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INTRODUCTION

The center of most galaxies, such as our galaxy, is typically modelled as a supermassive black hole, the galaxy consisting of gas, plasmas and stars orbiting around it. Kinetic theory then plays an important role in the description of these matter fields. In the geometric context of general relativity, the formulation of a relativistic kinetic theory was developed by Synge [START_REF] Lighton | The energy tensor of a continuous medium[END_REF], who in particular introduced the world lines of the gas particles, Tauber and Weinberg [START_REF] Gerald | Internal state of a gravitating gas[END_REF], who developed a covariant form of phase space and the corresponding Liouville theorem, and Israel [START_REF] Israel | Relativistic kinetic theory of a simple gas[END_REF] who derived conservation laws based on the fully covariant Boltzmann equation.

When the number of particles is large, mathematical models of particle systems are often described by kinetic or fluid equations. The choice of a good model may depend on the physical properties of interests, the existence of good numerical schemes or of a well developed theory. A characteristic feature of kinetic theory is that its models are statistical and the particle systems are described by distribution functions defined on phase space. A distribution function represents the number of particles with given spacetime position and velocity. It contains a wealth of information and macroscopic quantities are easily calculated from it, such as energy densities, mass density and moments. This thesis is concerned with one specific model of kinetic theory: the so-called collisionless or Vlasov matter model. It is used to describe galaxies or globular galaxies where the stars play the role of gas particles and collisions between them are sufficiently rare to be neglected, so that the only interaction taken into account is gravitation. The distribution is then transported along the trajectories of free falling particles, resulting in the Vlasov equation. The latter is coupled to the equations for the gravitational field, where the source terms are computed from the distribution function. In the non-relativistic setting, i.e. the Newtonian framework, the resulting nonlinear system of partial differential equations is the Vlasov-Poisson (VP) system, while its general relativistic counterpart forms the Einstein-Vlasov (EV) system. Collisionless matter possesses several attractive features from a partial differential equations viewpoint. On any fixed background, it avoids pathologies such as shock formation, contrary to more traditional fluid models. Moreover, one has global classical solutions of the VP system in three dimensions for general initial data [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF], [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF].

The local well-posedness of the Cauchy problem for the EV system was first investigated in [START_REF] Choquet-Bruhat | Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville[END_REF] by Choquet-Bruhat. Concerning the nonlinear stability of the Minkowski spacetime as the trivial solution of the EV system, it was proven in the case of spherically symmetric initial data by Rendall and Rein [START_REF] Rein | Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data[END_REF] in the massive case and by Dafermos [START_REF] Dafermos | A note on the collapse of small data self-gravitating massless collisionless matter[END_REF] for the massless case. The general case was recently shown by Fajman, Joudioux and Smulevici [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] and independently by Lindblad-Taylor [START_REF] Lindblad | Global stability of Minkowski space for the Einstein-Vlasov system in the harmonic gauge[END_REF] for the massive case, and by Taylor [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF] for the massless case, see also [START_REF] Bigorgne | Asymptotic stability of Minkowski space-time with non-compactly supported massless Vlasov matter[END_REF] for an alternative proof without the compact support assumption. Nonlinear stability results have been given by Fajman [START_REF] Fajman | The nonvacuum Einstein flow on surfaces of negative curvature and nonlinear stability[END_REF] and Ringtröm [START_REF] Ringström | On the Topology and Future Stability of the Universe[END_REF] in the case of cosmological spacetimes. See also [START_REF] Smulevici | On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry[END_REF], [START_REF] Andréasson | Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter[END_REF], [START_REF] Dafermos | Strong cosmic censorship for T 2 -symmetric cosmological spacetimes with collisionless matter[END_REF], [START_REF] Weaver | On the area of the symmetry orbits in T 2 -2 symmetric spacetimes with Vlasov matter[END_REF], [START_REF] Smulevici | Strong cosmic censorship for T 2 -symmetric spacetimes with cosmological constant and matter[END_REF], [START_REF] Dafermos | Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter[END_REF] for several results on cosmological spacetimes with symmetries.

A less trivial solution to the EV system is given by the Schwarzschild spacetime with a vanishing distribution function. It describes a vacuum spacetime which contains a static black hole. The question of the nonlinear stability of the Schwarzschild spacetime as a solution to the vacuum equations has been at the center of many important recent works, see for instance [START_REF] Klainerman | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations[END_REF], [START_REF] Dafermos | The non-linear stability of the Schwarzschild family of black holes[END_REF]. As a solution of the EV system, there are on the other hand few results on its stability. However, following the work of Dafermos [START_REF] Dafermos | Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter[END_REF], the Schwarzschild family of solutions for the EV system is orbitally stable against spherically symmetric perturbations. To study the asymptotic stability, a first step consists in classifying and understanding the stationary solutions of the EV system in a neighbourhood of the Schwarzschild and Kerr spacetimes. The aim of this thesis is to provide the first answers to this question.

The Einstein-Vlasov and Vlasov-Poisson systems

In this section, we introduce the EV and VP systems and their stationary solutions.

The Vlasov-Poisson system

In the non-relativistic setting, the time evolution of stellar systems is described by a distribution function f = f (t, x, v) defined on the phase space R t × R 3

x × R 3 v . Here, t ∈ R denotes time and (x, v) ∈ R 3 × R 3 denotes position and velocity respectively. In this model, the stars interact only by the gravitational field which they create collectively and collisions among the stars are assumed to be sufficiently rare to be neglected. It is described by a potential U = U (t, x) defined on R t × R 3

x . Each particle then moves on a trajectory determined by Newton's equations of motion ẋ(t) = v(t), v(t) = -∇ x U (t, x(t)).

(1. 1.1) and f satisfies the so-called Vlasov equation

∂ t f + v • ∇ x f -∇ x U • ∇ v f = 0, t ∈ R + , x ∈ R 3 , v ∈ R 3 , f (t = 0, x, v) = f 0 (x, v). (1.1.2)
Note that the characteristic system associated to (1.1.2) is given by (1.1.1). Since the gravitational field is generated collectively by the ensemble itself, the Vlasov equation is coupled to the Poisson equation ∆ x U (t, x) = 4πρ f (t, x), (1.1.3) where ρ f = ρ f (t, x) is the spatial mass density

ρ f (t, x) := R 3
f (t, x, v) dv.

(1. 1.4) We refer to (1.1.2), (1.1.3) and (1.1.4) as the Vlasov-Poisson system. There is a well developed mathematical theory for this system. In particular, there is a global existence and uniqueness theorem for the corresponding Cauchy problem for general initial data. The following result was established by Pfaffelmoser [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF]:

Theorem 1 ( [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF]). For every nonnegative, continuously differentiable, and compactly supported initial datum f 0 ∈ C 0 c (R 3

x × R 3 v ), there exists a unique solution f ∈ C 1 (R t × R 3

x × R 3 v ) of the Vlasov-Poisson system (1.1.2), (1.1.3), (1.1.4).

The global existence and uniqueness theorem was also established independently by Lions and Perthame [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF], with different assumptions Theorem 2 ( [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF]). Let f 0 be a nonnegative function such that

f 0 ∈ L 1 ∩ L ∞ (R 3 × R 3 ). Assume that R 3 ×R 3 |v| m f 0 (x, v) dxdv < +∞ if m < m 0 where m 0 > 3. Then, ∀p ∈ [0, ∞[ there exists a solution f ∈ C(R + ; L p (R 3 x × R 3 v ))∩ L ∞ (R + ; L ∞ (R 3 x × R 3 v )) of (1.1.2), (1.1.3), (1.1.4) satisfying sup [0,T ] R 3 ×R 3 |v| m f (t, x, v) dxdv < +∞, ∀T < +∞, m < m 0 .
We refer to the standard book of Glassey [START_REF] Robert T Glassey | The Cauchy problem in kinetic theory[END_REF], for an introduction to the the Cauchy problem in kinetic theory.

In stellar dynamics, equilibrium states can be described by stationary solutions, also called steady states, to the VP system. Such solutions f 0 must satisfy

∀x, v ∈ R 3 , v • ∇ x f 0 -∇ x U (x) • ∇ v f 0 = 0, ∀x ∈ R 3 , ∆ x U = ρ f 0 (x). (1.1.5)
The first equation is a stationary transport equation which implies that f 0 is invariant under the flow generated by the second order ODE system

x ′′ (t) = -∇ x U (x(t)).

This already suggests that if one may find conserved quantities of the ODE system, one can look for steady states as functions of the integrals of motion and then solve the Poisson equation for U .

The Einstein-Vlasov system

In the theory of general relativity, a spacetime (M, g) is described by a 4-dimensional time orientable manifold M endowed with a Lorentzian metric g, which satisfies the Einstein field equations Ric(g) -1 2 gR(g) + Λg = 8πT(g), (1.1.6) These equations relate the geometry of the spacetime to the distribution of matter within it. In vacuum, the Einstein field equations with a vanishing cosmological constant are reduced to Ric(g) = 0.

(1.1.7)

The prime example of a vacuum spacetime is Minkowski spacetime, the framework of special relativity, M = R 4 , g = -(dx 0 )2 + (dx1 ) 2 + (dx 2 ) 2 + (dx 3 ) 2 .

which is the trivial solution of (1.1.7).

In this work, we are interested in non-vacuum spacetimes. In particular, we consider the Vlasov matter where collisions among stars are neglected and the only interaction taken into account is gravity, described by the metric g. It is assumed that the matter is represented by a distribution function defined on the tangent bundle of the spacetime, f : T M → R + . The condition that f represents the distribution of a collection of particles moving freely in the given spacetime is that it should be constant along the geodesic flow, that is

L[f ] = 0, (1.1.8) 
where L denotes the Liouville vector field. The latter equation is called the Vlasov equation. In a local coordinate chart (x α , v β ) on T M, where (v β ) are the components of the four-velocity corresponding to x α , the Liouville vector field L reads

L = v µ ∂ ∂x µ -Γ µ αβ (g)v α v β ∂ ∂v µ (1.1.9)
and the corresponding integral curves satisfy the geodesic equations of motion and where τ is an affine parameter which corresponds to the proper time in the case of timelike geodesics. The trajectory of a particle in T M is an element of the geodesic flow generated by L and its projection onto the spacetime manifold M corresponds to a geodesic of the spacetime.

     dx µ dτ (τ ) = v µ , dv µ dτ (τ ) = -Γ µ αβ (g)v α v β , ( 1 
It is easy to see that the quantity L(x, v) := 1 2 v α v β g αβ is conserved along solutions of (1.1.10) 1 . In the following, we will consider only particles with the same rest mass m > 0 so that we

can set L(x, v) = - m 2 2
. Furthermore, for physical reasons, we require that all particles move on future directed timelike geodesics. Therefore, the distribution function is supported on the seven dimensional manifold of T M 2 , called the the mass shell, denoted by Γ m and defined by Γ m := (x, v) ∈ T M : g x (v, v) = -m 2 , and v α is future pointing .

(1. 1.11) We note that by construction Γ m is invariant under the geodesic flow.

Remark 1. The distribution function f typically describes self-gravitating galaxies or clusters of galaxies. The particles in the former case are stars and in the latter case they are galaxies. Clearly, the particles carry mass in these two situations and we henceforth require that they move along timelike geodesics. One could also describe an ensemble of uncharged self-gravitating massless particles or photons, with rest mass m = 0. In this case, we require that particles move along null geodesics. Therefore, f is supported on the set Γ 0 := {(x, v) ∈ T M : g x (v, v) = 0, and v α is future pointing and v = 0}3 .

(1.1.12)

In the case of timelike geodesics, we rescale the affine parameter τ so that:

L(x, v) = - 1 2 .
(1. 1.13) In this work, we assume that all particles have the same rest mass which is normalised to 1. From now on, the mass shell Γ 1 will be denoted by Γ.

We assume that there exist local coordinates on M, denoted by (x α ) α=0•••3 defined on some open subset U ⊂ M such that

∂ ∂x 0 x , ∂ ∂x 1 x , ∂ ∂x 2 x , ∂ ∂x 3 x , x ∈ U,
is a basis of T x M, with the property that for each x ∈ U , ∂ ∂x 0

x is timelike, i.e. g x ∂ ∂x 0

x , ∂ ∂x 0

x < 0 and future oriented and all the vectors of the form v i ∂ ∂x i x are spacelike, i.e g x v i ∂ ∂x i

x , v i ∂ ∂x i

x > 0. Now, let (x α , v α ) be a coordinate system on T M. Then, the mass shell condition

g αβ v α v β = -1
, where v α is future directed, allows to write v 0 in terms of (x α , v a ). It is given by

v 0 = -(g 00 ) -1 g 0j v j + (g 0j v j ) 2 -g 00 (1 + g ij v i v j ) .
Therefore, Γ can be parametrised by (x 0 , x a , v a ). Hence, the distribution function can be written as a function of (x 0 , x a , v a ) and the Vlasov equation has the form

∂f ∂x 0 + v a v 0 ∂f ∂x a -Γ a αβ (g) v α v β v 0 ∂f ∂v a = 0. (1.1.14)
Note that the characteristic system associated to (1.1.14) is given by (1.1.10).

In order to define the energy-momentum tensor which couples the Vlasov equation to the Einstein field equations, we introduce the natural volume element on the fibre Γ x defined by Γ x := v α ∈ T x M : g αβ v α v β = -1, v 0 > 0 of Γ at a point x ∈ M given in the adapted local coordinates (x 0 , x a , v a ) by dvol x (v) := det (g αβ )

-v 0 dv 1 dv 2 dv 3 .

(1.1.15)

The energy momentum tensor is now defined by ∀x ∈ M T αβ (x) := Γx v α v β f (x, v) dvol x (v), (1.1.16) where f = f (x 0 , x a , v a ) and dvol x (v) = dvol x (v a ) 4 . T αβ is well-defined provided that f has enough regularity and decay properties. One sufficient requirement would be to demand that f has compact support on Γ x , ∀x ∈ M and is integrable with respect to v. Finally, we refer to (1.1.6) and (1.1.8) with T given by (1.1.16) as the massive Einstein-Vlasov system. In the massless case, the energy momentum tensor is given by ∀x ∈ M , T αβ (x) := Γx,0

v α v β f (x, v) dvol x (v), (1.1.17) 
where Γ x,0 is the fibre at a point x defined by

Γ x,0 := v α ∈ T x M \ {0} : g αβ v α v β = 0, v 0 > 0
We refer to (1.1.6) and (1.1.8) with T given by (1.1.17) as the massless Einstein-Vlasov system. The local well-posedness of the Cauchy problem for the EV system was first investigated in [START_REF] Choquet-Bruhat | Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville[END_REF] by Choquet-Bruhat.

Theorem 3 (Rough version).

To any given appropriate initial data set (Σ, g 0 , k, f 0 ), there exists a unique (up to diffeomorphism) maximal Cauchy development (M, g, f ) where (M, g) is a Lorentzian manifold and f a Vlasov field.

We refer to [52, Section 2], [START_REF] Choquet-Bruhat | General relativity and the Einstein equations[END_REF]Chapter 10] and to the book [START_REF] Ringström | On the Topology and Future Stability of the Universe[END_REF] for a presentation of the initial value problem for the Einstein-Vlasov system.

In the presence of a strong gravitational field or relativistic effects, it seems natural to replace the stationary solutions of the VP system by those of the EV system. Before we give an exact definition of those, we recall the following definitions:

Definition 1 (Complete lift operator). Let X ∈ X(M) be a vector field of the spacetime manifold and let (φ λ : M → M) λ∈I the one-parameter group of diffeomorphisms generated by X. The complete lift of X is a vector field on T M, denoted by X ∈ X(T M) defined by

∀(x, v) ∈ T M , X (x,v) := d dλ λ=0 φ λ (x, p),
where φ λ : T M → M is defined by

φ λ (x, p) := φ λ (x), φ λ * x (v)
We note that in the adapted local coordinates of T M, (x α , v α ), the vector field X ∈ X(T M) can be written as

X (x,v) = X µ (x) ∂ ∂x µ (x,v) + v α ∂X α ∂x µ (x) ∂ ∂v µ (x,v)
.

Moreover, we have Proposition 1. Let X ∈ X(M) be a vector field on M with corresponding lifted vector field X ∈ X(T M). Then X commutes with the Liouville vector field L.

In order to defined the notion of stationarity, we will also need the following definition Definition 2. A vector field T ∈ X(M) on a globally hyperbolic Lorentzian manifold (M, g), is timelike at infinity if on any Cauchy hypersurface, there is a compact set outside which T is timelike.

Now, we state a definition of stationary solutions to the EV system Definition 3. A solution (M, g, f ) to the EV system is said to be stationary if M admits a Killing vector field T which is timelike at infinity and f is invariant under the complete lift of T , i.e

T [f ] = 0.

Newtonian and relativistic self-gravitating steady states

While self-gravitating Vlasov systems have proven to be useful models in astrophysics and general relativity, there are still many open questions concerning the space of stationary solutions. In particular, the problem of finding steady states is challenging without strong symmetry assumptions. More precisely, these models are well-studied under the restriction of spherical symmetry. Beyond spherical symmetry however, the equations become much more complicated and few mathematical or numerical results have been established. In this section, we introduce the stationary solutions to the VP and EV system and we present some of the main ideas leading to the construction of such solutions.

Stationary solutions to the Vlasov-Poisson system

Spherically symmetric solutions

The construction of stationary solutions is relatively well understood in the spherically symmetric case. We assume that we are looking for a distribution function f 0 : R 3 x × R 3 v → R + to (1.1.5), which is spherically symmetric. We recall the following definition Definition 4. A stationary solution f 0 to (1.1.5) is said to be spherically symmetric if

∀A ∈ O(3) , ∀(x, v) ∈ R 6 , f 0 (Ax, Av) = f 0 (x, v).
For spherically symmetric distributions 5 , there exists a function Φ : R + × R × R + → R + such that f 0 (x, v) = Φ(r, w, F ) where

r := |x| , w(x, v) := 1 |x| x • v , F (x, v) = |x| 2 |v| 2 -(x • v) 2 .
Moreover, the equations of motion (1.1.1) form an integrable Hamiltonian system and the quantities F and

E(x, v) := |v 2 | 2 + U (r) = 1 2 w 2 + 1 2 F r 2 + U (r)
(1.2.1)

5 See [START_REF] Rein | The Vlasov-Einstein system with surface symmetry[END_REF]Section ] for a proof.

are integrals of motion. Hence, stationary and spherically symmetric solutions can be obtained by assuming that the distribution function has the following form

f (x, v) = Φ(E, F ).
More precisely, under certain assumptions on the radial potential U , a stationary and spherically symmetric distribution function must be a function of the two integrals E, F of the associated characteristic system of ordinary differential equations

         ṙ = w, ẇ = F r 3 -U ′ (r), Ḟ = 0. (1.2.2)
Such statement is referred to as Jean's theorem [START_REF] Jeans | On the theory of star-streaming and the structure of the universe[END_REF], [START_REF] Hopwood | Problems of cosmogony and stellar dynamics[END_REF]. A mathematical proof of this statement was provided by Batt, Faltenbacher and Horst in [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF]. We recall a precise statement of Jeans theorem Theorem 4 ( [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF]). Let G be the set of (r, w, F ) defined by G := {(r, w, F ) ; r > 0 , w ∈ R , F > 0} , let f (r) := m(r) r 2 be defined on ]0, ∞[ such that m :]0, ∞[→ R is continuous and monotonically increasing. Let U :]0, ∞[→ R be any differentiable function such that U ′ = f . Let E be defined by (1.2.1) on G and J : G → R 2 be the mapping defined by J(r, w, F ) := (E(r, w, F ), F ).

Then, If Φ : G → R is an integral of (1.2.2)), then there exists a unique φ : J(G) → R such that Φ = φ • J.

In particular, having proved the factorization theorem for any stationary, spherically symmetric model, one can reconstruct these models from given functions φ such that Φ = φ • J. The remaining problem is to solve an equation for U of the form

1 r 2 r 2 U ′ ′ = h φ (r, U ) on ]0, ∞[,
where h φ is a functional of U and r. Several models can be found in the literature based on different ansatz for the profile φ. As an example, we recall

• the polytropic model φ(E, F ) := (E 0 -E) µ F k if E < E 0 , 0 otherwise, (1.2.3)
for E 0 > 0, µ, k > -1.

• King's model φ(E, F ) = e E 0 -E -1

1.2. Newtonian and relativistic self-gravitating steady states

We refer to [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF]Section 4] and [START_REF] Mouhot | Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel[END_REF] and the references therein for more examples.

From a physical point of view, one is interested in models with finite total mass and finite radius. The problem of characterising the profiles φ leading to such models seems to be difficult, and the latter was solved only in the case of polytropes. More precisely, we state the following theorem from [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF] Theorem 5 ([23]). The profile φ defined by (1.2.3) leads to stationary spherically symmetric model with finite mass and finite radius if and only if

µ ≤ 3k + 7 2 .
We refer to the work of Rein and Ramming [START_REF] Ramming | Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the nonrelativistic and relativistic case-a simple proof for finite extension[END_REF] for further generalisations.

There has been considerable mathematical progress on the question of non linear stability of stationary spherically symmetric solutions to the VP system. More precisely, the Antonov non-linear stability conjecture was proven in a series of papers [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF], [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF], [START_REF] Lemou | Orbital stability of spherical galactic models[END_REF] by Lemou, Méhats and Raphaël, following previous works of Dolbeault, Guo, Hadžić, Lin Rein, Sánchez, Soler, Wan, Wolansky, Lemou, Méhats and Raphaël [START_REF] Yieh-Hei | Nonlinear stability of stationary spherically symmetric models in stellar dynamics[END_REF], [START_REF] Wan | On nonlinear stability of isotropic models in stellar dynamics[END_REF], [START_REF] Weinstein | The local structure of poisson manifolds[END_REF], [START_REF] Guo | Stable steady states in stellar dynamics[END_REF], [START_REF] Guo | Isotropic steady states in galactic dynamics[END_REF], [START_REF] Guo | Stable magnetic equilibria in collisionless plasmas[END_REF], [START_REF] Guo | Stable magnetic equilibria in a symmetric collisionless plasma[END_REF], [START_REF] Guo | Variational method for stable polytropic galaxies[END_REF], [START_REF] Guo | On the generalized antonov stability criterion[END_REF], [START_REF] Dolbeault | Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case[END_REF], [START_REF] Sánchez | Orbital stability for polytropic galaxies[END_REF], [START_REF] Hadžić | A constraint variational problem arising in stellar dynamics[END_REF], [START_REF] Guo | A non-variational approach to nonlinear stability in stellar dynamics applied to the King model[END_REF], [START_REF] Guo | Unstable and stable galaxy models[END_REF], [START_REF] Lemou | Orbital stability and singularity formation for Vlasov-Poisson systems[END_REF], [START_REF] Lemou | Structure of the linearized gravitational Vlasov-Poisson system close to a polytropic ground state[END_REF], [START_REF] Lemou | The orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system[END_REF].

The results of Lemou, Méhats and Raphaël can be summarised in the following theorems: Theorem 6. Spherically symmetric steady states to the VP system of the form

f 0 (x, v) = Φ(E, F )
such that ∂ E Φ < 0 on the support of Φ are orbitally stable against spherically symmetric perturbations of the VP system (1.1.2)-(1.1.3)-(1.1.4).

Theorem 7. Spherically symmetric steady states to the VP system of the form

f 0 (x, v) = Φ(E)
such that ∂ E Φ < 0 on the support of Φ are orbitally stable against general perturbations of the VP system (1.1.2)-(1.1.3)- (1.1.4).

We refer to [START_REF] Mouhot | Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel[END_REF] for a detailed presentation of these results and their contexts.

Axially symmetric solutions

While the spherically symmetric case is relatively well understood, elliptic galaxies are usually described by axisymmetric solutions. This motivates the problem of finding stationary solutions under the sole assumption of axisymmetry.

We begin by recalling the following definition Definition 5. A stationary solution f 0 to (1.1.5) is said to be axially symmetric if for any R x 3 ∈ O(3) rotation matrix about x 3 -axis, we have

∀(x, v) ∈ R 6 , f 0 (R x 3 x, R x 3 v) = f 0 (x, v).

Chapter 1. INTRODUCTION

In the presence of axisymmetry, the quantity

P (x, v) := x 1 v 2 -x 2 v 2
in addition to the energy given by

E(x, v) := 1 2 |v| 2 + U (x)
are conserved along the trajectories of (1.1.1). Therefore, one can try to construct axisymmetric steady states by assuming that the distribution function depends only on the integrals E, P . Indeed, assume the following ansatz for f 0 : f 0 (x, v) = Φ(E, P ).

Then, the system (1.1.5) is reduced to a semilinear elliptic equation for the potential U ∆U 0 = 4πρ f 0 (x, U (x)).

Axially symmetric steady states of the VP system were first investigated from an astrophysics point of view by Prendergast and Tomer [START_REF] Kevin | Self-consistent models of elliptical galaxies[END_REF], Wilson [START_REF] Paul | Dynamical models of elliptical galaxies[END_REF] and Toomre [START_REF] Toomre | Some flattened isothermal models of galaxies[END_REF]. Later, Numerical constructions were provided by Shapiro and Teukolsky in [START_REF] Stuart | Equilibrium stellar systems with spindle singularities[END_REF]. The first rigorous construction of stationary and axisymmetric models was provided by Batt, Berestycki, Degond and Perthame in [START_REF] Batt | Some families of solutions of the Vlasov-Poisson system[END_REF]. However, these models have infinite mass and infinite radius.

The question of existence of stationary axisymmetric models with finite mass and radius has remained open until the work of Rein [START_REF] Rein | Stationary and static stellar dynamic models with axial symmetry[END_REF]. Using the implicit function theorem, he showed that a certain class stationary, spherically symmetric solutions (isotropic models) can be embedded in one parameter family of stationary, axially symmetric solutions with finite radius and finite mass, parametrised by γ ∈ [0, γ 0 [. The resulting solutions coincide with a spherically symmetric steady state when γ = 0 with a finite mass and radius, and are not spherically symmetric for γ = 0. We refer to Section 2.2.5 for details about the main idea of the construction. In [START_REF] Rein | Stable models of elliptical galaxies[END_REF], Rein and Guo provided stationary axisymmetric models which are not necessarily close to spherically symmetric models. For these models, the distribution function is decreasing in the P variable. Moreover, they are obtained as minimizers of suitably defined energy-Casimir functionals and this implies their nonlinear dynamical stability against axisymmetric perturbations. In [START_REF] Ames | On axisymmetric and stationary solutions of the self-gravitating Vlasov system[END_REF], Ames, Andréasson and Logg provided numerical constructions of axisymmetric steady states which validate and also extend the work of Shapiro and Teukolsky in order to cover different matter configurations.

Stationary solutions to the Einstein-Vlasov system

As in the VP system, in the relativistic setting, the existence of a broad variety of stationary steady states to the EV system has been established.

Spherically symmetric solutions

We begin by recalling the following definition Definition 6. A stationary solution (M, g, f ) to the EV system is said to be spherically symmetric if

• (M, g) is invariant under the action of the rotation group SO(3), 1.2. Newtonian and relativistic self-gravitating steady states

• f is invariant under the complete lift of the generators of SO(3) symmetry.

In this section, we assume that we are looking for stationary and spherically symmetric solutions (M, g, f ) to (1.1.6)- (1.1.16)- (1.1.14). Thanks to the symmetry assumptions, the equations of motion (1.1.10) form an integrable Hamiltonian system. In particular, the quantities E(x, v) := -g(T, v) , ℓ(x, v) := 3 a=1 g x (ξ a , v) 2 are invariant under the geodesic flow, where T is the generator of stationarity and ξ a are the generators of SO [START_REF] Alexakis | Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces[END_REF]. Therefore, static and spherically symmetric solutions can be obtained by assuming that the distribution function has the following form

f (x, v) = Φ(E, ℓ),
where E and ℓ are interpreted as the energy and the squared total angular momentum of particles respectively. The problem is then reduced to solving a set of ODEs for the metric coefficients, corresponding to the Einstein equations. We recall that in the Newtonian setting, the distribution function associated to a stationary and spherically symmetric solution to the VP system is necessarily described by a function depending only on E and ℓ (see Theorem 4). However, it has been shown that its generalisation to general relativity is false in general [START_REF] Schaeffer | A Class of Counterexamples to Jeans' Theorem for the Vlasov-Einstein System[END_REF]. A particular choice of Φ, called the polytropic ansatz, which is commonly used to construct static and spherically symmetric states for the VP system and can be adapted to the general relativistic setting, is given by Φ(E, ℓ) := (E 0 -E) µ (ℓℓ 0 ) k , E < E 0 and ℓ > ℓ 0 , 0, otherwise, (1.2.4) where E 0 > 0 , ℓ 0 ≥ 0 , µ > -1 and k > -1. In [START_REF] Rein | Smooth static solutions of the spherically symmetric Vlasov-Einstein system[END_REF], Rein and Rendall gave the first class of asymptotically flat, static, spherically symmetric solutions to EV system with finite mass and finite support such that Φ depends only on the energy of particles with µ ∈ [0, 7 2 [. In [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF], Rein extended the above result for distribution functions of the form (1.2.4) such that µ ≥ 0, k > -1 2 and µ < 3k + 7 2 . Among these, there are singularity-free solutions with a regular center, and also solutions with a Schwarzschild-like black hole. We note that in the absence of a black hole, one of the main difficulties of the problem is to show that the support of the solution is bounded and that the solution leads to a model with finite mass

M = ρ(x) dx < +∞ where ρ(x) = R 3 v 1 + |v 2 |f (x, v) dv.
This explains the bound on µ in the polytropic ansatz. Later, a general method to treat this problem has been obtained by Ramming and Rein in [START_REF] Ramming | Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the nonrelativistic and relativistic case-a simple proof for finite extension[END_REF]. In [START_REF] Andréasson | Static Solutions to the Einstein-Vlasov System with a Nonvanishing Cosmological Constant[END_REF], Andréasson, Fajman and Thaller extended the class of static spherically symmetric solutions to the EV system to the case with a non-vanishing cosmological constant Λ in the cases where Λ is small positive and where Λ is arbitrary negative. Among these, there are singularity-free solutions with a regular center, and also solutions with a Schwarzschild-like black hole. Solutions with a positive cosmological constant are obtained by bifurcating from spherically symmetric steady states to the EV system with Λ = 0. The family of solutions is then parametrised by Λ. Solutions with Λ < 0 are obtained by adapting arguments from [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF].

While there has been considerable mathematical progress on the question of nonlinear stability of spherically symmetric steady states to the VP system, see Section 1.2.1.1, there are few results which concern general relativistic steady states. The linear stability was studied by Hadžić and Rein in [START_REF] Hadžić | Stability for the spherically symmetric Einstein-Vlasov system-a coercivity estimate[END_REF], [START_REF] Hadžić | On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability[END_REF]. More precisely, there exists a one-parameter family of spherically symmetric steady states to the EV system parameterized by their central redshift κ > 0. In [START_REF] Hadžić | On the small redshift limit of steady states of the spherically symmetric Einstein-Vlasov system and their stability[END_REF], the authors proved linear stability against spherically symmetric perturbations when κ is small and in [START_REF] Hadžić | Stability and instability of self-gravitating relativistic matter distributions[END_REF], Hadžić, Lin and Rein proved the existence of a growing mode when κ is large enough, which leads to instability. The case of general perturbations and the nonlinear stability remain open. However, the orbital stability of Schwarzschild as a solution to the spherically symmetric EV system follows from the work of Dafermos [START_REF] Dafermos | Spherically symmetric spacetimes with a trapped surface[END_REF].

Concerning the massless Einstein-Vlasov system, stationary and spherically symmetric solutions were constructed numerically in [START_REF] Akbarian | Critical collapse in the spherically symmetric Einstein-Vlasov model[END_REF]. The solutions describe spacetimes with no black hole singularity with a photon shell which is compactly supported and has a finite mass. In [START_REF] Andréasson | Models for self-gravitating photon shells and geons[END_REF], Andréasson, Fajman and Thaller then provided a mathematical construction of these models. Very recently, Andréasson has combined methods from [START_REF] Andréasson | Models for self-gravitating photon shells and geons[END_REF] and [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF] in order to construct photon matter shells surrounding a Schwarzschild black hole. The shells have a finite mass and finite radius, see [START_REF] Andréasson | Existence of steady states of the massless Einstein-Vlasov system surrounding a Schwarzschild black hole[END_REF].

Axially symmetric solutions

We begin by recalling the following definition Definition 7. A stationary solution (M, g, f ) to the EV system is said to be axially symmetric if

• (M, g) is invariant under the action of the rotation group SO(2),

• f is invariant under the complete lift of the generator of SO(2) symmetry.

Axisymmetry assumption imply that, in addition to the integral of motion E E(x, v) := -g(T, v), the quantity ℓ z (x, v) := g x (ξ, v)

are invariant under the geodesic flow, where T is the generator of stationarity and ξ is the generator of SO (2). Hence, axially symmetric solutions can be obtained by assuming the following ansatz on

f f (x, v) = Φ(E, ℓ z ),
where E and ℓ z are interpreted as the energy and the projection of the total angular momentum on the axis of symmetry of particles respectively. Therefore, when injecting the above ansatz in the definition of the energy-momentum tensor, the latter becomes a functional of the metric coefficients and the problem of finding stationary models in then reduced to solving a PDE problem in the 1.3. Black hole solutions to the Einstein field equations metric coefficients. From a mathematical point of view, the complexity of the Einstein field equations increases drastically if one gives up spherical symmetry and prior to our work, only two mathematical constructions had been obtained in the case of axisymmetry: static and axisymmetric solutions to the EV system were constructed by Andréasson-Kunze-Rein in [START_REF] Håkan Andréasson | Existence of axially symmetric static solutions of the Einstein-Vlasov system[END_REF] and then extended to establish the existence of rotating stationary and axisymmetric solutions to the EV system in [START_REF] Håkan Andréasson | Rotating, stationary, axially symmetric spacetimes with collisionless matter[END_REF]. The constructed solutions are obtained as bifurcations of a spherically symmetric Newtonian steady state and they do not contain black holes [START_REF] Håkan Andréasson | Rotating, stationary, axially symmetric spacetimes with collisionless matter[END_REF]. Moreover, the steady states obtained in [START_REF] Andréasson | Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter[END_REF] are not rotating and the ones obtained in [START_REF] Håkan Andréasson | Rotating, stationary, axially symmetric spacetimes with collisionless matter[END_REF] are slowly rotating. Furthermore, numerical constructions have been provided by Ames, Andréasson and Logg [START_REF] Ames | On axisymmetric and stationary solutions of the self-gravitating Vlasov system[END_REF]. The constructed solutions are not necessarily slowly rotating and for a certain class of the profile Φ, the resulting spacetimes contain an ergoregion.

Black hole solutions to the Einstein field equations

One central prediction from the theory of general relativity is that of the existence of black holes.

The concept was first encountered in explicit solutions of the Einstein vacuum equations

Ric(g) = 0 (1.3.1)
by the discovery of Schwarzschild solution (M Sch , g Sch ), see below 1.3.1. The main property of black hole solutions is that there exists a black hole region B ⊂ M and a far-away region such that observers in B cannot send signals to "far-away" observers. More precisely, one defines the black hole region of an asymptotically flat spacetime (M, g) as the collection of spacetime points B not in the causal past of future null-infinity I +6 :

B := M\J -(I + ).
Therefore, a solution to the Einstein equations (M, g) is said to be a black hole solution if B = ∅.

In this context, we introduce the following definitions Definition 8. Let (M, g) be a black hole solution. We define

• the event horizon, H to be the boundary 7 in M of B.

• the domain of outer communications O or the exterior region to be the region O := M\B.

In our work, we are interested in the exterior region of black hole solutions which possesses an event horizon and which are asymptotically flat. After introducing a coordinate system covering the exterior region and writing the EV system, we are left with a system of coupled integro-differential equations with boundary conditions at the event horizon and at infinity. In order to introduce these boundary conditions, we will need the following definitions Definition 9 (Asymptotically flat initial data). An initial data (Σ, h, k) for the vacuum Einstein equations is called asymptotically flat if there exists a compact set K ⊂⊂ M such that Σ\K is diffeomorphic to R 3 \B(0, R) for some R > 0 and there exists a system of coordinates (x i ) defined on Σ\K such that in these coordinates, [START_REF] Akbarian | Critical collapse in the spherically symmetric Einstein-Vlasov model[END_REF] and k ij = o(1) , as |x| → ∞.

h ij = δ ij + o
We recall that an initial data (Σ, h, k) for the Einstein vacuum equations is a Riemannian manifold (Σ, h), a symmetric 2-tensor k such that (h, k) satisfies the constraint equations:

R(h) -(T r h (k)) 2 + ||k|| 2 h = 0, div h k -d(T r h (k)) = 0.
Definition 10 (Asymptotic flatness). A vacuum spacetime (M, g) is said to be asymptotically flat if it is a solution to the Einstein equations arising from asymptotically flat initial data.

For more precise definitions, we refer to [START_REF] Christodoulou | Mathematical problems of general relativity I[END_REF]Chapter 3]. In the case of the Einstein-Vlasov system, similar definition for asymptotic flatness holds, for instance we require that the initial data for f decays as |x| → ∞. We refer to [START_REF] Ringström | On the Topology and Future Stability of the Universe[END_REF] for more details.

Definition 11 (Killing Horizon). Consider a Killing vector field K ∈ X(M) and the set of points on which K is null and not identically vanishing. Let H i [K] be a connected component of this set which is a null hypersurface. Any union

H[K] = ∪ i H i [K] is called a Killing horizon.
Definition 12 (Bifurcate event horizon). A bifurcate Killing horizon consists of a pair of Killing horizons (associated with the same Killing field) which intersect in a submanifold F. F is called the bifurcation surface.

Let K be a Killing field and H[K] be a Killing horizon. Denote by N := g(K, K) its norm. One has that K and dN are proportional on

H[K] dN = -2κK ♭ .
where κ is constant along the Killing horizon, see [START_REF] Bernard | Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon[END_REF], [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF], and [START_REF] Heusler | Black hole uniqueness theorems[END_REF] . This motivates the definition of the surface gravity.

Definition 13 (Surface gravity). The surface gravity κ of a Killing horizon is defined by the relation

d(g(K, K)) = -2κK ♭ ,
where K ♭ := g µν K ν dx µ is the one form associated to K. Definition 14 (Non-degenerate Killing horizon). A Killing horizon is called degenerate if κ = 0 and non-degenerate otherwise.

We will need these definitions in Chapter 3 in order to prescribe boundary conditions for the reduced EV system. In the remaining of this section, we introduce the most well-known explicit solutions to the Einstein vacuum equations.

The Schwarzschild spacetime

The Schwarzschild family of spacetimes (M Sch , g Sch ) is a one-parameter family of static spherically symmetric asymptotically flat Lorentzian manifolds, indexed by M > 0, which are solutions to the Einstein vacuum equations (2.2.15). The parameter M denotes the ADM mass. The domain of outer communications of these solutions can be represented by O Sch defined by

O Sch :=R t ×]2M, ∞[ r ×S 2 (θ,φ) (1.3.2)
1.3. Black hole solutions to the Einstein field equations and a metric which takes in the above coordinate system the form g Sch = -e 2µ Sch (r) dt 2 + e 2λ Sch (r) dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ), (1.3.3) where e 2µ Sch (r) = 1 -2M r and e 2λ Sch (r) = 1 -2M r -1

.

(1.3.4)

The latter describes the gravitational field surrounding a static spherically symmetric black hole of mass M . Note that the metric is degenerate when r → 2M and we cannot extend it regularly to the boundary of O Sch . In order to define the event horizon, let us introduce the following change of coordinates in the region O Sch : t * = t + 2M log(r -2M ).

Then the metric g Sch is written in the coordinates (t * , r, θ, φ) on the form:

g Sch, * = -e 2µ Sch (r) (dt * ) 2 + 4M r drdt * + 1 + 2M r dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ), Therefore, the above expression for the metric is formally regular at r = 2M and can in fact be defined on

M Sch := R t * ×]0, ∞[ r ×S 2 (θ,φ) .
M Sch is an extension of O Sch since we have an isometric embedding O Sch , g Sch → M Sch , g Sch, *

(t, r, θ, φ) → (t * , r, θ, φ). Now, we define the following subset of M Sch

B Sch := R t * ×]0, 2M ] r × S 2 (θ,φ) .
The event horizon H Sch is the hypersurface

H Sch := ∂B Sch = (t * , r, θ, φ) ∈ M Sch , r = 2M .
Furthermore, the Schwarzschild family of solutions fully describes the space of static spherically solutions to the Einstein vacuum equations. This result is known as Birkhoff theorem:

Theorem 8 (Birkhoff). Locally, any smooth spherically symmetric metric solution of the vacuum Einstein equations is given by the Schwarzschild spacetime.

The study of the non linear stability of the Schwarzschild solution is a very active area of research. Recently, there have been two proofs of nonlinear stability: one is provided by Klainerman-Szeftel [START_REF] Klainerman | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations[END_REF] for polarised axisymmetric spacetimes and the other is provided by Dafermos-Holzegel-Rodnianski-Taylor [START_REF] Dafermos | The non-linear stability of the Schwarzschild family of black holes[END_REF] for initial data constrained to lie in a codimension-3 submanifold of moduli space. The Schwarzschild family however lives in a larger two-parameter family of explicit solutions (M K , g K a,M ) known as the Kerr solutions, subject of the next section.

The Kerr spacetime

The Kerr family of spacetimes (M K , g K a,M ) is a two-parameter family of stationary, axisymmetric, asymptotically flat Lorentzian manifolds which are solutions to the Einstein-vacuum equations. The Kerr solution is called sub-extremal if the parameters a and M verify 0 ≤ |a| < M ; M denotes the mass and a denotes the specific angular momentum. The domain of outer communication of a sub-extremal Kerr spacetime can be represented in Boyer-Lindquist (BL) coordinates by O K defined by

O K :=R t ×]r + (a, M ), ∞[ r ×S 2 (θ,φ) (1.3.5) where r ± (a, M ) := M ± M 2 -a 2 ,
and a metric which takes the form

g Kerr = -1 - 2M r Σ 2 dt 2 - 4aM r sin 2 θ Σ 2 dtdφ + Π Σ 2 sin 2 θdφ 2 + Σ 2 ∆ dr 2 + Σ 2 dθ 2 ,
where

∆ = r 2 -2M r + a 2 , Σ 2 = r 2 + a 2 cos 2 θ and Π = (r 2 + a 2 ) 2 -a 2 sin 2 θ∆.
The metric is degenerate in the limit r → r ± (a, M ) at (r, θ) = 0, π 2 . The situation is analogous to the Schwarzschild spacetime in the sens that r = r ± (a, M ) is a coordinate singularity. Indeed, we introduce the following change of coordinates (t * , r, θ, φ * ) in the region O K defined by:

t * = t + r (r 2 + a 2 )∆ -1 , φ * = φ + r a∆ -1 .
Then, the metric g Kerr takes the following form in the above system of coordinates

g * Kerr = Σ 2 dθ 2 -2a sin 2 θdrdφ * + 2drdt * + Σ -2 (r 2 + a 2 ) 2 -∆a 2 sin 2 θ sin 2 θd(φ * ) 2 -4aΣ -2 mr sin 2 θdφ * dt * -1 -2mrΣ -2 d(t * ) 2 .
As in the Schwarzschild case, the above expression g * Kerr is formally regular at r = r ± (a, M ) and it is defined on the region

M Kerr := R 2 (t * ,r) × S 2 (θ,φ * ) \ (t * , r, θ, φ * ) : (r, θ) = 0, π 2 .
Moreover, we have an isometric embedding

O K , g * Kerr → M Kerr , g * Kerr (t, r, θ, φ) → (t * , r, θ, φ * ).
Now, we define the following subset of M Kerr

B Kerr out := R t * × [0, r + (a, M )] r × S 2 (θ,φ * ) \ (t * , r, θ, φ * ) : (r, θ) = 0, π 2 .
The (outer) event horizon H Sch is the hypersurface

H K := ∂B Kerr out = (t * , r, θ, φ * ) ∈ M Kerr , r = r + (a, M ) .
Remark 2. One can also define the (inner) event horizon to be the boundary of the region

B Kerr in := R t * × [0, r -(a, M )] r × S 2 (θ,φ * ) \ (t * , r, θ, φ * ) : (r, θ) = 0, π 2 .
However, for the purposes of this thesis, we shall be interested only in the region O K and its boundary H K .

It is easy to see that the vector fields

T := ∂ ∂t
and Φ := ∂ ∂φ are Killing vector fields.

An important feature of the Kerr spacetime is that the norm of the Killing vector field T is not timelike everywhere in the exterior region: when a = 0, there exists a non-empty set of points in O K , called the ergosphere such that the norm of T vanishes:

g(T, T ) = -g tt = 1 - 2M r Σ 2 (r, θ) = 0.
It is defined by

S K := (r, θ) ∈ (r + (a, M ), ∞) × (0, π) r = M + M 2 -a 2 cos 2 θ . (1.3.6) 
Therefore, T becomes spacelike in the so-called ergoregion, the region in O K bounded by S K and

H K E = (r, θ) ∈ (r + (a, M ), ∞) × (0, π) ; r < M + M 2 -a 2 cos 2 θ .
Test particles which are located in the ergoregion may extract energy from the black hole. This phenomenon is often called the Penrose process [START_REF] Robert | General relativity[END_REF], [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]. When a = 0, the ergosphere coincides with the event horizon and there is no ergoregion. Thus, the extraction of energy does not occur in the Schwarzschild spacetime.

The classification of stationary solutions to the Einstein vacuum equations without symmetry assumptions is an important and challenging problem. However, it is widely expected that the domains of outer communications of regular, stationary, four-dimensional, vacuum black-hole solutions are isometrically diffeomorphic to those of the Kerr black holes:

Conjecture 1 (Uniqueness of the Kerr family). Any sufficiently regular, asymptotically flat and stationary solution to the Einstein vacuum equations which is bounded by a non-degenerate event horizon is isometric to a Kerr exterior spacetime.

This conjecture is known to be true under various additional assumptions, namely

• if the spacetime is static [START_REF] Israel | Event horizons in static vacuum space-times[END_REF],

• if there exists a suitable axisymmetric Killing vector field [START_REF] Carter | Axisymmetric black hole has only two degrees of freedom[END_REF], [START_REF] David C Robinson | Uniqueness of the Kerr black hole[END_REF]. This result is known as Carter-Robinson theory and it will be discussed in details in Section 1.4.2.2,

• if the spacetime is assumed to be real analytic [START_REF] Piotr | On uniqueness of stationary vacuum black holes[END_REF], [START_REF] Stephen | Black holes in general relativity[END_REF],

• or if the spacetime is assumed to be a small pertubation of a Kerr spacetime [2], [START_REF] Alexakis | Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces[END_REF], [START_REF] Alexandru | On the uniqueness of smooth, stationary black holes in vacuum[END_REF], [START_REF] Alexakis | Rigidity of stationary black holes with small angular momentum on the horizon[END_REF], [START_REF] Wong | Non-existence of multiple-black-hole solutions close to Kerr-Newman[END_REF].

In view of these results, the Kerr family plays a special role in general relativity and thus the question of its stability is of particular interest.

Conjecture 2 (Asymptotic stability of the Kerr family). The maximal Cauchy development of a small-perturbation of sub-extremal Kerr initial initial data possesses a black hole and exterior region, and in the exterior region, the development remains close to the perturbed spacetime and asymptotically settles down to (a possibly different) Kerr exterior spacetime.

We refer to [START_REF] Dafermos | The mathematical analysis of black holes in general relativity[END_REF] the introductions of [START_REF] Klainerman | Global nonlinear stability of Schwarzschild spacetime under polarized perturbations[END_REF], [START_REF] Klainerman | Kerr stability for small angular momentum[END_REF] and the references therein for detailed discussions on the problem as well as a presentation of the recent advances.

Non-vacuum black hole solutions

Outside from electro-vacuum solutions and some fluid or dust models, there are few explicit solutions of non-vacuum black hole solutions. On the other hand, such a class of solutions would provide more realistic models in many physical situations. Furthermore, it is particularly interesting to understand the effect of matter on the validity of Conjecture 2. Up to our knowledge, the mathematical construction of (non-explicit) black hole solutions to Einsteinmatter system was initiated in the work of Bardeen. In [START_REF] Baarden | Rapidly rotating stars, disks and black holes[END_REF], Bardeen provided the reduced Einstein equations associated to rapidly rotating disks around black holes and discussed the structure of the matter configuration. He assumed that the disk is composed of a perfect fluid, which energy momentum tensor is given by

T αβ = (ρ + p)v α v β -pg αβ
where ρ is the mass density, p is the pressure and v α is the four-momentum such that v α v α = -1.

Then, assuming stationarity and axisymmetry, the author reduced the Einstein equations to a PDE problem in the metric coefficients coupled to the fluid's equation of state. This was achieved by choosing Weyl coordinates (adapted the axisymmetric problem) and by projecting the equations onto the orthonormal tetrad of the zero angular momentum observer (ZAMO) [17, See Section 1]. Boundary conditions were imposed at infinity, on the horizon and on the axis of symmetry. The latter were directly motivated by the work of Carter in the context of the Carter-Robinson reduction. We note that the reduced system was not solved. However, the spacetime parameters were computed, namely the ADM angular momentum and the ADM mass.

A mathematical construction of non-vacuum black-hole solutions to the Einstein equations obtained by solving the reduced system as above was provided by Chodosh and Schlapentokh-Rothman, in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF], where they provided a one-parameter family of solutions to the Einstein-Klein-Gordon equations by deforming the Kerr metric. We recall that the energy-momentum tensor associated to a scalar field Ψ : M → C of mass µ 2 ≥ 0 is given by

T αβ (g) := Re(∂ α Ψ∂ β Ψ) - 1 2 g αβ (g γδ Re(∂ γ Ψ∂ δ Ψ) + µ 2 |Ψ| 2 ),
The resulting spacetimes are time-periodic in the following sense: the metric is stationary and axisymmetric and the scalar field is time-periodic and φ-periodic. Moreover they are asymptotically flat and they possess a non-degenerate bifurcate Killing event horizon.

Their proof was based on two main ideas:

• the existence of time-periodic solutions to the Klein-Gordon equation on fixed Kerr spacetimes [START_REF] Shlapentokh-Rothman | Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes[END_REF],

• the generalisation of and analysis the Carter-Robinson reduction to stationary and axisymmetric non-vacuum spacetimes [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF].

As a consequence of their construction, the Kerr spacetime is not stable as a stationary solution to the Einstein-Klein-Gordon system: Theorem 9. There exist Klein-Gordon masses, a sub-extremal Kerr spacetime, and a small Einstein-Klein-Gordon perturbation such that the scalar field does not decay to a stationary solution.

In particular, as a family of solutions to the Einstein-Klein-Gordon equations, asymptotic stability does not hold for the Kerr family.

The second result of this thesis is based in particular on the adaptation of their generalisation of Carter-Robinson theory to the reduced Einstein-Vlasov system, see Section 3.4.5 of Chapter 3 of this manuscript.

Main results and overview of the thesis

Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime

In the work of Rein [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF], black-hole solutions to the EV system were obtained by gluing a vacuum region and a region containing Vlasov matter. The ansatz used for the distribution function is polytropic and the construction of solutions in the region containing Vlasov matter used the Tolman-Oppenheimer-Volkov equation. A posteriori, see Section 2.2.5, the Vlasov matter must necessarily be supported on the set of timelike trapped geodesics and in the small data regime, one can see that not all trapped geodesics of Schwarzschild are admissible in the construction.

In our paper "Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime" [START_REF] Ezzahra | Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime[END_REF], which is the subject of Chapter 2 of this manuscript, we provided an alternative argument for the construction of solutions near Schwarzschild which is based on the analysis of the set of trapped timelike geodesics and of the effective potential energy for static spacetimes close to Schwarzschild. We proved the following theorem Theorem 10. There exists a 1-parameter family of smooth, static, spherically symmetric asymptotically flat spacetimes (M, g δ ) and distribution functions f δ : Γ 1 → R + solving the Einstein-Vlasov system, such that f δ verifies

∀(x, v) ∈ Γ 1 , f δ (x, v) = Φ(E δ , ℓ; δ)Ψ(r, (E δ , ℓ), g δ ). (1.4.1)
where Φ(•, •; δ) is supported on a compact set B bound of the set of parameters (E, ℓ) corresponding to trapped timelike trajectories, Ψ is a positive cut-off function which selects the trapped geodesics with parameters (E, ℓ) ∈ B bound , Γ 1 is the mass shell of particles with rest mass m = 1, and E δ is the local energy with respect to the metric g δ . Moreover, the resulted spacetimes contain a shell of Vlasov matter in the following sense: there exist R min < R max such that the metric is given by Schwarzschild metric of mass M in the region ]2M, R min ], by Schwarzschild metric of mass M δ in the region [R max , ∞[, and f δ does not identically vanish in the region [R min , R max ].

Remark 3. The support of Φ(E, ℓ; δ) has two connected components: one corresponds to geodesics which reach the horizon in a finite proper time, and the other one corresponds to trapped geodesics.

Chapter 1. INTRODUCTION

Ψ is introduced so that it is equal to 0 outside B bound and equal to a cut-off function depending on the r variable, χ on B bound . The latter is equal to 0 on the first connected component of the support of Φ(E, ℓ; δ) and to 1 on the second component. This allows to eliminate the undesired trajectories. The reason behind the use of this cut-off function is related to the non-validity of Jeans theorem in general relativity [START_REF] Schaeffer | A Class of Counterexamples to Jeans' Theorem for the Vlasov-Einstein System[END_REF]: In general relativity, (E, ℓ) are not sufficient to characterise the geodesic motion. In fact, if we consider the motion of a particle in a Schwarzschild spacetime, then the motion depends on (E, ℓ) and also on the initial radial position: for a fixed (E, ℓ), the particle can have different trajectories depending on where it initially starts.

Remark 4. Eventually, in the context of stability of Schwarzschild as a solution to the EV system, we expect that the solutions given by Theorem 10 are the natural candidates for the asymptotic states of spherically symmetric Schwarzschild perturbations.

A more precise statement of our result is contained in Section 2.3. In the remaining of this section, we give an overview of the proof of Theorem 10.

Geodesic motion in Schwarzschild spacetime and the set of trapped geodesics

The study of the geodesic motion in Schwarzschild spacetime is included in the classical books of general relativity. See for example [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 3] or [START_REF] Charles W Misner | Gravitation[END_REF]Chapter 33]. For the thesis to be selfcontained, we nonetheless provide a detail presentation in Section 2.2.2.

The geodesic motion in Schwarzschild forms an integrable Hamiltonian system. The problem of solving the geodesic equation is then reduced to a one dimensional problem in the radial direction. In Section 2.2.2, we recall the classification of timelike geodesics in order to construct, A bound , the set of parameters (E, ℓ) for which trapped geodesic motion occurs. The classification of timelike geodesics is based on the roots of the equation

E Sch ℓ (r) = E 2 , (1.4.2)
where E Sch ℓ is the effective potential energy associated to a timelike geodesic. E Sch ℓ is a polynomial of degree 3 of 1 r and thus it admits at most three roots in the region ]2M, ∞[. In particular, trapped timelike geodesics occur when (1.4.2) admits three distinct roots:

r Sch 0 (E, ℓ) < r Sch 1 (E, ℓ) < r Sch 2 (E, ℓ).
The set of of parameters (E, ℓ) for which the latter occur is denoted by A bound . Now, given (E, ℓ) ∈ A bound , the allowed region for a timelike geodesics, defined to be the subset in ]2M, ∞[ such that

E Sch ℓ (r) ≤ E 2 , has two connected components: ]2M, r Sch 0 (E, ℓ)] and [r Sch 1 (E, ℓ), r Sch 2 (E, ℓ)]. Therefore,
• either the geodesic starts from r Sch 0 (E, ℓ) and reaches the horizon in a finite time,

• or the geodesic is periodic. It oscillates between an aphelion r Sch 2 (E, ℓ) and a perihelion r Sch 1 (E, ℓ).

As a consequence, a cut-off function was used in the ansatz for the distribution function in order to select only trapped orbits, see Remark 3.

Stability of trapped geodesics of Schwarzschild

We denote by g Sch the Schwarzschild metric written in the spherical coordinates and by B(g Sch , δ 0 ) the ball of radius δ 0 centered around g Sch in some functional space adapted to the problem, see Section 2.4. Our construction is based on the following result, see Section 2.4.2.

Proposition 2. Let 0 < δ0 < δ max . Then, there exists δ 0 ∈]0, δ0 ] such that ∀g ∈ B(g Sch , δ 0 ),

∀(E, ℓ) ∈ B bound , there exist unique r i (g, (E, ℓ)) ∈ B(r Sch i (E, ℓ), δ 0 ), i ∈ {0, 1, 2} such that r i (g, (E, ℓ)) solve the equation E ℓ (g, r) = E 2 ,
where E ℓ (g, •) is the effective potential energy associated to timelike geodesics moving in a static and spherically symmetric spacetime with metric g. Moreover, there are no other roots for the above equation outside the balls B(r Sch i (E, ℓ), δ 0 ).

Solving the reduced system

For static and spherically symmetric spacetimes, the EV system is reduced to a system of ODEs with respect to the radial variable in the metric coefficients. In particular, one can derive an independent equation for the metric component µ, given µ, one can easily construct the remaining component, see Section 2.2.4.

In order to solve for µ,

• We chose ρ > 0 sufficiently small and R > 0 sufficiently large so that the matter is supported8 in the region ]2M + ρ, R[.

• By Birkhoff theorem, the solution is given by Schwarzschild with parameter M in the region ]2M, 2M + ρ[.

• We solved the ODE in the region ]2M + ρ, R[ using an implicit function theorem and the analysis of Vlasov matter. The solution obtained is then close to Schwarschild, see sections 2.4.5 and 2.4.3.

• Again, by Birkhoff theorem, the solution is also given by Schwarzschild with new parameter M + m(δ) in the region ]R, ∞[, where m(δ) is the total mass of the Vlasov field.

Rotating matter shells around Kerr-like black hole

Our second result, based on [START_REF] Jabiri | Rotating Vlasov matter shells around Kerr-like black holes[END_REF] and the subject of Chapter 3, generalises the method presented in the previous section in order to construct stationary axisymmetric Einstein-Vlasov bifurcations of the Kerr spacetime.

Removing the spherical symmetry restriction and replacing it with an axial symmetry assumption provides more realistic models since many astrophysical objects rotate about some axis and have non-trivial total angular momentum. However, as already noted, the complexity of the Einstein equations increases drastically if one gives up spherical symmetry. Moreover, another important difficulty arises from the study and classification of geodesics in axisymmetric spacetimes.

The most important work for our analysis, is the one of Chodosh and Shlapentokh-Rothman on timeperiodic Einstein-Klein-Gordon bifurcations of Kerr [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF]. They relied on Carter-Robinson theory [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF], [START_REF] Carter | Republication of: Black hole equilibrium states part ii. general theory of stationary black hole states[END_REF] and the approach of Weinstein [START_REF] Weinstein | On rotating black holes in equilibrium in general relativity[END_REF], [START_REF] Weinstein | The stationary axisymmetric two-body problem in general relativity[END_REF] concerning rotating black holes in equilibrium.

Our work [START_REF] Jabiri | Rotating Vlasov matter shells around Kerr-like black holes[END_REF] is based, on one hand, on their modified Carter-Robinson theory, and on the other hand, on a generalisation of the arguments from the spherically symmetric case presented above. Another influential work for this thesis is the one of Andréasson-Kunze-Rein on the construction of rotating, general relativistic and asymptotically flat non-vacuum spacetimes [START_REF] Håkan Andréasson | Rotating, stationary, axially symmetric spacetimes with collisionless matter[END_REF]. The authors provided the first mathematical construction of stationary axisymmetric asymptotically flat solutions to the EV system which are geodesically complete and with non-zero total angular momentum. Their method was based on an implicit function theorem and a bifurcation argument from spherically symmetric steady states of the VP system. The ansatz for the distribution function was given by

f µ 1 ,µ 2 (x, v) = φ E - 1 µ 1 ψ (µ 2 , ℓ z ) ,
where µ 1 turns on general relativity and the second parameter turns on the dependence on ℓ z . Moreover, the reduction of the Einstein tensor associated to a stationary and axisymmetric metric followed the work of Bardeen [17] and the energy-momentum tensor components were computed via a reparametrisation of the mass shell.

