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Abstract

Motivated by index coding and its ability to exploit receivers’ side information
to create coded multicasting opportunities for users requesting different files,
the concept of coded caching for cache-aided wireless networks introduced
the idea of a combinatorial clique-based cache placement algorithm and a
synergistic delivery scheme that enables transmitting independent content to
multiple users at a time. The magnificent ability of coded caching for si-
multaneous delivery of an unlimited number of user requests, with a limited
delay has strengthened the importance of transfiguring the storage capabil-
ities of the network nodes (access points, helper nodes, etc.) into a fresh
and powerful network resource that can complement the limited amount of
network bandwidth resources to provide services to an ever-increasing num-
ber of users. This information-theoretic aspect of cache-aided networks (i.e.,
coded caching), has attracted significant interest from the research commu-
nity. Consequently, several extensions of the coded caching in a wide range
of network settings have been studied to prove that coded caching offers mul-
tiplicative gains which scale with the total storage capacity of the network.
However, an overwhelming majority of these coded-caching studies focus
on the deterministic information-theoretic frameworks and it is of utmost
importance to transcend the boundary and study coded caching in more re-
alistic wireless communication networks that are random in nature. In this
context, this thesis elevates coded caching from their purely information-
theoretic framework to a stochastic setting where the stochasticity of the
networks originates from the heterogeneity in users’ request behaviors.

We first study the stochastic shared-cache setting, where the association
between users and shared caches is random, i.e., for the scenario where each
user can appear within the coverage area of – and subsequently is assisted
by – a specific cache-enabled helper node based on a given probability dis-
tribution (i.e., stochastic cache population intensities). This setting is crucial
to the development of larger, realistic coded caching networks as it cap-
tures promising scenarios such as the promising scenario of heterogeneous
networks. We establish the exact performance limits of coded caching in
such networks. In the scenario where the delivery involves K users and Λ
cache-enabled helper nodes, our work provides a statistical analysis of the
average performance of such networks, identifying in closed form, the exact
optimal average delivery time. To insightfully capture this delay, we derive
easy-to-compute closed-form analytical bounds that prove tight in the limit
of a large number of shared caches Λ. Under the premise that more balanced
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user-to-cache associations perform better than the unbalanced ones, we re-
veal the exact extent of cache-load imbalance bottleneck of coded caching in
such stochastic network settings and show that imbalance in cache popula-
tion densities can lead to the vanishing of the coding gain. To mitigate the
impact of the cache-load imbalance bottleneck of coded caching in stochastic
shared-cache networks, we propose three techniques that are very effective
in resolving this bottleneck.

Then, we study the subpacketization-constrained (state-constrained) coded
caching networks with heterogeneous user activity. The subpacketization-
constrained setting is the operational reality for practical coded caching net-
works. It is known that to benefit from the exceptional gains of coded caching,
it requires each user to be allocated to their own specifically-designed cache
state (cache content), which effectively requires files to be of astronomical
sizes. Thus given any reasonable constraint on the file sizes, the number
of distinct cache states Λ is effectively forced to be less than the number
of users K that must be shared among the users, which makes this setting
related to the shared-cache setting. One main difference between these two
settings is that in the shared-cache setting, the user-to-cache state associa-
tions are restricted by proximity constraints between users and helper nodes,
while, in the subpacketization-constrained setting, the user-to cache state as-
sociation strategies can be treated as a design parameter as each user has
its own cache. Therefore, in subpacketization-constrained settings, associ-
ation strategies can be optimized to mitigate the impact of the cache-load
imbalance bottleneck of coded caching in stochastic networks.

In this context, we study the K-user cache-aided broadcast channel with
a limited number of cache states, and explore the effect of user-to-cache
state association strategies in the presence of arbitrary user activity levels; a
combination that strikes at the very core of the coded caching problem and
its crippling subpacketization bottleneck. We first present a statistical anal-
ysis of the average worst-case delay performance of such subpacketization-
constrained coded caching networks, and provide computationally efficient
performance bounds as well as scaling laws for any arbitrary probability
distribution of the user activity levels. Subsequently, we propose a novel
user-to-cache state association algorithm that leverages the knowledge of the
statistics of user activity. Next, we follow a data-driven approach that ex-
ploits the prior history on user activity levels and correlations, in order to
predict interference patterns, and thus better design the caching algorithm.
This optimized strategy is based on the principle that users that overlap more,
interfere more, and thus have higher priority to secure complementary cache
states. This strategy is proven here to be within a small constant factor from
the optimal.

In summary, this thesis highlights that stochasticity in the cache-aided
networks can lead to the vanishing of the gains of coded caching. We
determine the exact extent of the cache-load imbalance bottleneck of coded
caching in stochastic networks, which has never been explored before. Our
work provides techniques to mitigate the impact of this bottleneck for the
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scenario where the user-to-cache state associations are restricted by proximity
constraints between users and helper nodes such as in shared-cache setting
as well as for the scenario where user-to-cache state associations strategies
are considered as a design parameter such as in subpacketization-constrained
setting.
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Notations, Acronyms, and
Abbreviations

Notations

Following is the list of notations used throughout the dissertation.

• N, Z, and R denote the sets of naturals, integers, and reals, respectively.

• We use the notation [n] ≜ [1, 2, . . . , n] , ∀n ∈ Z+.

• We use Q\P to denote the set difference of P and Q, which is the set
of elements in Q but not in P.

• We use X [n]
k ≜ {δ : δ ⊆ [n], |δ| = k}.

• We use P(i) to denote the ith element of P.

• We use the following asymptotic notation:

– f(x) = O(g(x)) will mean that there exist constants a and c such
that f(x) ≤ ag(x), ∀x > c.

– f(x) = o(g(x)) will mean that limx→∞
f(x)
g(x)

= 0.

– f(x) = Ω(g(x)) will be used if g(x) = O(f(x)).

– f(x) = ω(g(x)) will mean that limx→∞
g(x)
f(x)

= 0.

– f(x) = Θ(g(x)) will be used if f(x) = O(g(x)) and f(x) = Ω(g(x)).

• We use the term polylog(x) to denote the class of functions
⋃
k≥1O((logx)k)

that are polynomial in log x.

• ⊕ will denote the bit-wise XOR operation.

•
(
n
k

)
denotes the n-choose-k operation for some n, k ∈ N, n ≥ k.

• Unless otherwise stated, we assume logarithms to have base 2.

Additionally, in each chapter we will introduce more notation that will
remain relevant to that chapter.
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Acronyms and Abbreviations

The acronyms and abbreviations used throughout the dissertation are
specified in the following.

MIMO Multiple-Input-Multiple-Output
MAN Maddah-Ali and Niesen
BC Broadcast Channel
BS Base Station
SINR Signal-to-Interference-plus-Noise Ratio
RSSI Received Signal Strength Indication
HetNet Heterogeneous Networks
D2D Device to Device
XOR Exclusive OR
SoA State of the Art
NUB Numerical Upper Bound
NLB Numerical Loweer Bound
AUB Analytical Upper Bound
ALB Analytical Loweer Bound
SBN Sampling-Based Numerical approximation
GCD Greatest Common Divisor
N-UCS Non-Uniform Cache Size
UCS Uniform Cache Size
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Chapter 1

Introduction to Cache-aided
Networks

1.1 Why Caching?
The mobile data traffic is growing unprecedentedly and exponentially [3], and
with each passing day, we are heading towards the limits of existing wireless
networks, which rely on limited bandwidth resources. This ever-growing
amount of mobile data traffic drives the need for innovative solutions that
can provide service to an ever-increasing number of users and do so with a
limited amount of network bandwidth resources.

INCREASING NETWORK 
CAPACITY

Heterogeneous 
Network

Additional 
Spectrum

(mm-Wave)

Interference 
Management 

 Massive 
MIMO

Exploiting Current

Updating

Infrastructure 

Infrastructure 

Dynamic 
Spectrum 

Access

Figure 1.1: Some of the well-known traditional techniques to increase the
network capacity.

In this context, the well-known traditional approaches (Figure 1.1) to in-
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1.1. WHY CACHING?

crease the network capacity may involve the following approaches:

1. The deployment of heterogeneous networks in which many micro base
stations are deployed along with the macro base station to improve the
total spectral efficiency.

2. The use of additional spectrum and along with it efficient use of the
spectral resources.

3. Multiple-Input-Multiple-Output (MIMO) communication systems in which
transmitters and receivers are equipped with multiple antennas to ex-
ploit diversity and multiplexing gains.

4. Additional techniques that efficiently manage interference in order to
maximize capacity.

However, these traditional approaches either come with high additional
costs or do not increase the capacity to the required scale. In this context,
cache-aided wireless networks have emerged as a viable option that can
transfigure the storage capabilities of the network nodes (access points, helper
nodes, etc.) into a fresh and powerful network resource. The main idea of
cache-aided wireless networks is to bring content closer to the users by
proactively storing a subset of the content library during the off-peak hours
at the network edge, including at wireless communication stations [4–6]
as well as on end-user devices [7–10] such that upon the user’s request the
content is provided locally by neighboring cache-aided network edge, without
or with minimally utilizing the backhaul communication. Figure 1.2 offers
an illustration of a generalized wireless network with or without caching.

(a) Wireless network without caching

(b) Wireless network with caching

Figure 1.2: A generalized wireless network with and without caching.

2



1.2. CODED CACHING

1.2 Coded Caching
The cache-aided wireless networks have the limitation of finite storage capac-
ity, and one cannot cache the entire content library at the local cache. Thus,
deciding which content needs to be stored at which cache plays a crucial
role in the overall performance of the network. Generally caching is based
on the idea that storing data can allow a receiving node to have easy access
to its own desired file [4–10], however, recent work has shown the powerful
effects of exploiting the existence of the aforementioned desired file at the
caches of other receiving users. In interference-limited scenarios — such as in
downlink settings exemplified by the broadcast channel where each user has
access to their own cache and requires their own distinct file — the findings
by Maddah-Ali and Niesen (MAN) in [1] suggest that a proper use of caching
can allow for single multicast transmissions to simultaneously serve many
users each having their own distinct demands. This breakthrough in the way
caching is perceived, is based on the ideas of index coding which tells us
that when the stored content in one user’s cache overlaps with other users’
requests, one can design multicast transmissions (in the form of XORs or
other linear combinations of desired data), that allow for rapid delivery of
any possible set of demands.

Motivated by index coding and its ability to exploit receivers’ side informa-
tion to create coded multicasting opportunities for users requesting different
files, the seminal work by MAN in [1] has introduced the concept of coded
caching. This work revealed that — under some theoretical assumptions, and
in the presence of a deterministic information-theoretic broadcast framework
— the use of caching at the receivers can allow the simultaneous delivery of
an unlimited number of user-requests, with a limited delay. This astounding
conclusion was achieved by carefully designing a combinatorial clique-based
cache placement algorithm, and a synergistic delivery scheme that enables
transmitting independent content to multiple users at a time. Let us now
proceed with a brief introduction to the coded caching algorithm.

1.2.1 Coded Caching Algorithm by MAN [1]
The original setting in [1] considers a unit-capacity single-stream broadcast
channel (BC), where a transmitting base station (BS) has access to a library
(catalog) F =

[
F 1, F 2, . . . , FN

]
of N unit-sized files, and serves K receiving

users each equipped with a cache of size equal to the size of M files, or
equivalently equal to a fraction γ ≜ M

N
∈
[
1
K
, 2
K
, . . . , 1

]
of the library. An

instance of this cache-aided wireless network is shown in Figure 1.3.
The communication process consists of two phases; the placement phase

and the delivery phase. During the placement phase, each user’s cache is
filled with the content from the library, and this phase is oblivious to the
upcoming file demands in delivery phase. The delivery phase begins with
users simultaneously requesting one distinct file each, and continues with
the BS delivering this content to the users. The work in [1] provides a novel

3



1.2. CODED CACHING

User (K) Cache(M) BS BC-Link Library (N)

Figure 1.3: An instance of a cache-aided wireless network.

placement and delivery scheme that can serve any set of K simultaneous
requests with a worst-case delivery time of K(1−γ)

1+Kγ
≈ 1

γ
. This ability to serve

a theoretically ever-increasing number of users with a bounded delay, is a
direct result of exploiting the cache-enabled multicasting opportunities that
allow for delivery to Kγ+1 users at a time. This delivery speedup is referred
to as the coding gain – or equivalently as the Degrees-of-Freedom (DoF) –
and it scales with the total storage capacity of the network (i.e., Kγ). Let us
now see how this scheme works.

Content Placement During the placement phase, each file F i ∈ F is parti-
tioned into

(
K
t

)
distinct equisized subpackets, where t ≜ Kγ for some t ∈ [K].

Then, index each subpacket of a file by a distinct subset τ ⊆ [K] of size
t. The set of indexed subpackets corresponding to file F i ∈ F is given by
{F i

τ : τ ⊆ [K], |τ | = t}. The set of content to be stored at the cache of user
k ∈ [K] is given by

Zk =
{
F i
τ : i ∈ [N ], k ∈ τ, τ ⊆ [K], |τ | = t

}
.

Consequently, each user k ∈ [K] cache a total of |Zk| = N
(
K−1
t−1

)
subpackets,

which abides by the cache-size constraint since N (K−1
t−1 )
(Kt )

=M .

Definition 1.1 (Cache State). When adopting the above mentioned cache
placement strategy forK cache-enabled users, we refer the content to be placed
in a single cache as a cache state¹.

¹The cache state defines the content stored at the cache of a certain user. Two users
sharing the same cache state must store the exact same content in their cache. As we will
see later, having fewer cache-states generally implies a smaller DoF.
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Content Delivery The delivery phase begins after each user k ∈ [K] re-
quests a distinct content file F dk ∈ F (i.e., worst-case), where dk ∈ [N ] is
the index of the file requested by user k ∈ [K]. Then, for a demand vector
d = [d1, d2, . . . , dK ], the BS sequentially transmits the following bit-wise XOR
coded subpackets:

Xδ = ⊕k∈δF dk
δ\{k}, ∀δ ⊆ [K], |δ| = t+ 1, (1.1)

where for each subset δ ⊆ [K] of t+1 users, the corresponding bit-wise XOR
coded subpacket Xδ is created in such a way that any user k ∈ δ can decode a
subpacket F dk

δ\{k} of its requested file by removing the t interfering subpakcets
in Xδ using the content stored in its cache. Consequently, each bit-wise XOR
coded subpacket Xδ simultaneously serves t+ 1 users.

Definition 1.2 (Delivery Time). The delivery time (delay) corresponds to the
time needed to complete the delivery of any file-demand vector d, where the
time scale is normalized such that a unit of time corresponds to the optimal
amount of time needed to send a single file from the transmitter to the receiver,
had there been no caching and no interference.

It is straightforward to see that after BS finishes the transmission of
(
K
t+1

)
bit-wise XOR coded subpackets, each user k ∈ [K] can easily decode

(
K−1
t

)
missing subpackets of its requested file. Thus, the worst-case delivery time
of MAN coded caching algorithm is given as

TMAN (K,N,M) =

(
K
t+1

)(
K
t

) =
K − t
1 + t

=
K(1− γ)
1 +Kγ

. (1.2)

This worst-case delivery time in (1.2) achieved by MAN coded caching
algorithm was shown to be information-theoretically optimal within a factor
of 2 in [11]. Later, in [12], it was shown that under the assumption of uncoded
cache placement, the MAN’s algorithm is exactly optimal, where the uncoded
cache placement means any content placement strategy that caches the bits
of the content library without applying any coding. Furthermore, the work
in [13] removed the worst-case assumption and characterized the performance
of coded caching for the scenarios where users can have identical content
requests. The delivery time of MAN coded caching algorithm for any demand
vector d is given as

TMAN (K,N,M, d) =

(
K
t+1

)
−
(
K−I(d)
t+1

)(
K
t

) , (1.3)

where I(d) denotes the number of distinct requests in d.
Example: Let us take the example of K = N = 3, and M = 1. Then,

each file F i is partitioned into three
(
i.e.,

(
K
t

))
distinct equisized subpackets

[F i
1, F

i
2, F

i
3] and the content placement at each user is given as

Z1=
{
F 1
1 , F

2
1 , F

3
1

}
,

5
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Z2=
{
F 1
2 , F

2
2 , F

3
2

}
,

Z3=
{
F 1
3 , F

2
3 , F

3
3

}
.

Now, let us move to the content delivery phase. Let us assume the demand
vector d = [1, 2, 3], where user 1 requests file F 1, user 2 requests file F 2, and
user 3 requests file F 3. Then, the BS sequentially transmits the following
three bit-wise XOR coded subpackets:

X1,2 = F 1
2 ⊕ F 2

1

X1,3 = F 1
3 ⊕ F 3

1

X2,3 = F 2
3 ⊕ F 3

2 .

After receiving X1,2 and X1,3, user 1 can easily decode the subpacket F 1
2 and

F 1
3 by removing the interference (i.e., F 2

1 and F 3
1 ) using its cached content.

Following the same approach user 2 and user 3 can also decode the content
of their interest. Then, the delivery time corresponding to this example is
TMAN (3, 3, 1) = 3× 1

3
= 1.

1.2.2 Extensions of Coded Caching
The outstanding gains of MAN’s coded caching scheme have attracted sig-
nificant interest, and consequently, several extensions of the basic coded
caching setting have been studied. Such works include the study of coded
caching for arbitrary file popularity distributions [14–16], for decentralized
system models [2, 17], for various topology models [18–20], for MIMO broad-
cast channels [21,22], for PHY-based coded caching [20–29], for a variety of
heterogeneous networks (HetNets) [30,31], for D2D networks [32,33], and for
other settings as well [34–43]. These studies are just the tip of the iceberg, as
there exists a plethora of literature on the extensions of coded caching. The
focus of this thesis is mainly on the shared-cache networks, therefore, in the
following, we describe in detail the application as well as the related work
of coded caching for shared-cache networks. Similarly, as we proceed with
the thesis, we will highlight the coded caching work relevant to our study.

1.3 Coded Caching for Shared-Cache Networks
Pivotal to the development of larger, realistic coded caching networks is the
so-called shared-cache setting, where different users are forced to benefit
from the same cache content. Such a promising scenario can be found
in the context of cache-aided heterogeneous networks [4], where a central
transmitter (a base station) delivers content to a set of interfering users, with
the assistance of cache-enabled helper nodes that serve as caches to the users.
An instance of such a network is illustrated in Figure 1.4. Such networks
capture modern trends that envision a central base-station covering a larger
area, in tandem with a multitude of smaller helper nodes each covering
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smaller cells. In this scenario, any user that appears in a particular small
cell, can benefit from the cache-contents of the helper node covering that cell.

User (K) Helper node(Λ) Cache(M) BS Broadcast link Library(N)

Figure 1.4: An instance of a cache-aided heterogeneous network.

In the context of coded caching, an early work on this scenario can
be found in [30], which employed the uniform user-to-cache association
assumption where each helper node is associated to an equal number of
users. This assumption was removed in [31], which — under the assumption
that content cache placement is uncoded as well as agnostic to the user-to-
cache association — identified the exact optimal worst-case delivery time (i.e,
the case of users’ demand vector which requires the longest delivery time), as
a function of the user-to-cache association profile that describes the number
of users served by each cache. A similar setting was studied in [44] for
the case of non-distinct requests. Let us now see how the topology-agnostic
(i.e., the user-to-cache association is unknown during the content placement)
coded caching works in the shared-cache networks.

1.3.1 Topology-Agnostic Coded Caching Algorithm for
Shared-Cache Networks

Consider a BS having access to a library F =
[
F 1, F 2, . . . , FN

]
of N equisized

files, delivers content via a broadcast link to K receiving users, with the
assistance of Λ cache-enabled helper nodes. Each helper node λ ∈ [Λ] is
equipped with a cache of storage capacity equal to the size of M files, thus
being able to store a fraction γ = M

N
∈
[
1
Λ
, 2
Λ
, . . . , 1

]
of the library. Each

such helper node (cache) can assist in the delivery of content to any number
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of receiving users. The communication process consists of three phases;
the content placement phase, the user-to-cache association phase, and the
delivery phase.

Content Placement The first phase involves the placement of library-content
in the caches, and it is oblivious to the outcome of the next two phases. The
placement strategy comes directly from MAN’s algorithm in Section 1.2.1,
where now we have Λ cache states instead of K .

User-to-Cache Association The second phase is when each user is as-
signed to exactly one cache from which it can download content at zero
cost. For any cache λ ∈ [Λ], we denote by vλ the number of users that are
assisted by it, and we consider the cache population vector V = [v1, . . . , vΛ].
Additionally we consider the sorted version L = [l1, . . . , lΛ] = sort(V), where
sort(V) denotes the sorting of vector V in descending order. We refer to L
as a profile vector, and we note that each entry lλ is simply the number of
users assisted by the λ-th most populous (most heavily loaded) cache.

Content Delivery The delivery phase begins after each user k ∈ [K] re-
questing a distinct content file F dk ∈ F (i.e., worst-case), where dk is the
index of the file requested by user k ∈ [K]. In this phase the BS is aware of
the content of the caches, as well as aware of which cache assists each user.
Then, for any demand vector d = [d1, d2, . . . , dK ], the BS delivers the content
to the users following a multi-round delivery scheme proposed in [31], which
is optimal for this setting under the assumption of uncoded cache placement.
The main idea is that for any profile vector L, the BS delivers the content in
l1 rounds. In each round, BS adopts the delivery strategy in [13] and delivers
the content to at most 1 user from each cache λ ∈ [Λ]. This multi-round de-
livery scheme introduces — for any V such that sort(V) = L — a worst-case
delivery time of

T (L) =
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) , (1.4)

where t = Λγ. For the case when Λ divides K and when L is uniform (i.e.,
lλ =

K
Λ
, ∀λ ∈ [Λ]), this delay takes the form of

Tmin =
K

Λ

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) =
K(1− γ)
1 + Λγ

, (1.5)

which indicates that coded caching offers a multiplicative gain of Λγ + 1 in
this uniform setting as at each transmission Λγ+1 users are served simulta-
neously. From (1.4), we can see that for any non-uniform L, the associated
delay T (L) will exceed Tmin. This is due to the fact that when more users are
associated with the same cache then these users do not have the ability to
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jointly receive a multicasting message that can be useful to them. We know
that in practical wireless networks there could be many phenomenons that
can cause randomness in L, such as users’ mobility, heterogeneity in user
activity, etc. In this thesis, we will analyze the actual gain of coded caching
in such stochastic settings.

It is interesting to note that to a certain extent, this same shared-cache
setting also applies to the scenario where each user requests multiple files
(see for example [45–47]). In addition, this setting is of great importance
because it has direct relation with the so-called subpacketization bottleneck of
coded caching [21,48]. Let us now see in detail what is the subpacketization
bottleneck of coded caching and how it is equivalent to the shared-cache
setting.

1.3.2 Subpacketization Bottleneck of Coded Caching and
Its Equivalence to Shared-Cache Setting

Recall from Section 1.2.1 that in order to achieve the originally promised
theoretical coding gains [1], each file in the content library must be partitioned
into

P =

(
Λ

Λγ

)
.

unit-size subpackets, where Λ denotes the number of distinct cache states
(see Definition 1.1) and P scales exponentially with Λ. Subsequently, a subset
of these subpackets is cached at different nodes depending on the cache-
enabled device’s cache state. The number of distinct cache states Λ is then
subject to some physical limitations, i.e., a file cannot be partitioned into
more subpackets than a certain threshold, hence forcing P to be less than
some certain number, and inevitably forcing Λ to be less than a certain value.
In a nutshell, Λ must be generally less than the total number of users K since
it is clear that original coded caching techniques [1] require file sizes that
scale exponentially with Λ (cf. [21,48–53]).

In broad terms, reducing the number of cache states leads to a reduction
in the coding gain, hinting out that the subpacketization bottleneck is in
fact a major factor on the performance. This is due to fact that in order
to maintain the ability to jointly exploit multicasting opportunities, users
must be associated to complementary cache states that are carefully designed
and which cannot be identical. However, in the finite file size regime, the
subpacketization bottleneck forces us to the state-limited scenario (where
Λ≪ K). The basic problem with the state-limited scenario in coded caching
is simply the fact that if two or more users are forced to share the same
cache state (i.e., the same content in their caches), then these users generally
do not have the ability to jointly receive a multicasting message that can
be useful to all. In a hypothetical scenario where coded caching is applied
across a city of, let’s say, one million mobile users, one would have to assign
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each user with one of Λ cache states (Λ independent caches), where Λ would
probably be forced to be in the double or perhaps triple digits.

It is straightforward to see that the shared-cache setting is directly related
to the unavoidable subpacketization bottleneck because this bottleneck can
force the use of a reduced number of distinct cache states that must be
inevitably shared among the many users. One can see that both of the
above isomorphic settings are of utmost importance as they capture promising
scenarios (such as the heterogeneous network scenario) as well as operational
realities for coded caching (namely, the subpacketization constraint).
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Chapter 2

Problem Statement and Main
Contribution

2.1 Motivation: Coded Caching in Stochastic
Networks

Since the introduction of the idea of coded caching by MAN [1], there have
been a plethora of studies to prove that coded caching offers multiplica-
tive gains which scale with the total storage capacity of the network in
a wide range of network settings. However, an overwhelming majority of
these coded-caching studies focus on the deterministic information-theoretic
frameworks which are mostly based on idealistic assumptions such as syn-
chronized content requests, deterministic typologies, etc. An attempt to eval-
uate coded caching in the absence of such assumptions often leads to the
bottlenecks [21, 39, 48, 54] of coded caching and these bottlenecks have be-
come major obstacles in the practical implementation of coded caching. One
such example which we have already discussed in the previous chapter is
the subpacketization bottleneck. We know that practical wireless networks
are stochastic by nature. Therefore, it is necessary to shift the focus from
deterministic information-theoretic settings to analyzing the coded caching
in stochastic settings in order to better understand the impacts of the het-
erogeneity present in wireless networks. Indeed heterogeneity can take many
forms, such as in the users’ request behaviors, file popularity, users’ mobility
patterns, etc.

Analyzing the coded caching in the presence of such heterogeneity can
help us understand the actual gains of the coded caching in stochastic net-
work settings. In addition, these studies are poised to also play a vital role
in resolving the bottlenecks of coded caching. Let us see an example of
how incorporating the users’ request behavior in coded caching can help us
resolve the subpacketization bottleneck.

Example 2.1. Let us assume that we want to design a coded caching system
for K = 200 cache-enabled users, each with a normalized storage capacity
of γ = 0.1. Now consider that we study the users’ request behavior and find

11



2.1. MOTIVATION: CODED CACHING IN STOCHASTIC NETWORKS

a pattern that users are divided into 4 groups where each group consists of
50 distinct users and at any given instance of time only 50 users belonging
to the same group request a file while the other 150 users are inactive. With
this knowledge, for each group, we can and should design a separate coded
caching system. As at any instance of the time only one of the group is active,
we have that the corresponding worst-case delivery time from (1.2) takes the
form 50(1−0.1)

1+5
= 45

6
= 7.5, and the required subpacketization rate is P =

(
50
5

)
≈

2.12×106. However, if do not exploit this knowledge, and design a single coded
caching system for all K = 200 users, then at any instance of time, when only
50 users are requesting, the corresponding worst-case delivery time from (1.3)
takes the form (20021 )−(

150
21 )

(20020 )
= 8.558, and the required subpacketization is P =(

200
20

)
≈ 1.61 × 1027. We can see that by exploiting the users’ request behavior

allows us to not only reduce the delivery time but also allows us to reduce
the required subpacketization rate by a factor of 7.6× 1020. In practice, users’
request behavior will be stochastic, and we may not see such clear patterns as
we have seen for this simplistic example. However, this example is a motivation
to explore the patterns in users’ request behavior that can be exploited in coded
caching.

In this thesis, we elevate the coded caching networks from their purely
information-theoretic framework to a stochastic setting, where the stochas-
ticity of the networks originates from the heterogeneity in user’s request
behavior. In particular, we focus on incorporating the two stochastic phe-
nomena in coded caching networks. The first phenomenon is the stochastic
cache population intensities in the shared-cache setting, where each user can
appear within the coverage area of a specific cache-enabled helper node based
on a given probability distribution. The second phenomenon is the heteroge-
neous user activity in subpacketization-constrained coded caching networks,
where at any given instance of the time a user may or may not request a file
from the content library.

