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Chapter 1

Introduction

Despite over 50 years of study, we still need to elucidate important features of the
molecular regulatory mechanisms responsible for maintaining a robust cell cycle
progression in a large number of growth conditions and in response to specific
perturbations[1–7]. In particular, the debate is open concerning the regulation of
DNA replication initiation in E.coli and its role in the dynamics of cell growth and
division [8–13].

In E.coli, a key player in cell-cycle progression is the DnaA protein, which is in-
volved in the initiation of DNA replication [14–17]. DnaA is commonly believed
to be a cell cycle oscillator and a cell size sensor, but neither of these facts have
been firmly established [18–22]. Moreover, experimental evidence of cell cycle-
dependent oscillation of DnaA (or more precisely DnaA-ATP) is supported only by
indirect population-level data [23].

The aim of this work is to identify the cell cycle oscillator related to DnaA activity,
and relate it to the progression of the E.coli cell cycle through a cell size sensing
mechanism.

To address this, measurements of gene expression and cell growth parameters
in real time at the single cell level by using microfluidics coupled to microscopy are
helpful to investigate the regulation of gene expression as a function of the cell
cycle. I have started by using this approach to study protein expression from a
not regulated promoter. Afterwards, I studied the cell cycle dependent changes in
gene expression in the special case of the regulation by DnaA and its role in the
coordination of DNA replication with cell growth and division.

A deeper understanding in this field could have a broader view if we think that a
robust coordination is important to challengemicroorganisms’ resistance to adver-
sarial attacks such us toxins and drugs [24] or in cancer, where this coordination
is lost and cells start growing at a higher growth rate[25]. Therefore, improved un-
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CHAPTER 1. INTRODUCTION

derstanding of how bacteria proliferate and whichmolecular mechanisms are vital
for the correct progression of the cell cycle can provide a starting point to develop
novel antimicrobials that should be aimed at disturbing normal progression of the
cell cycle.

1.1 Outline
In the first two Chapters I review the main works that are the basis of my research
with a particular focus on their gaps.

In particular, in Chapter 2 I focus on cell cycle progression in E.coli, and on its
role in gene expression variability. Despite the vast literature on this issue, little
is known about how gene expression is coupled to the regulation and timing of
specific events of the cell cycle, such as initiation of DNA replication or cell division,
particularly in fast growing bacteria such as E.coli [26]. The most significant models
that try to dissect this control mechanisms are reviewed. The goal of these phe-
nomenological models is not to provide as accurate a description of a system as
possible, but rather to capture the essence of the phenomena and stimulate fur-
ther ideas and understanding. This concept is perfectly explained by Box’s famous
quote “all models are wrong, some are useful”.

A vast literature also exists that directly investigates the molecular mechanisms
at the basis of a robust cell cycle progression. In Chapter 3 I review what is al-
ready known about DnaA’s oscillating activity and its role in the regulation of DNA
replication. In particular, I focus on the differential regulation of gene expression
by the different DnaA nucleotide-bound forms, including the regulation of its own
promoter and on its double role as a transcription factor and an activator of the
initiation of the DNA replication process. Lastly, I review other known factors that
can contribute to express a gene as a function of the cell cycle, with a focus on SeqA.
Some of the questions we still need to answer are:

• How does the amount of DnaA-ATP change as a function of the cell cycle?
• How does the rate of expression of DnaA correlate with cell volume?
• How does positive and negative regulation of the DnaA promoter by DnaA
influence its cell cycle dependence?

• Does regulation by SeqA play an important role?
To address these questions, time-lapse single cell microscopy experiments are nec-
essary in order to follow cell cycle progression in real time in E.coli. In Chapter 4
I describe the experimental setup and data-analysis pipeline I have designed for
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studying the growth, size, and gene expression of E.coli in controlled environmen-
tal conditions. This includes an overview of the experimental protocol, microfluidic
setup, microscopy techniques, a description of the E.coli strains assayed and their
culture conditions, the data-analysis pipeline, from segmentation and tracking al-
gorithm to data visualization.

In Chapter 5, thanks to a careful analysis of single cell data as a function of the
cell cycle, I show that E.coli growth is biphasic; deviating from the expected expo-
nential growth. Moreover, I also investigate the gene expression pattern within
the cell cycle from promoters placed in different positions in the genome and I
show that E.coli growth rate follows the expression of a constitutive ori-proximal
promoter. Lastly, I explore whether the size of a cell at birth can influence the cell
cycle dependence of its gene expression and growth rate to result in a possible cell
size correction mechanism.

Chapter 6 investigates the regulation of gene expression by DnaA as a function
of the cell cycle. I show how I measured the changes in DnaA-ATP activity in vivo in
real time. This requires the development of a set of reporters of gene expression
using a gene for a fluorescent protein under control of a promoter that is differently
regulated by DnaA-ATP and their characterization by single-cell experiments.

In particular, I characterise for the first time the effects of the DnaA-dependent
promoter regulatory elements that lead to an oscillatory pattern of gene expres-
sion strongly coupled to cell volume. While the standard view of the cell cycle sees
it as the result of a single cell-cycle oscillator, here I provide evidence that at least
two coupled oscillators are needed to describe the processes that coordinate cell
replication, cell growth and cell-cycle progression. Lastly, I show how this approach
also makes it possible to detect causality links between these different processes.

Finally, Chapter 7 focuses on a side project I worked on during my PhD that
resulted in a publication [27].

Despite the fact it is not totally connected to the main project, it is a study that
focuses to better understand how gene position in the genome can have an effect
on gene expression and its variability. To address this question, I present the sta-
tistical tendencies for a reference promoter to be inserted and initially maintained
in specific chromosomal contexts, as well as to characterize its fate in terms of
both gene expression activity and noise of the transcription reporter constructs at
different insertion sites on the genome.
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1.2 Collaborations
Given the itinerant character of my PhD, where I had to change laboratory almost
every year, I think it is useful to quickly review where I have worked and with whom
duringmy PhD.Moreover, I firmly believe this had an important role in defining the
main different traits of my PhD. During my PhD I had the opportunity to work on
all the different sides of my project: molecular biology, microfluidic, microscopy,
image analysis, data analysis and theoretical modelling. Lastly, in these years I had
the opportunity to work with different people from very different background that
helped me to acquire expertise in all these different fields.

During my first year of PhD I was in the Laboratory of Biology and Applied Phar-
macology (LBPA - ENS Paris-Saclay) where I worked mainly on strain construction
and plate reader experiments with Gladys Mbemba. In the same year I also started
to build the microfluidic experimental setup and the protocol for the experiments
and the data analysis was developed. To do this, I have also had the opportunity
to visit Pietro Cicuta’s laboratory in Cambridge, UK, to be trained in how they were
doing microfluidic experiments and image analysis. Back at the LBPA Jeff Audiber
helpedme for themicroscopywhile Jean-Pierre Lefevre helpedme for themicroflu-
idic side. During my second year my lab moved to Sorbonne Université, at the
Pierre and Marie Curie campus, to the Laboratory of Computational and Quanti-
tative Biology (LCQB), headed by Alessandra Carbone. Here I had to build again
the microfluidic setup to continue with my experiments, in addition we acquired a
new flow control system based on compressed air that needed to be set up and
calibrated. On my last year, thanks to a fellowship from ARC, I had the opportunity
to join Marco Cosentino Lagomarsino’s group at Ifom (in Milan) to mainly work on
the data analysis and theoretical part of my project.

Despite all the drawbacks that can arise from a such "dynamic" PhD, especially
for the experimental works in the times of COVID lockdowns, I can finally say that
it has been an enriching experience that has allowed me to work with people from
very different background that helped me in different sides of my PhD project. I
hope my work is also a proof of how interdisciplinarity is very fundamental in re-
search. This of course it is not always easy. As Giorgio Parisi said in a past interview:
"biologists and physicists use two different glasses to see the world: this diversity
can be very useful because it allows one to see features that the other does not
see, but there is also the risk of seeing only things that the other is not really inter-
ested". Nevertheless, his recent success is the proof the this risk can be overcome
and interdisciplinarity is the way to new discovery.
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1.3 Publications

1.3.1 Published
• Early fate of exogenous promoters in E. coli. Malikmohamed Yousuf, Ilaria Iu-
liani, Reshma T. Veetil, Aswin Sai Narain Seshasayee, Bianca Sclavi andMarco
Cosentino Lagomarsino. Nucleic Acids Research, (2020)

• Threshold accumulation of a constitutive protein explains E. coli cell-division be-
havior in nutrient upshifts. Mia Panlilio, Jacopo Grilli, Giorgio Tallarico, Ilaria
Iuliani, Bianca Sclavi, Pietro Cicuta, andMarco Cosentino Lagomarsino, PNAS
(2021)

• How to study bacteria adaptation to stress and environmental changes by mi-
crofluidics? Ilaria Iuliani, Bianca Sclavi, Elveflow-Microfluidic application
notes (2021) (see Chapter 4)

1.3.2 In preparation
• Size-coupled production rate oscillations of a bacterial cell cycle regulator. Ilaria
Iuliani, Marco Cosentino Lagomarsino, Bianca Sclavi (see Chapter 6)

• Biphasic growth in E.coli follows the change in ori-proximal gene dosage. Ilaria
Iuliani, Marco Cosentino Lagomarsino, Bianca Sclavi (see Chapter 5)

• How to express a gene as a function of the cell cycle (Minireview). Ilaria Iuliani,
Bianca Sclavi (see Chapter 3 )

• Width and surface-to-volume ratio response to nutrient shifts in E. coli single cells
mirrors stochastic fluctuations at equilibrium. OrsoMaria Romano, Mia Panlilio,
Ilaria Iuliani, Pietro Cicuta, and Marco Cosentino Lagomarsino
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Chapter 2

Cell cycle control in E. coli
Studies on cell cycle control in E. coli have always been marked by close interac-
tions between experiments and modeling since their birth in the mid 20th century
[28–30]. In particular, bacterial cell size and cell cycle control has found new inter-
ests in modeling with the novelty of microfluidics techniques that allow tracking
of thousands of individual cells over hundreds division cycles. In E. coli different
datasets and models have supported a range of conclusions from one extreme,
where these processes are tightly linked to another, to another, where these pro-
cesses are completely independent of each other.

In this chapter, I will first explain why it is important to take into account the
cell cycle progression when we deal with a population of single cells. I will then
review the foundations of the bacterial cell cycle and the new results that in the
recent years have lead us to re-think about these longstanding results. Several dif-
ferent data sets and models significantly contributed to a deeper understanding
of cell growth, division, DNA replication, gene expression and their correlation. It
is of fundamental importance to use experimental datasets to propose and to test
different models. An example of this "data-driven" approach to understand impor-
tant mechanisms in E. coli growth is reported in the last section where I report the
work published in 2020 where our results have allowed us to propose that a pro-
tein expressed from a constitutive promoter accumulates to a threshold level and
triggers cell division. This publication comes from a collaboration with the Pietro
Cicuta’s group in Cambridge, Marco Cosentino Lagomarsino inMilan andmy group
in Paris.
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2.1 Gene expression noise mainly comes from vari-
ability in cell-cycle progression

At the single cell level, gene expression and cell size can be highly heterogeneous
and show phenotypic variability. This can bring advantages, for example, a partic-
ular phenotype may be useful for a subpopulation to survive when environmental
conditions change or in presence of stresses. Understanding the properties of cel-
lular noise is important for understanding the mechanism that lead to robustness
of cell proliferation.

Thanks to new techniques producing single cell data many efforts have been
done in these last years to better understand the sources of these variations in
their own components and how cells and organisms use and control them tomain-
tain a robust growth in the face of perturbations. It is therefore a key for the un-
derstanding of cellular homeostasis, and could help explain heterogeneous phe-
notypes ubiquitously observed across all domains of life, ranging from persistence
to uncontrolled proliferative growth such as cancer.

In 2002, Elowitz and colleagues quantified the variability in the expression from
a promoter in E.coli by introducing two copies of the same promoter into the
genome expressing two different fluorescent proteins of different color. They ob-
served that the amount of protein produced by a particular gene varies from cell
to cell in a population and over time in a single cell, suggesting the idea that the
expression noise of a gene in a clonal population is determined by intrinsic and ex-
trinsic factors [31]. In their work, intrinsic noise describes the variation at the level
of a single gene due to the stochastic nature of the involved biochemical processes,
whereas extrinsic noise relates to the variability in expression shared across differ-
ent genes due to global differences in cellular environment and shared upstream
components (Figure 2.1).

Because of gene doubling during DNA replication, when taking a snapshot of a
population two cells can differ in protein production rate or concentration because
they are in different phases of their cell cycle. Alternatively, two cells at the same
cell-cycle phase can differ because of cell-cycle independent effects.

The cell cycle was found to be the major factor of observed noise in the rate of
gene expression [32], with the rest coming from other sources such as differences
in metabolism [35], transcription factors activity [36, 37], or the activity of the
expression machinery including RNA polymerase and ribosomes [38].

In particular, Noreen Walker et al. have found that the cell cycle contributes
both with a deterministic part determined by cell cycle phase, and a stochastic con-

20



CHAPTER 2. CELL CYCLE CONTROL IN E. COLI

CA B

Figure 2.1: The cell cycle as a source of noise A E. coli expressing two different fluores-cent proteins from two identical promoters , in red and green, respectively. Because ofnoise, the ratio of red to green intensity differs from cell to cell. B The cell cycle progres-sion contributes to the noise in the protein production rate, through deterministic andstochastic contributions. Other not cell cycle-related sources contribute as well. Cell cy-cle noise has a minor effect on the protein concentration. C Noise in the expression of asingle enzyme (blue trace), results in fluctuations in metabolic flux that are transmittedthrough the metabolic network and affect growth with some time delay (orange trace).Fluctuations in the expression of limiting metabolic enzymes lead to metabolic fluxesthat vary in time, which in turn cause delayed growth rate fluctuation. From [32–34]
tribution caused by variability in the timing of replication [39]. Moreover, they have
shown that the cell cycle has a minor effect on the protein concentration because
of the balance between protein synthesis rate and dilution rate, both dependent
on the overall translation rate. Cells might then achieve concentration homeosta-
sis by coupling reaction rates to cell size via abundant up-stream factors like cell
cycle regulators, RNA polymerases or ribosomes.

These results raise the questions of how different fluctuating activities within
the cell are coordinated, and which active regulatory mechanisms are implicated
in maintaining homeostasis. Moreover, it may be very useful to understand how
these fluctuations are transmitted within the cell. For example, Kiviet and cowork-
ers found that stochastic fluctuations in the concentration of a single enzyme can
correlatewith future cellular growth rates, indicating transmission of noise through
metabolic networks (Figure 2.1C) [35].

Such phenomenological relations can be very useful to quantify and predict
the behavior of complex biological systems before a full understanding of the pro-
cesses on the molecular level is available. In the next chapter we will see how par-
ticular genetic circuits can be used to control this noise [40].
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2.2 The foundations of the bacterial cell cycle

The growth laws

One of the first results in bacterial cell physiology has been the discovery by
Schaechter and colleagues that the mass (or size) of individual cells in a growing
population is coupled to the growth rate of the population and can be described
by an exponential relationship [41]. The composition of the medium is irrelevant
to predict cell mass and only the achieved growth rate needs to be considered.
The first definition of cell-cycle (B+C+D)

Another important quantitative principle is the bacterial cell cycle model by Cooper
and Helmstetter (C+Hmodel). They developed a newmethod to synchronize bacte-
ria, the baby machine [42–44]. By using this technique they were able to measure
the accumulation of DNA in time and proposed that in balanced growth the du-
ration of DNA replication of the Escherichia coli chromosome is constant indepen-
dently of the growth condition (C period (≈ 40min)) and that the cell divides after
a constant time has elapsed since replication initiation (C + D period (≈ 60min)).
The B period is the time between cell birth and initiation of DNA replication (Figure
2.3A) [43–45].

In E. coli cell division time can vary from 15-20 mins in fast growth conditions
up to days in poor growth conditions. This means that sometimes the division
time could be shorter than the time required to copy the genome. This paradox
is solved by the presence of overlapping rounds of DNA replication. While at slow
growth there are periods without replication activity, at fast growth replication oc-
curs throughout the cell cycle for multiple nested chromosome copies [45]. Repli-
cation of the E. coli chromosome begins from a single origin, OriC, and divergently
oriented replication forks proceed symmetrically along the genome to complete
replication at the terminus, near the dif site. Since on average a cell divides at a
time C + D after replication initiation, an average time lag B before initiation is
necessary to make the total replication time B + C +D an integer multiple of the
doubling time τ . Thus, defining n = Int(C + D/τ) as the integer number of times
that τ divides C+D one has thatB+C+D = (n+1)τ Furthermore, we can consider
a gene at a chromosomal position defined by its normalized distance fromOriC, i.e.
l = 0 represents a gene at OriC and l = 1 a gene at the opposite end at the terminus.
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The copy number of this gene, g , changes during the cell cycle following
g(t) :=

{
2n

′ if 0 < t < (n′ + 1)τ − (C(1− l) +D)

2n
′+1 if (n′ + 1)τ − (C(1− l) +D) < t < τ

(2.1)

where n′ = Int
[
C(1−l)+D

τ

]. By averaging over the cell cycle one obtains the average
gene copy number

g = ⟨g(t)⟩cell cycle =
1

τ

∫ τ

0

g(t)dt = 2n{1− n+ µ[C(1− l) +D]} (2.2)

The constant initiation mass

Using observations on Salmonella cell size and growth rate by Schaechter, Maaloe
and Kjeldgaard and on the DNA replication pattern in E. coli by Cooper and Helm-
stetter, Donachie proposed that the mass versus growth rate relationship discov-
ered by Schaechter Maaløe and Kjeldgaard results from initiation of DNA replica-
tion at multiples of a critical cell mass (mass per replication origin) [46]. This model
assumes that the initiation of DNA replication is the molecular event determining
the timing of all other cell cycle events such as cell division. During steady-state
growth, E. coli initiates DNA replication at all origins synchronously once per cell
cycle. The cell mass per origin at initiation, the initiation mass, was hypothesized
by Donachie to be a constant, independently of growth rate. The constancy of the
initiation mass also received strong experimental support under the assumption
that the C +D period is constant [47–49].

2.3 Single cell studies challenge the definition of the
cell cycle and the invariance of the initiation
mass

Deviation from the growth laws

Single cells in a given growth condition with a defined average division rate deviate
from the Schaechter-Maaløe-Kjeldgaard (SMK) “growth law” with a stronger devia-
tion at faster growth conditions [50]. In Figure 2.2(A) we can see how single cells do
not follow the dependence observed for the population means between size and
growth rate. Recently, in 2020, Zheng and coworkers found that this dogma does
not hold in either the slow- or fast-growth regime [51].

23



CHAPTER 2. CELL CYCLE CONTROL IN E. COLI

B C

Growth rate[h-1]

In
iti

at
io

n 
m

a
ss

Growth rate[h-1]

D
na

A
 c

on
ce

nt
ra

tio
n

Lo
g 

in
iti

a
l s

iz
e

A

Inverse Interdivision time

Figure 2.2: Initiationmass is not constant A Single cells do not follow the dependenceobserved for the means between cell size and growth rate. From [50]. B The time frominitiation of DNA replication to cell division is not constant but depends on the individualcell’s growth rate. From [48]. C In contrast to the Donachie hypothesis, initiation masshas been shown to vary by 50% across different growth rates (left). DnaA concentrationis found to mirror this growth rate dependence (right). From [51].
C+D dependence on growth rate

In 2016, Wallden et al formulated a single cell version of the Cooper and Helmstet-
ter (C+H)model [43, 44, 48]. An important step inmaking a single-cell version of the
C+H model was to determine how much time cells spend in DNA replication, seg-
regating their chromosomes, and dividing (the C and the D periods). Cooper and
Helmstetter assumed this time to be constant for generation times faster than 60
minutes. Wallden et al found that the average C+D-period is relatively constant
for the fast and intermediate growth conditions, but is much longer at slow growth
(Figure 2.2B). They concluded that the initiationmass per chromosome is constant,
however, they found a growth rate dependent time for the duration of DNA repli-
cation and cell division. This growth law, unlike the SMK law, also describes the
dependence of cell size/mass on growth rate and the duration of C and D periods
under slow growth conditions. In fact, the C and D periods have been shown not to
be as constant as initially proposed and they tend to increase with the generation
time [52–54]
The initiation mass in not constant

We have seen above that for the average behavior of a population across condi-
tions the traditional consensus was that initiation of DNA replication roughly starts
at a constant volume (or mass) per origin [21, 49]. The constancy of the initiation
mass received strong experimental support [21, 47–49, 55], albeit studies exists as
well that challenged the invariance of the initiation mass [56, 57].

The breakdown of the SMK growth law implies that Donachie’s cell mass rela-
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tion cannot hold either. Data presented in [51] by Zheng et al and reported in
Figure 2.2C(left), clearly show that the initiation mass is not constant, with a non-
monotonic dependence on the growth rate, peaking at a growth rate of around
0.7h−1. Using quantitative proteomics, they also found that the protein concentra-
tion of DnaA was negatively correlated with the initiation mass in wild-type cells,
and their growth-rate dependencies were mirror images of each other(Figure 2.2C-
right). This finding does not necessarily imply a causative relationship, but could
be the result of an underlying mechanism that controls both.

2.4 Finding the "perfect" model:
propose/validate/falsify

This is an area where data do not speak alone, and quantitativemodels are needed
to understand the data, infer the key mechanisms and guide the experiments. A
number of differentmodels have been proposedwhere either the DNA cycle or the
cell division cycle is limiting, or both [58]. The differences between thesemodels re-
side in their ability to describe all the variability and coupling parameters between
cell cycle events that we can measure.

For example, the recent results presented above refute the long-standing idea
that cell division is enslaved to DNA-replication initiation control [51], with strong
repercussions for the many existing cell cycle models that take the constant initia-
tion mass as a central assumption [21, 49, 59, 60]. Instead, their data and model
support the idea that the target of division control is the division process itself, but
with inputs from chromosomal events [10, 13, 30, 61].

I will now review the current existing models, with a focus on how a correlation
analysis between cell cycle intervals can be used to validate or falsify some of them.
2.4.1 Is the cell division cycle coupled to the DNA replication

cycle?
≪ Is the division cycle coupled to the DNA replication cycle? ≫. In these recent
years many models have been proposed trying to answer to this question. Many
of them came up with conflicting conclusions. In particular, three different classes
of models can be identified [62].

According to the first class of models, DNA replication and segregation are seen
as limiting for cell division, while division has no influence on DNA replication. At
the single-cell level, different couplings between DNA replication and cell division
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Figure 2.3: Different models have been proposed for cell cycle progression A Car-toon of the cell cycle with different sub-intervals: birth-initiation (B period),initiation-termination (C period), termination-division (D period), initiation-initiation (I period). BModels of cell division control based on a single limiting process. Cell division can becontrolled by DNA replication and subsequent segregation (top) or by a chromosome-independent inter-division process between birth and division (bottom). C According tothe concurrent-processes model cells go through division when both processes (inter-division and replication/segregation) are completed. From [62]. D Outlook for correla-tion analysis. At first, cell cycle intervals and their connection with global observables(e.g. size,growth rate...) are defined (top). Then joint distributions of measured variablesare used to motivate a mathematical model (middle). Lastly, mathematical models de-fine key observables and falsifiable predictions to test in the data (bottom). Reciprocalfeedback between falsifiable models and data helps identifying mechanisms andmolec-ular players of cell-cycle progression. From [63].
have been suggested: a "constant" (size-uncoupled) duration since the time of DNA
replication initiation (C+D period) [43, 48, 59], or the addition of a "constant" (size-
uncoupled) size between replication initiation and division [11].

According to the second set of models, cell division is controlled by a
chromosome-independent inter-division process between birth and division [10,
13, 51, 61, 64, 65]. In particular, the accumulation of a molecule or protein is
thought to trigger cell division, once the copy number reaches a threshold level.
Evidence comes from the observation that the size added by cells between birth
and division is independent of their size at birth [66–68] and from experiments that
show the independence of this "adder" behavior from perturbations of DNA repli-
cation [10]. Different "accumulator" molecules have been suggested such as cell
wall precursor molecules [13], components of the divisome or septum [51], or the
FtsZ protein [10, 65, 69]. However, whether cells effectively measure a constant
size increase, or whether the adder behavior emerges through the accumulation
of a single molecule, and/or whether chromosome replication/segregation have a
direct influence on cell division remains controversial [10, 11, 51].
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Lastly, the third class of models proposes that two processes limit cell division,
DNA replication/segregation and a second "inter-division" process that relates cell
size at division to cell size at birth, independently of DNA replication or segregation
[8]. The inter-division process could be the accumulation of a molecule produced
since birth, as summarized above. According to this "concurrent-cycles" model,
the slowest process sets the timing of cell division at the single-cell level. Based
on recent experimental evidence [10, 11], DNA replication initiation is controlled
through an adder-like process between subsequent initiation events, which could
also stem from a molecule accumulating during replication events [20, 59].

Sometimes differences between models are minimal and it is easy to fall into
misunderstandings [10, 11, 70, 71].

We can conclude that probably cell cycle control involves multiple complemen-
tary and redundant mechanisms including multiple check points. Moreover, differ-
ent mechanisms may be more or less important in different growth conditions.
2.4.2 Correlation analysis between cell-cycle intervals is used

to validate or falsify existing models
Using a combination of microfluidics with time-lapse microscopy, in recent years
researchers have been exploring to what extent the observed correlation structure
of the fluctuations in the sizes and times at birth, initiation of DNA replication and
cell division in single cells are consistent with the different models of the cell cycle.
The precise mechanism in place is determined by examining the scatter plot of the
amount of growth within a time interval versus the cell size at the entrance of the
interval(Figure 2.3D) [9, 63].

For example if, as the Cooper-Helmstetter model assumes, initiation of DNA
replication is triggered when the cell reaches a critical size, one would expect fluc-
tuations in the size at initiation to be independent of fluctuations in the size at
birth. However, recent works have shown that there is a clear positive correlation
between size at birth and at initiation [8, 11]. In this way, a particular model of the
cell cycle can be falsified by showing that the observed correlations are at oddswith
predictions of the model. An alternative model of the replication cycle assumes
replication initiation is controlled by an inter-initiation adder, i.e. that cells add a
fixed volume per origin between consecutive replication events. Indeed, both in
[10] and in [11] it was observed that the added volume per origin fluctuates inde-
pendently from the size at initiation, supporting this model.

Witz and coworkers stressed that, in order to meaningfully compare the evi-
dence that the single-cell data provide for one or another model, one should com-
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pare the full correlation structure of the data with the predictions of the different
models [11, 71]. Indeed, they found that while the data are consistent with an
inter-initiation adder model, the time between replication initiation and division in
fact correlates with growth-rate, thereby falsifying a model that assumes division
is controlled by a mechanism that acts on the time between initiation and division.
Instead, their analysis shows that in the model which is most consistent with the
full correlation structure of the data, division is controlled by an adder mechanism
that runs from initiation of DNA replication to cell division (and not from birth to
division).

One can also think about perturbing the system and looking at correlation vari-
ations. For example, Zheng et al. [72] showed that increasing cell width by the
titration of the MreB-actin cytoskeleton causes an increase of the period between
replication termination and cell division (D period) without affecting the average
duration of DNA replication and of the cell-cycle.

Indeed, upon increasing the D period, cell size at division showed continuously
decreasing correlations with cell size at initiation of DNA replication [62]. Without
any modeling, these findings already suggest that cell division is controlled by a
process different from DNA replication but dependent on cell size at birth. On the
contrary, in non-perturbed cells, DNA replication appears to have an important
limiting role, as supported by the high correlations between cell size at division
and cell size at replication initiation, also observed previously by Witz et al. [11].
They also found that only the concurrent-process model is able to describe the
experimental data in both perturbed and unperturbed condition, concluding that
cell division is controlled by at least two concurrent processes that link cell division
to DNA replication and cell birth.

The data presented until now relies on statistical methods such as binning and
linear regression that are useful for interpreting data and generating hypotheses.
Nonetheless, we have to be very careful, because predicting the relationships be-
tween experimentally measured quantities based on these methods might lead to
misinterpretations [73].

For example, the existence of two subpopulations with different target sizes or
with an overall increase or decrease in average cell size over the course of an exper-
iment will introduce an artefactual positive correlation between birth and division
size [74]. This can be referred to as the Simpson’s paradox [75].

Moreover, the procedure of binning data in order to eliminate noisemay lead to
smooth curves that hint at specific functional relations between the two variables
plotted that are inconsistent with the true functional relations. This may happen
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because of “hidden” noise sources that affect the binning procedure and the phe-
nomenon of “inspection bias” where certain bins have biased contributions [76].
Lastly, the often high intrinsic biological noise can obscure the mathematical rela-
tion between variables when not handled properly.

For all these reasons it may be necessary to have an underlying model (or mod-
els) that leads to similar data to that observed in the experiments to guide, test and
validate data analysis methods [73].
2.4.3 Threshold accumulation of a constitutive protein can ex-

plain E. coli cell division behavior in nutrient upshifts
In this last section I want to briefly introduce part of a work I contributed to that
has been published in 2020 [77]. This has been a side project for me but I think it
fits perfectly in this framework. First, in this paper we use the comparison of data
with mathematical models to support and / or falsify different existing mechanistic
models for cell division. Second, it defines a data driven model based on mother
machine data that has been extended to my own datasets (see Chapter 4.2.7).
Lastly, this work describes a threshold accumulator model for cell division at the
population average level in response to a change in growth medium, an upshift in
growth rate. Following this framework, it will be interesting to extend this model to
test a similar threshold accumulation model for initiation of DNA replication and
cell division at the single cell level, within the cell cycle.

While most available studies try to infer information on cell division from
steadily dividing cells in constant nutrient conditions, this study leverages on a high-
resolution device to monitor single-cell growth division upon nutrient changes.
Comparing these data with different mathematical models, we have been able to
discriminate among fundamentally different mechanisms of cell division control,
and we have shown that the data support amodel where a protein expressed from
a constitutive, unregulated promoter accumulates to a threshold level and triggers
cell division.

We first tested whether some previously proposedmodels could reproduce the
complex behavior of the division-related variables that we observed across the
shift. To this end, we considered different models available in the literature. Specif-
ically, we ran single-cell simulations of the models proposed by Harris and Theriot
[13] (“relative-rates” model), Ho and Amir [59] (“incremental” model), and the clas-
sic idea of “initiation sizer” (which we implemented here with size-uncoupled C+D
period, see [8, 9]]), using both modeled and sampled growth rate distributions
across the shift. The relative rates model assumes that chromosome replication-
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A B

Figure 2.4: Falsification of models for cell-division control A The nonsteady dataacross the nutrient shift falsify commonly assumed models for division dynamics. Inparticular, all the tested models are too slow in reproducing the added-size dynamicsand do not reproduce the initial increase in interdivision times. B A putative divisor pro-tein expressed from a consititutive promoter explains the shift data. As model input weused the measured instantaneous growth rates and volume-specific production rate (r)from a constitutive promoter inserted close to the replication terminus. The model pre-dicts faithfully the size dynamic and the observed robustness of near-adder size control.From [78]
segregation is never limiting for cell division [10], and that completion of synthe-
sis of cap material (produced at the rate of surface synthesis) triggers division.
Both the incremental model and the initiation sizer model assume that replication-
segregation are limiting for cell division. We did not consider the more complex
scenario of concurrent time scales [8] because of the unknown extra parameters
used in this framework. The incremental model assumes that the chromosome is
always limiting for cell division, and an inter-initiation adder (per origin) based on
the cell current growth rate. By contrast, the initiation sizer model assumes a criti-
cal size per origin at initiation. None of the considered envelope- or chromosome-
limited models for cell division predict correctly the division time dynamics (Figure
2.4A). Specifically, no model predicts that the interdivision time in the data initially
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increases, before decreasing to its new steady state. Considering the dynamics of
added size and initial size, all models show a delayed dynamics compared to the
experimental data, and cannot predict the observed early overshoot in added vol-
ume. We figured that, instead, one may need a model where division dynamics is
coupled to the mechanistic action of a biological circuit able to sense the physio-
logical state of the cell. We therefore sought to define a mechanistic model where
a protein under physiological control could act as the trigger defining cell division.
In particular, we focused on a class of “threshold accumulator” models that have
been proposed several times in the literature, both for DNA replication and for cell
division [10, 20, 65, 79, 80]. We supposed that the fast and complex changes in divi-
sion rate and added size observed during the shift in growth rate could be due to a
coupling between the changes in biosynthetic “sectors” [81]]. The literature offers
models that describe proteome sector dynamics and biosynthesis in non-steady
regimes [82] and recent attempts were put forward to link these sectors with cell
division [69, 83, 84]. However, the descriptions differ, and current data do not allow
to select a specific one. Thus, rather than committing to a specific choice, we de-
cided to take an experimentally driven approach to define our model. We believe
that, giving our current limited knowledge on the crosstalks between cell growth
and cell-cycle physiology, this “empirical” approach to forwardmodels is preferable
to more theoretical routes postulating the behavior of different proteome sectors
across shifts [69, 83, 84]. Comparing the predictions of the four possible models
that can be generated from our data, we show that the data are in agreement with
a model where a putative adder protein is under the control of a constitutive pro-
moter located close to the replication terminus of the E. coli chromosome. This
model predicts efficiently the behavior of interdivision time, initial size and added
size of cells across the shift. Conversely, if we reverse-engineer the production
rate of an accumulator model in order to reproduce our division data, we find that
it matches the expression pattern of the ter-proximate constitutive promoter.

