
Thèse de doctorat en informatique
de Sorbonne Université

École Doctorale Informatique, Télécommunications et
Électronique

Energy Minimization, Data Movement and
Uncertainty: models and algorithms

par
Konstantinos Dogeas

présentée et soutenue publiquement
pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Date provisoire de soutenance: April 6, 2022

Jury
Dr. Evripidis Bampis
Sorbonne Université
Directeur de thèse – Professeur des universités

Dr. Thomas Erlebach
Durham University
Rapporteur – Professeur des universités

Dr. Dimitris Fotakis
National and Technical University of Athens
Rapporteur – Professeur des universités

Dr. Giorgio Lucarelli
Université de Lorraine
Co-encadrant – Maître de conférences

Dr. Fanny Pascual
Sorbonne Université
Co-encadrante – Maîtresse de conférences

Dr. Pierre Sens
Sorbonne Université
Examinateur – Professeur des universités

Dr. Denis Trystram
Université de Grenoble-Alpes
Examinateur – Professeur des universités

0Abstract
High performance computers (HPCs) is the go-to solution for running computa-
tionally demanding applications. As the limit of energy consumption is already
achieved, the need for more energy efficient algorithms is critical. Taking ad-
vantage of the core characteristics of an HPC, such as its network topology and
the heterogeneity of the machines, could lead to better scheduling algorithms.
In addition, designing more realistic models, that grasp the features of real-life
applications, is a work in the same direction of achieving better performance.
Allowing scheduling algorithms to decide either the amount of resources allo-
cated to an application or the running speed of the resources can pave the path
to new platform-aware implementations.

In the first part of the thesis, we introduce a model which takes into account
both the topology and the heterogeneity of a platform by introducing two kind of
machines. We augment the scheduling problem with constraints whose purpose
is to implicitly reduce data movement either during parallel execution or during
the communication with the file system. We propose algorithms that can decide
the number of resources allocated to an application taking into consideration
the extra constraints.
In the second part of the thesis, we deal with the uncertainty on part of the

input and more specifically, the workload of an application, that is strictly related
to the time needed for its completion. Most works in the literature consider this
value known in advance. However, this is rarely the case in real-life systems. In
our approach, the given workload is a worst case scenario for the execution of
an application. We introduce application-specific tests that may decrease the
workload of a task. Since the test (e.g. compression) takes some time, and since
the amount of reduction (e.g. in size) is unknown before the completion of the
test, the decision of running the test for a task or not has to be taken. We propose
competitive algorithms for the problem of scheduling such tasks, in order to
minimize the energy consumed in a set of speed-adjustable machines.

In the third part of the thesis, we focus on a similar setting of uncertain input
and we consider a model where the processing times are not known in advance.

iii

Here, we augment the input of the problem by introducing predicted values
in place of the unknown processing times. We design algorithms that perform
optimally when the predictions are accurate while remaining competitive to the
best known ones otherwise.

iv

0Résumé

Les plateformes de calcul haute performance (HPC) sont la solution idéale pour exé-
cuter des applications exigeantes en termes de calcul. Étant donné leur consommation
importante en énergie, le besoin d’algorithmes plus efficaces en termes d’énergie est
indispensable. De meilleurs algorithmes d’ordonnancement peuvent être conçus en
exploitant les caractéristiques essentielles d’une plateforme HPC, telles que sa topologie
de réseau et l’hétérogénéité de ses machines. On peut également obtenir de meilleures
performances en concevant des modèles plus réalistes, qui saisissent les fonctionnalités
d’applications réelles. Ainsi, permettre aux algorithmes d’ordonnancement de décider
de la quantité de ressources allouées à une application, ou de la vitesse d’exécution
des machines, peut ouvrir la voie à de nouvelles implémentations compatibles avec la
plateforme.

Dans la première partie de la thèse, nous introduisons un modèle qui prend en compte
à la fois la topologie et l’hétérogénéité d’une plateforme en introduisant deux types
de machines. Nous augmentons le problème d’ordonnancement avec des contraintes
dont le but est de réduire implicitement le mouvement des données pendant l’exécution
des tâches sur des machines parallèles, et lors de la communication avec le système
de fichiers. Nous proposons des algorithmes qui ordonnancent les tâches au cours du
temps, et décident du nombre de ressources allouées à une tâche, en tenant compte de
ces contraintes supplémentaires.

Dans la deuxième partie de la thèse, on s’intéresse à l’incertitude liée à la charge de
travail d’une application, cette charge étant directement liée au temps nécessaire à son
exécution. La plupart des travaux de la littérature considèrent cette valeur connue à
l’avance. C’est cependant rarement le cas dans les systèmes réels. Dans notre approche,
la charge de travail donnée est une charge possible mais qui peut éventuellement être
réduite. On introduit alors des tests spécifiques à l’application qui peuvent réduire la
charge de travail d’une tâche. étant donné que le test (par exemple, la compression)
doit également être exécuté, et que la quantité de réduction (par exemple, la taille) est
inconnue avant la fin du test, la décision d’exécuter ou non le test pour une tâche doit
être prise. On propose des algorithmes compétitifs pour le problème d’ordonnancement
de telles tâches, dans le but de minimiser l’énergie consommée par un ensemble de
machines pour lesquelles on peut modifier la vitesse.

Dans la troisième partie de la thèse, nous nous intéressons à un contexte similaire
d’entrées incertaines et nous considérons un modèle dans lequel les temps d’exécution
des tâches ne sont pas connus à l’avance. Nous augmentons l’entrée du problème en
introduisant des valeurs prédites des temps d’exécution. Nous concevons alors des

v

algorithmes qui ont d’excellentes performances lorsque les prédictions sont exactes,
tout en restant compétitifs lorsque les prédictions se révèlent inexactes.

vi

0Acknowledgments

In the next few lines, I’d like to thank everyone who played a part (big or small) in this
rather personal journey.

First of all my supervisors throughout my academic life. Evripidis Bampis in the
thesis, Giorgio Lucarelli in the master’s and the late Ioannis Milis in the bachelor’s.
Their altruistic priority was always to make me a better researcher, even though in
the end they also made me a better person. In the same time, I want to thank my
co-supervisor, Fanny Pascual, whose guidance was essential throughout the years and
Alexander Kononov for the enriching collaboration.

Moreover, I want to express my luck to be surrounded by my office-mates, Anne-
Elisabeth, Adele, Franco and (the newcomer) Francois, as well as by my lab-mates,
Marvin, Gaspard, Anja and (the outsider) Arnaud, for creating a lively and stimulating
working environment. Extra credits should be given to David for remaining a passionate
individual and transmitting his ideas through our very pleasant discussions.

Furthermore, I would like to address my appreciation to people with a timeless
importance to me. To my very close friends Gerasimos, Alexandros, Antonis and George
D. for their almost stubborn existence in my life. To Federico, Abdallah, Afroditi, Dylan
and Rutger (and the rest of my neighbors) for their contribution in maintaining a social
cycle whilst in Paris. To George A., Nikos, Elli, Christos, Andreas, Manthos and Thodoris
for their contribution in maintaining a balanced mental state whilst in Paris. Special
thanks to Clara, who belongs in all three above categories and decided that dealing with
me is a good idea.

In addition, I would like to thank my older brothers, Epameinondas and Ioannis, for
each showing me their distinct approach in life, a blend of which I follow today. Finally,
I’m grateful to my parents, Stavros and Liana, for providing everything they could and
for the unconditional love and support they show in every step along this way.

vii

0Contents
Abstract iii

Résumé v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Notation . 3
1.2 Preliminaries . 5
1.3 Outline of the Thesis . 6

2 Related Work 9
2.1 Makespan Minimization and Topological Constraints 9

2.1.1 Parallel Machines . 9
2.1.2 Topological Constraints . 10

2.2 Energy Minimization and Explorable Uncertainty 12
2.2.1 Speed Scaling . 12
2.2.2 Explorable Uncertainty . 14

2.3 Total Completion Time Minimization and Uncertain Predictions 15
2.3.1 Uncertain Predictions . 17

3 Topological Constraints 19
3.1 Formulation of the problem . 19
3.2 Complexity . 22
3.3 Proportional Malleable Model . 25
3.4 Generalized Malleable Model . 32
3.5 Conclusion . 37

4 Explorable Uncertainty 39
4.1 Formulation of the problem . 39
4.2 Notations and Preliminaries . 41
4.3 Single Machine . 42

4.3.1 Lower Bounds . 42
4.3.2 Offline Model . 46

ix

4.3.3 Online Model . 57
4.4 Multiple Machines . 62
4.5 Conclusion . 65

5 Uncertain Predictions 67
5.1 Formulation of the problem . 67
5.2 Notations and Preliminaries . 68
5.3 Single Machine . 69

5.3.1 A Consistent Algorithm . 70
5.3.2 A Preferential Algorithm . 77

5.4 Multiple Machines . 79
5.4.1 A Consistent Algorithm . 80
5.4.2 A Preferential Algorithm . 83

5.5 Experimental Evaluation . 83
5.6 Conclusion . 86

6 General Conclusions and Outlook 87

Bibliography 89

x

1 Introduction

Scheduling is one of the most studied problems in computer science. In its typical
setting, we have a set of jobs that need to be executed in a set of machines. The vast
characteristics of these two ingredients have unraveled multiple variants, each one
with different scientific importance. This diversity can grasp the important features
of real life systems. Scheduling algorithms can be applied to simple problems, such as
whether to rent or buy skis, to complex ones, e.g. how to program the resource and
job managing system (RJMS) of a supercomputer. On one hand, our main goal is to
create models that mirror as good as possible real life systems and on the other hand to
propose algorithms that solve these models. This thesis is part of the ANR Energumen
(ANR-18-CE25-0008) project which proposes to revisit the principles of the existing RJMS
toward the evolution of large-scale parallel systems.

In our days, High Performance Computers (HPCs) are widely used to run applications
of great societal importance. Since their debut, the goal of the scientific community
is to increase their efficiency. For many years, this was achieved via the hardware of
the systems: either by increasing the scale of the platform, or by introducing special
purpose processors and heterogeneity on the machines (nodes), or by improving the
interconnection network. However, it is now that the power consumption becomes a
major constraint. For example, electricity companies set upper bounds on the power for
HPC systems in different time periods during the day. Hence, HPCs’ designers turned
their focus on the scheduling algorithms in order to increase drastically the computing
performance within the same order of magnitude in energy as today. Existing HPCs
consist of more than one type of nodes like computational accelerators (GPUs due to
their efficiency in specific kind of operations) as well as machines dedicated to the
communication with a (usually distributed) file system, i.e. Input/Output (I/O) nodes.
I/O nodes have a positive effect on reducing communication cost and they can prevent
the network from acting as a bottleneck to the overall performance of the platform. As
the complexity of platforms increases, the need for new, more precise, platform-oriented
algorithms, which take into consideration the various features of HPCs, is crucial.

Energy Energy minimization is a crucial point for utilizing HPCs at a sustained rate.
We use two mechanisms to achieve so. By allowing malleability on the resources,
schedulers can decide uponwhich quantity of computing resources to allocate to each job
taking also into account all different possible parameters/states, such as communication
requirements and data movements [Non13]. Here, the number of allocated resources

1

Chapter 1 Introduction

for a job can be adapted, aiming at the same time to reduce the data movements by
appropriate allocations, with the global goal of reducing the energy consumption.

The second mechanism to reduce energy is speed scaling [YDS95]. Here, the clock
frequency of the processors can be adapted (also known as Dynamic Voltage and
Frequency Scaling - DVFS) to the energy requirements. Specifically, higher speed
corresponds to better performance, but higher energy consumption. To quantify this,
we assume that, if a machine runs at speed 𝑠 (𝑡) at a time instant 𝑡 , then the power
needed is 𝑃 (𝑠 (𝑡)). In integrated systems produced by the standard CMOS technology,
the power can theoretically be described as 𝑃 (𝑠 (𝑡)) = 𝑠 (𝑡)3, but in practice this exponent
varies for different architectures. We consider the more general case where the power is
described by the function 𝑃 (𝑠 (𝑡)) = 𝑠 (𝑡)𝛼 , where 𝛼 > 1 is constant. Then, the energy
consumption is computed as 𝐸 =

∫
𝑃 (𝑠 (𝑡))𝑑𝑡 .

Data Movement Energy savings can be also obtained as a consequence of data
movement reductions [Non13]. This communication can be divided into intra-job
(corresponding mainly to memory management and heterogeneity between the
allocated nodes) and between jobs (network, interconnect design, I/O). We note
that, the communication costs are taken into account implicitly: smart allocations
that reduce both kind of communications are imposed to the scheduler, without
measuring explicitly the congestion. Ideally, we would like to design algorithms
that take into account the structure of the network to reduce data movement. We
augment the scheduling problem with constraints, that do not allow interactions
between any two applications, resulting in less congestion in the underlying network,
and at the same time do not have a bad effect on the overall performance of the
system. We propose generic scheduling algorithms for HPC platforms to minimize the
makespan taking into account communication issues aswell as the existence of I/O nodes.

Uncertainty The majority of the literature shares a common assumption; the workload
(and hence the processing time) of each job is known either in advance or when the
job becomes available (clairvoyance). In order to remedy this problem, we consider
two settings, which introduce uncertainty on the workload. In this part of the thesis,
we use simpler models with more academic interest. However, both models remain
relevant to our goal for more realistic ones as they provide a first methodology to tackle
uncertainty in more complex environments.

Uncertainty with Tests In the first setting, inspired by the works in [AE20; DEM+18],
each job has an a priori unknown workload that can be revealed to the algorithm only
after executing a query (or test) that induces a given additional job-dependent load.
Alternatively, a job may be executed without any query, but in that case its workload is
equal to a given upper bound. We analyze this model under the speed scaling setting
and we try to understand what is the impact of the extra load induced by the queries to

2

Notation Section 1.1

the overall energy consumption of the system. This setting is motivated by the fact that
a query could correspond to a code optimizer as mentioned in [DEM+18]. In that case,
the code optimizer needs some extra work to process the job and potentially reduce its
workload. The upper bound of a job corresponds to the work needed to take place when
the code optimizer is not executed. Another possible application for this assumption is
file compression. In this model, we minimize the total energy consumption following
the speed scaling setting of [YDS95].

Uncertainty with Predictions In the second setting, predicted values are available
in the place of the unknown processing times. There is extensive literature for the
non-clairvoyant case (processing times are unknown and only the existence of a job is
revealed to the algorithm), with works proposing robust algorithms that perform well
without any knowledge of the processing times. However this kind of analysis is often
too pessimistic. Predictions introduce a new flavor of uncertainty in the scheduling
problem as one cannot know their accuracy beforehand [GGK+19; PSK18]. They present
a way to bridge the gap between the clairvoyant and the non-clairvoyant setting. We
say an online algorithm is consistent, if it performs close to the best offline algorithm,
when the predictor is good. Otherwise, when the predictor is bad, the online algorithm
should gracefully degrade and should perform close to the online algorithm without
predictions. Our goal is to obtain algorithms that are both consistent and robust. We
study this model under the objective of minimizing the sum of completion times.

1.1 Notation
Throughout this thesis, we consider a set of jobs, J (jobset), of cardinality 𝑛 to be
scheduled either on a single machine or on a set of machines of cardinality𝑚. We call
a job malleable1 , if the scheduler can adapt the resources allocated to this job, either
by deciding the number of computing nodes or by speed scaling. Otherwise, if a job
has a fixed need in computational resources, we call it rigid. For a job 𝑗 , we denote its
finishing (completion) time by 𝐶 𝑗 . Some other basic characteristics are the following:

• Workload (𝒘𝒋) : the amount of work needed for the completion of a job 𝑗 .

• Upper bound (𝒖𝒋) : the maximum amount of work needed for the completion of a
job 𝑗 .

1 Here, we follow the terminology used in [MRT07; TWY92] concerning malleable jobs, where
the algorithm decides a fixed number of machines to use throughout the execution of a job.
Feitelson and Rudolph in [FR96] use a more general terminology. According to their work, the
algorithm can change the number of allocated machines during the execution of a malleable
job. On the contrary, jobs that are similar to our case and the algorithm have to decide the
number of allocated machines before the start of their execution, are called moldable.

3

Chapter 1 Introduction

• Query/Test (𝒕𝒋) : the amount of work needed for a job-dependent test to complete.

• Processing time (𝒑𝒋) : the processing time needed for the execution of job 𝑗 . The
processing time is a function of the workload and defined as needed for each problem.
If not specified otherwise, we suppose that the time needed for a job to be executed
on a single constant speed machine is equal to the job’s workload, i.e. 𝑝 𝑗 = 𝑤 𝑗 .

• Predicted processing time (𝒚𝒋) : the predicted time needed for the execution of a
job 𝑗 .

• Release date (𝒓𝒋) : the time a job 𝑗 arrives at the system, which is the earliest time at
which it can start execution.

• Deadline (𝒅𝒋) : the latest time a job 𝑗 must complete its execution.

The three field expression 𝛼 | 𝛽 | 𝛾 , commonly known as Graham’s notation,
introduced in [GLL+79], is widely used to describe scheduling problems. We
present here some basic notation for the problems studied in this thesis that coin-
cide with the literature. The first field describes the machine environment, 𝛼 ={

1, 𝑃, 𝑃C, 𝑃 I/O
}
. The second one provides details on the problem-specific constraints,

𝛽 =
{
𝑝𝑚𝑡𝑛,𝑚𝑔𝑟𝑡, 𝑟 𝑗 , 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 , 𝑑 𝑗 , 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟

}
. The last one contains the objective

function to be optimized (minimized), 𝛾 =
{
𝐶max,

∑
𝑗 𝐶 𝑗 , 𝐸

}
. We may extend this nota-

tion, in each chapter individually, with more problem-related constraints.

• 1 : there is only one machine in the system.

• 𝑷 : there are𝑚 parallel and identical machines in the system.

• 𝑷C : there are𝑚C parallel and identical machines in the system, dedicated to compu-
tations.

• 𝑷 I/O : there are 𝑚I/O parallel and identical machines in the system, dedicated to
input/output operations.

• 𝒑𝒎𝒕𝒏 : jobs can be stopped and later resume execution.

• 𝒎𝒈𝒓𝒕 : jobs can be stopped and (later) resume execution on a different machine.

• 𝒓𝒋 : the earliest time at which a job can begin execution and in addition, all release
times are known in advance (offline case).

• 𝒐𝒏𝒍 𝒊𝒏𝒆 − 𝒓𝒋 : the earliest time at which a job can begin execution and in addition, the
algorithm finds out about the existence of this job at time 𝑟 𝑗 .

• 𝒅𝒋 : the latest time at which a job must finish execution.

4

Preliminaries Section 1.2

• 𝒏𝒐𝒏−𝒄𝒍𝒂 𝒊𝒓 : the algorithm finds out the processing time of the job only after executing
it for 𝑝 𝑗 units of time.

• 𝒄𝒐𝒏𝒕 : a jobmust be executed by neighbouringmachines with respect to the underlying
topology (see Definition 3.1 in Chapter 3).

• 𝒍𝒐𝒄𝒂𝒍 : a pre-specifiedmachinemust be used in the execution of a job (see Definition 3.2
in Chapter 3).

• 𝑪max : the maximum completion time among all jobs (makespan).

•
∑

𝒋 𝑪𝒋 : the total completion time.

• 𝑬 : the total energy consumption.

1.2 Preliminaries
(In)Tractability Some problems, that we call tractable, can be solved optimally by a
polynomial time algorithm, while other ones, called intractable, cannot. There is a class
of problems, called NP-complete, for which we don’t know if they are tractable or not.
The problems in this class have equivalent difficulty in the sense that if one of them is
tractable, this would imply tractability for the rest of NP-complete problems. Similarly,
if one of them is intractable, this would imply intractability for the other problems.

Given this property, we can show that an unclassified problem, 𝛱 ′, belongs in
the NP-complete class using a polynomial time reduction from an already known
NP-complete problem 𝛱 to 𝛱 ′. We claim that if there is a solution to 𝛱 , we can
transform this solution, in polynomial time, to a solution for 𝛱 ′ and vice versa. Using
this technique we prove that either the problem 𝛱 ′ is also NP-complete, or we can
provide a solution to any NP-complete problem. Since it is conjectured that P ≠ NP,
a reduction concludes the first. To fully understand the complexity theory, we guide the
reader to the book of Garey and Johnson, “Computers and Intractability” [GJ79].

Approximation Algorithm In the offline setting, where the entirety of the input is
available in the beginning, we design approximation algorithms. Formally, consider
an optimization problem and an algorithm 𝐴. For a given instance 𝐼 , denote by 𝐶𝐴 (𝐼)
and 𝐶𝑂𝑃𝑇 (𝐼) the cost of the algorithm’s solution and the cost of the optimal solution,
respectively. We call 𝐴 a 𝜌-approximation algorithm for a minimization problem, if for
any instance 𝐼 , we have:

𝐶𝐴 (𝐼) ⩽ 𝜌 ·𝐶𝑂𝑃𝑇 (𝐼)

5

Chapter 1 Introduction

Competitive Algorithm In the online setting, where the instance is becoming available
over time, we design competitive algorithms that need to take irrevocable decisions at
each step. Here, for a given instance 𝐼 and an online algorithm 𝐴, denote by 𝐶𝐴 (𝐼) and
𝐶𝑂𝑃𝑇 (𝐼) the cost of the online algorithm’s solution and the cost of the optimal offline
solution, respectively. We call 𝐴 a 𝜌-competitive algorithm for a minimization problem,
if for any instance 𝐼 , we have:

𝐶𝐴 (𝐼) ⩽ 𝜌 ·𝐶𝑂𝑃𝑇 (𝐼)

Learning Augmented Algorithm [BMS20; LV18; PSK18] A learning augmented
algorithm, 𝐴, receives as input a prediction 𝑃 , an instance 𝐼 which is revealed online, a
robustness parameter _, and outputs a solution of cost 𝐶𝐴 (𝑃, 𝐼, _). For any 0 < _ ⩽ 1,
we say that 𝐴 is 𝐶 (_)-consistent and 𝑅(_)-robust if the cost of the solution satisfies:

𝐶𝐴 (𝑃, 𝐼, _) ⩽ min{𝐶 (_) · 𝑆 (𝑃, 𝐼), 𝑅(_) ·𝑂𝑃𝑇 (𝐼)}

where 𝑆 (𝑃, 𝐼) is the cost of the output solution on input 𝐼 if the algorithm follows blindly
the prediction. If 𝑃 is accurate (𝑆 (𝑃, 𝐼) ≈ 𝑂𝑃𝑇 (𝐼)) and we trust the prediction, we would
like the performance to be close to the optimal offline. 𝐶 (_) should approach 1 as _
approaches 0. Similarly, if there is no trust to the prediction, algorithm 𝐴 should not
perform much worse than the best pure online algorithm. 𝑅(1) should be close to the
best pure online algorithm.

1.3 Outline of the Thesis
In this thesis, we attempt to introduce models that are one step closer to real-life systems
and propose efficient algorithms for these models.

In Chapter 2, we present related work that lead to the study cases considered in this
thesis.

In Chapter 3, we present the first scheduling model on designing algorithms
that take into consideration the topology of a machine using malleable jobs, i.e.
𝑃C, 𝑃 I/O | 𝑐𝑜𝑛𝑡, 𝑙𝑜𝑐𝑎𝑙 | 𝐶max. We first prove that the problem with the new constraints,
namely contiguity and locality, isNP-hard. We then present approximation algorithms
to solve different variants of the problem. This chapter is based on the paper with name
“Scheduling Malleable Jobs under Topological Constraints” [BDK+20].

In Chapter 4, we explore the concept of uncertainty on values of the input. We
introduce a speed scaling model with tests, which, if executed, can reveal a more
accurate value of the processing time of a job. In Graham’s notation, the problems are
1 | 𝑟 𝑗 , 𝑑 𝑗 | 𝐸, 1 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 , 𝑑 𝑗 | 𝐸 and 𝑃 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 , 𝑑 𝑗 | 𝐸. We present competitive
algorithms for all the variants of the problem. This chapter is based on the paper with
name “Scheduling with Explorable Uncertainty” [BDK+21].

6

Outline of the Thesis Section 1.3

In Chapter 5, we consider a non-clairvoyant scheduling problem. We introduce a
model where the processing times are unknown, yet predicted values are available. We
present competitive algorithms for the problems 1 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 , 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟 | ∑𝑗 𝐶 𝑗 and
𝑃 | 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟 | ∑𝑗 𝐶 𝑗 . This chapter is based on the paper with name “Scheduling with
Uncertain Predictions” (under submission in IJCAI 2022).

Finally, in Chapter 6 we give the concluding remarks of the thesis as well as perspec-
tives for future work.

7

2 Related Work

In this chapter, we give a not exhaustive description of existing work that is closely
related to the models in this thesis. We group the results based on the minimization
criterion of each model. To begin with, in Section 2.1 we consider the makespan
minimization objective corresponding to the model in Chapter 3. Here, we present part
of the literature about topological constraints, such as contiguity and locality, as well
as works on malleable jobs. Next, in Section 2.2, we consider the energy minimization
objective corresponding to the model in Chapter 4. We start by briefly describing works
from the speed scaling setting, and we also present previous works in the explorable
uncertainty setting. Finally, in Section 2.3, we consider the total completion time
minimization objective corresponding to the model in Chapter 5. Most related past works
on offline, online and non-clairvoyant models for both single and multiple machines
settings are presented. In this section, we also discuss existing work on uncertain
predictions.

2.1 Makespan Minimization and Topological
Constraints

In this section, we first talk about scheduling rigid or malleable jobs in parallel machines
in order to minimize the makespan. We then describe works that take into account the
contiguity and locality constraints.

2.1.1 Parallel Machines

Rigid Jobs

The general problem for parallel machines, 𝑃 | | 𝐶max, without constraints is strongly-NP-
hard. It remains NP-hard even when there are only 2 available machines. Blazewicz
et al. [BDW86] study the problem where some jobs may ask for a specific number of
machines (multiprocessor jobs), i.e. 𝑃 | 𝑠𝑖𝑧𝑒 𝑗 | 𝐶max. When the number ofmachines is not
fixed, they show that the problem is strongly-NP-hard even for unit time multiprocessor
jobs. Du and Leung [DL89] show that the same problem can be solved in pseudo-
polynomial time for the case of 2 or 3 available machines, and it becomes strongly-
NP-hard for 5 or more machines. Whether the case with 4 machines is strongly-NP-
hard or solvable in pseudo-polynomial time is left open. In another work, Bozoki and

9

Chapter 2 Related Work

Richard consider the problem where a job asks for a set of machines (not necessarily
contiguous) that must all be used simultaneously for the completion of this job [BR70],
i.e. 𝑃 | 𝑓 𝑖𝑥 𝑗 | 𝐶max. They give a branch and bound type algorithm for the solution
of this problem. The problem is proved to be strongly-NP-hard for the case of 3
available machines by a reduction from 3-Partition [BDD+92; DST97]. If the number of
machines is part of the problem, it isNP-hard for unitary jobs, i.e. 𝑃 | 𝑓 𝑖𝑥 𝑗 , 𝑝 𝑗 = 1 | 𝐶max.
Hoogeveen et al. [HVV94] show that for this problem, there exists no polynomial time
approximation algorithm with performance ratio smaller than 4

3 , unless P = NP. When
the number of machines is fixed, Amoura et al. [ABK+02] propose polynomial time
approximation schemes for both 𝑃𝑚 | 𝑓 𝑖𝑥 𝑗 | 𝐶max and 𝑃𝑚 | 𝑠𝑖𝑧𝑒 𝑗 | 𝐶max. For the latter
problem, an asymptotic fully polynomial time approximation scheme is proposed by
Jansen in [Jan02]. In problem 𝑃 | 𝑠𝑒𝑡 𝑗 | 𝐶max, for each job 𝑗 , the set 𝑠𝑒𝑡 𝑗 describes the
different subsets of simultaneously required machines that can be used for the execution
of 𝑗 . Note that only one choice from this set can be made. If the number of computing
nodes is fixed, then a polynomial time approximation scheme for 𝑃𝑚 | 𝑠𝑒𝑡 𝑗 | 𝐶max has
been presented in [CM01]. However, if𝑚 is part of the instance, there is no polynomial
time approximation algorithm with ratio smaller that 𝑛𝛿 , for any 𝛿 > 0, as shown
in [MTC02]. A survey for multiprocessor jobs can be found in [Dro96].

Malleable Jobs2

The problem of scheduling malleable jobs is also shown to be strongly-NP-hard by
Du and Leung [DL89] in the case of non-monotonic jobs. Allocating more processors
to a monotonic job decreases its execution time and increases its work. A 2-factor
approximation algorithm for this version has been given by Turek et al. [TWY92]. Jansen
and Porkolab [JP02] gave a PTAS for instances with a constant number of machines,
while in [JT10], Jansen and Thöle proposed a PTAS when the number of machines is
polynomial in the number of jobs. In the case of monotonic jobs, Mounié et al. proposed
a 3

2 -approximation algorithm [MRT07]. More recently, Fotakis et al. studied the case
of malleable job scheduling, where jobs can be executed simultaneously on multiple
non-identical machines with the processing time depending on the number of allocated
machines [FMP19].

2.1.2 Topological Constraints
The idea of generic topology-oriented algorithms is not new. Bladek et al. introduced
the notion of contiguous allocations and they theoretically proved that imposing this
kind of allocations does not deteriorate too much the optimal schedule [BDG+15].

2 To avoid any confusion, we remark again that we use the terminology of [MRT07; TWY92]
concerning malleable jobs, where the algorithm decides a fixed number of machines to use
throughout the execution of a job.

10

Makespan Minimization and Topological Constraints Section 2.1

Contiguity

Scheduling rigid jobs under the contiguity constraint is closely related to the Strip
Packing problem [KR96], the Dynamic Storage Allocation [BKK+04], as well as to the
problem of scheduling multiprocessor jobs [ABK+02; Dro96].

Strip Packing In the strip packing problem, a set of rectangles needs to be packed
in a strip of width 1 and the objective is to minimize the height. The rectangles must
not overlap, cannot be rotated and they are always parallel to both 𝑥 and 𝑦 axis. The
strip packing problem is alsoNP-hard. For this problem, Steinberg shows an algorithm
with absolute performance bound of 2 [Ste97]. An improvement on this result came
by Harren et al. in [HJP+14] achieving a ratio of 5

3 + 𝜖 . Different other versions of
the strip packing problem have been studied. For example, Bougeret et al. give an
approximation guarantee of 2 for the multiple strip packing problem [BDJ+09]. An
interesting analysis was given by Han et al. in [HIY+16], where bin packing techniques
are used to approximate strip packing. Moreover, pseudo-polynomial algorithms have
been proposed, with the most interesting one being the one of Jansen and Rau in [JR19].
Finally, a fully polynomial time approximation scheme was given by Kenyon and Ramila
in [KR00] providing a nearly optimal solution.

We relate scheduling to strip packing by considering each job as a rectangle. If
related to the 𝑥-dimension, the number of parallel machines in the system defines the
length of the strip. Then, the contiguous machine requirement of a job defines the
length on the 𝑥-dimension of the rectangle while the processing time defines the length
of the 𝑦-dimension. The objective of minimizing the height of the strip is translated
into minimizing the makespan of the schedule.

Dynamic Storage Allocation (DSA) Dynamic storage allocation is the problem of
packing given axis-aligned rectangles into a horizontal strip of minimum height by
sliding the rectangles vertically but not horizontally. The DSA problem isNP-complete.
Kierstead was the first one to provide a constant factor approximation algorithm for
this problem [Kie88]. Later, Gergov improved on this by proposing first a 5 and then
a 3-approximation algorithm [Ger96; Ger99]. In [BKK+04], Buchsbaum et al. give a
(2 + 𝜖)-approximation for the general case of the same problem, and polynomial time
approximation schemes for special cases.

Similarly to the strip packing problem, we relate scheduling to DSA by representing
each job as a rectangle. The fixed and contiguous machine requirement of a job defines
again the length on the 𝑥-dimension of the rectangle while the processing time defines
the length of the 𝑦-dimension. The objective of minimizing the height of the strip is
translated into minimizing the makespan of the schedule.

11

Chapter 2 Related Work

Locality

Extending the work in [BDG+15], Lucarelli et al. studied the impact in backfilling
scheduling of topological constraints like contiguity and locality in hierarchical plat-
forms [LMT+15]. They showed that enforcing these constraints can be done at a small
cost, and has minimum negative impact on usual metrics such as makespan, flow-time,
or stretch. Scheduling under both contiguity and locality constraints can be seen as
a special case of the scheduling problem 𝑃 | 𝑠𝑒𝑡 𝑗 | 𝐶max: it suffices to define the 𝑠𝑒𝑡 𝑗
so that it includes only allocations that satisfy our constraints. Bleuse et al. [BDL+18;
BLT18] introduced a more general model for interference-aware scheduling in large
scale parallel platforms. In this work, a 6-approximation algorithm with respect to
makespan minimization has been presented for scheduling under contiguity and locality
constraints. More specifically, in [BDL+18], they study the effect of a second type of
nodes, the input/output nodes, in conjunction with standard computing nodes. This
is motivated by the fact that in many current systems, network congestion is a major
issue, due to the vast amount of data that are either needed for, or produced from the
execution of an application. The work in [BDL+18] is the more closely related to the
model in Chapter 3.

2.2 Energy Minimization and Explorable Uncertainty

In this section, we present previous works focused on energy minimization using the
speed scaling technique. Then, we talk about the explorable uncertainty setting and we
conclude with works that include this setting in scheduling.

2.2.1 Speed Scaling

Offline

Speed scaling is a standard and well-known mechanism to handle energy consumption
in computing systems. Since the seminal paper of Yao et al. [YDS95], in 1995, which
introduced the speed scaling mechanism to reduce the consumption of CPU energy, a
series of papers, e.g. [AAG15; ABK+19; ABL+17; AMS14; BBC+11; BKL+15; BKL+18;
BKP07; BLL15; GNS14], and surveys, e.g. [Alb10; Bam16; GHH16], have been published.

Single Machine In [YDS95], each job has to be executed preemptively between
its arrival time and deadline by a single variable-speed processor. An offline
algorithm (YDS), that is optimal with respect to minimizing the total energy consump-
tion, is proposed. We briefly present algorithm YDS that we use as black box in Chapter 4.

12

Energy Minimization and Explorable Uncertainty Section 2.2

YDS algorithm uses as a key feature the intensity of an interval [𝑡, 𝑡 ′], which is
defined as

∑
𝑗 𝑤𝑗

𝑡 ′−𝑡 , where 𝑡 < 𝑡 ′. It then calculates the interval with the biggest intensity,
called the critical interval. The jobs that belong in this interval are then scheduled
using the intensity as speed and the earliest deadline first policy. Next, it modifies the
instance to reflect the deletion of the critical interval by adapting the jobset and the
release times and deadlines of the remaining jobs. The algorithm repeats the two steps
until all jobs are scheduled.

Multiple Machines Albers et al. [AAG15] study the same problem of dynamic speed
scaling but in multi-processor environments with𝑚 parallel variable-speed processors,
assuming that jobmigration is allowed at no cost. They solve optimally the offline version
of the problem. Bingham and Greenstreet [BG08] proposed a polynomial-time algorithm
for the more general setting where the jobs have arbitrary release dates and deadlines.
However, this work needs an algorithm for linear programming as a black box. Angel
et al. formulate the same problem as a convex program and propose a combinatorial
polynomial-time algorithmwhich is based on findingmaximumflows [ABK+19]. Greiner
et al. [GNS14] gave a generic reduction, transforming an optimal schedule for the
multiprocessor problem with preemption and migration to a schedule with preemption
but without migration. In [AMS14] they allow the preemption of jobs but not their
migration and they show that the problem is strongly-NP-hard even for unit size jobs.
The problem is shown to be NP-hard even for instances where jobs share the same
release time and deadline. Approximation algorithms are proposed for both cases.
In [ABL+17], Albers et al. study the speed scaling setting on a set of heterogeneous
processors, where the energy consumption rate is processor-dependent.

Online

Single Machine In the initial work of Yao et al [YDS95] two online algorithms are
described for the problem of minimizing the total energy consumption. Firstly, the
Average Rate heuristic (AVR) is shown to have a constant competitive ratio, i.e., 2𝛼−1𝛼𝛼 ,
for any power function with 𝛼 ⩾ 2 [YDS95]. A lower bound of 𝛼𝛼 is stated but not
proved in this paper. Bansal et al. [BBC+11] showed that this competitive ratio is
essentially tight. They provide a nearly matching lower bound of ((2−𝛿)𝛼)𝛼

2 , where 𝛿 is
a function of 𝛼 that approaches zero as 𝛼 approaches infinity. Secondly, the Optimal
Available (OA) heuristic is introduced but not analyzed in the original work [YDS95].
Essentially, OA runs the optimal YDS algorithm every time a new job arrives, keeping
in mind to reduce the workload of the scheduled jobs by the amount of work already
executed. Bansal et al. [BKP07] gave a tight 𝛼𝛼 bound on the competitive ratio of OA
with respect to energy. Furthermore, they propose a new online algorithm (BKP) that
is 𝑒-competitive with respect to maximum speed, and 2

(
𝛼
𝛼−1

)𝛼
𝑒𝛼 -competitive with

respect to energy, which is lower than the ratio of OA for any 𝛼 ⩾ 5. They also show

13

Chapter 2 Related Work

that no deterministic online algorithm can have a better competitive ratio with respect
to maximum speed. We briefly present here algorithms AVR and BKP that we use as
black box in chapter 4.

