9) but it is remarkable that
the modal derivative approach allows to reach higher performance indicators. For large sizes
of the reduction basis, the difference in performance criteria is reflected in the global criteria:
reduction bases with modal derivatives allow a better representation of the global behavior of
the blade dynamics. This can be highlighted by comparing the von Mises stress fields obtained
with the different approaches. Figure 5.17 shows the von Mises stress fields corresponding to
the displacement fields predicted by the different reduction methods for a constant reduction
basis size r = 20. The stress field is computed at the time tmax corresponding to the second
peak of the excitation. This figure confirms that the solution obtained with the modal
derivatives is more accurate at the scale of the entire blade than the solution obtained with
the Craig-Bampton method.

The von Mises stress field is also represented for the POD reduction method and is very
close from the reference stress field computed with the full-order finite element model. This
confirms that the reduction method by POD gives excellent results both locally and globally,
which is coherent with the close-to-one values of the performance indicator obtained.
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(a) Reference solu-
tion.
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Figure 5.17 – Comparison of the von Mises stress fields at tmax obtained with the full-order
finite element model and with three reduced-order models (r = 20).

5.5.2 Computational cost

Keeping in mind that the main objective of the reduction methods is to accelerate the simula-
tions while ensuring a high level of accuracy, this section is dedicated to the confrontation of
the three employed reduction methods in terms of computation times. It is worth reminding
that the idea of reduced-order modeling is to invest computational effort in the offline stage
in order to reduce the computational cost of the online stage. In industrial applications, the
primary objective is to minimize the computational time required by the online stage (online
time) so that repeated time simulations can be performed with the same reduced model in the
most efficient way. For the sake of completeness, a comparative study of the computational
time required by the offline stage (offline time) is also presented in this section. This allows
to have an idea of the overall reduction time, which is a measure of the total effort needed
to compute the response of the structure using a reduction procedure.

The different computation times presented in the following correspond to single CPU se-
quential times on an Intel Xeon E5-2698 v4 processor (2.2 GHz). The core numerical tool is
written in Python. The computation times are compared for the different reduction methods
with the same reduction basis size r = 20 which leads to performance indicators larger than
0.9 for the three reduction methods studied.

The offline time consists in the sum of the time t1 required to build the reduction basis, the
time t2 required to identify the nonlinear forces with the STEP and the time t3 required to
project the full-order matrices onto the reduced space. The time t3 is completely negligible
with respect to t2. Similarly, t1 is usually negligible with respect to t2, except for the POD
reduction method where a full nonlinear simulation has to be performed. When POD filtering
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of the nonlinear forces is not considered, t2 is proportional to r3, where r is the number of
vectors in the reduction basis. When POD filtering is considered, the time of the full-order
nonlinear simulation has to be accounted for in t2. Note that for the specific model studied,
each static nonlinear simulation with imposed displacements takes 40 s.

Table 5.3 compares the offline costs of the three studied reduction methods, for a constant
basis size r = 20. As expected, the two reduction methods based on a POD require slightly
more computational resources. It should be pointed out that the elements of tensors Ã and B̃
of the same category (i.e. coefficients with equal indices, coefficients with two unequal indices
and coefficients with three unequal indices) can be identified independently. For instance,
according to Eq. (4.19), the vectors Ã11 and B̃111 can be identified independently from the
vectors Ã22 and B̃222. Parallel computing can therefore be used to reduce computation
times. In practice, the nonlinear force static evaluations performed on the full-order finite
element model can be done in parallel to build the tensors Ã and B̃, allowing to divide the
computation time by the number of CPU cores or the number of software licenses available
if a commercial finite element software is used.

Offline time [min] Online time [s]
POD 1,350 5

CB with POD correction 1,360 5
CB and MD 1,320 5

Reference solution / 12,000

Table 5.3 – Comparison of the offline and online computation times for the three reduction
methods (r = 20) and the high fidelity model.

The online time is mainly dominated by the time corresponding to the numerical integration
of the equation of motion. Table 5.3 compares the online time costs of the different reduc-
tion methods (with a reduction basis size r = 20) to each other and to the time taken by
the nonlinear solver of SAMCEF to integrate numerically the full-order equation of motion.
These computation times are measured in the framework of the simulations performed in
section 5.5.1, i.e. simulations of 0.03 s with a time step of integration h = 10−4 s. The online
time is directly related to the size r of the reduction basis, and nearly independent from the
reduction method used. The different reduction methods allow to reduce the computation
time by a factor 2, 400 with respect to the nonlinear reference model. However, as shown in
the previous section, reduction bases of the same size r do not provide the same performance
for the different reduction methods. For instance, reduced models built by POD allow to
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reach a performance indicator of 0.9 for r = 10. For such a reduction basis size, the online
computation time drops down to 2 s. A compromise therefore has to be found between
accuracy of the results and computation time.

5.5.3 Versatility

The performance indicator I is used here to assess the robustness of each reduction method
with respect to a variation of the external excitation in terms of pulsation, amplitude or
spatial shape, i.e. to assess the accuracy of the reduced-order models when used to predict
the structure dynamics for an excitation different from the excitation used to build the ROM.

5.5.3.1 Pulsation and amplitude variation

The reduction bases used in Fig. 5.16 are reused to compute the response of the structure
to the harmonic excitation E2, which is characterized by the same amplitude, direction and
spatial shape than E1 but has a pulsation ωe = 4, 000 rad/s. The performance indicator is
computed for the different methods, for each reduction basis size. The results are presented
in Fig. 5.18.
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Figure 5.18 – Evolution of the performance indicator for the different reduction methods
(POD (•), Craig-Bampton with POD filtering (♦), modal derivatives (▲)) as a function of
the size of the reduction basis (external excitation E2 and training excitation E1).

The performances of the different reduction methods do not seem to be affected when an-
other excitation pulsation is considered, provided the pulsation is sufficiently close to the
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training pulsation so that the external excitation does not significantly excite other modes
of the structure. The relative performances of the methods are also conserved: the POD
method provides the best results. The modal derivative method provides better results than
the Craig-Bampton method with POD filtering when large sizes of the reduction basis are
considered. The study of the robustness of the methods to change in the amplitude of the
external excitation leads to similar conclusions.

5.5.3.2 Spatial shape variation

The robustness of the methods with respect to variation of the spatial distribution of the
external excitation is then assessed. The reduction bases used in Fig. 5.16 and in Fig. 5.18
are used to compute the response of the structure to the harmonic excitation E3 which has
the same amplitude, pulsation and direction than E1 but is distributed on the Ne = 8 blade-
tip nodes represented in Fig. 5.2. The results are presented in Fig. 5.19. The performance
of the POD method clearly drops when a different spatial distribution of the excitation
is considered. The performance of the Craig-Bampton method with POD filtering is also
slightly decreased. The performance of the modal derivative method remains approximately
the same. A wider numerical study, considering different excitations and different numbers
of physical degrees-of-freedom in the reduced space, confirms these conclusions (not shown
here for the sake of conciseness). The modal derivative approach appears therefore as the
most versatile reduction method among those analyzed here.

POD reduction method The results plotted in Fig. 5.19 highlight the lack of versatility
of the POD reduction method when the external excitation differs from the excitation used as
a training to build the reduction basis. Based on this observation, a more systematic study
of the influence of the shape of the training excitation has been performed. In practice,
different POD bases have been built, based on different training simulations. The POD
bases are composed of rb = 3 static modes and rPOD = 10 POD modes obtained by SVD of
the response of the structure to harmonic external excitations distributed on Nt = 1, 2, . . . , 8
blade-tip nodes. The eight reduction bases have then been used to compute the response
of the structure to different harmonic external excitations distributed on Ne = 1, 2, . . . , 8
blade-tip nodes and the value of the performance indicator has been computed for each
combination of POD basis and external excitation. Figure 5.20 represents how I evolves
when the spatial distribution of the POD training excitation and the spatial distribution of
the external excitation vary. As expected, the highest values of the performance indicator are
obtained on the main diagonal of the figure, i.e. when the POD basis is used to compute the
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Figure 5.19 – Evolution of the performance indicator for the different reduction methods
(POD (•), Craig-Bampton with POD filtering (♦), modal derivatives (▲)) as a function of
the size of the reduction basis (external excitation E3 and training excitation E1).

response of the structure to an external excitation whose spatial shape corresponds to the
spatial shape of the training excitation. When the spatial shape of the external excitation
differs from the training excitation applied, the performance indicator decreases. This figure
provides guidelines for the choice of the training excitation to get the most robust reduction
method. As a general rule, the training excitation should be as close as possible to the external
excitation for which the reduced model will be used. In this particular case, choosing Nt = 4
seems to be a good compromise as it leads to performance indicator values higher than 0.95
when Ne varies between 1 and 8. It is also interesting to notice that the method is more
robust for Nt = 8 than for Nt = 1. In particular, using a reduction basis with Nt = 8 to
compute the response of the structure to an external excitation with Ne = 1 provides better
results than using a reduction basis with Nt = 1 to compute the response of the structure to
an external excitation with Ne = 8.

In order to improve the performance of the POD reduction method, it is also possible to
build the reduction basis by combining in the snapshots matrix (4.31) two sets of data
corresponding to the time responses of the structure to two different external excitations.
Here, the snapshots are extracted from the response of the structure to an excitation applied
at the trailing edge extremity at blade-tip (node TE, see Fig. 5.2) and to an excitation
applied at the leading edge extremity at blade-tip (node LE). A POD basis composed of
rb = 3 static modes, rPOD = 10 POD modes is built. The reduction basis is used to compute
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Figure 5.20 – Performance indicator I as
a function of the number of nodes excited in
the POD training (Nt) and by the external
excitation (Ne) with rb = 3 and rPOD = 10.
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Figure 5.21 – Performance indicator I as
a function of the number of nodes excited by
the external excitation (Ne) with rb = 3 and
rPOD = 10 (training excitations at LE and
TE).

the response of the structure to different external excitations and the performance indicator
is computed in each case. As shown in Fig. 5.21, this procedure allows to keep a performance
indicator close to one for a large range of excitations.

With the growing popularity of artificial intelligence, different authors have proposed machine
learning techniques to compensate for the lack of versatility of data-driven methods such as
the POD method. The main idea is to divide the parameter space into several local regions
and to build a reduced-order model for each region individually. Deep learning techniques,
such as clustering algorithms, can then be used to choose the best reduced-order model during
a single numerical simulation and to update it [74, 81].

5.6 Angular speed influence

The results presented in sections 5.1 to 5.5 have been obtained by neglecting the rotation of
the blade. In practice, the structure has a non-zero angular speed Ω. The nominal angular
speed of the rotor 37 is ΩN = 17, 188.7 RPM (approximately 1, 800 rad/s) [184]. As shown
when deriving the equation of motion (2.3), the rotation speed has a direct influence on
the stiffness matrix, the nonlinear internal forces and the gyroscopic matrix, and therefore
influences the dynamics of the blade.
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The Campbell diagram of the blade is shown in Fig. 5.22. It represents the evolution of the
first three eigenfrequencies of the blade (first bending mode, first torsion mode and second
bending mode) with the angular speed when the centrifugal effects are computed through
linear or nonlinear static analyses, i.e. by neglecting or not the term g(us) in (A.38). In
SAMCEF, the linear and nonlinear static analyses are done respectively with the modules
Asef and Mecano. The first engine order lines are also plotted in the Campbell diagram.
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Figure 5.22 – Campbell diagram of the NASA rotor 37 blade with linear prestress ( )
and nonlinear prestress ( ) and first engine order lines ( ).

The rotation speed has a strong effect on the frequencies of the bending modes. For instance,
the frequency of the first bending mode increases by 35% over the rotation speed range
[0 ; 20, 000] RPM. It is important to account for these effects of the blade rotation in the
reduced-order models.

5.6.1 Reduced-order model at non-zero angular speed

In the previous sections, reduced-order models built at Ω = 0 have been used to study the
dynamics of the structure at Ω = 0. To predict the time response of the blade at a higher
angular speed Ω = Ω⋆, it could be tempting to use the reduction basis built at zero angular
speed in combination with the stiffness matrix extracted from the finite element software at
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Ω⋆. This way of proceeding does not, however, provide accurate results because the reduction
basis built at zero rotation speed is not suitable to represent the response at high rotation
speeds.

To illustrate this, the modal derivatives reduction basis built at zero angular speed (size
r = 18) is used to compute the response to the harmonic excitation E1 at different rotation
speeds. The performance indicator is computed for each case and the results are presented in
Fig. 5.23. The performance of the method clearly drops when the rotation speed departs from
zero. The same exercise is performed with a reduced-order model built at Ω = 5, 000 RPM.
Good performances are obtained around 5, 000 RPM but the performance drops when a wider
angular speed range is considered. These results motivate the need to build reduced-order
models valid in specific ranges of the angular speed.
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Figure 5.23 – Performance indicator as a function of the angular speed with MD reduced-
order models built at Ω = 0 RPM (×) and at Ω = 5, 000 RPM (×) (external excitation E1).

5.6.2 Parametric reduced-order model

Research has been conducted on developing reduced-order models that can accommodate the
variation of specific parameters in the reduced space [9,84,228]. These models are referred to
as parametric reduced-order models. In the specific field of turbomachinery, these parametric
models are particularly useful to account for the influence of the rotation speed on the
dynamic properties of the structure. Indeed, such models allow to avoid building individual
reduced-order models for each single rotation speed by repeating the computationally costly
offline part of the numerical procedure.
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The basic idea is to build a reduced-order model valid in a specific rotation speed range
[Ωα ; Ωω]. In practice, the centrifugal stiffening effects have to be taken into account when
building the reduction basis and when computing the stiffness (stiffness matrix and nonlinear
internal forces) of the structure.