From a molecular point of view, cell division (and its adder correlations) could
be set by the accumulation of a putative “divisor” factor, possibly related to the FtsZ
division ring [10, 65] or to the synthesis of the septum.

The similar near-adder behavior, also observed between consecutive initiations
[10, 11] may derive from accumulation and trigger of an “initiator” protein setting
replication initiation [20, 59, 80]. The initiation of DNA replication is known to
be effected by a critical accumulation of ATP-bound DnaA. While some molecular
mechanisms involved in DNA opening and replisome assembly have been identi-
fied, it is still not known how they contribute to setting the timing of initiation of
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DNA replication in different growth conditions or how they can contribute to cell-
cycle progression in single cells [21, 51, 55].
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Chapter 3

The dynamic DnaA regulatory
network within the cell cycle

Cells have evolved complex gene regulatory networks to produce appropriate
amounts of proteins at appropriate times to adapt to ever-changing environments
[1–3, 6, 7]. As we have seen in Chapter 2, efficient coordination of DNA replication,
genome segregation and cell division are required for bacteria to adapt to changes
in growth rate according to the availability of nutrients and in response to environ-
mental changes and to stresses that can cause delays in DNA replication, such as
DNA damage.

In this chapter I review the regulatory mechanisms affecting the expression of
the DnaA protein, a key player in the initiation of DNA replication in bacteria that
has also been shown to play a specific role in the coordination of DNA replication
and gene expression [14–17]. This coordination is necessary for the cell to initiate
DNA replication only once per cell-cycle and different models for the initiation of
DNA replication have been proposed. DnaA is a regulatory factor essential not only
in E.coli but also in the vast majority of known bacteria.

In particular, I will focus on the regulation of the dnaA gene itself, the special fea-
tures of the dnaA gene’s expression, promoter strength, and translation efficiency,
as well as the role of DnaA protein, its binding to DnaA-boxes, and its binding of
ATP or ADP. Furthermore, I will discuss in general how different factors can con-
tribute to express a gene as a function of the cell cycle and how this could be very
useful for the coordination of cell growth and division.
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3.1 The roles of auto-regulation in transcription net-
works

The rate of synthesis of proteins in the cell can be regulated in many ways, at each
of the different stages of production. One of themost commonmethod in bacteria
is at the level of transcription; modulating the rate at which the RNA polymerase
enzymes puts together the long chain mRNAmolecules from the DNA sequence of
a particular gene. This process is regulated in part by proteins called transcription
factors. Transcription factors act to activate or repress a particular gene, making
the production of the mRNA from that gene more or less likely. The way in which
this is done is that the transcription factor binds to a specific segment of DNA. In
the case of repression, the transcription factor will often bind to a sequence near
to, or even overlapping, the promoter sequence. In doing this, the transcription
factor blocks the RNA polymerase, preventing the enzyme from binding to the pro-
moter and transcribing the gene into mRNA. Most activators work by binding to a
sequence upstream of the promoter and interacting with the RNA polymerase to
increase its binding affinity to the promoter. This, in turn, leads to an increase in
the expression of the gene [85–88].

There is no reason why a protein should not act as a transcription factor on
its own gene. This is a means of regulation that is frequently found in cells, and
is known as auto-regulation and can come in the form of auto-activation or auto-
repression. Auto-regulating transcription factors are typically regulated by other
TFs as well. In fact, many auto-regulating TFs in E. coli are known to respond to at
least two additional regulators [89, 90]. In such cases, the response of the regulated
TF to changes in the “input” TF concentrations must reflect an interplay between
regulation and auto-regulation.

While simple networks have been studied quantitatively and successfully de-
scribed by mathematical models, real life natural TF networks are more difficult to
describe. The transcriptional network of E. coli is probably the best known for any
cell, with 4405 ORFs identified [91] and an estimated 8%, or roughly 300 genes, as
predicted or known TFs [92]. Despite our broad knowledge of the potential regula-
tory targets of E. coli transcription factors, our ability to predict regulatory behavior
on the basis of their expression levels and that of their targets is not better than it
would be for random networks[93]. In [94] the authors attribute this partly to the
fact that even when a transcription factor is expressed, in many cases it will not
bind its targets in the absence of additional signals [95]. In order to model the ef-
fect of regulation one needs to take into consideration that the natural timescales
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to reach steady-state of gene regulatory systems is set by the expression rate and
the decay rate of the protein product. In bacteria such as E. coli, where most pro-
teins are stable, the timescale of the decay rate is set by the dilution due to the
growth rate of the cell. For DNA-binding proteins one might also need to take into
consideration the increase in the number of binding sites on the DNA during DNA
replication.

Figure 3.1: Roles of negative and positive auto-regulation within the cell cycle ANegative auto-regulation allows for a faster response in gene expression. In this case thethree regulatory strategies reach the same steady state α in an average time known asFPT (first passage time) BGene expression noise as a function of time, 0 being the time ofgene expression induction. When the average FPT is close to the the cell’s doubling timefor stable proteins both positive and negative transcriptional auto-regulations increasethe timing noise. The two shaded regions show the FPTs for which self-regulation worksas a timing noise filter. In particular, auto-repression reduces timing noise for timescales shorter than about 0.5 doubling times, while auto-activation is efficient in timingnoise reduction for time scales longer than about 1.5 doubling times. From [95].
In [96], it is reported that 59% of the TFs in E. coli are known to auto-regulate.

Negative auto-regulation occursmore frequently than positive auto-regulation, but
both are very common: 71 and 34 respectively are found in the current databases
of 165 TFs [sal, 89]. Moreover, 9 TFs have binding sites for auto-activation as well
as for auto-repression in their promoters. This suggests that auto-regulation may
play important functions for cell physiology.
3.1.1 Negative auto-regulation
In E. coli, negative auto-regulation appears in over 40% of known transcription fac-
tors, probably because this is an extremely useful way for a cell to regulate the num-
bers of proteins in time. Auto-repression will have the effect of switching off the
production of a gene when that gene’s protein product reaches the concentration
necessary to bind to its DNA sequence in its own promoter. This means that the
level of that protein can be kept below a particular value. Negative auto-regulation
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has also been shown to speed the response times of transcription networks al-
lowing for a higher transcription rate (Figure 3.1A) [97], to reduce gene expression
noise [98–100] and to induce oscillatory gene expression [101]. Delays can also
help oscillations to arise. A delay in biological circuits can be achieved by adding
components in the negative feedback loop to make longer paths in the circuit or
by decreasing the translation and protein maturation rates. Despite this, the need
to achieve rapid reversible responses in sensory transcription networks may help
explain the finding that long cascades are very rare in the gene network of E .coli
[102].
3.1.2 Positive auto-regulation
Contrary to negative feedback, positive feedback slows down the response kinetics
of protein synthesis. In fact, an inherent response delay has long been recognized
for positively auto-regulated systems [102–104]. This happens because a certain
time interval is required to produce the TF to a level sufficient for activation [103].
The transcription rate will be slow initially, but when the protein number reaches
the concentration of its binding affinity for its specific sites, it becomes more likely
for the protein to bind to its sequence on the gene and perform its activation role,
causing a marked increase in the production rate. While a slow response may not
be desirable for many signaling tasks, the frequent occurrence of positive auto-
regulation suggests that the cost in response speed can be overcome or tolerated.
The introduction of delays is not the only role of positive auto-regulation. It can also
increase the sensitivity to signals, produce a switch-like response when in compe-
tition with a repressor, and promote bistability [2].
3.1.3 Coupled positive and negative auto-regulation in the con-

trol of oscillations of gene expression
Although a single negative feedback loop has the ability to generate oscillations, in
some situations a gene regulatory network has both positive andnegative feedback
loops. This additional positive feedback loop helps generate or amplify oscillation
of gene expression created by the negative feedback loop and makes oscillation
more robust against noise in gene expression by increasing the expression rate
depending on a specific protein concentration threshold [105, 106]. The compe-
tition between positive and negative auto-regulation can then result in a step like
change in gene expression. It has also been shown that positive feedback loops can
provide a tunable period of oscillation [107]. The period can be changed by orders

36



CHAPTER 3. THE DYNAMIC DNAA REGULATORY NETWORK WITHIN THE CELL CYCLE

of magnitude while keeping the amplitude almost constant by varying a reaction
parameter in the positive feedback loop. This can be very important for cell cycle
dependent oscillations, especially when cell cycle length varies, due for example to
changes in growth rate. In contrast, a negative feedback loop without any positive
feedback cannot change the period without compromising the amplitude.

Furthermore, it has been postulated that negative auto-regulation coupled to
auto-activation can attenuate the inherent response delay caused by positive feed-
back [104]. For a system with only positive feedback, there is a trade-off between
the steady-state expression level and response speed. A coupled negative feed-
back allows cells to maintain an optimal expression level as well as fast response
kinetics. Coupled positive and negative negative auto-regulation has been shown
to allow for a strong promoter for fast responsewithout incurring cost of increasing
protein expression levels [108].
3.1.4 Auto-regulation contributes to the regulation of gene ex-

pression as a function of the cell-cycle by decreasing the
noise in the fluctuations

Sometimes an activated gene may be required to reach in a precise time a thresh-
old level of expression that triggers a specific downstream process. However, gene
expression is subject to stochastic fluctuations, naturally inducing an uncertainty
in this threshold-crossing timewith potential consequences on biological functions
and phenotypes. These fluctuations might need to be controlled [95].

In particular,it is found that the role of auto-regulation in controlling the tim-
ing of fluctuation noise is context dependent. Positive auto-regulation reduces the
timing fluctuations at short times compared to the cell cycle, while negative auto-
regulation reduces timing noise at longer times (Figure 3.1B).

On the other hand, gene expression noise can result in bacterial population
heterogeneity, offering specific advantages for fitness and survival in various envi-
ronments. In fact stress-response genes have been shown to have a higher noise
of expression than the core genes [109]. This trait is therefore selected during the
evolution of the species, and is consequently regulated by a specific genetic net-
work architecture [110, 111].

In the next section, I will describe the specific example of a gene, dnaA, whose
expression is under both positive and negative auto-regulation.
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3.2 DnaA is both a transcription factor and an initia-
tor of DNA replication

DnaA as replication initiator
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Figure 3.2: DnaA is a transcription factor and an initiator of DNA replication ASteps leading to DnaA-ATP oligomerization at the dnaA promoter region. box1 is thehighest affinity site and therefore the first site being occupied by a DnaA monomer,subsequently the other sites are bound with a stabilization of monomer-monomer in-teractions through the DiaA protein (pink tetramer); finally the entire promoter regionbecomes protected by the DnaA-ATP oligomer. The DnaA protein is represented by aball and stick configuration where each domain has a different color.From [112] B Atthe origin of DNA replication the DnaA-ATP bound form (extended conformation, skyblue and green ball-stick) remains bound to high affinity dsDNA boxes; then in the pres-ence of increasing DnaA-ATP it oligomerizes and binds to the low affinity binding sites.As the DUE (DNA unwinding region) melts, the DnaA molecules evolve from an extendedto a compact state (violet and pink ball-stick). Finally the origin opens and the DnaAmolecules in the compact state stabilize the ssDNA leading to open complex formation.From [113]
E. coli has a relatively small circular genome of about 4.6 million base pairs

and a single replication origin. The minimal oriC region (245 bp) has two function-
ally different regions: a duplex-unwinding region (DUE) with three repeats of the
AT-rich 13-mer sequence where unwinding occurs during initiation, and a DnaA-
oligomerization region (DOR) that comprises five DnaA protein binding 9-mer se-
quences (the DnaA box) [114]. In addition, in this region, the palindromic sequence
GATC appears 11 times. As wewill see later, these sequences are recognized by the
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enzyme dam methylase and a protein called SeqA [115].
In E.coli the DnaA protein is a key factor in the initiation of DNA replication, but

it is also an important transcription factor, including for its own expression (Figure
3.2) [15, 16, 116].

Both activities of DnaA can be modulated using an ATP-dependent molecular
switch. DnaA can be found inside the cell tightly bound to ATP (Kd 30 nM) or
bound to ADP (Kd 100 nM) [117]. Although DnaA has similar and extremely high
affinity for ATP and ADP, DnaA is expected to bind preferentially to ATP in the cell
because ATP is about six to seven times more abundant than ADP. Furthermore,
although DnaA–ATP and DnaA–ADP can bind to the high affinity sites at the origin,
only DnaA–ATP can lead to DnaA oligomerization and the opening of the AT-rich
sequence (DUE) allowing for initiation of DNA replication [117]. As a transcription
factor, the nucleotide switch has been shown to turn DnaA into a stronger repres-
sor or stronger activator when it is bound to ATP [118].

An average E. coli cell contains 400–2000 DnaA molecules [119], depending on
the growth rate, and the levels of the two nucleotide forms, ATP- and ADP-bound
DnaA, are inverted during the replication cycle[15, 17, 120].

About 20–40monomers of DnaA protein appear to be present in the oriC–DnaA
complex (the initiation complex). The amount of the initiator protein DnaA in its
ATP-bound, active form is important to trigger initiation of DNA replication. When
it has bound ATP, DnaA has a relatively high affinity for the replication origin. When
enough DnaA-ATP is present, the small protein HU binds along with DnaA, and
together these proteins coil the DNA in such a way that the AT-rich initiation re-
gion, DUE, unwinds. Then the DnaB complex, which is the helicase, binds to the
single-stranded DNA, and then the other proteins important for replication, such
as primase, sliding clamp, and DNA polymerase, bind to form a complex with the
helicase. Stimulated by the activity of the other proteins of the replication fork,
DnaA hydrolyzes its ATP to ADP via an interaction with the Hda protein (Regulatory
inactivation of DnaA, RIDA), and the DnaA protein dissociates from its binding sites
. In this ADP-bound form, DnaA is unable to initiate another round of replication.

The binding of ATP in preference to ADP is then essential for the activation of
DnaA and a DNA replication block has been recently observed at the level of initia-
tion following ATP starvation [121]. In this case, replication forks were not arrested
but new initiations were. Recent studies have shown that the initiation process is
quite robust to changes in DnaA concentration [122, 123], suggesting that changes
in (total) DnaA concentrationmay not change significantly the number of DnaA-ATP
molecules per origin or the DnaA-ATP to DnaA-ADP ratio.
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In Hda deletion strains, DnaA-ATP increases from 30 to 70% and a decreased
initiation mass is observed [124]. Moreover, DDAH (datA-dependent DnaA-ATP hy-
drolysis) stimulates DnaA-ATP hydrolysis at the datA locus [125]. This DnaA inacti-
vation mechanism is switched on once replication has started, thus decreasing the
cellular re-initiation potential. RIDA is turned off upon termination of replication,
allowing DnaA-ATP to accumulate in the cell and initiate a new replication cycle.
Rejuvenation of DnaA-ATP from DnaA-ADP takes place at two DnaA Reactivating
Sequences (DARS1 and DARS2) on the genome. The chromosomal locations of the
DARS sites are optimized for the strict regulation for timely replication initiation.
Deletion of both DARS sequences increases initiation mass to 150% [126]. The ob-
served constant ratio of origin to cell mass at the time of initiation is therefore
hypothesized to reflect the DnaA-ATP to origin ratio [127]. Another possible contri-
bution can come from phospholipid mediated nucleotide exchange [128, 129].

Hemimethylated oriC DNA is a direct and immediate consequence of the dupli-
cation of oriC. Thus, oriC function is rapidly inactivated by the sequestration sys-
tem after initiation. As the hemi-methylated form of oriC is maintained for about
10 min by the binding of SeqA to the GATC sites, another systemmust repress initi-
ations once SeqA dissociates and the origin becomes remethylated by Dam. As the
high level of DnaA-ATP before initiation is reduced to the basal level within 20 min
after initiation, the RIDA system could take over after the lapse of the 10 min hemi-
methylated window to ensure that no extra initiations take place before the next
scheduled initiation event. These two systems operate independently from one
another [23] and presumably compensate for each other during the interinitiation
time.

The datA site is a region of the genome where several DnaA proteins can bind.
When the datA site is translocated from its original position on the chromosome to
a site near the replication termination site, extra initiations are induced in rapidly
growing cells[130]. This suggests that the timing of duplication of the datA site
is important to titrate DnaA on the genome when the growth rate of cells is high.
As the datA site is replicated after 8 minutes from the time of initiation at oriC (at
37°C), the datA function could reinforce the decrease in DnaA activity during the
non-sequestrated oriC period. As such, a common and very important feature of
these three systems seems to be their functional coupling with the chromosomal
replication process.

Sequestration requires the hemi-methylated form of oriC, a direct consequence
of origin replication. RIDA depends on the sliding clamps formeduponDNA loading
of the replicase. The DnaA titration system can be linked to the timely duplication
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of the datA site. Thus, as a principle, the negative regulators of initiation appear to
form a feedback circuit in the replication processes[120].

To resume, knowing that about 20 DnaA molecules must bind to oriC for ini-
tiation of replication to occur, changes in the abundance and activity of DnaA
molecules are necessary to achieve precise cell cycle–coupled initiations. DnaA
is normally extremely stable with a half-life exceeding 24 h during steady-state
growth [131]; thus, most control is achieved by cell cycle fluctuation in dnaA gene
expression and DnaA protein activity via its nucleotide bound state.

In Figure 3.3 we can see how several different processes are coordinated in time
(left) and/or in space (right) to regulate DnaA’s activity.

C
A B

Figure 3.3: The regulatory cycle of DnaA: activation function and inactivation (A)ATP-DnaA forms oligomers on oriC with the aid of integration host factor (IHF) and DnaAinteracting protein DiaA, and initiates replication (period in light yellow). After initiation,ATP-DnaA is converted to ADP-DnaA (RIDA) and datA-dependent DnaA-ATP hydrolysis(DDAH) systems (period in light blue). RIDA involves Hda protein and the clamp subunitof DNA polymerase III holoenzyme, and DDAH involves the datA locus and IHF. DnaA-reactivating sequence (DARS1 and DARS2) loci regenerate ATP-DnaA (period in light red).IHF binds to specific sites in oriC, datA, and DARS2 in a cell-cycle-coordinated manner.Fis binds to DARS2 in log-phase cells. From [16] (B)Same processes of (A) with a focuson where these processes act in the genome, with differences pre- and post- initiationof DNA replication. From[132]

DnaA as a transcription factor

DnaA was found to bind the promoter regions of several genes and to regulate
their transcription. Depending on the location of DnaA boxes relative to the pro-
moters, the DnaA protein can function either as a transcriptional repressor an ac-
tivator or both [14, 114, 133–137]. In particular, DnaA has been shown to act as
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a repressor or activator for a set of genes involved in regulation of DNA replica-
tion depending on the concentration of DnaA-ATP. Other functions of the products
of the genes regulated by DnaA includes nucleotide biosynthesis, carbohydrate
metabolism, iron homeostasis, amino acid biosynthesis and ribosome biogenesis
[138]. Finally, DnaA also regulates the expression of DNA repair enzymes so that
it may be proportional to the amount of DNA in the cell to efficiently clear the way
for the replication forks to reach completion of the genome synthesis[139–141].

As an activator, DnaA regulates the expression of the fliC gene, encoding flag-
ellin, a subunit of E. coli flagella [142], polA, coding for DNA polymerase I, involved
in DNA replication and repair and the nrdAB operon, coding for the ribonucleotide
reductase enzyme [14, 143]. DnaA overproduction was found to increase polA ex-
pression in stationary-phase cultures in a RpoS independent manner [133]. In this
case the mechanism of transcription activation by DnaA is unknown, however it
has been suggested that activating proteins with binding sites near the promoter
can cause activation by direct contact with RNA polymerase [87].

As a repressor, DnaA regulates the transcription from themioC promoter, which
has been proposed to inhibit initiation of DNA replication [144]. Binding of DnaA
upstream of the rpoH promoters reduces the transcription of this gene that codes
for σ32, the primary sigma factor controlling the heat shock response during log-
phase growth [137]. A similar situation is found in uvrB, which is a subunit of the
nucleotide excision repair (NER) complex [141, 145]. Lastly, DnaA represses nrdAB
expression [146]. All these genes have DnaA boxes within or upstream of their
promoter region.

More importantly, DnaA can act both as a repressor and an activator of its own
promoter, depending on the binding of DnaA-ATP on the promoter [112]. We will
look at this in detail in the following section.

3.3 Activation and inactivation of the DnaA protein
To better understand the regulation of DnaA activity and that of its promoter we
have to introduce briefly the structure and function of the DnaA protein.

E. coli DnaA is a 52 kDa basic protein that has four distinct functional domains
and belongs to the AAA+ protein family (ATPases Associated with various cellular
Activities)(Figure 3.4)[147, 148]. Different domains have specific roles in DnaA func-
tion. Domain I is used primarily for protein-protein interactions. A hydrophobic
face of this domain allows DnaA protomers to oligomerize, while the opposite side
of the domain interacts with the replicative DNA helicase (DnaB) and with DiaA, a
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modulator of the pre-replication complex (pre-RC) assembly. Domain II forms a
flexible linker that may accommodate the need to position Domain I over the wide
range of distances that separate DnaA recognition sites within OriC, or allow some
flexibility in positioning DnaB on single-stranded DNA. Domain III carries themotifs
necessary for ATP binding/hydrolysis and oligomerization. Domain IV contains a
helix-turn-helix motif for double-stranded DNA binding, as well as an amphipathic
region used for membrane interaction. Domains III and IV are the most highly con-
served among eubacteria.

Figure 3.4: Domain architecture of the DnaA protein. DnaA contains four domains.The structure of Domain I was obtained by NMR (Protein Data Bank 2E0G), and thestructure of domain III-IV is a homology model. (Bottom) DnaA domain III oligomerizesin a head-to-tail manner. The ATP-bound side of one molecule contacts the arginine-finger side of another molecule. From [149].
Like other members of AAA+ protein family, the binding of ATP and ADP speci-

fies the conformation and multimerization status of the protein.

3.4 The dnaA promoter region and the dnaA gene
The dnaA promoter regionwas first identified and characterized in 1979-1980 [150].
The entire promoter region (Figure 3.5) is 606 bp long and it regulates the expres-
sion of several proteins involved in the initiation of DNA replication. This region
has two promoters, dnaAP1 and dnaAP2 (-317bp and +152bp from the transcrip-
tion start site), separated by a 53-bp region that contains five binding sites for DnaA
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Figure 3.5: Schematic of the promoter region of the dnaA operon in Escherichia
coli A The GATC sites bound by SeqA are shown by an asterisk (*) and the consensusDnaA boxes are shown in a box. The position of the dnaA promoters P1 and P2 are indi-cated. The light orange rectangle shows the sequence of the P2 promoter and potentialDnaA boxes upstream of and overlapping the promoter (adapted from [15]). B Schemaof the main players in the regulation of the DnaA promoter: DnaA-ATP binds to the highaffinity binding sites, GATC sites for SeqA binding and the P2 GC-rich discriminator re-gion.
[150]. Box1, box2 and the region in between are protected from nuclease cleavage
both by DnaA-ADP and DnaA-ATP, the boxes a, b, and c require DnaA-ATP.

The DnaAP2 promoter region presents several similarities with stable RNA and
ribosomal protein promoters. It presents a -35 region that deviates significantly
from the consensus sequence while the -10 region is very similar to the consen-
sus one [151]. There is also a GC-rich sequence overlapping with the transcription
start site, called a “discriminator” sequence, which confers sensitivity to the effec-
tor of the stringent response, the small metabolite ppGpp and suggests that the
expression of DnaA could be influenced by the levels of DNA negative supercoiling,
which vary following changes in the growth rate and in response to stresses to the
replicationmachinery [22, 151]. DnaAP1 provides a basal level of transcription and
it is not subjected to specific regulation, while dnaAP2 is a threefold stronger pro-
moter contributing 60-80% of the dnaA transcripts in exponential phase[22, 134,
135, 152]. The dnaAP1 promoter, instead, is induced mainly upon entry into sta-
tionary phase. This could be explained by the previously observed increase in the
amount of ppGpp in the transition from exponential to stationary phase, result-
ing in the inhibition of expression of stable RNA-like promoters, such as dnaAP2,
and thus in the increase in the amount of RNA polymerase available in the cell for
transcription of weaker promoters.

Moreover, the dnaA promoter region presents a divergent promoter configura-
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tion where the promoter regions of the rpmH and the dnaA genes are positioned
back to back. Past works in our lab by Bianca Sclavi and the former PhD student
Chiara Saggioro have shown that the divergent promoter configuration dnaA-rpmH
contributes to a decrease in the expression from the dnaA promoter. The rpmH
gene codes for a ribosomal protein and contains the characteristic promoter orga-
nization of the stable rRNA promoters [151, 153].

To conclude, the dnaA gene presents a complex regulatory motif characterized
by several levels of regulation. In Chapter 6 I will investigate the role of the auto-
regulation by DnaA and repression by SeqA in the robust progression of E.coli cell-
cycle by considering dnaAP mutants with mutation in the binding sites necessary
for DnaA and SeqA regulation (Figure 3.5B).

3.5 Positive and Negative Auto-regulation by DnaA

DnaAP DnaAP
box1

A

B C

Figure 3.6: DnaA boxes have different affinities for DnaA and play a role in auto-regulation A The site-directed mutations in the DnaA-binding sites used to study auto-regulation are shown. Mbox1, A-85G and A-86G+T-60A and C-64G; Mbox2, A-85G andA-86G+T-37A and C-41G. B Fractional occupation of DnaA sites in the dnaA wild typepromoter region at increasing concentrations of DnaA-ATP. The green curve representsthe occupation of the high affinity sites, leading to activation of DnaA expression. Af-ter DnaA-ATP oligomerization on the entire promoter region at higher concentrations,the repression can take place (red curve). The gray box represents the window of theproposed in vivo available DnaA concentration.C After mutation of the box1 DnaA site,a shift of the binding curves is observed, thus occupation of the DnaA sites occurs athigher protein concentration, where activation is still possible in the range of in vivoDnaA concentration, but repression can no longer occur. From [112]
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The ability of DnaA to autoregulate its own transcription was discovered at a
time when the direct role of DnaA in chromosome replication was not yet clear.
Early characterizations of temperature-sensitive dnaA mutants of Escherichia coli
revealed that the copy number of ori decreased, while DnaA levels increased simul-
taneously at non permissive temperatures, thus accurately predicting that DnaA
had a positive involvement in the onset of chromosome replication and a negative
involvement in regulating its own synthesis [154]. DnaA’s ability to repress its own
transcription was later confirmed using in vitro and in vivo analyses. In vitro, DnaA
was shown to directly bind its own promoter region using gel shift assays and DNa-
seI footprinting methods [112, 135, 136, 148]. In vivo, two strategies were used to
show that DnaA represses its own transcription. First, increased cellular levels of
DnaA (expressed from inducible promoters) were shown to decrease the activity of
the dnaA promoter, and second, a decrease in the levels of DnaA able to bind the
dnaA promoter (by adding DnaA binding sites on a plasmid that titrated DnaA lev-
els away) was shown to increase the activity of the dnaA promoter [134, 135, 152].
In Figure 3.5A we see a representation of the dnaA promoter region. Between the
two promoters there are different binding sites for the protein itself. The first char-
acterization by DNase I fooptrinting established two DnaA boxes, specific for both
ADP and ATP forms, and three DnaA-ATP specific boxes [118]. Afterwards, Hansen
et al. proposed that the number of DnaA boxes is probably underestimated and
that two additional 9-mer sites, with two misfits in the consensus sequence, are
present in the promoter region. One box located between box 1 and box 2 and
one located upstream of the box 1, all boxes in the same orientation and properly
spaced [155]. Also previous works in my laboratory support this second arrange-
ment [112]. In this study, my supervisor Bianca Sclavi and the former PhD student
Chiara Saggioro carried out systematic mutagenesis of the different DnaA binding
sites present on the dnaA promoter and measured their effects both in vitro and in
vivo in order to gain an improved understanding of the role of the complex regula-
tion of DnaA expression. Mutations are summarized in Figure 3.6A. By the use of
a quantitative in vitro DNase I footprinting assays, they measured how mutations
in the dnaA promoter change the affinity of DnaA to its binding sites. In parallel,
they used a quantitative approach in vivo, using a GFP reporter fluorescence based
assay, where the dnaA promoter controlled the expression of the gfp gene on a
medium-to-low copy plasmid.

Figure 3.6B-C summarizes the results obtained in vitro in the context of auto-
regulation of DnaA expression. The binding curves for activation and repression of
transcription are drawn in green and red respectively and the dotted grey box in
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the graphs represents the in vivo concentration of available DnaA in the cell. In this
window of concentration DnaA binds to its sites and activates transcription from its
own promoter; at higher concentrations it oligomerizes thus repressing transcrip-
tion (red line). When box1 is mutated, the binding curve is shifted to higher concen-
trations, DnaA can still bind to box2, thus activation of transcription in vivo is still
possible, but at higher protein concentrations than for the wild type promoter. The
binding curve resulting in repression is also shifted to higher concentrations that
are however outside the window of in vivoDnaA concentrations. For this reason an
increased expression from the dnaAP2 promoter is observed when mutating box
1 in vivo.

The presence of activation by DnaA at the dnaAP2 promoter can counteract the
negative effects of inhibitors such as ppGpp or Fis [151, 156]. For example, auto
activation has been shown to allowed continued transcription in the presence of
rifampicin, an inhibitor of transcription initiation [157]. Positive auto-regulation
may thus allow the dnaA promoter to be expressed differently compared to stable
RNA promoters, notably stabilizing RNAP binding in the presence of ppGpp.

Positive and negative auto-regulation can take place within the same cell cycle
due to the oscillations in DnaA-ATP. Auto-repression is thought to take place when
the DnaA-ATP levels have reached their maximum after DnaA-ATP has filled the
low affinity sites at the origin at the time of initiation of DNA replication.

As described above, negative auto-regulation not only contributes to the more
stable maintenance of a maximum concentration of a given protein, but it also al-
lows for a faster expression rate compared to an unregulated promoter to achieve
the same amount of protein [37, 97].

Thus while the average rate of GFP expression is similar in the presence and
absence of auto-regulation [112] we would expect that the cell cycle dependent
kinetics of expression should differ.

Auto-regulation of DnaA expression is then important to limit the range of avail-
able protein that must be always present in the cell and to respond quickly to
changes in the growth rate.

All these results have been obtained from a plasmid. In Chapter 6 we will con-
firm these results placing the GFP gene under control of the same promoter mu-
tants in the chromosome and in particular we will look at the cell cycle dependent
kinetics of expression.
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3.6 DnaA and oriC regulation by SeqA sequestration
The average density of GATC sites in a DNA sequence containing equal amounts
of the four bases is one in 256 bp. The density of GATC sites in the dnaA promoter
region is approximately ten times higher. Nine GATC sites are present in the rpmH-
dnaA promoter region, three of them downstream the transcription start site of
dnaAP2, two overlappingwith the -10 and -35 regions of dnaAP2 and four upstream
of dnaAP1. Those at the -35 and -10 regions are 100% conserved among closely
related bacteria[158]. However, mutants of the GATC sites on the dnaA promoter
have so far failed to show a specific phenotype [158]. Several GATC sites are also
found within the dnaA gene reading frame.