AVR algorithm uses the concept of density. The density is the lowest constant speed
the scheduler must use for a job in order to meet its deadline, and defined as 𝛿 𝑗 =

𝑤𝑗

𝑑 𝑗−𝑟 𝑗 .
It then sets the speed of the processor to be the sum of the densities of all jobs that are
released and not yet finished. Again the earliest deadline first policy is used to choose
among available jobs.

BKP algorithm estimates the speed at which YDS would work at any time, based on
the knowledge of task that have already arrived. It then schedules the unfinished job
with the earliest deadline using 𝑒 times that speed.

Multiple Machines For the online setting, Albers et al. [AAG15] extend the two algo-
rithms proposed by Yao et al. [YDS95] into OA(𝑚) and AVR(𝑚) for multiple machines.
They show that OA(𝑚) is 𝛼𝛼 -competitive and that AVR(𝑚) achieves a competitive ratio
of 2𝛼−1𝛼𝛼 + 1. Various constraints for speed scaling in multiple machines have been
studied. In [ABL+17], the authors analyze the online AVR algorithm in the setting of
heterogeneous machines.

2.2.2 Explorable Uncertainty

Kahan [Kah91] was the first to formalize the notion of explorable uncertainty. In his
work, there is a set of elements with uncertain values that lie in a closed interval and
the operation that allows to obtain the exact value of an element is called a query. He
applied this framework in the context of selection problems. Since then, a series of
problems have been studied (e.g. see the survey [EH15]). For instance, in [FMP+03;
GSS11; Kah91], the problem of finding the 𝑘-th smallest value in a set of uncertain
intervals has been studied. In [OW00], Olston and Widom study caching problems in
distributed databases. Other problems that have been studied include, the shortest path
problem [FMO+07], the knapsack problem [GGI+15] and the minimum spanning tree
problem [HEK+08; MMS15]. The goal in most of these works is the minimization of the
number of queries to guarantee an exact optimum solution. In [OW00], the trade-off
between the number of queries and the precision of the returned solution has been
studied.

Scheduling Contrary to the previous approaches, queries in scheduling are executed
directly on the machine running the jobs and so it is important to balance the time
spent on queries and the time spent on the actual execution of jobs. In this setting, as
long as the query needs computational power to reveal extra knowledge, it is more

14

Total Completion Time Minimization and Uncertain Predictions Section 2.3

appropriate to call it a test. In what follows the words query and test are equivalent.
Scheduling under the concept of explorable uncertainty is studied in [ABK+18; AE20;
DEM+18]. In [DEM+18], the authors consider the problem of scheduling jobs on a
single machine when the cost of each query/test is unitary. In their model, the uncertain
information concerns the processing time of each job for which an upper bound is known
in advance. It is possible to learn the exact processing time by querying at the price of a
unit cost. If a job is executed without a query, then its execution time is equal to its upper
bound. In [AE20], the authors extend the problem to non-uniform job-dependent testing
times and they present new competitive algorithms, both deterministic and randomized,
for different objectives of the problem, i.e. minimizing the makespan and minimizing
the sum of completion times. In [ABK+18], a single-machine scheduling problem is
considered, where given a set of 𝑛 unit-time jobs, and a set of 𝑘 unit-time errors, the
objective is to reveal 𝑛 error-free timeslots with the minimum number of queries. The
authors present both lower bounds and asymptotically tight upper bounds for different
variants of the problem.

2.3 Total Completion Time Minimization and
Uncertain Predictions

In this section, we briefly discuss related work to the total completion time minimization
objective for both the offline and online cases. In case release times are available, we
distinguish between the two setting by writing 𝑟 𝑗 and 𝑜𝑛𝑙𝑖𝑛𝑒−𝑟 𝑗 respectively. In addition,
we present past works that take advantage of the uncertain predictions and conclude
with those that introduce this framework to scheduling problems.

Offline

A classic scheduling problem is to minimize the sum of completion times in a single
machine, i.e. 1 | | ∑𝑗 𝐶 𝑗 . This problem can be solved optimally by following the shortest
processing time first (SPT) rule. We briefly present here algorithm SPT that we use in
Chapter 5.

SPT algorithm assigns the job with the smallest processing time among all unassigned
jobs, whenever a machine is free.

Often a weight, 𝑤 𝑗 , is related to each job and the objective is to minimize the total
weighted completion time,

∑
𝑗 𝑤 𝑗𝐶 𝑗 . This variation can also be solved optimally, by fol-

lowing Smith’s rule, i.e. jobs are scheduled in ascending order of the ratios 𝑝 𝑗/𝑤 𝑗 [Smi56].
Note that the same problem where jobs are allowed to have some restricted class of
precedence constraints (in-tree, out-tree, etc) can also be solved optimally. However, it

15

Chapter 2 Related Work

becomes strongly-NP-hard for arbitrary precedence constraints. In case all weights are
equal to 1, Smith’s rule coincides with the SPT rule.

When release times are introduced, the problem becomes NP-hard for the
non-preemptive case. Phillips, Stein and Wein were the first to explore the weighted
completion time objective from the approximation algorithm point of view [PSW98].
Following this work, constant factor approximation algorithms [HSS+97; Sch96], inap-
proximability results [HSW01] and polynomial time approximation schemes [ABC+99;
SW00] for several variants of the problem have appeared. If preemption is allowed, the
shortest remaining processing time (SRPT) algorithm creates an optimal schedule. We
briefly present here algorithm SRPT that we use in Chapter 5.

SRPT algorithm schedules that ready job with the smallest remaining processing time,
at any moment of time. SRPT is the preemptive version of SPT, also known as Baker’s
rule. Note also that SRPT algorithm works for online instances.

For parallel machines, the SPT rule remains optimal for the objective of minimizing
the sum of completion times with or without preemptions and all jobs are available
at the same time. However, if weights are related to jobs, the problem 𝑃 | | ∑𝑗 𝑤 𝑗𝐶 𝑗 is
strongly-NP-hard. The problemwith preemption and release times, 𝑃 | 𝑝𝑚𝑡𝑛, 𝑟 𝑗 |

∑
𝑗 𝐶 𝑗 ,

is NP-hard for any number of machines greater or equal to 2 [DL93]. There exist
polynomial time approximation schemes for both versions of the problem [ABC+99].
We briefly present here algorithms SPT and SRPT that we use in Chapter 5.

Online

When jobs become available over time, we can distinguish two cases. In the clairvoyant
schedule, the processing time, 𝑝 𝑗 , of a job becomes available when the job arrives,
while in the non-clairvoyant schedule on the other hand, only the existence of a job
is revealed to algorithm which finds out the processing time of the job only after
allocating 𝑝 𝑗 units of time to it and hence the job has finished.

Clairvoyant Lu et al. [LSS03] consider the problem of scheduling jobs online on a single
machine and on identical machines with the objective to minimize total completion
time. They give a general 2-competitive algorithm for the single machine problem. They
also show that the algorithm is 2𝛼-competitive for the problem on identical machines
where 𝛼 is the performance ratio of the SRPT rule for the preemptive relaxation of the
problem. Hoogeveen and Vestjens [HV96] gave different 2-approximation algorithms
for 1 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 |

∑
𝑗 𝐶 𝑗 . Phillips et al. [PSW98] presented another algorithm for

1 | 𝑟 𝑗 |
∑
𝑗 𝐶 𝑗 , which can be slightly modified to work with online release dates. This

algorithm converts a preemptive schedule into a non-preemptive one of objective
function value at most twice that of the preemptive schedule. Chekuri et al. [CMN+01]

16

Total Completion Time Minimization and Uncertain Predictions Section 2.3

obtain an optimal randomized online algorithm for the same problem that beats a
lower bound for deterministic online algorithms. They also consider extensions to the
case of parallel machine scheduling, obtaining a (3 − 1

𝑚
)-competitive algorithm for

𝑃 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 |
∑
𝑗 𝐶 𝑗 . Vestjens [Ves97] proved a universal lower bound of 1.309 for

the competitive ratio of any deterministic online algorithm for 𝑃 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 |
∑
𝑗 𝐶 𝑗 .

In the preemptive case, the currently known lower bound is 22
21 , also given by Vestjens.

Non-Clairvoyant Motwani, Phillips and Torng [MPT94] were the first to study the
non-clairvoyant scheduling problem to minimize average completion time. In their
work, non-clairvoyant algorithms are compared to optimal clairvoyant ones resulting
in both single and multiple machines variants. They show that the Round Robin (RR)
algorithm has a performance ratio of (2 − 2

𝑛+1) which is optimal for deterministic, non-
clairvoyant algorithms. Here 𝑛 represents the number of jobs. When𝑚 machines are
available and all jobs are available at time 0, they show that RR is (2− 2𝑚

𝑛+𝑚)-competitive
for the non-clairvoyant setting. In addition, the authors give both deterministic and
randomized lower bounds when jobs have release dates. Garg et al. give a 10-competitive
deterministic online algorithm for minimizing the average weighted completion time
on parallel machines with both release dates and precedence constraints, in the online
non-clairvoyant setting [GGK+19]. Based on this work, in Chapter 5, we analyze RR
and give a 4-competitive analysis for minimizing the average completion time on a
single machine without precedence constraints. In a very recent work [MV22], Moseley
and Vardi study round robin’s performance for the ℓ𝑝-norm of the completion times
when scheduling 𝑛 preemptive jobs on a single machine. For the version of the problem
without release times on a single machine, they prove RR’s approximation ratio to be
𝑝√
𝑝 + 1, while when jobs arrive over time, RR’s competitive ratio is shown to be at most

4 for any 𝑝 ⩾ 1.

2.3.1 Uncertain Predictions

Medina and Vassilitskii [MV17] and Lykouris and Vassilitskii [LV18] were the first
to introduce predictions to improve the performance of online algorithms. The first
one use a predictor oracle to improve revenue optimization in auctions by setting a
good reserve (or minimum) price while the second develops the novel framework
even more by introducing the notions of consistency and robustness. In the second
work, the online caching problem with predictions is considered. Following this
work, a series of learning augmented results appeared in various fields. Problems
such as caching [ACE+20; JPS20; Roh20], ski-rental [AGP20; BMS20; GP19; WL20],
clustering [DIR+20] and others [HIK+19; LLM+20; LMH+21; Mit20] have been studied
under the new setting.

Scheduling More related to scheduling, Bamas et al. [BMR+20] consider the prob-

17

Chapter 2 Related Work

lem of speed scaling with predictions and in a different work Bamas et al. [BMS20]
show how to incorporate predictions that advice the online algorithm about the next
action to take using the primal-dual schema. Moreover, Purohit et al. [PSK18] applied
this novel setting to the classic ski rental problem and the non-clairvoyant schedul-
ing on a single machine without release times for the objective of minimizing the
sum of completion times. For the same problems, Wei and Zhang [WZ20] provide a
set of non-trivial lower bounds for competitive analysis using machine-learned pre-
dictions. Focused on the single machine non-clairvoyant scheduling problem, Im et
al. [IKQ+21] propose a new error measure for prediction quality and design schedul-
ing algorithms under this measure. The work by Purohit et al. [PSK18] deals with
the problem 1 | 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟 | ∑𝑗 𝐶 𝑗 . In Chapter 5, we extend their work by studying
𝑃 | 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟 | ∑𝑗 𝐶 𝑗 and 1 | 𝑜𝑛𝑙𝑖𝑛𝑒 − 𝑟 𝑗 , 𝑛𝑜𝑛 − 𝑐𝑙𝑎𝑖𝑟 | ∑𝑗 𝐶 𝑗 which are left open.

18

3 Topological Constraints

In this chapter, we discuss the problem of scheduling malleable jobs under topological
constraints. Bleuse et al. [BDL+18] introduced a general model for interference-aware
scheduling in platforms where machines form a line. They considered two different
types of communications: the flows induced by data exchanges during computations
and the flows related to Input/Output operations. Rather than taking into account these
communications explicitly, they restrict the possible allocations of a job by external
topological constraints, that aim at preventing data movement and thus reducing energy
consumption. In their work, jobs are considered to be rigid: a job requires a specific
number of machines in order to be executed. Here, we first adopt the same framework
for the platform and the aforementioned topological constraints on the line topology.
We show that there is no polynomial time approximation algorithm under the rigid
setting with ratio smaller than 3/2, unless P = NP. Then, we focus on the malleable
setting. We show that in the proportional-malleable setting, where the work of every
job remains constant independently of the number of machines on which it is executed,
the scheduling problem is NP-hard even in the case where the maximum number of
machines is the same for all the jobs. Then, we propose a 2-approximation algorithm
for this case. Furthermore, we present an approximation algorithm solving the more
general case where the maximum number of machines is job-dependent.

3.1 Formulation of the problem
We model the platform by distinguishing two kinds of nodes: a set 𝑃C of 𝑚C nodes
dedicated to computations, and a set 𝑃 I/O of𝑚I/O nodes that are entry points to a high
performance file system. Let 𝑃 = 𝑃C ∪ 𝑃 I/O and𝑚 = 𝑚I/O +𝑚C. Usually,𝑚I/O << 𝑚C.
We assume that each node has a specific functionality: it can either be a computing or
an I/O node. Furthermore, we suppose that any computing or I/O node is dedicated to
one application throughout its execution, meaning that two jobs cannot use the same
node simultaneously.

The network topology considered in this work is the line. This is an interesting
topology for the two following reasons. First of all, it is a basic case of higher dimensional
topologies and as such it provides lower bounds for the more complex ones. In addition,
it retains the attributes of real-life systems which use direct topologies and can be
projected in a single dimension, like mesh or 3𝐷-torus. In a line topology, all nodes
(computing and I/O) form a single connected component, each one connected to two
other nodes, except the two nodes in the extremities. We assume that the localisation

19

Chapter 3 Topological Constraints

of every node within the topology is known. In lines, this can be very easily done, by
numbering the nodes from left to right.

We see applications as jobs which are queued in a set J . The total number of jobs is
𝑛. We distinguish two models with respect to the computing need of a job.

1. In the rigid model a job 𝑗 ∈ J requires a fixed number of computing nodes
𝑞 𝑗 ⩽ 𝑚C. The processing time is also fixed, denoted by 𝑝 𝑗 .

2. In the malleable model a job 𝑗 ∈ J asks for a number of computing nodes𝑄 𝑗 , and
the scheduler can decide the number of computing nodes 𝑞 𝑗 ⩽ 𝑄 𝑗 to be used for its
execution. Each job 𝑗 has a required execution load, denoted by𝑤 𝑗 . The exact processing
time of the job 𝑗 depends on the number of assigned computing nodes. Let 𝑓 : N→ R

be a speed-up function. The processing time of 𝑗 is defined as 𝑝 𝑗 = 𝑤 𝑗 𝑓 (𝑞 𝑗). A common
assumption in parallel computing is that the jobs are monotonic [MRT07], that is their
processing time is non-increasing when more computing nodes are used, while their
total work (execution load plus communication overhead due to the parallelization) is
non-decreasing. This is the case when the speed-up function is non-increasing and
convex. In this paper, we consider two cases. In the generalized-malleable model, the
function 𝑓 is an arbitrary convex non-increasing function. In the proportional-malleable
model, the total work does not depend on the number of computing nodes assigned to
it: 𝑓 (𝑞 𝑗) = 1

𝑞 𝑗
and hence 𝑝 𝑗 =

𝑤𝑗

𝑞 𝑗
.

In any of the above cases, let 𝑃C(𝑗) be the set of computing nodes assigned to the job
𝑗 ∈ J by the scheduler.
In addition, jobs have a demand for a specific I/O node, denoted as 𝑃 I/O(𝑗). As

mentioned before, applications need to read/write data to the disk. Usually, I/O nodes
are the entry points to a high performance file system. Lustre, implemented in the
BlueWaters platform, is an example of such a distributed file system. The total address
range of the file system is divided in stripes and each I/O node is responsible for a stripe.
As a result, applications which know where their data is stored, can ask for the specific
I/O node.

Due to the parallelization of the HPC jobs, all the parts of a job need to communicate
with each other to complete the execution. We refer to this kind of data flows in the
network as computational communications. Furthermore, in general, jobs that need
to run on HPC platforms are computationally demanding and one reason is the great
volume of data they need to process. Specifically, each job needs to read the data from
the disk when it starts its execution and write data to the disk once it finishes. We
refer to this kind of data flows as I/O communications. Given the direct topology of the
line, each machine is occupied when traffic needs to pass “through” itself in order to
arrive at the destination. If this machine is allocated to a different job, then we have
the undesirable effect of delaying the completion time of one job in order to handle the
traffic from a different job. In order to avoid both the aforementioned data flows, we

20

Formulation of the problem Section 3.2

use the following definitions introduced in [BDL+18; BLT18] to restrict the number of
possible allocations of a job.

▶ Definition 3.1. An allocation for a job 𝑗 is said to be contiguous if and only if the
nodes of the allocation form a contiguous range with respect to the nodes’ ordering. ◀

▶ Definition 3.2. An allocation for a job 𝑗 is said to be local if and only if the node
𝑃 I/O(𝑗) is adjacent to the computing nodes in 𝑃C(𝑗), with respect to the underlying
topology. ◀

Note that, Bleuse et al. [BDL+18] presented a 6-approximation algorithm for the
problem of minimizing the makespan with rigid jobs under the contiguity and local-
ity constraints. However, these constraints have not been studied in the context of
scheduling malleable jobs, which is the main subject of this chapter.

Given the overhead of distant communications, we may add a new kind of locality by
introducing a limit on the number of machines that may be used for the execution of
the jobs. This limitation is parameterized by a common resource requirement 𝑄 = 𝑄 𝑗

for all jobs in J in the malleable model. The value of 𝑄 is chosen based on the size
and the structure of the platform. We call instances satisfying this kind of locality as
uniform instances. Note that if 𝑄 = 𝑚C, then the scheduling problem is trivial in the
proportional-malleable model, since the total work is constant and thus all jobs will be
assigned the maximum number of computing resources. However, for smaller values of
𝑄 , the problem becomes NP-hard (Section 3.2).

Our objective is to minimize the maximum completion time among all jobs (i.e., the
makespan of the schedule) while enforcing the contiguity and the locality constraints.

Our Contribution
In this chapter, we consider the problem of scheduling malleable jobs with respect to
contiguity and locality constraints in a line topology, and we give the first complexity
and approximability results for it.

In Section 3.2, we present complexity results for both the rigid and the proportional-
malleable models, implying also the complexity of the generalized-malleable model. We
show that the problems are NP-hard even in very restricted cases. We also show that,
for any 𝜖 > 0, there is no approximation algorithm with ratio 3

2 − 𝜖 for the problem
of scheduling rigid jobs with respect to contiguity and locality constraints, unless
P= NP. This result reduces the approximability gap for the rigid model for which a
6-approximation algorithm is known [BDL+18].

In Section 3.3, we first deal with the proportional-malleable model in uniform in-
stances and we propose a novel polynomial-time 2-approximation algorithm. Then, in
Section 3.4 we present an approximation algorithm for the generalized-malleable prob-
lem. This algorithm is analyzed in a computational way and it achieves an approximation
ratio that depends on the function 𝑓 .

21

Chapter 3 Topological Constraints

3.2 Complexity
In this section, we propose reductions to classify special restrictive versions of our
problem in complexity classes. In the following theorems, we will use the Partition
problem which is defined as follows: given a finite set 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑘 } of 𝑘 positive
integers, the objective is to decide whether there is a subset 𝑆 ′ ⊂ 𝑆 such that

∑
𝑖∈𝑆 ′ 𝑎𝑖 =∑

𝑖∈𝑆\𝑆 ′ 𝑎𝑖 .

The problem of scheduling rigid jobs under contiguity and locality constraints is
shown to be strongly-NP-hard by Bleuse et al. in [BDL+18]. In the following theorem
we provide an inapproximability result for this problem.

▶ Theorem 3.3. Unless P =NP, there is no polynomial time approximation algorithm
having a guarantee of 3/2− 𝜖 for the problem of scheduling rigid jobs with 𝑝 𝑗 = 1 under
contiguity and locality constraints, for any 𝜖 > 0. ◀

Proof. We will prove the inapproximability result by a reduction from a special case
of the Partition problem. In the Partition-Pairs problem, we are given two sets 𝐴 =

{𝛼1, 𝛼2, . . . , 𝛼𝑘 } and 𝐴′ = {𝛼 ′
1, 𝛼

′
2, . . . , 𝛼

′
𝑘
}, each one containing 𝑘 elements. Let 𝑆 =

𝐴 ∪ 𝐴′. Each element 𝛼𝑖 ∈ 𝐴 (resp. 𝛼 ′
𝑖 ∈ 𝐴′) has weight 𝑎𝑖 ∈ Z+ (resp. 𝑎′𝑖 ∈ Z+). Let

𝐵 =
∑
𝛼𝑖 ∈𝐴 𝑎𝑖 +

∑
𝛼 ′
𝑖
∈𝐴′ 𝑎′𝑖 . The goal is to decide if there is a partition of 𝑆 into two subsets

𝑆 ′ and 𝑆 \ 𝑆 ′ such that

•
∑
𝛼𝑖 ∈𝑆 ′ 𝑎𝑖 +

∑
𝛼 ′
𝑖
∈𝑆 ′ 𝑎

′
𝑖 =

∑
𝛼𝑖 ∈ (𝑆\𝑆 ′) 𝑎𝑖 +

∑
𝛼 ′
𝑖
∈ (𝑆\𝑆 ′) 𝑎

′
𝑖 =

𝐵
2 , and

• for each 𝑖 ∈ {1, . . . , 𝑘}, the elements 𝛼𝑖 ∈ 𝐴 and 𝛼 ′
𝑖 ∈ 𝐴′ are not assigned to the

same set, i.e., if 𝛼𝑖 ∈ 𝑆 ′ then 𝛼 ′
𝑖 ∈ 𝑆 \ 𝑆 ′ and vice-versa.

Note that, if all the weights in 𝐴′ are set to zero, we still need to find a solution for the
Partition problem in the set 𝐴. Thus, the problem Partition-Pairs is NP-complete.

We propose now a transformation from Partition-Pairs to our problem as follows:

• 𝑚𝐶 = 𝑘 · 𝐵 + 𝐵
2 ,𝑚𝐼/𝑂 = 𝑘

• the topology is a line starting with 𝐵 computing nodes followed by one I/O node.
This pattern repeats for 𝑘 times and after the 𝑘𝑡ℎ I/O node we have the last 𝐵2 computing
nodes. With respect to this ordering, we refer to the computing nodes as 1, 2, . . . ,𝑚𝐶

and to the I/O nodes as 1, 2, . . . ,𝑚𝐼/𝑂 .

• for each 𝛼𝑖 ∈ 𝐴 (resp. 𝛼 ′
𝑖 ∈ 𝐴′)), we create a job 𝑗𝑖 (resp. 𝑗 ′𝑖) with 𝑞 𝑗𝑖 = 𝐵 + 𝑎𝑖 (resp.

𝑞 𝑗 ′
𝑖
= 𝐵 +𝑎′𝑖). Both jobs 𝑗𝑖 and 𝑗 ′𝑖 require the 𝑖𝑡ℎ I/O node. All jobs of the created instance

have unit processing time. Note that 𝑛 = 2𝑘 .

Note that this transformation can be done in polynomial time: it is sufficient to give
the number of machines𝑚 = 𝑘𝐵 + 𝐵

2 + 𝑘 , to assume that the machines are numbered
from left to right from 1 to𝑚, and to indicate the 𝑘 numbers which correspond to the

22

Complexity Section 3.2

I/O nodes. We will prove that a solution to Partition-Pairs exists if and only if there is a
schedule that satisfies all constraints and has a makespan at most 2.

Assume that there is a solution (𝑆 ′, 𝑆 \𝑆 ′) for Partition-Pairs. For each 𝑖 ∈ {1, 2, . . . , 𝑘},
let us denote by 𝑦𝑖 (resp. 𝑧𝑖) the job corresponding to the element in {𝛼𝑖 , 𝛼 ′

𝑖 } which
belongs to 𝑆 ′ (resp. 𝑆 \ 𝑆 ′). Then, we create a schedule for our problem as follows:
we schedule the jobs corresponding to elements in 𝑆 ′ at time interval (0, 1] and the
jobs corresponding to elements in 𝑆 \ 𝑆 ′ at time interval (1, 2]. Specifically, in the
time interval (0, 1], the job 𝑦1 will use the computing nodes 1, 2, . . . , 𝐵 + 𝑞𝑦1 , the job
𝑦2 will use 𝐵 + 𝑞𝑦1 + 1, 𝐵 + 𝑞𝑦1 + 2, . . . , 2𝐵 + 𝑞𝑦1 + 𝑞𝑦2 , and so on. In general, the job
𝑦𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘 , will use the computing nodes

∑𝑖−1
ℓ=1 (𝐵 + 𝑞𝑦ℓ) + 1, . . . ,

∑𝑖
ℓ=1 (𝐵 + 𝑞𝑦ℓ). In a

similar way, in the time interval (1, 2], the job 𝑧𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘 , will use the computing
nodes

∑𝑖−1
ℓ=1 (𝐵 + 𝑞𝑧ℓ) + 1, . . . ,

∑𝑖
ℓ=1 (𝐵 + 𝑞𝑧ℓ).

The created schedule satisfies the contiguity constraint. By the construction of
the solution (𝑆 ′, 𝑆 \ 𝑆 ′), the jobs scheduled in the time interval (0, 1] require in total∑𝑘
ℓ=1 (𝐵 + 𝑞𝑦ℓ) = 𝐵𝑘 + 𝐵

2 computing nodes. Similarly, for the jobs scheduled in the
time interval (1, 2]. Hence, there are enough computing nodes in each time interval.
Moreover, by the construction of the scheduling instance, the 𝑖𝑡ℎ I/O node is between
the computing nodes 𝑖𝐵 and 𝑖𝐵 + 1, for each 1 ⩽ 𝑖 ⩽ 𝑘 . Since for each job 𝑦𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘 ,
it holds that

∑𝑖
ℓ=1 𝑞𝑦ℓ ⩽

𝐵
2 , then for the leftmost and the rightmost computing nodes

assigned to 𝑦𝑖 we have
∑𝑖−1
ℓ=1 (𝐵 +𝑞𝑦ℓ) + 1 = (𝑖 − 1)𝐵 +∑𝑖−1

ℓ=1 𝑞𝑦ℓ + 1 ⩽ (𝑖 − 1)𝐵 + 𝐵
2 + 1 < 𝑖𝐵

and
∑𝑖
ℓ=1 (𝐵 + 𝑞𝑦ℓ) = 𝑖𝐵 + ∑𝑖

ℓ=1 𝑞𝑦ℓ ⩾ 𝑖𝐵 + 1. Thus, the allocation for 𝑦𝑖 is local since it
always contains the computing nodes 𝑖𝐵 and 𝑖𝐵 + 1. The same holds for each job 𝑧𝑖 ,
1 ⩽ 𝑖 ⩽ 𝑘 . Finally, the length of the created schedule is equal to two.

Conversely, assume now that there is a schedule respecting contiguity and locality
constraints of makespan at most 2. Due to the unit processing time of each job, each
computing node has to execute exactly two jobs. Hence, the partition is directly derived
by assigning jobs that are scheduled in the time interval (0, 1] in the set 𝑆 ′ and those
scheduled in the time interval (1, 2] in the set 𝑆 \ 𝑆 ′. Since the scheduling solution
respects the locality constraint, the two jobs 𝑗𝑖 and 𝑗 ′𝑖 asking for the 𝑖𝑡ℎ I/O node are
scheduled in a different time interval. Therefore, the elements 𝛼𝑖 and 𝛼 ′

𝑖 are not in the
same subset of the solution of the Partition-Pairs problem, and hence this solution is
feasible for it.

Note that, the above proof directly implies that there is no 3/2 − 𝜖-approximation
algorithm for our scheduling problem, assuming that P ≠ NP. ■

We now focus on the malleable model and we show that the problem is NP-hard
even for the proportional-malleable model and uniform instances.

▶ Theorem 3.4. The problem of scheduling malleable jobs with respect to contiguity
and locality constraints is NP-hard even in the proportional-malleable model and
uniform instances. ◀

23

Chapter 3 Topological Constraints

Proof. We reduce Partition to our scheduling problem. We choose 𝑄 ∈ Z+ and 𝐵 > 0
such that 2𝐵𝑄 =

∑
𝑖∈𝑆 𝑎𝑖 . We create a line which consists of𝑚C = 2𝑄 computing nodes

and𝑚I/O = 3 I/O nodes. The topology starts with an I/O node, followed by𝑄 computing
nodes, the second I/O node, the remaining 𝑄 computing nodes and the last I/O node.

For each 𝑖 ∈ 𝑆 , we create a “small” job 𝑖 with 𝛼𝑖 = 𝑎𝑖 , all of them asking for the middle
I/O node. Moreover, we create two “big” jobs with 𝛼 𝑗 = 𝐵𝑄2, each one asking for a
different extreme I/O node. All jobs require exactly 𝑄 computing nodes, i.e., 𝑄 𝑗 = 𝑄 for
each 𝑗 ∈ J .

We will prove that a solution to Partition exists if and only if there is a schedule that
satisfies all the constraints and has a makespan at most 𝐵(𝑄 + 1).

Assume that there is a solution (𝑆 ′, 𝑆 \𝑆 ′) for Partition, i.e.,∑𝑖∈𝑆 ′ 𝑎𝑖 =
∑
𝑖∈𝑆\𝑆 ′ 𝑎𝑖 = 𝐵𝑄 .

We create a schedule as follows:

• on the leftmost 𝑄 computing nodes, we schedule: (i) the “big” job targeting the
left I/O node in the time interval (0, 𝐵𝑄] using 𝑞 𝑗 = 𝑄 and hence a processing time
𝑝 𝑗 =

𝐵𝑄2

𝑄
= 𝐵𝑄 , and (ii) the “small” jobs corresponding to the elements of the set 𝑆 ′ (and

targeting the middle I/O node) in the time interval (𝐵𝑄, 𝐵𝑄 + 𝐵] using for each of them
𝑞 𝑗 = 𝑄 and hence a processing time 𝑝 𝑗 =

𝑎 𝑗

𝑄
.

• on the rightmost 𝑄 computing nodes, we schedule: (i) the “small” jobs correspond-
ing to the elements of the set 𝑆 \ 𝑆 ′ (and targeting the middle I/O node) in the time
interval (0, 𝐵] using for each of them 𝑞 𝑗 = 𝑄 and hence a processing time 𝑝 𝑗 =

𝑎 𝑗

𝑄
,

and (ii) the “big” job targeting the right I/O node in the time interval (𝐵, 𝐵𝑄 + 𝐵] using
𝑞 𝑗 = 𝑄 and hence a processing time 𝑝 𝑗 = 𝐵𝑄2

𝑄
= 𝐵𝑄 .

By construction, the contiguity and the locality constraints are satisfied, while the
makespan of the schedule is exactly 𝐵(𝑄 + 1). Due to the solution of Partition, we have
that

∑
𝑖∈𝑆 ′ 𝑎𝑖 = 𝐵𝑄 , and hence the total processing time of all jobs corresponding to

the elements of 𝑆 ′ is 𝐵𝑄

𝑄
= 𝐵, fitting in the assigned time interval. The same argument

holds for the jobs corresponding to the elements of 𝑆 \ 𝑆 ′. Thus, the created schedule is
feasible.

Conversely, given a feasible optimal schedule of makespan 𝐵(𝑄 + 1), we first need
to show that both “big” jobs are necessarily executed using 𝑞 𝑗 = 𝑄 computing nodes.
Suppose that a “big” job is executed using 𝑞 𝑗 < 𝑄 computing nodes. Therefore, the load
on each of these nodes is at least

𝐵𝑄2

𝑞 𝑗
⩾

𝐵𝑄2

𝑄 − 1 =
𝐵(𝑄2 − 1) + 𝐵

𝑄 − 1 =
𝐵(𝑄 − 1) (𝑄 + 1) + 𝐵

𝑄 − 1 = 𝐵(𝑄 + 1) + 𝐵

𝑄 − 1

which is strictly greater than 𝐵(𝑄+1), and hence we have a contradiction to the feasibility
of the schedule. Moreover, the total processing time of “small” jobs that are executed on
the computing node just on the left of the middle I/O node is at most 𝐵(𝑄 + 1) −𝐵𝑄 = 𝐵;

24

Proportional Malleable Model Section 3.3

similarly, for the computing node which is just on the right of the middle I/O node.
Furthermore, the “small” jobs have a total processing time at least 2𝐵; this happens if
all of them use 𝑄 computing nodes. We conclude that the set of “small” jobs has been
partitioned into two subsets of the same total processing time, and therefore we can
construct a solution for the Partition problem. ■

In the proof of the previous theorem, if𝑄 = 1 then the constructed instance coincides
with a special case of the rigid model where each job is executed on exactly one machine
(i.e. tasks are sequential). We get the following corollary.

▶ Corollary 3.5. The problem of scheduling rigid jobs with respect to contiguity and
locality constraints is NP-hard even if 𝑚C = 2, 𝑚I/O = 3 and 𝑞 𝑗 = 1 for each job
𝑗 ∈ J . ◀

Finally, we can extend the proof given in [BDL+18] for the rigid model, and get the
following theorem. The proof is very similar to the one provided in [BDL+18] and
therefore not presented here.

▶ Theorem 3.6. The problem of scheduling malleable jobs with respect to contiguity
and locality constraints is strongly-NP-hard even in the proportional-malleable model
with𝑚I/O = 3 and 𝑤 𝑗 = 𝑄 𝑗 , for each 𝑗 ∈ J . ◀

3.3 Proportional Malleable Model
In this section, we propose approximation algorithms for the problem of scheduling
malleable jobs with respect to contiguity and locality constraints. In a uniform instance
of the Proportional-Malleable Model, each job can be executed by at most 𝑄 computing
nodes. We denote by M 𝑗 the set of computing nodes (machines) that can participate
in the execution of a job 𝑗 . Let M be an arbitrary set of machines. Then the average
time LB1 for which a machine fromM has to run is a lower bound on the length of an
optimal schedule. That is:

LB1 = max
𝑀⊆𝑃C

{∑
𝑗 |M 𝑗 ⊆M 𝑤 𝑗

|M|

}
(3.1)

For each node 𝑖 ∈ 𝑃 I/O we denote by J𝑖 the set of jobs with 𝑃 I/O (𝑗) = 𝑖 . Given that each
job cannot be allocated on more than 𝑄 machines, we obtain a second lower bound.

LB2 = max
𝑖∈𝑃 I/O

∑︁
𝑗∈J𝑖

𝑤 𝑗

𝑄

 (3.2)

25

Chapter 3 Topological Constraints

In total, the lower bound is given by the largest of these quantities, LB =

max{LB1,LB2}.
In this section, we present an algorithm that computes a schedule whose makespan

does not exceed 2LB. Firstly, we transform the instance in order to create a simplified
jobset J ′. For each node 𝑖 ∈ 𝑃 I/O we replace each set of jobs J𝑖 with a single job 𝑗 ′, the
execution load of which is equal to 𝐴 𝑗 ′ =

∑
𝑗∈J𝑖 𝑤 𝑗 . After determining the allocation for

a job 𝑗 ′ in J ′, we will assign all jobs 𝑗 in J corresponding to the same I/O node to the
same set of computing nodes.

▶ Proposition 3.7. Jand J ′ have the same lower bound LB. ◀

We introduce at this point an auxiliary problem which will help us find a feasible
schedule to our initial problem.

Auxiliary problem
The instance consists of a set of malleable rectanglesU = {𝑈1,𝑈2, . . . ,𝑈𝑚} and a strip
of width𝑊 . We designate the bottom left corner of the strip as the origin of the 𝑥𝑦-
plane, letting the 𝑥-axis be the direction of the width of the strip, and the 𝑦-axis be the
direction of the height. Each rectangle 𝑈𝑖 has a fixed area 𝐴𝑖 and a given access point
(which corresponds to the input/output nodes of our original problem) 𝜏𝑖 , such that
0 ⩽ 𝜏1 ⩽ 𝜏2 ⩽ · · · ⩽ 𝜏𝑚 ⩽ 𝑊 . We represent the location of each rectangle 𝑈𝑖 in the
strip by the coordinate (𝑠𝑖 , 𝑦𝑖) of its bottom left corner and the coordinate (𝑓𝑖 , 𝑦𝑖) of its
bottom right corner. We denote the width of a rectangle as _𝑖 = 𝑓𝑖 − 𝑠𝑖 . In this case, the
height of the rectangle𝑈𝑖 is equal to ℎ𝑖 = 𝐴𝑖

_𝑖
.