Recall our discussion from Section 1.3.2, where we showed that in the
context of coded caching, the shared-cache setting is isomorphic to the
subpacketization-constrained setting. However, at this point, we need to
highlight two important observations. The first observation is that under the
aforementioned stochastic phenomena, the utility of results of one setting
to the other setting would be limited to under certain conditions, which we
will discuss in detail in the coming chapters. The second observation is that
these two settings differ in the context of the extent of freedom in deciding
the user-to-cache association, which determines the extent of coding gain we
can achieve by exploiting the multicasting opportunities. One can see that
the freedom of deciding the user-to-cache association would be very limited
in the shared-cache setting as compared to the subpacketization-constrained
setting. In this thesis, we study the impact of these two stochastic phenom-
ena on the performance of coded caching. We also present techniques to
exploit the freedom of deciding the user-to-cache state association to achieve
better performance under these stochastic settings.
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2.2 Thesis Outline
In terms of contribution, this thesis is divided into two parts. The first part of
the thesis (Chapter 3 and Chapter 4) focuses on coded caching in a stochas-
tic shared-cache setting when cache population intensities are stochastic. In
particular, we study the K-user broadcast channel with Λ caches, when the
association between users and caches is random, i.e., for the scenario where
each user can appear within the coverage area of – and subsequently is as-
sisted by – a specific cache based on a given probability distribution. In
Chapter 3, we analyze the performance of coded caching in such stochastic
settings and identify the cache-load imbalance bottleneck of coded caching
due to the stochastic cache population intensities. Then, in Chapter 4, we
identify the techniques that can mitigate the impact of cache-load imbalance
bottleneck of coded caching in the stochastic shared-cache network. The sec-
ond part of the thesis (Chapter 5) focuses on the subpacketization-constrained
coded caching in a stochastic setting when user activity is random. In par-
ticular, we study the K-user cache-aided broadcast channel with a limited
number of cache states, and explore the effect of user-to-cache state associa-
tion strategies in the presence of arbitrary user activity levels; a combination
that strikes at the very core of the coded caching problem and its crippling
subpacketization bottleneck. Then, we conclude this thesis in Chapter 6
where we discuss the main results that emerge from our study as well as we
identify the possible future directions that could be the continuation of this
work.

In the following, we present the preview of the main results of the thesis.

2.3 Preview of Results

Part 1: Coded Caching in Shared-Cache Networks with
Stochastic Cache Population
In the first part of this thesis, we consider the shared-cache coded caching
setting where a BS having access to a library of N equisized files, delivers
content via a broadcast link to K receiving users, with the assistance of
Λ cache-enabled helper nodes. Each helper node λ ∈ [Λ] is equipped with
a cache of normalized storage capacity γ. For any cache λ ∈ [Λ], let pλ
be the probability that a user can appear in the coverage area of λth cache-
enabled helper node such that p = [p1, p2, · · · , pΛ], where

∑
λ∈[Λ] pλ = 1, denotes

the cache population intensities vector. This setting implies that different
broadcast sessions would experience user populations that differently span
the spectrum of cache states. In the most fortunate of scenarios, a transmitter
would need to deliver to a set of K users that uniformly span the Λ states,
while in the most unfortunate of scenarios, a transmitter would encounter
K users that happen to have an identical cache state. Both cases are rare
instances of a stochastic process, which we explore in order to identify the
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exact optimal performance of such systems.

Identifying the Cache-Load Imbalance Bottleneck of Coded
Caching due to the Stochastic Cache Population Intensities

• In Section 3.3.1, we characterize, in closed form, the exact optimal av-
erage delivery time T

∗
(γ) optimized over all placement and delivery

schemes under the assumption of uncoded cache placement and under
the assumption that each user can appear in the coverage area of any
particular cache-enabled helper node with equal probability (i.e., sta-
tistically uniform cache population intensities), where the average is
over all possible user-to-cache associations. We show that the optimal
performance T ∗

(γ) corresponds to the uncoded cache placement scheme
in Section 1.2.1 and the multi-round delivery scheme in Section 1.3.1.
To simplify the numerical interpretation of T ∗

(γ), we propose analyt-
ical bounds that can be calculated efficiently in Section 3.3.2. Then,
in Section 3.3.3, we provide the asymptotic analysis of the optimal
performance T ∗

(γ) for this statistically uniform random user-to-cache
association setting, in the limit of large Λ, and show that the optimal
average delivery time scales as

T
∗
(γ)=

Θ

(
TminΛ logΛ
K log Λ logΛ

K

)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

Θ(Tmin) if K = Ω(Λ logΛ) ,
(2.1)

where Tmin = Θ
(
K(1−γ)
1+Λγ

)
is the delivery time corresponding to the de-

terministic uniform user-to-cache association setting.

• In Section 3.4, we extend our analysis to the scenario where cache
population intensities are following a non-uniform distribution and
propose analytical bounds on the average delivery time T (γ) which
corresponds to the uncoded cache placement scheme in Section 1.2.1 and
the multi-round delivery scheme in Section 1.3.1. In order to gain some
simple and insightful form of the performance in the presence of non-
uniform cache population intensities, we provide asymptotic analysis
of the T (γ) under the assumption that cache population intensities p
follow the Zipf distribution and show that the delivery time scales as

T
∗
(γ) =



Θ(TminΛ) α > 1

O
(
Tmin

√
Λ2

K
+ Λ2

(logΛ)2

)
and Ω

(
Tmin

Λ
logΛ

)
α = 1

O

(
Tmin

√
Λ2

K
+ Λ2α

)
and Ω (TminΛ

α) 0.5 < α < 1

O

(
Tmin

√
Λ2

K
+ Λ logΛ

)
and Ω

(
Tmin
√
Λ
)

α = 0.5

O

(
Tmin

(√
Λ + Λ2

K

))
and Ω (TminΛ

α) α < 0.5,

(2.2)
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where α > 0 is the Zipf exponent that determines the skewness of the
probability distribution.

The scaling laws of the performance reveal interesting insights about the im-
pact of association randomness. In particular, it enables us to quantify the
extent of multiplicative performance deterioration G(γ) ≜ T

∗
(γ)

Tmin
experienced

in this random setting compared to the deterministic uniform user-to-cache
association setting. For example, under statistically uniform cache popu-
lation intensities, when K = Θ(Λ), the performance deterioration G(γ) is
unbounded and scales exactly as Θ

(
logΛ

log logΛ

)
, whereas when K increases, this

deterioration gradually reduces, and ceases to scale when K = Ω(Λ logΛ).
The impact of association randomness becomes prominent under non-

uniform cache population intensities. The scaling laws reveal to what extent
the performance deterioration increases with α (i.e., the skewness in cache
population intensities). We can see that in some cases there is no coded
caching gain, e.g., the performance deterioration G(γ) scales as Θ(Λ) for
α > 1. It also reveals that unlike the case of uniform cache population
intensities – where the deterioration can be avoided as long as K = Ω(Λ logΛ)
– the existence of skewness in cache population intensities can lead to an
unbounded deterioration irrespective of the relation between K and Λ.
This work on coded caching in stochastic shared-cache networks resulted in
the following publications:

[55] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Fundamental limits
of stochastic shared-cache networks,”IEEE Trans. Commun., vol. 69, no. 7,
pp. 4433–4447, 2021.

[56] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, , “Stochastic analy-
sis of coded multicasting for shared caches networks,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Taipei, Taiwan, Dec. 2020, pp. 1–6.

Resolving Cache-Load Imbalance

Our stochastic analyses of the coded caching in shared-cache networks re-
vealed the detrimental impact of the user-to-cache association’s randomness
on the delivery time. It highlights the importance of incorporating the knowl-
edge of the cache population intensities while designing the placement and
delivery schemes as being unaware of the severeness of this non-uniformity
may lead to vanishing coding gain, and the system may eventually need to
confine itself to the local caching gain. Therefore, in Chapter 4, we focus
on techniques to mitigate this impact. In particular, we studied the fol-
lowing three techniques to mitigate the impact of the cache-load imbalance
bottleneck of coded caching in stochastic shared-cache networks.
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Load-Balancing

In Section 4.1, we aim to reduce the detrimental impact of the user-to-cache
association’s randomness on the delivery time by using load-balancing meth-
ods that introduce a certain element of choice in this association. Such
choice can exist naturally in different scenarios, like in the wireless cache-
aided heterogeneous network setting, where each user can be within the
communication range of more than one cache helper node. In particular,
we focus on two load-balancing methods which will prove to allow for un-
bounded gains.

• First, we consider a randomized load-balancing method ϕr which, for
any given user, picks h ≥ 2 candidate caches at uniformly random,
and then associates each such user with the least loaded cache among
these h caches. We show that under the assumption of uniform cache
population intensities and randomized load-balancing method ϕr, the
optimal average delivery time scales as

T
∗
ϕr(γ)=

Θ
(
Tmin

Λ log logΛ
K logh

)
if K=o

(
Λ log logΛ

logh

)
Θ(Tmin) if K=Ω

(
Λ log logΛ

logh

)
.

(2.3)

• Randomized load-balancing method may not apply when the choice is
limited by the geographical proximity. To capture this limitation, we
consider the proximity-bounded load-balancing approach ϕp where each
user benefits from the least loaded cache among h neighboring caches.
We show that under the assumption of uniform cache population in-
tensities along with proximity-bounded load-balancing ϕr, the optimal
average delivery time scales as

T
∗
ϕp(γ)=

Θ

(
TminΛ log Λ

h

hK log
Λ log Λ

h
hK

)
if K∈

[
Λ

h polylog(Λ
h
)
, o
(
Λ
h
log Λ

h

)]
Θ(Tmin) if K =Ω

(
Λ
h
log Λ

h

)
.

(2.4)

Our analysis reveals that in the practical scenario where we are given a
choice to associate a user to the least loaded cache among a randomly chosen
group of h neighboring helper nodes, the performance deterioration stops
scaling as early as K = Ω

(
Λ
h
log Λ

h

)
. An even more dramatic improvement

can be seen when the aforementioned neighboring/proximity constraint is
lifted. It shows that load-balancing, when applicable, can play a crucial
role in significantly reducing the performance deterioration due to random
user-to-cache association.
This work on load-balancing in coded caching is part of the following pub-
lication:

[55] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Fundamental limits
of stochastic shared-cache networks,”IEEE Trans. Commun., vol. 69,no. 7,
pp. 4433–4447, 2021.
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Cache Size Optimization

In Section 4.2, we aim to optimize the individual cache sizes to mitigate the
cache-load imbalance bottleneck in stochastic shared-cache networks. The
main intuition is to assign more storage capacity to the caches with high pop-
ulation intensities. In this context, we propose a coded caching scheme that
optimizes the individual cache sizes based on cache load statistics, subject to
a given cumulative cache capacity. For a random user-to-cache association
for any cache population intensities vector p, we characterize the achievable
average delay of our scheme. The scaling laws of the performance under this
setting is a work in progress. However, we numerically verify the effective-
ness of this setting in substantially ameliorating the impact of cache-load
imbalance on the coding gain.

We also show the applicability of our scheme in a similar setting, but
with a deterministic user-to-cache association, which was initially studied
in [57]. We show that for a deterministic user-to-cache association setting,
our scheme achieves the same state-of-the-art delivery time as of [57] with
a significant (exponential) reduction in subpacketization, thus making our
scheme more suitable than [57] to apply in the finite file size regime.
This work on cache size optimization in stochastic shared-cache networks
resulted in the following publication:

[58] A. Malik, B. Serbetci, and P. Elia, “Stochastic coded caching with op-
timized shared-cache sizes and reduced subpacketization,” in IEEE Int. Conf.
Commun. (ICC), Seoul, South Korea, May, 2022.

Two-Layered Shared-Cache Networks

In Section 4.3, we aim to mitigate the adverse effect of the cache-load imbal-
ance bottleneck by adding an additional layer of cache in the shared-cache
setting. In particular, we consider Λ-helper nodes, K-user shared-cache set-
ting with each user equipped with a normalized storage capacity γu and each
helper node equipped with the normalized storage capacity of γ. The main
idea is that in addition to a cache-enabled helper node in each cell (i.e., the
coverage area of a helper node), each user is also equipped with its own stor-
age capacity. This will enable the overpopulated (and thus under-resourced)
cell to have higher collective storage capacity compared to the less populated
cells, and eventually alleviate the detrimental performance deterioration due
to randomness.

• In Section 4.3, we propose a content placement and delivery scheme for
this setting, and for the case of statistically uniform cache population
intensities, we show that the average delivery time scales as

T (γ, γu)=

Θ
(
(1− γ)1−γu−γ

γu

)
if γu ≥ 2−2γ

1+c

Θ
(
c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)
otherwise ,

(2.5)
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where

c =


logΛ

log( Λ
K

logΛ)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

K
Λ

if K = Ω(Λ logΛ) .
(2.6)

We also show that for this setting, the best-case delivery time Tmin(γ, γu)
corresponding to a deterministic uniform user-to-cell association scales
as

Tmin(γ, γu) =

Θ
(
(1− γ)1−γu−γ

γu

)
if γu ≥ 2−2γ

1+c

Θ
(
c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)
otherwise,

(2.7)

where c = K
Λ
.

The scaling of the T (γ, γu) and Tmin(γ, γu) helps us understand the impact of
the additional layer in mitigating the adverse effect of cache-load imbalance.
We can identify the memory regimes for the additional cache layer that
can completely nullify the impact of the cache-load imbalance such that the
multiplicative gap between average delivery time and best-case delivery time
is equal to one. For example, when γu ≥ 2−2γ

1+ logΛ
log( Λ

K
logΛ)

, irrespective of K and Λ,

the average delivery time T (γ, γu) scales in the same order as the best-case
delivery time Tmin(γ, γu).
This work on two-layered stochastic shared-cache networks has been sub-
mitted for the following publication:

A. Malik, B. Serbetci, and P. Elia, “Resolving cache-load imbalance bottle-
neck of stochastic shared-cache networks,” in IEEE Wireless Communications
and Networking Conference (WCNC) Apr. 2022.

PART 2: Subpacketization-Constrained Coded Caching Net-
works with Heterogeneous User Activity
In the second part of this thesis, we analyze a subpacketization-constrained
(i.e., state-constrained) coded caching network of K cache-aided users with
normalized cache capacity γ when users have different activity levels. The
subpacketization constraint forces users to store the content from one of the
Λ distinct cache states. The basic problem with the state-limited scenario
(where Λ ≪ K) in coded caching is simply the fact that if two or more
users are forced to store the same content in their cache (i.e., share the
same cache state), then these users generally do not have the ability to
jointly receive a multicasting message that can be useful to all. Such state-
limited scenarios inherit a large deterioration in coding gains compared to
the originally promised theoretical coding gains [1]. What we additionally
learn from our study in Part 1 (Chapter 3) is that if users are assigned
states at random, then this randomness imposes an additional unbounded
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performance deterioration that is a result of unfortunate associations where
too many users share the same cache state. It is intuitive that in order to
maximize the multicasting opportunities, users that are correlated in terms
of their activity should be associated with different cache states. That is why
the task of user-to-cache state association is of utmost importance for this
subpacketization-constrained coded caching setting. The focus of this part of
the thesis is to explore the effect of user-to-cache state association strategies
in the presence of arbitrary user activity levels.

Statistical Approach
In Section 5.3, we study the statistical approach for the subpacketization-
constrained coded caching network, when the user activity levels follow an
arbitrary probability distribution p = [p1, p2, . . . , pK ], where pk denotes the
probability that user k ∈ [K] requests a file from the content library. The
association between users and cache states is subject to an arbitrary associ-
ation strategy which is defined by a matrix G = [0, 1]Λ×K , of which the (λ, k)
element gλ,k takes the value 1 if user k is storing the content of cache state
λ ∈ [Λ], else gλ,k = 0.

• In Section 5.3.1, we present a statistical analysis of the average worst-
case delay performance of such subpacketization-constrained coded cach-
ing networks and provide computationally efficient bounds on the av-
erage delivery time T (G) for a given user-to-cache association strategy
G. We provide the asymptotic analysis of the T (G) for a given associ-
ation strategy G and activity level vector p and show that the average
delivery time T (G) scales as

T (G) = O

Kp

Λ
+

√√√√ Λ∑
i=1

(σ2
i + (µi − µ)2)

 Λ− t
1 + t

 , (2.8)

and

T (G) = Ω

(
Kp

Λ

Λ− t
1 + t

)
(2.9)

where t = Λγ, Kp =
∑K

k=1 pk, µi =
∑K

k=1 gi,kpk, σ2
i =

∑K
k=1 gi,kpk(1 − pk),

and µ = Kp
Λ
. The scaling laws of the performance reveal interesting in-

sights about the characteristics of the order-optimal association strategy
G that leads to the minimum average delivery time. In particular, any
association strategy G for which the factor

√∑Λ
i=1(σ

2
i + (µi − µ)2) scales

as O
(
Kp
Λ

)
would be order-optimal as the scaling order of (2.8) yields

O
(
Kp(1−γ)

1+t

)
, thus, giving the exact scaling law of T (G) = Θ

(
Kp(1−γ)

1+t

)
.

Based on the insights from our analysis, we propose a heuristic algo-
rithm for the user-to-cache state association G, which aims to minimize
the average delay for any given activity level vector p.
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• In Section 5.3.2, we analyze the special case of identical user activity
statistics (i.e., p1 = p2 · · · = pK = p) and uniform user-to-cache state
association G. For this setting, we provide tighter analytical upper and
lower bounds on the performance, and show that the bounds have a
bounded gap between them. We provide the asymptotic analysis of
the performance for this special case of identical user activity level p
and show that the average delay T (G) corresponding to the uniform
association strategy G scales as

T (G) =


Θ
(
Kp(1−γ)

1+t

)
if Ip = Ω(logΛ)

Θ

(
Kp(1−γ) logΛ
(1+t)Ip log logΛ

Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
,

(2.10)

where I = K
Λ
.

Data-Driven Approach
In Section 5.4, we extend our analysis of subpacketization-constrained coded
caching networks to the data-driven setting. In this setting instead of us-
ing the predetermined set of statistics p, we define the user activity levels
based on the past S different demand vectors (i.e., users’ content request
histories) span over the time horizon equal to the time it takes between two
user-to-cache associations. The motivation of data-driven formulation of
the subpacketization-constrained coded caching networks is that it inherits a
crucial property of exploiting users’ activity correlation in time. For example,
users with similar request patterns should be associated with different cache
states as this would guarantee more multicasting opportunities during the
delivery phase. On the other hand, users that rarely request files at the same
time can be allocated the same cache state without causing any performance
deterioration. Using the bounded-depth user-request history, we propose a
heuristic user-to-cache state association algorithm which is simple to im-
plement and which we prove to be at most at a factor of logS

log logS from the
optimal.
This work on coded caching in networks with heterogeneous user activity
has been submitted for the following publication:

[59] A. Malik, B. Serbetci, and P. Elia, “Coded Caching in Networks with
Heterogeneous User Activity,” Submitted to IEEE/ACM Transactions on Net-
working.
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Chapter 3

Coded Caching in Stochastic
Shared-Cache Networks

In this chapter, we establish the exact performance limits of coded caching
when users share a bounded number of cache states, and when the associ-
ation between users and caches, is random. Under the premise that more
balanced user-to-cache associations perform better than unbalanced ones,
this chapter provides a statistical analysis of the average performance of
such networks, identifying in closed form, the exact optimal average delivery
time. We also present a detailed analysis on the multiplicative performance
deterioration experienced in this random setting compared to the performance
of the well-known deterministic uniform user-to-cache association case.

3.1 Network Setting
We consider the shared-cache coded-caching setting where a transmitter
having access to a library of N equisized files, delivers content via a broadcast
link to K receiving users, with the assistance of Λ cache-enabled helper nodes.
Each helper node λ ∈ [Λ] is equipped with a cache of storage capacity equal to
the size of M files, thus being able to store a fraction γ ≜ M

N
∈
[
1
Λ
, 2
Λ
, . . . , 1

]
of

the library. Each such helper node, which will be henceforth referred to as a
‘cache’, can assist in the delivery of content to any number of receiving users.
The communication process consists of three phases; the content placement
phase, the user-to-cache association phase, and the delivery phase.

Content placement phase: The first phase involves the placement of library-
content in the caches, and it is oblivious to the outcome of the next two
phases.

User-to-cache association phase: The second phase is when each user
is assigned – independently of the placement phase – to exactly one cache
from which it can download content at zero cost. This second phase is also
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3.1. NETWORK SETTING

oblivious of the other two phases¹. For any cache λ ∈ [Λ], we denote by
vλ the number of users that are assisted by it, and we consider the cache
population vector V = [v1, . . . , vΛ]. Additionally we consider the sorted version
L = [l1, . . . , lΛ] = sort(V), where sort(V) denotes the sorting of vector V in
descending order. We refer to L as a profile vector, and we note that each
entry lλ is simply the number of users assisted by the λ-th most populous
(most heavily loaded) cache. Figure 3.1 depicts an instance of our shared-
caches setting where L = [5, 4, 3, 2]. In this work, we assume stochastic cache
population intensities. For any cache λ ∈ [Λ], let pλ be the probability that a
user can appear in the coverage area of λth cache-enabled helper node such
that p = [p1, p2, · · · , pΛ], where

∑
λ∈[Λ] pλ = 1, denotes the cache population

intensities vector.

Delivery phase: The delivery phase commences with each user k ∈ [K]
requesting a single library file that is indexed by dk ∈ [N ]. As is common
in coded caching works, we assume that each user requests a different file.
Once the transmitter is notified of the demand vector d = [d1, d2, . . . , dK ], it
commences delivery over an error-free broadcast link of bounded capacity
per unit of time. Naturally this phase is aware of the content of the caches,
as well as aware of which cache assists each user.

User (K) Helper node(Λ) Cache(M) BS Broadcast link Library(N)

Figure 3.1: An instance of a shared-cache network for L = [5, 4, 3, 2].

¹This assumption is directly motivated by the time-scales of the problem, as well as by
the fact that in the heterogeneous setting, the user-to-cache association is a function of
the geographical location of the user. Note that users can only be associated to caches
when users are within the coverage of caches, and a dynamic user-to-cache association that
requires continuous communication between the users and the server may not be desirable
as one seeks to minimize the network load overhead and avoid the handover.
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One can see, this setting implies that during the content delivery that fol-
lows the association of caches to each user, different broadcast sessions
would experience user populations that differently span the spectrum of
caches. In the most fortunate of scenarios, a transmitter would have to
deliver to a set of K users that uniformly span the Λ caches (such that each
cache is associated to exactly K/Λ users), while in the most unfortunate of
scenarios, a transmitter would encounter K users that happen to be asso-
ciated to the identical cache. Both cases are rare instances of a stochastic
process, which we explore in this chapter in order to identify the exact optimal
performance of such systems.

3.2 Metric of Interest
As one can imagine, any given instance of the problem, experiences a different
user-to-cache association, and thus² a different V. Our measure of interest
is thus the average delay

T (γ) ≜ EV[T (V)] =
∑
V

P (V)T (V), (3.1)

where T (V) is the worst-case delivery time³ corresponding to any specific
cache population vector V, and where P (V) is the probability that the user-
to-cache association corresponds to vector V.

More precisely, we use T (V,d,X ) to define the delivery time required
by some generic caching-and-delivery scheme X to satisfy demand vector d
when the user-to-cache association is described by the vector V. Our aim
here is to characterize the optimal average delay

T
∗
(γ) = min

X
EV

[
max

d
T (V,d,X )

]
= min

X
EL

[
EVL

[
max

d
T (V,d,X )

]]
, (3.2)

where the minimization is over all possible caching and delivery schemes
X , and where EVL denotes the expectation over all vectors V whose sorted
version is equal to some fixed sort(V) = L. Consequently the metric of
interest takes the form

T (γ) = EL[T (L)] =
∑
L

P (L)T (L), (3.3)

²We briefly note that focusing on V rather than the sets of users connected to each cache,
maintains all the pertinent information, as what matters for the analysis is the number of
users connected to each cache and not the index (identity) of the users connected to that
cache.

³This delay corresponds to the time needed to complete the delivery of any file-demand
vector d, where the time scale is normalized such that a unit of time corresponds to the
optimal amount of time needed to send a single file from the transmitter to the receiver,
had there been no caching and no interference.
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where T (L) ≜ EVL [maxd T (V,d)], and where

P (L) ≜
∑

V:sort(V)=L

P (V),

is simply the cumulative probability over all V for which sort(V) = L.
We will consider here the uncoded cache placement scheme in [1] (see

Section 1.2.1), and the delivery scheme in [31] (see Section 1.3.1), which will
prove to be optimal for our setting under the common assumption of uncoded
cache placement. This multi-round delivery scheme introduces — for any V
such that sort(V) = L — a worst-case delivery time of

T (L) =
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) , (3.4)

where t = Λγ.
From (3.4) we can see that the minimum delay corresponds to the case

when L is uniform. When Λ divides K, this minimum (uniform) delay takes
the well-known form

Tmin =
K(1− γ)
1 + Λγ

, (3.5)

while for general K,Λ, it takes the form⁴

Tmin =
Λ− t
1 + t

(⌊
K

Λ

⌋
+ 1− f(K̂)

)
, (3.6)

where K̂ = K−
⌊
K
Λ

⌋
Λ, f(K̂) = 1 when K̂ = 0, f(K̂) = 0 when K̂ ≥ Λ− t, and

f(K̂) =
∏K̂+t

i=t+1(Λ−i)∏K̂−1
j=0 (Λ−j)

when 0 < K̂ < Λ− t. The proof of this is straightforward,
but for completeness it can also be found in Appendix A.4. The above Tmin
is optimal under the assumption of uncoded placement (cf. [31]).

On the other hand, for any other (now non-uniform) L, the associated
delay T (L) will exceed Tmin (see [31] for the proof, and see Figure 3.2 for a
few characteristic examples), and thus so will the average delay

EL[T (L)] =
∑
L∈L

P (L)T (L) =
Λ−t∑
λ=1

∑
L∈L

P (L)lλ
(
Λ−λ
t

)(
Λ
t

) =
Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (3.7)

where L describes the set of all possible profile vectors L (where naturally∑Λ
λ=1 lλ = K), and where E[lλ] is the expected number of users in the λ-th

most populous cache⁵.

⁴When K/Λ /∈ Z+, the best-case delay corresponds to having lλ = ⌊K/Λ⌋ + 1 for λ ∈[
1, 2, · · · , K̂

]
and lλ = ⌊K/Λ⌋ for λ ∈

[
K̂+ 1, K̂+ 2, · · · ,Λ

]
, where K̂ = K − ⌊K/Λ⌋Λ.

⁵It is straightforward to see that
∑

L∈L lλP (L) is equivalent to
∑K

j=0 jP (lλ = j) = E[lλ],
where P (lλ = j) =

∑
L∈L:L(λ)=j P (L).
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Figure 3.2: Delay T (L) for different profile vectors L, for K=40 and Λ=8.

In addition to the average delay T (γ), our second metric of interest is the
multiplicative performance deterioration

G(γ) ≜ T (γ)

Tmin
(3.8)

experienced in this random setting compared to the performance Tmin of the
well-known deterministic uniform case.

3.3 Main Results: Uniform Cache Population
Intensities

In this section, we present our main results on the performance of the K-user
broadcast channel with Λ shared-caches, each of normalized size γ, and a
uniformly random user-to-cache association process, where each user can
appear in the coverage area of any particular cache with equal probability
(i.e., pλ = 1

Λ
, ∀λ ∈ [Λ]).

3.3.1 Exact Characterization of the Optimal Average De-
lay

We proceed to characterize the exact optimal average delay T
∗
(γ). Crucial

in this characterization will be the vector BL =
[
b1, b2, . . . , b|BL|

]
, where each

element bj ∈ BL indicates the number of caches in a distinct group of caches
in which each cache has the same load⁶. Under the assumption that each

⁶For example, for a profile vector L = [5, 5, 3, 3, 3, 2, 1, 0, 0], there are five distinct groups
in terms of having the same load, then the corresponding vector BL = [2, 3, 1, 1, 2], because
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user can be associated to any particular cache with equal probability, the
optimal average delay T

∗
(γ) — optimized over all coded caching strategies

with uncoded placement — is given by the following theorem.

Theorem 3.1. In the K-user, Λ-caches setting with normalized cache size γ
and a uniformly random user-to-cache association, the average delay

T
∗
(γ) =

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(
Λ−λ
t

)
ΛK
∏Λ

i=1 li!
∏|BL|

j=1 bj!
(3.9)

is exactly optimal under the assumption of uncoded placement.

Proof. The proof can be found in Appendix A.1.

One can now easily see that when K
Λ
∈ Z+, the optimal multiplicative

deterioration G(γ) = T
∗
(γ)

Tmin
takes the form

G(γ) =
Λ−t∑
λ=1

∑
L∈L

(K − 1)! (Λ− t− 1)! (t+ 1)! lλ
(
Λ−λ
t

)
ΛK−1

∏Λ
i=1 li!

∏|BL|
j=1 bj!

. (3.10)

Remark 3.1. The worst-case computational time complexity for calculating
the exact optimal average delay T

∗
(γ) is O (max(K, |L|Λ)). This complexity

does not include the cost of creating the sets L which is an integer partition
problem [60].

We know from Theorem 3.1 that it is computationally expensive to nu-
merically evaluate the exact average delay even for small system parameters.
This is due to the fact that the cardinality of L is known to grow exponen-
tially with system parameters K and Λ (see Table 3.1). This motivates our
derivation of much-faster to evaluate analytical bounds on T

∗
(γ), which we

provide next.