A protein called SeqA binds specifically to hemi-methylated GATC sites. Hemi-
methylated DNA is produced by the replication of the DNA and it is thought to
remain so for about 10-15 minutes until the activity of Dam methylase methylates
the newly synthesized DNA strand (adenine methylation). SeqA has an N-terminal
domain important for oligomerization connected with a flexible linker to the C-
terminal domain responsible for the interaction with the GATC sequences.

SeqA binding sites are abundantly present in OriC and several of them overlap
with weak DnaA boxes[159]. The binding of SeqA can then contribute to the proper
timing of initiation of DNA replication by inhibiting both binding of DnaA to the
origin and production of DnaA right after initiation of replication has taken place.

Eventually, SeqA spontaneously dissociates from oriC. Free SeqA binding sites
are then methylated by Dam methylase, which blocks further SeqA binding [160,
161]. It has been shown that the GATC sites were sequestered inmuch shorter peri-
ods when the seqA gene was mutated or absent [162, 163]. These fully methylated
origins are once again able to initiate a new round of replication when sufficient
DnaA-ATP has accumulated (Figure 3.7).

The period where reinitiation is not possible is the so called “eclipse” period and
it typically last 1/3 of the cell cycle allowing for the levels of DnaA-ATP to decrease
below the critical level for initiation.

In addition to preventing duplex DNA at the origin from opening through inhibi-
tion of DnaA binding, SeqA can also affect DNA topology directly [165]. SeqA dimers
were shown to introduce positive supercoils that could decrease the tendency of
the DUE to unwind and thereby also influence replication initiation frequency [165].
SeqAfilaments, in addition, were shown to prevent the formation of negative super-
coils [165]. In dam mutant cells, there is no sequestration by SeqA; consequently,
DnaA can immediately rebind to the origins after the first initiation event, and ini-
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Figure 3.7: DnaA promoter sequestration by SeqA Two or more GATC sites can bebound by SeqA when they are in the hemi-methylated state. Binding of SeqA inhibitsDnaA binding, RNAP binding, transcription of the promoter and Dammethylation, main-taining the hemi-methylated state for a portion of the cell cycle. Dissociation of SeqAallows Dam to methylate the hemi-methylated DNAs, generating fully methylated DNA.From [164]
tiate a second time when the concentration of the active form of DnaA-ATP is high
enough. Transcription from the dnaA gene continues throughout the cell cycle al-
though at a reduced level [166]. Dam methylation, therefore, is not essential for
replication initiation; rather, the cell uses methylation to discriminate between old
and new origins. Also for this reason, SeqA activity becomes important when initi-
ation of DNA replication is induced after DNA damage by UV light [167].

In Chapter 6 I will present the results obtained on the expression of the DnaA
promoter where the 3 downstream GATC sites have been mutated.

49





Chapter 4

Robust and long-term single-cell
tracking in steady growth condition

4.1 Introduction
As we have seen in Chapter 2, in the last decades the technological development in
high-throughput microscopy, imaging, image analysis, and microfluidics has been
critical for the study of single-cell bacterial physiology [63, 168, 169].

An important part of my PhD has been dedicated to the design and testing
of a new experimental setup and data analysis pipeline for studying the growth,
size, and gene expression of E. coli in controlled environmental conditions. In this
Chapter, I will introduce the integrated microfluidics and time-lapse microscopy
approach I have used to quantify growth, division, and protein expression at the
single cell level within the cell cycle and across generations.

The novelty of our experimental setup resides in the use of a new pressure-
driven flow control system that improves the quality and the duration of the exper-
iments. At the moment we are one of the first laboratory to use this system and
we also had the opportunity to write an application note in the website of ElveFlow
describing the main advantages of this experimental setup [170].

4.2 Results

4.2.1 A two-ended microfluidic device
Different techniques have been developed in order to study organisms at the
single-cell level. The most popular technique to perform single cell microscopy is
using agar pads. This is mainly because of its simplicity and relatively inexpensive
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set up. These devices however are not suitable if we need a strict environmental
control setup that can stabilize the system for longer time scales and, more impor-
tantly, if we need to change growth medium quickly and easily without perturbing
the system. Balanced growth is difficult to achieve in bacteria growing in flasks or
on an agar pad, as the nutrients at a certain point run out and metabolites can ac-
cumulate decreasing the pH and slowing down growth. The solution was met with
the introduction of microfluidics. Even in microfluidic devices, different designs
have been suggested and manufactured depending on the nature of study.

Thanks to our collaboration with the laboratory of Kevin Dorfman (University of
Minneapolis, Minnesota, USA), we have developed different kinds of microfluidic
devices that allow to attain balanced cell growth in constant environmental condi-
tions for several hours and then switch the growthmedium to observe the changes
taking place as the cells adapt [171, 172]. Devices with different geometries can
present advantages or disadvantages depending on our experimental needs (Sup-
plementary Figure F.3). We developed these PDMS(Polydimethylsiloxane) devices
from the mould by standard procedure using a plasma cleaner. After the devices
have been prepared, they are stored and are good to use for about a month, fol-
lowing which collapse of structure is often noticed on the devices. The protocol is
reported in Appendix C.
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Figure 4.1: A two-ended mother machine A A two-ended mother machine presents 2large feeding channels and 2000 narrow channel to trap bacteria B. The narrow chan-nels are 1 micrometer wide and are open at both ends (thus the name of the device).The lower end is tapered to avoid bacteria escaping but allowing for the growthmediumto flow through the channel. This can help with cell loading and maintaining a constantenvironment C The progeny of the ‘mother’ cells trapped at the bottom is segmentedand tracked.
The mother machine device was introduced by the Jun lab in 2010 [173, 174],

and in the last years has been extended to other organisms such as yeast or mam-
malian cells [175–177]. In our mother machine there are 2000 parallel channels
that are 25 µm long, 1 µmwide and 1.1 µm deep; channels are tapered at one end
[172], (Figure D.1A). Channels need to be in a rather narrow range of dimensions
for not to display growth-limiting effects[178]. These small channels are flanked by
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2 larger channels (50 µm wide and 20 µm deep) where the growth medium flows
and brings nutrients to the bacteria at the same time as washing away waste and
metabolites. Following loading, some cells enter a narrow channels and become
trapped at its narrower base. The progeny of these ‘mother’ cells then proliferate
up the narrow channels until they protrude into the wide channel and flow away
with the medium (Figure D.1B). This allows for the bacteria to grow in a constant
environment to achieve what is called balanced growth. Such proliferation con-
tinues for hundreds of generations while cells are imaged, and thus steady-state
high-throughput data are acquired (Figure D.1C).
4.2.2 Pressure-driven flow controlled microfluidics
Usually syringe pumps are used to push the growth media inside the device [78,
172]. I used syringes for the first months and a drawback is that it is difficult to
maintain a constant flow rate inside the device. Microfluidic chip resistance can
be very different between one chip to another. Moreover, during the experiment
the resistance can increase due to the formation of clogs (dust, pdms’ fragments..).
For this reason, it is very important to have a pressure-driven flow to have fresh
growth medium flowing in the device continuously at constant speed. Elveflow®
flow control system provides an innovative microfluidic flow control system that
uses patented piezoelectric regulators to enable a fast and precise flow control.
In this way it is easier to have good reproducibility and long lasting experiments.
Moreover, sometimes it can be useful to change growth medium quickly to mea-
sure the cell’s changes during an adaptation process.

The entire microfluidic setup (Figure 4.2) is composed of a pressure-driven flow
controller (0 – 2 bar pressure range), two rotary valves (11-port/10 wayMux Distrib-
utor), two flow sensors and a microfluidic chip, ensuring a constant environment
for long time experiment and allows to quickly change between growthmedium or
temperature. Additionally, the PID feedback loop permits an effective control over
the flow rate while keeping the stability and responsiveness of pressure-driven
flows. These experiments can last up to 72 hours in order to allow us to ob-
serve some of the slower adaptation mechanisms and in order to include several
switches between different concentrations of nutrients. Thanks to the efficient in-
terface, we can easily check the experiments remotely and this can be very useful
particularly for experiments that can last more than 1 day.
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Figure 4.2: Schematic representation of the microfluidic setup A The experimentalsetup used for upshift experiments. B Pressurized reservoir: the fluid flows through theoutlet if gas pushes on the fluid surface. C, List of components: Mux Distribution (a) ,Tubing, fittings and reservoirs (b), Flow controller OB1Mk3+ (c), flow sensor (d), Manifold9 ports (e).
4.2.3 Reference strains and culture conditions
Our experiments have been carried out on the wild-type E. coli strains BW25113.
BW25113 is the parent strain of the Keio collection and has been fully sequenced
[179].

All the promoters analysed in this work express GFPmut2, a fast folding fluo-
rescent protein [180, 181]. This protein exhibits bright green fluorescence when
exposed to light in the blue to ultraviolet range, so was used as biological marker:
the "fluorescent strains" absorb light at ≈ 395nm, then emit it at ≈ 509nm. The fluo-
rescent protein GFPmut2 folds rapidly: half of all proteins mature in roughly 5 min-
utes and 90% in just less than half an hour. A kanamycin resistance cassette (KanR)
is found upstream of each promoter-GFP construct as the selectable marker.

As a reference, we also considered reporter constructs obtained with two pro-
moters used in a previous study [77], both placed at the same origin-proximate
locus (4413507 bp) and at a terminus-proximate locus (1395706 bp). The phage-
derived constitutive promoter P5 has a high affinity for RNA polymerase and lacks
any transcription factor binding sites, thus the GFP production rate from this con-
struct is largely proportional to the gene copy number in the cell. The expression
from the ribosomal reporter P1, derived from the promoter of the ribosomal RNA
operon rrnB, is also not regulated by transcription factors, but depends on ppGpp
and supercoiling levels, due to the presence of a G-C rich discriminator region over-
lapping the transcription start site. In particular, we use a full-length ribosomal
RNA promoter, rrnBP1, here called P1long, and an upstream-shortened version of
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rrnBP1, P1short, where the binding sites for FIS and the high affinity-binding site
for H-NS have been excluded. Differently form ribosomal promoters, the growth
rate dependence of a constitutive promoter is not proportional to the number of
ribosomes, it is limited by the transcription rate, and the gene product is diluted at
faster growth [182].

We used two growth media based on the M9 minimal medium as the base and
glucose as the carbon source. More precisely, the slow medium is M9 with 0.4%

glucose. The fast medium in addition has 0.4% casamino acids. BSA can be added
to themedia for bacteria growing in amicrofluidic environment because it prevents
the adhesion and subsequent aggregation of cells along the walls of the device.
More details about growth media composition are reported in Appendix D.

A home built temperature control system is used to maintain the entire setup
at 30°C but it supports temperatures in the range 20-40°C. We choose to perform
experiment at 30°C because in literature there are many other studies at this tem-
perature and it would be then possible to compare them with our results.
4.2.4 Opticalmicroscopy, image acquisition and image analysis
We use a Nikon Inverted Microscope ECLIPSE Ti-E with 100X oil objective high NA
(Numerical Aperture) lens, coupled with a Nikon Perfect Focus System (PFS) to rec-
tify drift in focus. A x-y motion plate is used to memorize and loop over different
ROIs (RegionOf Interests) at specified intervals of time. To avoid shifts of the device
during data acquisition a support has been designed and printed with a 3D printer
provided by a research group from Sorbonne Université.

Thanks to the automated x-y stage and the perfect focus systemwe can acquire
data on thousands of cells within the same experiment. In this experimental setup,
fluorescence images are taken with light from a blue LED passed through a GFP
filter. Different strains of bacteria may express GFP at different levels. Henceforth
it becomes necessary to adjust the exposure time and acquisition parameters for
different strains in order to obtain enough fluorescence and simultaneously not
saturate the pixels. Moreover it’s very important not to expose the bacteria to blue
light during the first few hours when the bacteria are adapting to the microfluidic
device.

Movies obtained from themicroscope are in the .nd2 format and can be opened
and post-processed using the Fiji software. I wrote ImageJ macros to process the
.nd2 videos and to convert them in tiff files necessary to proceed with the seg-
mentation and tracking steps. In particular, only frames with a good focus are
selected and device drift or rotation are corrected. Background subtraction is then
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performed using a 50-pixel rolling ball protocol and different positions (FOV) are
stored separately as sets of tiff image files. A folder is created for each FOV. For
each FOV, channels are selected manually as region of interest (ROI) and stored
in different folders as a sequence of tiff files. The final result is a folder for each
experiment containing a folder for each FOV in turn containing a folder for each
channel, containing a sequence of tiff files (one for each time frame). This is the
input for the next steps: segmentation and tracking.
4.2.5 Segmentation and tracking
Automated image segmentation and tracking are important steps in the analysis
process. This process will result in a set of segmented contour cells over time
whose label give us information about their genealogy (Figure 4.3). In order to
perform segmentation and tracking onmothermachine data, we use the codes de-
veloped by Mia Panlilio, Cambridge University [78]. Necessary modifications were
made based on our experimental setup. An effort has been made to create an
easy-to-use pipeline that goes from raw videos to a list of segmented and tracked
cells.

A B

Figure 4.3: Segmentation and tracking algorithm for images obtained with themother machine A Cells are boundary coloured according to local curvature with re-gions of strongly negative curvature (dark blue) indicating pinch points (black cross)at which to further segment cells. B Boundary coordinates overlaid on the originalgrayscale image (a). Total cross sectional area calculated as the area enclosed by theboundary, including edge pixels (b). Total fluorescence intensity associated with the en-closed area (c). Principal component analysis on boundary to determine axis of orien-tation (d). Cell presented in principal axis space, where length is the maximum distancebetween boundary points along the first axis. Along the second axis, maximum width isalso shown(e). From [78]
I will now report briefly how the segmentation and tracking algorithm works.

More details can be found in [78]. Functionsmarked by "†" refers to built-in Matlab
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Notation Name Unit Description
l Length µm

Greatest pairwise distance between boundary points along the first principal axis(found by pca†)
Area Area µm2 area enclosed by boundary points, including edge pixels
w Width µm width assuming the projected area is a rectangle with semicircular caps of radius w

2

V Volume µm3 V = π(l− < w >)(w
2
)2 + 4

3
π(w

2
)3

F Fluorescence µa.u. Total fluorescence intensity of the segmented pixels corresponding to A
τ Division Time min time elapsed since birth of a cell

Table 4.1: Summary of key single cell measurements.
functions.

First, the cropped image of the k-th microchannel is passed through a 2D me-
dian filter to remove hot pixels (medfilt2†) and then resized using bilinear inter-
polation (imresize†, 3x magnification) to further smooth intensity values before
thresholding. The cropped greyscale image is thresholded using Otsu’s method
with few modification. The thresholded image is then morphologically dilated us-
ing a 3 pixel radius disc (imdilate†) to compensate for the slight oversegmentation
during thresholding and further smooth object edges. The boundaries of the re-
sulting objects are then found with bwboundaries†.

Each object was then assessed according to its ordered (x, y) boundary points,
with each coordinate pair representing an edgepixel. For a single bacterium this set
typically consisted of about 120 points on the magnified image. Curvature is then
computed (Figure 4.3). The local minima of negative curvature regions are each
designated as a “pinch point” and, owing to the configuration of the cells, generally
one pair of pinch points can be connected to separate two adjacent cells.

For generic object tracking, the most common algorithmic approach calculates
pairwise distances between objects in consecutive frames looking for the assign-
ment thatminimizes all pairwise distances.The disadvantage is that this calculation
has a huge computational cost . Instead, the tracking procedure can take advan-
tage of the geometric constraints imposed by the mother machine’s geometry. In
particular,in themothermachine, in the absence of cell divisions a cell’s rank within
a channel is conserved between frames. The task can be reduced to sorting cells
in-channel based on distance from the dead-end and determining markers for cell
division to adjust the rank-based pairing as necessary. In particular, division has
occurred if two adjacent cells show a significant area reduction.

Fluorescence images and the cell boundaries retrieved from segmentation are
used to measure cell size, shape, and GFP expression. Volume is computed consid-
ering a cell as a cylinder with two hemispherical caps. Similarly, width is computed
assuming the projected area is a rectangle with semicircular caps of radius w

2
.

The final result is two .txt files for each channel, one with observables reported
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for each cell at each time frame, and a second one with observables for each cell
at birth and division. In Table 4.1 a list of the main observables obtained by seg-
mentation are reported. Lastly, outputs from different channels are joined with a
simple bash script.

Another microfluidic device was developed in our collaborator Kevin Dorfman’s
lab [171, 172]. This device consists of chambers that are 1micron high but of differ-
ent widths (30 x 60, 30 x 120, 120 x 30 etc). If we utilize chambers instead of chan-
nelswe can’t take advantage of the device geometry to proceedwith the tracking. In
this case we can use the Matlab-based software Supersegger [183]. The main prin-
ciples are similar to the ones describe before for the mother machine but Super-
Segger incorporates machine-learning algorithms to optimize cellular boundaries
and automated error resolution to identify and link cells from one frame to the
next. The two dimensional displacement of the cells within the chamber however
renders more difficult the tacking, unless a high acquisition rate is used, which can
result in photodamage in some cases. I have used supersegger to track fluorescent
foci inside the cells.
4.2.6 Data handling
Image acquisition for one experiment consist of over 20 fields of view, each one
with 10 channels, and each channel with about 10 bacteria. Each 3 minutes a new
set of images is acquired. This can result in up to 10 000 cells in a 7 hour experiment.
The high throughput and high spatio-temporal resolution nature of acquisition ne-
cessitates the development of a fast and flexible pipeline of data-analysis.

In particular, I wrote a set of R Markdown notebooks to easily go from raw data
to preliminary results. The first, fundamental step, is data cleaning. Single cell mea-
surements reveal indeed that within a population there is a wide distribution of
sizes, division times and gene expression levels. Sometimes these distributions ap-
pears bi-modal. Errors in segmentation and tracking process can be a main cause.
Other causes can be due to an abnormal growth (or no-growth) of bacteria them-
selves, such as filamentation. A residual inner stochasticity is expected and it is
due to the intrinsic noise [184, 185]. To discriminate between these two kinds of
fluctuations we implement a set of filters to our datasets. In particular, the time in-
tervals where bacteria have reached their steady state in a given growth medium
are considered: a symmetry filter is applied considering only the daughters with
a volume between 0.4 and 0.6 of the mother and only cells with doubling times
longer than 15 mins and positive growth rate are considered.

Thousands of single cells for each experiment pass the filtering step and lin-
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eages of 3-15 generations are generated. Generation plots in Figure 4.4A were ob-
tained using Tunacell, developed by Joachim Rambeau, a former postdoc in our lab.
Tunacell is a Python package that provides tools to analyze data from time-lapse
movies of dividingmicro-organisms (https://tunacell.readthedocs.io). This package
is very useful to analyze time-series defined overmany cell-cycles, to compute aver-
age values, variance, autocovariance for a single observable, and cross-covariance
for a couple of observables over time. I contributed to the debugging of this li-
brary and I optimized it to be used with our dataset and it has been very useful in
particular for the cross-correlation analysis presented in Chapter 6.
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Figure 4.4: Cell cycle analysis through lineages A Generation plots. B Volume versusexperimental time for a 9 generations lineage. C Volume versus cell-cycle phase for thesame lineage. Cell-cycle phase is 0 at birth and 1 at division and all the single tracks areaveraged together.
In Figure 4.4 we can see the dynamics of fluorescence and volume change ver-

sus experimental time for a 9 generations long lineage.
To examine the effects of cell-cycle progression on gene expression, we can

align growth and expression data with respect to a cell-cycle phase defined as the
re-scaled time between two consecutive divisions. The cell-cycle phase will be 0
at birth and 1 at division. This procedure makes it possible to average together
cells with all doubling times, hence increasing the statistical power (3-8000 cells
in our case). Moreover, looking at the fraction of the cell cycle, instead of looking
at absolute time, may make a difference in the growth rate and gene expression
pattern if, for example, changes in growth rate and/or gene expression reflect the
progression of the cell cycle as measured by the occurrence of specific events such
as the beginning and end of the DNA replication and cell division processes.

Based on our working hypothesis, which aims to define the gene expression
parameters correlated with cell growth and division, alignment is also useful with
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Name Unit Description
Length µm instantaneous cell lengthVolume µm3 instantaneous cell volumetime from birth min time elapsed from cell birthtime to division min time missing to cell divisiontime to daughter’s division min time missing to cell’daughter divisioncell-cycle phase t/τ min (time− timemin)/(timemax − timemin)

Table 4.2: Summary of cell cycle normalizations
Notation Name Unit Description

dF
dt

production rate a.u.min−1 discrete derivative of fluorescence over time
dV
dt

growth speed µm3.min−1 discrete derivative of volume over time
1
V

dF
dt

specific production rate a.u.min−1µm−2 production rate normalized by volume
1
V

dV
dt

specific growth rate min−1 growth rate normalized by volume
Table 4.3: Summary of derived observables

respect to cell volume or time from/to division. In fast growth conditions, when
multipleDNA replication forks exists, a normalizationwith respect to cell’s daughter
division can be useful to measure possible mother/daughter correlations (Table
4.2).

All these different normalizations allow us to average data from different cells,
grouping data based on the value of the x-axis variable, and finding the mean of
the fluctuating y-axis variable for this group. Sometimes this binning analysis can
bemisleading because of “hidden” noise sources thatmay affect the binning proce-
dure; this leads to the phenomenon of “inspection bias” where certain bins have bi-
ased contributions. Having an underlying model (or models) to guide/test/validate
data analysis methods may be very important [73].

We assume that the changes in the expression rate of GFP are due to changes
in promoter activity and not in changes in translation rate. To estimate the pro-
moter activity in single cells, we define the GFP production rate as the discrete
time-derivative of fluorescence dF/dt from the time series of total fluorescence
F (t). Similarly, growth rate was defined as the discrete derivative of volume dV/dt,
and volume-specific growth rate as 1/V (dV/dt). A complete list of these computed
variables is provided in Table 4.3.
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4.2.7 Design of different microfluidic experiments
Once we have a robust protocol for data acquisition and data analysis we are ready
to do experiments. Based on our biological question we can design different ex-
periments, switching for example between different growth media or adding an-
tibiotics. The former is what I did during my PhD, the latter is what the new PhD
student Lexuan Liu is working on. Lastly, this experimental setup can also be used
to track fluorescent loci inside the bacteria.
Upshift and downshift experiments

Fluctuation in nutrient availability is likely the most common stress faced by single-
cell microorganisms in their natural environments. Thanks to the experimental
setup described above we are able to quickly change between different growth
media. We measured the time necessary to completely fill the device with the new
growth medium and determined that it is negligible in the timescale of our exper-
iments and that all the channels are exposed to the change in growth medium at
the same time and that therefore we can consider that all the channels get the
growth media at the same time (Appendix F).

In our experimentswe switch from the slow growthmedium containing only glu-
cose to the fast one containing also casamino acids. We can also switch between
the fast and slow growthmedia; this is what is called a downshift experiment. Both
steady state data and the adaptation process can give us important information,
but exploring the dynamics of different observables in response to a perturbation
has the potential to allow one to explore causal relationships between these vari-
ables.

Figure 4.5 shows how the mean cell growth, cell division and cell size parame-
ters follow a very complex dynamics across the nutrient upshift, characterized by
multiple time scales and trends whereby the same quantity can both increase and
decrease in different time windows. In the first growth medium, the cells spend a
lot of energy synthesizing their own amino acids and therefore grow more slowly.
Once the amino acids are added, the glucose is used mostly for energy production
and the growth rate can increase. One can see that the cell division time becomes
shorter and cell volume increases as the bacteria adapt to a faster growth rate.
In addition, in this case, the fluorescence also increases soon after the change in
growth medium, indicating that gene expression has been induced as part of the
cellular response.

The two well-defined steady states, respectively in the slow and fast growth
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medium, obtained with strains expressing GFP from different promoters chosen
to address the questions specific to my project will be described in the following
chapters. Thanks to our pressure-driven flow control system, bacteria can reach
the exponential growth in a given growth medium and grow for several hours in a
constant environment.

Nevertheless, the upshift data are full of information and at the moment the
data I obtained have been already used for two side projects I’ve been working on.

The first set of results contributed to the publication "Threshold accumulation
of a constitutive protein explains E. coli cell division behavior in nutrient upshifts"
[78]. In this work, we used the information obtained about single-cell growth di-
vision upon nutrient changes to test different models and to discriminate among
fundamentally different mechanisms of cell division control. In particular, we show
that the data support a model where a protein expressed from a constitutive pro-
moter accumulates to a threshold and triggers division.

The second set of results is part of a still ongoing project. It is based on an
already published theoretical work [186] and consists in the characterization of
the width response to nutrient shifts in E. coli single cells. In [186] they describe a
stochastic relative rates mathematical model for width, or for surface to volume ra-
tio fluctuations at equilibrium. Analysingmy data wewant to test if the fluctuations
in response to a nutritional upshift mirror fluctuations at equilibrium (fluctuation-
dissipation theorem).
Labelling of chromosomal loci

If we want to know when and where the initiation of DNA replication happens in
the single cell we can label chromosomal loci near the origin of DNA replication
and track them within the cell cycle.

We obtained E.coli strains with parB-parS systems expressing ParB-GFP from
the Boccard lab [187]. In this strain, a ParB binding site, parS, has been inserted in
the chromosome near the replication origin. ParB-GFP proteins proteins produc-
tionwas induced for 30minwith 30µM IPTG [188] and this allows the easy detection
of fluorescent foci that colocalize with replication origins (Figure 4.6. This system
allows for the measurement of foci numbers and, if we follow this number over
time, we can extrapolate the moment in the cell cycle when origins double, when
the initiation of DNA replication happens.

The software SuperSegger includes tools for the quantitation of cellular fluores-
cence, including the identification of fluorescent foci. To identify and score foci,
SuperSegger uses an image-curvature method which is specifically engineered to
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Figure 4.5: Preliminary results for upshift experiments Population average changesin division time (A), growth rate (B), volume (C) and fluorescence (D) as the bacteriaadapt from a poor to a rich growth medium over a 12 hours experiment obtained withthe microfluidic setup. Growth medium change happens at time=0 (vertical line)
avoid the identification of false positive foci due to background intensity from cy-
toplasmic fluorescence. Foci detection is performed in the union of all cell regions
and foci are then allocated to cells to circumvent the double counting of foci close
to the membrane at the interface between cells.

The drawback of this protocol is that bacteria are not very fluorescent by them-
selves and segmentation and tracking results complicated. An important step
would be to analyze strains expressing GFP (green) in the cytoplasm with mcherry
(red) spots. In this way in the same cell we will be able to have information of
growth, DNA replication and promoter activity. The first trials have been unsuc-
cessful but we already have these strains. In Chapter 6 we used this experiment to
obtain an estimation of the number of origin and the timing of replication initiation
in the two different growth media.
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Figure 4.6: Preliminary results for foci experiments (A) ParB binding site, parS, hasbeen inserted in the chromosome near the replication origin and GFP-ParB proteinsform fluorescent foci that localize near the replication origins protein–DNA complex.After replication the number of foci doubles. (B) Fluorescent image of cells with fluores-cent loci in microfluidic channels. (C) Localisation of the foci in E. coli bacteria growingin different growth media as a function of the cell cycle.

4.3 Discussion
To resume, in this chapter I presented a newmicrofluidic experimental setup that I
set up in our laboratory and a new implementation of a pipeline for image analysis
and data visualization.

Thank to the versatility of this setup and the straightforward and user friendly
pipeline of image acquisition and analysis I have developed, I have already trained
bachelor students, master students and a PhD student to use this setup to do their
own experiments.

The data I obtained are full of information and, beyond my main project, I have
been using them to contribute to different side projects, such has one published
article on the upshift dynamics [78], and one in progress on cell width fluctuations.

In the future, a new temperature control system could be useful to keep the
temperature constant in a more robust way and to be able to change dynamically
the temperature of the device.

We have recently build newbacterial strains expressingmore than one different
fluorescent reporter protein under control of different promoters. This will allow
us to directly measure the activity of multiple factors involved in regulation of gene
expression within the same cell and as a function of genome position.

Finally, new results are always followed by new questions and thanks to the
versatility of this experimental setup we can always think about new experiments
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to do.
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Chapter 5

E. coli growth is biphasic and it
follows the change in ori-proximal
gene dosage

5.1 Introduction
A classic question in bacterial cell biology is how E. coli grows. Analysis of growth
often involvesmeasurementsmade on cell populations, which give information on
the average properties of the cells in the population. Single cell studies of the evo-
lution of cell growth parameters as a function of the cell cycle can provide unique
information that is not available from studies of cell populations [189].

A direct coupling between themetabolic state, the balance between amino acid
synthesis and consumption by protein translation, and the cell’s growth rate has
beenmeasured at the population level, when the growth rate was varied by chang-
ing the composition of the growth medium. One of the outstanding questions is
whether this coupling could also lead to the observed strong correlation between
the growth rate and the protein production rate of a cell at the single cell level[190].
The aim of the work presented in this Chapter is to gain more information on the
mode of growth of single E.coli cells and on how this is coupled to gene expression.

To address this, we followed cell growth and gene expression at the single cell
level from strains expressing GFP from both constitutive and ribosomal promoter
placed in the chromosome in 2 different positions, ori-proximal (Ori3) and ter-
proximal (Ter3) (see Appendix 4.2.3). All these strains were grown in two growth
conditions: a "slow" growth condition inM9-glucose with an average doubling time
of 75 ± 5min and in a "fast" growth medium, M9-glucose-casamino acids, with an
average doubling time of 45 ± 5min. These growth conditions correspond to the
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two steady states from the upshift experiment presented in Chapter 4.2.7.

5.2 Results

5.2.1 E. coli growth is biphasic
One of the earliest attempts to measure the size of individual bacterial cells is
seen in Henrici’s 1928 book, where he reported the observed changes in cell size
in a growth-phase-specific manner and measured cell size using bright-field mi-
croscopy observations [191].

More recently, the growth and division of single cells was studied by imaging
hundreds of cells growing on agar pads [32]. With the advent of microfluidics tech-
niques it has been easier to follow the growth of thousands of single cells in a con-
stant environment, providing increased statistics necessary for the measurement
of what can be small fluctuations [63, 168, 169, 171, 172].

In the literature, there are single cell studies supporting exponential growth
within a cell cycle [66, 168, 173, 192–194], as well as linear [189], bilinear [195] or
even trilinear growth [196]. This debate now seems considered settled by modern
single cell data [67, 173], and an exponential fit of cell size as a function of time
or cell cycle phase seems to be a good description for the growth of E. coli. Never-
theless, we know how it could be very tricky to discern between different mode of
growth in single cells’ trajectories [168, 189, 197].

In a recent work on B. subtilis, a newmethod to probe themode of growthwithin
a cell cycle has been proposed. The authors looked at the variations within the cell
cycle of the specific elongation rate 1

L
dL
dt
, where L represents the cell length. For

cells that are in balanced growth, in a constant environment, the specific growth
rate is expected to be constant, if the cell grows exponentially. Thanks to this anal-
ysis, they have been able to show that even though the average growth at the
population level appears to be exponential, closer inspection of the cell cycle of
thousands of single Bacillus subtilis cells reveals systematic deviations from a fixed
exponential growth rate. This method has been recently proven to be a consistent
method to determine the changes in growth rate within a cell cycle and probe the
mode of cell growth [73].

Similarly, to investigate E. coli growth, I have looked at the growth speed dV
dt
and

the specific growth rate 1
V

dV
dt
as a function of the cell cycle (Figure 5.1). Here I use

the cell volume V , computed considering a cell as a cylinder with two hemispherical
caps, as a proxy of cell size (see Chapter 4).
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It has been recently found that currentmethods using only cell length as a proxy
for size can lead to inappropriate conclusions [29, 66, 198] and that improvedmeth-
ods accounting for variations in cell width can facilitate reassessment of cell size
control mechanisms and other aspects of cell growth [199, 200]. Despite this, we
found a biphasic behaviour no matters which proxy for size is considered (Supple-
mentary Figure G.3).

As we have seen in the previous Chapter, the cell cycle phase is obtained by
dividing absolute cell age (in minutes) by the cell age at division, resulting in scaling
of normalized age from 0 to 1. This normalization allows to average together cells
with different doubling times, hence increasing the statistical power of the analysis
(5000-10000 cells in our case) [32], avoiding that longer cell cycles contribute more
(with more time points) to the population average.

For cells assumed to be growing exponentially, the specific growth rate is ex-
pected to be constant throughout the cell cycle. By averaging over multiple cell
cycles, the trend of binned data is supposed to be an horizontal line with a value
equal to the mean growth rate. However, the data is not consistent with constant
exponential growth (Figure 5.1).