We say that the location of the rectangles is valid if the following conditions hold:

1. 𝑠𝑖 , 𝑓𝑖 ∈ N, 𝑖 = 1, . . . ,𝑚

2. 1 ⩽ _𝑖 ⩽ 𝑄 , 𝑖 = 1, . . . ,𝑚

3. 𝑠𝑖 ⩽ 𝜏𝑖 ⩽ 𝑓𝑖 , 𝑖 = 1, . . . ,𝑚

4. 𝑠𝑖 ⩽ 𝑠 𝑗 , ∀ 𝑖 < 𝑗

5. 𝑓𝑖 ⩽ 𝑓𝑗 , ∀ 𝑖 < 𝑗

In correspondence with the initial scheduling problem, condition 1 means that the
computing need of a job is integral, while in condition 2, a job must ask for at least one
node with the upper limit being 𝑄 . Condition 3 guarantees locality for a job. Finally,
conditions 4 and 5 ensures jobs are scheduled following the ordering of the I/O nodes.

The objective of the auxiliary problem is to place𝑚 rectangles into the strip without
intersections, so as to minimize the height 𝐻 of the strip.

Consider an arbitrary rectangle 𝑈𝑖 . In order to satisfy conditions 2, 3, we define
the interval [𝑟𝑖 , 𝑑𝑖]. Let 𝑟𝑖 = max{0, 𝜏𝑖 −𝑄} and 𝑑𝑖 = min{𝑊,𝜏𝑖 +𝑄}. We can see this

26

Proportional Malleable Model Section 3.3

mC
1 mC

2 mC
3 mC

4 mC
5 mC

6 mC
7 mC

8 mC
9 mC

10 mC
11m

I/O
1 m

I/O
2 m

I/O
3 m

I/O
4 m

I/O
5

Figure 3.1: Intervals [𝑟𝑖 , 𝑑𝑖] for jobs with for 𝑄 = 3

interval as the set of computing nodes, where a job 𝑖 can be scheduled both locally
and contiguously. An example of these intervals is shown in Figure 3.1. Conditions
2 and 3 also imply that in any feasible solution of the auxiliary problem we have
𝑟 𝑗 ⩽ 𝑠 𝑗 < 𝑓𝑗 ⩽ 𝑑 𝑗 .

In terms of the auxiliary problem, we can re-write lower bounds (3.1) and (3.2) as
follows.

LB1 = max
𝑖, 𝑗 |𝑖< 𝑗

{∑
𝑘 |𝑟𝑖⩽𝑟𝑘⩽𝑑𝑘⩽𝑑 𝑗 𝐴𝑘

𝑑 𝑗 − 𝑟𝑖

}
(3.3)

LB2 = max
𝑖

{
𝐴𝑖

𝑄

}
(3.4)

Finally, we have that, LB = max{LB1,LB2}

▶ Proposition 3.8. If we do not impose integrality and locality (conditions 1 and 3),
the auxiliary problem under conditions 2, 4, 5 has a solution of 𝐻 = LB. ◀

To create such a solution, we set _𝑖 = 𝐴𝑖

LB for all𝑈𝑖 ∈ U. From (3.4) we have _𝑖 ⩽ 𝑄 .
We then place each rectangle on the bottom line, so 𝑦𝑖 = 0 for all𝑈𝑖 ∈ U. We determine
the 𝑥-coordinates of each rectangle according to the following rule. For the first rectangle
we set 𝑠1 = 0 and 𝑓1 = _1. For the rest of the jobs we set 𝑠𝑖 = max{𝑟𝑖 , 𝑓𝑖−1} and 𝑓𝑖 = 𝑠𝑖 +_𝑖 .

In the next proof we show that the solution described above and summarized in
Algorithm 1, provides a feasible solution to the auxiliary problem with respect to
condition 2, 4, 5.

Proof. We will prove by contradiction that 𝑓𝑖 ⩽ 𝑑𝑖 for all 𝑖 . Suppose there exists a
rectangle𝑈𝑖 such that 𝑓𝑖 > 𝑑𝑖 . Let 𝑗 < 𝑖 be the maximal index of a rectangle such that
𝑠 𝑗 = 𝑟 𝑗 . Then we have 𝑠𝑘 = 𝑓𝑘−1 for all 𝑘 = 𝑗 + 1, . . . , 𝑖 . Thus, we have that

𝑖∑︁
𝑘=𝑗

_𝑘 > 𝑑𝑖 − 𝑟 𝑗 (3.5)

27

Chapter 3 Topological Constraints

Moreover, for each rectangle 𝑈𝑘 , where 𝑘 = 𝑗 + 1, 𝑙𝑑𝑜𝑡𝑠, 𝑖 we have 𝑟 𝑗 ⩽ 𝑟𝑘 and 𝑑𝑘 ⩽ 𝑑𝑖 .
From lower bound (3.3) we obtain

LB ⩾
∑𝑖
𝑘=𝑗

𝐴𝑘

𝑑𝑖 − 𝑟 𝑗
=

LB∑𝑖
𝑘=𝑗

𝐴𝑘

LB(𝑑𝑖 − 𝑟 𝑗)
=

LB∑𝑖
𝑘=𝑗

_𝑘

𝑑𝑖 − 𝑟 𝑗
> LB

where the last inequality follows from (3.5); contradiction. ■

Algorithm 1 places all the rectangles as close as possible to the left edge of the strip.
We shift to the right those rectangles for which 𝑓𝑖 < 𝜏𝑖 , without changing the order
or the location of the other rectangles. Thus, a rectangle can be moved either until it
becomes local, or until it meets the starting node of the next job. This procedure, which
returns a strip 𝑆 ′, is described in Algorithm 2.

The solution created by Algorithm 2 may consist of several blocks of jobs. A block is
a maximal set of rectangles that form a continuous strip of size LB and consists of:

• a set of local rectangles for which 𝜏𝑖 ∈ [𝑠𝑖 , 𝑓𝑖],

• a set of rectangles, L (left), for which 𝜏𝑖 > 𝑓𝑖 ,

• a set of rectangles, R (right), for which 𝜏𝑖 < 𝑠𝑖 .

Moreover, all left rectangles precede local rectangles, and all right rectangles succeed
local rectangles. Notice that sets L and R may be empty, while the set of local rectangles
must have at least one rectangle. After applying Algorithm 2, it is the local rectangles
which prevent other jobs from being local. Therefore, there is always a local rectangle
in a block. The structure of a block can be seen in Figure 3.3 (a).

Our main idea is to split the set of rectangles in U into two subsets, U1 and U2,
and then pack each of them into a strip of height LB. We start with local rectangles.
We number the rectangles in the order as they are carried out in the strip 𝑆 ′, resulted
by Algorithm 2. Then, we re-allocate each local rectangle 𝑖 to the interval [⌊𝑠𝑖⌋, ⌈𝑓𝑖⌉].
Subsequently, we set all odd local rectangles in the first subsetU1 and all even rectangles
on the second subset U2. Each rectangle 𝑖 has a positive width, and therefore we get
that 𝑠𝑖+2 ⩾ 𝑓𝑖+1 > 𝑠𝑖+1 = 𝑓𝑖 . Since each 𝜏𝑖 is integral, and for each local rectangle we

Algorithm 1: Auxiliary solution
1 _1 =

𝐴1
LB ; 𝑦1 = 0; 𝑠1 = 0; 𝑓1 = _1;

2 for 𝑖 > 1 | 𝑈𝑖 ∈ U do
3 _𝑖 =

𝐴𝑖

LB ; 𝑦𝑖 = 0;
4 𝑠𝑖 = max{𝑟𝑖 , 𝑓𝑖−1}; 𝑓𝑖 = 𝑠𝑖 + _𝑖 ;

28

Proportional Malleable Model Section 3.3

LB
.

aggregate

λ0 λ1 λ2 λ3 λ4 λ5

0 1 2 3 4 5

`h

τ0 τ1 τ2 τ3 τ4 τ5

Figure 3.2: Example of creating the first aggregated job of a block in R. The
renumbering of nodes and jobs of this step is also depicted. Jobs correspond to the jobs

5 − 10 shown in Figure 3.3 (a).

have 𝜏𝑖 ∈ [𝑠𝑖 , 𝑓𝑖], we get that ⌊𝑠𝑖+2⌋ ⩾ ⌈𝑓𝑖⌉, and as a result local rectangles from the same
subset do not overlap.

For rectangles which are not local, we focus on each block separately. We make
rectangles of a block to be local, starting by jobs in set R. Rectangles in set L are
handled similarly and therefore the procedure is not explicitly mentioned here.

We call the last local rectangle in the block as 𝑅0. Consider the rectangles in R ∪ {𝑅0}.
We refer to the access point of the rectangle 𝑅0 as 𝜏0 and respecting the ordering from
left to right we re-number the access points of the rectangles in R. Rectangles’ indices
follow the same numbering. Figure 3.2 illustrates this notation.

Let 𝑟 = |R |. We partition the set of rectangles R into disjoint subsets using the
following procedure (see Algorithm 3).

We consider each subset Rℎ as an aggregated rectangle 𝑅ℎ . For each aggregated
rectangle 𝑅ℎ , we define two quantities. The first one is

𝑑𝑖𝑠𝑡𝐶 =
∑︁

𝑈 𝑗 ∈Rℎ

_ 𝑗 (3.6)

Algorithm 2: Create Initial Blocks
1 Start with the solution 𝑆 returned by Algorithm 1;
2 for (𝑖 = |J ′ |; 𝑖 == 1; 𝑖--) do
3 if 𝜏𝑖 > 𝑓𝑖 then
4 𝑡 = min{(𝑠𝑖+1 − 𝑓𝑖), (𝜏𝑖 − 𝑓𝑖)};
5 𝑓𝑖 + = 𝑡 ; 𝑠𝑖 + = 𝑡 ;

29

Chapter 3 Topological Constraints

which corresponds to the total width of all the rectangles inRℎ . Let 𝜏𝑚𝑖𝑛ℎ
= min𝑈 𝑗 ∈Rℎ

{𝜏 𝑗 }
and 𝜏𝑚𝑎𝑥

ℎ
= max𝑈 𝑗 ∈Rℎ

{𝜏 𝑗 }. The second one is

𝑑𝑖𝑠𝑡 𝐼/𝑂 = 𝜏𝑚𝑎𝑥
ℎ

− 𝜏𝑚𝑖𝑛
ℎ

(3.7)

and is related to the distance between the leftmost and the rightmost access points in
Rℎ . We then define the width of the aggregated rectangle 𝑅ℎ as

ℓℎ = max
{⌈
𝑑𝑖𝑠𝑡𝐶

⌉
, 𝑑𝑖𝑠𝑡 𝐼/𝑂

}
(3.8)

More precisely, we replace each rectangle 𝑈 𝑗 ∈ Rℎ of width _ 𝑗 and height LB with
a rectangle of width ℓℎ and height _ 𝑗LB/ℓℎ , and put them on top of each other. As a
result, we get a rectangle of width ℓℎ and of height 𝑑𝑖𝑠𝑡𝐶LB/ℓℎ , which is no more than
𝑄 .

At this point, we are ready to make rectangles in R both local and integral. We place
each aggregated rectangle 𝑅ℎ in the interval [𝜏𝑚𝑖𝑛

ℎ
, 𝜏𝑚𝑖𝑛
ℎ

+ ℓℎ]. For each rectangle, we
also need to choose one of the subsets U1 or U2.

This choice is based on the placement of the previous rectangle. Rectangles 𝑅0 and
𝑅1 are always assigned to different sets based on the choice for 𝑅0. If the maximum in
ℓ𝑖−1 is given by

⌈
𝑑𝑖𝑠𝑡𝐶

⌉
and 𝑅𝑖−1 ∈ U1, assign 𝑅𝑖 toU2 (resp. if 𝑅𝑖−1 ∈ U2, assign 𝑅𝑖 to

U1). If the maximum in ℓ𝑖−1 is given by 𝑑𝑖𝑠𝑡 𝐼/𝑂 and 𝑅𝑖−1 ∈ U1 (resp. U2), assign 𝑅𝑖 to
U1 (resp. U2). Similarly, we impose locality in L.

▶ Lemma 3.9. The aggregated rectangles do not overlap. ◀

Proof. Since all rectangles in R are shifted to the left and all rectangles in L are shifted
to the right, the shifted rectangles from different blocks do not overlap. Let 𝑈𝑙 be
any left aggregated rectangle and 𝑈𝑟 to be any right aggregated rectangle. We have
𝑓𝑙 = 𝜏𝑚𝑎𝑥

𝑙
⩽ 𝜏0 ⩽ 𝜏𝑚𝑖𝑛𝑟 = 𝑠𝑟 . It follows that two rectangles𝑈𝑙 ,𝑈𝑟 with𝑈𝑙 ∈ L and𝑈𝑟 ∈ R

from the same block do not overlap.
Now we show that rectangles in R from one block do not overlap. Let ℓℎ−1 =

Algorithm 3: Create Aggregated Rectangles
1 Put ℎ = 0; 𝑘 = 1;
2 while 𝑘 ⩽ 𝑟 do
3 set 𝑖 = 𝑘, ℎ = ℎ + 1, 𝑅ℎ := ∅;
4 while

∑𝑘
𝑗=𝑖 _ 𝑗 ⩽ 𝑄 and 𝜏𝑘 − 𝜏𝑖 ⩽ 𝑄 do

5 set 𝑅ℎ = 𝑅ℎ ∪ {𝑈𝑘 }; 𝑘 = 𝑘 + 1;

30

Proportional Malleable Model Section 3.3

LB
1 2 3 4 5 6 7 8 9 10 11 12

blockblock block

RL

I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12

(a) Schedule returned by Algorithm 2. Structure of a block.

LB

2LB

1

2

3

4

5

6,7 8,9

10 11

12

I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12

(b) The final schedule after imposing locality and integrality

Figure 3.3: Example of the transformation from a partial solution return by
Algorithm 2 to a contiguous, local, integral feasible schedule of our algorithm.

Input/Output nodes are depicted by a black square. Computing nodes are not shown.
Jobs and Input/Output nodes follow the same numbering. Jobs in gray are local while

jobs in white need to be reallocated.

𝜏𝑚𝑎𝑥
ℎ−1 − 𝜏𝑚𝑖𝑛

ℎ−1 . Since 𝜏
𝑚𝑎𝑥
ℎ−1 < 𝜏𝑚𝑖𝑛

ℎ
the rectangles 𝐽ℎ−1 and 𝐽ℎ do not overlap. Now, let

ℓℎ−1 =
∑
𝑗∈𝑅ℎ−1 _ 𝑗 . In this case, rectangles 𝐽ℎ and 𝐽ℎ−1 belong to different sets and do

not overlap. It remains to show that the rectangle 𝐽ℎ does not overlap with previous
rectangles. Let𝑈 𝑗 be the first rectangle in𝑅ℎ . From the execution of Algorithm 3, we have
ℓℎ−1+_ 𝑗 > 𝑄 . Hence, 𝑓𝑗 −min𝑖∈𝑅ℎ−1 𝑠𝑖 > 𝑄 . Taking into account that 𝜏 𝑗 = 𝑑 𝑗 −𝑄 ⩾ 𝑓𝑗 −𝑄 ,
we obtain

𝜏𝑚𝑖𝑛
ℎ

= 𝜏 𝑗 ⩾ 𝑓𝑗 −𝑄 > min
𝑖∈𝑅ℎ−1

𝑠𝑖 = 𝑠ℎ−1 ⩾ 𝜏𝑚𝑖𝑛
ℎ−1 > 𝜏𝑚𝑎𝑥

ℎ−2

Similarly, rectangles in L from one block do not overlap. ■

▶ Lemma 3.10. The aggregated rectangles and the local rectangles do not overlap. ◀

Proof. We prove this result for jobs in R. Let 𝑅𝑖 be the first aggregated rectangle that
belongs to the same set as 𝑅0. It follows that ℓ𝑖−1 =

∑
𝑗∈𝑅𝑖−1 _ 𝑗 . As shown in Lemma 3.9

we have 𝜏𝑚𝑖𝑛𝑖 ⩾ 𝑠𝑖−1 ⩾ 𝑓0. Since 𝜏𝑚𝑖𝑛𝑖 is integer, we have 𝜏𝑚𝑖𝑛𝑖 ⩾ ⌈𝑓0⌉ and rectangles 𝑅0
and 𝑅𝑖 do not overlap. Similarly, we can prove this result for jobs in L. ■

Following the procedure above, we can find a solution of height 2LB to the auxiliary
problem which partitions the rectangles into two subsets, and packs them in two strips
of height LB without intersections.

31

Chapter 3 Topological Constraints

Now, consider the topology of an instance of the scheduling problem. We number the
computing nodes in 𝑃C independently from the I/O nodes, respecting their ordering on
the line. Furthermore, we set𝑊 =𝑚C and we associate the unit interval [𝑖 − 1, 𝑖] with
the computing node 𝑖 . For each I/O node 𝑗 ∈ 𝑃 I/O we set 𝜏 𝑗 = 0 if the I/O node precedes
all computing nodes, 𝜏 𝑗 =𝑚C if the I/O node follows all computing nodes and 𝜏 𝑗 = 𝑘 if
the I/O node is located between the computing nodes 𝑘 and 𝑘 + 1. For the 𝑗-th I/O node
we create a rectangle 𝑅 𝑗 such that its area is 𝐴 𝑗 .

▶ Lemma 3.11. Let 𝑆 be a feasible solution of the auxiliary problem with height 𝐻 .
Then there exists a feasible solution of the scheduling problem with makespan 𝐻 . ◀

Proof. Let the rectangle𝑈 𝑗 has coordinates (𝑠 𝑗 , 𝑦 𝑗) and (𝑓𝑗 , 𝑦𝑖) for its bottom left corner
and its bottom right corner, respectively. We assign the job 𝑗 corresponding to the 𝑗-th
I/O node on computing nodes

{
𝑠 𝑗 + 1, . . . , 𝑓𝑗

}
in the time interval (𝑦 𝑗 , 𝑦 𝑗 + ℎ 𝑗], where

ℎ 𝑗 =
𝐴 𝑗

_ 𝑗
. Let 𝑃 I/O

𝑡 = { 𝑗 ∈ 𝑃 I/O |𝜏 𝑗 = 𝑡}. If 𝑠 𝑗 < 𝑡 < 𝑓𝑗 then job 𝑗 occupies all I/O nodes
from 𝑃 I/O

𝑡 . If 𝑠 𝑗 = 𝑡 , job 𝑗 occupies the node 𝑃 I/O (𝑗) and all I/O nodes from 𝑃 I/O
𝑡 to the

right of the node 𝑃 I/O (𝑗). If 𝑓𝑗 = 𝑡 , job 𝑗 occupies the node 𝑃 I/O (𝑗) and all I/O nodes
from 𝑃 I/O

𝑡 to the left of the node 𝑃 I/O (𝑗). Thus, the job is also local due to condition 3 of
the auxiliary problem. Suppose that a job 𝑖 and a job 𝑗 overlap on some I/O node. Let
𝑖 < 𝑗 . Since the rectangles 𝑅𝑖 and 𝑅 𝑗 do not overlap we have 𝜏𝑖 = 𝑓𝑖 = 𝑠 𝑗 = 𝜏 𝑗 due to
conditions 4 and 5. But in this case, the job 𝑖 does not occupy the I/O nodes to the right
of the 𝑖-th I/O node and the job 𝑗 does not occupy the I/O nodes to the left of the 𝑗-th
I/O node. Hence these jobs do not overlap. ■

This directly yields the following result.

▶ Theorem 3.12. There exists a polynomial time 2-approximation algorithm for the
problem of scheduling malleable jobs with respect to contiguity and locality constraints
on the line in the uniform proportional-malleable model. ◀

3.4 Generalized Malleable Model
Bleuse et al. [BDL+18] introduced an integer linear program for the rigid model with
respect to contiguity and locality constraints in order to minimize the total load of each
node; note that the maximum load over all nodes is a lower bound to the makespan of
the schedule. By solving the relaxed version and rounding this solution, they obtain one
allocation whose makespan is at most twice the maximum load in the solution returned
by the linear program (LP). Having fixed a valid allocation for each job, the problem
coincides with the already known Dynamic Storage Allocation problem for which they
use an already known 3-approximation algorithm [Ger99] to create a feasible schedule,
getting a 6-approximation algorithm for the rigid model.

32

Generalized Malleable Model Section 3.4

0 1 2 3 4 5 6 7 8 9 10

Figure 3.4: Possible valid allocations for a job 𝑗 asking for 3 computing nodes (𝑄 𝑗 = 3)
and the 4𝑡ℎ node as input/output.

We extend the integer linear program of [BDL+18] as follows. Let A 𝑗 be the set of all
potential allocations for each job 𝑗 ∈ J . In the malleable model, the set A 𝑗 contains
more allocations than the rigid model, as in the former one we have also to decide
the number of computing nodes to be used for the execution. Due to the contiguity
and the locality constraints, there are 𝑄 𝑗 + 1 allocations using 𝑄 𝑗 computing nodes, 𝑄 𝑗

allocations using 𝑄 𝑗 − 1 computing nodes, and so on. Hence, the number of potential
allocations for each job 𝑗 , |A 𝑗 | ⩽

∑𝑄 𝑗

𝑖=1 (𝑖 + 1), remains polynomial. Figure 3.4 shows the
valid allocations for a job 𝑗 with 𝑄 𝑗 = 3.

Each allocation ℓ ∈ A 𝑗 contains a number of computing nodes as well as the required
I/O node. Note that, an allocation may include more I/O nodes that will not be used
during the execution of 𝑗 , neither by 𝑗 nor by any other job due to the locality constraint.
By slightly abusing the notation, given an allocation ℓ , we write 𝑖 ∈ ℓ if the node 𝑖
is included in ℓ , and we denote by |ℓ |, the number of computing nodes included in ℓ .
Moreover, given an allocation ℓ ∈ A 𝑗 for a job 𝑗 ∈ J , we denote by 𝑝 𝑗 ℓ = 𝑤 𝑗 𝑓 (|ℓ |) the
processing time of 𝑗 if it is executed according to ℓ . Note that the number of different
𝑝 𝑗 ℓ is also polynomial. An example of all possible allocations can be seen in Figure 3.4.

For each job 𝑗 ∈ J and allocation ℓ ∈ A 𝑗 , we introduce a binary indicator variable
𝑥 𝑗,ℓ which is equal to one if 𝑗 is executed according to the allocation ℓ , and zero otherwise.
Moreover, for each node 𝑖 ∈ 𝑃 (computing and I/O) we introduce a non-negative variable
𝛬𝑖 which corresponds to the total load of jobs whose assigned allocation includes the
node 𝑖 . Let also 𝛬 be a variable corresponding to the maximum load among all nodes.
Then, we consider the following integer linear program which minimizes the maximum
load.

min 𝛬, (ILP)
s.t. 𝛬 ⩾ 𝛬𝑖 ∀𝑖 ∈ V (𝐶1)

𝛬𝑖 ⩾
∑︁
𝑗∈J

∑︁
ℓ∈A 𝑗

∑︁
𝑖∈ℓ

𝑥 𝑗 ℓ𝑝 𝑗ℓ ∀𝑖 ∈ V (𝐶2)

33

Chapter 3 Topological Constraints

∑︁
ℓ∈A 𝑗

𝑥 𝑗 ℓ = 1 ∀𝑗 ∈ J (𝐶3)

𝑥 𝑗 ℓ ∈ {0, 1} 𝑗 ∈ J , ℓ ∈ A 𝑗 (𝐶4)

Constraints (𝐶1) take the maximum load over all nodes. Constraints (𝐶2) compute the
total load for each node, while Constraints (𝐶3) ensure that each job is assigned to an
allocation. By relaxing the integrity Constraints (𝐶4) to 𝑥 𝑗ℓ ∈ [0, 1] for each 𝑗 ∈ J and
ℓ ∈ A 𝑗 , we can solve the corresponding LP in polynomial time. An optimal solution to
the relaxed linear program is a lower bound to the makespan of an optimal solution for
our problem.

The main differences of the above integer linear program with respect to the one
for rigid jobs is that: (i) there is a quadratic number to 𝑄 𝑗 of potential allocations for
each job 𝑗 (instead of linear) and (ii) the processing time of 𝑗 depends on the allocation
and the number of computing nodes used by it (instead of a single 𝑝 𝑗 for all potential
allocations).

Consider now an optimal solution of the relaxed linear program. In this solution, let
𝑥 𝑗ℓ be the value of the indicator variable for each job 𝑗 ∈ J and allocation ℓ ∈ A 𝑗 , and
�̃�𝑖 be the value of the variable corresponding to the load of node 𝑖 . In the following,
we explain how to round these indicator variables and get an integral allocation for
each job 𝑗 ∈ J . Let 𝑥 𝑗 ℓ be the integral value of the indicator variable for each job
𝑗 ∈ J and allocation ℓ ∈ A 𝑗 after the rounding and 𝛬𝑖 the corresponding load of node
𝑖 . We denote by 𝐿𝑖 (𝑗) the contribution of job 𝑗 to the load of node 𝑖 ∈ 𝑃 in solution
�̃�𝑖 : 𝐿𝑖 (𝑗) =

∑
ℓ :𝑖∈ℓ 𝑥 𝑗 ℓ𝑝 𝑗ℓ . Let 𝑃 𝑗 = {𝑖 : 𝐿𝑖 (𝑗) > 0} be the set of nodes having a positive

fractional load for the job 𝑗 .
Given an allocation ℓ ∈ A 𝑗 , we consider the worst case increase of the load of a

machine if we decide to schedule 𝑗 according to ℓ . Specifically, for each node 𝑖 ∈ 𝑃 𝑗 in
this allocation ℓ we compute the ratio 𝑝 𝑗ℓ

𝐿𝑖 (𝑗) , while the worst case corresponds to the
node for which this ratio is maximized. Finally, we decide to schedule 𝑗 according to
the allocation ℓ∗ that minimizes this worst case ratio and we set 𝑥 𝑗ℓ∗ = 1. All the other
variables for the job 𝑗 are set to zero, i.e., 𝑥 𝑗ℓ = 0 for each ℓ ≠ ℓ∗. Intuitively, the above
procedure aims to choose the allocation for each job 𝑗 ∈ J that increases as little as
possible the impact of 𝑗 on the load of the nodes, without regarding the load of the other
jobs.

When a single allocation has been selected for each job, our problem coincides
with the Dynamic Storage Allocation problem and we can apply the 3-approximation
algorithm proposed in [Ger99]. Algorithm 4 summarizes this procedure.

In what follows, we bound the approximation ratio of Algorithm 4. We initially focus
on the rounding procedure (Lines 2–7 of the algorithm). Our analysis is performed for
each job 𝑗 ∈ J separately and the approximation ratio of our algorithm depends on the
function 𝑓 and 𝑄max = max{𝑄 𝑗 , 𝑗 ∈ J}. However, the algorithm works for instances
with different values of 𝑄 𝑗 .

34

Generalized Malleable Model Section 3.4

Algorithm 4:
1 Solve the relaxed version of (ILP)
2 for each job 𝑗 ∈ J do
3 for each node 𝑖 ∈ {1, . . . ,𝑚} do
4 𝐿𝑖 (𝑗) =

∑
ℓ :𝑖∈ℓ 𝑥 𝑗 ℓ𝑝 𝑗 ℓ

5 for each allocation ℓ ∈ A 𝑗 do
6 𝑟𝑎𝑡𝑖𝑜ℓ𝑗 = max𝑖∈ℓ,𝑖∈𝑃 𝑗

{
𝑝 𝑗ℓ

𝐿𝑖 (𝑗)

}
7 Choose the allocation ℓ∗ = argminℓ∈A 𝑗

{𝑟𝑎𝑡𝑖𝑜ℓ𝑗 }
8 Create a feasible schedule by applying the algorithm proposed in [Ger99]

for the Dynamic Storage Allocation problem using the allocations
determined by ℓ∗.

The key idea of our analysis is, given a job 𝑗 ∈ J , to find a worst-case assignment for
the variables 𝑥 𝑗 ℓ , ℓ ∈ A 𝑗 , that maximizes the quantity minℓ∈A 𝑗

{𝑟𝑎𝑡𝑖𝑜ℓ𝑗 }: it will maximize
the minimal increase of the contribution of task 𝑗 to the load of a machine between �̃�𝑖
and 𝛬𝑖 . Then, any other assignment for the variables 𝑥 𝑗 ℓ , including the one obtained by
solving the relaxed (ILP), will lead to a smaller increase. In order to do this, we create
the following feasibility linear program for the job 𝑗 ∈ J , where 𝛼 is a constant which
corresponds to the value of minℓ∈A 𝑗

{𝑟𝑎𝑡𝑖𝑜ℓ𝑗 } we are searching for.

𝑝 𝑗ℓ ⩾ 𝛼
∑︁
ℓ ′ :𝑖∈ℓ ′

𝑥 𝑗ℓ ′𝑝 𝑗ℓ ′ ∀ℓ ∈ A 𝑗 , 𝑖 ∈ ℓ (𝑅1)∑︁
ℓ∈A 𝑗

𝑥 𝑗ℓ = 1 (𝑅2)

𝑥 𝑗ℓ ⩾ 0 ∀𝑗 ∈ J , ℓ ∈ A 𝑗 (𝑅3)

Constraints (𝑅1) express the ratio between the integral load if allocation ℓ is selected
to execute 𝑗 and the fractional load based on the obtained assignment for a node 𝑖 , i.e.,
correspond to the quantity 𝑝 𝑗ℓ

𝐿𝑖 (𝑗) . Constraints (𝑅2) ensure that job 𝑗 is assigned and
guarantees the constraints (𝐶3) of ILP.

Observe that, the values of 𝑝 𝑗 ℓ = 𝑤 𝑗 𝑓 (|ℓ |) and 𝑝 𝑗 ℓ ′ = 𝑤 𝑗 𝑓 (|ℓ ′ |) in Constraint (𝑅1)
depend on the same job 𝑗 . Thus, 𝑤 𝑗 can be eliminated and the constraint depends
only on the number of computing nodes of allocations ℓ and ℓ ′ (which take value in
{1, 2, . . . , 𝑄 𝑗 }) and the function 𝑓 . In other words, we obtain the same feasibility linear
program for all jobs requiring the same number of computing nodes 𝑄 𝑗 , and thus the
value of 𝛼 is not job specific and it depends only on the speed-up function 𝑓 and the 𝑄 𝑗 .

35

Chapter 3 Topological Constraints

5 10 15 20

3

4

5

Qj

α

Figure 3.5: Value of 𝛼 with respect to different 𝑄 𝑗 ’s for the proportional-malleable
model.

In order to determine the value of 𝛼 , we perform a binary search. An infeasible solution
to the above linear program implies that it is not possible to have a gap of 𝛼 and hence
we need to choose a smaller value of 𝛼 . At the end of the binary search procedure, we
get the maximum value of 𝛼 that makes the linear program (𝑅1)–(𝑅3) feasible. Then, the
following lemma holds.

▶ Lemma 3.13. For a job 𝑗 ∈ J and a node 𝑖 ∈ 𝑃 , it holds that 𝑝 𝑗 ℓ∗ ⩽ 𝛼𝐿𝑖 (𝑗), where 𝛼
is the maximum value which makes the linear program (𝑅1)–(𝑅3) feasible. ◀

As an example, we calculated the value of 𝛼 for different values of 𝑄 𝑗 in the
proportional-malleable model. Figure 3.5 illustrates some of these values.

▶ Theorem 3.14. Let 𝛼max be the maximum value over all jobs which makes the linear
program (𝑅1)–(𝑅3) feasible. Algorithm 4 achieves an approximation ratio of 3𝛼max. ◀

Proof. For each job 𝑗 ∈ J , let ℓ∗𝑗 be the allocation selected by Algorithm 4 to execute 𝑗 .
Then, for the integral load of the node 𝑖 ∈ 𝑃 we have

𝛬𝑖 =
∑︁

𝑗∈J:𝑖∈ℓ∗
𝑗

𝑝 𝑗ℓ∗
𝑗
⩽

∑︁
𝑗∈J:𝑖∈ℓ∗

𝑗

𝛼max𝐿𝑖 (𝑗)

= 𝛼max
∑︁

𝑗∈J:𝑖∈ℓ∗
𝑗

∑︁
ℓ :𝑖∈ℓ

𝑥 𝑗ℓ𝑝 𝑗 ℓ

= 𝛼max
∑︁

𝑗∈J:𝑖∈ℓ∗
𝑗

∑︁
ℓ∈A 𝑗

∑︁
𝑖∈ℓ

𝑥 𝑗 ℓ𝑝 𝑗ℓ = 𝛼max�̃�𝑖

36

Conclusion Section 3.5

By construction, �̃� = max𝑖∈𝑃 {�̃�𝑖 } is a lower bound the makespan of an optimal schedule
for our problem. Then, the theorem follows, since in Line 8 of Algorithm 4 the 3-
approximation algorithm for the Dynamic Storage Allocation is used in order to create
the final schedule. ■

3.5 Conclusion
In this chapter we studied the makespan minimization problem on the malleable and
the rigid models under contiguity and locality constraints. We gave inapproximability
results for the rigid model and complexity results for the malleable one. Focusing on
the malleable model, we gave approximation algorithms for the proportional uniform
setting as well as the generalized one.

37

4 Explorable Uncertainty

In this chapter, we introduce a model for the speed scaling setting in the framework
of explorable uncertainty. In this model, each job has a release time, a deadline and
an unknown workload that can be revealed to the algorithm only after executing a
query that induces a given additional job-dependent load. Alternatively, the job may be
executed without any query, but in that case, its workload is equal to a given upper bound.
We study the problem of minimizing the overall energy consumption for executing all
the jobs in their time windows. We also consider the related problem of minimizing the
maximum speed used by the algorithm. We present lower and upper bounds for both
the offline case, where all the jobs are known in advance, and the online case, where the
jobs arrive over time. We start with the single machine setting and we finally deal with
the more general case where multiple identical parallel machines are available.

4.1 Formulation of the problem
In the classical speed scaling setting, each job 𝑗 is characterized by a triple (𝑟 𝑗 , 𝑑 𝑗 , 𝑤 𝑗),
which represents the release time, the deadline and the workload of the job respectively.
The workload of 𝑗 should be entirely executed in the interval (𝑟 𝑗 , 𝑑 𝑗] which is called
its active interval. In this chapter, we augment this framework by introducing an
uncertainty on the workload of the jobs. Here, the work, 𝑢 𝑗 , is an upper bound rather
than an exact value on the actual work needed for the completion of a job. The exact
workload, 𝑤 𝑗 ⩽ 𝑢 𝑗 , can be revealed to the algorithm only after executing a query (or
test) of additional load 𝑡 𝑗 ∈ (0, 𝑢 𝑗]. Hence, in our setting, each job is characterized by
a quintuple (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗), where 𝑤 𝑗 is not known before the end of the potential
execution of the query. Note that, in the case where the query is not executed, the
scheduler is obliged to execute the upper bound of the workload 𝑢 𝑗 .

We call the above enhanced model as Query Based Speed Scaling model (QBSS). The
QBSSmodel is online by nature, since the value of𝑤 𝑗 for each job 𝑗 is revealed only after
the potential execution of the query 𝑡 𝑗 . However, we distinguish between the offline and
the online versions with respect to the classical scheduling setting. In the offline version,
the entire input is known in advance, i.e., the total number of jobs to be scheduled, as
well as their characteristics, except for the exact loads 𝑤 𝑗 . In the online version, the
input becomes available to the algorithm over time: at time 𝑡 = 𝑟 𝑗 , a new job 𝑗 and
its characteristics are revealed, except again for its exact load 𝑤 𝑗 . In other words, the
algorithm does not know in advance how many jobs it has to schedule, at which time
they will arrive, or what are their characteristics. In both cases, if the exact load of a

39

Chapter 4 Explorable Uncertainty

job 𝑗 becomes known at the same time as its other characteristics, then the QBSS model
reduces to the classical speed scaling setting, since the scheduler can simply decide
whether to make the query for 𝑗 or not based on the value of min{𝑢 𝑗 , 𝑡 𝑗 +𝑤 𝑗 }.

This model is inspired by code optimizers which can (potentially) reduce the execution
time of program. However, the result cannot be known before the execution of the
optimizer. Another application is file transferring over a network, where choosing to
compress a file can either reduce its size or not (if the file is already compressed). Other
scenarios, such as emergency rooms where an initial check is performed to evaluate the
severity of a patient, could be modeled in the same way.

Our contribution

In this chapter, we study an enhanced speed scaling setting (called QBSS), where queries
can be optionally executed in the system in order to reveal a more accurate value of
the workload of jobs. The main objective is the minimization of the overall energy
consumption for executing all the jobs in their time windows (between their release
dates and deadlines). We also consider the related problem of minimizing the maximum
speed used by the algorithm.