K = 10 K = 20 K = 30 K = 40 K = 50
|L| 42 530 3590 16928 62740

Table 3.1: Size of L (Λ = 10)

3.3.2 Computationally Efficient Bounds on the Optimal
Performance

The following theorem bounds the optimal average delay T ∗
(γ).

two caches have a similar load of five users, three caches have a similar load of three users,
two caches have a similar load of zero and all other caches have distinct number of users.
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Theorem 3.2. In the K-user, Λ-cache setting with normalized cache size γ
and a uniformly random user-to-cache association, the optimal average delay
T

∗
(γ) is bounded by

T
∗
(γ) ≤ K

Λ− t
t+ 1

−
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)
, (3.11)

and

T
∗
(γ) ≥ Λ− t

1 + t

K
Λ

Λ− t− 1

Λ− 1
+

t

Λ− 1

K − K−1∑
j=⌈KΛ ⌉

Pj


 , (3.12)

where

Pj =

j∑
i=0

(
K

i

)(
1

Λ

)i(
1− 1

Λ

)K−i

. (3.13)

Proof. The proof is deferred to Appendix A.2.

200 400 600 800 1000 1200 1400
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Figure 3.3: Behavior of Pj for K = 106 and Λ = 103.

Remark 3.2. The worst-case computational time complexity for calculating
the analytical bounds on the optimal performance T

∗
(γ) based on Theorem

3.2 is O (max(K logK,KΛ)). This is significantly better compared to the the
complexity of O (max(K, |L|Λ)) for the exact calculation (cf. Theorem 3.1)
The above bound is computationally efficient due to its dependence only on the
Pj (cf. (3.13)), which is the cumulative distribution function (cdf) of a random
variable that follows the binomial distribution with K independent trials and 1

Λ

success probability. To compute bounds, the value of Pj needs to be calculated
for all values of j ∈ [0, K − 1], which can be computationally expensive (i.e.,
O (K logK)). However, as is known, there exists a j̃ ∈ [0, K−1], where Pj ≈ 1.
Since the cdf is a non-decreasing function in j, it is clear⁷ that Pj ≈ 1 for j > j̃.
An illustration for K = 106, and Λ = 103 is shown in Figure 3.3, where it is
evident that j̃ << K.

⁷The well-known De Moivre-Laplace Theorem can help us gain some intuition as to why
the above method is computationally efficient and precise. In our case here, our binomial
distribution — which according to the aforementioned theorem can be approximated by
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Directly from Theorem 3.2 and (3.5), we can conclude that for K
Λ
∈ Z+,

the performance deterioration G(γ) as compared to the deterministic uniform
case, is bounded as

G(γ) ≤ Λ− t+ 1

K −Kγ

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)
, (3.14)

and

G(γ) ≥ Λ− t− 1

Λ− 1
+

Λ

K

t

Λ− 1

K − K−1∑
j=⌈KΛ ⌉

Pj

 , (3.15)

where Pj is given in Theorem 3.2.
We now proceed to provide the exact scaling laws of the fundamental

limits of the performance in a simple and insightful form.

3.3.3 Scaling Laws of Coded Caching with Random As-
sociation

The following theorem provides the asymptotic analysis of the optimal T ∗
(γ),

in the limit of large Λ.

Theorem 3.3. In the K-user, Λ-caches setting with normalized cache size γ
and a uniformly random user-to-cache association, the optimal delay scales as

T
∗
(γ)=

Θ

(
TminΛ logΛ
K log Λ logΛ

K

)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

Θ(Tmin) if K = Ω(Λ logΛ) .
(3.16)

Proof. Deferred to Appendix A.3.

Directly from the above, we now know that the performance deterioration
due to user-to-cache association randomness, scales as

G(γ)=

Θ

(
Λ logΛ

K log Λ logΛ
K

)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

Θ(1) if K = Ω(Λ logΛ) ,
(3.17)

which in turn leads to the following corollary.

Corollary 3.1. The performance deterioration G(γ) due to association ran-
domness, scales as Θ

(
logΛ

log logΛ

)
at K = Θ(Λ), and as K increases, this deteri-

oration gradually reduces, and ceases to scale when K = Ω(Λ logΛ).
the normal distribution in the limit of large K — has mean K/Λ and standard deviation√
K(Λ− 1)/Λ2. This simply means that the values within three standard deviations of the

mean account for about 99.7% ≈ 100% of the set. This in turn means that Pj̃ ≈ 1 as early
on as j̃ = K/Λ + 3

√
K(Λ− 1)/Λ2 << K . Since Pj ≈ 1 for j ≥ j̃, implies that (3.13) can be

rapidly evaluated with high precision.
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Proof. The proof is straightforward from Theorem 3.3.

In identifying the exact scaling laws of the problem, Theorem 3.3 nicely
captures the following points.

• It describes the extent to which the performance deterioration increases
with Λ and decreases with K

Λ
.

• It reveals that the performance deterioration can in fact be unbounded.

• It shows how in certain cases, increasing Λ may yield diminishing
returns due to the associated exacerbation of the random association
problem. For example, to avoid a scaling G(γ), one must approximately
keep Λ below eW (K) (W (.) is the Lambert W-function) such that Λ logΛ ≤
K .

At this point, we would like to highlight the utility of the results of
this section to the subpacketization-constrained decentralized coded caching
setting studied in [2].

Furthering the State of the Art on the Subpacketization-Constrained
Decentralized Coded Caching [2]

Recall from our discussion in Section 1.3.2, where we showed that the shared-
cache setting is isomorphic to the unavoidable subpacketization bottleneck of
coded caching. This bottleneck forces the use of a reduced number of distinct
cache states that must be inevitably shared among the many users [48]. In
this context, the work in [2] proposed a decentralized coded caching in this
subpacketization-constrained setting, where each cache-enabled user stores
the content from one of Λ cache states with equal probability, which is
exactly equivalent to our stochastic shared-cache setting with uniform cache
population intensities, where each user appears in the coverage area of any
particular cache-enabled helper node with equal probability. Therefore, our
results of this section apply to the aforementioned related subpacketization-
constrained setting which was studied in [2]. This interesting work in [2]
introduced the main problem, and after providing upper bounds⁸, introduced
the challenge of identifying the fundamental limits of this same problem.
This is indeed the challenge that is resolved in this section, where we are
able to derive these fundamental limits of performance, in their exact form.
We briefly mention below the utility of our results in this latter context.

• Theorem 3.1 provides the exact optimal performance in the random
association setting, as well as a more efficient way to evaluate this
performance compared to the state of the art (SoA) (cf. [2, Theorem 1]).
The worst-case computational time complexity for calculating the exact
optimal average delay T

∗
(γ) is O (max(K, |L|Λ)) as compared to the

⁸It is worth noting that the provided upper bounds in [2] can have a large gap from the
here-derived optimal average delay T

∗
(γ).
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O (max(K, |V|Λ logΛ)) for the case of [2, Theorem 1]. This speedup is
due to the averaging being over the much smaller set L of all L, rather
than over the set V of all V (see Table 3.2 for a brief comparison). The
time complexities mentioned above do not include the cost of creating
the sets L and V . However, we note that the creation of V is a so-called
weak composition problem, whereas the creation of L is an integer
partition problem [60]. It is easy to verify that the complexities of the
algorithms for the integer partition problem are significantly lower than
the ones for the weak composition problem [61–64].

|L| |V|
K = 10 42 92378
K = 20 530 10015005
K = 30 3590 211915132
K = 40 16928 2.054455634× 109

K = 50 62740 1.2565671261× 1010

Table 3.2: Size of L and V (Λ = 10)

• Theorem 3.2 offers a new tighter upper bound on T
∗
(γ) (see Figure 3.4)

and the only known lower bound on T
∗
(γ).
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Figure 3.4: Upper bound comparison with SoA [2].

• Finally Theorem 3.3 completes our understanding of the scaling laws
of the random association setting. For example, for the case where
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K = Θ(Λ), prior to our work, G(γ) was known to be O
(√

Λ
)
, whereas

now we know that this deterioration scales exactly as Θ
(

logΛ
log logΛ

)
. Please

refer to Table 3.3 for a detailed comparison of the known upper bounds
and our exact scaling results.

T
∗
(γ) in [2] T

∗
(γ) in our work

K = Θ(Λ) O
(√

Λ
)

Θ
(

logΛ
log logΛ

)
K = Θ(Λa) for
1 < a < 2 and
K = Ω(Λ logΛ)

O
(
Λa/2

) Θ(Tmin) = Θ
(
K
Λ

)
= Θ(Λa−1)

K = Ω(Λ2) O
(
K
Λ

)
Θ(Tmin) = Θ

(
K
Λ

)
Table 3.3: SoA comparison of scaling laws.

Numerical Validation

We proceed to numerically validate our results, using two basic numeri-
cal evaluation approaches. The first is the sampling-based numerical (SBN)
approximation method, where we generate a sufficiently large set L1 of ran-
domly generated profile vectors L, and approximate EL[T (L)] as

EL[T (L)] ≈
1

|L1|
∑
L∈L1

T (L), (3.18)

where we recall that T (L) is defined in (3.4). The corresponding approximate
performance deterioration is then evaluated by dividing the above by Tmin.

The second is a threshold-based numerical method, whose first step is to
generate a set L2 ⊆ L of profile vectors L such that

∑
L∈L2

P (L) ≈ ρ, for some
chosen threshold value ρ ∈ [0, 1]. Recall that the closed form expression for
P (L) is given in equation (A.1). Subsequently, with this subset L2 at hand,
we simply have the numerical lower bound (NLB)

EL[T (L)] ≥
∑
L∈L2

P (L)T (L) + (1− ρ)Tmin, (3.19)

by considering the best-case delay for each L ∈ L/L2, and similarly have the
numerical upper bound (NUB)

EL[T (L)] ≤
∑
L∈L2

P (L)T (L) + (1− ρ)K(1− γ), (3.20)

by considering the worst possible delay K(1 − γ) for every L ∈ L/L2. The
bounding of G(γ) is direct by dividing the above with Tmin.

Naturally the larger the threshold ρ, the tighter the bounds, the higher
the computational cost. The additive gap between the bounds on G(γ), takes
the form (1− ρ)

(
K(1−γ)
Tmin

− 1
)
≈ (1− ρ) t, revealing the benefit of increasing ρ.
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Figure 3.5: Analytical upper bound (AUB) from (3.14) vs. analytical lower
bound (ALB) from (3.15) vs. exact G(γ) from (3.10) (Λ = 20).
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Figure 3.6: Exact G(γ) from (3.10) vs. sampling-based numerical (SBN)
approximation from (3.18) (|L1| = 10000).

First, Figures 3.5-3.7 include comparisons that involve the exact G(γ)
from (3.10), and thus — due to the computational cost — the number of
caches remains at a modest Λ = 20 (and a relatively larger Λ = 30 for
Figure 3.7). In particular, Figure 3.5 compares the exact G(γ) with the ana-
lytical bounds in (3.14) and (3.15), where it is clear that both AUB and ALB
yield sensible bounds, and AUB becomes much tighter as γ increases. Fig-
ure 3.6 compares the exact G(γ) with the sampling-based numerical (SBN)
approximation in (3.18) (for |L1| = 10000), where it is evident that the SBN
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approximation is consistent with the exact performance.
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Figure 3.7: Threshold-based numerical upper bound (NUB) from (3.20) vs.
threshold-based numerical lower bound (NLB) from (3.19) vs. exact G(γ)
from (3.10) (Λ = 30 and ρ = 0.95).
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Figure 3.8: Analytical upper bound (AUB) from (3.14) vs. sampling-based
numerical (SBN) approximation from (3.18) (|L1| = 10000).

Finally, Figure 3.7 compares the exact G(γ) (for Λ = 30) with the threshold-
based numerical bounds that are based on (3.19) and (3.20), using ρ = 0.95.
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Interestingly, the threshold-based NLB turns out to be very tight in the entire
range of γ, whereas the NUB tends to move away from the exact performance
as γ increases.

Subsequently, for much larger dimensionalities, Figure 3.8 compares the
AUB from (3.14) with the SBN approximation from (3.18) for |L1| = 10000.
The figures highlight the extent to which the ratio K

Λ
affects the performance

deterioration.

3.4 Main Results: Non-Uniform Cache Popula-
tion Intensities

In this section, we extend our study to the scenario where cache population
intensities p (i.e, probability that a user can appear in the coverage area of
any particular cache-enabled cell) are following a non-uniform distribution⁹.

3.4.1 Computationally Efficient Analytical Bounds
Considering the uncoded cache placement scheme in [1], and the delivery
scheme in [31], the following theorem bounds the average delay T (γ), when
cache population intensities are following a non-uniform distribution.
Theorem 3.4. In the K-user, Λ-cache setting with normalized cache size γ
and a random user-to-cache association with cache population intensities p,
the average delay T (γ) is bounded by

T (γ) ≤ K
Λ− t
1 + t

−
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
0, 1− Λ− F (j)

λ

)
, (3.21)

and

T (γ) ≥ Λ− t
1 + t

(
Ktmax(p)
(Λ− 1)

+
K

Λ

(Λ− t− 1)

(Λ− 1)

)
, (3.22)

where

F (j) =
Λ∑
k=1

j∑
i=0

(
K

i

)
(pk)

i (1− pk)K−i . (3.23)

Proof. The proof is deferred to Appendix A.5.

Directly from Theorem 3.4 and equation (3.5), we can conclude that for
K
Λ
∈ Z+, the performance deterioration G(γ) as compared to the deterministic

uniform case, is bounded as

G(γ) ≤ Λ− 1 + t

K −Kγ

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
0, 1− Λ− F (j)

λ

)
, (3.24)

⁹All the results presented in this section are optimal for the case when the cache popu-
lation intensities are not known during the cache placement phase.
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and

G(γ) ≥ Λtmax(p)
(Λ− 1)

+
(Λ− t− 1)

(Λ− 1)
, (3.25)

where F (j) is given in Theorem 3.4. It is fast to numerically evaluate the
analytical bound proposed in Theorem 3.4 for any given distribution of cache
population intensities p. However, in order to gain some simple and insight-
ful form of the performance in the presence of non-uniform cache population
intensities, we proceed with the asymptotic analysis of the T (γ) under the
assumption that cache population intensities p follows the Zipf distribution¹⁰.
For the Zipf distribution, cache population intensities p are given by¹¹

pλ =
λ−α

Hα(Λ)
, ∀ λ ∈ [Λ], (3.26)

where α > 0 is the Zipf exponent, and Hα(Λ) =
∑Λ

i=1 i
−α is a normalization

constant formed as the generalized harmonic number.

3.4.2 Scaling Laws of the Performance
The following theorem provides the asymptotic analysis of the T (γ), in the
limit of large Λ.

Theorem 3.5. In the K-user, Λ-caches setting with normalized cache size
γ and random user-to-cache association with cache population intensities p
following the Zipf distribution with the Zipf exponent α, the delay scales as

T (γ) =



Θ(TminΛ) α > 1

O
(
Tmin

√
Λ2

K
+ Λ2

(logΛ)2

)
and Ω

(
Tmin

Λ
logΛ

)
α = 1

O

(
Tmin

√
Λ2

K
+ Λ2α

)
and Ω (TminΛ

α) 0.5 < α < 1

O

(
Tmin

√
Λ2

K
+ Λ logΛ

)
and Ω

(
Tmin
√
Λ
)

α = 0.5

O

(
Tmin

(√
Λ + Λ2

K

))
and Ω (TminΛ

α) α < 0.5.

(3.27)

Proof. The proof is deferred to Appendix A.6.

Directly from the above, we now know that when the cache population
intensities p follows the Zipf distribution, the performance deterioration due

¹⁰There are several studies that propose different user distribution models (i.e., distribution
of cache population intensities) for wireless networks [65–67]. We use the Zipf distribution
as it nicely covers a wide range of non-uniform patterns by only tuning one parameter.

¹¹Without loss of generality, we assume a descending order between cache population
intensities of the Λ caches.
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to user-to-cache association randomness, scales as

G(γ)=



Θ(Λ) α > 1

O
(√

Λ2

K
+ Λ2

(logΛ)2

)
and Ω

(
Λ

logΛ

)
α = 1

O

(√
Λ2

K
+ Λ2α

)
and Ω (Λα) 0.5 < α < 1

O

(√
Λ2

K
+ Λ logΛ

)
and Ω

(√
Λ
)

α = 0.5

O

(√
Λ + Λ2

K

)
and Ω (Λα) α < 0.5.

(3.28)

In identifying the scaling laws of the problem, Theorem 3.5 nicely captures
the following points:

• It describes to what extent the performance deterioration increases with
α (i.e., the skewness in cache population intensities).

• It shows that, in some cases there is no global caching gain, e.g., the
performance deterioration scales as Θ(Λ) for α > 1.

• It reveals that unlike the case of uniform cache population intensities
– where the deterioration can be avoided as long as K = Ω(Λ logΛ) –
the existence of skewness in cache population intensities can lead to
an unbounded deterioration irrespective of the relation between K and
Λ.

• It highlights the importance of incorporating the knowledge of the cache
population intensities vector while designing the placement and delivery
scheme. As pointed out earlier, being unaware of the severeness of this
non-uniformity may lead to the vanishing of the coding gain, and the
system may eventually need to confine itself to the local caching gain.

Numerical Validation

We now numerically validate our results for the case of non-uniform cache
population intensities. For the numerical analysis, we assume that cache
population intensities p follows the Zipf distribution. Figure 3.9 compares
the AUB from (3.24) with the SBN approximation from (3.18) for |L1| = 10000.
Note that L1 is generated based on cache population intensities p. The figure
highlight the extent to which the Zipf exponent α (i.e., the skewness in cache
population intensities) affects the performance deterioration.

3.5 Summary of Chapter
In this chapter we identified the exact optimal performance of coded caching
with random user-to-cache association when users can appear in the coverage
area of any particular cache-enabled cell with equal probability. In our
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Figure 3.9: Analytical upper bound (AUB) from (3.24) vs. sampling-based
numerical (SBN) approximation from (3.18) (|L1| = 10000).

opinion, the random association problem has direct practical ramifications, as
it captures promising scenarios such as the heterogeneous network scenario
as well as operational realities namely, the subpacketization constraint. The
problem becomes even more pertinent as we now know that its effect can in
fact scale indefinitely.

Key to our effort to identify the effect of association randomness, has been
the need to provide expressions that can either be evaluated in a numerically
tractable way, or that can be rigorously approximated in order to yield clear
insight. The first part was achieved by deriving exact expressions as well
as new analytical bounds that can be evaluated directly, while the second
part was achieved by studying the asymptotics of the problem which yielded
simple performance expressions and direct operational guidelines. Finally,
we extended our analysis for the case where cache population intensities are
following a non-uniform distribution. We provided analytical bounds and
studied the asymptotics of the problem.

The detrimental impact of the user-to-cache association’s randomness on
the delivery time motivates the need for techniques to mitigate this impact.
In the following chapter, we show how incorporating additional capabilities
in the shared-cache setting can play a vital role in mitigating this impact.

37



3.5. SUMMARY OF CHAPTER

38



Chapter 4

Mitigating the Impact of
Cache-Load Imbalance
Bottleneck of Coded Caching in
Stochastic Shared-Cache
Networks

In the previous chapter, our stochastic analyses of the coded caching in
shared-cache networks revealed the impact of randomness in the cache pop-
ulation. We highlighted the importance of incorporating the knowledge of
the cache population intensities while designing the placement and deliv-
ery scheme for this setting. In the context of known deterministic user-
to-cache association setting (also known as a topology-aware scenario), the
work in [68] proposed a novel coded placement that exploits knowledge of the
user-to-cache association, while the work in [69] used this same knowledge,
to modulate cache-sizes across the different helper nodes as a function of
how many users they serve. Similarly, the work in [57] optimized over the
cache sizes, again as a function of the load of each cache, and then proceeded
to design a novel coded caching scheme which substantially outperforms the
optimal scheme in [31]; the latter designed for the scenario where the cache
placement is oblivious to the user-to-cache association phase. However, the
above-mentioned studies [57, 68, 69] are limited to the deterministic user-
to-cache association setting. In this chapter, we present three techniques
that can mitigate the impact of the cache-load imbalance bottleneck of coded
caching in stochastic shared-cache networks.

4.1 Load-Balancing in Stochastic Shared-Cache
Networks

We know from our analyses in Chapter 3 that performance generally suf-
fers when the different helper nodes (caches) are unevenly loaded. For this,
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it is only natural that we look at basic load-balancing approaches, which
have long played a pivotal role in improving the statistical behavior of wire-
less networks. This role was highlighted in the survey found in [70], which
discussed why long-standing assumptions about cellular networks need to
be rethought in the context of load-balanced heterogeneous networks, and
showed that natural user association metrics like signal-to-interference-plus-
noise ratio (SINR) or received signal strength indication (RSSI) can lead to
a major imbalance. This work has gathered together the earlier works on
load-balancing in HetNets and compared the primary technical approaches –
such as optimization, game theory and Markov decision processes – to HetNet
load-balancing. In the same context, various algorithms have also been pro-
posed to optimize the traffic load by analyzing user association to servers for
cellular networks [71], by providing a distributed α−optimal user association
and cell load-balancing algorithm for wireless networks [72], by developing
SINR-based flexible cell association policies in heterogeneous networks [73],
and even investigating traffic load-balancing in backhaul-constrained cache-
enabled small cell networks powered by hybrid energy sources [74].

In this section, we build a bridge between load-balancing and coded
caching, with the aim of improving the network performance by balanc-
ing the user load placed on each cache. We will show that the effect of
load-balancing can in fact be unbounded in the limit of many caches.

4.1.1 Load-Balancing Under Uniform Cache Population
Intensities

In Section 3.3, we explored the performance of coded caching when each user
is associated, at random and with equal probability, to one of Λ caches. Our
aim now is to reduce the detrimental impact of the user-to-cache associa-
tion’s randomness on the delivery time, by using load-balancing methods that
introduce a certain element of choice in this association, and thus allow for
better profile vectors. Such choice can exist naturally in different scenarios,
like for example in the wireless cache-aided heterogeneous network setting,
where each user can be within the communication range of more than one
cache helper node.

We define a generic load-balancing method ϕ to be a function that maps
the set of users [K] into a cache population vector V = ϕ([K]) as a result of
the load-balancing choice. Similarly as in (3.2), the optimal delay, given a
certain load-balancing policy ϕ, is defined as

T
∗
ϕ(γ) = min

X
EV

[
max

d
T (ϕ([K]),d,X )

]
. (4.1)

The above definition is the same as the one in (3.2), with the only differ-
ence that the random variable representing the cache population vector V is
now following a different probability distribution that depends on the load-
balancing method ϕ. Employing the optimal scheme X from Theorem 3.1, the

40



4.1. LOAD-BALANCING

average delivery time takes the form (cf. equation (3.7))

T ϕ(γ) =
Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (4.2)

where [l1, l2, . . . , lΛ] = sort(ϕ([K])). It is important to point out that the choice
of the load-balancing method can be in general limited by some practical
constraints, such as geographical constraints and operational constraints¹.
We will focus on analyzing the above, for two load-balancing methods which
will prove to allow for unbounded gains.

Randomized Load-Balancing with Multiple Choices

In the original scenario, for any given user, one cache is randomly picked
to assist this user. Now we consider a load-balancing method ϕr which, for
any given user, picks h ≥ 2 candidate caches at random, and then associates
each such user with the least loaded cache among these h caches. This static
method is referred to as randomized load-balancing with multiple choices [75],
and is considered in a variety of settings (see for example [76]). The perfor-
mance of this method is presented in the following result, for the limiting
case of large Λ.

Theorem 4.1. In the K-user, Λ-cell heterogeneous network with normalized
cache size γ, where each user benefits from the least loaded cache among h
randomly chosen caches, the limiting optimal delay converges to

T
∗
ϕr(γ)=

Θ
(
Tmin

Λ log logΛ
K logh

)
ifK=o

(
Λ log logΛ

logh

)
Θ(Tmin) ifK=Ω

(
Λ log logΛ

logh

)
.

(4.3)

Proof. The achievability part of the theorem is deferred to Appendix B.1.
After noticing that the definition of the optimal delay in (4.1) is equal to
(3.2), optimality is proven the same way as for the optimality of Theorem 3.1
by following the same steps as in equations (A.3)-(A.4). Following those steps
requires (cf. [31]) that P (V) remains fixed for any V such that sort(V) = L;
which is true also for the considered load-balancing method ϕr because the
method is not biased to any specific cache, i.e. ϕr assigns each user to one of
the available caches only based on the load of the caches and independently
from the cache identity. Therefore, the proof follows the same steps as for
the case where there is no load-balancing.

The above theorem naturally implies that the performance deterioration,
due to random association, scales as

Gr(γ) =

Θ
(

Λ log logΛ
K logh

)
if K =o

(
Λ log logΛ

logh

)
Θ(1) if K =Ω

(
Λ log logΛ

logh

)
,

(4.4)

¹Removal of all these constraints naturally brings us back to the ideal user-to-cache
association where each cache is associated to an equal number of users.
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as well as implies the following corollary.

Corollary 4.1. In the K-user, Λ-cell heterogeneous network with random-
selection load-balancing, the performance deterioration due to random asso-
ciation, scales as Θ

(
log logΛ
logh

)
when K = Θ(Λ), and then as K increases, this

deterioration gradually reduces, and ceases to scale when K = Ω
(

Λ log logΛ
logh

)
.

Proof. The proof is direct from (4.4).

We can see that the above method can dramatically ameliorate the random
association effect, where (for example when K is in the same order as Λ)
even a small choice among h = 2 caches, can tilt the scaling of G(γ), from
the original Θ

(
logΛ

log logΛ

)
to a much slower Θ(log logΛ).

Load-Balancing Via Proximity-Based Cache Selection

The aforementioned randomized load-balancing method, despite its substan-
tial impact, may not apply when the choice is limited by geographical prox-
imity. To capture this limitation, we consider the load-balancing approach ϕp
where the set of Λ caches is divided into Λ/h disjoint groups

[
X1,X2, . . . ,XΛ/h

]
of h caches each². Once a user is associated at random, with uniform prob-
ability, to one of these groups, then we choose to associate this user to the
least loaded cache from that group.

The performance of this method is presented in the following result, for
the limiting case of large Λ.

Theorem 4.2. In the K-user, Λ-cell heterogeneous network with normalized
cache size γ, where each user benefits from the least loaded cache among h
neighboring caches, then the limiting optimal delay converges to

T
∗
ϕp(γ)=

Θ

(
TminΛ log Λ

h

hK log
Λ log Λ

h
hK

)
if K∈

[
Λ

h polylog(Λ
h
)
, o
(
Λ
h
log Λ

h

)]
Θ(Tmin) if K =Ω

(
Λ
h
log Λ

h

)
.

(4.5)

Proof. The achievability proof is deferred to Appendix B.2, while the op-
timality part of the theorem follows the same argument as the proof of
Theorem 4.1.

The above implies a performance deterioration of

Gp(γ)=

Θ

(
Λ
hK

log Λ
h

log
Λ log Λ

h
hK

)
if K ∈

[
Λ/h

polylog(Λ
h
)
, o
(
Λ
h
log Λ

h

)]
Θ(1) if K = Ω

(
Λ
h
log Λ

h

)
,

(4.6)

which in turn implies the following.

²In this method, our focus is in the asymptotic setting, thus we do not need to assume
that h divides Λ.

42



4.1. LOAD-BALANCING

Corollary 4.2. In the K-user, Λ-cell heterogeneous network with proximity-
bounded load-balancing, the performance deterioration due to random asso-
ciation scales as Θ

(
log(Λ/h)

log log(Λ/h)

)
when K = Θ

(
Λ
h

)
, and as K increases, this

deterioration gradually reduces, and ceases to scale when K = Ω
(
Λ
h
log Λ

h

)
.

Proof. The proof is straightforward from Theorem 4.2.

We can see that proximity-bounded load-balancing significantly amelio-
rate the random association effect, where now deterioration ceases to scale
when K = Ω

(
Λ
h
log Λ

h

)
compared to the original K = Ω(Λ logΛ).

2000 4000 6000 8000

3

4
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7

Figure 4.1: Analytical upper bound (AUB) from (4.8) without (h = 1) and
with (h > 1) proximity-bounded load-balancing.

Numerical Validation

Figure 4.1 uses a suitably modified analytical upper bound to explore the
effect of h when applying proximity-bounded load-balancing. We know from
(A.8) that the expected number of users in the most populous cache group
(i.e, E[lh1 ]), when each user can be associated to any cache group with equal
probability h

Λ
is bounded as

E[lh1 ] ≤ K −
K−1∑
j=0

max
(
1− Λ

h
(1− P h

j ), 0

)
, (4.7)

where P h
j =

∑j
i=0

(
K
i

) (
h
Λ

)i (
1− h

Λ

)K−i. Also, from (B.4), the expected number
of users in the most populous cache (i.e., E[l1]) under proximity-bounded load-
balancing is bounded as E[l1] < E[lh1 ]

h
+ 1. Thus using (A.16), the analytical
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upper bound on the T ∗
ϕp(γ) is given by

T
∗
ϕp(γ) ≤

Λ− t
1 + t

E[l1] <
Λ− t
1 + t

(
E[lh1 ]

h
+ 1

)
=

Λ− t
1 + t

(
1 +

K

h
− 1

h

K−1∑
j=0

max
(
1− Λ

h
(1− P h

j ), 0

))
. (4.8)

From Figure 4.1, we can see that, as expected, the performance deterioration
decreases as h increases.