Our work also uses a similar ansatz for the distribution function9 and this leads to similar reductions of the components of the energy-momentum tensor. On the other hand, we use the implicit function theorem to bifurcate from a possibly rapidly rotating Kerr spacetime. Moreover, our reduction of the EV system follows the work of Chodosh and Shlapentokh-Rothman [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF]. Finally, we note that the main contribution of our thesis is the stability analysis for trapped geodesics, which plays a key role in controlling the nonlinear estimates necessary for closing the argument.

Now, we state a rough version of our second result

Theorem 11. There exists a 1-parameter family of stationary, axisymmetric asymptotically flat black holes spacetimes (M, g δ ) and distribution functions f δ : Γ 1 → R + solving the Einstein-Vlasov system, such that f δ verifies

∀(x, v) ∈ Γ 1 , f δ (x, v) = Φ(E δ , ℓ z ; δ)Ψ((ρ, z), (E δ , ℓ δ z ), g δ ). (1.4.3)
where Φ(•, •; δ) is supported on a compact set B bound of the set of parameters (E, ℓ z ) corresponding to trapped timelike trajectories, E is the energy of the particle and ℓ z its azimutal angular momentum, Ψ is a positive cut-off function which selects the trapped geodesics with parameters (E, ℓ z ) ∈ B bound , Γ 1 is the mass shell of particles with rest mass m = 1, and E δ is the local energy with respect to the metric g δ . Moreover, the resulting spacetimes contain a shell of Vlasov matter in the following sense:

• ∃ρ δ min , ρ δ max ∈]0, ∞[ and Z δ min , Z δ max ∈ R which satisfy ρ δ min < ρ δ max and Z δ min < 0 < Z δ max , such that supp (ρ,z) f ⊂⊂ [ρ min (h), ρ max (h)] × [Z min (h), Z max (h)] ,
and f does not vanish identically,

• the boundary of the domain of outer communications corresponds to a non degenerate bifurcate Killing event horizon on which the metric has a C 2,α extension, for all α ∈ [0, 1[.

We refer to Section 3.5 for a more detailed version of the main result.

General framework and geometric setting

In order to motivate the main ideas of the construction and the difficulties, we present briefly the geometric setting which will be detailed in Section 3.2.1.

We assume that we are looking for stationary, axially symmetric and asymptotically flat spacetimes with stationary and axially symmetric matter fields. In this context, we use the Weyl coordinates (t, φ, ρ, z) defined on

O := R t ×]0, 2π[ φ ×B (ρ,z)
where B := {ρ > 0 , z ∈ R} which are suitable for axially symmetric problems. The horizon is defined by

H := (ρ, z) ∈ B ; ρ = 0 and z ∈] -γ, γ[ ,
the axis of symmetry is defined by

A := (ρ, z) ∈ B ; ρ = 0 and z ∈] -∞, -γ[∪]γ, +∞[ ,
and the poles are defined by p N,S = (0, ±γ) where γ := √ M 2a 2 such that 0 < |a| < M . We assume the following metric ansatz

g := -V dt 2 + 2W dtdφ + Xdφ 2 + e 2λ dρ 2 + dz 2 (1.4.4)
and the following ansatz for the distribution function:

f (x, v) = Φ(E, ℓ z )Ψ((ρ, z), (E, ℓ z ), g).

Main difficulties and key ideas

In the following, we discuss some of the difficulties we encountered while proving Theorem 11:

1. Non-integrability of the geodesic system in stationary and axisymmetric spacetimes: In general stationary and axisymmetric spacetimes, there are a priori only three integrals of motion: the hamiltonian H, the energy measured at infinity E, and the azimutal angular momentum ℓ z . Therefore, the problem of solving the geodesic equations which consist of integrating a system of 8 ordinary differential equations is reduced to solving a problem with two degrees of freedom defined on a four dimensional submanifold of the tangent bundle parametrized by (E, ℓ z ). In Kerr spacetime, there exists a fourth integral of motion, due to Carter [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF]. We note that the study of the geodesic motion in Kerr spacetime is included in the classical books of general relativity. See for example [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 6] for a classification of orbits with constant radial motion and of orbits confined in the equatorial plane, and [99, Chapter 4] for a full classification of timelike geodesics based on the Carter constant. However, in order to construct A bound , we need to reparametrize the trapped geodesics based only on the integrals (E, ℓ z ). Indeed, the Carter constant does not exist for arbitrary perturbations.

A key idea is to identify a set of trapped timelike geodesics moving in Kerr independently of this fourth integral and based only on (E, ℓ z ). In this context, we recall the classification of timelike geodesics in Section 3.3 and we revisit its proof. Then, we reparametrise the timelike geodesics based only on (ε, ℓ z ). This leads to the generalisation of A bound in Section 3.3.1.7.

Stability of the set of trapped timelike geodesics:

In Kerr spacetime, if we do not make use of the Carter constant, the geodesic motion is reduced to two-dimensional motion in the B plane. Therefore, we define a two dimensional potential E K ℓz on B associated to a timelike geodesic. As in the spherically symmetric case, the classification is based on the solutions of the equation

E K ℓz (ρ, z) = E (1.4.5)
which are no longer points, but they are curves in the B plane and their shape determine the nature of the orbit. Therefore, the turning points can be generalised in the following definition Definition 15. Let γ : I → M be a timelike future directed geodesic with constants of motion (E, ℓ z ). We define the zero velocity curve (ZVC) associated to γ denoted by Z(E, ℓ z ) to be the curve in B defined by

Z K (E, ℓ z ) := (ρ, z) ∈ B : E K ℓz (ρ, z) = 0 .
As already discussed, there exists a fourth constant of motion, Q, due to Carter [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF], so that any geodesic is characterised by the set (H, E, ℓ z , Q) and the initial spacetime position. In our picture, one can use Q as a parameter along the curve that solves (1.4.5).

Eventually, for (E, ℓ z ) ∈ A K bound , where A K bound is the generalisation of A bound that we defined in the Schwarzschild case, we obtained a curve with possibly several connected components. In particular, trapped geodesics occur when the solution curve has a compact connected component, Z K,trapped (E, ℓ z ).

In stationary and axisymmetric spacetimes with metric g, we analogously define the effective potential energy for a timelike particle with angular momentum ℓ z , E ℓz (g, •, •). Again, the classification of timelike geodesics is based on the solutions of the equation

E ℓz (g, ρ, z) = E (1.4.6)
The idea is to prove that Z K,trapped (E, ℓ z ) is stable against stationary and axisymmetric perturbations. We state a rough version of the perturbation result (see Section 3.6) Proposition 3. Let 0 < δ0 < δ max . Then, there exists δ 0 ∈]0, δ0 ] such that ∀g ∈ B(g K , δ 0 ), ∀(E, ℓ) ∈ B bound , there exists a unique smooth curve Z pert (g, (E,

ℓ z )) diffeomorphic to S 1 in B "close to" Z K (E, ℓ z ) such that ∀(ρ, z) ∈ Z pert (g, (E, ℓ z )), (ρ, z) solves the equation E ℓz (g, ρ, z) = E.
One of the technical difficulties that we encountered in the proof is to give a definition of "perturbed closed curves" , see Definition 41, and to chose a functional space for the metric g which is compatible with the PDE problem for the metric coefficients. It turned out that the theory of Shlapentokh-Rothman and Chodosh [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] is sufficient to solve the second problem.

3. Carter-Robinson theory and the analysis of the reduced Einstein equations: We recall that the uniqueness conjecture of the Kerr family, Conjecture 1, is known to be true if the spacetime is assumed to be axisymmetric. The problem was reduced to solving a harmonic map system with boundary conditions at infinity, the horizon, the axis of symmetry and their intersection. Indeed, the twist one-form θ associated to the Killing field generating the axial symmetry is closed on B, which is simply connected. This allowed Carter and Robinson to define an Ernst potential, Y which vanishes at infinity such that dY = θ and which forms, together with the metric coefficient X a harmonic map system which decouples from the remaining equations for the other metric components:

       ρ -1 ∂ ρ (ρ∂ ρ X) + ρ -1 ∂ z (ρ∂ z X) = (∂ ρ X) 2 + (∂ z X) 2 -(∂ ρ Y ) 2 -(∂ z Y ) 2 X , ρ -1 ∂ ρ (ρ∂ ρ Y ) + ρ -1 ∂ z (ρ∂ z Y ) = 2(∂ ρ Y )(∂ ρ X) + 2(∂ z Y )(∂ z X) X .
In fact, if (ρ, z) are considered with φ ∈ (0, 2π) as being the cylindrical coordinates in R 3 , X and Y can then be seen as axisymmetric functions on R 3 . Therefore, (X, Y ) forms a harmonic map from R 3 to hyperbolic space H 2 . The requirements of asymptotic flatness and regular extensions to the axis and event horizon lead to natural boundary conditions for X and Y . This determines uniquely (X, Y ). 10Given a particular solution (X, Y ) to the harmonic map system, the remaining of the metric coefficients are then uniquely determined. First, it is shown that

∆ R 2 σ = 0 where σ := XV + W 2 .
The boundary conditions for σ imply that σ = ρ. Next, the definition of the twist leads to the following equation on W

∂ ρ (X -1 W )dρ + ∂ z (X -1 W )dz = ρ X 2 ((∂ ρ Y )dz -(∂ z Y )dρ).
Again, the boundary conditions are used to determine uniquely W in terms of (X, Y ). As for λ, it satisfies the equation

     ∂ ρ λ = 1 4 ρX -2 ((∂ ρ X) 2 -(∂ z X) 2 + (∂ ρ Y ) 2 -(∂ z Y ) 2 ) - 1 2 ∂ ρ log X, ∂ z λ = 1 4 ρX -2 ((∂ ρ X)(∂ z X) + (∂ ρ Y )(∂ z Y )) - 1 2 ∂ z log X.
This determines uniquely λ in terms of (X, Y ). One can then conclude the uniqueness of Kerr once (X K , Y K ) associated to the Kerr metric are checked to verify the harmonic map system.

In the static spherically symmetric case, we recall that we only solved the problem in a bounded region of the r-domain and we used Birkhoff theorem in order to extend the solution on the whole exterior region. Unfortunately, the gluing argument cannot be applied in the axisymmetric case because the above Carter-Robinson theory cannot be applied to the Einstein Vacuum equations with boundary conditions different from those at infinity. Indeed, we cannot assume that the metric is given by Kerr between the horizon and the inner boundary of the matter shell. Therefore, we have to solve the system on the whole exterior region 11 with suitable boundary conditions on the horizon, the axis of symmetry, the infinity and the intersection between the horizon and the axis of symmetry. This leads to equations with singular coefficients and this is where we rely on the work [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] to overcome these difficulties, see Section 3.8.

In the presence of matter the twist-one form θ is no longer closed. However, in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF], the authors managed to introduce an Ernst-like potential and another one-form B such that

dY = θ -B.
They also obtained a harmonic map system but it is coupled with the remaining equations. We adapted this argument in our proof in order to reduce the EV system to a system of semi-linear elliptic equations coupled to first order PDEs in the metric coefficients only. For the matter terms, it remains to estimate all the components of T αβ at the same regularity as the metric, see Section 3.8.2.

Eventually, to close the whole argument, we applied a fixed point theorem, see Section 2.4

Introduction

We construct static spherically symmetric solutions to the EV system which contain a matter shell located in the exterior region of the Schwarzschild black hole. This provides an alternative construction to that of Rein [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF], See remarks 5 and 6 below for a comparison of our works and results. Our proof is based on the study of trapped timelike geodesics of spacetimes closed to Schwarzschild. In particular, we show (and exploit) that for some values of energy and total angular momentum (E, ℓ), the effective potential associated to a particle moving in a perturbed Schwarzschild spacetime and that of a particle with same (E, ℓ) moving in Schwarzschild are similar. Our distribution function will then be supported on the set of trapped timelike geodesics, and this will lead to the finiteness of the mass and the matter shell's radii.

Recall that the effective potential energy E Sch ℓ of a particle of rest mass m = 1 and angular momentum ℓ, moving in the exterior of region of the Schwarzschild spacetime is given by 

E Sch ℓ (r) = 1 - 2M r 1 + ℓ r 2 . (2.1.1)
In particular, trapped non circular geodesics occur when the equation

E Sch ℓ (r) = E 2 , (2.1.2)
admits three distinct roots r Sch 0 (E, ℓ) < r Sch 1 (E, ℓ) < r Sch 2 (E, ℓ). We state now our main result: Theorem 12. There exists a 1-parameter family of smooth, static, spherically symmetric asymptotically flat spacetimes (M, g δ ) and distribution functions f δ : Γ 1 → R * + solving the Einstein-Vlasov system given by equations (1.1.6), (1.1.14) and (1.1.16), such that f δ verifies

∀(x, v) ∈ Γ 1 , f δ (x, v) = Φ(E δ , ℓ; δ)Ψ(r, (E δ , ℓ), g δ ). (2.1.3)
where Φ(•, •; δ) is supported on a compact set B bound of the set of parameters (E, ℓ) corresponding to trapped timelike trajectories, Ψ is a positive cut-off function, defined below (cf. (2.2.37)) which selects the trapped geodesics with parameters (E, ℓ) ∈ B bound , Γ 1 is the mass shell of particles with rest mass m = 1, and E δ is the local energy with respect to the metric g δ . Moreover, the resulted spacetimes contain a shell of Vlasov matter in the following sense: there exist R min < R max such that the metric is given by Schwarzschild metric of mass M in the region ]2M, R min ], by Schwarzschild metric of mass M δ in the region [R max , ∞[, and f δ does not identically vanish in the region [R min , R max ].

Remark 5. Compared to the work of Rein [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF], the solutions constructed here are bifurcating from Schwarzschild and therefore, a priori small. Moreover, the ansatz used in this work is different from that used by Rein. In particular, it is not polytropic. Another difference is that we do not use the Tolman-Oppenheimer-Volkov equation (2.2.75) in our argument. See Theorem 18 for the exact assumptions on the profile Φ.

Remark 6. A posteriori, in the small data case, one can check that the distribution functions constructed by Rein are supported on trapped timelike geodesics. However, not all the trapped geodesics are admissible in his construction. In our case, we include a more general support, cf. Section 2.2.5 for more details on this part.

Remark 7. The support of Φ(E, ℓ; δ) has two connected components: one corresponds to geodesics which start near r 0 (E, ℓ) and reach the horizon in a finite proper time, and the other one corresponds to trapped geodesics. Ψ is introduced so that it is equal to 0 outside B bound and equal to a cut-off function depending on the r variable (cf 3.4.2), χ on B bound . The latter is equal to 0 on the first connected component of the support of Φ(E, ℓ; δ) and to 1 on the second component. This allows to eliminate the undesired trajectories. The reason behind the use of this cut-off function is related to the non-validity of Jean's theorem in general relativity [START_REF] Schaeffer | A Class of Counterexamples to Jeans' Theorem for the Vlasov-Einstein System[END_REF]: In general relativity, (E, ℓ) are not sufficient to characterise the geodesic motion. In fact, if we consider the motion of a particle in a Schwarzschild spacetime, then the motion depends on (E, ℓ) and also on the initial radial position: for a fixed (E, ℓ), the particle can have different trajectories depending on where it initially starts. We refer to Proposition 4 for more details.

Remark 8. Following [START_REF] Dafermos | Spherically symmetric spacetimes with a trapped surface[END_REF], the Schwarzschild family of solutions to the Einstein-Vlasov system is orbitally stable against spherically symmetric perturbations. This leaves open the question of asymptotic convergence. We expect that the constructed solutions in Theorem 12 are natural candidates for the asymptotic state.

This chapter is organised as follows. In Section 2.2, we present basic background material on the Einstein-Vlasov system and the geodesic motion in the Schwarzschild exterior. We also present the ansatz for the metric and the distribution function and we reduce the Einstein equations to a system of ordinary differential equations in the metric components. We end this section with a short description of Rein's construction to compare it with ours. In Section 2.3, we give a detailed formulation of our main result. In Section 2.4, we prove Theorem 12. To this end, we control quantitatively the effective potential and the resulting trapped timelike geodesics for static spherically symmetric spacetimes close to Schwarzschild. The main theorem is then obtained by application of the implicit function theorem. Finally, Appendix 2.A contains a proof of Proposition 4 concerning the classification of timelike geodesics in the Schwarzschild spacetime. 

Preliminaries and basic background material

In this section, we introduce basic material necessary for the rest of the paper.

Static and Spherically symmetric solutions

Metric ansatz

We are looking for static and spherically symmetric asymptotically flat solutions to the EV system. Therefore, we consider the following ansatz for the metric, written in standard (t, r, θ, φ) coordinates:

g = -e 2µ(r) dt 2 + e 2λ(r) dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ). (2.2.1)
with boundary conditions at infinity:

lim r→∞ λ(r) = lim r→∞ µ(r) = 0. (2.2.2)
Since we consider solutions close to a Schwarzschild spacetime of mass M > 0 outside from the black hole region, we fix a manifold of the form

O :=R×]2M, ∞[×S 2 . (2.2.3) t r θ, φ (2.2.4) 

Vlasov field on static and spherically symmetric spacetimes

The distribution function f is conserved along the geodesic flow. Hence, any function of the integrals of motion will satisfy the Vlasov equation. In this context, we look for integrals of motion for the geodesic equation (1.1.10) on a static and spherically symmetric background. By symmetry assumptions, the vector fields

ξ t = ∂ ∂t , (2.2.5) 
generating stationarity, and

ξ 1 = -cos φ cot θ ∂ ∂φ -sin φ ∂ ∂θ , (2.2.6 
)

ξ 2 = -sin φ cot θ ∂ ∂φ + cos φ ∂ ∂θ , (2.2.7 
)

ξ 3 = ∂ ∂φ (2.2.8)
generating spherical symmetry are Killing. Therefore, the quantities

E(x, v) := -g x (v, ξ t ) = e µ(r) m 2 + (e λ(r) v r ) 2 + (rv θ ) 2 + (r sin θv φ ) 2 ,
(2.2.9)

ℓ 1 (x, v) := g x (v, ξ 1 ) = r 2 -sin φv θ -cos θ sin θ cos φv φ , (2.2.10) ℓ 2 (x, v) := g x (v, ξ 2 ) = r 2 cos φv θ -cos θ sin θ sin φv φ , (2.2.11) ℓ z (x, v) := g x (v, ξ 3 ) = r 2 sin 2 θv φ , (2.2.12) 
are conserved. In particular, E and

ℓ := ℓ(r, θ, v θ , v φ ) = ℓ 2 1 + ℓ 2 2 + ℓ 2 z = r 4 (v θ ) 2 + sin 2 θ(v φ ) 2 (2.2.13)
are conserved. We recall that m := -g αβ v α v β is also a conserved quantity. Since all particles have the same rest mass m = 1, E becomes

E = E(r, v r , v θ , v φ ) = e µ(r) 1 + (e λ(r) v r ) 2 + (rv θ ) 2 + (r sin θv φ ) 2 . (2.2.14)
Note that E and ℓ can be interpreted respectively as the energy and the total angular momentum of the particles.

The Schwarzschild spacetime and its timelike geodesics

The Schwarzschild family of spacetimes is a one-parameter family of spherically symmetric Lorentzian manifolds, indexed by M > 0, which are solutions to the Einstein vacuum equations

Ric(g) = 0. (2.2.15)
The parameter M denotes the ADM mass. The domain of outer communications of these solutions can be represented by O and a metric which takes the form

g Sch = -e 2µ Sch (r) dt 2 + e 2λ Sch (r) dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ), (2.2.16) 
where

e 2µ Sch (r) = 1 - 2M r and e 2λ Sch (r) = 1 - 2M r -1
.

(2.2.17)

In this work, we shall be interested in particles moving in the exterior region. We note that the study of the geodesic motion is included in the classical books of general relativity. See for example [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 3] or [START_REF] Charles W Misner | Gravitation[END_REF]Chapter 33]. We recall here a complete classification of timelike geodesics in order to construct A bound . We also give a proof of this classification in order to be self-contained.

The delineation of Schwarzschild's geodesics requires solving the geodesic equations given by (1.1.10). Therefore, we need to integrate a system of 8 ordinary differential equations. However, the symmetries of the Schwarzschild spacetime and the mass shell condition

L(x, v) = - m 2 2 (2.2.18)
imply the complete integrability of the system.

Let (x α , v α ) = (t, r, θ, φ, v t , v r , v θ , v φ ) be a local coordinate system on T M. The quantities

E = -v t , ℓ = r 4 (v θ ) 2 + sin 2 θ(v φ ) 2 , ℓ z = r sin θv φ .
are then conserved along the geodesic flow. Besides, the mass shell condition on Γ takes the form

-e 2µ Sch (r) (v t ) 2 + e 2λ Sch (r) (v r ) 2 + r 2 (v θ ) 2 + sin 2 θ(v φ ) 2 = -1
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E 2 = E Sch ℓ (r) + (v r ) 2 , where E Sch ℓ (r) = e 2µ Sch (r) 1 + ℓ r 2 . (2.2.19)
and implies

E Sch ℓ (r) ≤ E 2 (2.2.20)
for any geodesic moving in the exterior region. Let γ : I → M be a timelike geodesic in the spacetime, defined on interval I ⊂ R. In the adapted local coordinates (x α , v α ), we have

γ(τ ) = (t(τ ), r(τ ), θ(τ ), φ(τ )) and γ ′ (τ ) = (v t (τ ), v r (τ ), v θ (τ ), v φ (τ )).
Besides, γ satisfies the geodesic equations of motion (1.1.10). One can easily see from the equations

v t = -E, (2.2.21) r 2 sin 2 θv φ = ℓ z , (2.2.22) (r 2 v θ ) 2 + ℓ 2 z sin 2 θ = ℓ, (2.2.23 
)

(e λ Sch (r) v r ) 2 -e -2µ Sch (r) E 2 + 1 + ℓ r 2 = 0 (2.2.24)
that if we solve the geodesic motion in the radial direction r(τ ) then we can integrate the remaining equations of motion. More precisely, if one solves for r then we get t from (2.2.21), φ from (2.2.22) and θ from (2.2.23). Therefore, we will study the geodesic equation projected only in the radial direction i.e we consider the reduced system

dr dτ = v r , (2.2.25) dv r dτ = -Γ r αβ v α v β . (2.2.26)
Straightforward computations of the right hand side of the second equation lead to

Γ r αβ v α v β = M r 2 1 - 2M r -1 E 2 - M r 2 1 - 2M r -1 (v r ) 2 - 1 r 3 1 - 2M r ℓ.
We combine the latter expression with (2.2.24), to obtain

dv r dτ = - M r 2 1 + ℓ r 2 + ℓ r 3 1 - 2M r .
Now, by (2.2.19), it is easy to see that

dv r dτ = - 1 2 E Sch ℓ ′ (r).
In order to lighten the notations, we denote v r by w. Thus, we consider the differential system

dr dτ = w, (2.2.27 
) More precisely, we state the following proposition. We include a complete proof of this classical result in Appendix 2.A.

dw dτ = - 1 2 E Sch ℓ ′ (r
Proposition 4. Consider a timelike geodesic γ : I → M of the Schwarzschild exterior of mass M > 0 parametrised by γ(τ ) = (t(τ ), r(τ ), θ(τ ), φ(τ )) and normalised so that g Sch ( γ, γ) = -1. Let E and ℓ be the associated energy and total angular momentum defined respectively by E := -v t and ℓ := r 4 (v θ ) 2 + sin 2 θ(v φ ) 2 . Then, we have the following classification

1. If ℓ ≤ 12M 2 , then (a) if 0 < E < 1 and E = 8
9 or E = 8 9 and ℓ = 12M 2 , then the orbit starts at some point between 2M and r Sch 0 (E, ℓ), where r Sch 0 (E, ℓ) > 2M is the unique root of the equation (2.2.29), and reaches the horizon r = 2M in a finite proper time.

(b) if E ≥ 1, then the equation (2.2.29) admits no positive roots. The orbit starting with a positive radial velocity goes to infinity r = +∞ while the orbit starting with negative radial velocity reaches the horizon r = 2M in finite affine time.

(c) if E = 8 9 and ℓ = 12M 2 , then equation (2.2.29) admits a unique triple root, given by r c = 6M . As for the orbit, we have three possible scenarios i. The orbit starting at r c remains at r c for all times. It is therefore circular. ii. The orbit starting at some point in ]2M, r c [ with a positive radial velocity approaches the circle of radius r c in an infinite time. iii. The orbit starting at some point in ]2M, r c [ with a negative radial velocity reaches the horizon in a finite proper time.

2. If ℓ > 12M 2 , then (a) if ℓ < ℓ lb (E), where ℓ lb (E) is given by 

ℓ lb (E) := 12M 2 1 -4α -8α 2 + 8α √ α 2 + α , α := 9 8 E 2 -1. ( 2 
(ℓ) = ℓ 2M 1 -1 - 12M 2 ℓ . ( 2 

.2.31)

. As for the orbit, we have the following possible scenarios:

• The orbit starting at r Sch max (ℓ) remains at r c for all times. It is therefore circular. 

ℓ ub (E) := 12M 2 1 -4α -8α 2 -8α √ α 2 + α . ( 2 

.2.32)

A. If ℓ = ℓ lb (E), then the equation admits one double root r Sch max (ℓ) and one simple root r Sch 2 (E, ℓ) such that 2M < r Sch max (ℓ) < r Sch 2 (E, ℓ). As for the orbit, we have the following possible scenarios:

• The orbit starting at r Sch max (ℓ) remains at r Sch max (ℓ) for all times. It is therefore circular.

• The orbit starting at some point in ]2M, r Sch max (ℓ)[ with a positive radial velocity approaches the circle of radius r Sch max (ℓ) by spiralling around it for an infinite number of times.

• The orbit starting at some point in ]2M, r Sch max (ℓ)[ with a negative radial velocity reaches the horizon in a finite proper time.

• The orbit starts from infinity, approaches the circle of radius r Sch max (ℓ) and spirals around it for an infinite number of times. B. Otherwise, ℓ ub (E) ≥ ℓ > ℓ lb (E).

• if ℓ = ℓ ub (E), then the equation (2.2.29) admits one simple root r Sch 0 (E, ℓ) and one double root r Sch min (ℓ) such that 2M < r 0 < r Sch min (ℓ) where r Sch min (ℓ), given by

r Sch min (ℓ) = ℓ 2M 1 + 1 - 12M 2 ℓ . ( 2 

.2.33)

The geodesic is either circular of radius r Sch min (ℓ) or it starts at some point between 2M and r Sch 0 (E, ℓ) and reaches the horizon in a finite proper time. 

A bound := (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : E < 1, ℓ lb (E) < ℓ < ℓ ub (E) . (2.2.34)
Remark 10. The above proposition provide a full classification of timelike geodesics moving in the exterior of Schwarzschild spacetime. However, for the purposes of our work, we are only interested in the case where (ε, ℓ) ∈ A bound .

Note in view of the orbits described in 2.c.ii.B that given (E, ℓ) ∈ A bound , two cases are possible: the orbit is either trapped or it reaches the horizon in a finite proper time.

Ansatz for the distribution function

We are interested in static and spherically symmetric distribution functions. For simplicity, we fix the rest mass of the particles to be 1. In this context, we assume that f : Γ 1 → R * + takes the form

f (t, r, θ, φ, v r , v θ , v φ ) = Φ(E, ℓ)Ψ η (r, (E, ℓ), µ). (2.2.35)
where

• Φ :]0, ∞[×[0, ∞[→ R * + is a C 2 function on its domain and it is supported on B bound ⊂⊂ A bound , a set of the form [E 1 , E 2 ] × [ℓ 1 , ℓ 2 ]
, where E 1 , E 2 , ℓ 1 and ℓ 2 verify

8 9 < E 1 < E 2 < 1 and ℓ lb (E 2 ) < ℓ 1 < ℓ 2 < ℓ ub (E 1 ). ( 2 

.2.36)

• η > 0 is constant that will be specified later,

Ψ η (•, •, µ) ∈ C ∞ (R×]0, ∞[×[0, ∞[, R * + ) is a cut-off function depending on the metric coefficient µ, such that Ψ η (•, (E, ℓ), µ) :=    χ η (• -r 1 (µ, (E, ℓ))), (E, ℓ) ∈ B bound 0 (E, ℓ) / ∈ A bound , (2.2.37) 
Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime where r 1 is a positive function of (µ, E, ℓ) which will be defined later1 and χ η ∈ C ∞ (R, R * + ) is a cut-off function which is equal to 1 on [0, ∞[, which is equal to 0 on ] -∞, -η[ and which interpolates between 0 and 1 on [-η, 0].

• E and ℓ are defined respectively by (2.2.14), (2.2.13).

Based on the monotonicity properties of ℓ ub , ℓ ub r Sch min and r Sch max , the set B bound is included in A bound . More precisely, we state the following lemma

Lemma 1. Let ℓ ∈]12M 2 , ∞[ • r Sch max decreases monotonically from 6M to 3M on ]12M 2 , ∞[. • r Sch min increases monotonically from 6M to ∞ on ]12M 2 , ∞[. Let E ∈ 8 9 , 1 ,
• ℓ lb grows monotonically from 12M 2 to 16M 2 when E grows from 8 9 to 1.

• ℓ ub grows monotonically from 12M 2 to ∞ when E grows from 8 9 to 1.

Moreover, ∀(E, ℓ) ∈ [E 1 , E 2 ] × ]ℓ lb (E 2 ), ℓ lb (E 1 )[ ℓ lb (E) < ℓ lb (E 2 ) < ℓ < ℓ ub (E 1 ) < ℓ ub (E).
Proof. The proof is straightforward in view of ( Otherwise, the orbit would be circular. Therefore,

(E Sch ℓ ) ′ (r Sch i (E, ℓ)) = 0. r Sch i verify E 2 = E Sch ℓ (r Sch i (E, ℓ)).
We derive the latter equation with respect to E and ℓ to obtain

∂r Sch i ∂ℓ (E, ℓ) = - ∂E Sch ℓ ∂ℓ (r Sch i (E, ℓ)) (E Sch ℓ ) ′ (r Sch i (E, ℓ))
, and

∂r Sch i ∂E (E, ℓ) = 2E (E Sch ℓ ) ′ (r Sch i (E, ℓ))
We use the monotonicity properties of E Sch ℓ on ]2M, ∞[ to determine the sign of the above derivatives. For the second point, we use the monotonicity properties of r Sch 1 , r Sch max and ℓ ub to obtain

∀(E, ℓ) ∈ A bound : r Sch 1 (E, ℓ) > r Sch 1 (E, ℓ lb (E)) and r Sch max (ℓ lb (E)) > r Sch max (ℓ lb (1)).
Besides, by the definition on ℓ ub (the value of the angular momentum such that

E max (ℓ) = E Sch ℓ (r Sch max (ℓ)) = E 2 ), we have r Sch 1 (E, ℓ lb (E)) = r Sch max (ℓ lb (E)). Therefore, r Sch 1 (E, ℓ) > r Sch max (ℓ lb (1) 
). To conclude, it suffices to note that ℓ lb (1) = 16M 2 so that, when using (2.2.31), we obtain r Sch max (ℓ lb (1)) = 4M. This ends the proof.

Remark 11. The choice of an open set for the range of ℓ allow us eliminate the critical values leading to circular orbits which correspond to double roots of the equation (2.2.29): the points (E 1 , ℓ ub (E 1 )) and (E 2 , ℓ lb (E 2 )).

Reduced Einstein equations

After specifying the ansatz for the metric and for the distribution function, we compute the energymomentum tensor associated to (2.2.1) and the distribution function (2.2.35). In order to handle the mass shell condition, we introduce the new momentum variables p 0 := -e µ(r) v t , p 1 := e λ(r) v r , p 2 := rv θ , p 3 := r sin θv φ , (2.2.39) so that the associated frame 

e 0 := e -µ(
v θ = √ ℓ cos χ r 2 , v φ = √ ℓ sin χ r 2 sin θ , so that r 4 (v θ ) 2 + r 4 sin 2 θ(v φ ) 2 = ℓ.
We also introduce the effective potential in the metric (2.2.1)

E ℓ (r) := e 2µ(r) 1 + ℓ r 2 .
(2.2.41)

In local coordinates, the energy momentum tensor reads

T αβ (x) = Γx v α v β f (x µ , v a )d x vol(v a ), = Γx v α v β Φ(E(x µ , v a ), ℓ(x µ , v a ))Ψ η (r, (E(x µ , v a ), ℓ(x µ , v a )), µ)d x vol(v),
where d x vol(v) is given by (1.1.15), E(x µ , v a ) and ℓ(x µ , v a ) are respectively given by (2.2.14) and (2.2.13). Here, x µ = (t, r, θ, φ) and v a = (v r , v θ , v φ ). We make a first change of variables

(v r , v θ , v φ ) → (p 1 , p 2 , p 3 ) to get T αβ (x) = R 3 v α (p)v β (p)Φ (E(r, |p|), ℓ(r, p)) Ψ η (r, (E(r, |p|), ℓ(r, p)), µ) d 3 p 1 + |p| 2 = 2 [0,+∞[×R 2 v α (p)v β (p)Φ (E(r, |p|), ℓ(r, p)) Ψ η (r, (E(r, |p|), ℓ(r, p)), µ) d 3 p 1 + |p| 2 .
We perform a second change of variables (p 1 , p 2 , p 3 ) → (E(r, |p|), ℓ(r, p), χ). We compute the p i s in terms of the new variables:

(p 1 ) 2 = E 2 (r, |p|)e -2µ(r) -1 - ℓ(r, p) r 2 , p 2 = ℓ(r, p) cos χ r , p 3 = ℓ(r, p) sin χ r .
Now it is easy to see that the domain of (E, ℓ, χ) is given by D r × [0, 2π[ where

D r := (E, ℓ) ∈]0, ∞[×[0, ∞[ : E ℓ (r) ≤ E 2 . (2.2.42)
By straightforward computations of the Jacobian, we get

d 3 p 1 + |p| 2 = 1 2r 2 E 2 -E ℓ (r) dEdℓdχ.
Therefore, the energy momentum tensor becomes

T αβ (x) = Dr [0,2π[ u α u β Φ(E, ℓ)Ψ η (r, (E, ℓ, µ) 1 r 2 E 2 -E ℓ (r) dEdℓdχ,
where

u 2 t = E 2 , u 2 r = e 2λ(r)-2µ(r) E 2 -E ℓ (r) , , u 2 θ = ℓ cos 2 χ, u 2 φ = ℓ sin 2 θ sin 2 χ.
Hence, the non-vanishing energy-momentum tensor components are given by

T tt (r) = 2π r 2 Dr E 2 Ψ η (r, (E, ℓ, µ) Φ(E, ℓ) E 2 -E ℓ (r) dEdℓ, T rr (r) = 2π r 2 Dr e 2(λ(r)-µ(r)) Ψ η (r, (E, ℓ, µ)Φ(E, ℓ) E 2 -E ℓ (r) dEdℓ, T θθ (r) = π r 2 Dr Ψ η (r, (E, ℓ, µ)Φ(E, ℓ) ℓ E 2 -E ℓ (r) dEdℓ,
T φφ (r, θ) = sin 2 θT θθ (r).

It remains to compute the Einstein tensor

G αβ = Ric αβ - 1 2 g αβ R(g)
with respect to the metric (2.2.1). Straightforward computations lead to

G tt = e 2µ(r) r 2 e -2λ(r) 2rλ ′ (r) -1 + 1 , G rr = e 2λ(r) r 2 e -2λ(r) 2rµ ′ (r) + 1 -1 , G θθ = re -2λ(r) rµ ′2 (r) -λ ′ (r) + µ ′ (r) -rµ ′ (r)λ ′ (r) + rµ ′′ (r) , G φφ = sin 2 θG θθ ,
while the remaining components vanish. Therefore, the Einstein-Vlasov system is reduced to the following system of differential equations with respect the radial variable r: e -2λ(r) 2rλ ′ (r) -1 + 1 = 16π 2 e -2µ(r)

Dr E 2 Ψ η (r, (E, ℓ, µ) Φ(E, ℓ)) E 2 -E ℓ (r) dEdℓ,
(2.2.43)

e -2λ(r) 2rµ ′ (r) + 1 -1 = 16π 2 e -2µ(r) Dr Φ(E, ℓ)Ψ η (r, (E, ℓ, µ) E 2 -E ℓ (r)) dEdℓ, (2.2.44 
)

rµ ′2 (r) -λ ′ (r) + µ ′ (r) -rµ ′ (r)λ ′ (r) + rµ ′′ (r) = 8π 2 r 3 e 2λ(r) Dr Φ(E, ℓ)Ψ η (r, (E, ℓ, µ) ℓ E 2 -E ℓ (r)) dEdℓ.
(2.2.45)

We perform a last change of variable E = e µ(r) ε and we set 

G Φ (r, µ) := 2π r 2 ∞ 1 r 2 (ε 2 -1) 0 Φ(e µ(r) ε, ℓ)Ψ η (r, (e µ(r) ε, ℓ, µ)) ε 2 ε 2 -1 -ℓ r 2 dℓdε, (2.2.46) 
H Φ (r, µ) := 2π r 2 ∞ 1 r 2 (ε 2 -1) 0 Φ(e µ(r) ε, ℓ)Ψ η (r, (e µ(r) ε, ℓ, µ)) ε 2 -1 - ℓ r 2 dℓdε. ( 2 
Besides, µ(r) = µ 0 + r 2M +ρ 1 1 -2m(µ)(s) s 4πsH Φ (s, µ) + 1 s 2 m(µ)(s) ds. (2.2.57)
Proof. We integrate (2.2.48) between 2M + ρ and some r ∈ I to obtain

r 2M +ρ s(2λ ′ e -2λ(s) ) ds - r 2M +ρ e -2λ(s) ds + (r -(2M + ρ)) = 8π r 2M +ρ s 2 G Φ (s, µ) ds.
We integrate by parts the first term of the left hand side to have 

e -2λ(r) = 1 + 2M + ρ r e -2λ(2M +ρ) -1 - 8π r r 2M +ρ s 2 G Φ (s, µ) ds, Since e -2λ(2M +ρ) = 1 - 2M 2M + ρ , we have ∀r ∈ I , e -2λ(r) = 1 - 2m(µ)(
µ ′ (r) = e 2λ(r) 4πrH Φ (r, µ) + 1 r 2 m(µ)(r) . (2.2.60)
Now, we integrate the latter equation between 2M + ρ and r ∈ I to obtain

µ(r) = µ 0 + r 2M +ρ 1 1 -2m(µ)(s) s 4πsH Φ (r, µ) + 1 s 2 m(µ)(s) ds.
(2.2.61)

Rein's work on solutions with a Schwarzschild-like black hole

In order to contrast it with our approach, we give an overview of Rein's proof [START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF] concerning the construction of static spherically symmetric solutions to the Einstein-Vlasov system with a Schwarzschild-like black hole such that the spacetime has a finite mass and the matter field has a finite radius. Firstly, one starts with an ansatz of the form

f (x, p) = Φ(E, ℓ) = φ(E)(ℓ -ℓ 0 ) l + , E > 0, ℓ ≥ 0, (2.2.62) 
where ℓ 0 ≥ 0, l > 1/2 and φ ∈ L ∞ (]0, ∞[) is positive with φ(E) = 0, ∀E > E 0 for some E 0 > 0.

In this context, we note that a necessary condition to obtain a steady state for the Einstein-Vlasov system with finite total mass is that Φ must vanish for energy values larger than some cut-off energy E 0 ≥ 0 [START_REF] Rein | Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics[END_REF]. The same result was proven in [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF] for the Vlasov-Poisson system. This motivates the choice of the cut-off function φ.

Under the above ansatz with a metric on the form (2.2.1), the Einstein Vlasov system becomes

e -2λ(r) 2rλ ′ (r) -1 + 1 = 8πr 2 G Φ (r, µ(r)), (2.2.63) 
e -2λ(r) 2rµ ′ (r) + 1 -1 = 8πr 2 H Φ (r, µ(r)), (2.2.64) 
e -2λ(r) µ ′′ + (µ ′ + 1 r )(µ ′ -λ ′ ) = 8πK Φ (r, µ(r)) (2.2.65)
where 

G Φ (r, u) = c l r 2l e -(2l+4)u g φ e u 1 + ℓ 0 r 2 , (2.2.66) H Φ (r, u) = c l 2l + 3 r 2l e -(2l+4)u h φ e u 1 + ℓ 0 r 2 , (2.2.67) K Φ (r, u) = (l + 1)H Φ (r, u) + c l 2 ℓ 0 r 2l-2 e -(2l+2)u k φ e u 1 + ℓ 0 r 2 , ( 2 
k φ (t) := ∞ t φ(E)(E 2 -t 2 ) l+ 1 2 dE (2.2.72) (2.2.73)
and c l is defined by

c l := 2π 1 0 s l √ 1 -s ds. (2.2.74)
More precisely, we have Proposition 5 (Rein,[START_REF] Rein | Static solutions of the spherically symmetric Vlasov-Einstein system[END_REF]). Let Φ satisfy the assumptions stated above. Then for every r 0 ≥ 0, λ 0 ≥ 0 and µ 0 ∈ R with λ 0 = 0 if r 0 = 0, there exists a unique solution λ, µ ∈ C 

λ(r 0 ) = λ 0 , µ(r 0 ) = µ 0 .
Local existence is first proven for λ, µ ∈ C 1 ([r 0 , R[) where R > r 0 . Then, solutions are shown to extend to R = ∞. To this end, we note the crucial use of the Tolman-Oppenheimer-Volkov (TOV) equation:

p ′ (r) = -µ ′ (r)(p(r) + ρ(r)) - 2 r (p(r) -p T (r)), (2.2.75) 
ρ(r) = G Φ (r, µ(r)), p(r) = H Φ (r, µ(r)), and p T (r) = K Φ (r, µ(r)).

ρ, p and p T are interpreted respectively as the energy density, the radial pressure and the tangential pressure. In order to construct solutions outside from the Schwarzschild black hole, the assumption ℓ 0 > 0 plays an important role in having vacuum between 2M and some r 0 > 2M , to be defined below. The construction is then based on gluing a vacuum region and a region containing Vlasov matter. A posteriori, one can check that the spacetime has a finite total ADM mass and the matter has a finite radius. For the gluing,

• one starts by fixing a Schwarzschild black hole of mass M , and one then imposes a vacuum region until r 0 > 2M . The position r 0 will be chosen in the following way:

1. First, one can fix E 0 = 1. We note that, according to Proposition 4, there can be no bounded orbits for E 0 > 1 in the Schwarzschild spacetime, which motivates this value of E 03 . This implies In particular, the Schwarzschild metric with mass M solves the reduced Einstein-Vlasov system for all r > 2M such that

G Φ (r, u) = H Φ (r, u) = 0 if e u 1 + ℓ 0 r 2 ≥ 1, G Φ (r, u), H Φ (r, u) > 0 if e u 1 + ℓ 0 r 2 < 1.
1 - 2M r 1 + ℓ 0 r 2 ≥ 1.
This imposes ℓ 0 > 16M 2 and we have vacuum region when r ∈ [r -, r + ], where • Next, one can impose initial data at r 0 := r + to be

r ± := ℓ 0 ± ℓ 2 0 -16M 2 ℓ 0 4M . Define A Rein bound = (E, ℓ) ∈] 8 9 , 1[×[ℓ 0 , ∞[ . ( 2 
e µ 0 := 1 - 2M r 0 , e λ 0 := 1 1 -2M r 0 .
and apply Proposition 5. The solution to the Einstein Vlasov system is then obtained on [r 0 , ∞[ and extended to the whole domain by gluing it to the Schwarzschild metric at r 0 .

Statement of the main result

In this section, we give a more detailed formulation of our result. More precisely, we have Theorem 13. Let M > 0 and let O = R×]2M, ∞[×S 2 be the domain of outer communications parametrised by the standard Schwarzschild coordinates (t, r, θ, φ). Let B bound ⊂⊂ A bound be a compact subset of the set A bound defined in the following way:

• Fix E 1 , E 2 ∈ 8 9 , 1 such that E 1 < E 2 ,
• Let [ℓ 1 , ℓ 2 ] be any compact subset of ]ℓ lb (E 2 ), ℓ ub (E 1 )[, where ℓ lb and ℓ ub are respectively defined by (2.2.30) and (2.2.32).

• Set

B bound := [E 1 , E 2 ] × [ℓ 1 , ℓ 2 ]. (2.3.1)
Let Φ : A bound × R + → R * + be a C 2 function with respect to the first two variables, C 1 with respect to the third variable and such that

• ∀δ ∈ [0, ∞[ , Φ(•, •; δ) is supported in B bound . • ∀(E, ℓ) ∈ A bound , Φ(E, ℓ; 0) = ∂ ℓ Φ(E, ℓ; 0) = 0 and ∀δ > 0, Φ(•, •, δ) does not identically vanish on B bound .
Then, there exists δ 0 > 0 and a one-parameter family of functions

(λ δ , µ δ ) δ∈[0,δ 0 [ ∈ (C 2 (]2M, ∞[)) 2 , f δ ∈ C 2 (O × R 3 )
with the following properties 1. (λ 0 , µ 0 ) = (λ Sch , µ Sch ) corresponds to a Schwarzschild solution with mass M .

2. For all (E, ℓ) ∈ B bound , the equation

e µ δ (r) 1 + ℓ r 2 = E 2
admits three distinct positive roots 2M < r 0 (µ δ , E, ℓ) < r 1 (µ δ , E, ℓ) < r 2 (µ δ , E, ℓ). Moreover, there exists η > 0 depending only on δ 0 such that r 0 (µ δ , E, ℓ) + η < r 1 (µ δ , E, ℓ).

3. The function f δ takes the form

f δ (x, v) = Φ(E δ , ℓ; δ)Ψ η r, (E δ , ℓ), µ δ , for (x, v) ∈ O × R 3 with coordinates (t, r, θ, φ, v r , v θ , v φ )
and where 

E δ := e 2µ δ (r) 1 + (e λ δ (r) v r ) 2 + (rv θ ) 2 + (r sin θv φ ) 2 , ℓ := r 4 (v θ ) 2 + sin 2 θ(v φ ) 2 , ( 2 
• ∀r ∈]2M, R δ min [∪]R δ max , ∞[, f δ (x, v) = 0, • ∃r ∈]R δ min , R δ max [, f δ (r, •) > 0.
• The metric g δ is given by the Schwarzschild metric with mass M in the region ]2M, R δ min [4 .

• ∃M δ > M such that the metric g δ is again given by the Schwarzschild metric with mass M δ in the region ]R δ max , ∞[.

Solving the reduced Einstein Vlasov system

Set up for the implicit function theorem

In this section, we define the solution mapping on which we are going to apply the implicit function theorem.

Theorem 14 (Implicit function theorem5 ). Let B 1 , B 2 and X be Banach spaces and G a mapping from an open subset U of

B 1 × X into B 2 . Let (u 0 , σ 0 ) be a point in U satisfying 1. G[u 0 , σ 0 ] = 0, 2. G is continuously Fréchet differentiable on U ,
Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime 3. the partial Fréchet derivative with respect to the first variable L = G 1 (u 0 ,σ 0 ) is invertible. Then, there exists a neighbourhood N of σ 0 in X such that the equation G[u, σ] = 0 is solvable for each σ ∈ N , with solution u = u σ ∈ B 1 .

We recall that a mapping G : U ⊂ B 1 × X → B 2 is said to be Fréchet differentiable at a point (u, σ) ∈ U if there exists a continuous linear map L(u, σ) :

B 1 × X → B 2 such that lim ||(δu,δσ)|| B 1 ×X →0 ||G(u + δu, σ + δσ) -G(u, σ) -L(u, σ) • (δu, δσ)|| B 2 ||(δu, δσ)|| B 1 ×X = 0. G is Fréchet differentiable if it is Fréchet differentiable at every point (u, σ) ∈ U . It is continuously Fréchet differentiable if the mapping L : U → L(B 1 × X, B 2 ), (u, σ) → L(u, σ)
is continuous. For every (u, σ) ∈ U such that G is Fréchet differentiable, the map L(u, σ) is called the Fréchet differential at (u, σ) of G and it is noted DG (u,σ) . By the partial Fréchet derivatives of G, denoted G 1 (u,σ) , G 2 (u,σ) at (u, σ), we mean the bounded linear mappings from B 1 , X respectively, into B 2 defined by

G 1 (u,σ) (h) := DG (u,σ) (h, 0) , G 2 (u,σ) (k) := DG (u,σ) (0, k), for h ∈ B 1 , k ∈ X.
Solutions to the reduced Einstein-Vlasov system will be obtained by perturbing the Schwarzschild spacetime using a bifurcation parameter δ ≥ 0. The latter turns on in the presence of Vlasov matter supported on B bound ⊂⊂ A bound . To this end, we transform the problem of finding solutions to the differential equation (2.2.60) into the problem of finding zeros of an operator G, for which we will apply the implicit function theorem. The Schwarzschild metric and the parameter δ = 0, more precisely (µ Sch , 0), will be a zero of this operator.

For this, we adjust the ansatz (2.2.35) to make the dependence on δ explicit:

f = Φ(E, ℓ; δ)χ η (r -r 1 (µ, E, ℓ)), (2.4.1) 
such that

∀(E, ℓ) ∈ A bound , Φ(E, ℓ; 0) = 0
where Φ : A bound × R + → R + . We will impose in the following some regularity conditions on Φ so that the solution operator is well defined. Assuming that (λ, µ, f ) solve the EV-system, we can apply Lemma 3 with the ansatz (2.4.1) to obtain where

e -2λ δ (r) = 1 - 2m(µ; δ)(r) r , ( 2 
G Φ (r, µ; δ) := 2π r 2 ∞ 1 r 2 (ε 2 -1) 0 Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 ε 2 -1 -ℓ r 2 dℓdε, (2.4.6) 
H Φ (r, µ; δ) := 2π r 2 ∞ 1 r 2 (ε 2 -1)

0

Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 -1 -ℓ r 2 dℓdε.

(2.4.7)

As we mention before, we will apply Theorem 14 to solve (2.4.4). Once obtained, we deduce λ and f through (2.4.2) and (2.4.1). We define now the function space in which we will obtain the solutions of (2.4.4). We consider the Banach space

X := C 1 (I), || • || C 1 (I) , I =]2M + ρ, R[ (2.4.8)
and we recall the definition of the C 1 norm on C 1 (I).

∀g ∈ C 1 (I) : ||g|| C 1 (I) := ||g|| ∞ + ||g ′ || ∞ .
(2.4.9)

We define U ( δ0 ) ⊂ X × [0, δ0 [ for some δ0 ∈]0, δ max [ as

U ( δ0 ) := (µ; δ) ∈ X × [0, δ0 [ : µ -µ Sch C 1 (I) < δ0 = B(µ Sch , δ0 ) × [0, δ0 [, (2.4.10) 
where B(µ Sch , δ0 ) is the open ball in X of centre µ Sch and radius δ0 and δ max is defined by

δ max := min min (E,ℓ)∈B bound r Sch 0 (E, ℓ) -(2M + ρ), R - max (E,ℓ)∈B bound r Sch 2 (E, ℓ) .
δ0 will be chosen small enough so that the three roots of the equation (2.2.41) exist and so that the condition ∀r ∈ I , 2m(µ; δ)(r) < r (2.4.11) is satisfied. Besides, we make the following assumptions on Φ:

(Φ 1 ) ∀δ ∈ [0, δ0 [, supp Φ(• ; δ) ⊂ B bound , (Φ 2 ) Φ is C 1 with respect to δ and ∃C > 0, ∀(E, ℓ) ∈ B bound , ∀δ ∈ [0, δ0 [, |Φ(E, ℓ; δ)| ≤ C, (Φ 3 ) Φ is C 2 with respect to (E, ℓ).
In view of (2.4.5), we define the solution operator G corresponding to µ by

G : U ( δ0 ) → X (μ; δ) → G(μ; δ)
where ∀r ∈ I,

G(μ; δ)(r) := μ(r) -µ 0 + r 2M +ρ 1 1 -2m(μ;δ)(s) s 4πsH Φ (s, μ; δ) + 1 s 2 m(μ; δ)(s) ds . (2.4.12)
We verify the steps allowing to apply Theorem 14. In Subsection 2.4.2 below, we show that we have a well-defined ansatz for f , that is the existence of a matter shell surrounding the black hole after a well chosen δ0 . In Subsection 2.4. 

Radii of the matter shell

In this section, we show that for a suitable choice of δ0 , ∀µ ∈ B(µ Sch , δ0 ), there exists

R min (µ), R max (µ) ∈ I satisfying R min (µ) < R max (µ), such that supp r f ⊂ [R min (µ), R max (µ)].
We also show that the ansatz for f (2.2.35) is well defined. More precisely, we state the following result Proposition 6. There exist δ 1 > 0 and δ 0 ∈]0, δmax ] such that ∀µ ∈ B(µ Sch , δ 0 ), ∀(E, ℓ) ∈ B bound , there exists a unique r i (µ, (E, ℓ)) ∈ B(r Sch i (E, ℓ), δ 1 ) 6 , i ∈ {0, 1, 2} such that r i (µ, (E, ℓ)) solves the equation

e 2µ(r) 1 + ℓ r 2 = E 2 .
(2.4.13)

Moreover, there are no other roots for the above equation outside the balls B(r Sch i (E, ℓ), δ 1 ).

Remark 12. A direct application of the implicit function theorem would yield the existence of the three roots but for neighbourhoods of µ Sch which a priori may depend on (E, ℓ). Thus, we revisit its proof in order to obtain bounds uniform in (E, ℓ).

Proof.

1. Existence and uniqueness: Let 0 < δ0 < δ max and let (E, ℓ) ∈ B bound . Consider the mapping

F E,ℓ : B(µ Sch , δ0 ) × I → R ( µ ; r ) → E ℓ (r) -E 2 = e 2µ(r) 1 + ℓ r 2 -E 2 .
We have

• F E,ℓ is continuously Fréchet differentiable on B(µ Sch , δ0 ) × I. In fact, ♦ ∀µ ∈ B(µ Sch , δ0 ), the mapping r → F E,ℓ (µ, r) is continuously differentiable on I with derivative

∂F E,ℓ ∂r (µ, r) = 2e 2µ(r) 1 + ℓ r 2 µ ′ (r) - ℓ r 3 .
♦ It is easy to see that the mapping

F E,ℓ : µ → F E,ℓ [µ](r) := F E,ℓ (µ, r) is continuously
Fréchet differentiable on B(µ Sch , δ0 ) with Fréchet derivative:

∀µ ∈ B(µ Sch , δ0 ) , ∀μ ∈ X , DF E,ℓ (µ)[μ](r) = 2μ(r)e 2µ(r) 1 + ℓ r 2 .
♦ Since the Fréchet differentials with respect to each variable exist and they are continuous, F E,ℓ is continuously Fréchet differentiable on B(µ Sch , δ0 ) × I.

• The points (µ Sch , r Sch 0 (E, ℓ)), (µ Sch , r Sch 1 (E, ℓ)) and (µ Sch , r Sch 2 (E, ℓ)) are zeros for F E,ℓ . • The differential of F E,ℓ with respect to r at these points does not vanish. Otherwise, the trajectory is circular which is not possible since (E, ℓ) ∈ A bound . We define the following mapping on I: ∀µ ∈ B(µ Sch , δ0 ),

F E,ℓ µ (r) := r -φ(E, ℓ)F E,ℓ (µ, r),
where φ is defined by

φ(E, ℓ) = ∂F E,ℓ ∂r (µ Sch , r Sch i (E, ℓ)) -1
.

We will show that there exists 0 < δ 0 ≤ δ0 < δ max and δ 1 > 0, uniform in (E, ℓ) such that ∀µ ∈ B(µ Sch , δ 0 ), F E,ℓ µ is a contraction on B(r Sch i (E, ℓ), δ 1 ). Since F E,ℓ is differentiable with respect to r, we have

∀r ∈ I , ∂F E,ℓ µ ∂r (r) = 1 -φ(E, ℓ) ∂F E,ℓ ∂r (µ, r).
Since the mappings (E, ℓ) → r Sch i and (E, ℓ) → F E,ℓ (µ, r) depend smoothly on (E, ℓ) and since B bound is compact, there exists

C > 0 such that ∀(E, ℓ) ∈ B bound |φ(E, ℓ)| ≤ C.
Moreover, there exist δ 0 < δ max and

δ 1 > 0 such that ∀(E, ℓ) ∈ B bound , ∀(µ, r) ∈ B(µ Sch , δ 0 )× B(r Sch i (E, ℓ), δ 1 ), ∂F E,ℓ ∂r (µ, r) - ∂F E,ℓ ∂r (µ Sch , r Sch i (E, ℓ)) ≤ 1 2(C + 1)
.

Indeed,

∂F E,ℓ ∂r (µ, r) - ∂F E,ℓ ∂r (µ Sch , r Sch i (E, ℓ)) = 2e µ(r) 1 + ℓ r 2 µ ′ (r) - ℓ r 3 -1 + ℓ r Sch i (E, ℓ) 2 µ ′ (r Sch i (E, ℓ)) + ℓ r Sch i (E, ℓ) 3 + 2 1 + ℓ r Sch i (E, ℓ) 2 µ ′ (r Sch i (E, ℓ)) - ℓ r Sch i (E, ℓ) 3 e 2µ(r) -e 2µ Sch (r)
Since B bound is compact and the different quantities depend continuously on (E, ℓ), there exists

C 0 > 0 such that ∀(E, ℓ) ∈ B bound , 2 1 + ℓ r Sch i (E, ℓ) 2 µ ′ (r Sch i (E, ℓ)) - ℓ r Sch i (E, ℓ) 3 e 2µ(r) -e 2µ Sch (r) ≤ C 0 e 2µ(r) -e 2µ Sch (r) ≤ C 0 δ 0 .
Similarly, there exists

C 1 > 0 such that ∀(E, ℓ) ∈ B bound ℓ r 3 - ℓ r Sch i (E, ℓ) 3 = ℓ r 2 + rr Sch i (E, ℓ) + r Sch i (E, ℓ) 2 r 3 r Sch i (E, ℓ) 3 r -r Sch i (E, ℓ) ≤ C 1 δ 1
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1 + ℓ r 2 µ ′ (r) -1 + ℓ r Sch i (E, ℓ) 2 µ ′ (r Sch i (E, ℓ)) ≤ 1 + ℓ r 2 µ ′ (r) -µ ′ (r Sch i (E, ℓ) + ℓµ ′ (r Sch i (E, ℓ) 1 r 2 - 1 r Sch i (E, ℓ) 2 ≤ C 1 δ 1 .
Moreover, r → e 2µ(r) is bounded on I. Now, we choose 0 < δ 0 < δ max and δ 1 > 0 such that

2C 1 δ 1 + C 0 δ 0 < 1 4(C + 1)
.

Therefore,

∂F E,ℓ ∂r (µ, r) - ∂F E,ℓ ∂r (µ Sch , r Sch i ) ≤ 1 2(C + 1)
.