5.6.2.1 Construction of the reduction basis

In order to build a reduction basis encompassing the main features of the dynamics of the
structure at different rotation speeds, the reduction basis is enriched with modes at various
operating points [239]. In practice, a good compromise is obtained by computing the reduc-
tion basis with the chosen reduction technique at three distinct rotation speeds Ω0, Ω1 and
Ω2 in the interval [Ωα ; Ωω]. The modes are combined in a matrix ΦΩ by

ΦΩ =
 I 0 I 0 I 0
Ψ(0)

i X(0) Ψ(1)
i X(1) Ψ(2)

i X(2)

 , (5.11)

where Ψ(j)
i are the Guyan static modes at rotation speed Ωj and X(j) are the fixed interface

linear normal modes, POD modes or modal derivatives (depending on the choice of the re-
duction method) at rotation speed Ωj. Since the interface motion is already fully represented
by the Guyan static modes at Ω0, the other two sets of constraint modes are modified to fixed
interface modes by subtracting the components already present in the first set of constraint
modes. The modified matrix Φ̄Ω is defined as

Φ̄Ω =
[
Φ̄Ω

i Φ̄Ω
m

]
, (5.12)

where

Φ̄Ω
i =

 I
Ψ(0)

i

 and Φ̄Ω
m =

 0 0 0 0 0
X(0) Ψ(1)

i − Ψ(0)
i X(1) Ψ(2)

i − Ψ(0)
i X(2)

 . (5.13)

The obtained reduction basis Φ̄Ω
m is then orthonormalized by a SVD and reduced by retaining

only the s modes corresponding to the highest singular values, forming the basis Φ̄Ω
m,s. The

reduction basis of the parametric model is defined as

Φ =
[
Φ̄Ω

i Φ̄Ω
m,s

]
. (5.14)
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5.6.2.2 Construction of the reduced-order model at a specific rotation speed

The equation of motion of a rotating structure (2.3) highlights that the rotation speed has
an influence on the gyroscopic matrix, the stiffness matrix and the nonlinear internal forces.
Whereas the gyroscopic matrix G(Ω) can be directly computed from the knowledge of the
rotation speed and the mass matrix by (A.32), this is not the case for the stiffness terms.

Some authors have suggested that the stiffness matrix K(Ω, us) can be estimated by a poly-
nomial approximation. When the prestressed state us is computed through a linear static
analysis, i.e. by neglecting the term g(us) in (A.38), Sternchüss and Balmes [211] suggest
that the dependency of the stiffness matrix on the rotation speed can be accurately described
by a quadratic polynomial of the square rotation speed

K(Ω, us) = K(0) + Ω2K(1) + Ω4K(2), (5.15)

where the coefficients K(0), K(1) and K(2) are computed from the knowledge of the stiffness
matrix at the three rotation speeds Ω0, Ω1 and Ω2. In the specific case where Ω0 = Ωα = 0,
Ω1 = Ωω/2 and Ω2 = Ωω, the coefficients are given by



K(0) = K(0)

K(1) = 1
3Ω2

ω

[
16K

(
Ωω

2

)
− K (Ωω) − 15K(0)

]

K(2) = 4
3Ω4

ω

[
K (Ωω) − 4K

(
Ωω

2

)
+ 3K(0)

] (5.16)

When the prestressed state us is computed through a nonlinear static analysis, i.e. by
solving (A.38), Khalifeh et al. [117] suggest that a better estimation of the stiffness matrix
can be obtained by interpolating it with a higher order polynomial by

K(Ω, us) =
Np∑
p=0

Ω2pK(p). (5.17)

These relations remain valid for the reduced stiffness matrix K̃(Ω, us), which can be computed
at an arbitrary rotation speed in the same way.

The nonlinear internal forces in the reduced space are given by (4.13), where the coefficients
Ã and B̃ depend on the prestressed state. Parametric reduced-order models have been
most of the time studied for linear systems [117, 126, 131, 211, 239]. In a nonlinear context,
Balmaseda et al. built a parametric reduced-order model of a geometrically nonlinear system
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by computing the coefficients Ã and B̃ at a single rotation speed and using these values
whatever the rotation speed [13]. In practice, if Ã and B̃ are evaluated at zero rotation
speed, the nonlinear term is computed by

g̃m
nl(q, us) =

r∑
i=1

r∑
j=i

Ãm
ij (us = 0) qiqj +

r∑
i=1

r∑
j=i

r∑
k=j

B̃m
ijk (us = 0) qiqjqk, (5.18)

whatever the rotation speed. Even if this way of proceeding provides interesting results, it
is proposed here to apply the same interpolation as the stiffness matrix for the nonlinear
term, i.e. to interpolate the tensors Ã and B̃ from their values at given rotation speeds. In
practice, for Np = 2, the coefficients Ã and B̃ at a given rotation speed are computed by

X̃ (us [Ω]) = X̃(0) + Ω2X̃(1) + Ω4X̃(2), (5.19)

where X̃ stands for Ã or B̃ and

X̃(0) = X̃(us [Ω = 0])

X̃(1) = 1
3Ω2

ω

[
16X̃

(
us

[
Ω = Ωω

2

])
− X̃ (us [Ω = Ωω]) − 15X̃(us [Ω = 0])

]

X̃(2) = 4
3Ω4

ω

[
X̃ (us [Ω = Ωω]) − 4X̃

(
us

[
Ω = Ωω

2

])
+ 3X̃(us [Ω = 0])

] (5.20)

For more clarity, Fig. 4.1 is adapted for parametric reduced-order models in Fig. 5.24.
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Figure 5.24 – Offline and online stages in parametric model order reduction.

5.6.2.3 Application to the rotating blade

The reduction basis is built by SVD of the reduction bases computed with the modal deriva-
tives approach at the three rotation speeds 0, Ωmax/2 and Ωmax. Because the difference
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between the eigenfrequency of the first bending mode computed with a linear or a nonlinear
prestress of the structure is very small (see Fig. 5.22), the stiffness matrix is interpolated
with (5.15).

As a first step, the upper limit of the rotation speed interval is set to Ωmax = 5, 000 RPM.
The size of the reduced basis is fixed to r = 45. The parametric reduced-order model is
used to compute the response of the blade to the excitation E1 at different rotation speeds
Ω ∈ [0 ; 5, 000] RPM. Figure 5.25a compares the values of the performance indicator for
different speeds of rotation when the nonlinear term g̃nl is evaluated by its expression at zero
rotation speed, i.e. by (5.18), and when the nonlinear term g̃nl is evaluated by (4.10) where
Ã (us) and B̃ (us) are interpolated by (5.19) from the values at 0, 2, 500 and 5, 000 RPM.
The parametric reduced-order model where the nonlinear term is not interpolated provides
satisfying results in the rotation speed range of interest. However, Fig. 5.25a shows that
interpolating the nonlinear terms enhances the performance indicator in the whole rotation
speed range. As expected the performance of the parametric reduced-order model slightly
decreases when the rotation speed departs from the values 0, 2, 500 and 5, 000 RPM used to
build the model.
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(a) Ωmax = 5, 000 RPM.
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(b) Ωmax = 20, 000 RPM.

Figure 5.25 – Performance indicator as a function of the angular speed: without interpo-
lation of g̃nl (×) and with interpolation of g̃nl (×).

A second parametric reduced-order model is built with the same approach on a wider rotation
speed range, for Ωmax = 20, 000 RPM. The results are represented in Fig. 5.25b. Although
the performance is slightly decreased, the results show that interpolating the nonlinear term
still allows to get better results than without interpolation.
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5.7 Partial conclusions

The study of the NASA rotor 37 blade subjected to a harmonic loading and accounting for
geometric nonlinearities illustrates the strengths and weaknesses of the different reduction
methods investigated. The model reduction by POD gives excellent results, provided that the
shape of the excitation is known a priori. The Craig-Bampton method with POD filtering
of the nonlinear forces provides good results locally at the blade-tip, but fails to provide
accurate stress fields which indicates an inaccurate representation of the displacement fields
far from the boundary. The modal derivative approach provides good results, both locally
and globally, and is robust with respect to changes of the external excitation. Larger sizes
of reduction bases are however required to capture the nonlinear dynamics of the structure
compared to the other reduction methods.

In the following, only the POD and the modal derivative approaches are considered to study
the blade subjected to contact interactions. The Craig-Bampton method with POD filtering
of the nonlinear forces is not considered in the subsequent studies as it does not allow to
capture the global dynamics of the blade.
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CHAPTER 6 SINGLE BLADE WITH GEOMETRIC AND CONTACT
NONLINEARITIES

As shown in the previous chapter, simulating the dynamics of not too complex geometri-
cally nonlinear structures subjected to known harmonic excitations with full-order models is
computationally expensive, but feasible. In this context, reduced-order models provide an
efficient alternative to full-order models. By contrast, simulating the nonsmooth dynamics
of industrial structures subjected to contact interactions with full-order models would be
computationally too demanding and is not feasible for practical applications. To give an
idea, one cycle of revolution of an industrial blade subjected to contact interactions with a
surrounding casing can be simulated in 24 hours [3]. The use of reduced-order models is
therefore essential in this context to predict the steady-state contact dynamics.

The objective of this chapter is to study how the reduction methods studied in the previous
chapter can be used to study the contact interactions of rotating blades with surrounding
casings. In particular, we focus in this work on rubbing interactions. As mentioned in sec-
tion 2.4.3, such interactions typically involve a single blade. In this chapter, a single rotating
blade clamped at its root is therefore considered, as it is usually done in the literature [16].

The reduction methods are first applied to the academic clamped-clamped beam already
used in previous chapters for which a reference solution can be obtained, and then to an
industrial blade. The contact scenario used to initiate contact interactions between the blade
and the surrounding casing is first described, together with the parameters of the numerical
simulations. Some preliminary analyses then allow to select the reduction method that will
be used in the remaining of this work. The final methodology is used to conduct a more
extensive study on the industrial structure impacting a rigid casing. The methodology is
then adapted to account for the wear of an abradable coating deposited on the casing.

The results with direct contact between the blade and the casing have been partially published
in the Journal of Sound and Vibration [63]. The results related to the wear of the abradable
coating have been presented at the conference ASME Turbo Expo 2021 [61] and published in
the Journal of Engineering for Gas Turbine and Power [62].
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6.1 Academic model

Before analyzing industrial structures, the reduction methods by POD and with modal deriva-
tives are applied to an academic test case based on the clamped-clamped beam introduced
in section 2.4.2.

6.1.1 Contact scenario

The clamped-clamped beam is positioned at a distance c0 = 7 mm from a rigid obstacle (see
Fig. 6.1). A harmonic excitation F(t) = Ae cos(2πfet)ey with Ae = 4, 000 N and fe = 165 Hz
is applied at node P1. The amplitude and pulsation of the external excitation allow to initiate
contact between the blade and the obstacle.

c0

L/2

P1

ex

ey

ez

F(t)

Figure 6.1 – Clamped-clamped beam impacting a rigid obstacle.

The time integration algorithm presented in section 3.1.1 is used to integrate the equation of
motion forward in time, accounting for possible contact between the beam and the obstacle.
The time step of integration is set to h = 10−7 s. Friction is not considered in this first
application.

6.1.2 Results

The response of the structure is first computed with the full-order model. The results ac-
counting for geometric nonlinearities are shown in Fig. 6.2 both at the beginning of the
simulation and when the steady-state regime is reached. The blade first oscillates smoothly
until impacting the rigid obstacle when the amplitude of vibration is sufficiently high.

Two reduced-order models are then built. The first ROM is built by POD, as described
in section 4.3.2. The reduction basis is composed of rb = 1 static mode (corresponding to
the transverse displacement at node P1) and rPOD = 10 POD modes. The POD modes are
computed from the snapshots of the response to the actual harmonic excitation, without
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(a) Transient response.
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(b) Steady-state response.

Figure 6.2 – Transverse displacement at node P1 for a harmonic excitation of amplitude
Ae = 4, 000 N and frequency fe = 165 Hz computed with the full-order model ( ), the
POD reduced-order model ( ) and the modal derivative reduced-order model ( ).

contact nonlinearities. The second ROM is based on the modal derivative approach, as
described in section 4.3.4. The reduction basis is composed of rb = 1 static mode, rc = 5
fixed interface linear modes and rMD = 10 modal derivatives.

These two reduced-order models are used to compute the response of the blade to the contact
excitation. The corresponding results are shown in Fig. 6.2 and compared with the full-order
results.

Both reduced-order models are very accurate to predict the response of the structure on the
first two periods, when the beam is not in contact with the obstacle. This is consistent with
the results presented in chapter 4. The methods are also accurate to predict the dynamics
of the beam following contact events, even if the agreement is not perfect. It should also be
noted that the POD reduced-order model is slightly less accurate than the modal derivative
reduced-order model.

These contact analyses of the clamped-clamped beam suggest that the reduction methods
by POD and with modal derivatives are good candidates to investigate in the context of this
work. However, these results do not ensure that the numerical strategy is accurate to study
real 3D industrial structures as they may exhibit much more complex behavior compared
to the academic test case. In the following, these reduction methods are assessed for an
industrial compressor blade.
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6.2 Industrial test case and contact scenario

The rest of this chapter is dedicated to the contact analysis of the NASA rotor 37 blade
described in section 5.1. As previously, the blade is clamped on the disk. The blade is
assumed to rotate at a constant angular speed Ω about the ez axis (period of revolution
T = 2π/Ω). The structure is surrounded by a casing assumed to be infinitely rigid, i.e.
insensitive to blade contact events. This assumption is justified given the very low levels
of vibration of the casing measured experimentally when studying blade-tip/casing contact
interactions. The casing follows the shape of the blade-tip in the ez direction, so that the
clearance c0 between the blade (at rest) and the casing is uniform from the leading edge
(node LE) to the trailing edge (node TE), see Fig. 6.3.

LE

TE

Casing

Blade

c0

Disk
ez

ex

ey

Figure 6.3 – Cut view of the NASA rotor 37 blade clamped on the disk and surrounded by
the casing.

At the beginning of the simulation, the casing is perfectly circular to avoid any initial pene-
tration, with an operating clearance between the blade-tip nodes and the circular casing c0.
In order to initiate contact, the casing is then progressively deformed in the radial direction
until reaching its final distortion

f(θ) = (c0 + p0) exp
−

(
θ − ⌊θ/π⌋π − π/2

0.15

)2
 , (6.1)

where θ is the angular coordinate varying between 0 and 2π and p0 defines the penetration of
the casing profile ( ) with respect to the circular trajectory ( ) of a blade-tip node (•)
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of the sector at rest as shown in Fig. 6.4. This distortion corresponds to an ovalization of
the casing with the creation of two diametrically opposed bumps of height hb = c0 + p0

corresponding to privileged contact areas (see Fig. 6.4). This two-lobe deformation aims to
model the casing ovalization resulting from a thermal imbalance within the engine at rest
due to the up motion of the hot gas [168]. The gap between a given blade-tip node and the
casing is computed through

g(θb, t) = c0 − (1 − e−αt)f(θb) − ur(t), (6.2)

where θb is the current angular position of the blade-tip node, ur is the radial displacement
of the considered node and α is defined such that the ovalization reaches 99% of the maximal
distortion at 20% of the total simulation time.

ex

ey

ez

p0c0

hb

ur

Sector
at rest

Deformed
sector

−θb

Figure 6.4 – Ovalization of the casing from ( ) to ( ), penetration of the casing pro-
file ( ) with respect to the circular trajectory ( ) of a blade-tip node (•) of the sector
at rest and definition of the parameters in Eq. (6.2) for the gap computation (not to scale).