4.1.2 Load-Balancing Under Non-Uniform Cache Popula-
tion Intensities

We consider a load-balancing method ϕn which, for any given user, picks
h ≥ 2 candidate caches at random based on the cache population intensities
p following the Zipf distribution, and then associates each such user to the
least loaded cache among these h caches. The performance of this method
is presented in the following result, for the limiting case of large Λ.

Theorem 4.3. In the K-user, Λ-cell heterogeneous network with normalized
cache size γ, where each user benefits from the least loaded cache among h
randomly chosen caches based on the cache population intensities p with the
Zipf exponent α, the limiting delay converges to

T ϕn(γ)=

{
O
(
Tmin

Λ log logΛ
K

)
ifK=o (Λ log logΛ)

O (Tmin) ifK=Ω(Λ log logΛ) ,
(4.9)

when h = Θ(logΛ).

Proof. The proof is deferred to Appendix B.3.

The above theorem naturally implies that, if h is in the same order as
logΛ then the performance deterioration, due to random association, scales
as

Gn(γ) =

{
O
(

Λ log logΛ
K

)
if K=o (Λ log logΛ)

O (1) if K=Ω(Λ log logΛ) .
(4.10)

We can see that load-balancing can dramatically ameliorate the random as-
sociation effect. For example, when α > 1, picking any logΛ candidate caches
is sufficient to tilt the scaling of G(γ) from Θ(Λ) (refer to (3.28)) to a much
slower O (log logΛ) and O (1), when K = Θ(Λ) and K = Ω(Λ log logΛ) respec-
tively. As long as h is in the same order as logΛ, significant improvements
can be achieved irrespective of the level of skewness of the cache population
intensities. In conclusion, even for the non-uniform cache population inten-
sities, load-balancing can still be impactful. However, for non-uniform cache
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population intensities setting h = 2 may not bring significant gains which
were observed for the case of uniform cache population intensities case (cf.
Corollary 4.1 ) as now h must be in the order of logΛ.

To summarize, in this section, we showed that in the practical scenario
where we are given a choice to associate a user to the least loaded cache from
a randomly chosen group of h neighboring helper nodes, the performance de-
terioration can be significantly reduced. An even more dramatic reduction
in performance deterioration can be seen when the aforementioned neigh-
boring/proximity constraint is lifted. The above analysis reveals that load-
balancing, when applicable, can play a crucial role in significantly reducing
the performance deterioration due to random user-to-cache association.

4.2 Optimizing Cache Size in Stochastic Shared-
Cache Networks

In this section, we aim to exploit cache-size differences and optimize the
individual cache sizes to mitigate the cache-load imbalance bottleneck in
stochastic shared-cache networks. In this context of deterministic user-to-
cache association, the work in [69] used the knowledge of user-to-cache asso-
ciation to adjust cache sizes as a function of cache populations. In a similar
context, the work in [57] optimized the cache sizes as a function of the num-
ber of users served by each cache, and then proposed a novel coded caching
scheme that outperforms the optimal scheme in [31]. Different from [31],
the new scheme in [57] designed for the case when the cache placement is
aware of the deterministic user-to-cache association phase, thus yielding ex-
tra gains. In this chapter, we propose a coded caching scheme that optimizes
the individual cache sizes based on each cache’s load statistics, subject to
a given cumulative cache capacity. We characterize the performance of our
scheme and numerically verify its effectiveness in substantially ameliorating
the impact of cache-load imbalance on the coding gain.

4.2.1 Network Setting
We consider a heterogeneous cache-aided network setting which consists
of a base station (BS) having access to a library of N unit-sized files F ={
F 1, F 2, . . . , FN

}
, as well as consists of Λ cache-enabled helper nodes (i.e.,

caches), and K receiving users. The BS delivers content via an error-free
broadcast link of bounded capacity per unit of time to K users, with the
assistance of helper nodes. We assume that users within the coverage area
of a cache λ ∈ [Λ] have direct access to the content stored at that cache.
We consider the scenario of non-uniform cache population intensities where
the number of users served by each cache may not be identical. For any
cache λ ∈ [Λ], let pλ be the probability that a user appears in the coverage
area of this λth cache-enable helper node, and let p = [p1, p2, . . . , pΛ] denote
the cache population intensities vector, where

∑
λ∈[Λ] pλ = 1. Without loss of
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generality, we assume that p1 ≥ p2 ≥ · · · ≥ pΛ. At any given instance, we
denote V = [v1, v2, . . . , vΛ] to be the cache population vector, where vλ is the
number of users having access to the content of cache λ ∈ [Λ], and we let
V̄ = Kp = [v̄1, v̄2, . . . , v̄Λ] be the expected cache population vector.

The size of each cache λ ∈ [Λ] is the design parameter Mλ ∈ (0, N ] (mea-
sured in units of file), adhering to a cumulative sum cache-size constraint∑Λ

λ=1Mλ =MΣ. For any cache λ ∈ [Λ], we denote by γλ ≜ Mλ

N
the normalized

cache capacity, and subsequently we have the normalized cache capacity vec-
tor γ = [γ1, γ2, . . . , γΛ]. Consequently, the normalized cumulative cache-size
constraint takes the form

Λ∑
λ=1

γλ = t ≜ MΣ

N
. (4.11)

The communication process consists of three phases; the storage allocation
phase, the content placement phase and the delivery phase. The storage
allocation phase involves allocating the cumulative cache capacity MΣ (or
the normalized cumulative cache capacity t) to the caches subject to (4.11), a
process that results in the aforementioned normalized cache capacity vector γ.
The content placement phase involves the placement of a portion of library-
content, Zλ, in each cache λ ∈ [Λ] — respecting its allocated cache capacity γλ
— according to a certain placement strategy Z = [Z1,Z2, . . . ,ZΛ]. We assume
that the first two phases are aware of the cache population intensities p.
However, these two phases are oblivious to the actual requests generated
during the delivery phase. The delivery phase begins after each user k ∈ [K]
appears within the coverage area of one of the caches, and requests a content
file F dk ∈ F , where dk is the index of the file requested by user k ∈ [K]. Then
for any demand vector d = [d1, . . . , dv1 , dv1+1, . . . , dK ], using the knowledge of
the content stored at each cache Zλ ∈ Z , and the user-to-cache association,
the BS delivers the content to the user.

Problem Definition

For a given normalized cache-size budget t, and cache population intensities
vector p, our goal is to design a content placement strategy Z , and a delivery
scheme for the system where a BS is serving K users with the help of Λ
caches. Then our goal is to evaluate its performance in terms of the time
needed to complete the delivery of any demand vector d. Given the random
nature of our problem where at any given instance of the problem we may
experience a different cache population vector V, our measure of interest is
the average delay

T (t) = EV[T (V)] =
∑
V∈V

P (V)T (V), (4.12)

where T (V) is the worst-case time needed to complete the delivery of any
demand vector d corresponding to a specific cache population vector V, where
V is the set of all possible cache population vectors, and where P (V) is the
probability of observing the cache population vector V.
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4.2.2 Main Results: Cache Size Optimization
In this section, we first present our main results on the performance of the
stochastic network setting described in Section 4.2.1. After doing so, we will
also discuss the applicability as well as the efficacy of our proposed scheme
for a deterministic shared-cache setting studied in [57] by showing that it
provides an exponential reduction in the subpacketization.

Our first result is the characterization of the achievable delivery time
T (V) for any cache population vector V. Crucial to this characterization
is the greatest common divisor (GCD) of vector V̄, which we denote by ψ,
and the partition of V into a set BV = [V1,V2, . . . ,VβV ] of βV =

⌈
maxi∈[Λ] ψviv̄i

⌉
vectors according to the partition algorithm presented in Algorithm 4.1. Each
resulting partition vector Vj = [vj1, v

j
2, . . . , v

j
Λ] will then satisfy vjλ ≤

v̄λ
ψ
, where∑

j∈[βV]
vjλ = vλ, ∀λ ∈ [Λ]. Under the assumption of a random user-to-cache

association with cache population intensities vector p such that the expected
cache population v̄λ ∈ V̄ is a non-negative integer for each cache λ = [Λ], the
achievable delay is given in the following theorem.

Theorem 4.4. In the K-user, Λ-cache setting with a normalized cache budget
t, and a random user-to-cache association with cache population intensities
vector p, the delivery time for any cache population vector V

T (V) =
∑
j∈[βV]

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̄τ(i)
ψ
−
∑

τ∈X
Aj
t+1

t+1∏
i=1

(
v̄τ(i)
ψ
− vjτ(i)

)
∑

τ∈X [Λ]
t

t∏
i=1

v̄τ(i)
ψ

(4.13)

is achievable if the expected cache population vector V̄ is a non-negative inte-
ger vector, where Aj ⊆ [Λ] is a subset of the set of caches, such that for each
cache λ ∈ Aj, v̄λ

ψ
> vjλ.

Proof. The proof is deferred to Section 4.2.3.

With Theorem 4.4 in hand, we present our next result, which is the
average delay T (t) corresponding to our stochastic network setting.

Theorem 4.5. In the K-user, Λ-cache setting with a normalized cache budget
t, and a random user-to-cache association with cache population intensities
vector p, the average delay of

T (t) =
∑
V∈V

T (V)K!∏
λ∈[Λ] vλ!

∏
λ∈[Λ]

pvλλ (4.14)

is achievable if the expected cache population vector V̄ is a non-negative inte-
ger vector.
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Proof. From the fact that the random variable V follows the well-known
multinomial distribution with parameter p, we have

P (V) =
K!∏

λ∈[Λ] vλ!

∏
λ∈[Λ]

pvλλ . (4.15)

Combining (4.13) with (4.15) allows us to obtain (4.14), which concludes the
proof.

Next, we see the applicability of our scheme in a similar setting, but with
a fixed user-to-cache association, which was initially studied in [57].

Corollary 4.3. In the K-user, Λ-cache setting with a normalized cache budget
t, and a fixed user-to-cache association with cache population vector V̄, the
proposed scheme in Section 4.2.3 achieves the delivery time of

T (V̄) = ψ

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̄τ(i)
ψ

∑
τ∈X [Λ]

t

t∏
i=1

v̄τ(i)
ψ

, (4.16)

which is same as of [57, equation (11)] and it requires the subpacketization
rate of

P =
∑
τ∈X [Λ]

t

t∏
j=1

v̄τ(j)
ψ

, (4.17)

which is ψt times less than the subpacketization rate of [57, equation (7)].

Proof. The proof is straightforward from (4.20) and (4.23).

Corollary 4.3 reveals the substantial benefits of our scheme compared
to the SoA [57] as it achieves the same delivery time with a significantly
reduced – with a factor of ψt – subpacketization. This exponential reduction
in subpacketization is a crucial contribution as the subpacketization is a
major bottleneck in the applicability of coded caching schemes [21] especially
in the finite file size regimes. To illustrate this gain, in Figure 4.2, we
compare the required subpacketization of our scheme with the scheme in [57]
for V̄ = [8, 6, 6, 4, 2, 2]. We can see that even for a modest network consisting
of an extremely small number of users, our scheme requires significantly less
subpacketization.

Remark 4.1. An interesting observation of our scheme is that ψ can be treated
as a trade-off parameter between the subpacketization and the delivery time.
For example, when V̄ = [20, 15, 15, 5, 5, 4], we have ψ = 1. However, if we
associate one virtual user to the Λ-th cache, ψ increases from 1 to 5, thus,
reducing the subpacketization by a factor of 5t with a modest increase in the
delivery time. We leave the study of this trade-off for future work.
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Figure 4.2: Comparison of the required subpacketization.

4.2.3 Placement and Delivery
In this section, we present the proof of Theorem 4.4. We describe the content
placement and delivery strategies that can achieve the delay of (4.13).

Content Placement

The content placement scheme is based on the idea of assigning more storage
capacity to the caches with high population intensities. We denote V̂ =
[v̂1, v̂2, . . . , v̂Λ] as the base cache population vector, which is given as V̂ ≜ V̄

ψ
,

where ψ is the GCD of the elements in V̄. For a base cache population vector
V̂, we assume that there are Λ̂ ≜

∑Λ
λ=1 v̂λ virtual caches such that each cache

λ ∈ [Λ] consists of v̂λ virtual caches. We then use C = [1, 2, . . . , Λ̂] to denote
the set of virtual caches, and Cλ = [v̂λ−1 + 1, . . . , v̂λ−1 + v̂λ] (assuming v̂0 ≜ 0)
to denote the set of virtual caches that belongs to cache λ ∈ [Λ]. Let QC

t ⊆ X C
t

be the set of all possible t-tuples of C such that for each tuple τ ∈ QC
t , no two

virtual caches i, j ∈ τ belong to the same cache λ ∈ [Λ]. Next, each content
file F i ∈ F is divided into

∣∣QC
t

∣∣ subpackets, and labeled as F i = {F i
τ}τ∈QC

t
.

Then, the set of contents to be cached at each cache λ ∈ [Λ] is given by

Zλ =
{
Zλ̂ : λ̂ ∈ Cλ

}
, (4.18)

where

Zλ̂ =
{
F i
τ : F

i
τ ∈ F i, τ ∈ QC

t , λ̂ ∈ τ, F i ∈ F
}
. (4.19)

From the fact that for each cache λ we have v̂λ virtual caches, we can
conclude that for any t-tuple of caches τ ∈ X [Λ]

t there must be
∏t

i=1 v̂τ(i) t-
tuples of virtual caches that belong to the set QC

t . Consequently, the number
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of t-tuples of C in the set QC
t is given as

∣∣QC
t

∣∣ = ∑
τ∈X [Λ]

t

t∏
j=1

v̂τ(j), (4.20)

and the normalized cache capacity required at any cache λ ∈ [Λ] is given as

γλ =
|Zλ|
N |QC

t |
=

∑
τ∈X [Λ]

t :τ∋λ

t∏
j=1

v̂τ(j)

∑
τ∈X [Λ]

t

t∏
j=1

v̂τ(j)

. (4.21)

Thus, (4.21) yields our proposed storage allocation strategy. We can see that∑
λ∈[Λ] γλ = t, as for each τ ∈ QCt , the corresponding subpackets {F i

τ : F
i ∈ F}

are placed in t caches. Thus, the content placement strategy satisfies the total
caching budget constraint (4.11).

Input: V and V̄
Output: BV
Initialization: ψ ← GCD(V̄), βV←

⌈
max
i∈[Λ]

ψvi
v̄i

⌉
, BV ← ∅

for j from 1 to βV do
for i from 1 to Λ do
if vi > v̄i

ψ

vji ← v̄i
ψ
, vi ← vi − v̄i

ψ

else
vji ← vi, vi ← 0 end if

end for
BV ← [BV , [vj1, v

j
2, . . . , v

j
Λ]]

end for
Algorithm 4.1: Cache Population Vector Partition

Content Delivery

We will consider the worst-case delivery scenario where each user requests
a different file. Once the BS is notified of the cache population vector V
and the corresponding demand vector d, it commences delivery. We propose
a delivery scheme that is completed in βV =

⌈
maxi∈[Λ] viv̂i

⌉
rounds, where

the content is delivered to at most v̂λ users from each cache λ ∈ [Λ] in
each round. We divide the cache population vector V into a set of βV
vectors BV = [V1,V2, . . . ,VβV ] based on the procedure described in Algorithm
4.1, such that for all j ∈ [βV ], Vj = [vj1, v

i
2, . . . , v

j
Λ] satisfies vjλ ≤ v̂λ and∑

j∈[βV]
vjλ = vλ for all λ ∈ [Λ]. In the following, we describe our delivery

strategy for the two only possible cases after applying Algorithm 4.1.
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Case 1: Vj = V̂: In this case, the BS will serve Λ̂ users based on the base
cache population vector V̂. Let U = [u1, u2, . . . , uΛ̂] denote the set of indices
of users that corresponds to V̂, and Uλ = {ui}v̂λ−1+v̂λ

i=v̂λ−1+1 be the set of users
associated to cache λ ∈ [Λ] (assuming v̂0 = 0). The corresponding demand
vector is dV̂ =

[
du1 , du2 , . . . , duΛ̂

]
. Let QC

t+1 ⊆ X C
t+1 be the set of all possible

(t+ 1)-tuples of C such that for each tuple τ ∈ QC
t+1, no two virtual caches i,

j ∈ τ belong to the same physical cache. Then, for each (t+1)-tuple τ ∈ QC
t+1,

the BS transmits the following XOR:

Yτ = ⊕λ̂∈τF
du

λ̂

τ\λ̂ . (4.22)

The structure of Yτ allows to serve t+1 users simultaneously as each user can
easily decode its required subpacket using the content Zλ of its associated
cache λ ∈ [Λ]. Let Y =

{
Yτ : τ ∈ QC

t+1

}
denote the set of all transmissions.

In order to completely serve the demand vector dV̂ corresponding to cache

population vector V̂, the BS transmits |Y| =
∣∣QC

t+1

∣∣ = ∑
τ∈X [Λ]

t+1

t+1∏
j=1

v̂τ(j) XORs in

the set Y . Thus the corresponding transmission delay is given as

T (V̂) =

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̂τ(i)

∑
τ∈X [Λ]

t

t∏
i=1

v̂τ(i)

. (4.23)

Case 2: Vj ∋ vjλ < v̂λ for some λ ∈ [Λ]: The delivery scheme for this case
is exactly the same as for the case when Vj = V̂. However, the number of
users to be served in this case is less than Λ̂, i.e., |U| < Λ̂. Hence, there may
exists some subpackets in Y that does not serve any user, and the BS only
transmits the subpacket Yτ ∈ Y if it serves at least one user. Let Aj⊆ [Λ] be
the subset of caches such that for each cache λ∈Aj , vjλ<v̂λ holds. Then, for
any cache population vector Vj , the total number of subpackets Yτ ∈ Y that

will not serve any user is given by
∑

τ∈X
Aj
t+1

t+1∏
i=1

(v̂τ(i) − vjτ(i)). Consequently, for

any cache population vector Vj ∋ vjλ ≤ v̂λ ∀ λ ∈ [Λ], the transmission delay
T (Vj) is given as

T (Vj) =

∑
τ∈X [Λ]

t+1

t+1∏
i=1

v̂τ(i) −
∑

τ∈X
Aj
t+1

t+1∏
i=1

(v̂τ(i) − vjτ(i))

∑
τ∈X [Λ]

t

t∏
i=1

v̂τ(i)

. (4.24)

Hence, the transmission delay T (V) corresponding to the cache population
vector V is equal to (4.13).
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Example: Let us take the example of K = N = 10, Λ = 4, t = 2, and p =
(0.4, 0.2, 0.2, 0.2). Then the expected cache population vector is V̄ = [4, 2, 2, 2],
and consequently V̂ = [2, 1, 1, 1] (ψ = 2 for V̄). The set of virtual caches is
C = [1, 2, 3, 4, 5], where the virtual caches C1 = [1, 2], C2 = [3], C3 = [4], and
C4 = [5] belong to the caches 1, 2, 3, and 4 respectively. Then we have nine
2-tuples in the set QC

t = [(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]
and each file is divided into nine subpackets. The content placement at each
cache is given as

Z1=
{
F i
τ :τ ∈ [(1, 3),(1, 4),(1, 5),(2, 3), (2, 4), (2, 5)], i∈ [N ]

}
,

Z2=
{
F i
τ :τ ∈ [(1, 3),(2, 3),(3, 4),(3, 5)], i∈ [N ]

}
,

Z3=
{
F i
τ :τ ∈ [(1, 4),(2, 4),(3, 4),(4, 5)], i∈ [N ]

}
,

Z4=
{
F i
τ :τ ∈ [(1, 5),(2, 5),(3, 5),(4, 5)], i∈ [N ]

}
.

This placement leads to the normalized cache capacity allocation of γ =
[6
9
, 4
9
, 4
9
, 4
9
]. Now, let us move to the content delivery phase. Let us assume

the case of V = [6, 2, 1, 1], where users 1 to 6 have access to cache 1 and
request the content F 1, F 2, F 3, F 4, F 5, and F 6 respectively, users 7 and
8 have access to cache 2 and request F 7 and F 8 respectively, user 9 has
access to cache 3 and requests F 9, and user 10 has access to cache 4 and
requests F 10. The BS partitions the cache population vector into the set
of βV = 3 vectors, and transmits the content in 3 rounds. The partition
of V based on Algorithm 4.1 leads to BV = [(2, 1, 1, 1), (2, 1, 0, 0), (2, 0, 0, 0)],
and the corresponding demand vectors are dV1

= [1, 2, 7, 9, 10], dV2
= [3, 4, 8],

and dV3
= [5, 6]. In the first round of delivery, the BS serves user 1 and 2

from cache 1, user 7 from cache 2, user 9 from cache 3, and user 10 from
cache 4. For this round, we have V1 = V̂, thus, for the demand vector
dV1

= [1, 2, 7, 9, 10], the BS transmits the following seven subpackets based on
set QC

t+1 = [(1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), (3,4,5)],

Y1,3,4=F
1
3,4 ⊕ F 7

1,4 ⊕ F 9
1,3,

Y1,3,5=F
1
3,5 ⊕ F 7

1,5 ⊕ F 10
1,3,

Y1,4,5=F
1
4,5 ⊕ F 9

1,5 ⊕ F 10
1,4,

Y2,3,4=F
2
3,4 ⊕ F 7

2,4 ⊕ F 9
2,3,

Y2,3,5=F
2
3,5 ⊕ F 7

2,5 ⊕ F 10
2,3,

Y2,4,5=F
2
4,5 ⊕ F 9

2,5 ⊕ F 10
2,4,

Y3,4,5=F
7
4,5 ⊕ F 9

3,5 ⊕ F 10
3,4.

After this round user 1, 2, 7, 9, and 10 can successfully decode their required
files. Then, in the second round of delivery, the BS serves users 3 and 4
from cache 1 and user 8 from cache 2. For this round, we have V2 ̸= V̂,
A2 = [3, 4], and the demand vector dV2

= [3, 4, 8]. Thus, the BS transmits the
following seven subpackets based on set QC

t+1,

Y1,3,4 = F 3
3,4 ⊕ F 8

1,4,
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Y1,3,5 = F 3
3,5 ⊕ F 8

1,5

Y2,3,4 = F 4
3,4 ⊕ F 8

2,4,

Y2,3,5 = F 4
3,5 ⊕ F 8

2,5

Y1,4,5 = F 3
4,5,

Y2,4,5 = F 4
4,5,

Y3,4,5 = F 8
4,5.

After this round users 3, 4, and 8 can successfully decode their required files.
Next, in the final round of delivery, the BS serves users 5 and 6 from cache
1. For this round, we have V3 ̸= V̂, A3 = [2, 3, 4], and the demand vector
dV3

= [5, 6]. We can see that subpacket Y3,4,5 will not serve any user, thus,
the BS transmits the following six subpackets based on set QC

t+1\(3, 4, 5),

Y1,3,4 = F 5
3,4,

Y1,3,5 = F 5
3,5,

Y1,4,5 = F 5
4,5

Y2,3,4 = F 6
3,4,

Y2,3,5 = F 6
3,5,

Y2,4,5 = F 6
4,5.

After this round users 5 and 6 can successfully decode their required files.
This completes the content delivery phase, which results in a delivery time
of T (V) = 20

9
.

4.2.4 Numerical Evaluation
We know from Theorem 4.5 that it is computationally expensive to numer-
ically evaluate the exact average delay even for small system parameters.
This is due to the fact that such evaluation would require the generation
of the set V of all possible cache population vectors V, which corresponds
to the so-called weak composition problem, and where the cardinality of V
is known to grow exponentially with system parameters K and Λ. Instead,
we proceed to numerically evaluate our results by using the sampling-based
numerical (SBN) approximation method, where we generate a large set V1 of
randomly generated cache population vectors V based on cache population
intensities p, and approximate T (t) as

T (t) ≈ 1

|V1|
∑
V∈V1

T (V), (4.25)

where T (V) is given in (4.13). Then, the corresponding approximate perfor-
mance is evaluated by comparing it with the achievable approximate average
delay for the uniform cache size from Chapter 3, which as we recall is given
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as

T (γ) ≈ 1

|V1|
∑
V∈V1

Λ−t∑
λ=1

L(λ)
(
Λ−λ
t

)(
Λ
t

) , (4.26)

where γ = t
Λ
and L = sort(V) is the sorted (in descending order) version of

the cache load vector V.
Figure 4.3 compares the SBN approximation from (4.25) with the SBN

approximation from (4.26) for |V1| = 10000, K = 400, Λ = 10, and p =
[0.2, 0.2, 0.15, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05], where V1 is generated based on
cache population intensities vector p. This figure highlights the significant
gain that can be achieved by allocating the cache capacity according to the
cache population intensities as this scheme significantly outperforms the uni-
form cache size based coded caching scheme. For the same parameter setup,
Figure 4.4 compares the cache capacity allocations of this scheme (N-UCS)
with uniform cache capacity allocations (UCS) for various capacity budgets
t. This new figure illustrates how this scheme allocates cache capacity in
proportion with cache population intensities.

1 2 3 4 5 6 7

20

40

60

80

100

120

Figure 4.3: T (t) from (4.25) (non-uniform cache size N-UCS) vs T (γ) from
(4.26) (uniform cache size UCS).
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Figure 4.4: Cache capacity allocations of this scheme (N-UCS) vs uniform
cache capacity allocations (UCS).
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To summarize, in this section, we exploited cache-size differences and op-
timized the individual cache sizes to mitigate the cache-load imbalance bot-
tleneck in stochastic shared-cache networks. We proposed a coded caching
scheme that optimizes the individual cache sizes based on each cache’s load
statistics, subject to a given cumulative cache capacity. Our analysis revealed
that the novel scheme alleviates the adverse effect of cache-load-imbalance
by significantly ameliorating the detrimental performance deterioration due
to randomness. We also showed that for a deterministic user-to-cache asso-
ciation setting, our scheme achieves the same state-of-the-art (SoA) delivery
time as of [57] with a significant (exponential) reduction in subpacketization,
thus making our scheme more suitable than [57] to apply in the finite file
size regime.

4.3 Two-Layered Shared-Cache Networks: Add-
ing Layers to Mitigate Randomness

In this section, we aim to mitigate the adverse effect of the cache-load imbal-
ance bottleneck by adding an additional layer of cache in the shared-cache
setting. The main idea is that in addition to the cache-enabled helper nodes,
each user is also equipped with its own storage capacity. This will enable the
overpopulated cell (i.e., the coverage area of a helper node) to have higher col-
lective storage capacity compared to the less populated cells, and eventually
alleviate the detrimental performance deterioration due to randomness.

4.3.1 Network Setting
We consider a shared-cache network setting which consists of a base station
(BS) with a content library of N unit-sized files F = [F 1, F 2, . . . , FN ], Λ
cache-enabled helper nodes H = [Λ], and K cache-enabled users U = [K].
Each helper node λ ∈ H is equipped with a normalized storage capacity of
γ ≜ Mh

N
∈
[
1
Λ
, 2
Λ
, . . . , 1

]
(i.e., can store the content equal to the size of Mh

files) and each user k ∈ U is equipped with a normalized storage capacity
of γu ≜ Mu

N
∈
[
1
Λ
, 2
Λ
, . . . , 1

]
(i.e., can store the content equal to the size of Mu

files). The BS delivers content via an error-free broadcast link of bounded
capacity per unit of time to K users, with the assistance of helper nodes. We
assume that in addition to its own cache, each user within the coverage area
of any helper node λ ∈ H can download the content of helper node’s cache
at zero cost. In this setting, the storage regime of γu+ γ ≥ 1 becomes trivial,
therefore, in this work, we are only interested in the storage regime such that
γu + γ < 1. Figure 4.5 depicts an instance of our two-layered shared-cache
setting.

The communication process consists of three phases; the content place-
ment phase, the user-to-cell association phase³, and the content delivery phase.

³In this setting, we have two types of caches (cache at users and cache at helper nodes),
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Figure 4.5: An instance of a two-layered shared-cache network.

The first phase involves the placement of library-content in each of the user’s
and helper node’s cache, and we assume that this phase is oblivious to the
outcome of the next two phases. The second phase is the association phase
where each user appears within the coverage area of any particular helper
node λ ∈ H (i.e., cell) from which it can download content at zero cost. We
assume that this phase is also oblivious to the other two phases. The final
phase involves the process of BS delivering the content to K users, where
users simultaneously requesting one of the files from the library. This phase
is aware of the outcome of the first two phases.

Content Placement We consider a library partition parameter 0 ≤ ξ ≤ 1,
which divides each file F i ∈ F into two parts F i

1 and F i
2, such that F i =

[F i
1, F

i
2], where |F i

1| = ξ unit-sized, and |F i
2| = (1− ξ) unit-sized. We adopt the

uncoded content placement scheme of [1] (see Section 1.2.1), where we use the
first part of the library F1 = [F 1

1 , F
2
1 , . . . , F

N
1 ] for the content placement in the

cells’ caches and we use the second part of the library F2 = [F 1
2 , F

2
2 , . . . , F

N
2 ]

for the content placement in the users’ caches.

therefore, for better readability as well as to avoid confusion, we use the term user-to-cell
association instead of the term user-to-cache association that we used in all previous section.
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User-to-Cell Association We assume a uniformly random user-to-cell as-
sociation process, where each user can appear in any particular cell with
equal probability. Then, for any given instance, we observe a cell population
vector V = [v1, v2, . . . , vΛ], where vλ denotes the number of users that are
within the coverage area of cell λ ∈ H. In addition, we denote the profile
vector L = [l1, l2, . . . , lΛ] = sort(V) as the sorted version of V, where sort(V)
denotes the sorting of vector V in descending order.