Hence, we obtain

∂F E,ℓ µ ∂r (r) - ∂F E,ℓ µ Sch ∂r (r Sch i ) ≤ C 2(C + 1) ≤ 1 2 . Since ∂F E,ℓ µ Sch ∂r (r Sch i (E, ℓ)) = 0, we get ∂F E,ℓ µ ∂r (r) ≤ 1 2 .
Now, we choose δ 1 so that F E,ℓ µ B(r Sch i (E, ℓ), δ 1 ) ⊂ B(r Sch i (E, ℓ), δ 1 ), that is:

∀r ∈ B(r Sch i (E, ℓ), δ 1 ) , F E,ℓ µ (r) -r Sch i (E, ℓ) ≤ δ 1 .
We have

∀(E, ℓ) ∈ B bound , ∀r ∈ B(r Sch i (E, ℓ), δ 1 ) F E,ℓ µ (r) -r Sch i (E, ℓ) = F E,ℓ µ (r) -F E,ℓ µ Sch (r Sch i ) = F E,ℓ µ (r) -F E,ℓ µ (r Sch i (E, ℓ)) + F E,ℓ µ (r Sch i (E, ℓ)) -F E,ℓ µ Sch (r Sch i (E, ℓ)).
By the mean value theorem,

F E,ℓ µ (r) -F E,ℓ µ (r Sch i (E, ℓ)) ≤ 1 2 |r -r Sch i (E, ℓ)| ≤ δ 1 2 .
Moreover, by the same argument above, we show that there exists C > 0 independent from (E, ℓ) such that

F E,ℓ µ (r Sch i (E, ℓ)) -F µ Sch (r Sch i (E, ℓ)) ≤ Cδ 0 .
Therefore, we can update δ 0 so that

F E,ℓ µ (r) -r Sch i (E, ℓ) ≤ δ 1 .
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It remains to show that F E,ℓ µ is a contraction on B(r Sch i (E, ℓ), δ 0 ), ∀µ ∈ B(µ Sch , δ 1 ). For this, we have by the mean value theorem,

F E,ℓ µ (r 1 ) -F E,ℓ µ (r 2 ) ≤ 1 2 |r 1 -r 2 |, ∀r 1 , r 2 ∈ B(r Sch i (E, ℓ), δ 1 ).
Thus, we can apply the fixed point theorem to obtain : there exist 0 < δ 0 < δ max and δ 1 > 0 such that

∀(E, ℓ) ∈ B bound , ∀µ ∈ B(µ Sch , δ 0 ) ∃!r E,ℓ i : B(µ Sch , δ 0 ) → B(r Sch i (E, ℓ), δ 1 ) such that F E,ℓ (µ, r E,ℓ i (µ)) = 0.
2. Regularity: It remains to show that ∀(E, ℓ) ∈ B bound , the mapping r

(E,ℓ) i
is continuously Fréchet differentiable on B(µ Sch , δ 0 ). In order to lighten the expressions, we will not write the dependence of r i and F µ on (E, ℓ). First, we show that r i is Lipschitz. For this, let µ, µ ∈ B(µ Sch , δ 0 ) and set

r = r i (µ), r = r i (µ).
We have

r -r = r i (µ) -r i (µ) = F µ (r) -F µ (r) = F µ (r) -F µ (r) + F µ (r) -F µ (r) = F µ (r) -F µ (r) + φ(E, ℓ) F E,ℓ (µ, r) -F E,ℓ (µ, r) .
We have

|F µ (r) -F µ (r)| ≤ 1 2 |r -r| and φ(E, ℓ) F E,ℓ (µ, r) -F E,ℓ (µ, r) ≤ C ||µ -µ|| X . Therefore, |r -r| ≤ 2C ||µ -µ|| X .
Thus, r i is Lipschitz, so continuous on B(µ Sch , δ 0 ). Since

∀r ∈ B(r Sch i , δ 1 ), ∂F E,ℓ µ ∂r (r) ≤ 1 2 , Σ ∂F E,ℓ µ ∂r (r) k converges to 1 - ∂F E,ℓ µ ∂r (r) -1 = 1 φ(E, ℓ) ∂F E,ℓ ∂r .
Hence,

∀r ∈ B(r Sch i , δ 0 ), ∀µ ∈ B(µ Sch , δ 0 ), ∂F E,ℓ ∂r (r, µ) = 0.
Since F E,ℓ is differentiable at (µ, r), we have Therefore,

0 = F E,ℓ (µ, r)-F E,ℓ (µ, r) = D µ F E,ℓ (µ, r)•(µ-µ)+∂ r F E,ℓ (µ, r)(r-r)+o (||µ -µ|| X + |r -r|) .
r -r = -∂ r F E,ℓ (µ, r) -1 D µ F E,ℓ (µ, r) • (µ -µ) + o(||µ -µ||).
3. Finally, we note that after updating δ 0 , we obtain

E ℓ -E Sch ℓ C 1 (I) < δ 0 . (2.4.14)
In fact, ∀r ∈ I,

E ℓ (r) -E Sch ℓ (r) = 1 + ℓ r 2 e 2µ (r) -e 2µ Sch (r)
We have e 2µ (r)e 2µ Sch (r) ≤ Cδ 0 ,

and r → 1 + ℓ r 2 is bounded. Therefore, we can control ||E ℓ -E Sch ℓ || ∞ . Now, we compute ∀r ∈ I E ′ ℓ (r) -E Sch ℓ ′ (r) = 2e 2µ(r) µ ′ (r) 1 + ℓ r 2 - ℓ r 3 -2e 2µ Sch (r) µ Sch ′ (r) 1 + ℓ r 2 - ℓ r 3 
= -2ℓ r 3 e 2µ(r)e 2µ Sch (r) + 2 1 + ℓ r 2 µ ′ (r)e 2µ(r)µ Sch ′ (r)e 2µ Sch (r)

We control the last term in the following way µ ′ (r)e 2µ(r)µ Sch ′ (r)e 2µ Sch (r) ≤ µ ′ (r) e 2µ(r)e 2µ Sch (r) + µ ′ (r)µ Sch ′ (r) e 2µ Sch (r) ≤ Cδ 0 .

Uniqueness of the roots on I:

We show, after possibly shrinking δ 0 , that ∀µ ∈ B(µ Sch , δ 0 ) ∀(E, ℓ) ∈ B bound , there are no others roots of the equation (2.4.13). First, we set

∀r ∈ I , P E,ℓ (r) := E ℓ (r) -E 2
and ∀r ∈ I , P Sch E,ℓ (r) := E Sch ℓ (r) -E 2 . We claim that for δ 0 sufficiently small, there exists C > 0 such that ∀(E, ℓ) ∈ B bound , ∀r ∈

J := I\ i=0,1,2 B(r Sch i (E, ℓ), δ 0 ) we have P Sch E,ℓ (r) > Cδ 0 .
In fact, by the monotonicity properties of P Sch E,ℓ , it is easy to see that

∀(E, ℓ) ∈ B bound , ∀r ∈ J : P Sch E,ℓ (r) ≥ max P Sch E,ℓ (r Sch 0 (E, ℓ) -δ 0 ) , P Sch E,ℓ (r Sch 0 (E, ℓ) + δ 0 ) , P Sch E,ℓ (r Sch 1 (E, ℓ) -δ 0 ), P Sch E,ℓ (r Sch 1 (E, ℓ) + δ 0 ), P Sch E,ℓ (r Sch 2 (E, ℓ) -δ 0 ) , P Sch E,ℓ (r Sch 2 (E, ℓ) + δ 0 ) .
Now, we show that for all |h| sufficiently small, there exist C(h) > 0 uniform in (E, ℓ) such that

|P Sch E,ℓ (r Sch i (E, ℓ) + h)| > C(h).
We have

P Sch E,ℓ (r Sch i (E, ℓ) + h) = P Sch E,ℓ (r Sch i (E, ℓ)) + h(P Sch E,ℓ ) ′ (r Sch i (E, ℓ)) + o(h),
where o(h) is uniform in (E, ℓ) by continuity of (P Sch E,ℓ ) (k) with respect to (E, ℓ) and compactness of B bound . Moreover, r Sch i (E, ℓ) are simple roots so that

(P Sch E,ℓ ) ′ (r Sch i (E, ℓ)) = 0 and (E, ℓ) → (P Sch E,ℓ ) ′ (r Sch i (E, ℓ)
) is continuous. Hence, for h sufficiently small, we obtain

|P Sch E,ℓ (r Sch i (E, ℓ) + h)| > |h| (P Sch E,ℓ ) ′ (r Sch i (E, ℓ)) > C|h|,
where C is some constant which uniform in δ 0 and (E, ℓ). Therefore, we update δ 0 so that

P Sch E,ℓ (r Sch i (E, ℓ) ± δ 0 ) > Cδ 0 .
Now, let δ 1 < δ 0 . Then, ∀µ ∈ B(µ Sch , δ 1 ) ⊂ B(µ Sch , δ 0 ), ∀(E, ℓ) ∈ B bound , r i (µ, E, ℓ) is unique in the ball B(r Sch i (E, ℓ), δ 0 ). Moreover, ∀r ∈ J, we have

P E,ℓ (r) = P E,ℓ (r) -P Sch E,ℓ (r) + P Sch E,ℓ (r).
By the triangular inequality, the latter implies for δ 1 < Cδ 0 that

∀r ∈ J, |P E,ℓ (r)| > -δ 1 + Cδ 0 > 0.
Therefore, after updating δ 1 , P E,ℓ does not vanish outside the balls B(r Sch i (E, ℓ), δ 1 ). This yields the uniqueness. Lemma 4. ∀µ ∈ B(µ Sch , δ 0 ), r i (µ, •) have the same monotonicity properties as r Sch i . More precisely, The proof of the latter lemma is straightforward. Therefore, using the above monotonicity properties of r 1 (µ, •) and r 2 (µ, •) one can define the radii of the matter shell in the following way: R min (µ) := r 1 (µ, E 2 , ℓ 1 )

∀(E, ℓ) ∈ B bound , • r 0 (µ, E, •) decreases on ]ℓ 1 , ℓ 2 [ and r 0 (µ, •, ℓ) increases on ]E 1 , E 2 [, • r 1 (µ, E, •) increases on ]ℓ 1 , ℓ 2 [ and r 1 (µ, •, ℓ) decreases on ]E 1 , E 2 [, • r 2 (µ, E, •) decreases on ]ℓ 1 , ℓ 2 [ and r 2 (µ, •, ℓ) increases on ]E 1 , E 2 [.
(2.4.15) and R max (µ) := r 2 (µ, E 2 , ℓ 1 ).

(2.4.16)

Since ∀(E, ℓ) ∈ A bound , r Sch 1 (E, ℓ) > 4M , we can update δ 0 such that

∀(E, ℓ) ∈ B bound , r 1 (µ, E, ℓ) > 4M.
In particular, R min (µ) > 4M.

(2.4.17)

Now, we need to define η > 0 appearing in the ansatz of f , (2.2.35). We choose η > 0 independent of (µ, E, ℓ) such that r 1 (µ, E, ℓ)r 0 (µ, E, ℓ) > η > 0.

Lemma 5. There exists η > 0 independent of µ, E, ℓ such that for all µ ∈ B(µ Sch , δ 0 ) and for all (E, ℓ) ∈ B bound we have r 1 (µ, E, ℓ)r 0 (µ, E, ℓ) > η > 0.

Proof. For this, we set

h Sch : B bound → R (E, ℓ) → r Sch 1 (E, ℓ) -r Sch 0 (E, ℓ)
By monotonicity properties of r Sch i , it is easy to see that h Sch (•, ℓ) is decreasing and h Sch (E, •) is increasing. Therefore, one can easily bound h :

∀(E, ℓ) ∈ B bound , h Sch (E, ℓ) ≥ h Sch (E 2 , ℓ) ≥ h Sch (E 2 , ℓ 1 ) > 0. Thus, ∃η > 0 such that ∀(E, ℓ) ∈ B bound h Sch (E, ℓ) > 2η. Now we set h : B(µ Sch , δ 0 ) × B bound → R (µ; (E, ℓ)) → h(µ, (E, ℓ)) := r 1 (µ, E, ℓ) -r 0 (µ, E, ℓ). We have, ∀µ ∈ B(µ Sch , δ 0 ), ∀(E, ℓ) ∈ B bound h(µ, E, ℓ) = h(µ, (E, ℓ)) -h Sch (E, ℓ) + h Sch (E, ℓ) > -2δ 0 + 2η.
It remains to update δ 0 so that the latter inequality is greater than η.

Now that we have justified the ansatz for f , it remains to check that supp r f ⊂ [R min (µ), R max (µ)]. To this end, we state the following result Lemma 6. Let µ ∈ B(µ Sch , δ 0 ) and f be a distribution function of the form (2.2.35). Then

supp r f ⊂ [R min (µ), R max (µ)].
Proof. Let (x µ , v a ) ∈ Γ and denote by r its radial component. Let E(x µ , v a ) and ℓ(x µ , v a ) be defined by (2.2.14) and (2.2.13). If r ∈ supp r f , then Φ(E, ℓ) > 0, and Ψ η (r, E, ℓ, µ) > 0.

Therefore, (E, ℓ) ∈ B bound and

Ψ η (r, E, ℓ, µ) = χ η (r -r 1 (µ, (E, ℓ))) > 0. Hence, r ≥ r 1 (µ, E, ℓ) -η > r 0 (µ, E, ℓ).
The last inequality is due to the definition of η. Now since (E, ℓ) ∈ B bound , the equation E ℓ (r) = E 2 admits three distinct positive roots. Moreover, we have

E ℓ (r) ≤ E 2 (2.4.18)
for any geodesic moving in the exterior region. Therefore,

r ∈ ]2M + ρ, r 0 (µ, E, ℓ)] ∪ [r 1 (µ, E, ℓ), r 2 (µ, E, ℓ)] .
Hence, r must lie in the region [r 1 (µ, E, ℓ), r 2 (µ, E, ℓ)]. By construction of R min (µ) and R max (µ), we conclude that r ∈ [R min (µ), R max (µ)] .

Regularity of the matter terms

In this section, we show that the matter terms G Φ and H Φ given by respectively (2.4.6) and (2.4.7) are well defined on I × U (δ 0 ). Then, we investigate their regularity with respect to each variable.

Let (r, µ; δ) ∈ I × U (δ 0 ) and let ε ∈ [1, ∞[ and ℓ ∈ [0, r 2 (ε 2 -1)[. Note that if r 2 (ε 2 -1) < ℓ 1 , then ℓ < ℓ 1 and Φ(e µ(r) ε, ℓ; δ) = 0, since supp ℓ Φ ⊂ [ℓ 1 , ℓ 2 ]. Therefore, G Φ (r, µ; δ) = 2π r 2 ∞ 1 r 2 (ε 2 -1) 0 Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 ε 2 -1 -ℓ r 2 dℓdε, = 2π r 2 e -µ(r) E 2 1+ ℓ 1 r 2 r 2 (ε 2 -1) ℓ 1 Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 ε 2 -1 -ℓ r 2
dℓdε.

We make a first change of variable from ℓ to l : We make a second change of variable from l to s := l

= ℓ -ℓ 1 , G Φ (r, µ; δ) = 2π r 2 e -µ(r) E 2 1+ ℓ 1 r 2 r 2 (ε 2 -1)-ℓ 1 0 Φ(e µ(r) ε, l+ℓ 1 ; δ)Ψ η (r, (e µ(r) ε, l+ℓ 1 ), µ) ε 2 ε 2 -1 -ℓ 1 r 2 -l r 2 d ldε.
r 2 (ε 2 -1) -ℓ 1 , G Φ (r, µ; δ) = 2π e -µ(r) E 2 1+ ℓ 1 r 2 ε 2 ε 2 -1 + ℓ 1 r 2 1 2 g Φ (r, e µ(r) ε, µ; δ)dε,
where g Φ is defined by

g Φ (r, E, µ; δ) := 1 0 Φ(E, sr 2 (e -2µ(r) E 2 -1)+(1-s)ℓ 1 ; δ)Ψ η (r, E, sr 2 (e -2µ(r) E 2 -1)+(1-s)ℓ 1 ), µ) ds √ 1 -s .
(2.4.19) We make a last change of variable from ε to E := e µ(r) ε to obtain

G Φ (r, µ; δ) = 2πe -4µ(r) E 2 e µ(r) 1+ ℓ 1 r 2 E 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 1 2 g Φ (r, E, µ; δ)dE. (2.4.20)
With the same change of variables we compute

H Φ (r, µ; δ) = 2π r 2 ∞ 1 r 2 (ε 2 -1) 0 Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 -1 - ℓ r 2 dℓdε = 2π r 2 e -µ(r) E 2 1+ ℓ 1 r 2 r 2 (ε 2 -1) ℓ 1 Φ(e µ(r) ε, ℓ; δ)Ψ η (r, (e µ(r) ε, ℓ), µ) ε 2 -1 - ℓ r 2 dℓdε = 2π r 2 e -µ(r) E 2 1+ ℓ 1 r 2 r 2 (ε 2 -1)-ℓ 1 0 Φ(e µ(r) ε, l + ℓ 1 ; δ)Ψ η (r, (e µ(r) ε, l + ℓ 1 ), µ) ε 2 -1 - ℓ 1 r 2 - l r 2 d ldε = 2π e -µ(r) E 2 1+ ℓ 1 r 2 (ε 2 -1 + ℓ 1 r 2 3 2 h Φ (r, e µ(r) ε, µ; δ)dε,
where h Φ is defined by

h Φ (r, E, µ; δ) := 1 0 Φ(E, sr 2 (e -2µ(r) E 2 -1)+(1-s)ℓ 1 ; δ)Ψ η (r, (E, sr 2 (e -2µ(r) E 2 -1)+(1-s)ℓ 1 ), µ) √ 1 -s ds.
(2.4.21) Therefore, 

H Φ (r, µ; δ) = 2πe -4µ(r) E 2 e µ(r) 1+ ℓ 1 r 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 3 2 h Φ (r, E, µ; δ) dE. (2.4.22) It is clear that h Φ is well defined on I × U (δ 0 ) × [E 1 , E 2 ]. Since s → 1 √ 1 -s is integrable, g Φ is well defined on I × U (δ 0 ) × [E 1 , E 2 ].

Similarly, G

Φ and H Φ are continuously Fréchet differentiable with respect to µ on B(µ Sch , δ 0 ), C 2 with respect to r and C 1 with respect to δ.

Proof. The proof is based on the regularity of the ansatz function as well as on the regularity of r 1 .

1.

• By the dominated convergence theorem, regularity of Φ, its compact support and the assumption (Φ 2 ), it is easy to see that g Φ and h Φ are C 2 with respect to r and E on their domain and C 1 with respect to δ.

• For the differentiability of g Φ and h Φ with respect to µ:

let (r, E, δ) ∈ I×]E 1 , E 2 [×[0, δ[ and let µ ∈ B(µ Sch , δ 0 ), we have g Φ (r, E, µ; δ) = 1 0 Φ(E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ; δ)Ψ η (r, (E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ), µ) ds √ 1 -s = 1 0 Φ(E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ; δ)χ η (r -r 1 (µ, E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 )) ds √ 1 -s . Since r 1 is continuously Fréchet differentiable on B(µ Sch , δ 0 ), χ η is smooth on R and Φ(•, •; δ) is C 2 on B bound , the mappings φ : µ → Φ(E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ; δ) =: Φ(s, r, E, µ; δ)
and

ψ : µ → χ η (r -r 1 (µ, E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ))
are continuously Fréchet differentiable on B(µ Sch , δ 0 ). Their Fréchet derivatives are respectively given by : ∀μ ∈ X ,

Dφ(µ)[μ] = -2sr 2 E 2 μ(r)∂ ℓ Φ(E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ; δ)e -2µ(r)
and

Dψ(µ)[μ] = -D µ r 1 (s, µ)[μ] -2sr 2 E 2 μ(r)∂ ℓ r 1 (s, µ)e -2µ(r) χ ′ η (r -r 1 (s, µ))
where

r 1 (s, r, E, µ) := r 1 (µ, E, sr 2 (e -2µ(r) E 2 -1) + (1 -s)ℓ 1 ).
Since χ η is either 0 or 1 on the support of Φ(E, ℓ; δ), we have

Dψ(µ)[μ] = 0.
Therefore, for all μ ∈ X sufficiently small,

g Φ (r, µ + μ; δ)(r) = 1 0 Φ(s, µ + μ)ψ(µ + μ)(s) ds = 1 0 φ(µ)(s) + Dφ(µ)[μ](s) + O ||μ|| 2 C 1 (I) ψ(µ)(s) + O ||μ|| 2 C 1 (I) ds = 1 0 Φ(s)ψ(µ)(s) + ψ(µ)(s)Dφ(µ)[μ](s) + O ||μ|| 2 C 1 (I) ds = g Φ (µ)(r) + 1 0 ψ(µ)(s)Dφ(µ)[μ](s) ds √ 1 -s + O ||μ|| 2 C 1 (I) ds Schwarzschild spacetime
Note that we didn't write the dependence of φ, ψ and g Φ on the remaining variables in order to lighten the expressions. Now we define

Dg Φ (µ)[μ](r) := - 1 0 ψ(µ)(s)Dφ(µ)[μ](s) ds √ 1 -s .
It is clear that Dg Φ (µ) is a linear mapping from X to R. Besides, since r 1 is continuously Fréchet differentiable on B(µ Sch , δ 0 ), g Φ is also continuously Fréchet differentiable.

• In the same way, we obtain regularity for h Φ .

2. The differentiability for G Φ and H Φ are straightforward. In particular, their Fréchet derivatives with respect to µ are respectively given by ∀μ ∈ X

D µ G Φ (r, µ; δ)[μ] = 2πe -4µ(r) -4μ(r) E 2 e µ(r) 1+ ℓ 1 r 2 E 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 1 2 g Φ (r, E, µ; δ)dE + E 2 e µ(r) 1+ ℓ 1 r 2 - E 2 μ(r)e 2µ(r) 1 + ℓ 1 r 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 g Φ (r, E, µ; δ) + E 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 1 2 D µ g Φ (r, E, µ; δ)[μ]dE     (2.4.

23) and

D µ H Φ (r, µ; δ)[μ] = 2πe -4µ(r) -4μ(r) E 2 e µ(r) 1+ ℓ 1 r 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 3 2 h Φ (r, E, µ; δ)dE + E 2 e µ(r) 1+ ℓ 1 r 2 -3μ(r)e 2µ(r) 1 + ℓ 1 r 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 h Φ (r, E, µ; δ) + E 2 -e 2µ(r) 1 + ℓ 1 r 2 3 2 D µ h Φ (r, E, µ; δ)[μ]dE .
(2.4.24)

3. It remains to show that their Fréchet derivatives with respect to µ are continuous on B(µ

Sch , δ 0 ). That is ∀r ∈ r, ∀δ ∈ [0, δ 0 [, the mappings D µ G Φ (r, •; δ) and D µ H Φ (r,
•; δ) are continuous. We will only write details for the continuity of

D µ G Φ (r, •; δ). The continuity of D µ H Φ (r, •; δ) is proven in the same way. Let µ 1 ∈ B(µ Sch , δ 0 ). We claim that 7 lim ||µ 2 || C 1 (I) →0 |||D µ G Φ (µ 1 + µ 2 ) -D µ G Φ (µ 1 )||| L(C 1 (I),C 1 (I)) = 0
where

|||D µ G Φ (µ 1 +µ 2 )-D µ G Φ (µ 1 )||| L(C 1 (I),C 1 (I)) = sup ||μ|| C 1 (I) ≤1 ||D µ G Φ (µ 1 +µ 2 )(μ)-D µ G Φ (µ 1 )(μ)|| C 1 (I) .
Let μ ∈ X such that ||μ|| C 1 (I) ≤ 1 and let ||µ 2 || C 1 (I) be sufficiently small. We will write the details for the first term. The other terms follow in the same way. We compute

I(r) := -4μ(r) E 2 e (µ 1 +µ 2 )(r) 1+ ℓ 1 r 2 E 2 E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 1 2 g Φ (r, E, (µ 1 + µ 2 ); δ)dE + 4μ(r) E 2 e µ 1 (r) 1+ ℓ 1 r 2 E 2 E 2 -e 2µ 1 (r) 1 + ℓ 1 r 2 1 2 g Φ (r, E, µ 1 ; δ)dE = -4μ(r) E 2 e µ 1 (r) 1+ ℓ 1 r 2 E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 g Φ (r, E, (µ 1 + µ 2 ); δ)- E 2 -e 2µ 1 (r) 1 + ℓ 1 r 2 g Φ (r, E, µ 1 ; δ) E 2 dE + 4μ(r) e (µ 1 +µ 2 )(r) 1+ ℓ 1 r 2 e µ 1 (r) 1+ ℓ 1 r 2 E 2 E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 g Φ (r, E, (µ 1 + µ 2 ); δ) dE. Since the mappings µ → g Φ (r, E, µ; δ) and µ → E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 are Fréchet differentiable on B(µ Sch , δ 0 ), r ∈ I and E ∈ [E 1 , E 2 ] we obtain uniformly in E: r → E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 g Φ (r, E, (µ 1 + µ 2 ); δ) -E 2 -e 2µ 1 (r) 1 + ℓ 1 r 2 g Φ (r, E, µ 1 ; δ) ∞ = O ||µ 2 || C 1 (I) .
Moreover, it is straightforward to see, by the regularity assumptions and the fact that r ∈ I that

r → e (µ 1 +µ 2 )(r) 1+ ℓ 1 r 2 e µ 1 (r) 1+ ℓ 1 r 2 E 2 E 2 -e 2(µ 1 +µ 2 )(r) 1 + ℓ 1 r 2 g Φ (r, E, (µ 1 + µ 2 ); δ) dE ∞ = O ||µ 2 || C 1 (I) .
Therefore,

||I|| ∞ ≤ C||μ|| C 1 (I) ||µ 2 || C 1 (I) .
In the same way, we prove that

||I ′ || ∞ ≤ C||μ|| C 1 (I) ||µ 2 || C 1 (I) .
In the same way, we tackle the remaining terms. We finally obtain

||D µ G Φ (µ 1 + µ 2 )(μ) -D µ G Φ (µ 1 )(μ)|| C 1 (I) ≤ C||μ|| C 1 (I) ||µ 2 || C 1 (I) .
We note that C is independent of µ 1 and µ 2 . More precisely, C = C(δ 0 , M ). Finally, we take the supremum on ||μ|| C 1 (I) to conclude.

The condition (2.2.54) is satisfied

In this section, we show that we can choose δ 0 even smaller so that the condition (2.2.54) is satisfied.

More precisely, we state the following lemma Lemma 7. There exists

δ 0 ∈]0, δ0 ] such that ∀(µ; δ) ∈ U (δ 0 ), ∀r ∈ I 2m(µ; δ)(r) < r. (2.4.25)
Moreover, there exists C > 0 such that ∀r ∈ I,

1 - 2m(µ; δ)(r) r -1 < C.
Proof.

1. First, we recall

2m(µ; δ)(r) := 2M + 8π r 2M +ρ s 2 G Φ (s, µ; δ) ds
where G Φ (s, µ; δ) is given by

G Φ (r, µ; δ) = 2πe -4µ(r) E 2 e µ(r) 1+ ℓ 1 r 2 E 2 E 2 -e 2µ(r) 1 + ℓ 1 r 2 1 2
g Φ (r, E, µ; δ)dE.

If

2M + ρ < r ≤ R min (µ), then 2m(µ; δ)(r) = 2M < r.
Hence, the condition (2.2.54) is always satisfied. Besides, ∀r ∈ ]2M + ρ, R min (µ)[, we have

1 - 2m(µ; δ)(r) r -1 < 1 + 2M ρ . 3. Now, let r ≥ R min (µ). We claim that ∃ C > 0, independent of (µ, δ) such that ||r → 8πG Φ (r, µ; δ)|| C 0 (I) ≤ Cδ 0 .
In fact, for a fixed r ∈ I we write

G Φ (r, µ; δ) = G Φ (r, µ Sch ; 0) + D µ G Φ (r, µ Sch ; 0)[µ -µ Sch ] + δ∂ δ G Φ (r, µ Sch ; 0) + O ||µ -µ Sch || 2 C 1 (I) + δ 2 = δ∂ δ G Φ (r, µ Sch ; 0) + O(δ),
where we used

G Φ (r, µ Sch ; 0) = D µ G Φ (r, µ Sch ; 0)[µ -µ Sch ] = 0.

Now we have

∂ δ G Φ (r, µ Sch ; 0) = 2π 1 - 2M r -2 E 2 (1-2M r ) 1+ ℓ 1 r 2 E 2 E 2 -1 - 2M r 1 + ℓ 1 r 2 1 2 ∂ δ g Φ (r, E, µ Sch ; 0) dE.
Since r ∈ I and by the the (Φ 2 ) assumption and the definition of χ η , there exists C > 0 independent of (r, µ; δ) such that

∀E ∈ [E 1 , E 2 ], ∀r ∈ I ∂ δ g Φ (r, µ Sch , E; 0) ≤ C.
Therefore,

δ∂ δ G Φ (r, µ Sch ; 0) ≤ 2Cδπ 1 - 2M 2M + ρ -2 E 2 (1-2M r ) 1+ ℓ 1 r 2 E 2 E 2 -1 - 2M 2M + ρ 1 + ℓ 1 (2M + ρ) 2 1 2 dE + O(δ 0 ) ≤ Cδ E 2 0 E 3 dE + O(δ) ≤ Cδ 0 .
This yields the result. We have, by (2.4.17), ∀µ ∈ B(µ Sch , δ 0 ),

R min (µ) > 4M. Therefore, 2m(µ; δ)(r) ≤ R min (µ) 2 + Cδ 0 3 r 3 -R min (µ) 3 ≤ R min (µ) 2 + CR 2 δ 0 3 r ≤ 1 2 + CR 2 δ 0 3 r,
where R is defined by (2.2.50). It remains to update δ 0 so that

1 2 + CR 2 δ 0 3 < 1.
We take for example

δ 0 = min δ 0 , 3 4CR 2 .
Therefore, ∀r ≥ R min (µ), we have

1 - 2m(µ; δ)(r) r -1 < 4.
This concludes the proof.
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Solving for µ

We check in a number of steps that the mapping G defined by (2.4.12) satisfies the conditions for applying the implicit function theorem:

1. First, we need to check that G is well defined on U (δ 0 ).

2.

It is clear that (µ Sch ; 0) is a zero for G.

3. Next, we need to check that G is continuously Fréchet differentiable on U (δ 0 ).

4. Finally, we have to show that the partial Fréchet derivative with respect to the first variable µ at the point (µ Sch ; 0):

L : C 1 (I) → C 1 (I) µ → DG (µ Sch ;0) (µ; 0) is invertible.
Provided the above facts hold, we can now apply Theorem 14 to the mapping G : U → X to obtain:

Theorem 15. There exists δ 1 , δ 2 ∈]0, δ 0 [ and a unique differentiable solution map

µ : [0, δ 1 [→ B µ Sch , δ 2 ⊂ C 1 (I), such that S(0) = µ Sch and G(µ(δ); δ) = 0, ∀δ ∈ [0, δ 1 [.
The remainder of this section is devoted to the proofs of steps 1 to 4.

2.4.5.1 G is well defined on U Let (µ; δ) ∈ U (δ 0 ). Recall the definition of G G(µ; δ)(r) := µ(r) -µ 0 + r 2M +ρ 1 1 -2m(µ;δ)(s) s 4πsH Φ (s, µ; δ) + 1 s 2 m(µ; δ)(s) ds .
By Lemma 7, there exists C > 0 such that

∀r ∈ I, 1 - 2m(µ; δ)(r) r -1 < C. (2.4.26) Besides, ∀r ∈ I, r 2M +ρ 4πsH Φ (s, µ; δ) + 1 s 2 m(µ; δ)(s) ds 1 -2m(µ;δ)(s) s ≤ Rmax(µ) 2M +ρ 4πsH Φ (s, µ; δ) + 1 s 2 m(µ; δ)(s) ds 1 -2m(µ;δ)(s) s
The integral of the right hand side is finite. Therefore, G(µ; δ) is well defined on I. Moreover, by Proposition 7 and lemma 7 we have

• r → H Φ (r, µ; δ) is C 1 on I, • r → m(µ; δ)(r) is C 1 on I,
Hence, G(µ; δ) is well defined and it is C 1 on I. Moreover, it easy to control its C 1 norm thanks to (2.4.26) and the compact support of r → H Φ (r, µ; δ) and r → G Φ (r, µ; δ).

G is continuously Fréchet differentiable on U

Let (µ; δ) ∈ U (δ 0 ). First, we show the differentiability with respect to µ. In this context, we drop the dependence on δ in order to lighten the expressions. Our first claim is that G has the Fréchet derivative with respect to µ given by ∀μ ∈ C 1 (I) , ∀r ∈ I,

D 1 G(µ)[μ](r) := μ(r) - r 2M +ρ 2 s 1 1 - 2m(µ)(s) s 2 Dm(µ)[μ](s) 4πsH Φ (s, µ) + 1 s 2 m(µ)(s) + 1 1 - 2m(µ)(s) s 4πsD µ H Φ (s, µ)[μ] + 1 s 2 Dm(µ)[μ](s) ds,
(2.4.27) where Dm(µ) is the Fréchet derivative of m with respect to µ, given by

Dm(µ)[μ](r) = 4π r 2M +ρ s 2 D µ G Φ (s, µ)[μ]ds.
(2.4.28)

We need to prove

lim ||μ|| C 1 (I) →0 G(µ + μ) -G(µ) -D 1 G(µ)[μ] C 1 (I) ||μ|| C 1 (I) = 0.
We will only prove in details

lim ||μ|| C 1 (I) →0 ||m(µ + μ) -m(µ) -Dm(µ)[μ]|| C 1 (I) ||μ|| C 1 (I) = 0.
The remaining terms are treated in the same way thanks to the estimate (2.4.26), the compact support in r of the matter terms as well as their regularity.

Let r ∈ I. We compute

m(µ + μ)(r) -m(µ)(r) -Dm(µ)[μ](r) = 4π r 2M +ρ s 2 (G Φ (s, µ + μ) -G Φ (s, µ) -D µ G Φ (s, µ)[μ]) ds.
Since G Φ is continuously Fréchet differentiable with respect to µ, we write in a neighbourhood of the point µ with a fixed s

G Φ (s, µ + μ) = G Φ (s, μ) + D µ G Φ (s, µ)[μ] + O ||μ|| 2 C 1 (I) . Therefore, |m(µ + μ)(r) -m(µ)(r) -Dm(µ)[μ](r)| ||μ|| 2 C 1 (I) , so that lim ||μ|| C 1 (I) → 0 ||m(µ + μ) -m(µ) -Dm(µ)[μ]|| ∞ ||μ|| C 1 (I) = 0. It remains to control the C 1 norm of m(µ + μ) -m(µ) -Dm(µ)[μ].
It is clear that the latter is C 1 on I and the derivative is given by ∀r ∈ I :

m(µ + μ) ′ (r) -m(µ) ′ (r) -Dm(µ)[μ] ′ (r) = 4πr 2 (G Φ (r, µ + μ) -G Φ (r, µ) -D µ G Φ (r, µ)[μ])) = O ||μ|| 2 C 1 (I) ,
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lim ||μ|| C 1 (I) → 0 ||m(µ + μ) ′ -m(µ) ′ -Dm(µ)[μ] ′ || ∞ ||μ|| C 1 (I) = 0.
To conclude, we show that the Fréchet derivative is continuous on B(µ Sch , δ 0 ), that is the mapping

µ ∈ B(µ Sch , δ 0 ) → Dm(µ) ∈ L(C 1 (I), C 1 (I)) is continuous. Let µ 1 ∈ B(µ Sch , δ 0 ). We claim that lim ||µ 2 || C 1 (I) →0 |||Dm(µ 1 + µ 2 ) -Dm(µ 1 )||| L(C 1 (I),C 1 (I)) = 0 In fact, let ||µ 2 || C 1 (I) be sufficiently small and let μ ∈ C 1 (I) such that ||μ|| C 1 (I) ≤ 1. We compute ∀r ∈ I Dm(µ 1 + µ 2 )(μ)(r) -Dm(µ 1 )(μ)(r) = 4π r 2M +ρ s 2 (D µ G Φ (s, µ 1 + µ 2 )[μ]) -D µ G Φ (s, µ 1 )[μ])) ds.
Again, by Proposition 7, G Φ is continuously Fréchet differentiable with respect to µ. Therefore, for µ 2 sufficiently small, we have

|||D µ G Φ (µ 1 +µ 2 )-D µ G Φ (µ 1 )||| L(C 1 (I),C 1 (I)) = sup ||μ|| C 1 (I) ≤1 ||D µ G Φ (µ 1 +µ 2 )(μ)-D µ G Φ (µ 1 )(μ)|| C 1 (I) ≤ C||µ 2 || C 1 (I) .
Therefore,

||Dm(µ 1 + µ 2 )(μ) -Dm(µ 1 )(μ)|| C 1 (I) ≤ C||D µ G Φ (µ 1 + µ 2 )(μ) -D µ G Φ (µ 1 )(μ)|| C 1 (I) .
By taking the supremum on ||μ|| C 1 (I) in the right side, we obtain

||Dm(µ 1 + µ 2 )(μ) -Dm(µ 1 )(μ)|| L(C 1 (I),C 1 (I)) ≤ |||D µ G Φ (µ 1 + µ 2 ) -D µ G Φ (µ 1 )||| L(C 1 (I),C 1 (I)) .
Therefore,

|||Dm(µ 1 + µ 2 ) -Dm(µ 1 )||| L(C 1 (I),C 1 (I)) ≤ C||µ 2 || C 1 (I) .
Now, we check now the differentiability with respect to δ. We claim that

D δ G(δ)(r) = - r 2M +ρ 2 s 1 1 - 2m(µ)(s) s 2 m ′ (δ)(s) 4πsH Φ (s, δ) + 1 s 2 m(µ)(s) + 1 1 - 2m(µ)(s) s 4πs∂ δ H Φ (s; δ) + 1 s 2 m ′ (δ)(s) ds, (2.4.29) 
where

m ′ (δ)(s) = 4π r 2M +ρ s 2 ∂ δ G Φ (s, µ; δ) ds, and 
∂ δ H Φ (s; δ) = ∂ δ H Φ (s, µ; δ).
Again, we dropped the dependance on µ in order to lighten the expressions. By regularity assumptions on Φ with respect to the third variable, the compact support of the matter terms and by the dominated convergence theorem, G is C 1 with respect to the parameter δ.

We check the third step: we evaluate the derivative of G with respect to µ at the point (µ Sch , 0). For this we use Proposition 7 and the fact that Φ(•,

•; 0) = ∂ ℓ Φ(•, •; 0) = 0 to obtain D µ G Φ (s, µ Sch ; 0) = D µ H Φ (s, µ Sch ; 0) = 0.
Therefore, D µ G(µ Sch ; 0) is reduced to the identity, which is invertible. Since all the assumptions are satisfied, we apply Theorem 14 to obtain Theorem 15.

Conclusions

In this section, we deduce from Theorem 15 the remaining metric component and the expression of the matter terms. More precisely, we set ∀δ ∈ [0, δ 1 [

λ δ (r) := - 1 2 log 1 - 2m(µ(δ); δ) r , ∀r ∈ I. (2.4.30) λ δ is well defined since ∀r ∈ I, r > 2m(µ(δ); δ).
As for the matter field, we set

∀(x α , v a ) ∈ O × R 3 f δ (x α , v a ) := Φ(E δ , ℓ; δ)Ψ η r -r 1 (µ(δ), E δ , ℓ) , (2.4.31) 
where

E δ = e 2µ δ (r) 1 + (e λ δ (r) v r ) 2 + (rv θ ) 2 + (r sin θv φ ) 2
and ℓ is given by (2.2.13). Such f δ is a solution to the Vlasov equation (1.1.8) since Φ is a solution and Ψ η is constant on the support of Φ. Moreover, since Φ does not vanish identically and Ψ η is equal to 1 on the support of Φ(E δ , ℓ; δ), f δ does not vanish identically on O × R 3 . Furthermore, we set the energy density to be

ρ δ (r) := G Φ (r, µ(δ); δ), (2.4.32) 
We define the radii of the matter shell to be

R δ min := R min (µ(δ)) (2.4.33) and R δ max := R max (µ(δ)), (2.4.34) 
where R min and R max are defined by (2.4.15) and (2.4.16). Finally, we define the total mass by That is µ(δ) is implicitly given by

M δ := M + 4π R δ max R δ min r 2 ρ δ (r) dr. ( 2 
µ(δ)(r) = µ 0 + r 2M +ρ 1 1 -2m(µ(δ);δ)(s) s 4πsH Φ (s, µ(δ); δ) + 1 s 2 m(µ(δ); δ)(s) ds .
From the above equation it is clear that µ(δ) is C 2 on I. Therefore, λ δ is also C 2 on I and f δ is also C 2 with respect to r.

It remains to extend the solution on ]2M, ∞[. It suffices to extend (µ, λ) by (µ Sch , λ Sch ) of mass M on the domain ]2M, 2M + ρ], and by (µ Sch , λ Sch ) of mass M δ on the domain [R, ∞[. We recall that the matter field vanishes in these regions thanks to its compact support. Thus, (µ, λ) are still C 2 on ]2M, ∞[. This ends the proof of Theorem 18.

Appendix 2.A Study of the geodesic motion in the exterior of Scwharzschild spacetime

We present a detailed study of the geodesic motion in the exterior region of a fixed Schwarzschild spacetime. We will classify the geodesics based on the study of the effective energy potential. Such a classification is of course classical and we refer to [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 3] or [START_REF] Charles W Misner | Gravitation[END_REF]Chapter 33] for more details. In this section, we prove Proposition 4.

• First, note that

E Sch ℓ is a cubic function in 1 r
. Its derivative is given by

∀r > 2M , E Sch ℓ ′ (r) = 2 r 4 M r 2 -ℓr + 3M ℓ .
Three cases are possible :

1. E Sch ℓ ′ has two distinct roots r Sch max < r Sch min , where r Sch max and r Sch min correspond respectively to the maximiser and the minimiser of E Sch ℓ . They are given by

r Sch max (ℓ) = ℓ 2M 1 -1 - 12M 2 ℓ , r Sch min (ℓ) = ℓ 2M 1 + 1 - 12M 2 ℓ .
The extremums of E Sch ℓ are given by

E min (ℓ) = E Sch ℓ (r Sch min (ℓ)) = 8 9 + ℓ -12M 2 9M r Sch min (ℓ) , (2. 
A.1)

E max (ℓ) = E Sch ℓ (r Sch max (ℓ)) = 8 9 + ℓ -12M 2 9M r Sch max (ℓ) . (2.A.2)
In fact, we compute

1 - 2M r Sch max (ℓ) = 1 - 4M 2 ℓ 1 -1 -12M 2 ℓ = 2 3 - 1 3 1 - 12M 2 ℓ , and 
1 + ℓ r Sch max (ℓ) 2 = 1 + ℓ 36M 2 1 + 1 - 12M 2 ℓ 2 .
Therefore,

E Sch ℓ (r Sch max (ℓ)) = 1 - 2M r Sch max (ℓ) 1 + ℓ r Sch max (ℓ) 2 = 2 3 + ℓ 18M 2 + ℓ 18M 2 1 - 12M 2 ℓ 2 3 - 1 3 1 - 12M 2 ℓ = 8 9 + ℓ -12M 2 9M r Sch max (ℓ)
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where the last expression is obtained by straightforward computations. We do the same thing for E max (ℓ). This case occurs if and only if ℓ > 12M 2 .

2. E Sch ℓ ′ has one double root at r c = 6M . The extremum of E Sch ℓ is given by

E c ℓ = 8 9 .
This case occur if and only if ℓ = 12M 2 .

3. E Sch ℓ ′ has no real roots. Then, E Sch ℓ is monotonically increasing from 0 to 1. This case occurs if and only if ℓ < 12M 2 . We refer to Figure 2.1 in the introduction for the shape of the potential energy in the three cases.

• Note that by the mass shell condition (2.2.19), we have

E 2 ≥ E Sch ℓ (r)
for any timelike geodesic moving in the exterior region. In particular,

E 2 ≥ E min (ℓ) ≥ 8 9
along any geodesic with ℓ > 12M 2 . Therefore, we obtain a lower bound on E:

E ≥ 8 9
for geodesics with with ℓ > 12M 2 .

• Now, we claim that the trajectory is a circle of radius r Sch 0 > 2M if and only if

E Sch ℓ (r Sch 0 ) = E 2 and E Sch ℓ ′ (r Sch 0 ) = 0. (2.A.3) Indeed, if the motion is circular of radius r Sch 0 , then ∀τ ∈ R : r(τ ) = r Sch 0 . Thus, ∀τ ∈ R , w(τ ) := ṙ(τ ) = 0 and ẇ(τ ) = 0.
Besides, it is a solution to the system (2.2.27)-(2.2.28). Therefore

∀τ ∈ R , E Sch ℓ ′ (r Sch 0 ) = E Sch ℓ ′ (r(τ )) = 0. By (2.2.19), we have ∀τ ∈ R , w(τ ) 2 + E Sch ℓ (r(τ )) = E 2 . In particular, E Sch ℓ (r Sch 0 ) = E 2 . Now, let us suppose that there exists r Sch 0 > 2M such that E Sch ℓ (r Sch 0 ) = E 2 and E Sch ℓ ′ (r Sch 0 ) = 0.
By the above assumption, we have w = 0 and E Sch ℓ

′ (r Sch 0 ) = 0 so that the point (r Sch 0 , 0) is a stationary point ∀ℓ ≥ 12M 2 . Furthermore, 1. r Sch 0 = 6, if ℓ = 12M 2 , 2. r Sch 0 ∈ r Sch min (ℓ), r Sch max (ℓ) , if ℓ > 12M 2 .
The circular orbits are thus characterised by (2.A.3).

• We consider now the case ℓ > 12M 2 and the equation

E 2 = E Sch ℓ (r). (2.A.4) Let (ℓ, E) ∈ 12M 2 , ∞ × 8 9
, ∞ . Four cases may occur:

1. If E 2 = E min ℓ or E 2 = E max ℓ
, then r Sch min or r Sch max satisfy (2.A.3), so that they are double roots. Besides, we note that ℓ = ℓ ub where

ℓ ub (E) := 12M 2 1 -4α -8α 2 -8α √ α 2 + α α := 9 8 E 2 -1 (2.A.5) satisfies E 2 = E min ℓ .
In fact, we solve the equation below for ℓ

8 9 + ℓ -12M 2 9 ℓ 2 1 + 1 -12M 2 ℓ = E 2 .
We make the following change of variables

α := 9 8 E 2 -1 and X := ℓ -12M 2 ℓ .
The equation becomes

X 2 4 (1 + X) = α,
which is easily solvable for X. We can then obtain ℓ ub (E). Similarly, we obtain ℓ lb defined by

ℓ lb (E) := 12M 2 1 -4α -8α 2 + 8α √ α 2 + α , (2.A.6)
which solves the equation

E 2 = E max ℓ . 2. If E 2 > E max ℓ , then two cases occur (a) E 2 < 1. The equation (2.A.4) has one simple root r Sch 2 (E, ℓ) > r Sch min (ℓ) (b) E 2 ≥ 1.
The equation (2.A.4) has no positive roots. The trajectories in this case are similar to the trajectories in case 3 (where ℓ < 12M 2 ).

3.

E 2 ∈ E min ℓ , E max ℓ . Again, two cases occur (a) E 2 < 1.
Then the equation (2.A.4) admits three simple positive roots

r Sch i (E, ℓ) r Sch 0 (E, ℓ) < r Sch max (ℓ) < r Sch 1 (E, ℓ) < r Sch min (ℓ) < r Sch 2 (E, ℓ). (2.A.7) (b) E 2 ≥ 1. The equation (2.A.4) admits two simple positive roots r Sch i (E, ℓ) r Sch 0 (E, ℓ) < r Sch max (ℓ) < r Sch 1 (E, ℓ) < r Sch min (ℓ). (2.A.8)
• We consider now the case ℓ ≤ 12M 2 . Three cases may occur:

1. If E 2 = 8 9
and ℓ = 12M 2 , then the equation (2.A.4) has one triple positive root r c = 6M .

2. If 0 < E 2 < 1, then the equation (2.A.4) has one simple positive root r Sch 1 (E, ℓ). 3. If E 2 ≥ 1, then the equation (2.A.4) no positive roots.

• Based on the above cases, we define the following parameters sets

A circ := 8 9 , 12M 2 (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : E 2 < 1, ℓ = ℓ ub (E) (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : ℓ = ℓ lb (E) , (2. 
A.9)

A bound := (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : E 2 < 1, ℓ lb (E) < ℓ < ℓ ub (E) , (2. 
A.10)

A unbound := (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : E 2 ≥ 1, ℓ > ℓ lb (E) , (2. 
A.11)

A abs := (E, ℓ) ∈ 8 9 , ∞ × 12M 2 , ∞ : E 2 < 1, ℓ < ℓ lb (E) (E, ℓ) ∈ ]0, 1[ \ 8 9 × 0, 12M 2 
(2.A.12)

• Now, we determine the nature of orbits (circular, bounded, unbounded, "absorbed by the black hole") in terms of the parameters (E, ℓ) as well as the initial position and velocity. Let

ℓ ∈ [0, ∞[, r ∈]2M, ∞[ and w ∈ R. We compute E = E Sch ℓ (r) + w2 . 1. If (E, ℓ) ∈ A bound , then there exists r Sch i := r Sch i (E, ℓ), i ∈ {0, 1, 2} solutions of (2.A.4
) and satisfying (2.A.7). Now recall that -The geodesic starts at some point in ]2M, r Sch 0 ] and reaches the horizon in a finite proper time.

E Sch ℓ (r) ≤ E 2 , ∀r > 2M. ( 2 
-The geodesic starts at some point in ]2M, ∞[ negative initial radial velocity and reaches the horizon in a finite time. 

Introduction

In this chapter, we construct stationary and axially symmetric solutions to the EV system which contain a matter shell located in the exterior region of the a Kerr-like black hole. Our construction is based on the study of trapped timelike geodesics of spacetimes close to Kerr. In particular, as in the spherically symmetric case, we show (and exploit) that for some values of energy and total angular momentum (ε, ℓ z ), the effective potential associated to a particle moving in a perturbed Kerr spacetime and that of a particle with same (ε, ℓ z ) moving in Kerr are similar. Our distribution function will then be supported on the set of trapped timelike geodesics, and this will lead to the finiteness of the mass and its compact support.

Before we state a rough version of the main theorem, note that without using the integrability of the geodesic motion in Kerr, we can still define in the BL coordinates a two dimensional effective potential energy (r, θ) → E K ℓz (r, θ) of a particle of rest mass m = 1 and angular momentum ℓ z , moving in the exterior of region of the Kerr spacetime, see Section 3.3.1.7. In particular trapped non-circular geodesics occur when the solution curve Z K (ε, ℓ z ) to the equation The main result of this chapter can be summarised as follow with more precise statement in Section 3.5

E K ℓz (r, θ) = ε admits a connected component Z K,trapped (ε, ℓ z ) diffeomorphic to S 1 , see Figure 3.11.
Theorem 16. There exists a 1-parameter family of stationary, axisymmetric asymptotically flat black holes spacetimes (M, g δ ) and distribution functions f δ : Γ 1 → R + solving the Einstein-Vlasov system, such that f δ verifies

∀(x, v) ∈ Γ 1 , f δ (x, v) = Φ(E δ , ℓ z ; δ)Ψ((ρ, z), (E δ , ℓ δ z ), g δ ). (3.1.1)
where Φ(•, •; δ) is supported on a compact set B bound of the set of parameters (E, ℓ z ) corresponding to trapped timelike trajectories, E is the energy of the particle and ℓ z its azimutal angular momentum, Ψ is a positive cut-off function which selects the trapped geodesics with parameters (E, ℓ z ) ∈ B bound , Γ 1 is the mass shell of particles with rest mass m = 1, and E δ is the local energy with respect to the metric g δ . Moreover, the resulting spacetimes contain a shell of Vlasov matter in the following sense:

• ∃ρ δ min , ρ δ max ∈]0, ∞[ and Z δ min , Z δ max ∈ R which satisfy ρ δ min < ρ δ max and Z δ min < 0 < Z δ max , such that supp (ρ,z) f ⊂⊂ [ρ min (h), ρ max (h)] × [Z min (h), Z max (h)] ,
and f does not vanish identically,

• the boundary of the domain of outer communications corresponds to a non degenerate bifurcate Killing event horizon on which the metric has a C 2,α extension, for all α ∈ [0, 1[. Remark 13. As in the spherically symmetric case, the support of Φ(ε, ℓ z ; δ) has two connected components: one corresponds to geodesics which start in the region between the horizon and the first connected component of ZVC and reach the horizon in a finite proper time, and the other one corresponds to trapped geodesics in the region inside Z K,trapped (ε, ℓ z ). Ψ, as in the spherical case, is adapted so that it is equal to 0 outside B bound and equal to a cut-off function depending on the ρ variable (cf 3.4.2), χ on B bound . The latter is equal to 0 on the first connected component of the support of Φ(ε, ℓ z ; δ) and to 1 on the second component. This allows to eliminate the undesired trajectories. As in the spherically symmetric case, (ε, ℓ z ) are not sufficient to characterise the geodesic motion, which also depends on the initial position and the initial radial velocity. We refer to Proposition 18 for more details.

Remark 14. An influential work for our thesis is the one of Andréasson-Kunze-Rein on the construction of rotating, general relativistic and asymptotically flat non-vacuum spacetimes [START_REF] Håkan Andréasson | Rotating, stationary, axially symmetric spacetimes with collisionless matter[END_REF]. The authors provided the first mathematical construction of stationary axisymmetric asymptotically flat solutions to the EV system which are geodesically complete and with non-zero total angular momentum. Their method was based on an implicit function theorem and a bifurcation argument from spherically symmetric steady states of the VP system. The ansatz for the distribution function was given by

f µ 1 ,µ 2 (x, v) = φ E - 1 µ 1 ψ (µ 2 , ℓ z ) ,
where µ 1 turns on general relativity and the second parameter turns on the dependence on ℓ z . Moreover, the reduction of the Einstein tensor associated to a stationary and axisymmetric metric followed the work of Bardeen [17] and the energy-momentum tensor components were computed via a reparametrisation of the mass shell.

Our work also uses a similar ansatz for the distribution function1 and this leads to similar reductions of the components of the energy-momentum tensor. On the other hand, we use the implicit function theorem to bifurcate from a possibly rapidly rotating Kerr spacetime. Moreover, our reduction of the EV system follows the work of Chodosh and Shlapentokh-Rothman [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF]. Finally, we note that the main contribution of our thesis is the stability analysis for trapped geodesics, which plays a key role in controlling the nonlinear estimates necessary for closing the argument.

This chapter is organised as follows. In Section 2.2, we present basic background material on the axisymmetric Einstein-Vlasov system as well as some properties of sub-extremal Kerr exteriors. In Section 3.3, we study the geodesic motion of timelike particles moving in Kerr exteriors in BL coordinates and in Weyl coordinates. We also provide a generalisation of the set A bound and the notion of turning points. In Section 3.4, we compute the components of the energy momentum tensor and reduce the EV system to a system of integro-partial differential equations in the metric data only. We also introduce the required functional spaces for the analysis. In Section 3.5, we give a detailed formulation of our main result. In Section 3.6, we prove the stability result for trapped geodesics. To this end, we control quantitatively the effective potential and the resulting trapped timelike geodesics for stationary axisymmetric spacetimes close to Kerr in every region where ZVC can be written as the graph of a function. The remaining sections 3.7 and 3.8 are dedicated to the application of the modified Carter-Robinson theory to the reduced EV system. Finally, appendices 3.A and 3.B contain further background material.

Preliminaries and basic background material

In this section, we introduce basic material necessary for the rest of this chapter.

Stationary and axisymmetric black holes with matter

We recall from [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] the geometric framework for the construction of non-vacuum black holes whose metrics are stationary and axisymmetric. We refer to [START_REF] Chruściel | Stationary black holes: uniqueness and beyond[END_REF] for general definitions on exterior and black holes regions, the event horizon and its properties in the axisymmetric case.

Metric ansatz

Let M := {(t, φ, ρ, z) ∈ R × (0, 2π) × B}, where 
B := {ρ > 0 , z ∈ R} . (3.2.1)
We will assume that the exterior regions of our spacetimes, minus the axis of symmetry, are given by (M, g) where the Lorentzian metrics g take the form

g := -V dt 2 + 2W dtdφ + Xdφ 2 + e 2λ dρ 2 + dz 2 (3.2.2)
for suitable functions V, W, X, λ : B → R. Observe that the vector fields Φ := ∂ ∂φ and T := ∂ ∂t are both Killing. We will always assume that X > 0 (otherwise there would exist closed causal curves)
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Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime and that XV + W2 > 0, which is equivalent to g being a Lorentzian metric. We do not assume that V > 0. Thus, we allow for the presence of an ergoregion.

In the following, we replace the metric components V, W, X, λ by a different collection of data X, W, θ, σ, λ, which reduces under symmetries in a nice manner, where

• θ denotes the twist one-form associated to Φ:

θ := 2ι Φ ( * ∇Φ ♭ ). (3.2.3)
• σ denotes the square root of the negative of the area of the parallelogram in T M spanned by T and Φ:

σ := XV + W 2 . (3.2.4)
We will refer to the quantities X, W, θ, σ, λ as the "metric data".

The conformal manifold with corners B

In this section, we recall the construction of the conformal manifold with corners B made in [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] on which the metric components will be extended. Let β > 0 and let 0 < e < c < a < b and be sufficiently large 2 .

• First we define four submanifolds of B, B

A := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| > 1 - 1 b β , B (β) 
H := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| < 1 + 1 b β , B (β) 
N := (ρ, z) ∈ B, ρ 2 + (z -β) 2 < β c , B (β) 
S := (ρ, z) ∈ B, ρ 2 + (z + β) 2 < β c , (β) 
so that they cover the domain of outer communications B.

• Then, we glue the points

(0, z)/|z ± β| > β a .
to

B (β)
H in order to get

B H (β) := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| < 1 + 1 b β .
Similarly, we glue the points

(0, z)/|z ± β| > β a .

to B (β)

A so that we define

B A (β) := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| > 1 - 1 b β .
• We extend in the same way

B (β) N to B (β) N and B (β) S to B (β)
S by gluing the points

(0, z)/|z -β| < β c . to B (β)
N and the points

(0, z)/|z + β| < β c . to B (β)
S . However, at the end points p N = (0, β) and p S = (0, -β), the Kerr solution expressed in isothermal coordinates is not smooth. In order to overcome this difficulty, one can introduce a regularisation which consists of a new system of coordinates (s, χ) with respect to which the Kerr solution is C ∞ .

• Now we define the change of coordinates on

B (β) N \ {(0, β)} ρ = sχ, z = 1 2 (χ 2 -s 2 ) + β. (3.2.5) • We glue the points (s, χ) /0 ≤ s, χ < β e 1 4
to B

N so that we add the north pole. Hence we obtain

B N (β) := (ρ, z) ∈ B, z = β, ρ 2 + (z -β) 2 < β c ∪ (s, χ) ∈ B /0 ≤ s, χ < β e 1 4
.

• Similarly, we introduce the regularisation on

B (β) S \ {(0, -β)} ρ = s ′ χ ′ , z = 1 2 ((χ ′ ) 2 -(s ′ ) 2 ) -β. so that we construct B S (β) B S (β) := (ρ, z) ∈ B, z = -β, ρ 2 + (z + β) 2 < β c ∪ (s ′ , (χ) ′ ) ∈ B /0 ≤ s ′ , (χ) ′ < β e 1 4
.

• Finally, define B (β) to be

B (β) := B A (β) ∪ B H (β) ∪ B N (β) ∪ B S (β) .
β will be fixed in Remark 16. Finally, we define the following regions of ∂B:

1. The axis A is defined to be the region 2. The horizon H is defined to be the region

A := (ρ, z) ∈ B ; ρ = 0 and z ∈] -∞, -β[∪]β, +∞[ . ( 3 
H := (ρ, z) ∈ B ; ρ = 0 and z ∈] -β, β[ (3.2.7)
and we refer to Moreover, we give the following definition Definition 18. We define ξ N and ξ S in the following way: ξ N , ξ S : B → [0, 1] such that they are smooth and they verify

• ∂ ρ ξ N = ∂ ρ ξ S = 0 for ρ small, • supp(ξ N ) ⊂ B N , supp(ξ S ) ⊂ B S , and supp(1 -ξ N -ξ S ) ⊂ B H ∪ B A .
Note that ξ N = 1 and ξ S = 1 in a neighbourhood of p N and p S so that their support does not lie in the region B A ∪ B H . Now, from the above definition, we claim that

Lemma 8. (ξ N , ξ S , 1 -ξ N -ξ S ) is a smooth partition of unity subordinate to (B A ∪ B H , B N , B S ).
In the remaining of this work, we will use the following notations

• the gradient with respect to (ρ, z) coordinates,

∂f = (∂ ρ f, ∂ z f ),
• the gradient with respect to (s, χ) coordinates,

∂f = (∂ s f, ∂ χ f ),
• a renormalised gradient norm

| ∂f | := |∇ R 4 (ξ N f ) R 4 | + |∇ R 4 (ξ S f ) R 4 | + |∇ R 3 ((1 -ξ N -ξ S )f ) R 3 |. (3.2.8)
Finally, direct computations imply

∀(s, χ) = (0, 0) ; ∂ ρ = χ χ 2 + s 2 ∂ s + s χ 2 + s 2 ∂ χ , ∂ z = -s χ 2 + s 2 ∂ s + χ χ 2 + s 2 ∂ χ and ∂ s = χ∂ ρ -s∂ z , ∂ χ = s∂ ρ + χ∂ z .
Moreover, we have

|∂f | 2 = 1 s 2 + χ 2 |∂f | 2 .
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Boundary conditions and extendibility

We are interested in finding asymptotically flat spacetimes with an event horizon. Therefore, in addition to the equations, the metric coefficients have to satisfy appropriate asymptotic behaviours as ρ → 0 and at infinity so that the spacetime (M, g) extends to a larger Lorentzian manifold with boundary ( M, g) which is asymptotically flat and has a boundary consisting of a non-degenerate bifurcate Killing event horizon. Now, we state definitions of extendibility of (M, g) to a larger manifold as well as asymptotic flatness in the current context. We refer to [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] and [START_REF] Chruściel | Stationary black holes: uniqueness and beyond[END_REF] for more details.