There are two additional questions to answer for each job 𝑗 in the QBSS model:
whether the query will be done or not, and, if yes, how to partition the active interval of
the job among the execution of its query and its exact load. Both decisions have a crucial
impact on the speed and thus on the consumed energy. For the first question, doing
always the query leads to constant approximation algorithms, whereas never doing
it leads to unbounded ratios (Section 4.3.1). However, in most cases a better decision
can be made by comparing the values of 𝑡 𝑗 and

𝑢 𝑗

𝜙
, where 𝜙 ≈ 1, 6180 is the golden

ratio. Note that the optimal offline algorithm has complete knowledge of the instance,
including the exact loads. Hence, it can take this decision by comparing 𝑢 𝑗 and 𝑡 𝑗 +𝑤 𝑗 :
if 𝑢 𝑗 < 𝑡 𝑗 +𝑤 𝑗 then the query is not done, otherwise we make the query. For the second
question, the algorithm has to determine a splitting point 𝜏 𝑗 = 𝑟 𝑗 + 𝑥 (𝑑 𝑗 − 𝑟 𝑗), with
0 < 𝑥 < 1 so as 𝜏 𝑗 ∈ (𝑟 𝑗 , 𝑑 𝑗), indicating the latest time at which the query has to finish
execution and the earliest time at which the exact work of 𝑗 may start its execution. We
introduce the notion of equal window algorithms according to which the active interval
of a job is split in two equal sub-intervals: the query is executed in the first half, and the
exact work in the second half. This is motivated by an instance consisting of a single
job, where a different splitting leads to stronger lower bounds (see Lemma 4.4).

In Section 4.3 we study the QBSS model on a single machine. A further discussion,
as well as several lower bounds for the offline version of our models are given in
Section 4.3.1, where the use of randomization or oracles that answers optimally to one
of the questions above are explored. Subsequently in Section 4.3.2, we consider the
offline case where all jobs have a common release date and we present a series of results
based on different assumptions on the deadlines. Specifically, if all jobs have a common

40

Notations and Preliminaries Section 4.2

deadline, we propose the algorithm CRCD which achieves a 2-approximation ratio with
respect to maximum speed and a min{2𝛼−1𝜙𝛼 , 2𝛼 }-approximation ratio with respect to
energy. A better analysis is also given for special values of 𝛼 . Furthermore, in the same
section, we consider the case where all deadlines are powers of two and we propose a
(4𝜙)𝛼 -approximation algorithm (CRP2D) with respect to energy. Finally, we extend the
previous result to arbitrary deadlines and we obtain an approximation ratio of (8𝜙)𝛼
(algorithm CRAD) by rounding down the deadlines of the instance to the closest power
of two. In Section 4.3.3, we consider the online case, and we adapt the well-known AVR
and BKP online algorithms for the classical speed scaling setting to the QBSSmodel. The
competitive ratio of our algorithms (AVRQ and BKPQ) has an additional multiplicative
factor with respect to their version in the classical setting: a factor of 2𝛼 for AVRQ in
which the query is made for all jobs, and a factor of (2 + 𝜙)𝛼 for BKPQ in which the
execution of the query is decided based on the golden ratio. Note that, BKPQ is also
(2 + 𝜙)𝑒-competitive with respect to maximum speed.

In Section 4.4 we study the QBSS model on parallel identical machines and we pro-
pose a modification of the algorithm AVR(𝑚), which turns out to be 2𝛼 (2𝛼−1𝛼𝛼 + 1)-
competitive with respect to energy. Table 4.1 summarizes our results.

Table 4.1: Summary of Our Results

Energy
Lower Bound Upper Bound

O
ffl
in
e Oracle 𝜙𝛼 -

CRCD
max{𝜙𝛼 , 2𝛼−1}

min{2𝛼−1𝜙𝛼 , 2𝛼 }
CRP2D (4𝜙)𝛼
CRAD (8𝜙)𝛼

O
nl
in
e AVRQ (2𝛼)𝛼 2𝛼2𝛼−1𝛼𝛼

BKPQ 3𝛼−1 (2 + 𝜙)𝛼2(𝛼
𝛼−1)

𝛼𝑒𝛼

AVRQ(m) (2𝛼)𝛼 2𝛼 (2𝛼−1𝛼𝛼 + 1)

4.2 Notations and Preliminaries
We consider a set of𝑛 jobs J which should be executed on a single machine or on a set of
𝑚 parallel machinesM. Each job 𝑗 ∈ J is characterized by a quintuple (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗).
The scheduler should decide if the initial workload 𝑢 𝑗 will be executed, or if a query
of load 𝑡 𝑗 ∈ (0, 𝑢 𝑗] will first run in order to reveal the exact (compressed) workload
𝑤 𝑗 ⩽ 𝑢 𝑗 , which will be executed afterwards. In any case, the whole execution of the job
𝑗 should be done during its active interval (𝑟 𝑗 , 𝑑 𝑗]. We assume that the preemption of
the execution of jobs is permitted, while each machine can execute at most one job at

41

Chapter 4 Explorable Uncertainty

each time. We consider two objectives: the minimization of the maximum speed used,
and the minimization of the total energy consumption with respect to the speed scaling
mechanism. Then, our goal is to find a feasible preemptive schedule that optimizes one
of these objectives.

For a job 𝑗 ∈ J , we denote by𝜔 𝑗 the amount of work an algorithm chooses to execute,
i.e., 𝜔 𝑗 = 𝑡 𝑗 +𝑤 𝑗 if the query is executed, otherwise𝜔 𝑗 = 𝑢 𝑗 . Let𝜔∗

𝑗 = min{𝑢 𝑗 , 𝑡 𝑗 +𝑤 𝑗 } be
the load executed by the optimal offline algorithm for 𝑗 . The following lemma describes
the relation between the load 𝜔∗

𝑗 executed by the optimal solution and the load 𝜔 𝑗
executed by an algorithm which decides the execution of the query based on the relation
of the quantities 𝑡 𝑗 and

𝑢 𝑗

𝜙
, where 𝜙 is the golden ratio, i.e., 𝜙 ≈ 1, 6180.

▶ Lemma 4.1. Consider an algorithm which decides to make the query for a job 𝑗 ∈ J
only if 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
. Then, we have 𝜔 𝑗 ⩽ 𝜙𝜔∗

𝑗 . ◀

Proof. Consider first the case where the algorithm does not perform the query for 𝑗 ,
i.e., 𝑡 𝑗 >

𝑢 𝑗

𝜙
and 𝜔 𝑗 = 𝑢 𝑗 . If 𝜔∗

𝑗 = 𝑢 𝑗 then 𝜔 𝑗 = 𝜔∗
𝑗 < 𝜙𝜔∗

𝑗 . If 𝜔∗
𝑗 = 𝑡 𝑗 + 𝑤 𝑗 then

𝜔 𝑗 = 𝑢 𝑗 ⩽ 𝑢 𝑗 + 𝜙𝑤 𝑗 = 𝜙

(
𝑢 𝑗

𝜙
+𝑤 𝑗

)
⩽ 𝜙 (𝑡 𝑗 +𝑤 𝑗) = 𝜙𝜔∗

𝑗 .
Consider now that the algorithm performs the query for 𝑗 , i.e., 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
and𝜔 𝑗 = 𝑡 𝑗 +𝑤 𝑗 .

If 𝜔∗
𝑗 = 𝑢 𝑗 then 𝜔 𝑗 = 𝑡 𝑗 + 𝑤 𝑗 ⩽

𝑢 𝑗

𝜙
+ 𝑢 𝑗 =

(
1+𝜙
𝜙

)
𝑢 𝑗 = 𝜙𝑢 𝑗 = 𝜙𝜔∗

𝑗 . If 𝜔∗
𝑗 = 𝑡 𝑗 + 𝑤 𝑗 then

𝜔 𝑗 = 𝜔∗
𝑗 ⩽ 𝜙𝜔∗

𝑗 . ■

In the classical speed scaling settingwithout uncertainty, the instance can be described
as a set of jobs, each one characterized by the triple (𝑟 𝑗 , 𝑑 𝑗 , 𝑤 𝑗). Let 𝛿 𝑗 =

𝑤𝑗

𝑑 𝑗−𝑟 𝑗 be the
density of the job 𝑗 . The density is an important ingredient in most of the algorithms
proposed for this setting as it is related with the speed. Note that the optimal offline
solution for the QBSS model coincides with the optimal offline solution in the classical
speed scaling setting by using a job (𝑟 𝑗 , 𝑑 𝑗 , 𝜔∗

𝑗) for each job 𝑗 ∈ J .

4.3 Single Machine

4.3.1 Lower Bounds
In this section, we will compare the performance of an algorithm in the QBSS offline
model, i.e an algorithm which does not know the values 𝑤 𝑗 , to an optimal algorithm,
which knows these values. Our aim is to give lower bounds on the approximation ratio
of any algorithm in our setting, for the two objectives that we consider, the minimization
of the maximum speed, and the minimization of the total energy. All our results hold
for both the single machine case and the multiple machines case, since they will only
need to consider a single task. Before introducing our results, let us define a new setting,
specifically for instances with one job, which we call the oracle model.

42

Single Machine Section 4.3

Recall that 𝑥 , 0 < 𝑥 < 1, is the fraction of the window (𝑟 𝑗 , 𝑑 𝑗] in which the query
is executed. In other words, in the case where we decide to make the query, then it
will be executed in (𝑟 𝑗 , 𝑟 𝑗 + 𝑥 (𝑑 𝑗 − 𝑟 𝑗)], while the exact work 𝑤 𝑗 will be executed in
(𝑟 𝑗 + 𝑥 (𝑑 𝑗 − 𝑟 𝑗), 𝑑 𝑗]. In the oracle model, we suppose the existence of an oracle that can
give us the best value of 𝑥 for the single job of the instance. Therefore, in this model the
algorithm needs to take only one decision, i.e. to make or not the query for the job (if
the decision is to make the query, the oracle will dictate where to split the window).

Note that the existence of such an oracle is highly improbable, because it translates
to knowing the exact load 𝑤 𝑗 of the job upon its arrival, which conflicts with the setup
of our model. The oracle model is however interesting to give lower bounds on the
approximation ratio of an algorithm in our setting for two reasons. Firstly, a lower
bound on the approximation ratio with the oracle model helps us to better understand
the difficulty of our problem. It allows us to see whether the difficulty of a problem is
due to the fact that we don’t know if it is worthy to do the query or not, or due to the
fact that, once we have chosen to do a query, we don’t know the exact load 𝑤 𝑗 before
the query has been completed. Of course, a lower bound in the oracle model is also valid
in the general model. Secondly, in the following lemmas we mainly create instances
of a single task. In the oracle model, once it has been decided that the query will be
done, the speed to execute this task will be constant during its whole interval, since this
choice minimizes both the maximal speed and the energy due to the convexity of the
power function.

▶ Lemma 4.2. Any algorithm which never makes the query, can be arbitrarily bad
with respect to maximum speed and to energy. ◀

Proof. We consider an instance consisting of a single job 𝑗 for which 𝑟 𝑗 = 0, 𝑑 𝑗 = 1,
𝑡 𝑗 = Y𝑢 𝑗 , and 𝑤 𝑗 = Y𝑢 𝑗 , with Y < 1 a small positive constant. If the algorithm does
not execute the query, then it uses speed 𝑠 =

𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 , whereas the speed used by an

optimal algorithm is 𝑠∗ = 𝜔∗
𝑗

𝑑 𝑗−𝑟 𝑗 =
𝑡 𝑗+𝑤𝑗

𝑑 𝑗−𝑟 𝑗 . Concerning the maximum speed, the ratio of
such an algorithm is 𝑠

𝑠∗ =
𝑢 𝑗

𝑡 𝑗+𝑤𝑗
= 1

2Y , which can be arbitrarily large. Since the speed
is constant during the whole interval of size 1, we get that the energy used by the
algorithm is 𝐸 = 𝑠𝛼 , while the optimal energy is 𝐸∗ = (𝑠∗)𝛼 . The approximation ratio
of the algorithm, concerning energy, is thus at least 𝐸

𝐸∗ = (𝑠
𝑠∗)

𝛼 = (1
2Y)

𝛼 , which can be
arbitrarily large. ■

▶ Lemma 4.3. For any 𝜖 > 0, there is no deterministic (𝜙 − 𝜖)-approximate algorithm
with respect to maximum speed, even in the oracle model. Likewise, there is no (𝜙𝛼 − Y)-
approximate algorithm with respect to the energy, even in the oracle model. ◀

Proof. We consider an instance consisting of a single job 𝑗 active in the interval (𝑟 𝑗 , 𝑑 𝑗],
for which 𝑡 𝑗 = 1 and 𝑢 𝑗 = 𝜙 . Let us consider a deterministic algorithm A which will use

43

Chapter 4 Explorable Uncertainty

a single speed 𝑠 during the whole interval, due to the oracle model. In case where A
does not make the query, then 𝑠 ⩾

𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 =
𝜙

𝑑 𝑗−𝑟 𝑗 . We consider in this case that 𝑤 𝑗 = 0.
Therefore, the speed of an optimal algorithm is 𝑠∗ = 𝑡 𝑗+𝑤𝑗

𝑑 𝑗−𝑟 𝑗 =
1

𝑑 𝑗−𝑟 𝑗 . The approximation
ratio (concerning the maximum speed) of A is in this case at least 𝜙 . In case where A
makes the query, then 𝑠 ⩾

𝑡 𝑗+𝑤𝑗

𝑑 𝑗−𝑟 𝑗 =
1+𝜙
𝑑 𝑗−𝑟 𝑗 and we consider that 𝑤 𝑗 = 𝑢 𝑗 . We have thus

𝑠∗ =
𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 =
𝜙

𝑑 𝑗−𝑟 𝑗 . The approximation ratio (concerning the maximum speed) of A is
in this case at least 1+𝜙

𝜙
= 𝜙 . Therefore, in both cases, the approximation ratio of A,

concerning the maximum speed, is at least 𝜙 .
Note that the speed of both our algorithm and the optimal algorithm is constant

during the whole window. Let us consider that 𝑟 𝑗 = 0 and 𝑑 𝑗 = 1. The expected energy of
our algorithm will thus be 𝑠𝛼 , whereas the energy of the optimal algorithm will be (𝑠∗)𝛼 .
Concerning the minimization of the energy, the approximation ratio of our algorithm
will thus be at least 𝐸

𝐸∗ = 𝑠𝛼

(𝑠∗)𝛼 =
(
𝑠
𝑠∗

)𝛼
= 𝜙𝛼 . ■

▶ Lemma 4.4. For any 𝜖 > 0, there is no deterministic (2 − 𝜖)-approximation algo-
rithm with respect to maximum speed. Moreover, there is no deterministic (2𝛼−1 − 𝜖)-
approximation algorithm with respect to energy. ◀

Proof. We consider an instance consisting of a single job active in the interval (𝑟 𝑗 , 𝑑 𝑗],
for which 𝑡 𝑗 = 1 and 𝑢 𝑗 = 2. Let A be a deterministic algorithm. In the case where A
does not make the query, then its speed will be constant during the whole interval and
we have that 𝑠 = 𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 =
2

𝑑 𝑗−𝑟 𝑗 . In this case the adversary will set 𝑤 𝑗 = 0. Therefore, for
the speed of an optimal algorithm we have 𝑠∗ = 𝑡 𝑗

𝑑 𝑗−𝑟 𝑗 =
1

𝑑 𝑗−𝑟 𝑗 . The approximation ratio
of A with respect to maximum speed is at least 2, while with respect to energy is at
least 2𝛼 .

Let us now consider the case where A makes the query. Recall that the query is
executed in (𝑟 𝑗 , 𝑟 𝑗 +𝑥 (𝑑 𝑗 −𝑟 𝑗)] and the exact work in (𝑟 𝑗 +𝑥 (𝑑 𝑗 −𝑟 𝑗), 𝑑 𝑗]. Thus, the speed
of A during the whole first interval is 𝑠1 =

𝑡 𝑗

𝑥 (𝑑 𝑗−𝑟 𝑗) , while during the whole second
interval is 𝑠2 =

𝑤𝑗

(1−𝑥) (𝑑 𝑗−𝑟 𝑗) . We have two sub-cases with respect to 𝑥 . If 𝑥 ∈
(
0, 1

2
]
, then

the adversary will set𝑤 𝑗 = 0, and hence the speed of an optimal algorithm 𝑠∗ =
𝑡 𝑗

𝑑 𝑗−𝑟 𝑗 will
be constant for the whole interval, while 𝑠1 ⩾

2𝑡 𝑗
(𝑑 𝑗−𝑟 𝑗) . In this case, the approximation

ratio of A with respect to maximum speed is at least 𝑠1
𝑠∗ ⩾ 2, while with respect to

energy is at least 𝐸
𝐸∗ =

𝑥 (𝑑 𝑗−𝑟 𝑗)𝑠𝛼1
(𝑑 𝑗−𝑟 𝑗) (𝑠∗)𝛼 =

𝑥

(
𝑡 𝑗

𝑥 (𝑑𝑗 −𝑟 𝑗)

)𝛼
(𝑡 𝑗

𝑑𝑗 −𝑟 𝑗
)𝛼

= 𝑥1−𝛼 ⩾ 2𝛼−1. If 𝑥 ∈
[1

2 , 1
)
, then the

adversary will set 𝑤 𝑗 = 𝑢 𝑗 having 𝑠∗ =
𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 . Then the maximum speed used by A is
𝑠 ⩾ max{𝑠1, 𝑠2} ⩾ 𝑠2 ⩾

𝑢 𝑗

(1−𝑥) (𝑑 𝑗−𝑟 𝑗) ⩾
𝑢 𝑗

𝑑𝑗 −𝑟 𝑗
2

=
2𝑢 𝑗

𝑑 𝑗−𝑟 𝑗 . In this case, the approximation

44

Single Machine Section 4.3

ratio of A with respect to maximum speed is at least 𝑠2
𝑠∗ = 1

1−𝑥 ⩾ 2, while with respect

to energy is at least 𝐸
𝐸∗ =

(1−𝑥) (𝑑 𝑗−𝑟 𝑗)𝑠𝛼2
(𝑑 𝑗−𝑟 𝑗) (𝑠∗)𝛼 =

(1−𝑥)
(

𝑢𝑗

(1−𝑥) (𝑑𝑗 −𝑟 𝑗)

)𝛼(
𝑢𝑗

𝑑𝑗 −𝑟 𝑗

)𝛼 = (1 − 𝑥)1−𝛼 ⩾ 2𝛼−1. ■

The next lemma deals with randomized algorithms. We consider that for a given
instance 𝐼 , a randomized algorithm makes the query with a probability 𝜌𝐼 , and thus does
not make it with probability 1 − 𝜌𝐼 . The approximation ratio of a randomized algorithm
is the maximum value, over all instances, of the expected value of the objective function
(energy or maximum speed) of the algorithm over the value of an optimal solution.
We focus in this chapter on deterministic algorithms, but it is worth noticing that the
problem is also difficult, even with a randomized algorithm, and even in the oracle
model. As previously, we will use a proof with a single task: the algorithm will only
have to choose with which probability it will do the query (if the query is done then
the window is divided into two parts optimally, so that the speed is constant during the
whole interval).

▶ Lemma 4.5. For any 𝜖 > 0, there is no (4/3 − 𝜖)-approximate randomized algo-
rithm with respect to maximum speed, even in the oracle model. Likewise, there is no(1

2 (1 + 𝜙𝛼) − Y
)
-approximate randomized algorithm with respect to energy, even in the

oracle model. ◀

Proof. We consider an instance consisting of a single job for which 𝑡 𝑗 = 1 and 𝑢 𝑗 = 𝑤.
Let us consider that the randomized algorithm does the query with a probability 𝜌 . We
consider two cases. If 𝑤 𝑗 = 0, then 𝑠∗ = 1

𝑑 𝑗−𝑟 𝑗 and 𝐸∗ = (𝑑 𝑗 − 𝑟 𝑗)1−𝛼 . The expected
maximum speed of the randomized algorithm is at least 𝔼[𝑠] =

𝜌+(1−𝜌)𝑤
𝑑 𝑗−𝑟 𝑗 and the

expected energy consumption is at least (𝜌 + (1 − 𝜌)𝑤𝛼) (𝑑 𝑗 − 𝑟 𝑗)1−𝛼 . Thus, we get an
approximation ratio (concerning the maximum speed) of at least 𝑟𝑆1 (𝜌,𝑤) = 𝜌 + (1− 𝜌)𝑤
and approximation ratio (concerning the energy consumption) of at least 𝑟𝐸1 (𝜌,𝑤) =
𝜌 + (1 − 𝜌)𝑤𝛼 . If 𝑤 𝑗 = 𝑢 𝑗 = 𝑤, then 𝑠∗ = 𝑤

𝑑 𝑗−𝑟 𝑗 and 𝐸∗ = 𝑤𝛼 (𝑑 𝑗 − 𝑟 𝑗)1−𝛼 . The
expected maximum speed of the randomized algorithm is at least 𝔼[𝑠] = 𝜌 (1+𝑤)+(1−𝜌)𝑤

𝑑 𝑗−𝑟 𝑗
and the expected energy consumption is at least (𝜌 (1 +𝑤)𝛼 + (1 − 𝜌)𝑤𝛼)

(
𝑑 𝑗 − 𝑟 𝑗

)1−𝛼 .
In this case we have an approximation ratio (concerning the maximum speed) of at
least 𝑟𝑆2 (𝜌,𝑤) =

(
𝜌 (1+𝑤)
𝑤

+ (1 − 𝜌)
)
and approximation ratio (concerning the energy

consumption) of at least 𝑟𝐸2 (𝜌,𝑤) =

(
𝜌 (1+𝑤)𝛼
𝑤𝛼 + (1 − 𝜌)

)
. For arbitrary choice of 𝜌

an approximation ratio is at least _𝑆 = max𝑤⩾1 min0⩽𝜌⩽1 max{𝑟𝑆1 (𝜌,𝑤), 𝑟𝑆2 (𝜌,𝑤)} and
_𝐸 = max𝑤⩾1 min0⩽𝜌⩽1 max{𝑟𝐸1 (𝜌,𝑤), 𝑟𝐸2 (𝜌,𝑤)} for the maximum speed and the energy
consumption, respectively. It is easy to see that _𝑆 = 4

3 when 𝑤 = 2 and 𝜌 = 2
3 . To

45

Chapter 4 Explorable Uncertainty

estimate _𝐸 we set 𝑤 = 𝜙 . We have:

_𝐸 ⩾ min
𝜌

max{𝜌 + (1 − 𝜌)𝜙𝛼 , 𝜌 (1 + 𝜙)𝛼
𝜙𝛼

+ (1 − 𝜌)}

= min
𝜌

max{𝜌 + (1 − 𝜌)𝜙𝛼 , 𝜌𝜙𝛼 + (1 − 𝜌)}

The last expression reaches a minimum at 𝜌 = 1
2 and we get _𝐸 ⩾ 1+𝜙𝛼

2 . ■

We note that the lower bound for _𝐸 can be slightly improved. Indeed, for fixed
𝑤 we have that _𝐸 takes its minimum value for 𝜌 = 𝑤2𝛼−𝑤𝛼

(1+𝑤)𝛼+𝑤2𝛼−2𝑤𝛼 and _𝐸 (𝑤) =

𝑤𝛼 ((1+𝑤)𝛼−1)
(1+𝑤)𝛼+𝑤2𝛼−2𝑤𝛼 . Thus, the optimal choice of 𝑤 depends on 𝛼 and lies in the range
from 1.9 to 2 for 𝛼 ⩽ 3.

▶ Lemma 4.6. The competitive ratio of an equal window algorithm is at least 3 with
respect to the maximum speed, and at least 3𝛼−1 with respect to energy. ◀

Proof. We consider an instance consisting of three jobs. We use the quintuple
(𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) to describe a job. J = { 𝑗1 = (0, 2, 0, 10, 1), 𝑗2 = (1, 3, 1, 10, 0), 𝑗3 =

(1, 2, 1
2 , 10, 1

2)}.
The optimal solution will execute the query and the exact load for all jobs as 𝑡 𝑗 +𝑤 𝑗 <

𝑢 𝑗 for all 𝑗 . We obtain the offline optimal schedule for this instance using YDS algorithm.
The schedule uses speed 1 for the whole time interval (0, 3]. The energy consumed by
this optimal schedule is 𝐸∗ = (3 − 0) · 1𝛼 = 3.

An equal window algorithm will create the following tasks: J ′ = { 𝑗𝑡1 = (0, 1, 0), 𝑗𝑤1 =

(1, 2, 1), 𝑗𝑡2 = (1, 2, 1), 𝑗𝑤2 = (2, 3, 0), 𝑗𝑡3 = (1, 1
2 ,

1
2), 𝑗

𝑤
3 = (1

2 , 2,
1
2)}. The final schedule for

J uses speed 0 in the interval (0, 1], speed 3 in the interval (1, 2] and speed 0 in the
interval (2, 3]. The energy consumed by this schedule is 𝐸 = (2 − 1) · 3𝛼 = 3𝛼 and the
lemma follows. ■

Note that this last result holds even if we restrict to instances where the optimal
algorithm always does the query (since in the example of the proof above both the equal
window algorithm and the optimal algorithm always do the query). This shows that,
even if an oracle would tell us whether the query should be done or not, the difficulty of
splitting the window for each job (query, real workload) is significant.

4.3.2 Offline Model

Common Release, Common Deadline

In this section, we consider that all jobs are released at time 0, and that they have to
finish execution at time𝐷 . We present CRCD (Algorithm 5), an approximation algorithm
with respect to both maximum speed and energy. For each job of our instance, the

46

Single Machine Section 4.3

Algorithm 5: Common Release, Common Deadline (CRCD)
1 for each job 𝑗 ∈ J do
2 if 𝑗 ∈ 𝐵, i.e., 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
then

3 Add (0, 𝐷2 , 𝑡 𝑗) in set Q;
4 if 𝑗 ∈ 𝐴, i.e., 𝑡 𝑗 >

𝑢 𝑗

𝜙
then

5 Add (0, 𝐷2 ,
𝑢 𝑗

2) in set W1;

6 Schedule the jobs in Q ∪W1 in an arbitrary order during the interval(
0, 𝐷2

]
using speed 𝑠 (𝑡) = ∑

𝑗∈Q∪W1 𝛿 𝑗 ;
7 // At time 𝐷

2 all queries are done;
8 for each job 𝑗 ∈ J do
9 if 𝑗 ∈ 𝐵 then
10 Add (𝐷2 , 𝐷,𝑤 𝑗) in set W∗;
11 if 𝑗 ∈ 𝐴 then
12 Add (𝐷2 , 𝐷,

𝑢 𝑗

2) in set W2;

13 Schedule the jobs inW∗ ∪W2 in an arbitrary order during the interval(
𝐷
2 , 𝐷

]
using speed 𝑠 (𝑡) = ∑

𝑗∈W∗∪W2 𝛿 𝑗 ;

algorithm creates two jobs of the classical speed scaling setting. In order to do this, it
first partitions the jobs into two subsets 𝐴 and 𝐵, where 𝐴 and 𝐵 are defined as follows:
𝐴 = { 𝑗 ∈ J : 𝑡 𝑗 >

𝑢 𝑗

𝜙
} and 𝐵 = { 𝑗 ∈ J : 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
}. By construction, we have that

𝐴 ∪ 𝐵 = J and 𝐴 ∩ 𝐵 = ∅.
For the jobs in 𝐴 the algorithm chooses to execute their initial workload without

doing a query. Specifically, for each job 𝑗 ∈ 𝐴, it creates two jobs 𝑗1 and 𝑗2 with half the
initial workload to be scheduled in the first half and the second half of the initial interval
respectively: (𝑟 𝑗1 , 𝑑 𝑗1 , 𝑤 𝑗1) = (0, 𝐷2 ,

𝑢 𝑗

2) and (𝑟 𝑗2 , 𝑑 𝑗2 , 𝑤 𝑗2) = (𝐷2 , 𝐷,
𝑢 𝑗

2). On the other hand,
for the jobs in 𝐵 the algorithm chooses to make the query and hence the exact load
of these jobs is revealed once the execution of their query is finished. Specifically, for
each job 𝑗 ∈ 𝐵, it creates at time 0 the job (0, 𝐷2 , 𝑡 𝑗) to be scheduled in the first half of
the initial interval. At the end of this first half-interval, the exact workload 𝑤 𝑗 of 𝑗 is
known, and hence the algorithm creates the job (𝐷2 , 𝐷,𝑤 𝑗) to be scheduled in the second
half-interval.

▶ Theorem 4.7. CRCD (Algorithm 5) achieves an approximation ratio of 2 with respect
to maximum speed and of min{2𝛼−1𝜙𝛼 , 2𝛼 } with respect to energy. ◀

Proof. The optimal solution for this problem is computed by using the offline optimal

47

Chapter 4 Explorable Uncertainty

YDS algorithm [YDS95]. Since all jobs are active during the same interval (0, 𝐷], the
speed during the whole interval is constant and equal to the sum of densities of all jobs.
In an optimal solution, the load for each job 𝑗 ∈ J is𝜔∗

𝑗 = min{𝑢 𝑗 , 𝑡 𝑗 +𝑤 𝑗 }, and hence its
density is 𝛿∗𝑗 =

min{𝑢 𝑗 ,𝑡 𝑗+𝑤𝑗 }
𝐷

=
𝜔∗

𝑗

𝐷
. Then, the speed at each time 𝑡 is 𝑠∗ = 𝑠∗ (𝑡) = ∑

𝑗∈J
𝜔∗

𝑗

𝐷

and the total energy consumed by the optimal solution is

𝐸∗ =

∫ 𝐷

0
(𝑠∗ (𝑡))𝛼𝑑𝑡 = 𝐷

(∑
𝑗

𝜔∗
𝑗

𝐷

)𝛼
Algorithm 5 produces a schedule which uses two distinct speeds 𝑠1 and 𝑠2 in the time
intervals (0, 𝐷2] and (𝐷2 , 𝐷] respectively. For these speeds we have:

𝑠1 =
∑︁

𝑗∈Q∪W1

𝛿 𝑗 =
∑︁
𝑗∈W1

𝑢 𝑗

2
𝐷
2 − 0

+
∑︁
𝑗∈Q

𝑡 𝑗
𝐷
2 − 0

=
∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑡 𝑗
𝐷

⩽
∑︁
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝜔∗
𝑗

𝐷
⩽ 2

∑︁
𝑗∈J

𝜔∗
𝑗

𝐷
= 2𝑠∗

and

𝑠2 =
∑︁

𝑗∈W∗∪W2

𝛿 𝑗 =
∑︁
𝑗∈W2

𝑢 𝑗

2

𝐷 − 𝐷
2
+

∑︁
𝑗∈W∗

𝑤 𝑗

𝐷 − 𝐷
2
=

∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑤 𝑗

𝐷

⩽
∑︁
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝜔∗
𝑗

𝐷
⩽ 2

∑︁
𝑗∈J

𝜔∗
𝑗

𝐷
= 2𝑠∗

where the first inequality in both cases holds by Lemma 4.1, 𝑡 𝑗 ⩽ min{𝑡 𝑗 +𝑤 𝑗 , 𝑢 𝑗 } = 𝜔∗
𝑗

and 𝑤 𝑗 ⩽ min{𝑡 𝑗 +𝑤 𝑗 , 𝑢 𝑗 } = 𝜔∗
𝑗 . Hence, Algorithm 5 is 2-approximate with respect to

maximum speed.
For the energy consumption of our algorithm we have:

𝐸𝐼 =

∫ 𝐷
2

0
𝑠𝛼1 𝑑𝑡 +

∫ 𝐷

𝐷
2

𝑠𝛼2 𝑑𝑡 =
𝐷

2

(∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗
𝐷

)𝛼
+ 𝐷

2

(∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑤𝑗

𝐷

)𝛼
We can now bound the total energy consumption of Algorithm 5. We use two different
approaches. In the first approach, we apply the property 𝑥𝛼 +𝑦𝛼 ⩽ (𝑥 +𝑦)𝛼 . Specifically,
we have

𝐸 ⩽
𝐷

2

(∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗
𝐷

+ ∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑤𝑗

𝐷

)𝛼
=
𝐷

2

(∑
𝑗∈𝐴

2𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗+2𝑤𝑗

𝐷

)𝛼
= 2𝛼−1𝐷

(∑
𝑗∈𝐴

𝜔 𝑗

𝐷
+ ∑

𝑗∈𝐵
𝜔 𝑗

𝐷

)𝛼

48

Single Machine Section 4.3

⩽ 2𝛼−1𝐷
(∑

𝑗∈𝐴
𝜙𝜔∗

𝑗

𝐷
+ ∑

𝑗∈𝐵
𝜙𝜔∗

𝑗

𝐷

)𝛼
= 2𝛼−1𝜙𝛼𝐷

(∑
𝑗

𝜔∗
𝑗

𝐷

)𝛼
= 2𝛼−1𝜙𝛼𝐸∗

where the second inequality holds by Lemma 4.1.
In the second approach, we bound the energy of the entire interval by twice the

maximum energy consumed in one of the two half-intervals. Hence, we have:

𝐸 ⩽ 2 · max
{
𝐷

2

(∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑡 𝑗
𝐷

)𝛼
,
𝐷

2

(∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑤 𝑗

𝐷

)𝛼}
= 𝐷 max

{(∑︁
𝑗∈𝐴

𝜔 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑡 𝑗
𝐷

)𝛼
,

(∑︁
𝑗∈𝐴

𝜔 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑤 𝑗

𝐷

)𝛼}
⩽ 𝐷 max

{(∑︁
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝜔∗
𝑗

𝐷

)𝛼
,

(∑︁
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝜔∗
𝑗

𝐷

)𝛼}
= 𝐷

(∑︁
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝜔∗
𝑗

𝐷

)𝛼
⩽ 2𝛼𝐷

(∑︁
𝑗

𝜔∗
𝑗

𝐷

)𝛼
= 2𝛼𝐸∗

where the second inequality holds using Lemma 4.1 and the facts that 𝑡 𝑗 ⩽ min{𝑢 𝑗 , 𝑡 𝑗 +
𝑤 𝑗 } = 𝜔∗

𝑗 and 𝑤 𝑗 ⩽ min{𝑢 𝑗 , 𝑡 𝑗 +𝑤 𝑗 } = 𝜔∗
𝑗 . The third inequality holds since 𝜙 < 2. ■

In what follows in this section, we give a more tight analysis of Algorithm 5 for
special values of 𝛼 based on the following lemma.

▶ Lemma 4.8. Let 𝛼 ⩾ 2 and 𝑥 ⩾ 𝑦. Then (𝑥 + 𝑦)𝛼 ⩾ 𝑥𝛼 + 𝑦𝛼 + 𝛼𝑥𝛼−1𝑦. ◀

Proof. Set 𝑟 = 𝑦

𝑥
⩽ 1. From the binomial series, we have:

(𝑥 + 𝑦)𝛼 = 𝑥𝛼 (1 + 𝑟)𝛼 ⩾ 𝑥𝛼
(
1 + 𝛼𝑟 + 𝛼 (𝛼 − 1)

2 𝑟 2
)

= 𝑥𝛼 + 𝛼𝑥𝛼−1𝑦 + 𝛼 (𝛼 − 1)
2 𝑥𝛼−2𝑦2

⩾ 𝑥𝛼 + 𝑦𝛼 + 𝛼𝑥𝛼−1𝑦

The last inequality holds since 𝛼 (𝛼−1)
2 ⩾ 1 and 𝑟 ⩽ 1. ■

▶ Theorem 4.9. If 𝛼 ⩾ 2, then Algorithm 5 achieves a competitive ratio of
max𝑟⩾1{min{𝑓1 (𝑟), 𝑓2 (𝑟)}} with respect to energy, where 𝑓1 (𝑟) = 2𝛼−1 (1 + 1

𝑟𝛼

)
,

𝑓2 (𝑟) = 2𝛼−1𝜙𝛼
[
1 − 𝛼𝑟𝛼−1

(𝑟+1)𝛼
]
and 𝑟 = 𝑥

𝑦
, where 𝑥 =

∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗
𝐷

and 𝑦 =∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑤𝑗

𝐷
. ◀

49

Chapter 4 Explorable Uncertainty

Proof. As before, for the energy of the algorithm, we have:

𝐸 =
𝐷

2

(∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑡 𝑗
𝐷

)𝛼
+ 𝐷

2

(∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑤 𝑗

𝐷

)𝛼
Define 𝑥 =

∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗
𝐷

and 𝑦 =
∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑤𝑗

𝐷
. For 𝑟 ⩾ 1, let 𝑥 = 𝑟𝑦, if

𝑥 ⩾ 𝑦, otherwise let 𝑦 = 𝑟𝑥 . In order to bound this energy consumption, we use two
different analyses. For the first analysis, we have:

𝐸 =
𝐷

2 𝑥𝛼 + 𝐷

2 𝑦
𝛼 =

𝐷

2 𝑥𝛼
(
1 + 1

𝑟𝛼

)
=
𝐷

2

(∑
𝑗∈𝐴

𝑢 𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝑡 𝑗
𝐷

)𝛼 (
1 + 1

𝑟𝛼

)
⩽

𝐷

2

(∑
𝑗∈𝐴

𝜙𝜔∗
𝑗

𝐷
+ ∑

𝑗∈𝐵
2𝜔∗

𝑗

𝐷

)𝛼 (
1 + 1

𝑟𝛼

)
⩽ 2𝛼−1

(
1 + 1

𝑟𝛼

)
𝐸∗ = 𝑓1 (𝑟) · 𝐸∗

where the inequalities follow by using the same arguments as in the second part of
Theorem 4.7.

