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Titre: Prédiction de la durée de vie du système de pile à combustible à membrane échangeuse de protons basée sur la réseau echo state Mots-clés: Piles à combustible, Pronostic, Durée de vie utile restante, Data-driven, Réseau echo state Résumé: La pile à combustible à membrane échangeuse de protons est considérée comme un dispositif de conversion de puissance prometteur dans différents domaines, néanmoins, la durée de vie limitée est l'un des principaux obstacles à leur déploiement industriel à grande échelle. Le pronostic basée sur les données vise à estimer la durée de vie utile restante sans avoir besoin d'une connaissance complète des phénomènes physiques se produisant dans le système. En tant que structure améliorée d'un réseau de neurones récurrent, l'echo state network a démontré de meilleures performances, en particulier en réduisant la complexité de calcul et en accélérant le taux de convergence. Des indicateurs couramment employés tels que la tension ou la puissance ne permettent pas toujours de donner une image fidèle de l'état de santé de la pile. Aussi, un nouvel indicateur de santé nommé taux de perte de puissance relatif, facile à calculer, est introduit dans cette thèse. Une structure d'algorithme l'echo state network multi-entrées et multi-sorties est développée et testée pour différents profils de mission de la pile. Sur la base de l'indicateur taux de perte de puissance relatif, une méthode combinée, à savoir la transformée en ondelettes discrète et l'echo state network est proposée pour traiter les caractéristiques multi-échelles de temps et améliorer la précision de la prédiction à long terme. Une solution associant l'approche par les données, un algorithme génétique, un echo state network et la transformée en ondelettes discrètes est proposée pour améliorer les performances de prédiction. Les performances des algorithmes proposés sont évaluées sur plusieurs cas d'études expérimentaux dans des conditions de fonctionnement en régime permanent, quasi-dynamique et dynamique.
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General introduction

Energy and environment are the focal points attracting the eye of the international community. According to the survey of Economics and Technology Research Institute (ETRI) which belongs to China National Petroleum Corporation (CNPC), the world's population will rise to 9.77 billion in 2050, and energy demand will increase by 50 %. For the next 30 years, the demand for coal and oil would be declined steadily, and the share of natural gas and renewables consumption will gradually increase. Meanwhile, the global warming caused by carbon dioxide (CO2) emissions is still tough, and a breakthrough in hydrogen energy technology including clean manufacturing, safe storage, and transportation would relieve the pressure [START_REF]2050 World and China energy outlook[END_REF]. The proportion of different types of energy consumption on the earth in the next [START_REF] Polverino | Model-based prognostic algorithm for online RUL estimation of PEMFCs[END_REF] Fuel cells (FCs) can reduce fossil fuel consumption and greenhouse gas emissions, and they are drawing more and more attention in the last few decades [2], [3]. The advantages of FCs are

• High efficiency. The FCs directly convert diverse fuels into electricity efficiently without internal combustion. In the internal combustion engines (ICE), the chemical energy in the fuels should be transferred into heat energy first. Then the heat energy would be converted into mechanical energy, and finally to produce electrical energy. Thus, the transfer efficiency of FCs is higher than ICE. Nevertheless, the energy efficiency of PEMFC is much less than that of a battery pack.

• High reliability. The FCs can be regarded as the all-solid mechanical structure, and it means that there are no moving parts in FCs. Compared with the ICE, the FCs have the potential of high reliability and stability, and the FCs would be pretty quiet during their working because of no moving parts.

• Environmental friendly. In the FCs system, hydrogen (or other fuel) and oxygen (or fresh air) are the inputs, and the by-products are heat and water usually [4], [START_REF] O'hayre | Fuel cell fundamentals[END_REF].

• Easy scaling between power and capacity. The sizing in terms of power depends only on the fuel cell's size, and the capacity of FCs is determined by the size of fuel and oxidant tanks. Compared with batteries, the FCs have great potential applications for they can provide power for the demand system as small as a laptop computer (1-W range) and as large as a utility power station (megawatt range). Besides, the FCs can be quickly recharged by refueling which is very convenient for the users. The classification of fuel cells and their properties are described in Tab. Ⅰ. In all types of FCs, the proton exchange membrane fuel cells (PEMFC) system is the most popular one for its low operating temperature (50 ℃ -80 ℃) and solid electrolyte, which eliminates the risk of leakage. The PEMFC is welcomed in the area of fuel cell electric vehicles (FCEV), backup power, portable devices, etc. The total shipments and Megawatts Even though the PEMFC has some advantages over ICE and primary batteries, they also possess some bottlenecks in terms of cost and performance [START_REF] Pei | Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review[END_REF]- [START_REF] Taghiabadi | Degradation analysis of dead-ended anode PEM fuel cell at the low and high thermal and pressure conditions[END_REF], as shown in Tab. Ⅱ.

Tab. Ⅱ Statistics about fuel cell light-duty vehicles (including cars) from FCH 2 JU [START_REF]State-of-the-art and future targets (KPIS), fuel cell light duty vehicles (including cars)[END_REF] Cost: Based on the statistics of the United States Department of Energy (U.S. DOE) Fuel Cells Technologies Office (FCTO) on an automotive PEMFC system (80 kW), the noble metal catalysts and bipolar plates (e.g., graphite) are the largest cost components of the PEMFC stack [START_REF] Wilson | DOE hydrogen and fuel cells program record[END_REF]. Besides, mass production and application of fuel cell components can help reduce the costs of membrane and gas diffusion layers to some extent. The costs of different components in the PEMFC stack are shown in Fig. [START_REF] Wilson | DOE hydrogen and fuel cells program record[END_REF].

Increasing the activity of catalysts, reducing the content of Platinum group metals (PGM), and seeking inexpensive catalyst (PGM-free) materials are the research focuses for long-term applications of catalyst layers [START_REF]Comparison of fuel cell technologie[END_REF]. Graphite, metals, and polymer composites are commonly used materials for PEMFC's bipolar plates. Graphite is the most popular one, and it has been realized the large-scale commercial applications. Nevertheless, graphite fabrication is expensive, and it has the weakness of being fragile. Some anti-corrosive metals (e.g., aluminum, nickel, and stainless steel) can be used as a substitute for graphite because of their cheap fabrication process and strong mechanical strength. The formation of oxides on the metal surface would increase the contact resistance, and this shortcoming can be partially solved by the utilize of anti-corrosive surface coatings. The chemical stability of surface coatings in the long term needs to be enhanced. The polymer composites have the advantages of corrosion resistance, easy fabrication, and low density, etc. Nevertheless, the electrical conductivity needs to be further improved by adding conducting material (e.g., graphite and graphene). To sum up, the cost reduction of the PEMFC stack depends on the development of materials. For the whole PEMFC system, the hydrogen's production, delivery, and storage, the auxiliary equipment, and the drivetrain maintenance are other important costs. According to recent statistics of the Fuel Cells and Hydrogen Joint Undertaking (FCH 2 JU) in Europe [START_REF]State-of-the-art and future targets (KPIS), fuel cell light duty vehicles (including cars)[END_REF], the costs of fuel cell systems in some applications are shown in Tab.

Ⅲ. 1. When evaluating costs, the hydrogen consumption, maintenance, overheads, and profits are excluded.

2. The cost is evaluated when manufactured at a volume of 100000 units/year for ①, a volume of 250 units/year (the year 2020), 500 units/year (the year 2024), and 900 units/year (the year 2030)

for ②, a volume of 20000 units/year for ③.

3. The power level is 10 kW for ③ and 15 -50 kW for ④ in the ram air turbine (RAT)emergency power system.

According to recent statistics of the Fuel Cells and Hydrogen Joint Undertaking (FCH 2 JU) in Europe, the technical goals of the costs are 60 €/kW in 2020 and 40 €/kW in 2030 for fuel cell light-duty vehicles (including cars). The evaluation costs in 2012 and 2017 were 500 €/kW and 100 €/kW if manufactured at a volume of 100000 units/year [START_REF]State-of-the-art and future targets (KPIS), fuel cell light duty vehicles (including cars)[END_REF]. In recent years, the PEMFC system becomes more and more competitive with its mass production.

Performance: In March 2019, the National Renewable Energy Laboratory (NREL) of U.S. DOE evaluated the performance of the on-road fuel cell electric vehicles (FCEV) [START_REF] Kurtz | On-road fuel cell electric vehicles evaluation: overview[END_REF]. The evaluation results were based on 230 on-road vehicles from six manufacturers (Hyundai, Honda, Toyota, etc.) that had accumulated more than 7. 4 The system's performance of peak energy efficiency, power density, specific power, volumetric capacity, gravimetric capacity, and durability is shown in Fig. Ⅴ. The results were presented as a ratio of the current value to the U.S. DOE's 2020 target, and they showed that all the key performances of FCEV still have much room for improvement when compared to the target value. The status is indicated as a fraction of the targets. Exploring novel materials with better properties or enhancing the properties of available materials by integration strategies is the original power to improve the overall performance of fuel cells. Other directions of efforts to improve the current performance of the PEMFC system are as follows [START_REF]Comparison of fuel cell technologie[END_REF]:

• Developing hydrogen compression and solid-state hydrogen storage technologies (e.g., method of metal doping) to improve the hydrogen storage efficiency. • Improving the catalyst activity to accelerate the separation of protons (H + ) and electrons (e -) in hydrogen, and decreasing the catalyst tolerance to a poisonous substance (e.g., CO and sulfur).

• Exploring the more excellent proton exchange membrane electrolytes with higher transfer efficiency (for H + and e -) and longer durability.

• Using the most advanced integration technologies to assemble state-of-the-art components of the membrane electrode assembly (MEA), and finally improving MEA's power density.

• Building accuracy models to understand the PEMFC system's working properties and degradation state, and validation of the models by in-situ and ex-situ experimental data.

• Applying advanced approaches to manage the sub-systems such as reactants (H2 and O2), temperature (cooling), and products (water and heat) management loops.

• Identifying the degradation mechanisms of the PEMFC system and exploring approaches to realize the degradation prediction.

• Utilizing high-performance hardware components such as sealing gaskets (usually rubber polymer) and bipolar plates. According to recent statistics of the FCH 2 JU in Europe [START_REF]State-of-the-art and future targets (KPIS), fuel cell light duty vehicles (including cars)[END_REF], the durability of fuel cell system in some applications are shown in Tab. Ⅳ. 1. The 10 % power degradation is used to metric the durability in all durability tests. The load current of testing is around 55 % -65% rated stack current.

2. The 10 % power drop is not a criterion of end of life (EoL), and different manufacturers may define the EoL in different applications.

3. The catastrophic stack failures are not addressed, and effects of transient operation, startup, and shutdown should be considered. 

Fuel cell applications generally require adequate performance to be maintained over long periods. The FCH 2 JU targets of durability lifetime are 5000 h in 2020 and 7000 h in 2030 with less than 10 % power degradation in light-duty vehicle transportation applications. In the years 2012 and 2017, the lifetime was 2500 h and 4000 h separately [START_REF]State-of-the-art and future targets (KPIS), fuel cell light duty vehicles (including cars)[END_REF]. Compared to the gasoline ICE, the cost and the durability of fuel cells have a large room to improve.

The durability prediction of PEMFC is always a research focus in both academia and industry. Developing some methods to predict the degradation state of the PEMFC system is helpful for the uses to take some actions in advance to extend its service life. And lots of prognostic methods have been proposed to evaluate the degradation condition in the past 10 years. Based on research status, this thesis focuses on exploring the lifespan prediction methods based on machine learning, and the method of echo state network (ESN) is selected. The research route of this thesis is summarized in Fig. Ⅵ. The contributions are briefly summarized as

• Improving the prediction accuracy by the multiple input structure which considering the effects of operating parameters (Chapter 2 and Chapter 3).

• Fuel cell (advantages, applications)

• Challenges (cost, durability)

• Contributions

General introduction (background)

• PEMFC and degradation 

Improve accuracy

Improve efficiency Q1: How to improve the prediction performance in the long-term scale?

• Proposing a dynamic health indicator (HI) to indicate the degradation state under the dynamic operating conditions (Chapter 3).

• Dealing with the multi-timescale degradation characteristics by the ensemble prediction structure and improving the prediction accuracy at the same time (Chapter 4).

• Enhancing the prediction efficiency by the discrete wavelet transform's "compression and reconstruction" technique (Chapter 5).

Chapter 1. Comparative study on remaining useful life prediction for

PEMFC system

In this chapter, the working principles of the PEMFC system and the degradation phenomena inside the PEMFC stack are first introduced. Then, a brief description of the prognostic and health management (PHM) and the process of prognostic are presented. After that, the experimental datasets for remaining useful life (RUL) prediction under the steady-state, quasi-dynamic, and full dynamic are also presented. The challenges of RUL prediction are given in 5 aspects. After a comparative literature review, the objectives of this thesis are detailed into 4 aspects.

PEMFC system and its degradation phenomena 1.Working principles of PEMFC system

Fig. 1 -1 The PEMFC system: (a) schematic of the system, (b) structure of fuel cell stack and single-cell, and (c) working principle of fuel cell [START_REF] Hua | Challenges of the remaining useful life prediction for proton exchange membrane fuel cells[END_REF].

Generally, a simple single fuel cell consists of 8 layers (Fig. 1 -1(b)), and a number of cells are assembled in series as a fuel cell stack. In most cases, the cooling channel is assembled in the bipolar plate. Two reactant loops are added to the PEMFC system: hydrogen loop and air loop (Fig. 1 -1(a)). Other ancillary loops like cooling and load management are also important for the PEMFC system. Most of the time, a hydrogen tank supplies the fuel for the anode, and a compressor provides oxide to the cathode. The pressure and flow rates of the reactants can be adjusted by the valves, and the reactants should be humidified before being transmitted to the stack. Meanwhile, the protons are delivered through the membrane and the electrons are transferred through the external load to produce electricity (Fig. 1 -1(c)). In brief, the whole function of PEMFC is converting chemical energy directly to electrical energy with water and heat as the by-products. Anode and cathode reaction equations are 

 → +   + + →   (1-1)
The overall reaction equation of FCs is

2 2 2 1 H + O H O + electricity + heat 2 → (1-2)
The working principle of PEMFC can be divided into 3 steps:

Step 1: Continuous supply of hydrogen and air to the anode and the cathode. On both sides of bipolar plates, gas channels are grooved to increase the reaction areas. The demand for the reactants is increasing with the load. The fuel cell stack would be "starved" if the fuel and air are not supplied quickly and sufficiently enough. Oxygen excess ratio is defined as the ratio between oxygen entering the cathode and oxygen consumed due to the electrochemical reaction. To avoid irreversible damages to the membranes, the value of the oxygen excess ratio needs to be optimized with the mission profile [START_REF] Zhao | Control oriented modeling and analysis of centrifugal compressor working characteristic at variable altitude[END_REF].

Step 2: Electrochemical reaction of reactants. Hydrogen is decomposed into protons and electrons in the anode. The electrons are transferred through the external electric circuit, and the protons are transferred through the membrane. Then in the cathode, oxygen, protons, and electrons are combined to produce water. During the electrochemical reaction, suitable catalysts are used to increase the reaction speed and efficiency. The activity of the catalyst is strongly dependent on the reacting temperature. Thus, keeping a proper temperature is very important to ensure the stability of the reaction procedure [START_REF] Das | Recent advances and challenges of fuel cell based power system architectures and control -A review[END_REF].

Step 3: Purging of the by-products and use of electricity. For the PEMFC system, the by-products are water and heat. Heat can be used for recycling. Water vapors are expelled by the flow of the unreacted air and hydrogen. They should be removed in time. Otherwise, they may induce a "flooding" fault. The excessive water will block the reactant pathways, thus decreasing the reaction efficiency. The movement of electrons in the external circuit produces electricity. With the help of power electronic converters, the electricity can be used for lighting, grid connection, motor drive system, etc. [START_REF] Zhou | A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles[END_REF] 

Thermodynamics and degradation of the PEMFC stack

The PEMFC system is a complex intersection of many research fields, e.g., electrochemistry, thermodynamics, and hydromechanics. The material characteristics, structure designing, assembly method, external environment, and operating conditions would affect its working performance and durability.

The current versus voltage (i -U) measurement, also known as the polarization curve measurement, is the most ubiquitous characterization technique to reveal the static performance of the PEMFC for it shows the output voltage under a given current. The typical i -U curve of a PEMFC is shown in Fig. 12. A large PEMFC would produce more energy than a small PEMFC in general, and standardizing the current in terms of the area can improve the comparability. Thus, the current in the x-axis is replaced by the current density (Ampere per square centimeter) [START_REF] O'hayre | Fuel cell fundamentals[END_REF]. In practice, the actual output voltage is less than the ideal thermodynamically value. Besides, the output voltage is also decreasing with the current's increasing. All these have limited the total delivered power (product of the current and voltage) of the PEMFC, and the power density curve of a PEMFC is shown in Fig. 1 -3 [START_REF] O'hayre | Fuel cell fundamentals[END_REF]. The real output voltage (U) of PEMFC can be expressed as

thermo act ohmic conc U = E -- - η η η (1-3)
Where Ethermo is the thermodynamically predicted output voltage, 𝜂 act is the activation losses due to reaction kinetics, 𝜂 ohmic is the ohmic losses from ionic and electronic conduction, 𝜂conc is the concentration losses due to mass transport.

At the constant temperature and constant pressure condition, the maximum output electrical power (Welec) of a system can be expressed by the negative of the change in Gibbs free energy (g )

elec rxn W =-g Δ (1-4)
The symbol Δ represents the state change between the final state and the initial state. The output electrical power can also be represented by the electrical potential difference E and charge

Q = elec W =E Q E n F ⋅ ⋅ ⋅ (1-5)
Where n is the number of moles of transferred electrons, F is the Faraday's constant. Then

rxn g =-E n F Δ ⋅ ⋅ (1-6)
The reversible voltage 𝐸 of a hydrogen-oxygen fuel cell under the standard-state condition (25 ℃, 101.325 kPa) is

0 0 -237000 J / = - 1.23V (2 ) (96400C ) rxn thermo - g mol E =-n F mol e / mol reactant / mol Δ = ⋅ × (1-7)
Where Δg is the change in Gibbs free energy under the standard-state condition, and the superscript "0" denotes the standard-state condition (25 ℃, 101.325 kPa). Multiple single cells in series can increase the output voltage. In practice, the working conditions of PEMFC are far from the standard-state condition, e.g., 3×101.325 kPa -5×101.325 kPa and 50 -80 ℃ for FCEV application. In the standardpressure (101.325 kPa), the reversible voltage at temperature T (𝐸 ) can be expressed as 0 + ( )

T thermo thermo 0 s E =E T-T n F Δ ⋅ (1-8)
Where Δ𝑠 is the entropy changes (a negative value for PEMFC), T0 is the temperature under the standard-state condition. Thus, the reversible PEMFC voltages tend to decrease with increasing temperature, so a lower temperature is better to keep the 𝐸 at a higher value. However, the kinetics loss tends to increase with decreasing the temperature. The performance of PEMFC tends to increase with increasing the temperature on the whole even if the Ethermo would be decreased in practice. The reversible voltage which affected by pressure can be expressed as ( )

g T n RT dE v = dp n F n F p Δ Δ - =- ⋅ ⋅ ⋅ (1-9)
Where p is the pressure, Δ𝑣 is the volume change of reactants, Δ𝑛 is the changes in the total number of moles during the reaction. To further analyze the reversible voltage, the Nernst equation of the PEMFC can be expressed as

2 2 2 H o 1/ 2 H O ln 2 T thermo thermo a RT E = E F a a - (1-10)
Where ai is the activity of material i. The 𝑎 , 𝑎 , and 𝑎 are the activity of H2O, H2, and O2 separately. Based on the Nernst equation, increasing the partial pressure of the reactants can improve the 𝐸 . However, the effects of pressure increasing are slight for the pressure is calculated by the natural logarithm function. Thus, it is not economically advisable to raise the voltage by increasing the pressure based on the thermodynamics principle.

Based on the Butler-Volmer equation, the net current density j can be shown as 

j = j α η α η -- - (1-11)
Where 𝜂 is voltage loss (i.e., activation losses), 𝛼 is the transfer coefficient (0.2-0.5), j0 is the current density under equilibrium conditions. For a large 𝜂 

η α α + + (1-13)
Where a and b (Tafel slope) are the experience parameters. In the Ohmic region, the voltage loss is caused by the resistance of charge transport, and the 𝜂 obeys Ohm's law. ( )

ohmic ohmic elec ionic = i R = i R +R η ⋅ ⋅ (1-14)
The ionic contribution to Rohmic tends to dominate for the electronic charge transport is more easy than ionic. Mass transport means the procedure of supplying reactants and removing products, and the total mass transport losses 𝜂 can be expressed as

1 ln ln (1 ) ln L L L conc L L L j j j RT RT RT = nF j j nF j j nF j j η α + = + - - - (1-15)
The general form can be shown as

ln L conc L j = c j j η - (1-16)
Where c is a constant value decided by experience. The actual output voltage of a PEMFC can be expressed by the thermodynamically predicted output voltage and the activation losses, ohmic losses, and concentration losses.

The degradation is related to the PEMFC's design and assembly process, component characteristics, material aging, etc. Once a PEMFC stack is assembled and in use, the degradation will occur during its whole life until the breakdown. The output voltage at a certain current (about half load) can be regarded as the outward manifestation of degradation, and exploring the degradation characteristics helps analyze the output performance and improve the service life of a PEMFC system. Generally speaking, the longer the PEMFC stack is operated in transient or varying load profiles conditions, the stronger is the degradation and the shorter is the lifetime. The degradation reasons of some components are cursorily summarized in Tab. 1 -1. 

Challenges of RUL prediction and the datasets in this thesis

Prognostic and health management of PEMFC

Fig. 1234The stages of the prognostic process [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: guidelines and metrics[END_REF].

PHM has the ability to estimate the future health state based on the past working profiles and the current operations, and then to extend the lifespan based on the condition-based maintenance (CBM) [START_REF]Condition monitoring and diagnostics of machines -prognostics -part1: general guidelines[END_REF]. The key process of PHM is prognostic, and the International Organization for Standardization (ISO) defines the concept of prognostics: "prognostics is the estimation of time to failure and risk for one or more existing and future failure modes". The guideline of the prognostic stages is shown in Fig. 1234.

For the PEMFC system, the sensors are used to acquire the data at a certain sampling rate (e.g., 1 Hz). After the decision of the level (stack or single-cell), the data processing layer performs the signal transformations and features extraction, reduction, and selection. After processing the data, the health indicators are settled and the end of life is defined. The system's current state of health (SoH) can be assessed by different prognostic methods (model-based and data-driven methods). In the prognostic process, the future condition of the system, subsystem, or component can be predicted by the Evaluation metrics definition • Performance assessment monitored system (propagation from causes to effects). In the PEMFC system, the main objective of prognostic is to realize the prediction of RUL. Finally, a lot of metrics and performance assessments [START_REF] Sutharssan | A review on prognostics and health monitoring of proton exchange membrane fuel cell[END_REF], [START_REF] Zhao | A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques[END_REF] can be used to evaluate the prediction results. Be aware, the prognostic does not address catastrophic stack failures.

Experimental datasets for RUL prediction

The durability data of FCs are scarce for it is not easy to test such a complex system for a long time. And it is even more difficult for the general researcher to acquire the durability data of the fuel cell equipped system such as the FCEV, stationary, and emergency backup power applications.

To promote the development of prognostic methods, the "IEEE PHM 2014 Data Challenge" (Data Challenge for short) was launched by the IEEE Reliability Society, FCLAB research federation, FEMTO-ST Institute, and the Laboratory of excellence ACTION [START_REF] Gouriveau | IEEE phm 2014 data challenge: outline, experiments, scoring of results, winners[END_REF]. Lots of research works are developed based on the open datasets of Data Challenge which tested under the steady-state operating condition (test-SS for short) and the quasi-dynamic operating condition (test-QD for short).

For the FCEV, the mission profiles are time-varying and they are determined by the driving behavior, road condition, energy demand, etc. The open data of test-SS and test-QD are tested under ideal circumstances, and they are defective to simulate the real operating conditions in practice. Thus, three dynamic tests under the micro-combined heat and power (μ-CHP) conditions were performed (382 h for test-D1, 1000 h for test-D2, and 405 h for test-D3) in the framework of the French National Research Agency (ANR) project, PROPICE "Prognostic and Health Management of PEM Fuel Cell Systems" [140]. The main purpose of this project is to develop prognostic methods to estimate the RUL of PEMFC systems.

1) Steady-state and quasi-dynamic datasets

The Data Challenge focused on estimating the RUL of a PEMFC. Both academic (from university) and professional teams (from industry) have joined in this Data Challenge, and the top-scoring participants are the winners of this competition.

The PEMFC test bench is adapted for a 1 kW electrical power fuel cell. The stack has 5 cells, and each cell has an active area of 100 cm 2 . The nominal current density of the stack is 0.7 A/cm 2 , and the maximal current density is 1.0 A/cm 2 . The hydrogen loop and air loop are two reactant loops of the test bench. Two independent boilers (air and hydrogen boilers) are placed upstream of the stack to realize the reactant humidification. The air boiler is heated to get the desired relative humidity of the air, and the hydrogen boiler remains at room temperature. The flow rate of reactants is adjusted by the pressure and flow valves to avoid the FC stack "starvation". The temperature of the stack is controlled by a cooling water system. Moreover, the FC stack enables normal and accelerated aging tests under constant and dynamic operating conditions. The physical parameters in the test bench can be measured and controlled in order to manage the PEMFC operating conditions as accurately as possible. Health monitoring data like the voltage, current, temperature, etc. are monitored by different sensors.