Let α ∈ (0, 1) and let k ∈ N.

Definition 19 (Extendibility around the axis). Let à ⊂ B A be an open set around the axis A . We say that a stationary axisymmetric spacetime (M, g) is extendable (resp.

C k,α -extendable) along ∂B A ∩ A if 1. there exists a smooth function V A (ρ, z) : Ã → R such that V Ã (0, z) > 0 and V (ρ, z)| Ã = V A (ρ 2 , z),
2. there exists a smooth function

W A (ρ, z) : Ã → R such that W (ρ, z)| Ã = ρ 2 W A (ρ 2 , z),
3. there exists a smooth function

X A (ρ, z) : Ã → R such that X A (0, z) > 0 and X(ρ, z)| Ã = ρ 2 X A (ρ 2 , z),
4. there exists a smooth function

Σ A (ρ, z) : Ã → R such that e 2λ(ρ,z) Ã = X A (ρ 2 , z) + ρ 2 Σ A (ρ 2 , z),
Definition 20 (Extendibility around the horizon). Let H ⊂ B H be an open set around the horizon H . We say that a stationary axisymmetric spacetime (M, g) is extendable (resp.

C k,α -extendable) along ∂B H ∩ H if there exists Ω ∈ R, κ > 0 such that 1. there exists a smooth function V H (ρ, z) : H → R such that V H (0, z) > 0 and (V (ρ, z) -2ΩW (ρ, z) -Ω 2 X(ρ, z)) H = ρ 2 V H (ρ 2 , z), 2. there exists a smooth function W H (ρ, z) : H → R such that (W (ρ, z) + ΩX(ρ, z))| H = ρ 2 W H (ρ 2 , z), 3. there exists a smooth function X H (ρ, z) : H → R such that X H (0, z) > 0 and X(ρ, z)| H = X H (ρ 2 , z), 4. there exists a smooth function Σ H (ρ, z) : H → R such that e 2λ(ρ,z) H = κ -2 V H (ρ 2 , z) + ρ 2 Σ H (ρ 2 , z).
Definition 21 (Extendibility around p N ). We say that a stationary axisymmetric spacetime (M, g) is extendable (resp. C k,αextendable) along ∂B N if there exists Ω ∈ R, κ > 0 such that 1. there exists a smooth function V N (s, χ) :

B N → R such that V N (0, z) > 0 and (V (s, χ) -2ΩW (s, χ) -Ω 2 X(s, χ)) B N = χ 2 V N (s 2 , χ 2 ),
2. there exists a smooth function W N (s, χ) :

B N → R such that (W (s, χ) + ΩX(s, χ))| B N = s 2 χ 2 W N (s 2 , χ 2 ),
3. there exists a smooth function X N (s, χ) :

B N → R such that X N (0, χ) > 0, X N (s, 0) > 0, and 
X(s, χ)| B N = s 2 X N (s 2 , χ 2 ),
4. there exists a smooth function Σ

N (s, χ), Σ (2) (s, χ) : B N → R such that e 2λ(s,χ) B N = X N (s 2 , χ 2 ) + s 2 Σ (1) 
N (s 2 , χ 2 ), e 2λ(s,χ)

B N = κ -2 V N (s 2 , χ 2 ) + χ 2 Σ (2) N (s 2 , χ 2 ),
Definition 22 (Extendibility around p S ). We say that a stationary axisymmetric spacetime (M, g) is extendable (resp. C k,αextendable) along ∂B S if there exists Ω ∈ R, κ > 0 such that 1. there exists a smooth function V S (s ′ , χ ′ ) : B S → R such that V s (0, z) > 0 and

(V (s ′ , χ ′ ) -2ΩW (s ′ , χ ′ ) -Ω 2 X(s ′ , χ ′ )) B S = χ 2 V S ((s ′ ) 2 , (χ ′ ) 2 ),
2. there exists a smooth function W S (s, χ) :

B S → R such that (W (s ′ , χ ′ ) + ΩX(s ′ , χ ′ )) B S = (s ′ ) 2 (χ ′ ) 2 W S (s 2 , χ 2 ),
3. there exists a smooth function X S (s ′ , χ ′ ) :

B S → R such that X S (0, χ ′ ) > 0, X S (s ′ , 0) > 0, and 
X(s ′ , χ ′ ) B S = (s ′ ) 2 X S ((s ′ ) 2 , (χ ′ ) 2 ),
4. there exists a smooth function Σ S (s ′ , χ ′ ) :

B S → R such that e 2λ(s ′ ,χ ′ ) B S = X S ((s ′ ) 2 , (χ ′ ) 2 ) + s 2 Σ (1) S ((s ′ ) 2 , (χ ′ ) 2 ) e 2λ(s ′ ,χ ′ ) B S = κ -2 V S ((s ′ ) 2 , (χ ′ ) 2 ) + (χ ′ ) 2 Σ (2) S ((s ′ ) 2 , (χ ′ ) 2 )
. spacetime Proposition 8. Let (M, g) be a stationary and axisymmetric spacetime which is extendable along ∂B A ∩ A , ∂B A ∩ A , ∂B N and ∂B S . Then (M, g) is extendable to a Lorentzian manifold with corners ( M, g) which is stationary and axisymmetric, and whose boundary corresponds to a bifurcate Killing event horizon.

We refer to [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] for a proof.

Definition 23 (Extendability). Let α ∈ (0, 1) and let k ∈ N. We say that a stationary and axisymmetric spacetime (M, g) is "extendable to a regular black hole spacetime" if (M, g) satisfies the assumptions of Proposition 8. Now, we recall from [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] a definition for asymptotic flatness, convenient to our work we refer to the Appendix A therein for more details.

Definition 24 (Asymptotic flatness). We say that a stationary and axisymmetric spacetime (M, g) is asymptotically flat if in the (t, x, y, z) coordinates defined in Appendix 3.A the metric g verifies

g = 1 + O 1 r (-dt 2 + dx 2 + dy 2 + dz 2 ) + O 1 r 2 (dtdx + dtdy + dxdy) , ∂g = 1 + O 1 r 2 (-dt 2 + dx 2 + dy 2 + dz 2 ) + O 1 r 3 (dtdx + dtdy + dxdy) , ∂ 2 g = 1 + O 1 r 3 (-dt 2 + dx 2 + dy 2 + dz 2 ) + O 1 r 4 (dtdx + dtdy + dxdy) ,
where r = 1 + x 2 + y 2 + z 2 .

Vlasov field on stationary and axisymmetric spacetimes

The distribution function f is conserved along the geodesic flow. Hence, any function of the integrals of motion will satisfy the Vlasov equation. In this context, we look for integrals of motion for the geodesic equation (1.1.10) on a stationary and axially symmetric background. By symmetry assumptions, the vector fields T and Φ are Killing. Hence, the quantities

ε := -v t = -g tα v α , (3.2.9) 
and

ℓ z := v φ = g φα v α (3.2.10)
are conserved. Note that ε and ℓ z are interpreted as the energy relative to infinity per unit mass and the azimutal angular momentum per unit mass respectively. We assume that the distribution function is supported on the set of trapped geodesics in the exterior region in order to obtain a shell of matter with finite mass and located away from the horizon, see Section 3.4.2. Therefore, if f is a function of (ε, ℓ z ), there exists Φ such that f (x, v) = Φ(ε, ℓ z ). For our construction, we will require that Φ is supported on a subset of the set of parameters (ε, ℓ z ) leading to trapped geodesics. However, as in the spherically symmetric case, for a given (ε, ℓ z ), the support of Φ(ε, ℓ z ) in the (ρ, z) variables has two connected components: one corresponds to trapped and the the other one corresponds to orbits that reach the horizon in a finite proper time. Hence, the above ansatz will be modified in order to obtain a shell of matter with compact support, see (3.4.2) for the exact ansatz for f .

Effective potential energy in stationary and axisymmetric spacetimes

We are interested in future directed timelike geodesics moving in stationary, axisymmetric and asymptotically flat spacetimes described by a metric of the form (3.2.2). Since we allowed the presence of an ergoregion (recall that V is not assumed to be positive on the whole exterior region), T is a priori not timelike everywhere. In order to fix the time orientation, we introduce the following vector field Ω defined by

Ω := ∂ ∂t + ω ∂ ∂φ ω := - W X .
First, note that Ω is timelike on B. In fact,

g(Ω, Ω) = - XV + W 2 X = - σ 2 X < 0.
Hence, we choose Ω for the time orientation. Now, let

(v t , v φ , v ρ , v z ) ∈ R 4 be the conjugate coor- dinates to the spacetime coordinates (t, φ, ρ, z) and let v = v α ∂ ∂x α ∈ T x M such that g(v, v) = -1. We compute g(Ω, v) = g( ∂ ∂t + ω ∂ ∂φ , v α ∂ ∂x α ) = v t g ∂ ∂t , ∂ ∂t + v φ g ∂ ∂t , ∂ ∂φ + v t ωg ∂ ∂φ , ∂ ∂t + v φ ωg ∂ ∂φ , ∂ ∂φ = -v t V + v φ W + v t ωW + v φ ωX = -v t XV + W 2 X = -v t σ 2 X .
Therefore, the requirement g(Ω, v) < 0 is equivalent to v t > 0.

We define the mass shell by

Γ = {(x, v) ∈ T M : g x (v, v) = -1, and g(Ω, v) < 0} .
We henceforth consider only future directed timelike particles.

In the presence of two Killing vector fields for the spacetime, the problem of solving the geodesic equation, which consists of integrating a system of 8 ordinary differential equations, is reduced to a problem with two-degree of freedom defined on a four dimensional submanifold of the tangent bundle. The remaining of this section is devoted to the reduction of the geodesics equation and to the introduction of a two dimensional effective potential that will play a key role for the classification of the orbits. Let (t, φ, ρ, z) ∈ M and let (v t , v φ , v ρ , v z ) be the conjugate coordinates to the spacetime coordinates. We recall that the quantity (free particle Lagrangian)

L(x, v) := 1 2 g αβ v α v β .
is conserved along the geodesic flow and normalised to -1 2 . Hence, we obtain

e 2λ (v ρ ) 2 + (v z ) 2 = -1 + X σ 2 ε 2 + 2W σ 2 εℓ z - V σ 2 ℓ 2 z . (3.2.11) spacetime and v t > 0.
We set

J(ρ, z, ε, ℓ z ) := -1 + X σ 2 ε 2 + 2W σ 2 εℓ z - V σ 2 ℓ 2 z . (3.2.12)
In this work, we will have to distinguish particles which co-rotate with the black holes and particles which counter-rotate with the black hole. To this end, we state the following definitions Definition 25. Let γ : I → M be a timelike geodesic with angular momentum ℓ z . γ is said to be direct (or co-rotating) if -W ℓ z > 0 and retrograde (or counter-rotating) if -W ℓ z < 0.

Now, let γ : I → M be a timelike future directed geodesic in the spacetime, defined on some interval I ⊂ R. In the adapted coordinates for the tangent bundle, we have

γ(τ ) = (t(τ ), φ(τ ), ρ(τ ), z(τ )) and γ ′ (τ ) = (v t (τ ), v φ (τ ), v ρ (τ ), v z (τ )).
Besides,

e 2λ (v ρ ) 2 + (v z ) 2 = J(ρ, z, ε, ℓ z , d) (3.2.13) so that J(ρ, z, ε, ℓ z ) ≥ 0. (3.2.14) along γ. Moreover, γ satisfies the geodesics equation      dx µ dτ = v µ dv µ dτ = -Γ µ αβ (x)v α v β . (3.2.15) 
We have

v t = X σ 2 ε + W σ 2 ℓ z , v φ = - W σ 2 ε + V σ 2 ℓ z . (3.2.16)
Recall that v t > 0 for future directed orbits. Now, we claim that the problem of solving the geodesic equations is equivalent to solving the following reduced system

                     dρ dτ = v ρ , dz dτ = v z , dv ρ dτ = - 1 2 e -2λ ∂ ρ J(ρ, z, ε, ℓ z ) -Γ ρ ij v i v j , i, j ∈ {ρ, z} dv z dτ = - 1 2 e -2λ ∂ z J(ρ, z, ε, ℓ z ) -Γ z ij v i v j .
(3.2.17)

In fact, ∀ γ : I → M satisfying (3.2.15), we have for k ∈ {i, j}

- dv k dτ = Γ k αβ (γ(τ ))v α v β = Γ k ab (γ(τ ))v a v b + Γ k ij (x)v i v j for a, b ∈ {t, φ} , i, j ∈ {ρ, z} = - 1 2 g kk ∂(g ab (γ(τ ))v a v b ) ∂x k + Γ k ij (γ(τ ))v i v j = - 1 2 e -2λ ∂(g ab (γ(τ ))v a v b ) ∂x k + Γ k ij (γ(τ ))v i v j .
We differentiate (3.2.12) with respect to (ρ, z) at the point (ρ(τ ), z(τ )) to obtain

∇ (ρ,z) J(ρ, z, ε, ℓ z ) = -∇ (ρ,z) (g ab (γ(τ ))v a v b ).
Hence, τ → (ρ, z)(τ ) solves (3.2.17). Now, assume that γ : I → M is a curve such that τ → (ρ, z)(τ ) solves (3.2.17) and such that dε dτ = -dv t dτ = 0

dℓ z dτ = - dv φ dτ = 0.
We claim that γ solves (3.2.15). It suffices to show that

dv t dτ = -Γ t αβ (γ(τ ))v α v β , dv φ dτ = -Γ φ αβ (γ(τ ))v α v β ,
We compute,

dv t dτ = d dτ X σ 2 ε + W σ 2 ℓ z = ε∇ (ρ,z) X σ 2 • (v ρ (τ ) v z (τ )) + ℓ z ∇ (ρ,z) W σ 2 • (v ρ (τ ) v z (τ )) = v ρ ε W 2 ∂ ρ X -(X∂ ρ V + 2W ∂ ρ W )X σ 4 + ℓ z (XV -W 2 )∂ ρ W -(V K ∂ ρ X + X∂ ρ V )W σ 4 + v z ε W 2 ∂ z X -(X∂ z V + 2W ∂ ρ W )X σ 4 + ℓ z (XV -W 2 )∂ z W -(V ∂ z X + X∂ z V )W σ 4
Now, note that

Γ a bi (γ(τ )) = 1 2 g ac ∂g bc ∂x i a, b, c ∈ {t, φ} , i ∈ {ρ, z} and 
Γ a bc (γ(τ )) = Γ a ij (γ(τ )) = 0 a, b, c ∈ {t, φ} , i, j ∈ {ρ, z} .
Hence,

Γ t αβ (γ(τ ))v α v β = Γ a bi (γ(τ ))v b v i = v ρ Γ t tρ v t + Γ t φρ v φ + v z Γ t tz v t + Γ t φz v φ = v ρ X σ 2 ∂ ρ V + W σ 2 ∂ ρ W v t + - X σ 2 ∂ ρ W + W σ 2 ∂ ρ X v φ + v z X σ 2 ∂ z V + W σ 2 ∂ z W v t + - X σ 2 ∂ z W + W σ 2 ∂ z X v φ
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We simplify ε W 2 ∂ ρ X -(X∂ ρ V + 2W ∂ ρ W )X σ 4 + ℓ z (XV -W 2 )∂ ρ W -(V ∂ ρ X + X∂ ρ V )W σ 4 = - X∂ ρ V + W ∂ ρ W σ 2 X σ 2 ε + W σ 2 ℓ z + X∂ ρ W -W ∂ ρ X σ 2 -W σ 2 ε + V σ 2 ℓ z = - X∂ ρ V + W ∂ ρ W σ 2 v t -- X∂ ρ W + W ∂ ρ X σ 2 v φ
Therefore,

dv t dτ = -Γ t αβ (γ(τ ))v α v β . Similarly, we show that dv φ dτ = -Γ φ αβ (γ(τ ))v α v β . Consider again the equation e 2λ (v ρ ) 2 + (v z ) 2 = -1 + X σ 2 ε 2 + 2W σ 2 εℓ z - V σ 2 ℓ 2 z .
Because of the term 2W σ 2 εℓ z , the dependence of J on ε cannot be separated. In this case, we cannot write the total energy as a sum of a kinetic term and a potential term depending only on the angular momentum as in the spherically symmetric case. However, we are only interested in the turning points, because they can be used to determine the nature of orbits. To this end, we introduce the following definition Definition 26. Let γ be a timelike future directed geodesic with constants of motion (ε, ℓ z ). A point (ρ 0 , z 0 )(ε, ℓ z ) ∈ B is called a turning point associated to γ if it is solution to the equation J(ρ, z, ε, ℓ z ) = 0. Now, since J is quadratic in ε, it is easy to write the latter quantity in terms of the remaining quantities:

ε = -W X ℓ z ± σ X ℓ 2 z + X.
Since we are interested in future directed timelike orbits, v t > 0. Therefore,

ε + W X ℓ z > 0 Hence, ε = -W X ℓ z + σ X ℓ 2
z + X. Now, we define the effective potential energy to be the function

E ℓz : B → R by E ℓz (ρ, z) := -W (ρ, z) X(ρ, z) ℓ z + σ X(ρ, z) ℓ 2 z + X(ρ, z). (3.2.18)
Hence, for a fixed (ε, ℓ z ), a turning point in B, say (ρ 0 , z 0 )(ε, ℓ z ) is characterised by:

ε = E ℓz ((ρ 0 , z 0 )(ε, ℓ z ))
It is convenient to make the dependence of E ℓz on the metric components explicit. Therefore, we adapt the definition of E ℓz and we define E ℓz : X × B → R to be

E ℓz (W, X, σ, ρ, z) := -W (ρ, z) X(ρ, z) ℓ z + σ X(ρ, z) ℓ 2 z + X(ρ, z) (3.2.19)
where X is a product functional space where the metric components will live that will be defined later in this work (see Section 3.4.6).

In order to determine the nature of timelike orbits, we will need to study the stationary solutions of the reduced system (3.2.17). Let (ε,

ℓ z ) ∈ R × R. Recall that (ρ, z, v ρ , v z )(ε, ℓ z , •) : I → B × R 2 is a timelike future-directed stationary solution of (3.2.17) if • I = R,
• there exists

(ρ s , z s , v ρ s , v z s )(ε, ℓ z ) ∈ B × R 2 such that ∀τ ∈ R, we have (ρ, z, v ρ , v z )(ε, ℓ z , τ ) = (ρ s , z s , v ρ s , v z s )(ε, ℓ z ), • (ρ s , z s , v ρ s , v z s )(ε, ℓ z ) verifies (3.2.13
). Therefore, it is easy to obtain the following lemma

Lemma 9. Let (ε, ℓ z ) ∈ R × R * and let (ρ s , z s , v ρ s , v z s )(ε, ℓ z )
be a timelike future-directed stationary solution of (3.2.17). Then,

J(ρ s , z s , ε, ℓ z ) = 0 , ∇ (ρ,z) J(ρ s , z s , ε, ℓ z ) = 0. Moreover, we have v ρ s = v z s = 0 Proof. If (ρ s , z s , v ρ s , v z s )(ε, ℓ z
) is a stationary solution, then by the first two equations of (3.2.17), it verifies v ρ s = v z s = 0. Moreover, by the last equations we obtain

1 2 e -2λ(ρs,zs) ∇ (ρ,z) J(ρ s , z s , ε, ℓ z ) = - dv ρ s dτ -Γ ρ ij v i v j = 0. Moreover, (ρ s , z s , v ρ s , v z s ) verifies e λ(ρs,zs) ((v ρ s ) 2 + (v z s ) 2 ) = J(ρ s , z s , ε, ℓ z ).
Hence, J(ρ s , z s , ε, ℓ z ) = 0. Now, we make the link between the stationary points of (3.2.17) and the critical points of E ℓz (W, X, σ, •). We state the following lemma Lemma 10. Let ℓ z ∈ R * and let (ρ c , z c )(ℓ z )3 be a critical point of E ℓz (W, X, σ, •). Then, (ρ c , z c , 0, 0) is a timelike future-directed stationary solution of the system (3.2.17) with parameters

(ε c := E ℓz (ρ c , z c ), ℓ z ). Reciprocally, let (ε, ℓ z ) ∈]0, ∞[×R * and (ρ s , z s , v ρ s , v z s )(ε, ℓ z ) be a timelike future-directed stationary solution of (3.2.17). Then, (ρ s , z s )(ε, ℓ z ) is critical point of E ℓz (W, X, σ, •) and ε = E ℓz (W, X, σ, •). spacetime Proof. • If (ρ c , z c )(ℓ z ) is a critical point of E ℓz (W, X, σ, •). Then, ∇ (ρ,z) E ℓz (W, X, ε c , z c ) = 0.
Set ε c := E ℓz (W, X, σ, ρ c , z c ). Then, J(ρ c , z c , ε c , ℓ z ) = 0. Now, recall that along timelike future directed solutions (in particular stationary solutions), we have J(ρ, z, ε, ℓ z ) = 0 if and only if ε = E ℓz (W, X, σ, ρ, z).

Moreover

∇ (ρ,z) E ℓz (ρ, z) = - ∇ (ρ,z) J(ρ, z, E ℓz (ρ, z), ℓ z ) ∂J(ρ,z,E ℓz (ρ,z),ℓz) ∂ε . (3.2.20)
Evaluating the latter at (ρ c , z c ), we obtain

∇ (ρ,z) J(ρ c , z c , ε c , ℓ z ) = 0.
Therefore, (ρ c , z c , 0, 0) is a stationary solution of (3.2.17).

• Now, if (ρ s , z s , v ρ s , v ρ s ) is a timelike future-directed stationary solution of (3.2.17), then, by Lemma 9, we have

J(ρ, z, ε, ℓ z ) = 0 if and only if ε = E ℓz (W, X, σ, ρ, z).
The first equation is equivalent to

ε = E ℓz (W, X, σ, ρ s , z s ).
Moreover, by (3.2.20), we obtain

∇ (ρ,z) E ℓz (W, X, σ, ρ s , z s ) = 0. Therefore, (ρ s , z s )(ℓ z ) is a critical point of E ℓz (W, X, σ, •)
In Section 3.3.1.1, the above lemmas will be applied to compute stationary solutions for the reduced system in the case of Kerr. In spherical symmetry, the intersection of ε and the effective potential E ℓz , depending only on the radial direction, gave us isolated turning points, which allowed us to determine the nature of the orbits. In the axisymmetric case, the effective potential defined by (3.3.142) is two-dimensional. Therefore, the intersection of an energy level ε and ℓ z will lead to a curve in B. In this context, we will define introduce the zero zelocity curve Z(ε, ℓ z ) (ZVC) associated to a timelike future directed geodesic which generalises the set of isolating turning points. We state the following definition Definition 27. Let γ : I → M be a timelike future directed geodesic with constants of motion (ε, ℓ z ). We define the zero velocity curve (ZVC) associated to γ denoted by Z(ε, ℓ z ) to be the curve in B defined by

Z(ε, ℓ z ) := {(ρ, z) ∈ B : J(ρ, z, ε, ℓ z ) = 0} .
We define the allowed region for γ to be the subset A(ε, ℓ z ) ⊂ B defined by

A(ε, ℓ z ) := {(ρ, z) ∈ B : J(ρ, z, ε, ℓ z ) ≥ 0} .
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Note that the above definitions are equivalent 4 to

Z(ε, ℓ z ) = {(ρ, z) ∈ B : E ℓz (ρ, z) = ε} . A(ε, ℓ z ) = {(ρ, z) ∈ B : E ℓz (ρ, z) ≤ ε} .
Finally, we note that the ZVC associated to a timelike future directed geodesic is the set of its turning points.

Remark 15. By an abuse of notations, we will identify Z(ε, ℓ z ), a subset in B with the corresponding subset Z(ε, ℓ z ) in (r, θ) coordinates.

Properties of the Kerr spacetime

In this section, we recall the main properties of sub-extremal Kerr exteriors and we express the metic, the exterior region, the horizon and the axis of symmetry in terms of Weyl coordinates. We recall from Section 1.3.2 that the exterior region of a sub-extremal Kerr spacetime with parameters (a, M ) is represented in BL coordinates by O:

O := {R × (r + (a, M ), ∞) × (0, π) × (0, 2π)} , (3.2.21) 
where r + (a, M ) is defined by

r + (a, M ) := M + M 2 -a 2 , (3.2.22) 
and a metric which takes the form

g Kerr = -1 - 2M r Σ 2 dt 2 - 4aM r sin 2 θ Σ 2 dtdφ + Π Σ 2 sin 2 θdφ 2 + Σ 2 ∆ dr 2 + Σ 2 dθ 2 , (3.2.23)
where

∆ = r 2 -2M r + a 2 , Σ 2 = r 2 + a 2 cos 2 θ and Π = (r 2 + a 2 ) 2 -a 2 sin 2 θ∆.
Its inverse is given by

g -1 Kerr = - Π ∆Σ 2 ∂ ∂t ⊗ ∂ ∂t - 4aM r ∆Σ 2 ∂ ∂t ⊗ ∂ ∂φ + ∆ -a 2 sin 2 θ ∆Σ 2 sin 2 θ ∂ ∂φ ⊗ ∂ ∂φ + ∆ Σ 2 ∂ ∂r ⊗ ∂ ∂r + 1 Σ 2 ∂ ∂θ ⊗ ∂ ∂θ .
It is clear to see that The event horizon is the hypersurface

T := ∂ ∂t
H = {(t, r, θ, φ) : r = r + (a, M ))} .
The axis of symmetry is the set of points

A = {(t, r, θ, φ) : θ ∈ {0, π}} .
The cylindrical coordinates introduced in Section 3.2.1 are adapted for the stationary and axisymmetric Einstein-Vlasov system. Therefore, we put the Kerr metric (3.2.23) and the ones we will construct in the form considered in (3.2.2). To this end, we introduce the following change of coordinates: the set of points in O with a fixed (t, φ) ∈ R × (0, π) defines a 2-surface on which we introduce the following functions: 

ρ(r, θ) := √ ∆ sin θ, z(r, θ) := (r -M ) cos θ. ( 3 
]r + (a, M ), ∞[×]0, π[ → B ( r , θ ) → (ρ(r, θ), z(r, θ)) is a C ∞ -diffeomorphism.
Its inverse is given by

B →]r + (a, M ), ∞[×]0, π[ (ρ, z) → (r(ρ, z), θ(ρ, z)) where r(ρ, z) = M + 1 √ 2 (β 2 + ρ 2 + z 2 ) + (ρ 4 + 2ρ 2 (z 2 + β 2 ) + (z 2 -β 2 ) 2 ), (3.2.25 
)

sin θ(ρ, z) = ρ ∆(ρ, z) , (3.2.26 
)

with β = M 2 -a 2 . (3.2.27)
Proof. It is clear that the mapping is well-defined and smooth. We show that it is bijective from

]r + (a, M ), ∞[×]0, π[ to B: Let (ρ 0 , z 0 ) ∈ B.
We claim that there exists a unique (r 0 , θ 0 ) such that:

(ρ(r 0 , θ 0 ), z(r 0 , θ 0 )) = (ρ 0 , z 0 ). (3.2.28)
By the latter, we have

ρ 2 0 ∆(r 0 ) + z 2 0 (r 0 -M ) 2 = 1, which is equivalent to ρ 2 0 (r 0 -M ) 2 + (r 0 -M ) 2 + ∆(r 0 )z 2 0 -β 2 z 2 0 = (r 0 -M ) 4 -β 2 (r 0 -M ) 2 .
By setting x := (r 0 -M ) 2 , x satisfies the following quadratic equation

x 2 -(ρ 2 0 + z 2 0 + β 2 )x + β 2 z 2 0 = 0.
Therefore,

x = (ρ 2 0 + z 2 0 + β 2 ) ± (ρ 4 0 + 2ρ 2 0 (z 2 0 + β 2 ) + (z 2 0 -β 2 ) 2 ) 2 .
Since x is positive, we obtain

r 0 (ρ 0 , z 0 ) = M + 1 √ 2 (β 2 + ρ 2 0 + z 2 0 ) + (ρ 4 0 + 2ρ 2 0 (z 2 0 + β 2 ) + (z 2 0 -β 2 ) 2 ).
Moreover, θ 0 satisfies:

sin θ 0 (ρ 0 , z 0 ) = ρ 0 ∆(r 0 ) .
Hence, (r 0 , θ 0 ) exists and it is unique. Finally, it is straightforward that the inverse is also smooth on B. This ends the proof.

We compute the Jacobian of the above change of coordinates:

J iso =   r-M √ ∆ sin θ √ ∆ cos θ cos θ -(r -M ) sin θ   .
Now, we compute dr and dθ in terms of dρ and dz:

  dr dθ   = J -1 iso   dρ dz   .
Here J -1 iso is given by

J -1 iso = √ ∆ -1 cos 2 θ + (r-M ) 2 ∆ sin 2 θ   (r -M ) sin θ √ ∆ cos θ cos θ -r-M √ ∆ sin θ   .
Then, we compute dr 2 and dθ 2 :

dr 2 =   √ ∆ -1 cos 2 θ + (r-M ) 2 ∆ sin 2 θ   2 (r -M ) 2 sin 2 θdρ 2 + 2 √ ∆(r -M ) sin θ cos θdρdz + ∆dz 2 ,
and

dr 2 =   √ ∆ -1 cos 2 θ + (r-M ) 2 ∆ sin 2 θ   2 dρ 2 -2 (r -M ) sin θ cos θ √ ∆ dρdz + (r -M ) 2 sin 2 θ ∆ dz 2 .
Hence

Σ 2 1 ∆ dr 2 + dθ 2 = Σ 2 ∆ cos 2 θ + (r -M ) 2 ∆ sin 2 θ -1 (dρ 2 + dz 2 ). spacetime
Now we set

e 2λ K := Σ 2 1 ∆ dr 2 + dθ 2 = Σ 2 ∆ cos 2 θ + (r -M ) 2 ∆ sin 2 θ -1
, Therefore, the Kerr metric, written in the (t, φ, ρ, z) coordinates takes the form:

g a,M = -V K dt 2 + 2W K dtdφ + X K dφ 2 + e 2λ K dρ 2 + dz 2
where

V K = (1 - 2M r Σ 2 ), W K = - 2M ar sin 2 θ Σ 2 , X K = sin 2 θ Π Σ 2 and e 2λ K = Σ 2 ∆ -1 (r -M ) 2 ∆ sin 2 θ + cos 2 θ -1
.

The event horizon as well as the axis of symmetry are henceforth given by

H = {(ρ, z) : ρ = 0 , |z| < β} and A = {(ρ, z) : ρ = 0 , |z| > β} .
The intersection of the horizon with the axis of symmetry is given by the points p N := (0, β) and p S := (0, -β). Remark 17. Note that the induced metric on each (t, φ) = cste surfaces is conformally equivalent to the Euclidean metric with conformal factor given by e 2λ K .

Remark 18. The coordinates (ρ, z) fail to be regular a the points p N and p S .

Remark 19. The subscript K will always refer to the Kerr metric. For instance, any ZVC associated to a Kerr geodesic is denoted by Z K instead of just Z.

Finally, we state the following result Proposition 9 (Extendibility of Kerr exterior - [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF]). The Kerr exterior is extendable to a regular black hole spacetime in the sense of Definition 23.

Timelike future directed geodesics in Kerr spacetime

Study of the geodesic motion of timelike particles moving in Kerr exterior in BL coordinates

In this work, we are interested in future directed particles moving in the exterior region of a Kerr spacetime. The aim of this section is to classify their orbits based on their constants of motion. An important property of the Kerr spacetime, as shown in the work of Carter [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF], is the fact that the geodesic equations form an integrable Hamiltonian system so that one has a complete set of explicit integrals of motion. Therefore, one can determine the nature of timelike orbits based on the possible values of these integrals of motion.

In this section, we first present the geodesic equations and the four constants of motion. Then, we determine for which constants of motion the orbit is circular and confined in the equatorial plane. Similarly, we determine for which values the orbits have a constant radius r. These special classes of orbits are the key for the general classification which is obtained towards the end of this section. The classification is based on the following definition Definition 28. Let γ : I ∋ 0 → O be a timelike future-directed geodesic5 parametrised by its proper time such that γ(τ ) = (t(τ ), φ(τ ), r(τ ), θ(τ )). γ is said to be 1. spherical if I = R and there exists r s ∈]r + (a, M ), ∞[ such that ∀τ ∈ I : r(τ ) = r s .

2. circular if γ is spherical and ∀τ ∈ I : θ(τ ) = π 2 .

3. scattered at infinity if I = R and there exists a set of the form

6 [r sc , ∞[×[θ sc , π -θ sc ] ⊂ O, with θ sc ∈]0, π[, such that ∀τ ∈ I : (r(τ ), θ(τ )) ∈ [r sc , ∞[×[θ sc , π -θ sc ].
4. trapped non-spherical if I = R and there exit a compact set K ⊂⊂ O such that ∀τ ∈ I : γ(τ ) ∈ K.

5.

plunging if I =]a, b[, where -∞ < a < 0 < b < +∞.
In this case, γ reaches the horizon in a finite proper time.

6. plunging from infinity if I =] -∞, a[ where 0 < a < +∞ such that γ reaches the horizon in a finite proper time, given by a.

7. emanating from the white hole to infinity if I =]a, +∞[ where 0 < a < +∞ and r(τ ) → ∞ when τ → +∞.

Definition 29. An orbit (γ, I) is said to be confined in the equatorial plane if ∀τ ∈ I , θ(τ ) = π 2 .
Remark 20. We will refer to spherical, circular, scattered and trapped orbits as classical since they possess Newtonian analogs.

Geodesic equations in the BL coordinates

Consider a sub-extremal Kerr exterior with parameters (a, M ). In BL coordinates, the metric is given by (3.2.23) and the metric components are defined on the domain (3.2.21). Let γ : I → O be a timelike future directed geodesic parametrised by its proper time τ and let v = dγ dτ be its four-velocity vector. We recall that (ε, ℓ z ) defined respectively by (3.2.9) and (3.2.10) are conserved along the geodesic flow. For particles moving in the equatorial plane, these quantities together with the conservation of the Hamiltonian are sufficient to classify their trajectories. In the general case, the geodesic motion in Kerr forms an integrable system thanks to the existence of a fourth integral of motion q, called the Carter constant [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF] given by:

∀(x, v) ∈ T M : q(x, v) := v 2 θ + cos θ 2 a 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ . (3.3.1)
In BL coordinates, γ(τ ) = (t(τ ), φ(τ ), r(τ ), θ(τ )) and γ(τ ) = ( ṫ(τ ), φ(τ ), ṙ(τ ), θ(τ )). By (1.1.13), we have

-1 = -1 - 2M r Σ 2 ṫ2 - 4aM r sin 2 θ Σ 2 ṫ φ + Π sin 2 θ Σ 2 φ2 + Σ 2 ∆ ṙ2 + Σ 2 θ2 . spacetime
Combining the latter with (3.2.9), (3.2.10) and (3.3.1), one can separate the motion in the (t, ṫ), (φ, φ), (r, ṙ) and (θ, θ) in the following way:

(r, ṙ) : Σ 4 ṙ2 = (r 2 + a 2 )ε -aℓ z 2 -∆(r 2 + (ℓ z -aε) 2 + q), (3.3.2) (θ, θ) : Σ 4 θ2 = q -cos 2 θ a 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ (3.3.3) (φ, φ) : Σ 2 φ = -aε - ℓ z sin 2 θ + a ε(r 2 + a 2 ) -ℓ z a ∆ , (3.3.4) (t, ṫ) : Σ 2 ṫ = -a aε sin 2 θ -ℓ z + r 2 + a 2 ε(r 2 + a 2 ) -ℓ z a ∆ (3.3.5)
Note that the motions in r and in θ are still coupled. In order to separate the r-motion and the θ-motion, one can use a new time parameter λ, called Mino time [START_REF] Mino | Perturbative approach to an orbital evolution around a supermassive black hole[END_REF], defined in the following way:

λ : I → ]0, ∞[ τ → λ(τ ) := τ τ 0 1 Σ 2 (r(s), θ(s)) ds
where τ 0 ∈ I. Since Σ 2 is positive, λ is well-defined and we have:

dτ = Σ 2 dλ. (3.3.6) 
Therefore,

d dλ = Σ 2 d dτ .
In terms of λ, (3.3.2) and (3.3.3) become: 

dr dλ 2 = (r 2 + a 2 )ε -aℓ z 2 -∆(r 2 + (ℓ z -aε) 2 + q), (3.3.7) 
d cos θ dλ 2 = q -(q + a 2 (1 -ε 2 ) + ℓ 2 z )(cos θ) 2 + a 2 (1 -ε 2 )(cos θ) 4 . ( 3 
T (Y, ε, ℓ z , q, a) := q -(q + a 2 (1 -ε 2 ) + ℓ 2 z )Y 2 + a 2 (1 -ε 2 )Y 4 (3.3.9) and R(X, ε, ℓ z , q, a) := (ε(X 2 + a 2 ) -aℓ z ) 2 -(X 2 -2XM + a 2 )(X 2 + (aε -ℓ z ) 2 + q). (3.3.10) Hence, (r, ṙ) : Σ 4 ṙ2 = R(r, ε, ℓ z , q, a), (3.3.11) (θ, θ) : Σ 4 sin 2 θ θ2 = T (cos θ, ε, ℓ z , q, a) (3.3.12)
We also introduce the following dimensionless quantities:

r := r M , d := a M , lz := ℓ z M , q := q M 2 (3.3.13)
and

r H (d) := 1 + 1 -d 2 = r + (a, M ) M . (3.3.14) Therefore, T M 2 Y, ε, lz , q, d = q -(q + d 2 (1 -ε 2 ) + l2 z )Y 2 + d 2 (1 -ε 2 )Y 4 (3.3.15) and R M 4 X, ε, lz , q, d = ε X M 2 + d 2 -d lz 2 - X M 2 -2 X M + d 2 X M 2 + (dε -lz ) 2 + q . (3.3.16)
Remark 21. We shall henceforth take M = 1 and identify the above different quantities and their normalisations.

Remark 22. From now on, the dependence on (a, M ) and thus on d will not be written in order to lighten the equations.

The equations (3.3.2) and (3.3.3) do not form a regular system of ODEs. Consequently, we derive in the following the equivalent Hamiltonian form of the geodesic equations of motion. The latter will form a smooth system of ODEs, even at turning points (roots of R and T ). This will allow us to compute stationary solutions of the geodesic system, which will be used later in this work. First of all, we introduce the Hamiltonian of a free-falling timelike particle of mass 1, defined by:

H(x α , v α ) := 1 2 g αβ v α v β = - 1 2 .
In BL coordinates, v α are given by:

v t = -1 - 2r Σ 2 v t - 2dr sin 2 θ Σ 2 v φ , v φ = sin 2 θ r 2 + d 2 + 2d 2 r sin 2 θ Σ 2 v φ - 2dr sin 2 θ Σ 2 v t , v r = Σ 2 ∆ v r , v θ = Σ 2 v θ . Since v = dγ dτ
, we obtain

v t = -1 - 2r Σ 2 ṫ - 2dr sin 2 θ Σ 2 φ, v φ = sin 2 θ r 2 + d 2 + 2d 2 r sin 2 θ Σ 2 φ - 2dr sin 2 θ Σ 2 ṫ, v r = Σ 2 ∆ ṙ, v θ = Σ 2 θ.
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ε = -v t , ℓ z = v φ and q = v 2 θ + cos θ 2 d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ .
Now, let (x α , v α ) be a solution to the equations of motion. We have

2H(x, v) + 1 = g tt ε 2 -2g tφ εℓ z + g φφ ℓ 2 z + 1 + ∆ Σ 2 v 2 r + 1 Σ 2 v 2 θ . Set -JK (r, θ, ε, ℓ z ) := g tt ε 2 + 2g tφ εℓ z + g φφ ℓ 2 z + 1, = 1 - X K (r, θ) ∆ sin 2 θ ε 2 - 2W K (r, θ) ∆ sin 2 θ εℓ z + V K (r, θ) ∆ sin 2 θ ℓ 2 z .
(3.3.17)

Recall that solutions to the equations of motion also satisfy (3.3.11) and (3.3.12). Therefore, we obtain by multiplying the latter equations by Σ -2 :

∆ Σ 2 v 2 r - 1 Σ 2 R(r, ε, ℓ z , q) ∆ = 0, 1 Σ 2 v 2 θ - 1 Σ 2 sin 2 θ T (cos θ, ε, ℓ z , q) = 0. Hence, ∆ Σ 2 v 2 r + 1 Σ 2 v 2 θ - 1 Σ 2 R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ -1 = -1.
By the conservation of the Hamiltonian, we have

-1 = 2H(x, v) = -JK (r, θ, ε, ℓ z ) + ∆ Σ 2 v 2 r + 1 Σ 2 v 2 θ -1.
Hence,

-JK (r, θ, ε, ℓ z ) = - 1 Σ 2 R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ . (3.3.18)
and

H(x, v) = 1 2Σ 2 ∆v 2 r + v 2 θ - R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ - 1 2 (3.3.19)
Now, we evaluate the equations of motion

dx α dτ = ∂H ∂v α , dv α dτ = - ∂H ∂x α , for the Hamiltonian (3.3.19). We compute dv r dτ = - ∂H(x, v) ∂r = - 1 2Σ 2 ∆ ′ (r)v 2 r - ∂ ∂r R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ + ∂ r Σ 2 2Σ 4 ∆v 2 r + v 2 θ - R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ , = 1 2Σ 2 -∆ ′ (r)v 2 r + -∆ ′ (r)R(r, ε, ℓ z , q) + ∆(r)∂ r R(r, ε, ℓ z , q) ∆(r) 2 + ∂ r Σ 2 (2H(x, v) + 1) . dv θ dτ = - ∂H(x, v) ∂θ = 1 2Σ 2 ∂ θ T (cos θ, ε, ℓ z , q) sin 2 θ + ∂ θ Σ 2 (2H(x, v) + 1) .
Here, we used the independence of R and T on θ and r respectively. Finally, Hamilton equations are written under the form: 

                                                                 dr dτ = ∆ Σ 2 v r , dv r dτ = 1 2Σ 2 -∆ ′ (r)v 2 r + -∆ ′ (r)R(r, ε, ℓ z , q) + ∆(r)∂ r R(r, ε, ℓ z , q) ∆(r) 2 +∂ r Σ 2 (2H(x, v) + 1) , dθ dτ = 1 Σ 2 v θ , dv θ dτ = 1 2Σ 2 ∂ θ T (cos θ, ε, ℓ z , q) sin 2 θ + ∂ θ Σ 2 (2H(x, v) + 1) , dφ dτ = - 1 2Σ 2 ∂ ∂v φ R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ dv φ dτ = 0, dt dτ = 1 2Σ 2 ∂ ∂v t R(r, ε, ℓ z , q) ∆ + T (cos θ, ε, ℓ z , q) sin 2 θ dv t dτ = 0.
The terms 2H(x, v) + 1 above all vanish along any timelike orbit so that (3.

3.20)-(3.3.24) become                        dr dτ = ∆ Σ 2 v r , dv r dτ = 1 2Σ 2 -∆ ′ (r)v 2 r + ∆ ′ (r)R(r, ε, ℓ z , q) -∆(r)∂ r R(r, ε, ℓ z , q) ∆(r) 2 , dθ dτ = 1 Σ 2 v θ , dv θ dτ = 1 2Σ 2 ∂ θ T (cos θ, ε, ℓ z , q) sin 2 θ . (3.3.29)
Solutions to this system such that the conserved hamiltonian verifies H(x, v) = -1 2 will be called future-directed timelike geodesics. Note that any term on the right hand side which contains the Carter constant in R, T or their derivatives cancel out so that the equations are independent of q. We recall that we can separate the motion in the t-direction, φ-direction and in the (r, θ)-plane from each other. In order to solve the above system with a given initial conditions (γ(0), γ(0)), we solve the Cauchy problem for its projection in the (r, θ, v r , v θ ) with initial conditions (r(0), θ(0), v r (0), v θ (0)) and with parameters (ε, ℓ z , q), which are computed using the initial conditions. Therefore, we obtain (r(τ ), θ(τ ), v r (τ ), v θ (τ )). Then, we plug the latter solutions into the remaining equations and we integrate (3.3.27) and (3.3.25) in order to obtain t(τ ) and φ(τ ). More precisely, we state the following lemma spacetime Lemma 12. Let γ : I ∋ 0 → O be the timelike future-directed geodesic with initial conditions (γ(0), γ(0)). One can compute uniquely (ε, ℓ z , q) which are, together with the signs of v r (0) and v θ (0) and (r(0), θ(0)), sufficient to solve the reduced system.

Proof. Let γ : I ∋ 0 → O be the timelike future-directed geodesic with initial conditions (γ(0), γ(0)) = (t(0), φ(0), r(0), θ(0), v t (0), v φ (0), v r (0), v θ (0)).

• First, we compute (ε, ℓ z ) from (r(0), θ(0), v t (0), v φ (0)):

ε = V K (r(0), θ(0))v t (0) -W K (r(0), θ(0))v φ (0), ℓ z = W K (r(0), θ(0))v t (0) + X K (r(0), θ(0))v φ (0), then q from (θ(0), v θ (0), ε, ℓ z ) q = v θ (0) 2 + cos 2 θ(0) d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ(0) .
• Now, we consider the reduced system (3.3.29) with parameters (ε, ℓ z , q).

• The motion in (r, θ) is determined uniquely by (r(0), θ(0))(ε, ℓ z , q) and (v r , v θ )(0). In fact, (v r , v θ )(0) is determined using (3.3.11) and (3.3.12). Imposing the sign on the latter allows one to determine uniquely (r, θ).

Remark 23. It will be sufficient to study the reduced system in order to determine the nature of γ according to Definition 28.

Therefore, we will study the reduced system (3.3.29).

Lemma 13. Let (γ, I) be a timelike future directed geodesic moving in the exterior region with constants of motion (ε, ℓ z , q). Then

(ε, ℓ z ) ∈ A admissible,+ ∪ A admissible,-=: A admissible where A admissible,+ := (ε, ℓ z ) ∈ R 2 : ε > 0 and dℓ z > 0 and A admissible,-:= (ε, ℓ z ) ∈ R 2 : ε > dℓ z 2r H and dℓ z < 0 Proof.
Before classifying the solutions of the reduced system, we begin by determining necessary and sufficient conditions for the existence of stationary solutions. Lemma 14. Let (ε, ℓ z ) ∈ R × R and let (r s , θ s , v r,s , v θ,s ) be a timelike future-directed stationary solution of (3.3.29). Then, r s is a double root of the fourth order polynomial R(•, ε, ℓ z , q s ) and cos θ s is a double root of the polynomial T (•, ε, ℓ z , q s ). Reciprocally, if r s is a double root of R(•, ε, ℓ z , q s ) and cos θ s is a double root of the polynomial T (•, ε, ℓ z , q s ), then we have a stationary solution of (3.3.29).

Proof. Let (ε, ℓ z ) ∈ R × R and let (r s , θ s , v r,s , v θ,s ) be a stationary timelike future-directed solution of (3.3.29). Then (r s , θ s , v r,s , v θ,s ) verifies

v r,s = v θ,s = 0, ∆ ′ (r s )R(r s , ε, ℓ z , q s , d) -∆(r s )∂ r R(r s , ε, ℓ z , q s , d) ∆(r s ) 2 = 0, ∂ θ T (cos θ s , ε, ℓ z , q s , d) sin 2 θ s = 0.
where q s is the Carter constant given by (3.3.1). Moreover, by (3.3.11) and (3.3.12), we have

R(r s , ε, ℓ z , q s , d) = T (cos θ s , ε, ℓ z , q s , d) = 0. Therefore, ∂ r R(r s , ε, ℓ z , q s , d) = ∂ θ T (cos θ s , ε, ℓ z , q s , d) = 0.
Reciprocally, let r s be a double root of the four polynomial R(•, ε, ℓ z , q s ) and cos θ s be a double root of the polynomial T (•, ε, ℓ z , q s ) and let (r, θ, v r , v θ ) : I ∋ 0 → O be a solution to (3.3.29) such that (r, θ)(0, 0) = (r s , θ s ). Then, (r, θ) : I → O satisfies (3.3.11) and (3.3.12). Therefore,

v r (0) = 0 and v θ (0) = 0.
Moreover, the point (r s , cos θ s , 0, 0) is a critical point for the system (3.3.29). This yields the result. Now, we derive sufficient conditions for stationary solutions to the reduced system (3.3.29).

R can be seen as an effective potential governing the motion in the radial direction r and T as an effective potential governing the motion in the angular direction θ. Therefore, we can characterise the geodesic motion by studying the number of turning points of the radial motion and the number of turning points of the angular motion. We recall from Section 3.2.1.5 that the allowed region for a timelike future directed geodesic γ : I → O with constants of motion (ε, ℓ z ) is given by

A K (ε, ℓ z ) = (r, θ) ∈]r H , ∞[×]0, π[ : JK (r, θ, ε, ℓ z ) ≥ 0 , (3.3.30) 
where JK is defined by (3.3.17) and that the associated ZVC, the set of turning points, is given by

Z K (ε, ℓ z ) = (r, θ) ∈]r H , ∞[×]0, π[ : JK (r, θ, ε, ℓ z ) = 0 .
In BL coordinates, we characterise Z K by the following lemma Lemma 15.

Z K (ε, ℓ z ) = (r, θ) ∈]r H , ∞[×]0, π[ : R(r, ε, ℓ z , q) = 0 where q = cos 2 θ d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ . Proof. Let (r, θ) ∈ Z K (ε, ℓ z ). Then, JK (r, θ, ε, ℓ z ) = 1 - X K (r, θ) ∆ sin 2 θ ε 2 - 2W K (r, θ) ∆ sin 2 θ εℓ z + V K (r, θ) ∆ sin 2 θ ℓ 2 z = 0.
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This implies:

1 - Π ∆Σ 2 ε 2 + 4dr ∆Σ 2 εℓ z + 1 - 2r Σ 2 Σ 2 sin 2 θ ℓ 2 z = 0.
Therefore,

(r 2 + d 2 ) 2 ε 2 -ε 2 d 2 sin 2 θ∆ -∆r 2 -∆d 2 cos 2 θ -4drεℓ z -(r 2 + d 2 -d 2 sin 2 θ -2r) ℓ 2 z sin 2 θ = 0.
Hence,

((r 2 + d 2 ) 2 ε -dℓ z ) 2 -∆ r 2 + ε 2 d 2 sin 2 θ -2dεℓ z -(cos 2 θ + sin 2 θ) ℓ 2 z sin 2 θ = 0.
Finally, we set q to be:

q = cos 2 θ d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ .
The latter expression becomes

((r 2 + d 2 ) 2 ε -dℓ z ) 2 -∆ r 2 + (dε -ℓ z ) 2 + q = 0. Hence, R(r, ε, ℓ z , q) = 0. Reciprocally, if (r, θ) ∈ (r, θ) ∈]r H , ∞[×]0, π[ : R(r, ε, ℓ z , q) = 0 where q = cos 2 θ d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ , then R(r, ε, ℓ z , q(θ, ε, ℓ z )) = 0 and q(θ, ε, ℓ z ) = cos 2 θ d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ .
We plug the expression of q in the first equation and we inverse the above steps to obtain

JK (r, θ, ε, ℓ z ) = 0.
Therefore, a turning point (r 0 , θ 0 )(ε, ℓ z ) is such that r 0 is a root of the fourth order polynomial

R(•, ε, ℓ z , q) with q = cos 2 θ 0 d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ 0 .
From the above definition, we obtain conditions on the number of roots for occurence of the above orbits, given by the following lemma Lemma 16. Let γ : I → O be a timelike future-directed geodesic with integrals of motion (ε, ℓ z , q).

• Spherical orbits occur only when R(•, ε, ℓ z , q) has a double root.

• Trapped non-spherical orbits occur when R(•, ε, ℓ z , q) has three distinct roots.

• Plunging orbits occur in all cases.

• Scattered orbits occur only when R(•, ε, ℓ z , q) has two distinct roots.

Proof.

1. Suppose that γ has a constant radius r s . Then, ∀γ ∈ I, we have r(τ ) = r s and ṙ(τ ) = 0.

This also implies that r(τ ) = 0. By (3.3.11), we obtain that r s is a root for R(•, ε, ℓ z , q). Moreover, by (3.3.29), we get: ∂ r R(r s , ε, ℓ z , q) = 0. Therefore, r s is a double root for R(•, ε, ℓ z , q).

2. If R(•, ε, ℓ z , q) has three distinct roots, then by (3.3.11),

∀r ∈ I, r ∈]r H , r K 0 (ε, ℓ z , q)] or r ∈ [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)],
where r K i are the roots of R(•, ε, ℓ z , q). If r lies in the compact region, then it is strapped.

3. If R(•, ε, ℓ z , q) has two distinct roots, then ∀r ∈ I, r ∈]r H , r K 0 (ε, ℓ z , q)] or r ∈ [r K 1 (ε, ℓ z , q), ∞[. If r lies in the unbounded region, then it is scattered.
In order to determine the allowed region for a particle, A K (ε, ℓ z ), we first determine

∂A K (ε, ℓ z ) = Z K (ε, ℓ z ) in the region ]r H , ∞[×]0, π[ based on the possible values of (ε, ℓ z ).
To this end, we study the roots or the polynomial R(•, ε, ℓ z ) in the region (r H (d), ∞) whose existence restrict the range of q and thus that of θ. In fact, the ZVCs are smooth curves with eventually different connected components. Now, we claim that

Lemma 17. Let (ε, ℓ z , q) ∈ R 3 . • if ε 2 < 1, R(•, ε, ℓ z , q
) has either one real root or three real roots counted with their multiplicity in the region ]r H , ∞[.

• Otherwise, R(•, ε, ℓ z , q) has either zero real roots or two real roots counted with their multiplicity in the region ]r

H (d), ∞[. • R(•, ε, ℓ z , q) cannot have four roots in the region ]r H , ∞[.
Proof. We have the following asymptotics:

R(r H ) = (2r H ε -dℓ z ) 2 ≥ 0 and lim r→∞ R(r) = lim r→∞ (ε 2 -1)r 4 . (3.3.31)
Therefore,

lim r→∞ (ε 2 -1)r 4 = -∞ if ε 2 < 1, + ∞ if ε 2 > 1,
If ε 2 = 1, we look at the sign of the third degree term -2r 3 . Hence, lim r→∞ R(r) = -∞. Now since R is a fourth degree polynomial (cubic when ε 2 = 1), the number of roots counted with their multiplicity is at most 4 (3 when ε 2 = 1). This yields the result. Finally, we reexpress R(r, ε, ℓ z , q) in terms of x := r -1:

R(x) :== a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 ,
where a 4 := ε 2 -1 and a 3 := 4ε 2 -2. In the region, r > r h , we have x > 0. If ε 2 > 1, then the latter terms are positive and we have at most two variations of sign and therefore at most two roots. If ε 2 < 1 then, R(ε, ℓ z , q) cannot admit four roots according to the first point.

We now state a necessary condition for non existence of classical orbits.

Lemma 18. Let γ : I → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z , q). If q < 0 then, ε 2 > 1 and R(•, ε, ℓ z , q) has no roots in the region (r H , ∞). Therefore, the geodesic starts from infinity and reaches the horizon in a finite proper time. Consequently, if ε 2 < 1, then we necessarily have q ≥ 0. spacetime Proof. Suppose that q < 0 and let r be a root of R(•, ε, ℓ z , q). Then, by (3.3.1) we have

d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ < 0.
Thus,

d 2 (ε 2 -1) > ℓ 2 z sin 2 θ ≥ 0. (3.3.32)
We recall that r H = 1 + 1d 2 . Therefore, the roots of R(•, ε, ℓ z , q) in the exterior region will satisfy r -1 ≥ √ 1d 2 ≥ 0. Now, we introduce x such that

x := r -1

and we reexpress R in terms of x:

R(x) := (ε 2 -1)x 4 + (4ε 2 -2)x 3 + ((6 + d 2 )ε 2 -d 2 -ℓ 2 z -q)x 2 + ((4 + 2d 2 )(ε 2 -1) + 6 + 2d 2 ε 2 -4dℓ z ε)x + ((2dε -ℓ z ) 2 + (ε 2 + 1 + q)(1 -d 2 )) = a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 .
We are interested only in the positive roots of R. Now, by Lemma 17, R admits either two positive roots or no positive roots. We look at the variations of signs in R:

• The sign of the factors a 4 and a 3 are positive since ε 2 > 1.

• The sign of a 2 is positive by (3.3.32) and by q < 0.

Depending on the sign of a 1 , either we have zero roots if a 1 > 0 or one root if a 1 < 0, by Descartes's rule of sign.This ends the proof.

Since we are interested in trapped geodesics, we will henceforth study the case where q is nonnegative. The case of vanishing q is of particular interest. More precisely, Lemma 19. Let (γ, I) be a timelike future-directed geodesic moving in the exterior region with constants of motion (ε, ℓ z , q). Then, q = 0 is a necessary and sufficient condition for a motion initially in the equatorial plane to remain in the equatorial plane for all time.

Proof. If γ is confined to the equatorial plane, then ∀τ ∈ I

θ(τ ) = π 2 and v θ (τ ) = θ(τ ) = 0.
Therefore, by (3.3.1), we have q = 0. Now, assume that q = 0 and θ(0) = π 2 . Then, there exists a unique γ : I → O solution to (3.3.29) with initial conditions r(0), π 2 , v r (0), 0 . Therefore, by (3.3.12), we obtain ∀τ ∈ I , v θ (τ ) = 0.

Now, we study the roots of • two simple roots in the region ] -1, 1[ if and only if d 2 (ε 2 -1) > ℓ 2 z and q > 0. They are given by Y = ± √ y -,

T (•, ε, ℓ z , q) in the region ] -1, 1[ for (ε, ℓ z , q) ∈ R × R × [0, ∞[.
• one double root given by 0 and two simple roots in the region ]-1, 1[ if and only if

d 2 (ε 2 -1) > ℓ 2 z
and q = 0. The simple roots are given by

Y = ± √ y -,
where

y =                  y + = (ℓ 2 z + d 2 (1 -ε 2 ) + q + (ℓ 2 z + d 2 (1 -ε 2 ) + q) 2 -4qd 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) if ε 2 < 1 y -= (ℓ 2 z + d 2 (1 -ε 2 ) + q -(ℓ 2 z + d 2 (1 -ε 2 ) + q) 2 -4qd 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) if ε 2 > 1 q ℓ 2 z + q if ε 2 = 1. (3.3.34) 
Moreover, if Y is a double root of T in ] -1, 1[, then Y = 0 and q = 0.

Proof. Let (ε, ℓ z , q) ∈]0, ∞[×R * × [0, ∞[ and let Y ∈] -1, 1[ be a solution of (3.3.33). Then, Y verifies q = F (Y, ε, ℓ z ) where F (Y, ε, ℓ z ) := Y 2 -d 2 (ε 2 -1) + ℓ 2 z 1 -Y 2 .
We have

∀(ε, ℓ z ) ∈ R × R * • lim |Y |→1 F (Y, ε, ℓ z ) = +∞, • F (0, ε, ℓ z ) = 0, • ∂F ∂Y = 2Y (1 -Y 2 ) 2 ℓ 2 z -d 2 (ε 2 -1)(1 -Y 2 ) .
Therefore, Y = 0 is always a critical point for F (•, ε, ℓ z ) and

-if d 2 (ε 2 -1) ≤ ℓ 2
z , then 0 is the unique critical point.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime -Otherwise, there are two more critical points given by

y c = ± 1 - ℓ 2 z d 2 (ε 2 -1) ,
and they verify -1 < y - c < 0 < y + c < 1. Therefore, if q ≥ 0, then the equation q = F (Y, ε, ℓ z ) admits

• if d 2 (ε 2 -1) ≤ ℓ 2
z , two roots in the region ] -1, 1[ symmetric about 0. These roots coincide if and only if q = 0 and they are given by 0.

• Otherwise, -four roots if and only if q = 0: one double root given by 0 and two simple roots symmetric about 0, -two simple roots otherwise.

In order to write Y in terms of (ε, ℓ z , q), we make the following change of variables Y = √ y and we consider T (y) := T ( √ y) on [0, 1[. Since T is quadratic and its discriminant is always positive, its roots are given by

       y = y ± := ℓ 2 z + d 2 (1 -ε 2 ) + q ± (ℓ 2 z + d 2 (1 -ε 2 ) + q) 2 -4qd 2 (1 -ε 2 ) 2d 2 (1 -ε 2 ) ε = 1. = q ℓ 2 z + q ε 2 = 1.
• If d 2 (ε 2 -1) ≤ ℓ 2 z , then y + > 0 and y -< 0. Therefore, y = y + .