Content Delivery The delivery phase begins when BS receives the request
for a single file F dk that is indexed by dk ∈ [N ] from each user k ∈ U . We
denote d = [d1, d2, . . . , dK ] as the demand vector of K users. We assume that
each user requests a different file, which is a common assumption in coded
caching works [1,31] as it leads to the worst-case delivery time. Once the BS
is aware of users’ demand vector d, it commences delivery over an error-free
broadcast link of bounded capacity of one unit-sized file per time slot.

4.3.2 Problem Formulation
The stochastic nature of the user-to-cell association leads to randomness in
cell population vector V. Thus, our measure of interest is the average delay
given by

T (γ, γu) = min
ξ
EV[T (V, ξ)] = min

ξ

∑
V

P (V)T (V, ξ), (4.27)

where T (V, ξ) is the worst-case time needed to complete the delivery of any
demand vector d corresponding to a specific cell population vector V, and
P (V) is the probability of observing the cell population vector V. We consider
that the BS delivers the content in two phases. In the first phase, the BS
adopts the delivery scheme proposed in [31] (see Section 1.3), where each user
k ∈ U retrieves the first part of its request F dk

1 using the content received
from the BS and the content stored in the cell’s cache which it is associated
with. We know from (1.4) that for any V such that sort(V) = L, the BS
needs to transmit the data equivalent to a total of

Th(L, ξ) =
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) (4.28)

partitioned files, where t = Λγ
ξ
, and the size of each partitioned file is |F i

1| = ξ.
Then, in the second phase, the BS adopts the delivery scheme proposed in [1]
(see Section 1.2.1), where each user k ∈ U retrieves the second part of its
request F dk

2 using the content received from the BS and the content stored
in its own cache. This phase of delivery is independent of the user-to-cell
association. We know from (1.2) that in this phase, the BS has to transmit
the data equivalent to a total of

Tu(K, ξ) =
K(1− γu

1−ξ )

1 + Kγu
1−ξ

(4.29)
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partitioned files, where the size of each partitioned file is |F i
2| = (1 − ξ).

Consequently, for a fixed partition parameter ξ, the worst-case delivery time
for any V such that sort(V) = L is given as

T (L, ξ) = ξTh(L, ξ) + (1− ξ)Tu(K, ξ), (4.30)

and the average delay takes the form of

T (γ, γu, ξ) = ξEL[Th(L, ξ)] + (1− ξ)EL[Tu(K, ξ)]

= ξ
∑
L∈L

P (L)
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) + (1− ξ)
K(1− γu

1−ξ )

1 + Kγu
1−ξ

, (4.31)

where L is the set of all possible profile vectors L and

P (L) ≜
∑

V:sort(V)=L

P (V), (4.32)

is simply the cumulative probability over all V for which sort(V) = L. Then,
our metric of interest takes the form of

T (γ, γu)=min
ξ
T (γ, γu, ξ). (4.33)

In this work, we focus on the asymptotic analysis of the performance of the
proposed two-layered shared-cache setting. In the next section, we provide
the scaling laws of the performance as well as the order-optimal partition
parameter ξ which leads to the minimum average delay in a simple and
insightful form.

4.3.3 Main Results: Two-Layered Shared-Cache Networks
In this section we present our main results on the performance of our pro-
posed two-layered shared-cache setting. Our first result provides the scaling
law of the average delivery time T (γ, γu, ξ) for any given partition parameter
ξ, in the limit of large Λ.

Theorem 4.6. In a Λ-cell,K-users shared-cache setting with each user equipp-
ed with a normalized storage capacity γu and each helper node equipped with
normalized storage capacity of γ, the average delay for any given partition
parameter ξ and a random user-to-cell association scales as

T (γ, γu, ξ) = Θ

(
ξ2(cγu + γ)

γγu
+
ξ(−cγγu + γuγ − 2γ) + γ − γγu

γγu

)
. (4.34)

where

c =


logΛ

log( Λ
K

logΛ)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

K
Λ

if K = Ω(Λ logΛ) .
(4.35)
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Proof. The proof can be found in Appendix B.4.

Now, we proceed with the following lemma that provides the order-optimal
ξ̂ which leads to minimum average delay T (γ, γu, ξ).

Lemma 4.1. The order-optimal partition parameter ξ̂ that minimizes the av-
erage delay T (γ, γu, ξ) is given as

ξ̂ =

{
γ if γu ≥ 2−2γ

1+c
cγγu−γuγ+2γ

2(cγu+γ)
otherwise,

(4.36)

where

c =


logΛ

log( Λ
K

logΛ)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

K
Λ

if K = Ω(Λ logΛ) .
(4.37)

Proof. The proof can be found in Appendix B.5.

With Lemma 4.1 at hand, we are ready to to present our final result which
is the scaling law of our performance metric.

Theorem 4.7. In a Λ-cell,K-users shared-cache setting with each user equipp-
ed with a normalized storage capacity γu and each helper node equipped with
normalized storage capacity of γ, the minimum average delay corresponding to
the order-optimal partition parameter ξ̂ and a random user-to-cell association
scales as

T (γ, γu)=

Θ
(
(1− γ)1−γu−γ

γu

)
if γu ≥ 2−2γ

1+c

Θ
(
c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)
otherwise

(4.38)

where

c =


logΛ

log( Λ
K

logΛ)
if K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

K
Λ

if K = Ω(Λ logΛ) .
(4.39)

Proof. The proof can be found in Appendix B.6.

Remark 4.2. For the case of γu = 0, our proposed two-layered shared-cache
setting is exactly equal to the original stochastic shared-cache setting studied
in Section 3.3, and the scaling of average delay from Theorem 4.7 is exactly
equal to the one presented in Theorem 3.3.

Theorem 4.7 provides different memory regimes, and it hints out that
adding an additional layer of cache in the shared-cache setting can be ef-
fective in removing the cache-load imbalance bottleneck. In order to bet-
ter understand the impact of the additional layer, we proceed to present
the following lemma which characterizes the performance of our proposed
shared-cache setting for the well-known deterministic uniform user-to-cache
association.
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Lemma 4.2. In a Λ-cell,K-users shared-cache setting with each user equipped
with a normalized storage capacity of γu and each helper node equipped with
normalized storage capacity of γ, the best-case delivery time for a uniform
user-to-cell association evaluated at corresponding order-optimal partition pa-
rameter ξ̂ scales as

Tmin(γ, γu) =

Θ
(
(1− γ)1−γu−γ

γu

)
if γu ≥ 2−2γ

1+c

Θ
(
c(1−γ−γu)
cγu+γ

− γγu(c−1)2

4cγu+4γ

)
otherwise,

(4.40)

where c = K
Λ

.

Proof. The proof can be found in Appendix B.7.

In identifying the exact scaling laws of the problem, the Theorem 4.7
nicely captures the following points.

• It identifies the system parameter regime K = Ω(Λ logΛ) which is con-
sistent with the observation of Theorem 3.3, where there is no per-
formance deterioration due to randomness as the multiplicative gap
between the average delivery time and the best-case delivery time is
equal to one i.e., T (γ,γu)

Tmin(γ,γu)
= 1.

• For the system parameter regimes where the performance deterioration
due to the cache-load imbalance is unbounded, it identifies a mem-
ory regime of γu ≥ 2−2γ

1+ logΛ
log( Λ

K
logΛ)

for the additional cache layer that can

completely nullify the impact of the cache-load imbalance such that
multiplicative gap between average delivery time and best-case delivery
time is equal to one.

4.3.4 Numerical Validation
We know from (4.31) that it is computationally expensive to numerically
evaluate the exact average delay even for small system parameters. There-
fore, we proceed to numerically evaluate the effectiveness of our proposed
approach in mitigating the effect of the cache-load imbalance bottleneck by
using the sampling-based numerical (SBN) approximation method, where we
generate a sufficiently large set L1 of randomly generated profile vectors L,
and approximate T (γ, γu, ξ) for a fixed ξ as

T (γ, γu, ξ) ≈
1

|L1|
∑
L∈L1

T (L, ξ), (4.41)

where we recall that T (L, ξ) is defined in (4.30). Then, we numerically find
the approximate optimal partition parameter ξ̂ that minimizes the T (γ, γu, ξ)
in (4.41) and approximate T (γ, γu) as

T (γ, γu) ≈
1

|L1|
∑
L∈L1

T (L, ξ̂) (4.42)
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Following the same approach, for the uniform user-to-cell association, we
numerically find the approximate optimal partition parameter ξ̂ that mini-
mizes the T (Luni, ξ̂) in (4.30), where Luni is a uniform profile vector, and
approximate Tmin(γ, γu) as.

Tmin(γ, γu) ≈ T (Luni, ξ̂) (4.43)

The corresponding approximate performance gap is then evaluated by di-
viding T (γ, γu) by Tmin(γ, γu). For |L1| = 10000, and K = Λ = 500, Fig-
ure 4.6 compares the SBN approximation of multiplicative performance gap
G(γ, γu) =

T (γ,γu)
Tmin(γ,γu)

between the average delivery time T (γ, γu) for a random
user-to-cell association and the best-case delivery time Tmin(γ, γu) for a uni-
form user-to-cell association. This figure highlights the significance of our
proposed two-layered shared-cache setting in mitigating the impact of the
cache-load imbalance. We see that even when γu is very small, the per-
formance gap G(γ, γu) is significantly less than the case of γu = 0 i.e., the
original stochastic shared-cache setting of Section 3.3.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

3

4

Figure 4.6: Multiplicative gap G(γ, γu) between T (γ, γu) from (4.42) and
Tmin(γ, γu) from (4.43).

To summarize, in this section, we explored the effectiveness of the two-
layered coded caching scheme in resolving the cache-load imbalance bottle-
neck of coded caching in a stochastic shared-cache network. Our analysis
revealed that empowering users with an additional layer –even a modest
amount– of caching in stochastic shared-cache networks can be a viable
solution to resolve the cache-load imbalance bottleneck.

4.4 Summary of Chapter
In this chapter, we studied three different techniques to resolve the cache-load
imbalance bottleneck of coded caching in a stochastic shared-cache network.
In the first technique, we used two load-balancing approaches to alleviate
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the effect of randomness. We showed that in scenarios where we are given
a choice to associate a user to the least loaded cache from a randomly cho-
sen group of h helper nodes (neighboring in case of proximity-bounded), the
performance deterioration due to the random user-to-cache association can
be significantly reducing. In the second technique, we proposed a scheme
that optimizes the storage allocation of caches under a cumulative cache-size
constraint. The novel scheme alleviates the adverse effect of cache-load-
imbalance by significantly ameliorating the detrimental performance deterio-
ration due to randomness. We also showed that for each and every instance
of the coded caching problem, our scheme substantially alleviates – compared
to the best-known state-of-art — the well-known subpacketization bottleneck.
Finally, in the third technique, we proposed a two-layered coded caching
scheme to resolve the cache-load imbalance bottleneck. We identified the
exact scaling laws of the average delivery time of our proposed two-layered
coded caching scheme and showed that this scheme significantly mitigates,
and in certain memory regimes completely nullify the detrimental perfor-
mance deterioration due to randomness. In a nutshell, empowering users
with an additional layer of caching can be a viable solution to resolve the
cache-load imbalance bottleneck.
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Chapter 5

Subpacketization-Constrained
Coded Caching Networks with
Heterogeneous User Activity

In this chapter, we analyze the subpacketization-constrained coded caching
networks when users have different activity levels. Let us quickly recall
from our discussion in Section 1.3.2 about the serious Achilles’ heel of coded
caching. In order to benefit from the exceptional gain (i.e., Kγ + 1) of coded
caching, it requires that each user be allocated their own specifically-designed
cache state (cache content), which — without delving into the esoteric details
of coded caching — effectively requires the partitioning of each library-file into(
K
Kγ

)
subpackets. This number scales exponentially in K, and thus requires

files to be of truly astronomical sizes. Thus given any reasonable constraint
on the file sizes, the number of cache states is effectively forced to be reduced,
and the coding gains are indeed diminished to gains that are considerably less
than Kγ+1. What this file-size constraint (also known as the subpacketization
bottleneck) effectively forces is the reduction of the number of cache states¹ to
some Λ≪ K, which — under the basic principles of the clique-based cache-
placement in [1] (see Section 1.2.1) — allows for a smaller subpacketization level(
Λ
Λγ

)
≪
(
K
Kγ

)
at the expense of a much-reduced coding gain Λγ + 1≪ Kγ + 1

and a much larger delay K(1−γ)
1+Λγ

which is now unbounded.

The Connection Between Coded Caching, Complementary Cache States,
User Activity Levels and User Activity Correlations

The performance of coded caching in the presence of an inevitably reduced
number of cache states, has been explored in various works that include the
work in [2] which introduced a new scheme for this setting, and the work
in [31] which established the fundamental limits of the state-limited coded

¹This simply means that even though there are K different users, each with their own
physical cache, in essence, there can only exist Λ distinct caches, that must be shared among
the users. This effectively means that groups of users are forced to have identical, rather
than complementary, cache contents.
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caching setting, by deriving the exact optimal worst-case delivery time as
a function of the user-to-cache state association profile that represents the
number of users served by each cache.

As we witness in the above works, in order to maintain the ability to
jointly exploit multicasting opportunities, users must be associated to com-
plementary cache states that are carefully designed and which cannot be iden-
tical. The above findings reveal that a basic problem with the state-limited
scenario (where Λ ≪ K) in coded caching is simply the fact that if two or
more users are forced to share the same cache state (i.e., the same content
in their caches), then these users generally do not have the ability to jointly
receive a multicasting message that can be useful to all. Such state-limited
scenario results in the aforementioned large deterioration in performance,
irrespective of the user-to-cache association policy. What we additionally
learn from our study in Chapter 3 is that if the users are assigned states
at random, then this randomness imposes an additional unbounded perfor-
mance deterioration that is a result of ‘unfortunate’ associations where too
many users share the same cache state. That is why the task of user-to-cache
state association is important.

At the same time though, coded caching experiences a certain synchro-
nization aspect, which is a direct outcome of the fact that users are expected
to be partially asynchronous in their timing of requesting files. Hence, the no-
tion of time is of essence. This asynchronicity has a negative aspect, but also
a positive one; both of which we explore in this chapter. On the one hand,
having only a fraction of the users appear simultaneously, implies a smaller
number of users that can simultaneously participate in coded caching and
thus implies potentially fewer multicasting opportunities and thus a smaller
coding gain. On the other hand, such asynchronicity implies less instanta-
neous interference. This is where user activity levels come into the picture,
and this is where user activity correlations can be exploited. In essence —
as it will become clearer later on — any users that are correlated in terms of
their activity in time, should be associated to different cache states, as this
is essential in using caches for handling their mutual interference. On the
other hand, knowing that some users rarely request data at the same time,
allows us to give them the same cache state resource. In essence, users that
overlap more, interfere more, and thus have higher priority to secure com-
plementary cache states. This optimization effort is particularly important
because, as we recall, these resources are indeed scarce. By exploring user
activities and learning from their history, we are able to predict interference
patterns, and then we are able to assign cache states accordingly.

In this chapter, we study the K-user cache-aided broadcast channel with
a limited number of cache states and explore the effect of user-to-cache state
association strategies in the presence of arbitrary user activity levels. We
first present a statistical analysis of the average worst-case delay performance
of such subpacketization-constrained (state-constrained) coded caching net-
works, and provide computationally efficient performance bounds as well as
scaling laws for any arbitrary probability distribution of the user activity
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levels. Next, we follow a data-driven approach that exploits the prior his-
tory on user activity levels and correlations, in order to predict interference
patterns, and thus better design the caching algorithm. This is, to the best
of our understanding, the first work that seeks to exploit user activity levels
and correlations, in order to map future interference and provide optimized
caching algorithms that better handle this interference.

5.1 Network Setting
We consider a cache-aided wireless network, which consists of a base station
and K cache-enabled receiving users. The base station (BS) has access to
a library of N equisized files F = [F1, F2, . . . , FN ] and delivers content via a
broadcast link to K receiving users. Each user k ∈ [1, 2, . . . , K] is equipped
with a cache of normalized storage capacity of γ ≜ M

N
∈ [0, 1], and requests

a file from content library with probability pk. We use p = [p1, p2, . . . , pK ]
to denote the users activity level vector. At any instance, if a user k is
requesting a file, then we say that the user k ∈ [K] is an active user. Naturally
Kp =

∑K
k=1 pk is the expected number of active users. Figure 5.1 depicts an

instance of our cache-aided wireless network.

Active User Inactive User Cache BS BC-link Library

Figure 5.1: An instance of a cache-aided wireless network.

The communication process consists of two phases; the placement phase
and the delivery phase. During the placement phase, each user’s cache is
filled with the content from the library, and this phase is oblivious to the
upcoming number of users in the delivery phase, as well as is oblivious to
the upcoming file demands. The delivery phase begins with the active users
simultaneously requesting one file each, and continues with the BS delivering
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this content to the users. This phase is naturally aware of the demands of
the active users, as well as is aware of the content cached at each user.

Placement phase: We consider the subpacketization-constrained uncoded
cache placement scheme based on [1] (refer to 1.2.1). Let Pmax denote the
maximum allowable subpacketization of a file, which defines the maximum
number of cache states as follows

Λ = argmax
k≤K

{(
k

kγ

)
≤ Pmax

}
.

Each file Fi ∈ F is partitioned into
(
Λ
t

)
distinct equisized subpackets, where

t ≜ Λγ for some t ∈ [1, . . . ,Λ]. Then we index each subpacket of a file
by a distinct subset τ ⊆ [1, . . . ,Λ] of size t. The set of indexed subpackets
corresponding to file Fi ∈ F is given by {Fi,τ : τ ⊆ [1, . . . ,Λ], |τ | = t}. The
content corresponding to each cache state λ ∈ [1, . . . ,Λ] is then given by

Cλ = {Fi,τ : i ∈ [1, . . . , N ], λ ∈ τ, τ ⊆ [1, . . . ,Λ], |τ | = t} ,

where each cache state consists of |Cλ| = N
(
Λ−1
t−1

)
subpackets, which abides

by the cache-size constraint since N (Λ−1
t−1)
(Λt)

=M .
During the placement phase, each user’s cache is filled with the content

of one of the cache states λ ∈ [1, . . . ,Λ]. The employed user-to-cache state
association is defined by a matrix G = [0, 1]Λ×K , of which the (λ, k) element
gλ,k takes the value 1 if user k is storing the content of cache state λ ∈ [Λ],
else gλ,k = 0. We denote by Gλ the set of users caching the content of cache
state λ ∈ [1, . . . ,Λ].

Delivery phase: The delivery phase commences with each active user re-
questing a single file from the content library. In line with the common
assumptions in coded caching [1,21,31,57], we assume that requests are gen-
erated simultaneously by active users, and that each active user requests a
different file. During this phase, the BS is aware of the user-to-cache state as-
sociation matrix G. Once the BS receives the users’ requests, it commences
delivery of the coded subpackets over a unit-capacity² error-free broadcast
link. Here, together with the aforementioned optimal placement, we also
consider the optimal³ multi-round delivery scheme of [31] (refer to Section
1.3). At any instance of the problem, the cache load vector is denoted by
V = [v1, . . . , vΛ], where vλ represents the number of active users that are asso-
ciated with cache state λ ∈ [Λ]. Additionally, we use L = [l1, . . . , lΛ] = sort(V)
to be the profile vector, which is the sorted (in descending order) version of
the cache load vector V.

²Here the capacity is measured in units of file.
³Optimality here refers to the performance of the scheme over the traditional (determin-

istic) coded caching problem with constant user activity.
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5.2 Metrics of Interest
To capture the randomness in user activity, we consider — for any given
user-to-cache state association matrix G — the averaging metric

T (G) ≜ EV[T (V)] =
∑
V

P (V)T (V), (5.1)

where P (V) is the probability of V, and where T (V) is the worst-case delivery
time⁴ needed to complete the delivery of requested files given a certain cache
load vector V associated to matrix G. For any cache load vector V such that
sort(V) = L, the information-theoretically optimal delivery time — achieved
with the multi-round delivery scheme [31] (refer to Section 1.3) — takes the
form

T (L) =
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) . (5.2)

Thus, the average delay takes the form

T (G) =
∑
L∈L

P (L)T (L) =
Λ−t∑
λ=1

∑
L∈L

P (L)lλ
(
Λ−λ
t

)(
Λ
t

) =
Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (5.3)

where L describes the set of all possible profile vectors L, where P (L) is
the probability of a profile vector L given the user-to-cache state association
G, and where E[lλ] is the expected number of active users in the λ-th most
loaded cache, again given G.

Our interest is in finding the optimal user-to-cache association that min-
imizes the average delay. This corresponds to the following optimization
problem.

Problem 5.1.

min
G

T (G) (5.4)

subject to

Λ∑
i=1

gi,k = 1 ∀k ∈ [K]. (5.5)

5.3 Main Results: Statistical Approach
In this section, we present our main results on the performance of a coded
caching network of K cache-aided users and Λ cache states, where the user

⁴The time scale is normalized such that a unit of time corresponds to the optimal amount
of time needed to send a single file from the BS to the user, had there been no caching and
no interference.
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activity levels follow an arbitrary probability distribution p and where the as-
sociation between users and cache states is subject to an arbitrary association
strategy G.

We can see from (5.3) that for any given user-to-cache state association G
and user activity statistics p, the exact evaluation of (5.3) is computationally
expensive especially for large system parameters, as the creation of L is an
integer partition problem, and the cardinality of L is known to be growing
exponentially with system parameters K and Λ [61]. Motivated by this com-
plexity, we here proceed to provide computationally efficient bounds on the
performance. After doing so, we resort to asymptotic analysis of the impact
of G and p on the performance, and provide an insightful characterization
of the scaling laws of this performance. Finally, based on the insights from
these scaling laws, we propose a heuristic user-to-cache state association
algorithm that aims to minimize the worst-case delivery time.

5.3.1 Performance Analysis with Arbitrary Activity Lev-
els

In this subsection, we present the statistical analysis of our problem for the
general setting of an arbitrary user-to-cache state association strategy G and
an arbitrary activity level vector p. Crucial to our analysis for this setting
will be the mean µλ =

∑
k∈Gλ

pk and the variance σ2
λ =

∑
k∈Gλ

pk(1−pk) of the
number of active users that are caching the content of cache state λ ∈ [Λ].
Now we proceed to present our first result which is the characterization of
faster-to-compute analytical bounds on the performance.

Theorem 5.1. In a state-constrained coded caching network of Λ cache states,
K cache-aided users with normalized cache capacity γ and activity level vector
p, the average delay T (G) for a given user-to-cache state association strategy
G is bounded as follows

T (G) ≤ Λ− t
1 + t

(
A−

A−1∑
x=0

max
(
0, 1− Λ +

Λ∑
λ=1

F1(λ, x)

))
(5.6)

T (G) ≥ Λ− t
1 + t

t

Λ− 1

(
A−

A−1∑
x=0

∑Λ
λ=1 F2(λ, x)

Λ

)
+

Λ− t
1 + t

Kp

Λ

Λ− t− 1

Λ− 1
, (5.7)

where t = Λγ, A = max
(
{|Gλ|}Λλ=1

)
, where Gλ is the set of users caching the

content of cache state λ,

F1(λ, x) =


0 if 0 ≤ x ≤ µλ − 1

Fbin

(
|Gλ|, µλ

|Gλ|
, x
)

if µλ ≤ x ≤ |Gλ|
1 if x > |Gλ|,

(5.8)

68



5.3. MAIN RESULTS: STATISTICAL APPROACH

F2(λ, x) =

{
Fbin

(
|Gλ|, µλ

|Gλ|
, x
)

if 0 ≤ x ≤ µλ − 1

1 if x > µλ − 1,
(5.9)

where Fbin (n, q, x) =
∑x

i=0

(
n
i

)
qi (1− q)n−i and where µλ =

∑
k∈Gλ

pk.

Proof. The proof is deferred to Appendix C.1.

Remark 5.1. The bounds in Theorem 5.1 can be computed in a computationally-
efficient manner, as for each λ ∈ [Λ], their evaluation only requires to com-
pute the binomial cumulative distribution function Fbin

(
|Gλ|, µλ

|Gλ|
, x
)

for all
x ∈ [0, 1, 2, · · · , |Gλ|] of a random variable with |Gλ| independent trials and
µλ
|Gλ|

success probability⁵.

Next, we proceed to our next result, which provides the asymptotic anal-
ysis of the average delay T (G), in the limit of large Λ and K . Let us quickly
recall that µλ =

∑
k∈Gλ

pk and σ2
λ =

∑
k∈Gλ

pk(1−pk) are respectively the mean
and variance of the number of active users that are associated with cache
state λ.

Theorem 5.2. In a state-constrained coded caching network of Λ cache states,
K cache-aided users with normalized cache capacity γ and activity level vector
p, the average delay T (G) for a given association strategy G scales as

T (G) = O

Kp

Λ
+

√√√√ Λ∑
i=1

(σ2
i + (µi − µ)2)

 Λ− t
1 + t

 , (5.10)

and

T (G) = Ω

(
Kp

Λ

Λ− t
1 + t

)
(5.11)

where µ = 1
Λ

∑Λ
λ=1 µλ =

Kp
Λ

.

Proof. This proof is deferred to Appendix C.2.

Furthermore we have the following.

Corollary 5.1. Any association strategy G that satisfies
√∑Λ

i=1(σ
2
i + (µi − µ)2)

= O
(
Kp
Λ

)
is order-optimal.

⁵In theory, Fbin

(
|Gλ|, µλ

|Gλ| , x
)

needs to be calculated for all values of x ∈ [0, |Gλ|].

However, it is known that there exists a x̃ ∈ [0, |Gλ|], where Fbin

(
|Gλ|, µλ

|Gλ| , x̃
)
≈ 1. By

De Moivre-Laplace Theorem, it is known that binomial distribution can be approximated
by the normal distribution in the limit of large |Gλ|, and the well-known 68–95–99.7 rule
states that x̃ << |Gλ|. Since Fbin

(
|Gλ|, µλ

|Gλ| , x
)
≈ 1 for any x ≥ x̃, both (5.8) and (5.9), and

consequently (5.6) and (5.7) can be quickly evaluated with high accuracy.
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Proof. Since the lower bound in (5.11) is independent of the association
strategy G, this implies that the optimal average delay T ∗ (corresponding to
an optimal association Ĝ) is lower bounded by

T
∗
= Ω

(
Kp(1− γ)

1 + t

)
. (5.12)

Therefore any association G for which the gap factor
√∑Λ

i=1(σ
2
i + (µi − µ)2)

scales as O
(
Kp
Λ

)
would be order-optimal as the scaling order of (5.10) yields

O
(
Kp(1−γ)

1+t

)
, thus, giving the exact scaling law of T (G) = Θ

(
Kp(1−γ)

1+t

)
.

Following the insights from Corollary 5.1, we now propose an algorithm
that solves Problem 5.1.

Algorithm 5.1

The algorithm⁶ aims to heuristically minimize
∑Λ

i=1(σ
2
i+(µi−µ)2), and it works

in K iterations, where for each iteration the algorithm finds a user and cache
state pair (k̂, λ̂) in accordance to step 02 of this algorithm. Consequently user
k̂ is assigned cache state λ̂.

Input: p, K, and Λ
Output: G
Initialization: G ← ∅; K ← [K]; f(G)←

∑Λ
i=1(σ

2
i + (µi − µ)2)

Step 01: for j from 1 to K do
Step 02: [λ̂, k̂]← argmin

λ∈[Λ],k∈K
f(G ∪ (λ, k))

Step 03: G ← G ∪ (λ̂, k̂)
Step 04: K ← K\k̂
Step 05: end for

Algorithm 5.1: Heuristic Algorithm for Problem 5.1

In Section 5.5, we will verify that the bounds presented in Theorem 5.1
are valid for any user-to-cache state association strategy. We will also show
that Algorithm 5.1 provides an efficient user-to-cache state association that
yields a performance very close to the performance of optimal user-to-cache
state association.

5.3.2 Performance Analysis with Uniform Activity Level
In this subsection, we analyze a special setting where users have a uniform
activity level p, corresponding to the equiprobable case of p1 = p2 · · · = pK = p.
In the presence of uniform activity level probabilities p, the best user-to-cache

⁶G denotes the set form of the user-to-cache state association matrix G, where (λ, k) ∈ G
if gλ,k = 1.
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state association policy is the uniform one where each cache state is allocated
to I ≜ K

Λ
users. We assume that I is an integer.