Two new fuel cell stacks under the steady-state and quasi-dynamic operating condition were implemented for more than 1000 h: the first test was operated under a static current operating condition (FC1, 1050 h), and the second test was operated under a quasi-dynamic current operating condition (FC2, 1020 h). The constant load current of 70 A is imposed on the aging test of FC1. In the aging test of FC2, a triangular ripple current of 7 A with 5 kHz is superimposed to the constant current of 70 A. The current waveforms used for the durability test are shown in Fig. 12345. The polarization curves measurements and electrochemical impedance spectroscopy (EIS) tests are implemented in the test bench to analyze the static and quasi-dynamic properties of the PEMFC and are carried out once a week [START_REF] Vianna | Proton Exchange Membrane Fuel Cells (PEMFC) impedance estimation using regression analysis[END_REF], [START_REF] Taejin | A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[END_REF]. Polarization curves of the single cells and stack were measured under a current ramp from 0 A/cm 2 to 1 A/cm 2 in 1000 s. The polarization curves measured at four different time steps are shown in Fig. 123456. In general, the longer the duration time is, the more serious the stack degradation is. More properly, the single-cell and stack voltage decrease as time grows, which depicts the degradation phenomena of the test bench. The EIS tests of the two tests are shown in Fig. 1234567. In the PEMFC system, the stack voltage sensors are easy for installation and implementation, and the voltages are always used for control purposes. For convenience, the stack output voltage is also widely accepted as a HI of PEMFC systems. In Data 

2) Full dynamic datasets

The experimental data come from the stationary PEMFC system which contains eight fuel cells and are obtained under dynamic mission profiles. The electrical power of the test bench is 1.0 kW, and the active area of a single cell is 220 cm 2 . Some of the nominal specifications and working parameters are shown in Tab. 1 -3. For all the durability tests, the polarization curves and the EIS under different current densities are also measured about once a week. The acquisition frequency of stack voltage and stack current is 1 Hz. Both the inlet and outlet reactant properties (flow rate, temperature, pressure, humidification, etc.) could be controlled during the tests, and various sensors are installed to monitor the operating conditions [START_REF] Pahon | Long-term tests duration reduction for PEMFC μ-CHP application[END_REF].

The (1) In stage 1 (0-200 h), the load current density is 0.77 A/cm 2 (maximum).

(2) In stage 2 (200 h-300 h), the load is cycling between 0.77 A/cm 2 and 0.38 A/cm 2 .

(3) In stage 3 (300 h-382 h), the load current density is 0.38 A/cm 2 . (1) In stage 1(0-250 h), the load current density is maximum at 0.77 A/cm 2 .

(2) In stage 2 (250 h-500 h), the mission profile changes dynamically between no load (0 A/cm 2 ), 0.77 A/cm 2 , and 0.38 A/cm 2 from 250 h to 380 h. The load current density alternates between 0.45 A/cm 2 and 0.23 A/cm 2 from 380 h to 500 h.

(3) In stage 3 (500 h-750 h), the load current density is 0.23 A/cm 2 from 500 h to 600 h. The load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 from 600 h to 750 h.

(4) In stage 4 (750 h-1000 h), the load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 from 750 h to 850 h. The load current density is 0.23 A/cm 2 in the rest time of stage 4.

Test-D3:

The 405 h duration data are also divided into 4 stages. The stack current and stack voltage are presented in Fig. 1 (1) In stage 1 (0-125 h), the load current density is 0.36 A/cm 2 (0-25 h) and it changes to 0.45 A/cm 2 during the rest of the time.

(2) In stage 2 (125 h-250 h), the load current density changes between 0.45 A/cm 2 and 0.23 A/cm 2 from 125 h to 225 h. It stays at 0.23 A/cm 2 during the rest of the time.

(3) In stage 3 (250 h-375 h), the load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 .

(4) In stage 4 (375 h-405 h), the load current density is 0.23 A/cm 2 . Different physical levels (stack, cell, and component) of the PEMFC system have various degradation origins and impacts [START_REF] Radev | Influence of failure modes on PEFC stack and single cell performance and durability[END_REF]- [START_REF] Gazdzick | Evaluation of reversible and irreversible degradation rates of polymer electrolyte membrane fuel cells tested in automotive conditions[END_REF]. The degradation phenomena of different components (bipolar plates, catalyst layers, proton exchange membrane, etc.) happen on different timescales (from μs to h) and space scales (from nm to m). Carbon corrosion, platinum dissolution or reorganization, membrane degradation, and structure stress are caused by a variety of factors. The degradation rates of different components are also not the same, and it is difficult to fully understand the degradation properties of different components and to identify the internal parameters of the PEMFC system. The time scales in a PEMFC system are shown in Fig. 1 -15. The degradation observation at the component level (ex-situ) of the component is easier and more sensible than at the in-situ single-cell level. In the same way, the detection of the degradation of a single cell is more observable than at the stack level. Furthermore, the operating conditions which highly impact the degradations are more difficult to control at the stack level due to the inhomogeneities from one cell to another. Nevertheless, the data measurements should be implemented at the FCs stack level from a practical point of view. Until today, the deterioration mechanisms of the various fuel cell components are not all completely understood. Otherwise, all cells do not degrade in the same way, and cells near the edges tend to degrade faster. Fortunately, most of the degradation processes have an effect on the HIs which can be used to evaluate the SoH. There are different health indicators like the voltage, power, current, impedance at different frequencies, etc. The output voltage and output power are the most commonly used HIs, and they are easy to be detected by the sensors.

Challenges of remaining useful life prediction 1) Decision level definition

2) Data selection and data processing

Inevitably, the disturbances and fault signals would be monitored by the sensors along with the degradation-related features in practices, and the nondegenerate signal has a strong impact on the degradation prediction performance. Disturbances in the raw data should be pre-processed, and various filtering techniques have been used to select the data which include the degradation information.

Taking the dataset of Data Challenge, for example, the output stack voltages are shown in Fig. 12345678910111213141516. The stack voltages have the monotonic decline tendency under the steady-state and quasi-dynamic operating conditions. Nevertheless, the recoveries after the EIS measurements and the faults would affect the prediction accuracy. For example, in Fig. 1 -16 (b), the faults at 100 h and 400 h would lead to an early prediction. Adequate and high-quality data can improve the precision of mathematical equations in the model-based methods, and they are also helpful for training the input and output relationships in the data-driven methods. A proper data pre-processing method is the key process of the prognostic.

Filtering is a frequently used technology in the literature, the rloess filter is used in [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF] and [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF], and locally weighted scatterplot smoothing method is utilized in [START_REF] Liu | Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[END_REF], Gaussian-weighted moving average filter is used in [START_REF] Liu | PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network[END_REF], Gaussian Kernel-based smoother is employed in [START_REF] Kimotho | PEM fuel cell prognostics using particle filter with model parameter adaptation[END_REF], and the moving average filtering (MAF) method is presented in [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF], [START_REF] Hua | Remaining useful life prediction of PEMFC systems based on the multi-input echo state network[END_REF].

For each filtering method, the filtering coefficients have a significant effect on the filtering results, and they are difficult to be decided in practice. Unfortunately, trialand-error is still the common method nowadays. For MAF, a too-large moving window may distort the original signal (eliminate the effects of characterization phases), and a too-small moving window may contain lots of noise during the degradation-related features extraction. With a span value of 0.9, the effects of characterization phases at the time interval of 168 h are also filtered out by rloess filter [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF]. With a moving window of 31, the recoveries and faults are retained by MAF [START_REF] Hua | Remaining useful life prediction of PEMFC systems based on the multi-input echo state network[END_REF].

Besides, the filtering method cannot identify the degradation features that belong to which part (components) of the PEMFC system. So, developing advanced methods to extract the degradation-related features is an urgent problem to be solved. Besides, combining the diagnosis and prognostic has the potential to classify the degradation features, fault information, and disturbance signals. 

3) End of life definition and health indicators

The definition of the end of life (EoL) is still an open question. Reaching an absolute consensus on the EoL threshold to measure the degradation state for different applications is impossible, and it is usually defined by the users themselves.

According to the definition of the U.S. DOE, the EoL can be regarded as when the PEMFC reaches a certain performance (voltage or power at a constant load current) decay (e.g., 10 % for the vehicle application, 20 % for μ-CHP, and 20 % for portable devices). Voltage or power is the external manifestation of the degradation at the component level [START_REF] Spendelow | Micro CHP fuel cell system targets[END_REF]. The time when the system reaches the EoL was regarded as the time of failure threshold (FT) in the Data Challenge ({3.5, 4.0, 4.5, 5.0, 5.5} % loss of initial power), i.e., the old fuel cell stack should be replaced by a new one. Be aware, there is a difference between the FT and EoL threshold in practice. Failure time means the PEMFC is broken and doesn't produce power anymore. When the PEMFC stack reaches the FT, it must be fixed or replaced by a new one. The EoL time means the produced power of the PEMFC stack cannot fit anymore the application requirement, and it still has the ability to work. Considering the economic factors, the stack should be replaced when it reaches the EoL threshold in most conditions.

The durability performance of fuel cells should be equivalently durable and reliable to compete with ICE. That is the reason why 5000 h is set as the target for FCEV, i.e., the equivalent driving range is about 250000 km when the average driving speed is about 50 km/h. It is important to point out that the experimental environment of the U.S. DOE is under some strict conditions [START_REF] Kurtz | Fuel cell electric vehicle durability and fuel cell performance[END_REF]. For the on-road testing of FCEV:

• The power loss is tested under about 55 % -65 % rated stack current, and the transient operating, startup, and shutdown should also be included.

• Durability performance is evaluated based on the voltage degradation to 10 % lower than the beginning of life voltage, and 10 % voltage drop level is a U.S. DOE metric for assessing on-road fuel cell durability.

• 10 % voltage drop metric does not represent the real EoL of original equipment manufacturers (OEM). A higher or lower level of power degradation can be accepted in different applications.

At the constant load current, the voltage (or power) would have a nonreversible decreasing tendency as a whole regardless of the causes of degradation. This is the reason why voltage and power are usually regarded as the HIs in the literature [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF], [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF], [START_REF] Kimotho | PEM fuel cell prognostics using particle filter with model parameter adaptation[END_REF], [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF], [START_REF] Silva | Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[END_REF], and they are classified as static HIs in this thesis.

4) Health assessment and prognostic

Over the last few years, various prognostic methods have been proposed. According to whether an analytical PEMFC model exists, these strategies can be categorized broadly into the model-based method and data-driven method. Through the analysis of the literature, the RUL prediction methods of the PEMFC system are shown in Fig. 1234567891011121314151617.

The prognostic principle of the model-based method can be described as building the degradation models of the PEMFC system and then realizing the RUL prediction by the techniques of signal processing (e.g., wavelet transform), statistics (e.g., Markov chain), filtering methods (e.g., extended Kalman filter), and machine learning (ML) methods. By the way, some scholars called the approach based on both models and filtering (or ML) methods the hybrid method. In this thesis, the hybrid method is also classified to the model-based category since the models are necessary for this condition. Most of the literature has realized the prognostic offline. Nevertheless, online prediction is more interesting in practice. According to the author's knowledge, [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF] is the first paper to realize the online RUL prediction of the PEMFC system. Later, [START_REF] Zhou | Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach[END_REF] and [START_REF] Zhou | Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[END_REF] have further improved the online prediction accuracy. Thus, more and more methods that can realize the lifespan's online prediction should be proposed and tested. Besides, the dynamic health indicators, RUL prediction accuracy, and efficiency are also need to be further improved in the long-term scale.

5) Performance evaluation criteria

To evaluate the prediction performance, one of the common criteria of percent error on RUL estimate (%ErFT) was defined by the Data Challenge in 2014. The definition of FT is important before using the criterion of %ErFT. Nevertheless, the FT is defined by the users in different conditions, and the failure thresholds (FTs) are 6 %, 10 %, and 15 % in [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF]. In the Data Challenge, {3.5, 4.0, 4.5, 5.0, 5.5} % of initial power have been used as FTs. Percentage error (%ErFT) is used to evaluate the error between the actual RUL (𝑡 ) and the prediction one (𝑡 ). There are two cases for the prediction results: a) the estimation is smaller than the actual RUL, which means it is an early prediction, or b) the estimation is greater, which means it is a late prediction. The underestimates and overestimates are not considered in the same manner. In practice, good performance of estimations relates to early predictions of RUL (i.e., cases where %ErFT > 0), with a deduction to early removal, and more severe deductions for RUL estimations that exceed actual RUL (i.e., cases where %ErFT ≤ 0). The score of the accuracy of the RUL estimate is defined as ln(0.5) (% /5) ln(0.5) (% /20) % 0 % 0
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The final score of all RUL predictions is defined as being the mean of all AFT, and winners are the participants who get the highest scores
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The root mean square error (RMSE) and mean average percentage error (MAPE) are two other commonly used criteria in the literature, and they can be used to quantitatively estimate the error between the real value and the forecasted value. RMSE is commonly used to quantify the difference between the real signal (𝑦 (𝑛)) and its predicted value (𝑦 (𝑛) ) during the RUL time (m data points). MAPE is also a quantification measurement between the real value (𝑦 (𝑛)) and its predicted value (𝑦 (𝑛)).
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The criterion of prediction horizon (PH) can be used to evaluate the prediction ability, and it is defined as the time between start prediction and ending prediction. There do not need the new measured data during the PH. The longer the PH, the better the prediction ability.

In a word, using these criteria together is a more proper choice for the users to evaluate the prediction performance no matter for the short-term (PH ≤ 24 h), mid-term (24 h < PH ≤ 168 h), or long-term prediction (PH > 168 h). And finding other criteria to evaluate the prediction in the long term is one of the research focuses in the next step.

Literature review of remaining useful life prediction 1.3.1 Model-based methods

The degradation state of the PEMFC system can be modeled by physical or empirical equations, and the model's accuracy would have a direct impact on the prediction results. To improve the modeling accuracy, statistical techniques, filtering methods, and ML methods have been used to assist the modeling process. This combination structure can also provide an opportunity to combine both the advantages of model-based (simple) and data-driven methods (accurate).

1) Models prepared for RUL prediction

Building a degradation model is fundamental to the model-based method. The polarization curve (i -U), as stated earlier, can be used to reflect the static performance of the PEMFC. Besides, the EIS can also be used to analyze the dynamic characteristics of the PEMFC for the impendence is tested under different frequencies. After building the models to fit the polarization curves and EIS curves, the degradation-related parameters can be extracted from the models. Then, the degradation state can be evaluated by predicting the tendency of these parameters.

A pattern recognition method based on the polarization curves and EIS is proposed by Onanena et al. to predict the lifetime of the PEMFC system [START_REF] Onanena | Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time[END_REF]. An empirical model is used to extract the static features from polarization curves, and both expert knowledge and parametric models are used to extract the dynamic features from EIS. The parameters which are more correlated to the degradation are selected to help the users to estimate the operating time.

Based on the EIS measurements and linear regression technique, the impedance behavior estimation is realized in [START_REF] Vianna | Proton Exchange Membrane Fuel Cells (PEMFC) impedance estimation using regression analysis[END_REF]and [START_REF] Taejin | A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[END_REF]. With the same models in [START_REF] Onanena | Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time[END_REF], the mathematical equations are used to model the real part of EIS, and a high-order polynomial regression (5-order) is used to model the imaginary part of EIS in [START_REF] Vianna | Proton Exchange Membrane Fuel Cells (PEMFC) impedance estimation using regression analysis[END_REF] by Vianna et al. Besides, the gradient descent approach is utilized to optimize the parameters of the mathematical equations, and the leave-one-out method is adopted to decide the order of polynomial regression. Based on the same datasets of [START_REF] Vianna | Proton Exchange Membrane Fuel Cells (PEMFC) impedance estimation using regression analysis[END_REF], the equivalent circuit model (ECM) and voltage-resistance model are combined to realize the impedance prediction in [START_REF] Taejin | A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[END_REF] by Taejin et al. The ECM with 10 parameters is explored to express the physical characteristics of the PEMFC system, and then 4 parameters which can reflect the degradation phenomena are selected by the model reduction method. The effectiveness of these models is validated by 2 datasets of Data Challenge which were tested under the steady-state (FC1, 70 A) and quasi-dynamic (FC2, 63 A -77 A) operating conditions [START_REF] Gouriveau | IEEE phm 2014 data challenge: outline, experiments, scoring of results, winners[END_REF]. Besides, the models in [START_REF] Vianna | Proton Exchange Membrane Fuel Cells (PEMFC) impedance estimation using regression analysis[END_REF] and [START_REF] Taejin | A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[END_REF] are two winners of the Data Challenge from the industrial and academic participants, and final sores of them are 7.8932× 10 and 5.3177× 10 separately.

Similar to [START_REF] Onanena | Fuel cells static and dynamic characterizations as tools for the estimation of their ageing time[END_REF], a prognostic-oriented model is proposed by Lechartier et al. in [START_REF] Lechartier | Proton exchange membrane fuel cell behavioral model suitable for prognostics[END_REF]. The physical-based model is composed of two parts based on the measurements of polarization curves and EIS. The static part is built by the physical mechanism (Butler-Volmer law) of the PEMFC system, and the dynamic part is built by ECM. Finally, the proposed model is also validated on the datasets from Data Challenge.

Under the nominal and power cycle operating conditions, two numerical models are proposed by Robin et al. to describe the Pt surface degradation caused by the carbon support degradation [START_REF] Robin | Multi-scale coupling between two dynamical models for PEMFC aging prediction[END_REF]. A physical model which focuses on the electro-chemical surface area (ECSA) is proposed by Polverino et al., and this model has the potential for online RUL prediction [START_REF] Polverino | Model-based prognostic algorithm for online RUL estimation of PEMFCs[END_REF]. The activation losses in this model are represented by Tafel's equation, and the exchange current density is a function of ECSA. After fully understanding the decreasing rate of ECSA, the degradation model about the cell voltage is formulated. Finally, the RUL can be estimated by comparing the current ECSA with its initial value. Besides, the effects of current density (0.05 A/cm 2 -0.5 A/cm 2 ) and temperature (30 ℃ -80 ℃) on the voltage decay are also analyzed. Results show that the voltage decay has a high speed when the current density is at the lower (0.05 A/cm 2 ) and higher levels (0.5 A/cm 2 ). And the voltage decay speed is decreasing with the increase of temperature (maximum 80 ℃).

Based on the vehicular operation records and the test results in the laboratory, Chen et al. built a model to realize the online lifespan prediction which considers the effects of the environmental and voltage degradation [START_REF] Chen | Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells[END_REF]. In practice, the economic lifespan can be regarded as the service time when the average cost of the PEMFC system reaches the minimum value. And the total consumption in the proposed model is made up of manufacturing cost, hydrogen consumption, and attachment consumption (air compressor, cooling water, electronic control equipment, etc.). At last, the average cost of the PEMFC system and the economic lifespan are analyzed by considering different hydrogen prices and stack manufacture costs.

After a deep literature review on the degradation at different levels (component, cell, and stack), a semi-empirical aging model is proposed by Jouin et al. for the PEMFC system's health assessment and prognostics [START_REF] Jouin | Degradations analysis and aging modeling for health assessment and prognostics of PEMFC[END_REF]. This model can describe the power behavior accuracy in its whole lifetime, and 4 datasets under the steady-state, quasi-dynamic, and dynamic operating conditions are used to validate the proposed model. The coefficients of correlation are higher than 0.96 in these 4 datasets, and this model is suitable for the RUL predictions. Similar to [START_REF] Jouin | Degradations analysis and aging modeling for health assessment and prognostics of PEMFC[END_REF], an empirical voltage degradation model is proposed by Zhang et al. in [START_REF] Zhang | Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell[END_REF]. And both the aging terms and the mission profiles are used to build the voltage model.

For the signal processing techniques, the wavelet transform (WT) and two degradation models i.e., polynomial regression and autoregressive integrated moving average (ARIMA) models are used to realize the online RUL prediction [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF]. The data in one week is compressed by discrete wavelet transform (DWT), and then the models are utilized to predict the coefficients of the next week. Finally, the output voltages of the next week are reconstructed by the inversed discrete wavelet transform (IDWT). Results of FC1 and FC2 show that the data in 168 h (one week) can be shortened into 21 h (about one day), and fewer data are used in the models to realize the long-term (168 h) RUL prediction.

For the statistics techniques, the model-based method of regime switching vector autoregressive (RSVAR) is proposed by Hochstein et al. to realize the RUL prediction [START_REF] Hochstein | Switching vector autoregressive models with higher-order regime dynamics[END_REF]. The changing trend of the stack voltage in the next step is represented by the form of probability based on the first-order Markov model. The method is validated by the datasets of Data Challenge in the long term (PH = 500 h) and gets the highest score (0.3592) from the industrial participants. In [START_REF] Zhang | An unscented Kalman filter based approach for the health-monitoring and prognostics of a electrolyte membrane fuel cell polymer[END_REF], a catalyst degradation model based on the physical deterioration mechanism is proposed by Zhang et al. This model is used to indicate the degradation rate of ECSA, and the area size can be indicated by the output voltage. Then the unscented Kalman filter (UKF) is utilized to predict the RUL of a PEMFC system. The prediction results are located in 95 % confidence intervals when the prediction horizon is about 300 h. In practice, it is inconvenient to measure the ECSA, and the measurements may disturb the behavior of the fuel cell stack. The same semi-empirical voltage model with an adaptive unscented Kalman filter (AUKF) algorithm is utilized to realize the RUL prediction in [START_REF] Liu | Prognostics of proton exchange membrane fuel cells using a model-based method[END_REF].

2) Model-based methods with filtering approaches

Chen et al. proposed a hybrid method that combined three empirical voltage models (linear, logarithmic, and exponential) and UKF to realize the degradation prediction [START_REF] Chen | Fuel cell health prognosis using Unscented Kalman Filter: Postal fuel cell electric vehicles case study[END_REF]. Ten fuel cell electric vehicles are developed for the postal delivery mission under the Mobypost project. There are 40 cells at each PEMFC, and the rated power and current are 1 kW and 34 A separately. The effectiveness of the proposed method is validated by the datasets from the Mobypost vehicle. Results show that the logarithmic model has the best prediction performance in the short term (within 10 h).

Bressel et al. introduce the extended Kalman filter (EKF) to the long-term prognostic area of the PEMFC system [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF] - [START_REF] Bressel | Model-based aging tolerant control with power loss prediction of Proton Exchange Membrane Fuel Cell[END_REF]. In [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF] Through analyzing these four parameters deviation, the R and iL change a lot, and the E0 and i0 keep constant in the whole durability test. Thus, the R and iL are regarded as the state variables, and then the EKF is used to estimate their variation tendency.

Afterward, the same model of [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF] is further verified in [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF], [START_REF] Bressel | Fuel cell remaining useful life prediction and uncertainty quantification under an automotive profile[END_REF], and [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF]. The dataset in [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF] is tested under the steady-state operating condition with characterization disturbances and voltage recovery. Several simulations based on the EKF are performed to analyze the sensitivity of the parameters affected by the initial value of R and iL. Nevertheless, the datasets in [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF] and [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF]are under steady-state operating conditions. After that, the method is verified by the dynamic datasets in [START_REF] Bressel | Fuel cell remaining useful life prediction and uncertainty quantification under an automotive profile[END_REF] and [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF] separately. The datasets in [START_REF] Bressel | Fuel cell remaining useful life prediction and uncertainty quantification under an automotive profile[END_REF] are tested under an automotive profile. The prediction horizon is about 30 h (175 hours' durability test) when the results are located into ±10 % bound of real RUL. And the EKF extraction process is implemented in [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF] under the dynamic operating condition (μ-CHP) [START_REF] Pahon | Long-term tests duration reduction for PEMFC μ-CHP application[END_REF]. After the extraction of parameters by EKF, the model-based method of inverse first-order reliability method (IFORM) is used to extrapolate the degradation indicator until to the failure threshold. Besides, the RUL prediction results with a 90 % confidence interval are also presented, and the prediction horizon is about 200 h (1000 hours' durability test) when the results are located into ±10 % bound of the real RUL. Later, the RUL real-time estimation is validated on the hardware in the loop (HIL) platform [START_REF] Cherragui | Fuel Cells Remaining Useful Life Real-Time Estimation Using an Extended Kalman Filter in a Hardware In the Loop Platform[END_REF]. Recently, the frequency domain Kalman filter (FDKF) and the four voltage degradation models (linear, quadratic, logarithmic, and exponential) are combined by Ao et al. in [46]. This method is more efficient than the typical EKF because it can process the data in groups. Besides, the datasets of Data Challenge are used to verify its effectiveness in the long term.

Besides the semi-empirical voltage model of [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF], a bond graph (BG) model of the PEMFC system is also proposed by Bressel et al. in [START_REF] Bressel | Dynamical modeling of Proton Exchange Membrane Fuel Cell and parameters identification[END_REF] and [START_REF] Jha | Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework[END_REF]. Besides, the particle filter (PF) is used to replace EKF in [START_REF] Jha | Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework[END_REF]. Comparison results under the steady-state (FC1), quasi-dynamic (FC2), and dynamic (μ-CHP) operating conditions show that the BG-PF hybrid method could have higher accuracy than [START_REF] Bressel | Fuel cells remaining useful life estimation using an extended Kalman Filter[END_REF]. Similar to the model in [START_REF] Jha | Particle filter based hybrid prognostics of proton exchange membrane fuel cell in bond graph framework[END_REF], an aging tolerant control method is realized in [START_REF] Bressel | Aging Tolerant Control of Proton Exchange Membrane Fuel Cell: a Model-Based Approach[END_REF] and [START_REF] Bressel | Model-based aging tolerant control with power loss prediction of Proton Exchange Membrane Fuel Cell[END_REF]. This method aims at generating the reference current and considering the degradation state at the same time. Besides, the reference value of the gas can be calculated by the energetic macroscopic representation (EMR) model, and the maximum power which can be provided by the fuel cell stack is identified by the maximum power point tracking (MPPT) algorithm [START_REF] Bressel | Aging Tolerant Control of Proton Exchange Membrane Fuel Cell: a Model-Based Approach[END_REF], [START_REF] Bressel | Model-based aging tolerant control with power loss prediction of Proton Exchange Membrane Fuel Cell[END_REF].

The PF which is based on the Monte Carlo principle can predict RUL with a probability density function (PDF), and it can deal with the uncertainties at the same time. Jouin et al. have done lots of work about the application of PF in the prognostic area of the PEMFC system [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] - [START_REF] Jouin | Prognostics of PEM fuel cells under a combined heat and power profile[END_REF], and [START_REF] Jouin | PHM of proton-exchange membrane fuel cells -a review[END_REF] - [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: guidelines and metrics[END_REF] reviewed the current methods of RUL predictions. Three empirical models (linear, log-linear, and exponential) are used to represent the degradation rate of the PEMFC system in [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF], and then the PF is taken to assist the prediction procedure. Based on the datasets of Data Challenge, the log-linear model shows the best performance in the long-term perspective with a 90 % time interval. When the prediction horizon is 500 h, the prediction error is in the interval of [-25 h, +50 h].