• Otherwise, y = y - Finally, we state necessary and sufficient conditions for the occurence of spherical orbits.

Lemma 21. Let γ : I → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z , q). Then γ is spherical of radius r c and confined to the equatorial plane if and only if

• γ starts at some point t, φ, r c , π 2 .

• q = 0 and r c is a double root of R(•, ε, ℓ z , q).

Proof. If γ spherical of radius r c then by Lemma 16, r c is a double root of R(•, ε, ℓ z , q). If γ is confined in the equatorial plane, then by Lemma 19, q = 0. Reciprocally, if γ satisfies the conditions of Lemma 21, then by Lemma 19, γ is confined to the equatorial plane. Now, if r c is a double root of R(•, ε, ℓ z , q) and starts at r(0) = r c , then the point

(r c , π 2 
, 0, 0) is a critical point for the reduced system (3.3.29). Therefore, γ has a constant radius.

Lemma 22. Let γ : I → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z , q). Then γ is spherical of radius r c if and only if

• γ starts at some point (t, φ, r s , θ) ∈ O.

• r s is a double root of R(•, ε, ℓ z , q).

Proof. The proof is similar to the previous lemma.

3.3.1.2 Circular orbits confined in the equatorial plane θ = π 2 We present here a detailed study of circular geodesic motion in the equatorial plane θ. We note that the study of circular orbits is included in classical books of general relativity. See for example [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 6]. We state the main result of this section Proposition 10. Let γ : I → O be a timelike future directed geodesic with constants of motion (ε, ℓ z , q) ∈ R × R × R. Assume that γ is a circular orbit of radius r c confined in the equatorial plane. Then,

(ε, ℓ z , q) ∈ A +,≤1 circ ∪ A +,≥1 circ ∪ A -,≤1 circ ∪ A -,≥1 circ =: A circ where A +,≤1 circ := (ε, ℓ z , 0) , ε ∈]ε + min , 1[ , ℓ z = ℓ + lb (ε) ⊔ (ε, ℓ z , 0) , ε ∈]ε + min , 1[ , ℓ z = ℓ + ub (ε) ⊔ (ε + min , ℓ + min , 0) , (3.3 
.35) A -,≤1 circ := (ε, ℓ z , 0) , ε ∈]ε - min , 1[ , ℓ z = ℓ - lb (ε) ⊔ (ε, ℓ z , 0) , ε ∈]ε - min , 1[ , ℓ z = ℓ - ub (ε) ⊔ (ε - min , ℓ - min , 0) , (3.3.36) A +,≥1 circ := (ε, ℓ z , 0) , ε ∈ [1, ∞[ , ℓ z = ℓ + lb (ε) , (3.3 

.37)

and

A -,≥1 circ := (ε, ℓ z , 0) , ε ∈ [1, ∞[ , ℓ z = ℓ - lb (ε) (3.3.38)
and where ε ± min , ℓ ± min , ℓ ± ub (ε) and ℓ ± lb (ε) are given by (3.3.47), (3.3.48) and Definition 30 respectively. Moreover, r c is given by

1. if (ε, ℓ z , q) ∈ A +,≤1 circ , then r c ∈ r + ms , r+ max (ε), r + min (ε) , 2. if (ε, ℓ z , q) ∈ A -,≤1 circ , then r c ∈ r - ms , r- max (ε), r - min (ε) , 3. if (ε, ℓ z , q) ∈ A +,≥1 circ , then r c = r + max (ε), 4. if (ε, ℓ z , q) ∈ A -,≥1 circ , then r c = r - max (ε),
where r ± ms is defined by [START_REF] Bardeen | Timelike and null geodesics in the Kerr metric[END_REF], r± max and r ± min are defined in Lemma 27. The remaining of this section is devoted to the proof of Proposition 10. We start with the following lemma spacetime Lemma 23. Let γ : I → O , τ → (t(τ ), φ(τ ), r(τ ), θ(τ )) be a circular orbit of radius r c > r H confined in the equatorial plane and let (ε, ℓ z , q) ∈ R × R × R be its associated integrals of motion. Then q = 0 and (r c , ε, ℓ z ) satisfies the following system of equations

3r 4 c - r 2 c ε 2 (3r 2 c -4r c + d 2 ) + r 2 c d 2 = r 2 c ℓ 2 z , r 4 c - r 3 c ε 2 (r c -1) -d 2 r c = r c (ℓ 2 -2dℓ z ).
Proof. γ is confined to the equatorial plane. Since γ is circular, by Lemma 21, r c is a double root of R(•, ε, ℓ z , q) and q = 0. Therefore, (r c , ε, ℓ z , q = 0) satisfies

R(r c , ε, ℓ z , q = 0) = 0, ∂R ∂r (r c , ε, ℓ z , q = 0) = 0, (3.3.39)
which is equivalent to7 

3r 4 c - r 2 c ε 2 (3r 2 c -4r c + d 2 ) + r 2 c d 2 = r 2 c ℓ 2 z , r 4 c - r 3 c ε 2 (r c -1) -d 2 r c = r c (ℓ 2 -2dℓ z ). (3.3.40) 
We use the equations (3.3.40) (See [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 6 ], [START_REF] Bardeen | Timelike and null geodesics in the Kerr metric[END_REF], [START_REF] James M Bardeen | Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation[END_REF]) to express ℓ z and ε in terms of r c :

ε = r 3 2 c -2r 1 2 c ± d r 3 4 c r 3 2 c -3r 1 2 c ± 2d =: Φ ± (r c ), (3.3.41) 
ℓ z = ± r 2 c ∓ 2dr 1 2 c + d 2 r 3 4 c r 3 2 c -3r 1 2 c ± 2d =: Ψ ± (r c ). (3.3.42) (3.3.43)
Here, the upper sign refers to direct orbits (dℓ z > 0) and the lower sign refers to retrograde orbits (dℓ z < 0). In order to determine the admissible values of (ε, ℓ z , r c ) for circular orbits, we study the mappings Φ ± (•, d) and Ψ ± (•, d) on the region ]r H , ∞[. First, we study their properties and we state the following lemma We use Cardano's formula to express the unique real root in ]r H , ∞[ of the above equation:

u 2 = r ± ph (d) := 2 1 + cos 2 3 cos -1 (∓d) .
Therefore Φ + , Ψ + are well-defined if and only if r > r + ph (d) and Φ -, Ψ -are well-defined if and only if r > r - ph (d). As for the asymptotics, it is clear that

lim r→r ± ph Φ ± (r) = +∞ and lim r→r ± ph Ψ ± (r) = ±∞.
In a neighbourhood of +∞, we have

Φ ± (r) ∼ 1 and Ψ ± (r) ∼ ± √ r.
Remark 24. r ± ph = r ± ph (d) is a photon orbit. There are no circular direct orbits of radius r < r + ph and there are no circular retrograde orbits of radius r < r - ph . When d = 0, r + ph = r - ph = 3, which the location of the photon sphere with M = 1.

Now, we claim that

Lemma 25. ∀d ∈ [0, 1] : ∃!r ± ms (d) ∈]r ± ph , +∞[ such that Φ ′ ± (r ± ms (d)) = Ψ ′ ± (r ± ms (d)) = 0. It is given by r ± ms (d) = 3 + Z 2 (d) ∓ (3 -Z 1 )(3 + Z 1 (d) + 2Z 2 (d)), (3.3.44) 
where

Z 1 (d) = 1 + (1 -d 2 ) 1 3 ((1 + d) 1 3 + (1 -d) 1 3 ) , Z 2 (d) = 3d 2 + Z 2 1 .
Proof. We will prove the result for Φ + and Ψ + . The other case is treated in the same manner.

Along the proof, we omit + from the expression of the latter functions in order to lighten the expressions.

First, we claim that Φ and Ψ have the same critical points. In fact, let r ∈]r ph , ∞[ then (r, Φ(r), Ψ(r), 0) verifies: R(r, Φ(r), Ψ(r), 0) = 0 and ∂ r R(r, Φ(r), Ψ(r), 0) = 0.

We differentiate the first equation with respect to r to obtain:

Φ ′ (r) ∂R ∂ε (r, Φ(r), Ψ(r), 0) + Ψ ′ (r) ∂R ∂ℓ z (r, Φ(r), Ψ(r), 0) = 0. (3.3.45)
Now, we show that ∂R ∂ε (r, Φ(r), Ψ(r), 0) and ∂R ∂ℓ z (r, Φ(r), Ψ(r), 0) do not vanish on ]r H , ∞[:

• -We compute ∂R ∂ℓ z (r, Φ(r), Ψ(r), 0) = -2r(2dΦ(r) + (r -2)Ψ(r)) = -2r 2d(r 3 2 -2r 1 2 + d) + (r -2)(r 2 -2dr 1 2 + d 2 ) r 3 4 r 3 2 -3r 1 2 + 2d = -2r 2 ∆ r 3 4 r 3 2 -3r 1 2 + 2d
.

The latter can not vanish since r > r H .

-Now we compute • If r c is a critical point for Φ, then r c satisfies:

∂R ∂ε (r, Φ(r), Ψ(r), 0) = 2r(-2dΨ(r) + Φ(r)(r 3 + d 2 (r + 2))) = 2r d 3 + dr(r -2) + d 2 r 3 2 + (r -2)r
∂ 2 R ∂r 2 (r c , Φ(r c ), Ψ(r c ), 0) = 0.
Indeed, we have ∀r > r ph , ∂ ∂r R(r, Φ(r), Ψ(r), 0) = 0,

We differentiate this expression with respect to r in order to obtain

∂ 2 R ∂r 2 (r, Φ(r), Ψ(r), 0) + Φ ′ (r) ∂ 2 R ∂ε∂r (r, Φ(r), Ψ(r), 0) + Ψ ′ (r) ∂ 2 R ∂ℓ z ∂r (r, Φ(r), Ψ(r), 0) = 0. If r = r c , then it follows ∂ 2 R ∂r 2 (r c , Φ(r c ), Ψ(r c ), 0) = 0.
• Now we compute

∂ 2 R ∂r 2 (r c , Φ(r c ), Ψ(r c ), 0) = 2(d 2 (Φ 2 (r) -1) -Ψ(r) 2 + 6r + 6r 2 (Φ 2 (r) -1)) = -2 √ r -3d 2 + 8d √ r + r(r -6)
2d + √ r(r -3) . 

u 4 -6u 2 + 8du -3d 2 = 0.
The latter is a depressed quartic equation that can be solved explicitly using Ferrari's method.

The condition that r > r ph yields a unique root given by r ms .

In the following, it is useful to introduce the quantity 

ρ ± ms (d) := ∆(r ± ms (d)). ( 3 
ε = Φ + (r, d) on ]r + ph , ∞[ (3.3.51) and ε = Φ -(r, d) on ]r - ph , ∞[ (3.3.52)
By the monotonicity properties of Φ ± , we obtain the following lemma Lemma 27. Let ε ∈ R and 8 d ∈]0, 1], we have the following cases: 8 The case of d = 0 corresponds to the Schwarzschild case and was already tackled. See Proposition 4. 

r ± max (ε) < r ± ms .
We note that there exists exactly two circular orbits with energy ε = 1 which we denote by r ± mb (d). They correspond to the radii of the marginally bound circular direct and retrograde orbits. In order to compute r ± mb , we solve the equation

Φ ± (r ± mb ) = 1.
They are given by:

r ± mb (d) := 2 ∓ d + 2 √ 1 ∓ d. (3.3.53)
Therefore, by Lemma 26,

• If ε > 1, then there exist exactly one direct circular orbit r < r + mb (d) and one retrograde circular orbit r > r - mb (d).

• Otherwise, there exists at most four circular orbits and we refer to Lemma 27 for details.

It is useful to rewrite the previous lemma in terms of the implicit functions:

Lemma 28.

1. There exists a unique smooth function r 

+ max : [ε + min , ∞[→]r + ph (d),
ε = Φ ± (r ± max (ε)) = Φ ± (r ± min (ε)).
We differentiate with respect to ε:

1 = ∂r ± max (ε) ∂ε Φ ± (r ± max (ε)) ∂r = ∂r ± min (ε) ∂ε ∂Φ ± (r ± min (ε)) ∂r .
By monotonicity properties of Φ ± , we obtain the desired result.

It remains to find conditions on ℓ z for the circular motion. We recall that a circular orbit of radius r c , and constants of motion (ε, ℓ z , q = 0) must satisfy (3.3.41) and (3.3.42). Therefore,

1. If dℓ z > 0, then ε ∈ [ε + min (d)
, ∞[ and r is given by Lemma 28. Moreover ℓ z must satisfy

ℓ z = Ψ + (r). (3.3.54) If (a) ε ∈ [1, ∞[, then r = r + max (ε)
and

ℓ z = Ψ + (r + max (ε)). (3.3.55) (b) Otherwise, ℓ z verifies ℓ z = Ψ + (r + max (ε)) or ℓ z = Ψ + (r + min (ε)) (3.3.56)
where r+ max denotes the restriction of r

+ max on [ε + min (d), 1[. 2. If dℓ z < 0, then ε ∈]ε - min , ∞[
and r is given by Lemma 28. Moreover ℓ z must satisfy

ℓ z := Ψ -(r). (3.3.57) If (a) ε ∈ [1, ∞[, then r = r - max (ε)
and

ℓ z = Ψ -(r - max (ε)). (3.3.58) (b) Otherwise, ℓ z verifies ℓ z = Ψ -(r - max (ε)) or ℓ z = Ψ -(r - min (ε)) (3.3.59)
where rmax denotes the restriction of r - max on [ε - min , 1[ Moreover, note that when ε = ε ± min , one has r = r ± ms and ℓ z = ℓ ± min . Now, we introduce the following functions Definition 30. We define the functions ℓ

± lb : [ε ± min (d), ∞[×]0, 1] → R and ℓ ± ub : [ε ± min (d), 1[×]0, 1] → R by ℓ ± lb (ε, d) := Ψ ± (r ± max (ε, d)) , ℓ ± ub (ε, d) := Ψ ± (r ± min (ε, d)). (3.3.60)
The proof of Proposition 10 now follows from lemmas 23, 25, 28 and Definition 30.

Lemma 30.

1. ℓ + ub is monotonically increasing from ℓ + min to ∞ when ε goes from ε + min to 1.

2. ℓ + lb is monotonically increasing from ℓ + min to ∞ when ε goes from ε + min to ∞.

3. ℓ - ub is monotonically decreasing from ℓ - min to -∞ when ε goes from ε - min to 1.

4. ℓ - lb is monotonically decreasing from ℓ - min to -∞ when ε goes from ε - min to ∞.

Proof. The proof is a straightforward application of Lemma 29 and the monotonicity properties of Ψ ± .

From now on, the dependence of the above quantities in d will not be written.

It will be useful in the remaining of our work (see Section 3.3.2.1) to write ε in terms of ℓ z . Following Lemma [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF], we introduce the functions

ε ± s (ℓ z , d) := ℓ ± lb (•, d) -1 (ℓ z ) on [ℓ ± min , ∞[ (3.3.61) 
and

ε ± m (ℓ z , d) := ℓ ± ub (•, d) -1 (ℓ z ) on [ℓ ± min , ∞[ (3.3.62)
and we state the following lemma Lemma 31.

• ε + s increases monotonically from ε + min to ∞ when ℓ z grows from ℓ + min to ∞.

• ε - s increases monotonically from ε - min to ∞ when ℓ z grows from ℓ + min to ∞.

• ε + m increases monotonically from ε + min to 1 when ℓ z grows from ℓ + min to ∞.

• ε - m increases monotonically from ε - min to 1 when ℓ z grows from ℓ + min to ∞.

Remark 25. We recover the values found in [START_REF] Ezzahra | Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime[END_REF] when d = 0. In particular:

ε ± min (0) = 8 9 and ℓ ± min (0) = √ 12. (3.3.63)
The necessary conditions of Proposition 10 are also sufficient in the following sense Proposition 11. Let γ : I → O be a timelike future directed geodesic with constants of motion

(ε, ℓ z , q) ∈ R × R × R. Assume that (ε, ℓ z , q) ∈ A circ . If (r, θ)(0) = r c , π 2 
where r c is given by one of the above cases, then γ is circular of radius r c and confined in the equatorial plane. In this section, we are interested in spherical orbits, given by Definition 28. We recall that spherical orbits are circular if they are confined in the equatorial plane and their classification was obtained in the previous section. In the general case, by Lemma 22, spherical orbits of radius r s > r H occur if and only if

• γ starts at some point (t, φ, r s , θ),

• r s is a double root of R(•, ε, ℓ z , q),
We note that the study of spherical orbits was is included in classical books of general relativity.

See for example [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF]Chapter 6] and [99, Chapter 4]. Now, we state the main result of this section Proposition 12. Let γ : τ ∋ I → O be a timelike future directed geodesic and let (ε, ℓ z , q) be its associated integrals of motion. Assume that that γ is spherical of radius

r s ∈]r H , ∞[. Then, (ε, ℓ z , q) ∈ A spherical (3.3.64)
defined by (3.3.108).

The remaining of this section is devoted to the proof of Proposition 12. We start with the following lemma

Lemma 32. Let γ : I → O , τ → (t(τ ), φ(τ ), r(τ ), θ(τ )) be a spherical orbit of radius r s > r H . Let (ε, ℓ z , q) ∈ R × R × R be its associated integrals of motion. Then, the quadruplet (r s , ε, ℓ z , q) satisfies ℓ = ℓ ± c (r s , ε 2 ), d 2 (r s -1)η = d 2 (r s -1)η ± c (r s , ε 2 ), (3.3.65) 
where

ℓ := ℓ z ε and η := q ε 2 , (3.3.66) ℓ ± c (r s , ε 2 ) := 1 d(r s -1) (r 2 s -d 2 ) ± r s (r 2 s -2r s + d 2 ) 1 - 1 ε 2 (1 - 1 r s ) (3.3.67)
and After developing the above equations, we obtain

η ± c (r s , ε 2 ) := r 3 s r s -1 4d 2 -r s (r s -3) 2 + r 2 s ε 2 r s (r s -2) 2 -d 2 - 2r 3 s r s -1 (r 2 s -2r s + d 2 ) 1 ± 1 - 1 ε 2 1 - 1 r s . ( 3 
r 4 s - r 2 s ε 2 (r 2 s -2r s + d 2 ) -η(r 2 s -2r s + d 2 ) + (d 2 -ℓ 2 )r 2 s + 2(d 2 + ℓ 2 -2dℓ)r s = 0, 4r 3 s - 2r s ε 2 (r 2 s -2r s + d 2 ) - 2r 2 s ε 2 (r s -1) -2η(r s -1) + 2r s (d 2 -ℓ 2 ) + 2(d 2 + ℓ 2 -2dℓ) = 0.
The linear combinations

1 ε 2 r s ∂R ∂r (r s ) -R(r s ) and 1 ε 2 r s 2 ∂R ∂r (r s ) -R(r s ) yield 3r 4 s - r 2 s ε 2 (3r 2 s -4r s + d 2 ) + r 2 s d 2 -η(r 2 s -d 2 ) = r 2 s ℓ 2 , (3.3.73) r 4 s - r 3 s ε 2 (r s -1) -d 2 r s + η(d 2 -r s ) = r s (ℓ 2 -2dℓ). (3.3.74)
We solve for ℓ first by eliminating η. Hence, we multiply the first equation by (d 2r s ) and the second one by (r 2 sd 2 ) and we obtain a second order polynomial in ℓ. Straightforward computations yield the following solutions for ℓ:

ℓ = 1 d(r s -1) (r 2 s -d 2 ) ± r s (r 2 s -2r s + d 2 ) 1 - 1 ε 2 (1 - 1 r s ) =: ℓ ± c (r s , ε 2 ). (3.3.75) 
Now, we replace ℓ with its expression in (3.3.73) in order to obtain 1. η ± c and ℓ ± c are defined on the domain

d 2 (r s -1)η = r 3 s r s -1 4d 2 -r s (r s -3) 2 + r 2 s ε 2 r s (r s -2) 2 -d 2 - 2r 3 s r s -1 (r 2 s -2r s + d 2 ) 1 ± 1 - 1 ε 2 1 - 1 r s =: d 2 (r s -1)η ± c (r s , ε 2 ). ( 3 
(ℓ, η) = (ℓ ± c (r s , ε 2 ), η ± c (r s , ε 2 )), then the quadruplets (r s , ε 2 , ℓ ± c (r s , ε 2 ), η ± c (r s , ε 2 )) (3.
D s := {(r, ε) ∈]r H , ∞[×[1, ∞[} ⊔ (r, ε) ∈]r H , ∞[×]0, 1[ : r > (1 -ε 2 ) -1 := D ≥1 s ⊔ D ≤1 s .
2. We have the following asymptotics for η ± c (•, ε 2 ):
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• ∀ε 2 > 0 lim r→r H η(r, ε 2 ) < 0 (3.3.77)
• and

lim r→(1-ε 2 ) -1 η(r, ε 2 ) < 0 if ε 2 < 1, lim r→∞ η(r, ε 2 ) < 0 if ε 2 ≥ 1, (3.3.78) 3. η + c is negative on D s .
Proof.

1. The first point is straightforward.

2. For the second point, we compute

η c (r H , ε 2 ) = r 3 H r H -1 4d 2 -r H (r H -3) 2 + r 2 H ε 2 r H (r H -2) 2 -d 2 = r 2 H r H -1 r H 4d 2 -r H (r H -3) 2 + (r H -1) ε 2 r H (r H -2) 2 -d 2 = r 2 H r H -1 (I + II) ,
where

I := r H 4d 2 -r H (r H -3) 2 = (1 + 1 -d 2 )(4d 2 -(1 + 1 -d 2 )( 1 -d 2 -2) 2 ) = (1 + 1 -d 2 ) 2 (d 2 -1) < 0
and

II := (r H -1) ε 2 r H (r H -2) 2 -d 2 = √ 1 -d 2 ε 2 (1 + 1 -d 2 )( 1 -d 2 -1) 2 -d 2 ) = - d 2 ε 2 (1 -d 2 ).
Therefore,

η c (r H , ε 2 ) < 0. Now, we compute ∀ε 2 < 1 , ∀d ∈]0, 1[ η c ((1 -ε 2 ) -1 , ε 2 ) = (1 -ε 2 ) -1 -1 -1 a(ε 2 , d) + b(ε 2 , d) + c(ε 2 , d)
where

a(ε 2 , d) := 1 (1 -ε 2 ) 3 4d 2 - 1 1 -ε 2 1 1 -ε 2 -3 2 = 1 (1 -ε 2 ) 6 (4d 2 (1 -ε 2 ) 3 -(2 -3ε 2 ) 2 ), b(ε 2 , d) := 1 ε 2 1 (1 -ε 2 ) 2 1 1 -ε 2 -1 1 1 -ε 2 1 1 -ε 2 -2 2 -d 2 = 1 (1 -ε 2 ) 6 (2ε 2 -1) 2 -d 2 (1 -ε 2 ) 3 , c(ε 2 , d) := - 2 (1 -ε 2 ) 3 1 (1 -ε 2 ) 2 - 2 1 -ε 2 + d 2 = - 2 (1 -ε 2 ) 5 (2ε 2 -1) + d 2 (1 -ε 2 ) 2 .

Straightforward computations imply

η c ((1 -ε 2 ) -1 , ε 2 ) = 1 (1 -ε 2 ) 4 d 2 (1 -ε 2 ) -1 < 0. 3. Let (r, ε) ∈ D s . Then, ∀r ∈]r H , ∞[, ε must verify ε 2 ≥ 1 - 1 r . Now let r ∈]r H , ∞[ and consider the function η+ c (r, •) defined on 1 -1 r , ∞ by η+ c (r, ε) := r -1 r 2 η + c (r, ε).
It is easy to see that the terms r(r-2) 2 -d 2 and r(r

2 -2r+d 2 ) are positive since r > 1+ √ 1 -d 2 and 0 < d 2 < 1. Therefore η+ c (r, •) is monotonically decreasing on 1 -1 r , ∞ . Hence ∀ε ≥ 1 - 1 r : η + c (r, ε) < η + c (r, 1 - 1 r 
).

Straightforward computations imply

η + c (r, 1 - 1 r ) = -r(r -d 2 ) < 0.
Therefore, η+ c (r, •) is negative and so is η + c .

Since q ≥ 0, ℓ and η must equal ℓ - c and η - c . From now on, we omit the sign from the latter quantities so that they are simply denoted by ℓ c and η c . spacetime Remark 26. Note that if (r, ε) ∈ D ≤1 s then we have a lower bound on ε. Indeed, ∀r > r H , ε 2 satisfies

ε 2 ≥ 1 - 1 r > 1 - 1 r H = √ 1 -d 2 1 + √ 1 -d 2 .
By the second point of the previous lemma and the positivity of q, not all values of r are allowed. In order to determine the allowed region for r, we first look at the equation

η c (r, ε 2 ) = 0. (3.3.79)
The latter is equivalent to a vanishing Carter constant. This case corresponds to circular orbits confined in the equatorial plane. Hence, by Proposition 10, (ε, ℓ z , q) ∈ A circ and r s is given by one of the cases in the latter proposition. More precisely, one of the following cases is possible: 

1. If ε < ε + min ,
. Moreover, by the asymptotics of η c given by the second point of Lemma 33, the allowed regions for r so that η c is positive are given by the following lemma 

:= (r + ms , ε + min ) ⊔ (r, ε) ∈ D ≤1 s (d) : ε ∈]ε + min , ε - min ] and r ∈ [r + max (ε), r+ min (ε)] ⊔ (r, ε) ∈ D ≥1 s (d) : ε ∈]ε - min , 1[ and r ∈ [r + max (ε), r- max (ε)] ⊔ [r - min (ε), r + min (ε)] (3.3.82)
Proof. The proof is straightforward using the above six cases and the asymptotics of

η c (•, ε 2 ). Lemma 35 (Critical points of η c (•, ε 2 ) when ε 2 < 1). Let ε + min < ε < 1.Then, the critical points of η c (•, ε 2 ) are: 1. If ε < 8 9
, the critical points of η c (•, ε 2 ) are the critical points of ℓ c (•, ε 2 ).

Otherwise,
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• the points • r ± (ε): • r ± (ε) := -4 + 3ε 2 ± ε √ -8 + 9ε 2 2(ε 2 -1)
.

Proof. Let (r, ε) ∈ D s such that r is a critical point for η c (•, ε 2 ). We have

R(r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0 and ∂R ∂r (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0.
We differentiate the first equation with respect to r to obtain:

ε∂ r ℓ c (r, ε 2 ) ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) + ε 2 ∂ r η c (r, ε 2 ) ∂R ∂q (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0.
Therefore,

∂ r ℓ c (r, ε 2 ) = 0 or ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )).
We use the equations (3.3.69)-(3.3.70) in order to obtain

∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = -2(2dε + εℓ c (r, ε 2 )(r -2))r.
Hence r is a solution of the equation

ℓ c (r, ε 2 )(r -2) = -2d.
Now we plug the expression of ℓ c in the latter equation to obtain

ε((r 2 -d 2 )(r -2) + 2d 2 (r -1)) - √ r∆ r(ε 2 -1) + 1(r -2) = 0, which is equivalent to rε∆ - √ r(r -2)∆ r(ε 2 -1) + 1 = 0.
Therefore, r satisfies the equation

√ rε = (r -2) r(ε 2 -1) + 1.
We compute

((r -2) r(ε 2 -1) + 1) 2 -( √ rε) 2 = 4 -8r + 4rε 2 + 5r 2 -4ε 2 r 2 -r 3 + ε 2 r 3 -rε 2 = (r -1)((ε 2 -1)r 2 + (4 -3ε 2 )r -4).
Since r > r H > 1, r is solution of the second degree polynomial

((ε 2 -1)r 2 + (4 -3ε 2 )r -4).
Straightforward computations imply that r is given by

• r ± (ε).
Now, we study the function ℓ c on the domain D s . We recall that ℓ c is defined by

ℓ c (r, ε 2 ) = 1 d(r -1) (r 2 -d 2 ) -r(r 2 -2r + d 2 ) 1 - 1 ε 2 1 - 1 r . (3.3.83)
In the following, it is useful to introduce the following function ξ :

D s → R defined by ξ(r, ε 2 ) := η c (r, ε 2 ) + (ℓ c (r, ε 2 ) -d) 2 . (3.3.84)
We state the following lemma on the critical points of ℓ c (•, ε 2 ) and ξ(•, ε 2 ) when ε + min < ε 2 < 1. spacetime Lemma 36. Let ε + min < ε < 1. Then, the critical points of ξ(•, ε 2 ) are the critical points of ℓ c (•, ε 2 ). Moreover, there exists a unique r m (ε

) ∈]r + max (ε), r + min (ε)[ such that ∂ r ℓ c (r m (ε), ε 2 ) = ∂ r ξ(r m (ε), ε 2 ) = 0. (3.3.85) Moreover, ℓ c (r m (ε), ε 2 ) is a global minimum for ℓ c (•, ε 2 ) and ξ(r m (ε), ε 2 ) is a global maximum for ξ(•, ε 2 ). Proof. Let ε + min < ε < 1. 1. Let r be a critical point for ℓ c (•, ε 2 ). Then, ∂ r ℓ c (r, ε 2 ) = 0. Moreover, by Lemma 35, r is also a critical point for η c (•, ε 2 ). Therefore, ∂ r ξ(r, ε 2 ) = ∂ r η c (r, ε 2 ) + 2(ℓ c (r, ε 2 ) -d)∂ r ℓ c (r, ε 2 ) = 0.
Now, let r be a critical point for ξ(•, ε 2 ). Then, (r,

ε 2 ) satisfies R(r, ε, εℓ c (r, ε 2 ), ε 2 (ξ(r, ε 2 ) -(d -ℓ c (r, ε 2 )) 2 )) = 0. (3.3.86)
We differentiate the latter with respect to r and we use the fact that r is double root for R to obtain

∂ r ℓ c (r, ε 2 ) ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), ε 2 (ξ(r, ε 2 ) -(d -ℓ c (r, ε 2 )) 2 ))+ (∂ r ξ(r, ε 2 ) -2(ℓ c (r, ε 2 ) -d)∂ r ℓ c (r, ε 2 )) ∂R ∂q (r, ε, εℓ c (r, ε 2 ), ε 2 (ξ(r, ε 2 ) -(d -ℓ c (r, ε 2 )) 2 )) = 0.
Therefore,

∂ r ℓ c (r, ε 2 ) ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), ε 2 (ξ(r, ε 2 ) -(d -ℓ c (r, ε 2 )) 2 )) + 2(ℓ c (r, ε 2 ) -d)∂ r ℓ c (r, ε 2 )∆(r) = 0. If ∂ r ℓ c (r, ε 2 ) = 0, then ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), ε 2 (ξ(r, ε 2 ) -(d -ℓ c (r, ε 2 )) 2 )) + 2(ℓ c (r, ε 2 ) -d)∆(r) = 0.
We plug the expression of the ℓ z -derivative of R in the above equation in order to obtain

ℓ c (r, ε 2 )r(r -2) + 2rd = ∆(r)ℓ c (r, ε 2 ) -d∆(r). Therefore, ℓ c (r, ε 2 ) verifies ℓ c (r, ε 2 ) = r 2 d + d.
Furthermore, (r, ε) must satisfy (3.3.86). We plug the expression of ℓ c (r, ε 2 ) in the latter equation to obtain -∆(r)(r 2 + ξ(r, ε 2 )) = 0.

Therefore, ξ(r, ε 2 ) = -r 2 < 0, which is not possible since ξ is positive. Therefore, ∂ c ℓ c (r, ε 2 ) = 0.
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Lemma 37. Let ε 2 > 1. Then ℓ c (•, ε 2 ) does not have critical points and η c (•, ε 2 ) admits a unique extremum (maximum

) at r ≥1 max (ε) ∈]r + max (ε), r - max (ε)[. Proof. 1. Let (r, ε) ∈ D ≥1 s such that r = r c (ε 2 ) is a critical point for ℓ c (•, ε 2 ). We have R(r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0 and ∂R ∂r (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0.
We differentiate the first equation with respect to r to obtain:

ε∂ r ℓ c (r, ε 2 ) ∂R ∂ℓ z (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) + ε 2 ∂ r η c (r, ε 2 ) ∂R ∂q (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0.
Now we differentiate the second equation with respect to r to obtain:

∂ 2 R ∂r 2 (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) + ε∂ r ℓ c (r, ε 2 ) ∂ 2 R ∂r∂ℓ z (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) + ε 2 ∂ r η c (r, ε 2 ) ∂ 2 R ∂r∂q (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0.
Therefore, r is a critical point of η c (•, ε 2 ) since the derivative of R with respect to q does not vanish. Hence, r verifies: 

∂ 2 R ∂r 2 (r, ε, εℓ c (r, ε 2 ), εη c (r, ε 2 )) = 0. ( 3 
]r + max (ε), r - max (ε)[⊂]0, ∞[, ℓ c (•, ε 2
) admits a unique critical point given by • r + (ε) ∈]0, ∞[. It remains to show that it lies in the region ]r + max (ε), r - max (ε)[. This is straightforward by the mean value theorem. Indeed, η c (•, ε 2 ) vanishes at r + max (ε) and r - max (ε).

Finally, we introduce the following notations:

lmin (ε) := εℓ c (r m (ε), ε 2 ) for ε ∈]ε + min , 1[ (3.3.88) and q max (ε) := ε 2 η c (r ≥1 max (ε), ε 2 ) for ε 2 > 1. (3.3.89)
Lemma 38 (Properties of lmin and r m (ε)). Let ε ∈ [ε + min , 1[. Then, • r m is monotonically increasing from r + ms to +∞ when ε grows monotonically from ε + min to 1.

• lmin is monotonically decreasing from ℓ + min to -∞ when ε grows monotonically from ε + min to 1. spacetime

In particular, if ε = ε - min , then r m (ε) = r - ms and lmin (ε) = ℓ - min . Moreover, if ε ∈]ε - min , 1[, then r m (ε) ∈]r - max (ε), r - min (ε)[. Proof.
This follows from the definitions and the implicit function theorem.

Based on the above lemmas, we derive the monotonicity properties of ℓ c (•, ε 2 ).

Lemma 39.

1. If (r, ε) = (r + ms , ε + min ), then

ℓ c (r, ε 2 ) = ℓ + min ε + min . (3.3.90) 2. If ε + min < ε ≤ ε - min , then the restriction of ℓ c (•, ε 2 ) on the domain [r + max (ε), r + min (ε)] has the following properties: ℓ c (•, ε 2 ) is monotonically decreasing on ]r + max (ε), r m (ε)[ from ℓ + lb (ε) ε to lmin (ε) ε < ℓ + min ε and monotonically increasing on ]r m (ε), r + min (ε)[ from lmin (ε) ε to ℓ + ub (ε) ε .
Therefore, there exists a unique r lb (ε

) ∈]r m (ε), r + min (ε)[ such that ℓ c (r lb (ε), ε 2 ) = ℓ + lb (ε) ε . 3. If ε - min < ε < 1, then the restriction of ℓ c (•, ε 2 ) on the domain [r + max (ε), r- max (ε)]⊔[r - min (ε), r - min (ε) 
] has the following properties: values of (ε 2 , ℓ z ) which will be determined. More precisely, we will fix ε so that ℓ z becomes a function of r only, which will be inverted. This will allow us to write r in terms of ℓ c . We state the following lemma 1. ε = ε + min and ℓ z = ℓ + min . In this case, (r, q) = (r + ms , 0).

• ℓ c (•, ε 2 ) is monotonically decreasing on ]r + max (ε), r- max (ε)[ from ℓ + lb (ε) ε to ℓ - lb (ε) ε . • ℓ c (•, ε 2 ) is monotonically increasing on ]r - min (ε), r + min (ε)[ from ℓ - ub (ε) ε to ℓ + ub (ε) ε 4. If (r, ε) ∈ D ≥1 s , then ∀ε ≥ 1, the restriction of ℓ c (•, ε 2 ) on the domain [r + max (ε), r - max (ε)] satisfies • ℓ c (•, ε 2 ) is monotonically decreasing on ]r + max (ε), r - max (ε)[ from ℓ + lb (ε) ε to ℓ - lb (ε) ε . Proof. 1. If ε + min ≤ ε < 1,
(3.3.91)

2. ε + min < ε ≤ ε - min and ℓ z ∈ [ lmin (ε), ℓ + ub (ε)]. • If ℓ z ∈ [ lmin (ε), ℓ + lb (ε)],
there exist two solutions (r 1 s , q 1 s )(ε, ℓ z ) and (r 2 s , q 2 s )(ε, ℓ z ) such that r 1 s (ε, ℓ z ) lies in the region [r + max (ε), r m (ε)] and is given by

r 1 s (ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.92)
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r + max (ε), r m (ε)[. -r 2 s (ε, ℓ z ) lies in the region [r m (ε), r lb (ε)
] and is given by

r 2 s (ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.93)
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r m (ε), r lb (ε)[. -q i s (ε, ℓ z ) are given by q i s (ε, ℓ z ) = ε 2 η c (r i s (ε, ℓ z ), ε 2 ). • If ℓ z ∈ [ℓ + lb (ε), ℓ + ub (ε)], there exists a unique (r + , q+ )(ε, ℓ z ) such that -r+ (ε, ℓ z ) lies in the region [r lb (ε, d), r + min (ε)
] and is given by

r+ (ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.94) 
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r lb (ε), r + min (ε)[. -q+ (ε, ℓ z ) is given by q+ (ε, ℓ z ) = ε 2 η c (r + (ε, ℓ z ), ε 2 ), 3. ε - min < ε < 1 and ℓ z ∈ [ℓ - ub (ε), ℓ + ub (ε)]. • If ℓ z = ℓ + z ≥ ℓ + lb (ε) or ℓ z = ℓ - z ≤ ℓ - lb (ε)
, then there exists a unique (r ± , q± )(ε, ℓ z ) such that -r± (ε, ℓ z ) lie in the region [r - min (ε), r + min (ε)] and are given by

r± (ε, ℓ z ) = ℓ -1 c ℓ ± z ε , ε 2 , (3.3.95) where ℓ -1 c is the inverse of the restriction of ℓ c (•, ε 2 ) on ]r - min (ε), r + min (ε)[ and -q± (ε, ℓ z ) are given by q± (ε, ℓ z ) := ε 2 η c (r ± (ε, ℓ z , d), ε 2 ).
(3.3.96)

• If ℓ z ∈ [ℓ - lb (ε), ℓ + lb (ε)], there exist two solutions (r 1 , q1 )(ε, ℓ z ) and (r 2 , q2 )(ε, ℓ z ) such that -r1 (ε, ℓ z ) lies in the region [r + max (ε), r - max (ε)
] and is given by

r1 (ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.97)
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r + max (ε), r - max (ε)[. spacetime -r2 (ε, ℓ z ) lies in the region [r - min (ε), r + min (ε)
] and is given by

r2 (ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.98)
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r - min (ε), r + min (ε)[. -qi (ε, ℓ z ) are given by qi (ε, ℓ z ) := ε 2 η c (r i (ε, ℓ z , d), ε 2 ). (3.3.99) 4. ε ≥ 1 and ℓ z ∈ ℓ - lb (ε, d), ℓ + lb (ε)
. In this case, there a unique (r, q)(ε, ℓ z ) such that • r(ε, ℓ z ) lies in the region ]r + max (ε), r - max (ε)[ and is given by

r(ε, ℓ z ) = ℓ -1 c ℓ z ε , ε 2 , (3.3.100)
where ℓ -1 c is the inverse of the restriction of

ℓ c (•, ε 2 ) on ]r + max (ε), r - max (ε)[. • q(ε, ℓ z ) is given by q(ε, ℓ z ) = ε 2 η c (r(ε, ℓ z ), ε 2 ) (3.3.101)
and satisfies 0 ≤ q ≤ q max (ε 2 ).

Proof. The proof is straightforward based on the monotonicity properties of ℓ c (•, ε 2 ) on the allowed regions for r given in Lemma 39.

The previous lemma allows us to introduce the following subsets of R × R × [0, ∞[:

A ≥1 spherical := (ε, ℓ z , q) ∈]0, ∞[×R × [0, ∞[ : ε ≥ 1 , ℓ z ∈ [ℓ - lb (ε), ℓ + lb (ε) : q = q(ε, ℓ z )] , (3.3.102) A ≤1 spherical := (ε + min , ℓ + min , 0) ⊔ A ≤1 + ⊔ A ≤1 -⊔ A ≤1 1 ⊔ A ≤1 2 , (3.3.103) 
where

A ≤1 1 := ε ∈]ε + min , ε - min ] , ℓ z ∈ [ lmin (ε), ℓ + lb (ε)] , q = q 1 s (ε, ℓ z ) ⊔ ε ∈]ε + min , ε - min ] , ℓ z ∈ [ lmin (ε), ℓ + lb (ε)] , q = q 2 s (ε, ℓ z ) , (3.3 
.104)

A ≤1 2 := ε - min < ε < 1 , ℓ z ∈ [ℓ - lb (ε), ℓ + lb (ε)] , q = q1 (ε, ℓ z ) ⊔ ε - min < ε < 1 , ℓ z ∈ [ℓ - lb (ε), ℓ + lb (ε)] , q = q2 (ε, ℓ z ) , (3.3.105) 
A ≤1 + := ε ∈]ε + min , 1[ , ℓ z ∈ [ℓ + lb (ε), ℓ + ub (ε)] , q = q+ (ε, ℓ z ) (3.3.106) and A ≤1 -:= ε ∈]ε - min , 1[ , ℓ z ∈ [ℓ - ub (ε), ℓ - lb (ε)] , q = q-(ε, ℓ z ) . (3.3.107)
Finally, we introduce the set

A spherical := A ≥1 spherical ⊔ A ≤1 spherical . (3.3.108)
We conclude that if γ is a timelike future directed spherical orbit with constants of motion (ε, ℓ z , q), then (ε, ℓ z , q) ∈ A spherical . This end the proof of Proposition 12. Reciprocally, we have

Roots of the fourth order polynomial R

In this section, we will determine the number of solutions in r of the equation R(r, ε, ℓ z , q) = 0 (3.3.109) in the region ]r H , ∞[ based on the possible values of (ε, ℓ z , q). This will allow us to compute the ZVCs associated to timelike future-directed geodesics. First, we recall that R is defined by

R(r, ε, ℓ z , q) = (ε(r 2 + d 2 ) -dℓ z ) 2 -(r 2 -2r + d 2 )(r 2 + (dε -ℓ z ) 2 + q).
Let (ε, ℓ z , q) ∈ R × R × R. We will study the existence of roots of the polynomial R(•, ε, ℓ z , q) in the region (r H , ∞). First of all, we note that:

1. By Lemma 18, if q < 0, then ε > 1 and the equation R(r, ε, ℓ z , q) = 0 does not have roots in the region (r H , ∞).

2. ∀(r, ε, ℓ z ) ∈ (r H , ∞) × R × R, the functions R(r, ε, ℓ z , •) and ∂R ∂r (r, ε, ℓ z , •, d) are monotonically decreasing on R. 3. Let (ε, ℓ z , q) ∈ R × R × R + and let r(ε, ℓ z , q) ∈]r H , ∞[ be a root of R(•, ε, ℓ z , q).
Then, if r is a simple root, then it defines a smooth function of (ε, ℓ z , q). Indeed, we have

∂R ∂r (ε, ℓ z , q) = 0.
By the implicit function theorem, r is locally a smooth function of (ε, ℓ z , q).

4. Finally, we note that in general, the roots of R(•, ε, ℓ z , q) can be parametrised by functions of (ε, ℓ z , q) which are merely continuous when double or triple roots occur.

Based on the asymptotics of R(•, ε, ℓ z , q) (3.3.31), we will separate the cases ε < 1 and ε > 1. First of all, we classify the roots of R when q = 0. We state Proposition 14 (Roots of R when q = 0). Let (ε 2 , ℓ z ) ∈ [0, ∞[×R, then the roots of R(•, ε, ℓ z , 0) are summarised in Tables 3.32 and 3.31. Proof.

ε = ε + min ε + min < ε < ε - min ε = ε - min ℓ z ∈ R ℓ z = ℓ + min ℓ z ∈ R\ℓ + min ℓ + lb (ε) ≤ ℓ z ≤ ℓ + ub (ε) ℓ z < ℓ + lb (ε) and ℓ z = ℓ - min ℓ z = ℓ - min ℓ + lb (ε) ≤ ℓ z ≤ ℓ + ub (
1. We will write details for the case ε 2 > 1. The other cases follow using the same method.

2. Assume that ε 2 > 1. We recall that if ℓ z = ℓ ± lb (ε), then R(•, ε, ℓ z , 0) admits a unique double root in the region ]r h (d), ∞[ given by r = r ± max (ε). spacetime

ε < ε + min ε 2 ≥ 1 ε - min < ε < 1 ℓ z ∈ R ℓ - lb (ε) < ℓ z < ℓ + lb (ε) ℓ z ≥ ℓ + lb (ε) or ℓ z ≤ ℓ - lb (ε) ℓ - lb (ε) < ℓ z < ℓ + lb (ε) ℓ + lb (ε) ≤ ℓ z ≤ ℓ + ub (ε) or ℓ - ub (ε) ≤ ℓ z ≤ ℓ - lb (ε) One root No roots
Two roots One root Three roots Table 3.32: Possible roots of R(•, ε, ℓ z , 0)

3. Now, in view of Lemma 17, it suffices to prove that if

ℓ z ∈] -∞, ℓ - lb (ε)] ∪ [ℓ + lb (ε), +∞[, then there exists r ∈]r H , ∞[ such that R(r, ε, ℓ z , 0) ≤ 0. Otherwise, ∀r ∈]r H , ∞[ , R(r, ε, ℓ z , 0) > 0.
To this end, we claim that ∀ε 2 > 1, the function R(r

+ max (ε), ε, •, 0) is monotonically decreasing on [ℓ + lb (ε), +∞[ and the function R(r + max (ε), ε, •, 0) is monotonically increasing on ] -∞, ℓ - lb (ε)],
• Indeed, we note the following relation between ε, ℓ ± lb (ε) and r ± max (ε):

ℓ ± lb (ε) -2 ℓ ± lb (ε) -dε r ± max (ε) = ∓ ∆ 1 r ± max (ε) Q ∓( r ± max (ε)) r ± max (ε) where Q ∓ (u) := 1 -3u ∓ 2du 3 2 . • Moreover, we recall that ∀ε > 1, ∀d ∈ [0, 1] , r - max (ε) = r - max (ε, d) > 2 and there exists 0 < d 0 < 1 such that ∀ε > 1, ∀d ∈ [d 0 , 1] , r + max (ε) = r + max (ε, d) < 2 • Now, we compute ∀ℓ z ∈ R , ∂R ∂ℓ z (r ± max (ε), ε, ℓ z ) = -2r ± max (ε)(2dε + (r ± max (ε) -2)ℓ z ) = -2(r ± max ) 2 (ε) ℓ z -2 ℓ z -dε r ± max (ε) Therefore, (a) If ℓ z < ℓ - lb (ε) < 0, then ∂R ∂ℓ z (r - max (ε), ε, ℓ z ) > 2(r - max ) 2 ∆ 1 r - max (ε) Q +( r - max (ε)) r - max (ε) > 0. (b) If ℓ z > ℓ + lb (ε) > 0, then -if r + max (ε) ≥ 2, then ∂R ∂ℓ z (r + max (ε), ε, ℓ z ) < 0. -Otherwise, we have ∂R ∂ℓ z (r ± max (ε), ε, ℓ z ) < -2(r + max ) 2 ∆ 1 r + max (ε) Q -( r + max (ε)) r - max (ε) < 0.
Hence,

• For ℓ z > ℓ + lb (ε), we have R(r + max (ε), ε, ℓ z , 0) < R(r + max (ε), ε, •, ℓ + lb (ε)) = 0. • For ℓ z < ℓ - lb (ε), we have R(r - max (ε), ε, ℓ z , 0) < R(r - max (ε), ε, •, ℓ - lb (ε)) = 0.
This ends the proof. Now, we discuss the general case.

3.3.1.4.1 Case ε 2 ≥ 1 Proposition 15. Let ε 2 > 1.
The possible number of roots of R(•, ε, ℓ z , q) are summarised in Table 3.33. By Lemma 17, R(•, ε, ℓ z , q) admits either zero roots or two roots in the region ]r H , ∞[. Moreover, by Lemma 18, if q < 0, then R(•, ε, ℓ z ) has no roots. Now, assume that q ≥ 0. Since R(r, ε, ℓ z , •) is monotonically decreasing on R, we have: if r 0 (ε, ℓ z , 0) is a root of R(•, ε, ℓ z , 0), then ∀q > 0 : R(r 0 (ε, ℓ z , 0), ε, ℓ z , q) < R(r 0 (ε, ℓ z , 0), ε, ℓ z , 0) = 0.

ε 2 ≥ 1 ℓ - lb (ε) < ℓ z < ℓ + lb (ε) ℓ z ≥ ℓ + lb (ε) or ℓ z ≤ ℓ - lb (ε) q ≥ q(ε, ℓ z ) q < q(ε, ℓ z ) q ≥ 0 q < 0
Hence, in view of the asymptotics, R(•, ε, ℓ z , 0) admits two roots. Now, by lemma 14 R(•, ε, ℓ z , 0) admits two roots if and only if

ℓ z ≥ ℓ + lb (ε) or ℓ z ≤ ℓ - lb (ε). Hence, if ℓ z > ℓ + lb (ε) or ℓ z < ℓ - lb (ε), R(•, ε, ℓ z , q
) admits two simple roots for all q ≥ 0. Moreover, if q = 0 and ℓ z = ℓ ± lb (ε), then the roots coincide. Now, assume that ℓ z ∈]ℓ - lb (ε), ℓ + lb (ε)[. Then, by Proposition 12, R(•, ε, ℓ z ) admits a double root if and only if q = q(ε, ℓ z , d) and it is given by r(ε, ℓ z ). By the monotonicity properties of R(r, ε, ℓ z , •), we have ∀q > q(ε, ℓ z ) , R(r(ε, ℓ z ), ε, ℓ z , q) < R(r(ε, ℓ z ), ε, ℓ z , q(ε, ℓ z )) = 0

Now assume that q < q(ε, ℓ z ). Then, ∀r > r H : R(r, ε, ℓ z , q) > R(r, ε, ℓ z , q(ε, ℓ z )) ≥ 0.

Therefore, R has no roots. This ends the proof.
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0 < ε < ε + min ε + min ≤ ε ≤ ε - min ℓ z ∈ R ℓ z < lmin (ε) lmin (ε) ≤ ℓ z ≤ ℓ + lb (ε) ℓ + lb (ε) ≤ ℓ z ≤ ℓ + ub (ε) q ≥ 0 q ≥ 0 0 ≤ q < q 1 s (ε, ℓ z ) q 1 s (ε, ℓ z ) ≤ q ≤ q 2 s (ε, ℓ z ) q > q 2 s (ε, ℓ z ) 0 ≤ q ≤ q+ (ε, ℓ z ) q > q+ (ε, ℓ z )

One root

One root One root Three roots One root Three roots One root

r K abs (ε, ℓ z , q) r K abs (ε, ℓ z , q) r 1 abs (ε, ℓ z , q) r i abs (ε, ℓ z , q) , i ∈ {1, 2, 3} r 3 abs (ε, ℓ z , q) r K i (ε, ℓ z , q) , i ∈ {0, 1, 2} r 0 abs (ε, ℓ z , q)
Table 3.34: Possible roots or R in the bounded case 

ε - min < ε < 1 ℓ - lb (ε) ≤ ℓ z ≤ ℓ + lb (ε) ℓ + lb (ε) ≤ ℓ z ≤ ℓ + ub (ε) or ℓ - ub (ε) ≤ ℓ z ≤ ℓ - lb (ε) 0 ≤ q < q1 (ε, ℓ z ) q1 (ε, ℓ z ) ≤ q ≤ q2 (ε, ℓ z ) q > q2 (ε, ℓ z ) 0 ≤ q ≤ q± (ε, ℓ z ) q > q± (ε, ℓ z ) r K 0 (ε, ℓ z , q) r K i (ε, ℓ z , q) , i ∈ {0, 1, 2} r K 0 (ε, ℓ z , q) r K i (ε, ℓ z , q) , i ∈ {0, 1, 2} r K 0 (ε, ℓ z , q)
< ε < 1 and ℓ z ∈ [ℓ + lb (ε), ℓ + ub (ε)] or ε - min (d) < ε < 1 and ℓ z ∈ [ℓ - ub (ε), ℓ - lb (ε)]. Hence, 1. If ε < ε + min , then ∀ℓ z ∈ R, R(•, ε, ℓ z , 0) admits a unique root and ∂R ∂r (•, ε, ℓ z , 0) < 0. Therefore, ∀q ≥ 0 : ∂R ∂r (•, ε, ℓ z , q) ≤ ∂R ∂r (•, ε, ℓ z , 0) < 0.
Hence, R(•, ε, ℓ z , q) admits a unique root.

If ε

+ min (d) ≤ ε < ε - min (d) (a) If ℓ z ∈ [ℓ + lb (ε), ℓ + ub (ε)].
Then, R(•, ℓ z , 0) admits three roots and ∂R ∂r (•, ε, ℓ z , 0) admits two roots, denoted by r i (ε, ℓ z ).

• If q = q+ (ε, ℓ z ), then R(•, ε, ℓ z , q) admits a double root given by r+ (ε, ℓ z ).

• By monotonicity properties of ∂ r R(r, ε, ℓ z , •), we have

∀q < q+ (ε, ℓ z ) , ∂R ∂r (r + (ε, ℓ z ), ε, ℓ z , q) > ∂R ∂r (r + (ε, ℓ z ), ε, ℓ z , q+ (ε, ℓ z )) = 0.
Thus, ∂R ∂r (•, ε, ℓ z , q) admits two roots. This yields to three roots for R(•, ℓ z , q).

• We have,

∀q > q+ (ε, ℓ z ) , ∀r > r H , ∂R ∂r (r + (, ε, ℓ z , q) < ∂R ∂r (r, ε, ℓ z , q+ (ε, ℓ z )) ≤ 0.
The latter inequality is due to the fact that r+ (ε, ℓ z ) is a global maximum for ∂R ∂r (•, ε, ℓ z , q+ (ε, ℓ z )). Hence, ∂R ∂r (•, ε, ℓ z , q) does not change sign. In this case, R(•, ε, ℓ z , q) admits only one root. (b) The remaining cases ℓ z ∈]0, l+ min (ε)[ and ℓ z ∈ [ l+ min (ε), ℓ + lb (ε)[ follow using similar arguments.

3. We use similar arguments for the remaining case ε - min ≤ ε < 1

Roots of the fourth order polynomial T

In this section, we recall the solutions of

T (Y, ε, ℓ z , q) = 0 (3.3.111)
in the region ] -1, 1[ at a given (ε, ℓ z , q) ∈]0, ∞[×R × R.

1. If q ≥ 0, then by Lemma 20, T admits two roots given by (3.3.34) which coincide if and only if q = 0.

2. Otherwise, ε 2 > 1. Then T admits two distinct roots µ ± (ε,

ℓ z , q) in the region ] -1, 1[ which satisfy -1 < µ -< 0 < µ + < 1
and are given by

cos µ ± (ε, ℓ z , q) = ± (ℓ 2 z + d 2 (1 -ε 2 ) + q + (ℓ 2 z + d 2 (1 -ε 2 ) + q) 2 -4qd 2 (1 -ε 2 )) 2d 2 (1 -ε 2 )
We end this section by defining the following angles:

• θ 1 (ε, ℓ z ) ∈ 0, π 2 defined on the domain (ε, ℓ z ) : ε + min < ε < ε - min , ℓ z ∈]ℓ + min , ℓ + lb (ε)
[ by the following expression:

cos θ 1 (ε, ℓ z ) := (ℓ 2 z + d 2 (1 -ε 2 ) + q 1 s (ε, ℓ z ) -(ℓ 2 z + d 2 (1 -ε 2 ) + q 1 s (ε, ℓ z )) 2 -4q 1 s (ε, ℓ z )d 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) , (3.3.112) 
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• θ1 (ε, ℓ z ) ∈ 0, π 2 defined on the domain (ε, ℓ z ) : ε - min < ε < 1 , ℓ z ∈]ℓ - lb (ε), ℓ + lb (ε)[ by the following expression: cos θ1 (ε, ℓ z ) := (ℓ 2 z + d 2 (1 -ε 2 ) + q1 (ε, ℓ z ) -(ℓ 2 z + d 2 (1 -ε 2 ) + q1 (ε, ℓ z )) 2 -4q 1 (ε, ℓ z )d 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) , (3.3.113) • θ <1 max (ε, ℓ z ) ∈ 0, π 2 defined on the domain (ε, ℓ z ) : ε + min < ε ≤ ε - min , ℓ z ∈]ℓ + lb (ε), ℓ + ub (ε)
[ by the following expression:

cos θ <1 max (ε, ℓ z ) := (ℓ 2 z + d 2 (1 -ε 2 ) + q+ (ε, ℓ z ) -(ℓ 2 z + d 2 (1 -ε 2 ) + q+ (ε, ℓ z )) 2 -4q + (ε, ℓ z )d 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) , (3.3.114) • θ ≥1 max (ε, ℓ z ) ∈ 0, π 2 defined on the domain (ε, ℓ z ) : ε > 1 , ℓ z ∈]ℓ - lb (ε), ℓ + lb (ε)[ by the follow- ing expression: cos θ ≥1 max (ε, ℓ z ) := (ℓ 2 z + d 2 (1 -ε 2 ) + q(ε, ℓ z ) + (ℓ 2 z + d 2 (1 -ε 2 ) + q(ε, ℓ z )) 2 -4q(ε, ℓ z )d 2 (1 -ε 2 )) 2d 2 (1 -ε 2 ) , (3.3.115) 
Remark 27. A timelike geodesic with negative q must either in the region ]r

H , ∞[×] arccos µ -(ε, ℓ z ), π[ or in the region ]r H , ∞[×]0, arccos µ + (ε, ℓ z ), [

Stationary solutions of the geodesic equation

In this section, we compute stationary solutions corresponding to the free particle (future directed) Hamiltonian moving in the exterior region of a Kerr spacetime. This will allow us to analyze the geodesic motion in Weyl coordinates. See Section 3.3.2. We state the main result of this section Lemma 41. Let γ : I → O be a solution of (1.1.10) with constants of motion (ε, ℓ z , q) such that ∀τ ∈ I , (γ, γ)(τ ) ∈ Γ.

• The system (1.1.10) admits direct stationary solutions (γ s , γs ) = (x s , v s ) if and only if ε ≥ ε + min , dℓ z > 0 and q = 0. In this case, 1. (r s , θ s ) is given by

θ s = π 2 and -if ε 2 ≥ 1, r s = r + max (ε), -if ε 2 < 1, r s ∈ r + min (ε), r + max (ε)
, where r + max (ε) and r + min (ε) are given by Lemma 28. 2. Moreover, ℓ z is given by

-if ε 2 ≥ 1, ℓ z = ℓ + lb (ε) -if ε 2 < 1, ℓ z = ℓ + lb (ε) if r s = r + max (ε) and ℓ z = ℓ + ub (ε) if r s = r + min (ε),
where ℓ + lb (ε) and ℓ + ub (ε) are defined in (3.3.60). Furthermore, we have a lower bound on ℓ z : ℓ z ≥ ℓ + min . • The system (1.1.10) admits retrograde stationary solutions (γ s , γs ) = (x s , v s ) if and only if ε ≥ ε - min , dℓ z < 0 and q = 0. In this case, 1. (r s , θ s ) is given by

θ s = π 2 and -if ε 2 ≥ 1, r s = r - max (ε), -if ε 2 < 1, r s ∈ r - min (ε), r - max (ε) . 2. Moreover, ℓ z is given by -if ε 2 ≥ 1, ℓ z = ℓ - lb (ε) -if ε 2 < 1, ℓ z = ℓ - lb (ε) if r s = r - max (ε) and ℓ z = ℓ - ub (ε) if r s = r - min (ε)
. Furthermore, we have an upper bound on ℓ z :

ℓ z ≤ ℓ - min .
Proof. The proof follows from the previous results:

1. By Lemma 14, stationary solutions (x s , v s ) verify v r s = v θ s = 0, r s is a double root of R(•, ε, ℓ z , q) and cos θ s is a double root of T (•, ε, ℓ z , q). 2. Now, by Lemma 20, q = 0 and θ s = π 2 . 3. Therfore, stationary solutions of (1.1.10) are the circular orbits confined in the equatorial plane.