We now proceed to provide computationally efficient analytical bounds
on the average delay T (G) achieved by the uniform association policy, and
subsequently to provide the exact scaling laws of this policy.
Theorem 5.3. In a state-constrained coded caching network of Λ cache states,
K cache-aided users with normalized cache capacity γ and activity level of
p, the average delay T (G) corresponding to the uniform user-to-cache state
association strategy G is bounded by

T (G) ≤ Λ− t
1 + t

E[l1] (5.13)

and

T (G) ≥ Λ− t
1 + t

(
E[l1]t

Λ− 1
+
Kp

Λ

Λ− t− 1

Λ− 1

)
(5.14)

where

E[l1] = I −
I−1∑
j=0

(
j∑
i=0

(
I

i

)
pi (1− p)I−i

)Λ

. (5.15)

Proof. The proof is deferred to Appendix C.3.

Furthermore, the following shows that the bounds remain relatively close
to the exact T (G).
Corollary 5.2. For any fixed γ ≤ 1 − 1

Λ
, the multiplicative gap between the

analytical upper bound (AUB) in (5.13) and the analytical lower bound (ALB)
in (5.14), is at most Λ−1

t
< 1/γ. This allows us to identify the exact T (G) within

a factor that is independent of both Λ as well as K.
Proof. The proof follows directly from the fact that Λ−t

1+t
E[l1]t
Λ−1

≤ T (G) ≤
Λ−t
1+t

E[l1].

Remark 5.2. We note that the range of γ ≤ 1− 1
Λ

covers in essence the entire
range of γ and most certainly covers the range of pertinent γ values.

We now proceed to exploit the bounds in Theorem 5.3, in order to provide
in a simple and insightful form, the exact scaling laws of performance. The
following theorem provides the asymptotic analysis of the average delay T (G),
in the limit of large Λ and K .
Theorem 5.4. In a coded caching setting with Λ cache states and K cache-
aided users with equal cache size γ and activity level p, the average delay T (G)
corresponding to the uniform association strategy G scales as

T (G) =


Θ
(
Kp(1−γ)

1+t

)
if Ip = Ω(logΛ)

Θ

(
Kp(1−γ) logΛ
(1+t)Ip log logΛ

Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
.

(5.16)

Proof. The proof is deferred to Appendix C.4.
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5.4 Main Results: Data-Driven Approach
In this section, we will extend our analysis to the data-driven setting. Unlike
in the previous section where we used a predetermined set of statistics p, we
will now exploit the users’ content request histories to define the user activity
levels as well as correlations. To proceed with our analysis we need to define
the time scales involved. In our setting, the entire time horizon is equal to
the time it takes between two user-to-cache associations. This time horizon
will be here subdivided into S independent time slots, where one time slot
corresponds to the amount of time that elapses from the appearance of one
demand vector to the next demand vector. This dynamic time refinement
captures the amount of memory of the system, and will capture how far back
in history we can learn from regarding user activities.

Example 5.1. In a scenario where users are assigned cache states once a
week, then the time frame is equal to one week which is equal to 10080 min-
utes. In this same example, if we assume that independent demand vectors
appear once every 10 minutes, then the number of independent time slots S is
simply S = 10080

10
= 1008.

In our setting, users’ requests are served simultaneously, starting at the
very beginning of each time slot. Any content request received during a time
slot is put on hold, to be served in the beginning of the next time slot. This
justifies the use of the term dynamic duration of each time slot s ∈ [S], where
this duration will be equal to the time needed to transmit all files that were
requested during the previous time slot from the BS to the users. We can
now proceed with the details of our data-driven approach.

Let D ∈ [0, 1]S×K denote the user activity matrix, of which the (s, k) element
ds,k is equal to 1 if user k requests content at time slot s, else ds,k = 0. Then,
for a given user-to-cache state association G, the cache load vector for time
slot s ∈ [S] is denoted as Vs = [vs,1, . . . , vs,Λ], where vs,λ =

∑K
k=1 gλ,kds,k is the

number of active users at time slot s that are storing the content of cache
state λ ∈ [Λ]. The profile vector at time slot s is denoted as Ls = [ls,1, . . . , ls,Λ],
which is the sorted version of the cache load vector Vs in descending order.
The average delay for a given user-to-cache state association G and a given
user activity matrix D, is given by

T (G) ≜ 1

S

S∑
s=1

Λ−t∑
λ=1

ls,λ

(
Λ−λ
t

)(
Λ
t

) . (5.17)

Unlike in the statistical approach of Section 5.3, where an enormous
number of possible profile vectors rendered the exact calculation of T (G)
computationally intractable, in this current data-driven setting, the calcula-
tion of T (G) is direct even for large system parameters. This will allow us
to design an algorithm that will find a user-to-cache association policy that
is provably order-optimal.

An additional difference of the proposed data-driven problem formulation
is that now this formulation inherits a crucial property of exploiting users’
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activity correlation in time. As previously discussed, users with similar
request patterns will be associated with different cache states as this would
guarantee more multicasting opportunities during the delivery phase. On the
other hand, users that rarely request files at the same time, can be allocated
the same cache state without any performance deterioration.

We now proceed to find an order-optimal user-to-cache state association
Ĝ corresponding to Problem 5.1. At this point we note that it is computation-
ally intractable to brute-force solve Problem 5.1 for large system parameters
K, Λ and S, since there are ΛK possible user-to-cache state associations, cor-
responding to an exhaustive-search computational complexity of O

(
SΛK+1

)
.

Under these circumstances, the most common approach is to use computa-
tionally efficient algorithms to obtain an approximate solution that is away
from the optimal solution within provable gaps. In the following subsection,
we will present two such computationally efficient algorithms.

5.4.1 Computationally Efficient Algorithms & Bounds on
the Performance

We start with the following lemma which lower bounds the optimal average
delay T ∗, optimized over all policies G.

Lemma 5.1. The optimal average delay, optimized over all association poli-
cies, is lower bounded by

T
∗ ≥ 1

S

∑
s∈[S]

(⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

− 1

S

∑
s∈S2

(
Λ−As

t+1

)(
Λ
t

) , (5.18)

where ds =
∑

k∈[K] ds,k, As = ds − Λ
⌊
ds
Λ

⌋
, and where S2 ⊆ [S] is the set of time

slots for which As < Λ− t

Proof. The proof is deferred to Appendix C.5

The bound provided in Lemma 5.1 will serve as a benchmark for numerical
performance evaluation of various user-to-cache state association algorithms.
We now proceed to present our computationally efficient algorithms. In the
following, G will denote the set form of the user-to-cache state association
matrix G, where (λ, k) ∈ G if gλ,k = 1. Similarly, G(λ) = {k : (λ, k) ∈ G} will
denote the set of users that are storing the content of cache state λ ∈ [Λ].
Note that there is a direct correspondence between G and G, and the two
terms can be used interchangeably.

Algorithm 5.2

In the context of data-driven approach, problem 5.1 belongs to the family of
well-known vector scheduling problems [77, 78], whose aim is to optimally
assign each of the S-dimensional K jobs (i.e., the S-dimensional K vectors
that are drawn from the columns of the user activity matrix D) to one of
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the machines λ ∈ [Λ] (i.e., cache states) with the objective of minimizing the
maximum machine load (i.e., maxs∈[S] ls,1), or with the objective of minimizing
the norm of the machine loads. One can see that the vector scheduling
problem is the generalization of a classical load-balancing problem, where
each job has a vector load instead of a scalar load.

We adopt the vector scheduling algorithm of [78, Section II-B3] to find
the optimal user-to-cache state association within provable gaps. Algorithm
5.2 consists of three parts. The first part is the data transformation, where
the user activity matrix D is scaled according to step 00. The second part
(steps 01 to 08) is the deterministic user-to-cache state association, where
for each user k ∈ [K], we find the cache state λ̂ ∈ [Λ] according to step 02.
If the scaled load (cf. step 03) of cache λ̂ after the assignment of user k is
less than 30 logS

log logS +1 for all time slots s ∈ [S], then user k is assigned to cache
state λ̂. Otherwise user k is not assigned to any of the cache states, and is
instead added to a set of residual users denoted by Kr, and will be associated
to a cache state later in the third part of Algorithm 5.2. The outcome of
the second part is the user-to-cache state association G1 for users in [K]\Kr.
Next, the third part (steps 09 to 13) completes the association of the residual
users in Kr. Each user k ∈ Kr is assigned to cache λ̂ ∈ [Λ] according to
step 11. The outcome of this part is the user-to-cache state association G2 for
users in Kr. The final user-to-cache state association strategy for all users
is then given by G = G1 ∪ G2.

Theorem 5.5. When there are at least Λ requests at each time slot s ∈ [S],
the average delay T (G) corresponding to the user-to-cache state association
G obtained from Algorithm 5.2 is bounded by

T (G) = O

(
logS

log logST
∗
)
, (5.19)

which proves that Algorithm 5.2 is at most a factor O
(

logS
log logS

)
from the opti-

mal.

Proof. The proof is deferred to Appendix C.6.

Proposition 5.1. The time complexity of Algorithm 5.2 is O(Λ2KS).

Proof. The first part of Algorithm 5.2 runs for K iterations and in each
iteration, the evaluation at step 02 takes at most Λ2S basic operations. Then,
the second part of Algorithm 5.2 runs for at most K iterations and in each
iteration, the evaluation at step 11 takes at most ΛS basic operations. Thus
the time complexity of Algorithm 5.2 is O(Λ2KS).

Directly from above, we can see that Algorithm 5.2 is significantly faster
than the exhaustive search algorithm for which as we recall the time com-
plexity was O

(
SΛK+1

)
.
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Input: D, K, Λ, and S
Output: G
Initialization: G1 ← ∅; G2 ← ∅; Kr ← ∅; α = 10 logS

log logS

Step 00: d̄s,k ← min
(

Λ ds,k∑
i∈[K] ds,i

, 1
)
∀ s ∈ [S], k ∈ [K]

Step 01: for k from 1 to K do

Step 02: λ̂← argmin
λ∈[Λ]

(
S∑
s=1

Λ∑
λ=1

(
1
α

)α
Λ

∑
i∈(G1∪(λ,k))

d̄s,i−
∑

j∈(G1∪(λ,k))λ

d̄s,j
)

Step 03: if
∑

k∈(G1∪(λ̂,k))λ̂
d̄s,k < 3α + 1 ∀ s ∈ [S]

Step 04: G1 ← G1 ∪ (λ̂, k)
Step 05: else
Step 06: Kr ← Kr ∪ k
Step 07: end if
Step 08: end for
Step 09: for c from 1 to |Kr| do
Step 10: k = Kr(c)

Step 11: λ̂← argmin
λ∈[Λ]

(
max
s∈[S]

∑
j∈(G2∪(λ,k))λ

d̄s,j

)
Step 12: G2 ← G2 ∪ (λ̂, k)
Step 13: end for
Step 14: G ← G1 ∪ G2

Algorithm 5.2: Heuristic Algorithm for Problem 5.1

Algorithm 5.3

The main intuition behind Algorithm 5.3 is to exploit the fact that both
(
Λ−λ
t

)
and ls,λ are non-increasing with λ; a fact that directly follows from (5.17).
Thus, the optimal user-to-cache state association strategy is the one that
minimizes the variances of the cache load vectors Vs over all time slots.
Algorithm 5.3 aims to heuristically minimize the sum of squares of cache
populations over all time slots, which is equivalent to minimizing the sum
of variances of the cache load vectors over all time slots. Algorithm 5.3
works in K iterations. At each iteration, it finds a pair of a user k̂ and a
cache state λ̂ according to step 02 of Algorithm 5.3 and assigns user k̂ to
cache state λ̂.

Proposition 5.2. The time complexity of Algorithm 5.3 is O(Λ2K2S).

Proof. Algorithm 5.3 runs for K iterations and in each iteration, the evalua-
tion at step 02 takes at most KΛ2S basic operations. Thus the time complexity
of Algorithm 5.3 is O(Λ2K2S).

We can see that the time complexity of Algorithm 5.3 is K times higher
than the time complexity of Algorithm 5.2. However, in Section 5.5 we
numerically show that Algorithm 5.3 performs better than Algorithm 5.2.
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Input: D, K, and Λ
Output: G
Initialization: G ← ∅; K ← [K]
Step 01: for i from 1 to K do

Step 02: [λ̂, k̂]← argmin
λ∈[Λ],k∈K

∑
s∈[S]

∑
i∈[Λ]

( ∑
j∈(G∪(λ,k))(i)

ds,j

)2

Step 03: G ← G ∪ (λ̂, k̂)
Step 04: K ← K\k̂
Step 05: end for

Algorithm 5.3: Heuristic Algorithm for Problem 5.1

5.5 Numerical Validation
In this section, we numerically validate our analytical bounds, and evalu-
ate the performance of the different proposed user-to-cache state association
algorithms.

5.5.1 Statistical Approach
We first evaluate our proposed analytical bounds in Theorem 5.1 and Theo-
rem 5.3 for the statistical setting using the sampling-based numerical (SBN)
approximation method, where for any given G, we generate a sufficiently
large set L1 of randomly generated profile vectors L based on user activity
vector p and where we subsequently approximate T (G) as

T (G) ≈ 1

|L1|
∑
L∈L1

T (L), (5.20)

where T (L) is defined in (5.2).
For our evaluations involving an arbitrary user activity level vector p, we

adopt the Pareto principle to generate the synthetic user activity level vector
p. According to the Pareto principle, 80% of consequences (content requests)
come from 20% of causes (users). To be exact, each user k ∈ [K] has a request
with probability

pk =



1∑5
i=1 i

−2.7 if k = [1, 2, · · · , 0.2K]

2−2.7∑5
i=1 i

−2.7 if k = [0.2K + 1, 0.2K + 2, · · · , 0.4K]

3−2.7∑5
i=1 i

−2.7 if k = [0.4K + 1, 0.4K + 2, · · · , 0.6K]

4−2.7∑5
i=1 i

−2.7 if k = [0.6K + 1, 0.6K + 2, · · · , 0.8K]

5−2.7∑5
i=1 i

−2.7 if k = [0.8K + 1, 0.8K + 2, · · · , K].

(5.21)

The intuition behind (5.21) is that users are divided into 5 equipopulated
groups, and the users that belong to the same group have the same activity
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levels. The activity levels corresponding to these 5 groups then follow the
Power law with parameter α = 2.7, and with these carefully selected param-
eters, the user activity pattern satisfies the Pareto principle (80/20 rule) [79].
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Figure 5.2: Analytical upper bound (AUB) from (5.6) vs. analytical lower
bound (ALB) from (5.7) vs. sampling-based numerical (SBN) approximation
in (5.20) (for |L1| = 20000, p in (5.21), and random user-to-cache state asso-
ciation).

In Figure 5.2, we compare the analytical bounds in (5.6) and (5.7) for an
arbitrary activity level vector p, where this comparison uses the sampling-
based numerical (SBN) approximation which is done for |L1| = 20000 and
random user-to-cache state association. Subsequently, Figure 5.3 compares
the analytical bounds in (5.13) and (5.14) for uniform user activity level, where
again the comparison is with sampling-based numerical (SBN) approximation
which is done for |L1| = 20000 and uniform user-to-cache state association.
Both figures reveal the proposed analytical bounds to be very tight, where
in particular, analytical upper bounds are indeed very close to the exact
performance.

Next, we evaluate the performance of our first proposed user-to-cache
state association algorithm (Algorithm 5.1) by comparing it with the nu-
merical lower bound (NLB) on the delay T

∗ corresponding to the optimal
user-to-cache state association Ĝ of Lemma 5.1. Figure 5.4 compares SBN
approximation (once again done for |L1| = 20000) for the user-to-cache state
association obtained from Algorithm 5.1 with the numerical lower bound
(NLB) on T

∗ in (5.18). Again we observe that the performance corresponding
to the user-to-cache state association G obtained from Algorithm 5.1 is very
close to NLB for T ∗.

77



5.5. NUMERICAL VALIDATION

10 20 30 40 50 60 70 80 90 100

20

40

60

10 20 30 40 50 60 70 80 90 100

20

40

60

80

Figure 5.3: Analytical upper bound (AUB) from (5.13) vs. analytical lower
bound (ALB) from (5.14) vs. sampling-based numerical (SBN) approximation
in (5.20) (for |L1| = 20000 and uniform user-to-cache state association).
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Figure 5.4: SBN from (5.20) of Algorithm 5.1 vs. Numerical lower bound
(NLB) on T

∗ from (5.18) (for |L1| = 20000 and p in (5.21) ).

5.5.2 Data-Driven Approach
For the data-driven approach, we synthetically generate a user activity matrix
D following the Pareto principle. To be exact, we assume that user k ∈ [K]
develops a request (i.e., is active) with probability pk as in (5.21) at each time
slot s ∈ [S]. Then, for each time slot s ∈ [S], we pick a random number
rk between 0 and 1 for each user k ∈ [K], and set ds,k = 1 if rk ≤ pk, and
ds,k = 0 if rk > pk, which yields a user activity matrix D satisfying the Pareto
principle [79].
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In Figure 5.5, we compare the average delay T (G) in (5.17) corresponding
to the user-to-cache state association obtained from Algorithm 5.2 and
Algorithm 5.3 with the lower bound (LB) on T

∗ in (5.18). It turns out that
both algorithms yield performances that are over close to the optimal LB on
T

∗, with Algorithm 5.3 having a slight advantage over Algorithm 5.2.
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Figure 5.5: T (G) of Algorithm 5.2 and Algorithm 5.3 from (5.17) vs.
lower bound (LB) on T

∗ from (5.18).
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Figure 5.6: T (G) of random user-to-cache state association, the user-to-
cache state associations obtained from Algorithm 5.2, and Algorithm 5.3
from (5.17), and the lower bound (LB) of (5.18).

In our final evaluation, we highlight the importance of exploiting the
user activity patterns and finding an efficient user-to-cache state association.
Figure 5.6 compares T (G) values for random user-to-cache state association,
and the user-to-cache state associations obtained from Algorithm 5.2 and
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Algorithm 5.3, where the lower bound (LB) of (5.18) serves as a benchmark.
It turns out that both algorithms outperform random user-to-cache state
association, and the corresponding delay performances perform very close
to the optimal LB on T

∗, with once again Algorithm 5.3 having a slight
advantage over Algorithm 5.2.

5.6 Summary of Chapter
In this chapter, we analyzed the subpacketization-constrained coded caching
networks when users have different activity levels. We highlighted the
essence of exploiting the users’ activity levels while developing the user-
to-cache association strategies for such networks. We first presented a sta-
tistical analysis of the performance of coded caching under such networks
and provided bounds and scaling laws under the assumption of probabilistic
user activity levels. We proposed a heuristic user-to-cache state association
algorithm with the ultimate goal of minimizing the average delay. Next,
we extended our analysis to the data-driven setting and proposed two algo-
rithms for user-to-cache state association strategies with the ability to learn
and exploit the correlations between users’ activity from the past demand
vectors.
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Chapter 6

Conclusion

In this thesis, we studied the actual gains of coded caching in stochastic
networks, where the stochasticity of the networks originates from the het-
erogeneity in users’ request behaviors. We divided our study into two parts.
In the first part, we studied the impacts of stochastic cache population in-
tensities on coded caching gains in the shared-cache settings. We identified
the cache-load imbalance bottleneck of coded caching in such settings and
proposed techniques that can play a crucial role in resolving this bottle-
neck. Then, in the second part, we studied the impacts of heterogeneous
user activity in subpacketization-constrained coded caching networks, where
at any given instance of the time a user may or may not request a file from
the content library. It is known that, in the context of coded caching, the
shared-cache setting is related to the subpacketization-constrained setting as
the subpacketization constraint forces users to store the same content in their
cache (i.e., share the same cache state). However, these two settings differ
in the context of the extent of freedom in deciding the user-to-cache associ-
ation strategies, which determines the extent of coding gain we can achieve
by exploiting the multicasting opportunities. Unlike the shared-cache setting,
the user-to-cache association strategies for the subpacketization-constrained
setting are not limited by the geographical proximity constraints. Therefore,
in this part of the thesis, we focused on identifying the optimal user-to-
cache state association in the presence of arbitrary user activity levels in the
subpacketization-constrained coded caching setting. Let us revisit the main
contributions of this thesis and highlight the lessons we have learned from
them.

6.1 Coded Caching in Stochastic Shared-Cache
Networks

We identified the exact optimal performance of coded caching in the shared-
cache setting with K users, Λ cache-enabled helper nodes, and random user-
to-cache association when each user can appear in the coverage area of any
particular cache-enabled helper node based on a given probability distribution.
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6.1. CODED CACHING IN STOCHASTIC SHARED-CACHE
NETWORKS
Key to our effort to identify the effect of association randomness was the
need to provide expressions that can either be evaluated in a numerically
tractable way, or that can be rigorously approximated in order to yield clear
insight. The first part was achieved by deriving exact expressions as well
as new analytical bounds that can be evaluated directly, while the second
part was achieved by studying the asymptotics of the problem which yielded
simple performance expressions and direct operational guidelines.

The scaling laws revealed to what extent the performance deterioration
experienced in this random setting compared to the deterministic uniform
user-to-cache association setting increases with the skewness in cache pop-
ulation intensities. We now know that the performance deterioration can be
unbounded. For example, under uniform cache population intensities, when
K = Θ(Λ), the performance deterioration is unbounded and scales exactly
as Θ

(
logΛ

log logΛ

)
. We learned that the impact of association randomness be-

comes prominent under non-uniform cache population intensities as in some
cases the performance deterioration scales as Θ(Λ) (i.e., there is no coded
caching gain). What we additionally learned is that under uniform cache
population intensities the performance deterioration can be avoided as long
as K = Ω(Λ logΛ). However, the same objective cannot be achieved un-
der non-uniform cache population intensities, and the deterioration remains
unbounded irrespective of the relation between K and Λ.

In our opinion, these results are of the utmost importance as the ran-
dom association problem has direct practical ramifications, as it captures
promising scenarios (such as the heterogeneous network scenario) as well as
operational realities (namely, the subpacketization constraint). The problem
becomes even more pertinent as we now know that its effect can in fact scale
indefinitely.

6.1.1 Resolving Cache-Load Imbalance Bottleneck
Our stochastic analysis highlighted the importance of designing the place-
ment and delivery schemes that are based on the cache population intensities
as being unaware of it may lead to the vanishing of the coding gain, and the
system may eventually need to confine itself to the local caching gain. There-
fore, we proposed three techniques to mitigate the impact of the cache-load
imbalance bottleneck of coded caching in stochastic shared-cache networks.

In the first technique, we used load-balancing approaches to mitigate the
effects of randomness and showed that in scenarios where we are given a
choice to associate a user to the least loaded cache from a randomly chosen
group of h helper nodes (neighboring in case of proximity-bounded), the per-
formance deterioration due to the random user-to-cache association can be
reduced significantly. An even more dramatic reduction in performance de-
terioration can be achieved when the aforementioned neighboring/proximity
constraint is lifted. The main advantage of this technique is that it mitigates
the effects of randomness by exploiting the freedom in deciding the user-to-
cache association, therefore, it does not require the perfect knowledge of the
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6.2. CODED CACHING IN NETWORKS WITH HETEROGENEOUS
USER ACTIVITY

cache population intensities. However, when applicable, load-balancing can
play a crucial role in significantly reducing the performance deterioration
due to random user-to-cache association.

In the second technique, we proposed a novel coded caching scheme that
optimizes the cache sizes based on caches’ load statistics under a cumulative
cache-size constraint. The novel scheme alleviates the adverse effect of cache-
load-imbalance by significantly ameliorating the detrimental performance de-
terioration due to randomness. The main advantage of this technique is that
it does not require optimizing the user-to-cache association, which makes it
suitable for the shared-cache setting. The major disadvantage of this scheme
is that the additional gains come at a cost of a higher subpacketization rate
compared to the original shared-cache coded caching scheme. However, our
scheme offers a trade-off between the subpacketization and the delivery time
by just tuning a single parameter. This aspect has not been fully studied
and would be considered in our future studies. At this point, we need to
highlight that for deterministic user-to-cache association setting, we proved
that our scheme achieves the same delivery time – which was proven to be
close to optimal for bounded values of the cumulative cache-size constraint
– with an exponential reduction in the subpacketization.

In the third technique, we proposed a two-layered coded caching scheme to
resolve the cache-load imbalance bottleneck of coded caching in a stochastic
shared-cache network. The main idea is that in addition to a cache-enabled
helper node in each cell (i.e., the coverage area of a helper node), each
user is also equipped with its own storage capacity. This will enable the
overpopulated cell to have higher collective storage capacity compared to the
less populated cells, and eventually alleviate the detrimental performance
deterioration due to randomness. We identified the exact scaling laws of
the average delivery time of our proposed two-layered coded caching scheme
under the uniform cache population intensities and showed that this scheme
significantly mitigates, and in certain memory regimes completely nullifies the
detrimental performance deterioration due to randomness. The analysis for
the case of non-uniform cache population intensities is still an open problem
that we aim to solve in our future work. Moreover, this technique does not
require optimizing the user-to-cache association, which makes it suitable for
the shared-cache setting. However, similar to the previous technique, this
technique requires a higher subpacketization rate compared to the original
shared-cache setting.

6.2 Coded Caching in Networks with Heteroge-
neous User Activity

In the second part of the thesis, we analyzed coded caching networks with
finite number of cache states and a user-to-cache state association subject to a
grouping strategy in the presence of heterogeneous user activity. Even though
coded caching techniques rely on the assumption of having enough number
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of users to provide its theoretically promised gains, all the earlier works
ignored the fact of heterogeneity in user activities, which in our opinion has
direct practical ramifications, as it captures practical wireless networks more
accurately.

We first presented a statistical analysis of the average worst-case delivery
performance of subpacketization-constrained coded caching networks, and
provided bounds and scaling laws under the assumption of probabilistic user
activity levels. Our analysis revealed interesting insights about the character-
istics of the optimal association strategy that leads to the minimum average
delivery time. Based on these insights, we proposed a heuristic algorithm
for the user-to-cache association, which aims to minimize the average delay
in the presence of heterogeneous user activity. Next, we extended our anal-
ysis to the data-driven setting, where we were able to learn from the past S
different demand vectors in designing the caching policy. By exploiting this
bounded-depth user request history, the emphasis then was placed on finding
the optimal user-to-cache state association – as computing the average delay
for any given data is trivial –. We proposed two algorithms to find the opti-
mal user-to-cache state association strategy, with one providing the optimal
within a constant gap, whereas the other one was numerically verified to
outperform the other. For both aforementioned settings, the results high-
lighted the essence of exploiting the user activity level, and the importance
of carefully associating users to cache states based on their activity patterns.

6.3 Final Remarks
In conclusion, our study highlighted that stochasticity in the network causes
a deterioration in coded caching performance and leads to the vanishing of
the coding gain. We determined the exact extent of the cache-load imbalance
bottleneck of coded caching in stochastic networks, which was not known
before, and this, in a nutshell, is the main contribution of this dissertation.
For the scenarios where the user-to-cache state associations are restricted
by proximity constraints between users and helper nodes (i.e., shared-cache
setting), we proposed three effective techniques (load-balancing, cache size op-
timization, and two-layered cache network) to mitigate the impact of this bot-
tleneck. Furthermore, for the scenario where user-to-cache state associations
strategies are considered as a design parameter (subpacketization-constrained
settings), we proposed several algorithms to find the user-to-cache state as-
sociation strategy that exploits the prior history on user activity levels and
correlations to mitigate the impact of cache-load imbalance, with one pro-
viding the optimal solution within a constant gap.
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Appendix A

Proofs of Chapter 3

A.1 Proof of Theorem 3.1
We first note that the probability P (L) of observing a specific profile vector
L ∈ L is simply the cumulative probability over all V for which sort(V) = L.
This probability takes the form

P (L) =

term 1︷ ︸︸ ︷
1

ΛK
× K!∏Λ

i=1 li!
×

term 2︷ ︸︸ ︷
Λ!∏|BL|
j=1 bj!

. (A.1)

To see this, we analyze the different terms of the above equation. The first
term in (A.1) accounts for the fact that there are ΛK different user-to-cache
associations, i.e., there are ΛK different ways that K users can be allocated
to the Λ different caches. It also accounts for the fact that each user can be
associated to any one particular cache, with equal probability 1

Λ
. The second

term in (A.1) indicates the number of all user-to-cache associations that
leads¹ to a specific V for which sort(V) = L, for some fixed L. Consequently
term 1 in (A.1) is simply P (V), which naturally remains fixed for any V for
which sort(V) = L, and which originates from the well-known probability
mass function of the multinomial distribution. Consequently this implies
that P (L) = |{V :sort(V) = L}| × P (V). Finally, term 2 describes the number
of all possible cache population vectors V for which sort(V) is equal to some
fixed L.

We now proceed to insert (A.1) into (3.7), which yields the average delay

EL[T (L)] =
Λ−t∑
λ=1

∑
L∈L

P (L)lλ
(
Λ−λ
t

)(
Λ
t

)
¹Recall that different user-to-cache associations can lead to the same cache population

vector V. For example, when K = Λ = 3, the following 6 user-to-cache associations, [1, 2, 3],
[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], and [3, 1, 2] — each describing which user is associated to
which cache — in fact all correspond to the same V = [1, 1, 1], because always each cache is
associated to one user.
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=
Λ−t∑
λ=1

∑
L∈L

lλK!Λ!

ΛK
∏Λ

i=1 li!
∏|BL|

j=1 bj!

