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Abstract

Seismologists eagerly seek new and preferably low-cost ways to map the complex structure of

the top few kilometers of the crust. Passive seismic imaging appears as a novel, low-cost, and

environmentally-friendly approach for exploring the sub-surface in the mining context. Usually,

passive seismic interferometry relies on blind correlations within long time series of seismic noise

or coda waves. In this thesis, we propose a complementary approach: seismic interferometry

using opportune sources, specifically moving sources that are not stationary in time. This new

approach relies on an accurate understanding of the seismic source’s mechanism, a careful signal

time-window and station pairs selection, and seismic phase identification (surface and body

waves).

Massive freight trains were only recently recognized as a persistent, powerful cultural (human

activity-caused) seismic source. For example, one train passage may generate a tremor with an

energy output equivalent of a magnitude M1 earthquake and be detectable for up to 100 km

from the tracks. Thus, these train signals can be considered an opportune seismic source for

passive seismic interferometry because they are readily available, detectable, repeatable, and

generate high-frequency broadband energy. To illustrate this novel method’s potential, we show

a case study in a mineral exploration context at the Marathon site, Ontario, Canada.

The Marathon dataset consists of 30 days of continuous seismic data recorded by a dense

array of 1020 1-component geophones (nodes). First, the sources of ambient seismic noise,

including train signals, are identified and characterized, and the source mechanisms of train

signals are discussed. Second, we developed the theory of seismic interferometry applied to

opportune sources and designed a novel workflow to process and analyze this kind of data. By

doing so, body- and surface-wave propagating between pairs of stations carefully oriented are

retrieved. Finally, surface waves arrivals are picked to generate a 3D seismic velocity model

of the Marathon area near-surface. We discuss the pros and cons of the method compared to

more standard approaches with the help of numerical modeling, specifically focusing on the
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potential for body-wave imaging and the retrieval of azimuthal anisotropy. We showed that by

correlating train tremors, we retrieved high-frequency arrivals with higher SNR than using the

standard method while using fewer data. Thus, the high-frequency surface waves allowed us to

do near-surface imaging. Far from being restrained to near-surface imaging, this new way of

analyzing opportune seismic sources can be applied in various contexts and scales using natural

or man-generated signals.

Keywords: Seismic interferometry, near-surface imaging, Mineral exploration, train seismic

signals, Marathon deposit.
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Résumé

Les sismologues sont à la recherche de nouvelles méthodes, de préférence peu coûteuses, pour

cartographier la structure complexe des quelques kilomètres supérieurs de la croûte. L’imagerie

sismique passive apparâıt comme une approche nouvelle, peu coûteuse et respectueuse de l’enviro-

nnement pour explorer le sous-sol dans le contexte minier. Typiquement, l’interférométrie

sismique passive repose sur des corrélations de longues séries temporelles de bruit sismique ou

d’ondes coda. Dans cette thèse, nous proposons une approche complémentaire : l’interférométrie

sismique utilisant des sources opportunes, plus précisément des sources mobiles qui ne sont pas

stationnaires dans le temps. Cette nouvelle approche repose sur une compréhension précise du

mécanisme de la source sismique, une sélection minutieuse de la fenêtre temporelle du signal et

des paires de stations, et l’identification de la phase sismique (ondes de surface et de volume).

Les trains de marchandises massifs n’ont été reconnus que récemment comme une source

sismique culturelle (d’origine humaine) puissante et persistante. Par exemple, le passage d’un

train peut générer une énergie équivalente à un tremblement de terre de magnitude 1 et être

détectable jusqu’à 100 km des voies. Ainsi, ces signaux de train peuvent être considérés comme

une source sismique appropriée pour l’interférométrie sismique passive car ils sont facilement

disponibles, détectables, répétables et génèrent une énergie large bande à haute fréquence. Pour

illustrer le potentiel de cette nouvelle méthode, nous présentons une étude de cas dans un

contexte d’exploration minière sur le site de Marathon en Ontario, Canada.

Le jeu de données de Marathon consiste en 30 jours de données sismiques continues enregis-

trées par un réseau dense de 1020 géophones à 1 composante. Tout d’abord, les sources de

bruit sismique ambiant, y compris les signaux de train, sont identifiées et caractérisées, et les

mécanismes de source des signaux de train sont discutés. Ensuite, nous avons développé la théorie

de l’interférométrie sismique appliquée aux sources ponctuelles et conçu un nouveau workflow

pour traiter et analyser ce type de données. Grace à ce traitement, les ondes de volume et

de surface se propageant entre des paires de stations soigneusement orientées sont récupérées.
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Enfin, les ondes de surfaces sont sélectionnées pour générer un modèle de vitesse sismique 3D

de la zone proche de la surface de Marathon. Nous discutons des avantages et des inconvénients

de la méthode par rapport aux approches plus standard en utilisant la modélisation numérique,

et en nous concentrant spécifiquement sur le potentiel d’imagerie des ondes de volume et de

récupération de l’anisotropie azimutale. Nous avons montré qu’en corrélant les tremblements

de train, nous avons récupéré les arrivées à haute fréquence avec un rapport signal/bruit plus

élevé qu’en utilisant la méthode standard tout en utilisant moins de données. Ainsi, les ondes

de surface à haute fréquence nous ont permis de faire de l’imagerie proche de la surface. Loin

d’être limitée à l’imagerie proche de la surface, cette nouvelle méthode d’analyse des sources

sismiques opportunes peut être appliquée dans une variété de contextes et d’échelles en utilisant

des signaux naturels et artificiels.

Mots-clés: Interférométrie sismique, imagerie proche de la surface, signaux sismiques de

train, exploration minière, gisement de Marathon.
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Introduction

Passive seismic interferometry

In seismology, standard imaging methods rely on recording earthquakes or man-made controlled

sources to explore the Earth’s interior structure, composition, and dynamics. However, depending

on the location or the size of the imaged target, artificial sources may be too expensive or too

cumbersome to use and often lack the low-frequency content needed to reach deep structures.

On the other hand, earthquakes happen only in specific regions and at random times, which

is inconvenient for imaging tectonically stable areas, especially when using temporary seismic

networks.

The alternative to using complex fields such as diffuse fields and/or seismic noise to extract

information of the Earth structures was suggested in earlier studies (Aki, 1957; Claerbout,

1968). Aki (1957) suggested a theoretical approach of spectral correlation in a 2D homogeneous

medium. He proposed the spatial auto-correlation theory (SPAC) currently used to measure

dispersive properties of surface waves. Claerbout (1968) proposed that the cross-correlation of

two receivers at the surface is equivalent to a reflection response at one receiver if there was a

source at the other receiver.

The laboratory experiments in acoustic medium done by Fink (1997) propagates signals from

a source, records it, revers, and then re-emits in the medium; the re-emitted field is perfectly

focused and can be considered as a virtual source. These experiments made it possible to draw

an equivalence between time-reversal experiments and the complex fields in seismology by a

mathematical analogy between correlation and convolution by a time-reversed signal. Assuming

that the signals recorded between two stations are uncorrelated enough, seismic interferometry

can extract the coherent signals corresponding to the deterministic information between the

two stations, thus, if we have one source S and two receivers A and B. Then, the correlation

C(xA, xB) is equivalent to having a source at xA, recorded in S where it was time-reversed and

re-emitted to be recorded in xB.

Laura Pinzon-Rincon 11
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Defining the Green’s function as the impulse response of the medium, in other words, is the

waveform that would be recorded at point B if an impulse source were generated at point A.

Further theoretical studies proved that the Greens function could be retrieved from the average

cross-correlation of a diffuse acoustic noise field in a close medium or with a homogeneous

distribution of sources (Weaver and Lobkis, 2001; Roux et al., 2004). Later, Derode et al. (2003)

retrieved the Green’s function of a heterogeneous open medium by cross-correlating a scattered

wavefield based on time-reversal symmetry. Wapenaar (2004) provided a formal demonstration

of the Green’s function retrieved by cross-correlation based on reciprocity in the elastic case.

Snieder (2004) showed the convergence of the noise correlation function to the Green’s function

for the surface wave, assuming an isotropic distribution of scattered waves aligned with the

stations’ azimuth. This concept, also called stationary phase zone, can be defined as the regions

in which a source disturbance will cause constructive interference, resulting in the reconstruction

of one or more phases. The stationary phase zone will be discussed later. In general, this

approach can be described by the following equation Gouedard et al. (2008):

d

dt
CA,B(τ) ' GA,B(τ)−GA,B(−τ) (1)

The equation 1 expresses that the derivation of the cross-correlation CA,B, between A and B

converges to the Green’s function of the medium between these two points GA,B(τ) (also called

causal Green’s function) and the opposite of the Green’s function between B and A: GB,A(−τ) =

GA,B(−τ) (the anti-causal Green’s Function). In theory, these two Green’s functions should be

identical according to the principle of reciprocity.

In the Earth, the background seismic vibrations can be considered as diffuse wavefields. It

has been also shown empirically (e.g., Campillo and Paul, 2003; Shapiro and Campillo, 2004;

Wapenaar, 2004; Sabra et al., 2005; Roux et al., 2005a) that the cross-correlation CA,B of seismic

noise at two points A and B converges to the Green’s function. This approach, also called passive

seismic interferometry, is sketched in an explanatory diagram (figure 1). The schematic shows

two stations, A and B (red circles), recording seismic noise (black traces); this noise is generated

by different sources (black wiggle arrows) at different locations and at different frequencies.

These noise signals’ correlation (⊗) results in a surface wave (red trace) propagating between

both stations. Positive times (or causal part) correspond to the wave traveling through the

medium from A to B, and negative times correspond to the propagation from B to A. The

difference between the causal and acausal parts is caused by the characteristics of seismic noise

12 Laura Pinzon-Rincon
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Figure 1: Schematic cross correlation-based Green’s function retrieval. The correlation of
the seismic noise recorded at two stations, A and B (black traces), results in a seismogram
representing the surface wave propagating between the two stations (red trace; A to B
corresponds to the positive times, B to A corresponds to the negative times). For this particular
pair of stations, this retrieved Green function is laterally sensitive to the area indicated by the
red ellipse. By cross-correlating different pairs of stations, different areas of the study site will be
covered. The black curves schematically display the depth sensitivities of these surface waves in
the cross-section. The solid curve illustrates a typical short-period sensitivity; the dashed curve
represents the sensitivity curve for a longer period. The incoming seismic noise (black-wiggled
arrows) is generated, for instance, by the ocean and along the coast for the longer periods (above
1 s), and in urban areas, along roads (traffic noise) and trails for the shorter periods (below 1
s). Modified from Grobbe et al. (2021).

that we will discuss below.

We can define seismic noise as the Earth’s permanent and weak background vibrations in the

absence of earthquakes and active sources. Any transient forcing applied on the Earth’s surface

sufficiently energetic to produce seismic waves is considered seismic noise. These vibrations were

initially considered to be undesirable (noise) and of no use. However, with seismic instruments’

technical progress, the theoretical study of this so-called seismic noise and its use by interferometry

has increased steadily over the last twenty years. The seismic noise is originated by either natural

or anthropogenic seismic sources characterized by their location and frequency content.

Laura Pinzon-Rincon 13
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Figure 2: Major components of the seismic ambient noise spectrum. Red to green colors
indicate the highest probability seismic ambient noise power levels at each period. Baseline
statistics shown as solid lines (10th% lower white line, 50th% black line and 90th% upper
white line). New low noise model (NLNM) and new high noise model (NHNM) shown as gray
lines Peterson et al. (1993). a) PSDPDF computed using data from a GSN station in Tucson,
Arizona (IU.TUC.00.BHZ, 31,750 PSDs, 01-JAN-99-18-OCT-02). b) PSDPDF computed using
data from a GSN station on Isla Barro Colorado, Panama (CU.BCIP.00.BHZ, 1,398 PSDs,
01-JAN-07-28-FEB-07). Modified from McNamara and Boaz (2019).

At long-period (20s), the signals are generated by ocean swell generated by storm-forced

shoreward directed winds that reach coastlines; we referred to this mechanism as ”Hum” (e.g.,

Rhie and Romanowicz, 2004; Webb, 2007; Ardhuin et al., 2015). At intermediate periods

(1 - 30 s), seismic noise is generated by ocean waves explained by two mechanisms. The

primary microseism is generated by the interference of ocean waves with shallow ocean bottom

topography, and the secondary microseismic is generated by the interference of pairs of ocean

wave trains (e.g., Longuet-Higgins, 1950; Kedar et al., 2008). At low periods, the seismic noise

is generally linked to human activities such as traffic, machinery energy, etc.; this is commonly

14 Laura Pinzon-Rincon
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called cultural noise. The sources of cultural noise are mainly located at the surface of the Earth,

and present temporal variations related with in human activity (Bonnefoy-Claudet et al., 2006).

The sources that can generate cultural noise are extremely diverse. Generally, these sources

are recorded a few kilometers from the station because they have a low forcing compared with

the mechanisms at long periods (hum or microseismic noise); in addition, its high-frequency

content attenuates rapidly with distance. Different studies have been conducted to understand

and characterize theses sources as traffic (Riahi and Gerstoft, 2015; Lavoué et al., 2020), massive

events as concerts or sportive games (Boese et al., 2015; Diaz et al., 2017; Green et al., 2017),

storms (Fan et al., 2019; Retailleau and Gualtieri, 2019) and wind (Johnson et al., 2019), among

other sources.

Figure 2 shows the Probability Density Function of Power Spectral Density (PSDPDF) of

ambient noise recorded by two broadband stations located at different positions (details in the

figure caption). We distinguish several physical mechanisms coming from several different sources

characterized by their frequency content. Other than the signal generated by earthquakes, we

see that human activity generates seismic noise at low periods. In an intermediate period, the

secondary microseismic pick is observable as well, and at long periods the records are dominated

by the noise generated by the hum.

Seismic noise, although continuous in time, is dependent on the locations and frequency of the

seismic sources. Therefore, the theoretical assumptions necessary to retrieve Green’s function

are no longer fully respected, causing different effects. One effect of having a non-homogeneous

distribution of sources is the asymmetry of noise correlations functions. In a perfect case, the

sources are uniformly distributed (figure 3-a), the energy between two stations is the same in both

directions, and the causal (positive times) and anti-causal (negative times) Green’s functions are

perfectly symmetric.

When the sources are anisotropically distributed (figure 3-b and c), and without multiple

scattering, the cross-correlation is not symmetric anymore. The different amplitude of the causal

or anti-causal part depends on the locations of the most energetic source. For example, if the

sources are more energetic on side 1 of the studied medium, as shown in figure 3-b, the causal

part (from station 1 to station 2) will present a greater amplitude than the anti-causal part

(Stehly et al., 2006).

Besides having an isotropic distribution of sources, sources can be distributed in the stationary

phase zone to fully retrieved the Green’s Function. The stationary phase condition implies that

the correlation function’s convergence towards the Green function requires the presence of sources

Laura Pinzon-Rincon 15
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(or scatters) in line with two carefully placed receivers.

Figure 3: Schematic illustration of the effect of inhomogeneous noise sources distribution on
the degree of symmetry of cross correlation. (a) Symmetric cross correlation between 1 and 2
obtained when the sources of noise are evenly distributed. (b) Asymmetric cross correlation (but
symmetric travel times) associated with a nonisotropic distribution of sources. Modified from
Stehly et al. (2006).

Each of the possible phases (or wave types) included in the cross-correlation function could

be sensitive to various sources regions. The main contributors to a particular phase are sources

within its stationary phase area. Therefore, we can measure a specific phase between two

receivers by correlating a source within its stationary phase zone, including the surface. For

example for P waves emerge from the interference between a direct P recorded at the first

station and a PP (redirected once by a buried layer or formation edge) recorded by a second

station after a rebound below the first one. One can do the same with S waves.
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Constructive summation interference occurs if the seismic sources satisfy the stationary phase

criterion:

∆t = tpp − tp ≤ tgreen ±
T

4
(2)

Where tpp is the arrival time of the PP wave at the second receiver; tp is the arrival time of the

P wave at the first station tgreen is the arrival time of the P wave between the two receivers, and

T is the dominant period. This can be generalized for phases (e.g., Colombi et al., 2014; Roux

et al., 2005b) and all cross-terms between two phases that share same ray parameter (slowness)

(e.g., Pham et al., 2018).

In a 2D homogeneous medium, these stationary points define an hyperbolic area outward

from the receiver pair, with a frequency-dependent aperture, the lower the frequency, the broader

the calculated source region (e.g., Roux et al., 2005b; Snieder, 2004). In 3D and for both surface-

and body-wave retrieval, the full Green’s function retrieval demands sources that are evenly

distributed along a more complicated shape enclosing the two sensors (e.g., Wapenaar, 2004;

Wapenaar and Fokkema, 2006).

The assumptions of a diffuse wavefield or homogeneous distribution of noise sources are

not generally verified when discussing seismic noise. Several studies showed that when Green’s

function retrieval is broken, several effects can be created. Phase and amplitude changes could

be generated (e.g., Kimman and Trampert, 2010; Seats et al., 2012) and spurious arrivals can

be present in the cross-correlation function (e.g., Halliday et al., 2008; Snieder et al., 2006). It

was also showed that travel times measured on the seismic noise correlations can be affected by

the distribution of noise sources (Tsai, 2009; Froment et al., 2010).

Body-wave retrieval is another critical problem. Body waves arrivals can be weak or absent

in the correlation functions due to the heterogeneous distribution of high-frequency sources

(e.g., Forghani and Snieder, 2010). The stationary phase zones are smaller for body waves

than for surface waves (Forghani and Snieder, 2010) and a proper reconstruction of the body-

wave requires a full 3D distribution (i.e., at surface and depth). This configuration is almost

unrealistic. Besides the lack of availability of high-frequency sources, their constraint location

at the Earth’s surface, their limited radiation, and the poor understanding of these sources’

excitation mechanisms make that the seismic passive seismic interferometry commonly use only

the surface waves.

Sager et al. (2018, 2021) showed that the cross-correlation function energy and waveform are

sensitive to both the structure between the sensors and the structure between the source and

the sensors for surface and body waves. For example, figure 4 shows the structure sensitivity for

Laura Pinzon-Rincon 17



CONTENTS

two different source distribution cases. The structure sensitivity can be seen as the medium’s

regions through which virtual waves are traveling; these regions can be located between the

sensors or between the sensor and the sources. Thus, it can be seen that source distribution

strongly affects the sensitivity between the sensors and the source. For example, case 2 (figure

4-2) is less sensitive to the regions between the source and the sensor, and consequently, the

correlation function is closer in phase and amplitude to the Green’s function between the two

sensors without however converging entirely to the Green’s function.

Figure 4: Structure sensitivity kernels for PP-P waves velocity (top panel). We define two source
configurations (dark gray regions at the surface of each domain): 1) a small source covering the
center region of the stationary zone and 2) a large source covering the main region with positive
contributions with a minimum distance of 10km to the right station. The resulting correlation
functions, band-pass filtered between 2 and 4Hz (bottom left), are windowed around the PP-P
interaction. A Gaussian source time function with a half-width of 5 times the simulation time
step was used to generate wavefield. For visualization purposes, the box does not outline the
full computational domain. Modified from Sager et al. (2021).

Since the seismic noise is not equipartitioned, the noise sources are not homogeneously

distributed, the correlation function obtained by passive seismic interferometry is only a Green’s

function approximation. Different approaches have been developed in order to converge as

much as possible to Green’s function. Some classical signal processing approaches like One-bit

normalization or whitening have been developed (Bensen et al., 2007), and alternative approaches

like interferometry by deconvolution (e.g., Snieder and Safak, 2006; Vasconcelos and Snieder,

2008a,b), or interferometry by multi-dimensional deconvolution (e.g., Wapenaar et al., 2008;

Wapenaar and van der Neut, 2010; Wapenaar et al., 2011) among others.

Despite the difference between the green function and the correlation function, numerous

studies have shown that approximate Green’s functions, or cross-correlation functions, can be
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useful to extract information about the medium. Campillo and Paul (2003) and Shapiro and

Campillo (2004) showed first that the cross-correlation of coda waves or seismic noise records

results on the approximate surface wave part of the Green’s functions with similar characteristics

to actual earthquake signals. Since then, this technique has been applied in a wide variety of

contexts to monitoring and imaging applications.

Passive seismic interferometry has been applied to monitor temporal changes in the Earth.

Velocity changes precursory to volcanic eruptions (e.g., Brenguier et al., 2008; Mordret et al.,

2010) or related to earthquakes or slow-slip event (e.g., Wegler and Sens-Schönfelder, 2007;

Froment et al., 2013; Rivet et al., 2011; Chen et al., 2010) have been observed using seismic

noise. Seasonal changes due to thermo-elastic effect (e.g., Meier et al., 2010) have been also

observe among other monitoring applications.

Seismic noise correlation has also numerous applications in Earth imaging at different scales.

Surface-wave tomography has been applied successfully at the crustal and lithospheric scales

(e.g., Sabra et al., 2005; Kang and Shin, 2006; Shapiro et al., 2005; Lin et al., 2008; Ritzwoller

et al., 2011a; Nishida et al., 2008; Verbeke et al., 2012) at near subsurface or smaller structures

(e.g., Wapenaar, 2004; Picozzi et al., 2009; Behm and Snieder, 2013; Brenguier et al., 2007)

and landslides (e.g., Renalier et al., 2010). The anisotropy has also been studied using seismic

noise (e.g., Huang et al., 2010; Ritzwoller et al., 2011b). Recent studies have also unveiled the

possibility of reconstructing body-waves at global (e.g., Poli et al., 2012; Nishida, 2013; Boué

et al., 2013) and local scales (Draganov et al., 2009; Nakata et al., 2015; Olivier et al., 2015;

Nakata, 2016).

Passive seismic imaging in industrial contexts

In recent years, with the emergence of dense industrial networks (nodes or ocean bottom

cable), passive seismic interferometry has crossed academic barriers and has been applied in

numerous industrial applications. As a result, this approach emerged as a novel, low-cost, and

environmentally friendly method for exploring the sub-surface, providing access to the most

remote and environmentally sensitive locations on Earth.