4. We conclude using Proposition 10 and Proposition 11.

Classification of timelike future directed geodesics

In this section, we classify the timelike future directed geodesics according to the roots of R(•, ε, ℓ z , q). First of all, we determine Z K (ε, ℓ z ), which is a curve in the (r, θ)-plane with possibly different connected components, associated to a timelike future directed geodesic with constants of motion (ε, ℓ z ). Moreover, the condition (3.3.30) yields restrictions on the initial position (r(0), θ(0)). The classification is based on the possible values of (ε, ℓ z , q) and (r(0), θ(0)). Let γ : I ∋ 0 → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z ) ∈ R × R and γ(τ ) := (r(τ ), θ(τ )) be its projection in the (r, θ)-plane. We recall that by separability of the geodesics equation, the radial motion decouples from the motion in θ direction. Moreover, γ satisfies the system of equations Σ 4 ṙ2 = R(r, ε, ℓ z , q) Σ 4 sin 2 θ θ2 = T (cos θ, ε, ℓ z , q) where q ∈ R is the Carter constant, the fourth integral of motion associated to γ. In order to determine Z K (ε, ℓ z ), we will use q as a parameter for the curve Z K (ε, ℓ z ). We state the first result of this section concerning the classification of Z K (ε, ℓ z ) associated to γ. spacetime Proposition 17. (Shape of Zero-velocity curves) Let d ∈]0, 1[ and let γ : I → O be a timelike future directed geodesic with constants of motion (ε, ℓ z ) ∈ R × R.

1. If 0 < ε ≤ ε + min , (a) If ε = ε + min and ℓ z = ℓ + min , Z K (ε, ℓ z ) is diffeomorphic to R with a singular point at r + ms , π 2 
. (See Figure 3.32) (b) Otherwise, Z K (ε, ℓ z ) is a smooth curve diffeomorphic to R with the following properties: it is symmetric with respect to the equatorial plane and intersects it at a unique point r K 0 (ε, ℓ z , 0), the unique root of the polynomial R(•, ε, ℓ z , 0).

If ε

+ min < ε ≤ ε - min , (a) If ε = ε - min and ℓ z = ℓ - min , Z K (ε, ℓ z ) is diffeomorphic to R with a singular point at r - ms , π 2 . (b) Otherwise, i. If ℓ z < ℓ + lb (ε), then Z K (ε, ℓ z
) is a smooth curve diffeomorphic to R with the following properties: it is symmetric with respect to the equatorial plane and intersects it at a unique point r K 2 (ε, ℓ z , 0), the unique root of the polynomial R(•, ε, ℓ z , 0). (See Figure 3

.33) ii. If ℓ z = ℓ + lb (ε), then Z K (ε, ℓ z
) is a self-intersecting smooth curve with the following properties: it is symmetric with respect to the equatorial plane and intersects it at two points r K 0 (ε, ℓ z , 0) < r K 2 (ε, ℓ z , 0), the roots of the polynomial R(•, ε, ℓ z , 0). Moreover, Z K (ε, ℓ z ) admits one singular point r K 0 (ε, ℓ z , 0),

π 2
where it self-intersects. (See

Figure 3.35) iii. If ℓ + lb (ε) < ℓ z < ℓ + ub (ε), then Z K (ε, ℓ z
) is a smooth curve with two connected components: Z K,trapped (ε, ℓ z ) is diffeomorphic to S 1 and Z K,abs (ε, ℓ z ) is diffeomorphic to R. The latter curves are symmetric with respect to the equatorial plane. Z K,trapped (ε, ℓ z ) intersects it at r K 1 (ε, ℓ z , 0) and r K 2 (ε, ℓ z , 0) and Z K,abs (ε, ℓ z ) intersects it at r K 0 (ε, ℓ z , 0). iv.

ℓ z = ℓ + ub (ε), then Z K (ε, ℓ z ) is a smooth curve with two connected components: the point r K 2 (ε, ℓ z , 0), π 2 and Z K,abs (ε, ℓ z ) is diffeomorphic to R.
The latter curve is symmetric with respect to the equatorial plane and intersects it at r K 0 (ε, ℓ z , 0). (See Figure 3.37)

3. If ε - min < ε < 1, (a) If ℓ - lb (ε) < ℓ z < ℓ + lb (ε), then Z K (ε, ℓ z
) is a smooth curve diffeomorphic to R with the following properties: it is symmetric with respect to the equatorial plane and intersects it at a unique point r

K 2 (ε, ℓ z , 0). (b) If ℓ z = ℓ + lb (ε) or ℓ z = ℓ - lb (ε), then Z K (ε, ℓ z
) is a smooth self-intersection curve with the following properties: it is symmetric with respect to the equatorial plane and intersects it at two points r K 0 (ε, ℓ z , 0) < r K 2 (ε, ℓ z , 0). Moreover, Z K (ε, ℓ z ) admits one singular point

r K 0 (ε, ℓ z , 0), π 2 
where it self-intersects.

(c) If ℓ + lb (ε) < ℓ z < ℓ + ub (ε) or ℓ - ub (ε) < ℓ z < ℓ - lb (ε), then Z K (ε, ℓ z
) is a smooth curve with two connected components: Z K,trapped (ε, ℓ z ) is diffeomorphic to S 1 and Z K,abs (ε, ℓ z ) is diffeomorphic to R. The latter curves are symmetric with respect to the equatorial plane. Z K,trapped (ε, ℓ z ) intersects it at r K 1 (ε, ℓ z , 0) and r K 2 (ε, ℓ z , 0) and Z K,abs (ε, ℓ z ) intersects it at r K 0 (ε, ℓ z , 0).

(d) If ℓ z = ℓ + ub (ε) or ℓ z = ℓ - ub (ε), then Z K (ε, ℓ z
) is a smooth curve with two connected components: the point r K 2 (ε, ℓ z , 0), π 2 and Z K,abs (ε, ℓ z ) is diffeomorphic to R. The latter curve is symmetric with respect to the equatorial plane and intersects it at r K 0 (ε, ℓ z , 0).

4. If ε > 1 (a) If ℓ - lb (ε) < ℓ z < ℓ + lb (ε), then Z K (ε, ℓ z
) is a smooth curve with two connected components Z K,z>0 (ε, ℓ z ) and Z K,z<0 (ε, ℓ z ) which are diffeomorphic to R and which do not intersect the equatorial plane. Z K (ε, ℓ z ) is symmetric with respect to the equatorial plane. (See Figure 3.34)

(b) If ℓ z = ℓ + lb (ε) or ℓ z = ℓ - lb (ε), then Z K (ε, ℓ z )
has the following properties: It consists of the union of two connected curves diffeomorphic to R which intersect at the point

r K 0 (ε, ℓ z , 0), π 2 
. They are symmetric with respect to the equatorial plane and intersect

at the point r K 0 (ε, ℓ z , 0) . (See Figure 3.36) (c) If ℓ z > ℓ + lb (ε) or ℓ z < ℓ - lb (ε), then Z K (ε, ℓ z ) is a smooth curve with two connected compo- nents: Z K,scat (ε, ℓ z ) is diffeomorphic to R and Z K,abs (ε, ℓ z ) is diffeomorphic to R.
The latter curves are symmetric with respect to the equatorial plane. Z K,scat (ε, ℓ z ) intersects it at r K 1 (ε, ℓ z , 0) and Z K,abs (ε, ℓ z ) intersects it at r K 0 (ε, ℓ z , 0). (See Figure 3.38)

Proof. Let γ : I → O be a timelike future directed geodesic with (ε, ℓ z ) ∈ A admissible . Let (r, θ) ∈ Z K (ε, ℓ z ). By Lemma 15, we have

R(r, ε, ℓ z , q(θ, ε, ℓ z )) = 0, (3.3.116) 
where

q(θ, ε, ℓ z ) = cos 2 θ d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ . (3.3.117) q(•, ε, ℓ z ) is monotonically decreasing on 0, π 2 from ∞ to 0 if ℓ z = 0 and from d 2 (1 -ε 2 ) to 0 if
ℓ z = 0 and monotonically increasing on π 2 , π from 0 to ∞. By the definition of R and (3.3.16), it is easy to express q in terms of the remaining variables:

q = q(r) := ((r 2 + d 2 )ε -dℓ z ) 2 ∆ -(r 2 + (ℓ z -dε) 2 ). (3.3.118)
Moreover, and ∀r ∈]r H , ∞[

∂q ∂r (r, ε, ℓ z ) = ∆ -1 (r) ∂R ∂r (r, ε, ℓ z , q(r, ε, ℓ z )).
In the following, we will use (3.3.117) and (3.3.118) in order to eliminate q from the equations. As a consequence, either θ will be seen as a function of r or r as a function of θ. This will determine Z K (ε, ℓ z ).
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1. If 0 < ε ≤ ε + min (a) If ε = ε + min and ℓ z = ℓ + min , then • if q = 0
, there exists a unique triple root r abs (ε, ℓ z , 0) = r + ms which solves (3.3.116). See

• if q > 0, there exists a unique simple root r abs (ε, ℓ z , q) which solves (3.3.116).

The application r abs (ε, ℓ z , •) is well defined continuous on [0, ∞[ and is monotonically decreasing on ]0, ∞[ from r + ms to r H . Moreover, r abs (ε, ℓ z , •) is smooth on ]0, ∞[ and we have ∀q > 0 , ∂r abs ∂q (ε, ℓ z , q) = -∂R ∂q (r abs (ε, ℓ z , q), ε, ℓ z , q)

∂R ∂r (r abs (ε, ℓ z , q), ε, ℓ z , q)

. Now, by (3.3.117) and the above properties, the function

θ ∋]0, π[→ r abs (ε, ℓ z , q(θ)) is smooth on ]0, π[\ π 2 with ∂ ∂θ r abs (ε, ℓ z , q(θ)) π 2 - = -∞ and ∂ ∂θ r abs (ε, ℓ z , q(θ)) π 2 + = +∞. Therefore, Z K (ε, ℓ z ) = Graph(r abs (ε, ℓ z , q(•))),
with a singular point at (r + ms , π 2 ) and which is diffeomorphic to R. (b) Otherwise, ∀q ≥ 0, there exists a unique simple root r abs (ε, ℓ z , q) which solves (3.3.116).

Moreover, the application r abs (ε, ℓ z , •) is well defined, smooth and monotonically decreas-

ing on [0, ∞[ from r K 0 (ε, ℓ z , 0) to r H . Hence Z K (ε, ℓ z ) = Graph(r abs (ε, ℓ z , q(•))),
which is diffeomorphic to R.

If ε

+ min < ε ≤ ε - min , (a) ε = ε -
min and ℓ z = ℓ - min , then we use similar arguments to those of Case 1.a. (b) Otherwise, i. If ℓ z < lmin (ε), then ∀q ≥ 0, there exists a unique simple root r abs (ε, ℓ z , q, d) which solves (3.3.116). Moreover, the application r abs (ε, ℓ z , •, d) is well defined on [0, ∞[ and is monotonically decreasing from r K 0 (ε, ℓ z , 0) to r H and we refer to Case 1.b for conclusions.

ii. If lmin (ε) < ℓ z < ℓ + lb (ε), then ∀q ≥ 0, the solutions in r of (3.3.116) are given by

     r 1 abs (ε, ℓ z , q) if 0 ≤ q < q 1 s (ε, ℓ z ), r 1 abs (ε, ℓ z , q), r 2 abs (ε, ℓ z , q), r 3 abs (ε, ℓ z , q) if q 1 s (ε, ℓ z ) ≤ q ≤ q 2 s (ε, ℓ z ), r 3 abs (ε, ℓ z , q) if q > q 2 s (ε, ℓ z )
These solutions satisfy

• r 2 abs (ε, ℓ z , q) = r 3 abs (ε, ℓ z , q) = r 1 s (ε, ℓ z ) if and only if q = q 1 s (ε, ℓ z ), • r 1 abs (ε, ℓ z , q) = r 2 abs (ε, ℓ z , q) = r 2 s (ε, ℓ z ) if and only if q = q 2 s (ε, ℓ z ), • r 3 abs (ε, ℓ z , q) ≤ r 1 s (ε, ℓ z ) ≤ r 2 abs (ε, ℓ z , q) ≤ r 2 s (ε, ℓ z ) ≤ r 1 abs (ε, ℓ z , q)
, where q i s (ε, ℓ z ) are defined in Lemma 40. Moreover, seen as functions of q, r i abs (ε, ℓ z , •) have the following monotonicity properties

• r 1 abs (ε, ℓ z , •) is monotonically decreasing on ]0, q 2 s (ε, ℓ z )[ from r K 0 (ε, ℓ z ) to r 2 s (ε, ℓ z ), • r 2 abs (ε, ℓ z , •) is monotonically decreasing on ]q 1 s (ε, ℓ z ), q 2 s (ε, ℓ z )[ from r 2 s (ε, ℓ z ) to r 1 s (ε, ℓ z ), • r 3 abs (ε, ℓ z , •) is monotonically decreasing on ]q 1 s (ε, ℓ z ), ∞[ from r 1 s (ε, ℓ z )
to r H , Now, we construct an atlas for Z K (ε, ℓ z ):

• We recall the angles θ i (ε, ℓ z ) ∈ 0, π 2 defined by (3.3.112). • By monotonicity properties of q as a function of θ, we can define the following functions A.

r 1 abs (ε, ℓ z , q(•)) : ]θ 2 (ε, ℓ z ), π -θ 2 (ε, ℓ z )[ → [r K 0 (ε, ℓ z ), r 2 s (ε, ℓ z )[ defined by r 1
abs (ε, ℓ z , q(θ)). Here, r 1 abs (ε, ℓ z , q(•)) is symmetric with respect to the equatorial plane and has a maximum at π 2 given by r K 0 (ε,

ℓ z ). B. r 2,a abs (ε, ℓ z , q(•)) : ]θ 1 (ε, ℓ z ), θ 2 (ε, ℓ z )[ →]r 1 s (ε, ℓ z ), r 2 s (ε, ℓ z )[ defined by r 2 abs (ε, ℓ z , q(θ)). C. r 2,b abs (ε, ℓ z , q(•)) : ]π -θ 2 (ε, ℓ z ), π -θ 1 (ε, ℓ z )[ →]r 1 s (ε, ℓ z ), r 2 s (ε, ℓ z )[ defined by r 2 abs (ε, ℓ z , q(θ)). D. r 3,a abs (ε, ℓ z , q(•)) : ]0, θ 2 (ε, ℓ z )[ →]r H , r 1 s (ε, ℓ z )[ defined by r 3 abs (ε, ℓ z , q(θ)), E. r 3,b abs (ε, ℓ z , q(•)) : ]π -θ 2 (ε, ℓ z ), π[ →]r H , r 1 s (ε, ℓ z )[ defined by r 3
abs (ε, ℓ z , q(θ)), • It remains to cover the points r i s (ε, ℓ z ), θ i (ε, ℓ z ) and r i s (ε, ℓ z ), πθ i (ε, ℓ z ) . To this end, we introduce the following functions A. θ a abs (ε, ℓ z , q(•)

) :]r 1 s (ε, ℓ z ), r 2 s (ε, ℓ z )[→ ]θ 1 (ε, ℓ z ), θ 2 (ε, ℓ z )[ defined by θ a abs (ε, ℓ z , q(r)) := q| (0, π 2 ) (•, ε, ℓ z , d) -1 (q(r))
where q(r) is given by (3.3.118) and q| (0

, π 2 ) (•, ε, ℓ z , d) -1 is the inverse of the restriction of q(•, ε, ℓ z ) on 0, π 2 . B. θ b abs (ε, ℓ z , q(•)) :]r H , r 2 s (ε, ℓ z )[→ 0, π 2 defined by θ b abs (ε, ℓ z , q(r)) := q| (0, π 2 ) (•, ε, ℓ z ) -1 (q(r))
where q(r) is given by (3.3.118) and q| (0

, π 2 ) (•, ε, ℓ z , d) -1
is the inverse of the restriction of q(•, ε, ℓ z ) on 0, π 2 . In particular, when r = r 1 s (ε, ℓ z ) we have θ b abs (ε, ℓ z , q(r)) = θ 1 (ε, ℓ z ).
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• Therefore, Z K (ε, ℓ z ) is given by

Z K (ε, ℓ z ) = Graph(r 1 abs (ε, ℓ z , q(•))) ∪ Graph(r 2,a abs (ε, ℓ z , q(•))) ∪ Graph(r 2,b abs (ε, ℓ z , q(•))) ∪ Graph(r 3,a abs (ε, ℓ z , q(•))) ∪ Graph(r 3,b abs (ε, ℓ z , q(•))) ∪ Graph(θ a abs (ε, ℓ z , q(•))) ∪ Graph(θ b abs (ε, ℓ z , q(•))) ∪ Graph(π -θ a abs (ε, ℓ z , q(•))) ∪ Graph(π -θ b abs (ε, ℓ z , q(•))).
iii. If ℓ z = l+ min (ε, d), the above analysis remain valid and we obtain the same result. The only difference between the two cases is that r

1 s (ε, ℓ z ) = r 2 s (ε, ℓ z ) and q 1 s (ε, ℓ z ) = q 2 s (ε, ℓ z ) = q m (ε, ℓ z )
, where,

q m (ε, ℓ z ) = ε 2 η c (r m (ε), ε 2 ) and r m (ε) is defined in Lemma 36.
Therefore, r i abs coincide and we can describe Z K (ε, ℓ z ) as the graph of one function r 1 abs (ε, ℓ z , q(•)) defined on (0, π) which satisfies

∂r 1 abs (ε, ℓ z , q(•)) ∂θ (θ m (ε)) = 0 and ∂ 2 r 1 abs (ε, ℓ z , q(•)) ∂θ 2 (θ m (ε)) = 0,
where θ m (ε) is the angle in 0, π 2 which satisfies q(θ) = q m (ε, ℓ z ).

iv. If ℓ + lb (ε) < ℓ z < ℓ + ub (ε). We proceed as in Case 2.b.ii: we have ∀q ≥ 0, the solutions in r of (3.3.116) are given by r 0 abs (ε, ℓ z , q) ifq > q+ (ε, ℓ z ), r 0 abs (ε, ℓ z , q), r 1 tr (ε, ℓ z , q), r 2 tr (ε, ℓ z , q) if 0 ≤ q ≤ q+ (ε, ℓ z ), These solutions satisfy

• r 1 tr (ε, ℓ z , q) = r 2 tr (ε, ℓ z , q) = r+ (ε, ℓ z ) if and only if q = q+ (ε, ℓ z ), • r 0 abs (ε, ℓ z , q) < r 1 tr (ε, ℓ z ) ≤ r+ (ε, ℓ z ) ≤ r 2 tr (ε, ℓ z , q), where q+ (ε, ℓ z ) and r+ (ε, ℓ z ) are defined in Lemma 40. Moreover, seen as functions of q, r 0 abs (ε, ℓ z , •) and r i tr (ε, ℓ z , q) have the following monotonicity properties

• r 0 abs (ε, ℓ z , •) is monotonically decreasing on ]0, ∞[ from r K 0 (ε, ℓ z ) to r H , • r 1 tr (ε, ℓ z , •) is monotonically increasing on ]0, q+ (ε, ℓ z )[ from r K 1 (ε, ℓ z ) to r+ (ε, ℓ z ), • r 2 tr (ε, ℓ z , •) is monotonically decreasing on ]0, q+ (ε, ℓ z )[ from r K 2 (ε, ℓ z ) to r+ (ε, ℓ z )
, Now, we construct an atlas for Z K (ε, ℓ z ). The properties that Z K (ε, ℓ z ) has two connected components such that one is diffeomorphic to R and the other is diffeomorphic to S 1 will follow from the construction. To this end,

• We recall the angle θ ∈ 0, π 2 defined by (3.3.114).

• We define the following mappings A. r 0 abs (ε, ℓ z , q(•)) : 0,

π 2 →]r H , r K 0 (ε, ℓ z )] θ → r 0
abs (ε, ℓ z , q(θ)). 

r 1 tr (ε, ℓ z , q(•)) : θ <1 max (ε, ℓ z ), π -θ <1 max (ε, ℓ z ) → [r K 1 (ε, ℓ z ), r+ (ε, ℓ z )[ θ → r 1 tr (ε, ℓ z , q(θ)), (3.3.120) C. r 2 tr (ε, ℓ z , q(•)) : θ <1 max (ε, ℓ z ), π -θ <1 max (ε, ℓ z ) →]r + (ε, ℓ z ), r K 2 (ε, ℓ z )] defined by
r 2 tr (ε, ℓ z , q(θ)).

(3.3.121)

• In order to cover the points r+ (ε, ℓ z ), θ

<1 max (ε, ℓ z ) and r+ (ε, ℓ z ), π -θ <1 max (ε, ℓ z ) , we introduce the mapping θ tr (ε, ℓ z , q(•)) :]r K 1 (ε, ℓ z ), r K 2 (ε, ℓ z )[→ θ <1 max (ε, ℓ z ), π 2 defined by θ tr (ε, ℓ z , q(r)) := q| (0, π 2 ) (•, ε, ℓ z , d) -1 (q(r)) (3.3.122)
and its symmetric with respect to the equatorial plane πθ tr (ε, ℓ z , q(•)). In particular, when r = r+ (ε, ℓ z ), we have θ tr (ε, ℓ z , q(r)

) = θ <1 max (ε, ℓ z ). • Now, we set Z K,abs (ε, ℓ z ) = Graph(r 0 abs (ε, ℓ z , •)) and Z K,trapped (ε, ℓ z ) = Graph r 1 tr (ε, ℓ z , q(•)) ∪ Graph r 2 tr (ε, ℓ z , q(•)) ∪ Graph (θ tr (ε, ℓ z , q(•))) ∪ Graph (π -θ tr (ε, ℓ z , q(•))) .
• In order to show that Z K,abs (ε, ℓ z ) and Z K,trapped (ε, ℓ z ) are disjoint, we use the monotonicity properties of r 0 abs (ε, ℓ z , •) and r 1 tr (ε, ℓ z , q(•)) and the fact that

r K 0 (ε, ℓ z ) < r K 1 (ε, ℓ z ).
• Moreover, it is easy to see that Z K,trapped (ε, ℓ z ) is closed. v. If ℓ z = ℓ + lb (ε), we use the same arguments as in the previous case. The only difference is that when ℓ z = ℓ + lb (ε) we have

r K 0 (ε, ℓ z ) = r K 1 (ε, ℓ z ).
More precisely, when q = 0, the equation (3.3.116) admits one double root given by

r K 0 (ε, ℓ z ) = r K 1 (ε, ℓ z ) = r + max (ε)
and one simple root given by r K 2 (ε, ℓ z ). Therefore, Z K,trapped (ε, ℓ z ) and Z K,abs (ε, ℓ z ) intersect at the point r + max (ε), π 2 . 3. The remain cases follow in the same manner (a) At a given (ε, ℓ z ), we use Proposition 16 and Proposition 15 to determine the roots to the equation (3.3.116). These roots are functions of q, which can also be seen as a function of θ.

(b) We construct an atlas that covers the set of solutions, i.e. Z K (ε, ℓ z ). Locally, it is either the graph of r depending on θ or of θ depending on r using similar arguments as above.
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Following the above proposition, we introduce the following sets that will be used along this work.

Definition 31.

A + bound := (ε, ℓ z ) ∈ ε + min , 1 × (ℓ + min , +∞) : ℓ + lb (ε) < ℓ z < ℓ + ub (ε) , (3.3.123) 
A - bound := (ε, ℓ z ) ∈ ε - min , 1 × (-∞, ℓ - min ) : ℓ - ub (ε) < ℓ z < ℓ - lb (ε) , (3.3.124) 
A bound := A + bound ∪ A - bound , (3.3.125) 
A + scattered := (ε, ℓ z ) ∈ [1, ∞) × (ℓ + min , +∞) : ℓ z > ℓ + lb (ε) , (3.3.126) 
A - scattered := (ε, ℓ z ) ∈ [1, ∞) × (-∞, ℓ - min ) : ℓ z < ℓ - lb (ε) , (3.3.127) 
A scattered := A + scattered ∪ A - scattered , (3.3.128) 
A + circ := ε + min , ℓ + min ∪ (ε, ℓ z ) ∈ ε + min , ∞ × (ℓ + min , +∞) : ℓ z = ℓ + lb (ε) ∪ (ε, ℓ z ) ∈ ε + min , ∞ × (ℓ + min , +∞) : ℓ z = ℓ + ub (ε) , ε < 1 , (3.3.129) 
A - circ := ε - min , ℓ - min ∪ (ε, ℓ z ) ∈ ε - min , ∞ × (ℓ - min , +∞) : ℓ z = ℓ - lb (ε) ∪ (ε, ℓ z ) ∈ ε - min , ∞ × (-∞, ℓ - min ) : ℓ z = ℓ - ub (ε) , ε < 1 , (3.3 

.130)

A circ := A + circ ∪ A - circ , (3.3.131) 
We also define the remaining subsets of ]0, ∞[×R:

A <1 abs := (ε, ℓ z ) ∈ A admissible : ε < 1 and (ε, ℓ z ) / ∈ (A bound ∪ A circ ) , (3.3.132) 
A ≥1 abs := (ε, ℓ z ) ∈ A admissible : ε ≥ 1 and (ε, ℓ z ) / ∈ (A bound ∪ A circ ) , (3.3 

.133)

A abs := A <1 abs ∪ A ≥1 abs . (3.3.134)
It is easy to see that

A admissible = A abs ⊔ A circ ⊔ A scattered ⊔ A bound .
Only (ε, ℓ z ) are required to characterise the zero velocity curves. This allows one to determine the allowed regions for a timelike future-directed geodesic with constants of motion (ε, ℓ z ). However, these constants of motion are not enough to determine the nature of orbits. An orbit with same (ε, ℓ z ) but starting at a two different positions in the (r, θ)-plane can have two different behaviours, as we shall see in the remaining of this section. In this context, we note that the above definitions of the different subsets can be misleading. For example, assuming that (ε, ℓ z ) ∈ A bound does not necessarily imply that the orbit is trapped. One needs more assumptions to obtain boundedness. Moreover, there exist trapped geodesics such that (ε, ℓ z ) / ∈ A bound . Our definition of A bound is such that the associated allowed region has a compact connected component. A full classification of timelike future directed orbits is achieved by finding a foliation of the mass shell Γ indexed by (ε, ℓ z , q) and by studying the initial position (t(0), φ(0), r(0), θ(0))(See Lemma 12). Now, we determine the allowed region A K (ε, ℓ z ) associated to γ. By Lemma 17, we obtain Lemma 42. Let (γ, I ∋ 0) be a timelike future-directed geodesic with constants of motion (ε, ℓ z ) and let A K (ε, ℓ z ) be the allowed region associated to γ:

• If (ε, ℓ z ) ∈ A bound , A K (ε, ℓ z ) consists of two connected components. The component which fron- tier in ]r H , ∞[×]0, π[ is Z K,trapped (ε, ℓ z
) is compact and it will be denoted by A K,trapped (ε, ℓ z ) and the component which frontier in ]r H , ∞[×]0, π[ is Z K,abs (ε, ℓ z ) will be denoted by A K,abs (ε, ℓ z ) A K,scat (ε, ℓ z ) and the component which frontier in ]r H , ∞[×]0, π[ is Z K,abs (ε, ℓ z ) will be denoted by A K,abs (ε, ℓ z ).

• If (ε, ℓ z ) ∈ A scattered , A K (ε, ℓ z ) consists of two connected components. The component which frontier in ]r H , ∞[×]0, π[ is Z K,scat (ε, ℓ z ) is
• If (ε, ℓ z ) ∈ A circ , then -if (ε, ℓ z ) ∈ A circ ∩ {(ε, ℓ z ) : ε < 1}, then A K (ε, ℓ z ) is the union of two connected com- ponents which intersect at the point r ± s (ε, ℓ z ), π 2 
. The first component is bounded by Z K,abs (ε, ℓ z ) and the second component is compact and bounded by Z K,trapped (ε, ℓ z ).

-if (ε, ℓ z ) ∈ A circ ∩ {(ε, ℓ z ) : ε ≥ 1}, then A K (ε, ℓ z ) consists of two connected components which intersect at the point r ± s (ε, ℓ z ), π 2 . The first component is bounded by Z K,abs (ε, ℓ z )
and the second component is bounded by Z K,scat (ε, ℓ z ).

• If (ε, ℓ z ) ∈ A ≤1 abs , A K (ε, ℓ z ) consists of one connected component which frontier is given by Z K (ε, ℓ z ). A K (ε, ℓ z ) will be denoted by A K,abs (ε, ℓ z ).

• Otherwise, A K (ε, ℓ z ) is ]r H , ∞[×]0, π[.
In this case, we split A K (ε, ℓ z ) in three regions -A K,z>0 (ε, ℓ z ), the region in B located between the first component of the axis of symmetry and Z K,z>0 (ε, ℓ z ), abs when d = 0.9 -A K,z>0 (ε, ℓ z ), the region in B located between the second component of the axis of symmetry and Z K,z<0 (ε, ℓ z )

-ÃK,abs (ε, ℓ z ), the remaining region which contains the equatorial plane and which frontier in B is given by Z

K,z>0 (ε, ℓ z ) ⊔ Z K,z<0 (ε, ℓ z )
Now, we announce the second main result of this section Proposition 18. (Classification of timelike future-directed geodesics) Let γ : I ∋ 0 → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z , q) ∈ A admissible × R and let γ be its projection in the (r, θ)-plane.

1. If 0 < ε ≤ ε + min (a) if ε = ε + min , ℓ z = ℓ + min and γ starts at r + ms , π 2 
, then γ is a circle confined in the equatorial plane.

(b) Otherwise, the orbit γ starts at some point, (r 0 , θ 0 ) in the region A K,abs (ε, ℓ z ) ⊂ ]r H , r K 0 (ε, ℓ z )]×]0, π[ and reaches the horizon r = r H in a finite proper time while oscillating around the equatorial plane between θ 0 and πθ 0 , where r K 0 (ε, ℓ z ) is the unique root of the equation (3.3.109). 

2. If ε + min < ε ≤ ε - min , (a) if ε = ε - min , ℓ z = ℓ - min and γ starts at r - ms , π 2 
, then γ is a circle confined in the equatorial plane.

(b) Otherwise, i. if ℓ z < ℓ + lb (ε) • If ℓ z = l+ min (ε) and γ starts at the point (r m (ε), θ m (ε)), then γ is spherical of radius r m (ε). • If ℓ z < l+ min (ε) or ℓ z = l+ min (ε)
and starts at some point different from (r m (ε), θ m (ε)), then γ starts at some point in A K,abs (ε, ℓ z ) and reaches the horizon in a finite proper time. See Case 1.b.

• Otherwise, i.e lmin (ε) < ℓ z < ℓ + lb (ε), -if γ starts somewhere in the region r 1 s (ε,

ℓ z ) ×]θ 1 (ε, ℓ z ), π -θ 1 (ε, ℓ z )[ or in the region r 2 s (ε, ℓ z ) ×]θ 2 (ε, ℓ z ), π -θ 2 (ε, ℓ z )[
, then γ has a constant radius given by r i s (ε, ℓ z ) and oscillates between θ i (ε, ℓ z ) and πθ i (ε, ℓ z ) in the θ direction, where r i s (ε, ℓ z ) are defined in Lemma 40 and θ i (ε, ℓ z ) are given by (3.3.112). -If γ starts somewhere in the region A K,abs (ε,

ℓ z ) ∩ (]r H , r 1 s (ε, ℓ z )[×]0, π[) or in the region A K,abs (ε, ℓ z ) ∩ (]r 1 s (ε, ℓ z ), r K 0 (ε, ℓ z )[×]θ 1 (ε, ℓ z ), π -θ 1 (ε, ℓ z )[),
then it reaches the horizon in a finite proper time.

-Otherwise, γ is trapped. ii. if ℓ z = ℓ + lb (ε), • If γ starts at r K 0 (ε, ℓ z , π 2 
), then γ is a circle confined in the equatorial plane.

• Otherwise, -if γ starts at some point in A K,abs (ε, ℓ z ), * if γ is confined to the equatorial plane and starts with positive radial velocity, then it approaches the circle of radius r K 0 (ε, ℓ z ) in an infinite proper time. * Otherwise, γ reaches the horizon in a finite proper time, -If, γ starts at some point in A K,trapped (ε, ℓ z ), then it is either trapped or spherical of radius r+ (ε, ℓ z ). iii. if ℓ + lb (ε) < ℓ z < ℓ + ub (ε) • If γ starts at some point in A K,trapped (ε, ℓ z ), then γ is either trapped or spherical with radius r+ (ε, ℓ z ) given by Lemma 40. • Otherwise, γ starts at some point in A K,abs (ε, ℓ z ) and reaches the horizon in a finite proper time. iv. if

ℓ z = ℓ + ub (ε), • If γ starts at r K 2 (ε, ℓ z ), π 2 
, then γ is a circle confined in the equatorial plane.

• Otherwise, γ starts at some point in A K,abs (ε, ℓ z ) and reaches the horizon in a finite proper time.

If ε

- min < ε < 1, (a) if ℓ - lb (ε) < ℓ z < ℓ + lb (ε) • if γ starts somewhere in the region r1 (ε, ℓ z ) ×[ θ1 (ε, ℓ z ), π-θ1 (ε, ℓ z )] or in the region r2 (ε, ℓ z ) × [ θ2 (ε, ℓ z ), π -θ2 (ε, ℓ z )]
, then γ has a constant radius given by ri (ε, ℓ z ) and oscillates between θi (ε, ℓ z ) and π -θi (ε, ℓ z ) in the θ direction, where ri (ε, ℓ z ) is defined in Lemma 40 and θi (ε, ℓ z ) is defined by (3.3.113).

• If γ starts somewhere in the region A K,abs (ε,

ℓ z ) ∩ (]r H , r1 (ε, ℓ z )[×]0, π[) or in the region A K,abs (ε, ℓ z ) ∩ (]r 1 (ε, ℓ z ), r K 0 (ε, ℓ z )[×] θ1 (ε, ℓ z ), π -θ1 (ε, ℓ z )[),
then it reaches the horizon in a finite proper time. 

z = ℓ + lb (ε) or ℓ z = ℓ - lb (ε) • If γ starts at r K 0 (ε, ℓ z , π 2 
), then γ is a circle confined in the equatorial plane.

• Otherwise, -if γ starts at some point in A K,abs (ε, ℓ z ), * if γ is confined to the equatorial plane and starts with positive radial velocity, then it approaches the circle of radius r K 0 (ε, ℓ z ) in an infinite proper time. * Otherwise, γ reaches the horizon in a finite proper time, -If, γ starts at some point in A K,trapped (ε, ℓ z ), then it is either trapped or spherical of radius

r 2 s (ε, ℓ z ). (c) if ℓ + lb (ε) < ℓ z < ℓ + ub (ε) or ℓ - ub (ε) < ℓ z < ℓ - lb (ε) • If γ starts at
some point in A K,trapped (ε, ℓ z ), then γ is either trapped or spherical with radius r± (ε, ℓ z ), given by Lemma 40.

• Otherwise, γ starts at some point in A K,abs (ε, ℓ z ) and reaches the horizon in a finite proper time.

(d) if ℓ z = ℓ + ub (ε) or ℓ z = ℓ - ub (ε), • If γ starts at r K 2 (ε, ℓ z ), π 2 
, then γ is a circle confined in the equatorial plane. spacetime

• Otherwise, γ starts at some point in A K,abs (ε, ℓ z ) and reaches the horizon in a finite proper time.

(e) If ε 2 > 1 i. If ℓ - lb (ε) < ℓ z < ℓ + lb (ε), then • If γ starts at the point {r(ε, ℓ z )} × [θ ≥1 max (ε, ℓ z ), π -θ ≥1 max (ε, ℓ z )]
, then γ has a constant radius and oscillates between θ

≥1 max (ε, ℓ z ) and π -θ ≥1 max (ε, ℓ z ) in the θ direction, where θ ≥1 max (ε, ℓ z ) is given by (3.3.115) • If γ starts at some point in the region ]r H , ∞[×[θ min (ε, ℓ z ), π-θ min (ε, ℓ z )]\ {r(ε, ℓ z )}× [θ ≥1 max (ε, ℓ z ), π -θ ≥1 max (ε, ℓ z )]
, then γ remains in the region A K,q≥0 . -if γ starts with a negative radial velocity, then it reaches the horizon in a finite proper time while oscillating around the equatorial plane.

if γ starts with a positive radial velocity, then it goes to infinity while oscillating around the equatorial plane. • If γ starts in the region A K,z>0 (ε, ℓ z ) or in the region A K,z<0 (ε, ℓ z ). Then, -if γ starts with a negative radial velocity, then it reaches the horizon in a finite proper time while staying inside A K,z>0 (ε, ℓ z ) or A K,z<0 (ε, ℓ z ).

if γ starts with a positive radial velocity, then it goes to infinity while staying in the region

A K,z>0 (ε, ℓ z ) or A K,z<0 (ε, ℓ z ). ii. If ℓ z = ℓ + lb (ε) or ℓ z = ℓ - lb (ε), then • If γ starts at r K 0 (ε, ℓ z ), π 2 
, then γ is a circle confined in the equatorial plane.

• Otherwise, -If γ starts at some point in A K,abs (ε, ℓ z ) * If γ is confined in the equatorial plane and starts with a positive radial velocity, then it approaches the circle of radius r K 0 (ε, ℓ z ) in an infinite proper time, * otherwise, it reaches the horizon in a finite proper time.

otherwise, i.e if γ starts at some point in A K,scattered (ε, ℓ z ), then * If γ is confined in the equatorial plane and starts with a negative radial velocity, then it approaches the circle of radius r K 0 (ε, ℓ z ) in an infinite proper time. * Otherwise, the orbit (with negative initial radial velocity) hits a potential barrier and goes back infinity while oscillating around the equatorial plane or (with positive initial radial velocity) goes to infinity while trapped in the θdirection between θ(0) and πθ(0). approaches the circle of radius r K 0 (ε, ℓ z , 0) and confined in the equatorial plane in an infinite proper time.

iii. If ℓ z > ℓ + lb (ε) or ℓ z < ℓ - lb (ε), then • If γ starts at some point in the region A K,scattered (ε, ℓ z ), then the orbit (with negative initial radial velocity) hits a potential barrier and goes back infinity while oscillating around the equatorial plane between... or (with positive initial radial velocity) goes to infinity while trapped in the θdirection. • Otherwise, γ starts at some point in the region A K,abs (ε, ℓ z ). It reaches the horizon in a finite proper time while oscillating around the equatorial plane.

Proof. Let γ : I → O be a timelike future-directed geodesic with initial conditions (γ(0), γ(0)). First of all, recall that by Lemma 12, the nature of γ is determined by the set (ε, ℓ z , q) and γ(0) = (t(0), φ(0), r(0), θ(0)). Moreover, due to spacetime symmetries, it suffices to determine the nature of its projection in the (r, θ)-plane. We compute (ε, ℓ z , q) from the initial condition by:

ε = V K (r(0), θ(0))v t (0) -W K (r(0), θ(0))v φ (0), ℓ z = W K (r(0), θ(0))v t (0) + X K (r(0), θ(0))v φ (0), and 
q = v θ (0) 2 + cos 2 θ(0) d 2 (1 -ε 2 ) + ℓ 2 z sin 2 θ(0) , 9 
Now, we study the possible maximal solutions of the reduced system (3.3.29) for all (ε, ℓ z ) ∈ A admissible . Let (r, θ) ∈]r H , ∞[×]0, π[ and let (ṽ r , ṽθ ) ∈ R 2 and consider the following Cauchy problem

                       dr dτ = ∆ Σ 2 v r , dv r dτ = 1 2Σ 2 -∆ ′ (r)v 2 r + ∆ ′ (r)R(r, ε, ℓ z , q) -∆(r)∂ r R(r, ε, ℓ z , q) ∆(r) 2 , dθ dτ = 1 Σ 2 v θ , dv θ dτ = 1 2Σ 2 ∂ θ T (cos θ, ε, ℓ z , q) sin 2 θ (3.3.135)
with initial conditions γ(0) = (r, θ), γ(0) = (v r , v θ ).

By Cauchy-Lipschitz theorem, there exists a unique maximal solution for the above system given by (γ, γ, I ∋ 0). We decouple the equations for (r, v r ) and for (θ, v θ ), we use Mino time, Λ, defined by (3.3.6). We have

∀τ ∈ I : Λ(τ ) = τ 0 1 Σ 2 (r(s), θ(s))
ds.

Now set J := Λ(I). Then, the above system becomes:

∀λ ∈ J                                  dr dλ = ∆(r(Λ -1 (λ)))v r (Λ -1 (λ)), dv r dλ = 1 2 -∆ ′ (r(Λ -1 (λ)))v 2 r (Λ -1 (λ)) + ∆ ′ (r(Λ -1 (λ)))R(r(Λ -1 (λ)), ε, ℓ z , q) -∆(r(Λ -1 (λ)))∂ r R(r(Λ -1 (λ)), ε, ℓ z , q) ∆(r(Λ -1 (λ))) 2 , dθ dλ = v θ (Λ -1 (λ)), dv θ dλ = 1 2 ∂ θ T (cos(θ(Λ -1 (λ))), ε, ℓ z , q) sin 2 (θ(Λ -1 (λ))) spacetime
In the following, we identify r • Λ -1 , θ • Λ -1 , v r • Λ -1 and v θ • Λ -1 with r, θ, v r and v θ respectively. We consider the two Cauchy problems:

           dr dλ = ∆(r(λ))v r (λ), dv r dλ = 1 2 -∆ ′ (r(λ))v 2 r (λ) + ∆ ′ (r(λ))R(r(λ), ε, ℓ z , q) -∆(r(λ))∂ r R(r(λ), ε, ℓ z , q) ∆(r(λ)) 2 , r(0) = r , v r (0) = v r (3.3.136) and              dθ dλ = v θ (λ), dv θ dλ = 1 2 ∂ θ T (cos(θ(λ)), ε, ℓ z , q) sin 2 (θ(λ)) θ(0) = θ , v θ (0) = v θ . (3.3.137)
It is easy to see that at a given (ε, ℓ z , q), if (r, θ, v r , v θ , I) is the maximal solution of (3.3.135), then (r, v r , J) and (θ, v θ , J) are the maximal solutions of (3.3.136) and (3.3.137) respectively. Reciprocally, if (r, v r , J r ) and (θ, v θ , J θ ) are the maximal solutions of (3.3.136) and (3.3.137) respectively, then (r, θ, v r , v θ , I = Λ -1 (J r ∩ J θ )). Consequently, we classify the maximal solutions of (3.3.136) and (3.3.137) in order to obtain the general classification.

In the following, we tackle in details the case when (ε, ℓ z ) ∈ A bound . The remaining cases are similar.

1. If (ε, ℓ z ) ∈ A bound , then ∀λ ∈ J := J r ∩ J θ , (r, θ)(λ) ∈ A K,abs (ε, ℓ z ) ⊔ A K,trapped (ε, ℓ z ) and more precisely, ∀λ ∈ J r(λ) ∈]r H , r K 0 (ε, ℓ z , q)]⊔[r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)] and θ(λ) ∈ [θ min (ε, ℓ z , q, d), π-θ min (ε, ℓ z , q, d)]
where r K 0 (ε, ℓ z , q), r K 1 (ε, ℓ z , q) and r K 2 (ε, ℓ z , q) are the roots of the equation (3.3.109) and θ min (ε, ℓ z , q, d) is the unique angle in 0, π 2 that solves (3.3.33). (a) Let (r, v r , J r ) be the maximal solution of (3.3.136). Then, ∀λ ∈ J r , we have

2 dv r dλ = -∆ ′ (r(λ))v 2 r (λ) + ∆ ′ (r(λ))R(r(λ), ε, ℓ z , q) -∆(r(λ))∂ r R(r(λ), ε, ℓ z , q) ∆(r(λ)) 2 .
We multiply the latter by v r to obtain

d(v r ) 2 dλ = -∆ ′ (r(λ))v 3 r (λ) + ∆ ′ (r(λ))R(r(λ), ε, ℓ z , q) -∆(r(λ))∂ r R(r(λ), ε, ℓ z , q) ∆(r(λ)) 2 v r .
By the first equation of (3.3.136), we have

d(v r ) 2 dλ = -∆ ′ (r(λ))v 2 r (λ) ṙ 1 ∆ + ∆ ′ (r(λ))R(r(λ), ε, ℓ z , q) -∆(r(λ))∂ r R(r(λ), ε, ℓ z , q) ∆(r(λ)) 2 ṙ ∆ . Therefore, d dλ (∆v 2 r ) = d dλ R(r, ε, ℓ z , q) ∆ .
Finally we integrate between 0 and some λ ∈ J r to obtain

∆ 2 v 2 r = R(r, ε, ℓ z , ε, ℓ z ) + (∆ 2 (r)v r -R(r, ε, ℓ z , ε, q))
Now, we have

(∆ 2 (r)v r -R(r, ε, ℓ z , ε, q)) = 0. Therefore, ∆ 2 v 2 r = R(r, ε, ℓ z , q). (b) • If (r, θ) ∈ A K,abs (ε, ℓ z ). Then, ∀λ ∈ J r ∩ J θ r(λ) ∈]r H , r K 0 (ε, ℓ z , q)] and θ(λ) ∈ [θ min (ε, ℓ z , q), π -θ min (ε, ℓ z , q)]. Let J r =]T min , T max [. We claim that -∞ < T min , T max < +∞ and lim λ→Tmax r(λ) = lim λ→T min r(λ) = r H . (a) If (r, θ) ∈ ∂A K,abs (ε, ℓ z ), then (v r , v θ ) = (0, 0) and r = r K 0 (ε, ℓ z , q), θ ∈ {θ min (ε, ℓ z , q), π -θ min (ε, ℓ z , q)} .
We claim that ∀λ ∈ J r \ {0}, R(r(λ)) > 0.

In fact, suppose that there exists λ ∈]T min , 0[∪]0, T max [ such that R(r( λ)) = 0. Then, (∆ -1 (r(•)) ṙ)( λ) = 0.

Besides, we have

(∆ -1 (r(•)) ṙ)(0) = 0.
By Rolle's theorem, there exists

λ 0 ∈]0, λ[ such that d dλ (∆ -1 (r(•)) ṙ)(λ 0 ) = 0.
Therefore, by the second equation of (3.3.136),

∂ r R(r(λ 0 ), ε, ℓ z , q) = 0 . Contradiction since the r-derivative of R is negative on ]r H , r K 0 (ε, ℓ z , q)]. This implies ∀λ ∈ J r \ {0} , dr dλ = ± R(r(λ), ε, ℓ z , q).

More precisely,

∀λ ∈]0, T max [ , ṙ = -R(r(λ), ε, ℓ z , q), ∀λ ∈]T min , 0[ , ṙ = R(r(λ), ε, ℓ z , q). spacetime Now, we claim that

T max = r K 0 (ε,ℓz,q) r H 1 R(r(s), ε, ℓ z , q) ds
and

T min = - r K 0 (ε,ℓz,q) r H 1 R(r(s), ε, ℓ z , q)
ds.

Let λ ∈]0, T max [. We have

1 = - ṙ(λ) R(r(λ), ε, ℓ z , q)
We integrate between 0 and λ to obtain

λ = - λ 0 ṙ(s) R(r(s), ε, ℓ z , q)
ds.

Now we make the change of variable u = r(s) in the right hand side. We obtain

λ = r K 0 (ε,ℓz,q) r H du R(u, ε, ℓ z , q) .
We introduce the function G(•, ε, ℓ z , q) defined on ]r H , r K 0 (ε, ℓ z , q)] by G(s, ε, ℓ z , q) := r K 0 (ε,ℓz,q) s du R(u, ε, ℓ z , q) .

Since r K 0 (ε, ℓ z , q) is a simple root of R, G is well defined. Moreover G(•, ε, ℓ z , q) is monotonically decreasing on ]r H , r K 0 (ε, ℓ z , q)]. Therefore, it is bijective from ]r H , r K 0 (ε, ℓ z , q)] to [0, T max [ where

T max := lim r→r H G(s) = r K 0 (ε,ℓz,q) r H 1 R(r(s), ε, ℓ z , q) ds < +∞. Hence, ∀λ ∈ [0, T max [ , r(λ) = G -1 (λ).
In the same manner, we obtain

T min := lim r→r H H(s) = - r K 0 (ε,ℓz,q) r H 1 R(r(s), ε, ℓ z , q) ds > -∞ and ∀λ ∈]T min , 0] , r(λ) = H -1 (λ)
where H(•, ε, ℓ z , q) is the function defined on ]r H , r K 0 (ε, ℓ z , q)] by

H(s, ε, ℓ z , q) := - r K 0 (ε,ℓz,q) s du R(u, ε, ℓ z , q) .
It remains to analyse the motion in the θ-direction in order to determine J θ : ∀λ ∈ J θ , θ(λ) ∈ θ ∈ [θ min (ε, ℓ z , q), πθ min (ε, ℓ z , q)]. By compactness, J θ = R. Moreover, λ → θ(λ) is periodic with period

T θ := 2 π-θ min (ε,ℓz,q)
θ min (ε,ℓz,q) sin σ T (cos σ, ε, ℓ z , q) dσ.

(3.3.138)

In fact, let (θ, v θ , J θ ) be the maximal solution of (3.3.137). Introduce the function G1 (•, ε, ℓ z , q) defined on [θ min (ε, ℓ z , q), πθ min (ε, ℓ z , q)] by

G1 (s, ε, ℓ z , q) := s θ min (ε,ℓz,q) sin σ T (cos σ, ε, ℓ z , q) dσ
Since cos(θ min (ε, ℓ z , q)) is a simple root of T , G(•, ε, ℓ z , q) is well-defined. Moreover, it is monotonically increasing on its domain so that it defines a bijection from [θ min (ε, ℓ z , q), π-θ min (ε, ℓ z , q)] to 0, T θ 2 . Now we denote its inverse by G-1 1 (•, ε, ℓ z , q). In the same way, we define the bijective function G2 (•, ε, ℓ z , q) defined from [θ min (ε, ℓ z , q), π-

θ min (ε, ℓ z , q)] to T θ 2 , T θ by G2 (s, ε, ℓ z , q) := T θ 2 + π-θ min (ε,ℓz,q) s sin σ T (cos σ, ε, ℓ z , q) dσ
and we denote its inverse by G-1 2 (•, ε, ℓ z , q). Now we define θ on [0, T θ ] by

θ(λ) :=        G-1 1 (λ, ε, ℓ z , q) if λ ∈ 0, T θ 2 G-1 2 (λ, ε, ℓ z , q) if λ ∈ T θ 2 , T θ .
and ṽθ on [0, T θ ] by ṽθ := θ ′ (λ). Now, we can extend ( θ, ṽθ ) to a periodic solution defined on R. Moreover, It easy to see that ( θ, ṽθ ) satisfies (3.3.137). By uniqueness, θ is periodic with period T θ . (b) If (r, θ) ∈ A K,abs (ε, ℓ z )\(∂A K,abs (ε, ℓ z )). Then, we proceed as above to obtain the same result.

• If (r, θ) ∈ A K,trapped (ε, ℓ z ). Suppose that (r, θ) ∈ ∂A K,trapped (ε, ℓ z ). The other cases are studied in the same manner.

r ∈ [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)] and θ ∈ [θ min (ε, ℓ z , q), π -θ min (ε, ℓ z , q)] Therefore, ∀λ ∈ J , (r, θ)(λ) ∈ [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)]×[θ min (ε, ℓ z , q, d), π-θ min (ε, ℓ z , q, d)
] for all τ ∈ I. By compactness, J = R and γ is trapped. Moreover, r is periodic with period:

T r := r K 2 (ε,ℓz,q) r K 1 (ε,ℓz,q) dr R(r, ε, ℓ z , q) . (3.3.139)
and θ is periodic with period T θ defined by (3.3.138). For the periodicity of θ, it has already been tackled in the first case. As for the periodicity of r, we proceed in the spacetime same way: let (r, v r , J r ) be the maximal solution of (3.3.136). Introduce the function

G 1 (•, ε, ℓ z , q) defined on [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)] by G 1 (s, ε, ℓ z , q) := s r K 1 (ε,ℓz,q) dσ R(σ, ε, ℓ z , q) dσ
Since r K 1 (ε, ℓ z , q) and r K 2 (ε, ℓ z , q) are simple roots of R, G(•, ε, ℓ z , q) is well-defined. Moreover, it is monotonically increasing on its domain so that it defines a bijection from [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)] to 0, Tr 2 . Now, we denote its inverse by G -1

1 (•, ε, ℓ z , q). In the same way, we define the bijective function

G 2 (•, ε, ℓ z , q) defined from [r K 1 (ε, ℓ z , q), r K 2 (ε, ℓ z , q)] to Tr 2 , T r by G 2 (s, ε, ℓ z , q) := T r 2 + r K 2 (ε,ℓz,q) s dσ R(σ, ε, ℓ z , q) dσ
and we denote its inverse by G -1

2 (•, ε, ℓ z , q). Now we define r on [0, T r ] by

r(λ) :=        G -1 1 (λ, ε, ℓ z , q) if λ ∈ 0, T r 2 G -1 2 (λ, ε, ℓ z , q) if λ ∈ T r 2 , T r .
and ṽr on [0, T r ] by ṽr := ∆ -1 (r(λ))r ′ (λ).

Now, we can extend (r, ṽr ) to a periodic solution defined on R. Moreover, It easy to see that (r, ṽr ) satisfies (3.3.136). By uniqueness, r is periodic with period T r .

2. The remaining cases follow using similar arguments.

Study of the geodesic motion in Weyl coordinates

The aim of this section is to analyse the geodesic motion in the Weyl coordinates defined in Section 3.2.2. We will focus on trapped non-spherical geodesics. Weyl coordinates are well adapted to the axisymmetric problem especially when it comes to the resolution of the reduced Einstein Vlasov system. In a Kerr exterior, we have already seen that the geodesic motion forms an integrable system in BL coordinates. In particular, the r-motion decouples from the θ-motion. In a general stationary and axisymmetric spacetime, this is not necessarily true. Therefore, it is useful to study the Kerr geodesic motion in Weyl coordinates without relying on the decoupling of the r-motion and the θ-motion, i.e without relying on the existence of q. Let x = (t, φ, ρ, z) ∈ M, let v = (v t , v φ , v ρ , v z ) be the conjugate coordinates to the spacetime coordinates. In view of Section 3.2.1.5, the geodesics equation reduces to the following two degree of freedom problem:

                     dρ dτ = v ρ , dz dτ = v z , dv ρ dτ = - 1 2 e -2λ ∂ ρ J K (ρ, z, ε, ℓ z , d) -Γ ρ ij v i v j , i, j ∈ {ρ, z} dv z dτ = - 1 2 e -2λ ∂ z J K (ρ, z, ε, ℓ z , d) -Γ z ij v i v j .
(3.3.140)

where

J K : B × R × R is defined by J K (ρ, z, ε, ℓ z ) := -1 + X K σ 2 K ε 2 + 2W K σ 2 K εℓ z - V K σ 2 K ℓ 2 z (3.3.141)
We introduce the effective potential energy E K ℓz : B → R relative to a timelike future directed geodesic, (γ, I), with angular momentum ℓ z and energy ε:

E K ℓz (ρ, z) := -W K (ρ, z) X K (ρ, z) ℓ z + σ K X K (ρ, z) ℓ 2 z + X K (ρ, z). (3.3.142)
We refer to Figure 3.39 for the shape of E K ℓz and we recall that the allowed region for γ is given by

A K (ε, ℓ z ) = (ρ, z) ∈ B : J K (ρ, z, ε, ℓ z ) ≥ 0 = (ρ, z) ∈ B : E K ℓz (ρ, z) ≤ ε = {(r, θ) ∈]r H (d), ∞[×
]0, π[ : R(r, ε, ℓ z , q) ≥ 0 and T (cos θ, ε, ℓ z , q) ≥ 0}

We also recall that the boundary of A K (ε, ℓ z ) is the zero velocity curve Z K (ε, ℓ z ) given by Definition 27.

Remark 28. Z K (ε, ℓ z ) can also be seen as the level sets of the effective potential energy E K ℓz at ε.

Properties of the effective potential energy E K ℓz

The classification of timelike geodesics is based on the topology of the Z K (ε, ℓ z ) curves whose shapes (depending on (ε, ℓ z )) were already determined in Section 3.3.1.7, Proposition 17. In this section, we will rewrite the latter proposition in terms of the level sets of E K ℓz . From this perspective, the shape of Zero velocity curves associated to timelike trapped future directed geodesics will not depend on the Carter constant. This is key to the identification trapped geodesics in stationary and axisymmetric spacetimes close to Kerr. Since we are interested in the level sets of E K ℓz , we will first study its critical points. We make the difference between direct critical points and retrograde critical points defined by

Definition 32. Let ℓ z ∈ R. A point (ρ + c , z + c ) is a direct critical point of E ℓz if ∇ (ρ,z) E ℓz (ρ + c , z + c ) = 0 with -W ℓ z > 0. A point (ρ - c , z - c ) is a retrograde critical point of E ℓz if ∇ (ρ,z) E ℓz (ρ - c , z - c ) = 0 with -W ℓ z < 0.
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We begin the analysis of E ℓz with the study of critical lemma Proposition 19 (Existence of critical points for E K ℓz ). Let ℓ z ∈ R. Then,

• E K ℓz admits direct critical point if and only if ℓ z ∈]∞, ℓ - min ],

• E K ℓz admits retrograde critical point if and only if ℓ z ∈ [ℓ + min , ∞[, where ℓ ± min is given by ℓ ± min = Ψ ± (r ± ms ), and r ± ms 10 is given by

r ± ms (d) = 3 + Z 2 (d) ∓ (3 -Z 1 )(3 + Z 1 (d) + 2Z 2 (d))
where

Z 1 (d) = 1 + (1 -d 2 ) 1 3 ((1 + d) 1 3 + (1 -d) 1 3 ) , Z 2 (d) = 3d 2 + Z 2 1 . Moreover, • if ℓ z ≥ ℓ +
min , then the critical points are given by

(ρ + s , z + s ) := ( ∆(r + max (ℓ z )), 0) and (ρ + min , z + min ) := (∆( r + min (ℓ z )), 0). (3.3.143)
• if ℓ z ≤ ℓ - min , then the critical points are given by

(ρ - s , z - s ) := ( ∆(r - max (ℓ z )), 0) and (ρ - min , z - min ) := (∆( r - min (ℓ z )), 0), (3.3 

.144)

where r ± max (ℓ z ) and r ± min (ℓ z ) are given by

r ± max (ℓ z ) := (Ψ 1 ) -1 ± (ℓ z ) and r ± max (ℓ z ) := (Ψ 2 ) -1 ± (ℓ z ),
where (Ψ 1 ) -1 ± and (Ψ 2 ) -1 ± are the inverse of the restriction of (Ψ) ± on ]r ph , r ms [ and ]r ms , ∞[ respectively.

Proof. We only consider the case of direct critical points. The remaining case follows in the same manner. We henceforth drop the ± symbol from all the quantities and assume that ℓ z ∈ [0, ∞[.

1. By Lemma 10, (ρ c , z c ) is a critical point of E K ℓz if and only (ρ c , z c , 0, 0) is a stationary solution of the reduced system                      dρ dτ = v ρ , dz dτ = v z , dv ρ dτ = - 1 2 e -2λ ∂ ρ J K (ρ, z, ε, ℓ z , d) -Γ ρ ij v i v j , i, j ∈ {ρ, z} dv z dτ = - 1 2 e -2λ ∂ z J K (ρ, z, ε, ℓ z , d) -Γ z ij v i v j . (3.3.145) with parameters (ε c , ℓ z ) = (E K ℓz (ρ c , z c ), ℓ z ).
2. Now, we claim (ρ c , z c , 0, 0) is a stationary solution of if and only if (r c , θ c , 0, 0) is a stationary solution of the reduced system • (ρ ± s (ℓ z ), 0) corresponds to a saddle point.

                       dr dτ = ∆ Σ 2 v r , dv r dτ = 1 2Σ 2 -∆ ′ (r)v 2 r + ∆ ′ (r)R(r, ε, ℓ z , q) -∆(r)∂ r R(r, ε, ℓ z , q) ∆(r) 2 , dθ dτ = 1 Σ 2 v θ , dv θ dτ = 1 2Σ 2 ∂ θ T (cos θ, ε, ℓ z , q) sin 2 θ . ( 3 
• (ρ ± min (ℓ z ), 0) corresponds to a local minimum.