The deviations from a simple exponential trend occur in all cells similarly and
seem to be associated with specific phases of cell-cycle progression. If they oc-
curred randomly along the cell cycle in individual cells, they would cancel out when
the single-cell data are averaged, and onewould not observe systematic deviations
from exponential growth.

The change in slope in the specific growth rate is present in both growth con-
ditions but we can see a difference in the phase at which this happens. We can
then compare the phase at which the change in slope happen with the average
initiation time for DNA replication. The latter can be estimated quantitatively by a
standard model [45] using experimental parameters for the length of the C and D
periods, which also takes into account the case where multiple replication rounds
are active in the same cell cycle. We have alsomeasured the dynamics of DNA repli-
cation in vivo and verified that they are consistent with these estimations (Figure
5.2A). In Figure 5.1 we observe that the average initiation of DNA replication timing
precedes the increase in specific growth rate. It is possible that replication of ribo-
somal operons (5 out of 7 are ori-proximal) may play a role in the change in growth
rate. Another possibility could be that this has to do with replication of the genes
coding for some limiting cell-wall synthesis components since an operon for pep-
tidoglycan synthesis is present near the origin. This operon contains genes from
murE (93,166 bp) to ddlB (103,153 bp) that code for proteins involved in different
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aspects of peptidoglycan synthesis [201].
Similarly, Bruggeman et al. proposed that this change in growth rate within the

cell cycle could be coupled to the initiation of DNA replication in B. subtilis [202]
while other studies have pointed to changes in growth rate at the start of cell con-
striction [196, 203]. Lastly, in a recent preprint it has been proposed that in E. coli
the increase in growth rate in the second phase follows the initiation of DNA repli-
cation in slow-growing cells and follows cell wall constriction in fast-growing cells,
possibly hinting at a replication-related cell cycle control in slow-growth conditions
and a divisome-related control in fast-growth conditions [12]. In the latter study
slow growth refers to doubling times longer than 100 minutes and this means that
the two growth conditions analysed in my work are both considered fast growth
and thus in the scenario where the change in growth rate should follow the start
of cell wall constriction.
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Figure 5.1: E.coli growth is super-exponential in both fast and slow growth con-ditions The plots show binned averages of the growth speed (A,B) and specific growthrate (C,D), computed with respect to cell-cycle phase. A-B At both slow and fast growth,growth speed appears biphasic. C-D At both fast and slow growth, the specific growthrate shows a dip, and the change in slope corresponds to the expected phase of initia-tion of DNA replication. Around 3000 cell traces are averaged together in each condition.Error bars are standard errors of the mean from a re-sampled distribution of the signal,obtained by bootstrapping from the experimental data for each bin. The average ±SDinitiation time is the shaded box.
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5.2.2 Single-cell growth rate is linked to gene copy number at
the origin

Cell growth is a complex process in which cells synthesize cellular components
while they increase in size. It is generally assumed that the rate of biosynthe-
sis must somehow be coordinated with the rate of surface growth in order to
maintain constant intracellular concentrations [204]. The observed biphasic, non-
exponential growth behavior of a single cell along its cell cycle raises the question
of how its protein synthesis rate behaves and how it correlates with cell growth.
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Figure 5.2: The estimated time of initiation of DNA replication is confirmed by in
vivo measurement of fluorescent loci and the specific GFP production rate froma ribosomal promoter inserted close to the origin shows a pattern similar to thespecific growth rate (Figure 5.1). (A, B) Foci intensity position and along the long axisof the cell. An increase in intensity is observed before the separation of the origin at slowand fast growth. (C,D) Binned averages of the specific production rate of GFP, computedwith respect to cell cycle phase. At both fast and slow growth, a dip is present at a phasethat corresponds to the expected phase of initiation of DNA replication. Around 3000cell traces are averaged together in each condition. Error bars are standard errors ofthe mean from a re-sampled distribution of the signal, obtained by bootstrapping fromthe experimental data for each bin. The average ±SD initiation time is the shaded box.

To address this we start by looking at cell cycle-dependent changes in protein
expression from a ribosomal promoter placed close to the origin. More precisely,
from an upstream-shortened version of rrnBP1, where the binding sites for Fis and
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the high affinity-binding site for H-NS have been excluded (see Chapter4). This pro-
moter is expected to have a similar affinity for RNAP as the constitutive promoter
P5 [205]. In addition, the GC-rich discriminator region at the transcription start site
makes transcription initiation sensitive to the changes in DNA supercoiling and the
concentration of ppGpp in the cell.

Figure 5.2A-B shows the timing of initiation of DNA replication in these growth
conditions obtained by the observation of parB-GFP fluorescent foci as described
in Chapter 4.2.7. We can see how the cell cycle phase at which we observe the
doubling of the origin is consistent with the initiation time estimated from the C+H
model with C+D = 60 mins. GFP production rate is expected to be dependent on
the cell cycle because the replication of the promoter-GFP construct at a specific
moment in time increase the probability that it will be transcribed. Consistently,
in Figure 5.2C-D we see that the cell cycle phase where GFP production rate start
to increase corresponds more or less with the initiation of DNA replication in both
growth conditions.

If we compare the pattern of the specific growth rate (Figure 5.1) with the
volume-specific expression rate of the ribosomal promoter inserted close to the
origin (Figure 5.2) we see that they both exhibit the same biphasic pattern, chang-
ing in slope at the same cell cycle phase. This is in agreement with the proposal that
the change in growth rate could be coupled with the doubling of a gene close to
the origin of replication. In order to test this directly we compared the expression
of a gene in two different genomic positions.
5.2.3 A gene’s position in the genome can play a role in modu-

lation of gene expression as a function of the cell cycle in
addition to the timing of change in gene copy number.

Since gene replication occurs at a time in the cell cycle that depends on its genomic
position, more precisely on its distance from the origin, the timing of the change
in production rate is expected to be sensitive to the gene’s location. To address
this, we looked at the cell cycle expression of a constitutive promoter inserted in
two different position in the chromosome, one close to the origin, and one to the
terminus. The expression of a constitutive promoter only depends on gene copy
number and this makes sure that the pattern we see it is only due to gene copy
number fluctuations.

It has already been observed that genes located at opposite sides but at the
same distance from oriC duplicate at the same time and show the same cell cy-
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cle dependence of protein production and concentration, while, if one gene is lo-
cated closer to the origin compared to the other, the increase in protein produc-
tion occurs earlier [32]. This happens in the simple case of non-overlapping repli-
cation rounds, however, in the presence of multiple rounds of replication a gene
farther from the origin can be copied earlier in the cell cycle because it is part of a
replication round that has begun in the previous generation. As expected, the ori-
proximal specific GFP production rate is higher than the ter-proximal one, while
the growth rate is very similar between these two strains (Figure 5.3 A-B-C ). All the
strains present a biphasic pattern in GFP expression, as observed for the ribosomal
promoter. Also, the position of the inflection point is consistent with the different
replication timing of the site of insertion (Figure 5.3D). The specific promoter activ-
ity for the promoter at the terminus increases earlier than the one near the origin
because of the timing of DNA replication. The fact that gene duplication happens
earlier (in cell cycle phase) for the promoter near the terminus is due to the fact
that we are in the presence of overlapping rounds of DNA replication, as described
above.

The cell cycle dependence of the ori-proximal constitutive promoter is similar
to the one we found for the ori-proximal ribosomal promoter (Figure 5.2 C-D). This
is interesting because in bulk the growth rate dependence of these two promoters
is quite different [205]. While they have a similar affinity for RNAP, the ribosomal
promoter in addition is regulated by changes in ppGpp concentration and levels
of negative DNA supercoiling. In these growth conditions these factors do not con-
tribute to the cell cycle dependence of gene expression.

The phase-dependent GFP production rate is different for the ori- and ter-
proximal P5 promoters (Figure 5.3D). While for both promoters, near ori and ter,
the increase in gene expression in the second phase can be associated with the
timing of the increase in gene copy number, only the specific promoter activity for
the ori-proximal promoter decreases until the gene is copied, mirroring the pat-
tern seen with the change in specific growth rate (Figure 5.1). Promoter activity
near ori also shows a stronger cell cycle dependence and a larger fold-change in
expression.

The difference in the shape of the curve of constitutive gene expression be-
tween the ori-proximal and ter-proximal strains could be explained by the high
density of native ribosomal promoters in the ori region of the genome that are
able to out-compete nearby promoters for local transcriptional resources, espe-
cially under faster growth conditions. It is interesting that the decrease in specific
promoter activity ends with the duplication of ribosomal operons. As if upon dupli-
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Figure 5.3: Specific production rate of a constitutive promoter inserted close tothe terminus is lower than the same promoter inserted near the origin and isnot correlated with the specific growth rate. The expression of GFP from constructsinserted near ori (darkgreen) or ter (cyan) are compared. A GFP production from con-structs either near ori or ter does not have an effect on the growth rate, showing thesame cell-cycle phase dependence. BGFP production rate from a ori-proximal promoteris higher than for a ter-proximal promoter. C Fold change in the specific growth rate(normalized by the mean) for strains containing the promoter-GFP constructs near theori or ter show a similar biphasic pattern. D The fold change for the specific GFP pro-duction rate (normalized by mean) for a ter-proximal promoter shows less dependenceon the cell-cycle phase than the ori-proximal one. Error bars are standard errors ofthe mean from a re-sampled distribution of the signal, obtained by bootstrapping fromthe experimental data for each bin. The average ±SD time of gene duplication is theshaded box.
cation, each copy of ribosomal operons used less RNA polymerase, allowing an in-
crease of transcriptional resources for nearby genes. The correlation of the specific
growth rate with the specific expression rate of a constitutive promoter near the
origin suggests that genes in this region of the genome may be limiting for growth
rate and not just ribosomal operons. Furthermore, the difference in specific GFP
production rate between the beginning and end of the cell cycle suggests that the
specific production rate increases after cell division, before starting its descent. At
the terminus-proximal construct the opposite trend is observed.

Previous work has proposed that there is differential RNAP availability along
the genome due to the presence of highly transcribed ribosomal operons near the
origin [206–208]. Our results seem to be in contradiction with Scholz’s observa-
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tion that there is a higher availability of RNAP close to the ribosomal operons [208].
However, the distance between our promoter insertion site (aidB gene) and the
closest ribosomal operon (rrnE) is too large to contribute to an higher local con-
centration of RNAP. The distance is indeed 0.2Mb, while Scholz shows that higher
availability of RNAP is negligible already at a distance of 0.15Mb. It should also be
noted that Scholtz et al. results were obtained in bulk and thus reflect the average
level of expression.

Our results show that expression from genes placed in different positions on
the chromosome may differ not only because of the different timing in gene dupli-
cation but also because of their change in specific promoter activity as a function
of the cell cycle phase. In eukaryotes it is well known that the position of a gene on
the chromosome can have an effect on its expression for different reasons [209–
212], but such effect in bacteria is still less understood [213]. Several factors can
contribute to a position dependence of gene expression, such as proximity to ribo-
somal operons, as mentioned above [208], the presence of regions with high levels
of H-NS binding [214, 215], transcriptional interference [216] and DNA supercoiling
coupled to changes in sequence-dependent DNA stability [217, 218].

We next analysed the expression of two versions of a ribosomal promoter
(rrnBP1) containing or not the Fis and H-NS binding sites upstream of the core
promoter region (Figure 5.4A). The former will be referred to as P1long, the latter
as P1short. Both P1short and P1long are expressed in a growth rate dependent
manner thanks to the presence of the GC-rich discriminator region overlapping
the transcription initiation site, and thus by regulation by ppGpp and DNA super-
coiling. In the P1long promoter, activation by Fis at fast growth and repression by
H-NS at slow growth increases the growth rate dependent regulation [219, 220].
In principle, the P1long ori-proximal reporter is most representative of the actual
ribosomal gene expression: it is the full length promoter, containing all the binding
sites for Fis and H-NS and it is near the origin of DNA replication.

These unpublished data have been obtained by Mia Panlilio in our collaborator
Pietro Cicuta’s laboratory at Cambridge University. The strains used are the same
we use in our lab, as well as the growth media (M9-glucose for slow growth and
M9-glucose CAA for fast growth) but her experiments are performed at 37°C. At
37°C in the slow growth medium the doubling time (47 ± 7min) is similar to the
doubling time of cells growing at 30°C in the fast growth medium (48 ± 4min). As
expected, variations in temperature have a larger effect on growth rate than just
cell size (Supplementary Figure G.1) [41]. The data obtained for the expression
of GFP from the constitutive promoter in these condition are consistent with the
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results obtained at 30°C (Supplementary Figure G.2).

In Figure 5.4C we see that at the ter-proximal position P1short and P1long are
very similar to each other. In the first half of the cell cycle there is a decrease in the
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specific production rate, followed by a sharp increase at the time of gene duplica-
tion. At the ori-proximal position, the pattern of the P1short promoter construct
looks similar to the one observed for the origin-proximal P1short or P5 at 30°C (Fig-
ure 5.3). The construct with the full length ribosomal promoter, on the other hand,
does not decrease at the beginning of the cell cycle. In the P1long promoter the
presence of Fis helps recruit RNAP, which might result it to better compete with
neighboring genes, notably the ribosomal operons, as described above. Lastly, in
both chromosomal positions P1long increases earlier than P1short.

P1long at ori is the only construct that does does not show a decrease in specific
GFP production rate before gene replication. This suggests that in the first half of
the cell cycle, before initiation of DNA replication, the ribosomal production rate
is proportional to volume while the expression of other genes that may be rate-
limiting for cell growth is slower than volume, as we see for both P1short and P5
at both 30 and 37°C.
5.2.4 Growth rate homeostasis
To better understand the origins of the systematic deviations from exponential
growth, we partitioned the single cell data into several bins according to the cell’s
birth volume. We want to see if these deviations for example happen only for rel-
atively large or small cells and whether they are part of a mechanism for cell size
correction.

Figure 5.5A-B shows that cells display systematic deviations from exponential
growth regardless of their initial size. Moreover, if we examine each of the birth-
volume classes separately, the specific growth rate depends on cell size at the start
of the cell cycle, then converges to nearly the same value at the end of the cell cy-
cle. Although cell size and specific growth rate are correlated at birth, these two
parameters are nearly independent right before division (Figure 5.5 B-D). Immedi-
ately after division, cells born smaller grow faster than larger cells, this results in
small cells "catching up" the size difference, and all cells, regardless of their initial
size, reach a similar specific growth rate by the end of the cycle. This correction
looks stronger at slow growth.

The fact that the specific growth rate is higher in smaller cells may come from
two sisters that divide asymmetrically and after that smaller cells that also give
smaller cells. Smaller cells have the same DNA content as the larger cells, and the
same gene copy number of ribosomal operons, and thus the same absolute poten-
tial translation rate. Smaller cells thus produce the same number, but therefore a
higher concentration, of ribosomes than larger cells.
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Figure 5.6 shows the GFP production rates and specific production rates as a
function of cell size at birth. These results confirm the idea that the small cells in
the slow growthmedium have a faster translation rate per unit volume, which then
converges with the other size classes as a function of the cell cycle (Figure 5.6C).

In the fast growth condition one can see that the GFP production rate at birth
increases with cell size in a way that is almost proportional to cell volume (Figure
5.6B). During the cell cycle the production rates converge.

The GFP production rate is proportional to cell size at birth at fast growth, to
then collapse before cell division, while at slow growth it is the same independently
of cell size. These results suggest that at fast growth cell volume (translation?) de-
termines the GFP production rate at birth, while at slow growth the gene copy num-
ber (transcription?) seems to play a determining role.

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
6

0
.0

0
8

0
.0

1
0

1.4 1.8 2.2

S
pe

ci
fic

 g
ro

w
th

 r
at

e(
m
in

-1
)

S
L

O
W

A

F
A

S
T

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
1

0
.0

1
3

0
.0

1
5

2.1 2.5 2.9

S
pe

ci
fic

 g
ro

w
th

 r
at

e(
m
in

-1
)

2.2 2.60
.0

1
1

0
0

.0
1

4
0

3.0

AT BIRTH

S
pe

ci
fic

 g
ro

w
th

 r
at

e(
m
in

-1
)

2.2 2.60
.0

1
4

0
0

.0
1

7
0

3.0

AT  DIVISION

Volume at birth (um3)

1.4 1.8 2.20
.0

0
7

0
.0

1
0

1.4 1.8 2.20
.0

0
7

0
.0

1
0

S
pe

ci
fic

 g
ro

w
th

 r
at

e(
m
in

-1
)

Volume at birth (um3)

AT BIRTH

AT  DIVISION

B

C D

BIRTH VOLUME

BIRTH VOLUME

Figure 5.5: Specific growth rate fluctuations are compensated over the cell cycle.Specific growth rate of different birth volume classes as a function of the cell-cycle phasefor slowA and fast growth C. The legend indicates themean birth length of the respectivebirth-volume class. In both conditions we can observe a dependence on birth volume B,D. Specific growth rate at birth/division of different birth volume classes as a function ofvolume at birth. B At slow growth, cells with a different initial volume show differences ingrowth rates at birth that are compensated by the time they arrive at division. D At fastgrowth growth rate fluctuations are weaker and almost constant within the cell cycle.

78



CHAPTER 5. E. COLI GROWTH IS BIPHASIC AND IT FOLLOWS THE CHANGE IN ORI-PROXIMAL GENE DOSAGE

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

0.0 0.2 0.4 0.6 0.8 1.0

8
0

0
1

2
0

0
1

6
0

0

2.1 2.5 2.9

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

0.0 0.2 0.4 0.6 0.8 1.0

4
0

0
5

0
0

6
0

0
7

0
0

1.4 1.8 2.2

S
pe

ci
fic

 p
ro

du
ct

io
n

 r
at

e
(a

.u
. m
in

-1
um

-3
)

S
pe

ci
fic

 p
ro

du
ct

io
n

 r
at

e
(a

.u
. m
in

-1
um

-3
)

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

0.0 0.2 0.4 0.6 0.8 1.0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1.4 1.8 2.2

cell-cycle phase t/τ
0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

0.0 0.2 0.4 0.6 0.8 1.0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

2.1 2.5 2.9

SLOW FAST

 P
ro

du
ct

io
n 

ra
te

(a
.u

. m
in

-1
)

 P
ro

du
ct

io
n 

ra
te

(a
.u

. m
in

-1
)

A B

C D

Figure 5.6: Smaller cells have higher volume specific translation rate at slowgrowth. GFP production rate (A,B) and specific GFP production rate (C,D) of differentbirth volume classes as a function of the cell-cycle phase for slow and fast growth. Thelegend indicates the mean birth length of the respective birth-volume class. In both con-ditions we can observe a dependence on birth volume.
While in Figure 5.5 we analyze the behavior of the specific growth rate, in Figure

5.7A-B we look at the absolute growth rate, or growth speed, as a function of cell
cycle. While the specific growth rate gives us information of how growth is coupled
to cell volume, which is expected to be constant under exponential growth, growth
speed tells us how the absolute growth speed varies as a function of the cell cycle
and informs us on the metabolic activity of the cell. Especially at fast growth a
rate change point can be easily detected for all the size classes. This inflection
point define two different growth phases, with a first phase with a nearly constant
growth speed, and a second phase where the growth speed increases.

To understand whether the inflection points are related to cell volume, we plot
the growth speed as a function of cell volume (Figure 5.7 C-D). All the curves deviate
from the expected exponential curve, and the effect of birth size on growth speed
is greatest in the fast growth condition and at the beginning of the cell cycle.

Lastly, we evaluated the average growth speed of cells in the different birth-
size classes as a function of the time to division (Figure 5.7 E-F). Interestingly, from
this perspective, we found an alignment of phase transitions for different birth-size
classes, with rates increasing at a specific time before cell division, independently
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Figure 5.7: Cells start a new phase of growth at a similar time before the celldivision, regardless of their birth size (A,B) The growth speed as a function of thecell-cycle phase. At fast growth most cells start with a fairly constant growth speedthat increases as time progresses in a birth-size-dependent manner. (C,D) The growthspeed depends on cell volume, which is birth size dependent when cells are in the fastgrowth condition. (E,F) The growth speed as a function of the time to division revealsthat cells start growing faster at an approximately fixed time before they divide. Thered line represents the time before cell division at which growth speed changes slopeand defines the 2 phases. At slow growth also a single phase of monotonic growth iscompatible with the data.
of birth volume. At slow growth the first phase is really short and the detection of
the inflection point can be tricky. We can then define a first phase (phase1) charac-
terized by an approximately constant growth speed and a second phase (phase2)
where growth speed increases nearly exponentially (Figure 5.7 A-B).
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5.3 Discussion
In this Chapter we have obtained very interesting results on the mode of E.coli
growth within the cell cycle and its relation with gene expression.

Thanks to robust and long term single cell experiments I have been able to track
cell growth and gene expression for thousands of cell for several hours with a time
frame of only 3 minutes. A careful analysis of these single cell data as a function
of the cell cycle has highlighted not negligible deviations from the classical expo-
nential growth [73, 202, 204]. The observation that the absolute growth rate of an
individual cell is not at all times proportional to its size (it is not exponential) implies
that it is adjusted continuously in response to cell cycle-dependent events.
Cell cycle dependence of specific growth rate

The observation that in our data growth rate increases soon after the initiation of
DNA replication suggests that the replication of the ribosomal operon close to the
origin can have a role in this biphasic growth pattern. This may happen because
after the replication of ribosomal operons close to the origin there is an increase in
the ribosomeproduction rate and an increase in the global translation rate. This im-
plies that after the initiation of DNA replication, cells can start growingmore rapidly
because they have the internal resources of a larger cell. Whether the cellular ma-
terials that promote growth are some subset of the cytoplasmic constituents, or
the entire collection, remains to be seen. We propose that ribosomes have a main
role in this because we know that ribosomes are one of the dominant constituents
in cells, and more specifically in rapidly dividing cells, they begin to take up a signif-
icant fraction of the cellular interior and of cellular resources for their production.
For example, for a doubling time of 60 mins 14000 ribosomes per cell represents
the 25% of dry mass while at a faster doubling time of 24 minutes the 72000 ribo-
somes per cell represent over 1/3 of the dry mass of the cell [221–223].

Of course, this in not the only possible explanation. We know for example that
also an operon for peptidoglycan synthesis is present near the origin and its replica-
tion might have a role in the increase of growth rate[201]. Moreover, other studies
exist in the literature that lead us to think that this phenomenon is likely to be
multi-factorial, dependent on processes and components involved in DNA replica-
tion initiation, gene duplication, cell wall synthesis, divisome assembly, and sep-
tum formation, all of which in turn will be critically influenced by biosynthesis and
growth-rate dynamics.
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Cell cycle dependence of specific GFP production rate depends on genome
position

Another important result in this Chapter concerns the relation between cell growth
and protein expression. To address this, we have followed the expression of con-
stitutive, ribosomal and shortened ribosomal (lacking HNS and Fis regulation) pro-
moters placed in the chromosome both close to the origin and the terminus. This
is because a gene’s transcription rate could be affected differently depending on
its position on the genome. Several factors can contribute to position dependence
of gene expression such as H-NS binding [215], transcriptional interference [216]
and DNA supercoiling [217, 224].

In particular, we have seen that a strong correlation between the growth rate of
the cell and theGFP synthesis rate is only present for the constitutive promoter and
the ribosomal promoter that lacks HNS and Fis regulation when they are inserted
at the origin-proximal position. This suggests that these promoters are found in
different environments. In general, these results confirm previous studies showing
that spatial organization of transcription may play a crucial role in coordinating
genomic transcription and growth rate in E. coli [225], but for the first time we were
able to see this at the level of the cell cycle.
Specific GFP expression from non-ribosomal promoters that are ori-proximal
match the changes in specific growth rate

The comparison of the results obtained with the full-length and short version of
the ribosomal promoter and with the constitutive promoter suggest that the spe-
cific growth rate is dictated by the expression of a non-ribosomal promoter whose
activity is limited by the availability of RNA polymerase. And this is true particu-
larly before initiation of DNA replication suggesting that the duplication of riboso-
mal operons might increase the availability of RNAP, by decreasing the demand
for RNAP for each copy of ribosomal operons. Moreover, the presence of Fis may
help recruit RNAP to ribosomal operons to better compete with neighboring genes
before the initiation of DNA replication.
Cell size at birth affects specific growth rate and gene expression in a growth
medium dependent manner

Lastly, we have found a growth rate homeostatic mechanisms, where specific
growth rate in the first phase of the cell cycle is dependent on cell size at birth. In
general, these findings suggests an homeostatic mechanism, by which differences
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in cell size at birth are compensated during the cell cycle by differences in their
specific growth rate.

From the GFP expression data we can propose that a possible interpretation of
this effect could be that in a cell born smaller the concentration of ribosomes and
of RNAP will be higher than in a larger cell because their gene copy number will be
the same as in a larger cell. During the cell cycle the faster specific growth rate of
the smaller cells will dilute these machineries so that by the end of the cell cycle
the specific growth rate will be the same as the others.

The difference in the distribution in specific growth rate between birth and divi-
sion and between slow and fast growth rate suggests that below a specific cell size
the same number of ribosomal operons can give rise to different specific growth
rates because of the resulting difference in ribosome concentration.

At fast growth, cells are born with a number of ribosomes that depends on cell
volume, while at slow growth the number of ribosomes depends on their on gene
copy number.

In general, this work represents a step forward in the understanding the coor-
dination between cell growth and gene expression in E.coli. Some of these results,
such as biphasic growth and its strong coordination with gene expression were al-
ready been found in B.Subtilis [202] . Here, we confirmed these results in E.coli and
we also added other interested findings. First, the biphasic growth pattern and its
homeostatic mechanism depend on the growth condition and different regimes
might arise. Second, the coordination between growth and gene expression is not
universal but it depends on the genomic position and regulatory elements of the
single promoter.
5.3.1 Future perspectives
What factor is limiting for growth rate? RNAP concentration? RNAP to DNA ratio?
Ribosome concentration? Both? Are specific machineries, such as cell wall synthe-
sis enzymes limiting for cell growth? Several studies have tried to address these
issues, and the answer appears to depend on the growth conditions such as in the
recent studies by the Männik group [12]

Testing new growth conditions would be helpful to determinewhether different
growth regimes exist, and in which conditions the correlation between growth rate
and protein production rate is stronger. For this, it would also be necessary to use
strains with fluorescent loci to track initiation of DNA replication at the single cell
level in the same strains that express GFP. We already have these strains.

Moreover, we already know that chromosome structure and organisation can
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provide an additional level of feedback regulation to obtain a response that is pro-
portional to the environmental change[78]. In the latter example, expression from
a constitutive promoter at the ter-proximal site could best model the expression
of a protein setting the threshold for cell division across the shift. Preliminary re-
sults from our and Pietro Cicuta’s lab have already observed different patterns by
looking at the adaptation of gene expression for these different promoters during
upshift experiments (Figure G.4). The next step would be to understand how this
is linked to different patterns of cell growth and gene expression at the cell cycle
level.

Lastly, it would also be interesting to stress the systemwith different antibiotics
inhibiting growth, cell division or DNA replication and to characterize the robust-
ness of this biphasic behaviour. For example, inhibition of ribosomes by sublethal
concentrations of antibiotics such as chloramphenicol leads to a decrease in the
growth rate despite an increase in ribosome content. The limitation of ribosomal
activity results in an increase in the level of expression from ribosomal promoters;
this can deplete the pool of RNA polymerase (RNAP) that is available for the expres-
sion of non-ribosomal genes [18]. It would be interesting to quantify themagnitude
of this effect within the cell cycle.

To conclude, a better understanding of gene position effects can also be useful
to understand genome assembly and evolution. In Chapter 7 we will see how this
might also be important to understand horizontal gene transfer.
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Chapter 6

The DnaA cell-cycle oscillator and its
coordination with cell growth and
division

6.1 Introduction
By its contribution to setting the timing and synchrony of initiation of DNA replica-
tion, DnaA plays a key role in the cell cycle, but its contributions to sensing cell size
and indirectly setting cell division are not well understood.

The consensus is that DnaA plays a role in coupling cell size to chromosome
amount. For the average behavior of a population across conditions, the tradi-
tional paradigm was that initiation of DNA replication roughly starts at a constant
volume (or mass) per origin [21, 49]. However, it has recently been shown that
coupling of cell division with the chromosome cycle likely differs between slow-
and fast-growth conditions, two growth regimes roughly separated by the onset of
overlapping replication rounds [12, 30, 51].

Recent data show that initiation mass increases and then decreases as a func-
tion of growth rate, with a maximum at around 0.7h−1 at 37°C. The concentration
of DnaA follows a mirror pattern decreasing and then increasing again, with a min-
imum at 0.7 0.7h−1 [51].

Furthermore, when studying cell size control in single cells rather than in bulk, as
in the studies above, there is some agreement on the idea that the added volume
per origin between consecutive initiations may be constant and likely set by the
contribution of the DnaA-dependent regulatory circuit [8–12, 59, 62]. Therefore,
the activity of DnaA plays an important role in the regulation of DNA replication as
a function of growth rate and of cell size as a function of the cell cycle. However,
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despite a large number of recent studies, the debate is still heated regarding the
question of whether and to what extent replication initiation sets the division time
in single cells [8–13].

In this Chapter, we want to gain insight into the DnaA regulatory system, in
particular in relation with different phases of the cell cycle.

The challenge is that even if one could quantify the amount of DnaA-ATP in the
cell, as some have done in bulk using radioactive ATP, the important parameter
might not only be its concentration but the ratio of DnaA-ATP to DNA at any given
time during the cell cycle, given the titration effect that the other genomic DnaA
binding sites can have. This ratio can indeed act on the DnaA activity by changing
the "free concentration" in respect to the "total concentration".

Here, single cell time-resolved data of GFP reporter constructs using promoters
differently regulated by DnaA-ATP have been used to assess the relative changes
in the activity of DnaA-ATP, and therefore the changes in the amount of DnaA-
ATP available to bind to its high affinity sites. An oscillation in DnaA-ATP activity
is indeed assumed by most, but so far supported only by indirect population-level
data [23].

The main question we want to answer are then:
• Can we establish if DnaA activity oscillates in single cells?
• If so, is this a size sensor?
• How is it linked to the cell-cycle progression and cell growth and division?

6.2 Results

6.2.1 DnaAPmutants: A measure of the change in DnaA’s activ-
ity

An experimental approach to study gene expression in bacteria in vivo consists on
carefully choosing gene promoter sequences and their variants regulating the ex-
pression of a fluorescent reporter proteins (see for example [14]). The promoter
sequence is determined from in vitro experiments of DNA-protein interactions and
from a careful literature review. In Chapter 3 I have introduced the structure and
regulatory elements of the nativeDnaApromoter (dnaAP). These experiments have
been carried out with the wild-type E. coli strain BW25113, the parent strain of the
Keio collection [226] which has been fully sequenced [179]. We have constructed
a reporter cassette, where the fast-folding mut2gfp gene is under control of the
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dnaA promoter sequence. This construct includes a Kanamycin resistance cassette
expressed divergently upstream from dnaAP. I have placed the dnaAP promoter-
reporter construct in the genome at the Ori3 position, downstream of the aidB
gene (4413507 bp). This is the same ori-proximal position used for the constructs
we looked at in the previous chapter. Moreover, it is at a similar distance from the
origin as the nativednaA promoter(3883729 bp) but on the other replicon. The only
differences with the native promoter is that in my mutants the divergent promot-
ers for the rpmH gene are absent and that the dnaAP1 promoter has been inacti-
vated by site-directed mutagenesis, therefore GFP expression is under control of
the dnaAP2 promoter that, as we have seen in Chapter 3 is similar to a ribosomal
promoter and is thought to provide the growth rate dependent regulation of DnaA
expression. The chromosomal insertion protocol is reported in Appendix A.

The dnaAP mutants used in this work consist of different basepair modification
of the high affinity binding sites of DnaA. These mutants result in promoters that
are either only positively regulated or not regulated at all by DnaA-ATP, while the
wild type sequence is both positively and negatively regulated by DnaA-ATP. The
effect of the same mutations on gene expression regulation by DnaA (negative or
positive) was first obtained from a previous work in my lab [112] although they
used plasmids carrying the promoter-GFP constructs. Hence - crucially for our ex-
periments - measurement of GFP expression rate from chromosomal insertions of
these different promoter variants can be used to estimate the amount of regula-
tion that is due to changes in DnaA activity in the cell. DnaA activity depends on
the concentration of DnaA-ATP that is available to bind to its own promoter (see
Appendix H).