Numerous studies have succeeded in imaging the near surface using arrivals retrieved from

seismic noise including oil and gas industry (e.g., Draganov et al., 2009; Mordret et al., 2013a;

Lin et al., 2013b; de Ridder and Dellinger, 2011; Chmiel et al., 2019; Spica et al., 2018) and

geothermal industry (e.g., Penumadu and Park, 2005; Jousset et al., 2016). Several noise-
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based monitoring applications successfully applied seismic interferometry in different fields (e.g.,

De Ridder and Biondi, 2013; Arts et al., 2013; Obermann et al., 2015; Hillers et al., 2015; Zhang

et al., 2016)

Mineral exploration uses geophysical surveys (electric, magnetic, gravimetric, etc.), geological

models, and diamond drilling combined to identify targets for further investigation. However,

active seismic methods are rarely employed in the mineral industry because they are too expensive

and require an active source, which can be challenging to use in remote or environmentally

sensitive areas. Passive seismology is an economically and environmentally interesting alternative

that has been applied in different mining contexts(e.g., King and Luo, 2009; Roots et al., 2017;

Dales et al., 2017; Olivier et al., 2015; Polychronopoulou et al., 2020; Chamarczuk et al., 2021).

However, passive surveys cannot always reach the resolution required to image the ore-bodies

explored by the mining industry because most passive seismology applications retrieved low-

frequency surface waves. High-frequency body waves remain more useful for mining contexts

because of their sharp sensitivity to seismic velocity perturbations at depth. Unfortunately, these

arrivals also prove difficult to extract from passive data sets due to the lack of high-frequency

body wave sources. Despite the difficulties to reconstruct body-waves from seismic noise, several

studies target body-waves retrieving for imaging applications (e.g., Ruigrok et al., 2011; Vidal

et al., 2014; Nakata, 2016; Retailleau et al., 2020) and monitoring applications (Brenguier et al.,

2019). Here, we explore seismic noise sources suitable for passive seismic interferometry in a

mineral exploration context to aim for body-wave retrieval and high-resolution surface-wave

imaging.

Outline of the thesis

Passive interferometry relies on the hypothesis of homogeneous distribution of noise sources to

reconstruct Green’s function; however, this hypothesis is never verified in practice. Therefore,

different data processing methods have been developed in seismology to get as close as possible

to Green’s function. This thesis is a paradigm change and proposes instead to focus on using

appropriate seismic noise sources for passive interferometry. For this, we will develop the method

in the Marathon deposit case study (Ontario, Canada). We will apply our alternative method to

retrieve high-frequency energy for imaging the shallow crust using train-generated seismic noise

in this mineral context. This thesis manuscript is divided into three main parts.

In the first part, Chapters 1 and 2, the area studied is presented. First, we present the
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geological and geophysical overview of the region. Then, we will present the dataset, and the

seismic noise records will be analyzed, describing the characteristics of seismic noise in the

region, especially the train signals. Finally, these signals will be presented by discussing the

seismic observation in the Marathon region and numerical modeling.

The second part focuses on the methodological framework. The strategy of processing the

seismic signal of the train by interferometry is proposed. Finally, a detailed application to the

Marathon case is presented, focusing on high-frequency recovery.

The third part is devoted to the imaging application. We will use the arrivals recovered in

the second part to apply standard surface wave imaging methods to provide a high-resolution 3D

shear wave velocity model of Marathon. Finally, we will discuss the pros and cons of our methods

by comparing the results with standard cross-correlation methods and numerical modeling.
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Chapter 1

PACIFIC project and Marathon deposit

site
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This chapter introduces the PACIFIC project, and my contribution to the project. The

PACIFIC project seeks to develop new techniques in passive seismology applied to shallow

surface imaging. Its principal scientific motivations and the project context will be presented

later. Then, we will present the Marathon deposit pilot test where this thesis was conducted.

The site is a mining exploration block in Marathon, Ontario, Canada, with potential targets of

interest of high concentrations of Cu-PGM (platinum group metals) hosted in a gabbro intrusion.

A more detailed geological description and the previous geophysical studies of the regions will

be shown. Finally, The dataset at Marathon will be presented.
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1.1 PACIFIC project

1.1.1 PACIFIC project overview

PACIFIC (Passive seismic techniques for environmentally friendly and cost-efficient mineral

exploration) is a research project of which my Ph.D. is part. It received =C3.2 million worth of

funding from the European Union to develop passive imaging techniques in mineral exploration.

The project was launched in June 2018, and It is set to run for 42 months. To find information,

follow this link https://www.pacific-h2020.eu.

A new world-class ore deposit must be discovered every two years to satisfy the global

metals and mineral demand. However, this task is becoming increasingly difficult because easily

accessible deposits have been exhausted. As a result, mineral exploration is taking place at

greater depths and in remote locations (ARTTIC, 2018).

PACIFIC consortium will conduct fundamental and applied passive seismic imagery research,

which will have the accuracy and resolution needed for the minerals industry while at the

same time having a relatively low environmental impact (ARTTIC, 2018). The passive seismic

technique uses arrays of seismic receivers to record ambient seismic noise and retrieve surface

waves used for imagery. These waves attenuate rapidly with depth, and the method currently

lacks the resolution and depth penetration needed to image ore deposits directly. Neverless,

it provides background information and can acquire a broad-brush image of regions under

exploration. But to be of more practical application in the mineral industry, the method must

be able to image small objects, with high resolution, at depths of several hundred meters. Two

mineral test sites will be studied to develop these techniques, one in Canada and the other in

Sweden.

In PACIFIC project, academia, geological survey, and industry will closely collaborate to

achieve these objectives. The academic partners are Université de Grenoble Alpes (UGA) and

Dublin Institute for Advanced Studies (DIAS), Geological Survey Ireland (GSI). The industrial

panthers are Sisprobe (a company in the passive seismic technique), STILLWATER Canada

INC, a global metal mining group (SIBSTIL), and Beowulf Mining Plc (BEOW) exploration

and development company. The link to an explicative video about the project https://www.

youtube.com/watch?v=7uUl9Wh86gQ.
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1.2. MARATHON MINERAL DEPOSIT - GEOLOGICAL OVERVIEW

1.1.2 My role in the project

My Ph.D. took place in this project, investigating the first test site at Marathon Canada.

The first goal of my thesis was to develop a processing method to extract high-frequency

arrivals from seismic noise in a mineral context and then use them to image the region and

contribute to improving the geological understanding of the area. To do so, I worked jointly

with academic partners of the project in UGA and DIAS and with industry partners as Sisprobe

and Stillwater. The material presented in this script concert my work and the work resulting

from these collaborations.

1.2 Marathon mineral deposit - Geological overview

Marathon mineral deposit, one of the two PACIFIC pilot test sites, is studied in this thesis.

It is located 10km north of the town of Marathon, Ontario, Canada, along the north shore

of Lake Superior (Figure 1.1-a). The site was chosen for several reasons: the close relation

with STILLWATER company, the previous tests of the surface-wave passive seismic method,

the geology and mineralization are all correctly known. In the following section, Marathon’s

geological and geophysical background will be exposed.

Marathon 

a. b.

c.

Figure 1.1: Marathon test site a) Map of North America. Marathon site (red square) is located
north of Superior Lake near Marathon town, Ontario, Canada. b) Aerial photo of Marathon
deposit c) Ground photo of the studied region where Marathon environmental conditions are
exposed (forest region).
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The Marathon test site is located 10km north of Marathon town, Ontario, Canada, along the

north shore of Lake Superior. Marathon deposit is a platinum group metals (PGM) exploration

block owned by Stillwater Canada Inc. The deposit contains platinum group metals (PGM)

hosted in gabbro intrusion, which Stillwater Canada Inc owns. The exploration block is part of

the Coldwell Alkaline Complex.

Figure 1.2: Geology map of the Coldwell Alkaline Complex by the staff of Marathon PGM Corp.
and Stillwater Canada Inc. The geological units are differentiated by colors, as explained at the
bottom of the image. Modified from Good et al. (2015).

The Coldwell Complex is part of the Keweenawan igneous rocks that were emplaced around

and in the vicinity of the Great Lakes segment of the Midcontinent Rift System (1108-1105Ma)

(Davidson Jr, 1982; Klasner et al., 1982; Weiblen, 1982; Good et al., 2015). Figure 1.2 shows the
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geology of the Coldwell Complex, including complex lithology of syenite, gabbroic, and volcanic

units. Marathon deposit is hosted by the Two Duck Lake intrusion, located at the eastern

margin of the Port Coldwell alkalic complex (see figure 1.2).

The Two Duck Lake gabbro is the host rock for the Marathon mineralization deposit; it is

undeformed, unmetamorphosed, except for local alteration. Mineralization is a 4-km-long and

250-m-thick unit of the Marathon Series. The Marathon Series is the latest of three magmatic

series that make up the 1- to 2-km-thick Eastern Gabbro Suite, which wraps around the eastern

and northern margin of the Coldwell Alkaline Complex (Good et al., 2015). The Two Duck Lake

intrusion, as described in this study, is broadly composed of the olivine gabbro and ferrogabbro

units it is approximately 1500m long with a maximum thickness of 130m (Dahl et al., 2001).

Thus, the Marathon Cu-PGE sulfide deposit has been classified as a gabbro-associated contact-

type deposit. The size and grade of the Marathon deposit resource are 97.4 million metric tons

(Mt) at 0.27% Cu, 0.75 ppm Pd, 0.23 ppm Pt, and 0.09 ppm Au (Puritch et al., 2009).

Figure 1.3: a) Geological map of Marathon site, two main units are shown: the syenite in
pink and the gabbro (green, blue, yellow, and Violet). The colors represent different types
of gabbro. b) Cross-section through the drill-hole-constrained 3D geological model for the
Marathon deposit, showing the location of hole M-19-537 where a sonic log was measured (see
details in the text). Most drilling extends less than 400m from the surface. Modified from Beard
et al. (2021).

This region has an economic interest, given the geological composition. As shown, the region

has been well explored using geological and geochemical methods. But, the gabbro geometry

and, more generally, the deeper geology is not well constrained. Thus, drilling has been done,

providing only 1D information of the first hundreds of meters. Figure 1.3 shows the zoom of
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the geological map in the Marathon site at the surface and the geological 3D background obtain

from geochemical studies and the geological interpretations.

1.3 Geophysical studies

Marathon deposit has been studied for several years due to its economic importance. Although

some of these studies are not public, in this work we will present two public studies carried out

by Sisprobe and STILLWATER Canada INC with the intervention of The University of Western

Ontario (UWO) and at Memorial University Newfoundland (MUN).

1.3.1 Sonic logs

The sonic studies measure the acoustic properties in the laboratory or in-situ using borehole

sonic logs. This supports the ore seismic response calibration and a better understating of the

geological features. At Marathon deposit, two measurements were made, one in-situ acoustic

log and the other at the laboratory using surface samples and drillcore. Here, werecapitulate

the log results presented by Beard et al. (2021).

Figure 1.4: a) Sonic logs for hole M-19-537, Vp and Vs values at depth categorized with respect
to lithology. b) Violin plots of the sonic log Vp measurements for each identified lithology,
with median and interquartile ranges shown with dashed lines within the violins. Triangles and
diamonds are velocity measurements made on surface samples and drill core at the University
of Western Ontario (UWO) and at Memorial University Newfoundland (MUN). Modified from
Beard et al. (2021).
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Figure 1.4 summarize both in-situ and laboratory measurements. Panel a shows the Vp-

velocity and Vs - velocity values at depth for one single hole in Marathon deposit (see figure

1.3). It can be observed that the different gabbro structures have similar velocities and the

faults result in lower Vp velocities. Laboratory Vp measures are shown in figure 1.4-b. It can be

seen that the velocity of several units overlaps for two approaches, showing a poor contrast in

the region. Hence, the seismic characterization will be more challenging. Therefore, due to the

similar velocity of all gabbro units, seismic methods cannot directly image the mineralization

but rather the gabbro intrusion.

1.3.2 Passive seismic test

A first noise test at the Marathon site took place in 2017 by Sisprobe to characterize ambient

seismic noise in the region. The results shown here are modified from Chmiel et al. (2017) report.

31 vertical component stations were deployed in Marathon for one month from 11 September

2017 to 09 October 2017 (Figure 1.5-a).

Station
00.127

Station
00.103

a. b.

c.

Station
00.121

Figure 1.5: a) Marathon (Canada) noise test deployment. b) Probabilistic Power Spectral
Density Gray lines represent the standard new low noisemodel (NLNM) (Peterson et al., 1993).
c) Spectrogram for station 00.127 from 2017-09-11 to 2017-09-10 using one hour segment without
overlap . Modified from Chmiel et al. (2017).

They conclude that the noise level was relatively high, and the quality of the data is good.

Figure 1.5-b shows the Probabilistic Power Spectral Density and the spectrogram of the station
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1.5-c indicating a high level of high-frequency noise. The pseudospectral density functions show

that the microseismic noise energy is correctly recorded up to a period of 10 seconds; after this

value, the noise is generated by the instrument and is not of seismic origin.

Then beamforming analysis was performed on daily records. Figure 1.6 shows a beamforming

result averaged over the month. High-frequency bands show noise coming from Lake Superior

(South-West) and low-frequency noise coming from North Atlantic (North-East). These sources

are stable over time. The Rayleigh wave is weakly dispersive in the area. Therefore, they only

observed the fundamental mode of the Rayleigh waves.

Figure 1.6: Average noise beamforming analysis for the entire duration of the survey. Five
periods bands are studied. Warm colors represent high power amplitudes. Blue dots on the map
(lower right panel) show the stations used. Modified from Chmiel et al. (2017).

Correlation functions are computed from daily ambient noise records. Signals are first

downsampled to 50Hz and normalized in the frequency domain. Figure 1.7 b and c show

correlations between a reference station (00.121) versus other stations sorted by increasing

distance and filtered in two different period-bands ([1-10]s and [0.05-1]s respectively). The

propagation of Rayleigh waves is visible across the array, even for important offsets. As observed

from the beamforming, the strong directionality of the original ambient noise results in an

asymmetry of the reconstructed wave-front and the cross-correlations show good SNR.

Distance-binned gather was constructed by averaging seismic section by bins of fixed distance

intervals every 200m (Figure 1.7-a ). The Rayleigh wave data shows fundamental mode, which

is weakly dispersive. This test showed that the seismic noise was suitable for passive imagery.
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Noise cross-correlations showed a good signal-to-noise ratio and propagation of the Rayleigh

wave fundamental mode with weak dispersion. This study provides a promising overview of

the noise characteristics (correct distribution and relatively high-frequency); They used these

seismic noise records to apply seismic interferometry, allowing them to retrieve surface waves.

However, to explore the gabbro intrusion, a more dense array is needed it. In the frame of

PAFICIC project, a dense array was designed and deployed. In the following section, it will be

described.

a.
b.

c.

Figure 1.7: a)Stacked section of noise cross-correlations in [0.1 - 10]s for Rayleigh waves. b) - c)
Noise cross-correlations for station 00.121 and all others. b) long periods [1 - 10]s. c) an short
periods [0.05 - 1]s. Modified from Chmiel et al. (2017).

1.4 Marathon dataset

The marathon site corresponds to a mineral exploration block. The potential targets are bodies

with high concentrations of platinum group metals (Cu-PGM) hosted in a Gabbro intrusion

(Figure 1.3-b). These bodies have irregular shapes up to 200m in length and 25m thick. It is

unlikely to be able to image these structures with passive seismology methods because of their

size. Nerveless, the thickness and dip of the intrusion and the lower contact geometry are largely
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unknown. Provide this background information is valuable for the mining exploration industry.

Surface waves are often used for tomography in passive seismic. However, these waves lack

the resolution needed to image localized targets at depth as needed in Marathon deposit. Instead,

body waves can image small objects with high resolution at depths of several hundred meters at

least. In addition, body waves and high-frequency surface waves retrieved from ambient seismic

noise could improve spatial resolution to better detect geological structures’ geometry. However,

high-frequency arrival retrieving is challenging because low-frequency energy dominates the

seismic noise records.
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Figure 1.8: a) Grid design for the Marathon site. b) Map of North America. The site test is
represented by the red rectangle. c) Deployment work at Marathon test site.

Based on the previous passive study (noise sources) and the geological requirement (gabbro’s

geometry), the grid was designed to develop a technique appropriate for greenfield exploration.

The grid was composed of two overlapping grids, a 416-sensor array and a 609-sensor profile

line. The figure 1.8-a shows the theoretical position (black dotes). The first grid is a regular

array comprising 416 sensors spaced 150m apart in all directions. For the rest of the manuscript,

this array will be called a sparse array. The array’s extent was sufficient to cover the Marathon

Deposit and the model down-dip extension to the West (see figure 1.3-a). The second grid was

a profile line with a 200m width, a 6040m length, and a sensor spacing of 50m. The profile

line consisted of 609 sensors (called dense line here). The noise direction was determined from

an early noise test performed in 2017 (section 1.3.2, Chmiel et al. (2017)). According to these

results, both grids designs were configured along Superior Lake at 250 deg to the West (Modified
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from STILLWATER and Sisprobe (2019)).

The sensors used for the survey were the ZLand Gen2 one component (vertical direction)

with a 10Hz range. The nodes are compacts and contain a power supply convenient for passive

deployments in isolated and difficult access sites such as Marathon deposit. Figure 1.9 shows the

instrumental response of the sensors. The red line represents the corner frequency. Therefore,

the technical details are in the table below:

Parameter: Description:

Co-ordinate system UTM WGS84 Zone 16N

Acquisition Schedule Continuous

Sample rate 4ms

Pre-Amp Gain 36dB

Anti-alias Filter Linear

Low Cut Filter None

Sensor used Internal 10hz DTCC SOLO

Table 1.1: Table of ZLand Gen2 Parameters

Figure 1.9: Transfer function in for ZLand Gen2 sensor. In red is the corner frequency.

The deployment of the sensors started on September 17 and was completed by September

21, 2018. This allowed for a recording time of 30 days at 250Hz. The sensors were retrieved

from October 22 to October 26. Of the 1024 sensors deployed, six were not recovered, either
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because they were disturbed by animal movement or buried under a rockslide. In addition, some

sensors (in both arrays) could not be placed at the designed grid location or within a distance

tolerance of <20m because of environmental constraints as lakes or unattainable places. Most

of the node’s real positions were noted. For those whose position was not noted, the theoretical

position will be used since the differences are minor (of the order of a few tens of meters).

Once the sensors were retrieved, the data was successfully downloaded and shipped to

Sisprobe, UGA, and DIAS for analysis by late November. Then, the data were downsampled at

50Hz, and 125Hz to be used during my Ph.D. research.

In the next chapter, wewill describe the recorded noise signals and their frequency and

temporal characteristics. Then, the seismic noise sources will be explored to select the most

adapted for Marathon geological context.
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Chapter 2

High frequency seismic noise in

Marathon
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2.1 Introduction

Passive seismic interferometry successfully retrieved surface waves in general up to 1Hz and

mainly originated by ocean swell activity. This gives rise to a large class of methods that can

be regrouped under a generic name of ambient noise surface-wave tomography (Nakata et al.,

2019). Notwithstanding the good results and applications using passive surface waves for sub-

surface imaging, only a few studies retrieved passive body waves at this scale. Body-waves
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reconstruction is of significant interest because it can provide additional information about the

medium than the information provided by surface waves.

To obtain images with better resolution and even to extract body waves at a local scale (first

∼ 10km) using passive seismic interferometry, it is necessary to use high frequency noise sources.

Various authors have extracted reflected body-waves (e.g., Draganov et al., 2007; Panea et al.,

2014; Olivier et al., 2015) or refracted waves (Roux et al., 2005a; Nakata et al., 2015) using

ambient noise to image the sub-surface. Dong et al. (2006), Mikesell et al. (2009) and Snieder

et al. (2006) estimated physical parameters from non-physical refractions resulting from spurious

terms after the cross-correlation. However, the interpretation and extraction of body-waves was

not straightforward and the studies were carried out in populated or industrial regions where

sources of high-frequency noise sources were a priori present and strong.

At local scale the sources of high-frequency seismic noise (>1Hz) are either anthropogenic

originated such as traffic, windmills, industrial machinery, etc (Bonnefoy-Claudet et al., 2006)

or natural as near-coast breaking ocean waves, rivers, lakes and winds (Zhang et al., 2009;

Poppeliers and Mallinson, 2015; Xu et al., 2017). These sources are not uniformly distributed

in time, space or frequency, and due to their high-frequency content, they attenuate fast with

distance. A good understanding of sources mechanism and their limits is needed prior to proper

utilization. Due to the diverse detection techniques, it is possible to locate and discriminate

them from the rest of the seismic noise records (Kong et al., 2019; Meng et al., 2019).

To obtain high-resolution imaging of the sub-surface, high-frequency seismic noise sources

are needed, and their understanding is essential. Therefore to image Marathon deposit, first a

detailed noise sources characterizations are needed. Thus, we will explore the anthropogenic and

natural sources of the region, their frequency and temporal characteristics, and their advantages

and disadvantages for imaging the shallow crust. Subsequently, train signals will be presented,

showing them as the primary high-frequency energy source in the region. Finally, through

observations and modeling, train-generated signals will be studied in detail to describe their

source mechanism and signals properties.

2.2 Seismic noise in Marathon

Based on the previous passive seismic test in Marathon, we expect two sources of noise: the

Lake Superior and the North Atlantic sea. These sources mainly generate low-frequency noise

(<1Hz). However, to image the gabbro intrusion, which has a size of approximately 600m, we
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need to retrieve energy with frequencies greater than 5Hz, and thus high-frequency sources that

allow us to reach is frequency.

Bonnefoy-Claudet et al. (2006) showed that the high-frequency noise is mainly generated by

human activity. An a priori look for potential noise sources in the region was performed before

a thorough analysis of the seismic records. Marathon town, the aerodrome, a mine site, and

the railway and highway traffic are the potential cultural noise sources in the region. As shown

in the figure 2.1, Marathon town is located on the north of Lake Superior north and at 9km

southwest of the center of the array. The town area is 170.54 km2 and the population is 3,273

people (Marathon, 2019). The aerodrome is situated 5km northeast of Marathon town; It is little

crowded, mainly used for helicopter flights. Due to the size of the town and the aerodrome, we

do not expect them to be a primary source of cultural noise in the region. Blasting events from

an active mine site located 30km Southeast of the array are promising sources. Besides these

sources, the Canadian Pacific Railway (CPRS) and the trans-Canada primary highway produce

significant vehicle traffic.

Figure 2.1: Map of sources of noise at Marathon. Gray dots are the 1020 seismic stations.
The black dashed line is the railroad (Canadian Pacific Railway), and the continuous red line
represents the Canadian highway (HWY).

We can look forward to natural sources of high-frequency seismic noise, Roux et al. (2018)

showed that trees could behave as a locally resonant material creating high-frequency seismic

noise. As shown in figure 1.1, the studied zone is a forest region, and the interaction between
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the tree, and the wind could be considered as a natural source of high-frequency noise.