Later, the prognostics which include characterization disturbances and voltage recovery are realized in [START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF], [START_REF] Jouin | Remaining useful life estimates of a PEM fuel cell stack by including characterization-induced disturbances in a particle filter model[END_REF], and [START_REF] Jouin | Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[END_REF]. In [START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF] and [START_REF] Jouin | Remaining useful life estimates of a PEM fuel cell stack by including characterization-induced disturbances in a particle filter model[END_REF], the aging model consists of three parts: 1) global power degradation is represented by a logarithmic and linear equation, 2) degradation's acceleration which is caused by the irreversible factors is represented by an exponential equation, and 3) the recovery is represented by an empirical equation. Then three paralleled PFs are used to deal with the models of each part separately, and the results are synchronized at the same time step. The prediction error is in the interval of [-28 h, +28 h] for a 950 hours' prediction horizon. To overcome the weakness of parameter initialization in [START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF] and further improve the prediction accuracy, an advanced empirical model is proposed in [START_REF] Jouin | Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[END_REF]. Compared to [START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF], the aging model in [START_REF] Jouin | Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[END_REF] consists of four parts, i.e., the degradation's acceleration is divided into two exponential equations. Four paralleled PFs are used to track the model, and the prediction error is within 5 % when the prediction horizon is 500 h. The datasets in [START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF] and [START_REF] Jouin | Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation[END_REF] are the same, and different PFs in the paralleling structure could improve the prediction accuracy. Nevertheless, recoveries due to the characterization are in the regular time intervals. These empirical models are built under steady-state or quasidynamic operating conditions.

Based on the typical loss model, both the time and current are used to build a semiempirical model in [START_REF] Jouin | PEMFC aging modeling for prognostics and health assessment[END_REF]. Then the PF is utilized to realize the long-term predictions based on the dataset of FC1, and the prediction horizon is about 500 h. Similar to [START_REF] Jouin | PEMFC aging modeling for prognostics and health assessment[END_REF], another two semi-empirical models are proposed in [START_REF] Jouin | Combined predictions for prognostics and predictive control of transportation PEMFC[END_REF] and [START_REF] Jouin | Prognostics of PEM fuel cells under a combined heat and power profile[END_REF] to describe the power behavior based on the dataset of transportation application and μ-CHP separately. Nevertheless, the degradation predictions in [START_REF] Jouin | Combined predictions for prognostics and predictive control of transportation PEMFC[END_REF] and [START_REF] Jouin | Prognostics of PEM fuel cells under a combined heat and power profile[END_REF] are realized in the short-term perspective.

The adaptive particle filter (APF) is used in [START_REF] Kimotho | PEM fuel cell prognostics using particle filter with model parameter adaptation[END_REF] to predict the stack voltage in the long term based on the datasets of Data Challenge [START_REF] Gouriveau | IEEE phm 2014 data challenge: outline, experiments, scoring of results, winners[END_REF]. Similar to [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF], Kimotho et al. tested another two empirical models (pure logarithmic and polynomial model) apart from the linear, log-linear, and exponential model. A self-healing factor is introduced to increase the adaptiveness, and its value is observed and updated after each characterization. The prediction error is in the interval of [-25 h, +25 h] (under 5 %) when the prediction horizon is about 500 h. Based on the datasets of Data Challenge, this method gets the highest score (0.7760) from the academic participants. Nevertheless, the self-healing factor should be determined in advance, and the setting process is largely based on empirical knowledge.

The recovery phenomena caused by the measurements of polarization curves and EIS make the prognostic difficult [START_REF] Zhang | Proton exchange membrane fuel cell remaining useful life prognostics considering degradation recovery phenomena[END_REF], [START_REF] Zhang | Some improvements of particle filtering based prognosis for PEM fuel cells[END_REF]. Because the degradation rates of each two characteristic measurements are not the same, and the sudden jumps phenomena would decrease the RUL prediction accuracy. The second-order polynomial model in [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] is used to describe the stack power, Zhang et al. also proposed other three functions to model the recovery state. Moreover, the parameters in the recovery model are extracted from the ECM of the EIS curves. Finally, with the help of PF, the RUL is predicted in the long-term (about 500 h) with the datasets of Data Challenge.

Zhou et al. proposed a multi-physical (electrical, fluidic, and thermal domain) aging model in [START_REF] Zhou | Degradation Prediction of PEM Fuel Cell Stack Based on Multiphysical Aging Model With Particle Filter Approach[END_REF]. And then the PF is used to predict the degradation in the long-term perspective, and the prediction horizon is 150 h and 250 h. Finally, 3 datasets (12 A/30 ℃, 30 A/35 ℃, and 44 A/40 ℃) from the Ballard NEXA fuel cell stack are used to verify the robustness of this method.

The classification of model-based methods (models with filtering approaches) is shown in Tab. 1 -4. To improve the prediction accuracy of [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF], the data-driven method of non-linear autoregressive neural network (NARNN) and an empirical fuel cell voltage model are combined to realize the degradation prediction of the PEMFC system [START_REF] Zhou | Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach[END_REF]. The moving window method is used to improve the prediction accuracy, and the weights of these two methods are updated in each step (time interval is one week). Finally, this hybrid method is validated on the datasets of Ballard NEXA stack (36 A/40 ℃), proton motor 200 (PM200) fuel cell stack (64 A/58 ℃), and Data Challenge. Based on the same datasets of FC1 and FC2, the prediction accuracy of [START_REF] Zhou | Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach[END_REF] is higher than [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF] in terms of To overcome the weaknesses of typical PF [START_REF] Zhou | Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[END_REF], the regularized particle filter (RPF) which is based on three state models (exponential, log-linear, and linear) is proposed by Cheng et al. in [START_REF] Cheng | A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell[END_REF]. The hybrid approach is combined by the RPF and data-driven method of the least square support vector machine (LSSVM). The output voltage is first predicted by LSSVM, and then the predicted value is used in the RPF structure. Besides, the confidence interval (90 %) and PDF curve can be given by LSSVM-RPF, which are helpful for the users to make proper decisions. Based on the datasets of Data Challenge, the prediction performance of LSSVM-RPF is better than typical PF and RPF. Nevertheless, both in [START_REF] Zhou | Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[END_REF] and [START_REF] Cheng | A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell[END_REF], the model-based method is realized in the long term, and the data-driven method is realized in the short term.

3) Model-based methods with ML methods

Apart from the PF, the Gaussian process (GP) can also present the degradation tend in a probability distribution form [START_REF] Zhu | Prognostics of PEM fuel cells based on Gaussian process state space models[END_REF]. An empirical aging model is developed by Zhu et al., and the GP is used to predict the stack voltage under the steady-state operating condition (FC1). During the prediction, the GP model is updated every 50 h based on the new measured data. Thus, the prediction horizon of GP is 50 h.

Another hybrid prognostics method is proposed by Liu et al. in [START_REF] Liu | Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method[END_REF]. The semiempirical voltage degradation model, AUKF, adaptive neuro-fuzzy inference systems (ANFIS), and particle swarm optimization (PSO) are combined to realize the long-term RUL prediction.

Yang et al. constructed a hybrid prognostic method in [START_REF] Yang | A novel fusion strategy for failure prognostic of proton exchange membrane fuel cell stack[END_REF] and [START_REF] Yang | A particle filter and long short term memory fusion algorithm for failure prognostic of proton exchange membrane fuel cells[END_REF] by combining empirical models, PF, and long short-term memory (LSTM) network. The parameters of three models (linear, logarithmic, and exponential) are learned by PF, and the RUL is estimated in the long term by the LSTM network.

The LSTM network and autoregressive integrated moving average (LSTM-ARIMA) method are proposed in [START_REF] Ma | Data-fusion prognostics of proton exchange membrane fuel cell degradation[END_REF]. The LSTM-ARIMA structure can decrease the influences of overfitting and recovery phenomenon, and it is tested in the short term. The methods in [START_REF] Zhu | Prognostics of PEM fuel cells based on Gaussian process state space models[END_REF] - [START_REF] Ma | Data-fusion prognostics of proton exchange membrane fuel cell degradation[END_REF] are verified by the offline datasets of Data Challenge.

Recently, Ma et al. proposed another hybrid prognostic method based on the EKF and LSTM network [START_REF] Ma | A Hybrid Prognostic Method for PEMFC with Aging Parameter Prediction[END_REF]. The internal parameters of limiting current, exchange current, and fuel cell resistance is extracted by a PAM. Then the EKF is adopted to estimate the three parameters based on the output voltage. Finally, the data-driven method of LSTM is used to realize the voltage (or virtual steady-state voltage) prediction in the long term under different operating conditions. The classification of model-based methods (models with ML methods) is shown in Tab. 1 -5. 

Data-driven methods

Sparse kernel machine

The data-driven methods do not need the precise mathematical models of the PEMFC system. Instead, the extrinsic attribute of the data can be learned and the RUL can be estimated based on the historical and current data. Thus, data-driven methods are usually used in cases where the degradation process is difficult to be modeled or the data are easy to be acquired. More generally, the data-driven method is like a "black box" which can be used to simulate the high-order nonlinear relations between the input and target data, and the new output data can be estimated by the trained "black box" and the new input data. During the working process of the PEMFC system, the electrical parameters (power, voltage, current, etc.) and the operating parameters (temperature, humidity, pressure, etc.) are measured by different kinds of sensors. In addition to the material degradation and decreasing of catalyst activity, these external parameters can also reflect the working properties of the PEMFC system. And understanding them sufficiently is helpful for the data-driven methods to predict the RUL efficiently. From the literature known so far, the data-driven methods are mainly based on the ML framework, and many kinds of ML approaches have been used in the RUL predictions of the PEMFC system.

The temporal variation of stack voltage is learned by ANFIS, and then the new stack voltages are predicted by the training structure. To improve the prediction accuracy, Silva et al. divided the voltages into the normal operation part and external perturbations part (e.g., transient process), and only the normal operation part is used to train the ANFIS structure [START_REF] Silva | Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[END_REF]. This splitting approach can efficiently improve the prediction behaviors of two PEMFC stacks. The prediction horizon of these two long-term tests is about 500 h under the static (FC1) and quasi-dynamic (FC2). The long-term prediction is realized by the iterative approach and single-step ahead prediction process. The parameters are set by the trial-and-error process which relies heavily on the empirical data. A simple comparative study of ANFIS, feed-forward neural network (FFNN), and ARNN is presented in [START_REF] Mao | Comparative study on prediction of fuel cell performance using machine learning approaches[END_REF]. The ANFIS with fuzzy c-means (ANFIS-FCM) method is proposed by Liu et al. in [START_REF] Liu | Short-Term Prognostics of PEM Fuel Cells: A Comparative and Improvement Study[END_REF] to realize the short-term prediction (single-step ahead) of stack voltage, and the parameters of ANFIS-FCM are optimized by PSO to improve the adjustment efficiency. Besides, the WT is also combined with ANFIS-FCM to obtain a better performance. The datasets in [START_REF] Silva | Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems[END_REF] and [START_REF] Liu | Short-Term Prognostics of PEM Fuel Cells: A Comparative and Improvement Study[END_REF] come from Data Challenge (FC1 and FC2).

The summation wavelet-extreme learning machine (SW-ELM) is introduced to the PEMFC system by Javed et al., and it is fully explored at a long-term prediction scale under steady-state operating conditions [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF] - [START_REF] Javed | Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[END_REF]. The SW-ELM can be regarded as the combination of artificial neural networks (ANN) and WT theory. Two activation functions are used for each hidden node of ANN, and two parameters' initialization (weights and bias) can decrease the effects of uncertain perturbations. Therefore, its ability to deal with nonlinearity and disturbance is enhanced. Long-term prediction results with different training lengths have been researched in [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF], and the prediction horizon is about 500 h. Nevertheless, the single prediction has some limitations in dealing with the uncertainties of degradation, disturbances of the operation conditions, parameter sensitivity, etc. To overcome the weakness of a single prediction, the SW-ELM with an ensemble of constraints is proposed in [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF] and [START_REF] Javed | Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[END_REF] to improve the prediction accuracy and robustness. One hundred predictions by SW-ELM with different learning parameters at each training length are implemented, and then the mean RUL and median RUL of all predictions are calculated and compared. Both in [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF] and [START_REF] Javed | Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[END_REF], the training length starts from 850 h (half lifespan of the stack), the prediction interval is 50 h, and the prediction horizon is from 50 h to 850 h. Besides, the data in [START_REF] Javed | Data-driven prognostics of proton exchange membrane fuel cell stack with constraint based summation-wavelet extreme learning machine[END_REF] is also tested by the ensemble of constraints-based SW-ELM approach in [START_REF] Javed | Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[END_REF]. In this dataset, training length starts from 600 h, and the prediction horizon is less than 550 h. Results show that the median RUL is more interesting because the prediction of them usually belongs to the underestimations, and the prognostic with ensemble structure can minimize the error probability than the individual prediction. Besides the steady-state operating condition, the ensemble SW-ELM approach is also tested by Javed et al. under the variable load [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF]. The results of SW-ELM with or without incremental learning are compared under the durability tests for μ-CHP. In [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF], the new measurement data are used for training when they are available, and the prediction is realized in the single-step ahead process in essence.

Based on the ensemble structure and WT principle [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF], the approaches of group method of data handling (GMDH) network [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] and extreme learning machine (ELM) [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF], [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF] are used to deal with the multi-timescale features of PEMFC system in the short term. Firstly, the original signal is decomposed into several sub-waveforms by the WT. Secondly, the sub-waveforms are predicted by data-driven methods separately. Finally, an ensemble structure is utilized to integrate the multi-timescale features and improve the prediction accuracy. In [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF], the original stack voltages are decomposed into 3 layers under the steady-state operating conditions (FC1) and 4 layers under and quasi-dynamic operating conditions (FC2). The stack voltages do not need to be normalized in the training process, and the short-term prediction is realized from a single-step ahead to 5-step ahead (about 5 h). Compared to [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF], the GMDH is replaced by the enhanced ELM method in [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF] to improve the prediction accuracy, and the selfadaptive differential evolutionary (SaDE) method is used to optimize the parameters of ELM. The prediction procedure of [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF] is also similar to [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF], and one hundred predictions are implemented to weaken the randomness of ELM. Besides, the influence of different training lengths is also analyzed with the same datasets of [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF]. Later, the WT and ELM are used in [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF] to realize the degradation prediction, and 3 decomposition layers are chosen for the dynamic datasets which are from MobyPost. Different from [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF], the genetic algorithm (GA) is used to optimize the parameters of ELM, and stack voltage prediction of single-step ahead is realized under the dynamic operating condition [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF]. Nevertheless, the setting principle of the decomposition layer is unclear, and the physical meaning of the features in different layers needs to be further explored [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] - [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF].

Also based on the datasets of FC1 and FC2, the grey neural network model (GNNM) method is proposed by Chen et al. to realize the single-step ahead output voltage prediction. The PSO is used to optimize the parameters of GNNM, and the moving window method is used to improve the prediction accuracy [START_REF] Chen | Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization[END_REF]. Later, the backpropagation neural network (BPNN) is applied to construct the relationship of inputs (current, humidity, temperature, etc.) and output (voltage), and it is tested by the datasets of FC1, FC2, and MobyPost [START_REF] Chen | Aging prognosis model of proton exchange membrane fuel cell in different operating conditions[END_REF]. Apart from the GA [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF] and PSO [START_REF] Chen | Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization[END_REF], the mind evolutionary algorithm (MEA) is also used in [START_REF] Chen | Aging prognosis model of proton exchange membrane fuel cell in different operating conditions[END_REF] to optimize the initial weights and neuron numbers of BPNN. Besides, the BPNN with different activation functions are analyzed, and the voltage prediction results with traditional relevance vector machine (RVM) and support vector machine (SVM) are also compared. Nevertheless, in [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] - [START_REF] Chen | Aging prognosis model of proton exchange membrane fuel cell in different operating conditions[END_REF], the degradation prediction of the stack voltage is all realized in the short term (single-step ahead).

The modified RVM and self-adaptive RVM are put forward to predict the degradation of the PEMFC system by Wu et al. in [START_REF] Wu | A modified relevance vectormachine for PEM fuelcell stack aging prediction[END_REF] and [START_REF] Wu | Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[END_REF] separately. Compared with the classical SVM, the RVM has higher selecting freedom in kernel functions, and fewer vectors are needed in RVM which can further decrease the computational complexity. Moreover, the RVM can realize the predictions with confidence intervals, i.e., it has the probabilistic prediction ability which is more interesting in practice than the single point prediction. Two experimental datasets (400 hours' durability testing) from the Ballard NEXA fuel cell stack under the steady-state operating conditions (30 A/ 35℃ and 36 A/40 ℃) are used to validate the Gaussian kernel-based RVM in [START_REF] Wu | A modified relevance vectormachine for PEM fuelcell stack aging prediction[END_REF]. The output voltage is used to indicate the degradation state. Prediction results in different training lengths are discussed, and the prediction horizon is 50 h, 100 h, and 160 h separately. Besides, the modified RVM has shown a better performance than SVM, and the confidence interval of 99.7 % is also given in the prediction results. Later, the selfadaptive RVM is proposed in [START_REF] Wu | Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[END_REF] to improve the kernel width selection and prediction accuracy. Besides the 2 datasets in [START_REF] Wu | A modified relevance vectormachine for PEM fuelcell stack aging prediction[END_REF], the other 3 datasets are used to validate the prognostic performance, i.e., two tests (12 A/30 ℃ and 44 A/40 ℃) are from the Ballard NEXA fuel cell stack under the steady-state operating conditions, and the last test (30 -97 A/58 ℃) is from PM200 fuel cell stack under the dynamic operating condition. The short-term predictions are realized based on the multi-step ahead prediction process, i.e., from single-step ahead (4 h) to 5-step ahead (20 h). The prediction performance is improved when compared with the classical SVM and original RVM. Nevertheless, the effectiveness of RVM in the long-term timescale needs to be further researched especially under dynamic operating conditions. LSTM network is an improved structure of the recurrent neural network (RNN) [88] - [START_REF] Liu | Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[END_REF], and it can avoid the issues of gradient exploding and vanishing. The LSTM method is introduced to the degradation prediction of the PEMFC system by Ma. et al. [START_REF] Ma | Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[END_REF]. Apart from the 4 datasets (12 A/30 ℃, 30 A/35 ℃, 36 A/40 ℃, and 44 A/40 ℃) from the Ballard NEXA fuel cell stack [START_REF] Wu | Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine[END_REF], another dataset with 1 hour time interval from PM200 fuel cell stack (64 A/58 ℃) is used to validate the effectiveness of LSTM network. Later, the grid long short-term memory network (G-LSTM) is proposed in [START_REF] Ma | Data-driven prognostics for pem fuel cell degradation by long short-term memory network[END_REF] to further improve the prediction accuracy of output voltage, and this structure is tested in different operating conditions. Besides the 5 datasets from [START_REF] Ma | Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[END_REF], the other 2 datasets from Data Challenge (FC1 and FC2) and 1 dynamic dataset (20 -99 A/58 ℃) from the PM200 fuel cell stack (time interval is 4 h) are also used to test the G-LSTM network [START_REF] Ma | Data-driven prognostics for pem fuel cell degradation by long short-term memory network[END_REF]. Moreover, the prediction accuracy is guaranteed by the updated sliding window size. Similar to the works in [START_REF] Ma | Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[END_REF] and [START_REF] Ma | Data-driven prognostics for pem fuel cell degradation by long short-term memory network[END_REF], the LSTM network is used in [START_REF] Liu | Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[END_REF] to predict the output voltage of 2 datasets from Data Challenge. After dealing with the locally weighted scatterplot smoothing, the voltages are resampled at the time interval of 1 hour. Results show that the predictions by the LSTM network are more accurate than the BPNN both in FC1 and FC2. Later, Liu. et al. used another ML method of sparse autoencoder-based deep neural network (SAE-DNN) to predict the output power under the quasi-dynamic operating condition (FC2) [START_REF] Liu | PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network[END_REF]. The single-step ahead (1 hour) prediction is realized after the filtering and resampling of the stack power. Compared to K-nearest neighbor (KNN) and SVM regression algorithms, the SAE-DNN can reach a higher accuracy at different training lengths. Nevertheless, the output voltage/power predictions in [START_REF] Ma | Data-driven proton exchange membrane fuel cell degradation predication through deep learning method[END_REF] - [START_REF] Liu | PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network[END_REF] are realized by the single-step ahead prediction process. The prediction horizon in these four papers depends on the time intervals of the resampled data, i.e., the 1-hour or 4-hour ahead prediction is realized in these datasets. The classification of data-driven methods is shown in Tab. 1 -6. The ANN has been applied in different areas and it is used to construct and simulate the working principle of the brain. There are two typical structures of ANN: By imitating the behavior of biological neurons, the ANN can solve the problem of complex engineering. There do not exist recurrent connections in FFNN. Therefore, it lacks memory and cannot deal with temporal information. The RNN can deal with large dynamical memory and has high computational capabilities. It means that the current states of the neurons are not only affected by the inputs but also by the historical states of the network. The working principles of RNN are more similar to biological brains, the substrate of natural intelligence. Both the FFNN and RNN have been used in many fields.

Nevertheless, the training complexity is a common problem of ANN. The error back propagation (BP) is one of the efficient training rules to decrease the complexity in ANN especially for the FFNN. There are still some weaknesses when applying the BP to RNN such as bifurcations, slow convergence, expensive computing, and local optimum. These shortcomings still hinder the large-scale deployment of RNN in practical applications.

As a new design and training architecture, the echo state network (ESN) which was proposed by Prof. Jaeger et al., has overcome the shortcomings of the traditional RNN [START_REF] Jaeger | The 'echo state' approach to analysing and training recurrent neural networks-with an erratum note[END_REF]. This proposal is based on some evidence that the RNN has a satisfactory performance even without adaptation to all the weights in the network. Compared to the RNN, the hidden layer is replaced by a large randomly generated reservoir which reflects the dynamic topologies of the neurons. The weights (input, internal, and feedback) of ESN are global scaled to reach a desired dynamic state. And most of the weight matrices are randomly generated, and only the output weight matrix needs to be trained once. The readout of the reservoir is calculated via linear regression [START_REF] Jaeger | Tutorial on training recurrent neural networks, covering BPTT, RURL, EKF and the 'Echo State Network' approach[END_REF], [START_REF] Tanaka | Recent advances in physical reservoir computing: A review[END_REF]. As a result, the computational burden of ESN is much decreased. Echo state property (ESP) is an important indicator to represent the dynamic behavior of the reservoir. It should be considered carefully in designing the ESN, and the reservoir should wash out the neurons' initial states at a rate that is independent of the inputs [START_REF] Jaeger | Optimization and applications of echo state networks with leaky-integrator neurons[END_REF] - [START_REF] Verstraeten | An experimental unification of reservoir computing methods[END_REF]. On one hand, the neurons in the reservoir should be dynamic enough to decrease the computation complexity of output weights. On the other hand, too dynamic neurons may move the network to an unstable boundary. An optimized reservoir means that the neurons have rich enough dynamics, and the fading memory should also be preserved. Together with the liquid state machine (LSM) [START_REF] Maass | Real-time computing without stable states: a new framework for neural computation based on perturbations[END_REF] and the back-propagation de-correlation (BPDC) [START_REF] Steil | Backpropagation-Decorrelation: online recurrentlearning with O(N) complexity[END_REF], they are three paradigms of reservoir computing (RC) [START_REF] Zheng | Fault diagnosis of PEMFC systems in the model space using reservoir computing[END_REF].

Research fundamental of echo state network in PEMFC system

The basic ESN structure has been introduced to the diagnostic and prognostic area of the PEMFC system by Zheng et al. and Morando et al. respectively [START_REF] Morando | Fuel cells fault diagnosis under dynamic load profile using reservoir computing[END_REF] - [START_REF] Zheng | Fault diagnosis of PEMFC systems in the model space using reservoir computing[END_REF]. The fault diagnosis under dynamic load profile is realized by ESN in [START_REF] Morando | Fuel cells fault diagnosis under dynamic load profile using reservoir computing[END_REF], the target fault types are stoichiometry value, pressure drop, temperature drops, and cooling circuit failure. Based on the work in [START_REF] Morando | Fuel cells fault diagnosis under dynamic load profile using reservoir computing[END_REF], the parameters of ESN (leaking rate 𝛼, spectral radius 𝜌, and regularization parameter 𝛽) are optimized by the big bang and the big crunch (BB-BC) method in [START_REF] Morando | Reservoir computing optimisation for PEM fuel cell fault diagnostic[END_REF]. The fault types of carbon monoxide (CO) poisoning, low air flow rate, defective cooling, and natural degradation is discriminated efficiently in [START_REF] Zheng | Braininspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack[END_REF]. Besides, the key parameters (𝛼, 𝜌, and 𝛽) of ESN are also investigated. Results have shown that the characteristics of ESN are not extremely critical concerning the parameters as long as they are kept within a certain range, and the suggestions in this task are: 𝛼 > 0.3, 4 < 𝜌 < 10 , and 3 × 10 ≤ 𝛽 ≤ 5 × 10 . An excellent classification rate of 99.88 % for the offline training process and 92.43 % for new unknown dataset tests are obtained. Later, the faults diagnosis is directly detected in the model space (voltage-current model) rather than based on the original data space (voltage space) [START_REF] Zheng | Fault diagnosis of PEMFC systems in the model space using reservoir computing[END_REF]. Based on the value of the output weight matrix (Wout) of ESN, the influence of cathode stoichiometric ratio (FSC) is fully studied (the air side). Besides, another structure of ESN (time-delay reservoir) is used in [START_REF] Zheng | Braininspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack[END_REF] to realize the faults diagnosis.