Lastly, the SeqA mutant promoter still has the the dnaAP1 promoter but the
three GATC sites just downstream of dnaAP2 have been removed by site-directed
mutagenesis, decreasing the effect of repression by SeqA. Three SeqA sites about
170 basepairs upstream of the dnaAP2 promoter and two SeqA sites overlapping
with the dnaAP2 promoter remain. The latter could not have been removed with-
out changing the sequence of the -10 and -35 regions.

To summarize, the native dnaAP is positively and negatively autoregulated and
DnaA regulates the reporters constructs that have the same promoter sequence as
dnaAP but present different mutation in the DnaA and SeqA binding sites (Figure
6.1).

As a reference, we considered a reporter for a constitutive promoter used in a
previous study [77]. This phage-derived constitutive promoter “P5” lacks any kind
of regulation by specific transcription factors, therefore its GFP production rate
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can be considered to be largely representative of the gene copy number in the
cell. To determinewhen the gene copy number changes for different chromosomal
sites we have inserted the P5-GFP construct at the same ori3 origin-proximate lo-
cus as the dnaAP2-GFP construct as well as at the terminus-proximate locus "ter3"
(1395706 bp). In addition, we also considered the ribosomal promoter reporter
“P1”, derived from the rrnBP1 promoter for the rrnB ribosomal RNA operon whose
expression depends on the concentration of ppGpp and on the level of negative
DNA supercoiling due to the presence of a GC-rich discriminator region, such as
the one found at the dnaAP2 promoter. This is a shortened version of the rrnBP1
promoter, lacking the upstream binding sites for Fis and H-NS [219].
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Figure 6.1: The set of DnaA promoter mutants A construct of themut2gfp gene reg-ulated by the native dnaA promoter region and including a Kanamycin resistance cas-sette was inserted close to the origin of DNA replication. Different promoter mutantswith different levels of regulation by DnaA and SeqA were considered. As a referencefor baseline gene expression we used a constitutive promoter. The GATC sites boundby SeqA are shown by stars, the DnaA high affinity binding sites are shown in solid lineboxes and low affinity binding sites in dashed lines boxes. The GC-rich discriminatorregion is shown by a small square.

6.2.2 Activation and repression at the population level for fast
and slow growing cells

Measurement of the fluorescence of the GFP protein expressed under the control
of the dnaAP or its mutants is used to determine promoter activity (dGFP/dt / OD).
Promoter activity is first measured at the population level in a plate reader that
allows to rapidly screen several growthmedia and promoter mutants. We can thus
identify the most interesting strains and growth parameters for the subsequent
study of gene expression in greater detail, at the single cell level, by time-lapse
microscopy. All these strainswere grown in two growth conditions: a "slow" growth
condition in M9-glucose with an average doubling time of 75± 5min and in a "fast"
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growthmedium,M9-glucose-casamino acids, with an average doubling time of 45±
5min.

The rate of GFP production, divided by the cell density as measured by the opti-
cal density at 600 nm (OD600), provides a real time measurement of the change in
promoter activity as a function of time. A MatLab program is used in order to auto-
mate the analysis of the data obtained from the measurement of bacteria growing
in 96-well plates in the fluorimeter. An R-Shiny program for the analysis of the data
from the plate reader has also been recently developed. See Appendix E for more
details.
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Figure 6.2: Extent of regulation byDnaAand SeqAby comparison of differently reg-ulated promotermutants Change in average promoter activity and GFP concentrationfor the different promoters in exponential phase at fast growth (M9-glucose casaminoacids) and slow growth (M9-glucose).(A) Extent of activation and repression by DnaA ofits own promoter. B Extent of repression by SeqA of the dnaA promoter. The valuesshown are the average of three independent experiments. The error bar is the SEM.
The comparison between these different mutants can be used to estimate the

extent of activation and repression by DnaA-ATP of its own promoter at different
growth rates and therefore obtain a measure of the change in DnaA’s activity (Fig-
ure 6.2A). All the values have been measured in exponential phase after checking
that the growth phase dependence of dnaAP2 activity is independent of autoregu-
lation (Supplementary Figure H.4). The expression rate from the promoter that is
not regulated by DnaA increases with growth rate, as expected from a ribosomal-
like promoter sequence, resulting in a constant DnaA concentration as a function
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of growth rate. The activity of the promoter that is only activated is not growth rate
dependent because of the increased activation at slow growth when compared
with the unregulated promoter. Positive autoregulation of dnaAP2 transcription
may play an important role to counteract the effect of possible repressors, such as
Fis [227], or in the presence of negative effectors of transcription, such as ppGpp,
known to decrease the activity at slow growth of promoters such as dnaAP2 con-
taining a GC-rich discriminator region [22]. At the same time, the promoter that
is both activated and repressed changes less than the non regulated one with
the change in growth medium due to the increased repression at slow growth.
These results therefore suggest that there is a higher activity of DnaA-ATP at slow
growth compared to fast growth. This agrees with previously published study by
the Skarstad group where they show that DnaA is not limiting for DNA replication
initiation at slow growth, since DnaA-ATP seems to be in excess. It could be that
at slow growth another factor is more important for setting the initiation timing of
DNA replication [123].

Binding of SeqA to the DnaA promoter inhibits novel synthesis of the protein
following the passage of the replication fork while the DNA is still hemi-methylated
(see Chapter 3). SeqA does not have a strong effect in the slow growth medium.
6.2.3 In absence of any regulation, GFP production rate is pro-

portional to single-cell size and instantaneous gene copy
number

To establish a solid reference for monitoring the cell cycle dependence of gene
expression from the dnaAP promoter, our first goal was to characterize the “null”
relationships between cell cycle progression and gene expression, i.e., the cell-cycle
variability of an unregulated promoter.

This is exactly what I have already done in the previous Chapter and I will try
to summarise the main results that we are interested in for this work (Chapter 5
and Supplementary Figure H.6). From now on, we will consider experiments at fast
growth.

As we already know, protein production rate can vary along the cell cycle be-
cause the replication of a gene at a specific moment in time doubles the probabil-
ity that it will be expressed. Since gene replication occurs at a time in the cell cycle
that depends on the gene’s distance from the origin of DNA replication, the cell
cycle dependence of its expression rate will depend on the gene’s location along
the genome. The copy number of a gene changes during the cell cycle, and can be
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estimated quantitatively by a standard model [43], which also takes into account
the case of “overlapping DNA replication rounds” where replication forks from dif-
ferent initiation events are active in the same cell (see Appendix G). Additionally, a
protein’s production rate has been observed to be proportional to cell size, proba-
bly in connection with the fact that cell size tends to be proportional to ribosome
amounts [228]. To quantify the dependencies of GFP production rate from both
gene dosage and cell volume, we monitored the expression of a constitutive pro-
moter (P5, described above) integrated into two genomic loci, one next to the repli-
cation origin and the other close to the replication terminus.

We first tested how the GFP production rate depends on cell size. Figure H.6A
reports scatter plots of GFP production rate versus volume for origin- and terminus-
proximate P5 constructs. These single cell data show an average linear proportion-
ality between the GFP production rate and single cell volume. As expected from the
estimation of average gene copy number, the same unregulated promoter shows
an increased production rate when it is placed close to the replication origin com-
pared to the one near the terminus. Normalizing the data by the estimated mean
gene copy number removesmost of this offset. In order to quantify the residual de-
pendencies of gene expression due to the increase in gene copy number as the cell
cycle progresses, we averaged the same data conditioning by cell cycle phase [32].
This procedure makes it possible to average together cells with all doubling times,
hence increasing the statistical power (3-8000 cells in our case). We found that the
GFP production rate from the constitutive promoter was biphasic, which appears
more clearly when the promoter is inserted close to the replication origin. Rescal-
ing by both cell volume and by mean gene copy number left some residual oscil-
lations (Figure H.6C), consistent with the timing of cell-cycle dependent increase in
gene copy number of the constructs inserted in two different chromosomal posi-
tions. Interestingly, while the volume-specific expression rate of GFP from the inser-
tion near the terminus is constant until the gene copy number increases, the one of
the GFP from the construct near the origin decreases until the gene is copied by the
passage of the DNA replication forks. In the first half of the cell cycle, the increase
in volume as the cell cycle progresses is greater than the increase in GFP produc-
tion rate by transcription and translation. Similar results were obtained with the
reporter cassette using the shortened version of the rrnBP1 promoter (see Chapter
5).

In summary, the production rate of an unregulated promoter can be described
as linearly proportional to volume, likely through the dependence of protein pro-
duction rate on ribosome amounts, and to dosage through the increase in the gene
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Figure 6.3: The activity of the dnaAP2 promoter oscillates as a function of the cellcycle. A Oscillations in GFP concentration as a function of cell cycle phase are weakfor both the constitutive (red triangles) and the dnaAP2 promoter (blue circles). B Thefold change in volume-specific GFP production rate from dnaAP2 shows a clear peakwhich is not present for a constitutive promoter (red triangles), which instead changeswith the increase in gene dosage. C A sinusoidal oscillation for GFP expression fromdnaAP is observed when taking into account the cell cycle phase of two consecutivegenerations. (D,E) Volume-specific GFP production rate averaged as a function of timefrom birth is very similar for the two promoters, while oscillations are enhanced for thednaAP2 promoter when the same data are averaged as a function of the time to division.F Oscillations in GFP expression from dnaAP2 are also coupled with time to daughterdivision, consistent with DNA replication initiating in the mother cell to terminate inthe daughter cell. Error bars (often smaller than symbol size) are standard errors of themean from a re-sampled distribution obtained by bootstrapping from the experimentaldata for each bin.
copy number. Correlating GFP expression rate with the estimated gene replication
times along the cell cycle, instantaneous gene dosage may also affect protein pro-
duction in a cell cycle phase dependent way.
6.2.4 Volume-specific dnaAP2 activity oscillates symmetrically

with cell cycle phase and cell volume
Having defined the null features of promoter activity, we set out to ask whether
along the cell cycle changes specific to dnaAP2 activity differed from those of a
constitutively expressed gene. To this end, we performed (conditional) averages of
many cells, by fixing cell cycle phase and cell cycle timing.

Our previous analysis (Figure H.6) tells us that a constitutive promoter shows
changes in GFP production rate that depend on cell size and gene dosage. The
change in GFP concentration as a function of cell cycle phase shows a small but
reproducible difference between the two promoters inserted at the same ori-
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proximal position (Figure 6.3A). While the GFP concentration from the constitu-
tive promoter remains constant, the one the dnaAP2 promoter increases slightly
(roughly by 5%) in the first half of the cell cycle. The average volume-specific GFP
production rate from dnaAP2 clearly shows a peak that is not present in the data
for the constitutive promoter, and varies by roughly 20% in a cycle (Figure 6.3B).
Moreover, if we consider two consecutive cell-cycle we observe a strong periodic
oscillation (Figure 6.3C).

We can gain more insight on these oscillations by performing averages of the
volume-specific production rate that are conditioned on other cell cycle variables.
For example, by averaging the data as a function of the time from cell birth the
specific GFP production rate from dnaAP2 becomes indistinguishable from that of
the constitutive promoter (Figure 6.3D), however the oscillation is visibly greater
(about 5-fold) than that of the constitutive promoter once we average the data as a
function of the time to division (Figure 6.3E), suggesting that the oscillation timing is
somewhat agnostic of birth, and synchronized with cell division. Figure 6.3E shows
that the difference betweendnaAP2 andP5 is even greaterwhen time to daughter’s
division is used to bin the data (Figure 6.3F). These results show more clearly how
oscillations in volume-specific GFP production rate are symmetric and sinusoidal
when under control of the dnaAP2 promoter.
6.2.5 Oscillations in dnaAP2 activity are strongly coupled to cell

size
We proceeded to test the hypothesis that DnaA activity is a cell-size sensor. Fig-
ure 6.4AB shows that volume-binned averages in GFP volume-specific production
rate from dnaAP2 follow strong oscillations reaching maxima and minima, roughly
placed at multiples of a characteristic volume. These oscillations are thus strongly
coupled to the cell volume. The fact that maxima and minima are equally spaced
suggests that they may be placed at a fixed volume per origin [63, 72].

In order to shed more light into the size-sensing properties of the dnaAP2 pro-
moter, we performed different conditional averages of volume-specific GFP pro-
duction rate (the oscillating variable) considering different cell-cycle variables (Fig-
ure 6.4C). We performed these averages further grouping cells based on their size
at birth, as we figured that the variables that aremore strongly coupled to the oscil-
lations should be insensitive to variations of any extrinsic variable, and in particular
if the oscillator is a true volume sensor, it should have no memory of size at birth.
We divided cells into 11 different birth-size classes, and considered binned aver-
ages of specific dnaAP-dependent GFP production rate oscillations as a function of
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cell-cycle phase and cell volume. Figure 6.4C shows three birth size bins relative to
an average birth size of 2.2± 0.1µm3 , 2.4± 0.1µm3 and 2.6± 0.1µm3 . The data show
that volume-binned oscillations are strongly insensitive to birth size, while binning
by time from birth or cell-cycle phase does not result in a good collapse. Binning by
time to division determines an intermediate level of collapse. We interpret these
two findings as indications that the dnaAP2 oscillator is a potent sensor of cell size,
and that the timing of initiation of DNA replication that it contributes to determine
has an effect on cell division. Notably, the same oscillations are not coupled to
time from birth, despite exponential growth imply a proportionality between cell
size and time from birth.

To summarize this behavior, we defined a quantitative score of the collapse of
different as inverse of the sum of SE-normalized distances between dnaAP oscil-
lations for all 11 birth-size bins (Figure 6.4D). The higher the score, the higher the
collapse of the oscillations for cells with a different birth size. Figure 6.4D shows
that cell volume and time to division give the highest scores, which are respectively
five and two times higher than those for cycle phase and time from birth.

Until now we talked about volume sensing but its length or its surface could
also have an important role in sensing. Supplementary Figure H.10 compares dif-
ferent proxies of cell size (length, surface, volume) as candidates to couple with the
dnaAP2 oscillator, showing that volume is the best candidate [72].

In summary, the dnaAP2 oscillator is strongly coupled to cell volume and shows
stronger couplingwith time to division than it doeswith time frombirth or cell-cycle
phase.
6.2.6 dnaAP2 oscillations are due to the combined activity of

DnaA-ATP transcription regulation and SeqA binding to
the dnaA promoter.

The next step is to understand what leads to these oscillations. In Chapter 3 we
have seen that the dnaA promoter activity is regulated by several factors. Here, we
focus on how autoregulation and SeqA affect DnaA expression as a function of the
cell cycle.

In Figure 6.5 we observe that removing the binding sites for repression and ac-
tivation causes the disappearance of the oscillating cell-cycle dependence. Only
in negatively and positively auto-regulated strains the specific production rate
presents strong oscillations within the cell cycle, while the promoters not regulated
by DnaA present a phase dependence similar to the one of a constitutive promoter.
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We also verified that a ribosomal promoter, exactly as the DnaAP promoter it-

self stripped form any regulation, does not show this oscillation (Supplementary
Figure H.7), suggesting that ppGpp levels and supercoiling, sensed by the discrimi-
nator region of this promoter, do not play an important role, but the oscillation is
triggered specifically by the ATP-DnaA autoregulatory sites.

On the other hand, removing the downstream binding sites for SeqA, does not
cause the disappearance of the oscillating cell-cycle dependence but an alteration
of its timing with respect to cell cycle phase (Figure 6.6 and Supplementary Figure
H.8).

When we look at the oscillation as a function of cell volume we observe a basal
oscillatory pattern for all the promoters (Figure 6.7 and Supplementary Figure H.9).
The difference here is in the timing of the peaks, that result altered in the mutant
not regulated by SeqA.

Lastly, in Figure 6.8 we observe that the specific production rate for cell classes
with different size at birth shows a higher collapsing score as a function of volume
and time to division in presence of negative regulation (cfr Figure 6.4).

The data obtained with these strains shows that these oscillations and their
coupling to cell volume depend on both activation and repression by DnaA-ATP
and that the binding of SeqA following gene duplication by the replication fork is
required to regulate the precise timing of the minimum and the maximum. GFP
expression from dnaAP2 is then a cell-cycle dependent oscillator, driven by ATP-
DnaA autoregulation much beyond the passive effects of replication-related gene
dosage changes. A simple model of dnaAP regulation suggests that a maximum
of dnaAP oscillations corresponds to a minimum in DnaA-ATP concentration, and
a minimum in the oscillation to a maximum ATP-DnaA concentration (see Supple-
mentary methods H). Since we know that the average initiation of DNA replication
occurs between a maximum and a minimum (Figure 6.3B), we conclude that both
minima and maxima are a candidate proxy for the link of the DnaA circuit to repli-
cation initiation. It is possible to interpret the minima as a consequence of the
beginning of de-repression of dnaAP due to regulatory inactivation of DnaA and
loss of SeqA dependent repression [21].
6.2.7 At the single cell level, dnaAP2 oscillation minima define

an adder consistent with the inter-initiation adder.
While all the above analyses firmly establish the coupling of the dnaAP2 oscillator
with cell size and cell division using conditional means, they are insufficient to char-
acterize the behavior of single cells [63]. In particular, the correlation signatures
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linking the key events of DNA replication and cell division are well known [8, 10,
11], and we can ask how single cell dnaAP2 oscillations relate to them. Figure 6.9A
shows that dnaAP2 oscillations are detectable at the level of a single cell track (Sup-
plementary Figure H.11). We defined an automated algorithm that extracted for
every cell and lineage the localmaxima andminima of the dnaAP2 oscillations. This
gives us two key cell cycle events related to dnaAP2, plus cell division, for each cell
and lineage, where we know instantaneous cell size, growth rate, and interdivision
time of each cell.

Because of the DnaA-ATP specific auto-regulation and the known features of
the DnaA-initiation circuit [21], we expect that minima of the oscillator in single
cells are related to initiations triggered by DnaA. Our data lack a proxy for the initi-
ation of DNA replication, but we can ask whether the dnaAP2 oscillations maxima
and minima in single cells follow similar patterns to the ones recently observed
for initiation of DNA replication [10, 11, 62]. We focus in particular on the minima,
which could be interpreted as occurring downstream of initiation of DNA replica-
tion, themoment where DnaA-ATP is near its highest activity (the equivalent results
for the maxima are shown in Supplementary Figure H.13). Furthermore, the tim-
ing of initiation of DNA replication can be estimated for a given growth conditions
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thanks to the known growth rate dependence of the C and D periods [49, 72]. This
has been already shown in the previous chapter (Figure 5.2 and Appendix G).

In the the slower-growth condition the distribution of cell sizes at dnaAP2 min-
ima is unimodal (Supplementary Figure H.12). Instead, in the faster growth con-
dition we found that the distribution of cell sizes at the minima is bimodal (Fig-
ure 6.9B). This is in agreement with the fact that the distribution of cell sizes at
initiation of DNA replication in the presence of overlapping rounds of DNA replica-
tion should be approximately the sum of two lognormal distributions with means
that are one the double of the other [59]. This is because in some cases, at fast
growth, initiation of DNA replication takes place before cell division has occurred,
and thus at twice the number of origins and at a cell volume that should be propor-
tional. Applying a lognormal mixture model to separate the two distributions we
testedwhether theywould collapse dividing themean of the second distribution by
two. In our data, the best collapse is achieved by dividing by a factor of 1.7, which is
very close to two. The small discrepancy could be due to correlations between the
volumes at initiation and the probability of extra rounds of replication, previously
observed computationally [59].

Next, we decided to investigate the correlation patterns that link DNA replica-
tion and cell division. As expected, our cells show adder correlation patterns be-
tween cell birth and division independently of cell size at birth (Figure 6.9D) [66,
174]. To test whether the minima are triggered at a critical size (a "sizer") we exam-
ined the dependency of the cell size at the minima on birth size (Figure 6.9D). For a
sizer pattern (a circuit that triggers at a critical size) there should be no dependency.
Instead, the data clearly show some trend, ruling out this hypothesis. On the other
hand, Figure 6.9E shows that the added volumebetween twominima (analogous to
the added volume between consecutive initiations) is constant as a function of the
cell volume at the first minimum. This recalls the (per origin) inter-initiation adder
patterns found by labeling origins or replication-fork proteins in single cells [8, 10,
11, 59, 62]. Lastly, we considered the change in cell size between a minimum and
cell size of the daughter at division (analog of the C+D period). The cell size correla-
tions in this period also follow a near-adder pattern as observed previously for the
actual C+D period [8, 11, 62] (Figure 6.9F). As anticipated above, similar properties
of the distribution and similar correlation patterns are also shared by maxima of
the dnaAP2 oscillations (Supplementary Figure H.13).

To summarize, the key timings (maxima and minima) extracted from dnaAP2
oscillations in single cells follow the same correlation patterns followed by replica-
tion initiation, corroborating our interpretation that the dnaAP2 cell cycle oscillator
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is intimately linked to the single-cell replication cycle.
6.2.8 Volume oscillations are causally coupled to dnaAP2 ex-

pression
Beyond cell cycle staging, single cell-level dnaAP2 oscillations can be used to gain
further insight into the coupling of this DnaA-dependent cell cycle circuit with cell
size and cell division. The standard view of the cell cycle sees it as the result of a
single "master-clock" cell cycle oscillator. Having shown that dnaAP2 activity is an
oscillator that is strongly coupled to cell size, we figured that the signal we revealed
could be a candidate proxy for the oscillator of the cell cycle. These considerations
lead us to test the property of the "attractors" (in the language of dynamical sys-
tems theory) linking cell size and cell division timing to dnaAP2 oscillations in single
cell trajectories. As we detail below, contrary to the expectation of a single master
clock, our results suggest that at least two coupled (but independent) oscillators
are needed to describe the processes that coordinate DNA replication, cell growth
and cell cycle progression.

The term coupled is generally understood tomean “linked” for example through
some kind of checkpoint bu here what we mean by “coupled” is that two indepen-
dent variables such us initiation and division are correlated because they are both
dependent on size and on growth dependent accumulation of essential proteins
to threshold levels.

The specific activity of dnaAP2, the cell’s volume growth and division events
for lineages of variable length are shown in (Figure6.9A). Each of these parame-
ters display oscillations throughout several generations. To test the presence of
coupling between specific dnaAP2 activity and volume oscillations, we considered
the cross-correlation between these two time series, computed along lineages (Fig-
ure 6.9B) [35]. Figure 6.9B shows that this function is markedly periodic, suggest-
ing a strong coupling, with higher-amplitude peaks for positive time delays. This
asymmetry of the cross-correlation function, which shows higher-amplitude peaks
for positive time delays, could support a "volume to dnaAP2" causality, whereby
changes in volume are prognostic to future changes in dnaAP2 oscillations. Im-
portantly, in mutants with deleted DnaA binding sites or in constitutive promoters,
these cross-correlations are strongly reduced (Supplementary Figure H.15). Dele-
tion of SeqA binding sites does not suppress the cross-correlations, but alters the
pattern and makes it more symmetric (Supplementary Fig H.15).

Finally, while cross-correlations firmly establish a coupling, one has to be care-
ful when inferring causal relations between two observables because of the exis-
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tence of a non-zero correlation between two signals does not necessarily imply
a causal link [229]. To investigate the directionality of the coupling, we used the
Convergent Cross Mapping (CCM) technique considering conditional correlations
of one variable with the a second one which is constrained in a point of its at-
tractor manifold, reconstructed by Takens theorem[230][231] (see Supplementary
Figure H.16). These conditional correlations are not symmetric and reveal causal
links. Figure 6.10C summarizes the results of our analysis. We detect a volume-to-
dnaAP2 causality, and this causal link is weakened inmutants without negative and
positive DnaA auto-regulation, as well as in mutants without SeqA regulation. The
same analysis shows that volume and cell division are always in a symmetric causal
relationship. Consequently, cell division is causally coupled to dnaAP2 oscillations
in a much stronger fashion than dnaAP2 causes division. This unintuitive result
stems from the strong symmetric coupling between cell division and cell size, and
from the fact that the dnaAP2 promoter is a strong size sensor. Importantly, these
asymmetric relationships are not detectable by looking at cross-correlations alone
(Supplementary figure H.15).
6.2.9 Two phase-locked oscillators govern cell-cycle progres-

sion
Having established that dnaP2 and cell division are coupled oscillators, we pro-
ceeded to characterize their synchronization properties. Since Huygens’ discovery
of phase locking [232], this phenomenon has been reported in a variety of con-
texts [233–235]. These findings show that the synchronized states show common
generic properties that can be described by simple predictive mathematical mod-
els. Generally, the behavior can be characterized by a coupling strength and a
"detuning", describing the difference between the intrinsic frequency of the two
oscillators.

In order to capture phase locking between dnaAP2 and cell division, we char-
acterized each oscillator with a phase, a linearly increasing variable reset at each
cycle, which advances by 1 between successive cycles. Specifically, we defined a
dnaAP2 phase variable Θ, where Θ = 0 corresponds to the minima of dnaAP2 pro-
moter activity and a cell cycle phase Φ as above (Φ = 0 represents birth). These two
variables define a periodic square [0, 2π) [0, 2π) (this square can be regarded as a
torus because opposite sides are equivalent). Subsequently, as time t increases,
the combined phase (Θ,Φ) from each single cell lineage traces a trajectory in this
phase space. Following single lineages along this space shows that cells follow a
diagonal trajectory (i.e. they follow 1:1 "phase-locked" orbits, Figure 6.10D and
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Supplementary Figure H.18). Consequently, the phase difference,∆ = Θ−Φ fluctu-
ates around a constant value. Occasionally, one of the two oscillators accumulates
an extra oscillation and the phase difference "slips" by one unit (Supplementary
Figure H.18). The phase slips are more frequent for the seqA mutant and this sug-
gest that mutation of the SeqA binding site disrupts this phase locked state (Figure
6.10D). These results can be captured by the following general equations describ-
ing dnaAP2 production rate(θ) and cell-cycle phase(ϕ) as two coupled oscillators{

dθ
dt

= ωθ + ϵθFθϕ(θ, ϕ) + ζθ(t)
dϕ
dt

= ωϕ + ϵϕFϕθ(θ, ϕ) + ζϕ(t)
, (6.1)

where ωθ and ωϕ are the intrinsic frequencies of the two oscillators, ϵθ and ϵϕ arethe coupling coefficient and ζϕ,ζθ represent the noise terms.
Figure 6.10 shows that the wild-type promoter oscillations are concentrated on

two juxtaposed diagonal stripes whose slope is one, hence the oscillations only
depend on the phase difference. Thismeans that aminimalmodel of the couplings
Fθϕ and Fϕθ is a function of phase differenceΘ−ϕ. In this case, the above equations
reduce to a single equation for the phase difference

d∆

dt
= ω + ϵF (∆) + ζ(t) , (6.2)

where ω = ωθ−ωϕ, the detuning, is the difference between the intrinsic frequenciesof the two oscillators, ϵ = ϵθ − ϵϕ quantifies the overall strength of the interaction,
F (∆) = Fθϕ(−∆)− Fϕθ(∆) is a coupling function and ζ(t) noise term. This equation
is known in the literature as Adler equation [229], and holds for a wide class of syn-
chronized oscillators [236, 237]. For the SeqAmutant promoter the dependence of
the coupling function from the two oscillators is more complicated and the Adler
equation is not valid. More details on these theoretical approaches can be found
in Appendix H. Since the data support this model, it is possible to infer from data
the coupling strength (ϵ) and difference between the intrinsic frequency of the two
oscillators (ω) [238]). The inference procedure is simple, and amounts into taking
the conditional average of the empirical time derivative of the phase difference, at
fixed phase difference. We tested this approach on simulated data where the two
oscillators follow Equation 6.1 with a sinusoidal coupling function that depends on
the phase difference andwewere able the estimate the correct parameters (Figure
6.10E).
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6.3 Discussion
The DnaA protein is an important factor regulating the initiation of DNA replication
[16]. Its activity depends on its nucleotide bound state, the ATP bound form being
the active one for origin recognition and activation of initiation of DNA replication.
An oscillation in DnaA-ATP activity is assumed bymost, but so far supported only by
indirect population-level data [23]. A set of different processes are thought to con-
tribute to the oscillation and help avoid re-initiation of DNA replication within the
same cell cycle [15, 17]. The regulated hydrolysis of ATP to ADP coupled to ongo-
ing DNA replication should decrease its activity after initiation has taken place; the
binding of SeqA to hemi-methylated DNA at both the origin and the dnaA promoter
should inhibit access to these sites by DnaA-ATP and RNA polymerase respectively,
and DNA replication should result in an increase in the number of DnaA-binding
sites. Some of these binding sites can change the nucleotide bound state of the
protein and play a different role depending on the cell’s growth rate [239]. These
results have been the basis for different models that have proposed that the activ-
ity of DnaA-ATP oscillates within the cell cycle to trigger initiation [19, 51].

However, one of the major challenges in this field has been to quantify the
changes in DnaA-ATP activity in vivo in real time, and provide direct evidence for
these hypothesized activity oscillations. To address this problem, we have devel-
oped a set of reporters of gene expression using a gene for a fluorescent protein
under control of a promoter that can be differentially regulated by DnaA-ATP. In
previous studies, we have shown that the autoregulation of the expression of the
dnaA gene takes place via both positive and negative autoregulation [112]. We have
used this information to design reporter constructs whose gene expression activ-
ity depends on the in vivo concentration of DnaA-ATP. Using a microfluidic device
coupled to microscopy imaging these strains can be used to follow the changes in
gene expression rate during the cell cycle bymeasuring fluorescence in real time at
the single cell level. Thanks to all these efforts, we have been able to identify oscil-
lations dependent on DnaA activity and quantify the effect of the DnaA-dependent
promoter regulatory elements that lead to this oscillatory pattern. The study of pro-
moter mutants where the binding of either DnaA or SeqA have been compromised
and the comparison with the expression from a constitutive or a growth-rate de-
pendent ribosomal promoter shows that the promoter’s regulation by DnaA-ATP
causes an oscillation in GFP production rate beyond the effect of dosage. While
these experiments have been carried out on a gene expression reporter system,
these results can be applied to the autoregulation of the expression of the dnaA
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gene itself. These results are consistent with DnaA-ATP activity being a cell cycle
oscillator, and we have shown that these oscillations strongly depend cell volume
and are correlated with the time to daughter cell’s division. Both negative autoreg-
ulation from DnaA-ATP and SeqA affect the coupling of dnaAP2 oscillations with
cell division. Negative regulation is essential to have these oscillations, and SeqA is
necessary to couple these oscillations to cell volume and cell division. Hence, the
dnaAP2 oscillator is coupled to both the DNA replication and cell division programs.

Remarkably, the signal to noise in our data is high enough that these oscillations
are also detectable at the level of the single cell. The minima of these oscillations
show the same size-correlation patterns of the initiation timing, detected in other
studies by the tracking of fluorescent foci coupled to initiation of DNA replication
[48, 240]. While the standard view of the cell cycle sees it as the result of a single
oscillator, our single cell data lead us to suggest that at least two coupled oscillators
are needed to describe the processes that coordinate DNA replication, cell growth
and cell cycle progression. This approach also makes it possible to detect causality
links between these different processes. The volume to dnaAP2 causality supports
models where chromosome is not always limiting for division [8, 9, 62]. In general,
two coupled oscillators linked with specific causality are needed to describe the
processes that coordinate cell replication, cell growth and cell-cycle progression.

In eukaryotes, numerous checkpoints exist to ensure that each step of the cell
cycle has been completed before proceeding to the next one [241, 242]. Few bona
fide checkpoints have been identified in bacteria and the mechanisms that ensure
orderly progression through the bacterial cell cycle are not completely understood.
Our findings combine the use ofmathematicalmodels and single-cell dynamic data
to pose firmer quantitative bases for a characterization of the mechanisms deter-
mining robust cell cycle progression in bacteria.
6.3.1 Future perspectives
Growth regimes play an important role in mechanisms involved in the coordi-
nation between DNA replication and cell growth and division. In this work, we
tested two growth conditions, and we chose one condition in multiple replication
round regime and at slower growth. It would be interesting, although quite time-
consuming, to test the results presented in this work also in additional growth con-
ditions.