(
Λ−λ
t

)(
Λ
t

)
=

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(
Λ−λ
t

)
ΛK
∏Λ

i=1 li!
∏|BL|

j=1 bj!
, (A.2)

which concludes the achievability part of the proof for the expression in
Theorem 3.1.

Optimality of the aforementioned expression can be proved by means of
the lower bound developed in [31]. We notice that the optimal delay T

∗
(γ)

can be lower bounded as

T
∗
(γ) = min

X
EL

[
EVL

[
max

d
T (V,d,X )

]]
≥ min

X
EL

[
max

d
EVL [T (V,d,X )]

]
≥ EL

[
min
X

max
d

EVL [T (V,d,X )]
]

≥ EL

[
min
X

Ed∈DwcEVL [T (V,d,X )]︸ ︷︷ ︸
T ∗(L)

]
, (A.3)

where Dwc denoted the set of demand vectors with distinct users’ file-requests.
Next, exploiting the fact that P (V) is the same for any V for which sort(V) =
L, we notice that

T ∗(L) ≜ min
X

Ed∈DwcEVL [T (V,d,X )]

is lower bounded by equation (53) in [31], which then proves that T ∗(L) is
bounded as

T ∗(L) ≥
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) . (A.4)

This concludes the proof for the optimality of the delivery time in Theorem
3.1.

A.2 Proof of Theorem 3.2
We start our proof by deriving the expected number of users in the λ-th most
populous cache (i.e., E[lλ]), which is given by

E[lλ] =
K−1∑
j=0

P [lλ > j] =
K−1∑
j=0

(1− P [lλ ≤ j]) = K −
K−1∑
j=0

P [lλ ≤ j]. (A.5)
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where P [lλ ≤ j] is the probability that λ-th most populous cache is associated
to no more than j requesting users. From [80, Proposition 2], we have

P [lλ ≤ j] ≥ max
(
1− Λ

λ
(1− Pj), 0

)
, (A.6)

where Pj is the probability that a cache is associated to no more than j
requesting users. Recalling that each user can be assigned to any particular
cache with equal probability, we can conclude that Pj is given as

Pj =

j∑
i=0

(
K

i

)(
1

Λ

)i(
1− 1

Λ

)K−i

. (A.7)

E[lλ] is upper bounded by

E[lλ] ≤ K −
K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)
. (A.8)

Consequently the upper bound of T ∗
(γ) is given as

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

)
≤

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) (
K −

K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

))

=
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K −
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)
(a)
=

(
Λ
t+1

)(
Λ
t

) K − Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)

= K
Λ− t
t+ 1

−
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max
(
1− Λ

λ
(1− Pj), 0

)
, (A.9)

where in step (a), we used the column-sum property of Pascal’s triangle,
which is

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
. This concludes the proof of the upper bound in

(3.11).
Next, we prove the lower bound in (3.12). Crucial to this proof is the

exploitation of the fact that
∑Λ

λ=1E[lλ] = K and of the fact that both E[lλ]
and

(
Λ−λ
t

)
in (3.7) are non-increasing with λ. We first see that

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) ≥ E[l1]
(
Λ−1
t

)
+
∑Λ−t

λ=2B
(
Λ−λ
t

)(
Λ
t

) , (A.10)

where B = K−E[l1]
Λ−1

. This can be simplified as

T
∗
(γ) ≥

E[l1]
(
Λ−1
t

)
+
∑Λ−t

λ=2B
(
Λ−λ
t

)(
Λ
t

)
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= E[l1]

(
Λ−1
t

)(
Λ
t

) +B

(
Λ−1
t+1

)(
Λ
t

)
= E[l1]

Λ− t
Λ

+B
(Λ− t)(Λ− t− 1)

(1 + t)Λ

= (Λ− t)
(
E[l1]

Λ
+B

Λ− t− 1

(1 + t)Λ

)
= (Λ− t)

(
E[l1]

Λ
+
K − E[l1]
Λ− 1

Λ− t− 1

(1 + t)Λ

)
=

Λ− t
1 + t

(
E[l1]t

Λ− 1
+
K

Λ

Λ− t− 1

Λ− 1

)
. (A.11)

To conclude the proof, we need to derive E[l1]. It is straightforward that
l1 ≥

⌈
K
Λ

⌉
, thus for j =

[
0, 1, 2, · · · ,

⌈
K
Λ

⌉
− 1
]
we have

P [l1 ≤ j] = 0, (A.12)

and for j =
[⌈

K
Λ

⌉
,
⌈
K
Λ

⌉
+ 1, · · · , K

]
, from [80, Proposition 1] we have

P [l1 ≤ j] ≤ min(Pj, 1) = Pj, (A.13)

where Pj is defined in (A.7). Therefore, using (A.5), E[l1] is lower bounded
as

E[l1] = K −
K−1∑
j=0

P [l1 ≤ j] ≥ K −
K−1∑

j=⌈KΛ ⌉
Pj. (A.14)

Finally, combining (A.11) and (A.14), we obtain

T
∗
(γ) ≥ Λ−t

1 + t

 t

Λ−1

K−K−1∑
j=⌈KΛ ⌉

Pj

+K
Λ

Λ−t−1
Λ− 1

 , (A.15)

which concludes the proof of Theorem 3.2.

A.3 Proof of Theorem 3.3
The fact that both E[lλ] and

(
Λ−λ
t

)
in (3.7) are non-increasing with λ, we see

that T ∗
(γ) is bounded by

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) ≤ 1(
Λ
t

) Λ−t∑
λ=1

E[l1]

(
Λ− λ
t

)
(a)
=
E[l1](

Λ
t

) Λ−t∑
λ=1

(
Λ− λ
t

)
= E[l1]

(
Λ
t+1

)(
Λ
t

) = E[l1]
Λ− t
1 + t
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=
K(1− γ)
1 + t

ΛE[l1]

K
, (A.16)

where in step (a), we used the column-sum property of Pascal’s triangle,
which is

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
. Thus from (A.16), we get

T
∗
(γ) = O

(
K(1− γ)
1 + t

ΛE[l1]

K

)
(A.17)

and from (A.11), we have

T
∗
(γ) = Ω

(
K(1− γ)
1 + t

ΛE[l1]γ

K

)
. (A.18)

As γ is a constant, we can conclude that the expressions in (A.17) and (A.18)
asymptotically match, and thus

T
∗
(γ) = Θ

(
K(1− γ)
1 + t

E[l1]Λ

K

)
. (A.19)

Combining (A.19) and (3.6), we obtain

T
∗
(γ) = Θ

(
Tmin

E[l1]Λ

K

)
. (A.20)

For the remaining part, which is to develop the asymptotics of E[l1], we
proceed with the following lemma which is adopted and adapted here directly
from the work of [81] on the Balls into Bins problem.

Lemma A.1 ([81, Theorem 1] - adaptation). In a Λ-cell K-user setting where
each user can be associated with equal probability to any of the caches, the
tail of l1 takes the form

P [l1 > kβ] =

{
o (1) if β > 1

1− o (1) if 0 < β < 1,
(A.21)

for

kβ=



logΛ
log Λ logΛ

K

(
1+β

log log Λ logΛ
K

log Λ logΛ
K

)
if Λ

polylog(Λ)≤K=o (Λ logΛ)

Θ (β logΛ) ifK=Θ(Λ log(Λ))
K
Λ
+β
√

K log(Λ)
0.5Λ

ifω (Λ logΛ) = K≤ Λ polylog(Λ)
K
Λ
+

√
K log(Λ)
0.5Λ

(
1− log logΛ

2β logΛ

)
ifK=ω

(
Λ (logΛ)3

)
.

(A.22)

Proof. The result comes directly from [81, Theorem 1].
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With Lemma A.1 at hand, we consider the case of β > 1, for which we
get that

E[l1] =

kβ−1∑
j=0

P [l1 > j]+P [l1 > kβ] +
K−1∑

j=kβ+1

P [l1 > j]
(a)

≤ kβ + o(1) +
K−1∑

j=kβ+1

P [l1 > j]

(b)

≤ kβ + o(1) + (K − kβ − 1)o(1) = kβ(1− o(1)) +Ko(1) = O (kβ) , (A.23)

where in step (a), we use the fact that P [l1 > j] is at most 1 for j =
[0, 1, · · · kβ − 1] and in step (b), we use the fact if P [l1 > kβ] = o(1) then
P [l1 > j] is at most o(1) for j = [kβ + 1, · · ·K − 1]. Similarly, for 0 < β < 1,
we have

E[l1] =

kβ−1∑
j=0

P [l1 > j] + P [l1 > kβ] +
K−1∑

j=kβ+1

P [l1 > j]

(a)

≥ kβ(1− o(1)) + 1− o(1) ≥ kβ(1− o(1)) = Ω (kβ) , (A.24)

where in step (a), we use the fact that
∑K−1

j=kβ+1 P [l1 > j] ≥ 0 and if P [l1 >
kβ] = 1 − o(1) then P [l1 > j] is at least 1 − o(1) for j = [0, 1, · · · kβ − 1].
Combining (A.22), (A.23), and (A.24), we have

E[l1]=



Θ

(
logΛ

log Λ logΛ
K

)
if Λ

polylog(Λ) ≤ K= o (Λ logΛ)

Θ (logΛ) ifK=Θ(Λ log(Λ))

Θ

(
K
Λ
+
√

K log(Λ)
Λ

)
if ω (Λ logΛ)=K≤Λ polylog(Λ)

Θ

(
K
Λ
+
√

K log(Λ)
Λ

)
ifK=ω

(
Λ (logΛ)3

)
,

(A.25)

which in turn implies that

E[l1]=


Θ

(
logΛ

log Λ logΛ
K

)
if K ∈ [ Λ

polylog(Λ) , o (ΛlogΛ)]

Θ

(
K
Λ
+
√

K log(Λ)
Λ

)
ifK = Ω(Λ logΛ) .

(A.26)

Combining (A.20) with (A.26), allows us to directly conclude the proof of
Theorem 3.3.

A.4 Characterization of Tmin
From equation (3.4), we see the fact that lλ and

(
Λ−λ
t

)
are non-increasing

with λ, which implies that the profile vector L, which minimizes the delay
has components of the form

lλ =


⌊
K
Λ

⌋
+ 1 for λ ∈

[
1, 2, . . . , K̂

]
⌊
K
Λ

⌋
for λ ∈

[
K̂+ 1, K̂+ 2, . . . ,Λ

]
,

(A.27)

90



A.5. PROOF OF THEOREM 3.4

where K̂ = K −
⌊
K
Λ

⌋
Λ. Consequently, when K̂ ≥ Λ − t, the corresponding

best-case delay Tmin is given as

Tmin =
Λ−t∑
λ=1

(⌊
K

Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) =

(⌊
K

Λ

⌋
+ 1

)
Λ− t
1 + t

, (A.28)

while when K̂ < Λ− t, this is given as

Tmin =
K̂∑
λ=1

(⌊
K

Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) +
Λ−t∑

λ=K̂+1

⌊
K

Λ

⌋ (Λ−λ
t

)(
Λ
t

)
=

⌊
K

Λ

⌋ Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) +
K̂∑
λ=1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
K

Λ

⌋
+ 1

) Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) − Λ−t∑
λ=K̂+1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
K

Λ

⌋
+ 1

) ( Λ
t+1

)(
Λ
t

) − (Λ−K̂t+1

)(
Λ
t

)
=

Λ− t
1 + t

⌊K
Λ

⌋
+ 1−

∏K̂+t
i=t+1(Λ− i)∏K̂−1
j=0 (Λ− j)

 , (A.29)

which reverts back to the well-known delay

Tmin =
K

Λ

Λ− t
1 + t

, (A.30)

when K̂ = 0. This concludes the characterization of the best-case delay Tmin.

A.5 Proof of Theorem 3.4
The proof is essentially the same as of Theorem 3.2’s proof with some minor
changes. Crucial to the proof of upper bound is the result from [80, Propo-
sition 3], which is given as

P [lλ ≤ j] ≥ max
(
0, 1− Λ−

∑Λ
k=1 Fvk(j)

λ

)
, (A.31)

where Fvk(j) is the probability that kth cache is associated to no more than
j requesting users (i.e., P [vk ≤ j] ). Recalling that a user can be associated
to kth cache with probability pk, we can conclude that Fvk(j) is given as

Fvk(j) =

j∑
i=0

(
K

i

)
(pk)

i (1− pk)K−i . (A.32)
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We obtain the upper bound in (3.21) by simply replacing (A.6) with (A.31) and
following the same procedure as in the proof of Theorem 3.2. This concludes
the proof of the upper bound in (3.21). Next, we prove the lower bound in
(3.22). We know from (A.11) that

T (γ) ≥ Λ− t
1 + t

(
E[l1]t

Λ− 1
+
K

Λ

Λ− t− 1

Λ− 1

)
. (A.33)

To conclude the proof, we need to derive E[l1]. Let m ∈ [Λ] is the cache with
highest population intensity (i.e, m = argmax

x∈[Λ]
px), then E[l1] is lower bounded

as

E[l1] =
∑
V∈V

P (V)max(V) ≥
∑
V∈V

P (V)vm = E[vm] = Kpm. (A.34)

Finally, we obtain

T (γ) ≥ Λ− t
1 + t

(
Kpmt

Λ− 1
+
K

Λ

Λ− t− 1

Λ− 1

)
, (A.35)

which concludes the proof of Theorem 3.4.

A.6 Proof of Theorem 3.5
We know from (A.20) that T (γ) = Θ

(
Tmin

E[l1]Λ
K

)
, thus, we first characterize

the scaling laws of E[l1]. Let µi and σ2
i be the expectation and variance of

random variable vi’s (i.e., the number of users associated to the ith cache)
respectively, then from [82, Proposition 1], we have

E[l1] ≤ µ̄+

√√√√Λ− 1

Λ

Λ∑
i=1

(σ2
i + (µi − µ̄)2), (A.36)

where µ̄ = 1
Λ

∑Λ
i=1 µi. Since the random variable vi follows the binomial

distribution, we have µi = Kpi, σ2
i = K(1 − pi)pi, and µ̄ = 1

Λ

∑Λ
i=1Kpi =

K
Λ
.

Consequently the upper bound on the E[l1] is given as

E[l1] ≤
K

Λ
+

√√√√Λ−1
Λ

Λ∑
i=1

(
K(1−pi)pi+

(
Kpi−

K

Λ

)2
)

=
K

Λ
+
√
Λ−1

√√√√K

Λ

Λ∑
i=1

(
pi−p2i+K

(
p2i−

2pi
Λ

+
1

Λ2

))

=
K

Λ
+
√
Λ−1

√√√√K

Λ

Λ∑
i=1

(
pi−p2i+Kp2i −

2Kpi
Λ

+
K

Λ2

)
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=
K

Λ
+
√
Λ−1

√√√√K

Λ

Λ∑
i=1

(
pi

(
1− 2K

Λ

)
+p2i (K−1)+

K

Λ2

)

=
K

Λ
+
√
Λ−1

√√√√K

Λ

(
1− 2K

Λ
+
K

Λ
+

Λ∑
i=1

p2i (K−1)

)

=
K

Λ
+
√
Λ−1

√√√√K

Λ

(
1− K

Λ
+ (K − 1)

Λ∑
i=1

p2i

)

=
K

Λ
+
√
Λ−1

√√√√K(Λ−K)

Λ2
+
K(K−1)

Λ

Λ∑
i=1

p2i

=
K

Λ
+
√
Λ−1

√
K(Λ−K)+K(K−1)Λ

∑Λ
i=1 p

2
i

Λ2

=
K

Λ
+
√
Λ−1K

Λ

√
Λ−K+(K−1)Λ

∑Λ
i=1 p

2
i

K

=
K

Λ

1+√Λ−1
√√√√Λ

K
−1+K−1

K
Λ

Λ∑
i=1

p2i

 . (A.37)

When the cache population intensities p follows the Zipf distribution, we
have

∑Λ
i=1 p

2
i =

∑Λ
i=1

i−2α

(Hα(Λ))
2 = H2α(Λ)

(Hα(Λ))
2 , where the normalization constant

Hα(Λ) known as the generalized harmonic number [83] scales as

Hα(Λ) =


Θ(1) α > 1

Θ (logΛ) α = 1

Θ (Λ1−α) α < 1.

(A.38)

Similarly, the scaling of H2α(Λ) is given as

H2α(Λ) =


Θ(1) α > 0.5

Θ (logΛ) α = 0.5

Θ (Λ1−2α) α < 0.5.

(A.39)

Consequently, we have

Λ∑
i=1

p2i =



Θ(1) α > 1

Θ
(

1
(logΛ)2

)
α = 1

Θ
(

1
Λ2−2α

)
0.5 < α < 1

Θ
(

logΛ
Λ2−2α

)
= Θ

(
logΛ
Λ

)
α = 0.5

Θ
(

Λ1−2α

Λ2−2α

)
= Θ

(
1
Λ

)
α < 0.5.

(A.40)
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From (A.37) and (A.40), we obtain

E[l1] =



O
(
K
Λ

(
1 +
√
Λ
√

Λ
K
+Λ
))

α > 1

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ Λ

(logΛ)2

))
α = 1

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ Λ

Λ2−2α

))
0.5<α<1

O

(
K
Λ

(
1+
√
Λ
√

Λ
K
+ Λ logΛ

Λ

))
α = 0.5

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ Λ

Λ

))
α < 0.5

=



O
(
K
Λ
(Λ)
)

α > 1

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ Λ

(logΛ)2

))
α = 1

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ 1

Λ1−2α

))
0.5<α<1

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+logΛ

))
α = 0.5

O
(
K
Λ

(
1+
√
Λ
√

Λ
K
+ 1
))

α < 0.5

=



O (K) α > 1

O
(
K
Λ

(
1 +

√
Λ2

K
+ Λ2

(logΛ)2

))
α = 1

O

(
K
Λ

(
1 +

√
Λ2

K
+ Λ2α

))
0.5<α<1

O

(
K
Λ

(
1 +

√
Λ2

K
+ Λ logΛ

))
α = 0.5

O

(
K
Λ

(
1 +

√
Λ + Λ2

K

))
α < 0.5

=



O (K) α > 1

O
(
K
Λ
+
√
K + K2

(logΛ)2

)
α = 1

O

(
K
Λ
+
√
K + K2

Λ2−2α

)
0.5<α<1

O

(
K
Λ
+
√
K + K2 logΛ

Λ

)
α = 0.5

O

(
K
Λ
+
√

K2

Λ
+K

)
α < 0.5.

Consequently, the E[l1] is upper bounded as

E[l1] =



O (K) α > 1

O
(√

K + K2

(logΛ)2

)
α = 1

O

(√
K + K2

Λ2−2α

)
0.5 < α < 1

O

(√
K + K2 logΛ

Λ

)
α = 0.5

O

(
K
Λ
+
√

K2

Λ
+K

)
α < 0.5.

(A.41)
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From (A.20) and (A.41), the upper bound on T (γ) is given by

T (γ) =



O (TminΛ) α > 1

O
(
Tmin

√
Λ2

K
+ Λ2

(logΛ)2

)
α = 1

O

(
Tmin

√
Λ2

K
+ Λ2α

)
0.5 < α < 1

O

(
Tmin

√
Λ2

K
+ Λ logΛ

)
α = 0.5

O

(
Tmin

(
1 +

√
Λ + Λ2

K

))
α < 0.5.

(A.42)

Next, we characterize the lower bound on T (γ). We know that

E[l1] ≥ Kmax(p) = Kp1 =
K

Hα(Λ)
. (A.43)

Thus, from (A.38) we have

E[l1] =


Ω (K) α > 1

Ω
(

K
logΛ

)
α = 1

Ω
(

K
Λ1−α

)
α < 1.

(A.44)

From (A.20) and (A.44), the lower bound on T (γ) is given by

T (γ) =


Ω (TminΛ) α > 1

Ω
(
Tmin

Λ
logΛ

)
α = 1

Ω (TminΛ
α) α < 1.

(A.45)

Combining (A.42) with (A.45), allows us to directly conclude the proof of
Theorem 3.5.
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Appendix B

Proofs of Chapter 4

B.1 Proof of Theorem 4.1
Directly from the result in [76, Corollary 1.4] on the Balanced Allocations
problem, we can conclude that for h > 1, the E[l1] asymptotically converges
to

E[l1] =
log logΛ
logh +

K

Λ
±Θ(1). (B.1)

Consequently combining (A.20) and (B.1), directly yields (4.3) which con-
cludes the proof of Theorem 4.1.

B.2 Proof of Theorem 4.2
We start our proof by deriving the expected number of users in the most pop-
ulous cache (i.e., E[l1]). Recall that under the proximity-based load-balancing
technique, each user can be associated to any cache group with equal proba-
bility h

Λ
. Once a user is associated to a group, then this user will be associated

to the least loaded cache from that group. Let lh1 be the number of users that
are associated to the most populous group of caches, then the number of
users in the most populous cache is given by l1 =

⌈
lh1
h

⌉
. Thus, we have

E[l1] =
K∑
i=1

P [lh1 = i]

⌈
lh1
h

⌉
, (B.2)

where P [lh1 = i] is the probability that i users are associated to the most
populous group of caches. Let S1 ⊆ [K] be the set of elements such that for
each element i ∈ S1, i

h
is integer. Then, we have

E[l1] =
∑
i∈S1

P [lh1 = i]
lh1
h
+

∑
i∈S1/[K]

P [lh1 = i]

⌈
lh1
h

⌉

=
∑
i∈S1

P [lh1 = i]
lh1
h
+

∑
i∈S1/[K]

P [lh1 = i]
lh1
h
+

∑
i∈S1/[K]

P [lh1 = i]

(⌈
lh1
h

⌉
− l

h
1

h

)
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=
∑
i∈[K]

P [lh1 = i]
lh1
h
+
∑

i∈S1/[K]

P [lh1 = i]

(⌈
lh1
h

⌉
− l

h
1

h

)

=
E[lh1 ]

h
+
∑

i∈S1/[K]

P [lh1 = i]

(⌈
lh1
h

⌉
− l

h
1

h

)
. (B.3)

It is straightforward to see that 0 <
∑

i∈S1/[K] P [l
h
1 = i]

(⌈
lh1
h

⌉
− lh1

h

)
< 1, There-

fore, E[l1] is bounded as

E[lh1 ]

h
< E[l1] <

E[lh1 ]

h
+ 1, (B.4)

and we can conclude that

E[l1] = Θ

(
E[lh1 ]

h

)
. (B.5)

Evaluating E[lh1 ] from (A.26) by treating each group as a single cache, we
conclude that

E[l1]=


Θ

(
log Λ

h

h log
Λ log Λ

h
hK

)
if K ∈

[
Λ/h

polylog(Λ
h
)
, o
(
Λ
h
log Λ

h

)]
Θ

(
K
Λ
+

√
K log(Λ

h
)

hΛ

)
ifK = Ω

(
Λ
h
log Λ

h

)
.

(B.6)

Finally combining (A.20) and (B.6), directly yields (4.5), and thus concludes
the proof of Theorem 4.2.

B.3 Proof of Theorem 4.3
We proceed with the following lemma which is adopted and adapted here
directly from the work of [84] on the Balls into Bins problem.

Lemma B.1 ([84, Theorem 1.3] - adaptation). In a Λ-cell, K-user setting
where each ball is associated to the least loaded cache among h ≥ 2 caches,
independently sampled from Λ caches whose population intensities vector is
following the distribution p, the tail of l1 takes the form

P [l1 > δ] = o

(
1

Λ

)
(B.7)

for

δ=
K

Λ
+ log logΛ +O (1) , (B.8)

when h = Θ

(
log(ab−1

a−1 )
log(ab−1

ab−b )

)
, where a = 1

Λmin(p) and b = max(p)Λ.
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Proof. The result comes directly from [84, Theorem 1.3].

With Lemma B.1 at hand, we get that

E[l1] =
δ−1∑
j=0

P [l1 > j]+P [l1 > δ] +
K−1∑
j=δ+1

P [l1 > j]

(a)

≤ δ + o

(
1

Λ

)
+

K−1∑
j=δ+1

P [l1 > j]

(b)

≤ δ + o

(
1

Λ

)
+ (K−δ−1)o

(
1

Λ

)
= δ

(
1−o

(
1

Λ

))
+o

(
K

Λ

)
= O (δ) + o

(
K

Λ

)
, (B.9)

where in step (a), we use the fact that P [l1 > j] is at most 1 for j =
[0, 1, · · · , δ − 1] and in step (b), we use the fact that if P [l1 > δ] = o(1) then
P [l1 > j] is at most o(1) for j = [δ + 1, δ + 2, · · ·K − 1]. Combining (B.8)
and (B.9), we have

E[l1]= O

(
K

Λ
+ log logΛ

)
, (B.10)

when h = Θ

(
log(ab−1

a−1 )
log(ab−1

ab−b )

)
. We now proceed to simplify h. When the cache

population intensities p follows the Zipf distribution, we know that min(p) =
pΛ = Λ−α

Hα(Λ)
and max(p) = p1 =

1
Hα(Λ)

. We get the scaling of h as

h = Θ

 log
(

Hα(Λ)

Λ1−α
Λ

Hα(Λ)
−1

Hα(Λ)

Λ1−α −1

)
log
(

Hα(Λ)

Λ1−α
Λ

Hα(Λ)
−1

Hα(Λ)

Λ1−α
Λ

Hα(Λ)
− Λ

Hα(Λ)

)


= Θ

 log
(

Λ(1−Λ−α)
Hα(Λ)−Λ1−α

)
log
(

(1−Λ−α)Hα(Λ)
Hα(Λ)−Λ1−α

)


= Θ

 log
(

Λ(Λα−1)
ΛαHα(Λ)−Λ

)
log
(

(Λα−1)Hα(Λ)
ΛαHα(Λ)−Λ

)


= Θ

 logΛ + log
(

Λα−1
ΛαHα(Λ)−Λ

)
log
(

(Λα−1)Hα(Λ)
ΛαHα(Λ)−Λ

)
 . (B.11)

Let X = Λα−1
ΛαHα(Λ)−Λ

, from (A.38), we get

X =


Θ(1) α > 1

Θ
(

1
logΛ

)
α = 1

Θ (Λα−1) α < 1.

(B.12)
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As for α > 1, Hα(Λ) = Θ (1), thus ΛαHα(Λ) − Λ = Θ(Λα) and we get
X = Θ

(
Λα

Λα

)
. When α = 1, we have Hα(Λ) = Θ (logΛ), thus ΛHα(Λ) − Λ =

Θ(Λ logΛ), which gives X = Θ
(

Λ
Λ logΛ

)
. When α < 1, we have Hα(Λ) =

Θ (Λ1−α), thus ΛαHα(Λ) − Λ = Θ(Λ) and we get X = Θ
(
Λα

Λ

)
. Consequently,

we have

h = Θ

(
logΛ + logX
log (XHα(Λ))

)
(a)
= Θ(logΛ+logX)

=


Θ(logΛ) α > 1

Θ
(
logΛ+log

(
1

logΛ

))
= Θ(logΛ) α = 1

Θ (logΛ+log (Λα−1)) = Θ (logΛ) α < 1,

(B.13)

where in step (a), we use the fact that XHα(Λ) = Θ (1), which is obtain by
combining (A.38) and (B.12). Finally, combining (A.20) with (B.10), allows
us to directly conclude the proof of Theorem 4.3.

B.4 Proof of Theorem 4.6
We know from Theorem 3.3 that EL[Th(L, ξ)] corresponding to the delivery
of the first part of each requested file is given as

EL[Th(L, ξ)] =


Θ

(
K

1− γ
ξ

1+Λ γ
ξ

Λ logΛ
K log Λ logΛ

K

)
if K∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]

Θ
(
K

1− γ
ξ

1+Λ γ
ξ

)
if K = Ω(Λ logΛ) .

(B.14)

Then, for the case when K ∈
[

Λ
polylog(Λ) , o (ΛlogΛ)

]
, the average delay T (γ, γu, ξ)

scales as

T (γ, γu, ξ) = Θ

(
ξK

ξ − γ
ξ + Λγ

Λ

K

logΛ
log
(
Λ
K
logΛ

) + (1− ξ)K 1− ξ − γu
1− ξ +Kγu

)
(a)
= Θ

(
ξ
ξ−γ
γ

logΛ
log
(
Λ
K
logΛ

)+(1−ξ)1−ξ−γu
γu

)
, (B.15)

where in step (a), we used the fact that Λγ = ω(ξ) and Kγu = ω(1 − ξ). Let
c1 =

logΛ
log( Λ

K
logΛ)

T (γ, γu, ξ) = Θ

(
c1ξ

2−c1ξγ
γ

+
ξ2+ξ(γu−2) + 1− γu

γu

)
= Θ

(
c1ξ

2γu−c1ξγγu+ξ2γ+ξ(γu − 2)γ+γ − γγu
γγu

)
= Θ

(
ξ2(c1γu+γ)+ξ(γuγ−c1γγu−2γ)+γ−γγu

γγu

)
. (B.16)
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Similarly, for the case K = Ω(Λ logΛ), the average delay T (γ, γu, ξ) is
bounded by

T (γ, γu, ξ) = Θ

(
ξK

ξ − γ
ξ + Λγ

+ (1− ξ)K 1− ξ − γu
1− ξ +Kγu

)
(b)
= Θ

(
ξ
ξ − γ
γ

K

Λ
+ (1− ξ)1− ξ − γu

γu

)
. (B.17)

where in step (b), we used the fact that Λγ = ω(ξ) and Kγu = ω(1 − ξ). Let
c2 =

K
Λ
, then we have

T (γ, γu, ξ) = Θ

(
ξ2(c2γu + γ)

γγu
+
ξ(−c2γγu + γuγ − 2γ) + γ − γγu

γγu

)
. (B.18)

This concludes the proof of Theorem 4.6.