Figure 2.2: Array for the Marathon site. Gray dots are the 1020 seismic stations. In red is the
array used for the beamforming analyses. The 3 stations showed by the arrow are the station
used for the PSD analysis.

The raw data was examined to quantify and understand the characteristics of seismic sources

of ambient noise. First, a quality check is performed based on spectrograms and Probability

Power Spectral Density (PPSD).

PPSD estimates the statistical distribution of the seismic ambient noise at a given station

in the function of the period and the amplitude. To calculate the PPSD, a discrete Fourier

Transform is applied to the data using one-hour window without overlap, the Power Spectral

Density (PSD) computed as the normalized square of the displacement spectrum, and the

instrument response removed (Peterson et al., 1993). Then the probability density function

is generated from PSD.

Figure 2.3 show the PPSD and the spectrograms at 3 different stations located as in figure

2.2. These three examples represent three different cases in Marathon. First, station 01.01002,

figure 2.3-a and d show high amplitudes for periods between [0.1 - 10]s. This station is the nearest

station to the railway and the highway. The high-frequency seismic noise is mostly due to vehicle

traffic and the lake. Station 15.01102 is farthest from the railway, the high-frequency noise is

still present, but the energy is attenuated with distance, so the amplitude is less important than

the precedent case. Finally, station 26.01084 had a problem during the recording, and only the
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Figure 2.3: Probability Power Spectral Density (PPSD) and spectrograms computed for the
3 stations showed in figure 2.2. PPSD, first line, green to yellow colors indicate the highest
probability power as a function of period. Gray lines represent the standard new low noise
model (NLNM) (Peterson et al., 1993). Spectrograms, second line, are computed for one month
of data using one hour segment without overlap.

electronic noise was recorded. The station will not be used for the rest of the study.

A beamforming analysis was performed to analyze the seismic noise sources distribution in

time and space as well. Beamforming is an array method that estimates the coherent portion of

seismic wave energy that propagates over the seismic array. Assuming a plane wave arrival, the

signal at the station i is described as:

ai(t) = aref (t− τi) + ni(t) (2.1)

Where aref (t − τi) is the reference signal and ni(t) the incoherent noise and t the time.

Knowing the stations position ri, the delay between the stations τ is defined as τi = uri; Where

u is the slowness vector. The N records, ai(t), are shifted to a specific slowness and back azimuth.

The time-shifted traces are then summed, producing the beam trace b(t):

b(t) =
1

N

N∑
i=a

ai(t+ τ) = aref (t) +
1

N

N∑
i=a

ni(t+ τi) (2.2)

Suppose the single-station recordings are appropriately shifted for a particular back azimuth

and slowness. In that case, all signals with the matching back azimuth and slowness will sum
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constructively finding the direction of propagation (e.g., Rost and Thomas, 2002, 2009). The

frequency-wave-number (f-k) beamforming analysis implement this approach in the frequency

domain.

In order to have high-resolution beamforming, the beam is deconvolved by the array response

function (ARF). The ARF is the array response to a single monochromatic wave propagating

over the array. The ARF power spectrum is separated into two parts. The beam main lobe

(actual signal) is controlled by the array aperture and the beam frequency range (Nakata et al.,

2019). The ARF deconvolves the beam power to have high-resolution beamforming (to decrease

the width of the main beam lobe and decrease the contribution from beam side lobes).

Figure 2.4: Beamforming averaged over one day of acquisition, the 1 October 2018. It is
computed in 6 different frequency bands. The amplitude spectra in the horizontal slowness
domain. Warm colors represent high power amplitudes.

The beamforming method was applied to the raw data sampled at 50Hz. Only sparse array

stations were used (red dotes figure 2.2). we decided to use this array to have a regular grid and

conserve a good resolution while decreasing computation time using fewer sensors. The data was

cut into 1-hour time windows and the beamforming computed in the spectral domain. Then,

the beam is averaged over one day and one month.

Figure 2.4 shows the averaged beamforming for the 1st of October in 6 different frequency

bands from 0.2Hz to 17Hz. The higher frequency was chosen base on the spatial resolution of

the array and the Nyquist frequency (25Hz, here). Even if the interest here is to extract high-
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frequency energy (>1Hz), lower frequency bands up to 0.2Hz were analyzed to characterize the

noise in a general way. The figure 2.5 shows the beamforming averaged over 30 days (from 22

September to 22 October 2018) for the same frequency bands.

Beamformings (daily and monthly) show that the low-frequency energy, [0.2 - 0.5]Hz, is

coming from the Northeast. This is due to the microseismic activity generated by the North

Atlantic sea, as was also shown in the pilot test at Marathon (chapter 1, section 1.3.2). The

daily beamforming also indicates the energy coming from the North Atlantic sea for the [0.4

-1]Hz frequency band that coexists with the energy coming from the Superior lake Southwest

direction. However, the sea energy is not a daily constant for the [0.4 -1]Hz band; when the

daily beamforming is averaged, the apparent amplitude is reduced, and the Rayleigh wave is

not clear anymore. For the high-frequency bands (>1Hz), the Rayleigh wave is visible for a

good azimuthal rage. The surface wave has an apparent velocity of 3.4km/s and illuminates the

array from the Est to the South. Base on the potential sources at Marathon, this arrival could

be generated by several mechanisms as the train and highroad traffic and the swell from the

Superior lake. A second arrival is briefly seen for the [4 -10]Hz and [7 -17]Hz frequency bands

(figure 2.4 black square). This arrival comes from the West of the array and arrives with a

velocity of 3.7km/s. Given their velocity and frequency content, we suppose that it is an S-wave

or a higher morde surface-wave originated by the traffic in Marathon.

Figure 2.5: Beamforming averaged over the 30 days of acquisition, computed in 6 different
frequency bands. The amplitude spectra in the horizontal slowness domain. Warm colors
represent high power amplitudes.
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2.3 Sources of high frequency noise at Marathon

In order to quantify the spectral characteristics of the possibles sources of noise in Marathon,

we explored the noise records of individual stations. By doing, so we expect to describe the

seismic noise characteristics in the time and frequency domain and therefore find sources of

high-frequency noise, which can be used for imaging. We inspect the spectrograms of all stations

during the 30 days of the deployment. Here, we will only present two representative examples

for one day of data. These examples enable us to explain the spectral and temporal aspects of

the principal sources of seismic noise in the region.

Figure 2.6 show the seismic trace, the spectrogram and the spectrum of the 21 October for

2 stations: 01.01002 and 16.011102 (as showed in figure 2.2). The data is pass-band filtered

below 20Hz. Spectrograms are computed over time windows 1 minute with 70% overlap. For

both stations, the high-frequency content is important and dominates the records, which is

promising. We also note different particular features in the spectrograms and the seismic traces.

These features will be discussed in detail in the next section, especially blast event (red dashed

rectangles) and vehicle noise (blue dashed rectangles ). Low-frequency energy (<2.5Hz) will

cover as well.

Figure 2.6: Spectral analyses for 21 October 2018. (Top of each panel) Seismograms, (bottom of
each panel) spectrograms, and (right of each panel) spectra resulting from 1-day data of station
01.01002 and 16.01202 (see figure 2.2) The data is low-pass filtered at 20Hz. Spectrograms are
computed over time windows 1 minute with 70% overlap. Red dashed rectangles represent 2
minutes during a blast events occurred (zoom in figure 2.7). Blue dashed rectangles represent 2
hours of data during two trains passages were recorded.
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2.3.1 Superior Lake

Xu et al. (2017) showed several examples of seismic noise generated by lakes around the world.

They demonstrated that lakes produced microseisms at periods of [0.5 - 2.0]s where primary and

secondary peaks that are often simultaneously observed. The energy engender by lakes is smaller

than in oceans because of the less energetic wave action in lakes. It propagates as short-period

Rayleigh waves with a rapidly attenuation with distance (e.g., Myers et al., 1999).

The Superior Lake is one of the biggest lakes in the world with a surface of 82000 km2 and

waves between 0.3 and 1.3m high. The previous studies in Marathon showed that it is the main

source of seismic noise in the region. New beamforming analyses (figures 2.5 and 2.4) confirm

that the presence of microseismic energy from the Superior Lake. The energy dominates the

frequency bands of [0.4 - 1] and [1 - 2.5]Hz, generating surface waves. Furthermore, Teodor et al.

(2021), and Sisprobe did ambient noise surface wave tomography at Marathon, showing that

Lake’s noise is an efficient source of seismic noise for low-frequency retrieving. Even so, the lake

seismic energy is not high-frequency enough to generate body waves for subsurface imaging.

The spectra (figure 2.6) show the presence of energy below 2.5 Hz; however, this energy is

relatively low amplitude compared with the energy between [3 - 20]Hz. Hence, the Lake is not

the most accurate source of seismic noise in the region for high-resolution imaging of the shallow

sub-surface.

2.3.2 Mine blast

Blasting is a method for fragmenting or moving rock in open-pit mines. The signal caused by

blasting events release energy in the form of seismic waves, which are similar to the microsismicity

signal wave-forms (Li et al., 2018a). Barrick Hemlo Mine is an active open gold mining site

situated 30km away from the array. In this active mining environment blasting events are

expected. Thanks to one of our partners in the PACIFIC project, we had access to the

blasting timetables during the deployment. Two blasting sections were done every day, including

weekends, with an average of 3 blast events per section.

Figure 2.7 shows the spectral and temporal characteristics of one blasting section (i.e., series

of blasting events) the 21 October. Three blast events were detected by the sensor 01.01002

(figure 2.7-a). The blast events influence seismic noise at frequencies between [1 - 20]Hz but

during short time windows (≈ 2seconds). Conversely, the sensor 01.01002 does not detect energy

from the blast events neither in temporal or spectral-domain even if it is closer to the mine (figure

2.7-b). This difference could be due to the local background noise that hides the blast event.
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It is concluded that blast events are not appropriate in the Marathon case for the following

reasons. First, there are few events per day. Second, the mine is too far from the studied zone,

and it is not always possible to detect the blast events. Third, the blats are only coming from

one azimuth that is not optimal for seismic interferometry.

Figure 2.7: Spectral analyses during blast events. (Top of each panel) Seismograms, (bottom
of each panel) spectrograms, and (right of each panel) spectra are resulting from 2 minutes
(01h59-02h01) data the 21 October 2018 (station 01.01002 and 16.01202). The data is low-pass
filtered at 20Hz. Spectrograms are computed over time windows 5 s with 90% overlap.

2.3.3 Wind

The ground motions generated by wind may cover significant portions of seismic records with

wave-form amplitudes similar to or larger than those produced by microseismicity, i.e., magnitude

< 2 (Withers et al., 1996). The turbulent wind flow can generated seismic energy in contact

with the Earth’s surface. The interaction with objects at the surface, for example trees, can also

generate high-frequency tremor-like signals (e.g., Roux et al., 2018; Johnson et al., 2019). Wind-

generated ground motions near trees have significant spatial variability, over tens of meters

modulating the recording amplitude in the function of wind velocity and distance from local

structures (Johnson et al., 2019). Frankinet et al. (2020) demonstrated that two linear laws

relate noise level and the wind velocity at wind velocity lower and greater than 6m/s.

To evaluate the interaction between the wind trees and the seismic noise in Marathon and

the eventual generation of high-frequency signals, we analyzed the correlation between the wind

velocity and the Peak ground velocity (PGV) as done by Johnson et al. (2019). First, we obtained

the wind speed from 22 September to 22 October. The closest meteorological station is located
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at the aerodrome of Marathon (4km away from the array). Therefore, the data is sampled

per hour and available in The Environment and Climate Change Canada database (https://

climate.weather.gc.ca/historical_data/search_historic_data_e.html). Then, we used

the 30 days of seismic records sampled at 50Hz for 9 sensors located at the south of the array.

The sensors were selected because of their close position to the meteorological station (see green

square figure 2.2). Next, we calculated the PGV for 5 minutes moving windows with 1-minute

overlap for each sensor separately, and finally, we computed the median of the nine sensors.

Figure 2.8: Peak ground velocity (PGV) compare to the wind velocity for one month of data.
(a) The blue line represents the decadic logarithm of the PGV averaged for 9 sensors during
30 days (green square figure 2.2). Data for each sensor were processed separately by moving
averaging PGV (see details in the text). Wind velocity per hour is shown in black. (b) Blue
dots represent the wind velocity versus the decadic logarithm of the PGV. The orange line is a
linear regression of this data, and the yellow line is the linear regression for PGV < 2.5m/s.

Figure 2.8-a shows the averaged PGV (blue dots) compared to the 1-hour sampled wind

speed (black line). A linear log correlation between PGV and wind velocity is clear for low wind

velocity values (<20m/s). Otherwise, the correlation is unclear for greater velocity values except

for two days (from 2 to 4 October and 10 to 13 October). Thus, the greater PGV values are

not only generated by the wind but from others sources of seismic noise. Figure 2.8-b shows

the PGV against the wind velocity (blue dots). The orange line represents the data’s linear

regression with a Pearson coefficient of 0.1355, which indicates a low correlation between both

parameters. For PVG values smaller than 2m/s, a linear tendency is visible (yellow line) as been
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described before by Frankinet et al. (2020). Even if we showed a correlation between the seismic

noise and the wind velocity, this mechanism produces local noise sources inside the array, which

does not meet the appropriate conditions for seismic interferometry. So this source should be

considered mainly as a source that pollutes the records.

2.3.4 Vehicle noise from the highway

Trucks or vehicles moving along highways induce vibrations into the ground generating high-

frequency seismic signals (>1Hz). These signals can be detected and discriminated from the rest

of the seismic records using its seismic properties (e.g., Riahi and Gerstoft, 2015; Diaz et al.,

2017). In addition, several studies used continuous seismic records dominated by traffic noise

to apply seismic interferometry to successfully extract surface waves (Behm, 2017; Chang et al.,

2016) and both surface and body-waves (Nakata et al., 2011) for imaging purposes.

Marathon’s highway is located west to the south of the array, and the closest sensor is 1.3km

away from the highway. This highway is relatively calm, and the transit is mostly due to cars and

mining trucks. It is important to note that large and heavy trucks produce more seismic noise

than standard cars. The Annual Average Daily Traffic (AADT) for Marathon’s highway, defined

as the average twenty-four-hour, two-way traffic for the period 1 January to 31 December, is

2,250 for 60,9km railway long in 2016 (Traffic-Office, 2016). Knowing that this value is for 60km

of highway and not just the portion near the array, we can deduce that the AADT value at

Marathon is considerably lower.

The averaged number of passages per day is not insignificant, but the vehicle-generated

signals are not perceptible by all sensors. For example, figure 2.9 shows the difference in the

temporal and spectral domain for 2 sensors regarding vehicles-generated signals (black dashed

rectangles). One sensor is located near to the highway 1.3km away (left panel), and the other

one is 4km away from the closest portion of the highway (right panel), as shown in the figure

2.2. The spectrogram (left dashed rectangle) shows high-frequency energy between [7 - 20]Hz

shaped like vertical spectral lines for the station close to the highway. Typical traffic-generated

signals are observed in the temporal domain; their signature is a tremor-like signal with a small

amplitude and a duration of approximately 1 minute. However, only one signal is detected when

the sensor is farther, most likely because it is produced by trucks or heavy vehicles. The other

traffic-generated signals are not clear anymore because they are not energetic enough, and the

produced energy decreases rapidly with distance.

For this reason, the Northeast part of the array does not receive energy from vehicle traffic,
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and this source can not be used directly for seismic interferometry in the Marathon case.

Nevertheless, other powerful traffic-generated seismic signals are discernible around the entire

array, train-generated signals. The following section will describe the train signals observations,

and then the source mechanism will be explained.

2.3.5 Train seismic signals: primary source of high-frequency noise in Marathon

Vehicle traffic has long been recognized as a pervasive source of noise detrimental to the quality

of seismic records (Douze and Laster, 1979). In recent years, the intriguing tremors generated

by trains startled seismologists and gave rise to a number of publications related to signal

detection and characterization (Riahi and Gerstoft, 2015; Li et al., 2018b; Green et al., 2017;

Fuchs et al., 2018; Inbal et al., 2018) and source modeling (Lavoué et al., 2020). In pioneer

studies Nakata et al. (2011), Quiros et al. (2016), and Chang et al. (2016) have proposed the

idea of using seismic records dominated by traffic noise and to passive seismic imaging for near-

surface applications. They proved that the presence of traffic noise in the seismic records helps

to retrieve high-frequency signals from passive seismic interferometry. By further applying the

concepts of seismic interferometry to the correlation of this long-range train-generated noise,

Brenguier et al. (2019) demonstrated the possibility of extracting useful information on the

Earth’s shallow crustal structure and temporal changes down to a few kilometers depth.

As shown before, high-frequency energy in the range of [1 - 17]Hz comes from the Southwest

in the Marathon area. Several sources of cultural and natural noise are located in this direction,

but none are stronger enough to be perceived by all the array except train traffic. Trains passages

generate signals energetic enough to be detectable for the entire array. The railroad is located

from the Southeast to the West of the array, similar to the highway’s location (see figure 2.1).

This rail line is a rail freight transport only used for transport cargo. Thus, only freight trains,

in large part hauling filled containers, are crossing the region at any time of the day.

Figure 2.9 shows the temporal and spectral characteristics of the train-generated signals

observed at Marathon. Two hours of records of 22 October were explored in the [0 - 20]Hz

frequency band. During this period, two trains traveled along the array. In the temporal domain,

the train signals are characteristic of their tremor-like signals, and in the spectral domain, the

train produces broad-band signals from 2.5 to 20Hz. Note that the data used for this figure was

sampled at 25Hz, for this reason, the maximum observed frequency is 20Hz. Horizontal spectral

lines (figure 2.9-c) are also remarkable during train passages, the modeling in the following

section will help to explain this behavior. Even if the power spectral density and the temporal
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amplitude decrease with distance, it is essential to note that the signals are observable with a

greater amplitude for both sensors (panel a and b), which is the case for the whole array. Equally

important, trains tremors are recorded for more than 20 minutes. Thus, we can conclude that

freight trains are the primary source of high-frequency noise in Marathon, generating promising

high-frequency seismic noise for long periods several times per day and perceivable for all the

array.

Figure 2.9: Spectral analyses during train and car passages. (Top of each panel) Seismograms,
(bottom of each panel) spectrograms, and (right of each panel) spectra are resulting from 2
hours (16h-18h) data the 21 October 2018 (station 01.01002 and 16.01202). The data is low-
pass filtered at 20Hz. Spectrograms are computed over time windows 20 s with 70% overlap.
a) black dashed square: car passages, red dashed square: train passage. Figure c represents a
zoom in the data during a train passage for the first station.

To characterizing the wavefield during a train passage, we applied 3-minute long window

beamforming. Figure 2.10 shows a train passage record at station 01.01002 and 8 beamforming

panels computed using the sparse array for the 3 minutes of data filtered between [7 - 17]Hz.
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Three coherent arrivals are seen, one at 3.1km/s considered as a surface wave. The high apparent

velocities at 3.7km/s and 7.1km/h suggest body waves (S- and P-waves corresponding). It can

be seen how the array receives coherent energy from a different azimuth (following the railway

from West to East) over time, conforming train’s position. Thus, the energy propagates on a

particular path (train position - array), allowing a vast illumination and providing additional

information about the medium. Note that the power amplitude varies for each beamforming

panel, showing the greater amplitudes for panels 2 and 5. To explain the origins of amplitude

variation in train signals, we will present train seismic signal modeling in the next section.

Figure 2.10: Beamforming during a train passage. Upper panel: normalized train tremor at
station 01.01002. Lower panels: 3-min window beamforming corresponding to the numbered
sections in the recording. They are computed using the sparse array and filtered between [7 -
17]Hz. Warm colors represent high power amplitudes; note that amplitude is variable for each
panel. In white, the apparent velocities of high amplitude arrivals (beamforming 1).

To see if the behavior of train signals is common to several passages, we studied several train

passages for data sampled at 50Hz and not filtered. Figure 2.11 shows 6 different train passages

for the same sensor (01.01002). The train-generated signal is similar in the temporal domain

and dominates the records. To analyze the similarity in view of the array, we beamformed a one-

minute window for each train separately, using the sparse array and filtering the data between

[1 - 17]Hz. The array is illuminated from similar azimuths for different train passages showing
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the repeatably of the source. These results conclude that trains passages are the only significant

source of high-frequency surface waves and body wave energy. Besides, train passages are a

repeatable seismic source of cultural noise (approximately 6 train passages per day).
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b.station 01.01002a.

Figure 2.11: a) 6 train tremors recorded at station 01.01002. b) 1-minute window beamforming
for six train passages, corresponding to the red square in the Right panel. The beamformings
are computed using the sparse array and filtered between [7 - 17]Hz. The amplitude spectra in
the horizontal slowness domain and warm colors represent high power amplitudes.

2.4 Train signals characterization

After realizing that the primary high frequency (>1Hz) noise source in Marathon is the freight

trains passing nearby the array, we decided to understand these signals from a seismic point

of view by modeling them. This section material is modified from Pinzon-Rincon et al. (2021)

section 1 and inspired by the exchanges and collaborations with François Lavoué about train

modeling summarized in Lavoué et al. (2020) within the framework of the PACIFIC project.

Massive freight trains generate seismic wave-forms with a striking similarity to episodic

tectonic tremors (figure 2.9 top panels). As Inbal et al. (2018) reported, the identity of the

sources as man-made was not obvious because freight train traffic often lacks cultural diurnal

or weekly modulation, and typical train speed (25 m/s or 90km/h) is in the range of reported

tectonic tremor migration velocity at depth. However, train hum has a distinct signature with

clear spectral lines above 1Hz (Fuchs et al., 2018), as illustrated in Figure 2.14 for a train signal

recorded in Marathon about 3km from the railway.

The engineering community has studied train-induced ground vibrations thoroughly to damp
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them and mitigate potential hazards. Several source mechanisms are under study (e.g., Connolly

et al., 2015) including quasi-static excitation due to axle loads and dynamic interactions between

trains, track, and ground. In a recent study, Lavoué et al. (2020) showed that the quasi-static

excitation due to axle loads is the primary mechanism explaining the spectral characteristics of

seismic signals observed at intermediate to long distances from the railway (from hundreds of

meters to tens of kilometers Fuchs et al., 2018; Inbal et al., 2018; Li et al., 2018b; Brenguier

et al., 2019).