At the same time, the ESN is introduced to the prognostic area of the PEMFC system by Morando et al. [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF]. The ESN is used in [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF] to predict the mean voltage of cells in the short term, and two prediction structures (direct approach and parallel approach) have been fully explored. The advantages of ESN and its parameter configurations are presented in [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF], and the results of direct structure (in the short term) and iterative structure (in the long term) are compared. Different reservoir structures (random reservoir, delay line reservoir, cycle reservoir, etc.) have been compared in [START_REF] Morando | Predicting the remaining useful lifetime of a proton exchange membrane fuel cell using an echo state network[END_REF]. The double ESN structure is used after the wavelet filtering to improve the prediction accuracy in [START_REF] Morando | Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[END_REF], and the parameter settings are the same with [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF]. The influence of ESN parameters (𝛼, 𝜌, number of reservoir neurons N, etc.) on the mean cell voltage prediction results is analyzed by analysis of variance (ANOVA) method, and it is helpful for the users to configure the parameters efficiently [START_REF] Morando | ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[END_REF]. Based on the results of the ANOVA method in [START_REF] Morando | ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[END_REF], the multi-reservoir ESN structure is developed in [START_REF] Mezzi | Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction[END_REF] to evaluate the mean voltage of cells in the long term, and it tries to avoid the parameters optimization process by setting the reservoirs with different spectral radius 𝜌. The voltage is used as the HI in the above articles [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF] - [START_REF] Mezzi | Multi-reservoir echo state network for proton exchange membrane fuel cell remaining useful life prediction[END_REF], and the predictions are implemented in the single-step ahead or multi-step ahead under the steady-state and quasi-dynamic operating conditions.

To overcome the disturbance of load current, a novel HI of "virtual steady-state stack voltage" is proposed by Li et al. in [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF]. A group of linear parameter varying (LPV) models is used to fit the sliding "voltage-current" segments, and then the prognosis-oriented features are identified in the model space. This HI has the monotonic decline property even in the repeated load cycle test (0 A -8 A), and it is more useful in practical use. Based on the dynamic HI in [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF], an ensemble ESN structure is proposed in [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF] to realize the long-term RUL prediction under the steady-state and dynamic operating conditions. This ensemble structure is similar to [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF] - [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF]. Nevertheless, the multi-step ahead prediction is realized in [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF] by the iterative principle. This method is tested at different training lengths, and the acceptable prognostic can be achieved when the prediction horizon is within 350 h under both the steady-state and dynamic operating conditions.

Recently, the ESN and Markov chains are used to predict the degradation under a variable load profile (repeated load cycle) [START_REF] Mezzi | An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[END_REF], and this method can obtain satisfying results without a great effort for data processing. Nevertheless, the HI is stack voltage, and the prediction is also realized by the single step ahead structure. Based on the double-input ESN structure, the measured ambient temperature and the predicted stack voltage are used as the double inputs to predict the RUL recently [START_REF] Vichard | Degradation prediction of PEM fuel cell based on artificial intelligence[END_REF]. The stack voltage is predicted in the long-term in Vichard et al.'s work, and the influence of the temperature is analyzed based on the dataset from the Mobypost vehicle. In the above papers, the typical ESN prediction structure in the RUL prediction field can be expressed in Fig. 1 

Objectives of this thesis

The basic ESN structure has been used to realize the short-term RUL prediction or under the steady-state operating conditions in previous works. Nevertheless, more interesting tasks like the effects of the operating parameters, the proposition of dynamic HI, and the improvement of prediction performance, the RUL prediction under the longterm scale are should be further explored in the RUL prediction application, and this is also the motivity of this thesis. There are 4 objectives in this thesis 

1) Analysis of the effects of operating parameters based on the improved ESN structure

In simple terms, the typical ESN can be regarded as the single-input and singleoutput ESN (SISO-ESN) structure in previous articles [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF]- [START_REF] Mezzi | An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[END_REF]. The historical voltages are regarded as the inputs and the outputs are the future voltages in the next step or the next several steps. The effects of four ESN training structures are discussed in [START_REF] Hua | Data-driven prognostics for PEMFC systems by different echo state network prediction structures[END_REF]. Nevertheless, the current operating conditions, such as current, temperature, and the pressures of the reactants (i.e., oxygen and hydrogen) can also contain important degradation information in practice. Especially, the stack current is a crucial operating parameter, since it is normally taken as the scheduling variable, and it can also reflect the operating conditions. Thus, the multi-input and multi-output ESN (MIMO-ESN) structures under the steady-state and quasi-dynamic should be developed [START_REF] Hua | Remaining useful life prediction of PEMFC systems based on the multi-input echo state network[END_REF], and the effects of temperature (H2, air, and water), pressure (H2 and air), and current would be fully researched. Later, this structure is validated under dynamic operating conditions (μ-CHP) to further explore the effects of variable load profile [START_REF] Hua | Remaining useful life prediction of PEMFC systems under dynamic operating conditions[END_REF]. Compared with the SISO-ESN structure, the ESN with multiple inputs and multiple outputs is one research focus in this thesis. The MIMO-ESN prediction structure can be expressed in Fig. 1 -24. Where Wout is the output weight matrix in the training part, {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} and {(𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 )} are the stack voltage and stack current data points in the training part. The 𝑦 and 𝑦 are the stack voltages at time step 𝑡 and 𝑡 , and the 𝑧 and 𝑧 are the stack current at time step 𝑡 and 𝑡 (e.g., i = 2000).

2) Propose the dynamic health indicator and realize the RUL prediction under the dynamic operating conditions

In practice, the static HIs can be much affected by the mission profiles, and their ability to indicate the degradation state will be limited especially under dynamic operating conditions. In the recent literature, the datasets from Data Challenge (static and quasi-dynamic) are usually used to test the prognostic methods. Nevertheless, the prognostic methods tested on the datasets from the dynamic operating conditions, especially from the FCEV and μ-CHP are more interesting for their practical use [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF], [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF]. Finding the more general dynamic HI is one of the objectives in this thesis. 

3) Improve the prediction accuracy by considering the multi-timescale degradation characteristics

The stochastic disturbances produced by the sensor noises during the measurements, unknown disturbances from the environment and operating parameters, load irregular varying caused by user habits, and the uncertainties of the prognostic methods themselves all would affect the prediction performance.

To improve the robustness and accuracy, an ensemble structure is proposed in [START_REF] Javed | Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[END_REF], [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF], [START_REF] Javed | Prognostics of proton exchange membrane fuel cells stack using an ensemble of constraints based connectionist networks[END_REF], and [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF]. Lots of prediction models with different parameter combinations are used in this structure, and the predictions are implemented at the same time. And then the mean or median value from the statistical data is chosen as the final RUL. Compared with the single prediction, this ensemble structure could improve the robustness and accuracy from the probability point of view. Besides, the exploration of the methods which can provide the confidence intervals and PDF would also be welcomed in the next step. Similar to the ensemble structure, another prognostic structure inspired by the "divide and rule" concept is proposed to deal with the multi-timescale features in [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF], [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF], and [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF]. The data-driven methods of GMDH and ELM are used in this structure, the long-term predictions under the steady-state operating condition, and the short-term predictions under the dynamic operating condition are realized. Based on thesis ideas, the accuracy improvements considering the multi-timescale effects under the dynamic operating conditions are also the objective of this thesis.

4) Realize the mid-term and long-term prediction

The lifespan of the PEMFC system is in hundreds or thousands of hours, the shortterm prediction (minutes to hours) cannot provide enough time for the users to take some actions in advance. So, the typical single-step ahead prediction ((𝑦 , ⋯ , 𝑦 ) → 𝑦 ) does not have many practical meanings at all if the goal is to extend the lifespan even if the prediction accuracy looks satisfactory.

In the PEMFC system, RUL predictions in a mid-term (hours to tens of hours) or long-term horizon (hundreds to thousands of hours) are more useful for the users. The iteration of single-step ahead prediction is a common approach to realize the multi-step ahead prediction ((𝑦 , ⋯ , 𝑦 ) → (𝑦 , ⋯ , 𝑦 ) ), where H is the time steps of the prediction horizon [START_REF] Javed | PEM fuel cell prognostics under variable load: a data-driven ensemble with new incremental learning[END_REF]. More specifically, prognostics in the mid-term and long-term horizon can be realized by the multi-step ahead prediction process. When PH ≤ 24 h, it is regarded as a short-term prediction. When 24 h < PH ≤ 168 h, it is regarded as the mid-term prediction. When PH > 168 h, it is regarded as the long-term prediction in this thesis. During the PH, it does not need the new measured data to train the prediction structure. For example, the mid-term and long-term predictions by ESN are shown in Fig. 1 

Brief introduction

To predict the degradation state of the PEMFC system, the single-input and singleoutput ESN (SISO-ESN) has been explored by Morando et al. [START_REF] Morando | Fuel cells prognostics using echo state network[END_REF], [START_REF] Morando | Fuel cells remaining useful lifetime forecasting using echo state network[END_REF], [START_REF] Morando | Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network[END_REF]. In the SISO-ESN structure, the previous voltage is the single input and the predicted voltage is the single output. In practice, the ESN has the intrinsic property of dealing with multiinput and multi-output problems. Moreover, during the implementation of ESN, increasing the inputs improves the dimension of the output weight matrix and the ability to deal with non-linearity issues. The output weight matrix with a high dimension contains more system characteristics and can mimic more accurately the degradation phenomena in the PEMFC system. During the operation of PEMFC, different parameters such as stack current, the temperatures of hydrogen and air, the pressures of hydrogen and air can be easily obtained by the sensors. These parameters can also contain the degradation information of the PEMFC to some extent. Among all the operating parameters, the stack current is the most interesting one because it is normally taken as the scheduled variable. To improve the RUL prediction accuracy, different operating parameters are investigated together with the stack voltage as the inputs of ESN in this chapter. As the chosen HI of PEMFC, the stack voltage is regarded as the main output of the ESN. Other operating parameters can also be predicted at the same time. To the best of the author's knowledge, the use of ESN with multiple inputs and multiple outputs (MIMO-ESN) for the RUL prediction is originally explored and studied in this chapter. After the mathematical modeling and the parameter designing, the prediction performance of SISO-ESN and MIMO-ESN are verified and compared by the datasets of test-SS (FC1) and test-QD (FC2). 

Mathematical background of ESN

u(n) x(n) x(n+1) y(n+1) (b) (a) y target (n) y(n) x(n) u(n) W in W W out
in the reservoir at time step n.

The structure of a typical ESN is shown in Fig. 2 -1 (a). The updating state of the neuron in the reservoir is described in Fig. 2 -1 (b). The outputs of the reservoir at step (n+1) are affected by the inputs of step n, reservoir state of step n, and step (n+1). If the dimension of the input signal is K, the neuron number in the reservoir is N, and the dimension of the output signal is L, the external input signal u ϵ ℝ × , is a Kdimensional vector, the reservoir neuron activation signal x ϵ ℝ × is an Ndimensional square matrix, and the output signal y ϵ ℝ × is an L-dimensional vector. At time step n, the forms of them are shown as 

K N n n n n B n n n n B n n n n B  = =  = =   = =  u u u x x x y y y (2-1)
Where B is the total data points in the training part. With the external input signal u, the time series prediction task aims to find a model to minimize the error between the target signal y target and the output signal y predict . The error E(y target , y predict ) which is represented by the Root Mean Square Error (RMSE) is given as

2 1 1 1 ( , ) ( ( ) ( )) 
L B target predict predict target i i i n E y n y n L B = = -   y y (2-2) 
Where 𝑖 ϵ [1, 𝐿] is the output dimension. 𝑦 (𝑛) is the target output value of i-dimensional at step n, and 𝑦 (𝑛) is the predicted value of i-dimensional at step n. In the continuous-time domain, the dynamic model of ESN is given by

1 ( ( )) in fb h c α = -+ + + x x Wu W x W y (2-3)
Where c > 0 is the global scaling factor for the temporal dynamics, 0 < 𝛼 <1 is the leaking rate of reservoir neurons, and ℎ(•) is a nonlinear transformation, and the sigmoid functions (tanh and Fermi) are commonly used. The Win ϵ ℝ × , W ϵ ℝ × , and Wfb ϵ ℝ × represent the input weight matrix, internal weight matrix, and feedback weight matrix respectively. The value of these weight matrixes is randomly located from -0.5 to 0.5.

1 Fermi( ) 1 exp( ) tanh( ) 2Fermi(2 ) 1 x x x x  =  + -   = -  (2-4)
The neurons' behaviors are related to the shape of the activation functions. During the selection of functions, a trade-off should be made between the dynamic richness and the computing complexity based on the premise of differentiable and boundedness.

According to the forward Euler discretization principle, the ESN model in the discretetime domain can be approximated by

(( 1) ) (1 ) ( ) ( ( ) ( ) ( )) in fb t t h t t t c c αδ δ δ δ δ δ δ + = - + + + x x W u W x Wy (2-5)
Where 𝛿 is the discrete step size, which is determined by the sampling rate of the input signal. A proper value of 𝛿 could improve the discrete approximation ability and modeling stability. Using the notation 𝐱 (𝑡 + 1)δ = 𝐱(𝑛 + 1), the model of ESN can be transferred into the form
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The output vector y is given by

(( +1) ) ( [ (( +1) ); ( )]) out t g t t = y W x u δ δ δ (2-7)
Where g(•) is nonlinear transformation (usually the identity or sigmoid function),

Wout ϵ ℝ ×(
) is the output weight matrix. In the Euler discretization, the step size 𝛿 should be small enough to ensure the accuracy and stability of the approximation. The ESP is the essential feature of ESN which represents the reservoir working at a stable state, and the ESP can be designed as follows 

λ λ    ≥   W W (2-8)
Where |𝜆| (𝐖 ) is the equivalent spectral radius (largest absolute eigenvalue) of 𝐖 in the leaky integrator neuron, and the 𝐖 can be represented as

(1 ) c c δ α δ = + - W W I (2-9)
Where I is the identity matrix. Besides, the neuron in the reservoir in a single update step should be less than its previous excitation. So, all the neurons in the reservoir should be under the rule of

1 1 0 c αδ αξ - = - ≤ (2-10)
Where 𝜉 = 𝛿/𝑐 is the local scaling factor. This constraint is a necessary and insufficient condition for the ESP. In practice, the input signal usually pushes the neuron state from 0 to the smaller slop region of the hyperbolic tangent curve. So, the value of the spectral radius depends on the characteristics of the input signal and the expected output signal. Then the model of ESN can be rewritten as
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Assuming Γ represents an ESN with the weights of Win, W, Wfb, the leaking rate of 𝛼, and the scale gain of 𝜉, then the updated model of ENS can be expressed as
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In the updated ESN of Γ , α = 𝜉𝛼 , 𝐖 = 𝜉𝐖 . So Γ has the same updated structure with Γ except for the scaling factor of 1/𝜉. The property of the updated internal weight matrix 𝐖 can be scaled by its spectral radius, and the updated output vector 𝐲 can be presented as
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When 𝜉= 𝜉 =1, the updated model and previous model are the alternative structures. Without loss of generality, the dynamic state in the reservoir and the outputs can be expressed as
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Then the Wout can be calculated as
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When the ridge regression is utilized, the Wout can be calculated by

T T -1 = ( + ) target out β W y x xx I (2-16)
Where 𝛽 is the regularization parameter. The working principles of ESN can be divided into 4 steps and further summarized in Algorithm 1.

Step 1: Generate a reservoir and build up the ESN. The number of reservoir neurons N, spectral radius 𝜌 of the internal matrix W, and leaking rate 𝛼 are determined. The input matrix Win and internal matrix W are assigned respectively.

Step 2: Run the ESN and collect the reservoir activation states. The appropriate activation functions of ℎ(•) and g(•) are selected, and the states of the neurons are initialized. The external input signal u is sent to the reservoir, and the neuron activation signal x and its updated state are calculated by Eq. (2)(3)(4)[START_REF] O'hayre | Fuel cell fundamentals[END_REF][START_REF] Hart | The fuel cell industry review 2020[END_REF].

Step 3: Calculate the output matrix. The training part aims to compute the output matrix Wout by Eq. (2-15) and Eq. (2-16). In the training dataset, the objective of the learning algorithm is minimizing the error between the target signal y target the output signal of the ESN y predict .

Step 4: The new output vector 𝒚 is predicted. In the prediction dataset, the output weight matrix Wout and the new input vector 𝒖 are used to calculate the new outputs 𝒚 by Eq. (2-7). The parameters in ESN can be divided into three groups: assigned parameters, adjustable parameters, and calculated parameters.

The assigned parameters include the input weight matrix Win, recurrent weight matrix W, input units K, and output units L. Gaussian distributions, symmetrical uniform, and normal distribution centered around zero are commonly used principles to generate the input weight matrix Win and recurrent weight matrix W. These two matrices are assumed to be fixed once they are generated randomly.

The adjustable parameters include the spectral radius 𝜌, the leaking rate 𝛼, the regularization parameter 𝛽, and the number of reservoir neurons N. The spectral radius is the maximal absolute eigenvalue of the matrix W. It is an important parameter that controls the dynamic regime of the reservoir. To ensure the echo state property, the spectral radius is always less than 1 for zero inputs. Nevertheless, for nonzero inputs, the system usually has better performance when the spectral radius is bigger than 1 in practice. The leaking rate represents the update speed of the neurons in the reservoir.

The dynamic of the reservoir increases with the value of the leaking rate, and a large value of the leaking rate means that the output value of the reservoir at time step (t-1) has little impact on the reservoir state at time step (t). Generally speaking, when the reservoir includes more neurons, the performance would be better. It is easier to find a linear combination of the inputs to target outputs when the dimension of the reservoir increases. However, the computation time would increase at the same time. The selection of the number of reservoir neurons is to find a tradeoff between the prediction accuracy and the computation complexity. The regularization parameter is set by the accuracy of the target value and predicted value in the training part.

The calculated parameter is the output weight matrix Wout, and it can be calculated by multi-linear regression (usually ridge regression). According to the above designing rules, the ESN for predicting the RUL of PEMFC is developed. The parameters of ESN can be determined by trial-and-error, grid-search, and some automatic optimization methods. The implementation framework of the basic ESN and some parameters are shown in Fig. 2 -2 and Tab. 2 -1. 

Implementation process of MIMO-ESN

During the fuel cell running, many operating parameters are supervised to guide a more durable working lifespan, and some of the operating parameters have been shown in Fig. 2 -3 and Fig. 234. Where Ps is the power of the signal and Pn is the power of the noise which is the difference between the raw data and the filtered data. Among all the parameters, the stack current (Is) has the highest SNR both in FC1 and FC2.

In this task, MIMO-ESN is defined as Single-input ESN: the input is the stack voltage (Us). Two-input ESN: the inputs are the combination of Us and one of the parameters in Tab. 2 -2.

Three-input ESN: the combination of Us and two of the parameters in Tab. 2 -2.

Tab. Therefore, there are 𝐶 =11 combinations in 2-input ESN, and 𝐶 = 55 combinations in 3-input ESN. The calculation flow chart of the MIMO-ESN method is shown in Fig. 2345, where H denotes the number of the final step of prediction points (prediction horizon), p is the number of past discrete values used for prediction and q is the prediction step. The time interval between two points of the time series is a constant value (30 min).

For single-input ESN, an iterative one-step prediction method is utilized for the multistep prediction. The sampling points of the stack voltage (Us) can be expressed as {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} , where 𝑡 represents the sampling time, 𝑦 represents the stack voltage at the time 𝑡 , and index H denotes the total number of data points. Firstly, the sampling points {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} are trained to calculate the output weight matrix Wout(s). Once Wout(s) is obtained during the training process, it is fixed. Then based on Wout(s) and 𝑦 , the voltage value of the next step is predicted as 𝑦 . When the system reaches time 𝑡 , 𝑦 and Wout(s) are used to predict the 𝑦 . The same sequence is repeated for 𝑦 , 𝑦 , …, etc. For multi-input ESN, besides the one-step iterative prediction method for stack voltage, a one-step ahead prediction method is applied to the operating parameters. Taking the double inputs of stack voltage (Us) and stack current (Is) for example, the sampling data points can be expressed as {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} and {(𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 )} where 𝑧 represents the stack current at the time 𝑡 .

Firstly, the sampling points {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} and {(𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 )} are trained to calculate the output weight matrix Wout(s). Then based on Wout(s), 𝑦 and 𝑧 , the voltage value of the next step is predicted as 𝑦 and 𝑧̂ . After that, 𝑦 , 𝑧 and Wout(s) are used to predict the 𝑦 and 𝑧̂ . The same sequence is repeated for 𝑦 , 𝑧̂ , 𝑦 , 𝑧̂ ,⋅⋅⋅, etc. Attention should be paid to the fact that the operating parameters such as stack current are usually scheduled variables and cannot be predicted in the same iterative way as the stack voltage. A major potential assumption herein is that the operating parameters can be schedulable or programmable such as in the homemade test benches and μ-CHP applications.

Based on the MIMO-ESN, the stack voltage is not only dependent on the historical 
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profile but also related to the operating conditions. Finally, the predicted voltages and the actual voltages are compared to evaluate the prediction performance. In a practical application, the output weight matrix Wout is firstly calculated offline, then the stack voltage at time step (t) and the Wout are used to predict the new value at the time step (t+1). The computing time during the prediction process is about 20 s (Matlab 2018a, 8G RAM, Core i5-2450 CPU @ 2.50 GHz) in this work and it is short enough for the several hundred hours' lifespan predictions. The block diagram of single-input and multi-input ESN is shown in Fig. 23456. After the data measurement by sensors, the preprocessing means the filtering by moving average method. 

Experimental results

MIMO-ESN under steady-state operating condition

In test-SS, the data that are used for the experiment come from a 1050 hours' duration test on the PEMFC stack. The data between 0 h and tpredict are used for training, and the rest of the data are used for the prediction. The RUL time (tRUL) can be considered as the time between the prediction time (tpredict) and the equivalent failure thresholds (tfailure). In fact, the failure time and the EoL time are not the same. Failure time means the fuel cell is broken and doesn't produce power anymore. The EoL time means the produced power cannot fit anymore the application requirement, and it also has the ability to work. Considering the economic factors, the fresh stack should be used at the EoL time in most of the conditions. In the document of Data Challenge, the time at failure thresholds are regarded as the EoL time to calculate the RUL easily and validate the prediction methods simply. Thus, we also use this terminology in this work. Results represent that the prediction accuracy of 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", "Us+PoutH2") ESN is higher than that of single-input ESN. It also means that 2-input data are sufficient to mimic the degradation characteristics, and the prediction accuracy is improved by increasing another input to the ESN.

Furthermore, more parameters are regarded as the inputs of ESN to investigate its 

MIMO-ESN under quasi-dynamic operating condition

In test-QD, the data set come from a 1020 hours' duration test on the PEMFC. For FC2, the actual values at different failure thresholds are 21. Under the quasi-dynamic condition, the 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", and "Us+PoutH2") ESN perform better than single-input ESN. They also represent that the prediction accuracy is improved by increasing the number of inputs. The prediction error of FC2 is bigger than that of FC1 when the training length (0-550 h) is the same for the prediction processes of FC2 have more perturbations than FC1. The results also mean that the ESN structure has more difficulties mimicking the quasidynamic operation when compared with the static operation.

The RUL predictions of FC2 based on 3-input ESN are shown in Fig. 2 -12. The prediction results of 3-input ESN at different equivalent failure thresholds are given in Tab. 2 -6. Results represent that some of the 3-input ESN ("Us+TinWat+PinH2" and "Us+PoutAir+TinAir") have a better prediction performance than 2-input ESN. Sometimes, they are worse than 2-input ESN ("Us+TinH2+PinH2" and "Us+ToutH2+ToutAir"). 

Multi-input discussion

In order to test all possible combinations, the prediction results based on all the 2input ESN of FC1 and FC2 are shown in Tab. 2 -7 and Tab. 2 -8, respectively. The RMSEi (i =1, 2, …, 5) are the RMSE between the prediction time and the EoL time. In FC1, the RMSE5 is the RMSE between 550.0 h to 904.5 h, and the RMSE5 in FC2 is the RMSE between 550.0 h to 936.7 h. Therefore, the RMSE5 is used to quantify the prediction accuracy. The RMSE5 of single-input ESN in FC1 and FC2 are 0.02710 and 0.03789, respectively.

Results show that the RMSE5 of randomly 2-input ESN is smaller than singleinput ESN both in FC1 and FC2. The optimal combination in FC1 is the Us with TinWat (improved 59.20 %) and the optimal combination in FC2 is the Us with ToutAir (improved 34.15 %). All the other 3-input combinations are tested to verify the prediction accuracy. The results of FC1 and FC2 are shown in Tab. 2 -9 and Tab. 2 -10, respectively. The numbers (from 9 to 19) in Tab. 2 -9 and Tab. 2 -10 represent the inputs (from Is to PinH2) in Tab. 2 -7 and Tab. 2 -8. Comparing the results of 2-input ESN and 3-input ESN in both FC1 and FC2, some of the 3-input ESN has a better performance than 2-input ESN, but some combinations have worse performance instead. Even some 3-input ESN combinations are worse than single-input ESN. This is most likely due to the interaction between different inputs.

In the results of 3-input ESN, "better" (in green) means the RMSE5 is smaller than any 2-input combinations, "worse" (in purple) means the RMSE5 is bigger than any 2input combinations, and "middle" (in blue) means the RMSE5 is in between of the 2 combinations of 2-input. For example, in Tab. 2 -9, the "Us+10+11" is "better" (in green), and the RMSE5 of "Us+10+11" (0.01216) is smaller than "Us+10" (0.01294) or "Us+11" (0.01380); the "Us+9+12" is "middle" (in blue), and the RMSE5 of "Us+9+12" (0.01505) is bigger than "Us+12" (0.01260) and smaller than "Us+9" (0.01532); the "Us+18+15" is "worse" (in purple), and the RMSE5 of "Us+15+18" (0.01463) is bigger than "Us+18" (0.01236) and "Us+15" (0.01440).

There are 40 "better" combinations and 11 "middle" combinations in FC1 and the "Us+ToutAir( 13)+TinWat( 14)" has the best performance. There are 21 "better" combinations and 24 "middle" combinations in FC2 and the "Us+TinAir(12)+ PoutAir( 17)" has the best performance. Besides, when comparing all the "better" combinations of 3-input to the 2-input ESN, there are 12 combinations in FC1 that have a smaller RMSE5 than the 2-input ESN of "Us+TinWat". Nevertheless, there are 3 combinations ("Us+9+12", "Us+12+17", and "Us+14+19") in FC2 that could have a smaller RMSE5 than the 2-input ESN of "Us+ToutAir".