The degrees-of-freedom of the 8 boundary nodes colored in Fig. 5.2 distributed between the
nodes LE and TE are kept in the reduced space and define the contact interface. Possible
penetrations and contact forces are computed at these nodes only.

As it is often the case for the simulation of blade-tip/casing structural contact simulations,
aerodynamic forcing is neglected, i.e. fe(t) = 0 in (2.3). This assumption is consistent
with the fact that rubbing interactions have been observed experimentally in vacuum cham-
bers [152].
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In the following, the clearance c0 is set to 0.5 mm, and the height of bumps is defined as
hb = 0.625 mm. As detailed in section 3.1.1, contact is numerically handled with Lagrange
multipliers and the equation of motion is integrated forward in time using an explicit central
difference time integration scheme. Friction is modeled using a Coulomb law, with a friction
coefficient µ = 0.15. For the NASA rotor 37 studied, the relative speed between the blade-
tip and the casing equals 454 m/s at its nominal speed. It is therefore justified to assume
a permanent sliding, without sticking phase. Unless otherwise specified, the time step of
integration is set to h = 10−7 s.

As contact events may excite high-frequency modes, it is expected that reduction bases sig-
nificantly larger than the ones used in chapter 5 should be considered to correctly capture
the behavior of geometrically nonlinear blades subjected to contact interactions. As the
parametric reduced-order models valid on a given angular speed interval introduced in sec-
tion 5.6 require to multiply by a factor 3 the size of the reduction basis, this may become
computationally expensive in the context of the study. In the following, it is therefore chosen
to build reduced-order models at zero angular speed and to use them on the whole angular
speed interval, neglecting the centrifugal and gyroscopic effects, but keeping in mind that
parametric reduced-order models could allow to account for the angular speed effects.

6.3 Preliminary studies

In the context of geometrically linear structures, previous studies showed that the handling of
contact with Lagrange multipliers (as described in section 3.1.1) in a Craig-Bampton reduced
space allows to correctly capture the contact dynamics of industrial structures.This numerical
strategy has been validated numerically against the more elaborated bi-potential formulation
and the commercial software Ansys [132]. It has also been validated by comparison with
experimental data [8, 16,20].

When considering geometric nonlinearities, the comparison with full-order model results is
feasible for simple academic structures, as in section 6.1, but not for industrial structures.
Performance indicators, such as the one defined by (5.2) in section 5.3, can therefore not
be directly used to assess the accuracy of the reduced model in the specific case of contact
simulations. Different preliminary studies, including time and space convergence analyses,
are therefore required in order to give confidence in the numerical models.

Preliminary computations are carried out for a single angular speed Ω = 1, 400 rad/s for
which the influence of geometric nonlinearities is observed. The transient radial responses of
the structure at node LE without and with geometric nonlinearities are compared in Fig. 6.5.
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The steady-state responses are compared in Fig. 6.6. The responses have been obtained with
a reduced model built with the modal derivative approach, considering rb = 24 constraint
modes (corresponding to the 8 boundary nodes kept in the reduced space), rc = 15 fixed
interface linear modes and rMD = 150 modal derivatives selected with the selection criterion
2(b), as justified in section 5.4.3. This reduction basis is significantly larger than the reduction
bases used in chapter 5 because more boundary nodes are kept in the reduced space to have
an accurate description of the contact interface, and because contact events may excite higher
frequency modes. The choice of the reduction method and of the corresponding reduction
parameters is justified in the next section.
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Figure 6.5 – Comparison of the transient responses of the blade at node LE in the radial
direction at Ω = 1, 400 rad/s with geometric nonlinearities ( ) and without geometric
nonlinearities ( ) with rigid casing ( ).

During the simulation, the blade is first guided by the first bump on the casing, then oscillates
freely until getting in contact with the second bump, and so on (see Fig. 6.5). When the
amplitude of vibration increases, the blade can also impact the casing between the lobes,
as it is the case at this angular speed. The comparison of the steady-state radial responses
in Fig. 6.6a highlights significant differences in amplitude and in frequency content between
both cases, even for radial displacement amplitude of the order of 1 mm. This motivates the
extension of existing reduction methods to account for geometric nonlinearities in contact
simulations. To give an idea of the order of magnitude of the 3D displacement field, the
evolution of the tangential displacement is represented in Fig. 6.6b. At this angular speed,
displacement amplitudes larger than 1 cm are computed without geometric nonlinearities,
corresponding to nearly 20% of the height of the blade. This is therefore not surprising that
geometric nonlinear effects are pronounced here.
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(a) Radial displacement.
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(b) Tangential displacement.

Figure 6.6 – Comparison of the steady-state responses of the blade at node LE at Ω =
1, 400 rad/s with geometric nonlinearities ( ) and without geometric nonlinearities ( )
with rigid casing ( ).

6.3.1 Time and space convergence

Convergence of the numerical procedure is first assessed with respect to the time step h of
the time integration procedure described in section 3.1.1. While the use of an explicit time
integration scheme implies small time steps, no iterative procedure is required for contact
treatment at each time step. In the present case, time steps smaller than 10−6 s are required
to ensure stable computations due to the high eigenfrequencies of the blade. Figure 6.7 shows
the time responses obtained with the modal derivative reduction approach when considering
the values h = 10−7 s and h = 10−8 s for the time step of integration. It confirms that the
value h = 10−7 s is sufficiently small to accurately predict the displacement of the blade.
Similar conclusions hold when considering reduced-order models built by POD.

The asymptotic convergence of the numerical procedure is then assessed with respect to the
reduction parameters, in particular with respect to the number of modes in the reduction
basis. Because contact events may yield the participation of potentially high-frequency vi-
bration modes, a larger number of modes have to be included in the reduction basis compared
to the previous study case with a harmonic excitation. Three reduced-order models are built
with the modal derivative approach. They are characterized by rb = 24 constraint modes,
rc = 15 fixed interface linear normal modes and respectively rMD = 100, rMD = 150 and
rMD = 175 modal derivatives. The responses obtained with these reduced-order models are
compared in Fig. 6.8. The results demonstrate the need to include a sufficiently high number
of modal derivatives in the reduction basis. Here, rMD = 150 modal derivatives are required
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Figure 6.7 – Influence of the time step h

of the time integration procedure on the re-
sponse of the blade at node LE at Ω =
1, 400 rad/s: h = 10−7 s ( ), h = 10−8 s
( ).
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Figure 6.8 – Influence of the number of
modal derivatives rMD on the response of
the blade at node LE at Ω = 1, 400 rad/s:
rMD = 100 ( ), rMD = 150 ( ), rMD =
175 ( ).

to converge. The weights associated to each modal derivative and the specific modal deriva-
tives selected are represented in Fig. 6.9. The selected modal derivatives (⋆) correspond to
the modal derivatives of the static modes with respect to the generalized coordinates of the
static modes and of the first internal modes with respect to the generalized coordinates of
the static modes corresponding to the middle of the blade-tip. When building reduced-order
models by POD, 30 POD modes are required to reach the asymptotic convergence of the
results.

Lastly, the influence of the number of blade-tip nodes retained in the reduced space where
possible penetrations are detected is analyzed. The responses computed with 1, 6 and 8
blade-tip nodes (i.e. 3, 18 and 24 boundary degrees-of-freedom) are shown in Fig. 6.10. As
expected, very different results are obtained when checking for contact only at node LE or
at several nodes distributed on the blade-tip surface. The results show that considering 6
blade-tip nodes or more distributed between the leading edge and the trailing edge provides
a good description of the contact surface for the contact simulations.

6.3.2 Comparison of the reduction methods

In this section, the time responses predicted with the POD and modal derivatives reduction
methods are compared for the time and reduction parameters identified in the previous
section. The analyses conducted in section 5.5.3 showed that the training excitation used to
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Figure 6.9 – Weights W
(2b)
jk associated to each modal derivative and selected modal deriva-

tives (⋆) for the contact simulations (logarithmic scale).
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Figure 6.10 – Influence of the number of blade-tip nodes used to define the contact interface
on the response of the blade at node LE at Ω = 1, 400 rad/s: rb = 3 ( ), rb = 18 ( ),
rb = 24 ( ).
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build the POD reduction basis has to be defined as close as possible to the actual excitation.
In the case of contact studies, the excitation is however not known a priori.

As a first step, the training excitation of the POD method is defined as a harmonic excitation
in the radial direction. The response obtained with this reduced model is compared with
the response obtained with the reduced model built with the modal derivative approach in
Fig. 6.11. The responses are in good agreement during the first time steps of the simulation,
but the accumulation of errors leads to very different time signals in the steady-state regime.
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(a) Transient regime.
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(b) Steady-state regime.

Figure 6.11 – Comparison of the responses of the blade at node LE at Ω = 1, 400 rad/s
computed with the modal derivative approach ( ) and with the POD approach with a
harmonic training excitation ( ).

As a second step, the training excitation of the POD method is defined as the contact
excitation predicted with the modal derivative reduced-order model during the first two
cycles of revolution. The radial efforts at the leading edge, at mid-chord and at the trailing
edge of the blade-tip are represented in Fig. 6.12.

The response obtained with this reduced model is compared with the response obtained with
the reduced model built with the modal derivative approach in Fig. 6.13. An almost perfect
agreement between the responses in steady-state regime is observed. Several conclusions can
be drawn. First, the difference between the responses predicted with the POD method in
Fig. 6.11 and in Fig. 6.13 confirms the extreme numerical sensitivity of the POD reduction
method to the training excitation. In practice, it is necessary to know a priori the excitation
to obtain good results with the POD reduction method, which is not possible in the case
of contact simulations. The reduction method by POD is therefore considered not suitable
for the present application. Second, this comparison gives confidence in the modal deriva-
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(b) Zoom on the first bump.
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(c) Zoom on the second bump.

Figure 6.12 – Radial effort computed with the modal derivative approach at the leading
edge ( ), at mid-chord ( ) and at the trailing edge ( ) of the blade-tip at Ω =
1, 400 rad/s.

tive approach to predict contact responses of geometrically nonlinear structures as very close
results have been obtained by considering two different reduction bases built with two dif-
ferent approaches. The reduced model built with the modal derivative approach is therefore
selected to perform more detailed studies.
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Figure 6.13 – Comparison of the responses of the blade at node LE at Ω = 1, 400 rad/s
computed with the modal derivative approach ( ) and with the POD approach with the
contact excitation computed with the modal derivative approach ( ).
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6.4 Clearance consumption

Before embarking in the full analysis of the blade contact dynamics, this section is dedicated
to a very important concept in contact dynamics: the clearance consumption, which describes
the evolution of the gap between the blade and the casing when the blade vibrates along one of
its vibration modes. This concept is important for (at least) two reasons. First, it is directly
related to the sensitivity of the blade to rotor/stator interactions. Then, the accuracy of a
model to compute the clearance consumption is directly linked to its accuracy to describe
the blade-tip radial displacement, which is a key parameter in contact dynamics. As the
clearance consumption can be computed directly with the full-order model and compared to
reduced-order model results, it is a good indicator of the accuracy of a reduced-order model.

6.4.1 Definition

Clearance consumption is a quantity describing the evolution of the clearance between the
blade and the casing as the blade vibrates along one of its free vibration modes [22]. The
clearance consumption ∆ is computed at a given blade-tip node for a given amplitude of
deformation δ as

∆(δ) = c0 − c(δ), (6.3)

where c0 stands for the clearance at rest and c(δ) stands for the clearance computed at the
level of deformation δ. In the following, ∆X

δ and cX
δ respectively denote the clearance con-

sumption and the clearance in deformation mode X at the level of deformation δ. Figure 6.14
schematically represents the clearance consumption computed for two levels of deformation
δ = +1 and δ = −1 for the first bending mode (1B). When ∆ < 0, the clearance between
the blade and the casing is increased (as for the deformed blade ( ) in Fig. 6.14). When
∆ > 0, the clearance between the blade and the casing is decreased (as for the deformed
blade ( ) in Fig. 6.14). It should be noted that the clearance is defined as the distance
between the blade-tip node considered and its closer counterpart on the casing. Because of
the casing conicity (see Fig. 6.3), the clearance consumption is usually different from the
node radial displacement computed in the Oexey plane. These quantities are only equal if
the contact surface is perfectly cylindrical.

Clearance consumption has been identified as a key parameter for the design of blades sub-
jected to contact interactions [19, 22]. Blades with lower clearance consumption, i.e. for
which the blade/casing clearance remains almost constant as the blade vibrates along its
first vibration modes, feature lower vibration response to contact. Criteria based on the no-
tion of clearance consumption are therefore developed to estimate blade sensitivity to contact
interactions and optimize blade profiles [127].
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Figure 6.14 – Schematic representation of the clearance consumption with blade at
rest ( ), bended blade for δ = +1 ( ) and bended blade for δ = −1 ( ).

6.4.2 Geometric nonlinearities influence

The value of the clearance consumption ∆ is looked at over a certain amplitude of deformation
such that the radial displacement of the blade-tip node at the leading edge uLE,r satisfies

|uLE,r| ⩽ ζ, (6.4)

where ζ is a threshold defined further. In practice, a linear modal analysis of the blade finite
element model is first performed. This yields the studied mode ϕX, which is normalized
so that the radial displacement uLE,r reaches the limit value ζ. A linear static analysis is
then performed to recover the external forces fX

e that cause the deformation field ϕX. Static
analyses with imposed forces δfX

e are then performed for different values of δ between −1 and
+1 and the displacement fields (and the corresponding values of the clearance consumption
∆X

δ ) are computed. These static analyses can be either linear (i.e. neglecting the geometric
nonlinearities) or nonlinear and therefore allow to assess the influence of geometric nonlin-
earities. As the procedure is only based on cheap static computations, it can be applied to
the full-order finite element model and reference results can be obtained.

The clearance consumption is computed at the leading edge (node LE) for the first bending
mode and the first torsion mode of the blade. The parameter ζ is fixed to 1 mm for the first
bending mode and 0.5 mm for the first torsion mode. The results obtained with the full-order
finite element model with linear and nonlinear solvers are given in Fig. 6.15. These results
show that the clearance consumption is reduced in both cases when geometric nonlinearities
are taken into account. It is therefore expected that the blade with geometric nonlinearities
features lower vibration response to contact.
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(a) First bending mode.
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(b) First torsion mode.

Figure 6.15 – Clearance consumption at the leading edge computed with the full-order
finite element model with linear ( ) and nonlinear ( ) solvers.