Lavoué et al. (2020) conclude that the spectral lines arise from the complex interactions

of periodic loads from the regularly spaced wheels on the also regularly spaced sleepers. The

frequencies of these spectral lines depend on train geometry (i.e., train car length and wheel

spacing within each car), spacing between sleepers, and train velocity. Nevertheless, simple

assumptions are sufficient to reproduce the main features of observed signals and enable us to

understand the complexity of seismic signals produced by trains.

Figure 2.12: Train simulations geometry. a) Geometry of a train and b) Schematic representation
of the forces applied by a train. c) Geometry of the numerical space experiment with the values
used for the simulations. a) and b) modified from Lavoué et al. (2020).

One may then model train-generated seismic signals by considering only the vertical forces

due to loading applied by axles on the railroad ties (commonly called sleepers, figure 2.12-b)

and activated by the passage of the train wheels (Krylov and Ferguson, 1994; Lavoué et al.,

2020). Therefore, we consider only one single rail, assuming that a load of each train axle is

applied as a single point source (i.e., the two wheels of each axle act simultaneously on each

sleeper). Using source-receiver reciprocity, we simulate the signal that would be generated by a

train passing over the sleepers and recorded by a sensor away from the railway as the sum of the

signals resulting from a virtual source located at the sensor position and recorded at the sleepers

positions (2.12-c). A Dirac source time function is used in SEM46 spectral-element software for

Laura Pinzon-Rincon 51



CHAPTER 2. HIGH FREQUENCY SEISMIC NOISE IN MARATHON

the simulations (Trinh et al., 2019) in the visco-elastic approximation in a homogeneous medium

(the values are in the figure 2.12-c).

Two mechanisms explain well the observations made by Fuchs et al. (2018) and Li et al.

(2018b): the single stationary source (sleepers) and the moving load (wheels). When considering

irregular sleepers, signals are dominated by the signature of the sleepers acting as stationary

sources, and we then retrieve a fundamental frequency f1 = vtrain/Lw controlled by train speed

and wagon length Lw and the modulation of the spectrum is according to the train geometry.

Figure 2.13-a, shows the spectrogram with a narrow frequency spacing that corresponds very

well to most of the observations made by Fuchs et al. (2018) (figure 2.13-b). When perfectly

regular sleepers are considered, signals are dominated by the signature of the train wheels acting

as moving loads. This generates a harmonic signal with a high fundamental frequency f2 =

vtrain/∆sleeper (usually ∼50Hz), related to train’s speed vtrain and sleeper spacing ∆sleeper

and a clear Doppler effect. Figures 2.13- c and d show a Doppler effect from synthetic and

observed data, respectively. Doppler effect is caused by a characteristic length; it is not the

sleeper spacing but a longer spatial period of the railway, which results in a lower frequency

f2. In this case, the length of rails themselves explains the frequency spacing, emitting seismic

waves at the end of unwelded rails. f2 depends on the geometry of the railway and not of the

train, and the underlying mechanism is fundamentally different, typical of a moving load.

The two signatures coexist in real signals, and the dominance of one mechanism over the

other depends on source regularity. Although, sleeper regularity should be understood as the

coupling between the sleepers and the ground via the ballast and substratum (i.e., an effective

parameter) The spectral lines generally related to frequency f1 are predicted to be in a range

of about 3 to 20Hz, which is ideal both for high-frequency surface wave tomography of the near

subsurface and for crustal body-wave imaging and monitoring (wavelengths not too large and

scattering not too strong, Brenguier et al., 2019). On the other hand, the energy-related to

frequency f2 has a higher frequencies content, which is of particular interest for the retrieval of

high-frequency body waves (Figure 2.14-b).

Lavoué et al. (2020) also observed that the spectrum changes with variable train velocity as

in figure 2.14-b. The spectrum becomes broadband as frequency notches disappear. Broadband

signals are advantageous for passive seismic applications because distinct spectral rays are

difficult to handle by seismic interferometry. However, at short distances, small-amplitude body

waves might be barely visible in the raw data, either because surface waves hide them or because

they are below the ambient noise level. Using train tremors for seismic interferometry thus
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depends both on detection limits (instrument sensitivity and local noise level) and on reliably

recognizable features in train signals. Open-source codes reproducing Lavoué et al. (2020) results

and the examples presents here are available at https://gricad-gitlab.univ-grenoble-alpes.

fr/pacific/publications/2020_Lavoue-et-al_SRL_supplemental-material.

At Marathon, the observations match to the models proposed by Lavoué et al. (2020). Figure

2.14-a shows a train signal recorded at 3km from the railway. The spectral lines related to

fundamental frequencies and their harmonics are observed and the oscillations produced by

the train speed variations as well. Thus, the broadband signals produced by train tremors in

Marathon are a perfect source of noise that can be used to extract high-frequency signals from

ambient noise recordings.

2.5 Conclusion

Given the modeling results presented before and train’s seismic observations (Fuchs et al.,

2018; Inbal et al., 2018; Li et al., 2018b), we know that trains are one of the most powerful

and persistent seismic sources of cultural noise. Brenguier et al. (2019) estimated that the

radiated seismic energy from a single 1-km-long freight train traveling through a 10-km-long

railway section assuming a vertical force induced by the loading of each wheel is equivalent to a

magnitude 1 earthquake.

However, trains are not comparable with sources used in active seismic exploration, such as

vibroseis trucks, air guns, or explosives, among others. Active sources have specific signals that

are well known in the time and frequency domain. The source type, the number of shots, and

location are fully controlled and chosen depending on the investigation depth and the studied

region extension (Dobrin, 1953; Huenges and Ledru, 2011).

Train signals can not be as considered an active seismic source because trains are moving

and extended sources for which we do not have full control. Meanwhile, it been demonstrated by

modeling and seismic observation that trains generate high-frequency energy up to 60Hz and can

be detectable up to 100km away (e.g., Lavoué et al., 2020; Inbal et al., 2018; Pinzon-Rincon et al.,

2021). Furthermore, trains are sources located at specific locations (railways) at the surface of

the Earth, of which we know the source mechanism. Thus, trains are considered an opportune

source because they are readily available, detectable, repeatable, and generate high-frequency

broadband energy. As we can distinguish the train signals from the rest of the noise records, it

is possible to categorize them and use them to take advantage of all their benefits for imaging
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purposes using seismic interferometry.

A Green’s function retrieval using seismic interferometry requires the correlation of either

a fully diffused seismic wavefield or of noise signal generated by sources distributed all around

the studied region, including at depth (Wapenaar, 2004). In practice these conditions are never

fulfilled, leading to partial reconstructions and potentially biased arrivals (Snieder et al., 2006;

King and Curtis, 2012). For opportune sources of noise such as freight trains tremors usual, blind

correlations of long time series of noise for passive seismic interferometry should be considered

with care.

When we blindly correlated traffic train noise without considering the effects of non-even

source distribution we can not consider the correlation function as the Green’s function. In

the next chapter, we will present a methodological framework focusing our approach on the

stationary zones and propose a signal processing strategy for applying seismic interferometry

for opportune sources in general, and then the application to train noise with a focus on high-

frequency retrieval in the context of mineral exploration.
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Figure 2.14: (Top) Seismogram, (bottom) spectrogram, and (right) spectrum. a) Train tremor
recorded 3km away from a seismic station in Marathon, Canada. Spectrogram showing clear
spectral lines oscillating as train speed varies controlled by the two mechanism (f1 and f2). b)
Modeling resulting from a train traveling over slightly irregular sleepers at a speed variable
(increasing and decreasing) from 50 to 120km/h. The spectrogram is computed over time
windows of 5 s with a 90% overlap. Modified from Pinzon-Rincon et al. (2021) and Lavoué
et al. (2020).
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Chapter 3

Alternative processing method using

train signals
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3.1 Introduction

The material presented in this chapter has been written based on the Pinzon-Rincon et al. (2021)

sections 2, 3, and 4.

Seismic interferometry is a general term embracing all methodologies aiming to infer seismic

responses from the correlation of seismic signals observed at multiple receiver locations (e.g.,

Wapenaar et al., 2010a,b). To retrieve a Green’s function using the correlation or an equivalent

operator the theory heavily relies on either a stationary phase condition (e.g., Snieder, 2004; Roux
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et al., 2005b) and/or an equipartition of modes defining a diffuse field (e.g., Sánchez-Sesma and

Campillo, 2006). However, even with a dominant distribution of sources at the free surface,

several studies confirmed the feasibility of retrieving the Greens function, especially for waves

body-waves (e.g., Draganov et al., 2009, 2013), and even explicitly using traffic noise (Nakata

et al., 2011). Using controlled sources to retrieve body-wave response through interferometry is

similar to daylight imaging developed by Schuster et al. (2004) or to the virtual source approach

discussed by Bakulin and Calvert (2006) for borehole imaging.

a)

d)

c)

b)

Figure 3.1: Schematic representation of seismic interferometry for opportune sources. (a) A
railway surrounding a dense geophone array; an example from the Marathon deployment. 2
different train locations (stars) allow for the illumination of the array with different azimuths.
Yellow kernels are schematic views of the propagation of diving P waves. (b–d) Three different
scenarios of wave interference: (b,c) leading to a proper measurement of a diving P wave and
(d) leading to a spurious or virtual refraction measurement. Modified from Pinzon-Rincon et al.
(2021).

Usually, passive seismic interferometry relies on blind correlations of long-time series of noise

for imaging and monitoring purposes. Instead, we introduce an alternative processing method for

opportune seismic noise sources based on an accurate understanding of noise source mechanisms,

time window, station pair selection, and specific seismic phases extraction (surface or body

waves). Under this approach, we present the general workflow and then the detailed application

at Marathon using train signals as an opportune source for passive seismic interferometry.

Train signals are practical for interferometric studies because we can easily detect or learn

that a train is coming in advance. A single train’s motion could illuminate many azimuths

and potentially different depths if a railway is sufficiently close to a targeted area. Figure 3.1-a

shows an example of geometry in Marathon (Ontario, Canada). A railway essentially surrounds
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a temporary array to assess an ore deposit (detailed in the previous chapters). By selecting

station pairs aligned with train locations (illustrated for two positions by red and blue stars),

one can potentially illuminate the ore body from a broad azimuth range. Figures 3.1-b to 3.1-

d are schematics of several P-wave interference scenarios, each with a pair of stations. They

offer a perfect ballistic interference between a diving P and PP wave (Figure 3.1-b) leading to

a directly measurable diving P wave between the two receivers; and a classical scenario of a

scattered wavefield from which we expect some random source energy to transit between the

two receivers (Figure 3.1-c). See also a more problematic interference between two diving waves

or a head wave recorded at the two stations (Figure 3.1d). Instances of this last scenario are

sometime regarded as spurious correlations or virtual refractions (Dong et al., 2006; Snieder

et al., 2006; Mikesell et al., 2009). Although not included within the impulse response between

the two stations, this last correlation feature might be useful for imaging if it is well distinguished

from expected diving waves (Dong et al., 2006).

3.2 Preliminary studies using train signals at Marathon

As shown in the last chapter 2 the primary source of high-frequency seismic noise in Marathon

is freight trains traveling on the railway southwest from the array; in addition, previous studies

performed with the same dataset by Dales et al. (2020) reinforce this suggestion. These studies

evaluated the seismic noise and concluded that high-frequency seismic noise originated mainly

from trains and vehicles passing near the array. They selectively stacked cross-correlation during

periods where vehicles and trains pass near the array, limiting the selection to azimuths in line

with the dense line array. They created common midpoint (CMP) gathers computed by inter-

station distance binning and stacked cross-correlation for all station pairs along the dense line

that share a CMP (midpoint is at the center of the dense line). The study demonstrated that

selecting the portions of the noise recordings that correspond to train passages significantly

improves the retrieval of body waves compared to correlating the entire noise stream.

Figure 3.2 compares periods without noise directionality (also called quiet periods) and

periods during which the ambient noise came from the West (when trains and vehicles are

aligned with the dense line). The first colon shows the virtual common midpoint gathers of

quiet periods filtered between [10 - 30]Hz and [20 - 60]Hz; not explicit body wave retrieval is

observed. By constants, the gathers at the left colon show a dominant arrival with apparent

velocities of 3600m/s suggests a head S waves arriving with about a 20◦ angle of incidence and
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either reflected or refracted P-wave at 7000m/s.

The study is illustrative, but the results did not allow them to perform 3D imaging. Therefore,

we moved a step further by separating and binning noise azimuths for virtual source retrieval

in different directions. Hence, wedecided to try to illuminate specific ray paths by using a new

data processing workflow. We detected train passages, inferred the positions and azimuths of

the trains relative to the array, carefully selected station pairs and time windows for correlations,

and finally stacked by train passage and azimuth.

Figure 3.2: Virtual common midpoint (CMP) gathers for the dense line selectively stacking
only. (a) CCFs for “quiet” time periods in which there is no obvious noise directionality and
(b) periods when rail or highway traffic is passing the dense line. Note the relative dominance
of the faster body-wave arrivals for the train periods compared to the surface-wave dominance
for the quiet periods. These CMP gathers are computed by distance binning (20mbins) and
stacking CCFs for all station pairs along the dense line that share a CMP. All panels use the
same midpoint, which is near the center of the dense line. The CCFs are arranged so causal
lag-times correspond to energy traveling up the array from southwest to northeast. Modified
from Dales et al. (2020).
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3.3 Seismic interferometry with opportune sources

Standard noise-correlation workflow typically removes strong transient events such as earthquakes

and then correlates the entire remaining time series recorded at different sensors (Bensen et al.,

2007). With opportune sources, including train traffic, wepropose a novel workflow. It includes

source characterization with signal and station pair selections as alternatives to blind correlation.

We thus aim to improve the signal-to-noise ratio (SNR) of the reconstructed correlation functions

and the temporal resolution of monitoring studies. Each step of this approach is illustrated in

the following sections. Figure 3.3 summarizes the five main stages of our data processing in

comparison to the classical method of continuous blind data correlation.

Measurements and 
analysis

(Imaging / monitoring)

         Stack
(by events, by azimuth)

Compute cross-correla-
tion for selected station 

pair / time window

Time window selection
Station pair selection

 

Source detection and 
characterization 

(Modeling, Machine lear-
ning, array methods )

Measurement and 
analysis

(Imaging / monitoring)

Stack

Compute 
cross-correlation 

Pre-processing of 
continuous noise 

train signal

Earthquake Seismic noise

Figure 3.3: Chart illustrating the processing steps for opportune sources (in blue) compared with
the standard ambient noise correlation workflow (in orange). Modified from Pinzon-Rincon et al.
(2021)
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The workflow’s steps:

• Identify opportune source signatures in the continuous data and, if possible, locate these

sources perhaps by distance but at least in azimuth. As shown in chapter 2-section 2.4,

the modeling of opportune sources helps reveal the temporal and spectral content of the

generated wavefield. Standard (short-time average window / long-time average window)

and more advanced techniques (e.g., Meng et al., 2019; Kong et al., 2019) detect these

transient events. Array processing techniques (e.g., Cheng et al., 2020) can be used to

locate their sources. For example, figure 3.1-a illustrates two train positions at different

times (red and blue stars) and the associated selected stations for pair-wise correlations

(red and blue dots).

• Station pair selection: with source location estimates in mind we can narrow down the

options for station pairs. For a given signal time window we use only station pairs for

which the train source is in a stationary phase zone. During a train passage, the energy

carried by its seismic signal reaches an array of sensors from a range of directions.

• Compute cross-correlations after proper time windowing and station pairs selection.

• Measurement and analysis: depending on the type of studies, various approaches such as

travel-time measurements can enhance imaging and monitoring applications.

This workflow could be extended to any kind of seismic tremors, natural or human origin.

It should help to extract high-frequency energy between well-selected pairs of stations useful for

imaging and monitoring purposes. In the following sections, we will develop each step of this

method using train tremors in Marathon. During a train passage, the energy emitted by the

train illuminates the array from different directions depending on the train’s position. We will

study all these different paths separately to obtain additional information about the medium,

retrieve high-frequency energy and increase the data quality.

3.3.1 Source detection and characterisation

The first step of the workflow presented beforehand is the source characterization. Modeling

proposed by Lavoué et al. (2020) showed that characteristic lengths of the train system (train

and railway) modulate the spectral signatures of train signals. They show that trains produce

broadband signals between [1 - 50]Hz, and long, heavy, and fast trains generate more noise.

The results were reproducible, with observations at Marathon, where trains up to 4km long and
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18000 tons weight travel near the studied zone. Marathon represents the perfect configuration

to use train signals as an opportune source of noise for passive seismic interferometry. More

details about train-generated signals from a seismological perspective are described in chapter

2 section 2.4.

Then the train schedules are needed to separate the train periods from the rest of the seismic

records. We contacted the Canadian Pacific railway company, the transportation company in

charge of the railway in Marathon, to have the information of train passages at Marathon.

But, after several unsuccessful attempts, they weren’t allowed to share the information with an

externals person for security reasons. Finally, seismological methods had to be used to analyze

to detect the train tremors and create a catalog.

In order to scan the complete noise records efficiently (1018 nodes one single-component

continually recording during 30 days, sampled at 50Hz), weapplied the covariance matrix method

proposed by Seydoux et al. (2015). This method uses the spatial coherence of the wavefield to

detect in time and frequency the emergent signals embedded in the continuous seismic noise.

Seydoux et al. (2015) defined the Fourier spectra of seismic records as [u1(f,t), u2(f,t), .., uN (f,t)]

where N is the number seismic station, f the frequency and t the time. The covariance matrix

is defined as the average of the cross-spectral matrix:

C(f,t) = 〈u(f,t)u†(f,t)〉∆t =
1

M

M−1∑
m=0

u(f,t + mδt/2)u†(f,t + mδt/2) (3.1)

where † denotes Hermitian transpose. M represent the overlapping data time segments of

duration δt. The matrix can be decomposed on the basis of eigenvectors associated with its

eigenvalues λi(f,t).

Seydoux et al. (2015) showed that the uncorrelated noise eigenvalue spectrum decays steadily.

It slowly converges to a flat distribution with an increasing number of subwindows. They

sort eigenvalues in descending order to obtain the covariance matrix spectrum and define the

covariance matrix spectral width (typical width of distribution of the eigenvalues λi(f,t)) as:

σ(f,t) =

∑N
i=0(i− 1)λi(f,t)∑N

i=0 λi(f,t)
(3.2)

In this approach, the spectral width is a proxy for the number of independent sources of

noise. As shown in figure 3.4-b, the spectral width is high for incoherent seismic noise. On the

contrary, a low spectra width value represents a spatially coherent signal produced by a single

localized source. For example, figure 3.4-c shows a signal that corresponds to an earthquake
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Figure 3.4: Example of covariance matrix spectra computed from real records a) Covariance
matrices were computed at f = 0.07Hz. b) Covariance matrix spectrum for noise. c) Covariance
matrix spectrum for earthquake signal. Values of the covariance matrix spectral width σ are
indicated with vertical dashed lines. Modified from Seydoux et al. (2015).

(i.e., a single source).

The covariance matrix method was applied to Marathon dataset to detect the train signals.

Thirty days (from September 22 to October 22, 2018) were processed using only the geophones

in the sparse array (figure 2.2) to decrease the computation time. The data were processed daily

as follows:

• Parameterization: the selection parameters M and δt are base on a trade-off between a

statistically robust estimation (M) and a good time resolution (δt). δt is linked to the lowest

frequency-resolved. Here, the higher period is 0.5s. Hence, we can use 3s-long subwindows

to have more than two signal oscillations in every subwindow. High values of M estimate

more robustly the covariance matrix. To reasonably estimate the covariance matrix while

keeping a maximal temporal resolution. We used 10 overlapping time windows.

• Pre-processing: spectral whitening, temporal normalization were applied to each overlapping
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time window to compensate for the non-stationary of seismic signals and to disregard any

amplitude information as Seydoux et al. (2015) advise. Data is also filtered in the train’s

frequency band [2 - 23]Hz.

• Covariance matrix calculation: first the Fourier transform and then the cross-spectral

matrices are computed. Following the equation 3.1 the covariance matrix is calculated by

averaging over a set of M (M=10).

• Matrix decomposition: the covariance matrix is decomposed in eigenvalues values, and

their distribution (the spectral width) is computed as a function of frequency and time as

described in the equation 3.2.

• Detection: The spectral width is used as a detection parameter (Seydoux et al., 2016).

First, it is averaged in frequency. We averaged between [2 - 20]Hz (train characteristic

frequencies) to decrease the other sources’ contributions, especially low-frequency sources.

Then, a spectral width detection threshold for the detection is established. The spectral

width tends to 1 when one single source dominates the records. However, trains are moving

complex sources with a characteristic spectral width >2.5. Therefore, we determine a

detection threshold of 4 for the spectral width (red line figure 3.5-b) all periods with a

spectral width higher than 4 are rejected. This value is chosen based on the median

averaged width; the threshold is lower than the median averaged to reject background

noise but great enough to avoid missing trains with a high spectral width. Trains are not

punctual sources; thus, not only intervals below the detection threshold are retained but

with a duration longer than 15 minutes (figure 3.5-b pink boxes).

In figure 3.5, an example of one-day record, is shown. The dashed rectangles are periods

where the spectral width decreases between 2Hz to 25Hz (indicating an increase of the wavefield

coherency). Thus these periods correspond to train passages. We detect eight events (i.e.,

train passages) using frequency averaged spectral width (figure 3.5-b). Figure 3.5-a shows other

periods with low spectral width. At low frequency (<3Hz), these low values are related to the

noise produced by the Superior lake, and the periods between [4 - 10]Hz are originated by the

highway traffic. By applying this detection method to the entire data set day by day, we detected

the passage of 207 trains over the 30 days of recording.
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a.

b.

Figure 3.5: Example of one-day train detection. a) Covariance matrix spectral width as a
function of time and frequency for 1-day-long data filtered between 2-23 Hz. The color scale
indicates the spectral width. The dashed rectangles correspond to a train passage b) Frequency-
average of the covariance matrix spectral width from panel (a) as a function of time. The red
line is the detection threshold corresponding to a spectral width of 4 for train passages, and
colored segments indicate the detection periods.

3.3.2 Time window selection and station-pair selection

The catalog created with the covariance matrix provides periods where the trains are passing

near the array. However, to apply the workflow presented in section 3.3 a more precise time

detection is needed to localize the train. To explore the type of seismic waves present during

train passages, a frequency-wave-number (f-k) beamforming analysis was performed, using the

method described in chapter 2, equation 2.2.