Proof. Let ℓ z ∈]-∞, ℓ - min ]∪[ℓ + min , ∞[. We will study the critical points of E K ℓz in the BL coordinates. We recall that ẼK ℓz (r, θ) where JK is defined by (3.3.17). Now, we differentiate twice the expression (3.3.147) in order to obtain

:= E K ℓz (ρ(r, θ), z(r, θ)). We have, ∀(r, θ) ∈]r H , ∞[×]0, π[, JK (r, θ, ẼK ℓz (r, θ), ℓ z ) = 0, ( 3 
∂ 2 ε JK (r, θ, ẼK ℓz (r, θ), ℓ z )∇ (r,θ) ẼK ℓz (r, θ) ∇ (r,θ) ẼK ℓz (r, θ) t + ∂ ε JK (r, θ, ẼK ℓz (r, θ), ℓ z )∇ 2 (r,θ) ẼK ℓz (r, θ) + ∇ 2 (r,θ) JK (r, θ, ẼK ℓz (r, θ), ℓ z ) + ∇ (r,θ) Ẽℓz (r, θ) ∇ (r,θ) ∂ ε JK (r, θ, ẼK ℓz (r, θ), ℓ z ) t = 0.
In particular, if (r, θ) is a critical point, then the latter expression reduces to

∂ ε JK (r c , θ c , ẼK ℓz (r c , θ c ), ℓ z )∇ 2 (r,θ) ẼK ℓz (r c , θ c ) + ∇ 2 (r,θ) JK (r c , θ c , ẼK ℓz (r c , θ c ), ℓ z ) = 0.
Now, we recall from Section 3.2.1.5, that the term ∂ ε JK (r c , θ c , ẼK ℓz (r c , θ c ), ℓ z ) does not vanish. Moreover, it is positive on its domain. Therefore,

∇ 2 (r,θ) ẼK ℓz (r c , θ c ) = - ∇ 2 (r,θ) JK (r c , θ c , ẼK ℓz (r c , θ c ), ℓ z ) ∂ ε JK (r c , θ c , ẼK ℓz (r c , θ c ), ℓ z )
. Now, we compute the Hessian of JK with respect to (r, θ) at the points

(ε c (ℓ z ) = ẼK ℓz (r c , θ c ), ℓ z , r c (ℓ z ), θ c (ℓ z )). We find that ∂ rr JK ε c (ℓ z ), ℓ z , r c (ℓ z ), π 2 = Σ -2 r c (ℓ z ), π 2 ∂ rr R(r c (ℓ z ), ε c (ℓ z ), ℓ z , 0), ∂ θθ JK ε c (ℓ z ), ℓ z , r c (ℓ z ), π 2 = Σ -2 r c (ℓ z ), π 2 ∂ θθ T (0, ε c (ℓ z ), ℓ z , 0), ∂ rθ JK ε c (ℓ z ), ℓ z , r c (ℓ z ), π 2 = 0.
Here, we used that

• cos θ c (ℓ z ) = 0 is a double root of the polynomial T (•, ε c (ℓ z ), ℓ z , q) so that q = 0, see Lemma 20,

• r c (ℓ z ) is a double root of the polynomial R(•, ε c (ℓ z ), ℓ z , 0).

Moreover, ∂ θθ T (0, ε c (ℓ z ), ℓ z , 0) > 0 and ∂ rr R(r c (ℓ z ), ε c (ℓ z ), ℓ z , 0) = > 0 if r c (ℓ z ) = r ± min (ℓ z ), < 0 if r c (ℓ z ) = r ± max (ℓ z ). Hence, • r ± max (ℓ z ), π 2 
corresponds to a saddle point for ẼK ℓz .

• r ± min (ℓ z ), π 2 corresponds to a local minimum ẼK ℓz .

Now, we study the basic properties of E K ℓz :

Lemma 43 (Properties of E K ℓz ). We have 1. Let à be a neighbourhood of the axis. Then

lim ||(ρ,z)||→∞,(ρ,z)∈(B A ∪B H )\ Ã E K ℓz (ρ, z) = 1. 2. ∀(ρ, z) ∈ B, E K ℓz (ρ, z) = E K ℓz (ρ, -z).
3. For dℓ z < 0, E K ℓz is negative in a neighbourhood of the horizon11 . Proof.

1. We have

∀(ρ, z) ∈ B , ∀ℓ z ∈ R - W K (ρ, z) X K (ρ, z) ℓ z = 2dr(ρ, z) Π(ρ, z) ℓ z ,
where r(ρ, z) is given (3.2.25) and

Π(ρ, z) := (r 2 (ρ, z) + d 2 ) 2 -ρ 2 d 2 .
Therefore,

lim ||(ρ,z)||→∞ - W K (ρ, z) X K (ρ, z) ℓ z = lim ||(ρ,z)||→∞ 2dr(ρ, z) r 4 (ρ, z) ℓ z = 0. Now, we compute lim ||(ρ,z)||→∞ ρ X K (ρ, z)) ℓ 2 z + X K (ρ, z). We have ∀(ρ, z) ∈ B , ∀ℓ z ∈ R ρ X K (ρ, z) = 1 ρ ∆(r(ρ, z)) Σ2 (ρ, z) Π(ρ, z) where Σ2 (ρ, z) := r 2 (ρ, z) + d 2 z 2 (r(ρ, z) -1) 2 We have lim ||(ρ,z)||→∞ ∆(r(ρ, z)) Σ2 (ρ, z) Π(ρ, z) = 1. 2. By (3.2.25), ∀(ρ, z) ∈ B, r(ρ, z) = r(ρ, -z).
Therefore, ∀ρ > 0, W K (ρ, •) and X K (ρ, •) are even.

3. Let (ρ, z) ∈ B. Then,

E K ℓz (ρ, z) = - W K (ρ, z) X K (ρ, z) ℓ z + ρ X K (ρ, z)) ℓ 2 z + X K (ρ, z) = 2dℓ z r(ρ, z) Π(ρ, z) + ρ X K (ρ, z)) ℓ 2 z + X K (ρ, z). spacetime
We show that there exists a neighbourhood of H , say H ⊂ B H , such that ∀dℓ z ≤ 0, E K ℓz is negative on H . By Lemma 9, we have the following asymptotics for X K near the horizon

X H : H → R with X H (0, z) > 0 such that X(ρ, z)| H = X H (ρ 2 , z).
Moreover the function (ρ, z) → r(ρ, z) Π(ρ, z) is smooth and positive on B H . Therefore, E K ℓz extends smoothly to B H . Now we make a first order Taylor expansion for E K ℓz around (0, z) with |z| < γ: ∀ρ ≥ 0 small,

E K ℓz (ρ, z) = E K ℓz (0, z) + ρ∂ ρ E K ℓz (0, z) + O(ρ 2
). We compute:

E K ℓz (0, z) = 2dℓ z r H Π(0, z) = dℓ z 2r H and ∂ ρ E K ℓz (0, z) = 1 X H (0, z)) ℓ 2 z + X H (0, z) + 2dℓ z ∂ ρ r(0, z) Π(0, z) -r H ∂ ρ Π(0, z) 16r 4 H .
We have

∂ ρ r(0, z) = 0 and ∂ ρ Π(0, z) = 8r 2 H . Hence ∂ ρ r(0, z) Π(0, z) -r H ∂ ρ Π(0, z) = -8R 2 H and ∂ ρ E K ℓz (0, z) > 0. Now, we choose ρ > 0 such that dℓ z 2r H + ρ∂ ρ E K ℓz (0, z) < 0.

Trapped timelike future-directed geodesics

A full classification of timelike future-directed geodesics in Kerr can be achieved using the integrability of the geodesics equation in BL coordinates (see Proposition 18). A priori, the nature of the orbits then depends also on the Carter constant Q. In stationary and axisymmetric spacetimes, the geodesic motion does not necessarily form an integrable Hamiltonian system since there is no generalisation of Q and there are only three constants of motion E, L z and m. However, since only an open set of trapped non-spherical orbits is relevant to our work, we will determine sufficient conditions on (ε, ℓ z ) which are independent of Q and on the precise initial position (ρ(0), z(0)) for a trajectory to be trapped. This will allow us to construct an open subset of parameters (ε, ℓ z ) on which the distribution function f will be supported. We begin by recalling from Proposition 18 the necessary and sufficient conditions for a timelike future-directed orbit to be trapped and non-spherical. Let γ : I ∋ 0 → O be a timelike future-directed geodesic with constants of motion (ε, ℓ z ) and let γ its projection in B. Then γ is trapped if and only if one of the following cases occur: 

ℓ z = 4 1. ε ∈]ε + min , ε - min ], ℓ z ∈] lmin (ε), ℓ + lb (ε)[ and γ(0) ∈ A K,abs (ε, ℓ z ) ∩ (]ρ + (ε, ℓ z ), ρ K 0 (ε, ℓ z )[×]γ -z+ (ε, ℓ z ), γ[) ∪ A K,abs (ε, ℓ z ) ∩ (]ρ + (ε, ℓ z ), ρ K 0 (ε, ℓ z )[×] -γ, γ + z+ (ε, ℓ z )[) , 2. ε ∈]ε + min , ε - min ], ℓ z ∈]ℓ + lb (ε), ℓ + ub (ε)[ and γ(0) ∈ A K,trapped (ε, ℓ z ), 3. ε ∈]ε - min , 1[, ℓ z ∈]ℓ - ub (ε), ℓ - lb (ε)∪]ℓ + lb (ε), ℓ + ub (ε)[ and γ(0) ∈ A K,trapped (ε, ℓ z ), 4. ε ∈]ε - min , 1[, ℓ z ∈]ℓ - lb (ε), ℓ + lb (ε)[ and γ(0) ∈ A K,abs (ε, ℓ z ) ∩ (]ρ 1 (ε, ℓ z ), ρ K 0 (ε, ℓ z )[×]γ -z1 (ε, ℓ z ), γ[) ∪ A K,abs (ε, ℓ z ) ∩ (]ρ 1 (ε, ℓ z ), ρ K 0 (ε, ℓ z )[×] -γ, -γ + z1 (ε, ℓ z ), π[) ,
where

(ρ + (ε, ℓ z ), z+ (ε, ℓ z )) := ( ∆(r + (ε, ℓ z )) sin(θ 1 (ε, ℓ z )), (r + (ε, ℓ z ) -1) cos(θ 1 (ε, ℓ z )))
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and (ρ 1 (ε, ℓ z ), z1 (ε, ℓ z )) := ( ∆(r 1 (ε, ℓ z )) sin( θ1 (ε, ℓ z )), (r 1 (ε, ℓ z ) -1) cos( θ1 (ε, ℓ z )))
In particular, if γ is a timelike future-directed geodesic with constants of motion (ε, ℓ z ) ∈ A bound , where A bound is defined by (3.3.125) (see Figure 3.310), then γ is either trapped or plunging. Moreover, the zero velocity curve associated to γ, Z K (ε, ℓ z ), has two connected components. Indeed, by Lemma 17, we have

Z K (ε, ℓ z ) = Z K,abs (ε, ℓ z ) ∪ Z K,trapped (ε, ℓ z )
where Z K,abs (ε, ℓ z ) is diffeomorphic to R and Z K,trapped (ε, ℓ z ) is diffeomorphic to S 1 .

In the following section, we will reparameterize12 Z K (ε, ℓ z ) for (ε, ℓ z ) ∈ A bound .

Reparameterization of the zero velocity curves associated to trapped timelike future-directed geodesics

Let γ be a timelike future-directed geodesic with constants of motion (ε, ℓ z ) ∈ A bound and let γ be its projection in B. We recall that the allowed region for γ has two connected components A K,abs (ε, ℓ z ) and A K,trapped (ε, ℓ z ) bounded respectively by Z K,abs (ε, ℓ z ) and Z K,trapped (ε, ℓ z ). Since Z K,abs (ε, ℓ z ) and Z K,trapped (ε, ℓ z ) are one-dimensional manifolds, we will construct atlases

(Φ K,abs (ε,ℓz) , I (ε,ℓz) ⊂ R) and (Φ K,trapped (ε,ℓz),i , I (ε,ℓz),i ) i=1•••i 0 for Z K,abs (ε, ℓ z ) and Z K,trapped (ε, ℓ z )
respectively. This will allow us to see locally the solutions of the equation

ε = E K ℓz (ρ, z). (3.3.148)
as the graph of smooth functions. As a consequence, the problem of finding solutions to Equation (3.3.148) on B is equivalent to writing locally ρ as a function of z or z as a function of ρ. This representation of the solutions will help us to formulate the stability result for trapped non-spherical timelike future-directed geodesics in the following section.

To this end, we begin with the following lemma Lemma 44. ∀(ε, ℓ z ) ∈ A bound , we have 

Z K,trapped (ε, ℓ z ) ⊂ [ρ K 1 (ε, ℓ z ), ρ K 2 (ε, ℓ z )] × [-z K max (ε, ℓ z ), z K max (ε, ℓ z )] where ρ K i (ε, ℓ z )
K max (ε, ℓ z ) is defined by z K max (ε, ℓ z ) := (r(ε, ℓ z ) -1) cos θ <1 max (ε, ℓ z ) (3.3.149)
where r(ε, ℓ z ) is defined in Lemma 40 and cos θ

<1 max (ε, ℓ z ) is given by (3.3.114). Moreover, ∀(ε, ℓ z ) ∈ A bound , the equation (3.3.148) with z = ±z K max (ε, ℓ z ) admits a unique solution ρ max (ε, ℓ z ) in the region [ρ K 1 (ε, ℓ z ), ρ K 2 (ε, ℓ z )],
given by

ρ max (ε, ℓ z ) = ∆(r(ε, ℓ z )) sin θ <1 max (ε, ℓ z ). (3.3.150)
Proof. We recall from Proposition 17 that where r 1 tr , r 2 tr and θ tr are given by (3.3.120), (3.3.121) and (3.3.122) respectively. Moreover, the latter functions verify

Z K,trapped (ε, ℓ z ) = Graph r 1 tr (ε, ℓ z , q(•)) ∪ Graph r 2 tr (ε, ℓ z , q(•)) ∪ Graph (θ tr (ε, ℓ z , q(•))) ∪ Graph (π -θ tr (ε, ℓ z , q(•))) ,
• r 1 tr (ε, ℓ z , q(•)) has a global minimum at r K 1 (ε, ℓ z ) and r 1 tr (ε, ℓ z , q(θ <1 max (ε, ℓ z ))) = r 1 tr (ε, ℓ z , q(π -θ <1 max (ε, ℓ z ))) = r(ε, ℓ z ). Therefore, Graph r 1 tr (ε, ℓ z , q(•)) ⊂ r K 1 (ε, ℓ z ), r+ (ε, ℓ z ) × θ <1 max (ε, ℓ z ), π -θ <1 max (ε, ℓ z ) .
• r 2 tr (ε, ℓ z , q(•)) has a global maximum at r K 2 (ε, ℓ z ) and

r 2 tr (ε, ℓ z , q(θ <1 max (ε, ℓ z ))) = r 2 tr (ε, ℓ z , q(π -θ <1 max (ε, ℓ z ))) = r(ε, ℓ z ), Thus, Graph r 2 tr (ε, ℓ z , q(•)) ⊂ r(ε, ℓ z ), r K 2 (ε, ℓ z ) × θ <1 max (ε, ℓ z ), π -θ <1 max (ε, ℓ z ) .
By monotonicity properties of ℓ + ub and ℓ + lb (see Lemma 30), we have

ℓ + lb (ε i,+ 1 ) < ℓ + lb (ε) < ℓ + ub (ε i,+ 2 ) ℓ + ub (ε i,+ 1 ) < ℓ + ub (ε) < ℓ + ub (ε i,+ 2 ).
Therefore, ℓ i,+ 1 and ℓ i,+ 2 verify

ℓ + lb (ε i,+ 1 ) < ℓ + lb (ε 2 ) < ℓ i,+ 1 < ℓ i,+ 2 < ℓ + lb (ε) < ℓ + ub (ε i,+ 1 ).
Remark 29. In the remaining of our work, we will suppose that B bound is included in one of the product intervals

[ε i,± 1 , ε i,± 2 ] × [ℓ i,± 1 , ℓ i,± 2 
]. The general case can be dealt by a partition of unity argument.

We shall henceforth assume that B bound has the following form

B bound := B - bound ∪ B + bound (3.3.153)
where B - bound and B + bound are defined by

B ± bound := [ε ± 1 , ε ± 2 ] × [ℓ ± 1 , ℓ ± 2 ]
where ε i,± j and ℓ i,± j satisfy

ε ± min (d) < ε ± 1 < ε ± 2 < 1 , ℓ lb (ε + 2 ) < ℓ + 1 < ℓ + 2 < ℓ ub (ε + 1 ) and ℓ ub (ε - 1 ) < ℓ - 1 < ℓ - 2 < ℓ lb (ε - 2 ). (3.3.154)
In the remaining of this section, we omit the ± in order to lighten the expressions. We state the following lemma Lemma 46. Let (ε, ℓ z ) ∈ B bound and let ρ K i (ε, ℓ z ), i ∈ {0, 1, 2} be the solutions of the equation

E K ℓz (ρ, 0) = ε such that ρ K 0 (ε, ℓ z ) < ρ K 1 (ε, ℓ z ) < ρ K 2 (ε, ℓ z ). Then, 1. ∀ε ∈ [ε 1 , ε 2 ], • ρ K 0 (ε, •) decreases monotonically on [ℓ 1 , ℓ 2 ]. • ρ K 1 (ε, •) increases monotonically on [ℓ 1 , ℓ 2 ]. • ρ K 2 (ε, •) decreases monotonically on [ℓ 1 , ℓ 2 ]. 2. ∀ℓ z ∈ [ℓ 1 , ℓ 2 ], • ρ K 0 (•, ℓ z ) decreases monotonically on [ε 1 , ε 2 ]. • ρ K 1 (•, ℓ z ) increases monotonically on [ε 1 , ε 2 ]. • ρ K 2 (•, ℓ z ) decreases monotonically on [ε 1 , ε 2 ].
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Proof. First of all, we recall from Proposition 20 that E K ℓz (•, 0) admits two critical points: a maximum at ρ s (ℓ z ) and a minimum at ρ s (ℓ z ). It follows that

• E K ℓz (•, 0) is monotonically increasing on ]0, ρ s (ℓ z )[, • E K ℓz (•, 0) is monotonically decreasing on ]ρ s (ℓ z ), ρ m (ℓ z )[, • E K ℓz (•, 0) is monotonically increasing on ]ρ m (ℓ z ), ∞[. Moreover, ∀ρ > 0, E K • (ρ, 0) is monotonically increasing on ]ℓ + 1 , ℓ + 2 [
. Furthermore, we have

ρ K 0 (ε, •) < ρ s (ℓ z ) < ρ K 1 (ε, ℓ z ) < ρ m (ℓ z ) < ρ K 2 (ε, ℓ z )
and

∂ρ K i ∂ε (ε, ℓ z ) = 1 ∂E K ℓz ∂ρ (ρ K i (ε, ℓ z ), 0) and ∂ρ K i ∂ℓ z (ε, ℓ z ) = - ∂E K ℓz ∂ℓz (ρ K i (ε, ℓ z ), 0) ∂E K ℓz ∂ρ (ρ K i (ε, ℓ z ), 0)
. This yields the result.

Now, we state the following lemma

Lemma 47. There exists η > 0 such that ∀(ε, ℓ z ) ∈ B bound , we have

ρ K 1 (ε, ℓ z ) -ρ K 0 (ε, ℓ z ) > 2η. Proof. Let (ε, ℓ z ) ∈ B bound . Then, ε ∈ [ε 1 , ε 2 ] and ℓ z ∈ [ℓ 1 (ε), ℓ 2 (ε)] where ε min (d) < ε 1 < ε 2 < 1 and ℓ lb (ε) < ℓ 1 (ε) < ℓ 2 (ε) < ℓ ub (ε). By monotonicity properties of ρ K i , we have ∀ε ∈ [ε 1 , ε 2 ], ∀ℓ z ∈ [ℓ 1 (ε), ℓ 2 (ε)] ρ K 1 (ε, ℓ z ) -ρ K 0 (ε, ℓ z ) ≥ ρ K 1 (ε, ℓ 1 (ε)) -ρ K 0 (ε, ℓ 1 (ε)) ≥ min [ε 1 ,ε 2 ] ρ K 1 (ε, ℓ 1 (ε)) -ρ K 0 (ε, ℓ 1 (ε)) =: 2η.
By compactness and regularity of ρ K 1 and ρ K 0 ,

η := 1 2 ρ K 1 (ε 0 , ℓ 1 (ε 0 )) -ρ K 0 (ε 0 , ℓ 1 (ε 0 )) for some ε 0 ∈ [ε 1 , ε 1 ].
In order to prove that η > 0, it suffices to note that ℓ 1 (ε 0 ) > ℓ lb (ε 0 ) so that ρ K 0 and ρ K 1 do not coincides (recall that this case only occurs when ℓ 1 (ε 0 ) = ℓ lb (ε 0 )). In particular, we have:

ρ K 1 (ε 0 , ℓ 1 (ε 0 )) > ρ K 0 (ε 0 , ℓ 1 (ε 0 )).
Consequently, the quantities

ρ K 0,max := max B bound ρ K 0 (ε, ℓ z ) , ρ K 1,min := min B bound ρ K 1 (ε, ℓ z ) and ρ K 2,max := max B bound ρ K 2 (ε, ℓ z ) (3.3.155)
are well-defined. and we have

ρ K 1,min -ρ K 0,max > 2η. (3.3.156)
Now, we claim that spacetime Lemma 49. We have

B = B abs ∪ (∪ i=1•••5 B i ) .
Now, we introduce the following functions ρ 0 abs (ε, ℓ z , θ) := ∆(r 0 abs (ε, ℓ z , θ)) sin θ, z 0 abs (ε, ℓ z , θ) := (r 0 abs (ε, ℓ z , θ) -1) cos θ, 

(3.3.163) ρ 1 tr (ε, ℓ z , θ) := ∆(r 1 tr (ε, ℓ z , θ)) sin θ, z 1 tr (ε, ℓ z , θ) := (r 1 tr (ε, ℓ z , θ) -1) cos θ, (3.3.164) ρ 2 tr (ε, ℓ z , θ) := ∆(r 2 tr (ε, ℓ z , θ)) sin θ, z 2 tr (ε, ℓ z , θ) := (r 2 tr (ε, ℓ z , θ) -1) cos θ, (3.3 
• z 0 abs (ε, ℓ z , •), z 1 tr (ε, ℓ z , •) and z 2 tr (ε, ℓ z , •) are monotonically decreasing on ]0, π[, • ρ tr (ε, ℓ z , •) is monotonically increasing on ]r K 1 (ε, ℓ z ), r K 2 (ε, ℓ z )[. Proof.
1. First of all, it is easy to see that z 0 abs (ε, ℓ z , •) is smooth on ]0, π[ and ∀θ ∈]0, π[, we have

∂z 0 abs ∂θ (ε, ℓ z , θ) = ∂r 0
abs ∂θ (ε, ℓ z , θ) cos θ -(r 0 abs -1) sin θ.

By the monotonicity properties of r 0 abs (ε, ℓ z , •) (decreasing on 0, π 2 and increasing on π 2 , π ), the first term of the right hand side is always negative. Moreover, the second term is always negative on ]0, π[. Therefore, z 0 abs (ε, ℓ z , •) is monotonically decreasing on ]0, π[ and we can write write θ in terms of z. The same analysis can be made for

z 1 tr (ε, ℓ z , •) and z 2 tr (ε, ℓ z , •). 2. Since θ tr (ε, ℓ z , •) is smooth, ρ tr (ε, ℓ z , •) is smooth on ]r K 1 (ε, ℓ z ), r K 2 (ε, ℓ z )[ and we have ∂ r ρ tr (ε, ℓ z , r) = ∆ ′ (r) 2 ∆(r) sin θ tr (ε, ℓ z , r) + ∆(r)∂ r θ tr (ε, ℓ z , r) cos θ tr (ε, ℓ z , r). Since θ tr (ε, ℓ z , •) is monotonically increasing on ]r K 1 (ε, ℓ z ), r(ε, ℓ z )[ and θ tr (ε, ℓ z , r) ∈ θ <1 max (ε, ℓ z ), π 2 , the second term is always positive. Therefore, ρ tr (ε, ℓ z , •) is monotonically increasing on ]r K 1 (ε, ℓ z ), r K 2 (ε, ℓ z )
[ and we can write r in terms of ρ.

Now, we introduce the following functions

Definition 33. Let (ε, ℓ z ) ∈ A bound . 1. Φ K,abs (ε,ℓz) :] -γ, γ[ →]0, ρ K 0 (ε, ℓ z )] is defined by Φ K,abs (ε,ℓz) (z) := ρ 0 abs (ε, ℓ z , (z 0 abs (ε, ℓ z , •)) -1 (z)), (3.3.167) 2. Φ K,i ( 
ε,ℓz) are defined in the following way

Φ K,1 (ε,ℓz) : I 1 (ε,ℓz) :=]ρ 1 (ε, ℓ z ), ρ 2 (ε, ℓ z )[ →]z max (ε, ℓ z ), z max (ε, ℓ z )], Φ K,2 (ε,ℓz) : I 2 (ε,ℓz) :=]ρ 1 (ε, ℓ z ), ρ 2 (ε, ℓ z )[ → [-z max (ε, ℓ z ), -z max (ε, ℓ z )[ Φ K,3 (ε,ℓz) : I 3 (ε,ℓz) :=] -zmax (ε, ℓ z ), zmax (ε, ℓ z )[ →]ρ 1 (ε, ℓ z ), ρ K 1 (ε, ℓ z )], Φ K,4 (ε,ℓz) : I 4 (ε,ℓz) :=] -zmax (ε, ℓ z ), zmax (ε, ℓ z )[ →]ρ 2 (ε, ℓ z ), ρ K 2 (ε, ℓ z )], (3.3.168) where Φ K,1 (ε,ℓz) (ρ) := z tr (ε, ℓ z , (ρ tr (ε, ℓ z , •)) -1 (ρ)), Φ K,2 (ε,ℓz) (ρ) := -Φ K,1 (ε,ℓz) (ρ), Φ K,3 (ε,ℓz) (z) := ρ 1 tr (ε, ℓ z , (z 1 tr (ε, ℓ z , •)) -1 (z)), Φ K,4 (ε,ℓz) (z) := ρ 2 tr (ε, ℓ z , (z 2 tr (ε, ℓ z , •)) -1 (z)).
(3.3.169)

Following Lemma 50, we obtain Lemma 51. ∀(ε, ℓ z ) ∈ A bound , the functions Φ K,abs ε,ℓz and Φ K,i ε,ℓz are well-defined and smooth on ]-γ, γ[ and I i (ε,ℓz) respectively. Moreover, 1. Φ K,abs (ε,ℓz) admits a unique critical point (a global maximum) on ]γ, γ[ given by ρ 0 abs (ε, ℓ z ), reached at the point z = 0.

Φ K,1

(ε,ℓz) admits a unique critical point (a global maximum) on I 1 (ε,ℓz) given by z max (ε, ℓ z ), reached at the point ρ = ρ max (ε, ℓ z ).

Φ K,2

(ε,ℓz) admits a unique critical point (a global minimum) on I 2 (ε,ℓz) given by -z max (ε, ℓ z ), reached at the point ρ = ρ max (ε, ℓ z ).

Φ K,3

(ε,ℓz) admits a unique critical point (a global minimum) on I 3 (ε,ℓz) given by ρ 1 abs (ε, ℓ z ), reached at the point z = 0.

Φ K,4

(ε,ℓz) admits a unique critical point (a global maximum) on I 4 (ε,ℓz) given by ρ 2 abs (ε, ℓ z ), reached at the point z = 0.

Now, we use the previous results to obtain

Proposition 21. ∀(ε, ℓ z ) ∈ B bound , 1. there exists Φ K,abs (ε,ℓz) :] -γ, γ[ →]0, ρ K 0 (ε, ℓ z )] such that Z K,abs (ε, ℓ z ) = Gr Φ K,abs (ε,ℓz) ,
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I i (ε,ℓz) → R, i = 1 • • • 4 such that Z K,trapped (ε, ℓ z ) = i=1•••4 Gr Φ K,i (ε,ℓz) ,
where Φ K,abs (ε,ℓz) and Φ K,i (ε,ℓz) are given by Definition 33. To summarise, instead of solving the equation on B, we solve it on Bi and Babs and on each of these region, the solutions are functions Therefore, the problem of finding solutions on B to the equation

E K ℓz (ρ, z) = ε (3.3.170)
is equivalent to the problem of finding solutions on B i and on B abs . Given (ε, ℓ z ) ∈ B bound , the latter is equivalent to the problem of finding a function defined on I i (ε,ℓz) or I abs (ε,ℓz) . Hence, by the above proposition, the solutions are given by Φ K,abs (ε,ℓz) in B abs and by Φ K,i (ε,ℓz) in B i . The aim of this section is to prove that the region B trapped ⊂ B where geodesic motion occurs stay away from ∂B. From the previous section, we recall that trapped timelike future-directed orbits occur when the associated zero velocity curve has a compact connected component, Z K,trapped ⊂ B.

In this case, the orbit is confined in the region bounded by the latter curve. We note that the zero velocity curves are only defined in B. More precisely, the effective potential energy is only defined in the exterior region of the spacetime minus the axis of symmetry. However, since we are interested in metrics which are at least C 2 -extendable to the horizon and the axis of symmetry, the boundaries of B, we need to consider the extension of Z K (ε, ℓ z ) in B associated to timelike future-directed geodesics in order to determine B trapped ⊂ B. Given (ε, ℓ z ) ∈ A bound , Z K (ε, ℓ z ) may have accumulation points on the boundary, namely on the poles. However, in the case of the second connected component of Z K (ε, ℓ z ), that is Z K,trapped (ε, ℓ z ), the accumulation points are distincts from ∂B and thus from the poles. Before we state the precise result of this section, we recall the definition of

B B := B A ∪ B H ∪ B N ∪ B S .
where

B H := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| < 1 + 1 b β , B A := (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| > 1 - 1 b β . B N := (ρ, z) ∈ B, z = β, ρ 2 + (z -β) 2 < β c ∪ (s, χ) ∈ B /0 ≤ s, χ < β e 1 4
.

B N := (ρ, z) ∈ B, z = -β, ρ 2 + (z + β) 2 < β c ∪ (s ′ , χ ′ ) ∈ B /0 ≤ s ′ , χ ′ < β e 1 4
.

for 0 < e < c < a < b.

We state the following result Lemma 52. Let B bound ⊂⊂ A bound . Then, we can choose 0 < e < c uniform in (ε,

ℓ z ) such that ∀(ε, ℓ z ) ∈ B bound , B N , B S ∩ Z K,trapped (ε, ℓ z ) = ∅. (3.3.171)
Moreover, ∀(ε, ℓ z ) ∈ A bound , the accumulation points for Z K,abs (ε, ℓ z ) are p N := (0, β) and p S := (0, -β).

Proof.

Now, we define the domain of trapped timelike geodesics, B ±,trapped (a, M ), which depends only on (a, M ) by the following proposition Proposition 22 (Domain of trapped geodesics in a sub-extremal Kerr spacetime). Let (a, M ) be such that 0 < |a| < M . Then, there exists ρ mb,± (a, M ) > 0

∀(ε, ℓ z ) ∈ A bound ρ K,± 1 (ε, ℓ z , a, M ) > ρ mb,± (a, M ) > 0,
where ρ K,± 1 (ε, ℓ z , a, M ) is the second largest root of the equation

E ℓz (ρ, 0) = ε
Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime and ρ mb,± (a, M ) := ∆ r ± mb (a, M ) , r ± mb (a, M ) := 2M ∓ a + 2 M 2 ∓ aM . Hence, we set B ±,trapped (a, M ) := ρ mb,± (a, M ), ∞ × R Remark 31. We recall that r ± mb (a, M ) is defined to be the unique solution of the equation

Φ ± (r) = 1,
where Φ ± is defined by (3.3.41).

Proof. Let (ε, ℓ z ) ∈ A bound and recall that d = a M . Then, by monotonicity properties of ρK,± 1 13 , proved in Lemma 46, we have

ρK,± 1 (ε, ℓ z , d) > ρK,± 1 (ε, ℓ ub (ε, d), d) = ρK,± s (ℓ ± ub (ε, d), d) > ρK,± s (ℓ ± ub (1, d), d) = ∆ r± mb (d) .
It remains to show that ρ mb,± (a, M ) > 0 for all (a, M ) such that 0 < |a| < M . By the definition of ρ mb,± (a, M ), it is easy to see that ρ For later purposes, in particular the study of regularity of the matter terms, It will be convenient to adjust the definition of B H and B A so that the support of Vlasov matter remain in the region B A . More precisely, we will show the following Lemma 53. There exists b > 0 such that ∀(ε, ℓ z ) ∈ A bound , we have

B H ∩ Z K,trapped (ε, ℓ z ) = ∅ and Z K,trapped (ε, ℓ z ) ⊂ B A .
Proof. First of all, we claim that ∀d ∈]0,

1[ ρmb,-(d) > 1 -d 2 and ρmb,+ (d) > 1 -d 2 .
Therefore,

∀(ε, ℓ z ) ∈ A bound , ρK,± 1 (ε, ℓ z ) > ρmb,± (d) > 1 + 1 b 1 -d 2 .
13 Recall that ρ is defined by ρ = M ρ.

Remark 32. We note that, by Proposition 22, in a sub-extremal Kerr black hole, all trapped timelike geodesics lie in B ±,trapped (a, M ). However, in the limiting case (extremal Kerr), B +,trapped (a, M ) coincides with the whole exterior region, B. As for, B -,trapped (a, M ), it is located at approximatively 4.83M away from the horizon (See proof of Proposition 22).

In this work, we use the fact that trapped timelike geodesics lie away from the horizon and thus we consider only the sub extremal case. In fact, we will need a non-trivial lower bound on the inner boundary of the support of the Vlasov matter. In the extremal case, one possibility could be to consider only orbits which are retrograde.

One can wonder what is the location of trapped non-spgerical orbits with respect to the ergoregion E . Recall that the ergosurface, the boundary of E , denoted by S , is defined to be the set of points (ρ, z) ∈ B such that g(T, T ) = 0.

In a sub-extremal Kerr exterior 0 < d < 1, the latter is equivalent to the set of points (ρ, z) ∈ B such that

V K (ρ, z) = 0.
Direct computations lead to

S = (ρ, z) ∈ B : z 2 = 1 - ρ d 1 -d 2 1 - ρ d .
We refer to Figure 3.313 for the shape of S . On the other hand, we have

• ∀d ∈]0, 1[, ρmb,-(d) > d. 
•

d 0 := 2( √ 2 -1) is the unique solution in ]0, 1[ to ρmb,+ (d) = d.
Note that S intersect the equatorial plane uniquely at the point ρ eq = d. Therefore, it is straightforward to see that

B -,trapped (a, M ) ∩ E = ∅. (3.3.172) and B +,trapped (a, M ) ∩ E = ∅ if and only if d < d 0 . (3.3.173) 
We refer to Figure 3.312 to visualise the intersection when d > d 0 .

Remark 33.

-Recall that a necessary condition for energy extraction from the black hole and thus a negative energy ε is that dℓ z < 0 and g tt > 0, which means that retrograde orbits that lie inside the ergoregion have negative energies. This gives another explanation for (3.3.172).

-Finally, we note that when computing the matter terms in 3.8.2.1, we will have to take into account the ergoregion. In this case, we will have to split the matter sources into a term supported in the ergoregion and another which is supported in the remaining region of the spacetime exterior.

Reduced Einstein-Vlasov system

In this section, we compute the components of the energy momentum tensor and we reduce the Einstein equations with a source arising from a Vlasov field to a system of elliptic equations. 

Assumptions and General Framework

Recall from Section 3.2.1.1 the metric ansatz considered throughout this work:

g = -V dt 2 + 2W dtdφ + Xdφ 2 + e 2λ dρ 2 + dz 2 , (3.4.1) 
where V, W, X, λ : B → R and B = {(ρ, z) : ρ > 0 , z ∈ R} . Following the work [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF], we replace the metric components V, W, X, λ by (X, W, θ, σ, λ), called "metric data", which reduces under symmetries in a nice manner and where θ and σ are given by (3.2.3) and (3.2.4) respectively. Moreover, we assume

Ansatz for the distribution function

We are interested in stationary and axisymmetric distribution functions. Therefore, we assume that f : Γ 1 → R + takes the form 

f (t, φ, ρ, z, φ, v ρ , v φ , v z ) = Φ(ε, ℓ z )Ψ η (ρ, (ε, ℓ z ), (X, W, σ)) (3.
• Φ : R × R → R + is a C 2 function
and is supported on some compact set B bound of A bound .

Without loss of generality (See Lemma 45), we assume that B bound has the form

B bound := B - bound ∪ B + bound
where B - bound and B + bound are defined by

B ± bound := [ε ± 1 , ε ± 2 ] × [ℓ ± 1 , ℓ ± 2 ] where ε i,± j and ℓ i,± j satisfy ε ± min (d) < ε ± 1 < ε ± 2 < 1 , ℓ lb (ε + 2 ) < ℓ + 1 < ℓ + 2 < ℓ ub (ε + 1 ) and ℓ ub (ε - 1 ) < ℓ - 1 < ℓ - 2 < ℓ lb (ε - 2 ). (3.4.3)
• η > 0 is a constant that will be specified later (see Section 3.6),

Ψ η (•, •, h) ∈ C ∞ (]0, ∞[×A admissible , R + )
is a cut-off function depending on the metric data h := (X, W, σ), such that

Ψ η (•, (ε, ℓ), h) :=    χ η (• -ρ 1 (h, (ε, ℓ z ))), (ε, ℓ z ) ∈ B bound , 0 (ε, ℓ z ) / ∈ A bound , (3.4 

.4) spacetime

where ρ 1 is a positive function of (h, ε, ℓ z ) which will be defined later 14 and

χ η ∈ C ∞ (R, R + ) is a cut-off function such that χ η (s) =      1 s ≥ 0, ≤ 1 s ∈ [-η, 0], 0 s < -η. (3.4.5) 
• ε and ℓ z are defined by (3.2.9) and (3.2.10).

Reparametrization of the fibre Γ x and the components of the energymomentum tensor

In this section, we will compute the components of the energy momentum tensor T αβ provided g has the form (3.2.2) and f has the form (3.4.2). First of all, we recall the definition of Ω:

Ω = ∂ ∂t + ω ∂ ∂φ where ω = - W X ,
the timelike vector field defined on B which was fixed in Section 3.2.1.5 for the time orientation.

Recall that by definition, if c α is the coordinate basis associated to the spacetime coordinates, then any tangent vector can be written as

v = v α c α .
The v α are then called the conjugate coordinates to the spacetime coordinates. Now let (v t , v φ , v ρ , v z ) be the conjugate coordinates to the spacetime coordinates (t, φ, ρ, z). Let x = (t, φ, ρ, z) ∈ B and denote by

c 0 = ∂ ∂t , c 1 = ∂ ∂φ , c 2 = ∂ ∂ρ , c 3 = ∂ ∂z
the canonical basis determined by the local coordinates. We consider the orthonormal frame defined by

e 0 := X σ 2 Ω , e 1 := 1 X ∂ ∂φ , e 2 := e -λ ∂ ∂ρ , e 3 := e -λ ∂ ∂z .
Let p α be the corresponding coordinates. Therefore:

(v α ) = G(p α ) where G =         √ X σ 0 0 0 ω √ X √ σ 1 √ X 0 0 0 0 e -λ 0 0 0 0 e -λ        
In the orthonormal frame, the mass shell condition is given by

-(p 0 ) 2 + (p 1 ) 2 + (p 2 ) 2 + (p 3 ) 2 = -1.
14 ρ1 is defined by (3.6.14). It can be seen as the perturbation of ρ 1 K (ε, ℓz), the second largest root of the equation

E K ℓz (ρ, 0) = 0.
Now, we can express the p 0 in terms of the remaining p i :

p 0 = 1 + |p| 2 .
We recall the energy-momentum tensor associated to the metric g and the distribution function f ,

∀(t, φ, ρ, z) ∈ M T αβ (t, φ, ρ, z) = Γx v α v β f (t, φ, ρ, z, v ρ , v φ , v z ) dvol x (v),
where Γ x is given by

Γ x := v α ∈ T x M : g αβ v α v β = -1, v 0 > 0 ,
where we recall that the condition v 0 > 0 is equivalent to v is future-pointed. Thus, after a first change of variables in the fibre Γ x , the energy momentum tensor is given by

T αβ [f ] = R 3 v α (p)v β (p)f (x, v(p)) dp 1 dp 2 dp 3 1 + |p| 2 .
We will make a second change of variables in order to simplify the expressions of the energy momentum tensor components. To this end, we compute ε and ℓ z in terms of the p i s:

ε = -v 0 = σ √ X 1 + |p| 2 1 2 + ωℓ z and ℓ z = √ Xp 1 .
From the mass shell condition, we have

e 2λ (v ρ ) 2 + (v z ) 2 = J(ρ, z, ε, ℓ z ), (3.4.6) 
where J is given by

J(ρ, z, ε, ℓ z ) = -1 + X σ 2 ε 2 + 2W σ 2 εℓ z - V σ 2 ℓ 2 z .
We recall that σ 2 = XV + W 2 . We introduce the polar variables

( √ J, ϑ) ∈ [0, ∞[×[0, 2π] in the following way: v 2 = e -λ √ J sin ϑ, v 3 = e -λ √ J cos ϑ.
Therefore,

p 2 = √ J sin ϑ, p 3 = √ J cos ϑ.
Now we make the change of variables from (p 1 , p 2 , p 3 ) to (p 1 , √ J , ϑ). We have

dp 1 dp 2 dp 3 1 + |p| 2 = √ J 1 + J + (p 1 ) 2 d √ Jdϑdp φ .
Therefore,

T αβ [f ] = R + 2π 0 R v α (p)v β (p)f (x, v(p)) √ J 1 + J + (p 1 ) 2 d √ Jdϑdp 1 . (3.4.7) 
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We make a last change of variables H(ρ, z) : (p 1 , √ J, ϑ) → (E, L, ϑ) defined by

E := ε -ωℓ z = σ √ X 1 + J + (p 1 ) 2 1 2 , L := √ X ρ p 1 . (3.4.8) 
It is easy to see that H(ρ, z) is a smooth diffeomorphism on its image and we have

√ J 1 + J + (p 1 ) 2 dp 1 d √ J dϑ = ρ σ dEdLdϑ.
It remains to compute the domain of the variables E and L, which is the image of above change of variables. From (3.4.8), ∀J ≥ 0, ∀p 1 ∈ R, we have

E ≥ σ √ X .
By straightforward computations, we obtain

J = X σ 2 E 2 -1 - ρ 2 X L 2 . Since J is positive, L satisfies |L| ≤ √ X ρ -1 + X σ 2 E 2 1 2
=: L(E, X, σ, ρ, z).

(3.4.9)

Now we define D(ρ, z) to be the set:

D(ρ, z) := (E, L) : E ≥ σ √ X and |L| ≤ L(E, X, σ, ρ, z) . (3.4.10) 
Therefore, Im H(ρ, z) = D(ρ, z).

By symmetry considerations, we have

T ρρ [f ](ρ, z) = T zz [f ](ρ, z).
Moreover, the only non-vanishing components of T αβ are T tt , T tφ , T φφ , T ρρ and T zz . Now we compute

T tt [f ](ρ, z) = R + 2π 0 R (v 0 (p)) 2 f (x, v(p)) √ J 1 + J + (p 1 ) 2 d √ J dχdp 1 = D(ρ,z) 2π 0 (E + ρωL) 2 Φ(E + ρω, L) ρ σ Ψ η (ρ, (E + ρωL, ρL), (X, W, σ))dEdLdϑ = 2πρ σ D(ρ,z) (E + ρωL) 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.
Here, we used that v 0 (p) = -ε = -(E + ρωL), ℓ z = ρL and the independence of the integrand on ϑ. The components T tt [f ](ρ, z), T tφ [f ](ρ, z) and T φφ [f ](ρ, z) are computed in the same way. As for T ρρ [f ](ρ, z), we have

T ρρ [f ](ρ, z) = R + 2π 0 R (v ρ (p)) 2 f (x, v(p)) √ J 1 + J + (p 1 ) 2 d √ Jdχdp 1 = e 2λ D(ρ,z) 2π 0 J(E, L) sin 2 ϑ ρ σ Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ))dEdLdϑ = πρ σ e 2λ D(ρ,z) X σ 2 E 2 -1 - ρ 2 X L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = πρ σ e 2λ D(ρ,z) L(E, X, σ, ρ, z) 2 -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.
The final expression is obtained by (3.4.9). Hence,

T tt [f ](ρ, z) = 2πρ σ D(ρ,z) (E + ρωL) 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.4.11) 
T tφ [f ](ρ, z) = - 2πρ σ D(ρ,z) ρL (E + ρωL) Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.4.12) 
T φφ [f ](ρ, z) = 2πρ σ D(ρ,z) (ρL) 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.4.13) 
T ρρ [f ](ρ, z) = πρ σ e 2λ D(ρ,z) L(E, X, σ, ρ, z) 2 -L 2 Φ(E+ρωL, ρL)Ψ η (ρ, (E+ρωL, ρL), (X, W, σ)) dEdL, (3.4.14) 
T zz [f ](ρ, z) = πρ σ e 2λ D(ρ,z) L(E, X, σ, ρ, z) 2 -L 2 Φ(E+ρωL, ρL)Ψ η (ρ, (E+ρωL, ρL), (X, W, σ)) dEdL, (3.4.15 
) where L was defined in (3.4.9). It remains to compute the intersection of D(ρ, z) and the support of Φ and Ψ η . This will be done in Section 3.8.2 concerning the regularity of the matter terms.

Static and axisymmetric black holes with matter

In this section, we apply Theorem 1.1 in [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] concerning the modified Carter-Robinson theory. First of all, we recall the following theorem Theorem 17 (O.CHODOSH, Y.SHLAPENTOKH-ROTHMAN). Suppose that (M, g) solves the Einstein equations for some energy-momentum tensor T satisfying

T(T, ∂ ρ ) = T(T, ∂ z ) = T(Φ, ∂ ρ ) = T(Φ, ∂ z ) = 0. (3.4.16)
Then, the metric data (X, W, θ, σ, λ) satisfies the following equations on B = (ρ, z) ∈ R 2 : ρ > 0 :

1. X satisfies 

σ -1 ∂ ρ (σ∂ ρ X) + σ -1 ∂ z (σ∂ z X) = e 2λ (-2T(Φ, Φ) + Tr(T)X) + (∂ ρ X) 2 + (∂ z X) 2 -θ 2 ρ -θ 2 z X , (3. 
∂ ρ (X -1 W )dρ + ∂ z (X -1 W )dz = σ X 2 (θ ρ dz -θ z dρ), (3.4.18) 
3. θ satisfies

dθ = 2σ -1 e2λ (T(Φ, Φ)W -T(Φ, T )X) dρ ∧ dz, (3.4.19) 
as well as

σ -1 ∂ ρ (σ∂ ρ θ) + σ -1 ∂ z (σ∂ z θ) = 2θ ρ ∂ ρ X + 2θ z ∂ z X X (3.4.20)
4. σ satisfies

X -1 exp -2λσ(∂ 2 ρ σ + ∂ 2 z σ) = T T -X -1 W Φ, T -X -1 W Φ -X -2 σ 2 T(Φ, Φ) + X -1 σ 2 Tr(T), (3.4.21) 
5. λ satisfies the following equations at the points where |∂σ| = 0

∂ ρ λ = α ρ - 1 2 ∂ ρ log X, ∂ z λ = α z - 1 2 ∂ z log X, (3.4.22) 
where

((∂ ρ σ) 2 + (∂ z σ) 2 )α ρ = 1 2 (∂ ρ σ)σ T(∂ ρ , ∂ ρ ) -T(∂ z , ∂ z ) + 1 2 (∂ ρ X) 2 -(∂ z X) 2 + (θ ρ ) 2 -(θ z ) 2 X 2 + (∂ ρ σ)(∂ 2 ρ σ -∂ 2 z σ) + (∂ z σ)(∂ 2 ρ,z σ) + (∂ z σ)σ T(∂ ρ , ∂ z ) + 1 2 X -2 ((∂ ρ X)(∂ z X) + (θ ρ )(θ z )) , ((∂ ρ σ) 2 + (∂ z σ) 2 )α z = - 1 2 (∂ z σ)σ T(∂ ρ , ∂ ρ ) -T(∂ z , ∂ z ) + 1 2 (∂ ρ X) 2 -(∂ z X) 2 + (θ ρ ) 2 -(θ z ) 2 X 2 + (∂ ρ σ)((∂ 2 ρ,z σ)) -(∂ z σ)(∂ 2 ρ σ -∂ 2 z σ) + (∂ ρ σ)((∂ 2 ρ,z σ)) + (∂ ρ σ)σ T(∂ ρ , ∂ z ) + 1 2 X -2 ((∂ ρ X)(∂ z X) + (θ ρ )(θ z )) ,
Independent of the behaviour of σ, λ satisfies

2∂ 2 ρ λ + 2∂ 2 z λ = -∂ 2 ρ log X -∂ 2 z log X + σ -1 ((∂ ρ σ) 2 + (∂ z σ) 2 ) + e 2λ Tr(T) -T(∂ ρ , ∂ ρ ) -T(∂ z , ∂ z ) -2X -1 T(Φ, Φ) - 1 2 Tr(T)X e 2λ - 1 2 X -2 ((∂ ρ X) 2 + (∂ z X) 2 + (θ ρ ) 2 + (θ z ) 2 ).
Conversely, if the metric data solves each of these equations, and |∂σ| = 0 on B, then we may recover the metric g defined on M = R × (0, 2π) × B such that (M, g) solves the Einstein equations with energy-momentum tensor T.

In our case, all the assumptions of Theorem 17 are satisfied. Therefore, we apply the latter with the components of the energy momentum tensor given by (3. where F 1 , F 2 , F 3 , F 4 are given by:

F 1 (W, X, σ)(ρ, z) := -e 2λ 2πρ σ D(ρ,z) (X+2(ρL) 2 )Φ(E+ρωL, ρL)Ψ η (ρ, (E+ρωL, ρL), (X, W, σ)) dEdL, (3.4.29) 
F 2 (W, X, σ)(ρ, z) := 2πρ σ X D(ρ,z)
ρLEΦ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL,

F 3 (W, X, σ)(ρ, z) := 2πρ 3 σ X 2 D(ρ,z) L2 -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.4.30) 
F 4 (W, X, σ, λ)(ρ, z) := - 4πe 2λ ρ σ D(ρ,z) X 2 ρ 2 σ 2 E 2 + 1 - X ρ 2 1 + ρ 2 X L 2 Φ(E + ρωL, ρL) Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.4.31) 
.32) Conversely, if the metric data solves each of these equations, and |∂σ| = 0 on B, then we may recover the metric and the distribution function (M, g, f ), solving the Einstein-Vlasov equations.

Proof. We apply Theorem 17 and we compute the components of the energy-momentum tensor. First of all, we have

T ρρ = T zz , T ρz = 0.
Therefore, α ρ and α z do not depend on the the matter terms. Now, we compute

Tr(T) = g αβ T αβ = g tt T tt + 2g tφ T tφ + g φφ T φφ + 2e -2λ T ρρ = 1 σ 2 -XT tt + 2W T tφ + V T φφ + 2e -2λ T ρρ = 2πρ σ 3 D(ρ,z) -X(E + ρωL) 2 -2W ρL(E + ρωL) + V (ρL) 2 + σ 2 L(E, X, σ, ρ) 2 -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, Now we recall that σ 2 = XV + W 2 and L(E, X, σ, ρ) = √ X ρ -1 + X σ 2 E 2 1 2
. We use the latter to obtain

-X(E + ρωL) 2 -2W ρL(E + ρωL) + V (ρL) 2 + σ 2 L(E, X, σ, ρ) 2 -L 2 = -σ 2 .
Therefore,

Tr(T) = - 2πρ σ D(ρ,z) Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL. Now, we compute F 1 (W, X, σ)(ρ, z) = e 2λ -2T φφ + Tr(T)X = -e 2λ 2πρ σ D(ρ,z) (X + 2(ρL) 2 )Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL. F 2 (W, X, σ)(ρ, z) = T φφ W -T φt X = 2πρ σ D(ρ,z) (ρL) 2 W + XρL(E + ρωL) Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = 2πρ σ X D(ρ,z)
ρLEΦ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.

We have used ω := -W X -1 to obtain the latter expression. Now we compute

T T -X -1 W Φ, T -X -1 W Φ -X -2 σ 2 T(Φ, Φ) + X -1 σ 2 Tr(T) = T tt + ω 2 T φφ + 2ωT tφ = 2πρ σ D(ρ,z) (E + ρωL) 2 + (ρωL) 2 -2ρωL(E + ρωL) Φ(E + ρωL, ρL) Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL. = 2πρ σ D(ρ,z) E 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.
Hence,

F 3 (W, X, σ)(ρ, z) = T T -X -1 W Φ, T -X -1 W Φ -X -2 σ 2 T(Φ, Φ) + X -1 σ 2 Tr(T) = 2πρ σ D(ρ,z) E 2 -X -2 σ 2 (ρL) 2 -X -1 σ 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = 2πρ σ D(ρ,z) X -2 σ 2 ρ 2 X 2 ρ 2 σ 2 E 2 -L 2 - X ρ 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = 2πρ 3 σ X 2 D(ρ,z) X ρ 2 X σ 2 E 2 -1 -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = 2πρ 3 σ X 2 D(ρ,z)
L2 (E, X, σ, ρ, z) -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.

Finally, we compute

F 4 (W, X, σ, λ)(ρ, z) = e 2λ Tr(T) -T(∂ ρ , ∂ ρ ) -T(∂ z , ∂ z ) -2X -1 T(Φ, Φ) - 1 2 Tr(T)X e 2λ = 2e 2λ Tr(T) -e -2λ T ρρ -X -1 T φφ = -2e 2λ 2πρ σ D(ρ,z) 1 + 1 2 L2 (E, X, σ, ρ, z) -L 2 + X -1 (ρL) 2 Φ(E + ρωL, ρL) Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL = - 4πe 2λ ρ σ D(ρ,z) X 2 ρ 2 σ 2 E 2 + 1 - X ρ 2 1 + ρ 2 X L 2 Φ(E + ρωL, ρL)
Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL.

Renormalised unknowns and their equations

This section follows closely [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF]. Nonetheless, we detail the computations and the arguments in order to be self contained. spacetime

In order to apply the fixed point theorem in a neighbourhood of a fixed Kerr solution, we introduce new quantities which are normalised with respect to the Kerr metric. This choice of variables was first considered in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] and allows to subtract off the leading order singular behaviour near the axis and the horizon. We begin by defining an adapted Ernst potential, Y : B → R. Let us review the construction in the vacuum case just for comparison.

In vacuum, the twist one-form associated to Φ = ∂ ∂φ vanishes:

dθ = 0.
Therefore, since B is simply connected, there exists a function Y vacuum : B → R, which satisfies

θ = dY vacuum . (3.4.33) 
This leads to a harmonic map system in (X, Y vacuum ) which decouples from the remaining metric data. Moreover, the requirements of asymptotic flatness and regular extensions to the axis and to the horizon lead to boundary conditions for X and Y vacuum . This allows one to determine uniquely (X, Y vacuum ) (See [START_REF] Weinstein | The stationary axisymmetric two-body problem in general relativity[END_REF], [START_REF] Carter | Republication of: Black hole equilibrium states[END_REF]). Now, given (X, Y vacuum ) and the boundary conditions, the rest of the metric components are uniquely determined by quadratures, see Section 1.4.2.2 of the introduction and [70, Chapter 10] for details.

In the presence of matter, the twist one-form is no longer closed. We recall from (3.4.25) that θ

satisfies dθ = 2σ -1 e 2λ F 2 (W, X, σ)(ρ, z)dρ ∧ dz. (3.4.34) 
However, we can still define an "Ernst potential" Y , which will define, together with X a harmonic map system. The idea is to split the twist one-form θ into an Ernst potential piece dY and an other one-form B, defined on B which verifies

dB = 2σ -1 e 2λ F 2 (W, X, σ)(ρ, z)dρ ∧ dz on B. (3.4.35) 
1. We begin by extending the two-form ω ∈ Ω 2 (B) defined by

ω := ω ρz dρ ∧ dz := 2σ -1 e 2λ F 2 (W, X, σ)(ρ, z)dρ ∧ dz
to a two-form ω defined on B so that

ω = ω on B.
First, assume that ω ρz can be extended to a function ω ρz 15 defined on B. Now, let (ξ N , ξ S , 1ξ Nξ S ) be the partition of unity subordinate to

(B N , B S , B A ∪ B H ) and let p ∈ B • If p ∈ (B A ∪ B H ), then ω ρz (p) = ω A ρz (ρ, z) • If p ∈ B N , then ω ρz (p) = ω N ρz (s, χ) • If p ∈ B S , then ω ρz (p) = ω S ρz (s ′ , χ ′ )
where ω A ρz , ω N ρz and ω S ρz are defined on B A ∪ B H , B N and B S respectively. We have

ω(p) = ω ρz (p)dρ ∧ dz = ω ρz (s, χ)(s 2 + χ 2 )ds ∧ dχ ∀p ∈ B N .
Since the coordinate system (s, χ) is defined on B N , we set:

ω(p) := ω N ρz (s, χ)(s 2 + χ 2 )ds ∧ dχ ∀p ∈ B N .
Similarly, we set

ω(p) := ω S ρz (s ′ , χ ′ )((s ′ ) 2 + (χ ′ ) 2 )ds ′ ∧ dχ ′ , ∀p ∈ B S .
Finally, we set

ω(p) := ω ρz (p)dρ ∧ dz, ∀p ∈ B A ∪ B H .
This defines ω on B.

2. In order to construct B, or rather to find the equations for B, we first make the following ansatz:

B := B (A) + ξ N B (N ) + ξ S B (S) (3.4.36) 
where B (N ) , B (S) and B (A) are one-forms that are defined on B N , B S and B A ∪ B H respectively. Therefore, solving the equations for B (N ) , B (S) and B (A) will allow us to determine B. Hence, we determine the equations for B (N ) , B (S) and B (A) based on (3.4.35):

• On B N , we construct B (N ) such that

dB (N ) = ξ N ω.
In the local coordinates (s, χ), we have

B (N ) = B (N ) s ds + B (S) χ dχ.
This implies

dB (N ) = ∂ χ B (N ) s dχ ∧ ds + ∂ s B (N ) χ ds ∧ dχ. Therefore, ξ N ω ρz (s, χ)(s 2 + χ 2 )ds ∧ dχ = ∂ χ B (N ) s dχ ∧ ds + ∂ s B (N ) χ ds ∧ dχ.
We make the following gauge choice:

B (N ) s (s, χ) = 0 , B (N ) χ (0, χ) = B (N ) χ (s, 0) = 0.
Moreover, we require B (N ) s to satisfy the equation.