The results also highlight that the use of the linear model has to be restricted to small
deformations. The relative error made on the clearance consumption with the linear model
exceeds 10% when the level of deformation δ is outside the interval [−0.25 , 0.2] for the first
bending mode and outside the interval [−0.1 , 0.1] for the first torsion mode.

6.4.3 Reduced-order model accuracy

When studying rubbing phenomena, a very accurate description of the contact interface
and of the clearance evolution is required. Reduced-order models should therefore be able
to evaluate accurately the clearance consumption. As exact results can be computed with
the full-order finite element model, the accuracy of the ROM can be easily assessed by
computing the clearance consumption with the ROM itself. The clearance consumption
is computed in the same conditions as previously with the reduced-order model used in
section 6.3 characterized by rb = 24, rc = 15 and rMD = 150. The clearance consumption is
also computed with two other ROMs: one based on a smaller reduction basis characterized
by rMD = 100 and one with a larger reduction basis with rMD = 175. The results accounting
for geometric nonlinearities are given in Fig. 6.16 where they are also compared with the
full-order model results.
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(a) First bending mode.
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(b) First torsion mode.

Figure 6.16 – Clearance consumption at LE computed with a nonlinear solver with the
full-order finite element model ( ) and the reduced-order models with rMD = 100 ( ),
rMD = 150 ( ) and rMD = 175 ( ) modal derivatives.

These results confirm that the ROM with 100 modal derivatives does not allow to accurately
evaluate the clearance between the blade and the casing and is therefore not suitable for
contact simulations. The results however give confidence in the reduced-order model used
previously for the contact simulations as it allows to compute accurately the clearance con-
sumption (with relative errors less than 10%). Increasing the number of modal derivatives
in the reduction basis does not have a significant influence on the results. The results also
suggest that clearance consumption could be a good criterion to assess the accuracy of the
reduced-order model without having to perform costly contact simulations.

6.5 Direct blade/casing contact

The numerical strategy based on the modal derivative approach is used to study the contact
dynamics of the blade on a wider angular speed interval. In this first contact scenario, the
rotating blade directly impacts the rigid surrounding casing.
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6.5.1 Interaction map

Simulations at constant angular speed are performed over the angular speed range from
750 rad/s to 1,600 rad/s (with a step of 2 rad/s). Given the Campbell diagram of the NASA
rotor 37 blade (see Fig. 5.22), this angular speed interval includes the main critical speeds
corresponding to intersections between the first bending mode and the engine order lines 4
and 6 that are below the nominal speed ΩN . For each angular speed, the evolution of the
blade-tip nodes radial displacement is computed over 200 cycles of revolution, starting from
zero initial conditions. The frequency content of the radial displacement is then computed
at each angular speed, on the second half of the time signal to get rid of transient effects.
The corresponding interaction maps are plotted in Fig. 6.17a in the case where geometric
nonlinearities are not considered and in Fig. 6.17b in the case where geometric nonlinearities
are taken into account. Both maps have the same color scale from blue (lowest amplitudes)
to red (highest amplitudes). The first eigenfrequencies and the engine order lines (where the
frequency is an integer multiple of the angular speed) are also shown in these maps.
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Figure 6.17 – Interaction maps of the radial displacement at node LE for the case with
direct contact with eigenfrequencies ( ), engine order lines ( ), predicted linear reso-
nance (•) and predicted nonlinear resonance ( ).

Both interaction maps show lines of higher amplitudes on even engine order lines, which is
consistent with the fact that the casing ovalization leads to an excitation occurring twice per
revolution. Non-integer harmonics of the angular speed are also visible around 1,525 rad/s
in Fig. 6.17a and around 1,600 rad/s in Fig. 6.17b, which can be related to the nonlinear
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nature of the dynamics. It can also be noted that geometric nonlinearities reduce globally
the amplitude of vibrations in the whole angular speed range.

The interaction maps highlight the existence of strong contact interactions between the first
vibration modes of the blade and the even engine orders. These interactions are characterized
by high amplitudes of vibration followed by jumps where the amplitude of the displacement
suddenly drops for a small change of the angular speed. Both maps highlight the existence
of contact interactions between the first bending mode and the sixth engine order, between
the first bending mode and fourth engine order, but also between the first torsion mode and
the fourteenth engine order for instance.

In the following, we focus on the interaction between the first bending mode and the fourth
engine order denoted by 1B/eo4, which is the closest from the nominal speed of the struc-
ture. Because of contact stiffening, the maximal amplitudes are not reached at the exact
intersection between the first bending mode line and the fourth engine order line (•) but are
shifted toward higher angular speeds ( ). In a linear context, the studied resonance occurs
at Ω = 1, 317 rad/s. In the case where geometric nonlinearities are neglected, contact stiff-
ening shifts this resonance to Ω = 1, 446 rad/s, which corresponds to a contact stiffening of
9.8%. In the case where geometric nonlinearities are considered, the contact stiffening seems
more pronounced as the maximal amplitudes of vibration occur at Ω = 1, 535 rad/s, which
corresponds to a contact stiffening of 16.6%.

In order to better visualize the jump in the amplitude response of the blade in the vicinity
of the interaction speed, the infinity norm of the blade’s leading edge radial displacement
is depicted in Fig. 6.18 on a limited angular speed range around the intersection 1B/eo4 in
the cases where geometric nonlinearities are neglected and where they are considered. This
figure confirms the previous observations. Geometric nonlinearities seem to be responsible
for an additional contact stiffening but give rise to interactions of lower amplitudes.

The analysis of the clearance consumption in section 6.4 has shown that the blade with
geometric nonlinearities has a smaller clearance consumption compared to the linear blade.
These results justify that the blade with geometric nonlinearities features lower vibration
response to contact, as observed here when comparing the interactions maps without and
with geometric nonlinearities (Fig. 6.17) and the associated nonlinear frequency response
curves (Fig. 6.18).

Regarding the additional contact stiffening that seems to be caused by the geometric nonlin-
earities, more in-depth investigations are performed in the next section where a continuation
procedure is used in the contact simulations to build the nonlinear frequency response curves.
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Figure 6.18 – Nonlinear frequency response curves of the radial displacement at node LE

in the cases where geometric nonlinearities are not considered ( ) and where geometric
nonlinearities are considered ( ) with predicted linear resonance (•) and predicted non-
linear resonance ( ).

6.5.2 Sequential continuation

The amplitude jumps in Fig. 6.18 reveal that the numerical procedure does not capture all
solutions and that there certainly exist several branches of solutions near these jumps. Such
solutions could be obtained by time integration, starting from well chosen initial conditions, or
using frequency methods, such as methods derived from the harmonic balance method [52].
With the results in section 6.5.1, there is no way to ensure that the predicted nonlinear
resonances are accurate as higher amplitude solutions that are not captured with the zero
initial conditions used to build the curve could exist.

In order to better quantify the contact stiffening, the nonlinear frequency response curve
(NFRC) of the blade is built using a sequential continuation procedure. In practice, contact
simulations are performed at each angular speed of the studied interval successively, taking
as initial conditions of simulation i the final conditions of simulation i − 1. The first contact
simulation is conducted over 200 cycles, in order to reach the steady-state regime, while the
following ones are limited to 30 cycles. A step of 2 rad/s is considered. If the steady-state
regime is not reached, the step is divided by 2 (with a maximum of 3 divisions). It should
be noted that the objective here is not to build the complete nonlinear frequency response
curve (with all bifurcations, internal loops, ...), which would require more sophisticated tools,
but mainly to correctly assess the contact stiffening. The sequential continuation procedure
used here has been validated in the case without geometric nonlinearities by comparison
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with the results obtained with a frequency method (RL-HBM) [52]. Note that the optimized
implementation described in section 3.1.2 cannot be used in this case as it is necessary to
wait for the end of simulation i before starting simulation i + 1.

The nonlinear frequency response curves computed with the continuation procedure (with
upward and downward angular speed sweeps) are given in Fig. 6.19a in the case where
geometric nonlinearities are neglected and in Fig. 6.19b in the case they are considered. These
curves are also compared to the curves of Fig. 6.18 (obtained from zero initial conditions).
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(a) Without geometric nonlinearities.
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(b) With geometric nonlinearities.

Figure 6.19 – Nonlinear frequency response curves without continuation ( ) and with
continuation (upward (+) and downward ( ) angular speed sweeps, simulations where steady-
state regime is not reached (+/ )) with predicted linear resonance (•), predicted nonlinear
resonance without continuation ( ) and predicted nonlinear resonance with continuation ( ).



114

These figures confirm that the nonlinear resonances were not correctly captured in Fig. 6.18
with simulations starting from zero initial conditions as the continuation procedure highlights
the existence of higher amplitude solutions. In the case where geometric nonlinearities are
neglected, the nonlinear resonance predicted at Ω = 1, 446 rad/s ( ) appears to occur at Ω =
1, 520 rad/s ( ), which corresponds to a contact stiffening of 15.4%, and leads to amplitudes of
vibration more than 50% greater. In the case where geometric nonlinearities are considered,
the nonlinear resonance predicted at Ω = 1, 535 rad/s ( ) is only slightly shifted to Ω =
1, 551 rad/s ( ), which corresponds to a contact stiffening of 17.7%, and was therefore well
approximated in Fig. 6.18. Neglecting the geometric nonlinearities leads to amplitudes of
vibration at the resonance more than two times larger compared to the case with geometric
nonlinearities, which is consistent with the clearance consumption analysis in section 6.4.

Even if this was not the objective here, the results also show the existence of other branches
of solutions that were not captured in Fig. 6.18 when starting from zero initial conditions.
For instance, in the case where geometric nonlinearities are neglected, Fig. 6.18 predicts a
low-amplitude branch between 1,475 rad/s and 1,500 rad/s with periodic solutions of period
T/2. Using the continuation procedure with downward angular speed sweep (see Fig. 6.19a),
a higher amplitude branch is obtained on the same angular speed interval, with periodic
solutions of period 11T/2.

These results show that the contact stiffening has to be carefully quantified with appropriate
tools to follow the high-amplitude branch of the response and locate correctly the resonance.
Also, the observation (in section 6.5.1) that geometric nonlinearities are responsible for a
significant additional contact stiffening should be put in perspective. Indeed, results obtained
with the continuation procedure show that the contact stiffening with geometric nonlinearities
is only slightly greater than the actual stiffening without geometric nonlinearities.

6.5.3 Stress analysis

From an industrial point of view, the stress field in the blade is an important global quantity
of interest as it is directly related to the structure integrity. If the maximal stress level
exceeds the material yield stress, irreversible deformations may occur, leading eventually to
the failure of the structure. Stress fields are here analyzed for the interaction 1B/eo4, at
the nonlinear resonances predicted without continuation, which are indicated by ( ) in the
interaction maps in Fig. 6.17. The von Mises stress fields computed at time tmax, different
for both cases, where the node LE reaches its maximal radial displacement are represented
in Fig. 6.20.
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(a) Without geometric nonlinearities. (b) With geometric nonlinearities.
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Figure 6.20 – Comparison of the von Mises stress fields at tmax.

At these interactions, the response of the structure is dominated by the first bending mode of
the blade, which shows slightly different shapes when geometric nonlinearities are considered
or not. The zones of maximal von Mises stresses are not located at the same place in both
cases. When geometric nonlinearities are neglected, the maximal stresses are found near the
root of the blade and near the trailing edge at the blade-tip. When considering the geometric
nonlinearities, the zone of maximal stresses appears toward the center of the blade. These
results suggest that accounting for geometric nonlinearities in bladed disk models could have
a significant influence in terms of blade design [121].

Quantitatively, the ratio of the maximal von Mises stresses in both cases is in line with the
corresponding ratio of maximal displacements at the blade-tip leading edge (about 2). This
confirms that, in the studied case, geometric nonlinearities weaken the interactions, not only
locally at the blade-tip, but also globally in the whole blade. The analysis of the stress
field at the other interaction angular speeds confirms that the severity of the interaction in
terms of displacement amplitudes is reflected in the maximal values of the von Mises stress.
Neglecting geometric nonlinearities leads to an overestimation of the stress level in the blade.
It is also important to note that in the case where geometric nonlinearities are neglected,
stresses higher than the material yield stress are obtained in the blade while the blade remains
in the elastic domain when geometric nonlinearities are taken into account.

6.5.4 Computational cost

When performing the simulations at the different angular speeds independently, i.e. without
memory sharing for the evaluation of the nonlinear internal forces as described in section 3.1.2,
each single simulation over 200 cycles takes approximately 10 hours (single CPU sequential
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time on an Intel Xeon E5-2698 v4 processor – 2.2 GHz). Building the full interaction map with
geometric nonlinearities in Fig. 6.17b, therefore takes approximately 400 hours on 10 cores.

The numerical strategy with memory sharing described in section 3.1.2 allows to consider-
ably reduce computation times. With the considered reduced-order model, building the full
interaction map with geometric nonlinearities takes approximately 50 hours on 10 cores on
the same computer.

6.6 Blade/casing contact with abradable coating

As explained in section 2.4.3, an abradable coating is usually added along the casing contact
surface to mitigate vibratory phenomena. This coating acts as a sacrificial material that is
worn out in the case of blade/casing contact. In this section, the methodology is adapted to
model the wear of this abradable coating and is then used to perform contact simulations.

6.6.1 Wear modeling

The wear of the abradable coating is modeled by one-dimensional plastic compression [133].
The abradable coating is discretized with one-dimensional two-node rod elements independent
from their adjacent neighbors and a linear isotropic hardening law is considered.

The algorithm described in section 3.1.1 is used to integrate the equation of motion forward
in time. At each time step, the displacement is predicted using (3.5). The predicted dis-
placement field is then used to evaluate the gap between the impacting nodes on the blade
and the abradable coating and between the blade and the casing. If penetrations are de-
tected between the impacting nodes and the abradable coating, the contact forces f̃c,n+1 are
computed through the use of massless compression elements with a piecewise linear plastic
law [133]. The abradable coating thickness is then locally reduced to account for abradable
removal. If penetrations are detected between the blade and the rigid casing, the contact
forces are computed as described in section 3.1.1. In both cases, the contact forces are then
used to correct the non-admissible displacements.

Note that the frequency methods introduced in section 3.2 can currently not account for the
possible wear of an abradable coating, as this is linked to a time dependence of the surface
contact.

In the following, the abradable material is characterized by a Young’s modulus E = 4 GPa,
a plastic modulus K = 1 GPa, and a yield stress σY = 1.5 MPa, which is consistent with
values encountered in the literature [140]. An abradable coating thickness of 5 mm is consid-
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ered. The coating is modeled with 20, 000 abradable elements distributed along the casing
circumference.