Beamforming analysis aims to localize the sources as much precise as possible, simulating

a source in active seismic exploration. The active source of seismic waves, either explosions,

air guns, or seismic vibrator (vibroseis), are located at a precise and known position during

the acquisition. But since that trains are moving and extended sources, their localization is an

emergent problem. Therefore, the time window length is the principal concern. If the window

is too long, the source is not located in a precise position anymore, and it can not be considered

and processed as described before; but if the window is too short, the signal can not propagate
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enough to do passive seismic interferometry.

In considering this trade-off, 1-minute-long windowing was applied. Assuming an average

train speed of 90km/s, the train travels approximately 1.5km per window; freight trains also

have a minimum length of 1km. Considering these characteristics, the train travels 3km per

window. Hence, we can assure that the train is in the stationary phase zone for all the window

lengths and applied workflow.

First, all events (i.e., train passages) were divided into 1-minute-long windows. Then, f-k

beamforming was performed for each time window individually at the frequency range of [8 -

18]Hz and without overlapping. We decided to use the only station in the sparse array (figure 2.2)

to decrease the computation time while keeping a good resolution in frequency and space (inter-

station distance and aperture, respectively). We decided to apply first the covariance matrix to

the full record and then the beamforming only to train records to reduce the computation time.

It’s important to note that scan all the data using beamforming methods was too expensive.

Figure 3.6 shows beamforming results by the minute for one train. The beam amplitude is

plotted in the slowness domain. We observe several lobes of coherent energy moving (warms

colors) from west to east in the function of time. These lobes represent a specific coherent arrival.

We distinguished three different arrivals: one at 2.9km/s that corresponds to a surface-wave, a

second one at 3.8km/s that we suggest corresponds to the S-wave, and finally, the lobe at 7km/h

that correspond to the P-wave and is not clear. The P-wave amplitude varies notably with time,

to the point of not being visible for certain time windows.

Beamforming analysis provided additional information about the type of waves that trains

produce, their velocities, and their positions. According to this new information, two new

characteristics were added to the catalog: the train direction and the number of simultaneous

passages. The train direction is inferred using the displacement of the surface wave during the

train passage. Two direction are defined for the rest of the study: WE ( West to Est, as in

the fig 3.6) or EW (Est to West). This method enables us to have the number of simultaneous

train passages as well. When two trains pass simultaneously, the coherent energy of one wave

arriving at the array comes from two different directions. Such simultaneous train passages are

also detected and added to the catalog.

A final catalog including the train detection, direction, and simulations passages is generated.

Figure 3.7 shows the results of the final train catalog. Two hundred seven train passages were

detected, but only 180 events were retained for this study after skipping overlapping trains and

bad quality trains (during too-noise periods and/or non-energetic trains).
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Figure 3.6: Beamforming analysis during a train passage: amplitude spectra in the horizontal
slowness domain computed between [8 - 18]Hz. Each panel represents the beamforming result
for one minute window of a train signal. Greens circles represent a velocity of 7km/s, the
orange circles a velocity of 3.8km/s, and violet ones a velocity of 2.9km/s, which corresponds to
velocities of P, S, and surface waves, respectively. Warm colors represent high amplitudes and
so a detection.

To determine the train position, we used the 1-minute-long windows beamforming computed

before. We assumed that the primary energy source was the train and the maximum beam

power generated by them. Therefore, we pick the maximum beam power of the S-wave of

each beamforming panel to infer their azimuth. To do the picking, we applied three different
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approaches in order to evaluate the accuracy of the picking and separating the events by

direction.
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Figure 3.7: Train catalog. a) Train passages detection in time during one month. Each bar
represents one event. The color describes the direction and the bar’s height the number of trains
passing simultaneously. b) Histogram of simultaneous train passages. b) Histogram of train
direction.

First, we chose three events randomly per direction, and we manually pick the maximum as

shown in the figure 3.8 by the green lines. The dashed lines are the averages of each of the three

events. From this preliminary analysis we concluded that the azimuth is similar for each event

at each minute. Then, we applied the second method, an automatic picking of the maximum

(for each train at each minute) to examine the entire catalog. Figure 3.8 light blue and red

lines show the averaged automatic picking and the associated error bars. For both directions

(WE and EW), the uncertainties are low when trains are close to the array (minutes 8 - 25)

but increase for the earlier and the later times. We observe an odd behavior for the azimuth

at the south (< 220◦). WE trains are supposed to travel from higher azimuths (West) to lower

azimuths (Est). However, after 25 minutes, the azimuth increase. The decrease can be translated

as a ”train turn back” that is not logical. The same behavior is observed for EW trains at the

first minutes when trains are at the est. This error comes from the back azimuth beamforming

uncertainties and because the train is farther from the array at the south est and the energy

arriving is lower. A constrained automatic picking is applied based on the averaged azimuth

resulting from the second method to improve the azimuth measurement. The maximum is only

searched in the surroundings azimuths (±20◦ averaged azimuth). Figure 3.8 dark blue and red

lines show the results of the final method. We observed a decrease in of the uncertainties proving

an enhancement of the azimuth measurement. This proved that the azimuths have closer values

for different trains, and thus It is possible to stack all the events by azimuth.

However, the last 5 minutes of the WE trains and the first ten minutes of the EW trains

Laura Pinzon-Rincon 69



CHAPTER 3. ALTERNATIVE PROCESSING METHOD USING TRAIN SIGNALS

0 5 10 15 20 25 30

time [min]

150

200

250

300

a
z
im

u
th

 [
d
e
g
re

e
s
]

Azmiuth detection - both directions

Free automatic picking EW

20 degrees automatic picking EW

Free automatic picking WE

20 degrees automatic picking WE

Manual picking (3 trains)

Figure 3.8: Train azimuth picking in function of time. Green lines are the manually picking
of 3 events and the dashed lines the associated averaged. Light blue and red lines are the
free automatic picking averaged with the error bar. Dark blue and red lines are constrained
automatic picking averaged (using ±20◦ constrain)

continue to show irregular behavior. Therefore, we decide not to use these minutes. For the

trains going WE 25 minutes are used and for the EW trains 20 minutes. For the following

section, WE and EW events are processed separately. Only WE the trains going to be exposed

to facilitate the explanations. Nerveless, the same workflow is applied for EW trains, and similar

results are obtained.

Then having the railway coordinates and the azimuth by minute, we back-project the signal

onto the railway (figure 3.9-3 red crosses), which gives us the position of the train by minute.

When the train is on the western part of the railway, the back-projection cannot rely exclusively

on the azimuthal information derived from beamforming. Instead, we assume an average train

speed (based on Canadian train regulation) to locate the train. Figure 3.9 show the example of

3 location inferred from the beamforming panels next to them.

To clarify the terms, one minute of train record is equivalent to an azimuth (infer from

beamforming) and to a train position (infer from the azimuth):

1 minute ⇐⇒ azimuth ⇐⇒ train position
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Figure 3.9: Train location schematization. Map of the study zone, gray dots are the seismic
stations, the black-dashed line is the railroad, and red crosses are three examples of train
positions with the corresponding beamforming panel. The position is computed by back-
projecting the maximum beam power onto the railway

Next, we selected station pairs that will be used for the correlations based on train position.

For this purpose, we assume a train length of 1km and the azimuth extracted from beamforming

as the train’s center for all events. Train length is quite conservative (freight trains length in

Marathon is up to 4km), but allow us to stay in the stationary phase zone. Then, we select a

segment of the railway equivalent to a train of 1km long, and we choose all the stations pair in

line with this segment. Figure 3.10 lower left panels to illustrate three train positions (red line)

at different minutes (i.e., azimuth) and the associated selected stations for pair-wise correlations

(blue dots) for one single source (red dot at the center of the array). Figure 3.10 right panel

shows the station selected during all the passages for the virtual source at the center of the array

(red dot).

The disadvantage of the station pair selection is that not all the station pairs are used. For

example, at Marathon 519690, station pairs are possible (N ∗ (N/2)) with N: number of sensors,

but only ≈ 5.7% are retained. Figures 3.11-a and 3.11-b show the number of station pairs

selected and the percent of station pairs selected regarding the total possible station pair. We
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Figure 3.10: Chart illustrating the station selection reconstructed in time. Upper left panel:
seismic train record. Lower left panels: map of the station selected by azimuth (i.e., minute)
in function of the train position. The red lines represent the 1km train, the grey dots are the
seismic stations, and the blue dots station selected for each position. Right figure: final map of
all the stations chosen for the entire record (i.e., 25 minutes) for one virtual source (red dot).

also observed a lack of station in the direction Northwest to Southeast as shown in figure 3.11-c

by the stations colored in blue (< 300 stations selected). The lack of selected stations is due to

the railway position with respect to the array and the poor path illumination in this direction.

Figure 3.11: a) Number of the station pair selected by minute b) Percent of station pair selected
regarding the total number of station pair c) Coverage array map. The color bar represents the
number of times that a station will be used for the cross-correlation computation.
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3.3.3 Cross-correlation

The following step is the cross-correlation computation for the selected time windows and station

pairs. We computed a power-normalized cross-correlation (or cross-coherence) in the frequency

domain, given by:

C(B,A, ω) =
∑
t

ut(B,ω)u∗t (A,ω)

|ut(B,ω)||ut(A,ω)|
(3.3)

Where, ut(AorB, ω) is the seismic noise at the station A or B at the time t in the frequency

domain ω. ∗ is the complex conjugate. C(B,A, ω) is the cross-coherence between sensor A and

sensor B that provided the approximated Greens Function between A and B.

Only the train periods were used for the cross-correlation computation. For the previous

steps, data sampled at 50Hz was employed; however, as shown before, trains generated energy

between [3 - 40]Hz in Marathon, and the body-waves retrieved by Dales et al. (2020) are between

[10 - 60]Hz. Thus, train signals are extracted from the raw data at a sampling frequency of 125Hz.

Then, 67 train passages of 25 minutes were divided into a 1-minute window without overlapping

and correlated using cross-coherence (equation 3.3). Each event was processed separately, taking

the station closer to the train position as the virtual source. Only causal lag times will correspond

to energy traveling from the train to the station pairs, and only them will be used for the rest

of the study.

Figure 3.12-a shows an example of a single broadband cross-correlation function between two

sensors located in the dense-line and separated by 2.5km. Figure 3.12-c shows its spectrum. The

frequency content, mainly between 1 to 30Hz, was expected due to the train tremor frequency

content. Figures 3.12-b and 3.12-d show the filtered cross-correlation in a low-frequency range

[1 - 15]Hz and high-frequency range [15 - 30]Hz, respectively. At low frequency, the surface

wave arrival is retrieved. At high frequency, the P-wave is observed, and a secondary arrival is

retrieved. This arrival could be a higher mode of a surface wave or an S-wave.

3.3.4 Stack

After the cross-coherence computation, single cross-correlations are stacked to increase the data

quality. Since trains are repetitive noise sources, we can benefit by stacking trains at the same

position (i.e., same azimuth).

First, we stacked cross-correlations according to their inter-station distances and collected

them in distance-binned correlation gathers for the selected station pairs at one azimuth. Then,
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Figure 3.12: Examples of noise cross-correlation at inter-station distance of 2.5km. a) Cross-
coherence computed using 1-minute-long window. c) Corresponding noise correlation spectrum,
b) Cross-correlation filtered between [1 - 15]Hz, a surface wave is observed. d) Cross-correlation
filtered between [15 - 30]Hz, a P-wave is retrieved.

we stacked windows whereby the train was in the same position (i.e., same azimuth). To do so,

we used six train passages. The events were selected during periods with low background noise

and high train tremor amplitude.

Figure 3.13-c and 3.13-d show the distance-binned stacked section over six trains passages

at 2 train positions. Three dominant arrivals are retrieved. We suggest that the first arrival

(7km/s) is a P-wave, and the second one (2.8km/s) is probably a mix of S- and surface waves

higher modes and the surface wave (2.9km/s). In contrast, Figure 3.13-b shows the stack of

one-minute cross-correlation for a quiet period (i.e., non-train passage), highlighting the absence

of coherent body-wave propagation for this rather high frequency range, a weak surface wave is

barely perceived.

We observe that only one minute of data stacked over a few events (6 train passages) is

necessary to retrieve body waves. Thus, by applying the workflow presented here, we converged

on a stable reference. However, the final goal is to image the subsurface in the region, and this
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Figure 3.13: Example of distance-binned gather. a) Train seismic record. b) 1 min cross-
correlation for a quiet period (i.e, non-train passages). c) - d) Stacked section over six trains
passages at 2 train positions, using one-minute data segments.

stacked gather does not allow us to have 3D information about the medium. Therefore, looking

more finely at the respective virtual sources gathers is needed to extract the ballistic wave arrival

times. For this, we stack all WE train passages (62 events) for each station.

To analyze the stack convergence, SNR is measured in the function of stacked number trains

was done. We define the SNR as the peak amplitude in the signal window divided by the

standard deviation amplitude in the noise window. First, we compute the P-wave SRN for each

event separately. Figures 3.14-a and 3.14-b show the SNR distribution of all trains passages for

2 virtual sources. The quality of all trains is similar, the SNR distribution varies between 1 and

4, but there is no evident difference between the events. Then, we stacked the SNR distribution

in chronological order and measured the SNR. (figure 3.14-b and -c). We randomly stacked

the trains to avoid the artifacts created with a linear order for the stacking. We repeated the

random stack 300 times, measured the SNR, and averaged it. Results are shown in figures 3.14

c and f. Similar behavior is remarkable for the stacked distribution; we show that the stacking

order does not affect the SNR distribution.

Typically, cross-correlation SNR grows approximately as the square root of the time series.

SNR of train cross-correlation stabilizes after a stack of approximately 15 events. Given that

similar signals are correlated and stacked, the SNR of trains correlations does not follow the

same standard noise correlation SNR behavior. The same arrivals are summed, and a the SNR
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is fast converged. The addition of new time series does not make a large difference. However,

we decided to use the complete stacked data for the subsequent studies to improve the quality

of the data as much as possible.
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Figure 3.14: SNR analyse in function of stacked trains. The fist row: virtual source station
01.01002 (located at West of the dense-line). The second row: virtual source station 16.01054
(located at the south of the spare array). a)-d) Individual SNR by train passage. b)-e) SNR by
number of stacked events. c)-f) SNR by number of stacked events (randomly stacked).

3.3.5 Measurement and analysis

In this section, we will only show the waves retrieved for virtual sources gathers after the workflow

application. The measurement an analysis process for imaging will be developed in detailed in

the chapter 4.

After the stacking step, the virtual source gathers by azimuth showed several arrivals in the

function of the frequency range studied. However, to perform 3D imaging, singles virtual shot

gathers are necessary. These gather are created by stacking train passages (i.e., events) that

illuminates the same station pair.

Figure 3.15 shows the gathers of the virtual source located at the center of the array (as

shown in the figure 3.10, red dot). The gather a is filter between [2 - 15]Hz after stack. A clear
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Figure 3.15: Virtual shots gather constructed from the stack of 62 train passages. Trace numbers
are sorted by increasing distance from the virtual source with a not constant step. The red lines
designate travel times with constant velocities, as indicated in the withe boxes. a) Gather filtered
between [3 - 15]Hz, a clear surface wave propagates. b) Gather filtered between [15 - 30]Hz, two
arrivals are retrieved an S-wave or higher mode of the surface wave and a P-wave. c) Gather b
muted between 6–8km/s.

surface wave propagates between 2.5 and 2.8km. The seismic source ringing generates parallel

arrivals that do not pass by zero. Even if the train is located in short time windows, it is still

a moving source that continuously generates noise. Figure 3.15-b shows the gather filtered in a

high-frequency range, [5 - 30]Hz, to avoid surface waves. Below 15Hz, only surface-wave arrivals

are seen. We retrieved two dominant arrivals with a velocity of 3.8km/s and 7km/s. There are

uncertainties, but we suggest that the first arrival is a P-wave, and the second one is probably a

mix of S- and surface waves. To highlight the P-wave, the gather is muted between [6 – 8]km/s

(Fig. 3.15-c). The P-wave is propagating especially at long distances.

3.4 Computational considerations

The particularities of the signal processing carried out in each step are explained in the previous

sections, but the computational characteristics have not been discussed yet. The computational

cost and the effective data storage were not negligible and became a critical issue in the thesis

due to the large volumes of data and computations.

The raw data was composed of 30 days of continuous records for 1018 nodes. It was

unnecessary to use data with a high sampling frequency to inspect it, knowing that seismic

noise is generally low frequency. We decided to download the raw data and downsampled it at

50Hz. The dataset was organized by daily files and entirely represented precisely 50GB.

The 50Hz sampled data allow us to compute the first steps of the analysis correctly (spectrograms,

beamforming, and covariance matrix) while keeping relatively fast computation and decreasing
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the storage memory used. The sparse array was used to applied array methods (beamforming

and covariance matrix analysis) for the same computational reason for the array methods. The

covariance matrix was not an expensive computation; however, to accelerate the computation,

the covariance matrix was computed using daily data, and it was calculated in parallel using 5

CPUs per computation. The computation time of each computation was 4 hours, and in total,

60 CPUs were needed generating 927Gb of data.

The beamforming was more expensive than the covariance matrix; for this reason, the 1-

minute window beamforming was only applied to train data detected with covariance matrix

sampled at 50Hz and representing 166G. The computation time for one 1-minute window was

∼25 min using one CPU.

207 trains of 30 minutes were detected with the covariance matrix, and 1-minute window

beamforming was applied. As a result, 6210 windows were beamformed for a total computational

time of ∼117 days (∼168300 minutes), generating 812Gb of data. Parallel computing made it

possible to reduce the computation time. However, the number of CPUs that could be used

simultaneously varied depending on the availability of the laboratory’s computation server, so

this step took a considerable amount of time.

Train modeling showed that the frequency content of train signals is high (up to 60Hz).

Therefore, to perform the cross-correlation, we used data sampled at 125Hz, increasing the

dataset size and computational time. The train dataset after a proper selection (180 retained

events) was extracted, representing 150Gb.

The cross-correlations were parallel computed by 64CPUs using pycorr SOFTWARE pycorr,

and the cross-correlation (for selected station and time window) and stacked dataset per station

equates to 421G. However, it is important to note that the correlation computed represents only

5% of the total possible station pairs.

Most of the computations presented here were performed using the GRICAD an HPC

platform, and associated storage infrastructure (https://gricad.univ-grenoble-alpes.fr),

which is supported by Grenoble research communities.

3.5 Conclusion

In this chapter, we showed how we can use massive freight train noise recovery to retrieved high-

frequency waves between sensors in regions neighboring railroads. Furthermore, this approach

of noise recovery to create valuable virtual sources could be applied for several other seismic
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noise sources and in different contexts improving spatial and temporal resolution.

The application of this method, specifically in Marathon, confirmed its effectiveness in

extracting relatively high-frequency energy (for typical seismic noise applications) from train

signals. To quantify the improvement in arrival retrieving, we compared virtual source gathers

from standard cross-correlation with the method developed here. First, blind correlations were

computed following the standard ambient noise interferometry workflow (figure 3.3 orange

workflow). Then, the continuous data (30 days, 1018 nodes) was cut into 30 minute long

segments, and the cross-coherence (equation 3.3) was computed without overlap. Finally, the

cross-correlations are stacked, and the causal and acausal parts are averaged.

Figure 3.16-a and 3.16-c show the virtual source gathers reconstructed from train periods and

from blind correlations respectively for a virtual source located at the center of the array (figure

3.10 red dot). The gathers are filtered between [3 - 15]Hz, and the Rayleigh wave propagation

along distance (increasing with the trace number) is clear in both cases. The blind correlation

has more data than train gather because all the virtual receivers are used. However, the quality

of the train data is higher, figure 3.16-a shows the SNR distribution for both gathers; the blue

for the blind correlations and the violet for the train correlations. These distributions show the

improvement of the data quality with our method almost doubling the SNR median.
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Figure 3.16: Virtual shots gather reconstructed from a) the stack of 62 train passages and c)
from blind cross-correlation of one month of continuous records. Trace numbers are sorted by
increasing distance from the virtual source with a not constant step. The gathers are filtered
between [3 - 15]Hz and retrieve an evident surface wave. The red lines designate travel times
with constant velocities, as indicated in the withe boxes. b) Histogram of SNR distribution in
blue for the blind cross-correlation and violet for the train periods. The red line corresponds to
the mean SNR value for blind correlations and the green line to the mean value for train periods.

Dales et al. (2020) showed in previous studies that body waves in Marathon could only be

retrieved by selecting all time periods for which the ambient noise comes from a direction aligned

with the W-E dense line of sensors (figure 3.2). This study is thus illustrative, and their results

do not allow to perform 3D imaging. Here, we intend to move one step further by separating

Laura Pinzon-Rincon 79



CHAPTER 3. ALTERNATIVE PROCESSING METHOD USING TRAIN SIGNALS

different noise azimuths for virtual source retrieval in different directions. The noise correlations

sections might thus be of lower quality because single virtual source gathers are studied but

ultimately may allow performing 3D imaging for both surface and body waves.

The next chapter will explore these arrivals by extracting travel times from the coherent

wave-forms to apply seismic noise-based imaging in this area. With the aim of imaging different

geological structures
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Chapter 4

Surface-wave imaging at Marathon

deposit using train signals
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4.8.3 Ambient noise surface wave tomography (ANSWT) results from Sisprobe114

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Introduction

We showed in the previous chapter that it is possible to retrieve promising coherent arrivals by

selectively cross-correlation of train signals. However, the utilization of these arrivals for imaging

purposes is not straightforward because we are somewhere between two propagation regimes

that have very different response to seismic interferometry: the passive seismic interferometry

and the interferometry of active and controlled sources. In the case of the passive seismic

interferometry, it has been shown that the cross-correlation of diffuse wavefields two between

the stations converges to the Green’s function (e.g., Weaver and Lobkis, 2001; Snieder, 2004;

Wapenaar, 2004). On the other hand, in active seismology, the explicit knowledge of the seismic

source allows converging to Green’s function by deconvolution of the signals source function.

However, in our case, trains are large, extended, and not controlled sources; we are not in the case

of a diffuse wavefield or a fully controlled source; thus, Green’s function retrieval assumptions

are break.

Despite the numerous studies showing the consequences of not converging to the Green’s

function, fundamental-mode surface waves and their travel times can be extracted from the

cross-correlation function and be sufficiently relatable to the Green’s function travel times for

imaging applications (Fichtner and Tsai, 2019). Therefore, we decide to apply conventional

surface waves tomography methods to image the subsurface on a local scale, assuming that the

energy retrieved from train signals is close enough to the Green’s Function and neglecting the

effect generated by the propagation between the train and the first sensor.