The results show that 3-input ESN has the potential ability to improve the performance than 2-input ESN, especially under the static condition. But when considering the interaction of input variables, the selection of inputs is a rewarding area for further study. Considering the prediction accuracy and the computational complexity, the 2-input ESN has a top priority in both FC1 and FC2. Note: There is a small mistake in our previous published paper (Z. Hua, et al., "Remaining useful life prediction of PEMFC systems based on the multi-input echo state network," Applied Energy. [START_REF] Hua | Remaining useful life prediction of PEMFC systems based on the multi-input echo state network[END_REF]). The "Us+18+19" should be "better" (in green), and the RMSE5 of "Us+18+19" (0.01027) is smaller than "Us+18" (0.01236) or "Us+19" (0.01168). Thus, there are 40 "better" combinations and 11 "middle" combinations in FC1. 

Brief introduction

An effective health indicator (HI) could help to define an explicit degradation state and improve the prediction accuracy. The HIs of voltage and power are usually used under steady-state and quasi-dynamic operating conditions due to their overall monotonic decreasing characteristics (even if some recovering episodes can occur), and their measurements of them are implemented easily in practice. Nevertheless, the static HIs are unable to be directly used under the dynamic operating conditions because they are sensitive to the mission profiles which leads to variations of the current which mainly impact the voltage and the power, without meaning aging. To overcome the weakness of static HIs, a convenient and practical HI named relative power-loss rate (RPLR) is proposed herein. According to the polarization curve at the beginning of life (BoL), the initial power under different mission profiles can be identified. Then the actual power is obtained by monitoring the current and voltage continuously. Finally, the RPLR is calculated based on the initial power and actual power.

Based on previous work, the double-input echo state network (DI-ESN) has a top priority in practical use. For the dynamic operating conditions, the historical RPLR is taken as the input of ESN and the predicted RPLR is regarded as the output in the singleinput ESN (SI-ESN) structure. The parameters and RPLR can be used as the multiple inputs of ESN to improve the prediction accuracy. Nevertheless, the operating parameters are unavailable in most of the conditions. In the μ-CHP applications, the scheduled current is an extremely meaningful operating parameter because it could reflect the system's dynamic characteristics. Besides, the degradation speed is also related to the load current. Therefore, the DI-ESN structure is used to further explore the characteristics under the full-dynamic operating conditions (test-D1, test-D2, and test-D3), the scheduled stack current, and the RPLR are combined to predict the degradation tendency.

Dynamic health indicator extraction

In the steady-state and quasi-dynamic operating conditions, the deviations of voltage and power are considered to be influenced only by the aging degradation. Nevertheless, the voltage and power are also influenced by the mission profiles and even more specifically the current profile, and it is improper to take them as the HIs in the dynamic or time-varying operating conditions. Finding the dynamic HI is difficult and just a few papers have presented the handing methods. Two approaches are investigated. One way is to transform the dynamic condition into the static representation [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF], [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF]. Another way is to extract some monotonic parameters during the degradation [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF], [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF].

In [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF], the current profile changes periodically between 0 A and 8 A, and the stack voltage also changes periodically between 9.5 V and 13.5 V. In the 1500 hours' durability test, the voltage is divided into about 1000 segments (1.5 h for one segment). A series of linear parameter varying (LPV) equivalent models are built to fit the fixed-size window voltage segments [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF]. In each LPV model, the input is the real current and the output is the real voltage, and the output in the steady-state condition 𝑦 can be extracted by
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Where 𝑢 , 𝑝 , and 𝑦 are the input, scheduled variable, and output in a steady state. 𝑎 and 𝑏 are the coefficients which depend on the instantaneous value of p(k). Then 𝑦 in each segment is connected to be the health indicator (virtual steady-state stack voltage) Later, an ensemble ESN structure is used in [START_REF] Li | Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time varying model space[END_REF] to enhance the prognostic adaptability. Nevertheless, the extraction of HI is time-consuming, and the computing time is based on the number of segments. It is worth mentioning that this method is more suitable for the conditions in which the load varies regularly (repeating cycles), and the failure threshold is set as the same quantity as the last measurement [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF].

In [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF], an empirical model is used to fit each polarization curve (one measurement in each week) 0 0 ( l n( ) l n( 1 ) )
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Where 𝑉 is the stack voltage, n is the cell numbers of the stack, i is the current density, T is the temperature, A is the Tafel constant, and B is the concentration constant. The Levenberg-Marquardt optimization algorithm is utilized to obtain the parameters of open-circuit voltage E0, exchange current density 𝑖 , overall resistance R and limiting current density 𝑖 . Compared with their initial value, the overall resistance R increase by more than 70 %, and the limiting current density 𝑖 decreases by 60 %. Considering the R and 𝑖 are linearly varying
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Regarding the inputs are current load and temperature, the output is the voltage, the system states are 𝛼 (an indicator of degradation) and 𝛽 (speed of degradation). An extended Kalman filter (EKF) is adopted to evaluate the degradation condition. The EoL is the time when the indicator of EKF-based degradation factor (EKF-DF) 𝛼 reaches to the maximum value (0.7). Then, the inverse first-order reliability method (IFORM) is used in [START_REF] Bressel | Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load[END_REF] to predict the RUL. Meanwhile, the confidence in the RUL prediction and the uncertainty of the estimation (caused by the covariance matrices) under the dynamic operating condition are also considered. Nevertheless, the HI comes from the periodic measurements of the polarization curves which are characterized every week in practice. Therefore, the extracted parameters are very limited to describing the complicated degradation phenomenon. Besides, the linearization hypothesis of overall resistance and limiting current density is inaccurate for the nonlinear PEMFC systems [START_REF] Liu | A vehicular proton exchange membrane fuel cell system co-simulation modeling method based on the stack internal distribution parameters monitoring[END_REF].

Finding other general and convenient HI under the dynamic operating condition is necessary for practical use. In the dynamic tests, the measurements of polarization curves at the BoL can be easily performed. Based on the polarization curves (voltage versus current) at the BoL, the BoL power curve (power versus current) can be obtained. Then a mathematical model is used to fit the BoL power curve to be able to compute easily the power for any value of the current. Then, the power supplied by the fresh stack (P0) under different loads can then be computed by the model. In practice, during the lifetime of the stack (here the duration of the test), the current power (P) can be calculated from the stack current and stack voltage measurements. Based on the current power (P) and the BoL power (P0) corresponding to the same current which is extracted from the models, the HI of RPLR is defined as
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So, the calculation of RPLR is conducted as follows:

Step1: measurements of BoL power (P0) are carried out at different current values. A mathematical model of P0 is built, in which parameters are identified thanks to the experimental values.

Step2: at time step t, current power (Pt) can be calculated by the stack current (It) and stack voltage (Ut).

Step3: calculate the BoL power (P0-It) under the stack current (It) based on the model.

Step4: calculate the RPLR at time step t based on the current power (Pt) and BoL power (P0-It). With the same method, the RPLR during its lifetime can be calculated. The calculation flow chart of the RPLR is shown in Fig. 3 -1.

Compared with the LPV models under the dynamic operating conditions [START_REF] Li | Remaining useful life estimation for PEMFC in dynamic operating conditions[END_REF], the computational complexity of RPLR is lower. Compared with the linearization technique in [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF], the time interval of each two points is no longer limited by the interval of polarization curves. Besides, the polarization curves are given in the whole life because they have been measured in advance [START_REF] Bressel | Extended Kalman filter for prognostic of proton exchange membrane fuel cell[END_REF]. To calculate the RPLR, only the polarization curve at the BoL needs to be performed, and the normal operation of the system would not be interrupted in a real system. This provides the implementation foundation for the data-driven methods. To validate the effectiveness of the RPLR, three dynamic tests with different durations are implemented under various operating conditions. For the tuning of the parameters, the trust-region optimization method is used in the BoL power modeling process. The parameters and the accuracy of these three models are shown in Tab. 3 -1. The polarization and the BoL power curves are shown in Fig. 3 -2, and the typical current points of each experimental test are marked in red circles. In particular, the dynamic behavior of test-D2 is the harshest, and the degradation is severe after 300 h testing at maximal power. It is difficult to reach the maximal current value on the polarization curves, and then the limiting current value moves from 170 A to 100 A after 300 h testing due to the encountered degradation. The current and The RPLR of the three tests is shown in Fig. 3 -3. Results show that the RPLR in each test has a global monotone decreasing tendency and the current profile affects the degradation speed. A higher current level always leads to a higher degradation speed, e.g., in test-D2, △P1 during the first 300 h (170 A) is bigger than △P2 during the rest 700 h ( 50 A). An efficient HI is useful for the prognostic methods to predict the SoH and proposing an index to indicate the EoL time is also an important work for PEMFC systems. In practice, the U.S. DOE has pointed out that the definition of a proper index depends on the actual needs of users. It is worth mentioning that the meaningful definition of EoL is the time when the PEMFC cannot transfer the required power under safe conditions rather than the stack being out of use once it operates at a degradation state. Due to the limitations of the experimental conditions, the duration of these three dynamic tests is all within 1000 h, they cannot meet the experimental environment of U.S. DOE. The last points in these three dynamic tests do not mean that they cannot work anymore or have reached their real EoL, and they just mean the time of end-oftest. Nevertheless, EoL could be regarded as one special case of end-of-test (power decay reaches certain defined levels). Without loss of generality, the end-of-test in this work is regarded as the time of EoL. The first 50 h of data are abandoned due to the instability at startup. So, the training part is the data from 50 h to the time when the prediction starts (tpredict), and the prediction part is the data from tpredict to the EoL time (tEoL). The RUL (tRUL) is usually represented by the time interval between tpredict and tEoL. In general, the PEMFC stack always has a satisfactory performance at the BoL and the tpredict usually starts when the system has worked for a certain amount of hours. Besides, the prediction cannot be accurate at BoL because the historical data are inadequate for learning the degradation characteristics, especially for the data-driven methods. Based on the extracted HI of RPLR, the purpose of this work is to compare the prediction performance of DI-ESN and SI-ESN. So, in each test, the precision improvement of DI-ESN can be verified when these two structures (SI-ESN and DI-ESN) have the same EoL time. For comparison's purpose, the end-of-test in these three tests is regarded as the time of EoL. 

Implementation process of DI-ESN

The operating parameters of test-D1, test-D2, and test-D3 are shown in Fig. 34, Fig. 345, and Fig. 3456. Once the RPLR is extracted, the SI-ESN and DI-ESN both with an iterative prediction structure are used to evaluate the RUL of the PEMFC systems [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF]. It should be noted that the stack current is usually taken as a planning variable. This double-input long-term prediction pattern is more applicable for applications where the stack current is schedulable or programmable, such as the μ-CHP application where the load is related to the seasonal variations. ...

T y 1 T y - 1 ˆT y + T z 1 T z - 1 ˆT y + T y 2 ˆT y + 1 T z + T z 2 ˆT y + 1 ˆT y + 3 y 4 y 3 y 4 y 3 ˆT y + 1 1 1 1 ( , ) ( , ) ( , ) 
T T

T T T p T p t y t y t y

--

-+ -+             { } ,[ ] ϑ Γ 1 1 ( , ) T T t y + + 1 1 2 2 ( , ) ( , ) ( , ) 
T T

T T T p T p t y t y t y

+ + -+ -+             { } ,[ ] ϑ Γ 1 1 2 2 ( , ) ( , ) ( , ) 

T H T H T H T H T H p T H p t y t y t y

+ - + - + - + - + - + -             2 2 
( , )

T T t y + + { } ,[ ] ϑ Γ ( , )
T H T H t y ,  ) For SI-ESN (inputs and outputs are all voltages), the training part of RPLR can be expressed as {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )}, where 𝑡 is the sampling time, 𝑦 is the RPLR at time 𝑡 . The output matrix Wout of the reservoir is computed by the training part and its value stays the same after the training. With the one-step ahead prediction structure, the multi-step ahead prediction is realized and the RPLR in the prediction part can be expressed as {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )}, where T is the time step start to predict and H is the number of predicted points.
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For DI-ESN (inputs are voltages and currents, outputs are voltages), the historical RPLR {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} and the corresponding stack current {(𝑡 , 𝑧 ),⋅ ⋅⋅, (𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 )} are regarded as the inputs, and the predicted RPLR {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} is regarded as the output, where 𝑧 represents the stack current at the time 𝑡 . Also based on the one-step ahead prediction structure, the predicted RPLR, and the new scheduled stack current {(𝑡 , 𝑧 ),⋅⋅⋅, (𝑡 , 𝑧 )} are used to be the inputs of DI-ESN in the prediction part.

All the simulations are implemented in the Matlab 2018a version, and the calculating time in the prediction part is less than 20 s. This execution time is rather short for the hundreds of hours of lifetime prediction. The target statement of RUL and its prediction process is presented in Fig. 345678. 

Experimental results of dynamic tests

In dynamic tests, the results of SI-ESN are first presented. Afterward, the DI-ESN is implemented and compared with the SI-ESN. The satisfactory horizon (SH) is defined as the time when the prediction is located in an allowable error bound ( = 5 %) around the true RUL to the EoL. The SH can be used to evaluate the prediction ability, and a longer SH means that the prediction accuracy meets the requirement at an early stage [START_REF] Saxena | Metrics for offline evaluation of prognostic performance[END_REF]. Besides, criteria of RMSE, MAPE, and %ErFT are combined comprehensively to evaluate the prediction performances. In general, a small value of them means better performance. In practice, underestimation is more meaningful and jeopardizes less the operation of the system because it could warn the users to adjust the operating conditions or replace the PEMFC in advance and then to prevent an incident. To analyze the influence of stack current (Is) on the prediction effect, results of SI-ESN and DI-ESN with different training lengths are compared. All the predictions are implemented at about half of the whole data because premature prediction may have the problem of insufficient training data. The parameters (𝛼, 𝜌, and 𝛽) of ESN in these three tests are determined based on the ANOVA sensibility analysis. Is) has better performance than SI-ESN (without stack current Is) especially during the load cycling period (200 h-300 h). On one hand, the DI-ESN could track the variation tendency of RPLR (𝛥𝑃 ) and on the other hand, the dynamic effectiveness of stack current is also superimposed to the RPLR prediction. These superposition effects are more pronounced in Fig. 3 In test-D2, the RUL predictions with 40 %, 60 %, and 80 % of the whole data (1000 h) for training are presented in Fig. 3 -11. Similar to test-D1, the DI-ESN has better performance than SI-ESN and the superposition effects of stack current (400 h-500 h, and 600 h-800 h) are more pronounced in Fig. 3 In test-D3, the RUL predictions with 50 %, 65 %, and 75 % of the whole data (405 h) for training are presented in Fig. 3 -13. The superposition effects of stack current are more pronounced in Fig. 3 

Sensibility analysis of parameters

In industrial applications, parameter design is one of the bottlenecks of ESN's implementation and the classification of these parameters has been presented before. Determining these parameters reasonably is significant to improve the dynamic performance of the reservoir, and a detailed parameter manually setting guide is presented in [START_REF] Lukoševičius | A practical guide to applying echo state networks[END_REF].

In general, the number of input K and output L is determined by the requirement of the users. The input weight matrix Win, internal weight matrix W are generated randomly (e.g., Gaussian distributions) and regarded to be fixed once they are assigned. In fact, the dynamic characteristics of ESN have slight differences when using different generation methods, and these assigned weight matrixes are optimized in [START_REF] Chouikhi | PSO-based analysis of echo state network parameters for time series forecasting[END_REF].

A larger value of reservoir neurons N is more conductive to find the linear combination between the input and output signals, and using a reservoir containing more than 10 4 neurons is a common phenomenon. The spectral radius 𝜌 is the maximal absolute eigenvalue of the W, and it is always less than 1 to ensure the ESP for the zeroinput case. Enough evidence also proves that smaller than 1 is not the necessary condition of ESP, especially for the nonzero input. And the reservoir could also have better properties when extending the value of 𝜌. The leaking rate 𝛼 indicates the dynamic performance of the reservoir, and the echo property becomes more important when the 𝛼 becomes less important. In other words, a small value of 𝛼 means that the value of the current step has a great influence on the next step. The parameters of N, 𝜌, and 𝛼 are analyzed in [START_REF] Morando | ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[END_REF].

Nevertheless, the inputs of ESN are the RPLR and scheduled stack current (Is) in the dynamic PEMFC lifespan prediction task, and the 𝜌 (𝜌 ∈(0,1)) is better to be expended to a larger range (𝜌 ∈(0,1.5)). The training part aims to calculate the output weight matrix Wout, and the regularization parameter 𝛽 has an important direct effect on the calculation result. Compared with N, analyzing 𝛽 has a greater practical significance for the prediction results. So, the leaking rate 𝛼 (𝛼 ∈ (0,1)), spectral radius 𝜌 (𝜌 ∈ (0,1.5)), and regularization parameter 𝛽 (𝛽 ∈ (8 × 10 , 8 × 10 ) are selected as the key parameters in the task of sensibility analysis.

The objectives of parameter analysis are the quantification of the impact of the parameters on the model output and studying the interactions among the parameters. ANOVA is a collection of statistical models and procedures to compare the effects of different variables [START_REF] Azadeh | Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors[END_REF]. The ANOVA-representation of integrable function f(x) in the q-dimensional space (I q ) is shown as
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Where x are the input variables, f(x) are the output variables, and 1≤ 𝑖 < ⋯ < 𝑗 ≤ 𝑞. The premise of Eq. (3-5) is shown as
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Indeed, the members in Eq. (3-6) are orthogonal and the form of them can be expressed as
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A detailed description of ANOVA is given in [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. The RMSE is used to estimate the prediction performance. A smaller RMSE indicates that the prediction has a preferable performance. The process of parameters sensibility analysis is as follows

Step1: The data of test-D1 and the SI-ESN structure are chosen as the specimen of parameter analysis, and 60 % are used for training, and 40 % are used for prediction.

Step2: Setting the key parameters (𝛼, 𝜌, 𝛽) by the trial-and-error method, then the ANOVA analysis is used to compute the effects and the contributions of these parameters on the prediction results.

Step3: Based on the results of ANOVA analysis, the parameters of different training lengths of test-D1 and the parameters for the other two tests (test-D2 and test-D3) with different training structures can also be determined.

The parameters are divided into three different levels in step2: leaking rate 𝛼 (0.3 for low level, 0.6 for middle level, and 0.9 for high level), spectral radius 𝜌 (0.5 for low level, 1.0 for middle level, and 1.5 for high level), and regularization parameter 𝛽 (8×10 -3 for low level, 8×10 -2 for middle level, and 8×10 -1 for high level). Each experience is the result of a single simulation of a specific combination of parameters.

There are thus 3 3 =27 experiment results. In test-D1, the results of different combinations are shown in Tab. 3 Results represent that setting the leaking rate 𝛼 at a high level, the spectral radius 𝜌 at a middle level, and the regularization parameter at a middle level could lead to a minimum RMSE (0.00498). They also show that the spectral radius 𝜌 is the most influential among these three key factors with a contribution equal to 22.28 % of the total variance. The effect of the regularization parameter 𝛽 is the second most significant factor with a contribution equal to 15.54 %. Any two of the three parameters have different interaction values. The most influential interaction parameters for this task are the spectral radius 𝜌 and regularization parameter 𝛽 with a contribution of 35.75 %. Regarding the best combination in Tab. 3 -5 as a benchmark could improve the adjusting efficiency of these three parameters in test-D2 and test-D3. The key parameters in test-D2 and test-D3 are shown in Tab. 3 -7. Thanks to the ANOVA

Chapter 4. Multi-timescale predictions of ensemble echo state network 4.1 Brief introduction

Low prediction accuracy is one of the weaknesses for current RUL prediction methods on the long-term scale, especially when the PEMFC system works under variable load profiles. To overcome the drawbacks of static HIs (e.g., voltage, and power), a novel dynamic HI of RPLR has been presented before to indicate the degradation state under the dynamic operating conditions. Some scholars have made great efforts to enhance forecasting performance [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] - [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF]. The original voltage sequence of the PEMFC systems is decomposed into multiple sub-waveforms in [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF], and the group method of data handling (GMDH) is proposed to realize the short-term (maximum 5-step ahead, i.e., 5 h) degradation prediction. Similar to [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF], the voltage waveforms are decomposed in [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF] and [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF], and the extreme learning machine (ELM) is applied to build the degradation model of each subwaveform (1-step ahead, i.e., about 1 hour). In this prediction structure, the measured voltage of the last step is used to predict the new value of the next step. Simulation results demonstrate that the improved structures of GMDH and ELM are more accurate than the conventional methods. Nevertheless, the degradation predictions in [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] and [START_REF] Zhang | Life prediction based on d-s ELM for PEMFC[END_REF] are at the static and quasi-dynamic working status, and all the predictions in [START_REF] Liu | Data-based short-term prognostics for proton exchange membrane fuel cells[END_REF] - [START_REF] Chen | Degradation model of proton exchange membrane fuel cell based on a novel hybrid method[END_REF] are realized on a short-term scale.

The approach of discrete wavelet transform and ensemble echo state network (DWT-EESN) is proposed to improve the precision of prediction on the long-term scale in this chapter. Inspired by the concept of "divide and rule", the RPLR which contains different timescale features is decomposed by the DWT. Decomposing dynamic HI has more practical significance than decomposing static HI because different load profiles under the dynamic working conditions would result in multi-timescale features. Then several individual ESNs with different dynamic behaviors are used to handle the features in different timescales. The ESN with a higher dynamic reservoir is used to deal with the fast-dynamic part of the feature (short timescale). On the contrary, the ESN with a lower dynamic reservoir is used to deal with the slow-dynamic part of the features (long timescale). Finally, the individual long-term prediction results in different timescales are lumped together to constitute the final results. Three μ-CHP experiments with different dynamic profiles (i.e., test-D1, test-D2, and test-D3) are carried out for validation purposes.

Discrete wavelet transform

The Fourier analysis has been widely used in the time-frequency transformation domain, and it could break up the original signal into sine waves with different frequencies. Nevertheless, the time information would be lost during the decomposition. As an improvement type of the classical Fourier analysis, the short-time Fourier transform (STFT) can analyze the original signal in a different time and frequency domains. In STFT, the original signal at the time domain is divided into the same length segments. In other words, the windows of the Fourier transform are all at the same length, and it also has some weaknesses to deal with the time-varying non-stationary signal. The wavelet transform (WT) can analyze the local features (i.e., RPLR in this task) through dilation and translation, and the window length is varying [START_REF] Ibrahim | Selection of mother wavelet and decomposition level for energy management in electrical vehicles including a fuel cell[END_REF]. In WT, the long-time intervals are adopted for the low-frequency parts of the original signal, and the short-time intervals are utilized for the high-frequency parts. Therefore, the WT has more advantages in analyzing the nonstationary signals, and it has been used in the diagnostic area of the PEMFC system [START_REF] Pahon | A signal-based method for fast PEMFC diagnosis[END_REF]. The continuous WT is represented as
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Where f(t) is the original signal, 𝛹(𝑡) is the mother wavelet, 𝛹 * (𝑡) is the complex conjugate of 𝛹(𝑡), a (𝑎 ∈ ℝ ) and b (𝑏 ∈ ℝ) are the wavelet scale and shift parameters. The Daubechies (db3) wavelet is used here because it can redistribute the signal energy and compress most of the energy into the approximation component. A smaller a means a compressed wavelet and a larger a means a dilated wavelet. The scale factor of 2 and shift factor of 2 𝑞 are usually used to discretize the wavelet parameters, and the discrete WT is defined as
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Where p and q are integers (𝑝 ∈ ℤ, 𝑞 ∈ ℤ). In practice, the DWT of the original signal can be calculated by the Mallat method [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF] as follows
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Where 𝑆 is the smoothing operator, and 𝑆 𝑓(𝑡) = 𝑓(𝑡) , 𝑊 𝑓(𝑡) is the DWT of original signal f(t), ℎ and g are the coefficients of the orthogonal filter bank high ( )
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Then, signal f(t) could be represented as
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Based on the multiresolution signal decomposition technique, the signal in each decomposition layer j (0≤j≤J) could be decomposed into the approximation component (Aj+1) and the detail component (Dj+1). The Aj+1 represents the low frequency or large-scale content of Aj, and the Dj+1 represents the high frequency or small-scale content of Aj. Then, the f(t) can be decomposed into J layers
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Essentially, the lifespan prediction of the PEMFC system can be translated into dealing with the nonstationary time series. The decomposition process of DWT is useful to handle the dynamic HI which has multi-timescale characteristics.

Implementation process of DWT-EESN

The in-situ electrical variables of voltage and current are measured by the sensors. After the data acquisition, the moving average filtering (window size is 31) method is used to remove the peaks and noises. Then the electrical variables (voltage and current) are resampled at the same time interval (0.5 h). The degradation timescale of the PEMFC system is in hundreds or thousands of hours. Therefore, regarding the aging state during each time interval as a constant value is a reasonable assumption. After the dynamic HI extraction, the time series of RPLR can be divided into the training part and the prediction part. The implementation process of ESN is shown in Fig. 4 - In practice, a single ESN is difficult to deal with the multi-timescale features at the same time. One effective thinking is decomposing the multi-timescale input signals at different levels and then composing the output features together. Inspired by this thinking, the DWT-EESN is proposed to deal with the multi-timescale features of the dynamic HI. The flowchart of DWT-EESN is described in Fig. 4 -2. After the prediction, the results are inversely normalized to their original scales which can be represented by (Aj)', (Dj)' ,…, (D1)'. At last, the individual results are summed at each time point to get the final results. The same normalization of subwaveforms makes the dealing processes of different ESNs the same. The sum of inverse normalization results keeps the proportion of original sub-waveforms at different frequency domains.