6.6.2 Results

The blade-tip radial displacement at LE is analyzed for the second contact scenario, with
an abradable coating deposited on the casing. The interaction maps without and with geo-
metric nonlinearities are shown in Fig. 6.21 with the same color scale as in Fig. 6.17. These
interaction maps are computed as in Fig. 6.17, by performing simulations at constant angular
speed Ω between 750 rad/s and 1,600 rad/s, starting from zero initial conditions. The non-
linear frequency response curves around the intersection 1B/eo4 are shown in Fig. 6.22 and
compared with the NFRC obtained for the first contact scenario with direct contact between
the blade and the casing.
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Figure 6.21 – Interaction maps of the radial displacement at node LE for the case with
an abradable coating with eigenfrequencies ( ), engine order lines ( ), predicted linear
resonance (•) and predicted nonlinear resonance ( ).

These results show that the spans of the interactions are reduced compared to the first
contact scenario with direct contact: high displacement amplitudes are reached on narrower
angular speed intervals. The maximal amplitude is also slightly reduced in the presence of
the abradable coating. Note that the interactions are still smoother, i.e. characterized by
smaller maximal amplitudes, when geometric nonlinearities are considered.
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Figure 6.22 – Nonlinear frequency response curves of the radial displacement at node
LE with an abradable coating in the cases where geometric nonlinearities are not consid-
ered ( ) and where geometric nonlinearities are considered ( ) with predicted linear
resonance (•) and predicted nonlinear resonance ( ). In order to ease the comparison with
Fig. 6.18, the RMS levels are also represented for the case with direct contact (without geo-
metric nonlinearities ( ) and with geometric nonlinearities ( )).

It is also remarkable that the contact stiffening is reduced compared to the case with direct
contact between the blade and the casing. For the case without geometric nonlinearities, the
interaction 1B/eo4, now occurs at the angular speed Ω = 1, 388 rad/s. Geometric nonlinear-
ities still seem to be responsible for an additional stiffening. The interaction 1B/eo4 occurs
at the angular speed Ω = 1, 452 rad/s. However, in order to correctly quantify the contact
stiffening of the structure, a continuation procedure should be used to build the nonlinear
frequency response curve (as detailed in section 6.5.2).

The wear level of the abradable coating along the circumference is also computed at the end
of the simulations at each angular speed. The corresponding wear maps are given in Fig. 6.23.
The two horizontal lines that appear around θ = π/2 rad and θ = 3π/2 rad correspond to
the wear of the two bumps that occurs rapidly at the beginning of the simulation. The final
level of wear of the abradable coating between the lobes provides information on the type
of interaction that occurred as deeper lobes are created at positions where the blade has
impacted the casing repeatedly.

These interaction maps show that, in both cases, the abradable coating acts as a sacrificial
material. This allows to mitigate contact severity, as highlighted in the interaction maps
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Figure 6.23 – Abradable coating wear maps at node LE.

and the nonlinear frequency response curves. The interactions between the first bending
mode and even engine orders are clearly visible in the wear maps in Fig. 6.23 that show the
wear of 8, 6 or 4 lobes in the abradable coating at the angular speeds corresponding to the
interactions.

6.7 Partial conclusions

The study of the NASA rotor 37 blade subjected to contact events allowed to define a reduc-
tion procedure suitable to study structures with both geometric and contact nonlinearities.
On the one hand, reduction methods by proper orthogonal decomposition are difficult to use
in the context of contact dynamics as the contact excitation is not known a priori, making
it arduous to define an accurate POD basis. On the other hand, modal derivatives provide
an efficient framework for the reduction.

The final methodology is therefore based on the projection of the high fidelity model onto
a basis composed of Craig-Bampton modes and a selection of their modal derivatives. Non-
linear internal forces due to large displacements are evaluated with the STEP and contact
is numerically handled with Lagrange multipliers. The methodology can also account for an
abradable coating deposited along the surrounding casing.
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Even if the verification of this methodology by comparison with full-order model data is too
costly for industrial structures, different analyses such as the application to an academic test
case, the comparison with the POD method and the computation of the clearance consump-
tion in the reduced space, give confidence in the methodology.

The numerical studies have shown that the reduction procedure developed allows to extract
quantities of interest that are relevant for both researchers and industrial designers. In partic-
ular, it can be used to efficiently identify the critical angular speeds at which high-amplitude
interactions occur and to assess the consequences of the interactions on the structure in-
tegrity, for instance in terms of stress fields inside the blade. Also, the methodology allows to
bring a physical understanding of the nonlinear dynamics of blades and on the influence of
geometric nonlinearities. The comparison of the results obtained without and with geometric
nonlinearities shows that neglecting the geometric nonlinearities in such studies can lead to
wrong estimation of the critical angular speeds of the structure and to poor evaluation of the
severity of the interactions in terms of displacement amplitudes and von Mises stress fields.
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CHAPTER 7 FULL BLADED DISK

The methodology developed and used in chapters 5 and 6 is limited to a single rotating blade.
Real bladed disks are however composed of several blades assembled on a disk. The objective
of this chapter is to generalize the single-blade methodology to full bladed disks.

This chapter begins with a short summary of the existing reduced-order modeling techniques
relevant for cyclically symmetric structures, both in linear and nonlinear contexts. Based on
this literature review, the methodology developed in the previous sections is then generalized
to full bladed disks. The methodology is first validated on a geometrically nonlinear bladed
disk model without contact events, and then used in contact simulations. It is finally used
in combination with mistuning.

The results presented in this chapter are summarized in a manuscript currently under re-
view [64].

7.1 Literature review

The different reduction methods presented in chapter 4 are general methods. In particular,
they can be applied to cyclically symmetric structures, as tuned bladed disks. However, under
this symmetry assumption, working directly with the structural matrices to build reduced-
order models is not computationally efficient. This is particularly true when building ROMs
of industrial nonlinear structures. Specific reduced-order techniques have therefore been
developed to efficiently build reduced-order models of cyclically symmetric structures.

7.1.1 Linear reduced-order modeling

As detailed in section 2.2.2, the linear dynamics of cyclically symmetric structures is gener-
ally studied in the harmonic space where the dynamic problem can be written as a set of
sub-problems for each harmonic using Fourier formalism [30, 166, 222]. This cyclic symme-
try formulation can be used in classical linear reduced-order modeling techniques (such as
Craig-Bampton or Craig-Martinez reduction methods presented in section 4.3.1) to efficiently
compute the reduction basis [15].
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7.1.2 Nonlinear reduced-order modeling

When geometric nonlinearities are considered or in the case of severe contact nonlineari-
ties, the nonlinearities induce a coupling between the harmonic components and the cyclic
symmetry formulation can therefore no longer be used. In this context, different projective
reduction methods have been developed. They can be grouped in two categories: reduc-
tion methods where the structure is reduced as a whole and reduction methods where the
structure is divided into individual sectors.

On the one hand, for simple structures, the equations of motion of the full finite element
model of the cyclically symmetric structure can be directly projected onto a reduced space
with a reduction basis intrinsically accounting for the nonlinear behavior of the structure
based on modal derivatives [78, 80] or on POD [176] for instance. For more complex in-
dustrial structures, this reduction can be preceded by a first projection such as a modal
reduction [178].

On the other hand, various reduction methods are based on Component Mode Synthesis [54,
96]: the structure dynamics is described by a set of modes of the individual sectors and
interface (or constraint) modes that allow to account for the coupling between the sectors.
Different definitions of the sector modes have been investigated in a nonlinear context such
as linear modes augmented with modal derivatives [142,143] or nonlinear normal modes [103,
104].

7.2 Generalization of the methodology

In this work, the reduction methodology for single-blades is based on the concept of modal
derivatives. This reduction method is combined here to a Component Mode Synthesis (CMS)
technique and extended to full bladed disk structures. The bladed structure is divided into
Ns sectors composed of one blade and the corresponding disk sector (see Fig. 7.1). In the
case of a perfectly tuned bladed disk, the Ns sectors are identical. The degrees-of-freedom of
sector n, un, are partitioned according to

un =


un

left

un
i

un
b

un
right

 , (7.1)

where un
left and un

right respectively stand for the nleft and nright degrees-of-freedom of the left
and right cyclic boundaries (with nleft = nright because of mesh compatibility), un

b stands for
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the rb boundary degrees-of-freedom that are kept in the reduced space (i.e. the blade-tip
degrees-of-freedom) and un

i stands for the ni internal degrees-of-freedom that do not belong
to any boundaries.

Left cyclic boundary

Right cyclic boundary

Blade-tip nodes

Figure 7.1 – Bladed disk sector with definition of the boundaries.

7.2.1 Reduction basis

In the proposed methodology, each sector is reduced in the same way as for the single-sector
methodology, i.e. projected onto a basis composed of Craig-Bampton modes and a selection
of their modal derivatives. The boundary degrees-of-freedom of the single-sector methodology
are here defined as the blade-tip degrees-of-freedom and the cyclic boundaries. The reduction
of the degrees-of-freedom of sector n therefore writes

un =


un

left

un
i

un
b

un
right

 =


I 0 0 0

Ψn
i,left Φn

i Ψn
i,b Ψn

i,right

0 0 I 0
0 0 0 I




un

left

ηn

un
b

un
right

 ; (7.2)

where Ψn
i,left, Ψn

i,right and Ψn
i,b are the constraint modes corresponding to the static deforma-

tions of the sector to unit displacements imposed respectively at the degrees-of-freedom un
left,

un
right and un

b (computed as in (4.28)) and

Φn
i =

[
Θn

i,rc
Zn
]

, (7.3)

where Θn
i,rc

are the first rc linear normal modes of the sector clamped at the boundary degrees-
of-freedom (computed as in (4.30)) and Zn are rMD modal derivatives of the sector (computed
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as in (4.69)). Based on the analyses performed in section 5.4.3 on a single blade, the modal
derivatives are selected according to the selection criterion 2b described in section 4.3.4. In
the case of a tuned structure, the matrices Ψn

i,left, Φn
i , Ψn

i,b and Ψn
i,right are identical for all

n ∈ {1, . . . , Ns}. The methodology is however not restricted to tuned structures. Considering
the cyclic conditions

un
left = un−1

right (n = 2, . . . , Ns) and u1
left = uNs

right (7.4)

and regrouping the cyclic boundary degrees-of-freedom in

ucyclic =


u1

left
...

uNs
left

 , (7.5)

the reduction of the multi-sector structure writes

u =



u1
i

u1
b
...

uNs
i

uNs
b

ucyclic


=



Φ1
i Ψ1

i,b · · · 0 0 Ψ1
i,cyclic

0 I · · · 0 0 0
... ... . . . ... ... ...
0 0 · · · ΦNs

i ΨNs
i,b ΨNs

i,cyclic

0 0 · · · 0 I 0
0 0 · · · 0 0 I





η1

u1
b
...
ηNs

uNs
b

ucyclic


, (7.6)

where

Ψn
i,cyclic =

[
0ni×(n−1)nleft Ψn

i,left Ψn
i,right 0ni×(Ns−n−1)nleft

]
(n = 1, . . . , Ns − 1) (7.7)

and ΨNs
i,cyclic =

[
ΨNs

i,right 0ni×(Ns−2)nleft ΨNs
i,left

]
.

In a more compact form, defining

ūn =
un

i

un
b

 and qn =
ηn

un
b

 , (7.8)

the reduction writes

u =


ū1

...
ūNs

ucyclic

 =


Φ̄1 · · · 0 Ψ1

cyclic
... ... . . . ...
0 · · · Φ̄Ns ΨNs

cyclic

0 · · · 0 I




q1

...
qNs

ucyclic

 = ΦIq̂, (7.9)
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where

Φ̄n =
Φn

i Ψn
i,b

0 I

 and Ψn
cyclic =

Ψn
i,cyclic

0

 . (7.10)

This first projection onto the reduced basis ΦI leads to a reduced-order model of size
Ns(rc + rMD + rb + nleft). For industrial finite element models, nleft can be very large and
a second reduction of the system is required. Many works regarding interface reduction in
substructuring methods can be found in the literature [124]. Here, a modal reduction of
the cyclic boundary degrees-of-freedom is performed. Denoting by K̂ and M̂ the projec-
tions of the stiffness and mass matrices onto ΦI, the modes Π related to the sub-matrices
corresponding to the cyclic boundary degrees-of-freedom, K̂cyclic and M̂cyclic, are computed
as

K̂cyclicΠ = M̂cyclicΠω2. (7.11)

The second reduction writes

q̂ =


q1

...
qNs

ucyclic

 =


I · · · 0 0
... . . . 0 0
0 · · · I 0
0 · · · 0 Πrcyclic




q1

...
qNs

ηcyclic

 = ΦIIq, (7.12)

where Πrcyclic is formed by extracting from Π the rcyclic modes whose frequencies are the clos-
est from the frequencies of modes Θn

i,rc
(n = 1, . . . , Ns). Combining Eq. (7.9) and Eq. (7.12),

the complete reduction writes
u = ΦIΦIIq = Φq. (7.13)

The size of the reduced-order model is therefore given by

r = Ns(rc + rMD + rb) + rcyclic. (7.14)

7.2.2 Reduced nonlinear internal forces

The nonlinear internal forces write

gnl(u) =



g1
nl(u)

...
gNs

nl (u)

gcyclic
nl (u)

 , (7.15)
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where gn
nl(u) stands for the forces on degrees-of-freedom ūn and gcyclic

nl (u) for the forces
on degrees-of-freedom ucyclic. Their projection on the reduced basis Φ are computed as in
Eq. (4.6) and writes

g̃nl(q) =



g̃1
nl(q)

...
g̃Ns

nl (q)

g̃cyclic
nl (q)

 =



Φ̄1Tg1
nl(Φq)
...

Φ̄Ns
TgNs

nl (Φq)

ΠT
rcyclic

[∑Ns
k=1 ΨkT

cyclicgk
nl(Φq) + gcyclic

nl (Φq)
]

 (7.16)

In order to extend the CMS procedure to the computation of these nonlinear forces, it is
assumed that the constraint modes related to the cyclic boundaries remain linear. This
assumption implies the linearity of the couplings between the substructure [11, 143]. In
the case of bladed structures, the sectors are connected by a relatively thick and stiff disk.
Geometric nonlinear effects can occur in the blade, but it seems justified to assume that the
displacement of the disk remains small and, therefore, that the degrees-of-freedom of the disk
boundaries are linear. In this context, the internal forces in each sector are also simplified.
It is assumed that the reduced nonlinear internal forces in sector n (n = 1, . . . , Ns), g̃n

nl, only
depend on the internal and blade-tip generalized coordinates of the sector, qn. The projected
nonlinear internal forces therefore write

g̃nl(q) =



g̃1
nl(q1)

...
g̃Ns

nl (qNs)

0

 =



Φ̄1Tg1
nl(Φ̄1q1)
...