Since the first tomography obtained with seismic noise (Shapiro and Campillo, 2004) until

today, numerous studies have proven the efficacy to obtain velocity models from retrieved surface

waves. The surface waves are sensitive to the S-wave structures at depth, depending on their

frequency, and the inversion of these surface wave dispersion curves allow us to infer S-wave

structures at depth which is a common problem in seismology (Dorman and Ewing, 1962).

At Marathon, the surface wave dominates the cross-correlation functions at low frequency

(<10Hz). Though the body waves are present in the cross-correlation functions, it remains of

weak amplitude and quality to use them for body-wave tomography; we decide to use surface
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waves to image the Marathon deposit.

In this chapter, we will present the imaging the implementation results of a depth inversion

of surface waves obtained from train correlations. First, we measured Rayleigh wave phase

velocities for each virtual source gather using the eikonal approach, from which we derive 2D

phase velocity maps for frequencies in the range of [1.5 - 9.5]Hz by averaging the virtual source

gather measurement. Next, we invert the phase velocity maps using the Neighborhood Algorithm

inversion. In order to improve the depth inversion, we implement a second linear 1-D inversion

taking as an initial model the resulting model of the Neighborhood Algorithm inversion. Finally,

we obtained a 3D Vs model of Marathon deposit by inverting each cell’s local 1-D Vs profile. To

evaluate our approach, we compare the train cross-correlation with both synthetics and standard

cross-correlations. To investigate Green’s function convergence for train signals, we do numerical

modeling in a simplified case of Marathon, to which we will also apply the Eikonal tomography.

On the other hand, we will use standard seismic noise correlations obtained from the same

dataset to apply Eikonal tomography and analyze the anisotropy in the Marathon deposit. These

comparisons will allow us to judge the limits of the train signals’ cross-correlation workflow and

the utilization of the eikonal tomography. Therefore, we will evaluate the eikonal tomography

limitation using the synthetic data.

4.2 Eikonal tomography

The eikonal tomography is a surface wave tomography method proposed first by Lin et al. (2009)

and then generalized by Lin and Ritzwoller (2011). It has been applied at regional scale (e.g.,

Lin and Ritzwoller, 2011; Qiu et al., 2019) and local scale (e.g., Mordret et al., 2013b; Lin et al.,

2013a). The eikonal tomography is an array-based method which use wave-fronts tracking to

directly and locally estimate phase velocities by applying the wave equation.

The basis of the method is the eikonal equation (Wielandt, 1993):

1

ci(ω)2
= |∇τ(ri, r)|2 +

∇2Ai(r)

Ai(r)ω2
(4.1)

Where: τ(ri, r) is the travel time between a point r and the virtual source ri. c is the phase

velocity in function of the frequency ω and A is the spectral amplitude. When the amplitude

varies sufficiently smoothly, or the frequency is high enough, the second term on the right of

equation 4.1 is much smaller than the first term and it can be neglected (Lin et al., 2009). Thus,

the phase velocity c can be described as:
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1

ci(ω)
∼= ∇τ(ri, r) (4.2)

Where, ∇ denotes the local gradient (∇ = ∂x
∂ + ∂y

∂ ). This equation can by applied to each

individual virtual source i and the final velocity map is constructed by averaging the individual

computations.

Lin et al. (2009) proposed a 3 step workflow to apply the eiknonal tomography:

1. Phase travel time measurement: computed across the array centered on the virtual source.

A waveform selection based on a set of quality criteria is also performed to improve the

measurement.

2. Gradient computation: travel time is interpolated on a regular grid and spatial gradient

computed using the equation 4.2. The magnitude of the gradient is approximated to the

local phase slowness. The direction of the gradient represents the direction of propagation

of the geometrical ray.

3. Statistical average: for each spatial node in the grid the local phase speeds and wave path

directions are compiled and averaged using all the virtual sources in the array.

4.3 Eikonal tomography implementation

The eikonal tomography was implemented to the virtual gathers reconstructed by selective cross-

correlation and stack train tremors (detail in chapter 3). As shown in figure 4.1 the surface-wave

propagates in the individual virtual sources gathers with good quality. The coherence of the

wavefield is also evident in the figure 4.1-b. The figure shows snapshots of the wave-front

propagating in the array away from the virtual source (red dot). We now seek to track this wave

front separately for each virtual source.

4.3.1 Waveform selection and phase travel times measurement

Before measuring the phase travel time, the correct waveform has to be properly isolated. To

do so, a preprocessing workflow is applied by virtual source.

First, the data is filtered, and the traces with an SNR < SNRthreshold are rejected. The

SNR is estimated as the ratio between the maximum absolute value in the window of interest

and the noise’s standard deviation (here, the signal after 2.5 seconds). Correlations with inter-

station distances smaller than 0.5km are rejected to avoid near-source effects, and inter-station
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Figure 4.1: a) Virtual shot gather of station 01.01002, red dot panels b. The shot gather is
reconstructed from the stack of 60 train passages using all the azimuths and filtered between
[2 - 15]Hz. Trace numbers are sorted by increasing distance from the virtual source with a
not constant step. The white lines indicate travel times with constant velocities as shown in
the figure. b) Snapshots of the surface wave-front from the same virtual source at six different
propagation times. The virtual source is the red dot in all panels. Data is filtered between [2 -
15]Hz. The red and black lines indicate the wave-front traveling at 2.5km/s and 3km/s.

distances larger than 6km are rejected as well to preserve the data quality. Figure 4.2 shows the

workflow implementation for the virtual source 01.01002 at 4.5Hz. Panel 1 shows the filtered

gather keeping only traces with SNR > 4.

Second, the gather is muted around the targeted wave. The move-out muted window is

defined by tup = d/vmute−0.1s for the upper bound and tlow = d/vmute+0.4s for the lower bound,

d being the inter-station distance. Figure 4.2-2 show the muted gather using vmute = 2.4km/s.

We observe some traces which are not in phase with the other traces (red circle figure 4.2-2).

This could be due to the coordinates uncertainties (details in chap. 1) or the record quality of

some sensors. To prevent futures problems, these traces are rejected, as explained in the next

steps.

Third,the envelopes of the continuous seismograms are slant-stacked with apparent velocities

of 3km/s (figure 4.2-3).

Fourth, the resulting slant-stacked trace is cross-correlated with the virtual source gather

after the second step (i.e., filtered and muted). The maximum amplitude of the cross-correlation

envelope was picked and a linear trend fitted to the maximum data. This step aims to achieve a

phase continuity with increasing trace number as much as possible; thus, the phase measurement

is the most accurate. Figure 4.2-3 shows the maximum amplitude (dotes) and the fitted curve

is in black.
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Fifth, the time lag outlier values are rejected. Outliers are defined as any lag time value

greater or smaller than the trend value ±0.05s. Figure 4.2-4 shows the maximum amplitude

selected in cyan blue and the rejected in red. It can be seen that the red values match the

erroneous traces in figure 2. Finally, figure 4.2-5 presents the proper virtual source gather that

will be used for the phase travel time measurement.

The parameters such as filter frequencies f1 and f2, muted velocity, and SNRthreshold are

variables and depend on the frequency at which the phase velocity is measured (here called

central frequency fc). The following table describes the parameters.

Central frequency fc (Hz) f1 - f2 (Hz) mute velocity vmute (km/s) SNRthreshold
1.5 0 - 3 2.2 4

2.5 1 - 4 2.2 4

3.5 2 - 5 2.2 4

4.5 3 - 6 2.4 5

5.5 4 - 7 2.4 5

6.5 5 - 8 2.4 5

7.5 6 - 9 2.5 5

8.5 7 - 10 2.5 5

Table 4.1: Waveform selection preprocessing parameters

After a proper waveform selection the phase velocity is extracted. The frequency time

analysis described by Lin et al. (2008) is applied, where, the spectral phases of a surface wave

single-mode ϕ is defined as:

ϕ(ω) = −wtc + 2nπ + ϕ0 (4.3)

Where, ω is the frequency, ϕ0 the initial phase term, and 2nπ is the intrinsic 2π phase

ambiguity. Thus, the phase travel time tc can be written as:

tc(ω) =
−ϕ(ω) + 2nπ + ϕ0

ω
(4.4)

The exact value of the initial phase term is not needed since the phase travel-time is used to

compute a gradient; thus, ϕ0 can be neglected. The spectral phase is computed and unwrapped,

and the phase travel time is calculated using the equation 4.4 for each central frequency by

averaging the time travel for the frequency range of fc− 0.5Hz to fc + 0.5Hz. Figure 4.3 shows

an example of phase travel time measurement at 4.5Hz for the virtual source 01.01002. Panel
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Figure 4.2: Waveform selection preprocessing workflow, example, for fc = 4.5Hz and station
01.01002 (see text for details). From top to bottom: 1. virtual shot gather filtered between [3 -
6.5]Hz. 2. Gather muted around the surface wave. 3. Slant-stack computation. 4. Correlation
between the muted gather and the slant stack and Outlier removal. 5. Final virtual shot gather.

a shows the unwrapped phase, and then panel b shows the travel time in seconds. Figure 4.3-c

shows the travel-time measurements superimposed on the virtual gather (red dots). To compare,

the maximum amplitude of the envelope is also computed (green dots), but this approach is less

accurate to pick phase velocity.

4.3.2 Interpolation of phase travel-times

After properly tracking the waveform across the array for each virtual source, the spatial gradient

of the travel time can be computed. The gradient computation process is implemented following
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Figure 4.3: Phase travel time measurement workflow, example for ω = 4.5Hz and station
01.01002. a) Spectral phase of the correlations between [3-6]Hz and b) Travel-time both figures
as a function of the frequency and the inter-station distance. c) Pre-processed virtual shot gather
sorted in by increasing distance, red dotes are the phase velocities computed following equation
4.4, green dots are the envelop maximum amplitude, and cyan blue line represent the velocity
at 3km/s.

the next nine steps. Figure 4.4 shows an example of the implementation for the virtual source

01.01001 at 4.5Hz (the same case show for the waveform selection and phase travel times

measurement).

1. The phase travel time is measured (preliminary step). Figure 4.4-1 (the red star is the

virtual source)

2. First interpolation: the travel time measurements obtained at station locations are interpolated

onto a regular spatial grid using the spline 2d method (details below). Figure 4.4-2 shows

the interpolation.

3. Gradient computation and quality control: the gradient is calculated in 2 dimensions

(figure 4.4-3). The outlier values (values smaller than 2.5e−4s/m values greater than

5e−4s/m) are rejected.

4. Curvature computation and quality control: to avoid spurious oscillations, the gradient’s

curvature (Laplacian of the travel-time surface) is computed (figure 4.4-4). Areas with

values greater than 4e−7s2/m2 are removed.

5. Second interpolation: applied after outlier rejection (figure 4.4-5).

6. Interpolation difference: we computed the difference between the two interpolations (steps

2 and 5) to see the numerical errors. Figure 4.4-6 shows errors of the order 100 picoseconds

with is negligible.
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7. Second spatial gradient computation: using the second interpolation, the gradient is

computed a second time, as shown in figure 4.4-7. The outlier values are removed as

in the 3 steps.

8. Slowness: the slowness is obtained by computing the squared gradient, and measurements

from locations that are not surrounded by at least four locations with measurements are

removed (figure 4.4-8).

9. Velocity maps: individual velocity maps are computed by virtual source by taking the

inverse of the slowness (figure 4.4-9).
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Figure 4.4: Eikonal tomography’s procedure for virtual source 01.1002 the red start (see text for
details). The black line is the Gabbro structure at the surface (fig. 3, 7-9). Travel times are in
seconds (fig. 1, 2, 3, and 6). Gradient and slowness panels in s/m (fig. 3,7,8), and the velocity
in m/s (fig. 9). Figure 6 shows the difference between first and second interpolation (numerical
noise).

The interpolation method applied for the phase travel time is a spline-in-tension interpolation

scheme developed by Wessel and Bercovici (1998). The technique creates an ”elastic surface”

that passes smoothly between the data points (here, the travel time at the station’s locations).

The surface has a flexural rigidity controlled by a ”tension coefficient” applied at the boundaries.

It ranges between 0 and 1 and represents the strain energy resulting from the tension relative to
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the total strain energy of the surface (Wessel and Bercovici, 1998). The effects of this tension

coefficient will be discussed later in the text. The grid used for the interpolation is a regular

grid of 100x100m. This value is a good trade-off; greater distances will create regions without

data generating uncertainties for the interpolation, and a grid with a smaller distance will have

several measurements at one spatial node, and interpolation will smooth the data too much,

hiding velocity changes. The outlier values for the gradient and the curvature are chosen based

on the prior geological information of the shear velocity at Marathon.

Additional quality control is implemented based on the number of the virtual receiver.

Because of the selective cross-correlation method, each virtual source has a different number

of virtual receivers (i.e., number of traces). Good coverage is needed with enough phase travel

time measurement to apply the gradient computation workflow, especially the interpolation. For

this reason, virtual sources with less than 150 virtual receivers are not taken into account. For

the rest of the virtual sources, the workflow is applied separately at a given central frequency.

4.3.3 Computing final phase velocity map

By calculating the gradient, the individual phase velocity maps are obtained. However, these

maps are noisy because of biases and errors induced during the phase travel time measurement

and the interpolation. In addition, each virtual source covers different regions due to the variant

station coverage. To have a more complete and less noisy phase velocity map we applied a

statistical average for each spatial node (i.e., cell in the grid) as proposed by Lin et al. (2009).

They introduce the velocity distribution V(r) as:

V (r) =
1

N(r)

N(r)∑
i=1

vi(r) (4.5)

Where si(r) is the individual velocity and N(r) the number of measurements at every spatial

node (r). The standard deviation of the mean slowness σ is also introduced as:

σ2 =
1

N(r)(N(r)− 1)

N(r)∑
i=1

(vi(r)− V (r))2 (4.6)

Before the final phase velocity map calculation, an outlier rejection in four steps is performed.

First, the mean velocity by the virtual source is computed, and virtual sources with mean velocity

values out of ±1.5 the standard deviation of virtual source mean velocities. Figure 4.5-1 shows

mean velocity distribution by virtual source (blue cross) for a central frequency of 4.5Hz and
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the conserved virtual sources (red dots).

1. Reject virtual source if mean 
velocity virtual source > 1.5 𝜎
away from all virtual sources

4. Reject pixel if 𝜎 > 300 m/s

2. Reject velocity values 1.5 𝜎
away from the median

3. Reject pixel < 150 number 
of virtual sources illuminating 

the pixel

±1.5𝝈

3. 4.

1. 2.

xx

Figure 4.5: Statistical quality control workflow, example at 4.5Hz (see text for details). 1. Mean
velocity by virtual source. Lines are ± standard deviation, blue cross represent the mean velocity
per virtual source and the red dots are the values conserved. 2. Standard deviation distribution
for one pixel (black cross figs. 3 and 4). 3. Map of the standard deviation ω. 3. Map of the
number of stacked data. The black line is the gabbro structure at the surface. Gray dots are
the nodes (figs. 3 and 4)

Second, the velocity distribution at each spatial node is analyzed, and values greater or

smaller than ±1.5σ are rejected. Figure 4.5-2 shows the velocity distribution at the node located

at the black cross in panels 3 and 4.

Third, the spatial node for which the standard deviation is higher than 300 m/s are rejected

because these values are not reliable data (figure 4.5-3). Finally, the nodes with less than 150

measurements are removed as well because we do not have enough data to do an statistical

approach (figure 4.5-4). These two steps help to reduce side effects by mainly removing values

at the borders of the array. The impacts of train coverage are evidenced by the low number of

data in the Northwest Southeast direction as it can see the figure 4.5-4.

4.3.4 Phase velocity models

The different workflows beforehand explained are applied for central frequencies from 1.5 to

8.5Hz. Figure 4.6 presents the surface wave phase velocity maps of Marathon deposit obtained

with the eikonal tomography at eight different frequencies. Three main structures are discernible:

two low-velocity regions at the East and West and fast velocity anomalies (yellow regions) in

the center East, crossing the studied area. In addition, an apparent rotation of the strike of the
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high-velocity anomaly at depth is also discerned.

Figure 4.6: Final eikonal tomography phase velocity maps from 1.5 to 8.5Hz. The black line is
the Gabbro structure at the surface. Gray dots are the nodes. The same color bar was used for
all maps.

4.4 Eikonal tomography implementation with synthetic data

4.4.1 Synthetic dataset

A synthetic dataset was created to assess the methods developed in this work and evaluate the

viability of the eikonal tomography in Marathon geological context. These synthetic tests will

also allow us to understand better the train virtual shot gathers content.

The synthetic dataset consist of a virtual shot gathers for the same array that in Marathon’s

case. The virtual shot gathers are simulated by modeling a source at the virtual source locations

using SEM46 software (Trinh et al., 2019). SEM46 is a time-domain spectral-element method
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under the visco-elastic approximation. To simulate wave propagation, we used a model with

three homogeneous geological units corresponding to the Syenite, the Gabbro, and the Footwall

(see the characteristics in the table 4.2). This is a simplified model based on the prior geological

information at Marathon, where the Gabbro is dipping to the West (see figure 4.7). The values

of Qp and Qs are 200 and 100, respectively. It is important to note that the velocities contrasts

used for the modeling are higher than the described in the sonic studies in order to facilitate the

interpretation while we conserve realistic values.

Geological structure VP [m/s] VS [m/s] Density [kg/m3]

Syenite 5740 3295 5740

Footwall 6000 3350 2870

Gabbro 6380 3615 3070

Table 4.2: Seismic properties of the geological units considered in the synthetic models, inferred
from sonic log measurements.

Figure 4.7: Geological units of the synthetic models. a) vertical cross-section along the dense
line (red triangles represents the sensors). b) horizontal cross-section at elevation z = 0m (sea
level). c) Acquisition geometry of the numerical experiments. Black dots represent the sensors,
and the red dots are the 14 sources used for the synthetic data. The black rectangle represents
the simulation domain. Courtesy François Lavoué

The shot gathers were simulated for 14 source positions (red dots figure 4.7) located in

the extremities of the array to have full illumination of the medium while an approachable

computational time. A 4s Dirac delta source time function was used as a source. The resulting

seismograms are low-pass filtered at 50Hz and sampled at 250Hz.

Figure 4.8 shows the synthetic shot gathers for the source located at the receiver 1001.1002.
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The gathers are band-pass filtered between [3 - 15]Hz (panel a) and between [15 - 30]Hz (panel

b and c). The surface wave traveling at 3.5km/s is dominant at low frequency. At higher

frequencies, the P-wave and a mix between an S-wave and higher modes of the surface waves

are traveling at 6km/s and 3.8km/s, respectively. The velocities and frequency ranges at which

these waves propagate are similar to the waves retrieved by cross-correlation of train signals.

Therefore, we could suggest that the arrivals retrieved from cross-correlation tend to converge

to the green function. However, this hypothesis must be taken with caution because we used a

simplified model of Marathon geological structures, and the comparison is not straightforward.
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Figure 4.8: Synthetic shot gathers for the source at the position of the receiver 1001.1002 (figure
4.7-c ). Trace numbers are sorted by increasing distance from the virtual source with a not
constant step. The red lines designate travel times with constant velocities, as indicated in the
withe boxes. a) Gather filtered between [3 - 15]Hz, a clear surface wave propagates. b) Gather
filtered between [15 - 30]Hz, two arrivals are retrieved an S-wave or higher mode of the surface
wave and a P-wave. c) Gather muted between 5.5–6.5km/s to visualize the P-wave better.

To understand the numerical wavefield, figure 4.9 shows snapshots of seismic wave propagation

at different times for the same source that before and the normalized and clipped seismograms

for a receiver at the center of the dense line. It can be seen the different waves propagating

in the medium. Remarkably, the body wave recorded is a direct wave, and it does not travel

deep in the medium because there is no velocity gradient in the model. Besides, the body-waves

reflections have a low amplitude, making them undetectable and therefore unusable even in a

model with higher velocity contrast than expected in the region.

This modeling is theoretical and simplified, but it guides us to realize the feasibility of

obtaining certain results in Marathon deposit. Therefore, we can conclude that it is too

challenging to obtain virtual body-wave reflections in this context due to the poor velocity

contrasts. In addition, the virtual P- wave retrieved from real data is probably a direct P-wave

sensitive to the shallow surface.
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Figure 4.9: Numerical modeling results for a source located at the red start. (bottom panels)
Snapshots of seismic wave propagation at 0.25, 0.4, 0.65, 0.75, 1 and 1.5s. The dark violet
structure corresponds to the Gabbro. (Top panels) seismic record for the station located a the
yellow triangle. The trace is filtered between [5 - 40]Hz, normalized, and clipped at ±0.1. The
red line represents the snapshot time. Courtesy François Lavoué.

4.4.2 Eikonal tomography

In order to evaluate the efficiency of the eikonal tomography approach, the same data processing

explained and applied to the real data (section 4.3) was applied to the synthetic data. First,

the surface wave is selected, and phase travel times are measured for one central frequency at

4.5Hz. Second, the phase travel times are interpolated onto the same spatial grid (100x100m).

Finally, the final phase velocity map is obtained by stacking all 14 sources. The final velocity

map (figure 4.10) indicates 3 main velocity zones: two low velocity structures (at ≈ 3000m/s)

and a high velocity anomaly (at ≈ 3250m/s). These structures coincide with the geological units
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of the models; the faster anomaly corresponds to the gabbro (black line) and the low-velocity

structures to the Syenite and the Footwall. It is important to note that the velocities obtained

with the eikonal tomography are the Rayleigh wave velocities and not the S-velocity VS ; Rayleigh

wave velocity represents ≈ 85%VS which is coherent with the velocity values measured.

Figure 4.10: a) Geological synthetic models horizontal cross-section at elevation z = 0m(sea
level). b) Eikonal tomography at 4.5Hz for the synthetics data, Courtesy François Lavoué. The
black line represent the synthetic Gabbro unit at the surface. Gray dots are the nodes. Courtesy
François Lavoué

The high-velocity anomaly does not match precisely with gabbro for several reasons. First,

the black line here represents the gabbro at the surface, and the phase velocity map is sensitive

to the structure at depth; thus, the comparison can not be made directly. Second, the eikonal

tomography approach computes the phase velocity using a statistical approach to decrease the

errors; however, only 14 sources are used for the simulations; therefore, error reduction is less

efficient. Third, the spatial discretization of the measurement is defined by inter-station distance

(≈ 150m in the sparse array), creating a measurement ambiguity of this order of magnitude.