Moreover, it would be interesting to test the hypothesis that have emerged from
my results by making mutations on the endogenous promoters for the DnaA gene
as well as its target genes.
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We do not know what would happen if we create the same mutations in the

native dnaA promoter. Probably, because of its central, essential, role in the cell,
altering the production of this essential protein would affect too many processes
to become difficult to distinguish specific effects, or one could expect that com-
pensatory mechanisms exist in the cell to counteract the problem. In the absence
of auto-regulation of dnaA expression one would probably observe a perturbation
of the timing and synchrony of initiation. People have already done experiments
where dnaA is expressed from an inducible promoter where cell survive but it is
not know what happens to the robustness of cell growth and division control. The
chromosomal construction would be useful to detect and measure this effect in
a single cell, in particular, under growth conditions slow enough to prevent over-
lapping DNA replication rounds, where multiple factors, such as supercoiling and
increased titration, come into play, and where we have observed the strongest ef-
fect of autoregulation.

Oana Ilioaia, engineer in our team, has recently set up a CRISPR protocol to ob-
tain the first set of mutant strains. These and future mutant strains will be useful
to characterize the DNA replication properties in the absence of specific regulatory
elements. This could be done at first at the population level, bymeasuring the num-
ber and the synchrony of active replication origins by flow cytometry, and then by
single cell fluorescence where different sites along the genome have been tagged
by fluorescent proteins.

Moreover, in Chapter 5we have seen howgene position in the chromosomehas
a large impact on gene regulation within the cell cycle. The native DnaA promoter
is placed closed to the origin of DNA replication and it would be interesting to see
if the observed oscillatory behaviour is still present for the same promoter placed
close to the terminus. This will tell us if there is an evolutionary reason for which
the native DnaA promoter is placed close to the origin.
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Chapter 7

Early fate of exogenous promoters

Gene gain by horizontal gene transfer is a major pathway of genome innovation
in bacteria. The current view posits that acquired genes initially need to be si-
lenced and that a bacterial chromatin protein, H-NS, plays a role in this silencing.
However, we lack direct observation of the early fate of a horizontally transferred
gene to prove this theory. We combine sequencing, flow cytometry and cell sorting,
followed by microscopy to monitor gene expression and its variability after large-
scale random insertions of a reporter gene in a population of E. coli bacteria. We
find that inserted promoters have a wide range of gene-expression variability re-
lated to their location. We find that high-expression clones carry insertions that
are not correlated with H- NS binding. Conversely, binding of H-NS correlates with
silencing. Finally, while most promoters show a common level of extrinsic noise,
some insertions show higher noise levels. Analysis of these high-noise clones sup-
ports a scenario of gene expression switching due to transcriptional interference
from divergent ribosomal promoters. Altogether, our findings point to evolution-
ary pathways where newly-acquired genes are not necessarily silenced, but may
immediately explore a wide range of expression levels to probe the optimal ones.

The work of this chapter is part of a collaboration funded by CEFIPRA between
the groups of Bianca Sclavi, Marco Cosentino Lagomarsino and Aswin Sai Narain
Seshasayee, at the NCBS, Bangalore. Dr Malikmohamed Yousuf, at the time was
a postdoc funded by this collaborative project and he is currently at the Centre
for Clinical Brain Sciences at the University of Edinburgh. The experimental part
was all performed by Malik, the DNA sequencing was carried out at the NCBS,
while I developed the entire data analysis framework. In particular, I have analysed
data from flow-cytometry, whole genome sequencing, nanopore sequencing, plate
reader experiments and single cell microcolony growth assays by epifluorescence
microscopy. Moreover, I have set the statistical analysis protocol andmathematical
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Figure 7.1: Noisy clones in a microfluidic chamber Two field of view of a microfluidicchamber. The population present a high gene expression variability.
model to investigate statistical tendencies for transposon insertions to be associ-
ated to specific chromosomal contexts. In addition, I have also performed a few
experiments in microfluidic chambers to see how this noisy clones behave when
growth conditions are changed (Chapter ?? and AppendixC). In Figure 7.1 prelimi-
nary results are reported. It will be very interesting to investigate more deeply how
this noise propagates in a population of single cells by changing environmental
conditions.

This work has been published in 2020 and I am co-fist author [27] and the pub-
lished paper is reported in this chapter.

7.1 Introduction
The high fraction of mobile genes in bacterial genomes is a source of a great di-
versity of phenotypes. This large diversity challenges the very concept of species,
and has enormous importance for understanding pathogenicity and antibiotic re-
sistance [243]. At the genetic level, E. coli genomes vary dramatically in their sizes
– ranging from 4.5Mb to 6Mb. Comparative genomic surveys of E. coli have shown
that there is a core set of genes which is highly conserved across the species and
coexists with a large pangenome, the set of genes that can be gained by horizon-
tal gene acquisition from other species [244]. Indeed, bacteria acquire exogenous
DNA by transformation (of naked DNA from the environment), transduction (of
DNA from bacteriophages) or conjugation (from fellow bacteria throughmolecular
pipes such as pili) [245]. In order to be functional, exogenous acquired genes often
need for the metabolic and the regulatory circuitry of the cell to be rewired [246,
247]. Furthermore, expression of a foreign gene can interfere with the resources
allocated for endogenous gene expression. Therefore, horizontally acquired genes
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must be regulated [248].
A primary mode by which the expression of horizontally-acquired genes is

regulated is believed to be transcriptional repression, which is achieved by pro-
teins such as H-NS in enterobacteria, including E. coli [215, 249–251](reviewed in
ref. [252]). Many previous studies support both the need of initial repression of
acquired genes, and the view that H-NS repression is relevant for the successful
establishment of these genes [247, 248, 253, 254]. H-NS is among several “global”
transcriptional regulators that affect the expression of hundreds of genes in E. coli.
It binds to AT-rich or intrinsically bent DNA sequences and forms structures such
as stiff rods or DNA-protein-DNA bridges, whichmight act as geometrical motifs for
transcriptional silencing [255, 256]. Many H-NS binding regions are up to a few kilo-
bases long. The length of these binding regions correlates with the degree of tran-
scriptional repression imposed on the target gene [214, 215] and genes regulated
by H-NS are very highly expressed in the absence of this repressive control [257,
258]. Since the levels and activity of H-NS depend on environmental conditions
and growth rate, this level of regulation allows for a coordinated gene-expression
change needed for cellular adaptation. Studies of gene expression of inserted re-
porter cassettes at different genomic locations [213, 214] have demonstrated that
gene expression of an identical regulatory system can vary greatly, beyond the ef-
fects of gene dosage, for three main reasons, supercoiling, activity of neighbour
promoters and H-NS regulatory activity. A gene’s local environment can thus pro-
vide a fitness advantage, associated to the selection of the gene’s position over
evolution.

Additionally, at least through the action of H-NS, which is a notorious nucleoid-
shaping protein [259], the dynamics of horizontal transfers is related to the phys-
ical organization of the chromosome. An important question to be addressed is
whether and how the organizational features of the E. coli chromosome (such as
the “macrodomain” architecture [260–262] are correlated with gene acquisition
and control of gene expression, particularly of acquired genes [263].

Horizontally transferred genes are often clustered along the genome [245, 261,
264–266]. In part, this reflects joint transfer of functionally co-dependent genes
that would provide no benefit if transferred independently. In part, however, this
reflects the existence of “permissive” zones along the chromosome, which experi-
ence recurrent integration and high turnover. Permissive zones can originate or be
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Figure 7.2: Insertion localization and sorting by gene expression. A: Experimen-tal pipeline. Massive transposon insertion of a GFP reporter gene cassette in around100000 founder strains was tested by plating on kanamycin-selective agar and PCR. Sur-viving colonies were mixed, grown overnight in LB, resuspended and grown to a fixedOD. B: Sequencing of resulting parental populations yields the locations of the insertions,shown in the top-left panel (y axis are counts in logarithmic scale). The bottom panelcompares a 3kb sliding average of the coverage (black line, y axis rescaled for compar-ison) with the prediction from gene dosage, and the experimental dosage (red dashedline) measured by whole-genome sequencing (blue line) the right panels are controlsthat the trend of insertions copy number is not due to ribosomal genes (orange line)and to the insertions with top 10% coverage (> 3000 reads/bin, purple line). C,D,E: for-ward scatter vs GFP expressionmeasured by flow-cytometry. FACS Sorting by the level offluorescence was performed on a total of four rounds (see Supplementary Fig. 1). Select-ing for high expression (RH) from the parental population (C) yielded a population witha similar distribution of gene expression (D), while selecting for low expression yielded apopulation with a bimodal distribution of gene expression (E). Insets in panels D and Eshow insertions found by population sequencing (y axis are counts in logarithmic scale),with overall similarity but local differences.
reinforced through physical integration biases, where the presence of integrases
and/or recombinogenic sites facilitates acquisition of genetic material [243]. Addi-
tionally, in many species including E. coli, horizontally acquired genes preferentially
accumulate near the (AT-rich) terminus region [243, 244, 261], possibly to avoid
deleteriously high expression near the origin due to gene copy number effects.

The genome sequence organization of a given species is a result of selection
pressure and architectural constraints. Some of these have been clearly identi-
fied [245, 248, 257, 266, 267]. For example, highly expressed, newly acquired genes
must be kept from interfering with the expression of essential genes. However,
comparatively little is known about the early dynamics of acquired genes. Do clear
physical insertion biases emerge? What are the phenotypic impacts of inserted
genes and how are they linked with expression levels? How, in turn, is gene ex-
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pression a consequence of the locus of insertion? Are they immediately silenced
and do H-NS and nucleoid organization play a role?

To access some of the above questions, we devised an experimental assay
(Fig. 7.2)where a cassette including an antibiotic resistance gene andaGFP reporter
under the control of a highly expressed ribosomal promoter is inserted systemat-
ically in the genome, and the resulting mixed and clonal populations are analyzed
by sequencing and single-cell biology methods. This methodology allows us to de-
scribe statistical tendencies for a reference promoter to be inserted and initially
maintained in specific chromosomal contexts, as well as to characterize its fate in
terms of both gene expression activity and noise of the transcription reporter con-
structs at different insertion sites on the genome.

7.2 Results
Detailed Methods are available as Supplementary Materials (Appendix I).
7.2.1 Efficient protocol for production and characterization of

systematic exogenous reporter insertions.
The promoter chosen to control GFP expression in the randomly inserted cas-
sette is the rrnBP1 promoter of the rrnB ribosomal operon. We chose this well-
characterized highly expressed promoter because it is regulated by changes inDNA
supercoiling and by the abundant nucleoid proteins Fis and H-NS [52]. We also con-
sidered, as a control, a shortened version of the promoter lacking regulation by the
nucleoid proteins Fis and H-NS but still regulated by DNA topology.

Fig. 7.2A describes our pipeline (see Methods and Supplementary Fig. S1). On
the order of 105 transposed colonies (this estimate was based on manual count-
ing as we knew the number of transposed colonies in each plate) were mixed and
grown overnight in minimal medium. This population was regrown to a fixed OD
in the samemedium, and initially assayed by population sequencing (Fig. 7.2B and
flow cytometry Fig. 7.2C,D,E). We then used a cell sorter to select sub-populations
based on gene expression levels (Fig. 7.2C,D,E). Each of these subpopulations was
grown overnight, regrown to exponential phase and then sorted again as a func-
tion of GFP content, for a total of four rounds (Supplementary Fig. S1). Finally, 658
randomly hand-picked clonal populations were individually characterized by flow
cytometry. A subset of 96 from the 658 clonal populations representing different
sorted populations were randomly selected and sequenced, and 90 of these were
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used tomeasure gene expression and growth rate in a plate-reader assay (see Sup-
plementary File SF1). A smaller selected subset of clones was used to measure the
dynamics of gene expression in single-cell microcolony growth assays by epifluo-
rescence microscopy.
7.2.2 Bimodal distribution of gene expression in parental pop-

ulations and low-expression sub-populations.
Comparison of the fluorescence distribution in the sorted populations obtained
from the high (RH) and low-expressiing (RL) fractions of the parental population
(Fig 7.2C,D,E) shows that the low-expressiing (RL) population have a sub-population
of clones with very low expression. In the parental population (Fig 7.2C), some of
these low-expression clones are already visible (green box). Sorting them from the
RL population gave rise to the population RLR1V1L. Outside of this low-expression
peak, the distribution of gene expression has little variation in the sorted popu-
lations compared to the parental one. This variability is the combination of the
variability of promoter expression across single cells that are clonal (i.e. where the
insertion is in the same exact position) and the variability of mean expression be-
tween clones with different insertion locations. Thus, the clonal variability should
be considerably high in order to account for the fact that the overall pattern of vari-
ability is robust in the sorted sub-populations (which contain less clonal variants).
There are, however, some important differences in the distributions, mirrored by
differences in the location and frequency of the insertions in the sorted popula-
tions, which turn out to be significant (see below).
7.2.3 Insertions are non-uniform and sparse and are more bi-

ased towards the replication origin than justified by gene
dosage.

TraDIS Sequencing of FACS-sorted populations based onGFP expression shows the
presence of transposon insertions at different chromosomal positions. Coverage
of the insertions is uneven and sparse (Fig. 7.2B,D,E). In addition, there is a bias
with respect to genome coordinate, with a higher insertion frequency close to the
replication origin and a lower insertion frequency close to the terminus. The dis-
tributions of insertion frequencies in the parental populations of the P1-short and
P1-long promoter insertions showed the same qualitative features as a function of
genome coordinate (Supplementary Figure S2). Populations derived from the high
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or medium GFP expression populations show a bias for insertions closer to the
origin of replication (Supplementary Figure S2). We also noted that populations
derived from the low GFP expression populations, particularly those filtered for
very low expression levels, showed high-frequency insertions in ribosomal regions
(Supplementary Figure S2).

We tested a possible role of gene dosage in the origin-to-terminus bias of inser-
tion frequency. The samples are in early log phase in LBmedium at 37oCwhen they
are exposed to the transposon. There is therefore a higher number of copies of the
chromosome close to the origin than to the terminus. Estimating the dosage from
the Cooper-Helmstetter model [43], and assuming an insertion rate proportional
to the dosage, we computed the expected insertion bias, keeping into account the
population age-structure (see SI text).

Fig. 7.2B shows that the dosage estimated theoretically agrees very well with
whole-genome sequencing of genome copy number, but is not sufficient to ex-
plain the stronger origin-terminus bias of the insertions. We also verified that this
bias was not due to the insertions with top 10% coverage and to the insertions
on ribosomal genes. The additional bias may be due to additional factors such
as DNA supercoiling or biased binding of nucleoid proteins and differences in nu-
cleoid compaction [151, 268–270]. Additionally, the density of insertions shows a
slight left-right asymmetry with respect to the origin, which is visible when the slid-
ing average of insertions is compared with the prediction from dosage (Fig. 7.2B).
We verified that a model with time-dependent insertion rate, i.e. where the inser-
tion rate r increases with time t, r(x, t), can fit the data, using insertion rate growing
as a power law in time (see SI text). However, there is no empirical motivation to
assume such cooperative behavior in insertions that occur in different cells. Alter-
natively, since the exponent linking expected dosage and measured insertions is
close to three, one can also hypothesize a cooperative effect of technical or biolog-
ical origin, but we could not produce a technical or biological explanation for such
a simple cooperativity.
7.2.4 H-NS binding sites are enriched at insertions positions
In order to better characterize the genomic positions of the insertions, we in-
vestigated the statistical tendencies for localization of insertions using the gene
lists from the NuST database [271]. This database contains a large panel of pub-
lished gene setsmeasuring several genomic properties such as binding of nucleoid-
associated proteins, including several H-NS data sets (see Supplementary Table 1
for a detailed description of each data set). To score for significance, we compared
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the co-occurrences of insertions and geneswith 5000 realizations of a shuffling null
model (see SupplementaryMethods for details). Note that the nullmodel subtracts
the empirical sliding average of insertions, and not the dosage, thus the results are
net of the overall enrichment around the origin. The analysis was applied to the
population-sequencing data for the insertion sites in both the parental populations
as well as in the ones that were sorted for gene-expression levels.

This analysis, summarized in Fig. 7.3A, shows that H-NS binding is themain prop-
erty associated with any insertions (even before any sorting by gene expression is
performed). The light blue circles in this figure refer to different genome-wide H-
NS occupancy (ChIP-ChIP and ChIP-seq) data sets, obtained in different conditions
(see Supplementary Table 1). The dark blue circle refers to genes that are sensitive
to H-NS knockout under perturbations that make supercoiling more positive [218].
The crossed square refers to generic transcriptionally silenced extended protein
occupancy domains, which are largely made of H-NS bound regions. All these sets
are correlated but not identical, and essentially contain different categories of H-NS
bound regions.

Importantly, a strong enrichment is shared with putative horizontal transfers
detected from sequence properties (among which AT-richness [272], red diamond
in Fig. 7.3A). Indeed, the full list of insertion sites is enriched in H-NS target genes
regardless of the expression level (Supplementary Table 2). We also found an en-
richment on H-NS binding sites in the surroundings (10kb regions) of the insertions
compared to random sites (Supplementary Fig. S2).

The positive local association of H-NS binding sites with insertion sites is in
agreement with a common preference for AT-rich regions. As previously men-
tioned, genomic insertions generally have a reported bias for AT-rich regions [245,
273, 274], and AT-rich regions are also the preferred binding targets for H-NS [215,
251, 259, 261]. We looked for a correlation between all insertions (regardless of
their association with H-NS) and AT-rich regions. In order to do this, we compared
the distribution of AT-bias in the sequences surrounding insertions with a random
sample of the background sequences of the genome. A one-tailed Kolmogorov-
Smirnov test (p-value < 10−16) suggests that there is a significant difference be-
tween the two distributions, with the sequences surrounding the insertions being
richer in AT than the background ones (Supplementary Fig. S2). The role of H-NS
has been proposed to inhibiting insertions, in addition to repressing events of spu-
rious transcription [253, 258, 275, 276]. Our results lead us to conclude that, in the
tested conditions, at these fast growth rates, H-NS does not appear to inhibit phys-
ical events of transposon insertion efficiently. The correlation analysis performed
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here does not allow us to conclude that AT-richness causes the enrichment of both
insertions and H-NS binding. Another causal chain is possible, but appears less
likely, where H-NS binding facilitates insertions, thereby driving them towards AT-
rich regions. We also note that the Tn5 transposon has been reported to be biased
towards GC-rich regions [277], by a similar analysis than that performed in Supple-
mentary Fig. S2, but in different conditions, and in a different organism. This pre-
vious result makes the positive association that we find between insertions and
AT-rich regions more intriguing. Additionally, Fig. 7.3B shows that the significant
enrichments of the different gene sets for insertions are consistent across the two
promoters used here (P1-short and P1-long) used here (see also Supplementary
Table 5), as expected from a lack of a role of the donor sequence on insertion bias.
7.2.5 Other global regulators are enriched at insertions posi-

tions
We now proceed to discuss other gene sets that share enrichment for any inser-
tions (visible in Fig 7.3A). Of notable significance are targets of global regulators
Fis (which alters the nucleoid state to aid transcription in exponential growth) and
FNR (which alters the distribution of RNA polymerase in response to oxygen star-
vation). This could be related to AT-richness bias of the binding site of these pro-
teins or to high transcriptional activity (and thus accessibility for insertions) of these
genes [275, 276]. It is reasonable to expect that Fis targets are more active in LB
medium. However, we found that transcriptionally active RNAP binding regions
(measured by ChIP-chip during rapid growth [278]) are under-represented for inser-
tions, which suggests a negative interaction between RNAP binding or transcrip-
tional activity and insertion frequency (Supplementary Table 3). Finally, a milder
but significant over-representation for insertions was found for CRP and IHF tar-
gets, genes that are sensitive to supercoiling perturbations in an H-NS knockout
background, and genes with trans-membrane domains (Supplementary Table 4).

Conversely, essential genes (filled green squres in Fig. 7.3A) are themost under-
represented set for insertions, as expected (Supplementary Table 3). The other
under-represented gene sets for insertions comprise RNAP targets in rapid growth
(crossed dark-green circle in Fig. 7.3A), genes whose promoters are sensitive to su-
percoiling changes and highly transcribed occupancy domains, suggesting a nega-
tive correlation between insertion probability and transcriptional activity.
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7.2.6 H-NS binding is the sole over-represented signal in low-
expression clonal populations

Finally, we compare the parental population with the ones sorted for gene expres-
sion levels (Fig. 7.3C and Supplementary Table 6). The comparison of the insertion
sites of the high and low expressing populations from the P1-long promoter strains
shows that the low expressing population is found preferentially within H-NS bind-
ing regions, while the high expressing population is not. Indeed, the low-expression
(RL) population maintains a similar association as the parental population with H-
NS, and no other binding protein. Conversely, the RH (high expression) populations
show no association with H-NS, and only maintain some enrichment with FNR (Fig.
7.3C and Supplementary Table 6). Hence, despite the lack of an effect in inhibiting
transposon insertion, H-NS does appear to regulate the level of gene expression
of the inserted sequences.

Overall, these results point to a more complex role than is expected for H-NS in
modulating genome accessibility and gene expression of recently acquired genes.
7.2.7 Flow-cytometry analysis of clonal populations shows vari-

able noise and gene-expression properties.
Each of the sorted populations was plated separately to yield individual isogenic
(clonal) colonies. To gain further insight into these differences in gene expression,
658 individual clones were hand-picked from the different populations and grown
in 96-well plates to measure the average fluorescence and its standard deviation
by flow cytometry. From these, 90 clones where chosen to measure both the fluo-
rescence and the growth rate in a plate reader in different growth media.

This analysis yields the following main results (see Supplementary Figures
S3,4,5)

- There is agreement between a clone’s level of fluorescence and the average
level of fluorescence of its original population (Supplementary Fig. S3), asmea-
sured by both flow cytometry and the fluorimeter. Specifically, the clones
from the low-expressing populations have a significantly lower average level
of fluorescence.

- The magnitude of the difference between high- and low-expressing clones
depends on the growthmedium. The difference is greater in the faster growth
medium (Supplementary Fig. S4).
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Figure 7.3: Enrichment of insertions for H-NS and other global regulators. A. Z-score of enrichment tests for different gene lists (See Supplementary Table 1 for a fulllegend). H-NS binding sites (from ChIP-seq and ChIp-ChIP data) and H-NS perturbationsexperiments (from ref. [218]) are highly enriched (circles), indicating a strong positive as-sociation of insertions to H-NS binding regions starting from the parental colony. Otherglobal nucleoid regulators (FNR, Fis, IHF, CRP, see legend), and a list of horizontal trans-fer genes (HT, see legend) also show positive association, lists of essential genes (filledsquares) show strong negative enrichment. B. Comparison of the two different pro-moter tested (with and without Fis and H-NS binding sites) shows a similar behavior.C. Comparison of parental and sorted populations (see Fig. 7.2CDE) shows that H-NSassociation maintains a strong significance in the low-expression population, and losessignificance in the high-expression population, where FNR sites remain highly enriched.
- The very low-expression strains (Fig. 7.2E) show low expression regardless of
the growth media, except for a few outliers showing out-of-trend expression
(higher than expected) in the poorer medium (Supplementary Fig. S4). The
last two observations are consistent with the known growth-rate dependence
of H-NS activity and ribosomal operons transcription rate [214, 279, 280]. This
result shows that different regions of the genome can have different growth-
rate dependent properties.

- Each clonal population (with a single insertion site, as verified by sequencing)
shows a distribution of fluorescence whose spread does not depend solely
on the average expression level (Fig. 7.4A and Supplementary Fig. S5).
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7.2.8 A set of “noisy” insertion sites.
We found that in all the clones the standard deviation of gene expression is pro-
portional to the mean, meaning that most of the noise shown by the promoter is
extrinsic, regardless of expression level and insertion location (Fig. 7.4A). This is ex-
pected from the high level of expression of the rrnBP1 promoter [281]. However,
a subset of clones show a higher level of noise where the scaling of the standard
deviation with themean follows a steeper slope. In other words, these clones show
much larger gene expression variations than expected. All of these high-noise
clones were very-low expression bacteria obtained from the RL (low-expression
filtered) population. Hence, these clones likely explain the very-low expression
sub-population (in green in Fig. 7.2E) in the distribution of gene expression of the
RL (low-expression filtered) population. When tested for their distribution in single-
cell gene expression by flow cytometry, these low-expression high-noise clones did
not show bimodal distributions. Rather, they showed disperse and skewed distri-
butions, whose range overlaps with the expression level of other low-expression
clones (Supplementary Fig. S5A,B). Supplementary Fig. S5 C-G recapitulates the
noise properties of all the picked clones from different rounds of selection. It is
clear that high-noise clones become more frequent in successive sorting rounds
where lowor very-lowexpression cells are selected. The following two sections deal
with a more detailed characterization of the properties of these low-expression,
high-noise insertions.
7.2.9 Noisy sites are associated with the insertions within ribo-

somal operons.
To characterize the set of clonal colonies fromdifferent populations, we performed
whole-genome sequencing on 90 selected clones.

The locations of all the insertions of these clones are listed in Supplementary File
SF1. 32 clones out of the 90 selected samples show the presence of insertionwithin
a rRNA operon from whole-genome sequencing data. These clones were very-low
expressing clones derived from RL filtered populations. For example, in the clones
from the RLR1V1L sorted populations we tested a total of 16 insertions, of which 9
were in rRNA regions (Supplementary File SF1). In order to verify these short-read
assignments of insertions sites, long-read nanopore sequencing was used on 5 of
these 32 clonal samples. This analysis confirmed the presence of the transposon
insertion within the 23S ribosomal RNA (rrlE) of the rrnE operon. To recapitulate
these results, Fig. S6A shows the association of clones with high-noise promoters
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with rrlE insertions. Some of the non-rrlE high-noise clones revealed the presence
ofmultiple (up to three) insertion sites, which can explain the large variance in gene
expression of these clones (see column D of Supplementary File SF1 for a list of the
multiple insertions and theor coordinates). Indeed, we found that normalization
of gene expression by the copy number of the promoter removed these outliers
(Supplementary Fig. S6BC). Hence, we believe that the true high-noise phenotype
should almost exclusively be associated with rrlE insertions.

Insertion within ribosomal operons is tolerated because E. coli has 7 copies of
ribosomal operons. To discover the orientation of the cloned sequences with re-
spect to the rrlE promoter position, we used the blast results of de novo assem-
bled contigs with the flanks of cloned insert sequence and we compared themwith
the reference genome. Most of the insertions showed an opposite orientation of
the inserted promoter with respect to the rrlE promoter sequence. Separately, we
checked the orientation of the inserted GFP cassette in few selected Illumina sam-
ples for which the blast results showed reasonable overlap with the genome locus.
This confirmed the opposite orientation of GFP with respect to the rrlE promoter
sequence in most samples. Strong promoter competitionmay explain the very low
levels of GFP transcript production by which these clones were isolated, as well as
the high variability.

We found that the trends of gene expression with growth rate were consistent
with the hypothesis of competition with a strong promoter: whilemost of the other
clones increase their expression with growth rate (in agreement with the known
regulation of the rrnBP1 ribosomal promoter) the noisy clones decrease in expres-
sion with increasing growth rate, in agreement with the idea that their expression
is repressed by an interference with transcription of the increasingly transcribed
ribosomal operon (Supplementary Fig. S3 and S4). Additionally, the mild reduction
in growth rate for insertions giving different mean GFP expression suggests that
the cost associated to GFP expression and the possible interference with the ribo-
somal operon are not dominant for these insertions (Supplementary Fig. S3 and
S4).
7.2.10 Noisy promoters may perform switching
The previous analyses strongly indicate an association of the high-noise insertions
with an interference of the insertions with ribosomal operons. To gainmore insight
on the temporal dynamics of these high-noise inserted promoters, we measured
gene expression noise in time-lapse microscopy data on growing microcolonies
(Fig. 7.4CD). We compared the change in GFP gene expression over time of sin-
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gle cells from clones carrying noisy and non-noisy promoters for 3-4 generations
and quantified the differences between gene expression in different lineages. The
divergence between lineages was quantified as the time average of the absolute
value of the gene expression difference between sister cells.

Bacteria were grown on an agar pad to form a microcolony. The time-lapse
data in the formation of the microcolony was segmented to obtain the change in
the average cell fluorescence as a function of time Fig. 7.4C. An example of gene
expression of two lineages, one from a noisy clone, asmeasured by flow cytometry,
and one from a control clone (where the cassette was inserted specifically between
two converging genes, AidB and yjfN) is shown in the left panel of Fig. 7.4D. The
right panel of Fig. 7.4D quantifies the divergence of gene expression along lineages
for different clonal microcolonies, corresponding to clones where the promoter is
inserted in different positions. Figure 7.4D shows that in microcolonies from high-
noise clones different lineages emanating from the same single cell tend to diverge
more in gene expression as time progresses than in the control or low-noise clones.
This result points to the possible presence of switching behavior in the high-noise
clones.

7.3 Discussion
Our results directly show that the probability of DNA insertion in the E. coli genome
by a transposon is biased, before any long-term selection may act, other than that
related to overnight growth. First, there is a stronger origin-to-terminus bias than
explained by gene dosage imbalance, second, insertion probability is higher in AT-
rich regions of the genome. This may seem surprising, because these are regions
that are preferentially bound by the H-NS protein, which has been proposed to
act as a barrier to horizontal gene transfer [245, 248, 250, 251, 266, 273]. How-
ever, physical components such as differences in DNA supercoiling [151, 263, 282]
and the biophysical properties of AT-rich DNA (lower melting barriers, different
stacking energy, etc.) may play a role in establishing these biases. In particular,
the measured origin-to-terminus gradients of supercoling [283] and gyrase bind-
ing [284] are compatible with the hypothesis that the probability of insertion is in-
creased in regions with higher negative supercoiling, which may explain the origin-
to-terminus positive bias for insertions (not justified by origin-to-terminus differ-
ences in gene dosage). Note that this insertion bias (only transposon type) should
not be confused to the transcriptional consequences of supercoling on the donor
promoter. A different promoter sequence is not expected to affect the insertion
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probability. On the other hand, changes in gene expression levels depend on pro-
moter sensitivity to supercoiling and local context.

An important technical point to address is the role of kanamycin selection in
these experiments. If the donor sequence including the kanR cassette is inserted
in a locus where it is completely silenced by H-NS, one might not be able to see the
insertion. However, our data show that selection itself does not preclude the identi-
fication of an insertion site, since insertions are not excluded fromH-NS occupancy-
rich regions, as it would be expected if complete silencing of KanR expression had
taken place. We do observe that promoters inserted in H-NS rich regions are on av-
erage expressed less than the others. We also note that we carried out the transpo-
son reaction in mid exponential phase cells growing in a rich medium, LB. In these
conditions the concentration of H-NS is lower due to a high dilution rate [214]. How-
ever, at the faster growth rates, H-NS is known to still play a role in the repression of
ribosomal promoters by binding to higher affinity sites [224, 269]. Our results sug-
gest that there is probably not enough protein to also cover the lower affinity (non-
specific) binding to AT-rich regions, in order to inhibit transposon insertion [252].
This is in contrast to a previous study in Vibrio cholerae that has shown that only in
the absence of H-NS there was a higher probability of insertion in AT-rich regions
of the genome [253]. These results lead us to further suggest that the role of H-NS
in regulating the probability of genomic insertion of horizontally acquired genes
may depend on the growth conditions and on the specific strain.

Our results also indicate that the dilution of H-NS in rapidly growing cells does
not prevent the establishment of a low-expressing population biased for the in-
sertions associated with H-NS binding. Hence, they are consistent with the role of
H-NS as a silencer of newly acquired genes. Indeed, we observe that once the full
length rrnBP1 promoter cassette is inserted in the genome, its level of expression
is lower if it is found near H-NS rich regions. This cassette includes a higher affinity
H-NS binding site within the full length rrnBP1 promoter and an AT-rich gfpmut2
gene sequence stabilizing the formation of H-NS dependent repressing complex.
The shorter version of the promoter (P1-short), lacking the high affinity H-NS bind-
ing site, does not appear show a stable sub-population of very-low fluorescence
clones (data not shown), showing that the high affinity site of the promoter is im-
portant in nucleating the repressing oligomeric structure, a question that we are
still exploring. In summary, the level of expression of the clones can thus be very
heterogeneous, depending on local properties of the site of insertion and the se-
quence of the fragment.

The cell-to-cell variability of gene expression within a given isogenic clone can
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vary significantly, but it typically scales with the mean level of expression as ex-
pected from extrinsic noise [185, 279, 281]. This is expected from the promoter
used here, rrnBP1, which is a strong promoter, resulting in a high level of expres-
sion. The change in the CV as a function of mean expression therefore remains for
the most part relatively flat, corresponding to the extrinsic noise regime.