In the current offline training process, the grid-search method is used to optimize two key parameters of ESN ( α ∈ (0.1, 0.9), 𝜌 ∈ (0.1, 1.5)). The parameter optimization process of grid-search is about 45 min, and the execution time of ESN by the best parameter combination is about 20 s. Besides, the proposed method of DWT-EESN has the potential to be used online which is also our next-step research focus. The parameter optimization can be implemented by offline optimization algorithms such as the grid research algorithm in the offline phase. Based on DWT, the RPLR of three dynamic tests can be decomposed into different sub-waveforms. Then the independent ESNs are used to predict the sub-waveforms in the long term separately. To assess the prediction performance of DWT-EESN, the criteria of RMSE and MAPE are used together in this task. All the predictions of RPLR are smooth curves, and the degradation tendency of the PEMFC system can also be obtained. It is worth noting that the operating parameters and environmental factors would have significant effects on the prediction performance. In the case of 90 % training length of test-D1, the abnormal points are probably caused by the outlet temperature of hydrogen (ToutH2), and the inlet temperature of water (TinWat). In the case of 50 % training length of test-D2, the abnormal points are probably caused by the outlet temperature of hydrogen (ToutH2), and the inlet temperature of air (TinAir). In the case of 60 % training length of test-D3, the abnormal points are probably caused by the outlet temperature of hydrogen (ToutH2), and the inlet temperature of air (TinAir). Results show that most of the abnormal points are probably caused by the temperatures, and it means that temperature control plays an important role in the PEMFC system. Except for the influence of disturbance, in each test, the prediction error of RPLR has a declining trend with the increment of training length because the Wout of the reservoir would be more accurate with sufficient input samples. 

Long-term prediction of DWT-EESN

In this task, the initial RPLR can be decomposed into several sub-waveforms with different timescales. Furthermore, they are predicted on the long-term scale by different ESNs separately. The general design principle is that a more complex signal needs to be decomposed into more layers to obtain a higher prediction accuracy. On the contrary, more layers indicate a need for more ESNs to realize the prediction, and the computational complexity will also be increased.

Thus, the selection of decomposition layers is a process of finding the balance between prediction accuracy and computational complexity. In our current study, this selection was done empirically. Besides, the number of decomposition layers is highly related to the signal itself, and it would be varying in different applications. The lumped 

decomposition layers have been decided by the trial-and-error method to get a better prediction performance than the single ESN, and the minimum decomposition layers of test-D1, test-D2, and test-D3 are five, seven, and six separately.

From the load profiles of these three dynamic tests, it can be observed that test-D2 is more complex than test-D3, and test-D3 is more complex than test-D1. The selected decomposition layers have also validated this general design principle. Besides, the parameter selection process in the DWT-EESN structure is the same as the single ESN to make sure of a fair comparison. Taking both three tests with 50 % training length, the long-term prediction results of sub-waveforms are presented from Fig. 4 

Chapter summary

Based on the RPLP indicator, a combined method, namely DWT-EESN is proposed to deal with the multi-timescale features and improve the long-term prediction performance. Compared with the short-term prediction (single-step or several-step ahead), the iterative prediction process is used in this study to realize the long-term RUL prediction. In this prediction process, the predicted RPLR of the last step is used to predict the new RPLR of the next step, and new measurements are not needed in the prediction phase. In test-D2, for example, the prediction horizon is 600 h, 500 h, and 400 h when the training lengths are 40 %, 50 %, and 60 % separately. Compared with a single ESN without the decomposition process, the DWT-EESN approach could improve the prediction accuracy under all these three dynamic tests. Properly speaking, in terms of RMSE, the maximum improvements of test-D1, test-D2, and test-D3 are • The genetic algorithm (GA)-optimized ESN is used to predict the approximation components of the degradation data. The predicted approximation components and inverse discrete wavelet transform (IDWT) are used to reconstruct the new degradation data in the prediction process.

• Based on the "decomposition-prediction-reconstruction" structure by the DWT-ESN-GA algorithm, the original data points during the prediction horizon can be compressed by a factor of 8, i.e., the degradation characteristics in 2016 data points (corresponding to 168 h) can be effectively represented by only 253 data points.

Genetic algorithm parameter optimization

There are several parameters of ESN, and the optimization of multiple parameters would contribute to its practical application. The parameters that need to be set in ESN are the number of neurons N in the dynamic reservoir, the leaking rate a, the spectral radius 𝜌 of W (maximum eigenvalue), the regression coefficient 𝛽 , reservoir connectivity, input scaling, and coefficients of different weight matrices.

The random and grid-search are two straightforward parameter optimization methods of ESN [START_REF] Lukoševičius | A practical guide to applying echo state networks[END_REF]. In general, the random method needs multiple attempts, and it can reach a roughly satisfactory performance with the help of expert experiences or the parameter's analysis of variance (ANOVA) [START_REF] Morando | ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[END_REF]. The grid-search method is able to find the satisfactory parameter combination. Nevertheless, this exhaustive search technique is time-consuming. Some automatic global parameter optimization approaches have been used to improve optimization efficiency. The stochastic gradient descent is used for optimizing four parameters i.e., input scaling, 𝜌, a, and 𝛽 [START_REF] Thiede | Gradient based hyperparameter optimization in echo state networks[END_REF]. The big bang-big crunch is utilized to optimize N, 𝜌, a, and 𝛽 [START_REF] Mezzi | An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[END_REF]. Nevertheless, the implementation processes of stochastic gradient descent and big bang-big crunch are computationally complex. Some other efficient optimization methods can also be used to optimize the parameters of ESN. In [START_REF] Chouikhi | PSO-based analysis of echo state network parameters for time series forecasting[END_REF], the PSO is used to optimize the coefficients of weight matrices, and in [START_REF] Zhong | Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction[END_REF], two leaking rates and two spectral radii are optimized by GA. The GA is inspired by the mechanisms of natural evolution which consist of selection, crossover, mutation, etc. And it has shown its satisfactory performance in optimizing the leaking rate and the spectral radius of ESN.

Based on the above work, four key parameters, i.e., N, a, 𝜌, and 𝛽 are selected and optimized in this RUL prediction task. In general, a larger value of N could map a bigger reservoir space, and it would be easier to construct the linear recursive relation. It is necessary to choose a big N when handling a complex task. Nevertheless, computing is expensive when dealing with huge amounts of neurons even though the training structure of ESN has big advantages over other RNN methods. In this task, the neuron number N is selected in the range of [START_REF] Jouin | Remaining useful life estimates of a PEM fuel cell stack by including characterization-induced disturbances in a particle filter model[END_REF]500], and the data interval is 50, i.e., the number of neurons is increased by 50 at each try. After multiple trials, N = 400 is selected.

Except for N, the remaining 3 parameters (a, 𝜌, and 𝛽) are need to be identified. The grid-search method is used for comparison. Taking the grid steps of a, 𝜌, and 𝛽 as 0.1, 0.01, 0.001 separately, there would be 13500 parameter combinations (execution time is about 3 days). Besides, the computational complexity grows exponentially with the number of parameters. As an efficient and widely used metaheuristic method for searching the optimal (or approximately optimal) solution, the GA is utilized in this task to optimize the a ∈ (0, 1), 𝜌 ∈ (0, 1.5), and 𝛽 ∈ (8 × 10 , 8 × 10 ) of ESN. Besides, GA can make the most use of historical data to find the global optimum even if it has the stochastic searching property. The execution time of GA is about 20 min, and the timescale is reasonable for the 168 hours' degradation prediction. The objective of GA can be expressed as 
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Where L is the dimension of the output signal, B is the total data points in the training (or testing) part. The pseudo-code of GA is shown as In RUL prediction of the PEMFC system, the degradation information has always more impacts on large time scales, and it has closer relationships with the lowfrequency part of the original signal. Therefore, the approximation component is more interesting than the detail component at each decomposition level. In this task, the orthogonal wavelet db3 which belongs to the Daubechies wavelets family is used because it can compress the wavelet energy as much as possible to the approximation component. The waveforms of the Daubechies wavelets family are shown in Fig. 5 -1 [START_REF] Daubechies | Ten lectures on wavelets[END_REF]. Based on the GA-optimized ESN structure, the DWT is combined with ESN to improve the verification efficiency of RUL. For different experimental tests, the inputs of ESN are different in this work, i.e., power for steady-state, power for quasi-dynamic, and RPLR for dynamic operating conditions. In the considered datasets, the output power under the steady-state condition is from 222 W to 236 W. The output power under the quasi-dynamic condition is from 219 W to 233 W. And the RPLR under the dynamic condition is from -0.25 to 0. For the sake of fairness, all the input data of ESN are normalized to the same interval of [0, 1]. And then the output data of ESN are mapped to their original dimension by inverse normalization. The working principle of the DWT-ESN-GA approach is summarized in Algorithm 3. 

Implementation process of DWT-ESN-GA

After the data measurements (voltage and current) and data pre-processing (filtering and resampling), the health indicators can be calculated under different operating conditions, i.e., stack power for the steady-state and quasi-dynamic conditions, and RPLR for the full dynamic condition. The moving average filtering method is used, and the length of the moving window is empirically set to 31. The health indicators are shown in Fig. 5 -2. The fuel cell stacks of test-SS and test-QD are the same, and the test-QD has more serious mission profiles. Therefore, 4.0 % and 5.5% of initial power are used as the EOL thresholds in test-SS and test-QD separately. The mission profile of test-D2 is the most complex in these three tests, and 8 % power loss is chosen as the EOL threshold to evaluate the prediction performance of RUL. The actual RUL (𝑡 ) can be defined as the time between tpre (the time when the prediction begins) and tEOL (the time when the actual value reaches the EOL threshold). The predicted RUL (𝑡 ) can be defined as the time between tpre and tpEOL (the time when the prediction value reaches the EOL threshold). There are 2016 data points in each stage (e.g., D1 or D2), and the time interval of every two adjacent data points is 5 min. In Fig. 5 -4 (c) and (d), the length of cA3 and cD3 are the same (253 points), and they are the half-length of cA2 and cD2 (506 points). The length of cA2 and cD2 is the half-length of cA1 and cD1 (1010 points). Results indicate that the length of cAj+1 and cDj+1 are the same, and they are the half-length of the cAj and cDj in the previous level (j=0, 1, 2). Based on this implementation process, the length of original power data can be shortened by the scale factor of 2 j+1 .

The decomposition level j is decided by the trial-and-error principle. Based on the DWT process in Fig. 5 -3 (a), the 2016 data points (168 h) can be compressed into 1010 data points at the first decomposition level (j = 0). And the 1010 data points can be compressed into 506 data points at the second decomposition level (j = 1). Then, the 506 data points can be compressed into 253 data points at the third decomposition level (j = 2). With the increase of j, the length of the original signal can be compressed shorter and shorter. At the same time, the original data would lose more and more highfrequency characteristics if only considering the approximation component in each level. The scale factor is selected as 2 3 (j = 2) in this task. On the one hand, the degradation's evaluation in the coming 2016 data points can be verified by only 253 data points. On the other hand, the property summation of the high-frequency part (cD1 + cD2+ cD3) have slight effects (< 0.1 %) on the original signal in term of relative wavelet energy. The energy distributions of different decomposition layers in different tests are discussed in Section 5.5.

As the opposition process of DWT, the approximation component and detail component in the higher level (a higher j) can be combined to reconstruct the approximation component in the lower level (a lower j) by IDWT (Fig. 5 -3 (a)). When j = 2, the cA3 and cD3 can be used to construct the cA2. The cA2 and cD2 can be used to construct the cA1 when j = 1, and the cA1 and cD1 can be used to construct the cA0 when j = 0. In RUL prediction of the PEMFC system, the degradation information has always more impacts on large time scales, and it has closer relationships with the lowfrequency part of the original signal. Therefore, the approximation component is more interesting than the detail component at each decomposition level. Only using the approximation component at j = 2 (cA3) to reconstruct the cA2, cA1, and D1 is reasonable because the low-frequency part in each level (cD3 + cD2 + cD1) has almost no effects on the RUL prediction. Compared with predicting the original data D1 directly, the verification length can be reduced significantly when predicting the cA3 with the help of DWT and IDWT. 

GA-ESN

Wavelet transform
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The working principle of the proposed approach is shown in Fig. 5 -5. Based on the data of the first 2 stages of test-SS, the GA-optimized ESN is used for training the cA3 (253 points) in the first stage and predicting the 𝑐𝐴 (253 points) in the second stage ((Fig. 5 -5 (a)). Finally, the power data in the second stage (𝐷 ) is reconstructed by the predicted 𝑐𝐴 and IDWT method ((Fig. 5 -5 (b)). The implementation structure of the proposed method is shown in Fig. 5 -5 (c). The flowchart of the proposed DWT-ESN-GA is shown in Fig. 56. GA method is used to predict 𝑐𝐴 of stage 3. By that analogy, the cA3 prediction in all stages can be realized by a one-stage-ahead prediction process. The power prediction of test-SS (Fig. 5 -10 (a)) and test-QD (Fig. 5 -10 (b)) are satisfactory because the prediction curve has a good reflection on the power's degradation tendency. The RMSE and MAPE of test-SS are lower than test-QD in every stage, and it means that the prediction accuracy will decrease with the increase of load dynamics. Besides, the prediction error would be severely affected by the disturbance, i.e., 850 h and 940 h of test-SS, 150 and 460 h of test-QD.

Experimental results under different mission profiles

Prediction results of three tests

The proposed health indicator (RPLR) is defined as a percentage form in test-D2. Thus, the results cannot be compared with test-SS and test-QD directly. It is intuitively plausible that the prediction performance of test-D2 (Fig. 10 (c)) is worst because of its rich dynamic characteristics. It is difficult to acquire a decreasing tendency especially under the load cycling period (250 h -450 h). This is the universality unsolved problem that should be explored further because simulating the suddenly dynamic with multistep ahead is difficult for any prediction tools. Based on the defined EOL threshold, the RUL of different tests can also be analyzed.

For test-SS, the initial power is about 236 W, and the 4.0 % power loss is about 226.6 W. In stage 5 (Fig. 5 -10(a)), the time when the prediction begins (tpre) is at 840 h, the time when the actual value reaches EOL threshold (tEOL) is at 855 h, and the time when the prediction value reaches EOL threshold (tpEOL) is at 910 h. Thus, the 𝑡 is 15 h, the 𝑡 is 70 h, and the error of RUL is 55 h. For test-QD, the initial power is also 236 W, and the 5.5 % power loss is about 

Relative wavelet energy discussion

The DWT is used to shorten the length of the original data, and the prediction of power (or RPLR) is replaced by the prediction of its approximation components. Nevertheless, the high-frequency information would be lost during the data compression process. Relative wavelet energy (RWE) is used to quantitatively analyze the missing information in DWT. The approximation component and detail component wavelet energy at level j can be expressed as 
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Where 𝐶 (𝑘) and 𝐶 (𝑘) are the reconstructed detail signal and approximation signal at time step k in level j. The total energy of the original signal is shown as
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The RWE can be defined as the ratio between the dispersed energy and the total energy +1 RWE *100

j tot E E = (5-5)
The RWE at different decomposition layers (j = 0, 1, 2) of these three tests is shown in Tab. 5 -6. The RWE of DC (𝐸 ) in all tests are small fractions of the total energy, and most of the energy is located in the approximation component. The RWE of the detail component increases with the decomposition level j. The missing information concentrate in the high-frequency part, and they are negligible during the DWT compression. Besides, the degradation timescale is in hundreds or thousands of hours.

And the low-frequency part is more interesting in the lifespan prediction of the PEMFC system.

Chapter summary

The data-driven approach of DWT-ESN-GA is put forward to improve the lifespan validation efficiency of the proton exchange membrane fuel cells systems. Based on the technology of compression, prediction, and reconstruction, degradation characteristics in 2016 data points (corresponding to 168 h) can be effectively represented by only 253 data points. The health indicator of relative power-loss rate is proposed for the dynamic conditions to mitigate the impacts of mission profiles. The effectiveness of the proposed method is validated under different operating conditions, and the improvements are significant when compared with other model-based or data-driven methods. In the steady-state operating condition, the maximum improvements of DWT-ESN-GA are 59.8 % (stage 6) and 64.0 % (stage 5) when compared with the model-based methods of PR and ARIMA in terms of root mean square error. The maximum improvements are 53.4 % (stage 4), 45.6 % (stage 4), 50.7 % (stage 5), and 40.3 % (stage 5) separately when compared with the model-based methods of DWT-PR, DWT-ARIMA, PDM-PF, and PDM-PF-NARNN. And the maximum improvements are 53.8 % (stage 5) when compared with the data-driven method of NARNN. In the quasi-dynamic operating condition, the maximum improvements of DWT-ESN-GA are 78.3 % (stage 4) and 66.3 % (stage 5) when compared with the model-based method of PR and ARIMA in terms of root mean square error. And the maximum improvements are 53.3 % (stage 5) and 66.3 % (stage 5) when compared with the model-based methods of DWT-PR and DWT-ARIMA. Besides, potential information loss in the compression process of discrete wavelet transform is fully discussed, and the discrete wavelet transform shorten principle is analyzed from the point of wavelet energy. it with the RPLR could increase the dynamic property of ESN. Therefore, double-input ESN is utilized to enhance the prediction performance of lifespan under dynamic operating conditions. In general, the value of %ErFT, RMSE, and MAPE of doubleinput ESN are smaller than those of single-input ESN. For example, in test-D1, the RMSE at 70 % training length of single-input ESN is 0.00576, the RMSE at 70 % training length of double-input ESN is 0.00411. In test-D2, the RMSE at 70 % training length of single-input ESN is 0.02422, the RMSE at 70 % training length of doubleinput ESN is 0.01197. In test-D3, the RMSE at 70 % training length of single-input ESN is 0.01407, the RMSE at 70 % training length of double-input ESN is 0.00976. In test-D1, the satisfactory horizon of single-input ESN is 117 h and the satisfactory horizon of double-input ESN is 157 h. In test-D2, the satisfactory horizon of singleinput ESN is 150 h and the satisfactory horizon of double-input ESN is 250 h. In test-D3, the satisfactory horizon of single-input is 33 h and the satisfactory horizon of double-input is 63 h. The satisfactory horizon of double-input ESN is longer than that of single-input ESN in each dynamic test, and thus more time is given to the user to anticipate maintenance actions before failure.

3) The discrete wavelet transform and ensemble echo state network (DWT-EESN) approach is proposed to deal with the multi-timescale features of RPLR and improve the long-term prediction performance. The degradation phenomena of the PEMFC are a complex process, and the dynamic health indicator of RPLR contains multi-timescale features. The discrete wavelet transform is used to decompose the RPLR into different timescales. Then different ESN with varying dynamic characteristics are used to deal with different features separately at the same time. Compared with the single ESN without decomposition process, the DWT-EESN approach could improve the prediction accuracy under all these three dynamic tests. Properly speaking, in terms of RMSE, the maximum improvements of test-D1, test-D2, and test-D3 are 23. 4) The approach of discrete wavelet transform-echo state network-genetic algorithm (DWT-ESN-GA) is put forward to improve the lifespan validation efficiency of the PEMFC systems. In the previous work, the parameters are optimized by the trial and error method or grid-search method. These two methods are time-consuming especially for the multiple parameters of the ESN. To improve the optimization efficiency, the genetic algorithm is used to optimize the leaking rate a, the spectral radius 𝜌 of the internal weight matrix, and the regression coefficient 𝛽. Results also show that the genetic algorithm is more efficient than the grid-search method. Based on the compression by DWT and the reconstruction by IDWT, the data's prediction in the coming 2016 data points can be shortened into 253 data points. The validation effectiveness of the RUL prediction can be improved by this compression, prediction, and reconstruction process. Finally, the proposed method is validated under different operating conditions, and the improvements are significant when compared with other model-based or data-driven methods. For example, in test-SS, the maximum improvements are 53.4 % and 45.6 % separately when compared with the model-based methods of DWT-PR and DWT-ARIMA. In test-QD, the maximum improvements are 53.3 % and 66.3 % when compared with the model-based methods of DWT-PR and DWT-ARIMA.

Perspectives

Our works concentrate on analyzing the effects of operating parameters, proposing the new health indicators, dealing with the multi-timescale features, and improving the prediction efficiency during the RUL prediction. Even though we've been working on the above questions for about three years, there is still a long way to go on further. From my point of view, four aspects of work can be further developed on the RUL prediction of the PEMFC system.

1) The quantitative analysis of the uncertainties during the lifetime prediction. The filtering technique is usually used to pre-process the data (e.g., voltage), however, setting the filtering coefficient is a difficult task in practice. A too-large filtering window cannot filter the peaks efficiently and a too-small filtering window may lead to loss of some important information. It is a pity that there is no standard for the user to set the filtering coefficient because different users have different purposes. Thus, some other useless information would also exist in the voltage data after the filtering technique. Besides, the stochastic disturbances produced by the sensor noises during the measurements, unknown disturbances from the environment and operating parameters, load irregular varying caused by user habits, and the uncertainties of the prognostic methods themselves would also affect the lifespan prediction results. Quantitative analysis of the uncertainties and extracting the degradation-related information can make sure prediction accuracy. Different fault signals would also be measured along with the degradation data. Using the diagnostic technique to separate the fault signal in advance is necessary for the prognostic.

2) Finding more and more convenient and efficient dynamic health indicators. The degradation state of the PEMFC stack can be reflected by the health indicators, and an accurate health indicator is helpful for the users to take some preventive maintenance in advance and further extend the lifespan of the PEMFC stack. In general, the voltage and power can be regarded as health indicators under the steady-state operating condition. In this condition, the mission profile doesn't change a lot, and the load current keeps at a constant value or changes in a small range. Thus, the voltage and power would have a monotonic decreasing tendency which is mainly caused by the degradation. Nevertheless, the monotonic decreasing tendency of voltage or power would become less obvious because of the load current's large changing under the dynamic operating conditions. Thus, the traditional static health indicators cannot be used anymore. After reviewing the literature, different dynamic health indicators have been proposed, such as the "EKF-based degradation factor (EKF-DF)" and "virtual stack voltage (VSV)". Based on the detailed comparison, a dynamic health indicator named RPLR has been proposed in this thesis, and its effects have been validated on three dynamic datasets. The advantages and shortcomings of them have been analyzed in the body of the thesis. Nevertheless, exploring the health indicators is always the research focus for the RUL prediction especially under the dynamic operating condition. More and more other dynamic health indicators should be explored in the practical condition.

3) Exploration of the methods which can provide the confidence intervals (CI) and probability density function (PDF) would also be welcomed in the next step. Most of the current articles focus on the single-step or single curve prediction. The single-step prediction means the historical value in step t has already been known when predicting the value of step (t+1). This prediction process is realized in the short term, and the prediction horizon is the time interval of every two data points. Even if the error between the target value and predicted value seems small enough, the single-step prediction does not have much practice meanings for the RUL prediction because the degradation phenomena are in the hundreds of hours. Using all the historical data to realize only single-step prediction cannot reserve enough time for the users to take some maintenances in advance. The prediction horizon can be extended when combining the single-step prediction and the iterative process. The predicted value at step (t+1) is regarded as one of the inputs to predict the new value at step (t+2), and this process is the single curve prediction. Each prediction curve means one combination of results of the parameters no matter for the model-based or data-driven method. Thus, the parameter's effects should be considered during the prediction, and providing the prediction curves along with their confidence intervals and PDF can give more intuitive results for the decision-makers. Compared with the single curve prediction, the methods with the confidence intervals and PDF could improve the boundary from the probability point of view. Combining the ESN with particle filter or Gaussian process may be one of the solutions.

4) Exploring the prognostic method to realize the online prediction of RUL. Online prediction has more practical meanings than offline, and there are only a few articles that have done the related works as far as the author knows. The common idea of online prediction is building and training the mathematical models or "black box" by the historical data. And then the trained model or structures are used to realize the prediction online. As mentioned before, the wavelet-based approach and some models (polynomial regression and ARIMA) are combined to realize the online prediction. For the data-driven method, the complex neuron network structure makes the online process more difficult to implement. The multiple parameters have also limited the online implementation process, and some online parameter optimization methods would be helpful. Thus, how to realize the online RUL prediction is worthy of study in the next step. [START_REF] Hua | Challenges of the remaining useful life prediction for proton exchange membrane fuel cells[END_REF]. Fig. 12The i -U curve of a PEMFC system. Fig. 123The i -U and power density curves of a PEMFC system. Fig. 1234The stages of the prognostic process [START_REF] Jouin | Estimating the end-of-life of PEM fuel cells: guidelines and metrics[END_REF]. 
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  stack voltage is monitored with the acquisition interval of 30 s. The performance of prediction methods depends highly on the quantity and quality of the data. The raw data contain noises and large peaks (corresponding to the weekly characterizations), which would lead to a disturbance in the degradation prediction. The mission profiles of two long-term tests are shown in Fig.1 -8.
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 18 Fig. 1 -8 The mission profiles of two long-term tests: (a) stack current of test-SS, (b) stack voltage of test-SS, (c) stack current of test-QD, (d) stack voltage of test-QD.

  mission profiles of three long-term tests are shown from Fig. 1 -9 to Fig. 1 -11.
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 19 Fig. 1 -9 The mission profiles of test-D1: (a) stack current of test-D1, (b) stack voltage of test-D1.
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 1 Fig. 1 -10 The mission profiles of test-D2: (a) stack current of test-D2, (b) stack voltage of test-D2.The transient effects of stack current on the stack voltage are marked in red circles. The effects of start and stop operations on stack voltage are marked in green rectangles. Besides, the operating parameters (e.g., TinH2 in this case) would also influence the
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 11 Fig. 1 -11 The mission profiles of test-D3: (a) stack current of test-D3, (b) stack voltage of test-D3.
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 1 Fig. 1 -13 The EIS tests and polarization curves of test-D2: (a) EIS tests of test-D2, (b) polarization curves of test-D2. Test-D1: The 382 h duration data have three operating conditions and can be divided into 3 stages. The stack current and stack voltage are presented in Fig. 1 -9 (a) and Fig. 1 -9 (b).
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 1 Fig. 1 -14 The EIS tests and polarization curves of test-D3: (a) EIS tests of test-D3, (b) polarization curves of test-D3. Test-D2: The 1000 h duration data are divided into 4 stages and each stage lasts for 250 h. The stack current and stack voltage are presented in Fig. 1 -10 (a) and Fig. 1 -10 (b).(1) In stage 1(0-250 h), the load current density is maximum at 0.77 A/cm 2 .(2) In stage 2 (250 h-500 h), the mission profile changes dynamically between no load (0 A/cm 2 ), 0.77 A/cm 2 , and 0.38 A/cm 2 from 250 h to 380 h. The load current density alternates between 0.45 A/cm 2 and 0.23 A/cm 2 from 380 h to 500 h.(3) In stage 3 (500 h-750 h), the load current density is 0.23 A/cm 2 from 500 h to 600 h. The load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 from 600 h to 750 h.(4) In stage 4 (750 h-1000 h), the load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 from 750 h to 850 h. The load current density is 0.23 A/cm 2 in the rest time of stage 4.Test-D3:The 405 h duration data are also divided into 4 stages. The stack current and stack voltage are presented in Fig.1-11 (a) and Fig.1 -11 (b).(1) In stage 1 (0-125 h), the load current density is 0.36 A/cm 2 (0-25 h) and it changes to 0.45 A/cm 2 during the rest of the time.(2) In stage 2 (125 h-250 h), the load current density changes between 0.45 A/cm 2 and 0.23 A/cm 2 from 125 h to 225 h. It stays at 0.23 A/cm 2 during the rest of the time.(3) In stage 3 (250 h-375 h), the load current density alternates between 0 A/cm 2 and 0.23 A/cm 2 .(4) In stage 4 (375 h-405 h), the load current density is 0.23 A/cm 2 .
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 1 Fig. 1 -17 The RUL prediction methods of the PEMFC system.
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  , Zhou et al. proposed another hybrid method that combined the autoregressive and moving average (ARMA) model and time delay neural network (TDNN)[START_REF] Zhou | Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology[END_REF]. Before executing this hybrid method, a PF-based empirical model and physical aging model (PAM) are utilized to remove the non-stationary trend of the original stack voltage. The linear part is filtered by the ARMA model, and the nonlinear part is processed by the TDNN. This ARMA-TDNN method can handle the voltage signal in different patterns, and the improvements are validated by 3 datasets of Ballard NEXA stack (12 A/30 ℃, 30 A/35 ℃, and 44 A/40 ℃) and 2 datasets of Data Challenge.
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 1 Fig. 1 -20 The types of data-driven methods.
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 1 Fig. 1 -21 Different network topologies of ANN: (a) FFNN, (b) RNN [94].

  neural network (FFNN) whose information only flows forward and RNN which contains the feedback loops. The topologies of FFNN and RNN are shown in Fig. 1 -21.