Finally, the interpolation smooths the measured producing increasing the ambiguity. We also

observe that small structures (≈ 30m) of gabbro can not be imaged using the eikonal tomography

at this frequency because of the resolution limits. Thus, only major gabbro intrusion can be

detected for both synthetics and real data.

The synthetic data was also used to evaluate the effect of the spline-in-tension interpolation.

As explained before, this interpolation is based on a tension coefficient. We will use the synthetic

data to evaluate the effects of this coefficient. To do so, we apply the same processing by varying

the tension coefficient from 1-1e−15 to 0.2. Figure 4.11 shows the finals phase velocity maps for
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eight different values of tension coefficient. We notice that for high tension coefficient values

(panels a, b, and c), the ”elastic surface” used for the interpolation is too flat and smoothing

phase travel time too much. Consequently, the travel time variations related to changes in the

medium will be suppressed, and we will lose the information of some structures; as shown in

figure 4.11 panels a, b, and c. the gabbro intrusion is not apparent anymore. Additionally, the

side effects strongly produce high velocities at the array boundaries at high tension coefficient

values.

On the contrary, when the tension coefficient value tends to zero (figure 4.11 panels f, g, and

h), the ”elastic surface” used for the interpolation is too flexible, and it creates artificial travel

time differences that are not related with the geological structures. However, the side effects

are less critical. The intermediate values of the tension coefficient (figure 4.11 panels d and e)

seem to be the more accurate; they do not create artificial structures nor smooth too much the

measures by removing structures. Therefore, a tension coefficient value of 1− 1e−6 was used for

the synthetics and the read data.

The synthetic data allow us to detect the limits of the Eikonal tomography at the Marathon

case and test the tension coefficient to better applied the technique. Besides, even a simplified

model of Marathon deposit modeling allows us to be guided in the compression of that wave

propagation.

4.5 Depth inversion

The eikonal tomography allows us to have phase velocity maps at different frequencies where

geological structures are discernible. However, to construct a 3D model, the phase velocity maps

need to be inverted. The relationship G between the physical parameters in the model m and

the observables d has to be established; mathematically, this is described as d = Gxm. The

inverse problem consists in estimating the model parameters m from the observed data dobs,

expressed as m = F(dobs). There are two main families of inversion methods: deterministic and

probabilistic. Deterministic methods are based on the local linearization of the direct problem,

while probabilistic methods perform a global exploration in the parameter space.

Since surface waves are more sensitive to VS velocities in the medium, the inverse problem in

our case consists in obtaining a 3D VS model from the measurements of the phase velocity. There

is not a linear solution to obtain the velocity model, VS(z) can not be express in terms of the

dispersion curves. Additionally, the solution is not unique, which means several different models
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Figure 4.11: Eikonal tomography at 4.5Hz for the synthetics data using different values of tension
coefficients (value at the top of each panel). The black line represents the Gabbro instruction.
Gray dots are the nodes.

can describe very similar wave propagation generating similar dispersion curves. This problem

is well suited to probabilistic inversions as the Monte Carlo method. Monte Carlo inversion

consists of randomly sampling the model space to determine the a posteriori probability density

of the solutions (Tarantola, 2005).

The different phase velocity maps at one single spacial node can be seen as a phase dispersion

curve. To evaluate the local velocity model (1D layered model), these curves need to be inverted.

We decided to use the Neighborhood Algorithm (NA) developed by Sambridge (1999) for the

inversion problem. NA is a Monte Carlo global direct-search technique aimed to find an ensemble

of models that sample the promising data-fitting regions of model-space.

NA algorithm makes an inversion in several steps. First, it generates randomly distributed
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models ni in the model space. Then, Voronoi cell mesh is created (the model space is partition

into regions close to each model). Next, the theoretical dispersion curve is computed using

Herrmann and Ammon (2004) routines for each model. The misfit between the theoretical and

the observed dispersion curve is defined as the area of the theoretical dispersion curve outside the

measured dispersion curve area, and its uncertainties, normalized by the area of the measured

dispersion curve (Mordret et al., 2014). The misfit is associated with the corresponding Voronoi

cell, and the nc cells with the better misfits are conserved. Then, each conserved Voronoi cell is

resampled into ns subspace, and new modes are generated inside each subcell. This procedure is

repeated nn times. This first random distribution is designed to explore a wide range of model

space. For then, focus only on the most promising zones of model space and thus converge more

rapidly to a global minimum.

The model parametrization requires the thickness and the elastic proprieties in each layer.

Following Mordret et al. (2014) approach, we only invert VS velocity at depth. Other parameters

as VP and density ρ are not considered as free parameters but they are defined as a function of

VS thus: VP = 1.16V S + 1.36 (Castagna et al., 1985) and ρ = 1.74V 0.25
p (Brocher, 2005).

Besides, the parameterization of the 1-D Velocity profile is not done in function of layers and

the corresponding velocities VS , but it is parametrized by overlaying cubic B splines; this allows

us to decrease the number of parameters to be inverted conserving a good characterization in

depth. A cubic spline basis function is defined by the weights of each spline and the relative

spacing between the knots. The knots spacing can also be inverted to less control the inversion.

To do so, we vary the spacing spline knots by raising them at the power of p, keeping the first

four knots and last four knots set to zero forces the velocity to be nonzero at the surface. Finally,

we have seven parameters, six weights of each spline (S1, S2, S3, S4, S5, and S6), and the power

p.

Figure 4.12 shows the model parametrization approach. Panel a shows two the cubic spline

basis created with six cubic splines (continuous lines) and the corresponding knots (stars). The

first basis (black lines and red stars) is generated using a power p=2 and the second one (gray

lines and green stars) uses p=1. The weighted cubic splines are generated from the cubic spline

basis and the weights S1, S2, S3, S4, S5, and S6 (values detailed in the figure 4.12 caption).

Figure 4.12-b illustrated the example of the weighted cubic splines for p=2. Finally, the weighted

cubic splines are overlapped, and the velocity model is parameterized as shown in the figure 4.12-

c for the two cubic spline basis. The exploration value range of the splines weights and p used

for the inversion are detailed in Table 4.3.
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Figure 4.12: Model parameterization for two values of p. The power p for the spline knots
controls the depth extent. The seven parameters for inversion are in red (S1, S2, S3, S4,
S5, S6, and p). a) Cubic spline basis (continuous lines) for two parameters of p and knots
positions (stars). b) Weighted cubic spline for p =1. The weigh used are: S1=2.9695km/s,
S2=3.4590km/s, S3=3.4699km/s, S4=2.9km/s, S5=3.2771km/s, S6=4km/s. c) Resulting 1D
velocity model for both examples.

The NA inversion provides a group of 1D velocity models for each spatial node and their

corresponding misfit. However, since the velocity variations at the marathon deposit are weak,

we decided to improve the inversion by including a new step: the linear inversion. To do so, we

applied the Rayleigh-wave phase linear inversion method developed by Haney and Tsai (2017).

This finite-element method seeks to refine an initial shear-wave velocity model by perturbing

the initial model iteratively to reach a model with an acceptable misfit.

The linear inversion method assume that (1) Poisson’s ratio and density are fixed throughout

the inversion and (2) P-wave velocity and density are fixed (Haney and Tsai, 2017). Under this

assumption a linear relation between phase velocity and shear-wave velocity for any given mode

can be described as:

δc

c
(f) = K(f, z)

δβ

β
(4.7)

Where, δcc (f) are the phase velocity variations depending on the frequency, K is the sensitivity

kernel and δβ
β are the relative shear velocity perturbations.
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To regularize the inversion, a weighted damped least-squares method is used. The data and

model covariance matrices are chosen as define in Garofalo et al. (2016). The data covariance

matrix is diagonal and described as:

Cd(i, i) = σd(i)
2 (4.8)

Where σd(i) is the standard deviation of the data and i is the phase velocity measurement.

The model covariance matrix is described define as:

Cm(i, j) = σ2
mexp(−|zi − zj |/d) (4.9)

Where σm is the model standard deviation, zi and zj the depth of the top and the elements ith

and jth and d the correlation length. With these matrices, we proceed to apply the total inversion

algorithm (Tarantola and Valette, 1982; Muyzert, 2007) by solving the following system:

C1/2
d K

C
1/2
m

 δβ

β
=

C−1/2
d

0

 δc

c
(4.10)

The inversion is computed, generating a new model (or updated model). Then, the updated

model is perturbed, and we repeat the inversion computation until the stopping criterion is

attended. Here the stopping criterion is defined as chi-squared value (Gouveia and Scales,

1998):

χ2 = (
δβ

β
)TC−1

d (
δβ

β
)/F (4.11)

Where F is the number of measurements, the iteration is repeated until the chi-squared value

falls within [χlow − χhigh] window or the maximum allowed number of iterations is reached.

4.6 Depth inversion implementation

The depth inversion implementation was carried out in two stages NA inversion and linear

inversion. The parametrization and the implementation for Marathon case will be described

in the following section. The phase velocity maps used for the inversion are obtained from the

Eikonal method; they were measured between 1.5 and 8.5, every 1Hz. Since not all the spatial

nodes contain the same number of measurements, we decide to conserve only spatial nodes with

at least six-velocity measurements.
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4.6.1 Neighborhood Algorithm parametrization

We invert the local dispersion curves at depth following the forward modeling method propose

by Mordret et al. (2014) and using the subroutines from the Computer Programs in Seismology

package (Herrmann and Ammon, 2004).

The allowed ranges for the spline basis are described in the table 4.3, they were chosen based

on the sonic log values studies and a priori geological knowledge from Marathon deposit (chapter

1, section 1.3.1). The NA was run with ni= 5001 (initial models). Then, the best 300 Veronoi

cells conserved (nc=300). These sub-cells are resampled ns = 3 times. And the full procedure

is repeated 12 times (nc = 12).

Parameter Allowed range

S1 [2000 - 3200] m/s

S2 [2500 - 3800] m/s

S3 [2700 - 4000] m/s

S4 [2700 - 4100] m/s

S5 [2700 - 4100] m/s

S6 [2700 - 4100] m/s

p [1-5]

Table 4.3: Ranges Allowed for the NA inverted parameters

4.6.2 Linear inversion parametrization

We follow the inversion method and the algorithms described by Haney and Tsai (2017) which

were adapted to our case and modified to decrease the computational time.

We generate the initial model by averaging the 100 best models obtained from the Neighborhood

Algorithm inversion and interpolating it in depth with a regular step of 30m. By doing so, we

ensure to be neighborhood to the final model, and thus the linear inversion is done in a more

restrained space. The model covariance matrix is formed using a correlation length d=200m,

and the standard deviation factor equals 2.5. It is important to note that the model standard

deviation is given as σf times the median of the standard data deviations. The stopping criterion

χlow and χhigh are established at 1 and 1.5, respectively. Therefore, the maximum iteration

number is 5; since the initial model is neighborhood to the final model, we do not need many

iterations to converge to a minimum.

The linear inversion is evaluated by individual node; when the initial model reaches the χ

stopping criterion, the inversion obtained with NA method is conserved as the final inversion.
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To evaluate the improvement of the inversion, we estimate the variance improvement between

the initial model (obtained from NA inversion) and the final model after the linear inversion.

4.6.3 Results

Figure 4.13 summarizes the results for each inversion at 2 different cells (stars figure 4.16) which

are part of different velocity structures. The first line of the figure shows the NA inversion

distribution. We can point out that the 1D velocity distributions for small misfits (warm colors)

are too extended for the first 100m showing that the model is not well constrained for the first

hundred meters. Given that the maximum frequency analyzed is 9.5Hz, the resolution at the

shallow surface (<100m) can not be correctly constrained. Besides, from 100m, the problem is

correctly constrained to 1km depth.

Since the parameterization used for the NA inversion was a spline basis which is not flexible

enough to detail all the anomalies at Marathon where the velocity contrasts are poor. The

second inversion was carried out to improve the velocity models to highlight the anomalies by

approaching the ”real model.” We remained that the initial model for the linear inversion is

the average of the 100 best models from NA inversion. The figure 4.13 second line shows the

results from the linear inversion at the same two points. For point 1272, the linear inversion

does not change the final model for this drastically; the misfit reduction between the NA and

the linear inversion is 15% (as shown in the variance reduction map figure 4.14-b). For the

second example, the variance reduction is approximately 60%, improving the final 1D model.

The kernel sensitivity (figures 4.13 i and j) show the linear inversion sensitivity between depth

and the period.

Figure 4.15 shows four horizontal slices of the S-wave velocity model at 160m, 300m, 500m,

and 700m depth. Blue regions represent fast velocities, and red colors low-velocity regions. The

shallower slice at 160m shows three structures two low structures at the extremities and one fast

at the center. As we increase the depth, the medium is more homogeneous, and there is no clear

fast velocity structure anymore after 500m. We can distinguish two artifacts probably created

by the numerical procedure. The first one is a red cell located at the south est (approximately

at lat:-86.315◦, lon:48.795◦). This artifact can also be seen in the error map (figure 4.14-a) as it

has a very large value (>80m/s) that exceeds the median misfit values.

The second artifact is located at the zero value regions in the reduction misfit map southwest

(figure 4.14-b). These values correspond to cells where the second inversion was not performed

since stopping criterion values were reached directly with the NA inversion. These results present
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Figure 4.13: Examples of 1D NA and linear inversions at 2 locations (stars figure 4.16). First
line: NA inversion. Second line: linear inversion. e) and g) Dispersion curves. Blue dots are
measurement with error bars, black lines are the initial models (average of 100 best models of
NA inversion), and red lines are inverted dispersion curves from linear inversion. b) and d) Shear
velocity depth models from NA, the color represent the misfit. The gray line represents the best
model. f), and h) Shear velocity depth model black lines are the initial models (average of 100
best models of NA inversion), and red lines are inverted dispersion curves from linear inversion.
i) and j) Sensitivity kernels of the linear inversion for the Rayleigh wave.

a difference in the inversion methodology that causes a sharp velocity change which is not

physical but purely numerical. The sharp velocity contrast is clear in the figure 4.15 slice
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Figure 4.14: a) Misfit map of the final inversion at each cell. b) Map of the misfit reduction
between the NA inversion and the linear inversion. Note that the cell misfits reduction equal to
zero are regions for which the linear inversion did not occur (see detail in the text).

at 700m. In addition to these two numerical artifacts, the model eastern and western ends

corresponding to the dense line are unreliable. These regions in the model are not constrained

anymore, and the edge effects mainly control them. We assume that the rest of the structures

are linked to a physical signature and can be trusted.

Figure 4.16 show five vertical profiles in the velocity model. These profiles were chosen,

taking into account previous geological information on the medium. Generally, the profiles show

a homogeneous medium as expected in Marathon deposit due to poor velocity contrasts. Even

so, some structures are visible. The profile AA’ which follows the dense line, shows a fast

structure dipping the first meters and then stabilizes horizontally after 500m, and there is an

inversion in the velocities. The profile BB’ located at supposed the gabbro intrusion position

shows a high velocity as expected for gabbro unities. The EE’ profile is homogeneous, and in

DD’ profile, we see an inversion in the velocity at depth as for the AA’ profile. Finally, the CC’

profile shows two layers, the fast one at depth.

4.7 Geological interpretation

Marathon deposit presents three main geological units: the Syenite, the footwall, and the gabbro

intrusion. The gabbro intrusion consists of different types of gabbros; our method does not allow

us to differentiate between them because their S-velocity are similar, so we will assume one

gabbro unite that is discernible using seismic noise. The final S-wave velocity model obtains by

cross-correlating train signals and extracting surface wave present structures comparable with

the geological units in the region.
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Figure 4.15: Horizontal slices through the S-wave velocity model at four different depths as
shown in each figure title. Note that the color bar varies for each slice to accentuate the velocity
contrast. The black line is the gabbro structure at the surface.

Figure 4.17 shows the geological interpretation of one horizontal and two vertical slices of the

final S-wave velocity model. The Gabbros are defined by faster S-wave velocities (>3450m/s),

.and the archaean granitoids defined by slow S-wave velocities (≈3200m/s). In figure 4.17-s

regions below the dense line edges were omitted for interpretation because the edge effects are

strong in this area. The pick dashed line represents the contact between gabbro and the footwall,

and the black dashed line the upper contact with the Syenite that is consistent with geological

observations (e.g., Good et al., 2015). We can notice that the lower gabbro contact (figure

4.17-a pink line) has an important dipping angle compare with the upper contact. The upper

contact (black dashed line) has a sharp dipping angle for the first 500m after the dipping angle

is less strong; The slices CC’ shoes that deeper than 500m the high-velocity zone is located

to the south west. The black line (Syenite-Gabbro contact) in the figure 4.17-a shows a slow

velocity anomaly at depth; this zone might correspond to syenite structure as defined by drilling.

Thus, the S-velocity model agrees with the area’s previous knowledge and the data obtained by

drilling. It also provides new clues about the complexity of the structure in-depth, which does
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Figure 4.16: Upper panels: five vertical slices across the 3D velocity from 100m to 1km depth.
The locations of the slices are presented by the black in the lower figure. Lower panel: horizontal
slice at 250mdepth. The stars represent two cell position for which the 1D inversion is detailed.
Note that the colorbar for the vertical slices and the horizontal slice is different.

not only present three blocks (as in the modeling) but a greater complexity and presence of the

low-velocity structures in the gabbro intrusion.

Laura Pinzon-Rincon 107



CHAPTER 4. SURFACE-WAVE IMAGING AT MARATHON DEPOSIT USING
TRAIN SIGNALS

A A’

C C’

Syenite-Gabbro upper contact
Syenite-Gabbro contact
Gabbro-Footwall contact

a) c)

b)

Figure 4.17: Vertical and horizontal slices across the 3D velocity with the geological features
interpreted

4.8 Comparison with continuous data cross-correlation

This section will compare the difference between the cross-correlation of train periods using

the processing proposed in this thesis and the standard correlations computed following the

standard cross-correlation approach. The standard cross-correlations were computed using the

30 days of continuous data sampled at 50Hz. The data was cut in segments of 30 minutes

long, the cross-coherence computed each segment, then stacked by the station, and the causal

and acausal parts were averaged. Finally, the virtual source gathers were reconstruct using the

individually stacked cross-correlation as shown in the figure 3.16 (previous chapter).

4.8.1 Eikonal Tomography

To compare the effect of both approaches on the eikonal tomography, we applied to the standard

cross-correlation the same the eikonal tomography processing as for the train data. It is

important to note that only the SNRthreshold parameter for the data rejection was changed

to 3 because standard cross-correlation has a lower SNR distribution. This SNRthreshold value

allows us to keep the data’s correct quality while conserving enough traces to track the wavefront.

Figure 4.18 upper panels show the phase velocity maps obtained from one virtual shot

gathered. Figure 4.18-a is resulting from the standard cross-correlation and figure 4.18-b from
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train periods correlation. It can be seen that the phase velocity map from standard cross-

correlation is considerately noisy, and there is not a clear anomaly that could be interpreted

as a geological structure. Otherwise, for the train period phase velocity map, a high anomaly

is perceivable at the expected position of the gabbro. Even if the phase velocity map of the

train period is still relatively noisy and it is necessary to stack the measurement from all virtual

sources and do the statistical rejection, we can already see that the standard correlations lower

quality data has a direct implication in tomographic methods as the eikonal tomography.

Figure 4.18: Eikonal tomography at 4.5Hz. Upper panels: phase velocity maps for a single
virtual source represented as a red star red start resulting from blind cross-correlation (a) and
from cross-correlation of train periods (b). Lower panels: final phase velocity maps obtained
using all the virtual sources resulting from blind cross-correlation (c) and from cross-correlation
of train periods (c). The black line represent the Gabbro instruction. Gray dots are the nodes.

Then we compare the final velocity maps (figure 4.18 lower panels). The final maps are

similar for both cases; the eikonal approach converges to similar structures after the stack over

all virtual sources. The high-velocity anomaly related to the gabbro intrusion is observed in

both cases. However, 4.18-c obtained from standard correlations presents a low-velocity artifact

at the dense line probably related to the nether data quality. We observe that although we

have fewer data and less azimuthal coverage for train signals, the contrast and the structure

are a little more visible than for standard cross-correlations because of the quality of the train
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correlations.

4.8.2 Anisotropy

Besides allowing us to obtain topographic maps of isotropic seismic velocities, the Eikonal

tomography also brings the possibility to access the azimuthal anisotropy of surface waves in a

relatively easy way. By applying the principle of Eikonal tomography described in the section

4.2, we obtain an estimate of the local phase velocity (the amplitude of gradient of the travel

time) as well as the local direction of propagation of the wave (the direction of the gradient

of the travel time). The computation of the equation 4.2 for every virtual source provides

the slowness direction that represents the local wave propagation, and their amplitude which is

equal to the local phase velocity (Lin and Ritzwoller, 2011; Mordret et al., 2013a). By combining

these individual measurements for each station, the phase velocity variations as a function of

azimuth can be estimated. However, to have an accurate estimation of the anisotropy, a good

azimuthal discretization is needed. The cross-correlations from trains signals are constraints in

azimuth because only station pair inline with train position are used reducing the azimuthal

illumination. For this reason, we will only use the standard correlations to study the anisotropy

in the Marathon deposit.

Figure 4.19-a, shows the example of three virtual sources (green, red, and blue triangles)

and the corresponding local wave propagation direction, i.e., the travel time gradient (arrows

with the same colors). The thick lines represent the local phase velocity and direction of wave

propagation inferred from the three virtual sources at a single spatial node of the model (black

square figure 4.19-a). Then, using the relationship between the local phase velocities and local

propagation directions (explained below), we compute the azimuthal anisotropy at each point

of the grid.

Smith and Dahlen (1973) showed that the relation between the azimuth, ψ, and surface-wave

phase velocity c is in the form of an even order sinusoid with a 180◦ and 90◦ periodicity. This

relation is frequency-dependent and is valid for a slightly anisotropic medium. This relation

represents as a truncated Fourier series analysis of the data is defined as:

c(ψ) = c0 +
A′

2c0
cos[1(ψ−φ1)]+

B′

2c0
cos[2(ψ−φ2)]+

C ′

2c0
cos[3(ψ−φ3)]+

D′

2c0
cos[4(ψ−φ4)] (4.12)

Where c0 is the average phase velocity for one station, and ψ angle is measured positive
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a. b
.