B.5 Proof of Lemma 4.1
The order-optimal partition parameter ξ̂ is the solution to the following op-
timization problem

min
ξ

T (γ, γu, ξ) (B.19a)

subject to

γ ≤ ξ ≤ 1− γu. (B.19b)

We use the Lagrangian method to solve the problem in (B.19). We start with
the first case when K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]
, using (B.16), the corresponding

Lagrange function Y(ξ, δ, σ) is

Y(ξ, δ, σ) = ξ2(c1γu + γ) + ξ(−c1γγu + γuγ − 2γ)

γγu

+
γ − γγu
γγu

+ δ (ξ − 1 + γu)− σ(ξ − γ) (B.20)

where σ, δ ∈ R and c1 = logΛ
log( Λ

K
logΛ)

. The Karush-Kuhn-Tucker (KKT) condi-
tions for (B.19) are then given by

∂Y(ξ̂, δ̂, σ̂)
∂ξ

= 0, (B.21)

σ̂(ξ̂ − γ) = 0, (B.22)

δ̂
(
ξ̂ − 1 + γu

)
= 0, (B.23)
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δ̂ ≥ 0, (B.24)

σ̂ ≥ 0, (B.25)

where ξ̂, δ̂, and σ̂ represent the optimized values. Then from (B.21), we have

∂Y(ξ̂, δ̂, σ)
∂ξ

=
2ξ̂(c1γu + γ)

γγu
+

(−c1γγu + γuγ − 2γ)

γγu
+ δ̂ − σ̂ = 0. (B.26)

We obtain the solution by dividing the operating domain of the partition
parameter into the following three regimes:

• Regime I: γ < ξ̂ < 1− γu

• Regime II: ξ̂ = 1− γu

• Regime III: ξ̂ = γ.

First, for Regime I, when γ < ξ̂ < 1− γu, we have δ̂ = σ̂ = 0 and from (B.26),
we obtain

ξ̂ =
(c1γγu − γuγ + 2γ)

2(c1γu + γ)
(B.27)

Next, for Regime II, when ξ̂ = 1 − γu, we have σ̂ = 0 and from (B.26), we
obtain

δ̂ = −2(1− γu)(c1γu + γ) + (−c1γγu + γuγ − 2γ)

γγu

= −2c1γu + 2γ − 2c1γ
2
u − 2γγu − c1γγu + γuγ − 2γ

γγu

= −2c1 − 2c1γu − γ − c1γ
γ

= 1− c1(2− 2γu − γ)
γ

. (B.28)

We know from (B.24) that δ̂ ≥ 0, thus ξ̂ = 1− γu is a feasible solution only if

c1(2− 2γu − γ) ≤ γ

− γu − γ ≤
γ

c1
− 2 + γu (B.29)

γu + γ ≥ 2− γ

c1
− γu.

However under our assumption that γu + γ ≤ 1 it not possible as we know
that when K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]
, c1 > 1. Thus ξ̂ = 1− γu is not a feasible

solution as it does not satisfy (B.24).
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Finally, for Regime III, when ξ̂ = γ, we have δ̂ = 0 and from (B.26), we
obtain

σ̂ =
2γ(c1γu + γ)− c1γγu + γuγ − 2γ

γγu

=
2(c1γu + γ)− c1γu + γu − 2

γu

=
c1γu + 2γ + γu − 2

γu
. (B.30)

We know from (B.25) that σ̂ ≥ 0, thus ξ̂ = γ is a feasible solution only if
c1γu+2γ+ γu− 2 ≥ 0. Finally, (B.27) and (B.30) concludes the proof of (4.36)
for the case of K ∈

[
Λ

polylog(Λ) , o (ΛlogΛ)
]
.

Next, we solve the problem (B.19) for the case of K = Ω(Λ logΛ). We
can see that if we replace c1 with c2 in (B.16), we obtain (B.18), which is
the average delay for the case of K = Ω(Λ logΛ). Since both c2 and c1 are
constants and does not depend on ξ, the optimal solution for the case of
K = Ω(Λ logΛ) is obtained using the same approach by simply replacing the
c1 with c2. This concludes the proof of Lemma 4.1.

B.6 Proof of Theorem 4.7
We begin with the case when γu ≥ 2−2γ

1+c
, from (4.36), we have ξ̂ = γ. Then,

inserting ξ̂ into (4.34) yields

T (γ, γu) = T
(
γ, γu, ξ̂

)
= Θ

(
γ2(cγu + γ) + γ(−cγγu + γuγ − 2γ) + γ − γγu

γγu

)
= Θ

(
cγuγ + γ2 − cγγu + γuγ − 2γ + 1− γu

γu

)
= Θ

(
(1− γ)1− γu − γ

γu

)
. (B.31)

Next for the case when γu < 2−2γ
1+c

, from (4.36), we have ξ̂ = cγγu−γuγ+2γ
2(cγu+γ)

. Then,
inserting ξ̂ into (4.34) yields

T (γ, γu) = T
(
γ, γu, ξ̂

)
= Θ

 (cγγu−γuγ+2γ)2

4(cγu+γ)
− (cγγu−γuγ+2γ)2

2(cγu+γ)
+ γ − γγu

γγu


= Θ

(
−(cγγu − γuγ + 2γ)2

4(cγu + γ)γγu
+

1− γu
γu

)
= Θ

(
2cγγu − c2γuγ − γγu

4cγu + 4γ
+
c(1− γ − γu)
cγu + γ

)
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= Θ

(
−γγu(−2c+ c2 + 1)

4cγu + 4γ
+
c(1− γ − γu)
cγu + γ

)
= Θ

(
c(1− γ − γu)
cγu + γ

− γγu(c− 1)2

4cγu + 4γ

)
. (B.32)

This concludes the proof of Theorem 4.7.

B.7 Proof of Lemma 4.2
We now from [55, Equation 5, 6] and (4.30) that for a fixed partition pa-
rameter ξ, the worst-case delivery time for a uniform user-to-cell association
is

Tmin(γ, γu, ξ) = Θ

(
ξK

1− γ
ξ

1 + Λγ
ξ

+ (1− ξ)
K(1− γu

1−ξ )

1 + Kγu
1−ξ

)
. (B.33)

From (B.17), we can see that Tmin(γ, γu, ξ) is exactly equal to the worst-case
average delivery time for the case of K = Ω(Λ logΛ). Therefore, the proof
of Lemma 4.2 follows directly from the proof of Lemma 4.1 and proof of
Theorem 4.7 for the case of K = Ω(Λ logΛ).
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Appendix C

Proofs of Chapter 5

C.1 Proof of Theorem 5.1
Exploiting the fact that in (5.3), both

(
Λ−λ
t

)
and E[lλ] are non-increasing with

λ, the average delay T (G) is bounded by

T (G) ≤
Λ−t∑
λ=1

E[l1]

(
Λ−λ
t

)(
Λ
t

) (a)
= E[l1]

(
Λ
t+1

)(
Λ
t

) = E[l1]
Λ− t
1 + t

, (C.1)

and

T (G)
(b)

≥
E[l1]

(
Λ−1
t

)
+
∑Λ−t

λ=2
Kp−E[l1]

Λ−1

(
Λ−λ
t

)(
Λ
t

)
(c)
= E[l1]

(
Λ−1
t

)(
Λ
t

) +
Kp − E[l1]

Λ− 1

(
Λ−1
t+1

)(
Λ
t

)
= E[l1]

Λ− t
Λ

+
Kp − E[l1]

Λ− 1

(Λ− t)(Λ− t− 1)

(1 + t)Λ

= (Λ− t)
(
E[l1]

Λ
+
Kp − E[l1]

Λ− 1

Λ− t− 1

(1 + t)Λ

)
=

Λ− t
1 + t

(
E[l1]t

Λ− 1
+
Kp

Λ

Λ− t− 1

Λ− 1

)
, (C.2)

where in steps (a) and (c), we inherit the the column-sum property of Pascal’s
triangle yielding

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
, while in step (b), we have¹ Kp =

∑Λ
λ=1E[lλ],

and the fact that uniformity in L leads to the minimum T (G).
Next, to complete the proof, we proceed to derive the expected number of

active users that are storing the content of the most loaded cache state (i.e.,

¹It straightforward to see that
∑

λ∈[Λ]

E[lλ] =
K∑
i=0

∑
L∈L:i=

∑
j∈[Λ]

lj

∑
λ∈[Λ]

lλP (L) =

K∑
i=0

∑
L∈L:i=

∑
j∈[Λ]

lj

iP (L) = Kp.
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E[l1]), which is given by

E[l1] =
A−1∑
x=0

P [l1 > x] =
A−1∑
x=0

(1− P [l1 ≤ x]) , (C.3)

where A = max
(
{|Gλ|}Λλ=1

)
, Gλ is the set of users caching the content of

cache state λ, and P [l1 ≤ x] is the probability that number of active users
storing the content of the most loaded cache state are less than or equal to
x. From [80, Proposition 3], we have

P [l1 ≤ x] ≥ max
(
0, 1− Λ +

Λ∑
λ=1

Fvλ(x)

)
(C.4)

and

P [l1 ≤ x] ≤
∑Λ

λ=1 Fvλ(x)

Λ
, (C.5)

where Fvλ(x) is the probability that no more than x users that are caching
the content of cache state λ ∈ [Λ] are active (i.e., P [vλ ≤ x]). Then E[l1] is
bounded by

E[l1] ≤ A−
A−1∑
x=0

max
(
0, 1− Λ +

Λ∑
λ=1

Fvλ(x)

)
(C.6)

and

E[l1] ≥ A−
A−1∑
x=0

∑Λ
λ=1 Fvλ(x)

Λ
. (C.7)

For each cache state λ ∈ [Λ], the corresponding random variable vλ follows the
Poisson binomial distribution. Using Hoeffding’s inequalities [85, Theorem
2.1], Fvi(x) is bounded by

Fvλ(x) ≥

{
0 for 0 ≤ x ≤ µλ − 1

Fbin

(
|Gλ|, µλ

|Gλ|
, x
)

for µλ ≤ x ≤ |Gλ|
(C.8)

and

Fvλ(x) ≤

{
Fbin

(
|Gλ|, µλ

|Gλ|
, x
)

for 0 ≤ x ≤ µλ − 1

1. for x > µλ − 1,
(C.9)

where µλ =
∑

k∈Gλ
pk is the expected number active users that are storing the

content of cache state λ ∈ [Λ] and Fbin (n, q, x) =
∑x

i=0

(
n
i

)
qi (1− q)n−i is the

Binomial cumulative distribution function.
Finally, the upper bound in (5.6) can be obtained from (C.1), (C.6), and

(C.8); and the lower bound in (5.7) can be obtained from (C.2), (C.7), and
(C.9).
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C.2 Proof of Theorem 5.2
From (C.1) and (C.2), we have,

T (G) =O

(
E[l1]

Λ− t
1 + t

)
, (C.10)

and

T (G) = Ω

(
Λ− t
1 + t

E[l1]t

Λ− 1

)
. (C.11)

As t
Λ−1
≈ γ is a constant, we get the exact scaling law of T (G), which is

given by

T (G) = Θ

(
E[l1]

Λ− t
1 + t

)
. (C.12)

We know from [82, Proposition 1] that E[l1] is bounded by

1

Λ

Λ∑
λ=1

µλ ≤ E[l1] ≤
1

Λ

Λ∑
λ=1

µλ +

√√√√√Λ− 1

Λ

Λ∑
λ=1

σ2
λ +

(
µλ −

1

Λ

Λ∑
λ=1

µλ

)2
 (C.13)

where µλ =
∑

k∈Gλ
pk and σ2

λ =
∑

k∈Gλ
pk(1−pk) are the mean and the variance

of the number of active users that are caching the content of cache state
λ ∈ [Λ] respectively. After defining a new parameter µ = 1

Λ

∑Λ
λ=1 µλ, we have

T (G) =O

µ+

√√√√ Λ∑
i=1

[σ2
i + (µi − µ)2]

 Λ− t
1 + t

 , (C.14)

and

T (G) = Ω

(
µ
Λ− t
1 + t

)
. (C.15)

This concludes the proof of Theorem 5.2.

C.3 Proof of Theorem 5.3
We start our proof by deriving the expected number of active users that are
storing the content of the most loaded cache state (i.e., E[l1]). Assuming that
each user independently requests a content with probability p, the probability
that no more than x out of I users are active and storing the content of
cache state λ ∈ [Λ] is given by

Fvλ(x) =
x∑
i=0

(
I

i

)
pi (1− p)I−i . (C.16)
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Then, the probability that l1 (i.e., max(V), the maximum number of active
users among all caches) is less than or equal to j, is equal to the probability
of the event vλ ≤ j, ∀ λ ∈ [Λ], and given by

P [l1 ≤ x] =
Λ∏
λ=1

Fvλ(x) =

(
x∑
i=0

(
I

i

)
pi (1− p)I−i

)Λ

. (C.17)

Now, we can characterize E[l1] as follows

E[l1] =
I−1∑
x=0

(1− P [l1 ≤ x]) = I −
I−1∑
x=0

(
x∑
i=0

(
I

i

)
pi (1− p)I−i

)Λ

. (C.18)

Finally, we obtain the upper and lower bounds in Theorem 5.3 by com-
bining (C.1) and (C.2) with (C.18), respectively.

C.4 Proof of Theorem 5.4
To prove Theorem 5.4, we will follow a similar approach as in [81]. For
each cache state λ ∈ [Λ], we denote Yλ to be an indicator random variable,
which is equal to 1 if vλ ≥ kα, and it is equal to 0 otherwise. It immediately
follows that E[Yλ] = P [vλ ≥ kα], ∀λ ∈ [Λ]. Let Y =

∑Λ
λ=1 Yλ be the sum of the

indicators over all cache states. Then, we have

E[Y ] = E

[
Λ∑
λ=1

Yλ

]
=

Λ∑
λ=1

E [Yλ] = ΛP [vλ ≥ kα]. (C.19)

From [81, Section 2], we inherit the following properties that are drawn from
the outcomes of Markov’s inequality and Chebyshev’s inequality

P [Y = 0] =

{
1− o(1) if log(E[Y ])→ −∞
o(1) if log(E[Y ])→∞.

(C.20)

Consequently, the probability that there exists at least one cache state λ for
which the number of active users vλ is at least kα is given by

P [Y ≥ 1] =

{
o(1) if log(E[Y ])→ −∞
1− o(1) if log(E[Y ])→∞.

(C.21)

We now proceed with the following results which are crucial for the deriva-
tion of the asymptotics of E[l1].
Lemma C.1 ( [81, Lemma 2] - adaptation). For a positive constant c, if
Ip+ 1 ≤ x ≤ (log I)c, then

P [vλ ≥ x] = ex(log Ip−logx+1)−Ip+O(log(2)I) (C.22)

and if x = Ip+ o
(
(p(1− p)I) 2

3

)
and z = x−Ip√

p(1−p)I
tends to infinity, then

P [vλ ≥ x] = e−
z2

2
−log z−log

√
2π+o(1) (C.23)
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Proof. The result comes directly from [81, Lemma 2].

Lemma C.2. In a K-user Λ-cache state setting where each user requests a
content with probability p, the probability that the maximum number of active
users among all caches is less than or equal to kα, takes the form

P [l1 ≥ kα] =

{
o (1) if α > 1

1− o (1) if 0 < α < 1,
(C.24)

for

kα =



Ip+
√

2αIp(1− p) log(Λ) if Ip = ω
(
(logΛ)3

)(
1 + α

√
2 logΛ
Ip

)
Ip if Ip ∈ [ω (logΛ) , O(polylogΛ)]

(α + e− 1) Ip if Ip = Θ(logΛ)
logΛ

log logΛ
Ip

(
1 + α

log(2) logΛ
Ip

log logΛ
Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
.

(C.25)

Proof. We begin the proof for the case of Ip = ω
(
(log(Λ))3

)
. Let kα =

Ip+
√
2αIp(1− p) log(Λ), then from (C.19) and (C.23), we have

log(E[Y ]) = logΛ− z2

2
− log z − log

√
2π + o(1)

= logΛ
(
1−α− log 2α + log(2) Λ

2 logΛ

)
−log

√
2π+o(1) (C.26)

Using (C.21), we conclude the proof for this case as for Λ→∞, we have

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(C.27)

Next, we proceed with the case of Ip ∈ [ω (logΛ) , O(polylog(Λ))]. We first
define g ≜ O (polylog(Λ)). Then, assuming that kα =

(
1 + α

√
2
g

)
Ip and

Ip = g log(Λ), from (C.19) and (C.22), we have

log(E[Y ])= logΛ+kα (log Ip−log kα+1)−Ip+O
(
log(2)I

)
= logΛ− kα log

(
1 + α

√
2

g

)
+ kα − Ip+O

(
log(2) I

)
(a)
= logΛ− kαα

√
2

g

(
1− α

√
1

2g
+ o

(
α

√
2

g

))
+ αIp

√
2

g
+O

(
log(2) I

)
= logΛ−

(
1 + α

√
2

g

)
Ipα

√
2

g

(
1− α

√
1

2g
+ o

(
α

√
2

g

))
+ αIp

√
2

g
+O

(
log(2) I

)
= logΛ−

(
α

√
2

g
+ α2 2

g

)
Ip

(
1− α

√
1

2g
+ o

(
α

√
2

g

))
+ αIp

√
2

g
+O

(
log(2) I

)
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= log(Λ)−
(
α

√
2

g
+ α2 2

g

)
g log(Λ)

(
1− α

√
1

2g
+ o

(
α

√
2

g

))
+ g log(Λ)α

√
2

g
+O

(
log(2) I

)
= logΛ−

(
α
√

2g + 2α2
)
log(Λ)

(
1− α

√
1

2g
+ o

(
α

√
2

g

))
+ log(Λ)α

√
2g +O

(
log(2) I

)
= logΛ

(
1−

(
α
√
2g + 2α2

)(
1− α

√
1

2g
+ o

(
α

√
2

g

)))
+ log(Λ)α

√
2g +O

(
log(2) I

)
= log(Λ)

(
1−

(
α
√

2g − α2 + o
(
2α2
))
−
(
2α2 − α3

√
2

g
+ o

(
α3

√
8

g

))
+ α

√
2g

)
+O

(
log(2) I

)
= log(Λ)

(
1− α

√
2g + α2 − o

(
2α2
)
− 2α2 + α3

√
2

g
− o

(
α3

√
8

g

))
+ log(Λ)α

√
2g +O

(
log(2) I

)
= logΛ

(
1−α2−o

(
2α2
)
+α3

√
2

g
−o
(
α3

√
8

g

)
+O

(
log(2) I
logΛ

))

= logΛ
(
1−α2(1+o (1))+((1−o (1))α3

√
2

g
+O

(
log(2) I
logΛ

))
(C.28)

where in step (a), we used the Maclaurin series expansion of the logarithm
function, i.e., log(1 + x) = x − 0.5x2 + o(x2). Using (C.21), we conclude the
proof for this case as for Λ → ∞, log(E[Y ]) converges to (1−α2) logΛ, and
we obtain

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(C.29)

Now, we proceed with the case of Ip = Θ(logΛ). Assuming that kα =
(α + e− 1) Ip and Ip = logΛ, from (C.19) and (C.22), we obtain

log(E[Y ]) = logΛ + kα (log Ip−log kα+1)−Ip+O
(
log(2)I

)
= kα

(
log(2) Λ− log(2) Λ− log (α + e− 1) + 1

)
+O

(
log(2)I

)
= kα (1−log (α + e− 1)) + O

(
log(2)I

)
= logΛ

(
(α + e− 1) (1− log (α + e− 1)) + O

(
log(3)Λ

p logΛ

))
(C.30)
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Using (C.21), we conclude the proof for this case as for Λ→∞, we have

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(C.31)

Finally, we consider the case of Ip ∈
[
Ω
(

1
polylogΛ

)
, o(log(Λ))

]
. We first define

g ≜ O (polylog(Λ)). Then, assuming that kα = logΛ
log g

(
1 + α log(2) g

log g

)
and Ip =

log(Λ)
g

, from (C.19) and (C.22), we obtain

log(E[Y ]) = logΛ + kα (log(Ip)− log(kα) + 1)− Ip+O
(
log(2) I

)
= logΛ + kα

(
log(2) Λ− log g − log(2) Λ + log(2) g − log

(
1 + α

log(2) g
log g

)
+ 1

)

− log(Λ)
g

+O
(
log(2) I

)
(a)
= logΛ+kα

1−log g+log(2) g−

α log(2) glog g − 0.5

(
α
log(2) g
log g

)2

+o

(α log(2) glog g

)2


− log(Λ)
g

+O
(
log(2) I

)
=

logΛ log(2) g
log g

(
1− α + α

log(2) g
log g + α2 log

(2) g

(log g)2

(
−0.5 + 0.5

(
α
log(2) g
log g

)

−o

(
α
log(2) g
log g

)
− o(1)

)
+

1

log(2) g
− log g
g log(2) g

+O

(
log(2) I log g
logΛ log(2) g

))
, (C.32)

where in step (a), we used the Maclaurin series expansion of the logarithm
function, i.e., log(1 + x) = x − 0.5x2 + o(x2). Using (C.21), we conclude the
proof for this case as for Λ → ∞, log(E[Y ]) converges to logΛ log(2) g

log g (1− α),
and we obtain

log(E[Y ]) −→

{
−∞ if α > 1

∞ if 0 < α < 1
(C.33)

This concludes the proof of Lemma C.2.

With Lemma C.2 at hand, we proceed to characterize E[l1]. Let us first
consider the case of α > 1, for which we have

E[l1] =
kα−1∑
j=1

P [l1 ≥ j] + P [l1 ≥ kα] +
I∑

j=kα+1

P [l1 ≥ j]

(a)

≤ kα − 1 + o(1) + (I − kα)o(1) = O (kα) , (C.34)
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where in step (a), we use the fact that P [l1 ≥ j] is at most 1 for j =
[1, · · · kα − 1], and if P [l1 ≥ kα] = o(1) then P [l1 ≥ j] is at most o(1) for
j = [kα + 1, · · · I].

Similarly, for 0 < α < 1, we have

E[l1] =
kα−1∑
j=1

P [l1 ≥ j] + P [l1 > kα] +
I∑

j=kα+1

P [l1 ≥ j]

(a)

≥ (kα − 1)(1− o(1)) + 1− o(1) = Ω (kα) , (C.35)

where in step (a), we use the fact that
∑I

j=kα+1 P [l1 ≥ j] ≥ 0, and if P [l1 ≥
kα] = 1 − o(1) then P [l1 ≥ j] is at least 1 − o(1) for j = [1, · · · , kα − 1].
Combining (C.25), (C.34), and (C.35), we have

E[l1] =


Θ
(
Ip+

√
Ip(1− p) log(Λ)

)
if Ip = ω

(
(logΛ)3

)
Θ
(
Ip+

√
Ip logΛ

)
if Ip ∈ [Ω (logΛ) , O(polylogΛ)]

Θ

(
logΛ

log logΛ
Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
.

(C.36)

From (5.13) and (5.14), we have,

T (G) = O

(
Kp(1− γ)

1 + t

E[l1]

Ip

)
(C.37)

and

T (G) = Ω

(
Kp(1− γ)

1 + t

(
E[l1]t

Ip(Λ− 1)

))
. (C.38)

As t
Λ−1
≈ γ is a constant, we get the exact scaling law of T (G), which is

given by

T (G) = Θ

(
Kp(1− γ)

1 + t

E[l1]

Ip

)
(C.39)

Combining (C.39) with (C.36), we obtain

T (G) =


Θ
(
Kp(1−γ)

1+t

(
1 +

√
(1−p) logΛ

Ip

))
if Ip = ω

(
(logΛ)3

)
Θ
(
Kp(1−γ)

1+t

(
1 +

√
logΛ
Ip

))
if Ip ∈ [Ω (logΛ) , O(polylogΛ)]

Θ

(
Kp(1−γ)

1+t
logΛ

Ip log logΛ
Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
,

(C.40)

which can be further simplified as

T (G) =


Θ
(
Kp(1−γ)

1+t

)
if Ip = Ω(logΛ)

Θ

(
Kp(1−γ)

1+t
logΛ

Ip log logΛ
Ip

)
if Ip ∈

[
Ω
(

1
polylogΛ

)
, o(logΛ)

]
.

(C.41)

This concludes the proof of Theorem 5.4.
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C.5 Proof of Lemma 5.1
From (5.17), we know that ls,λ and

(
Λ−λ
t

)
are non-increasing with λ, which

implies that for each time slot s ∈ [S], the profile vector Ls, which minimizes
the delay has components of the form

ls,λ =

{⌊
ds
Λ

⌋
+ 1 for λ ∈ [1, 2, . . . , As]⌊

ds
Λ

⌋
for λ ∈ [As+ 1, As+ 2, . . . ,Λ] ,

(C.42)

where ds =
∑

k∈[K] ds,k, and As ≜ ds − Λ
⌊
ds
Λ

⌋
. Consequently, when As ≥ Λ− t,

the corresponding best-case delay Ts for time slot s ∈ [S] is given by

Ts =
Λ−t∑
λ=1

(⌊
ds
Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) =

(⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

, (C.43)

while when As < Λ− t, this is given as

Ts =
As∑
λ=1

(⌊
ds
Λ

⌋
+ 1

) (Λ−λ
t

)(
Λ
t

) +
Λ−t∑

λ=As+1

⌊
ds
Λ

⌋ (Λ−λ
t

)(
Λ
t

)
=

⌊
ds
Λ

⌋ Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) +
As∑
λ=1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

) Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) − Λ−t∑
λ=A+1

(
Λ−λ
t

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

) ( Λ
t+1

)(
Λ
t

) − (Λ−As

t+1

)(
Λ
t

)
=

(⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

−
(
Λ−As

t+1

)(
Λ
t

) . (C.44)

We denote S2 ⊆ [S] to be the set of time slots for which As < Λ− t. Then, the
average delay corresponding to the optimal user-to-cache state association Ĝ
is lower bounded by

T
∗ ≥ 1

S

∑
s∈[S]/S2

(⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

+
1

S

∑
s∈[S2]

((⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

−
(
Λ−As

t+1

)(
Λ
t

) )

=
1

S

∑
s∈[S]

(⌊
ds
Λ

⌋
+ 1

)
Λ− t
1 + t

− 1

S

∑
s∈[S2]

(
Λ−As

t+1

)(
Λ
t

) . (C.45)

This concludes the proof of Lemma 5.1.

C.6 Proof of Theorem 5.5
We denote vG1

s,λ, v
G2
s,λ, and vGs,λ to be the scaled loads calculated using trans-

formed user demand matrix D (Step 00 of Algorithm 5.2) of each cache
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state λ ∈ [Λ] at time slot s ∈ [S] following the user-to-cache state association
given by G1, G2, and G respectively. It is straightforward to see from step 03
of Algorithm 5.2 that vG1

s,λ = O
(

logS
log logS

)
∀s ∈ [S], λ ∈ [Λ]. By combining

Lemma 15 and Lemma 18 of [78], we have vG2
s,λ = O (1) ∀s ∈ [S], λ ∈ [Λ]. Thus,

the combined scaled load of each cache λ ∈ [Λ] at each time slot s ∈ [S] is
given by vGs,λ = O

(
logS

log logS

)
.

To complete the proof, we now proceed to convert the scaled load of
each cache λ ∈ [Λ] at time slot s ∈ [S] to the actual load. Based on
the assumption that for each time slot s ∈ [S],

∑
k∈[K] ds,k ≥ Λ, we have

d̄s,k = min
(

Λ ds,k∑
i∈[K] ds,i

, 1
)
=

Λ ds,k∑
i∈[K] ds,i

∀ s ∈ [S], k ∈ [K]. Then, the actual load
corresponding to user-to-cache state association G is given by

vs,λ =

∑
k∈[K] ds,k

Λ
vGs,λ = O

(∑
k∈[K] ds,k

Λ

logS
log logS

)

∀ s ∈ [S], λ ∈ [Λ]. Consequently, from (5.17), we have

T (G) = O

(
1

S

S∑
s=1

Λ−t∑
λ=1

∑
k∈[K] ds,k

Λ

logS
log logS

(
Λ−λ
t

)(
Λ
t

) ) (C.46)

= O

(
logS

log logS
1

S

S∑
s=1

∑
k∈[K] ds,k

Λ

Λ− t
1 + t

)
. (C.47)

We also have from (C.45) that

T
∗
= Ω

 1

S

∑
s∈[S]

∑
k∈[K] ds,k

Λ

Λ− t
1 + t

 . (C.48)

This concludes the proof of Theorem 5.5.
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