  -22. Where Wout is the output weight matrix in the training part, {(𝑡 , 𝑦 ),⋅⋅⋅, (𝑡 , 𝑦 )} are the stack voltage data points in the training part. The 𝑦 and 𝑦 are the stack voltages at time step 𝑡 and 𝑡 (e.g., i = 2000). The application of ESN in degradation prediction is shown Tab. 1 -7.
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 1 Fig. 1 -22 The typical ESN structure in the work of Morando et al. and Mezzi et al.
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  Two questions have to be faced in lifetime prediction Q2: How to indicate the degradation state under load varying condition? Propose the convenient and efficient dynamic health indicator of relative power-loss rate (RPLR) Multi-timescale degradation characteristics by the ensemble prediction structure Considering the effects of operating parameters (by multi-input structure) Prediction efficiency improvement by discrete wavelet transform (DWT) Improve accuracy Improve efficiency Q1: How to improve the prediction performance in the long-term scale?
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 1 Fig. 1 -24 The MIMO-ESN (2 inputs and 1 output) prediction structure.
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 1 Fig. 1 -25 The output stack voltages of FCEV and μ-CHP: (a) dataset in [103], (b) dataset in [40].

  -26 and Fig. 1 -27.
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 1 Fig. 1 -26 Mid-term prediction structure by ESN.
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 112 Fig. 1 -27 Long-term prediction structure by ESN.
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 21 Fig. 2 -1 The basic representation of echo state network: (a) ESN structure, (b) the updating state

Algorithm 1 :Step 2 :Step 3 :Step 4 :

 1234 Working principle of ESN Input: u, y target , B, K, N, L, 𝛼, 𝜌, 𝛽, W in , W, W fb , ℎ(•),g(•), 𝒖 Output: W out , 𝒚 Step1: Network initialization W in ϵ (-0.5, 0.5), W ϵ (-0.5, 0.5), W fb = 0, 𝛼 ϵ (0, 1), 𝜌 ϵ (0, 1.5), N = 400, x(0) = 0 Training based on historical input u for n = 1 to B, do update x by Eq. (2-6) collect the state of x by Eq. (2-7) collect y by Eq. (2-7) end Calculate W out by Eq. (2-15) and Eq. (2-16) Prediction based on new input 𝒖 for n = B+1 to B+m, do calculate the new output 𝒚 by Eq. (2-7) end Performance evaluation (𝒚 vs. 𝒚 )
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 22 Fig. 2 -2 Implementation framework of the ESN method.
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 23 Fig. 2 -3 Operating parameters of FC1.
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 24 Fig. 2 -4 Operating parameters of FC2.The characteristics of all the parameters are shown in Tab. 2 -2. Signal-to-Noise Ratio (SNR) is used to measure the quality of parameters, and it can be expressed as
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 25 Fig. 2 -5 Calculation flow chart of the MIMO-ESN prediction process.
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 26 Fig. 2 -6 Block diagram of single-input and multi-input ESN for one example with 2 steps in each case (where y i represents U s at time t i , z i represents the I s at time t i , x i represents P out H 2 at time t i , 𝑦 and 𝑦 are next-step predicted stack voltage value, W out(s) represents the output weight matrix).

  In the Data Challenge, a certain voltage loss of initial voltage (Vinit) has been regarded as the failure threshold. The actual values at different equivalent failure thresholds are 95.8 h (3.0 % Vinit), 127.1 h (3.5 % Vinit), 277.6 h (4.0 % Vinit), 284.1 h (4.5 % Vinit), and 354.5 h (5.0 % Vinit) respectively. In the steady-state operation condition, the data from 0 h to 550 h are applied for training, and the data from 550 h to 1050 h are used for the prediction. With a moving window of 31 which is decided by trial and error, the recoveries and faults are retained by moving average filtering technique. The RUL prediction of FC1 based on single-input (Us) ESN is shown in Fig. 2 -7.
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 27 Fig. 2 -7 The RUL prediction of FC1 based on single-input ESN. With all the other parameters remaining unchanged, the number of inputs is increased to test the prediction performance. The RUL predictions of FC1 based on 2input ESN are shown in Fig. 2 -8 and the prediction results of 4 combinations at different equivalent failure thresholds are given in Tab. 2 -3. The RMSE and MAPE of 2-input ESNs are lower than those of single-input ESN.Results represent that the prediction accuracy of 2-input ("Us+ToutAir", "Us+Is", "Us+TinWat", "Us+PoutH2") ESN is higher than that of single-input ESN. It also means that 2-input data are sufficient to mimic the degradation characteristics, and the prediction accuracy is improved by increasing another input to the ESN.Furthermore, more parameters are regarded as the inputs of ESN to investigate its

  The RUL predictions of FC1 based on 3-input ESN are shown in Fig.2 -9. The prediction results of 3-input ESN at different equivalent failure thresholds are given in Tab. 2 -4. Results represent that some of the 3-input ESN ("Us+TinH2+PinH2" and "Us+ToutH2+ToutAir") have a better prediction performance than 2-input ESN. Sometimes, they are worse than 2-input ESN ("Us+TinAir+ToutWat" and "Us+PoutH2+PinH2").
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 28 Fig. 2 -8 The RUL prediction of FC1 based on 2-input ESN: (a) stack voltage (U s ) and outlet temperature of air (T out Air). (b) stack voltage (U s ) and stack current (I s ). (c) stack voltage (U s ) and inlet temperature of cooling water (T in Wat). (d) stack voltage (U s ) and outlet pressure of H 2 (P out H 2 ).

  4 h (3.5 % Vinit), 194.2 h (4.0 % Vinit), 209.7 h (4.5 % Vinit), 384.3 h (5.0 % Vinit), and 386.7 h (5.5 % Vinit) respectively. The data from 0 h to 550 h are applied to training, and the data from 550 h to 1020 h are used for prediction. The RUL prediction of FC2 based on single-input in Fig. 2 -10. The RUL prediction of FC2 based on 2-input ESN is shown in Fig. 2 -11 and the prediction results of 4 combinations at different equivalent failure thresholds are given in Tab. 2 -5. The RMSE and MAPE of 2-input ESN are lower than those of the single-input one.
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 22 Fig. 2 -10 The RUL prediction of FC2 based on single-input ESN.
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 31 Fig. 3 -1 The calculation flow chart of the RPLR.
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 32 Fig. 3 -2 The polarization curves and the BoL power curves of three long-term tests: (a) polarization curves during the whole life of test-D1, (b) polarization curve at the BoL of test-D1, (c) BoL power curve of test-D1, (d) polarization curves in the whole life of test-D2, (e) polarization curve at the BoL of test-D2, (f) BoL power curve of test-D2, (g) polarization curves in the whole life of test-D3, (h) polarization curve at the BoL of test-D3, (i) BoL power curve of test-D3.
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 33 Fig. 3 -3 The RPLR and RUL definition of 3 dynamic tests: (a) test-D1, (b) test-D2, (c) test-D3.
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 34 Fig. 3 -4 Operating parameters of test-D1.
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 35 Fig. 3 -5 Operating parameters of test-D2.
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 36 Fig. 3 -6 Operating parameters of test-D3.
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 37 Fig. 3 -7 The iterative process of SI-ESN and DI-ESN. The iterative process of SI-ESN and DI-ESN is shown in Fig. 3 -7. The influences of stack current are marked in blue. Where {Γ, 𝜗} represents the prediction of one-step ahead ESN and [𝜗] represents the parameters in the ESN. And p is the number of

  step3

  .e., the quantity of previous data used for the prediction.
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 38 Fig. 3 -8 Target statement of RUL and its prediction process.
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 39 Fig. 3 -9 The RUL prediction of test-D1: (a) SI-ESN with 60 % training, (b) DI-ESN with 60 % training, (c) SI-ESN with 70 % training, (d) DI-ESN with 70 % training, (e) SI-ESN with 80 % training, (f) DI-ESN with 80 % training.In test-D1, the RUL predictions with 60 %, 70 %, and 80 % of the whole data (382 h) for training are presented in Fig.3 -9. They show that the DI-ESN (with stack current

  -9 (b) and Fig. 3 -9 (d). In Tab. 3 -2, the prediction results of test-D1 with different training lengths are given. With an increase of training length, the prediction error (%ErFT, RMSE, and MAPE) has an overall downward trend both for the SI-ESN and the DI-ESN. The prediction results of DI-ESN are more accurate than those of SI-ESN as a whole. Nevertheless, two anomalies exist at 40 % and 50 % conditions from the view of RMSE and MAPE. Most probably, the prediction cannot be accurate if the training data are not enough. The two disturbances caused by the increase of TinH2 at 40 h and 100 h may also affect the prediction results. When considering the %ErFT, the prediction RUL of DI-ESN is closer to the actual RUL both at 40 % and 50 % conditions. The RUL predictions of SI-ESN and DI-ESN in the whole lifespan of test-D1 are shown in Fig. 3 -10. The SH of SI-ESN is 117 h and the SH of DI-ESN is 157 h.
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 3 Fig. 3 -10 The RUL results of SI-ESN and DI-ESN with 95 % probability bounds in test-D1.
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 3 Fig. 3 -11 The RUL prediction of test-D2: (a) SI-ESN with 40 % training, (b) DI-ESN with 40 % training, (c) SI-ESN with 60 % training, (d) DI-ESN with 60 % training, (e) SI-ESN with 80 % training, (f) DI-ESN with 80 % training.

Fig. 3 -

 3 Fig. 3 -13 The RUL prediction of test-D3: (a) SI-ESN with 50 % training, (b) DI-ESN with 50 % training, (c) SI-ESN with 65 % training, (d) DI-ESN with 65 % training, (e) SI-ESN with 75 % training, (f) DI-ESN with 75 % training.

  -13 (b) and Fig. 3 -13 (d). The prediction results of test-D3 with different training lengths are shown in Tab. 3 -4. The RUL predictions of SI-ESN and DI-ESN in the whole lifespan of test-D3 are shown in Fig. 3 -14. The results of SH=63 h SH=33 h test-D3 are similar to those of test-D1 and test-D2. They also show that the DI-ESN structure performs better than SI-ESN. The SH of SI-ESN is 33 h and the SH of DI-ESN is 63 h. These three dynamic tests also show that the evaluation error is large at the BoL because of a lack of training data. This phenomenon is validated between 40 % -60 % training length both in SI-ESN and DI-ESN structure. With the increasing training data, the magnitude of the error decreases as the prediction time gets closer to EoL.
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 41 Fig. 4 -1 Data processing and implementation process of the ESN: (a) data processing, (b) implementation process of ESN.
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 427 Fig. 4 -2 The flowchart of DWT-EESN. The DWT is used to decompose the HI of RPLR into sub-waveforms (Aj, Dj ,…, D1) with different timescales. Afterward, several independent ESNs (ESN-Aj, ESN-Dj ,…, ESN-D1) with different dynamic parameters are utilized to predict the subwaveforms. In general, the dynamic state of the reservoir is increasing from Aj to D1. The prediction results are represented as (Aj)', (Dj)' ,…, (D1)', and they are lumped together to calculate the total RUL. Before predicting the sub-waveforms by independent ESNs, the reconstructed signal (Aj, Dj ,…, D1) are normalized to [0, 1].

4. 4

 4 Experimental results under three dynamic tests 4.4.1 Long-term prediction of single ESN To analyze the performance of DWT-EESN, single ESN's RUL predictions without the decomposition process are first performed as a benchmark. The inputs are the previous RPLR, and the outputs are the future RPLR. The prediction curve of dynamic tests with a single ESN is presented from Fig. 4 -3 to Fig. 4 -5, and the quantified results are shown in Tab. 4 -1.
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 4 Fig. 4 -3 The RPLR prediction with single ESN in test-D1: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length.
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 44 Fig. 4 -4 The RPLR prediction with single ESN in test-D2: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length.
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 45 Fig. 4 -5 The RPLR prediction with single ESN in test-D3: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length.

  -6 to Fig. 4 -8. Taking both three tests with 60 % training length, the long-term prediction results of sub-waveforms are presented from Fig. 4 -9 to Fig. 4 -11. At a certain training length (e.g. 50 %), the prediction results of the sub-waveforms are lumped together to obtain the final RUL. The final RPLR prediction results by the DWT-EESN with a training length of 40 %, 50 %, 60 %, and 70 % are shown from Fig. 4 -12 to Fig. 4 -14 for the three dynamic tests.
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 44710449444 Fig. 4 -6 Sub-waveforms prediction results of test-D1 in 50 % training length: (a) D 1 , (b) D 2 , (c) D 3 , (d) D 4 , (e) D 5 , (f) A 5 .
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 442 Fig. 4 -13 The RPLR prediction with DWT-EESN in test-D2: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length.

  54.52 % (80 % training length), 23.50 % (70 % training length), and 85.21 % (40 % training length) separately. In terms of MAPE, the maximum improvements of test-D2, test-D1, and test-D3 are 54.94 % (80 % training length), 23.59 % (70 % training length), approximation components based on the DWT in the training process.

Algorithm 2 : 1 : 2 : 3 : 4 : 5 :

 212345 Working principle of GA Define the input and output variables input: population size L, elite number N e , crossover probability P c , mutation probability P m , generation number G. output: best fitness, best individual, parameter combinations. Parameter's initialization L=40, N e =2, P c =0.8, P m =0.01, G=200. Generate the initial population randomly Calculate the objective function and fitness of individuals for n=1 to G, do select the parents based on the fitness of individuals generate the population by elite crossover, mutation call Algorithm 1 and evaluate the performance (based on RMSE) update the population and rebuild the next generation end Return the best fitness and its parameter combinations
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 51 Fig.5 -1The waveforms of Daubechies wavelets family[START_REF] Daubechies | Ten lectures on wavelets[END_REF].

Algorithm 3 : 1 : 2 : 4 :

 3124 Working principle of DWT-ESN-GA Define the input and output variables input: historical data D w ; output: future data 𝐷 Data pre-processing filtering (moving-average), resampling (time-interval is 0.5 h), normalization (from 0 to 1) 3: RUL prediction for n=1 to N w , do DWT the data of previous weeks at level j (cA j+1 and cD j+1 ) call Algorithm 1 (Section 2.1), predict the future 𝑐𝐴 of the next week call Algorithm 2 (Section 5.2 ), optimize the parameters of ESN IDWT the 𝑐𝐴 to the 𝐷 of the coming week end Return the results of the prediction side RMSE, MAPE, RUL, etc.
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 52 Fig. 5 -2 Health indicators of three tests: (a) power of test-SS, (b) power of test-QD, (c) RPLR of test-D2.
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 53 Fig. 5 -3 The wavelet transform of test-SS: (a) decomposition and reconstruction process of the wavelet transform, (b) original power data in stage 1, (c) approximation component coefficient in level 1, (d) detail component coefficient in level 1.
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 54 Fig. 5 -4 The approximation component coefficients and detail component coefficients of level 2 and level 3 in stage 1: (a) cA 2 , (b) cD 2 , (c) cA 3 , (d) cD 3 .Among the whole N stages, the historical data in the first (N-1) stages are used for
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 55 Fig. 5 -5 Implementation structure of decomposition and reconstruction: (a) the cA 3 prediction in the first 2 stages, (b) the reconstructed power in the first 2 stages, (c) the implementation structure of DWT-ESN-GA.
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 56 Fig. 5 -6 The flowchart of DWT-ESN-GA.
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 57 Fig. 5 -7 The approximation component coefficients prediction of test-SS at level 3: (a) prediction at stage 2, (b) prediction at stage 3, (c) prediction at stage 4, (d) prediction at stage 5, (e) prediction at stage 6.Based on the DWT, the approximation component coefficient predictions of test-SS, test-QD, and test-D2 at level 3 are shown from Fig.5 -7to Fig.5 -9. There are 6 prediction stages in each operating condition, and the cA3 prediction is performed at the end of each stage. The 1 st prediction is performed at the end of stage 1, the historical
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 58 Fig. 5 -8 The approximation component coefficients prediction of test-QD at level 3: (a) prediction at stage 2, (b) prediction at stage 3, (c) prediction at stage 4, (d) prediction at stage 5, (e) prediction at stage 6. The degradation predictions of test-SS, test-QD, and test-D2 are shown in Fig. 5 -10, and the detailed results in each stage are shown from Fig. 5 -11 to Fig. 5 -13. Based on the predicted 𝑐𝐴 at level 3 and the IDWT method, the power prediction curve can be reconstructed to its original timescale. In each experimental test, the data of the first stage D1 are used to predict the data of the second stage 𝐷 . At the end of the second stage, the data of the first 2 stages (D1 and D2) are used together to predict the data of the third stage 𝐷 . By that analogy, the RUL prediction can be realized in the whole durability testing by the one-week advanced horizon. The RMSE and MAPE of the three tests at different operation conditions are shown in Tab. 5 -1 and Tab. 5 -2.
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 59 Fig. 5 -9 The approximation component coefficients prediction of test-D2 at level 3: (a) prediction at stage 2, (b) prediction at stage 3, (c) prediction at stage 4, (d) prediction at stage 5, (e) prediction at stage 6.
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 5 [START_REF] Wilson | DOE hydrogen and fuel cells program record[END_REF] to Fig.5-13 with Fig.5-7 to Fig.5 -9, the original data Dw (w=1, …, 5) are shortened by the DWT with a scale factor of 23 , and then the approximation component of the third level (𝑐𝐴 ) is predicted instead of a prediction of the original data.

Fig. 5 -

 5 Fig. 5 -10 The degradation predictions at different stages under different operating conditions: (a) test-SS, (b) test-QD, (c) test-D2. Tab. 5 -1 RMSE results of three tests in different stages.

Fig. 5 -

 5 Fig. 5 -11 The power prediction of test-SS: (a) prediction at stage 2, (b) prediction at stage 3, (c) prediction at stage 4, (d) prediction at stage 5, (e) prediction at stage 6.

  50 % (70 % training length), 54.52 % (80 % training length), and 85.21 % (40 % training length) separately. In terms of MAPE, the maximum improvements of test-D1, test-D2, and test-D3 are 23.59 % (70 % training length), 54.94 % (80 % training length), and 66.46 % (40 % training length) separately.
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 1 Fig. 1 -21 Different network topologies of ANN: (a) FFNN, (b) RNN [94]. Fig. 1 -22 The typical ESN structure in the work of Morando et al. and Mezzi et al. Fig. 1 -24 The MIMO-ESN (2 inputs and 1 output) prediction structure. Fig. 1 -25 The output stack voltages of FCEV and μ-CHP: (a) dataset in [103], (b) dataset in [40]. Fig. 1 -26 Mid-term prediction structure by ESN. Fig. 1 -27 Long-term prediction structure by ESN. Fig. 2 -1 The basic representation of echo state network: (a) ESN structure, (b) the updating state in the reservoir at time step n. Fig. 2 -2 Implementation framework of the ESN method. Fig. 2 -3 Operating parameters of FC1. Fig. 2 -4 Operating parameters of FC2. Fig. 2 -5 Calculation flow chart of the MIMO-ESN prediction process. Fig. 2 -6 Block diagram of single-input and multi-input ESN for one example with 2 steps in each case (where yi represents Us at time ti, zi represents the Is at time ti, xi represents PoutH2 at time ti, 𝑦 and 𝑦 are next-step predicted stack voltage value, Wout(s) represents the output weight matrix). Fig. 2 -7 The RUL prediction of FC1 based on single-input ESN. Fig. 2 -8 The RUL prediction of FC1 based on 2-input ESN: (a) stack voltage (Us) and outlet temperature of air (ToutAir). (b) stack voltage (Us) and stack current (Is). (c) stack voltage (Us) and inlet temperature of cooling water (TinWat). (d) stack voltage (Us) and outlet pressure of H2 (PoutH2). Fig. 2 -9 The RUL prediction of FC1 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 (PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet temperature of air (TinAir) and outlet temperature of cooling water (ToutWat). (d) stack voltage (Us), outlet pressure of H2 (PoutH2), and inlet pressure of H2 (PinH2). Fig. 2 -10 The RUL prediction of FC2 based on single-input ESN. Fig. 2 -11 The RUL prediction of FC2 based on 2-input ESN: (a) stack voltage (Us) and outlet temperature of air (ToutAir). (b) stack voltage (Us) and stack current (Is). (c) stack voltage (Us) and inlet temperature of water (TinWat). (d) stack voltage (Us) and outlet pressure of H2 (PoutH2). Fig. 2 -12 The RUL prediction of FC2 based on 3-input ESN: (a) stack voltage (Us), inlet temperature of H2 (TinH2) and inlet pressure of H2 (PinH2). (b) stack voltage (Us), outlet temperature of H2 (ToutH2) and outlet temperature of air (ToutAir). (c) stack voltage (Us), inlet temperature of air (TinAir) and outlet pressure of air (PoutAir). (d) stack voltage (Us), inlet temperature of water (TinWat), and inlet pressure of H2 (PinH2).
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 31 Fig. 3 -1 The calculation flow chart of the RPLR. Fig. 3 -2 The polarization curves and the BoL power curves of three long-term tests: (a) polarization curves during the whole life of test-D1, (b) polarization curve at the BoL of test-D1, (c) BoL power curve of test-D1, (d) polarization curves in the whole life of test-D2, (e) polarization curve at the BoL of test-D2, (f) BoL power curve of test-D2, (g) polarization curves in the whole life of test-D3, (h) polarization curve at the BoL of test-D3, (i) BoL power curve of test-D3. Fig. 3 -3 The RPLR and RUL definition of 3 dynamic tests: (a) test-D1, (b) test-D2, (c) test-D3. Fig. 3 -4 Operating parameters of test-D1. Fig. 3 -5 Operating parameters of test-D2. Fig. 3 -6 Operating parameters of test-D3. Fig. 3 -7 The iterative process of SI-ESN and DI-ESN. Fig. 3 -8 Target statement of RUL and its prediction process. Fig. 3 -9 The RUL prediction of test-D1: (a) SI-ESN with 60 % training, (b) DI-ESN with 60 % training, (c) SI-ESN with 70 % training, (d) DI-ESN with % training, (e) SI-ESN with 80 % training, (f) DI-ESN with 80 % training. Fig. 3 -10 The RUL results of SI-ESN and DI-ESN with 95 % probability bounds in test-D1. Fig. 3 -11 The RUL prediction of test-D2: (a) SI-ESN with 40 % training, (b) DI-ESN with 40 % training, (c) SI-ESN with 60 % training, (d) DI-ESN with % training, (e) SI-ESN with 80 % training, (f) DI-ESN with 80 % training. Fig. 3 -12 The RUL results of SI-ESN and DI-ESN with 95 % probability bounds in test-D2. Fig. 3 -13 The RUL prediction of test-D3: (a) SI-ESN with 50 % training, (b) DI-ESN with 50 % training, (c) SI-ESN with 65 % training, (d) DI-ESN with % training, (e) SI-ESN with 75 % training, (f) DI-ESN with 75 % training. Fig. 3 -14 The RUL results of SI-ESN and DI-ESN with 95% probability bounds in test-D3. Fig. 4 -1 Data processing and implementation process of the ESN: (a) data processing, (b) implementation process of ESN. Fig. 4 -2 The flowchart of DWT-EESN. Fig. 4 -3 The RPLR prediction with single ESN in test-D1: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length. Fig. 4 -4 The RPLR prediction with single ESN in test-D2: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length. Fig. 4 -5 The RPLR prediction with single ESN in test-D3: (a) in 40 % training length, (b) in 50 % training length, (c) in 60 % training length, (d) in 70 % training length. Fig. 4 -6 Sub-waveforms prediction results of test-D1 in 50 % training length: (a) D1,
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	Parameter	Unit	State of the art 2012 2017	FCH 2 JU target 2020 2024 2030
	cost	€/kW	500	100	60	50	40
	Areal power density	W/cm 2	-	1.0	1.5	1.8	2.0
	PGM loading	g/kW	-	0.4	0.17	0.08	0.05
	durability	h	2500	4000	5000	6000	7000
	Cell volumetric power	kW/L	-	5.0	7.3	9.3	10.0

  Tab. 1 -3 Nominal specifications and working parameters of the experimental platform.