However, in some of the very low expression clones the noise varies in a way
that is not expected from the known pattern of gene expression noise correlations
that have been described previously [279, 281]. We therefore characterized those
clones that have a higher level of gene expression noise and found that in these
cases the insertion has taken place within a ribosomal operon. E. coli has 7 copies
of ribosomal operons, therefore insertion inside one of them does not have a high
cost and is not selected against, at least in the short term of this experiment. This
results in interference between two transcription processes driven by very simi-
lar promoters, of similar strength. Furthermore, the initiation frequency of ribo-
somal promoters is high enough at fast growth rates that most of the time the
operon sequence can be assumed to be covered by transcribing RNA polymerase
"trains" [285]. This creates a block for RNA polymerase to bind to the promoter
that is found within the operon, creating a stable "off state". However, from time
to time RNA polymerasemanages to bind to the newly inserted promoter, perhaps
after the DNA replication forks have erased the memory from the competing pro-
cess, starting its own "train" of GFP production. Such transcriptional interference is
a well-known phenomenon [286]. Our result on promoter noise also suggests that
in the tightly packed bacterial genomes, transcription interference with newly in-
serted genes might be a natural source of innovations in terms of gene expression
noise on evolutionary time scales, as previously speculated for eukaryotes [287].

Altogether, the main novelty of our study is the support for a high (initial) tol-
erance for insertions with a wide range of expression levels, which challenges the
standard view that H-NS not only silences horizontally acquired genes (because
they are more AT-rich) but also inhibits insertion in AT-rich regions of the genome.
We find that in the tested growth conditions, H-NS does not inhibit insertions in
AT-rich regions. However, it can still decrease expression after the insertion has
taken place. These findings support the following evolutionary scenario. When a
novel gene enters the genome, it is more likely found in a region that is controlled
by H-NS, for reasons thatmost likely have nothing to dowith fitness, but have to do
with the physico-chemical properties of the DNA in AT-rich regions. However, the
wide range of expression levels that we find show that the gene is not necessarily
immediately silenced. Rather, the different insertion positions allow it to sample
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a wide range of expression levels (including silencing), at (initially) equal promoter
strength, while interacting from the start with the cell’s housekeeping physiology.
We believe that this inherent bet-hedging and exploratory stage may be a key in-
gredient of genome plasticity, and is underestimated in our current narrative of
the process of horizontal transfer, which is centered on the average outcome, and
establishes a strict time hierarchy between stageswhere an exogenous gene is first
silenced and then reactivated.
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Chapter 8

Conclusions

In this final Chapter I will summarise the key results of my work and propose ideas
for future research.

8.1 Summary
Despite the great effort scientists put into it, the debate is still open concerning the
regulation of DNA replication initiation in E. coli and its role in the dynamics of cell
growth and division. This work aims to contribute to this debated topic focusing on
the regulation of a key player in these processes, the DnaA protein [8–13]. DnaA
is commonly believed to be a cell cycle oscillator and a cell size sensor, but neither
of these facts have been firmly established [19]. In particular, we were interested
in identifying the cell cycle oscillator related to DnaA activity, and relating it to the
progression of the E. coli cell cycle, focusing in particular on its coordination with
cell growth and division.

To address this, I have first designed a dedicated experimental setup and data-
analysis pipeline for studying the growth, size, and gene expression of E. coli in
controlled environmental conditions. Next, to establish a solid reference for mon-
itoring the cell cycle dependence of gene expression from the dnaAP promoter,
I characterized the “null” relationships between cell cycle progression and gene
expression of an unregulated promoter (P5). Here we have found that the GFP
production rate under control of this constitutive promoter can be described as
linearly proportional to volume, likely through the dependence of protein produc-
tion rate on ribosome amounts, and to gene dosage through the increase in the
gene copy number by DNA replication. Correlating the GFP expression rate with
the estimated gene replication times along the cell cycle, one can see that instanta-
neous gene dosage also affects protein production in a cell cycle phase dependent
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way. Consistently, we have found that the specific GFP expression rate of a con-
stitutive promoter appears to be biphasic: the expression rate increases after the
initiation of DNA replication suggesting an increase in gene copy number.

Interesting things happen upon cell division: the volume-specific growth rate
suddenly changes, in a way that is dependent on the cell size at birth and reflected
in the volume-specific GFP expression rate, this in addition depends on the growth
condition, whether it is at fast or slow growth.

Surprisingly, we found that E. coli specific growth rate follows the same pattern
as that of the specific GFP expression rate from the ori-proximal P5 promoter. We
still do not have a clear explanation for this, but one possibility might be that the
replication of the ribosomal operons close to the origin can result in increased GFP
translation rate and increased volume-specific growth rate after initiation of DNA
replication has taken place.

The decrease in the volume-specific expression rate in the first phase does not
happen if we look at the expression from a full length ribosomal promoter where
Fis may help recruit RNAP to better compete with neighboring genes.

The differencesweobserved between the expression of GFP from the origin and
terminus-proximal strains means that the gene’s position in the genome can play
a role in modulation of gene expression as a function of the cell cycle, in addition
to the timing of change in gene copy number.

In addition to possible effects due to the distance from the origin, differences
in the local chromosome structure and organisation can influence gene expres-
sion and regulation. In Chapter 7 we find that insertions of exogenous promoters
are non-uniform and sparse and are more biased towards the replication origin
than justified by gene dosage. Moreover, we found that H-NS binding sites are
enriched at insertions positions and noisy phenotype are associated with the in-
sertions within ribosomal operons.

Next, we investigated how DnaA activity correlates with the cell cycle. One of
the major novelty of my work has been to quantify the changes in DnaA-ATP ac-
tivity in vivo in real time in order to relate DnaA levels and activity to key cell cycle
events. To do this, I have developed a set of reporters of gene expression using a
gene for a fluorescent protein under control of a promoter that is differently regu-
lated (activated, activated+repressed, no regulated) by DnaA-ATP. Lastly, it is know
that other factors can contribute to express a gene has a function of the cell cy-
cle. We know for example that SeqA might have an important role by shutting off
gene expression right after gene duplication. A mutant without GATC binding sites
downstream of the promoter is also considered.
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Figure 8.1: Final sketch The main findings are graphically summarized. First, an oscil-latory pattern of DnaA expression within the cell cycle was observed. Thanks to differen-tially regulated DnaA mutants I was able to dissect the contributions of different factorsthat boost these oscillation. Gene copy number variation and activation by DnaA-ATPcontribute to an increase in volume-specific gene expression. The latter can help recruitRNAP to the promoter in the presence of competition from neighboring genes, notablyribosomal operons, as it is observed for the specific GFP production rate from the con-stitutive promoter. Transcription repression by DnaA-ATP, repression by SeqA bindingand dilution by increased growth rate contribute to its decrease after initiation of DNAreplication and dnaA gene duplication has taken place. This concert of regulators leadsto an oscillation that is strongly coupled with cell volume, indeed a cell volume to DnaAactivity causality was observed. This leads us to think of cell growth and DnaA activityas two coupled oscillators with cell division.
Thanks to the analysis of different reporters, I was able to quantify for the first

time the effect of the DnaA-dependent promoter regulatory elements that lead to
an oscillatory pattern of gene expression that is coupled to both the DNA repli-
cation and cell division programs. For the first time we “observe” negative and
positive regulation over the cell cycle, with SeqA contributing to this regulation.
Specifically, I found that the volume-specific production rate of GFP from the DnaA
promoter is a well-defined cell cycle oscillator and that the signal from this oscilla-
tor can be related to key cell cycle processes such as initiation of DNA replication
and cell division. However, while the standard view of the cell cycle sees it as the
result of a single oscillator, our data lead me to suggest that at least two coupled
oscillators are needed to describe the processes that coordinate DNA replication,
cell growth and cell-cycle progression. My approach also makes it possible to de-
tect causality links between these different processes. These findings combine the
use of mathematical models and single-cell dynamic data to pose firmer quantita-
tive bases for a characterization of the mechanisms determining robust cell cycle
progression in bacteria. A lot of previous data consider average idealized cells and
when you do this you get cells that do not actually exist and you lose a lot of infor-
mation. My results highlight the importance of look at how the single cells behaves.
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8.2 Future perspectives

8.2.1 Multi-growth conditions switch
An advice I would give to the people that will come to the lab in the next year would
be: "play with the bacteria and the experimental setup!". During these years I have
used themicrofluidic experimental setup at less than half of its potentiality. The 11-
port/10 way Mux Distributor from ElveFlow allows a fast switch between up to 10
different growth media. Moreover, thanks to the OB1 pressure controller we can
expose the bacteria to oscillating environment with pulses of different frequency
and shape. All this would be very useful to study the adaptation process during
upshift or downshift experiments. For example, something very interesting that
we have seen "by chance" is that following a downshift cells stop growing and for
several hours they don’t resume growth. Then, as soon as we put back the fast
growth medium, they start growing again. It would interesting for me to under-
stand in which condition bacteria are able to grow again after a downshift, for ex-
ample gradually changing the environment.
8.2.2 Mutations on the native DnaA promoter
As I have already pointed out in Chapter 6, the most direct continuation of my PhD
project would be to use the same approach I have presented in this thesis to test
the hypothesis that have emerged from my results by making mutations on the
endogenous promoters for the DnaA gene as well as its target genes.
8.2.3 A data driven model
Another important step is to build a theoretical model that has DnaA-ATP as main
player and it is able to predict the coordination between DNA replication and the
cell cycle.

As we have seen, DnaA has an highly regulated promoter, it is difficult to for-
mulate a minimal quantitative model of the initiator circuit that includes the key
ingredients known to regulate its activity[18, 19]. Moreover, cell cycle effects that
we observed, both for cell growth and DnaA activity, might have an important role
in this coordination. A possible approach to this problem would be to use these
quantitative data, and especially the ones from the strain with mutations on the
native DnaA promoter, to develop a data drivenmodel that will allow us to test pos-
sible hypothesis on the regulatory links between gene expression and cell growth
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and predict the effect of novel mutations.
More specifically, the changes in gene expression from the different promoter

variants should all be consistent with a cell cycle dependent change in DnaA activity.
These models of the transcription regulation by DnaA would be useful to obtain an
estimate how the activity of DnaA changes to result in the experimentally observed
patterns.

Simulations could answer the following questions: can any promoter activated
and repressed by the same protein behave as DnaAP? Which form needs to have
the concentration of the regulating protein as a function of time (or volume)? Which
are other necessary parameters (Transcription initiation rate, RNAP affinity....)?
8.2.4 Beyond E.coli
Bacteria like Escherichia coli are an ideal model organism for the study of cells that
can change their growth rate depending on environmental conditions. When the
conditions are optimal they become rapidly proliferating cells requiring a specific
set of regulatory mechanisms involved in a robust cell-cycle progression. I find
extraordinary the fact that we still need to understand a lot about this simple or-
ganism and that new discoveries made on this organisms can have a wider effect
on other organisms.

In particular, my work deals with three topics that have a widespread interest
and applicability.

First, gene regulation. Although from the seminal work of Jacob and Monod
[288] our understanding of gene regulation has increased enormously, there are
still many open questions. Gene regulation is a quite simplemechanism that allows
living cells to optimize their gene expression based on the external environment.
Evolution has selected for regulatory mechanisms of gene expression that result
in a coordinated control of different key cellular processes such as DNA replication,
DNA repair, cell growth and division. Difference among organisms might reside in
different ways their genes are regulated, more than in having different genes [289].
Therefore, while this work sheds more light on the DnaA-dependent regulation in
E. coli it would me interesting to study how this regulation has changed in other
organisms and why.

Second, oscillations. Oscillations - such as a pendulum’s swing or a ball’s bounc-
ing on the end of a spring - are among the simplest andmost common phenomena
in physics, but researchers have come to appreciate their ubiquity in the biological
world, too [290]. Concentrations of molecules rise and fall, genes alternate be-
tween on and off, and circadian clocks keep time almost as well as human-made
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machinery. Together, these biochemical fluctuations are crucial for many biolog-
ical needs: timing daily activities, orchestrating cell division and movement, even
mapping out parts of an embryo as it grows. Cells would be unable to function
without them [290]. For example, in this work we suggest that in E.coli at least
two coupled oscillators are needed to describe the processes that coordinate DNA
replication, cell growth and cell-cycle progression and probably is can be applied
to many others oscillating circuits present in other organisms.

Third, cell-cycle control. The 2011 Nobel Laureates in Physiology or Medicine
together with thousands of other researchers have made seminal discoveries con-
cerning the control of the cell cycle. They have identified key molecules that regu-
late the cell cycle in all eukaryotic organisms, including yeasts, plants, animals and
human[291]. Since then, also thanks to new experimental techniques that allows
a single cell resolution, many new discoveries has done but at the same time new
question have arisen.

What is important to stress is that coordinating cell growth is critical for cell
survival across all kingdoms.

In microorganisms, growth control is essential for fitness and resistance to ad-
versarial attacks such us toxins and drugs. On April 15 2021, the World Health
Organization once again sounded the alarm on the emergence and spread of drug-
resistant strains against existing treatments and the need to develop new strate-
gies to address the problem of the lack of new antibiotics [292]. Identification of
novel antibiotics remains a major challenge for drug discovery. DNA replication
is essential for cell viability and is therefore an attractive target for antimicrobials.
Although several antimicrobials targeting DNA replication proteins have been de-
veloped to date, gyrase/topoisomerase inhibitors are the only class widely used in
the clinic. Given the numerous essential proteins in the bacterial replisome that
may serve as a potential target for inhibitors, it is evident that antimicrobials tar-
geting the replisome are underdeveloped so far and efforts has to be done in this
direction [24]. Moreover, some components are well conserved betweenmost bac-
teria, such as the DNA initiator protein DnaA the bacterial replisome can be used
to develop both broad-spectrum antimicrobials.

Lastly, in humans, uncontrolled growth is implicated in several disorders, in-
cluding cancer, obesity, and diabetes. For example defects in cell cycle control may
lead to the type of chromosome alterations seen in cancer cells. As we have seen
for antimicrobials, similarly, most cancer therapies work by inhibiting cell-cycle pro-
gression. This kind of study and its interdisciplinary approach presented here may
in the long term open new possibilities for cancer treatment.
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Insertion protocol

A B

Figure A.1: PCR verification AGel electrophoresis verification: compared to the controlbacteria BW all the DnaA fragments have bands corresponding to 3000KB so they arepositive. B Mega sequencing

Production of the "promoter + GFP + kan" amplification bordered by 50 bp
extensions homologous to the target chromosomal site

This amplification is made from the pDOC-K plasmide with long oligos that hy-
bridize by 20 bp to the pDOC-K, and having 50 bp extensions homologous to the
desired chromosomal insertion site. The PCR protocol is reported in Figure A.2 A
lot of DNA is needed (at least 200 µl of PCR product = 4x50). Expected cassette size
("promoter + GFP + kan") is between 2000 and 3000 bp depending on the promoter.
Digestion by DpnI of the PCR product in order to eliminate the plasmid pDOC-
K

• By promoter, pool the PCR tubes (VT total volume = 200µl)
• Add 1 µl of DpnI
• Incubate at 37°C for 1h minimum
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Purification of the digested PCR product on agarose gel 0.8%

• Prepare Sybr Safe
• Cut the band at 3000 bp and purify with the Nucleospin DNA PCR clean up kit
(Macherey Nagel)

• Resospend in 50 µl of water
• Measure the concentration of DNA (should be around 100 ng/µl of DNA)

Electrophoresis of the PCR product in the strain BW25113 which carries the
plasmid pKD46

• (Red recombinase allowing linear DNA recombination in the cell).
• Incubate the cells for 15 min in ice
• Add 100 ng of PCR product, pipette gently (a small volume of DNA is recom-
mended)

• Transfer the mixture of cells + PCR product into a cooled electroporation ves-
sel (0.1 cm gap) (caution, avoid bubbles in the vessel)

• Electroporate at 1800V
• Immediately add 1 ml of cooled SOC medium and resuspend the suspension
with the pipette

• Transfer to a 2 ml tube and incubate at 37°C for 3 hours.
• Spread on LB plates + Kanamycin (50 µg/µl) and incubate overnight at 37°C

Select clones only resistant to Kanamycin

• KanR transformants are selected and put in preculture
• Each clone is then subcultured on one LB + Kan (100µg/ml) and one LB+ Amp
plate

• KanR plates are incubated 1 night at 37°C and AmpR plates at 30°C
• The selected clones are those which are only resistant to Kanamycin: KanR
After this first selection, the chromosomal insertion of the KanR clones is ver-
ified by PCR
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• Collect 100µl of transformants
• Centrifuge the cells at 11000 rpm for 5 min then discard the supernatant
• Resuspend the pellet in 100µl of water, vortex and heat for 5 min at 95°C
• Centrifuge the cells at 11000 rpm for 5 min
• Recover the supernatant, it contains the chromosomal DNA
• Perform the verification PCR with short oligos
We use 2 locus-specific primers on each side to verify that we have inserted the

"promoter + GFP + kan" cassette of about 2000-3000 bp.
Sequencing of insertion products

• On the correct clones, repeat the insertion verification PCR in a final 50 or 100
µl volume (Figure A.3

• Purification of digested PCR product on 0.8% agarose gel prepare with Sybr
Safe

• Cut the band at 3000 bp and purify it with the Nucleospin DNA PCR clean up
kit (Macherey Nagel)

• Resospend in 50 µl of water
• Measure the DNA concentration (should be around 100 ng/µl of DNA)
• Send the PCR product to be sequenced with the oligo CC1 (CC1: GAATCT-
TAAGTTCTACGTGTTCCGC)

The absence of a mutation at the promoter level must be verified. CC1 verifies the
insertion in the chromosome (D57785), hybridizes on the kan cassette towards the
outside. In reverse direction
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Figure A.2: PCR program 1

Figure A.3: PCR program 2
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96 well plate protocol

Figure B.1: Plate reader Plate reader experiments allows to rapidly screen severalgrowth media and promoter mutants at population level

B.1 Main steps
• The mutant bacteria strains were pre-cultured over night at 37°C in the shak-
ing incubator.

• The next day, growth media were prepared.
• Pre-cultured bacteria strains were diluted by the program 8sample-4media
equal dilution set up in Beckman Coulter Biomek 3000 to dilute the bacterial
solution from the preculture 1000 times before going to the step of data anal-
ysis.

• The mineral oil was put on all the wells to avoid the evaporation.
• 96 well plates were inserted in the Tecan Plate reader machine at 37°C.
• Every 5 minutes for 23 hours, OD600 and fluorescence were measured using
the Magellan software and saved in an excel file.
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B.2 Data analysis
Data was analyzed by Matlab. A MatLab program was written by a former PhD in
the lab in order to automate the analysis of the data. Recently a R-Shiny program
was also written in our lab to make analysis easier to all the students in the lab.

Here are reported the main steps:
• The raw data of the measurement of the absorbance and fluorescence as a
function of time were smoothed using spline interpolation.

• The background absorbance and fluorescence was obtained from wells con-
taining only the growth medium.

• The curves from several control wells were averaged and subtracted from the
data of the different reporter strains.

• The curves of the absorbance measurement were shifted in the time (x) axis
so that all the curves reached 20% of their maximal absorbance at 600 nm
(A600) at the same time point.

• The curves of the fluorescence measurements were consequently shifted by
the same amount.

• The promoter activity was calculated by taking the time derivative of GFP di-
vided by the A600: [(dGFP/dt) /A600] and the growth rate was calculated by tak-ing the time derivative of the absorbance at 600 nm (dA600/dt).

• Graphs of growth rate and promoter activity were used to calculate the aver-
age values in exponential phase.
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Protocol for chip preparation

Figure C.1: Plasma cleaner A standard procedure with plasma cleaner(left) is used toincrease adhesion potential through a process called surface activation.

C.1 Main steps
• Coverslips were cleaned by isopropanol, then rinsed in MilliQ water. Slips
were dried using pressurized N2 gas and stored in sterile Parafilm-wrapped
polystyrene Petri dishes until use.

• PDMS was cast over the master template to yield the negative relief mother
machine pattern to be fixed to the coverslip.

• Microfluidic devices are constructed from polydimethylsiloxane (PDMS)). A
recipe of 10:1 elastomer to curing agent ratio byweight wasmixed thoroughly
by hand with a stainless steel microspatula.

• The mixture placed under vacuum in a glass dessicator for at least 20 min to
remove gas bubbles.

• The mixture was then gently poured over the master to a height of roughly 7
mm in a alluminium foil before being baked at 80°C for 3-4 h.
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• The master was gently removed and individual chips were cut using a scalpel.
• A 0.75 mm biopsy punch was used to make inlet and outlet injection sites.
• Scotch tape was gently applied to the features side of each chip to remove
any dust.

• Both coverslips and PDMS chips, features-side up, were plasma cleaned to-
gether for 1 minute at 30% power.

• Chips were placed features-side down onto each coverslip with one chip per
slip.

• Bonding between the glass and PDMS was usually immediate, however de-
vices were left at 80°C for an additional 10-15 min for increased bonding.

• Heat the assembled device at 80-100 degrees Celsius for 60 seconds in an
oven or hot plate. The high temperature provides activation energy for addi-
tional bond formation.

C.2 Important advises

Cleanliness

The presence of particulates or oil can block bonds from forming. Avoid touching
the surfaces to be bonded when removing PDMS from the plasma chamber.
Air vs Oxygen

Oxygen is more efficient than air due to the higher concentration of reactive oxy-
gen species. Additionally, air from an environment prone to daily fluctuations in
humidity or particulates can adversly affect PDMS bonding.
Plasma treatment duration

Plasma treatment should not exceed 2min, as prolonged plasma exposure causes
cracking in PDMS and migration of low molecular mass molecules from bulk to
surface, decreasing the number of hydrophilic SiOH groups and resulting in weak
or incomplete bonding. Oxidized surfaces should be brought into contact imme-
diately after plasma treatment to achieve strongest bond possible. PDMS surface
recovers hydrophobic properties (aging) with time after plasma treatment ( 1 hour).
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Bonding

After Plasma Treatment, press and hold PDMS components together lightly for 30
seconds. Do not pull apart and adjust alignment as this will disrupt bond formation.
Pressing with too much force may collapse microfluidic channels.
Conservation

Scotch tape was placed over the injection sites until use to seal the device from
dust. When properly stored in Parafilm wrapped Petri dishes, the devices were
shown to remain sterile and functional for up to two weeks.
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Microfluidic protocol

Part of the protocol can be found at:
www.elveflow.com/microfluidic-applications/microfluidic-cell-culture/\protect\@n

ormalcr\relaxhow-to-study-bacteria-by-microfluidics [170]

D.1 List of components

D.1.1 Pressure control system
• OB1 pressure controller
• 2x Mux-distributor
• 2x Flow sensors
• manifold 9 ports
• 5x Tubing, fittings and reservoirs

D.1.2 Computer interface

Window 1: [ORANGE] Main window

You have the list of all the connected devices. If any device is missed, you can press the
“recharge” button on the top/left Press on the play button to open the windows 2 and 3
Press the 3 dots symbol on top/right to open window 4
Window 2: [RED] MUX top and bottom window

Press on the channel relative to the growth medium you want to flow in your circuit
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AA

B C

Figure D.1: Microfluidic experimental setup A Picture of the microfluidic setup em-ployed for the study of bacteria adaptation to stress and environmental changes com-prising an OB1 pressure-driven flow controller, flow sensor, Mux Distribution and mi-crofluidic chip. B Picture of the ESI software interface focusing on the Sequence C Sched-uler employed for the study of bacteria adaptation to stress and environmental changescomprising an OB1 pressure-driven flow controller, flow sensor, Mux Distribution andmicrofluidic chip
Window 3: [GREEN] OB1 window

Press the power bottom to turn on the relative channel If you select Regulator mode you
can set a pressure to be maintained constant (flow rate will change based on the circuit’s
resistance ) If you select Sensormode you can set a flow rate tomaintain constant (pressure
will change based on the circuit’s resistance)
Window 4: [BLUE] ESI Sequence Scheduler window

Press the folder symbol with a plus to load an already existing file. For example, for an
upshift experiments open the upshift.sq file.
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Window 5: [PURPLE] Microscope window (Ti-Eclipse Nikon inverted micro-
scope)

D.2 Main steps

Bacteria preparation

• Grow the bacteria overnight in filtered growth medium. NOTE: Always use a growth
medium filtered at 0.2 µm in order to avoid clogging the microfluidic device.

• In the morning, dilute the bacteria (ex 20 µl in 1.5ml). Put them at 30°C for around 3
hours (we want them to be in exponential phase when they go into the device).

Microfluidic Setup preparation

• Using a 20 µl pipette put around 150 µl of BSA in the inlets (top and bottom) until you
see BSA going out from the outlets. This minimizes bacterial interactions and binding
to the glass or PDMS components.

• Put the device at 30°C and wait 30 mins
• Fill the reservoirs with the growth medium
• Fill the tubes with a growth medium.
• In Sensor mode with the flow rate at 80 µl /min let the growth mediums flow inside
the tubes and fill them completely by switching the MUX distributors between differ-
ent falcons to avoid bubbles in the entire circuit.

• Set the bottom flow rate to 20 µl min and the top to 10µl/min (dust will be washed
out from the channels). Let the medium flow through the device for 30 mins

• Set the bottom flow rate to 10 µl/min and the top to 20µl /min (the bubbles left will
go out from the channels).

• In the meantime, start an acquisition in brigth field by selecting around 5 positions
to check if the device is stable and there are no problems with the autofocus.

• Once there are no more bubbles in the channels we can inject bacteria.
• Put 0.5 ml of preculture in a 1 ml syringe. Stop pumping. Unplug the 2 input tubes
from the device, set them in a tube and start pumping again (to avoid bubbles for-
mation).

• Inject the bacteria by hand (by slowly moving the syringe plunger, not by pushing
on it) and check each 0.1 ml if you have enough bacteria in the channels (without
unplugging the syringe).
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• Set the bottom flow rate to 7µll/min and the top to 15µl/min (to help bacteria to go
inside the channels).

Schedule the ESI sequence

The ESI sequence scheduler can be used to automate your microfluidic experiment. In this
protocol, the following sequence was created and performed:
STEP 1: Start the acquisition of pressure and or/ flow rate measurements
STEP 2-3: Set both mux distributors (DIST) to valve 1 (slow growth medium)
STEP 4: Start pumping (OB1) with a constant flow rate in both channels but with differ-
ent flow rates (we can save our OB1 personalized settings in a text file to be loaded for
each kind of experiment)
STEP 5: Maintain these conditions for 2h 10ms
STEP 6-7: Switch both the mux distributors to valve 2 (fast growth medium)
STEP 8: Maintain these conditions for 2h 10ms
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OUTLETINLET

FOVrightFOVleft

INLET OUTLET

A B

C D

Figure D.2: Test of filling time and delays in nutrient availability within the mi-crofluidic device. A Scheme of the device with the outermost fields of view labelled indark red and orange. B Experiment loading the device with fluorescent LB medium andmonitoring mean fluorescence within the channels. Side channels start seeing the newmedum immediately, and completely fill in about 4 minutes (purple shaded area) oncethe medium enters the main channel (t = 0). C The delay between growth rate changesin the experiment averaged in the outermost fields of view in the device is small. D Zoomof panel C showing that the delay is about 5 minute
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Appendix E

Data analysis pipeline

Figure E.1: Data analysis pipeline
1. Open Fiji.
2. Open the movie.nd2 file ( Bio-Format Import ).
3. Select the following options [view stack with Hyperstack, Color mode Default, Au-

toscale,Split channels,Split focal panels].
4. Select all the fields of view that you want to analyse and continue (it can take few

minutes).
5. Many windows open, one for each FOV.
6. OpenMacro “Backgroundrotation.ijm”, you’ll need tomodify it based on your dataset.
7. In line 5 change field NFOV : number of fields of view that you want to analyse.
8. In line 12 (“Select window”) you should write the name (and path) of your file.
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Figure E.2: Background subtraction and Microchannel detection with ImageJ
9. You can use this file to: subtract the background (line18), rotate the movie (line 16)

and select the frames you want to analyse (line 17). Please uncomment if you want
to use the function.

10. Press run and select the folder where you want to save the output.
11. One folder for each FOV is created.
12. In the folder a .tif file is saved.
13. Open Macro “select-channels.ijm”.
14. In file-FOV write the name of the file you want to analyse.
15. Open the .tif file related to the FOV you want to analyse.
16. Select all the channels manually by pressing “t”. In the window ROI manager you’ll

have a list of all the position of all the channels.
17. Check if channels move. If yes you can use the Template Matching (align slices in a

stack) plugin.
18. You can subtract the background again in the single channel.
19. Press run and select the folder relative to the FOV you are analysing.
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Figure E.3: Filtering and population distribution check Pipeline to filter experimen-tal data. A Comparison of dataset pre- and post- filtering. Distributions of main observ-ables within all the experiment ((B)) or at birth and at division ((C))

Figure E.4: Correlation matrix for main observables Correlation matrix for mainobservables for two different strains. Correlation matrix does not change significantlybetween different strains.
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A

B

Figure E.5: Supersegger library for segmentation and tracking A Supersegger work-flow.The fluorescence and phase images are processed and aligned. During segmenta-tion the cell regions are identified from the background. Then each cell region is linkedto a corresponding cell region in the next frame and the cells receive unique ID numbers.Next, the properties and fluorescence characteristics of each cell are calculated. Finally,the program outputs three different types of outputs: Frame files, Clist matrices and Cellfiles. From [183] B Example of how segmentation by Supersegger works in chambers.
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Supplementary material Chapter 4

F.1 List of growth media and their composition

Figure F.1: List of chemical compounds List of chemical compounds used in growthmedia

SLOW GROWTH MEDIA: M9 GLUCOSE

• 5X salts
• 5X complementary salts
• 20% glucose 0.4%

• Milli-Q water
FAST GROWTH MEDIA: M9 GLUCOSE CASAMINOACIDS

• 5X salts
• 5X complementary salts
• 20% glucose(0.4%)
• 20% casamino acids(0.5%)
• Milli-Q water
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F.2 List of control and mutant strains
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Figure F.2: Control and mutant strains
These experiments were carried out with the wild-type E. coli strain BW25113, the par-

ent strain of the Keio collection [226] which has been fully sequenced [179].

F.3 Pro and cons of different experimental setups
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AGAR PAD
MICROFLUIDIC 

CHAMBERS
MOTHER  
MACHINE

A

B

Figure F.3: Pro and cons of different experimental setup A Agar pad, microfluidicchambers and mother machine can be use to have a single-cell resolution A In themother machine we will have a better statistic and a better estimation of observableslike area and width. On the other hand segmentation and tracking will take longer andbe less accurate.
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Supplementary materials Chapter 5

G.1 Supplementary methods

G.1.1 Estimation of gene dosage
Since replication occurs in a time in the cell cycle that depends form a gene position, we
expect that the production rate is sensitive to gene location. While at slow growth there
are periodswithout replication activity, at fast growth replication occurs throughout the cell
cycle for multiple nested chromosome copies [45]. Replication of the E. coli chromosome
begins from a single origin and oppositely oriented replication forks proceed symmetrically
along the genome to complete replication. Since on average a cell divides at a time C +D

(≈ 60min) after replication initiation, an average time lag B before initiation is necessary
to make the total replication time B + C + D an integer multiple of the doubling time τ .
Thus, defining n = Int(C +D/τ) as the integer number of times that τ divides C +Dm one
has that B + C +D = (n+ 1)τ More generally, we can consider a gene at a chromosomal
position defined by its normalized distance from Ori, i.e. l = 0 represents a gene in Ori and
l = 1 a gene in Ter. The copy number of this gene, g , changes during the cell cycle following

g(t) :=

{
2n

′ if 0 < t < (n′ + 1)τ − (c(1− l) +D)

2n
′+1 if (n′ + 1)τ − (c(1− l) +D) < t < τ

(G.1)

where n′ = Int
[
C(1−l)+D

τ

]. By averaging over the cell cycle one gets the expected gene
g = ⟨g(t)⟩cell cycle =

1

τ

∫ τ

0
g(t)dt = 2n{1− n+ µ[C(1− l) +D]} (G.2)
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Figure G.1: Strains growing at 30° in glucose-CAA and in glucose at 37°C presentssimilar doubling times Doubling time,size and growth rate are differently impacted byan increase in temperature. Temperature does not have a strong effect on cell size.