For the second analysis, by using Lemma 4.8, we have

𝐸 =
𝐷

2 𝑥𝛼 + 𝐷

2 𝑦
𝛼 ⩽

𝐷

2
[
(𝑥 + 𝑦)𝛼 − 𝛼𝑥𝛼−1𝑦

]
=
𝐷

2

[
(𝑥 + 𝑦)𝛼 − 𝛼

𝑟𝛼−1

(𝑟 + 1)𝛼 (𝑥 + 𝑦)𝛼
]
=
𝐷

2

(
1 − 𝛼

𝑟𝛼−1

(𝑟 + 1)𝛼

)
(𝑥 + 𝑦)𝛼

=
𝐷

2

(
1 − 𝛼

𝑟𝛼−1

(𝑟 + 1)𝛼

) (∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑡 𝑗
𝐷

+
∑︁
𝑗∈𝐴

𝑢 𝑗

𝐷
+

∑︁
𝑗∈𝐵

2𝑤 𝑗

𝐷

)𝛼
⩽

(
1 − 𝛼

𝑟𝛼−1

(𝑟 + 1)𝛼

)
2𝛼−1𝜙𝛼𝐸∗ = 𝑓2 (𝑟) · 𝐸∗

where the second line holds because

𝑥𝛼−1𝑦 = 𝑟𝛼−1𝑦𝛼 =
𝑟𝛼−1

(𝑟 + 1)𝛼 [(𝑟 + 1)𝑦]𝛼 =
𝑟𝛼−1

(𝑟 + 1)𝛼 (𝑥 + 𝑦)𝛼

while the last inequality follows by using the same arguments as in the first part of
Theorem 4.7.

In total, the energy consumption of the algorithm is given by the following relation.

𝐸 ⩽ max
𝑟⩾1

{
min

{
2𝛼−1

(
1 + 1

𝑟𝛼

)
, 2𝛼−1𝜙𝛼

[
1 − 𝛼𝑟𝛼−1

(𝑟 + 1)𝛼

]}}
■

In general, comparing the three ratios 𝜌1 = 2𝛼−1𝜙𝛼 , 𝜌2 = 2𝛼 and 𝜌3 =

50

Single Machine Section 4.3

max𝑟⩾1
{
min

{
2𝛼−1 (1 + 1

𝑟𝛼

)
, 2𝛼−1𝜙𝛼

[
1 − 𝛼𝑟𝛼−1

(𝑟+1)𝛼
]}}

for different values of 𝛼 , we get that
𝜌1 is better for 1 < 𝛼 ⩽ 1.44, 𝜌2 is better for 1.44 < 𝛼 < 2 and 𝜌3 is better for 𝛼 ⩾ 2. For
different values of 𝛼 , you can see the resulted ratios in Table 4.2.

Table 4.2: The values of the ratios given by the three analyses in relation with the
value of 𝛼 . In bold you can see the minimum value for each case.

𝛼 1.25 1.5 1.75 2 2.25 2.5 2.75 3
𝜌1 2.17 2.91 3.90 5.23 7.02 9.41 12.63 16.94
𝜌2 2.37 2.82 3.36 4 4.75 5.65 6.72 8
𝜌3 0 0 0 2.76 3.70 5.25 6.72 8

Common Release, Power of 2 Deadlines

In this section, we consider that all jobs are released at time zero, but they have a
different deadline. We assume that the deadlines are powers of 2 and that 2𝑘 is the
biggest deadline of our instance.

We present here CRP2D (Algorithm 6), an approximation algorithm with respect to
energy. We split again the set of jobs J into two subsets: 𝐴 = { 𝑗 ∈ J : 𝑡 𝑗 >

𝑢 𝑗

𝜙
} and

𝐵 = { 𝑗 ∈ J : 𝑡 𝑗 ⩽
𝑢 𝑗

𝜙
}. We further split 𝐵 into the subsets 𝐵ℓ = { 𝑗 ∈ 𝐵 : 𝑑 𝑗 = 2ℓ },

0 ⩽ ℓ ⩽ 𝑘 , with respect to the deadline of the jobs. As in the previous section, for each
job in our instance, Algorithm 6 creates one or two jobs of an instance of the classical
speed scaling setting. In order to analyze our algorithm, we define the three following
instances of the classical speed scaling setting:

• 𝐼 ∗: (0, 𝑑 𝑗 , 𝜔∗
𝑗)∀𝑗 ∈ J = 𝐴 ∪ 𝐵

• 𝐼 ′: (0, 𝑑 𝑗 , 𝑡 𝑗) and (0, 𝑑 𝑗 , 𝑤 𝑗)∀𝑗 ∈ 𝐵 and (0, 𝑑 𝑗 , 𝑢 𝑗)∀𝑗 ∈ 𝐴

• 𝐼 ′1/2: (0,
𝑑 𝑗

2 , 𝑡 𝑗) and (𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗)∀𝑗 ∈ 𝐵 and (0, 𝑑 𝑗 , 𝑢 𝑗)∀𝑗 ∈ 𝐴

▶ Lemma 4.10. Let 𝐸∗ and 𝐸′ be the energy consumption in an optimal schedule for
the instance 𝐼 ∗ and 𝐼 ′ respectively. Then, 𝐸′ ⩽ 𝜙𝛼𝐸∗. ◀

Proof. Given an optimal solution for the instance 𝐼 ∗, we create a feasible schedule, S,
for the instance 𝐼 ′.

Consider an arbitrary job 𝑗 ∈ J and its corresponding job (0, 𝑑 𝑗 , 𝜔∗
𝑗) of the instance

𝐼 ∗ which is executed in 𝑞 intervals in the optimal schedule for this instance: (𝑡1, 𝑡 ′1],
(𝑡2, 𝑡 ′2],. . . , (𝑡𝑞, 𝑡 ′𝑞]. Let 𝑠𝑝 , 1 ⩽ 𝑝 ⩽ 𝑞, be the speed used in the interval (𝑡𝑝 , 𝑡 ′𝑝]. By

51

Chapter 4 Explorable Uncertainty

Algorithm 6: Common Release, Power of 2 Deadlines (CRP2D)
1 for each job 𝑗 ∈ J do
2 if 𝑗 ∈ 𝐵, i.e., 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
then

3 Add (0, 𝑑 𝑗2 , 𝑡 𝑗) in set Q;
4 if 𝑗 ∈ 𝐴, i.e., 𝑡 𝑗 >

𝑢 𝑗

𝜙
then

5 Add (0, 𝑑 𝑗 , 𝑢 𝑗) in set W;

6 Run YDS algorithm to determine the speed 𝑌𝐷𝑆𝑆 (𝑡) for each time
𝑡 ∈ (0, 2𝑘] for the jobs in Q ∪W;

7 In the interval (0, 1
2], execute the (parts of) jobs in Q ∪W scheduled by

YDS during this interval, using speed 𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡);
8 for each discrete time 2ℓ

2 , ℓ = 0, 1, . . . , 𝑘 do
9 // the queries for the jobs in 𝐵ℓ are finished;

10 for 𝑗 ∈ 𝐵ℓ do
11 Add (𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) in setW∗

ℓ ;

12 In the interval (2ℓ
2 , 2

ℓ], execute the (parts of) jobs in Q ∪W
scheduled by YDS during this interval as well as the jobs inW∗

ℓ ,
using speed 𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡) + ∑

𝑗∈W∗
ℓ
𝛿 𝑗 ;

definition, we have that

𝜔∗
𝑗 =

𝑞∑︁
𝑝=1

∫ 𝑡 ′𝑝

𝑡𝑝

𝑠𝑝𝑑𝑡 =

𝑞∑︁
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝑠𝑝

In the schedule S, we use in the interval (𝑡𝑝 , 𝑡 ′𝑝], 1 ⩽ 𝑝 ⩽ 𝑞, the speed 𝜙𝑠𝑝 . Hence the
work that can be executed in this interval is

𝑞∑︁
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝜙𝑠𝑝 = 𝜙

𝑞∑︁
𝑝=1

(𝑡 ′𝑝 − 𝑡𝑝)𝑠𝑝 = 𝜙𝜔∗
𝑗 ⩾ 𝜔 𝑗

where the inequality follows from Lemma 4.1. Thus, in these intervals we can execute
the jobs (0, 𝑑 𝑗 , 𝑡 𝑗) and (0, 𝑑 𝑗 , 𝑤 𝑗) or the job (0, 𝑑 𝑗 , 𝑢 𝑗) of the instance 𝐼 ′. By doing this for
each job, we get a feasible schedule for the instance 𝐼 ′ which at each time 𝑡 uses speed
𝜙 times bigger than the speed of the optimal schedule for the instance 𝐼 ∗, and hence
the energy consumption 𝐸 (S) in the schedule S is at most 𝜙𝐸∗. Therefore, an optimal

52

Single Machine Section 4.3

I∗
t

0 1/2 1 2 4 8

ω∗
j

ω∗
j

ω∗
j

ω∗
j

I ′
t

0 1/2 1 2 4 8

tj wjuj
tj wjuj
tj wjuj
tj wjuj

I ′1/2

t

0 1/2 1 2 4 8

tj wjuj
tj wjuj
tj wjuj
tj wjuj

Figure 4.1: Intervals of the three different instances, 𝐼 ∗, 𝐼 ′ and 𝐼 ′1/2. On the top, there
are the intervals of instance 𝐼 ∗, in the middle, the intervals of instance 𝐼 ′ and on the
bottom, the intervals of the instance 𝐼 ′1/2. Note that the figure shows all possible

intervals that can exist.

schedule for 𝐼 ′ will use even smaller energy, i.e., 𝐸′ ⩽ 𝐸 (S) ⩽ 𝜙𝛼𝐸∗, and the lemma
follows. ■

▶ Lemma 4.11. Let 𝐸′ and 𝐸′
1/2 be the energy consumption in an optimal schedule for

the instance 𝐼 ′ and 𝐼 ′1/2 respectively. Then 𝐸′
1/2 ⩽ 2𝛼𝐸′. ◀

Proof. We consider that both optimal solutions for the instances 𝐼 ′ and 𝐼 ′1/2 are created
using the YDS algorithm. Let 𝑠∗

𝐼 ′ (𝑡) be the speed at each time 𝑡 in an optimal schedule
for the instance 𝐼 ′. Due to the YDS algorithm and the fact that the jobs have a common
release date, this speed is non-increasing with respect to the time, i.e., 𝑠∗

𝐼 ′ (𝑡1) ⩾ 𝑠∗
𝐼 ′ (𝑡2)

for each 𝑡1 < 𝑡2. Moreover, the speed can change only at a deadline.

53

Chapter 4 Explorable Uncertainty

Note that the optimal schedule for 𝐼 ′ is not feasible for 𝐼 ′1/2. In order to make it feasible,
we first transform the optimal schedule for 𝐼 ′ into an intermediate schedule S which
at each time 𝑡 uses speed 𝑠 (𝑡) = 2𝑠∗

𝐼 ′ (𝑡). Specifically, for any ℓ , 0 ⩽ ℓ ⩽ 𝑘 , consider the
work executed during the time interval (2ℓ−1, 2ℓ]. By doubling the speed during this
interval, we can execute all this work during the first half, i.e., (2ℓ−1, 2ℓ − 2ℓ−2], while
the second half, i.e., (2ℓ − 2ℓ−2, 2ℓ], remains idle. In a similar way we double the speed
during (0, 1

2], and we are able to execute all of its work during (0,
1
4] while (

1
4 ,

1
2] remains

idle. By slightly abusing the definitions, we assume that the speed of the machine for
any time 𝑡 satisfies 𝑠 (𝑡) = 2𝑠∗

𝐼 ′ (𝑡), even during the idle intervals of S where no work is
executed. Note that, for each time interval (0, 2ℓ], −1 ⩽ ℓ ⩽ 𝑘 , the half of it is idle in the
constructed schedule S. However, S is still not feasible for the instance 𝐼 ′1/2. In what
follows, we make S feasible by shifting some jobs in time.

For each job 𝑗 ∈ 𝐴, there is a job (0, 𝑑 𝑗 , 𝑢 𝑗) which is added both in 𝐼 ′1/2 and in 𝐼 ′.
For these jobs, their allocation in S is already feasible since they have the same active
interval in 𝐼 ′ and 𝐼 ′1/2.

For each job 𝑗 ∈ 𝐵ℓ , 0 ⩽ ℓ ⩽ 𝑘 , instance 𝐼 ′ contains two jobs (0, 𝑑 𝑗 , 𝑡 𝑗) and (0, 𝑑 𝑗 , 𝑤 𝑗),
while the instance 𝐼 ′1/2 contains the jobs (0,

𝑑 𝑗

2 , 𝑡 𝑗) and (𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗). Hence, in order to
guarantee the feasibility of S, we shift in (𝑑 𝑗2 , 𝑑 𝑗] the (parts of) jobs (

𝑑 𝑗

2 , 𝑑 𝑗 , 𝑤 𝑗) of 𝐼 ′1/2

allocated in (0, 𝑑 𝑗2]. Similarly, we shift in (0, 𝑑 𝑗2] the (parts of) jobs (0, 𝑑 𝑗2 , 𝑡 𝑗) of 𝐼
′
1/2

allocated in (𝑑 𝑗2 , 𝑑 𝑗]. We make these shifts starting with the jobs having deadline 20, we
continue with those having deadline 21, and so on.

We will prove by induction the following statement: “For each ℓ , 0 ⩽ ℓ ⩽ 𝑘 , in the
ℓ-th iteration of our shifting procedure, there is enough idle space in order to allocate
all jobs (0, 2ℓ−1, 𝑡 𝑗) of 𝐼 ′1/2 to the interval (0, 2ℓ−1] and all jobs (2ℓ−1, 2ℓ , 𝑤 𝑗) of 𝐼 ′1/2 to the
interval (2ℓ−1, 2ℓ]”.

• Basis: As explained before, the intervals (1
4 ,

1
2] and (3

4 , 1] in the schedule S are idle
before any shifting due to the doubling of the speed. At the same time, the (parts of
the) jobs (0, 1

2 , 𝑡 𝑗) which were infeasibly allocated after the doubling in S appear only
in the interval (1

2 ,
3
4]. Similarly, the (parts of the) jobs (1

2 , 1, 𝑤 𝑗) which were infeasibly
allocated after the doubling appear only in the interval (0, 1

4]. Moreover, the speed
during the whole interval (0, 1] is constant, due to the YDS algorithm. Hence we
can shift all the infeasible (parts of) jobs (0, 1

2 , 𝑡 𝑗) to the interval (1
4 ,

1
2] and all the

infeasible (parts of) jobs (1
2 , 1, 𝑤 𝑗) to the interval (3

4 , 1].

• Induction: Assume now that the statement is true for ℓ − 1.
Consider first the jobs (0, 2ℓ−1, 𝑡 𝑗) of 𝐼 ′1/2. Some parts of these jobs may have been
allocated in the interval (2ℓ−1, 2ℓ − 2ℓ−2], making their execution infeasible. However,
these parts are executed for at most 2ℓ−2 time which corresponds exactly to the idle
time during the interval (0, 2ℓ−1]. Thus, we can safely shift their execution to the left,

54

Single Machine Section 4.3

since the speed used in (0, 2ℓ−1] is at least the speed used in (2ℓ−1, 2ℓ − 2ℓ−2], by the
definition of the YDS algorithm, getting a feasible schedule for these jobs.
Consider now the the jobs (2ℓ−1, 2ℓ , 𝑤 𝑗) of 𝐼 ′1/2. Some parts of these jobs may have
been allocated in the interval (0, 2ℓ−1], making their execution infeasible. However,
these parts are executed for at most 1

4 + 2−2 + 2−1 + · · · + 2ℓ−3 = 2ℓ−2 time which
corresponds exactly to the idle time during the interval (2ℓ − 2ℓ−2, 2ℓ]. If the speed
used in (0, 2ℓ−1] is equal to the speed used in (2ℓ−1, 2ℓ], then we can safely shift their
execution to the right, getting a feasible schedule for these jobs. If the speed used in
(0, 2ℓ−1] is bigger than the speed used in (2ℓ−1, 2ℓ], then the jobs (0, 2ℓ , 𝑤 𝑗) of 𝐼 ′ are not
executed at all during (2ℓ−1, 2ℓ] in the optimal schedule for the instance 𝐼 ′ obtained
by the YDS algorithm, since they belong on a different critical interval. Hence, the
jobs (2ℓ−1, 2ℓ , 𝑤 𝑗) of 𝐼 ′1/2 are also not executed in (2ℓ−1, 2ℓ]. They are already feasible.

As a result, the schedule S is feasible for 𝐼 ′1/2 after all the shifts, and it uses speed
𝑠 (𝑡) = 2𝑠∗

𝐼 ′ (𝑡), for any time 𝑡 . Then, the energy consumption 𝐸 (S) of S is at most
two time the energy consumption of the optimal solution for 𝐼 ′. Therefore, an optimal
schedule for 𝐼 ′1/2 will use even smaller energy, i.e., 𝐸′

1/2 ⩽ 𝐸 (S) ⩽ 2𝛼𝐸′, and the lemma
follows. ■

▶ Lemma 4.12. Given an optimal schedule for the instance 𝐼 ′1/2 and a schedule given
by Algorithm 6, we have that 𝑠 (𝑡) ⩽ 2𝑠∗

𝐼 ′1/2
(𝑡) for each time instant 𝑡 . ◀

Proof. By the construction of 𝐼 ′1/2 and the definition of Q and W in Lines 1-5 of the
algorithm, we have that Q ∪W ⊆ 𝐼 ′1/2. In Line 6, an optimal schedule is created for
the jobs in Q ∪W. Since both optimal solutions for 𝐼 ′1/2 and for the jobs in Q ∪W are
computed by the YDS algorithm, and due to the properties of this algorithm, we have
that 𝑠𝑌𝐷𝑆 (𝑡) ⩽ 𝑠∗

𝐼 ′1/2
(𝑡), for each 𝑡 ∈ (0, 2𝑘].

Similarly, by the construction of 𝐼 ′1/2 and the definition of W∗
ℓ ’s in Lines 8-11 of the

algorithm, we have that
⋃𝑘
ℓ=0 W∗

ℓ ⊆ 𝐼 ′1/2. Moreover, the jobs in W∗
ℓ , 0 ⩽ ℓ ⩽ 𝑘 , are of

the form (2ℓ
2 , 2

ℓ , 𝑤 𝑗), and hence the active intervals of any two jobs belonging to two
different setsW∗

ℓ andW∗
ℓ ′ are time-disjoint. Thus, in an optimal solution for the jobs in⋃𝑘

ℓ=0 W∗
ℓ , the speed used during the interval (2ℓ

2 , 2
ℓ] is ∑

𝑗∈W∗
ℓ
𝛿 𝑗 . Therefore, using the

same arguments as before, for each 𝑡 ∈ (2ℓ
2 , 2

ℓ], we have that ∑𝑗∈W∗
ℓ
𝛿 𝑗 ⩽ 𝑠∗

𝐼 ′1/2
(𝑡).

For the speed of the algorithm, for any time 𝑡 ∈ (0, 1
2], we have that 𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡) ⩽

𝑠∗
𝐼 ′1/2

(see Line 7). Moreover, for any ℓ , 0 ⩽ ℓ ⩽ 𝑘 , and any time 𝑡 ∈ (2ℓ
2 , 2

ℓ], we have that
𝑠 (𝑡) = 𝑠𝑌𝐷𝑆 (𝑡) + ∑

𝑗∈W∗
ℓ
𝛿 𝑗 ⩽ 𝑠∗

𝐼 ′1/2
(𝑡) + 𝑠∗

𝐼 ′1/2
(𝑡) ⩽ 2𝑠∗

𝐼 ′1/2
(𝑡) (see Line 12), and the lemma

follows. ■

55

Chapter 4 Explorable Uncertainty

Algorithm 7: Common Release, Arbitrary Deadlines (CRAD)
1 for each job 𝑗 ∈ J do
2 𝑑 ′𝑗 = max𝑖{2𝑖 |2𝑖 ⩽ 𝑑 𝑗 };
3 Add job (𝑟 𝑗 , 𝑑 ′𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) in instance 𝐼 ;
4 Run Algorithm 6 with the updated instance 𝐼 ;

▶ Corollary 4.13. Let 𝐸 and 𝐸′
1/2 be the energy consumption of the schedule created

by Algorithm 6 and of an optimal schedule for the instance 𝐼 ′1/2 respectively. Then,
𝐸 ⩽ 2𝛼𝐸′

1/2. ◀

▶ Theorem 4.14. CRP2D (Algorithm 6) achieves a competitive ratio of (4𝜙)𝛼 with
respect to energy. ◀

Proof. Note that the energy consumption of an optimal schedule for our original instance
and of an optimal schedule for the instance 𝐼 ∗ is exactly the same, as they contain exactly
the same set of jobs with the same characteristics. Then, the proof of the theorem is an
immediate consequence of Lemmas 4.10 and 4.11, and Corollary 4.13. Specifically, we
have: 𝐸 ⩽ 2𝛼𝐸′

1/2 ⩽ 4𝛼𝐸′ ⩽ (4𝜙)𝛼𝐸∗. ■

Common Release, Arbitrary Deadlines

In this section we adapt the previous result to jobs with arbitrary deadlines. Given
an instance 𝐼 of our original problem, we create an instance 𝐼 by rounding down the
deadline of all jobs to a power of two: for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) ∈ J , add a job
(𝑟 𝑗 , 𝑑 ′𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) in 𝐼 , where 𝑑 ′𝑗 = max{2𝑖 |2𝑖 ⩽ 𝑑 𝑗 }. Then, run Algorithm 6 using instance
𝐼 as input. We call this algorithm CRAD (Algorithm 7).

▶ Lemma 4.15. Let 𝐸 and 𝐸 be the energy consumption of an optimal schedule for the
instance 𝐼 and 𝐼 respectively. Then, 𝐸 ⩽ 2𝛼𝐸. ◀

Proof. Let S be the optimal schedule for 𝐼 . We create a schedule S′ by doubling the
speed of S at each time 𝑡 . Then we shift the work of all jobs as early in time as possible
such that to use this bigger speed. Note that the order of execution of the (parts of) jobs
does change. This schedule uses twice the speed of S so for its energy consumption
𝐸 (S′) we have 𝐸 (S′) ⩽ 2𝛼𝐸. We will next show that the schedule S′ is feasible for the
instance 𝐼 .

Let 𝑠 (𝑡) be the speed at time 𝑡 in the schedule S. Note that the schedule S is an
optimal schedule using the values 𝜔∗

𝑗 , and it can be constructed by the YDS algorithm.
Since, all jobs have a common release time, we know that 𝑠 (𝑡) is non-increasing with

56

Single Machine Section 4.3

respect to 𝑡 , as mentioned before (see proof of Lemma 4.11). Consider now any time 𝑡
and let𝑊𝑡 be the total work executed in the interval (0, 𝑡] in S, that is𝑊𝑡 =

∫ 𝑡
0 𝑠 (𝑡)𝑑𝑡 .

Since the speeds in S are non-increasing, the execution of the work𝑊𝑡 finishes the
latest at time 𝑡

2 in S′. Hence, for the completion time 𝐶′
𝑗 of each job 𝑗 in S′ we have

that 𝐶′
𝑗 ⩽

𝐶 𝑗

2 , where 𝐶 𝑗 is the completion time of 𝑗 in S. By definition, 𝑑 ′𝑗 ⩾
𝑑 𝑗

2 . Then,
𝐶′
𝑗 ⩽

𝐶 𝑗

2 ⩽
𝑑 𝑗

2 ⩽ 𝑑 ′𝑗 . Therefore, the job 𝑗 is feasibly executed in S′ and S′ is feasible for
the instance 𝐼 .

Since the energy 𝐸 of an optimal schedule for the instance 𝐼 is smaller that the energy
of any feasible schedule, we have that 𝐸 ⩽ 𝐸 (S′) and the lemma follows. ■

▶ Corollary 4.16. CRAD (Algorithm 7) achieves a competitive ratio of (8𝜙)𝛼 with
respect to energy. ◀

4.3.3 Online Model
In this section, we consider the QBSSmodel when the jobs arrive online and they should
be executed on a single machine.

AVR withQueries

The online AVR algorithm for the classical speed scaling setting works as follows: at
each time 𝑡 , the machine runs at speed 𝑠𝐴𝑉𝑅 (𝑡) =

∑
𝑗 :𝑡 ∈ (𝑟 𝑗 ,𝑑 𝑗] 𝛿 𝑗 and it executes the

unfinished job with the smaller deadline which is released before 𝑡 . Yao et al. [YDS95]
proved that AVR is 2𝛼−1𝛼𝛼 -competitive with respect to energy.

In this section we propose the online algorithm AVRQ (Algorithm 8), an adaptation of
AVR to the QBSS model. AVRQ does the query for all the jobs by selecting as a splitting
point the half of their interval. Specifically, for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) in J , two
jobs of the classical speed scaling setting are created and added to the set J ′ (in an
online manner): the job (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2 , 𝑡 𝑗) at time 𝑟 𝑗 , and the job (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) at time 𝑟 𝑗+𝑑 𝑗

2 .
The AVR algorithm runs using as input the set of jobs J ′ which is created online. The
following lemma extends the lower bound for AVR proposed in [BKP07] and gives a
lower bound to the competitive ratio of AVRQ with respect to energy.

▶ Lemma 4.17. The competitive ratio of algorithm AVRQ is at least (2𝛼)𝛼 with respect
to energy. ◀

Proof. Consider an instance where all the jobs have the same deadline𝑛. A job, 𝑗𝑖 , arrives
at time 𝑖 = 0, 1, . . . , 𝑛 − 1, having (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) = (𝑖, 𝑛, ℎ1/𝛼

𝑖
, (ℎ𝑖 + 𝜖)1/𝛼 , (ℎ𝑖 + 𝜖)1/𝛼),

where ℎ𝑖 = 1
𝑛−𝑖 .

If 𝜖 is small enough, the optimal energy algorithm does not make the query and
completes the job that arrives at time 𝑖 by time 𝑖 + 1 running at speed

(1
𝑛−𝑖 + 𝜖

)1/𝛼 .

57

Chapter 4 Explorable Uncertainty

Algorithm 8: AVRQ
1 for each time instant 𝑡 do
2 for each job 𝑗 ∈ J do
3 if 𝑡 == 𝑟 𝑗 then
4 Add job (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2 , 𝑡 𝑗) in instance 𝐼 ′;

5 else if 𝑡 == 𝑟 𝑗+𝑑 𝑗
2 then

6 Add job (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) in instance 𝐼 ′;

7 Run AVR with the updated instance 𝐼 ′;

Following the same calculations as in Bansal et al. paper [BKP07], the resulting energy
is 𝐻𝑛 + O(1).

Now, let us try to analyze the energy usage of AVRQ. In the interval [0, 𝑛/2] only
queries are executed and the energy consumption is about ln 2. Since these values don’t
make a significant contribution to the total energy consumption, we discard it. Let us
estimate the energy consumption in the interval [𝑛/2, 𝑛]. Suppose that 𝑛 is even.

Let 𝐼𝑖 =
[
𝑛+𝑖

2 , 𝑛+𝑖+1
2

]
for 𝑖 = 0, . . . , 𝑛 − 1. If 𝑖 is even, the queries which correspond to

jobs 𝑗𝑖+1, . . . , 𝑗 𝑛+1
2
are executed in the interval 𝐼𝑖 . If 𝑖 is odd, the queries which correspond

to jobs 𝑗𝑖+1, . . . , 𝑗 𝑛+1−1
2

are executed in the interval 𝐼𝑖 . For every 𝑖 , the jobs 𝑗0, . . . , 𝑗𝑖 are
executed in the interval 𝐼𝑖 . Calculating the speed for each interval, we get

𝑠 (𝑖) = 2
𝑖∑︁
𝑗=0

(
ℎ 𝑗 + 𝜖

)1/𝛼

𝑛 − 𝑗
+ 2

𝑛+𝑖
2∑︁

𝑗=𝑖+1

ℎ
1/𝛼
𝑗

𝑛 − 𝑗
, when i is even

𝑠 (𝑖) = 2
𝑖∑︁
𝑗=0

(
ℎ 𝑗 + 𝜖

)1/𝛼

𝑛 − 𝑗
+ 2

𝑛+𝑖−1
2∑︁

𝑗=𝑖+1

ℎ
1/𝛼
𝑗

𝑛 − 𝑗
, when i is odd

In total, for any 𝑖 , we have

𝑠 (𝑖) ⩾ 2
𝑛+𝑖−1

2∑︁
𝑗=0

ℎ
1/𝛼
𝑗

𝑛 − 𝑗
⩾ 2

𝑛+𝑖−1
2∑︁
𝑗=0

1
(𝑛 − 𝑗)1+ 1

𝛼

⩾ 2
∫ 𝑛+𝑖−3

2

0

1
(𝑛 − 𝑗)1+ 1

𝛼

𝑑 𝑗

=

[
2𝛼 (𝑛 − 𝑗)−1/𝛼

] 𝑛+𝑖−3
2

0
= 2𝛼

(
2𝑛 − 𝑛 − 𝑖 + 3

2

)−1/𝛼
− 2𝛼𝑛−1/𝛼

58

Single Machine Section 4.3

= 2𝛼21/𝛼
[
(𝑛 − 𝑖 + 3)−1/𝛼 − (2𝑛)−1/𝛼

]
(4.1)

The total energy consumption of AVRQ is

𝐸 =
1
2

𝑛−1∑︁
𝑖=0

𝑠 (𝑖)𝛼 ⩾ 1
2 (2𝛼)

𝛼2
𝑛−1∑︁
𝑖=0

(
(𝑛 − 𝑖 + 3)−1/𝛼 − (2𝑛)−1/𝛼

)𝛼
⩾ (2𝛼)𝛼

(
𝑛−1∑︁
𝑖=0

1
𝑛 − 𝑖 + 3 − 𝛼

𝑛−1∑︁
𝑖=0

(
1

𝑛 − 𝑖 + 3

) 𝛼−1
𝛼

(2𝑛)−1/𝛼
)

⩾ (2𝛼)𝛼
(
𝐻𝑛 − 2 − 𝛼2 (2𝑛)−1/𝛼 Θ(𝑛1/𝛼)

)
= (2𝛼)𝛼 (𝐻𝑛 − Θ(1))

The first inequality is given by 4.1. For the second inequality we use the property
(𝑥 − 𝑦)𝛼 ⩾ 𝑥𝛼 − 𝑎𝑥𝛼−1𝑦 with 𝑥 = (𝑛 − 𝑖 + 3)−1/𝛼 and 𝑦 = (2𝑛)−1/𝛼 , which is proved
in [BKP07] for 𝛼 > 1. So, if 𝑛 is large enough, the competitive ratio can be made
arbitrarily close to (2𝛼)𝛼 . ■

Let AVR∗ be the original AVR algorithm when executed using the set of jobs J ∗

created as follows: for each 𝑗 ∈ J , add the job (𝑟 𝑗 , 𝑑 𝑗 , 𝜔∗
𝑗) to J ∗. The following theorem

compares, for each time 𝑡 , the speed used by the algorithm AVRQ with the speed of
AVR∗.

▶ Theorem 4.18. For any time instant 𝑡 , we have 𝑠𝐴𝑉𝑅𝑄 (𝑡) ⩽ 2𝑠AVR∗ (𝑡). ◀

Proof. At any time 𝑡 , the speed of AVRQ is

𝑠𝐴𝑉𝑅𝑄 (𝑡) ⩽ ∑
𝑗∈J:𝑡 ∈ (𝑟 𝑗 ,𝑑 𝑗] max

{
𝑡 𝑗

(𝑑 𝑗−𝑟 𝑗)/2 ,
𝑤𝑗

(𝑑 𝑗−𝑟 𝑗)/2

}
= 2

∑
𝑗∈J:𝑡 ∈ (𝑟 𝑗 ,𝑑 𝑗]

max{𝑡 𝑗 ,𝑤𝑗 }
𝑑 𝑗−𝑟 𝑗

⩽ 2
∑
𝑗∈J:𝑡 ∈ (𝑟 𝑗 ,𝑑 𝑗]

min{𝑢 𝑗 ,𝑡 𝑗+𝑤𝑗 }
𝑑 𝑗−𝑟 𝑗 = 2

∑
𝑗∈J∗:𝑡 ∈ (𝑟 𝑗 ,𝑑 𝑗]

𝜔∗
𝑗

𝑑 𝑗−𝑟 𝑗

= 2𝑠AVR∗ (𝑡) ■

▶ Corollary 4.19. AVRQ (Algorithm 8) is 22𝛼−1𝛼𝛼 -competitive with respect to energy.
◀

BKP withQueries

The online BKP algorithm for the classical speed scaling setting works as follows: for
the time instants 𝑡 , 𝑡1 and 𝑡2 with 𝑡1 < 𝑡 ⩽ 𝑡2, let 𝑤 (𝑡, 𝑡1, 𝑡2) be the total work of jobs that
have arrived by time 𝑡 , have a release time of at least 𝑡1 and a deadline of at most 𝑡2. At
any time 𝑡 , the machine runs at speed 𝑠𝐵𝐾𝑃 (𝑡) = 𝑒 max𝑡1,𝑡2

𝑤(𝑡,𝑡1,𝑡2)
(𝑡2−𝑡1) and it executes the

59

Chapter 4 Explorable Uncertainty

Algorithm 9: BKPQ
1 for each time instant 𝑡 do
2 for each job 𝑗 ∈ J do
3 if 𝑡 == 𝑟 𝑗 then
4 if 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
then

5 Add job (𝑟 𝑗 ,
𝑟 𝑗+𝑑 𝑗

2 , 𝑡 𝑗) in instance 𝐼 ′;
6 else if 𝑡 𝑗 >

𝑢 𝑗

𝜙
then

7 Add job (𝑟 𝑗 , 𝑑 𝑗 , 𝑢 𝑗) in instance 𝐼 ′;

8 else if 𝑡 == 𝑟 𝑗+𝑑 𝑗
2 then

9 if 𝑡 𝑗 ⩽
𝑢 𝑗

𝜙
then

10 Add job (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) in instance 𝐼 ′;

11 Run BKP with the updated instance 𝐼 ′;

unfinished job with the smallest deadline which is released before 𝑡 . Bansal et al. proved
that BKP achieves a competitive ratio of 2(𝛼

𝛼−1)
𝛼𝑒𝛼 with respect to energy, while it is

𝑒-competitive with respect to maximum speed.
In this section, we propose the online algorithm BKPQ (Algorithm 9), an adaptation

of BKP to the QBSS model. For each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) in J , BKPQ decides to make
the query only if 𝑡 𝑗 ⩽

𝑢 𝑗

𝜙
using as splitting point 𝜏 𝑗 =

𝑟 𝑗+𝑑 𝑗
2 . Hence, in the case of a query,

two jobs of the classical speed scaling setting, corresponding to (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗), are
created and added to the set of jobs J ′ (in an online manner): the job (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2 , 𝑡 𝑗) at

time 𝑟 𝑗 , and the job (
𝑟 𝑗+𝑑 𝑗

2 , 𝑑 𝑗 , 𝑤 𝑗) at time 𝑟 𝑗+𝑑 𝑗
2 . In the case where no query is made, then

a single job, corresponding to (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗), is added to the set J ′: the job (𝑟 𝑗 , 𝑑 𝑗 , 𝑢 𝑗)
at time 𝑟 𝑗 . The BKP algorithm runs using as input the set of jobs J ′ which is created
online.

Let BKP∗ be the original BKP algorithm when executed using the set of jobs J ∗

created as follows: for each 𝑗 ∈ J , add the job (𝑟 𝑗 , 𝑑 𝑗 , 𝜔∗
𝑗) to J ∗. The following theorem

compares, for each time 𝑡 , the speed used by the algorithm BKPQ with the speed of
BKP∗.

▶ Theorem 4.20. For any time instant 𝑡 , we have 𝑠𝐵𝐾𝑃𝑄 (𝑡) ⩽ (2 + 𝜙)𝑠BKP∗ (𝑡). ◀

60

Single Machine Section 4.3

Proof. Let 𝑡1 and 𝑡2 be time instants such that

𝑤 (𝑡, 𝑡1, 𝑡2)
(𝑡2 − 𝑡1)

= max
𝑡 ′1,𝑡

′
2

𝑤 (𝑡, 𝑡 ′1, 𝑡 ′2)
(𝑡 ′2 − 𝑡 ′1)

for the jobs in J ′. We define three disjoint subsets of J and we explain how the
corresponding jobs in J ′ contribute to 𝑤 (𝑡, 𝑡1, 𝑡2):
• Let L be the set of queried jobs whose queries are entirely processed in the interval
(𝑡1, 𝑡2], but not its exact loads themselves, and start before time 𝑡 .

• Let R be the set of queried jobs whose exact load is entirely processed in the interval
(𝑡1, 𝑡2], but not its queries themselves, and start before time 𝑡 .

• Let C be the set of jobs (corresponding to queries, exact loads or initial workloads)
that are entirely processed in the interval (𝑡1, 𝑡2] and start before time 𝑡 .