Figure 4.19: a) Schematic diagram illustrating the anisotropy phase velocity measurements
(c(ψ)) at one spatial node of the model (small black square) and the related to 3 surrounding
stations or virtual sources (colored triangles). Each colored vector field shows the velocity field
of the waves emitted by the corresponding colored virtual source. The vectors in the particular
cell are enlarged for clarity. Modified from Mordret et al. (2013a). b) Azimuthal distribution of
the phase velocity at 4.5Hz for the spatial node represented as a black cross in the figure 4.18-a.
The blue dots are the phase velocity measurements, and the red dots represent the phase velocity
averaged over 20◦ with the corresponding error bars. The red curve best fits the 1ψ , 2ψ, and 4ψ
azimuthal variation for the averaged velocity measurements. The values of the fitted parameters
and the variance reduction are shown.

clockwise from north. A = A′/c0, B = B′/c0,C = C ′/c0 and D = D′/c0 are the peak-to-peak

relative amplitude of the 1ψ, 2ψ, 3ψ and 4ψ terms and φ1, φ2, φ3, and φ4, define the orientation

of the fast axes for the the 1ψ, 2ψ, 3ψ and 4ψ terms, respectively. 1ψ represents the isotropic

therm of the velocity. However, this component is not physical at a local point because the

velocity is constant locally. Each 1ψ and 3ψ violates the reciprocity principle, and they can not

be considered as physical parameters (Lin and Ritzwoller, 2011). The odds components 2ψ and

4ψ are the anisotropic terms.

To obtain the phase velocity in function on the azimuth, we follow the study proposed by

Lin and Ritzwoller (2011). First, we use the final phase velocity measurements (i.e., after the

statistical selection explained in the section 4.3.3). Then, we extract the phase velocity and the

azimuth for each spatial node (i.e., cell of the medium) and the eight surrounding cells; if one of

the surrounding cells does not contain data, the spatial node is rejected. The blue dots in the

figure 4.19-b represent an example of the phase velocity distribution in function of the azimuth

for a cell located at the black cross figure 4.18-a. Next, the measurement are binned each 20◦

(figure 4.19-b red dots). Measurements are rejected if the data does not span at least four times

45◦ quadrants. This is done in order to conserve only robust observations for the 2ψ, which need
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𝝓𝟐 inverted

𝝓𝟐 inverted

𝝓𝟏$𝟐$𝟒 inverted

𝝓𝟏$𝟐$𝟒 inverted

a. b.

c. d.

Figure 4.20: Azimuthal distribution of the phase velocity at 4.5Hz for the spatial node
represented as (a-b) a black cross in the figure 4.18-a and (c-d) a pink cross in the figure 4.18-a.
The blue dots are the phase velocity measurements, and the red dots represent the phase velocity
averaged over 20◦ with the corresponding error bars. The red curve best fits inverting (a and
c) 1ψ , 2ψ, and 4ψ therms and (d and d) ψ therm. The values of the fitted parameters and the
variance reduction are shown for each case.

enough measurements to cover at least 180◦.

It is possible to invert 1ψ, 2ψ and 4ψ therms or only the anisotropy therm 2ψ. Figure 4.20

shows two examples for each inversion at two different cells. Adding the 1ψ and 4ψ term to

the inversion does not improve the fitting notable, and the 2ψ value remains the same for both

cases. Therefore, we decided to fit the binned velocities with the weighted least-square only for

the 2ψ (figure 4.19-bred line).

The misfit is evaluated and defined as the standard deviation between the measured and

the predicted phase speeds. For interpretation, only the spatial nodes a misfit smaller than 30

m/s and a variance reduction greater than 70% are conserved. Figure 4.21 shows the misfit and

variance reduction map (a and b respectively), the red arrows show the limit values for which

we consider the azimuthal values reliable measurement (i.e., sufficient constrain).
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Figure 4.21: a) Misfit map of the 4.5Hz surface wave azimuthal anisotropy inversion. b) Variance
reduction map of the 4.5Hz surface wave azimuthal anisotropy inversion. c) Geological map at
Marathon with 2ψ azimuthal anisotropy at 4.5Hz. The 2ψ amplitude and fast direction are
summarized by the orientation and the length of the bars. Blue bar represents all the 2ψ
azimuthal anisotropy measurement, and red bars are the reliable measurement (see details in
the text).

Figure 4.21-c shows the geological map of Marathon at the surface and the fast axis and

amplitude of the 2ψ anisotropy represented by the orientation and the length of the bars

obtained. The anisotropy is evaluated at 4.5Hz which is equivalent in depth to ≈200m (as

shown in the kernels figure 4.13-i and -j). The blue bar represents all anisotropy measurements,

and the red bars are reliable measurements (i.e., regions with a small misfit and high variance

reduction).

From the 2ψ anisotropy, we discern three regions (the three rectangles in the figure 4.21-c).

At rectangle A the anisotropy orientation is North-south, which follows the gabbro intrusion
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orientation. We suggest that the anisotropy in this region is related to the gabbro intrusion. In

rectangle B, the anisotropy direction changes, presenting now a northeast-southeast direction.

This direction could be due to the Gabbro-Syenite contact that alters the structures at depth.

Finally, zone C is entirely in the Syenite. The anisotropy orientations in this region are correlated

to the topography at the surface. We can not make a straightforward interpretation; however,

topography at the surface may be linked to compression mechanisms at depth that would also

alter the geological structures, generating this anisotropy direction for some regions of the Syenite

unit.

4.8.3 Ambient noise surface wave tomography (ANSWT) results from Sisprobe

Sisprobe carried out the results present in this subsection; the objective of including them in

this manuscript is to compare the imaging results generated by the standard cross-correlation

approach and the cross-correlation of train periods. Therefore, we will first briefly present the

data process and then the results.

The cross-correlations used for the ANSWT were the standard cross-correlation described

earlier in the section. Phase and group velocity dispersion curves were computed for each

correlation using automatic algorithms (FTAN algorithm (Mordret et al., 2015) for the group

velocities, and the algorithm developed by Ekström et al. (2009)). 70% of the dispersion curves

were conserved after the quality control. The dispersion curves are regionalized into a regular

grid of 111.2m by 73.5m cells (in North and East directions) as described in Mordret et al.

(2013b). Finally, group and phase velocities were jointly inverted at every single cell using

NA algorithm (see section 4.5). The NA inversion parameters used are described in the table

4.4. Note that a constant model was defined for this inversion, and the cubic splines basis was

superimposed to create velocity anomalies.

Parameter Allowed range

Velocity in the first layer [ 2000- 3100] m/s

Velocity in the last layer [2900 - 4100]

S1 [50 - 750] m/s

S2 [300 - 1150] m/s

S3 [350 - 1550] m/s

S4 [100 - 2000] m/s

S5 [1000 - 2300] m/s

Table 4.4: Ranges Allowed for the NA inverted parameters used by sisprobe

114 Laura Pinzon-Rincon



4.8. COMPARISON WITH CONTINUOUS DATA CROSS-CORRELATION

Figure 4.22: a) to e) Vertical slices across the 3D velocity from 100m to 1km depth. The black
line presents the locations of the slices in the figure f. f) and g)Horizontal slices through the
S-wave velocity model at 200m and 500m depth as shown in each figure’s title. Note that the
color bar varies for each slice to accentuate the velocity contrast. g) The black line is the gabbro
structure at the surface.

The VS model was generated by averaging the 300 best models (with the lowest misfits).

Figure 4.22 shows two horizontal slices of the S-wave velocity model at 200m and 500m depth

and the same five vertical profiles that showed for our approach (figure 4.16).

We observed comparable structures. The profile AA’ shows for both cases a high-velocity

Laura Pinzon-Rincon 115



CHAPTER 4. SURFACE-WAVE IMAGING AT MARATHON DEPOSIT USING
TRAIN SIGNALS

anomaly at the west (A’) and a low-velocity zone appears at 500m depth. The BB’ profile

presents a fast structure located at the North and the CC’ to the south; both profiles BB’

and CC’ from both approaches show similar fast velocity anomalies. Since profile EE’ is very

homogeneous, it is difficult to highlight any structure. On the other hand, the DD’ profiles do

not correspond; there is an inversion between the fast and slow zones. Although the structures

are relatively similar and consistent, it should be noted that the absolute value of the velocities

is significantly different (≈300m/s).

Figure 4.23: Averaged phase dispersion curve obtained using three different approaches. In red
dispersion curve obtained from the eikonal tomography. In black, the dispersion curve obtained
by Sisprobe and in blue applying FK analysis (see details in the text).

To understand these differences, we plotted the average dispersion curves obtained using

different methods. We compare the dispersion curves obtained using train signals correlations

and the standard correlation. For the standard cross-correlation, two methods were used the

automatic approach picking applied by Sisprobe and FK approach. The frequency-wavenumber

(F-K) analysis was implemented by Teodor et al. (2021). They made the FK analysis of sub-

arrays in the dense line using the same correlation dataset. They computed an average dispersion

curve considering only the Rayleigh wave propagation’s fundamental mode. Figure 4.23 shows

the average dispersion curves obtained with the three methods. We observe that the dispersion

curves obtained by Sisprobe and our method are consistent, but our dispersion curve is shifted

116 Laura Pinzon-Rincon



4.9. CONCLUSION

to 100m/s. On the other hand, the curve obtained with the FK method is consistent with the

other curves at low periods (<0.3s) but significantly different at large periods. We notice the

strong dependency of phase velocity values on the used method in a general way. Specifically,

the velocity differences at the tomography resulting from both methods could be due to the

method used to obtain the phase velocity. Moreover, the differences are accentuated by the

different smoothing parameters for the velocity maps construction and inversion methods.

In any case, the general structures obtained with both approaches are indicators of physical

structures at depth related to geological units. Furthermore, both approaches converge to similar

regions of fast velocity related to the gabbro intrusion, which has a sharp dipping angle (≈ 60◦)

the first 500 m, and the angle decreases drastically. However, we should be cautious with the

direct analysis of absolute velocity values because they are method-dependent.

4.9 Conclusion

In this chapter, we apply common surface-wave tomographic methods to surface waves retrieved

using train-generated seismic signals. We first sought to obtain a 3D shear wave velocity of

the region under study. For this, we applied Eikonal tomography; we obtained phase velocity

maps that we then inverted using a probabilistic approach followed by a linear inversion. This

workflow allowed us to obtain a robust model of the studied region, which agrees with the

geological background and the drills information. We also provided new information about the

geometry of the Gabbro intrusion, more specifically on the upper contact and the dipping angles

of both regions.

Using synthetic data, even in a simpler context than expected in Marathon, helped us to

understand the content of our virtual shot gathers. The synthetic data showed that obtaining

reflected waves is very challenging in a context like Marathon, where velocity contrasts are very

slight. The numerical study also allows us to tune some Eikonal tomography parameters and

analyze the resolution limits of the method in the case of Marathon, thus confirming that Eikonal

tomography was an adequate method for viewing structures in a context such as Marathon.

This chapter also analyzed the pros and cons of the train-generated signal approach for

seismic imaging. For this, we compared the correlations and final topographies obtained with our

approach and with a more classical passive seismic interferometric approach. Using the Eikonal

approach, we observed that trains signals shot gathers allow us to obtain a phase velocity map

using a single virtual source, whereas standard correlations shot gathers need to stack over several
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virtual sources to converge to a constructive image. However, in both approaches, robust and

consistent phase maps were obtained, concluding that the use of train signals to obtain virtual

shot gathers allows us to increase the quality of the data, which is then reflected in a decrease

of the measurement errors when common imaging methods are applied.

On the other hand, using local noise sources such as trains restricts the illumination of the

region. In Marathon, the railroad covers approximately 130◦, which allows having a correct

illumination range; however, this restricts certain studies that need a better illumination, such

as those of anisotropy for which it was necessary to use the standard correlations. In a more

general way, these limits for imaging application are case dependent (depends on the source and

the imaging target)
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Marathon deposit

This research work aimed to perform high-resolution imaging at the Marathon mineral deposit

using passive seismic techniques. To do so, we use 30 days of continuous seismic noise recorded

by 1020 vertical component geophones. First, we explored the distribution of noise sources

around the array and characterized them in time and frequency to find the most suitable for

high-resolution imaging. We found that the most persistent and powerful source of seismic noise

in Marathon was the freight trains passing nearby the array. Using numerical modeling and

observations of train seismic signals at Marathon, we described and characterized the source

mechanisms, concluding that long, heavy, fast trains generate more energy. Train-generated

energy is the high frequency range between [2 - 30]Hz, and train’s speed variation generates

broadband energy in Marathon.

Considering that trains are moving and extended sources, we can not apply standard passive

seismic interferometry. Thus we developed a methodological framework focusing on the stationary

zones and propose a signal processing strategy focusing on high-frequency retrieval. This

workflow is based on five steps. First, we identified the train in the continuous data, and

we located them. Using array methods (beamforming and covariance matrix), we created a

detailed catalog of train passages and localized them by the minute. Second, we divided the

train signals into one-minute windows, and we selected station pairs for which the train is in a

stationary phase zone for each one-minute window. Third, we computed cross-correlations after

proper time windowing and station pairs selection. Fourth, we stacked the cross-correlations

over different events (i.e., trains). Finally, we reconstructed virtual source gather and retrieved

three dominant arrivals; we suggest the arrivals are a P-wave, a mix of S- and surface waves

higher modes, and the surface wave.

The next step was to apply the Eikonal tomography to the surface-wave by virtual shot

gathers. To do so, we measured the phase velocity; we interpolated the measurement to a
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regular grid to then calculate the phase velocity by virtual shot gathers. Finally, we averaged

the individual velocity maps to obtain the final phase velocity maps. Subsequently, the phase

velocities are inverted in two steps. We first used a probabilistic inversion and then explored

the neighborhoods of the more probable models with a linear inversion. The inversion of

these phase velocity maps yielded a 3D shear velocity model that correlates very well with

the region’s geological structures and drill data while providing additional information on the

Gabbro intrusion’s dipping angle.

In order to evaluate the arrival time interpolation and efficiency of the Eikonal tomography,

we compared our method with numerical models computed in a simplified version of the Marathon

geology. Numerical modeling allows us to constrain the interpolation parameters and better

understand the wavefield in a close but simplified Marathon deposit model. To judge our

approach, we also compared our results with the standard passive seismic interferometry results.

We found that individual phase velocity maps obtained by the train correlation are less noisy,

allowing the recovery of sharper images. However, final velocity maps (averaged of all virtual

sources) converged to a similar result. Since the standard correlations are noisier than train

cross-correlation, the individual phase velocity maps are noisier, too. Nevertheless, we converge

to a similar final result because we stack more data (more stations pairs per virtual source

and more virtual sources). Besides, standard correlations use all station pairs improving the

azimuthal coverage compare with our method. We, therefore, studied the azimuthal anisotropy

of Rayleigh waves with the Eikonal tomography technique. We noticed a strong correlation

between the gabbro intrusion and the directionality of the anisotropy in the gabbro. In the

Syenite, the anisotropy is controlled mainly by topography. Finally, we compared the 3D models

we obtained with the one obtained by Sisprobe using standard correlation. We noticed similar

structures between the two models; however, a difference in the absolute velocity value is present

(≈300 m/s) due to the phase velocity measurement and inversion methods.

Generally, we implement an alternative method to use freight train signals. Trains are

available, detectable, repeatable sources that generate high-frequency broadband energy for

imaging in a mineral exploration context. We extracted high-frequency surface waves with a

higher SNR than standard correlations and used them to obtain a 3D velocity model. We showed

that it is possible to retrieve body waves using selective correlations contrary to the standard

use of seismic noise. Although these P-waves may be observable in the individual virtual shot

gathers (figures 3.16 and 4.24), their use for seismic imaging is not straightforward. The P-

waves could not be used at Marathon for several reasons. First, P-waves have a lower quality
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(SNR) and lower amplitude than surface waves, making it harder to extract and isolate from

the rest of the record. Second, the source ringing is not random noise that hampers the precise

analyses of the P-wave (as shown for the last two red traces in figure 4.24). Third, the spatial

coherency of the P-waves is poor. Moreover, at short distances, the body waves are hidden

by the surface waves; at distances shorter than 2km, it is not possible to discern the P-wave

(first red traces in figure 4.24). Because of all these reasons, it was not possible to pick the P-

arrival. However, advanced denoising methods could be explored in order to pick the P-wave for

later use in classical imaging applications providing additional information about the geological

interfaces at Marathon.

Figure 4.24: Virtual shot gather of station 01.01002 (figure 2.2). It is constructed from the stack
of 60 train passages using all the azimuths and filtered between [15 - 30]Hz. Trace numbers
are sorted by increasing distance from the virtual source with a not constant step. The yellow
lines indicate travel times with constant velocities. We show three traces (red lines) at different
inter-station distances to highlight the poor quality of the direct P-arrival.

In addition to the body waves, other waves were reconstructed using train signals. Figure

4.25-a shows the virtual shot gather for the dense line array reconstructed by stacking the five

lines in the array. In this figure, we observe some coherent energy arriving with apparent negative

velocities (red arrows). This arrivals were also observed for each line (figure 4.25-b) and in the

synthetic data (figure 4.25-c). We suggest that their arrival could be related to reflections of

surface waves on the contact geological structures and/or reflected by the topography. The
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surface waves were already used, but these reflections could be complementary as they would

better delimit the contrasts between the geological blocks on the surface. However, a deeper

study to determine the origin of these arrivals is essential before they can be used.
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Figure 4.25: Virtual shot gathers of station 01.01002 for the dense line array (figure 2.2). a)
Virtual shot gather reconstructed by stacking the five lines in the array. b) Virtual shot gather for
each dense line as shown in the title of each panel. c) Synthetic virtual shot gather reconstructed
by stacking the five lines in the array. a),b), and c) Trace numbers are sorted by increasing
distance from the virtual source with a not constant step. The data was filtered between [5 -
12]Hz. a) and c) show the suggested surface waves reflections (highlighted by the arrows) for
both real (a) and synthetic data (b). The colored lines in the map show reflection locations, the
color corresponds to the arrow colors in panel a.

Train signals and others opportune sources of noise

In this work, we propose a processing strategy for applying seismic interferometry to train-

generated signals, and it was successfully applied for seismic imaging in a mineral exploration

context. Besides, train signals and the workflow applied here can be used in a different context.

For example, we use freight and passenger train generated signals to imaging shallow structures
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in Dublin basin by Rezaeifar et al. (2020), and ballistic P waves were extracted using train

signals for monitoring purposes at San Jacinto Fault by Brenguier et al. (2019); Pinzon-Rincon

et al. (2021).

However, train tremors utilization for seismic interferometry thus depends both on detection

limits (instrument sensitivity and local noise level) and on reliably recognizable features in train

signals. Therefore, our ability to predict the long-range body-wave peak ground velocity (PGV)

of a moving train tremor is crucial to image formation and monitoring any changes with seismic

interferometry. Train signal modeling showed that the train geometry (wagon weight and train

length) and the train’s velocity control the PGV Lavoué et al. (2020). Moreover, the ground

stiffness beneath railways controls high-frequency content and amplitude of excitation (trains

traveling across a rock or stiff soil generate higher-frequency and higher-amplitude signals). This

ground stiffness parameter may also reflect a coupling between the rail track and the ground.

Observation from previous studies Inbal et al. (2018); Brenguier et al. (2019) persuades us

that 50km is a typical maximum distance range for detecting tremors generated from large

North American freight trains. Although maximum detection distance may be limited (a few

kilometers) in sedimentary basins due to attenuation and weak excitation, and it can reach almost

100km on a hard-rock substratum. This led us to look into the spatial extent of detectable train

tremors in the entire contiguous United States plus southern Canada (figure 4.26). The map1

displays the main freight railway routes. The swathes in colors represent high tonnage routes.

Their width (100km) is a rough guide to the potential long-range train-tremor detection scope.

This map does not consider the reduced detectability of signals in urban areas due to intense

local noise or in sedimentary basins with strong attenuation. Annual freight tonnage 2 (figure

4.26) is a proxy for the number of trains traveling on rail sections. Assuming an average train

length of 2km and a weight of 15kt, a tonnage of 100 Mt/yr corresponds to about 18 trains per

day. The number of trains per day will affect the ability to stack the reconstructed body waves

from seismic interferometry.

This map highlights the excellent opportunity to exploit any available massive freight train

noise recovery to improve crustal imaging and monitoring dramatically. Potential applications

may be in Cascade volcanos, southern California’s San Andreas fault system, induced seismicity

(e.g., Oklahoma), and resource exploration and monitoring (minerals and water). Moreover,

1The map was made with Natural Earth, free vector and raster map data are available at https://www.

naturalearthdata.com.
2Figure is based on a map published by the U.S. Department of Transportation (https://railroads.dot.

gov/sites/fra.dot.gov/files/inline-images/0209.png), built from the waybill samples 2010 established by
the U.S. Surface Transportation Board.
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Figure 4.26: Regions of potential long-range train-tremor detection from the main railway route
and annual tonnage information in North America. Colors represent annual freight tonnage,
which is an indication of the number of trains traveling on the rail sections (sections with annual
tonnage < 10 Mt/yr are ignored). Colored lines are 100km thick, indicating the distance from
which we may detect individual train tremors 50km from the railway (see details in the text).
Modified from Pinzon-Rincon et al. (2021)

distributed acoustic sensing data (Zhan, 2020) can be coupled to seismic interferometry of

opportune sources as described by Dou et al. (2017) for car traffic and near-surface applications.

This study indicates the potential for reconstructing widespread virtual sources along fiber optics

from correlations of both short- and long-range opportune sources that open the path to many

applications.

Beyond these regional applications in North America, trains can be used globally, especially

in such countries and regions as China, Europe, Japan, and India. All have large freight railway

systems, often with high-speed passenger lines too. Passengers trains are lighter than freight

trains and generate less energetic tremors; thus, they can be used for near-surface environmental

or engineering studies. However, the utilization of train signals as a source of seismic noise for

imaging and monitoring reasons is limited to regions near the railway and requires trains traveling

at relatively high speeds.

Although promising, this work poses significant, practical challenges that the field must

confront. The most important is to improve understanding of the retrieved body and surface
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waves’ spatial sensitivity to crustal structures for seismic interferometry with opportune sources.

In contrast to actively controlled and placed sources, measurements of travel times or temporal

travel-time perturbations using more irregular sources can improve sensitivity to the structure

between the receivers and blur the overall picture due to interference between the noise source

and the receivers. This latter downside may induce misleading interpretations of velocity or

velocity change measurements.

In a general way, the workflow presented here in this work can be generalized to other local

sources of cultural noise, including car and truck traffic, wind farms, and natural sources such as

surf break or tectonic or volcanic tremor, which can be considered opportune sources for seismic

interferometry.
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