G.2 Supplementary figures
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Figure G.2: Specific growth rate and production rate for a constitutive promoterat 30°C are biphasic Specific production rate(A-B) and specific growth rate(D-D)) for aconstitutive promoter at ori (left) or ter(right) as a function of cell-cycle present a bipha-sic pattern at 30°C. In both positions gene expression decreases in the first phase.
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Figure G.3: Biphasic pattern in specific growth rate holds for different proxy ofcell size Specific growth rate can be computed by taking the slope of a 2-3 points fitor by taking the discrete derivative on 2-3 points. Volume, surface, projected area andlength as a proxy of cell size. Biphasic growth pattern does not depend on these choices.
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A

B

C

Figure G.4: Gene position affects Change the gene expression dynamics upon up-shift A P1 promoter is induced at the same time in Ori and Ter B Activation by FIS actsmainly at Ter,probably because at ori there is already enough supercoiling from theother rrn C GFP from P5 is diluted during the overshoot and When P1 slows down P5activity increases
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H.1 Supplementary methods

Considerations on DnaA-ATP concentration

We can consider a simple model of repression by DnaA-ATP and estimate Dna-ATP levels
from the DnaA regulated promoter, assuming that themost relevant regulation is selective
repression by DnaA-ATP. In such case, we can assume that the specific production rate is
the product a basal expression rate r0 and the probability that RNAP binds to the promoter,
which is a decreasing function P (D) of the DnaA-ATP concentration D. The synthesis rate
of a regulated protein is often well described by a Hill function[293, 294] that in this case
leads to:

1

V

dF

dt
= r0Pbound where Pbound =

1

1 + D(t)
kD

(H.1)
In Equation H.1 any degradation of the protein has been ignored and the parameter r0
denotes the rate at which the gene is transcribed in the absence of any regulation of the cell.
Factors that contribute to r0 include the number of available RNA polymerase molecules,
and how well RNA polymerase binds to the promoter (its binding affinity). KD reflects the
strength of the repression (effective repression parameter). Physically, different strengths
occur through differences in the binding affinity of the repression protein to its site on
the promoter, as well as the strength of the interaction between the transcription factor
and the RNA polymerase. Usually an exponent can be added to the D(t)

kD
term (the Hill

coefficient). It represents the way in which transcription factors can cooperate, with, for
example, the binding of an initial transcription factor facilitating the binding of a second
one.

We can invert Eq. H.1 and get an estimate for the DnaA-ATP concentration D(t)

If we consider also activation by DnaA-ADP, since the total DnaA concentration Dtot is
roughly constant (Figure 6.3), P remains a monotonous decreasing function of D, since
P (D,Dtot −D) is a decreasing function of its first argument and an increasing function of
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its second argument (which decreases when the first argument increases). Additionally,
since Eq. H.1 represents transcription and the experimental time series are relative to the
translation of our GFP reporters one can also con consider a delay of 5-10 mins [295].

By these considerations, we can conclude that the maximum of the specific production
rate measured by our dnaAP reporter corresponds to a minimum in DnaA-ATP concentra-
tion, and vice versa, the minimum production rate to a maximum in DnaA-ATP concentra-
tion, with an estimated delay of 5-10mins. We know that replication starts when DnaA-ATP
concentration reaches its maxima (or right before, there are likely delays in the regulatory
loop) and this in consistent with our observations that volumes at minima shows the same
distribution and correlation patterns that we should see by looking at initiation volumes.

H.1.1 Slope estimation in correlation plots
To evaluate correlations between size fluctuations at different cell-cycle stages in presence
of constraints we used the Bayesianmethod described in [9]. Shortly, the observed volume
at maxima for a cell is constrained to be larger than the volume at birth. The correlation
between volume at maxima et at birth is therefore masked by the fact that no maxima
can be observed below the birth volume. Since the constraint is known, we can exploit the
knowledge of the data that are visible in order to estimate the correlations.

H.1.2 Frequency locking for synchronized oscillators
For a fixed value of the forcing amplitude ϵ the frequency of the driven oscillator depends
on the detuning ω0 − ω. For sufficiently small detuning the external action entrains the
oscillator, so that the frequency of the driven oscillator becomes equal to ω. For detuning
exceeding a certain critical value, this equality breaks down.The identity of the frequencies
that holds within a finite range of the detuning is the designated the synchronization region
or the Arnold tongue(Figure H.1) . It is important to note that the synchronization region
touches the ω-axis. This means that for vanishing detuning the oscillator can be synchro-
nized by an infinitesimal force. This property is widely used to describe different systems
and it is called frequency locking [229].

H.1.3 Causal relationships between two oscillators
The cross-correlation functions between pairs of observables reveal their temporal hierar-
chy,thus suggesting possible causality links between them.

Interpretation of cross-correlations gets more difficult the less is known about the un-
derlying network which connects the two signals.

The Granger Causality measure determines how well a quantity Z can be predicted
from its past values and tests whether the prediction is improved by taking the past of
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Figure H.1: Dynamics of the phase at the synchronization transition The phasedifference is shown in (right) for different values of the frequency of the driving force;these values are indicated in (left) by points 1–5, within and outside the synchronizationregion. In the synchronous state (points 1 and 2) the phase difference is constant (lines1 and 2 in (right)); it is zero in the very center of the tongue and nonzero otherwise.Just outside the tongue the dynamics of the phase are intermittent: the phase differ-ence appears as a sequence of rapid jumps (slips) intermingled with epochs of almostsynchronous behavior (point and curve 3). As one moves away from the border of thetongue the dynamics of the phase tend towards uniform growth (points and curves 4and 5). The transition at the right border of the tongue occurs in a similar way, only thephase difference now decreases. From [229]

Figure H.2: Asymmetriccross-correlationsdo not imply causality Fluctuations in anunknown or unmeasured component X propagate to the observables Y and Z with dif-ferent time de- lays tZ > tY . Then, the cross-correlation RY Z is asymmetric, suggestinga noise propagation from Y to Z . However, in reality this link is ab- sent (see networkstructure on the left). From [39]
the suspected cause Y into account. If the prediction is significantly improved by Y , then Y
is said to Granger-cause Z .

Granger Causality is not equivalent to cross-correlations and can be more powerful. A
prerequisite for performing theGranger Causality test is that the data need to be stationary
i.e it should have a constant mean, constant variance, and no seasonal component. A
crucial feature in this method is that it is model-free and it is able to disentangle the two
directions of influence between the two variables, unlike the cross-correlations.

Neverteless, a key requirement of Granger causality is separability, meaning the casual
variable is independent of the variable that it influences. This separability tends to be char-
acteristic of stochastic and linear systems. For systems in which separability is not satisfied
or which there are shared driving variables, Granger causality is not applicable.
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A new approach has been suggested to try to understand causality in dynamical sys-
tems where effects of casual variables cannot be separated or uncoupled from the vari-
ables that they influence.

This approach, called Convergent Cross Mapping (CCM), was first tested in 1991 but
was later evolved by Sugihara et al.for identifying causation in ecological time series [231].
CCM is a method for causality inference based on nonlinear state space reconstruction, a
mathematicalmodel commonly used in the theory of dynamical systems, andwhich can be
applied to systemswhere causal variables have synergistic effects (unlike Granger causality
tests).

CCM relies on Takens theorem and on the fundamental assumption that dynamics in
the world are not purely stochastic and that in some applications, there are governing
dynamics that can be represented by some underlying manifold.

Takens (1980) formally proved that time-delay embedding provides a 1–1 mapping of
system dynamics from the original phase space (constructed with all system variables) to
the reconstructed shadow phase space so long as the latter has sufficient dimensions to
contain the original attractor [230].

Figure H.3: Convergent cross-mapping CCM looks for the signature of X in Y’s timeseries by seeing whether there is a correspondence between the “library” of points in theattractor manifold built from Y,MY , and points in the X manifold,MX , where these twomanifolds are constructed from lagged coordinates of the time-series variables Y andX, respectively. L is the time-series length (sample size used to construct a library). Theaccuracy of predictions varies as a function of embedding dimension, which describesthe size of the time windows that are used for prediction. One can estimate an optimalembedding dimension by using simplex projection to test the ability of a process topredict its own dynamics through leave-one-out cross-validation.Phase space attractorfrom the two time series
Themain steps of thesemethod are summarised in FigureH.3. Shortly,we reconstruct a

phase space attractor from the two time series. Next, “Shadow” attractor in reconstructed
from only one time series Thanks to the delay-coordinate embedding theorem by Takens.
Finally, conditional correlations with these “shadow attractors” are computed.Not symmet-
ric conditional correlations reveal causal links. An R package calledmultispatialCCM is avail-
able to implement CCM.
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H.2 Supplementary figures
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nFigure H.4: The growth phase dependence of dnaAP2 activity is independent of au-toregulation Change in promoter activity and concentration for the different promotersin M9-glucose (left) and M9-glucose and casaminoacids(right). The promoter activity ismore or less constant in exponential phase. This is followed by a rapid decrease in theentry into stationary phase, as expected for a promoter negatively regulated by ppGpp.Regulation by DnaA does not change the growth phase dependence of promoter activity,except for the box1.2 mutations promoter.The bacteria were grown in a 96-well plate at37°C. OD and fluorescence were measured every 7 minutes. The error bar is from theaverage of 3-6 wells.

165



APPENDIX H. SUPPLEMENTARY MATERIALS CHAPTER 6

--- Act+Repr

--- Constitutive

--- no seqA

--- no Act+ no Repr

--- Act+ no Repr

--- Ribosomal

Doubling time[min] Initial volume[um3]

F
re

qu
en

cy
F

re
qu

en
cy

S
LO

W

0
.0
0
0

0
.0
1
5

0 50 100

0
.0

1
.0

0 2 4 6

0
.0
0
0

0
.0
1
5

0 50 100

0
.0

0
.6

1
.2

0 2 4 6

F
re

qu
en

cy
F

re
qu

en
cy

150

150

A

FA
S

T

B

Figure H.5: Doubling time and initial size in consistent in all promoters in bothfast and growth conditions A At slow growth average doubling time(left) is centeredaround 75 mins for all strain while initial size (right) is centered around 1.9 µm3 B Atfast growth average doubling time(left) is centered around 45 mins for all strain whileinitial size (right) is centered around 2.1 µm3.
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Figure H.11: Oscillations are observable also at the single-cell level Set of lineageswhere volume(grey), DnaA promoter activity(green) and division(red) are tracked for sev-eral generations.DnaA promoter activity presents strong oscillation with sometimes 2minima in the same cell cycle.
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Supplementary materials Chapter 7

I.1 Supplementary methods

Estimate of the expected gene-dosage effect in transposition.
This section discusses the model used to understand the null trend in the insertion fre-
quency coming from gene dosage [43, 296]. The samples are grown in rich medium and
when they are exposed to the transposon, there are a higher number of copies of the chro-
mosome close to the origin than close to the terminus (Figure 1 in the main text).

We proceed to estimate the dosage theoretically. We assume that theC+D periods last
40 + 20minutes, since we are dealing with fast growth in LBmedium, and that the doubling
time τ is around 25 minutes (which is the most conservative estimate in terms of dosage
bias). Since at time C + D (≈ 60 minutes) the cell divides, a time lag B before initiation is
necessary to make the total replication time B+C +D an integer multiple of the doubling
time τ , “synchronizing” DNA replication and cell division. Thus, defining n = IntC+D

τ as the
integer number of times that τ divides C +D, the following relation has to be satisfied,

B + C +D = (n+ 1)τ . (I.1)
More generally [296], we can consider a gene at a chromosomal position defined by

its normalized distance from the replicaiton origin (Ori), i.e. x = 0 represents a gene in the
Ori locus and x = 1 a gene in the replication terminus (Ter). The copy number of this gene,
g(x, t), depends on its distance fromOri, and changes with time t from the beginning of the
cell cycle following

g(x, t) :=

{
2n

′ if 0 < t < (n′ + 1)τ − (c(1− x) +D)

2n
′+1 if (n′ + 1)τ − (c(1− x) +D) < t < τ ,

(I.2)

where n′ = Int
[
C(1−x)+D

τ

] is the local number of active replication processes, which de-
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pends on the locus position x.
To evaluate the average gene dosage in a cell population of asynchronous cells with

an exponential growth we have to consider the distribution of the time into the cell cycle
across the population [297]. For ideal balanced exponential growth with growth rate µ this
distribution is given by a(t, µ) = 2ln(2)µ2−µt. Averaging g(x, t) over this distribution, the
population-average gene copy number per cell becomes

g(x) = ⟨g(x, t)⟩population =

∫ τ

0
a(t, µ)g(x, t)dt = 2µ[C(1−x)+D]. (I.3)

In order to estimate themean dosage of inserted promoters, we also have to introduce
a model for insertion kinetics. The simplest model relies on the assumption of constant
insertion rate. We hypothesize that during a time interval T a cell population that grows
exponentiallywith division time ⟨τ⟩ is exposed to a transposonwhich inserts its sequence at
a constant rate r per time and genome coordinate unit. The expected number of insertions
under this assumption can be obtained by the cumulative distribution function. The mean
copy number of each coordinate in a cell population is g(x) andwe can assume that there is
a Poisson process with the same rate (S) in each genome position, so that the dependency
of the rate from position x is only due to dosage, r(x) = g(x)S. In this case, the estimate
for the insertion probability is

P (x) = 1− er(x)T ≃ r(x)T ≃ g(x)ST = Ag(x) , (I.4)
where we have linearized the expression for small T and A = ST is the only free param-
eter, which depends on the parameters average gene dosage g(x), time interval T and
growth rate µ, all derived from experimental data. The trend of normalized position and
the dosage estimate for insertions is shown in Fig. 1B in the main text. This plot shows that
this estimate does not correspond well quantitatively to the experimental coverage data.

We verified that a model with time-dependent insertion rate, i.e. where the insertion
rate r increases with time t, r(x, t), can fit the data, using insertion rate growing as a power
law in time. However, there is no empirical motivation to assume such cooperative behav-
ior in insertions that occur in different cells.

We now address the simple point that the frequency of an insertion is not biased by
population growth, as long as it does not confer a sufficiently strong positive or negative
fitness effect. Let fi be the fraction of insertions in site i and fj the fraction of insertions in
site j. If N is the total number of insertions we will have, at time τ , N ∗ fieατ insertions in
site i and N ∗ fjeατ insertions in site j. Then, the total number of insertions will be Neατ .

Let fi,j(τ) be the ratio of the numbers of insertions in site i and j. Then,
fi,j(τ) =

N ∗ fi,jeατ

Neατ
= fi,j . (I.5)
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Since fi,j(τ) = fi,j , for all those insertions not affecting the growth rate, exponential prop-
agation of insertions in progeny does not create a bias in the population. If instead an
insertion significantly affects the growth rate of the corresponding clone, its presence will
be biased in the population.

Null model for insertion enrichment.
This section describes the null model used to score enrichment of insertions in particular
regions defined by gene lists. Since the theoretical prediction scores poorly (and even a fit
with a time-dependent insertion rate model does not capture quantitatively the shape of
the dosage peak around the origin), in the analysis for scoring overlap between insertions
and gene lists we decided to use a more conservative way to subtract the dosage, i.e. di-
rectly to consider a sliding-window average of the data as background insertion probability.
Specifically, we used a window size of 3000 bp, which is the smallest window size that gives
a smooth curve with few local features.

In order to investigate statistical tendencies for transposon insertions to be associated
to specific chromosomal contexts, we need a suitable null model. This is simple to define
using gene lists, as randomizations of the empirical lists having fixed number of genes. In
particular, for each tested gene list we simulate 5000 different stochastic realizations.

The definition of enrichment needs a quantity representative of the tendency of find-
ing the insertion fixed in specific chromosomal contexts. We evaluate a discrete integral
considering the coverage corresponding to a portion of genome defined by the genes of
the list. We call this quantity “coverage integral”. It corresponds to the total overlap of the
coverage with the genes of a specific list.

We have evaluated the Z-score as significance score for over/under-representation of
the overlap between coverage and target gene lists. The Z-score is defined as Z = X−µ

σwhere X is the empirical value and µ and σ are the mean and the variance relative to a
particular sample.

DNA primers used:
To verify the insert on the Tn5 construction vector:
Forward Primer : AATTCTACGAGCGTCGTCGCAGACATGATC
Reverse Primer : GGTCTCAGATGGTAGACGCAGGAAGAGACGAGACAG
Primers used for transposon sequencing experiments (* indicates a phosphorothioate
group:
Index primer: AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC
3’ Tnspecific primer:
AATGATACGGCGACCACCGAGATCTACACCCAATATGCGAGAACACCCGAGAAAATTCATCG
3’ Sequencing primer: CCCGAGAAAATTCATCGATGATGGTTGAGATGTGTA
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Illumina Read 1: ACACTCTTTCCCTACACGACGCTCTTCCGATCT
Illumina Read 2: CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
QPCR2.1 : CAAGCAGAAGACGGCATACGA
qPCR2.2 : AATGATACGGCGACCACCGAG
Adapters:
SplA5_top G*AGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T
SplA5_bottom /5Phos/G*ATCGGAAGAGCGGTTCAGCAGGttttttttttcaaaaaaa*a
SplAP5.2 C*AAGCAGAAGACGGCATACGAGATAAACATCGGAGATCGGTCTCGGCATTC*C
SplAP5.5 C*AAGCAGAAGACGGCATACGAGATACCACTGTGAGATCGGTCTCGGCATTC*C
SplAP5.6 C*AAGCAGAAGACGGCATACGAGATACATTGGCGAGATCGGTCTCGGCATTC*C
SplAP5.12 C*AAGCAGAAGACGGCATACGAGATAGTACAAGGAGATCGGTCTCGGCATTC*C
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Supplementary Figures
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Figure I.1: Insertion frequency plots and AT bias. A): Highly expressing sorted (RH)population shown in Figure 1D shown in linear scale. B): Insertions in very low express-ing sorted population (RLR1V1L), shown in linear scale, transposon insertions in rRNAoperons are visible close to the origin. C) and D): Insertion frequency plots for parentalpopulations of P1-long and P1-short promoters respectively. The plots were generatedfrom TraDis Data by binning the mapped position of the each read into 10kb non over-lapping bins, and the frequency of insertions of each bin was plotted against the chro-mosome coordinate. E) and F) Insertions have a significant positive bias in AT-richnesscompared to the background. E): Histograms of deviations from average in AT-richness(%AT− < %AT >) in the sequences surrounding insertions from the experimental dataand from a randomized sample of the background sequences of the genome. %AT cor-responds to a local average in 3Kb intervals around each insertion; < %AT > refers tothe average on the entire genome. F): comparison of the cumulative distributions andresults of the Kolmogorov-Smirnov test (in both cases the p-value is smaller than thesmallest represented by the ks.test R script). G) and H) Insertions have a positive biasfor H-NS binding. The plots report the distribution of the fraction of the 10kb regionaround an insertion covered by H-NS binding sites (ChIPseq data from ref. [215]), com-pared to the same quantity for randomized insertion sites.
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Figure I.2: Full illustration of the sorting pipeline starting from the parental popu-
lation and the nomenclature used in our experiment. The parental population (thecells that underwent transposition) was grown overnight in M9 medium with 0.5% Glucose +0.2% CAA (“fast growth” medium) and was diluted to 1:500 to grow in secondary culture withthe same medium the following day until the OD reached 0.5 – 0.6. These cultures underwentfirst round of FACS to yield three population by the level of GFP expression (Low (RL), Medium(RM) and High (RH)). Subsequently the Low (RL) and High (RH) underwent the second round ofFACS, the former (RL) yielded 4 population, RLR1V1L1 (Very low), RLR1L1 (Low), RLR1M1 (Medium)and RLR1H1 (High) while the latter (RH) yielded three population, RHR1L1-1 (Low), RHR1M1-1(Medium) and RHR1H1-1 (High). From the second round of FACS, three populations, RLR1V1L1(Very low), RLR1L1 (Low), and RLR1H1 (High) were selected from the low expressing populationwhile 2 populations, RHR1L1-1 (Low) and RHR1H1-1 (High) from the high expressing populationwere selected for the third round of FACS. RLR1V1L1 (Very low) gave rise to 4 different popula-tions, RLR1V1L1L1, RLR1V1L1-1, RLR1V1L1-2, RLR1V1L1-3 and RLR1L1 (Low) also gave rise to 4different population, R1L1R2V2L2, R1L1R2L2, R1L1R2M2, R1L1R2H2 while RLR1H1 (High) gaverise to 3 different populations, R1H1R2L2, R1H1R2M2 and R1H1R2H2. From the high express-ing populations, RHR1L1-1 and RHR1H1-1 gave rise to R1L1-1R2L21-1, R1L1-1R2M21-1, R1L1-1R2H21-1, and R1H1-1R2L21-1, R1H1-1R2M21-1, R1H1-1R2H21-1, respectively. Only the verylow expressing population, R1L1R2V2L2 from the third round of FACS gave rise to 4 differentvery low expressing populations, R1L1R2V2L2-1, R1L1R2V2L2-2, R1L1R2V2L2-3, R1L1R2V2L2-4.
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A B

Figure I.3: Expression levels of clones from sorted populations measured by
fluorimetry, and growth rate. (A) The fluorimeter expression data are in agreementwith the FACS population histograms. GFP expression (total fluorescence over OD) of 5individual strains randomly chosen from each of the different rounds of FACS sortedpopulation. All the strains were grown in rich medium (0.5% Glucose + 0.2% CAA). Errorbars represent standard error of the mean (SEM). R1, R2, R3, R4 denote the first, second,third and fourth round of FACS. Expression is low for very low expressing population (VLin R3 and in R4) and significantly different from the other sorted populations (P< 0.001,One-way ANOVA, Tukey’s multiple comparison test comparing R1, R2 with R3 and R4).The fluorimeter expression data are in agreement with the FACS population histograms.(B) Scatter plot of expression levels and population growth rates for clones from thedifferent rounds.
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Figure I.4: Insertions at the ribosomal regions are highly repressed in differ-
ent growth conditions. The expression levels of these colonies are lower when theyare grown in a fast-growth medium (M9 + 0.5% Glucose + 0.2% CAA) compared to theslower-growthmedium (M9 + 0.5%Glucose) irrespective of the temperature grown (37oCand 30oC). Panel A) reports the gene expression of 90 clones from different rounds ofFACS grown in different media (fast growth, Glucose + CAA, compared to the slow growthmedium, Glucose at 37oC). Error bars represents standard deviation (SD), n = 3. PanelB) represents the comparison of colonies grown in different media (fast vs slow growthmedium) at 30oC, error bars represent SD, n = 2. The scatter plots on the right side ofeach panel compare gene expression of the same clone in the two growth conditions(color/symbol codes defined in Supplementary Fig. 5). Note that while most of the otherclones increase in expression in the faster growth medium (in agreement with a riboso-mal promoter) the very-low expression (VL) ones decrease with the faster growth rate,in agreement with the idea that their expression is decreased by the activity of a ribo-somal promoter. The comparison between the two temperatures shows that there is asubset of clones that increase in expression in the slower growth Glucose medium atlow temperature, spanning different sorted populations. Note that thereare two growthrate dependence results, the first is the fact that we grew the cells in two growth mediaand we observed an increase in gene expression in the richer medium, as expected fromthe rrnBP1 promoter, the second is that within a given growth medium different clonesgrew at different rates (Fig. S3B).
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Figure I.6: Gene expression noise categories of sequenced clones with varying
insertion copy number. A) Mean vs SD plots of rrlE vs non-rrlE insertions. Noisypromoters mostly associate with rrlE insertions in sequenced clones. B) Mean vs SDplots of non-rrlE sequenced clonal populations (a subset of the data in SupplementaryFig. S5), where the points are colored by number of insertions. C) Different plot of thesame data, where gene expression normalized per copy number. Removal of the effectof copy number fold change in the expression levels reconducts many non-rrlE outliersto the cluster of low-noise promoters.
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Supplementary Tables

Table I.1: Gene lists used in the enrichment analysis, grouped by category.Lists were divided according to the types of biological data and the experimental tech-niques. See ref. [271] for details. The symbols are the ones used in Fig. 2 in the maintext.
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	Table I.2: Groups of genes regarding HNS or horizontally transferred genes
result over-represented. The table reports the gene sets that result over-represented(Z-score > +5 in at least one experiment).

	Table I.3: Groups of essential genes result under-represented. The table reportsthe gene sets that result under-represented (Z score < −3 in at least one insertion ex-periment).

	Table I.4: Groups of Fis,IHF,CRP target genes result over-represented consider-
ing a lower limit The table reports the gene sets that result over-represented (Z score
> 3 and < 5 in at least one insertion experiment).
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	Table I.5: A correlation exists between Z scores from different strains Corre-lation between Z scores from different stains is represented by the Pearson correlationcoefficient. P1 long is the parental colony, then we have the first round high expression(RH) and low-expression (RL) sorted populations. Different colors correspond to differ-ent correlation levels.

	Table I.6: Only the subpopulationmade of low-expression clones is consistent
with the result of the whole population. The data in this table refer to Z-scores forthe first round high expression (RH) and low-expression (RL) FACS-sorted populations.The table reports the gene sets that result over-represented with Z-score > +3.
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Abstract: Despite over 50 years of study, key ques-
tions on the bacterial cell cycle remain unanswered.
In particular, the debate is open concerning the
regulation of DNA replication initiation in E. coli
and its role in the dynamics of cell growth and
division. A key player in these processes is the
DnaA protein, which is involved the initiation of
DNA replication. DnaA is commonly believed to
be a cell cycle oscillator and a cell size sensor, but
neither of these facts have been firmly established.
DnaA activity depends on its nucleotide bound
state, the ATP bound form being the active one
for origin recognition and activation. DnaA is also
a transcription factor, a highly connected node in
the network of genes coding for proteins required
for DNA replication and the repair of DNA damage.
The differential regulation of gene expression by
the different DnaA nucleotide bound forms, includ-
ing the regulation of its own promoter, is believed
to be central in its role of cell-cycle oscillator and
regulator. Indeed, because of its double role as a
transcription factor and an activator of the initi-
ation of the DNA replication process, the DnaA
protein can act as the regulatory link between the
timing and level of gene expression and the different
phases of the bacterial cell cycle.

This thesis addresses the problem of identifying
the cell cycle oscillator related to DnaA activity, and
relating it to the progression of the E. coli cell cycle,
focusing in particular on cell-size sensing, individual
cell growth rate, and cell division. One of the ma-
jor challenges in this area has been to quantify the
changes in DnaA-ATP activity in vivo in real time.
This problem requires single-cell dynamic resolution,
in order to relate DnaA levels and activity to key
cell-cycle transitions. To address this problem, I

have developed a set of reporters of gene expression
using a gene for a fluorescent protein under control
of a promoter that is regulated by DnaA-ATP, and
deployed them in single-cell experiments coupling
quantitative microscopy and microfluidics. To ob-
tain robust and long-term single-cell tracking in
steady growth conditions I have designed a dedi-
cated experimental setup and data-analysis pipeline
for studying the growth, size, and gene expression
of E. coli in controlled environmental conditions.

A careful analysis of these single cell data as a
function of the cell cycle shows that E. coli growth
is biphasic and it follows the expression of a consti-
tutive ori-proximal promoter.

Moreover, thanks to the analysis of different
reporters, I was able to quantify for the first time
the effect of the DnaA-dependent promoter reg-
ulatory elements. Specifically, I found that the
volume-specific production rate of GFP from the
DnaA promoter is a well-defined cell-cycle oscilla-
tor and that the signal from this oscillator can be
related to key cell-cycle processes such as DNA
replication and cell division. However, while the
standard view of the cell cycle sees it as the result
of a single oscillator, our data lead me to suggest
that at least two coupled oscillators are needed to
describe the processes that coordinate DNA repli-
cation, cell growth and cell-cycle progression. My
approach also makes it possible to detect causality
links between these different processes.

These findings combine the use of mathemat-
ical models and single-cell dynamic data to pose
firmer quantitative bases for a characterization of
the mechanisms determining robust cell cycle pro-
gression in bacteria.
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Mots clés: Biologie de la cellule unique, E. coli, DnaA, réplication de l’ADN, cycle cellulaire, croissance
cellulaire, régulation transcriptionnelle, microfluidique, microscopie, analyse des séries temporelles,
oscillateurs couplés

Résumé: Malgré plus de 50 ans d’études, des ques-
tions clés sur le cycle cellulaire bactérien restent
sans réponse. En particulier, le débat est ouvert
concernant la régulation de l’initiation de la ré-
plication de l’ADN chez E. coli et son rôle dans
la dynamique de la croissance et de la division
cellulaire. Un acteur clé de ces processus est la
protéine DnaA, qui est impliquée dans l’initiation
de la réplication de l’ADN. On pense généralement
que DnaA est un oscillateur du cycle cellulaire et
un senseur de taille cellulaire, mais aucun de ces
faits n’a été fermement établi. L’activité de DnaA
dépend de son état de liaison aux nucléotides, la
forme liée à l’ATP étant celle qui est active pour
la reconnaissance et l’activation de l’origine. DnaA
est également un facteur de transcription, un nœud
hautement connecté dans le réseau des gènes co-
dant pour les protéines nécessaires à la réplication
de l’ADN et à la réparation des lésions de l’ADN.
La régulation différentielle de l’expression des gènes
par les différentes formes liées aux nucléotides de
DnaA, y compris la régulation de son propre pro-
moteur, est considérée comme centrale dans son
rôle d’oscillateur et de régulateur du cycle cellulaire.
En effet, en raison de son double rôle de facteur de
transcription et d’activateur de l’initiation du pro-
cessus de réplication de l’ADN, la protéine DnaA
peut agir comme le lien régulateur entre le timing
et le niveau d’expression des gènes et les différentes
phases du cycle cellulaire bactérien.

Cette thèse aborde le problème de
l’identification de l’oscillateur du cycle cellulaire lié
à l’activité de DnaA, et de sa mise en relation avec
la progression du cycle cellulaire de E. coli, en se
concentrant en particulier sur la détection de la
taille des cellules, le taux de croissance des cellules
individuelles et la division cellulaire. L’un des prin-
cipaux défis dans ce domaine a été de quantifier
les changements dans l’activité DnaA-ATP in vivo
en temps réel. Ce problème nécessite une résolu-
tion dynamique de cellule unique, afin de relier les
niveaux et l’activité DnaA aux transitions clés du

cycle cellulaire. Pour résoudre ce problème, j’ai
développé un ensemble de rapporteurs d’expression
génétique utilisant un gène pour une protéine flu-
orescente sous le contrôle d’un promoteur qui est
régulé par la DnaA-ATP, et je les ai déployés dans
des expériences unicellulaires couplant microscopie
quantitative et microfluidique. Afin d’obtenir un
suivi de la cellule unique robuste et à long terme
dans des conditions de croissance stable, j’ai conçu
un dispositif expérimental et un pipeline d’analyse
de données dédiés à l’étude de la croissance, de la
taille et de l’expression génétique des E. coli dans
des conditions environnementales contrôlées.

Une analyse minutieuse de ces données de la
cellule unique en fonction du cycle cellulaire mon-
tre que la croissance de E. coli est biphasique et
qu’elle suit l’expression d’un promoteur constitutif
ori-proximal.

De plus, grâce à l’analyse de différents reporters,
j’ai pu quantifier pour la première fois l’effet des
éléments régulateurs du promoteur dépendant de
DnaA. Plus précisément, j’ai découvert que le taux
de production de GFP spécifique du volume à partir
du promoteur DnaA est un oscillateur du cycle cel-
lulaire bien défini et que le signal de cet oscillateur
peut être lié aux processus clés du cycle cellulaire
tels que la réplication de l’ADN et la division cel-
lulaire. Cependant, alors que la vision standard
du cycle cellulaire le considère comme le résultat
d’un seul oscillateur, nos données me conduisent
à suggérer qu’au moins deux oscillateurs couplés
sont nécessaires pour décrire les processus qui co-
ordonnent la réplication de l’ADN, la croissance
cellulaire et la progression du cycle cellulaire. Mon
approche permet également de détecter des liens
de causalité entre ces différents processus.

Ces résultats combinent l’utilisation de mod-
èles mathématiques et de données dynamiques du
cellule unique afin de poser des bases quantitatives
plus solides pour une caractérisation des mécan-
ismes déterminant une progression robuste du cycle
cellulaire chez les bactéries.
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