Let𝑊 (L) = ∑
𝑗∈L 𝑡 𝑗 ,𝑊 (R) = ∑

𝑗∈R 𝑤 𝑗 and𝑊 (C) = ∑
𝑗∈C 𝜔 𝑗 be the total work of jobs

in J ′ which belong to L, R and C, respectively. By definition,𝑊 (L) +𝑊 (R) +𝑊 (C)
describes the total work that is executed in (𝑡1, 𝑡2] by BKPQ. So, for any time 𝑡 ∈ (𝑡1, 𝑡2],
we have that 𝑠𝐵𝐾𝑃𝑄 (𝑡) = 𝑊 (L)+𝑊 (R)+𝑊 (C)

(𝑡2−𝑡1) .
In a similar way, let𝑊 ∗ (L) = ∑

𝑗∈L 𝜔∗
𝑗 ,𝑊 ∗ (R) = ∑

𝑗∈R 𝜔∗
𝑗 and𝑊 (C) = ∑

𝑗∈C 𝜔
∗
𝑗 .

We consider the following three bounds:
1. Consider a job 𝑗 ∈ L. If 𝜔∗

𝑗 = 𝑢 𝑗 then 𝑡 𝑗 ⩽
𝑢 𝑗

𝜙
⩽ 𝑢 𝑗 = 𝜔∗

𝑗 . If 𝜔∗
𝑗 = 𝑡 𝑗 + 𝑤 𝑗 then

𝑡 𝑗 ⩽ 𝑡 𝑗 +𝑤 𝑗 = 𝜔∗
𝑗 . Thus, for each 𝑗 ∈ L we have 𝑡 𝑗 ⩽ 𝜔∗

𝑗 and𝑊 (L) ⩽𝑊 ∗ (L).
2. Consider a job 𝑗 ∈ R. If 𝜔∗

𝑗 = 𝑢 𝑗 then 𝑤 𝑗 ⩽ 𝑢 𝑗 = 𝜔∗
𝑗 . If 𝜔∗

𝑗 = 𝑡 𝑗 + 𝑤 𝑗 then
𝑤 𝑗 ⩽ 𝑡 𝑗 +𝑤 𝑗 = 𝜔∗

𝑗 . Thus, for each 𝑗 ∈ R we have 𝑤 𝑗 ⩽ 𝜔∗
𝑗 and𝑊 (R) ⩽𝑊 ∗ (R).

3. For each 𝑗 ∈ C we have 𝜔 𝑗 ⩽ 𝜙𝜔∗
𝑗 by using Lemma 4.1. Thus,𝑊 (C) ⩽ 𝜙𝑊 ∗ (C).

Consider now the time interval (𝑡0, 𝑡3) such as 𝑡0 = max{0, 2𝑡1 − 𝑡2} and 𝑡3 = 2𝑡2 − 𝑡1.
For each 𝑗 ∈ L we have 𝑡1 ⩽ 𝑟 𝑗 ⩽ 𝑡 < 𝜏 𝑗 ⩽ 𝑡2, and hence 𝑑 𝑗 = 2𝜏 𝑗 −𝑟 𝑗 ⩽ 2𝑡2−𝑡1 = 𝑡3. For
each 𝑗 ∈ R we have 𝑡1 ⩽ 𝜏 𝑗 and 𝑑 𝑗 ⩽ 𝑡2, and hence 𝑟 𝑗 = 2𝜏 𝑗 − 𝑑 𝑗 ⩾ max{0, 2𝑡1 − 𝑡2} = 𝑡0.
Therefore, each job 𝑗 ∈ L ∪ R ∪ C should be executed in the interval [𝑡0, 𝑡3] by any
algorithm and also by BKP∗. As a result, we have:

𝑠BKP
∗ (𝑡) ⩾ 𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C)

(𝑡3 − 𝑡0)
=
𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C)

3(𝑡2 − 𝑡1)
(4.2)

As explained before, for the speed of BKPQ at any time 𝑡 ∈ (𝑡1, 𝑡2] we have

𝑠𝐵𝐾𝑃𝑄 (𝑡) = 𝑊 (L) +𝑊 (R) +𝑊 (C)
(𝑡2 − 𝑡1)

⩽
𝑊 ∗ (L) +𝑊 ∗ (R) + 𝜙𝑊 ∗ (C)

(𝑡2 − 𝑡1)

=
𝑊 ∗ (L) +𝑊 ∗ (R) +𝑊 ∗ (C) + (𝜙 − 1)𝑊 ∗ (C)

(𝑡2 − 𝑡1)

61

Chapter 4 Explorable Uncertainty

⩽ 3𝑠BKP∗ (𝑡) + (𝜙 − 1)𝑠BKP∗ (𝑡) = (2 + 𝜙)𝑠BKP∗ (𝑡)

The first inequality follows by the three bounds presented above. In the next line we
just add and subtract𝑊 ∗ (C). For the last inequality we use Inequality 4.2, as well as
the fact that 𝑠BKP∗ (𝑡) ⩾ 𝑊 ∗ (C)

(𝑡2−𝑡1) since all jobs in the set C are entirely executed in the
interval (𝑡1, 𝑡2] by any algorithm and also by BKP∗. ■

▶ Corollary 4.21. BKPQ (Algorithm 9) is (2 + 𝜙)𝛼2(𝛼
𝛼−1)

𝛼𝑒𝛼 -competitive with respect
to energy, and (2 + 𝜙)𝑒-competitive with respect to maximum speed. ◀

4.4 Multiple Machines
In this section we adapt to the QBSS model the online AVR(𝑚) algorithm proposed
by Albers et al. [AAG15] for the classical speed scaling setting on a set of𝑚 parallel
identical machines M. AVR(𝑚) is (2𝛼−1𝛼𝛼 + 1)-competitive with respect to energy
consumption.

For completeness, we briefly present AVR(𝑚). The algorithm works online per each
unit time slot (𝑡, 𝑡 + 1] and it schedules 𝛿 𝑗 amount of work from each active job during
(𝑡, 𝑡 + 1]. Let J𝑡 be the set of active jobs in (𝑡, 𝑡 + 1]. Moreover, let 𝑈 ⊆ J𝑡 be the
unscheduled jobs of J𝑡 and 𝑅 ⊆ M be the remaining unused machines at each step of
the algorithm. In the beginning, we set𝑈 = J𝑡 and 𝑅 = M. We denote by 𝛥 =

∑
𝑗∈𝑈 𝛿 𝑗

the total work of the jobs in 𝑈 . The jobs in 𝑈 will be characterized as big or small
depending on their densities. Intuitively, each big job will occupy one machine during
the whole slot (𝑡, 𝑡 + 1], while small jobs will share the remaining machines in (𝑡, 𝑡 + 1].
The algorithm searches in an iterative way the job 𝚥 = argmax{𝛿 𝑗 : 𝑗 ∈ 𝑈 } with the
maximum density in𝑈 and if 𝛿 𝚥 > 𝛥

|𝑅 | then it is characterized as a big one. In this case,
the algorithm schedules 𝚥 with speed 𝛿 𝚥 in the machine of the lower index in 𝑅 which is
then removed from 𝑅. Moreover, the algorithm updates J𝑡 = J𝑡 \ { 𝚥} and it searches for
the next big job. If no big job exists, then all the remaining jobs are small and they are
allocated to the remaining machines using speed 𝛥

|𝑅 | . Note that, at each time moment
the speed of a machine with lower index is not less than the speed of a machine with
larger index.

Here, we propose the online algorithm AVRQ(𝑚) (Algorithm 10) which makes the
query for all jobs by selecting as a splitting point the half of their interval. Specifically,
for each job (𝑟 𝑗 , 𝑑 𝑗 , 𝑡 𝑗 , 𝑢 𝑗 , 𝑤 𝑗) in J , two jobs of the classical speed scaling setting are
created and added to the set J ′ (in an online manner): the job Z (𝑗) = (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2 , 𝑡 𝑗) at

time 𝑟 𝑗 , and the job Z ′ (𝑗) = (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) at time 𝑟 𝑗+𝑑 𝑗
2 . The AVR(𝑚) algorithm runs

using as input the set of jobs J ′ which is created online.
We start our analysis with two technical lemmas.

62

Multiple Machines Section 4.4

Algorithm 10: 𝐴𝑉𝑅𝑄 (𝑚)

1 for each time instant 𝑡 do
2 for each job 𝑗 ∈ J do
3 if 𝑡 == 𝑟 𝑗 then
4 Add job (𝑟 𝑗 ,

𝑟 𝑗+𝑑 𝑗
2 , 𝑡 𝑗) in instance 𝐼 ′;

5 else if 𝑡 == 𝑟 𝑗+𝑑 𝑗
2 then

6 Add job (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 , 𝑤 𝑗) in instance 𝐼 ′;

7 Run 𝐴𝑉𝑅 (𝑚) with the updated instance 𝐼 ′;

▶ Lemma 4.22. Let two sets of non-negative rational numbers 𝐴 = {𝑎1, . . . , 𝑎𝑛} and
𝐵 = {𝑏1, . . . , 𝑏𝑛} be given such that 𝑏 𝑗 ⩽ 2𝑎 𝑗 for all 𝑗 = 1, . . . , 𝑛. Let 𝜋𝐴 and 𝜋𝐵 be
permutations of numbers from 𝐴 and 𝐵, respectively, in which the numbers are ordered
in non-increasing order. Then 𝜋𝐵 (𝑖) ⩽ 2𝜋𝐴 (𝑖) for all 𝑖 = 1, . . . , 𝑛. ◀

Proof. Let the elements of the set 𝐴 and 𝐵 be numbered as in the permutation 𝜋𝐴.
Assume that 𝜋𝐵 (𝑖) = 𝑏𝑘 and 𝑘 ⩾ 𝑖 . We have 𝜋𝐵 (𝑖) ⩽ 2𝜋𝐴 (𝑘) ⩽ 2𝜋𝐴 (𝑖). Let 𝑘 < 𝑖 .
From pigeonhole principle, the exists 𝜋𝐵 (𝑙) = 𝑏 𝑗 such that 𝑙 < 𝑖 and 𝑗 ⩾ 𝑖 . We get
𝜋𝐵 (𝑖) ⩽ 𝜋𝐵 (𝑙) = 𝑏 𝑗 ⩽ 2𝑎 𝑗 ⩽ 2𝑎𝑖 = 2𝜋𝐴 (𝑖). ■

▶ Lemma 4.23. Let a sequence of non-negative rational numbers 𝑎1, . . . , 𝑎𝑛 and an
integer 𝑚 ⩾ 2 be given. If 𝑎1 >

∑𝑛
𝑖=1 𝑎𝑖
𝑚

, then
∑𝑛

𝑖=1 𝑎𝑖
𝑚

>
∑𝑛

𝑖=2 𝑎𝑖
𝑚−1 , otherwise,

∑𝑛
𝑖=1 𝑎𝑖
𝑚

⩽∑𝑛
𝑖=2 𝑎𝑖
𝑚−1 . ◀

Proof. We have:∑𝑛
𝑖=1 𝑎𝑖
𝑚

=
(∑𝑛

𝑖=2 𝑎𝑖 + 𝑎1) (𝑚 − 1)
𝑚(𝑚 − 1) =

∑𝑛
𝑖=2 𝑎𝑖

𝑚 − 1 +
𝑎1𝑚 − ∑𝑛

𝑖=1 𝑎𝑖
𝑚(𝑚 − 1)

The last term is positive when 𝑎1 >
∑𝑛

𝑖=1 𝑎𝑖
𝑚

, and non-positive otherwise, hence the
assertion of the lemma follows. ■

Let AVR∗ (𝑚) be the original AVR(𝑚) algorithm when executed using the set of jobs
J ∗ created as follows: for each 𝑗 ∈ J , add the job (𝑟 𝑗 , 𝑑 𝑗 , 𝜔∗

𝑗) to J ∗. The following
theorem compares, for each time 𝑡 , the speed used by the algorithm AVRQ(𝑚) with the
speed of AVR∗ (𝑚).

▶ Theorem 4.24. For any time instant 𝑡 , and any machine 𝑖 , we have 𝑠AVRQ(𝑚)
𝑖

(𝑡) ⩽
2𝑠AVR

∗ (𝑚)
𝑖

(𝑡). ◀

63

Chapter 4 Explorable Uncertainty

Proof. We consider the set of jobs J ′′ which is produced from J ∗ by replacing each
job (𝑟 𝑗 , 𝑑 𝑗 , 𝜔∗

𝑗) with two jobs,

𝜓 (𝑡) = (𝑟 𝑗 ,
𝑟 𝑗+𝑑 𝑗

2 ,
𝜔∗

𝑗

2) and 𝜓 ′ (𝑡) = (𝑟 𝑗+𝑑 𝑗2 , 𝑑 𝑗 ,
𝜔∗

𝑗

2). Since the number of jobs and their
densities in each unit time slot (𝑡, 𝑡 + 1] do not change, then the speed of the machines
in the schedules obtained by AVR(𝑚) when applied to the sets of jobs J ∗ and J ′′ does
not change either.

Algorithm AVRQ(𝑚) also creates two jobs, let Z (𝑗) and Z ′ (𝑗) for each original job
𝑗 ∈ J using the same intervals as in J ′′. Hence, the number of active jobs in J ′ and
J ′′ is the same at each unit time slot, and by definition we have

𝛿Z (𝑗) ⩽ 2𝛿𝜓 (𝑗) and 𝛿Z ′ (𝑗) ⩽ 2𝛿𝜓 ′ (𝑗) for all 𝑗 ∈ J (4.3)

since 𝑡 𝑗 ⩽ 𝜔∗
𝑗 and 𝑤 𝑗 ⩽ 𝜔∗

𝑗 .
Denote by J ′′

𝑡 ⊆ J ′′ and J ′
𝑡 ⊆ J ′ the set of active jobs in the unit slot (𝑡, 𝑡 + 1].

We order the jobs in each set in non-increasing densities. Note that |J ′′
𝑡 | = |J ′

𝑡 | = 𝑟 .
Let 𝑎 𝑗 be the density of the j-th job in J ′′ and 𝑏 𝑗 be the density of the j-th job in J ′.
Lemma 4.22 and Inequalities (4.3) imply that 𝑏 𝑗 ⩽ 2𝑎 𝑗 .

Let 𝑘 be the number of big jobs in the set J ′′
𝑡 and ℓ be the number of big jobs in the

set J ′
𝑡 . We consider three cases.

1. Case 𝑘 = ℓ . For each machine 𝑖 ⩽ 𝑘 we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠AVR
∗ (𝑚)

𝑖
(𝑡)

For each machine 𝑖 > 𝑘 we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) =
∑𝑟
𝑗=ℓ+1 𝑏 𝑗

𝑚 − ℓ
⩽ 2

∑𝑟
𝑗=𝑘+1 𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠AVR

∗ (𝑚)
𝑖

(𝑡)

2. Case 𝑘 > ℓ . For each machine 𝑖 ⩽ ℓ we have:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠AVR
∗ (𝑚)

𝑖
(𝑡)

For each machine 𝑖 > ℓ we have 𝑏ℎ ⩽
∑𝑟

𝑗=ℎ
𝑏 𝑗

𝑚−ℎ+1 for ℓ + 1 ⩽ ℎ ⩽ 𝑘 . Successively applying
Lemma 4.23 we get: ∑𝑟

𝑗=ℓ+1 𝑏 𝑗

𝑚 − ℓ
⩽

∑𝑟
𝑗=ℓ+2 𝑏 𝑗

𝑚 − ℓ − 1 ⩽ · · · ⩽
∑𝑟
𝑗=𝑘+1 𝑏 𝑗

𝑚 − 𝑘

Hence, we obtain:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) =
∑𝑟
𝑗=ℓ+1 𝑏 𝑗

𝑚 − ℓ
⩽

∑𝑟
𝑗=𝑘+1 𝑏 𝑗

𝑚 − 𝑘
⩽ 2

∑𝑟
𝑗=𝑘+1 𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠AVR

∗ (𝑚)
𝑖

(𝑡)

64

Conclusion Section 4.5

3. Case 𝑘 < ℓ . For each machine 𝑖 ⩽ 𝑘 we have

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 = 2𝑠AVR
∗ (𝑚)

𝑖
(𝑡)

For each machine 𝑖 , 𝑘 < 𝑖 ⩽ ℓ , we have

𝑠
AVRQ(𝑚)
𝑖

(𝑡) = 𝑏𝑖 ⩽ 2𝑎𝑖 ⩽ 2
∑𝑟
𝑗=𝑘+1 𝑎 𝑗

𝑚 − 𝑘
= 2𝑠AVR

∗ (𝑚)
𝑖

(𝑡)

where the last inequality follows by the definition of AVR∗ (𝑚). For each machine
𝑖 > ℓ we have 𝑏ℎ >

∑𝑟
𝑗=ℎ

𝑏 𝑗

𝑚−ℎ+1 for 𝑘 + 1 ⩽ ℎ ⩽ ℓ . Successively applying Lemma 4.23 we
get: ∑𝑟

𝑗=𝑘+1 𝑏 𝑗

𝑚 − 𝑘
>

∑𝑟
𝑗=ℓ+2 𝑏 𝑗

𝑚 − 𝑘 − 1 > · · · >
∑𝑟
𝑗=ℓ+1 𝑏 𝑗

𝑚 − ℓ

Hence, we obtain:

𝑠
AVRQ(𝑚)
𝑖

(𝑡) ⩽
∑𝑟
𝑗=ℓ+1 𝑏 𝑗

𝑚 − ℓ
<

∑𝑟
𝑗=𝑘+1 𝑏 𝑗

𝑚 − 𝑘
⩽ 2

∑𝑟
𝑗=𝑘+1 𝑎 𝑗

𝑚 − 𝑘
⩽ 2𝑠AVR

∗ (𝑚)
𝑖

(𝑡)

and the theorem follows. ■

▶ Corollary 4.25. AVRQ(𝑚) (Algorithm 10) is 2𝛼 (2𝛼−1𝛼𝛼 +1)-competitive with respect
to energy. ◀

4.5 Conclusion
In this chapter, we studied an enhanced speed scaling setting, where queries can be
additionally executed in the system in order to reveal a more accurate value of the
workload of jobs. This model in particular makes sense in the context where an operation
(query) can decrease the length of a task (as happens in the case of code optimization
or file compression). The main objective was the minimization of energy consumption,
while the minimization of maximum speed was also studied. We proposed various lower
bounds for the offline and the online settings. In particular, we showed how to use
known online algorithms (AVR and BKP) of the classical speed scaling context in the
speed scaling with explorable uncertainty setting. Notice also that our approach can
directly be applied to the preemptive-non-migratory variant of the problem [GNS14].

65

5 Uncertain Predictions

Using machine-learned predictions to create algorithms with better approximation
guarantees is a very fresh and active field. In this chapter, we study classic scheduling
problems under the learning augmented setting. More specifically, we consider the
problem of scheduling jobs with arbitrary release dates on a single machine and the
problem of scheduling jobs with a common release date on multiple machines. Our
objective is to minimize the sum of completion times. For both problems, we propose
algorithms which use predictions for taking their decisions. Our algorithms are consis-
tent – i.e. when the predictions are accurate, the performances of our algorithms are
close to those of an optimal offline algorithm–, and robust – i.e. when the predictions
are wrong, the performance of our algorithms are close to those of an online algorithm
without predictions. In addition, we confirm the above theoretical bounds by conducting
experimental evaluation comparing the proposed algorithms to the offline optimal ones
for both the single and multiple machines settings.

5.1 Formulation of the problem
We are given a set of jobs J whose actual processing times are not known in advance.
However, a predicted value of the processing time is given for each job. Each job is also
characterized by a release time (date). In the whole extent of this chapter, preemption
and migration are allowed at no extra cost. In other words, jobs can be stopped and
continue execution in a later time (preemption) and eventually on a different machine
(migration). Each machine can execute at most one job at a time. In the first version, we
consider scheduling J on a single machine. Jobs arrive over time, and the algorithm
has no prior knowledge on the existence of a job. In the second version, we consider
scheduling J on𝑚 identical machines. In this case, we assume that all release times
are zero and that the algorithm has knowledge of the total number of jobs as well as
their predicted processing times in the beginning. The objective in both problems is to
minimize the sum of completion times of the jobs. Our goal is to design algorithms that
are both consistent and robust.

Our contribution
A common strategy to obtain these two properties is to construct an algorithm that
runs simultaneously a consistent and a robust algorithm, getting in this way the best of

67

Chapter 5 Uncertain Predictions

the two worlds. We call such an algorithm preferential. In this direction, we provide in
Section 5.3 a consistent optimal algorithm, called Shortest Remaining Predicted Processing
Time, when the predictions are accurate for the single machine problem. By combining
this with the non-clairvoyant Round Robin algorithm, we give a preferential algorithm
for the problem 1 | 𝑟 𝑗 , non-clair. |

∑
𝑗 𝐶 𝑗 . In Section 5.4 we give again a consistent

optimal algorithm, called Shortest Predicted Processing Time First, when the predictions
are accurate for the multiple machines problem. It is also known that Round Robin is
2-competitive for the non-clairvoyant problem in multiple machines [MPT94]. We then
give the first preferential algorithm for the problem 𝑃 | non-clair. | ∑𝑗 𝐶 𝑗 .

5.2 Notations and Preliminaries
We consider a set of 𝑛 jobs J to be scheduled either on a single machine or on𝑚 parallel
machines. Each job 𝑗 ∈ J is characterized by a release time 𝑟 𝑗 and an actual (real)
processing time 𝑝 𝑗 . We assume that 𝑝 𝑗 > 1 ∀𝑗 . For each job, we have also a predicted
value of its processing time, denoted by 𝑦 𝑗 . At the release time of a job, the algorithm is
informed of the existence of this job as well as of the predicted value of its processing
time. The algorithm finds out the actual processing time of the job, only after assigning
𝑝 𝑗 units of time to the job and hence knows that the job has been completed. In other
words, our model is non-clairvoyant. A job is considered active if it has been released
and is not yet completed. Finally, we denote by [𝑗 the error of the prediction for job 𝑗 ,
i.e. [𝑗 = |𝑦 𝑗 − 𝑝 𝑗 |, and [=

∑
𝑗 [𝑗 is the total error of the input.

It is known that the optimal strategy for the objective of minimizing the sum of
completion times in the clairvoyant case is to follow the Shortest Processing Time First
(SPT) rule when all release times are zero. When arbitrary release times are introduced
in the model, the Shortest Remaining Processing Time First (SRPT) rule is optimal. In the
SRPT algorithm, at each time 𝑡 , the active job with the shortest remaining processing
time is chosen to be executed. A job is removed from the active jobs when it has received
𝑝 𝑗 units of processing time.

Our goal in this chapter is to find algorithms that use the predictions and perform as
good as the SPT and SRPT algorithms, in other words optimally, when the predictions
are accurate and in the same time not too bad when the predictions are wrong.

A Preferential Algorithm In order to get the best out of each world, we will
consider two algorithms. Let A be a consistent algorithm with a competitive ratio 𝛼 ,
and B be a robust algorithm with a competitive ratio 𝛽 . Purohit et al. in [PSK18], call a
non-clairvoyant scheduling algorithm monotonic if it has the following property.

▶ Definition 5.1 (Monotonicity). Given two instances with identical inputs and
actual job processing times (𝑝1, . . . , 𝑝𝑛) and (𝑝′1, . . . , 𝑝′𝑛) such that 𝑝 𝑗 ⩽ 𝑝′𝑗 for all 𝑗 , the

68

Single Machine Section 5.3

objective function value found by the algorithm for the first instance is no higher than
that for the second. ◀

They also give the following lemma on how to combine the two aforementioned
monotonic algorithms. For completeness, we provide the proof of the lemma first
presented in [PSK18].

▶ Lemma 5.2. Given two monotonic algorithms, A and B, with competitive ratios 𝛼
and 𝛽 respectively for the minimum total completion time problemwith preemption, and
a parameter _ ∈ (0, 1), one can obtain an algorithm with competitive ratio min

{
𝛼
_
,
𝛽

1−_

}
.
◀

Proof. The combined algorithm runs the two given algorithms in parallel. The 𝛼-
approximation is run at a rate of _, and the 𝛽-approximation at a rate of 1−_. Compared
to running at rate 1, if algorithmA runs at slower rate of _, all completion times increase
by a factor of 1

_
, so it becomes a 𝛼

_
-approximation. Now, the fact that some of the jobs

are concurrently being executed by algorithm B only decreases their processing times
from the point of view of A, so by monotonicity, this does not make the objective of
A any worse. Similarly, when algorithm B runs at a lower rate of 1 − _, it becomes a
𝛽

1−_ -approximation, and by monotonicity can only get better from concurrency with A.
Thus, both bounds hold simultaneously, and the overall guarantee is their minimum. ■

In what follows, we focus on designing a consistent algorithm when the predictions
are good and a robust algorithm otherwise. We will use Lemma 5.2 to get a preferential
algorithm.

5.3 Single Machine

In this section, we deal with the scheduling problem with release dates on a single
machine. We present the Shortest Remaining Predicted Processing Time First (SRPPT)
algorithm, and show that it is a consistent algorithm for the objective of minimizing the
sum of completion times. We then use the fact that the robust Round Robin algorithm
is shown to be 4-competitive for the same objective in a very recent work by Moseley
and Vardi [MV22]. Finally, we combine the two results in Theorem 5.8. At the end of
the section, we give a simpler analysis for the objective showing that the Round Robin
algorithm is 4-approximate in the setting with release dates. We note that our analysis is
based on the dual fitting technique as proposed in [GGK+19], using speed augmentation,
in contrast with the more tedious analysis based on potential functions in [MV22].

69

Chapter 5 Uncertain Predictions

5.3.1 A Consistent Algorithm

We distinguish jobs as overestimated, O, and underestimated ones,U, according to their
predicted and actual processing times. More formally, a job is said to be overestimated if
𝑦 𝑗 ⩾ 𝑝 𝑗 . On the other hand, a job is underestimated if 𝑦 𝑗 < 𝑝 𝑗 . Finally, we denote the
total error of each subset as [O =

∑
𝑗∈O [𝑗 for the overestimated jobs, and [U =

∑
𝑗∈U [𝑗

for the underestimated ones.
Consider a schedule 𝜎 . Given a time 𝑡 , we denote by 𝑒 [0,𝑡)

𝑗
the elapsed time of job 𝑗 ,

i.e. the amount of processing time units executed from the beginning of the schedule.
We remind that a job 𝑗 is active at time 𝑡 if it has been released (i.e. 𝑡 ⩾ 𝑟 𝑗), and if
its elapsed time is smaller than its actual processing time, 𝑒 [0,𝑡)

𝑗
< 𝑝 𝑗 . We denote by

𝑝 𝑗 (𝑡) = 𝑝 𝑗 − 𝑒
[0,𝑡)
𝑗

the remaining processing time of an active job 𝑗 at time 𝑡 , and by
𝑦 𝑗 (𝑡) = 𝑦 𝑗 − 𝑒

[0,𝑡)
𝑗

its remaining predicted processing time. To distinguish the completion
times of a job 𝑗 in various schedules we write 𝐶 𝑗

��𝜎
𝑡
, where 𝜎 denotes the schedule and 𝑡

the time. Note here that the time subscript is not the same as the completion time of
job 𝑗 . It will be used to distinguish between multiple schedules that change over time.
When not necessary and obvious from the context, the time subscript is omitted. In
what follows, we may have multiple schedules for a specific time 𝑡 . In such case, the
schedules are created using different instances and hence the distinction between these
schedules is clear from the context.

Algorithm

In the Shortest Remaining Predicted Processing Time First (SRPPT) algorithm, at each
time 𝑡 , the active job (or one of the active jobs) with the shortest remaining predicted
processing time is chosen to be executed. A job is added to the active jobs at time 𝑟 𝑗 and
it is removed from the active jobs after receiving 𝑝 𝑗 units of processing time. In other
words, a job can be removed from the active jobs before receiving 𝑦 𝑗 units of processing
time if it is overestimated. Similarly, if a job is underestimated, it remains active even if
it is has received 𝑦 𝑗 units of time. In this case, at the moment an underestimated job
receives 𝑦 𝑗 units of processing time, it will be executed until completion, i.e. until it
has received 𝑝 𝑗 units of processing time, as the job with the highest priority, having
𝑦 𝑗 (𝑡) ⩽ 0. Only one such job can exist at each time.

To analyze this algorithm, we propose a transformation from an optimal schedule
for the sum of completion times to the schedule produced by the SRPPT algorithm.
An optimal schedule can be obtain by running the SRPT algorithm using the actual
processing times of the jobs. The transformation consists of two steps. The first step
(Transformation Step I below) takes place only once in the beginning and its purpose is
to bound the cost inflicted by overestimated job in the objective function. The second
step (Transformation Step II below), happens iteratively over time starting at time 0. In

70

Single Machine Section 5.3

this second step, we bound the cost of the underestimated jobs and in the same time we
slightly refine the cost of the overestimated jobs in the objective function.

Transformation Step I To bound how much overestimated jobs can increase the
value of the objective function, we create an intermediate schedule, called 𝜎O . Consider
the auxiliary instance, 𝐼𝑎𝑢𝑥 , created as follows from an instance 𝐼 . For the overestimated
jobs of 𝐼 , we include the predicted processing time in the auxiliary instance 𝐼𝑎𝑢𝑥 while
for the underestimated jobs of 𝐼 we include the actual processing time in 𝐼𝑎𝑢𝑥 , i.e.
𝐼𝑎𝑢𝑥 = {𝑦 𝑗 : 𝑗 ∈ O} ∪ {𝑝 𝑗 : 𝑗 ∈ U}. Let 𝜎∗ be an optimal schedule of this instance, and
let 𝑗 be a job 𝑗 in this schedule. This job may be preempted several times in the schedule.
Denote by ℓ1

𝑗 , ℓ
2
𝑗 , . . . , ℓ

𝑘
𝑗 the length of the partial execution of job 𝑗 in 𝜎∗ (with 𝑘 ⩾ 1

and
∑
𝑘 ℓ

𝑘
𝑗 = 𝑝 𝑗). Underestimated jobs have the same length in the auxiliary instance as

in the optimal schedule while overestimated jobs have bigger length in the auxiliary
instance. Therefore, for the underestimated jobs, we keep the same length for each
part. On the contrary, for the overestimated jobs, we change the length of only the
last part and we increase it by its error, i.e. ℓ ′1𝑗 = ℓ1

𝑗 , ℓ
′2
𝑗 = ℓ2

𝑗 , . . . , ℓ
′𝑘
𝑗 = ℓ𝑘𝑗 + [𝑗 , such as∑

𝑘 ℓ
′𝑘
𝑗 = 𝑦 𝑗 . As a result the total length of the overestimated job is equal to the predicted

value of 𝐼𝑎𝑢𝑥 . We now create the intermediate schedule 𝜎O , by scheduling the jobs in
the auxiliary instance in the same order as in the optimal schedule 𝜎∗, using the partial
lengths we created above.

The following lemma gives us a relation between the intermediate and the optimal
schedule.

▶ Lemma 5.3. We have
∑
𝑗 𝐶 𝑗

��𝜎O
⩽

∑
𝑗 𝐶 𝑗

��𝜎∗
+ 𝑛[O . ◀

Proof. The processing time of each overestimated job 𝑗 is increased by [𝑗 and can delay
at most 𝑛 jobs. For a job 𝑗 , we have:

𝐶 𝑗
��𝜎O
⩽ 𝐶 𝑗

��𝜎∗
+ 𝑛[𝑗

Summing over all jobs, the lemma follows. ■

Example of Step I Consider the following instance. A job is described by a triplet
𝑗 = (𝑟 𝑗 , 𝑝 𝑗 , 𝑦 𝑗). I = {1 = (0, 1, 3), 2 = (0, 2, 2), 3 = (3, 5, 3), 4 = (3, 4, 4), 5 = (4, 1, 1.5), 6 =

(7, 2, 2), 7 = (7, 3, 1)}. The overestimated jobs are O = {1, 2, 4, 5, 6} while the underes-
timated jobs areU = {3, 7}. In Figure 5.1, 𝜎∗ is the optimal schedule produced by the
SRPT algorithm using the values 𝑝 𝑗 . Finally, 𝜎O is the intermediate schedule created as
described in Step I of the transformation.

Transformation Step II Let 𝜎𝐴 be the schedule produced by the SRPPT algorithm
on instance 𝐼 . We create an initial auxiliary schedule, 𝜎𝑎𝑢𝑥 , by applying the SRPT rule

71

Chapter 5 Uncertain Predictions

σ∗

0

p1

↓
1

p2

↓
3

p3

↓
18

p4 p4

↓
8

p5

↓
5

p6

↓
10

p7

↓
13

σV

0

y1

↓
3

y2

↓
5

p3

↓
20.5

y4 y4

↓
10.5

y5

↓
7.5

y6

↓
12.5

p7

↓
15.5

Figure 5.1: An example of the first step of the transformation.

to the intermediate instance, 𝐼𝑎𝑢𝑥 , created in Step I. Then, in what follows, we will
transform this initial auxiliary schedule into the one produced by the SRPPT algorithm
(𝜎𝐴), in a structured way that allow us to calculate the effect of each miss-predicted
job in the objective function. We are presenting an example of this transformation in
Figure 5.2 and we explain it in the corresponding paragraph.

Before doing this, let us compare the sum of completion times in 𝜎𝑎𝑢𝑥 and in 𝜎O . We
denote by 𝐶 𝑗

��𝜎𝑎𝑢𝑥
𝑖𝑛𝑖𝑡

the completion time of job 𝑗 in the initial schedule 𝜎𝑎𝑢𝑥 . Since both
schedules (𝜎O and 𝜎𝑎𝑢𝑥) use the same instance, 𝐼𝑎𝑢𝑥 , and since 𝜎𝑎𝑢𝑥 uses the optimal
SRPT algorithm, we have: ∑︁

𝑗

𝐶 𝑗
��𝜎𝑎𝑢𝑥
𝑖𝑛𝑖𝑡
⩽

∑︁
𝑗

𝐶 𝑗
��𝜎O

(5.1)

Suppose an auxiliary schedule coincides with 𝜎𝐴 until time 𝑡 . We denote such a
schedule as 𝜎𝑎𝑢𝑥𝑡 . We create subsets of the jobs as follows. Denote by F O and F U

the set of overestimated and underestimated jobs, respectively, that finish execution in
[0, 𝑡). We also create a subset, denoted byMU , containing the underestimated jobs that
were miss-placed in [0, 𝑡) (case 3 below). We define the reduced instance at time 𝑡 as
𝐼𝑎𝑢𝑥𝑡 = {𝑦 𝑗 (𝑡) : 𝑗 ∈ O} ∪ {0 : 𝑗 ∈ F O} ∪ {𝑝 𝑗 (𝑡) : 𝑗 ∈ U } ∪ {0 : 𝑗 ∈ F U } ∪ {𝑦 𝑗 (𝑡) : 𝑗 ∈
MU}. The auxiliary schedule 𝜎𝑎𝑢𝑥𝑡 consists of a fixed part which coincides with 𝜎𝐴 in
the interval [0, 𝑡) and a part which is produced by executing the SRPT algorithm using
the reduced instance 𝐼𝑎𝑢𝑥𝑡 .

Our transformation, starting at time 𝑡 = 0, checks whether the schedules 𝜎𝐴 and 𝜎𝑎𝑢𝑥
coincide (i.e. schedule the same tasks) until time 𝑡 ′ > 𝑡 . If so, we augment the time until
the time moment where the two schedules have the first difference. This difference may
occur for one of the three following reasons.

1. An overestimated job is completed in 𝜎𝐴

72

Single Machine Section 5.3

2. An underestimated job has is completed in 𝜎𝑎𝑢𝑥

3. An underestimated job is misplaced in 𝜎𝑎𝑢𝑥

The transformation handles each case separately. Before that, we present Lemma 5.4
which has a two-fold meaning. On one hand, it dictates when the second case arises
while in the same time, it rules out any other possibility for the two schedules to differ.

▶ Lemma 5.4. Let 𝜎𝑎𝑢𝑥𝑡 be a schedule that coincides with 𝜎𝐴 until time 𝑡 , where 𝑡 is
maximal. Let 𝑖 be the job that starts or continues at time 𝑡 in 𝜎𝐴 and 𝑗 be the job that
starts or continues at time 𝑡 in 𝜎𝑎𝑢𝑥𝑡 . If 𝑖 ≠ 𝑗 , then 𝑖 is underestimated. ◀

Proof. Suppose that 𝑖 ∈ O. For each overestimated job 𝑗 ∈ 𝐼𝑎𝑢𝑥𝑡 its remaining processing
time in 𝜎𝑎𝑢𝑥𝑡 is equal to its predicted remaining processing time in 𝜎𝐴. Hence, the job 𝑖
has the smallest predicted remaining processing time among all jobs from O that can be
serviced at the time 𝑡 . Next, since job 𝑖 is the job that starts or continues at time 𝑡 in 𝜎𝐴

then the remaining processing time of 𝑖 is less than the remaining predicted processing
time of each available job from U. Since the actual processing time of any job from U
is greater than its predicted processing time, then job 𝑖 must precede all available jobs
in the schedule 𝜎𝑎𝑢𝑥𝑡 at time 𝑡 . We get a contradiction. Thus, if 𝑖 ≠ 𝑗 then 𝑖 ∈ U. ■

Given that 𝜎𝑎𝑢𝑥 and 𝜎𝐴 coincide in the interval [0, 𝑡), the transformation handles the
aforementioned reasons for a difference to exist accordingly.
• Case 1. [An overestimated job is completed in 𝝈𝑨] For a job 𝑗 ∈ O, suppose 𝑙
is the largest index of a part of a job that is executed in [0, 𝑡). If ∑𝑙

𝑖=1 ℓ
𝑖
𝑗 = 𝑝 𝑗 , then

remove all parts with indexes 𝑙 < 𝑖 ⩽ 𝑘 from the schedule. Remove job 𝑗 from the
overestimated set, O, and add it to the finished overestimated set, i.e. F O . Create
a new auxiliary schedule by fixing the schedule at time interval [0, 𝑡) and complete
the rest of the schedule using the SRPT rule with the reduced instance. In this case
the objective function decreases by at least [𝑗 . Moreover, each overestimated job
completed by time 𝑡 with [𝑗 > 0 will create the transformation described in Case 1.