Φ̄Ns
TgNs

nl (Φ̄NsqNs)

0

 . (7.17)

Under these assumptions, the STEP presented in section 4.2 can be applied to compute the
reduced nonlinear internal forces of each sector. The nonlinear internal forces of sector n are
expressed as the polynomial

g̃n
nl(qn) =

∼
A n (qn, qn) +

∼
Bn (qn, qn, qn) (7.18)

using a functional notation for the quadratic and cubic terms with coefficients gathered in the
third-order tensor Ãn and the fourth-order tensor B̃n. The components of these tensors are
determined as described in section 4.2. The nonlinear forces static evaluations are performed
on the sector finite element model clamped at the cyclic boundaries degrees-of-freedom and
with imposed displacements defined as linear combinations of the modes Φ̄n. In the case of
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tuned structures, the tensors Ãn (and respectively B̃n) are identical for each sector n and
have to be computed only once. In the case of detuned structures, one STEP analysis has to
be performed for each kind of sector. These analyses are independent and can be performed
in parallel.

7.2.3 Contact treatment

The time integration algorithm described in section 3.1.1 for a single blade with contact is
also valid for the full bladed disk and does not need to be adapted. At each time step,
possible penetrations are computed at the boundary degrees-of-freedom un

b (n = 1, . . . , Ns)
corresponding to the blade-tip nodes of the Ns sectors, which are kept in the reduced space,
and the associated contact forces are computed at these nodes.

7.2.4 Efficient implementation of nonlinear forces computation

The numerical strategy described in section 3.1.2 consisting in evaluating several vectors of
nonlinear internal forces at the same time can still be used to build contact interaction maps
for full bladed disks on wide angular speed ranges in an efficient way.

Moreover, in the case of tuned bladed disks, the tensors Ãn (and respectively B̃n) in (7.18) are
identical for each sector n. Under the assumption of linear coupling between the sectors that
is made here, the strategy can therefore also be used to compute the nonlinear internal forces
in each sector at the same time, which is more efficient than computing them independently.

7.2.5 Extension to frequency domain

The extension of the methodology to frequency domain with the HBM does not give rise to
specific issues. As described in section 3.2.2, contact can be treated with the RL-HBM and
the nonlinear internal forces due to large displacements can be determined analytically or
evaluated with the AFT scheme.

7.3 Bladed disk model

The methodology is applied on an industrial bladed-disk model based on the NASA rotor 37.
A disk sector is added to the blade model presented in section 5.1, as shown in Fig. 7.2. Note
that the height of the blade is decreased by 4 mm compared to section 5.1 in order to ensure
a good merge between the blade and the disk. The 36 sectors of the bladed disk are supposed
identical. The discretized mesh counts 44, 535 nodes, i.e. 133, 605 degrees-of-freedom. The
sectors are clamped at the disk lower surfaces. The material properties are identical to the
ones given in section 5.1.
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Figure 7.2 – Single sector of NASA rotor 37 with mesh used for the finite element simu-
lations and clamped surface (■). The eight colored nodes are the blade-tip nodes retained
for contact simulations. Among those nodes, the node TE is located at the trailing edge (•)
and the node LE is located at the leading edge (•).

Based on the finite element model, the SAFE diagram (Singh’s Advanced Frequency Evalua-
tion diagram, i.e. the eigenfrequencies as a function of the number of nodal diameters [198]),
is built and represented in Fig. 7.3. The figure highlights the existence of different mode
families: modes dominated by blade deformation (corresponding to the successive bending
and torsion modes of the blade) and modes with high participation of the disk.

7.4 Verification of the methodology without contact

In order to validate the proposed methodology, the reduction procedure is first applied on
the bladed disk of interest subjected to an equivalent aerodynamic loading of sufficiently high
amplitude to activate geometric nonlinear effects. Contact interactions are not considered
in this section. The performance indicator I introduced in section 5.3 is used to assess
the accuracy of the reduction method both locally (at the blade-tips) and globally. This
performance indicator ranges from 0 to 1, the closer to one, the better the reduced-order
model.
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Figure 7.3 – SAFE diagram of the studied bladed disk for mode families 1B (•), 1T (•)
and 2B (•) and disk-dominated modes (•).

7.4.1 Accuracy of the reduction method

A reduced-order model characterized by rb = 3, rc = 10, rMD = 10 and rcyclic = 144 is built.
The training excitation for the selection of the modal derivatives is defined as a harmonic
excitation in the ez direction with an amplitude At = 400 N, a pulsation ωt = 4, 500 rad/s
applied on Nt = 1 blade-tip node.

This reduced-order model with rMD = 10 modal derivatives per sector is first used to com-
pute the response of the structure to the same harmonic excitation as for the training. A
zero-diameter excitation is considered (Nd = 0). The time response obtained is shown in
Fig. 7.4, both in the transient and steady-state regimes. The response is compared with the
reference nonlinear solution computed with the full-order model. The linear reference solu-
tion is also shown to confirm that the amplitude of the excitation is sufficient to activate the
geometric nonlinearities. The good match between the full-order model and reduced-order
model solutions gives confidence in the methodology, at least to study external excitations
close to the training excitation used for the selection of the modal derivatives. The initial
errors at the beginning of the simulation do not build up during the simulation.
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(a) Transient response.
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(b) Steady-state response.

Figure 7.4 – Responses of the bladed disk at node LE in the ez direction: linear reference
solution ( ), nonlinear reference solution ( ) and nonlinear solution obtained with the
reduced-order model ( ).

7.4.2 Versatility of the reduction method

The performance indicator introduced in section 5.3 is then used to study the influence of the
number of modal derivatives included in the reduction basis and assess the versatility of the
reduction method for different external excitations. Reduction bases characterized by rb = 3,
rc = 10, rcyclic = 144 and rMD between 2 and 30 are built. The value of rc has been fixed
based on convergence analyses on linear and nonlinear simulations. Increasing rc beyond this
value does not increase the accuracy of the results on the studied frequency range.

The modal derivatives are selected according to the selection criterion 2b (see section 4.3.4),
with the same training excitation as in the previous section: a harmonic excitation in the ez

direction with an amplitude At = 400 N, a pulsation ωt = 4, 500 rad/s applied on Nt = 1
blade-tip node. Figure 7.5 shows the weights W

(2b)
ij associated to each modal derivative and

the ranking of the first 30 modal derivatives. The modal derivative with the highest weight
is the derivative of the third static mode with respect to itself, the modal derivative with the
second highest weight is the derivative of the second static mode with respect to the third
static mode, and so on. More generally, the modal derivatives included in the reduction basis
mainly correspond to the derivatives of the static modes with respect to themselves and of
the static modes with respect to the first internal modes.
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The different reduced-order models are first used to compute the response of the bladed disk to
harmonic excitations characterized by Ae = 400 N, ωe = 4, 500 rad/s, Nd = 0 and distributed
on respectively Ne = 1, 4 and 8 blade-tip nodes. Although the training excitation is limited
to a single period, the external excitation is here extended to ten periods in order to assess the
capability of the reduced-order models to accurately predict nonlinear transient phenomena.
Results are provided in Fig. 7.6. The results highlight that the reduced-order modeling
technique allows to predict the dynamic behavior of the bladed disk for the three values
of Ne as the performance indicator eventually reaches values above 0.95 in the three cases.
However, the accuracy of the reduced-order model decreases as Ne increases and increasing
the number of modal derivatives beyond 30 does not seem to improve the performance.
The results could be improved by increasing the number of boundary nodes retained in the
reduced space, i.e. by increasing the value of rb. However, as shown in chapter 6, increasing
the number of static modes also leads to a significant increase of the size of the reduction
basis as more modal derivatives have to be included in the reduction basis.

The reduced-order models are then used to compute the response of the bladed disk to
harmonic excitations characterized by Ae = 400 N, Ne = 1, Nd = 0 at different pulsations ωe.
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Figure 7.6 – Evolution of the performance indicator as a function of the number of modal
derivatives rMD for external excitations characterized by Ae = 400 N, ωe = 4, 500 rad/s,
Nd = 0 and Ne = 1 (•), Ne = 4 (♦) and Ne = 8 (▲).

Results are provided in Fig. 7.7. Results at ωe = 4, 000 rad/s have already been presented
in Fig. 7.6. At this pulsation, the structure mainly responds in the blade first mode and the
reduced-order models with at least rMD = 10 modal derivatives predict with accuracy the
dynamic response.

When the pulsation of the excitation is increased to ωe = 13, 000 rad/s, nearly the same
level of accuracy is achieved when a high number of modal derivatives is considered but the
convergence is slower: 22 modal derivatives are required to reach a performance indicator
I greater than 0.95. In fact, at this pulsation, the second blade mode is also excited (see
Fig. 7.3) and it is necessary to include the modal derivatives related to this torsion mode in
the reduction basis. Figure 7.5 shows that the modal derivative of the second internal mode
with respect to itself is included in position 21 in the reduction basis. Given the results in
Fig. 7.7, this modal derivative seems particularly important to represent the dynamics of the
structure at this pulsation.

The same conclusions hold at the pulsation ωe = 17, 000 rad/s where the third blade mode
is slightly excited. At this pulsation, a disk-dominated mode is also excited. Provided the
appropriate modal derivatives are included in the reduction basis, the methodology is still
accurate to describe the structure dynamics.
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Figure 7.7 – Evolution of the performance indicator as a function of the number of modal
derivatives rMD for external excitations characterized by Ae = 400 N, Ne = 1, Nd = 0 and
ωe = 4, 500 rad/s (•), ωe = 13, 000 rad/s (♦) and ωe = 17, 000 rad/s (▲).

It is worth reminding that the modal derivatives selection criterion is based on a training
excitation, here defined at a pulsation ωe = 4, 500 rad/s that mainly excites the first mode
of the structure. Faster convergence of the results (in terms of number of modal derivatives)
could be reached by modifying the pulsation of this training excitation. Depending on the
application and if the frequency range of application of the reduced-order model is a priori
known, it could be relevant to adjust the training excitation characteristics.

Lastly, the reduced-order models are used to compute the response of the structure at the
three pulsations studied before but with harmonic excitations characterized by Nd = 9 nodal
diameters. The results are illustrated in Fig. 7.8. The tendency of the three curves is very
similar to what has been observed in Fig. 7.7. The reduced-order models are also accurate
to study excitations with a number of nodal diameters different from 0.

Also, the level of accuracy at pulsation ωe = 17, 000 rad/s is close to the one obtained for
Nd = 0 where a disk-dominated mode was also excited. This confirms that such modes do
not give rise to any particular issue in the methodology.
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Figure 7.8 – Evolution of the performance indicator as a function of the number of modal
derivatives rMD for external excitations characterized by Ae = 400 N, Ne = 1, Nd = 9 and
ωe = 4, 500 rad/s (•), ωe = 13, 000 rad/s (♦) and ωe = 17, 000 rad/s (▲).

7.4.3 Computational cost

As a reminder, the reduction procedure decomposes into an expensive offline stage where
the reduced-order model is built and an efficient online stage where the reduced-order model
is used in simulations. As previously, the different computation times presented here are
obtained on an Intel Xeon E5-2698 v4 processor (2.2 GHz).

Considering a reduction basis of size r = 972 (rb = 3, rc = 10, rMD = 10, rcyclic = 144), the
single CPU sequential time required to build the reduced-order model, i.e. the offline time,
is approximately 20 hours. Note that parallel computing can be used to reduce computation
times as the nonlinear force static evaluations of the STEP can be done in parallel to build
the tensors Ãn and B̃n.

The online time, i.e. the time required to integrate forward in time the equation of motion, is
directly related to the size of the reduction basis, r. With the reduced-order model built above
(r = 972), a dynamic simulation of length 56 ms (approximately 40 periods at 4, 500 rad/s)
with a time step of integration h = 10−5 s takes about 1 minute. By comparison, the same
simulation with the full-order finite element modes would take about 18 hours. The use of the
reduced-order model therefore allows a significant reduction of CPU time by a factor 1, 000.
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Given the computational cost for building the reduced-order model, the reduced-order model
is profitable as soon as two such simulations have to be carried out.

7.5 Contact simulations

The methodology is then applied to the bladed structure with geometric and contact nonlin-
earities. As previously, we focus on the rubbing interactions due to contact events between
the blades and the surrounding casing. Even if rubbing interactions typically involve a single
blade, previous studies have shown that it is possible, at least from a numerical standpoint,
to generate a rubbing interaction with a full bladed disk [164]. The contact scenario de-
scribed in section 6.2, with two bumps on the casing, is considered through this section. No
abradable coating is considered in this section, but the methodology is compatible with the
wear modeling described in section 6.6.1.

7.5.1 Reduced-order model

Based on the analyses performed on a single rotating blade, a reduced-order model with
rb = 24 boundary degrees-of-freedom per sector, rc = 15 internal modes per sector, rMD = 150
modal derivatives per sector and rcyclic = 144 is built. This leads to a reduction basis of size
r = 6, 948. This reduced-order model is used to perform the contact simulations. Convergence
studies as in section 6.3 confirm that the size of the reduced-order model is appropriate.

7.5.2 Interaction map

Simulations at constant angular speed Ω between 1,200 rad/s and 1,650 rad/s are performed
(with a step of 5 rad/s). The interaction maps are built as described in section 6.5.1. The
interaction maps corresponding to the radial displacement at the node LE of one sector
(sector 1) are shown in Fig. 7.9 in the cases where geometric nonlinearities are neglected and
where they are taken into account.

The interaction maps highlight the existence of a strong contact interaction between the first
mode family of the bladed disk (corresponding to the first bending mode of the blade) and
the fourth engine order. At the resonance, the bladed disk responds in its first bending mode
with four nodal diameters. The contact stiffening is indicated by an arrow in both maps.
Again, geometric nonlinearities seem to give rise to smoother interactions and be responsible
for an additional contact stiffening.
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Figure 7.9 – Interaction maps of the radial displacement at node LE for the case with direct
contact with eigenfrequencies ( ), engine order lines ( ), predicted linear resonance (•)
and predicted nonlinear resonance ( ).

The radial displacement amplitude at node LE is shown in Fig. 7.10. This figure confirms
the observations made with the interaction maps. In order to correctly quantify the contact
stiffening of the structure, a continuation procedure should be used to build the nonlinear
frequency response curve (as detailed in section 6.5.2). Given the computer resources available
and the cost of such simulations, this has not been done here. Indeed, when building a NFRC
with a continuation procedure, simulations at each angular speed have to be done one after
the other with a relatively small angular speed step. The strategy detailed in section 3.1.2
can therefore not be used. It can however be expected that the contact stiffening is strongly
underestimated in the case where geometric nonlinearities are neglected.