	T in H 2 ; T out H 2	Inlet/Outlet temperatures of H 2 (℃)
	T in Air; T out Air	Inlet/Outlet temperatures of air (℃)
	T in Wat; T out Wat	Inlet/Outlet temperatures of water (℃)
	P in H 2 ; P out H 2	Inlet/Outlet pressure of H 2 (mBar)
	P in Air; P out Air	Inlet/Outlet pressure of air (mBar)
	(a)	(b)
	(c)	(d)
	Parameters	Control range
	Dimensions	(220×160×186) mm
	Temperature	80 ℃
	Current density	0.5 A/cm 2
	Anode/cathode stoichiometry	1.5/2
	Anode/cathode inlet pressure	150/150 kPa
	Cooling flow rate	2 L/min
	Pressure drop	30 kPa

  , a semi-empirical voltage

	model is built based on the polarization curves of a single cell under the steady-state
	operating condition. The parameters of open-circuit voltage (OCV) E0, exchange
	current i0, overall resistance R, and limiting current iL are calculated at each
	characterization time (168 h in this case) with the help of the Levenberg-Marquardt
	optimization method.			
		Models		Filtering methods
		Kalman filter (KF)	Particle filter (PF)
	Extended Kalman filter (EKF)	Unscented Kalman filter (UKF)	Frequency domain Kalman filter (FDKF)	Adaptive particle filter (APF)
	Adaptive unscented	
	Kalman filter (AUKF)	

  Tab. 1 -5 Classification of model-based methods (models with ML methods).

	Year	Referen ce	Methods	Health indicator	Operating condition	Prediction horizon
	2014	[63]	RSVAR + first-order Markov model	Voltage	SS and QD	Long-term (500 h)
	2016	[64]	(Polynomial regression and ARIMA) + DWT	Voltage	SS and QD	Long-term (168 h)
	2017	[65]	Empirical model + NARNN	Voltage	SS and QD	Long-term (168 h)
	2018	[66]	(Empirical and physical model) + (ARMA and TDNN)	Voltage	SS	Short-term (single-step)
	2018	[67]	Three empirical models + RPF + LSSVM	Voltage	SS	Short-term (single-step)
	2018	[68]	Empirical model + GP	Voltage	SS	Mid-term (50 h)
	2019	[69]	Semi-empirical model + AUKF +ANFIS	Voltage	SS and QD	Long-term (≤ 1000 h)
	2017 [70],[71]	Three empirical models + PF + LSTM	Voltage	SS and QD	Long-term (400 h)
	2019	[72]	ARIMA + LSTM	Voltage	SS and QD	Short-term (single-step)
	2021	[73]	Physical model + EKF+ LSTM	Voltage + virtual voltage	SS, QD, and Dynamic	Long-term (≤ 450 h)

Reasons about why choose the echo state network 1.4.1 The background of echo state network

  

		[79]	Ensemble SW-ELM	Voltage	SS	Long-term (≤ 850 h)
		[80]	SW-ELM	Power	Dynamic	Short-term (single-step)
		[81]	DWT-GMDH	Voltage	SS and QD	Short-term (≤ 5 h)
		[82]	DWT-ELM	Voltage	SS	Short-term (1 h)
		[83]	DWT-ELM	Voltage	Dynamic	Short-term (single-step)
		[84]	PSO-GNNM	Voltage	SS, QD and dynamic	Short-term (5 mins)
		[85]	MEA-BPNN	Voltage	SS	Short-term (single-step)
		[86]	Modified RVM	Voltage	SS	Long-term (≤ 160 h)
		[87]	Self-adaptive RVM	Voltage	SS and dynamic	Short-term (≤ 20 h)
		[88]	LSTM	Voltage	SS	Short-term (4 h)
		[89]	Grid-LSTM	Voltage	SS, QD and dynamic	Short-term (1h and 4 h)
		[90]	LSTM	Voltage	SS and QD	Short-term (1 h)
		[91]	SAE-DNN	Voltage	QD	Short-term (1 h)
	1.4					
			Tab. 1 -6 Classification of data-driven methods.	
	Year Reference	Methods	Health indicator	Operating condition	Prediction horizon
	2014	[74]	ANFIS	Voltage	SS and QD	Long-term (500 h)
	2019	[76]	ANFIS-FCM	Voltage	SS and QD	Short-term (single-step)
	2015	[77]	SW-ELM	Voltage	SS	Long-term (≤ 500 h)
	2015	[78]	Ensemble SW-ELM	Voltage	SS	Long-term (≤ 850 h)

  Tab. 1 -7 The application of ESN in degradation prediction.

	2016	[99]		Double ESN	Voltage	SS	Long-term (1400 h)
	2018	[101]	Multi-reservoir ESN	Voltage	SS	Long-term (≤ 900 h)
	2019	[103]		Ensemble ESN	Virtual voltage	SS and Dynamic	Long-term (≤ 750 h)
	2021	[104]		Ensemble ESN	Voltage	Dynamic	Short-term (single-step)
	2020	[108]	Multi-input ESN	Voltage	SS	Long-term (4000 h)
			Training		Testing
					2001 ' 2002 ' 2003 ' 2004 ' 2005 '	Prediction values
			W out			
	1	2	3	1998 1999	2000 2001 2002 2003 2004 2005	Actual values
	(t 1 , y 1 )		(t i , y i )		Sampling points
	Year Reference	Methods	Health indicator	Operating condition	Prediction horizon
	2013	[96]		ESN		Voltage	SS	Short-term (30 s)
	2014	[97]		ESN		Voltage	SS	Long-term (1400 h)

  The classification of existing HIs is shown in Tab.1 -8. 

				Tab. 1 -8 The classification of HIs.
	Working states			HIs	Advantages	Disadvantages
					Easy to be measured	Disturbed by the load;
		1	2000 2001 2002 2003 2004 2005 online; Used for the control 1998 1999 Voltage, power 3 2 loop.	Actual Cannot be used for dynamic values states.
	Static	(t 1 , z 1 )	Resistance	(t i , z i ) Degradation related. Physical factor;	Sampling points Based on polarization curve; Interrupted measurement.
	Dynamic	2000 2001 2002 2003 2004 2001 ' 2002 ' 2003 ' 2004 ' Testing Sampling points Complex; Difficult to decide Accurate the weights. Prediction values Actual values 2000' Building models between 1998 1999 Training W out Hybrid 3 3' 1999' Electrochemical 2 1 catalytic surface area (ECSA) Offline; Interrupt the ECSA and voltage; Cyclic working of FC. voltammetry. 2' (t 1 , y 1 ) (t i , y i ) EKF-based degradation factor (DF) Simple (linearization Imprecise; large time interval hypothesis); Polarization curves. (about one week)
			Virtual stack	
		voltages (VSV)	

A group of linear parameter varying (LPV) models, accurate, online.

Complex; More suitable for load cycling states.

  2 -2 The SNR of test-SS and test-QD.

	Parameter	characteristics	SNR of test-SS (dB)	SNR of test-QD (dB)
	I s	Regulated (A)	78.72	70.33
	T in H 2	Measured (°C)	65.51	62.85
	T out H 2	Measured (°C)	45.58	43.06
	T in Air	Measured (°C)	55.25	52.32
	T out Air	Measured (°C)	61.42	57.18
	T in Wat	Regulated (°C)	55.39	52.65
	T out Wat	Regulated (°C)	59.42	56.12
	P in Air	Measured (mBar)	58.83	58.84
	P out Air	Regulated (mBar)	59.39	58.79
	P in H 2	Regulated (mBar)	50.93	51.57
	P out H 2	Regulated (mBar)	51.31	52.02

  T out Air). (b) stack voltage (U s ) and stack current (I s ). (c) stack voltage (U s ) and inlet temperature of water (T in Wat). (d) stack voltage (U s ) and outlet pressure of H 2 (P out H 2 ).

	training fault 2 Prediction signal threshold-3.5% V init threshold-4.0% V init threshold-4.5% V init threshold-5.0% V init threshold-5.5% V init fault 1 (a) (c) Training signal Target signal Training signal Target signal Prediction signal T out Air U s + 189.1 9.82 322.2 16.16 428.5 -10.81 U s +I s 35.2 -64.49 63.0 67.56 117.7 43.87 238.2 38.02 383.6 0.80 U s + T in Wat 104.3 -387.38 134.8 30.59 173.1 17.45 262.2 31.77 335.8 13.16 U s + P out H 2 10.4 51.40 27.9 85.63 94.5 54.94 202.5 47.31 temperature of air (Fig. 2 -12 The RUL prediction of FC2 based on 3-input ESN: (a) stack voltage (U s ), inlet prediction failure point predict t failure t RUL t (b) (d) Training signal Target signal Prediction signal Training signal Target signal Prediction signal 0.01878 0.00495 0.02532 0.00640 0.02495 0.00627 0.00820 0.00205 0.02692 0.00749 0.02677 0.00751 0.03271 0.00906 0.03231 0.00892 0.00516 0.00126 0.01639 0.00401 0.01640 0.00408 0.02959 0.00710 0.02921 0.00700 0.02166 0.00623 0.03287 0.00989 0.03268 0.00986 0.03828 0.01116 344.5 10.91 0.03783 0.01099
	temperature of H 2 (T in H 2 ) and inlet pressure of H 2 (P in H 2 ). (b) stack voltage (U s ), outlet
	temperature of H 2 (T out H 2 ) and outlet temperature of air (T out Air). (c) stack voltage (U s ), inlet
	temperature of air (T in Air) and outlet pressure of air (P out Air). (d) stack voltage (U s ), inlet
	temperature of water (T in Wat), and inlet pressure of H 2 (P in H 2 ).
	Tab. 2 -5 Prediction results of FC2 based on 2-input ESN.
	Inputs	Prediction	%Er FT	RMSE	MAPE
		12.5	41.59	0.01839	0.00520
		36.0	81.46	0.02915	0.00868
	U s	122.5	41.58	0.02900	0.00866
		222.8	42.02	0.03811	0.01082
		314.2	18.75	0.03789	0.01078
		34.8	-62.62	0.00652	0.00154
		100.2	48.40	0.01864	0.00484

Double-input echo state network of three dynamic tests

  

	Chapter 3.	U s +P out Air(17)		0.01336	50.71			
			U s +T out Air(13)		0.01339	50.59			
			U s +T out H 2 (11)		0.01380	49.08			
			U s +T out Wat(15)		0.01440	46.84			
				U s +I s (9)		0.01532	43.47			
			Tab. 2 -8 The improvement results of FC2 based on 2-input ESN.		
				Inputs		RMSE 5	Improvement (%)		
				U s		0.03789	--			
			U s +T out Air(13)		0.02495	34.15			
			U s +T in Wat(14)		0.02921	22.90			
			U s +T in Air(12)		0.03023	20.21			
			U s +T out H 2 (11)		0.03039	19.79			
				U s +I s (9)		0.03231	14.74			
			U s +T in H 2 (10)		0.03242	14.43			
			U s +P out Air(17)		0.03292	13.13			
			U s +T out Wat(15)		0.03587	5.34			
			U s +P in H 2 (19)		0.03589	5.30			
			U s +PinAIR(16)		0.03715	1.96			
			U s +P out H 2 (18)		0.03783	0.16			
		Tab. 2 -9 The prediction results based on all 3-input combinations of FC1.	
	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5	Inputs	RMSE5
	Us+9+10	0.01179 Us+10+12 0.01053 Us+11+15 0.01231 Us+12+19 0.01070 Us+14+19 0.01020
	Us+9+11	0.01369 Us+10+13 0.01158 Us+11+16 0.01161 Us+13+14 0.00981 Us+15+16 0.01459
	Us+9+12	0.01505 Us+10+14 0.01052 Us+11+17 0.01227 Us+13+15 0.01227 Us+15+17 0.01461
	Us+9+13	0.01401 Us+10+15 0.01155 Us+11+18 0.01205 Us+13+16 0.01221 Us+15+18 0.01463
	Us+9+14	0.01119 Us+10+16 0.01090 Us+11+19 0.01120 Us+13+17 0.01252 Us+15+19 0.01374
	Us+9+15	0.01168 Us+10+17 0.01149 Us+12+13 0.01163 Us+13+18 0.01242 Us+16+17 0.01387
	Us+9+16	0.01187 Us+10+18 0.01134 Us+12+14 0.01120 Us+13+19 0.01141 Us+16+18 0.01166
	Us+9+17	0.01230 Us+10+19 0.01051 Us+12+15 0.01266 Us+14+15 0.01142 Us+16+19 0.01109
	Us+9+18	0.01193 Us+11+12 0.01175 Us+12+16 0.01100 Us+14+16 0.01035 Us+17+18 0.01210
	Us+9+19	0.01215 Us+11+13 0.01075 Us+12+17 0.01179 Us+14+17 0.01068 Us+17+19 0.01180
	Us+10+11 0.01216 Us+11+14 0.01135 Us+12+18 0.01125 Us+14+18 0.01087 Us+18+19 0.01027

  at a regular interval of half an hour. The assumption herein is that the degradation state in each time interval keeps the same. This is reasonable because the resampling time interval is short enough for the hundreds of hours' degradation.

	voltage are resampled	
		Start
	Measure the polarization
	curve of dynamic test
	Calculate the BoL power
		(P 0 ) of the test
		Fitting P 0 by the
	mathematical models
		for t =1: H
	t =t+1	
	Calculate the stack power (P t )
	by current (I t ) and voltage (U t )
	at time step t (P t =I t *U t )
	Calculate the Relative Power-loss
	Rate (RPLR, ΔP ) by P 0-t and P t
		ΔP=(P t -P 0-t )/ P 0-t
	Y	t < H ?
		N
		Calculate the ΔP in the
		whole lifespan
		End

  The end-of-test time for test-D1, test-D2, and test-D3 are 382 h, 1000 h, and 405 h

	respectively.													
		Training	Prediction							Training Prediction		
										△P1				
													△P2
	RPLR	t	predict Threshold	t	RUL	t	o E L	RPLR			t	predict Threshold	t	RUL	t	o E L
			(a)									(b)		
						Training	Predicting						
			RPLR					Threshold	t	RUL				
							t	predict		t	o E L		
								(c)						

  -5 and the influence of different parameters is shown in Tab. 3 -6.

				Tab. 3 -5 Prediction results of different combinations.		
		Parameters	RMSE		Parameters	RMSE	Parameters	RMSE
	𝛼	+ 𝜌	+ 𝛽	0.00688	𝛼	+ 𝜌	+ 𝛽	0.00899 𝛼 + 𝜌	+ 𝛽	0.01000
	𝛼	+ 𝜌	+ 𝛽	0.01001	𝛼	+ 𝜌	+ 𝛽	0.01098 𝛼 + 𝜌	+ 𝛽	0.01053
	𝛼	+ 𝜌	+ 𝛽	0.00747	𝛼	+ 𝜌	+ 𝛽	0.00770	𝛼 + 𝜌	+ 𝛽	0.00829
	𝛼	+ 𝜌	+ 𝛽	0.00518	𝛼	+ 𝜌	+ 𝛽	0.00525 𝛼 + 𝜌	+ 𝛽	0.00559
	𝛼	+ 𝜌	+ 𝛽	0.00691	𝛼	+ 𝜌	+ 𝛽	0.00539 𝛼 + 𝜌	+ 𝛽	0.00498
	𝛼	+ 𝜌	+ 𝛽	0.00616	𝛼	+ 𝜌	+ 𝛽	0.00749 𝛼 + 𝜌	+ 𝛽	0.00623
	𝛼	+ 𝜌 + 𝛽	0.01782	𝛼	+ 𝜌 + 𝛽	0.04008	𝛼 + 𝜌 + 𝛽	0.06222
	𝛼	+ 𝜌 + 𝛽	0.01017	𝛼	+ 𝜌 + 𝛽	0.00950 𝛼 + 𝜌 + 𝛽	0.00835
	𝛼	+ 𝜌 + 𝛽	0.01136	𝛼	+ 𝜌 + 𝛽	0.00509	𝛼 + 𝜌 + 𝛽	0.00752
				Tab. 3 -6 Influence of different parameters.		
					Parameters		Influence (%)			
				Leaking rate 𝛼		2.59			
				Spectral radius 𝜌	22.28			
				Regularization 𝜌	15.54			
				Interaction 𝛼 * 𝜌	4.15			
				Interaction 𝛼 * 𝛽	7.51			
				Interaction 𝜌 * 𝛽	35.75			
					Error		12.18			
					Total		100			

  the RMSE of DWT-ESN-GA is lower than PDM-PF at each stage. Compared with PDM-PF-NARNN and NARNN, the RMSE of DWT-ESN-GA are lower from stage 3 to stage 5, and they have a similar RMSE value in stage 6 which is mainly due to the recovery at 880 h. In a word, the proposed data-driven method has a satisfactory performance than the existing methods as a whole in terms of RMSE and MAPE.

	operating condition, Tab. 5 -4 RMSE results comparison of test-SS.	
	Methods	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
	PR	0.7	0.8	0.8	0.9	1.9
	DWT-PR	0.5	0.8	0.7	0.7	1.6
	ARIMA	0.6	0.8	0.6	1.1	1.1
	DWT-ARIMA	0.5	0.4	0.6	0.7	1.1
	PDM-PF	--	0.6184	0.6458	0.8026	0.8027
	NARNN	--	0.5832	0.6377	0.8571	0.7523
	PDM-PF-					
		--	0.4778	0.5145	0.6633	0.6265
	NARNN					
	DWT-ESN-GA	0.3911	0.3928	0.3265	0.3960	0.7645
		t pEOL =910 h			
		Tab. 5 -5 RMSE results comparison of test-QD.	
	Methods	t EOL =855 h Stage 2 Stage 3	Stage 4	Stage 5	Stage 6
	PR	3.0	1.5	3.8	1.7	1.6
	PR-DWT	1.4	1.6	1.2	1.3	1.3
	ARIMA	1.5	1.5	1.5	1.8	2.1
	ARIMA-DWT	1.3	1.6	1.2	1.8	1.9
	DWT-ESN-GA	1.3311	1.2337	0.8240	0.6060	1.2510

Abbreviations

Tab. 2 -10 The prediction results based on all 3-input combinations of FC2. 

Chapter summary

In order to improve the prediction performance, a multi-input and multi-output ESN (MIMO-ESN) method is proposed in this chapter. Besides the commonly used stack voltage, the operating parameters, such as stack current, stack temperature, and the pressures of the reactants are also utilized as the inputs of ESN. The 1-input, 2-input, and 3-input ESN are designed and tested on the datasets which were acquired from the test bench for more than 1000 hours' duration. The feasibility and effectiveness of the proposed MIMO-ESN are verified under both static and quasi-dynamic operation conditions. Experimental results show that MIMO-ESN has the capability to improve the prediction accuracy, especially the 2-input ESN with an improvement of 59.20 % (static condition) and 34.15 % (quasi-dynamic condition) in terms of RMSE5 respectively compared with the traditionally used SISO-ESN.

analysis, the influences of different parameters and their interactions are evaluated. And the trial-and-error research space of the parameters is reduced at the same time. Test-D2 0.9 0.7 8 × 10 -2

Test-D3 0.9 0.6 8×10 -2

Chapter summary

Results show that the RPLR is an efficient dynamic HI, and the ESN with double inputs could imitate the degradation properties more sufficiently and improve the prediction precision under the dynamic operating conditions. In general, the value of %ErFT, RMSE, and MAPE of DI-ESN are smaller than those of SI-ESN. The satisfactory horizon (SH) of DI-ESN is longer than that of SI-ESN in each dynamic test, and thus more time is given to the users to anticipate maintenance actions before EoL. In test-D1, the SH of SI-ESN is 117 h and the SH of DI-ESN is 157 h. In test-D2, the SH of SI-ESN is 150 h and the SH of DI-ESN is 250 h. In test-D3, the SH of SI-ESN is 33 h and the SH of DI-ESN is 63 h. In general, the DI-ESN has a relatively longer SH which means a better prediction ability. Besides, the effects and the contributions of the various ESN parameters and their combinations (leaking rate 𝛼, spectral radius 𝜌 , regularization parameter 𝛽 ) are analyzed based on the ANOVA and multiple comparisons. and 66.46 % (40 % training length) separately.

Chapter 5. Prediction efficiency improvement by genetic algorithm and discrete wavelet transform

Brief introduction

To improve the prediction accuracy in the long term, four model-based methods of polynomial regression (PR), auto-regressive integrated moving average (ARIMA), PR with the discrete wavelet transform (DWT-PR), and ARIMA with the discrete wavelet transform (DWT-ARIMA) are proposed in [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF]. Results on test-SS and test-QD show that the model's (PR and ARIMA) prediction accuracy can be improved when combined with DWT. To further improve the accuracy of [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF], three methods of physical degradation model with the PF (PDM-PF), data-driven method of nonlinear autoregressive neural network (NARNN), and their hybrid structure (PDM-PF-NARNN) are proposed in [START_REF] Zhou | Degradation Prediction of PEM Fuel Cell Stack Based on Multiphysical Aging Model With Particle Filter Approach[END_REF]. Results on test-SS show that the method of PDM-PF-NARNN has the best performance in terms of root mean square error (RMSE).

Based on the previous research work, a data-driven approach of discrete wavelet transform-echo state network-genetic algorithm (DWT-ESN-GA) is proposed in this chapter to improve the RUL prediction performance. Firstly, the historical datasets are compressed by the discrete wavelet transform (DWT). Secondly, the approximation components of the original data are predicted in the compressed space by echo state network (ESN). Rather than predicting the degradation data themselves, their shortened coefficients are evaluated to decrease the prediction data points, i.e., from 2016 data points to 253 data points. Besides, a genetic algorithm (GA) is used to optimize the key parameters of ESN, and it can further increase the prediction accuracy. Finally, the inverse DWT is utilized to reconstruct the coming data based on the estimated approximation components. The performance of the proposed approach is evaluated by three different experimental tests under steady-state (test-SS), quasi-dynamic (test-QD), and full dynamic operating conditions (test-D2) separately. The durability tests under different operating conditions are about 1000 h, and six stages (each stage is 168 h) are divided in this chapter. The one-week-ahead degradation prediction is realized based on the prognostic method, i.e., the prediction horizon is 168 h.

The motivation of this study is to improve the RUL prediction efficiency on a longterm scale under both static and dynamic operating conditions. The major contributions of this chapter are summarized as follows:

• The health indicator of relative power-loss rate (RPLR) is proposed for the dynamic operating condition. Only the polarization curve at the beginning of life needs to be performed, and the normal operation of the system would not be interrupted in a real system.

• The degradation data are compressed by discrete wavelet transform (DWT) to shorten the prediction length. The degradation data can now be represented by their 223 W. Without considering the fault disturbance (case 1), the tpre is at 672 h, the tEOL is at 795 h, and the tpEOL is at 840 h. Thus, the 𝑡 is 123 h, the 𝑡 is 168 h, and the error of RUL is 45 h. It is worth mentioning that the fault disturbance at 460 h would lead to the early prediction. In this condition (case 2), the tpre is at 336 h, the tEOL is at 435 h, and the tpEOL is at 470 h. Thus, the 𝑡 is 99 h, the 𝑡 is 134 h, and the error of RUL is 35 h (the error is 69 h in [START_REF] Ibrahim | Wavelet-based approach for online fuel cell remaining useful lifetime prediction[END_REF]).

For test-D2, the tpre is at 672 h, the tEOL is at 832 h, and the tpEOL is at 840 h. Thus, the 𝑡 is 160 h, the 𝑡 is 168 h, and the error of RUL is 8 h. Similar to test-QD, the maximum load current (170 A) in the first 2 stages (0 -250 h) and the load cycling (50 A and 100 A) in stage 3 (350 h -450 h) would also lead to an early prediction. In this case (case 2), the tpre is at 168 h, the tEOL is at 180 h, and the tpEOL is at 310 h. Thus, the 𝑡 is 12 h, the 𝑡 is 142 h, and the error of RUL is 130 h. The RUL results of different tests are shown in Tab. 5 -3. Tab. Some model-based and data-driven methods have been performed under the steady-state and quasi-dynamic operating conditions, the RMSE comparison results of different methods are shown in Tab. 5 -4 and Tab. 5 -5. Both in the test-SS and test-QD, the proposed method of DWT-ESN-GA outperforms the four model-based methods of PR, ARIMA, DWT-PR, and DWT-ARIMA in all stages. In the steady-state

Chapter 6. Conclusions and perspectives

Conclusions

According to the problem of limited service life in the PEMFC system, this thesis is trying to realize the lifespan prediction under different operating conditions. Even though some researchers have done some meaningful work under the steady-state and quasi-dynamic operating conditions, just a few papers consider the lifespan prediction problems under the dynamic operating condition. On the one hand, the datasets under the dynamic operating condition are scarce because they are difficult to be measured. On the other hand, the traditional health indicator (e.g., voltage, power) cannot be used under the dynamic operating conditions anymore for the load current would affect them. Thus, proposing a new health indicator is fundamental to lifespan prediction under the dynamic operating condition. Besides, the effects of operating parameters in the RUL predictions have not been quantitatively analyzed to the authors' knowledge. During the RUL prediction, improving the prediction accuracy and prediction efficiency are helpful for the user to take some maintenance in advance.

To deal with the above issues, four aspects of work are developed. The first two aspects investigate the effects of operating parameters on the RUL prediction performance under the steady-state, quasi-dynamic, and full dynamic operating conditions separately. The third aspect is the works of how to deal with the multitimescale features of the new health indicator and improve the prediction accuracy. The fourth aspect is the work of improving RUL prediction efficiency. The conclusions of this thesis are:

1) In the steady-state and quasi-dynamic operating conditions, a multi-input and multi-output ESN (MIMO-ESN) structure is developed to analyze the effects of operating parameters in the RUL predictions. Besides the commonly used stack voltage, the operating parameters, such as stack current, stack temperature, and the pressures of the reactants are also utilized as the inputs of ESN. Experimental results show that MIMO-ESN can improve the prediction accuracy, especially the 2-input ESN with an improvement of 59.20 % (static condition) and 34.15 % (quasi-dynamic condition) in terms of RMSE5 respectively compared with the traditionally used single-input and single-output ESN (SISO-ESN).

2) Based on the polarization curve at the BoL and the variables' (voltage and current) continuous measurement, a dynamic health indicator named relative powerloss rate (RPLR) is proposed in this aspect. This dynamic health indicator can be used in practice due to its convenient extraction. Besides, the normal operation of the system would not be interrupted during the indicator's extraction process. Based on the results of the first aspect, the load current could reflect the system's dynamic, and combining 
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