• Case 2. [An underestimated job has is completed in 𝝈𝒂𝒖𝒙] For a job 𝑗 ∈ U.
Suppose 𝑙 is the largest index of a part of a job that is executed in [0, 𝑡). If ∑𝑙

𝑖=1 ℓ
𝑖
𝑗 = 𝑦 𝑗

and
∑
𝑘 ℓ

𝑘
𝑗 = 𝑦 𝑗 , then this is the last part of the job to be executed in [0, 𝑡) and has

finished execution using its predicted time. Note that if this is the case, then job 𝑗

belongs to setMU according to the definition of 𝐼𝑎𝑢𝑥𝑡 . We can continue the execution
of this job until time 𝑡 ′ = 𝑡 +[𝑗 . Remove job 𝑗 from the miss-placed underestimated set,
MU , and add it to the finished underestimated set , i.e. F U . Create a new auxiliary
schedule by fixing the schedule at time interval [0, 𝑡 ′) and complete the rest of the
schedule using the SRPT rule with the reduced instance. In this case the objective
function increases by at most 𝑛[𝑗 . Notice, a job that triggers this case, has already
been called by case 3, resulting in a total difference of the (𝑛 − 1)[𝑗 in the objective
function.

73

Chapter 5 Uncertain Predictions

• Case 3. [An underestimated job is misplaced in 𝝈𝒂𝒖𝒙] The underestimated job
𝑗 is scheduled in 𝜎𝐴 but not in 𝜎𝑎𝑢𝑥 . This case arises when another job has shorter
remaining processing time than job 𝑗 . On the other hand, SRPPT chose to execute job 𝑗 ,
because its remaining predicted processing time is shorter than any other job. Remove
job 𝑗 from the underestimated set,U, and add it to the miss-placed underestimated
set, MU . This way, we enforce the SRPT algorithm to execute job 𝑗 first. Create a
new auxiliary schedule by fixing the schedule at time interval [0, 𝑡) and complete the
rest of the schedule using the SRPT rule with the new reduced instance. In this case
the objective function decreases by at least [𝑗 . Moreover, if an underestimated job
creates this transformation, then in latter time, it creates the transformation described
in case 2.

Example of Step II An example of Step II of the transformation is illustrated in
Figure 5.2. Starting from the initial auxiliary schedule, we notice that it coincides with
𝜎𝐴 until time instant 3, when an overestimated job finishes execution in 𝜎𝑎𝑢𝑥𝑖𝑛𝑖𝑡 (Case 1).
We remove the part of the job corresponding to the error and create a new auxiliary
schedule, 𝜎𝑎𝑢𝑥3 , using the remaining instance and the SRPT rule, resulting in the third
schedule of the figure. We then observe that an underestimated job, job 3, is misplaced
in 𝜎𝑎𝑢𝑥3 (Case 3). In order to force the SRPT rule to place it correctly, we add job 3 in
theMU , and re-run the SRPT algorithm resulting in the fourth schedule in the figure.
We next augment the time until time instant 5, where the schedules 𝜎𝑎𝑢𝑥5 and 𝜎𝐴 stop
coinciding due to Case 1 again. By removing the error part, [5, re-running SRPT with
the reduced instance and augmenting the time, we come up with schedule 𝜎𝑎𝑢𝑥7 . Here,
we come across Case 2 where an underestimated job is finished in 𝜎𝑎𝑢𝑥7 . We then run
job 3 until completion, i.e. until it receives 𝑝3 units of processing time and we augment
the time resulting in 𝜎𝑎𝑢𝑥9 . Notice here, another underestimated job is misplaced in 𝜎𝑎𝑢𝑥9
(Case 2). We add job 7 in MU and re-run the SRPT algorithm. Augmenting the time
of the common schedule to time instant 10, we observe that job 7 is finished without
interruption. We arrive again at Case 2 where we fix the schedules to coincide until
time 12. The final two jobs are correctly placed and exactly predicted, resulting in the
last schedule of the figure, 𝜎𝑎𝑢𝑥

𝑓 𝑖𝑛𝑎𝑙
.

▶ Lemma 5.5. We have
∑
𝑗 𝐶 𝑗

��𝜎𝐴 ⩽ ∑
𝑗 𝐶 𝑗

��𝜎𝑎𝑢𝑥 − [O + (𝑛 − 1)[U . ◀

Proof. Summing up the changes in the objective function for all transformations and
taking into account the comments on Cases 1-3, we get∑︁

𝑗

𝐶 𝑗
��𝜎𝐴 ⩽∑︁

𝑗

𝐶 𝑗
��𝜎𝑎𝑢𝑥 −

∑︁
𝑗∈O

[𝑗 + (𝑛 − 1)
∑︁
𝑗∈U

[𝑗

=
∑︁
𝑗

𝐶 𝑗
��𝜎𝑎𝑢𝑥 − [O + (𝑛 − 1)[U ■

74

Single Machine Section 5.3

σA

0

p1

↓
3

p2

↓
2

p3 p3

↓
9

p4

↓
18

p5

↓
5

p6

↓
14

p7

↓
12

σaux
init

0

y1

↓
5

y2

↓
2

p3

↓
20.5

y4
y4

↓
15.5

y5

↓
6.5

y6

↓
9

p7

↓
12

σaux
3

0

p1

↓
3

p2

↓
2

p3

↓
18.5

y4 y4

↓
8.5

y5

↓
5.5

y6

↓
10.5

p7

↓
13.5

σaux
3

0

p1

↓
3

p2

↓
2

y3 y3

↓
7.5

y4

↓
16.5

y5

↓
5.5

y6

↓
9.5

p7

↓
12.5

σaux
5

0

p1

↓
3

p2

↓
2

y3 y3

↓
7.5

y4

↓
16.5

p5

↓
5

η5
y6

↓
9.5

p7

↓
12.5

σaux
7

0

p1

↓
3

p2

↓
2

y3 y3

↓
7

y4

↓
16

p5

↓
5

y6

↓
9

p7

↓
12

σaux
9

0

p1

↓
3

p2

↓
2

p3 p3

↓
9

y4

↓
18

p5

↓
5

y6

↓
11

p7

↓
14

σaux
10

0

p1

↓
3

p2

↓
2

p3 p3

↓
9

y4

↓
16

p5

↓
5

y6

↓
12

y7

↓
10

σaux
final

0

p1

↓
3

p2

↓
2

p3 p3

↓
9

p4

↓
18

p5

↓
5

p6

↓
14

p7

↓
12

Figure 5.2: An example of the second step of the transformation.

75

Chapter 5 Uncertain Predictions

▶ Theorem 5.6. The SRPPT algorithm has competitive ratio at most (1 + 2[
𝑛
), where

[=
∑
𝑗 [𝑗 . ◀

Proof. The SRPPT algorithm produces the same schedule as the last iteration of the
above described transformation. Using Lemma 5.5 we can bound the performance of
the transformation. We get:

𝐴𝑙𝑔 =
∑︁
𝑗

𝐶 𝑗
��𝜎𝐴 ⩽∑︁

𝑗

𝐶 𝑗
��𝜎𝑎𝑢𝑥 − [O + (𝑛 − 1)[U

⩽
∑︁
𝑗

𝐶 𝑗
��𝜎O

− [O + (𝑛 − 1)[U

⩽
∑︁
𝑗

𝐶 𝑗
��𝜎∗

+ 𝑛[O − [O + (𝑛 − 1)[U

⩽ 𝑂𝑃𝑇 + (𝑛 − 1)[

Here, the first inequality is given by Lemma 5.5, the second one by Inequality 5.1 and
the third by Lemma 5.3.

Given that all processing values are greater or equal than 1, we have that

𝑂𝑃𝑇 ⩾
𝑛(𝑛 + 1)

2 (5.2)

In total, we get

𝐴𝑙𝑔

𝑂𝑃𝑇
⩽ 1 + 2(𝑛 − 1)[

𝑛(𝑛 + 1) ⩽ 1 + 2[
𝑛

(5.3)

as long as 𝑛−1
𝑛+1 < 1. ■

▶ Lemma 5.7. Algorithm SRPPT is monotonic. ◀

Proof. To see that, consider two instances, 𝐼 and 𝐼 ′, with (𝑝1, . . . , 𝑝𝑛) and (𝑝′1, . . . , 𝑝′𝑛)
respectively and 𝑝 𝑗 ⩽ 𝑝′𝑗 ∀ 𝑗 . Both instances have the same predicted values for each
job. In other words, the schedules produced by SRPPT are identical. If a job of instance
𝐼 has a smaller real processing value than the corresponding job of instance 𝐼 ′, it will
finish earlier, resulting in a smaller completion time which can only reduce the total
objective. ■

76

Single Machine Section 5.3

5.3.2 A Preferential Algorithm
▶ Theorem 5.8. The Preferential Round Robin algorithm with release dates and pa-
rameter _ ∈ (0, 1) has competitive ratio at most min

{
1
_
(1 + 2[

𝑛
), 4

1−_

}
. In particular, it is

4
1−_ -robust and

1
_
-consistent. ◀

Proof. This follows from the competitive ratio of SRPPT (Lemma 5.6) and the competitive
ratio of 4 of Round Robin [MV22]. We combine these two monotonic algorithms using
Lemma 5.2. ■

Round Robin – A Simple Analysis
In this subsection, we give a simple analysis showing that the robust Round Robin
algorithm is 4-competitive. We remind that this result is included in the more general
work of Moseley and Vardi [MV22]. Here, we use a simplified version of the linear
program given in [GGK+19] without the precedence constraints. Our analysis is based
on the dual fitting technique.

Let 𝑥 𝑗 (𝑡) be a binary variable which is equal to 1 if the job 𝑗 is executed at time 𝑡 and
0 otherwise. We consider the following integer linear program.

min
∑︁
𝑗

∫ ∞

0
𝑥 𝑗 (𝑡) ·

(
𝑡 + 1

2
)

𝑝 𝑗
𝑑𝑡

𝑠.𝑡 .

∫ ∞

𝑟 𝑗

𝑥 𝑗 (𝑡)
𝑝 𝑗

𝑑𝑡 ⩾ 1 ∀𝑗 (5.4)∑︁
𝑗

𝑥 𝑗 (𝑡) ⩽ 1 ∀𝑡 ⩾ 0 (5.5)

𝑥 𝑗 (𝑡) ∈ {0, 1} ∀𝑗, 𝑡 ⩾ 0 (5.6)

The objective of this program corresponds to the fractional completion time criterion,
which is a lower bound to our objective. Hence this program is a relaxation for our
problem. Constraint (5.4) implies that each job 𝑗 is processed at least 𝑝 𝑗 time. Con-
straint (5.5) implies that at most one job is executed at each time 𝑡 . By relaxing the
integrity Constraint (5.6) for 𝑥 𝑗,𝑡 we get the following dual program.

max
∑︁
𝑗

𝛼 𝑗 −
∫ ∞

0
𝛽 (𝑡)𝑑𝑡

𝑠.𝑡 . 𝛼 𝑗 − 𝛽 (𝑡) · 𝑝 𝑗 ⩽ 𝑡 + 1
2 ∀𝑗, 𝑡 ⩾ 𝑟 𝑗 (5.7)

𝛼 𝑗 ⩾ 0 ∀𝑗 (5.8)
𝛽 (𝑡) ⩾ 0 ∀𝑡 ⩾ 0 (5.9)

77

Chapter 5 Uncertain Predictions

In this section we analyze the Round Robin algorithm based on the dual fitting
approach using the above primal and dual programs. Our analysis uses speed-
augmentation, that is we suppose that in Round Robin the jobs are executed using
a bigger speed than in the optimal solution. Specifically, we suppose that the algorithm
uses speed 1, while the optimal a speed 1

1+𝜖 , for any 𝜖 > 0. In order to simulate this in
the primal program, we can focus on Constraint (5.5) and modify it as flowing:∑︁

𝑗

𝑥 𝑗 (𝑡) ⩽
1

1 + 𝜖
∀𝑡 ⩾ 0

implying that the optimal solution cannot execute a whole unit of job at each time 𝑡
but just a fraction of 1

1+𝜖 . This modification will also affect the dual objective which
becomes: ∑︁

𝑗

𝛼 𝑗 −
1

1 + 𝜖

∫ ∞

0
𝛽 (𝑡)𝑑𝑡 (5.10)

and corresponds to the lower bound to the optimal solution that we will use for the
design of our approximation algorithm.

Let now𝐶 𝑗 be the completion time of the job 𝑗 in the schedule returned by the Round
Robin algorithm. Moreover, let 𝑈 (𝑡) be the set of unfinished jobs at time 𝑡 in Round
Robin. Note that 𝑈 (𝑡) contains also the jobs that are not yet released at time 𝑡 . We
assign the dual variables as follows:

• 𝛼 𝑗 = 𝐶 𝑗 , for each 𝑗

• 𝛽 (𝑡) = |𝑈 (𝑡) |, for each 𝑡 ⩾ 0

▶ Lemma 5.9. For any job 𝑗 and any time 𝑡 ⩾ 𝑟 𝑗 the dual constraint is satisfied, i.e.,
𝛼 𝑗 − 𝛽 (𝑡) · 𝑝 𝑗 ⩽ 𝑡 + 1

2 . ◀

Proof. Fix a job 𝑗 and a time 𝑡 ⩾ 𝑟 𝑗 . We denote by 𝑞ℓ (𝑡) the remaining processing time
of the job ℓ at time 𝑡 . The Round Robin algorithm will share the time equally to all
unfinished jobs. In the worst case for the completion time of 𝑗 , all unfinished jobs are
already released at time 𝑡 , and hence we have that

𝐶 𝑗 − 𝑡 ⩽
∑︁

ℓ∈𝑈 (𝑡) :𝑞ℓ (𝑡)⩽𝑞 𝑗 (𝑡)
𝑞ℓ (𝑡) +

∑︁
ℓ∈𝑈 (𝑡) :𝑞ℓ (𝑡)>𝑞 𝑗 (𝑡)

𝑞 𝑗 (𝑡)

⩽
∑︁

ℓ∈𝑈 (𝑡) :𝑞ℓ (𝑡)⩽𝑞 𝑗 (𝑡)
𝑞 𝑗 (𝑡) +

∑︁
ℓ∈𝑈 (𝑡) :𝑞ℓ (𝑡)>𝑞 𝑗 (𝑡)

𝑞 𝑗 (𝑡)

=
∑︁

ℓ∈𝑈 (𝑡)
𝑞 𝑗 (𝑡) ⩽

∑︁
ℓ∈𝑈 (𝑡)

𝑝 𝑗 = |𝑈 (𝑡) | · 𝑝 𝑗

78

Multiple Machines Section 5.4

Therefore,

𝛼 𝑗 = 𝐶 𝑗 ⩽ 𝑡 + |𝑈 (𝑡) | · 𝑝 𝑗 = 𝑡 + 𝛽 (𝑡) · 𝑝 𝑗 ⩽ 𝑡 + 1
2 + 𝛽 (𝑡) · 𝑝 𝑗

and the lemma follows. ■

▶ Theorem 5.10. The Round Robin algorithm is (1 + 𝜖)-speed 1+𝜖
𝜖
-competitive with

respect to the
∑
𝐶 𝑗 objective. ◀

Proof. By using the proposed assignment of dual variable, for the dual objective using
speed augmentation (Expression (5.10)) we get:∑︁

𝑗

𝛼 𝑗 −
1

1 + 𝜖

∫ ∞

0
𝛽 (𝑡)𝑑𝑡 =

∑︁
𝑗

𝐶 𝑗 −
1

1 + 𝜖

∫ ∞

0
|𝑈 (𝑡) |𝑑𝑡

Note that,
∑
𝑗 𝐶 𝑗 is the objective value of the Round Robin algorithm. Since𝑈 (𝑡) contains

also the jobs that are not released at 𝑡 , the integral in this equation corresponds also to
the objective of Round Robin, i.e.,

∫ ∞
0 |𝑈 (𝑡) |𝑑𝑡 = ∑

𝑗 𝐶 𝑗 . Thus for the dual objective is
equal to ∑︁

𝑗

𝐶 𝑗 −
1

1 + 𝜖

∑︁
𝑗

𝐶 𝑗 =
𝜖

1 + 𝜖

∑︁
𝑗

𝐶 𝑗

and hence the competitive ratio of Round Robin is 1+𝜖
𝜖
. ■

▶ Theorem 5.11. The Round Robin algorithm is 4-competitive with respect to the∑
𝐶 𝑗 objective. ◀

Proof. Based on the Theorem 5.10 and the well-known generic transformation of an
𝑠-speed 𝜌-competitive algorithm to a 𝑠𝜌-competitive algorithm by [BP04], we have that
the Round Robin has an approximation ratio of (1+𝜖)2

𝜖
. This is minimized by setting the

user defined parameter 𝜖 equal to 1, and hence we get a competitive ratio equal to 4. ■

5.4 Multiple Machines
In this section we consider the problem of scheduling jobs on a set of𝑚 identical multiple
machines using predictions. Let J be an instance of 𝑛 jobs with the execution time of
each job being 𝑝 𝑗 : 1 ⩽ 𝑗 ⩽ 𝑛. Each job has also a predicted execution time,𝑦 𝑗 : 1 ⩽ 𝑗 ⩽ 𝑛.
Similarly to the previous section, our model is non-clairvoyant, meaning that the actual
processing time is revealed to the algorithm only when 𝑝 𝑗 units of processing time
are assigned to a specific job. In this section we consider the version of the problem
where all jobs have release dates equal to 0. In what follows, jobs can be preempted

79

Chapter 5 Uncertain Predictions

and migrated to a different machine at no cost at any time. Our goal is to design an
algorithm taking into account the predictions under the objective of minimizing the
total sum of completion times.

We present the consistent algorithm Shortest Predicted Processing Time First forMultiple
Machines (SPPT(m)). We show that SPPT(m) is optimal if the predictions are accurate.
For this specific setting, Round Robin is shown to be 2-competitive in [MPT94]. Finally,
we combine the two results in Theorem 5.15.

5.4.1 A Consistent Algorithm

We start by defining a grouping between the jobs using their predicted processing times.

▶ Definition 5.12. Let J be any instance of size 𝑛 with the predicted processing times
of the jobs being such that 𝑦1 ⩾ 𝑦2 ⩾ . . . ⩾ 𝑦𝑛 . For 1 ⩽ 𝑘 ⩽ ⌈ 𝑛

𝑚
⌉, we define the group of

jobs 𝐺𝑃𝑟 (𝑘) as 𝐺𝑃𝑟 (𝑘) = {𝑦𝑖 | (𝑘 − 1)𝑚 < 𝑖 ⩽ 𝑘𝑚}. ◀

Groups give the execution ordering of the jobs in each machine. A job of group 1 is
scheduled on a machine in the last position, a job of group 2 is scheduled second to last,
etc. All groups, except possibly the last one, consist of𝑚 consecutive jobs.

Optimal To bound the value of an optimal solution, consider a grouping based on the
actual processing time of the jobs, arranged so as 𝑝1 ⩾ 𝑝2 ⩾ . . . ⩾ 𝑝𝑛 . For 1 ⩽ 𝑘 ⩽ ⌈ 𝑛

𝑚
⌉,

define 𝐺 (𝑘) as 𝐺 (𝑘) = {𝑝𝑖 | (𝑘 − 1)𝑚 < 𝑖 ⩽ 𝑘𝑚}. This grouping was first introduced by
Bruno et al. in [BCS74]. A job in group𝐺 (𝑘) has exactly 𝑘 − 1 jobs scheduled after it on
its machine. Thus, it contributes to the completion time of exactly 𝑘 jobs.

𝑂𝑃𝑇 =

⌈ 𝑛
𝑚

⌉∑︁
𝑘=1

∑︁
𝑖∈𝐺 (𝑘)

𝑘𝑝𝑖 ⩾
⌈ 𝑛
𝑚
⌉ (⌈ 𝑛

𝑚
⌉ + 1)

2 ⩾
𝑛(𝑛 +𝑚)

2𝑚2 (5.11)

The inequality holds due to the assumption 𝑝𝑖 ⩾ 1 for each job 𝑖 .
It is known that the SPT algorithm returns a schedule which minimizes the sum of

completion times. We can decompose the impact of a job in this sum in two parts. The
first one represents the actual processing time of each job while the second one is the
amount this job has been delayed by other jobs executed before in the same machine.
Summing the first and second part over all jobs, we get the following:

𝑂𝑃𝑇 ⩾
𝑛∑︁
𝑖=1

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙),𝑘≠𝑙

𝑝𝑖 (5.12)

80

Multiple Machines Section 5.4

Note the second sum. For any pair of jobs (𝑖, 𝑗), we count the length of job 𝑖 only if its
real processing time is smaller than the real processing time of job 𝑗 . Furthermore, we
make sure that two jobs of the pair do not belong to the same group. Finally, note that
the subscript of the second sum counts the length of a job for all jobs that belong in a
different group, i.e.𝑚 different jobs, as many as the jobs in a group. However, a given
job actually delays only the jobs scheduled in the same machine. To correctly measure
the delay, we have to normalize the second sum by𝑚.

Algorithm

The SPPT(𝑚) algorithm first creates ⌈𝑛/𝑚⌉ groups 𝐺𝑃𝑟 (𝑘) of the tasks, considering the
tasks sorted in non increasing order of their predicted values (as seen above, 𝐺𝑃𝑟 (1)
contains the𝑚 tasks with the largest predicted values, and so forth). Then, each machine
receives (at most) one task of each group. On each machine, the tasks are scheduled in a
non decreasing order of their predicted values, and the processing times of each task is
its actual processing time.

▶ Theorem 5.13. The SPPT(𝑚) algorithm has competitive ratio at most 1 + 2𝑚[
𝑛

, where
[=

∑
𝑗 [𝑗 . ◀

Proof. A job 𝑖 that belongs in group 𝐺𝑃𝑟 (𝑘) will delay all the jobs that are scheduled
in the same machine as it is. More specifically, it will delay those jobs, 𝑗 , that belong
in a different group 𝐺𝑃𝑟 (𝑙) with 𝑙 < 𝑘 . For any pair of jobs 𝑖, 𝑗 such that 𝑖 ∈ 𝐺𝑃𝑟 (𝑘)
and 𝑗 ∈ 𝐺𝑃𝑟 (𝑙), we define as 𝑑 (𝑖, 𝑗) the amount of job 𝑖 that has been executed before
the completion time of job 𝑗 . We can define now the performance of the algorithm as
follows:

𝐴𝑙𝑔 =

𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)

𝑑 (𝑖, 𝑗) (5.13)

In the second sum, we count the delay for all the jobs that belong in a different group.
However, only one of them is actually delayed, i.e. the one scheduled in the same
machine. In order to count the delay correctly, we divide the sum by the number of
machines. If job 𝑖 is correctly predicted, i.e. 𝑦𝑖 < 𝑦 𝑗 and 𝑝𝑖 < 𝑝 𝑗 , then job 𝑖 delays job 𝑗

for 𝑥𝑖 amount of time. If job 𝑖 is wrongly predicted, i.e. 𝑦𝑖 > 𝑦 𝑗 and 𝑝𝑖 < 𝑝 𝑗 , then job 𝑗

delays job 𝑖 for 𝑥 𝑗 amount of time. If jobs 𝑖 and 𝑗 belong in the same group, they are
executed in different machines, therefore no pairwise delay exists. More formally, given
the group that each job belongs to, for a pair of jobs (𝑖, 𝑗) such that job 𝑖 belongs to

81

Chapter 5 Uncertain Predictions

group𝐺𝑃𝑟 (𝑘) and 𝑗 belongs to group𝐺𝑃𝑟 (𝑙) and 𝑝𝑖 < 𝑝 𝑗 , we define the delay as follows:

𝑑 (𝑖, 𝑗) =

𝑝𝑖 if 𝑘 > 𝑙

0 if 𝑘 = 𝑙

𝑝 𝑗 if 𝑘 < 𝑙

(5.14)

We can now split the second sum of the performance of the algorithm according to the
correctness of the prediction.

𝐴𝑙𝑔 =

𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘>𝑙

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

𝑝𝑖

=

𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘≠𝑙

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

(𝑝 𝑗 − 𝑝𝑖)

⩽
𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘≠𝑙

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

(𝑝 𝑗 − 𝑦 𝑗) + (𝑦𝑖 − 𝑝𝑖)

⩽
𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘≠𝑙

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

|𝑝 𝑗 − 𝑦 𝑗 | + |𝑦𝑖 − 𝑝𝑖 |

=

𝑛∑︁
𝑗=1

𝑝 𝑗 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘≠𝑙

𝑝𝑖 +
1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

([𝑖 + [𝑗) (5.15)

⩽ 𝑂𝑃𝑇 + 1
𝑚

∑︁
(𝑖, 𝑗) :𝑝𝑖<𝑝 𝑗

𝑖∈𝐺𝑃𝑟 (𝑘), 𝑗∈𝐺𝑃𝑟 (𝑙)
𝑘<𝑙

([𝑖 + [𝑗)

⩽ 𝑂𝑃𝑇 + (𝑛 − 1)
𝑚

[(5.16)

In addition, to pass from the exact values to the error, we use the fact that 𝑦𝑖 > 𝑦 𝑗 in the
specific sum and the definition of the error, i.e., [𝑗 = |𝑝 𝑗 −𝑦 𝑗 |. In (5.15) we use inequality

82

Experimental Evaluation Section 5.5

(5.12). From (5.16) and inequality (5.11) we get:

𝐴𝑙𝑔

𝑂𝑃𝑇
⩽ 1 + (𝑛 − 1)[

𝑚𝑂𝑃𝑇
= 1 + 2𝑚(𝑛 − 1)[

𝑛(𝑛 +𝑚) < 1 + 2𝑚[

𝑛

as long as 𝑛−1
𝑛+𝑚 < 1 due to𝑚 ⩾ 1 and the proof is complete. ■

▶ Lemma 5.14. Algorithm SPPT(m) is monotonic. ◀

Proof. (Same as Lemma 5.7) To see that, consider two instances, 𝐼 and 𝐼 ′, with (𝑝1, . . . , 𝑝𝑛)
and (𝑝′1, . . . , 𝑝′𝑛) respectively and 𝑝 𝑗 ⩽ 𝑝′𝑗 ∀ 𝑗 . Both instances have the same predicted
values for each job. In other words, the schedules produced by SPPT(m) are identical.
If a job of instance 𝐼 has a smaller real processing value than the corresponding job of
instance 𝐼 ′, it will finish earlier, resulting in a smaller completion time which can only
reduce the total objective. ■

5.4.2 A Preferential Algorithm
▶ Theorem 5.15. The Preferential Round Robin for multiple machines algorithm with
parameter _ ∈ (0, 1) has competitive ratio at most min

{
1
_
(1 + 2𝑚[

𝑛
), 2

1−_

}
. In particular,

it is 2
1−_ -robust and

1
_
-consistent. ◀

Proof. This follows from the competitive ratio of SPPT(m) (Theorem 5.13) and the
competitive ratio of 2 of Round Robin [MPT94]. We combine these two monotonic
algorithms using Lemma 5.2. ■

5.5 Experimental Evaluation
In this section, we present experimental results which confirm the bounds stated on
Theorems 5.8 and 5.15 for the single and multiple machines respectively. The code is
publicly available at https://github.com/ildoge/SUP.

We create artificial instances, each one consisting of𝑛 = 50 jobs for the single machine
case, following the same approach as in [PSK18]. We draw the actual processing time
values, 𝑝 𝑗 , independently for each job from a Pareto distribution with a parameter
𝛼 = 1.1. An error value, [𝑗 , is drawn from a normal distribution with mean 0 and
standard deviation 𝜎 . Finally, we set the predicted processing time of each job to be
𝑦 𝑗 = 𝑝 𝑗 + [𝑗 . For the release times of the jobs, we first set the interval [0, 𝜏 ∑

𝑗 𝑝 𝑗] using
the actual processing times created before, where 𝜏 ⩾ 0 is a parameter that allows us
to scale the size of the interval. We then draw 𝑛 values uniformly at random from this
interval and assign them to the 𝑛 jobs. Notice that, when the release dates are dense
(jobs become available close to each other), then there is not a lot of idle time in the

83

https://github.com/ildoge/SUP

Chapter 5 Uncertain Predictions

schedule. On the contrary, if jobs become available sparsely, then both the algorithm
and the optimal are forced to take similar scheduling decisions. For this reason, we set
𝜏 = 0.1 for the first simulations.

Figure 5.3: Single machine, 𝜏 = 0.1

We implement the algorithms: Round Robin (RR), Shortest Remaining Predicted
Processing Time First (SRPPT) and Preferential Round Robin(PRR). We compare the
performance of the algorithms for different values of error by parameterizing the 𝜎
of the normal distribution. We use values of 𝜎 that belong in [0, 5000] using a step of
50. The performance of the algorithms is compared to the optimal Shortest Remaining
Processing Time First (SRPT) algorithm using the actual processing values. The ratio
of an algorithm is taken as the average over 2000 independent runs. As we see in
Figure 5.3, the SRPPT algorithm performs really well when the error is small enough,
but deteriorates fast otherwise. We observe also the robust behavior of Round Robin
independently of the total error. In between, we have our Preferential Round Robin
algorithm, with _ = 1/2, which performs well for small values of error while remaining
competitive to Round Robin when the error is big.

Notice that for 𝜎 = 1000, our Preferential Round Robin algorithm out-performs both
the SRPPT and RR. By fixing this value of 𝜎 , we compare the performance of PRR for

84

Experimental Evaluation Section 5.6

Figure 5.4: Single machine, 𝜎 = 1000

various values of the parameter 𝜏 (Figure 5.4). As expected, the ratio of the algorithm
deteriorates as the interval becomes smaller. Interestingly, we observe that we get the
worst case ratios when all release times are equal to zero. On the other hand, when the
interval is large and the release times sparsely distributed in it, our algorithm is nearly
optimal.

For the multiple machines setting, we implement the algorithms: Round Robin
(RR(m)), Shortest Predicted Processing Time First (SPPT(m)) and Preferential Round
Robin (PRR(m)). We follow the same approach to produce the actual processing values,
the error and the predicted processing values. In this case, we have no release times.
Here, we follow the same framework of executions as before, however we compare each
algorithm to the optimal Shortest Processing Time First (SPT(m)) algorithm for multiple
machines. We note that we run these experiments using𝑚 = 5 machines and 𝑛 = 250
jobs in order to maintain enough jobs and load in each machine. The results can be seen
in Figure 5.5 and can be interpreted in the same way as the results of the single machine
setting.

85

Chapter 5 Uncertain Predictions

Figure 5.5:Multiple machines

5.6 Conclusion
In this chapter, we studied the problem of integrating predictions to improve the per-
formance of online algorithms for the non-clairvoyant scheduling problem on a single
machine with release dates and on multiple machines without release dates. Using
predictions to improve the performance of algorithms is a very versatile technique and
can be applied to various fields. Today, machine learning algorithms can give predictions
on the length of the jobs (or other characteristics) that will arrive, justifying the attention
to the novel technique.

86

6 General Conclusions and Outlook

The need for more energy efficient scheduling algorithms is of paramount importance
nowadays. In this thesis we studied a plethora of scheduling models under various
constraints that are a step closer to more realistic platforms. The proposed algorithms
minimize the energy consumption either explicitly as an objective function, or implicitly
by imposing constraints to reduce the energy-hungry data movement.

In our first model, studied in Chapter 3, we considered two kind of machines, i.e.
computing and input/output nodes, motivated by real-life high performance computers.
Applying contiguity and locality constraints, we proposed approximation algorithms
for malleable jobs whose processing time is defined by either a proportional or a generic
speed-up function. We assumed that the machines are interconnected in a line topology
network. Even though the line grasps the basic characteristics of direct architectures, it
is too simplistic compared to current implementations. It would be very interesting to
see if our approach can be extended to higher dimension topologies. In addition, one
can extend the discussion on indirect topologies and spawn new constraints to reduce
data movement. Furthermore, in our model, each job needs a specific input/output node
for its execution. The model will acquire a different perspective if jobs dictate a set
of input/output nodes that they can use, and the schedule may allocate one or more
of them. This still allows to minimize data movement but this may help to optimize
better the objective function. In the same vein, another possible direction could be to
relax the locality and/or contiguity constraints in order to study the trade-off between
our objective function (e.g. makespan) and the “degree of locality”. This could lead to
a bi-objective problem. As HPC users submit jobs in an online manner, it would be
interesting to either design purely online algorithms for the same problem or find an
efficient way to transform already known offline algorithms to online ones. Finally, one
can implement the proposed algorithms and evaluate them in practice.

Next, in Chapter 4, we studied the model of scheduling jobs on a single (or multiple)
speed scalable machine(s) under the explorable uncertainty with tests setting. The
scheduler here has to take two critical decisions about executing or not the tests
and adjusting the speed of the machine(s), which is directly related to the energy
consumption. We started by applying restrictions on the deadlines of the jobs when they
all arrive at the same time, and we finished with the general online case with arbitrary
deadlines. We proposed competitive algorithms for all cases. Adding tests that can
reveal information for the input and having a direct impact on the objective function is

87

a fairly new field. We are curious whether the new framework can work with other
existing online algorithms, such as the Optimal Available (OA) proposed in [YDS95].
Determining the impact of testing (if possible) in the case of the OA is an interesting
question. Moreover, in our approach, we consider that the complete workload of the
upper bound is executed if the test is not made. An interesting alternative would be to
assume that the actual workload of a job is fixed with or without the test. In such case,
if the test is not made, the job would be finished after its exact workload is executed
(and not its upper bound). Here, the test would be used to reveal the exact workload of
a task before its execution, and thus allow the scheduler to adjust the speed accordingly,
in order to minimize energy consumption.

Finally, in Chapter 5, we studied the problem of scheduling jobs with unknown
processing times using uncertain predictions on a single (or multiple) machine(s). The
use of (potentially erroneous) predicted values in the place of processing times allows
us to design algorithms that are both consistent and robust. There is a trade-off between
the accuracy of the predictions and the efficiency of the online algorithm. However, the
upper bound in case of inaccurate predictions, is not far from the best non-clairvoyant
algorithm. Our approach, essentially, combines a consistent and a robust algorithm in
order to achieve the best of both worlds. The methodology of combining algorithms is
not well studied and is an interesting point where our approach can gain in performance.
The domain of augmenting problems with the use of predictions is very recent and our
work is one of the first steps to apply it in scheduling problems. One could study other
variants of scheduling under the new framework such as associating weights to jobs
and using parallel jobs (either rigid or malleable). Other objective functions could be
also considered.

88

6Bibliography
[AAG15] Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-

processor speed scaling with migration. J. Comput. Syst. Sci. 81:7
(2015), 1194–1209. url: https://doi.org/10.1016/j.jcss.2015.03.001 (see
pages 12–14, 62).

[ABC+99] Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger,
Claire Kenyon, Sanjeev Khanna, Ioannis Milis, Maurice Queyranne, Mar-
tin Skutella, Clifford Stein, and Maxim Sviridenko. Approximation
Schemes for Minimizing AverageWeighted Completion Time with
Release Dates. In: 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. IEEE Computer
Society, 1999, 32–44. url: https://doi.org/10.1109/SFFCS.1999.814574 (see
page 16).

[ABK+02] Abdel Krim Amoura, Evripidis Bampis, Claire Kenyon, and Yannis
Manoussakis. Scheduling Independent Multiprocessor Tasks. Al-
gorithmica 32:2 (2002), 247–261. url: https://doi.org/10.1007/s00453-001-
0076-9 (see pages 10, 11).

[ABK+18] Luciana Arantes, Evripidis Bampis, Alexander V. Kononov, Manthos Let-
sios, Giorgio Lucarelli, and Pierre Sens. Scheduling under Uncertainty:
A Query-based Approach. In: Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018, 4646–4652.
url: https://doi.org/10.24963/ijcai.2018/646 (see page 15).

[ABK+19] Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed
scaling on parallel processors with migration. J. Comb. Optim. 37:4
(2019), 1266–1282. url: https://doi.org/10.1007/s10878-018-0352-0 (see
pages 12, 13).

[ABL+17] Susanne Albers, Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli,
and Richard Stotz. Scheduling on power-heterogeneous processors.
Inf. Comput. 257 (2017), 22–33. url: https://doi.org/10.1016/j.ic.2017.09.013
(see pages 12–14).