The comparison between the results in Figs. 7.9 and 7.10 with the corresponding results in
Figs. 6.17 and 6.18 for the single rotating blade structure suggests that a similar type of
vibration response occurs for the single blade and the full bladed disk models. Vibration
amplitudes and contact stiffening are of comparable magnitudes and the frequency content
is very similar. It suggests that the predicted interaction on the full bladed disk may be seen
as a sum of rubbing interactions occurring at each blade. The disk dynamics does therefore
not play any significant role for this interaction, which is consistent with the fact that the
1B modal family is very clustered in the SAFE diagram (see Fig. 7.3).
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Figure 7.10 – Nonlinear frequency response curves of the radial displacement at node LE

in the cases where geometric nonlinearities are not considered ( ) and where geometric
nonlinearities are considered ( ) for the full bladed disk.

7.5.3 Stress analysis

Stress fields are here studied at the angular speeds of the nonlinear resonances corresponding
to the interaction 1B/eo4 indicated by the symbol ( ) in Fig. 7.9 and Fig. 7.10. The von
Mises stress fields are computed at time tmax where the node LE of sector 1 reaches its
maximal radial displacement. These stress fields are represented in Fig. 6.20 for the cases
where geometric nonlinearities are neglected and where they are taken into account.

At these interactions, the response of the structure is dominated by the first bending mode
of the blade, which shows slightly different shapes when geometric nonlinearities are consid-
ered or not. The zones of maximal von Mises stresses are not located exactly at the same
place in both cases. When geometric nonlinearities are neglected, the maximal stresses are
found near the root of the blade. When considering the geometric nonlinearities, the zone of
maximal stresses appears toward the center of the blade. Also, the results without geomet-
ric nonlinearities highlight non-negligible stresses in the disk. These results suggest again
that accounting for geometric nonlinearities in bladed disk models could have a significant
influence in terms of bladed disks design.

Quantitatively, the ratio of the maximal von Mises stresses in both cases is in line with the
corresponding ratio of maximal displacements at the blade-tip leading edge. It is important
to note that in the case where geometric nonlinearities are neglected, stresses higher than the
material yield stress are obtained in the blade while the blade remains in the elastic domain
when geometric nonlinearities are taken into account. This confirms that, in the studied case,
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(a) Without geometric nonlinearities. (b) With geometric nonlinearities.
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Figure 7.11 – Comparison of the Von Mises stress fields at tmax.

geometric nonlinearities weaken the interactions, not only locally at the blade-tip, but also
globally in the whole blade. The analysis of the stress field at the other interaction angular
speeds confirms that the severity of the interaction in terms of displacement amplitudes is
reflected in the maximal values of the von Mises stress.

7.6 Introduction of mistuning

7.6.1 Methodology

As explained in section 7.2, the methodology developed for full bladed disks can be used to
study mistuned bladed disks. In practice, the reduced-order models related to the different
sectors, characterized by different geometries or material properties for instance, are built in
the offline stage. The corresponding reduced mass matrix, reduced linear stiffness matrix,
projection basis and reduced nonlinear stiffness tensors are saved. In the online stage, the
mistuning pattern is defined and the reduced-order models of the corresponding sectors are
loaded and assembled. The second projection, corresponding to the reduction of the cyclic
boundary degrees-of-freedom, is then performed.
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7.6.2 Mistuning patterns

Mistuning is introduced in the full bladed disk model presented in section 7.3 in terms of
variation of the Young’s modulus of the sectors. In this preliminary study, three values
of the Young’s modulus are considered: 0.97En, En and 1.03En, where En = 180 GPa is
the nominal value of the Young’s modulus. This variation of the Young’s modulus of ±3%
corresponds to the values typically encountered in the literature when dealing with small
mistuning [23, 164]. The three reduced-order models of the corresponding sectors are built
in the offline stage of the procedure.

These sectors reduced-order models are then used to build reduced-order models of full bladed
disks with different mistuning patterns for which the Young’s moduli of each of the 36 sectors
of the bladed disk are picked randomly among the three values 0.97En, En and 1.03En, with
a uniform probability distribution.

7.6.3 Contact simulations

The reduced-order models of the mistuned bladed disks are then used to perform contact
simulations.

7.6.3.1 Quantities of interest

As described in section 2.3, mistuning can be responsible for an increase of the maximum
forced response amplitude and a localization of the energy on a subset of blades rather than
being uniformly distributed throughout the system. In order to quantify the influence of
mistuning, two quantities of interest are generally investigated [69, 238]. First, the amplifi-
cation factor is defined as the ratio between the maximum radial amplitude of all sectors in
the mistuned case and in the tuned case. Then, the localization factor is defined as

LF = x − 1√
Ns − 1

with x = max (ur)
rms (ur)

, (7.19)

where ur stands for the radial displacement amplitudes at node LE for each blade for the last
engine revolution [119]. The localization factor ranges from 0, corresponding to a uniform
distribution of the energy in all blades, to 1, for the case where only one blade vibrates. The
localization factor, contrary to the amplification factor, allows to distinguish cases where
several blades reach high magnification factors and cases where only one single blade reaches
a higher displacement level, which is important in terms of an optimum blade selection for
strain gages.
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These two quantities of interest can be computed for each mistuning pattern at each angular
speed studied. Statistical analyses can then be performed on these data. It should however
be noted that, because of the cost of the numerical simulations with both geometric and
contact nonlinearities, only 30 mistuning patterns are here considered. It is obvious that
these 30 samples are not sufficient to reach the statistical convergence. The following results
therefore have to be analyzed carefully. They correspond to preliminary results that may
show some trends but cannot be used to draw general conclusions. The main objective is
here to show that the methodology is suitable to study nonlinear mistuned bladed disks.

7.6.3.2 Results

Contact simulations are performed starting from zero initial conditions, as described in sec-
tion 7.5. The contact interaction between the first bending mode of the blade and the fourth
engine order is studied.

First, the 90th percentile of the radial displacement amplitude is shown in Fig. 7.12, without
and with geometric nonlinearities. The results are also compared with the NFRC obtained
for the tuned bladed disk already presented in Fig. 7.10.

1,300 1,350 1,400 1,450 1,500
0

1

2

3

Angular speed [rad/s]

R
a
d
ia
l
d
is
p
la
ce
m
en

t
a
m
p
li
tu
d
e
[m

m
]

(a) Without geometric nonlinearities.
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(b) With geometric nonlinearities.

Figure 7.12 – Radial displacement amplitude: tuned case ( / ) and 90th percentile
for mistuned case ( ).

In the case where geometric nonlinearities are neglected (Fig. 7.12a), the response is slightly
amplified in the whole angular speed range compared to the tuned case. These predicted
amplification factors are small compared to values encountered in the literature for linear
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systems. In fact, as highlighted in the contact studies performed in section 6.5.2, the time
integration procedure starting from zero initial conditions may fail to capture the nonlinear
resonances. The true value of the amplification factor may therefore not be correctly quan-
tified with this methodology. Continuation algorithms should be used to correctly capture
the nonlinear resonance and the associated amplification factor.

In the case where geometric nonlinearities are taken into account (Fig. 7.12b), a higher
amplification of the response is observed. Two possible explanations may be suggested. First,
it is possible that geometric nonlinearities are responsible for an additional amplification of
the response. Second, it is also likely that, in this case, the nonlinear resonance is well
estimated (as observed in section 6.5.2 for the single blade). The computed amplification
factor may therefore correspond to the actual amplification factor, that should be compared
with the value at the true nonlinear resonance in the case without geometric nonlinearities. In
any case, using a continuation algorithm to build the NFRC could allow to better understand
the contact dynamics.

The localization factor is then studied in the same angular speed interval. In order to visualize
the meaning of the localization factor values, the envelope of the radial displacement at node
LE for each blade is shown in Fig. 7.13 for two contact simulations characterized by different
values of the localization factor. Figure 7.13a corresponds to LF = 0.63. The energy is
essentially located on two blades. In Fig. 7.13b, LF = 0.91. Only one blade features
significant amplitude of vibration.
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(a) LF = 0.63.

T 10T 30T 40T 50T

−4

−2

0

Time

R
a
d
ia
l
d
is
p
la
ce
m
en

t
en

v
el
o
p
e
[m

m
]

(b) LF = 0.91.

Figure 7.13 – Envelopes of the radial displacement at LE for blade 1 ( ) to
blade 36 ( ).
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The 90th percentile of the localization factor is shown in Fig. 7.14 for the cases without and
with geometric nonlinearities. The maximum values of the localization factor are reached at
the nonlinear resonances. Higher values of the localization factor are obtained for the case
with geometric nonlinearities.
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(a) Without geometric nonlinearities.
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(b) With geometric nonlinearities.

Figure 7.14 – Localization factor (percentile 90).

7.7 Partial conclusions

In this chapter, the methodology developed for single blades has been generalized to full
bladed disks based on CMS techniques. The methodology has been validated on an industrial
bladed disk model subjected to an equivalent aerodynamic loading and then used in contact
simulations.

Some preliminary studies have also shown that the methodology is compatible with the
introduction of mistuning in the reduced-order model. These studies have also begun to show
the limitations of the methodology in terms of numerical resources needs. In the offline stage
of the procedure, the computation time is directly related to the time required to perform
the static simulations with the full-order finite element model. Here, these simulations are
performed with SAMCEF and are limited by the number of software licenses. That’s why
only a limited number of values were considered for the Young’s modulus. In this context,
it could be very interesting to use the developed methodology in combination with an open
finite element software, as code_aster, which could allow to build a large number of ROMs at
the same time. In the online stage, the simulations are also costly, especially for structures
with many sectors and when an accurate description of the contact interface is required.
With the present methodology, it seems difficult to reduce this cost but other avenues could
be explored to build ROMs of reduced size, as invariant manifold methods.
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CHAPTER 8 CONCLUSIONS AND PERSPECTIVES

Contributions

This thesis presents the set up of a new methodology to predict the dynamics of geometrically
nonlinear mistuned bladed disks subjected to contact interactions in a numerically efficient
way through the use of reduced-order models. Most specifically, this work focuses on rubbing
events between the blade-tip and the surrounding casing.

In order to develop this methodology, the use of different reduction bases has been inves-
tigated following respectively the proper orthogonal decomposition approach, the Craig-
Bampton approach and the modal derivative approach. The different reduction methods
have been adapted, when needed, and used to study the dynamics of a compressor blade
from the NASA rotor 37 in the case of a harmonic excitation, representative of an aerody-
namic loading, and in the case of contact excitation. These studies allow to highlight the
strengths and weaknesses of the different methods. The reduction method by POD proves
to be very sensitive to the spatial shape of the excitation. In contact simulations where the
exact excitation is not known a priori, POD does not provide accurate results. The Craig-
Bampton reduction method does not allow to capture globally the dynamics of the blade,
even in the simple case of a harmonic excitation. In contrast, the modal derivative approach
allows to build robust reduced-order models. In order to limit the size of the reduced system,
a modal derivative selection criterion has been proposed.

The final methodology proposed here to predict the nonlinear and nonsmooth dynamics of the
blade in a computationally efficient way is based on the projection of the high fidelity model
onto a reduction basis composed of Craig-Bampton modes and a selection of their modal
derivatives. This reduction basis is computed directly from the mechanical properties of the
structure and does not require training data from previous simulations or experiments. The
nonlinear internal forces due to large displacements are evaluated with the stiffness evaluation
procedure. Contact is numerically handled with Lagrange multipliers and the equation of
motion is integrated forward in time using an explicit central difference time integration
scheme. Parametric reduced-order models, valid on a given angular speed interval, can also
be built by interpolating the linear and nonlinear stiffness terms between three angular speeds.

In order to ease the subsequent possible technology transfer to the industry, the core numerical
tool is, in this work, written in Python, which is an efficient, open-source and portable
scientific programming language. The finite element software SAMCEF is used to perform
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the analyses with the full-order finite element model required for building the reduced-order
model. The numerical strategy could however be easily included in any commercial finite
element software as it is non-intrusive. Once built, the reduced-order model is completely
independent from the full-order finite element model, which avoids costly simulations with
the full-order model and data exchange between the finite element software and the specific
software used for the treatment of nonlinearities.

This methodology has been applied to study in more details the contact interactions of the
NASA rotor 37 blade with a surrounding rigid casing. The modeling of the wear of an
abradable coating deposited along the casing has also been addressed. On the one hand, the
numerical studies have shown that the reduction procedure developed allows to extract quan-
tities of interest that are relevant for both researchers and industrial designers. In particular,
it can be used to efficiently identify the critical angular speeds at which high-amplitude in-
teractions occur and to assess the consequences of the interactions on the structure integrity,
for instance in terms of stress fields inside the blade. On the other hand, the comparison
of the results obtained without and with geometric nonlinearities shows that neglecting the
geometric nonlinearities in such studies can lead to wrong estimation of the critical angular
speeds of the structure and to bad evaluation of the severity of the interactions in terms of
displacement amplitudes and von Mises stress fields.

The methodology has then been generalized to full bladed disks using component mode
synthesis techniques with fixed interfaces based on the assumption that the constraint modes
related to the cyclic boundaries remain linear. The methodology has first been applied to
the NASA rotor 37 full bladed disk subjected to known harmonic excitations, and then
used to study the contact interactions of the structure with the casing. In this context, the
repeated evaluation of the nonlinear internal forces due to large displacements in the contact
algorithm can become numerically costly because of the size of the reduced-order model. A
dedicated numerical strategy, with memory sharing, has therefore been developed to reduce
the computation time. It has finally been shown that mistuning can be taken into account
in the reduced-order model, for instance, but not only, with a Young’s modulus variability
between the sectors.

Perspectives

Some perspectives are suggested for future works.

First, it would be very interesting to validate the methodology by comparing the results
obtained with results from experimental tests.
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As a direct extension of this work, the mistuning analyses presented in the last chapter could
be further developed with deeper stochastic analyses with Monte Carlo simulations, poly-
nomial chaos expansion or perturbation techniques. Using an open finite element software
could allow to build ROMs for a large number of values of the Young’s modulus in the studied
range of variation, that could be used to generate mistuned bladed disks ROMs.

As detailed through this thesis, the proposed methodology is compatible with the harmonic
balance method and could be used to study the contact dynamics of bladed structures in
the frequency domain. From a numerical point of view, it could be interesting to use these
frequency methods to build the complete nonlinear frequency response curve of the structure,
identify the bifurcations and study the solutions stability. This numerical strategy could also
be applied to more slender structures, such as fan stages, which are likely to experience more
pronounced geometrically nonlinear effects.

The numerical strategy could also be combined with existing methodologies to introduce
more physics in the model. For instance, observations made on several experimental set-ups
underlined the very high temperature increases measured in the vicinity of contact areas and
within abradable coatings following contact events [152]. Thermal effects could be accounted
for by coupling the reduced-order model to a thermal model. Also, the modeling of a flex-
ible casing could allow to study the modal interactions between a full bladed disk and the
surrounding casing. For more realism, the imposed external loading could be obtained from
aeroelastic studies and the reduced-order model could be coupled with a CFD solver.

As shown in the chapter dedicated to full bladed disks, computations with the ROMs built
in this work still can be particularly costly for structures with a large number of sectors. The
current work could therefore be extended to achieve further reduction of the computational
costs in this context. Preliminary studies showed that it is not necessary to consider all
the components of the reduced nonlinear stiffness tensors Ã and B̃ to obtain an accurate
description of the reduced nonlinear internal forces. A priori identification of the dominant
coefficients could allow to reduce the computational burden of the STEP in the offline stage,
but also the cost of the online stage provided the presence of zero nonlinear stiffness terms is
properly taken into account in the implementation of the calculation of the tensor products
involved in the nonlinear forces. Alternative numerical strategies could also be explored, as
invariant manifold approaches recently developed for systems with geometric nonlinearities.
The results obtained with the theory of spectral submanifolds and the direct normal form
theory are both very encouraging in terms of accuracy and size of the resulting ROM. The
extension of these methods to problems with contact is however very challenging and requires
further investigations.
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APPENDIX A EQUATION OF MOTION OF A ROTATING STRUCTURE

In this appendix, the differential equation governing the motion of a rotating structure is
mathematically established based on the Hamilton principle and the space discretization of
the problem based on the finite element formalism. Starting from the general equation of
motion expressed in an inertial frame, the equation of motion is rewritten in the rotating
frame of an equilibrium configuration considered as a natural configuration.

The equation of motion is established using the assumptions usually made in the field of
turbomachinery. First, the material is homogeneous, isotropic, non-dissipative and elastic.
Then, the angular speed is assumed to be constant, both in direction and in module.The only
nonlinear behavior considered here are geometric nonlinearities (due to large displacements)
and contact nonlinearities.

Inertial and rotating frames

Let’s consider a deformable solid of volume V and boundary Γ at rest whose geometry is well
known and can be meshed. Because of external excitations, this solid will be subjected to
displacements and deformations over time. Let’s define Rg a fixed reference frame of origin
O and Rm the moving reference frame of origin O′ following the motion of the structure (see
Fig. A.1). The displacement of Rm with respect to Rg can be decomposed into the translation
of O′ with respect to O, represented by the vector with components b(t) defined in Rg, and
the rotation of Rm with respect to Rg described by the angular speed vector ω(t) = ω, with
components ωx, ωy and ωz in Rm.

Let’s introduce x, the components in Rm of the position vector of a point M of the solid at
rest, s(x, t) the components of the displacement vector of M in Rm at time t and y(x, t) the
components of the position vector of M in Rg in the deformed configuration. The quantities
in the different frames are related through

y(x, t) = b(t) + R [x + s(x, t)] , (A.1)

where R is the rotation matrix from Rg to Rm. This rotation matrix is orthogonal, i.e.

RTR = I, (A.2)
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Figure A.1 – Rotating structure with fixed reference frame Rg and rotating frame Rm.

and
Ṙ = RΩ, (A.3)

where Ω is the skew symmetric angular velocity matrix

Ω =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (A.4)

In the following, the time and space dependency of the different quantities in (A.1) will be
omitted for brevity.

In the present application, the frame Rm is linked to the rotating bladed disk and it is assumed
that it only has a rotating motion with respect to Rg, i.e. b = 0. The time derivative of y
in Rg is given by

ẏ = Ṙ(x + s) + R(ẋ + ṡ)
= RΩ(x + s) + Rṡ. (A.5)

Hamilton principle

The equation of motion are derived from Hamilton principle [73]. Hamilton’s principle states
that the solution s(t) between t1 and t2 is a stationary point of the mechanical action in
Hamilton’s sense, i.e.

δ
∫ t2

t1
(T − V) dt +

∫ t2

t1
δWdt = 0 with δs(x, t1) = δs(x, t2) = 0, (A.6)
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where T is the kinetic energy of the system, V is the strain energy of the system and W is
the work done by the external forces.

Strain energy The strain energy writes

V = 1
2

∫
V
σ : ϵ dV (A.7)

where σ and ϵ respectively stand for the stress and strain tensors. In index notation and
using Einstein summation convention, the double dot product between these tensors writes

σ : ϵ = σijϵij. (A.8)

Different measures of stress and strain, which are equivalent in a linear context, can be
defined. In a nonlinear context, the second Piola-Kirchhoff stress tensor is largely used [113].
This tensor is defined as

S = JF−1σ̄F−T, (A.9)

where σ̄ is the Cauchy stress tensor, the deformation gradient

F = ∂ (x + s)
∂x = I + ∂s

∂x , (A.10)

and J = det F. Regarding the strain definition, the Green-Lagrange tensor

E = 1
2
(
FTF − I

)
= 1

2

 ∂s
∂x +

[
∂s
∂x

]T

+ ∂s
∂x

[
∂s
∂x

]T
 (A.11)

is used in a nonlinear context. This tensor is the sum of a linear term and a quadratic term.
When studying small deformations, the nonlinear part of the strain tensor can be neglected.
Under the assumption of linear elasticity, the Saint Venant-Kirchhoff model is used, which
assumes a linear relationship exists between the second Piola-Kirchhoff stress tensor and
the Green-Lagrange tensor. Defining H as the fourth-order elasticity tensor, the tensors are
related through

S = H : E, (A.12)

or in index notation,
Sij = HijklEkl. (A.13)
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The stress and strain tensors are symmetric, so that the elasticity tensor satisfies the relations

Hijkl = Hjikl = Hijlk. (A.14)

Moreover, by assuming that the stress tensor derived from a potential, one can show that

Hijkl = Hklij. (A.15)

Injecting (A.11) and (A.12) in (A.7), the strain energy writes, in index notations,

V = 1
2

∫
V

HijklEijEkldV

= 1
8

∫
V

Hijkl

(
∂si

∂xj

+ ∂sj

∂xi

+ ∂si

∂xm

∂sj

∂xm

)(
∂sk

∂xl

+ ∂sl

∂xk

+ ∂sk

∂xn

∂sl

∂xn

)
dV. (A.16)

Using the relations (A.14) and (A.15), the strain energy simply writes

V = 1
2

∫
V

Hijkl

(
∂si

∂xj

∂sk

∂xl

+ ∂si

∂xm

∂sj

∂xm

∂sk

∂xl

+ ∂si

∂xm

∂sj

∂xm

∂sk

∂xn

∂sl

∂xn

)
dV. (A.17)

Kinetic energy The kinetic energy writes

T = 1
2

∫
V

ρẏTẏdV

= 1
2

∫
V

ρ
[
(xT + sT)ΩTRT + ṡTRT

]
[RΩ(x + s) + Rṡ] dV

= 1
2

∫
V

ρ
[
xTΩTΩx + 2xTΩTΩs + sTΩTΩs + 2xTΩTṡ + 2sTΩTṡ + ṡTṡ

]
dV. (A.18)

Lagrange equations

Using the finite element formulation, the continuous displacement s is written as

s(x, t) = N(x)up(t), (A.19)

where up is the discretized displacement field in the rotating frame and N stands for the
matrix of shape functions of the finite element formalism. Injecting (A.19) in (A.17), the
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strain energy writes

V = 1
2

∫
V

Hijkl

∂Niα

∂xj

up,α
∂Nkβ

∂xl

up,β + ∂Niα

∂xm

up,α
∂Njβ

∂xm

up,β
∂Nkγ

∂xl

up,γ

+∂Niα

∂xm

up,α
∂Njβ

∂xm

up,β
∂Nkγ

∂xn

up,γ
∂Nlδ

∂xn

up,δ

dV. (A.20)

The strain energy is a fourth-order polynomial in up. Injecting (A.19) in (A.18), the kinetic
energy writes

T = 1
2

∫
V

ρxTΩTΩxdV +
(∫

V
ρxTΩTΩNdV

)
up + 1

2uT
p

(∫
V

ρNTΩTΩNdV
)

up+(∫
V

ρxTΩTNdV
)

u̇p + uT
p

(∫
V

ρNTΩTNdV
)

u̇p + 1
2 u̇T

p

(∫
V

ρNTNdV
)

u̇p. (A.21)

With the discretization (A.19), the Hamilton principle (A.6) is equivalent to solving the
Lagrange equations

d

dt

(
∂L
∂u̇p

)
− ∂L

∂up

= Q, (A.22)

where the Lagrangian of the system is defined as

L(up, u̇p) = T − V , (A.23)

and where Q stands for the generalized force term.

Injecting (A.21) and (A.23) in (A.22), the equation of motion can be written as
(∫

V
ρNTΩ̇TxdV

)
+ u̇T

p

(∫
V

ρNTΩTNdV
)

+ up
T
(∫

V
ρNTΩ̇TNdV

)
+
(∫

V
ρNTNdV

)
üp

−
(∫

V
ρNTΩTΩxdV

)
−
(∫

V
ρNTΩTΩNdV

)
up −

(∫
V

ρNTΩTNdV
)

u̇p + ∂V
∂up

= Q,

(A.24)

where

Q = fe(t) + fc(up, u̇p) =
∫

V
NTf(t)dV +

∫
Γ

NTt(t)dS +
∫

Γ
NTtc(s, ṡ)dS, (A.25)

where f is the vector of external body forces expressed in the rotating frame, t is the vector
of surface tractions and tc stands for the contact forces expressed in the rotating frame
acting on Γ. The normal and tangential components of the contact forces have to meet some
conditions, as detailed in section 2.4.3.
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The derivative of the strain energy can be written as

∂V
∂up

= K(e)up + g(up), (A.26)

where K(e) is the elastic stiffness matrix and g(up) accounts for the nonlinear internal forces.
Under the assumptions of linear elasticity and when using the Green-Lagrange tensor for the
definition of the strain, the derivative of the strain energy is a third order polynomial in up.
The elastic stiffness matrix takes the expression

K
(e)
αβ =

∫
V

Hijkl
∂Niα

∂xj

∂Nkβ

∂xl

dV. (A.27)

Assuming a constant rotation speed, the equation of motion can be rewritten as(∫
V

ρNTNdV
)

üp + 2
(∫

V
ρNTΩNdV

)
u̇p

−
(∫

V
ρNTΩTΩNdV

)
up + K(e)up + g(up) = Q +

∫
V

ρNTΩTΩxdV. (A.28)

The mass matrix M is defined as

M =
∫

V
ρNTNdV. (A.29)

The gyroscopic matrix G(Ω) is defined as

G(Ω) = 2
∫

V
ρNTΩNdV. (A.30)

The term
G(Ω)u̇p (A.31)

is defined as the Coriolis force. This force is proportional to the rotation speed and acts
perpendicularly to the axis of rotation and to the velocity vector. The gyroscopic coupling
matrix can be directly deduced from the knowledge of the mass matrix. When the structure
rotates at a constant rotation speed Ω about the e3-axis, the gyroscopic matrix writes

G(Ω) = 2ΩM diag



0 −1 0
1 0 0
0 0 0


 . (A.32)
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The centrifugal stiffness matrix K(c)(Ω) is defined as

K(c)(Ω) = −
(∫

V
ρNTΩTΩNdV

)
. (A.33)

The term
K(c) (Ω) up (A.34)

is defined as the centrifugal force. This force is proportional to the square of the speed of
rotation of the structure. The changing direction of the centrifugal force induces a softening
effect. The centrifugal stiffness matrix can be directly deduced from the knowledge of the
mass matrix. When the structure rotates at a constant rotation speed Ω about the e3-axis,
the centrifugal stiffness matrix writes

K(c)(Ω) = −Ω2M diag



1 0 0
0 1 0
0 0 0


 . (A.35)

The term ∫
V

ρNTΩTΩxdV (A.36)

is defined as the centrifugal force vector fei(Ω). Adding a viscous damping term Du̇p, the
equation of motion writes

Müp + [D + G (Ω)] u̇p +
[
K(e) + K(c) (Ω)

]
up + g(up) = fe(t) + fc(up, u̇p) + fei(Ω). (A.37)

Note that the same expression is obtained by introducing the finite element approxima-
tion (A.19) in the weak form of the problem based on the principle of virtual work, obtained
by multiplying the strong form of the problem by a virtual displacement kinematically ad-
missible and integrating it on the volume [13,210].

Prestressed static equilibrium state as a natural configuration

The dynamics of the structure is generally studied with respect to the prestressed static
equilibrium state us due to the structure rotation. According to (A.37), the static equilibrium
position us satisfies [

K(e) + K(c) (Ω)
]

us + g(us) = fei(Ω). (A.38)
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The relative displacement u is related to us and up through

u = up − us, (A.39)

so that the equation of motion (A.37) can be rewritten

Mü+[D + G (Ω)] u̇+
[
K(e) + K(c) (Ω)

]
(us + u)+g (us + u) = fe(t)+ fc(u+us, u̇)+ fei(Ω).

(A.40)
Injecting (A.38) in (A.40),

Mü+[D + G (Ω)] u̇+
[
K(e) + K(c) (Ω)

]
u+g (us + u)−g(us) = fe(t)+fc(u+us, u̇). (A.41)

The development of the nonlinear forces g (u + us) in the neighborhood of the static dis-
placement us is given by

g (us + u) = g (us) + ∂g (up)
∂up

∣∣∣∣∣
up=us

u + gnl(u, us) (A.42)

= g (us) + K(g)(us)u + gnl(u, us), (A.43)

where K(g)(us) is the geometric prestressed stiffness matrix and gnl(u, us) accounts for the
nonlinear terms. Under the assumptions of linear elasticity and when using the Green-
Lagrange tensor for the definition of the strain, gnl(u, us) is a third order polynomial in u
whose coefficients depend on the prestressed state us.

The discretized equation of motion governing the relative displacement u around an initial
prestressed static equilibrium state us induced by the rotation of the structure therefore
writes

Mü+[D + G(Ω)] u̇+
[
K(e) + K(c)(Ω) + K(g)(us)

]
u+gnl(u, us) = fe(t)+fc(u+us, u̇). (A.44)
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