89

https://doi.org/10.1016/j.jcss.2015.03.001
https://doi.org/10.1109/SFFCS.1999.814574
https://doi.org/10.1007/s00453-001-0076-9
https://doi.org/10.1007/s00453-001-0076-9
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.1007/s10878-018-0352-0
https://doi.org/10.1016/j.ic.2017.09.013

[ACE+20] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and
Bertrand Simon. Online metric algorithms with untrusted predic-
tions. In: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceed-
ings of Machine Learning Research. PMLR, 2020, 345–355. url: http :
//proceedings.mlr.press/v119/antoniadis20a.html (see page 17).

[AE20] Susanne Albers and Alexander Eckl. Explorable Uncertainty in
Scheduling with Non-Uniform Testing Times. CoRR abs/2009.13316
(2020). arXiv: 2009.13316. url: https://arxiv.org/abs/2009.13316 (see
pages 2, 15).

[AGP20] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML
Predictions for Online Algorithms. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020,
303–313. url: http://proceedings.mlr.press/v119/anand20a.html (see
page 17).

[Alb10] Susanne Albers. Energy-efficient algorithms. Commun. ACM 53:5
(2010), 86–96. url: https://doi.org/10.1145/1735223.1735245 (see page 12).

[AMS14] Susanne Albers, Fabian Müller, and Swen Schmelzer. Speed Scaling
on Parallel Processors. Algorithmica 68:2 (2014), 404–425. url: https:
//doi.org/10.1007/s00453-012-9678-7 (see pages 12, 13).

[Bam16] Evripidis Bampis. Algorithmic Issues in Energy-Efficient Computa-
tion. In: Discrete Optimization and Operations Research - 9th International
Conference, DOOR 2016, Vladivostok, Russia, September 19-23, 2016, Pro-
ceedings. Ed. by Yury Kochetov, Michael Khachay, Vladimir L. Beresnev,
Evgeni A. Nurminski, and Panos M. Pardalos. Vol. 9869. Lecture Notes in
Computer Science. Springer, 2016, 3–14. url: https://doi.org/10.1007/978-
3-319-44914-2%5C_1 (see page 12).

[BBC+11] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average
Rate Speed Scaling. Algorithmica 60:4 (2011), 877–889. url: https://doi.
org/10.1007/s00453-009-9379-z (see pages 12, 13).

[BCS74] J. Bruno, E.G. Coffman, and R. Sethi. Scheduling Independant Tasks
to Reduce Mean Finishing Time. Communications of the A.C.M. 17:7
(1974) (see page 80).

[BDD+92] Jacek Blazewicz, Paolo Dell’Olmo, Maciej Drozdowski, and Maria Grazia
Speranza. Scheduling Multiprocessor Tasks on Three Dedicated
Processors. Inf. Process. Lett. 41:5 (1992), 275–280. url: https://doi.org/10.
1016/0020-0190(92)90172-R (see page 10).

90

http://proceedings.mlr.press/v119/antoniadis20a.html
http://proceedings.mlr.press/v119/antoniadis20a.html
https://arxiv.org/abs/2009.13316
https://arxiv.org/abs/2009.13316
http://proceedings.mlr.press/v119/anand20a.html
https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1007/s00453-012-9678-7
https://doi.org/10.1007/s00453-012-9678-7
https://doi.org/10.1007/978-3-319-44914-2%5C_1
https://doi.org/10.1007/978-3-319-44914-2%5C_1
https://doi.org/10.1007/s00453-009-9379-z
https://doi.org/10.1007/s00453-009-9379-z
https://doi.org/10.1016/0020-0190(92)90172-R
https://doi.org/10.1016/0020-0190(92)90172-R

[BDG+15] Iwo Bladek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler.
On contiguous and non-contiguous parallel task scheduling. J.
Scheduling 18:5 (2015), 487–495. url: https://doi.org/10.1007/s10951-015-
0427-z (see pages 10, 12).

[BDJ+09] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Otte, and
Denis Trystram.Approximation Algorithms for Multiple Strip Pack-
ing. In: Approximation and Online Algorithms, 7th International Workshop,
WAOA 2009, Copenhagen, Denmark, September 10-11, 2009. Revised Papers.
Ed. by Evripidis Bampis and Klaus Jansen. Vol. 5893. Lecture Notes in
Computer Science. Springer, 2009, 37–48. url: https://doi.org/10.1007/978-
3-642-12450-1%5C_4 (see page 11).

[BDK+20] Evripidis Bampis, Konstantinos Dogeas, Alexander V. Kononov, Gior-
gio Lucarelli, and Fanny Pascual. Scheduling Malleable Jobs Under
Topological Constraints. In: 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), New Orleans, LA, USA, May 18-22,
2020. IEEE, 2020, 316–325. doi: 10.1109/IPDPS47924.2020.00041. url:
https://doi.org/10.1109/IPDPS47924.2020.00041 (see page 6).

[BDK+21] Evripidis Bampis, Konstantinos Dogeas, Alexander V. Kononov, Giorgio
Lucarelli, and Fanny Pascual. Speed Scaling with Explorable Uncer-
tainty. In: SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, 6-8 July, 2021. Ed. by Kunal Agrawal
and Yossi Azar. ACM, 2021, 83–93. doi: 10.1145/3409964.3461812. url:
https://doi.org/10.1145/3409964.3461812 (see page 6).

[BDL+18] Raphaël Bleuse, Konstantinos Dogeas, Giorgio Lucarelli, Grégory Mounié,
and Denis Trystram. Interference-Aware Scheduling Using Geomet-
ric Constraints. In: Euro-Par 2018: Parallel Processing - 24th International
Conference on Parallel and Distributed Computing, Turin, Italy, August
27-31, 2018, Proceedings. 2018, 205–217. url: https://doi.org/10.1007/978-
3-319-96983-1%5C_15 (see pages 12, 19, 21, 22, 25, 32, 33).

[BDW86] Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz. Scheduling
Multiprocessor Tasks to Minimize Schedule Length. IEEE Trans.
Computers 35:5 (1986), 389–393. url: https://doi.org/10.1109/TC.1986.
1676781 (see page 9).

[BG08] Brad D. Bingham and Mark R. Greenstreet. Energy Optimal Scheduling
on Multiprocessors with Migration. In: IEEE International Symposium
on Parallel and Distributed Processing with Applications, ISPA 2008, Sydney,
NSW, Australia, December 10-12, 2008. IEEE Computer Society, 2008, 153–
161. url: https://doi.org/10.1109/ISPA.2008.128 (see page 13).

91

https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/978-3-642-12450-1%5C_4
https://doi.org/10.1007/978-3-642-12450-1%5C_4
https://doi.org/10.1109/IPDPS47924.2020.00041
https://doi.org/10.1109/IPDPS47924.2020.00041
https://doi.org/10.1145/3409964.3461812
https://doi.org/10.1145/3409964.3461812
https://doi.org/10.1007/978-3-319-96983-1%5C_15
https://doi.org/10.1007/978-3-319-96983-1%5C_15
https://doi.org/10.1109/TC.1986.1676781
https://doi.org/10.1109/TC.1986.1676781
https://doi.org/10.1109/ISPA.2008.128

[BKK+04] AdamL. Buchsbaum, Howard J. Karloff, Claire Kenyon, Nick Reingold, and
Mikkel Thorup. OPT Versus LOAD in Dynamic Storage Allocation.
SIAM J. Comput. 33:3 (2004), 632–646. url: https : / /doi .org/10 .1137/
S0097539703423941 (see page 11).

[BKL+15] Evripidis Bampis, Alexander V. Kononov, Dimitrios Letsios, Giorgio Lu-
carelli, and Ioannis Nemparis. From preemptive to non-preemptive
speed-scaling scheduling. Discret. Appl. Math. 181 (2015), 11–20. url:
https://doi.org/10.1016/j.dam.2014.10.007 (see page 12).

[BKL+18] Evripidis Bampis, Alexander V. Kononov, Dimitrios Letsios, Giorgio Lu-
carelli, and Maxim Sviridenko. Energy-efficient scheduling and rout-
ing via randomized rounding. J. Sched. 21:1 (2018), 35–51. url: https:
//doi.org/10.1007/s10951-016-0500-2 (see page 12).

[BKP07] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage
energy and temperature. J. ACM 54:1 (2007), 3:1–3:39. url: https :
//doi.org/10.1145/1206035.1206038 (see pages 12, 13, 57–59).

[BLL15] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. Green
scheduling, flows and matchings. Theor. Comput. Sci. 579 (2015), 126–
136. url: https://doi.org/10.1016/j.tcs.2015.02.020 (see page 12).

[BLT18] Raphaël Bleuse, Giorgio Lucarelli, and Denis Trystram. A Methodology
for Handling Data Movements by Anticipation: Position Paper. In:
Euro-Par 2018: Parallel Processing Workshops - Euro-Par 2018 International
Workshops, Turin, Italy, August 27-28, 2018, Revised Selected Papers. 2018,
134–145. url: https://doi.org/10.1007/978-3-030-10549-5%5C_11 (see
pages 12, 21).

[BMR+20] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svens-
son. Learning Augmented Energy Minimization via Speed Scal-
ing. In: Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin.
2020. url: https : / / proceedings . neurips . cc / paper / 2020 / hash /
af94ed0d6f5acc95f97170e3685f16c0-Abstract.html (see page 17).

[BMS20] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The Primal-Dual
method for Learning Augmented Algorithms. In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed.
by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin. 2020. url: https://proceedings.neurips.cc/

92

https://doi.org/10.1137/S0097539703423941
https://doi.org/10.1137/S0097539703423941
https://doi.org/10.1016/j.dam.2014.10.007
https://doi.org/10.1007/s10951-016-0500-2
https://doi.org/10.1007/s10951-016-0500-2
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1145/1206035.1206038
https://doi.org/10.1016/j.tcs.2015.02.020
https://doi.org/10.1007/978-3-030-10549-5%5C_11
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html

paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html (see
pages 6, 17, 18).

[BP04] Nikhil Bansal and Kirk Pruhs. Server Scheduling in the Weighted
lp Norm. In: LATIN 2004: Theoretical Informatics, 6th Latin American
Symposium, Buenos Aires, Argentina, April 5-8, 2004, Proceedings. Ed. by
Martin Farach-Colton. Vol. 2976. Lecture Notes in Computer Science.
Springer, 2004, 434–443. url: https://doi.org/10.1007/978-3-540-24698-
5%5C_47 (see page 79).

[BR70] George Bozoki and Jean-Paul Richard. A Branch-and-Bound Algo-
rithm for the Continuous-Process Job-Shop Scheduling Problem.
A I I E Transactions 2:3 (1970), 246–252. url: https://doi.org/10.1080/
05695557008974759 (see page 10).

[CM01] Jianer Chen and Antonio Miranda. A Polynomial Time Approxima-
tion Scheme for General Multiprocessor Job Scheduling. SIAM
J. Comput. 31:1 (2001), 1–17. url: https : / / doi . org / 10 . 1137 /
S0097539798348110 (see page 10).

[CMN+01] Chandra Chekuri, Rajeev Motwani, B. Natarajan, and Clifford Stein. Ap-
proximation Techniques for Average Completion Time Schedul-
ing. SIAM J. Comput. 31:1 (2001), 146–166. url: https://doi.org/10.1137/
S0097539797327180 (see page 16).

[DEM+18] Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie Meißner.
Scheduling with Explorable Uncertainty. In: ITCS 2018. 2018, 30:1–
30:14. url: https://doi.org/10.4230/LIPIcs.ITCS.2018.30 (see pages 2, 3,
15).

[DIR+20] Yihe Dong, Piotr Indyk, Ilya P. Razenshteyn, and Tal Wagner. Learning
Space Partitions for Nearest Neighbor Search. In: 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. url: https://openreview.net/
forum?id=rkenmREFDr (see page 17).

[DL89] Jianzhong Du and Joseph Y.-T. Leung. Complexity of Scheduling Par-
allel Task Systems. SIAM J. Discrete Math. 2:4 (1989), 473–487. url:
https://doi.org/10.1137/0402042 (see pages 9, 10).

[DL93] Jianzhong Du and Joseph Y.-T. Leung.Minimizing Mean Flow Time
with Release Time and Deadline Constraints. J. Algorithms 14:1
(1993), 45–68. url: https://doi.org/10.1006/jagm.1993.1003 (see page 16).

93

https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://doi.org/10.1007/978-3-540-24698-5%5C_47
https://doi.org/10.1007/978-3-540-24698-5%5C_47
https://doi.org/10.1080/05695557008974759
https://doi.org/10.1080/05695557008974759
https://doi.org/10.1137/S0097539798348110
https://doi.org/10.1137/S0097539798348110
https://doi.org/10.1137/S0097539797327180
https://doi.org/10.1137/S0097539797327180
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://openreview.net/forum?id=rkenmREFDr
https://openreview.net/forum?id=rkenmREFDr
https://doi.org/10.1137/0402042
https://doi.org/10.1006/jagm.1993.1003

[Dro96] Maciej Drozdowski. Scheduling multiprocessor tasks — An overview.
European Journal of Operational Research 94:2 (1996), 215–230. issn:
0377-2217. url: http : / /www.sciencedirect . com/science / article /pii /
0377221796001233 (see pages 10, 11).

[DST97] Paolo Dell’Olmo, Maria Grazia Speranza, and Zsolt Tuza. Efficiency and
effectiveness of normal schedules on three dedicated processors.
Discret. Math. 164:1-3 (1997), 67–79. url: https://doi.org/10.1016/S0012-
365X(97)84781-4 (see page 10).

[EH15] Thomas Erlebach and Michael Hoffmann. Query-Competitive Algo-
rithms for Computing with Uncertainty. Bulletin of the EATCS 116
(2015). url: http://eatcs.org/beatcs/index.php/beatcs/article/view/335
(see page 14).

[FMO+07] Tomás Feder, Rajeev Motwani, Liadan O’Callaghan, Chris Olston, and
Rina Panigrahy. Computing shortest paths with uncertainty. J. Algo-
rithms 62:1 (2007), 1–18. url: https://doi.org/10.1016/j.jalgor.2004.07.005
(see page 14).

[FMP+03] Tomás Feder, Rajeev Motwani, Rina Panigrahy, Chris Olston, and Jennifer
Widom. Computing the Median with Uncertainty. SIAM J. Comput.
32:2 (2003), 538–547. url: https://doi.org/10.1137/S0097539701395668 (see
page 14).

[FMP19] Dimitris Fotakis, Jannik Matuschke, and Orestis Papadigenopoulos. Mal-
leable Scheduling Beyond Identical Machines. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts
Institute of Technology, Cambridge, MA, USA. 2019, 17:1–17:14. url: https:
//doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17 (see page 10).

[FR96] Dror G. Feitelson and Larry Rudolph. Towards Convergence in Job
Schedulers for Parallel Supercomputers. In: Job Scheduling Strategies
for Parallel Processing, IPPS’96 Workshop, Honolulu, Haiwai, USA, April 16,
1996, Proceedings. Ed. by Dror G. Feitelson and Larry Rudolph. Vol. 1162.
Lecture Notes in Computer Science. Springer, 1996, 1–26. url: https :
//doi.org/10.1007/BFb0022284 (see page 3).

[Ger96] Jordan Gergov. Approximation Algorithms for Dynamic Storage
Allocations. In:Algorithms - ESA ’96, Fourth Annual European Symposium,
Barcelona, Spain, September 25-27, 1996, Proceedings. Ed. by Josep Díaz and
Maria J. Serna. Vol. 1136. Lecture Notes in Computer Science. Springer,
1996, 52–61. url: https://doi.org/10.1007/3-540-61680-2%5C_46 (see
page 11).

94

http://www.sciencedirect.com/science/article/pii/0377221796001233
http://www.sciencedirect.com/science/article/pii/0377221796001233
https://doi.org/10.1016/S0012-365X(97)84781-4
https://doi.org/10.1016/S0012-365X(97)84781-4
http://eatcs.org/beatcs/index.php/beatcs/article/view/335
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://doi.org/10.1007/BFb0022284
https://doi.org/10.1007/BFb0022284
https://doi.org/10.1007/3-540-61680-2%5C_46

[Ger99] Jordan Gergov. Algorithms for Compile-Time Memory Optimiza-
tion. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 17-19 January 1999, Baltimore, Maryland, USA. 1999,
907–908. url: http://dl.acm.org/citation.cfm?id=314500.315082 (see
pages 11, 32, 34, 35).

[GGI+15] Marc Goerigk, Manoj Gupta, Jonas Ide, Anita Schöbel, and Sandeep Sen.
The robust knapsack problem with queries. Computers & OR 55
(2015), 12–22. url: https://doi.org/10.1016/j.cor.2014.09.010 (see page 14).

[GGK+19] Naveen Garg, Anupam Gupta, Amit Kumar, and Sahil Singla. Non-
Clairvoyant Precedence Constrained Scheduling. In: 46th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece. Ed. by Christel Baier, Ioannis Chatzigian-
nakis, Paola Flocchini, and Stefano Leonardi. Vol. 132. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 63:1–63:14. url: https:
//doi.org/10.4230/LIPIcs.ICALP.2019.63 (see pages 3, 17, 69, 77).

[GHH16] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies.
A survey of offline algorithms for energy minimization under
deadline constraints. J. Sched. 19:1 (2016), 3–19. url: https://doi.org/10.
1007/s10951-015-0463-8 (see page 12).

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness (Series of Books in
the Mathematical Sciences). First Edition. W. H. Freeman, 1979. isbn:
0716710455. url: http://www.amazon.com/Computers-Intractability-NP-
Completeness-Mathematical-Sciences/dp/0716710455 (see page 5).

[GLL+79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. “Optimiza-
tion and Approximation in Deterministic Sequencing and Scheduling:
a Survey.” In: Discrete Optimization II. Ed. by P.L. Hammer, E.L. John-
son, and B.H. Korte. Vol. 5. Annals of Discrete Mathematics. Elsevier,
1979, 287–326. url: https://www.sciencedirect.com/science/article/pii/
S016750600870356X (see page 4).

[GNS14] Gero Greiner, Tim Nonner, and Alexander Souza. The Bell Is Ringing
in Speed-Scaled Multiprocessor Scheduling. Theory Comput. Syst.
54:1 (2014), 24–44. url: https://doi.org/10.1007/s00224-013-9477-9 (see
pages 12, 13, 65).

[GP19] Sreenivas Gollapudi and Debmalya Panigrahi. Online Algorithms for
Rent-Or-Buy with Expert Advice. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Ed. by Kamalika Chaudhuri and Ruslan Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019,

95

http://dl.acm.org/citation.cfm?id=314500.315082
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.4230/LIPIcs.ICALP.2019.63
https://doi.org/10.4230/LIPIcs.ICALP.2019.63
https://doi.org/10.1007/s10951-015-0463-8
https://doi.org/10.1007/s10951-015-0463-8
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
https://www.sciencedirect.com/science/article/pii/S016750600870356X
https://www.sciencedirect.com/science/article/pii/S016750600870356X
https://doi.org/10.1007/s00224-013-9477-9

2319–2327. url: http://proceedings.mlr.press/v97/gollapudi19a.html (see
page 17).

[GSS11] Manoj Gupta, Yogish Sabharwal, and Sandeep Sen. The update com-
plexity of selection and related problems. In: IARCS FSTTCS 2011.
2011, 325–338. url: https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325 (see
page 14).

[HEK+08] Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák,
and Rajeev Raman. Computing Minimum Spanning Trees with Un-
certainty. In: STACS 2008. 2008, 277–288. url: https://doi.org/10.4230/
LIPIcs.STACS.2008.1358 (see page 14).

[HIK+19] Chen-YuHsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-Based
Frequency Estimation Algorithms. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.url: https://openreview.net/forum?id=r1lohoCqY7
(see page 17).

[HIY+16] Xin Han, Kazuo Iwama, Deshi Ye, and Guochuan Zhang. Approximate
strip packing: Revisited. Inf. Comput. 249 (2016), 110–120. url: https:
//doi.org/10.1016/j.ic.2016.03.010 (see page 11).

[HJP+14] Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + 𝝐)-
approximation for strip packing. Comput. Geom. 47:2 (2014), 248–267.
url: https://doi.org/10.1016/j.comgeo.2013.08.008 (see page 11).

[HSS+97] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein.
Scheduling to Minimize Average Completion Time: Off-Line and
On-Line Approximation Algorithms. Math. Oper. Res. 22:3 (1997),
513–544. url: https://doi.org/10.1287/moor.22.3.513 (see page 16).

[HSW01] Han Hoogeveen, Petra Schuurman, and Gerhard J. Woeginger. Non-
Approximability Results for Scheduling Problems with Minsum
Criteria. INFORMS J. Comput. 13:2 (2001), 157–168. url: https://doi.org/
10.1287/ijoc.13.2.157.10520 (see page 16).

[HV96] Han Hoogeveen and Arjen P. A. Vestjens.Optimal On-Line Algorithms
for Single-Machine Scheduling. In: Integer Programming and Combina-
torial Optimization, 5th International IPCO Conference, Vancouver, British
Columbia, Canada, June 3-5, 1996, Proceedings. Ed. by William H. Cun-
ningham, S. Thomas McCormick, and Maurice Queyranne. Vol. 1084.
Lecture Notes in Computer Science. Springer, 1996, 404–414. url: https:
//doi.org/10.1007/3-540-61310-2%5C_30 (see page 16).

96

http://proceedings.mlr.press/v97/gollapudi19a.html
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.325
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://openreview.net/forum?id=r1lohoCqY7
https://doi.org/10.1016/j.ic.2016.03.010
https://doi.org/10.1016/j.ic.2016.03.010
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1287/moor.22.3.513
https://doi.org/10.1287/ijoc.13.2.157.10520
https://doi.org/10.1287/ijoc.13.2.157.10520
https://doi.org/10.1007/3-540-61310-2%5C_30
https://doi.org/10.1007/3-540-61310-2%5C_30

[HVV94] J. A. Hoogeveen, Steef L. van de Velde, and Bart Veltman. Complexity
of Scheduling Multiprocessor Tasks with Prespecified Processor
Allocations. Discret. Appl. Math. 55:3 (1994), 259–272. url: https://doi.
org/10.1016/0166-218X(94)90012-4 (see page 10).

[IKQ+21] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit.
Non-Clairvoyant Scheduling with Predictions. In: SPAA ’21: 33rd
ACM Symposium on Parallelism in Algorithms and Architectures, Virtual
Event, USA, 6-8 July, 2021. Ed. by Kunal Agrawal and Yossi Azar. ACM,
2021, 285–294. url: https://doi.org/10.1145/3409964.3461790 (see page 18).

[Jan02] Klaus Jansen. Scheduling Malleable Parallel Tasks: An Asymptotic
Fully Polynomial-Time Approximation Scheme. In: Algorithms -
ESA 2002, 10th Annual European Symposium, Rome, Italy, September 17-21,
2002, Proceedings. Ed. by Rolf H. Möhring and Rajeev Raman. Vol. 2461.
Lecture Notes in Computer Science. Springer, 2002, 562–573. url: https:
//doi.org/10.1007/3-540-45749-6%5C_50 (see page 10).

[JP02] Klaus Jansen and Lorant Porkolab. Linear-Time Approximation
Schemes for Scheduling Malleable Parallel Tasks. Algorithmica 32:3
(2002), 507–520. url: https://doi.org/10.1007/s00453-001-0085-8 (see
page 10).

[JPS20] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online Algorithms
for Weighted Paging with Predictions. In: 47th International Collo-
quium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference). Ed. by Artur Czumaj,
Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, 69:1–69:18. url: https://doi.org/10.
4230/LIPIcs.ICALP.2020.69 (see page 17).

[JR19] Klaus Jansen and Malin Rau. Improved approximation for two dimen-
sional Strip Packingwith polynomial boundedwidth. Theor. Comput.
Sci. 789 (2019), 34–49. url: https://doi.org/10.1016/j.tcs.2019.04.002 (see
page 11).

[JT10] Klaus Jansen and Ralf Thöle. Approximation Algorithms for Schedul-
ing Parallel Jobs. SIAM J. Comput. 39:8 (2010), 3571–3615. url: https:
//doi.org/10.1137/080736491 (see page 10).

[Kah91] Simon Kahan. A Model for Data in Motion. In: Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New
Orleans, Louisiana, USA. Ed. by Cris Koutsougeras and Jeffrey Scott Vitter.
ACM, 1991, 267–277. url: https://doi.org/10.1145/103418.103449 (see
page 14).

97

https://doi.org/10.1016/0166-218X(94)90012-4
https://doi.org/10.1016/0166-218X(94)90012-4
https://doi.org/10.1145/3409964.3461790
https://doi.org/10.1007/3-540-45749-6%5C_50
https://doi.org/10.1007/3-540-45749-6%5C_50
https://doi.org/10.1007/s00453-001-0085-8
https://doi.org/10.4230/LIPIcs.ICALP.2020.69
https://doi.org/10.4230/LIPIcs.ICALP.2020.69
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1137/080736491
https://doi.org/10.1137/080736491
https://doi.org/10.1145/103418.103449

[Kie88] Hal A. Kierstead. The Linearity of First-Fit Coloring of Interval
Graphs. SIAM J. Discret. Math. 1:4 (1988), 526–530. url: https://doi.org/
10.1137/0401048 (see page 11).

[KR00] Claire Kenyon and Eric Rémila. A Near-Optimal Solution to a Two-
Dimensional Cutting Stock Problem. Math. Oper. Res. 25:4 (2000),
645–656. url: https://doi.org/10.1287/moor.25.4.645.12118 (see page 11).

[KR96] Claire Kenyon and Eric Rémila. Approximate Strip Packing. In: 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burling-
ton, Vermont, USA, 14-16 October, 1996. 1996, 31–36. url: https://doi.org/
10.1109/SFCS.1996.548461 (see page 11).

[LLM+20] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vas-
silvitskii. Online Scheduling via Learned Weights. In: Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020. Ed. by Shuchi Chawla. SIAM,
2020, 1859–1877. url: https://doi.org/10.1137/1.9781611975994.114 (see
page 17).

[LMH+21] Russell Lee, Jessica Maghakian, Mohammad H. Hajiesmaili, Jian Li,
Ramesh K. Sitaraman, and Zhenhua Liu. Online Peak-Aware Energy
Scheduling with Untrusted Advice. In: e-Energy ’21: The Twelfth ACM
International Conference on Future Energy Systems, Virtual Event, Torino,
Italy, 28 June - 2 July, 2021. Ed. by Herman de Meer and Michela Meo.
ACM, 2021, 107–123. url: https://doi.org/10.1145/3447555.3464860 (see
page 17).

[LMT+15] Giorgio Lucarelli, Fernando Machado Mendonca, Denis Trystram, and
Frédéric Wagner. Contiguity and Locality in Backfilling Scheduling.
In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2015, Shenzhen, China, May 4-7, 2015. 2015, 586–595.
url: https://doi.org/10.1109/CCGrid.2015.143 (see page 12).

[LSS03] Xiwen Lu, René Sitters, and Leen Stougie.A class of on-line scheduling
algorithms to minimize total completion time. Oper. Res. Lett. 31:3
(2003), 232–236. url: https://doi.org/10.1016/S0167-6377(03)00016-6 (see
page 16).

[LV18] Thodoris Lykouris and Sergei Vassilvitskii. Competitive Caching with
Machine Learned Advice. In: Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, 2018, 3302–3311. url:
http://proceedings.mlr.press/v80/lykouris18a.html (see pages 6, 17).

98

https://doi.org/10.1137/0401048
https://doi.org/10.1137/0401048
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1145/3447555.3464860
https://doi.org/10.1109/CCGrid.2015.143
https://doi.org/10.1016/S0167-6377(03)00016-6
http://proceedings.mlr.press/v80/lykouris18a.html

[Mit20] Michael Mitzenmacher. Scheduling with Predictions and the Price
of Misprediction. In: 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA. Ed.
by Thomas Vidick. Vol. 151. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020, 14:1–14:18. url: https://doi.org/10.4230/LIPIcs.ITCS.
2020.14 (see page 17).

[MMS15] Nicole Megow, Julie Meißner, and Martin Skutella. Randomization
Helps Computing a Minimum Spanning Tree under Uncertainty.
In: Algorithms - ESA 2015. 2015, 878–890. url: https://doi.org/10.1007/978-
3-662-48350-3_73 (see page 14).

[MPT94] Rajeev Motwani, Steven J. Phillips, and Eric Torng. Non-Clairvoyant
Scheduling. Theor. Comput. Sci. 130:1 (1994), 17–47 (see pages 17, 68, 80,
83).

[MRT07] Gregory Mounie, Christophe Rapine, and Denis Trystram. A 3/2-
Approximation Algorithm for Scheduling Independent Monotonic
Malleable Tasks. SIAM J. Comput. 37:2 (2007), 401–412. url: https :
//doi.org/10.1137/S0097539701385995 (see pages 3, 10, 20).

[MTC02] Antonio Miranda, Luz Torres, and Jianer Chen.On the Approximability
of Multiprocessor Task Scheduling Problems. In: Algorithms and
Computation, 13th International Symposium, ISAAC 2002 Vancouver, BC,
Canada, November 21-23, 2002, Proceedings. 2002, 403–415. url: https:
//doi.org/10.1007/3-540-36136-7%5C_36 (see page 10).

[MV17] Andres Muñoz Medina and Sergei Vassilvitskii. Revenue Optimiza-
tion with Approximate Bid Predictions. In: Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett. 2017,
1858–1866. url: https : / / proceedings . neurips . cc / paper / 2017 / hash /
884d79963bd8bc0ae9b13a1aa71add73-Abstract.html (see page 17).

[MV22] Benjamin Moseley and Shai Vardi. The efficiency-fairness balance of
Round Robin scheduling. Operations Research Letters 50:1 (2022), 20–27.
issn: 0167-6377. url: https://www.sciencedirect.com/science/article/pii/
S0167637721001619 (see pages 17, 69, 77).

[Non13] None None. Synergistic Challenges in Data-Intensive Science and
Exascale Computing. Summary report of the Advanced Scientific
Computing Advisory Committee (ASCAC) Subcommittee, March
2013 (Mar. 2013). doi: 10.2172/1471113. url: https://www.osti.gov/biblio/
1471113 (see pages 1, 2).

99

https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.1007/978-3-662-48350-3_73
https://doi.org/10.1007/978-3-662-48350-3_73
https://doi.org/10.1137/S0097539701385995
https://doi.org/10.1137/S0097539701385995
https://doi.org/10.1007/3-540-36136-7%5C_36
https://doi.org/10.1007/3-540-36136-7%5C_36
https://proceedings.neurips.cc/paper/2017/hash/884d79963bd8bc0ae9b13a1aa71add73-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/884d79963bd8bc0ae9b13a1aa71add73-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0167637721001619
https://www.sciencedirect.com/science/article/pii/S0167637721001619
https://doi.org/10.2172/1471113
https://www.osti.gov/biblio/1471113
https://www.osti.gov/biblio/1471113

[OW00] Chris Olston and Jennifer Widom. Offering a Precision-Performance
Tradeoff for Aggregation Queries over Replicated Data. In: VLDB
2000. 2000, 144–155. url: http://www.vldb.org/conf/2000/P144.pdf (see
page 14).

[PSK18] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving Online
Algorithms via ML Predictions. In: NeurIPS, Montréal, Canada. 2018,
9684–9693. url: https : / / proceedings . neurips . cc / paper / 2018 / hash /
73a427badebe0e32caa2e1fc7530b7f3-Abstract.html (see pages 3, 6, 18, 68,
69, 83).

[PSW98] Cynthia A. Phillips, Clifford Stein, and Joel Wein. Minimizing average
completion time in the presence of release dates. Math. Program. 82
(1998), 199–223. url: https://doi.org/10.1007/BF01585872 (see page 16).

[Roh20] Dhruv Rohatgi. Near-Optimal Bounds for Online Caching with Ma-
chine Learned Advice. In: Proceedings of the 2020 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020. Ed. by Shuchi Chawla. SIAM, 2020, 1834–1845. url: https :
//doi.org/10.1137/1.9781611975994.112 (see page 17).

[Sch96] Andreas S. Schulz. Scheduling to Minimize Total Weighted Comple-
tion Time: Performance Guarantees of LP-Based Heuristics and
Lower Bounds. In: Integer Programming and Combinatorial Optimization,
5th International IPCO Conference, Vancouver, British Columbia, Canada,
June 3-5, 1996, Proceedings. Ed. by William H. Cunningham, S. Thomas
McCormick, and Maurice Queyranne. Vol. 1084. Lecture Notes in Com-
puter Science. Springer, 1996, 301–315. url: https://doi.org/10.1007/3-
540-61310-2%5C_23 (see page 16).

[Smi56] Wayne E. Smith. Various optimizers for single-stage production.
Naval Research Logistics Quarterly 3:1-2 (1956), 59–66. url: https://doi.
org/10.1002/nav.3800030106 (see page 15).

[Ste97] A. Steinberg. A Strip-Packing Algorithm with Absolute Perfor-
mance Bound 2. SIAM J. Comput. 26:2 (1997), 401–409. url: https :
//doi.org/10.1137/S0097539793255801 (see page 11).

[SW00] Martin Skutella and Gerhard J. Woeginger. A PTAS for Minimizing the
Total Weighted Completion Time on Identical Parallel Machines.
Math. Oper. Res. 25:1 (2000), 63–75. url: https://doi.org/10.1287/moor.25.1.
63.15212 (see page 16).

100

http://www.vldb.org/conf/2000/P144.pdf
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://doi.org/10.1007/BF01585872
https://doi.org/10.1137/1.9781611975994.112
https://doi.org/10.1137/1.9781611975994.112
https://doi.org/10.1007/3-540-61310-2%5C_23
https://doi.org/10.1007/3-540-61310-2%5C_23
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1287/moor.25.1.63.15212
https://doi.org/10.1287/moor.25.1.63.15212

[TWY92] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate Algorithms
Scheduling Parallelizable Tasks. In: Proceedings of the 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA ’92, San Diego,
CA, USA, June 29 - July 1, 1992. 1992, 323–332. url: https://doi.org/10.
1145/140901.141909 (see pages 3, 10).

[Ves97] A.P.A. Vestjens. On-line machine scheduling. English. PhD thesis.
Mathematics and Computer Science, 1997. isbn: 90-386-0571-4. doi: 10.
6100/IR500043 (see page 17).

[WL20] Shufan Wang and Jian Li. Online Algorithms for Multi-shop Ski
Rental with Machine Learned Predictions. In: Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. Ed. by Amal El Fallah
Seghrouchni, Gita Sukthankar, Bo An, and Neil Yorke-Smith. International
Foundation for Autonomous Agents and Multiagent Systems, 2020, 2035–
2037. url: https://dl.acm.org/doi/abs/10.5555/3398761.3399066 (see
page 17).

[WZ20] Alexander Wei and Fred Zhang. Optimal Robustness-Consistency
Trade-offs for Learning-Augmented Online Algorithms. In: Ad-
vances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. url: https://proceedings.
neurips . cc / paper / 2020 / hash / 5bd844f11fa520d54fa5edec06ea2507 -
Abstract.html (see page 18).

[YDS95] F. Frances Yao, Alan J. Demers, and Scott Shenker. A Scheduling Model
for Reduced CPU Energy. In: 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995. 1995,
374–382. url: https://doi.org/10.1109/SFCS.1995.492493 (see pages 2, 3,
12–14, 48, 57, 88).

101

https://doi.org/10.1145/140901.141909
https://doi.org/10.1145/140901.141909
https://doi.org/10.6100/IR500043
https://doi.org/10.6100/IR500043
https://dl.acm.org/doi/abs/10.5555/3398761.3399066
https://proceedings.neurips.cc/paper/2020/hash/5bd844f11fa520d54fa5edec06ea2507-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5bd844f11fa520d54fa5edec06ea2507-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5bd844f11fa520d54fa5edec06ea2507-Abstract.html
https://doi.org/10.1109/SFCS.1995.492493

	Abstract
	Résumé
	Acknowledgments
	Contents
	1 Introduction
	1.1 Notation
	1.2 Preliminaries
	1.3 Outline of the Thesis

	2 Related Work
	2.1 Makespan Minimization and Topological Constraints
	2.1.1 Parallel Machines
	2.1.2 Topological Constraints

	2.2 Energy Minimization and Explorable Uncertainty
	2.2.1 Speed Scaling
	2.2.2 Explorable Uncertainty

	2.3 Total Completion Time Minimization and Uncertain Predictions
	2.3.1 Uncertain Predictions

	3 Topological Constraints
	3.1 Formulation of the problem
	3.2 Complexity
	3.3 Proportional Malleable Model
	3.4 Generalized Malleable Model
	3.5 Conclusion

	4 Explorable Uncertainty
	4.1 Formulation of the problem
	4.2 Notations and Preliminaries
	4.3 Single Machine
	4.3.1 Lower Bounds
	4.3.2 Offline Model
	4.3.3 Online Model

	4.4 Multiple Machines
	4.5 Conclusion

	5 Uncertain Predictions
	5.1 Formulation of the problem
	5.2 Notations and Preliminaries
	5.3 Single Machine
	5.3.1 A Consistent Algorithm
	5.3.2 A Preferential Algorithm

	5.4 Multiple Machines
	5.4.1 A Consistent Algorithm
	5.4.2 A Preferential Algorithm

	5.5 Experimental Evaluation
	5.6 Conclusion

	6 General Conclusions and Outlook
	Bibliography