∂ s B (N ) χ = ξ N ω ρz (s, χ)(s 2 + χ 2 ).
Consequently, we define the one-form B (N ) on B N to be the solution the equations

B (N ) χ (0, χ) = 0, ∂ s B (N ) χ = 2ξ N σ -1 e 2λ F 2 (W, X, σ)(ρ, z)(s 2 + χ 2 ), B (N ) s (s, χ) = 0.
(3.4.37) spacetime

• Similarly, we define the one-form B (S) on B S to be the solution the equations

B (S) χ ′ (0, χ ′ ) = 0, ∂ s ′ B (S) χ ′ = 2ξ S σ -1 e 2λ F 2 (W, X, σ)(s ′ , χ ′ )((s ′ ) 2 + (χ ′ ) 2 ), B (S) s ′ (s ′ , χ ′ ) = 0. (3.4.38)
• Finally, we use (3.4.36) in order to find the equations satisfied by B (A) . We have

dB (A) = dB -d(ξ N B (N ) ) -d(ξ S B (S) ) = dB -ξ N d(B (N ) ) -dξ N ∧ B (N ) -ξ S d(B (S) ) -dξ S ∧ B (S) = (1 -ξ 2 N -ξ 2 S )dB -dξ N ∧ B (N ) -dξ S ∧ B (S) .
On B A ∪ B H , we have

dB = 2σ -1 e 2λ F 2 (W, X, σ)(ρ, z)dρ ∧ dz, B (N ) = B (N ) ρ dρ + B (S) z dz , B (N ) = B (S) ρ dρ + B (S) z dz , B (A) = B (A) ρ dρ + B (A) z dz We compute dB (A) = ∂ z B (A) ρ dz ∧ dρ + ∂ ρ B (A) z dρ ∧ dz, dξ N ∧ B (N ) = (∂ ρ ξ N )B (N ) z -(∂ z ξ N )B (N )
ρ . We make the following gauge choice

B (A) ρ = 0 , B (A) z (0, z) = 0
and we require B to satisfy the equation

∂ ρ B (A) z (ρ, z) = 2(1 -ξ 2 N -ξ 2 S )σ -1 e 2λ F 2 (W, X, σ)(ρ, z) -(∂ ρ ξ N )B (N ) z + (∂ z ξ N )B (N ) ρ -(∂ ρ ξ S )B (S) z + (∂ z ξ S )B (S) ρ .
Therefore, we define the one-form B (A) to be the solution of the equation Now, we introduce the renormalised unknowns to be the following set of functions and a one-form, which are all assumed to be continuous on B and satisfy the following definitions on B:

B (A) z (0, z) = 0, ∂ ρ B (A) z (ρ, z) = 2(1 -ξ 2 N -ξ 2 S )σ -1 e 2λ F 2 (W, X, σ)(ρ, z) -(∂ ρ ξ N )B (N ) z + (∂ z ξ N )B (N ) ρ -(∂ ρ ξ S )B (S) z + (∂ z ξ S )B (S) ρ , B (A) ρ (ρ, z) = 0.
• σ := σ -σ K σ K σ K = ρ, (3.4.41) 
•

X := X -1 K (X -X K ), • Y := X -1 K (Y -Y K ), (3.4.42) 
•

Θ := X -1 W -X -1 K W K , (3.4.43) 
•

λ := λ -λ K . (3.4.44) 
Henceforth, the quantities

• σ, B (N ) χ , B (S) χ ′ , B (A) z , • X, • Y , • Θ,
• λ will be called the "renormalised unknowns". Now, given

• σ, B (N ) χ , B (S) χ ′ , B (A) z , • X, • Y , • Θ,
• λ , we can recover the original unknowns in the following way:

σ = σ K (1 + • σ), (3.4.45) 
X = X K (1 + • X), Y = X K (1 + • Y ), (3.4.46) 
X -1 W = • Θ + X -1 K W K , (3.4.47) λ = 
• λ + λ K . (3.4.48) 
In terms of the renormalised unknowns, the matter terms become:

F 1 ( • Θ, • X, • σ)(ρ, z) := - 2πe 2 • λ+λ K 1 + • σ D(ρ,z) (X K (1 + • X) + 2(ρL) 2 )Φ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ(- • Θ + ω K )L, ρL), ( • Θ, • X, • σ)) dEdL, F 2 ( • Θ, • X, • σ)(ρ, z) := 2π 1 + • σ X K (1 + • X) D(ρ,z) ρLEΦ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ - • Θ + ω K L, ρL), ( • Θ, • X, • σ)) dEdL, F 3 ( • Θ, • X, • σ)(ρ, z) := ρ 4 X 2 K 2π(1 + • σ) 1 + • X 2 D(ρ,z) L2 -L 2 Φ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ - • Θ + ω K L, ρL), ( • Θ, • X, • σ)) dEdL, F 4 ( • Θ, • X, • σ, • λ)(ρ, z) := - 4πe 2 • λ+λ K 1 + • σ D(ρ,z)      X 2 K 1 + • X 2 ρ 4 1 + • σ 2 E 2 + 1 - X K ρ 2 1 + • X 1 + ρ 2 X K 1 1 + • X L 2      Φ(E + ρ - • Θ + ω K L, ρL)Ψ η (ρ, (E + ρ - • Θ + ω K , ρL), ( • Θ, • X, • σ)) dEdL,
We apply Proposition 23 in order to obtain the equations for the renormalised unknows. spacetime Proposition 24. The renormalised unknowns

• σ, B, • X, • Y , • Θ,
• λ verify the following equations

• • σ satisfies ∆ R 4 • σ = ρ -1 σ -1 Xe 2λ F 3 ( • X, • Θ, • σ)(ρ, z), (3.4.49) 
where ∆ R 4 is the Laplacian corresponding to the flat metric on R 4 given by g R 4 = dρ 2 + dz 2 + ρ 2 dS 2 .

• B satisfies

∂ χ B (N ) s = 2ξ N (sχ) -1 (1 + • σ) -1 e 2λ+2 • λ F 2 ( • X, • Θ, • σ)(s, χ)(s 2 + χ 2 ), ∂ χ ′ B (S) s ′ = 2ξ S (s ′ (χ) ′ ) -1 (1 + • σ) -1 e 2λ+2 • λ F 2 ( • X, • Θ, • σ)(s ′ , χ ′ )((s ′ ) 2 + (χ ′ ) 2 ), ∂ ρ B (A) z (ρ, z) + (∂ ρ ξ N )B (N ) z -(∂ z ξ N )B (N ) ρ + (∂ ρ ξ S )B (S) z -(∂ z ξ S )B (S) ρ = 2(1 -ξ N -ξ S )ρ -1 (1 + • σ) -1 e 2λ+2 • λ F 2 ( • X, • Θ, • σ)(ρ, z), (3.4.50) 
• ( • X, • Y ) satisfies ∆ R 3 • X + 2∂Y K • ∂ • Y X K - 2|∂Y K | 2 X 2 K • X + 2 ∂X K • ∂Y K X 2 K • Y = N X := N (1) 
X + N (2) 
X ,

∆ R 3 • Y - 2∂Y K • ∂ • X X K - (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y = N Y := N (1) 
Y + N (2) Y , (3.4.51) 
where N

X :=

X 2 K (|∂ • X| 2 -|∂ • Y | 2 ) + ( • X∂Y K - • Y ∂X K ) • (2X K ∂ • Y - • X∂Y K + • Y ∂X K ) X 2 K (1 + • X) , N (1) 
Y := ∂ • X • ∂ • Y + 2X K ( • Y ∂X K - • X∂Y K ) • ∂ • X X 2 K (1 + • X) , N (2) 
X := (ρ -1 -σ -1 ∂ ρ σ) ∂ ρ (X K (1 + • X)) X K -σ -1 ∂ z σ ∂ z (X K (1 + • X)) X K - 2∂ ρ (Y K + X K • Y )B ρ X 2 K (1 + • X) - 2∂ z (Y K + X K • Y )B z X 2 K (1 + • X) - B 2 ρ + B 2 z X 2 K (1 + • X) + X -1 K F 1 ( • Θ, • X, • σ)(ρ, z), N (2) 
Y := (ρ -1 -σ -1 ∂ ρ σ)∂ ρ (Y K + X K • Y )X -1 K -σ -1 ∂ ρ σB ρ X -1 K -σ -1 ∂ z σ(∂ z (Y K + X K • Y ) + B z )X -1 K + B ρ ∂ ρ (X K (1 + • X)) + B z ∂ z (X K (1 + • X)) X 2 K (1 + • X)
, and where ∆ R 3 is the Laplacian corresponding to the flat metric on R 3 given by g

R 3 = dρ 2 + dz 2 + ρ 2 dφ 2 . • • Θ satisfies ∂ ρ • Θ = - σ X 2 (∂ z Y + B z ) + ρ X 2 K ∂ z Y K , ∂ z • Θ = σ X 2 (∂ ρ Y + B ρ ) - ρ X 2 K ∂ ρ Y K .
(3.4.52)

• • λ satisfies ∂ ρ • λ = α ρ -(α K ) ρ - 1 2 ∂ ρ log(1 + • X), ∂ z • λ = α z -(α K ) z - 1 2 ∂ z log(1 + • X), (3.4.53) 
where

(α K ) ρ = 1 4 ρX -2 K ((∂ ρ X K ) 2 -(∂ z X K ) 2 + (∂ ρ Y K ) 2 ) -(∂ z Y K ) 2 , (α K ) z = 1 4 ρX -2 K ((∂ ρ X K )(∂ z X K ) + (∂ ρ Y K )(∂ z Y K ))
, where α ρ and α z satisfy

((∂ ρ σ) 2 + (∂ z σ) 2 )α ρ = 1 4 (∂ ρ σ)σ (∂ ρ X) 2 -(∂ z X) 2 + (θ ρ ) 2 -(θ z ) 2 X 2 + (∂ ρ σ)(∂ 2 ρ σ -∂ 2 z σ) + (∂ z σ)((∂ 2 ρ,z σ)) + 1 2 X -2 ((∂ ρ X)(∂ z X) + (θ ρ )(θ z ))), ((∂ ρ σ) 2 + (∂ z σ) 2 )α z = - 1 4 (∂ z σ)σ (∂ ρ X) 2 -(∂ z X) 2 + (θ ρ ) 2 -(θ z ) 2 X 2 -(∂ z σ)(∂ 2 ρ σ -∂ 2 z σ) + (∂ ρ σ)((∂ 2 ρ,z σ)) + 1 2 X -2 ((∂ ρ X)(∂ z X) + (θ ρ )(θ z ))
Proof.

1. First, we derive the equation for

• σ: For this, we compute the Laplacian of • σ with respect to the flat metric g = dρ 2 + dz 2 + ρ 2 dS 2 :

∆ R 4 • σ = ∆ R 4 σ ρ = 1 √ det g ∂ i det gg ij ∂ j σ ρ , i, j ∈ {1, • • • 4} = 1 ρ 2 sin θ ∂ ρ ρ 2 sin θg ρρ ∂ ρ σ ρ + 1 ρ 2 sin θ ∂ z ρ 2 sin θg zz ∂ z σ ρ = ∂ ρρ σ ρ + 2 ρ ∂ ρ σ ρ + 1 ρ ∂ zz σ = 1 ρ (∂ ρρ σ + ∂ zz σ)
By (3.4.27), we have 3. We turn to the equations for (

X -1 exp (-2λ)σ(∂ 2 ρ σ + ∂ 2 z σ) = F 3 ( • Θ, • X, • σ)(ρ, z), Therefore, ∆ R 4 • σ = X K ρ 2 e 2λ 1 + • X 1 + • σ F 3 ( • Θ, • X, • σ)(ρ, z).
• X, • Y ):
• First of all, we recall from the classical Carter Robinson theory (see for example [START_REF] Weinstein | The stationary axisymmetric two-body problem in general relativity[END_REF] )that (X K , Y K ) forms a harmonic map system and satisfies the equations

       ρ -1 ∂ ρ (ρ∂ ρ X K ) + ρ -1 ∂ z (ρ∂ z X K ) = (∂ ρ X K ) 2 + (∂ z X K ) 2 -(∂ ρ Y K ) 2 -(∂ z Y K ) 2 X K , ρ -1 ∂ ρ (ρ∂ ρ Y K ) + ρ -1 ∂ z (ρ∂ z Y K ) = 2(∂ ρ Y K )(∂ ρ X K ) + 2(∂ z Y K )(∂ z X K ) X K . (3.4.54) 
• Now, we compute

∆ R 3 • X = ∆ R 3 X -X K X K = 1 ρ ∂ ρ ρ∂ ρ X -X K X K + ∂ zz X -X K X K = 1 ρ (∂ ρ X)X K -(∂ ρ X K )X X 2 K + ∂ ρ (∂ ρ X)X K -(∂ ρ X K )X X 2 K + ∂ z (∂ z X)X K -(∂ z X K )X X 2 K . We expand ∂ ρ (∂ ρ X)X K -(∂ ρ X K )X X 2 K = (∂ ρρ X)X K -(∂ ρρ X K )X X 2 K -2 (∂ ρ X K )(∂ ρ X) X 2 K + 2X (∂ ρ X K )(∂ ρ X) X 3 K = (∂ ρρ X)X K -(∂ ρρ X K )X X 2 K -2 1 X K ∂ ρ • X∂ ρ X K , and 
∂ z (∂ z X)X K -(∂ z X K )X X 2 K = (∂ zz X)X K -(∂ zz X K )X X 2 K -2 (∂ z X K )(∂ z X) X 2 K + 2X (∂ z X K )(∂ z X) X 3 K = (∂ ρρ X)X K -(∂ ρρ X K )X X 2 K -2 1 X K ∂ z • X∂ z X K .
Moreover, from (3.4.54), we have

∂ ρ X K ρ + ∂ ρρ X K + ∂ zz X K = (∂ ρ X K ) 2 + (∂ z X K ) 2 -(∂ ρ Y K ) 2 -(∂ z Y K ) 2 X K .
Recall that

∆ R 2 = ∂ ρρ + ∂ zz . 3.4. Reduced Einstein-Vlasov system 191 Hence, ∆ R 3 • X = 1 X K 1 ρ (∂ ρ X) + ∆ R 2 X -2 1 X K ∂ ρ • X∂ ρ X K -2 1 X K ∂ z • X∂ z X K = 1 X K 1 ρ (∂ ρ X) + ∆ R 2 X - X X 2 K (∂ ρ X K ) 2 + (∂ z X K ) 2 -(∂ ρ Y K ) 2 -(∂ z Y K ) 2 X K -2 1 X K ∂ • X • ∂X K = 1 X K 1 ρ (∂ ρ X) + ∆ R 2 X - 1 + • X X K |∂X K | 2 -|∂Y K | 2 -2 1 X K ∂ • X • ∂X K .
• We replace X by X K (1 +

• X) in the left hand side of (3.4.23) and we compute

σ -1 ∂ ρ (σ∂ ρ X) + σ -1 ∂ z (σ∂ z X) = 1 σ (∂ ρ σ∂ ρ X + σ∂ ρρ X) + 1 σ (∂ z σ∂ z X + σ∂ zz X) = 1 σ (∂ ρ σ∂ ρ X + ∂ z σ∂ z X) + ∆ R 2 X = 1 σ ∂ ρ σ∂ ρ (X K (1 + • X)) + 1 σ ∂ z σ∂ z (X K (1 + • X)).
Therefore, by (3.4.23), we have

∆ R 2 X = - 1 σ ∂ ρ σ∂ ρ (X K (1+ • X))- 1 σ ∂ z σ∂ z (X K (1+ • X))+F 1 ( • Θ, • X, • σ)(ρ, z)+ (∂ ρ X) 2 + (∂ z X) 2 -θ 2 ρ -θ 2 z X . (3.4.55)
• Recall that dY = θ -B. Therefore,

θ ρ = ∂ ρ Y + B ρ , θ z = ∂ z Y + B z .

This implies

θ 2 ρ = (∂ ρ Y ) 2 + B 2 ρ + 2B ρ ∂ ρ Y, θ 2 z = (∂ z Y ) 2 + B 2 z + 2B z ∂ z Y.
• Therefore,

(∂ ρ X) 2 + (∂ z X) 2 -θ 2 ρ -θ 2 z X = |∂X| 2 -|∂Y | 2 X K (1 + • X) - B 2 ρ + B 2 z X K (1 + • X) -2 B ρ ∂ ρ (Y K + • Y X K ) X K (1 + • X) -2 B z ∂ z (Y K + • Y X K ) X K (1 + • X) . (3.4.56) 
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• We set N (2) 
X := (ρ -1 -σ -1 ∂ ρ σ)   ∂ ρ (X K (1 + • X)) X K   -σ -1 ∂ z σ∂ z (X K (1 + • X)) X K + X -1 K F 1 ( • Θ, • X, • σ)(ρ, z) - B 2 ρ + B 2 z X 2 K (1 + • X) - 2B ρ ∂ ρ (Y K + • Y X K ) X 2 K (1 + • X) - 2B z ∂ z (Y K + • Y X K ) X 2 K (1 + • X) . (3.4.57) 
• From (3.4.55), (3.4.56) and (3.4.57), we obtain

∆ R 3 • X = N (2) 
X -

1 + • X X K |∂X K | 2 -|∂Y K | 2 -2 1 X K ∂ • X • ∂X K + |∂X| 2 -|∂Y | 2 X 2 K (1 + • X)
.

Now, we replace X by X K (1 + • X) and Y by Y K + X K •
Y in the last term of the right hand side and we expand so that we obtain

∆ R 3 • X = N (2) X - 1 + • X X K |∂X K | 2 -|∂Y K | 2 -2 1 X K ∂ • X • ∂X K + |∂X| 2 -|∂Y | 2 X 2 K (1 + • X) = X 2 K (|∂ • X| 2 -|∂ • Y | 2 ) + • X( • X + 2)|∂Y K | 2 -|∂X K | 2 • Y 2 -2 • Y ∂Y K • ∂X K X 2 K (1 + • X) - 2X K • Y ∂ • Y • ∂X K -2X K ∂Y K • ∂ • Y X 2 K (1 + • X) = X 2 K (|∂ • X| 2 -|∂ • Y | 2 ) + 2 • X( • X + 1)|∂Y K | 2 - • X 2 |∂Y K | 2 -2( • X + 1) • Y ∂Y K • ∂X K X 2 K (1 + • X) + 2 • X • Y ∂Y K • X K -2X K • Y ∂X K • ∂ • Y -2(1 + • X)X K ∂Y K • ∂ • Y + 2 • XX K ∂Y K • ∂ • Y X 2 K (1 + • X) . • We set N (1) 
X := X 2 K (|∂ • X| 2 -|∂ • Y | 2 ) + ( • X∂Y K - • Y ∂X K ) • (2X K ∂ • Y - • X∂Y K + • Y ∂X K ) X 2 K (1 + • X) , • Hence, ∆ R 3 • X = N (2) X + N (1) 
X - 2∂Y K • ∂ • Y X K + 2|∂Y K | 2 X 2 K • X -2 ∂X K • ∂Y K X 2 K • Y .
which is equivalent to (3.4.51).

• The equation for

• Y is derived in the same way. • Θ is defined by

X -1 W = • Θ + X -1 K W K .
Moreover, by (3.4.24), we have

∂ ρ (X -1 W )dρ + ∂ z (X -1 W )dz = σ X 2 (θ ρ dz -θ z dρ) and X -1 K W K satisfies ∂ ρ (X -1 K W K )dρ + ∂ z (X -1 K W K )dz = ρ X 2 K (∂ ρ Y K dz -∂ z Y K dρ).
We recall that

θ ρ = ∂ ρ Y + B ρ , θ z = ∂ z Y + B z .
Therefore,

∂ ρ • Θdρ + ∂ z • Θdz = ∂ ρ (X -1 K W K )dρ + ∂ z (X -1 K W K )dz -∂ ρ (X -1 K W K )dρ + ∂ z (X -1 K W K )dz = σ X 2 (θ ρ dz -θ z dρ) - ρ X 2 K (∂ ρ Y K dz -∂ z Y K dρ) = σ X 2 (∂ ρ Y dz -∂ z Y dρ) + σ X 2 (B ρ dz -B z dρ) - ρ X 2 K (∂ ρ Y K dz -∂ z Y K dρ).
Thus, we find the following pair of equations for

• Θ: ∂ ρ • Θ = - σ X 2 (∂ z Y + B z ) + ρ X 2 K ∂ z Y K , ∂ z • Θ = σ X 2 (∂ ρ Y + B ρ ) - ρ X 2 K ∂ ρ Y K .
5. Finally, we derive the equations for

• λ: λ satisfies ∂ ρ λ = α ρ - 1 2 ∂ ρ log X K (1 + • X).
This implies

∂ ρ • λ = α ρ -(∂ ρ λ K + 1 2 log X K ) - 1 2 ∂ ρ log(1 + • X).
Similarly,

∂ z • λ = α z -(∂ z λ K + 1 2 log X K ) - 1 2 ∂ z log(1 + • X). Now, recall that λ K satisfies      ∂ ρ λ K = 1 4 ρX K -2 ((∂ ρ X K ) 2 -(∂ z X K ) 2 + (∂ ρ Y K ) 2 -(∂ z Y K ) 2 ) - 1 2 ∂ ρ log X K , ∂ z λ K = 1 4 ρX K -2 ((∂ ρ X K )(∂ z X K ) + (∂ ρ Y K )(∂ z Y K )) - 1 2 ∂ z log X K .
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(α K ) ρ := ∂ ρ λ K + 1 2 log X K , (α K ) z := ∂ z λ K + 1 2 log X K .
Therefore,

• λ satisfies

∂ ρ • λ = α ρ -(α K ) ρ - 1 2 ∂ ρ log(1 + • X), ∂ z • λ = α z -(α K ) z - 1 2 ∂ z log(1 + • X).
Remark 34. As in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF], the order we have presented the renormalised unknowns reflects the order in which we will treat their equations. We will first solve for

• σ, for B, for ( • X, • Y ), for • Θ then for • λ.
Indeed, one has to solve for 

Functional spaces on B

In this section, we define the functional spaces for the renormalised unknowns in order to apply standard elliptic theory to solve non-homogeneous linear problems and to establish non-linear estimates. Firstly, for any (x, y, z) ∈ R 3 , let (ρ, ϑ, z) ∈ [0, ∞[×R × (0, 2π) be its cylindrical coordinates defined by x = ρ cos ϑ, y = ρ sin ϑ, z = z.

To any function f : B → R we associate an axisymmetric function f R 3 : R 3 → R by setting

f R 3 (x, y, z) := f (ρ(x, y), z). (3.4.58) 
We recall the definitions of the Sobolev spaces W k,p (R n ) and the Hölder spaces C k,α (R n ).

1. For any α > 0 and k ∈ N, the Hölder space

C k,α (R 3 ) consists of all functions u ∈ C k (R 3 ) for which the norm ||u|| C k,α (R 3 ) := |α|≤k ||D α u|| C 0 (R 3 ) + |α|=k [D α u] 0,α is finite. Here, ||u|| C 0 (R 3 ) := sup x∈R 3 |u(x)|,
and

[u] 0,α = sup x,y∈R 3 , x =y |u(x) -u(y)| |x -y| α . 2. W k,p (R 3 ) is defined by W k,p (R 3 ) := u ∈ L 1 loc (R 3
) : D α u exists in the weak sense and belongs to L p (R 3 ) , ∀|α| ≤ k . By D α u exists in the weak sense we mean that u admit a α th -weak partial derivative, i.e there exists a locally integrable function v denoted by D α u which satisfies 16 . We define the following norm on W k,p (R 3 )

R 3 uD α φdx = (-1) |α| R 3 vφdx, for all test functions φ ∈ C ∞ 0 (R 3 )
||u|| W k,p (R 3 ) :=                |α|≤k R 3 |D α u| p dx   1 p , (1 ≤ p < ∞) |α|≤k ess sup R 3 |D α u|. (p = ∞)
Now, we introduce the following function spaces which are associated to B:

Ẇ k,p axi (B) := f (ρ, z), f R 3 ∈ Ẇ k,p (R 3 ) , W k,p axi (B) := f (ρ, z), f R 3 ∈ W k,p (R 3 ) , C k,α axi (B) := f (ρ, z), f R 3 ∈ C k,α (R 3 ) , C k,α 0,axi (B) := f (ρ, z), f R 3 ∈ C k,α 0 (R 3
) . The above spaces can also be seen as the Sobolev and Hölder spaces of axially symmetric functions defined on R 3 . Now, for any

(x, y, u, v) ∈ R 4 , let (s, ϑ 1 , χ, ϑ 2 ) ∈ [0, ∞[×(0, 2π) × [0, ∞[×(0, 2π) or (s ′ , ϑ 1 , χ ′ , ϑ 2 ) ∈ [0, ∞[×(0, 2π) × [0, ∞[×(0,
2π) be its polar coordinates defined by

x = s cos ϑ 1 , y = s sin ϑ 1 , u = χ cos ϑ 2 , v = χ sin ϑ 2 .

Now, to any function f

N : B N → R or f S : B S → R, we associate a function f N R 4 : R 4 → R or f S R 4 : R 4 → R by setting f N R 4 (x, y, u, v) := f N (s(x, y), χ(u, v)), f S R 4 (x, y, u, v) := f N (s ′ (x, y), χ ′ (u, v)).
Another family of function spaces will be used during the analysis. They are defined by Similarly, we define the spaces C k axi and C k axi,0 , and we set

Ẇ k,p axi (B) := f (ρ, z), (ξ N f ) R 4 , (ξ S f ) R 4 ∈ Ẇ k,p (R 4 ), ((1 -ξ N -ξ S )f ) R 3 ∈ Ẇ k,p (R 3 ) , W k,p axi (B) := f (ρ, z), (ξ N f ) R 4 , (ξ S f ) R 4 ∈ W k,p (R 4 ), ((1 -ξ N -ξ S )f ) R 3 ∈ W k,p (R 3 ) , C k,α axi (B) := f (ρ, z), (ξ N f ) R 4 , (ξ S f ) R 4 ∈ C k,α (R 4 ), ((1 -ξ N -ξ S )f ) R 3 ∈ C k,α (R 3 ) , C k,α 0,axi (B) := f (ρ, z), (ξ N f ) R 4 , (ξ S f ) R 4 ∈ C k,α 0 (R 4 ), ((1 -ξ N -ξ S )f ) R 3 ∈ C k,α 0 (R 3 ) .
C ∞ := ∩ ∞ k=1 C k axi and C ∞ := ∩ ∞ k=1 C k axi,0 . Remark 35.
When there is unlikely to be any confusion, we will often drop the subscript "axi".

We state the following lemma on the relationship between the hatted and non-hatted Hölder spaces Lemma 54. Let α ∈ (0, 1) and k ∈ N. We have the continuous inclusion

C k,α axi (B) ⊂ Ĉk,α axi (B).
Proof. See proof of Lemma 3.2.1 in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF].

In the following section, we introduce the function spaces for the renormalised unknowns

• σ, B, • X, • Y , • Θ, • λ .

Function spaces for the renormalised unknowns

Let α 0 ∈ (0, 1) be fixed and let the function r : [0, ∞[×R → R + be defined by r(ρ, z) := 1 + ρ 2 + z 2 . Note that r(ρ, z) is different from the radial coordinate appearing in BL coordinates. See Section 3.3. 

F (A) z , F (N ) χ , F (S) χ ′ ∈ Ĉ∞ 0 (B) 3 under the norm || F (A) z , F (N ) χ , F (S) χ ′ || L B := (1 + ρ 10 )(1 + r 10 ) ρ 10 F (A) z Ĉ1,α 0 (B A ∪B H ) + s -10 F (N ) χ Ĉ1,α 0 (B N ) + (s ′ ) -10 F (S) χ ′ Ĉ1,α 0 (B S )
.

The Banach space (N B , || • || N B ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm

|| F (A) z , F (N ) χ , F (S) χ ′ || N B := (1 + ρ 15 )(1 + r 10 ) ρ 15 F (A) z Ĉ1,α 0 (B A ∪B H ) + s -15 F (N ) χ Ĉ1,α 0 (B N ) + (s ′ ) -15 F (S) χ ′ Ĉ1,α 0 (B S )
.

3.4. Reduced Einstein-Vlasov system 197 3.4.7.3 Function spaces for X and Y Definition 37. The Banach space (L X , || • || L X ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm

||f || L X := ||f || Ẇ 2,p axi (B) + ||f || Ĉ2,α 0 (B) + ||rf || L ∞ (B) + ||r 2 ∂f || L ∞ (B) + ||r 3 log -1 (4r) ∂2 f || C 0,α 0 (B) .
The Banach space (N X , || • || N X ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm The Banach space (N Θ , || • || N Θ ) is defined to be the completion of pairs of smooth compatly supported closed 1-forms F under the norm It is easy to see that all these spaces are Banach spaces.

||f || N X := ||r 3 (1 -ξ N -ξ S )f || C 0,α 0 (R 3 ) + ||(χ 2 + s 2 )ξ N f || C 0,α 0 (B N ) + ||((χ ′ ) 2 + (s ′ ) 2 )ξ S f || C 0,α 0 (B S ) . Definition 38. The Banach space (L Y , || • || L Y ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm ||f || L Y := ||f || Ẇ 2,p axi (B) + |||∂h|f || L 2 (R 3 ) + ||f || Ĉ2,α 0 (B) + ||X -1 K f || Ĉ2,α 0 (B) + ||r 3 X -1 K f || L ∞ (B) + ||r 4 ∂(X -1 K f )|| L ∞ (B) + ||r 5 log -1 (4r) ∂2 (X -1 K f )|| C 0,α 0 (B) . The Banach space (N Y , || • || N Y ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm ||f || N Y := ||f r 5 X -1 K || Ĉ0,α 0 ((BH∪BA)∩{ρ≤1}) + ||f r 4 || Ĉ0,α 0 (B∩{ρ≥1}) + ||(χ 2 + s 2 )ξ N f || C 0,α 0 (B N ) + ||((χ ′ ) 2 + (s ′ ) 2 )ξ S f || C 0,α 0 (B S ) .
||F || N Θ := ||r 3 (1 + ρ -1 )F ρ || Ĉ1,α 0 (BH∪BA) + ||r 3 F z || Ĉ1,α 0 ((B H ∪B A) ) + ||s -1 F s || Ĉ1,α 0 (B N ) + ||F χ || Ĉ1,α 0 (B N ) + ||(s ′ ) -1 F s ′ || Ĉ1,α 0 (B S ) + ||F χ ′ || Ĉ1,α 0 (B S ) 3 
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Main Result

In this section, we give a more detailed formulation of our result. More precisely, we have Theorem 18. Let 1. 0 < |a| < M and M = R × (0, 2π) × B be the the domain of outer communications minus the axis of symmetry parametrised by the standard Weyl coordinates (t, φ, ρ, z),

2. B bound ⊂⊂ A bound be a compact subset of the set A bound defined by (2.2.34),

Φ :

A bound × R + → R * + be a C 2 function
with respect to the first two variables, C 1 with respect to the third variable and such that

• ∀δ ∈ [0, ∞[ , Φ(•, •; δ) is supported in B bound . • ∀(E, ℓ) ∈ A bound , Φ(E, ℓ; 0) = ∂ ℓ Φ(E, ℓ; 0) = 0 and ∀δ > 0, Φ(•, •, δ) does not identically vanish on B bound .
Then, there exists δ 0 > 0 and a one-parameter family of functions

(V δ , W δ , X δ , λ δ ) δ∈[0,δ 0 [ ∈ (C 2,α (B)) 4 , f δ ∈ C 2 (B × R 3 )
with the following properties

1. (V 0 , W 0 , X 0 , λ 0 ) = (V K , W K , X K , λ K )
corresponds to a Kerr solution with parameters (a, M ).

2. For all (E, ℓ z ) ∈ B bound , the equation

E ℓz (W δ , X δ , σ δ , ρ, z) = E 2 (3.5.1)
admits a unique solution curve with two connected components, such that one of them is diffeomorphic to S 1 . Moreover, there exists η > 0 depending only on δ 0 such that

ρ 0 (W δ , X δ , σ δ , E, ℓ z ) + η < ρ 1 (W δ , X δ , σ δ , E, ℓ z )
where ρ i (W δ , X δ , σ δ , E, ℓ z ) are the two smallest solutions of the equation (3.5.1) with z = 0.

3. The function f δ takes the form

f δ (x, v) = Φ(E δ , ℓ; δ)Ψ η (r, (ε δ , (ℓ z ) δ ), W δ , X δ , σ δ ) , for (x, v) ∈ O × R 3 with coordinates (t, r, θ, φ, v r , v θ , v φ
) and where

ε δ = σ δ √ X δ (1 + |p| 2 ) 1 2 - W δ X δ (ℓ z ) δ , (ℓ z ) δ = X δ p φ ,
and Ψ η is defined by (3.4.4).

4. Let g δ be defined on B by 

g δ := -V δ dt 2 + 2W δ dtdφ + X δ dφ 2 +
> ρ mb,+ (a, M ) Z δ min < 0 < Z δ max , • we have supp (ρ,z) f ⊂⊂ [ρ min (h), ρ max (h)] × [Z min (h), Z max (h)] . and ∃(ρ, z) ∈ [ρ min (h), ρ max (h)] × [Z min (h), Z max (h)] , f δ (ρ, z, •) > 0.
• The region H = {(ρ, z) : ρ = 0 , |z| < β} corresponds to a non-degenerate bifurcate Killing horizon on which the metric has a C 2,α extension in sense of Definition 9.

Overview of the poof

In this section, we give an overview of the proof of Theorem 18.

1. First of all, we show in Section 3.6 that the compact connected component of ZVC associated to a trapped geodesic with parameters (ε, ℓ z ) ∈ B bound moving in a Kerr exterior, Z K (ε, ℓ z ), remains stable under stationary and axisymmetric perturbations of the Kerr metric. Then, using the compactness of B bound , we show that trapped geodesics moving in the perturbed spacetimes lie in a compact region of B which is uniform in (ε, ℓ z ). This allows us to obtain a distribution function which is compactly supported in B. Consequently, all the matter terms

F i ( • Θ, • X,
• σ) are compactly supported in B and vanish in a neighbourhoods of the horizon, the axis of symmetry and the poles.

2. Then, to resolve the nonlinear aspects of the problem, we will used two fixed point lemmas, which are introduced in Section 3.7.1. We will start with the study of a toy model which illustrates the application of these lemmas. In the general case, we will have to deal with the difficulty related to the nonlinear coupling of the equations.

3. At this stage, we introduce a bifurcation parameter δ ≥ 0 in the ansatz for the distribution function which turns on the presence of Vlasov matter. This allows us to transform the problem of finding solutions to the reduced EV system for the renormalised quantities into that of finding a one-parameter family of solutions which depends on δ, by applying a fixed point lemma, considered as a zero of a well-defined operator.

4. Note that we will solve each equation separately and the order in which we solve them matters. See Remark 34. More precisely:

• We begin by solving the equation for

• σ in terms of the remaining quantities and the bifurcation parameter δ. The regularity for the matter terms will allow us to have a

C 1 dependence of • σ in ( • X, • Θ,
• λ) and a continuous dependance with respect to δ. To this end, we apply a fixed point lemma.

• Then, we solve the equations for B in terms of ( • Consequently, we obtain a one-parameter family of solutions (

• σ, B, • X, • Y , • Θ,
• λ) which depends continuously on δ.

Perturbation of trapped Kerr geodesics

In this section, we show that given a compact set of parameters (ε, ℓ z ) leading to trapped orbits, the latter remain stable under small metric data perturbations. First of all, let B bound be a compact subset of the form [START_REF] Dafermos | The non-linear stability of the Schwarzschild family of black holes[END_REF] and let (ε, ℓ z ) ∈ B bound . We recall from 21 that 1. there exists Φ K,abs (ε,ℓz

) :] -β, β[ →]0, ρ K 0 (ε, ℓ z )] such that Z K,abs (ε, ℓ z ) = Gr Φ K,abs (ε,ℓz) , 2. there exist Φ K,i (ε,ℓz) : I i (ε,ℓz) → R, i = 1 • • • 4 such that Z K,trapped (ε, ℓ z ) = i=1•••4 Gr Φ K,i (ε,ℓz) ,
where I i (ε,ℓz) , Φ K,i (ε,ℓz) and Φ K,abs (ε,ℓz) are defined in (3.3.168).

Furthermore, we recall from Lemma 49 that ∀(ε, ℓ z ) ∈ B bound , there exist B i , i = 1 Before we state the main result of this section, we give the following definition of δ-perturbations of a zero velocity curve, Z K (ε, ℓ z ) associated to a timelike future-directed geodesic with constants of motion (ε, ℓ z ) ∈ A bound moving in Kerr exterior.

Definition 41 (Z K (ε, ℓ z ) perturbations). Let (ε, ℓ z ) ∈ A bound and δ 0 > 0. A δ 0 -perturbation of Z K (ε, ℓ z ) is a continuous one-parameter family of curves (Z(δ, ε, ℓ z )) δ∈[0,δ 0 [ such that 1. Z(0, ε, ℓ z ) = Z K (ε, ℓ z ).
2. ∀δ ∈ [0, δ 0 [, Z(δ, ε, ℓ z ) consists of two connected components: Z abs (δ, ε, ℓ z ) which is diffeomorphic to R and Z trapped (δ, ε, ℓ z ) which is diffeomorphic to S 1 and such that

• there exists Φ δ,abs (ε,ℓz) :] -β, β[→]0, ∞[ such that Z abs (δ, ε, ℓ z ) = Gr Φ δ,abs (ε,ℓz) and Φ δ,abs (ε,ℓz) -Φ K,abs (ε,ℓz) C 1 (]-β,β[) < δ 0 .
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• there exist Φ δ,i (ε,ℓz) :

I i (ε,ℓz) → R, i = 1 • • • 4 such that Z trapped (δ, ε, ℓ z ) = i=1•••4
Gr Φ δ,i (ε,ℓz) , and

Φ δ,i (ε,ℓz) -Φ K,i (ε,ℓz) C 1 I i (ε,ℓz ) < δ 0 .
Now, we recall the definition of the effective potential energy associated to a timelike future-directed geodesic moving in the exterior region of a stationary and axisymmetric spacetime with metric given by (3.2.2):

E ℓz (W, X, σ, ρ, z) := -W (ρ, z) X(ρ, z) ℓ z + σ X(ρ, z) ℓ 2 z + X(ρ, z).
We rewrite E ℓz in terms of the renormalised unknowns h := (

• Θ, • σ, • X): E ℓz (h, ρ, z) := - • Θℓ z -W K X -1 K ℓ z + ρ X K • σ + 1 • X + 1 ℓ 2 z + X K ( • X + 1) (3.6.2)
Henceforth, E ℓz is seen as a function defined on L Θ × L σ × L X × B. Moreover, we recall that the set of solutions to the equation

E ℓz (h, ρ, z) = ε
is called the zero velocity curve Z(h, ε, ℓ z ). The latter can also be seen as the level curve of E ℓz (h, •) at ε. In the following, we show that when E ℓz (h, •) and E K ℓz are similar, that is when h is small, then their level sets at a level ε, such that (ε, ℓ z ) ∈ A bound have the same shape. More precisely, we state the following main result Proposition 25. Let δ0 > 0. Then there exists 0 < δ 0 ≤ δ0 such that ∀h :=

• Θ, • σ, • X ∈ B(0, δ 0 ) ⊂ L Θ × L σ × L X , ∀(ε, ℓ z ) ∈ B bound ,
there exists a unique curve Z(h, ε, ℓ z ) ⊂ B solution to the equation

E ℓz (h, ρ, z) = ε (3.6.3)
Moreover, the one-parameter family of solutions

(Z(h, ε, ℓ z )) ||h||∈[0,δ 0 [ is a δ 0 -perturbation of Z K (ε, ℓ z )
in the sense of Definition 41.

In the case of Kerr, i.e. h = 0, the set of solutions to the equation (3.6.3) cannot be written globally as the graph of a unique function depending on ρ or on z, since the implicit function theorem cannot be applied globally to (3.6.3) in order to write ρ in terms of z or z in terms of ρ. This must be taken into account when defining the space of solutions. In order to overcome this technical difficulty, we have decomposed B into several regions and we have used the reparameterization of Z K (ε, ℓ z ) so that the implicit function theorem can be applied in each region to solve (3.6.3) with h = 0. We will now apply the fixed point theorem on each region in order to solve (3.6.3) with small h. The set of solutions to the latter is the graph of some function. Finally, we will obtain the set of solutions in the whole region B by gluing all the graphs that we have obtained.

The remaining of this section is devoted to the proof of Proposition 25.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

Proof of Proposition 25

Let δ 0 > 0, let h ∈ B δ 0 ⊂ L Θ × L σ × L X where B δ 0 is the open ball of radius δ 0 centred around 0 and let (ε, ℓ z ) ∈ B bound . The problem of finding solutions in B is equivalent to that of solving the above equation in B i and B abs . Hence, we start with solving (3.6.3) on B 1 . We state the following lemma Lemma 55. There exists 0 < δ 0 such that ∀h ∈ B δ 0 , there exists a unique function Φ h,1 (ε,ℓz) : I 1 (ε,ℓz) → R such that the set of solutions to (3.6.3) on B 1 is given by Gr Φ h,1 (ε,ℓz) . Moreover, we have

• Φ h,1 is smooth with respect to (ε, ℓ z ).

• Φ h,1 ε,ℓz is continuously Fréchet differentiable with respect to h,

• Φ h,1 ε,ℓz is C 1 on I 1 (ε,ℓz) and satisfies

Φ 1 ε,ℓz -Φ K,1 ε,ℓz C 1 I 1 (ε,ℓz ) < δ 0 . (3.6.4)
Proof. Let (ε, ℓ z ) ∈ B bound and recall the definition of I 1 (ε,ℓz) . Define the mapping F (ε,ℓz),ρ by

F (ε,ℓz),ρ • Θ, • σ, • X, z = - • Θℓ z -W K X -1 K ℓ z + ρ X K • σ + 1 • X + 1 ℓ 2 z + X K ( • X + 1) -ε
on the domain B δ0 × R, where B δ0 is the ball centred at (0, 0, 0) with radius δ0 of the product space L Θ × L σ × L X .

• Existence 1. It is easy to see that ∀ρ ∈ I 1 (ε,ℓz) , the point (h 0 := (0, 0, 0), z 0 := Φ K,1 ε,ℓz (ρ)) is a zero for F (ε,ℓz),ρ .

Since (

• Θ, • σ, • X) ∈ C 2 (B), F (ε,
ℓz),ρ is continuously differentiable with respect to z on R. 3. We compute:

∂F (ε,ℓz),ρ ∂z (h 0 , z 0 ) = ∂E ℓz ∂z (h 0 , ρ, z 0 ).
The latter vanishes if and only if z 0 = 0, which is not the case. Indeed, Therefore,

φ(ε, ℓ z , ρ) := ∂F (ε,ℓz),ρ ∂z (h 0 , z 0 ) -1
is well-defined.

4. We consider the mapping F (ε,ℓz),ρ h defined on R by

F (ε,ℓz),ρ h (z) := z -φ(ε, ℓ z , ρ)F (ε,ℓz),ρ (h, z).
We will show that after shrinking δ0 uniformly in (ε, ℓ z ) and ρ, that ∀h ∈ B(h 0 , δ 0 ),

F (ε,ℓz),ρ h
is a contraction on B(z 0 , δ 0 ).
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First, by compactness of B bound and I 1 (ε,ℓz) , there exists

C > 0 such that ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) : |φ(ε, ℓ z , ρ)| ≤ C.
Now, let h ∈ B(h 0 , δ0 ) and z ∈ B(z 0 , δ0 ). We compute

∂F (ε,ℓz),ρ h ∂z (z) = 1 -φ(ε, ℓ z , ρ) ∂E ℓz ∂z (h, ρ, z).
Next, we show that there exists C independent of ((ε, ℓ z ); ρ) such that ∀(h, z)

∈ B δ0 (h 0 )× B δ0 (z 0 ) ∂ z F (ε,ℓz),ρ (h, z) -∂ z F (ε,ℓz),ρ (h 0 , z 0 ) ≤ C δ0 .
We have

∂ z F (ε,ℓz),ρ (h, z) -∂ z F (ε,ℓz),ρ (h 0 , z 0 ) = ∂ z E ℓz (ρ, z) -∂ z E K ℓz (ρ, z 0 ) -∂ z • Θ(ρ, z)ℓ z -∂ z (W K X -1 K )(ρ, z)ℓ z + ∂ z   ρ( • σ + 1) X K ( • X + 1) ℓ 2 z + X K ( • X + 1)   (ρ, z) + ∂ z (W K X -1 K )(ρ, z 0 )ℓ z -∂ z ρ X K ℓ 2 z + X K (ρ, z 0 ) = I + II + III,
where

I := -∂ z • Θ(ρ, z)ℓ z , II := ℓ z -(W K X -1 K )(ρ, z) + (W K X -1 K )(ρ, z 0 ) , III := ∂ z   ρ( • σ + 1) X K ( • X + 1) ℓ 2 z + X K ( • X + 1)   (ρ, z) -∂ z ρ X K ℓ 2 z + X K (ρ, z 0 ). Since , ℓ z ∈ [ℓ 1 , ℓ 2 ] and • Θ ∈ B δ0 (L Θ ), there exists C > 0 uniform in ρ, (ε, ℓ z ) such that |I| ≤ C δ0 .
Concerning the second term, we write:

|II| ≤ ℓ 2 (W K X -1 K )(ρ, z) -(W K X -1 K )(ρ, z 0 ) ≤ ℓ 2 sup z∈(z,z 0 ) ∂z(W K X -1 K )(ρ, z) |z -z 0 | . By 9, W K X -1 K (ρ, z) := 2dr(ρ, z) Π(ρ, z)
is smooth and bounded (with its derivatives) on B.

Therefore, there exists C > 0 independent of (ρ, z) and (ε, ℓ z ) so that |II| ≤ C δ0 .

We have ∀z ∈ B(z 0 , δ 0 ),

(a) := (z -z 0 )∂ z • σ(ρ, z) • X(ρ, z) • ∇ (x,y) ∂ z A ℓz (ρ, z 0 ), ( • σ(ρ, z 0 ), • X(ρ, z 0 )) + (z -z 0 )∂ zz A ℓz (ρ, z 0 ), ( • σ(ρ, z 0 ), • X(ρ, z 0 )) + O((δ 0 ) 2 )
By similar arguments to the first estimates, we can find C > 0 uniform in (ε, ℓ z ) such that ∀(ρ, z) we have |(a)| ≤ Cδ 0 .

In order to estimate (b), we write

(b) = • σ(ρ, z 0 ) • X(ρ, z 0 ) • ∇ (x,y) ∂ z A ℓz ((ρ, z 0 ), (0, 0)) + O((δ 0 ) 2 ).
Again by similar arguments as above, we can find C > 0 uniform in (ε, ℓ z ) such that ∀(ρ, z) we have

|(b)| ≤ Cδ 0 .
Finally, after shrinking δ 0 , there exists C > 0 such that

|III| ≤ Cδ 0
Hence, we choose δ0 so that

∂ z F (ε,ℓz),ρ h (z) -∂ z F (ε,ℓz),ρ h 0 (z 0 ) ≤ 1 2 .
Since,

∂ z F (ε,ℓz),ρ h 0 (z 0 ) = 0, (3.6.6) 
we are left with a bound on the derivative of F (ε,ℓz),ρ h with respect to z:

∂ z F (ε,ℓz),ρ h (z) ≤ 1 2 .
(3.6.7)

5. We claim that there exists δ 0 ≤ δ 0 such that

∀z ∈ B Φ K,1 (ε,ℓz) (ρ), δ 0 : F (ε,ℓz),ρ h (z) -Φ K,1 (ε,ℓz) (ρ) ≤ 1 2 . Indeed, ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) , ∀h ∈ B(h 0 , δ 0 ) and ∀z ∈ B(Φ K,1 (ε,ℓz) (ρ), δ 0 ) F (ε,ℓz),ρ h (z) -Φ K,1 (ε,ℓz) (ρ) = F (ε,ℓz),ρ h (z) -F (ε,ℓz),ρ h 0 (z 0 = Φ K,1 (ε,ℓz) (ρ)) = F (ε,ℓz),ρ h (z) -F (ε,ℓz),ρ h (z 0 ) + F (ε,ℓz),ρ h (z 0 ) -F (ε,ℓz),ρ h 0 (z 0 )
By the mean value theorem,

F (ε,ℓz),ρ h (z) -F (ε,ℓz),ρ h (z 0 ) ≤ 1 2 |z -z 0 | ≤ 1 2 δ 0 . spacetime
Moreover, by similar estimates to those performed in (3.6.5), there exists C > 0 uniform in (ε, ℓ z ) and z such that

F (ε,ℓz),ρ h (z 0 ) -F (ε,ℓz),ρ h 0 (z 0 ) ≤ Cδ 0 .
Therefore, we choose δ 0 ≤ δ 0 so that

F (ε,ℓz),ρ h (z) -F (ε,ℓz),ρ h 0 (z 0 ) ≤ δ 0 .
By (3.6.7), F (ε,ℓz),ρ h (ρ) is a contraction on B(Φ K,1 (ε,ℓz) (z), δ 0 ). 6. By the fixed point theorem, there exists δ 0 ≤ δ0 such that ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) , there exists a mapping Φ •.,1 (ε,ℓz) (ρ) :

B(0, δ 0 ) → B(Φ K,1 (ε,ℓz) (ρ), δ 0 ) such that Φ h,1 (ε,ℓz) (ρ) ∈ B δ 0 (L Θ × L σ × L X ) and satisfies F (ε,ℓz),ρ (h, Φ h,1 (ε,ℓz) (ρ)) = 0.
• Regularity:

-Regularity with respect to h: we prove that h → Φ h,1 is C 1 with respect to h. For this, let (ε, ℓ z ) ∈ B bound and ρ ∈ I 1 (ε,ℓz) . In order to lighten the expressions, we will not write the dependence of Φ h,1 on ((ε, ℓ z ); ρ) and also sometimes write Φ h,1 as Φ 1 (h). First, we show that Φ 1 is Lipschitz. For this, let h, h ∈ B δ 0 and set

z = Φ 1 (h), z = Φ 1 (h).
We have

z -z = Φ 1 (h) -Φ 1 (h) = F h (z) -F h (z) = F h (z) -F h (z) + F h (z) -F h (z) = F h (z) -F h (z) + φ(ε, ℓ z , ρ) F (ε,ℓz),z (h, z) -F ε,ℓz,z (h, z) .
We have

|F h (z) -F h (z)| ≤ 1 2 |z -z| and φ(ε, ℓ z , ρ) F (ε,ℓz),ρ (h, z) -F ε,ℓz,ρ (h, z) ≤ C h -h L Θ ×Lσ×L X . Therefore, |z -z| ≤ 2C h -h L Θ ×Lσ×L X .
Thus, Φ 1 is Lipschitz, so continuous on B δ 0 . Since

∀Φ 1 (ρ) ∈ B(Φ K,1 (ρ), δ 0 ), ∂F ε,ℓz,ρ h ∂z (z) ≤ 1 2 , Hence, ∀z ∈ B(Φ K,1 (ρ), δ 0 ), ∀h ∈ B δ 0 , ∂F (ε,ℓz),ρ ∂z (h, z) = 0.
Since F (ε,ℓz),ρ is differentiable at (h, z), we have

0 = F (ε,ℓz),ρ (h, z) -F (ε,ℓz),ρ (h, z) = D h F (ε,ℓz),ρ (h, z) • (h -h) + ∂ z F (ε,ℓz),ρ (h, z)(z -z) + o ||h -h|| L Θ ×Lσ×L X + |z -z| .
By the above estimates we have

o(|z -z| = O(||h -h|| L Θ ×Lσ×L X ).
Therefore,

z -z = -∂ ρ F (ε,ℓz),ρ (h, z) -1 D h F (ε,ℓz),ρ (h, z) • (h -h) + o(||h -h||).
-Regularity with respect to z:

Let (ε, ℓ z ) ∈ B bound and let h ∈ B δ 0 (L Θ × L σ × L X ).
First we show that Φ h,1 (ε,ℓz) is Lipschitz on I 1 (ε,ℓz) . In order to lighten the expressions, we drop the dependence in (ε, ℓ z ) and h so that Φ h,1 (ε,ℓz) will be denoted by Φ 1 . Similarly, Φ K,1 (ε,ℓz) will be denoted by Φ K,1 . Now, let ρ 1 , ρ 2 ∈ I 1 (ε,ℓz) . We will express Φ 1 (ρ 1 ) -Φ 1 (ρ 2 ) in terms of ρ 1ρ 2 . To this end, we write,

z 1 -z 2 := Φ 1 (ρ 1 ) -Φ 1 (ρ 2 ) = F ρ 1 (z 1 ) -F ρ 2 (z 2 ) = F ρ 1 (z 1 ) -F ρ 1 (z 2 ) + F ρ 1 (z 2 ) -F ρ 2 (z 2 ) = F ρ 1 (z 1 ) -F ρ 1 (z 2 ) + φ(ρ 1 ) (F ρ 1 (z 2 ) -F ρ 2 (z 2 )) + (φ(ρ 1 ) -φ(ρ 2 )) F ρ 2 (z 2 ).
Again, we have

|F ρ 1 (z 1 ) -F ρ 1 (z 2 )| ≤ 1 2 |z 1 -z 2 | .
We have

φ(z i ) = ∂F ρ i ∂z (0, Φ K,1 (ρ i )) -1 = ∂E K ℓz ∂z (ρ i , Φ K,1 (ρ i )) -1
.

Therefore,

φ(ρ 1 ) -φ(ρ 2 ) = ∂E K ℓz ∂z (ρ 1 , Φ K,1 (ρ 1 )) -1 - ∂E K ℓz ∂z (ρ 2 , Φ K,1 (ρ 2 )) -1 = ∂E K ℓz ∂z (ρ 1 , Φ K,1 (ρ 1 )) ∂E K ℓz ∂z (ρ 2 , Φ K,1 (ρ 2 )) -1 ∂E K ℓz ∂z (ρ 2 , Φ K,1 (ρ 2 )) - ∂E K ℓz ∂z (ρ 1 , Φ K,1 (ρ 1 )) . spacetime ∂E K ℓz ∂z (ρ 1 , Φ K,1 (ρ 1 )) - ∂E K ℓz ∂z (ρ 2 , Φ K,1 (ρ 2 )) ≤ C sup B 1 || ∇ 2 E ℓz (ρ, z) || |ρ 1 -ρ 2 | ≤ C|ρ 1 -ρ 2 |,
where C is independent of (ε, ℓ z ). We also have

∂E K ℓz ∂z (ρ 1 , Φ K,1 (ρ 1 )) ∂E K ℓz ∂z (ρ 2 , Φ K,1 (ρ 2 )) -1 ≤ C,
for some C uniform in (ε, ℓ z ). Moreover,

F ρ 1 (z 2 ) -F ρ 2 (z 2 ) = E ℓz (h, ρ 1 , z 2 ) -E ℓz (h, ρ 2 , z 2 ).
Since E ℓz (h, , •, z 2 ) is differentiable on I 1 (ε,ℓz) , we have

|F ρ 1 (z 2 ) -F ρ 2 (z 2 )| ≤ sup B 1 |∇ ρ,z E ℓz (ρ, z)| |ρ 1 -ρ 2 | ≤ C |ρ 1 -ρ 2 | ,
where C > 0 is some constant independent of (ε, ℓ z ). Therefore, there exists a constant independent of (ε, ℓ z ) and h such that

Φ 1 (ρ 1 ) -Φ 1 (ρ 2 ) ≤ C|ρ 1 -ρ 2 |. (3.6.8) 
Hence, Φ 1 is Lipschitz on I 1 (ε,ℓz) . It remains to show that Φ 1 is continuously differentiable on I 1 (ε, ℓ z ). Now, recall that

∀ρ ∈ I 1 (ε,ℓz) ∈ ∀z ∈ B(Φ K,1 (ρ), δ 0 ), ∀h ∈ B δ 0 , ∂F (ε,ℓz),ρ ∂z (h, z) = 0.
Since, (ρ, z) → F ρ (z) is differentiable on B 1 , we have

0 = F (ε,ℓz),ρ 1 (h, z 1 ) -F (ε,ℓz),ρ 2 (h, z 2 ) = F (ε,ℓz),ρ 1 (h, z 1 ) -F (ε,ℓz),ρ 2 (h, z 1 ) + F (ε,ℓz),ρ 2 (h, z 1 ) -F (ε,ℓz),ρ 2 (h, z 2 ) = ∂ ρ F (ε,ℓz),ρ 1 (h, z 1 )(ρ 1 -ρ 2 ) + ∂ z F (ε,ℓz),ρ 2 (h, z 2 )(z 1 -z 2 ) + o (|ρ 1 -ρ 2 | + |z 1 -z 2 |) .
By (3.6.8), we have

o(|z 1 -z 2 |) = O(|ρ 1 -ρ 2 |).
Hence,

Φ 1 (ρ 1 ) -Φ 1 (ρ 2 ) = -∂ z F (ε,ℓz),ρ 2 (h, z 2 ) -1 ∂ ρ F (ε,ℓz),ρ 1 (h, z 1 )(ρ 1 -ρ 2 ) + O(|ρ 1 -ρ 2 |) = - ∂ ρ E ℓz (h, ρ 1 , Φ 1 (ρ 2 )) ∂ z E ℓz (h, ρ 2 , Φ 1 (ρ 2 )) (ρ 1 -ρ 2 ) + O (|ρ 1 -ρ 2 |) .
-Regularity with respect to (ε, ℓ z ): We claim that Φ 1 is continuously differentiable on B bound . The regularity in this case is proven in the the same manner. there are no others solutions to the equation (3.6.3) in [z max (ε, ℓ z ), ∞[. First, we set ∀z ∈ [z max (ε, ℓ z ), z max (ε, ℓ z )] , P h,ρ ε,ℓz (z) := E ℓz (h, ρ, z)ε. and ∀z ∈ [z max (ε, ℓ z ), z max (ε, ℓ z )]; , P K,ρ ε,ℓz (z) := E K ℓz (ρ, z)ε. We claim that for δ 0 sufficiently small, there exists

C > 0 such that ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) , z ∈ J := [z max (ε, ℓ z ), ∞[\B(Φ K,1 ε,ℓz (ρ), δ 0 ) we have P K, ρ ε,ℓz (ρ) > Cδ 0 . P K,ρ ε,ℓz is monotonically increasing on ]z max (ε, ℓ z ), ∞[. Therefore, ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) , ∀z ∈ J : P K,ρ ε,ℓz (z) > max P K,ρ ε,ℓz (Φ K,1 ε,ℓz (ρ) -δ 0 ) , P K,ρ ε,ℓz (Φ K,1 ε,ℓz (ρ) + δ 0 )
. Now, we show that for all |h| small, there exist C(h) > 0 uniform in (ε, ℓ z ) such that

|P K,ρ ε,ℓz (Φ K,1 ε,ℓz (ρ) + h)| > C(h).
We have

P K,ρ ε,ℓz (Φ K,1 ε,ℓz (ρ) + h) = P K,ρ ε,ℓz (Φ K,1 ε,ℓz (ρ)) + h(P K,ρ ε,ℓz ) ′ (Φ K,1 ε,ℓz (ρ)) + o(h),
where o(h) is uniform in (ε, ℓ z ) by continuity of (P K,ρ ε,ℓz ) (k) with respect to ((ε, ℓ z ); ρ), compactness of B bound and the fact that z ∈ I 1 (ε,ℓz) ⊂ K where K is some compact independent from (ε, ℓ z ). Moreover, Φ K,1 ε,ℓz (ρ) is a simple root in the sense that (P K,ρ ε,ℓz ) ′ (Φ K,1 ε,ℓz (ρ)) = ∂E ℓz ∂z (ρ, Φ K,1 (ε,ℓz) (ρ)) = 0 and (ε, ℓ z , ρ) → (P K,ρ ε,ℓz ) ′ (Φ K,1 ε,ℓz,d (ρ)) is continuous on B bound × K. Hence, for h sufficiently small, we obtain

P K,ρ ε,ℓz Φ K,1 ε,ℓz (ρ) + h > |h| (P K,ρ ε,ℓz ) ′ (Φ K,1 ε,ℓz (ρ)) > C|h|,
where C is some constant which is uniform in δ 0 and (ε, ℓ z ). Therefore, we update δ 0 so that

P K,ρ ε,ℓz (Φ K,1 ε,ℓz (z) ± δ 0 ) > Cδ 0 . Now, let δ 1 < δ 0 . By uniqueness in the fixed point theorem, ∀h ∈ B δ 1 ⊂ B δ 0 , ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) Φ h,1 ε,ℓz (ρ)
is the unique solution in the ball B(Φ K,1 ε,ℓz (ρ), δ 0 ). Moreover, ∀z ∈ J, we have P h,ρ ε,ℓz (z) = P h,ρ ε,ℓz (z) -P K,ρ ε,ℓz (z) + P K,ρ ε,ℓz (z).

By the triangular inequality, the latter implies for P h,ρ ε,ℓz (z

) -P K,ρ ε,ℓz (z) < Cδ 1 < Cδ 0 that ∀z ∈ J, |P h,ρ ε,ℓz (z)| > -Cδ 1 + Cδ 0 > 0.
Therefore, after updating δ 1 > 0, P h,ρ ε,ℓ does not vanish outside the ball B(Φ K,1 ε,ℓz (ρ), δ 1 ). This yields the uniqueness. spacetime Thus, we update δ 0 in order to obtain that that ∀h ∈ B δ 0 , ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz) there exist a unique solution to the equation (3.6.3) in the region [z max (ε, ℓ z ), ∞[.

In the same way, we prove the following lemmas: Lemma 56. Let i = 2, • • • , 4. There exists 0 < δ 0 such that ∀h ∈ B δ 0 ⊂ L Θ × L σ × L X , there exists a unique Φ h,i (ε,ℓz) : I i (ε,ℓz) → R such that the set of solutions to (3.6.3) on B i is given by Gr Φ h,i (ε,ℓz) . Moreover, we have • Φ h,i is smooth with respect to (ε, ℓ z ).

• Φ h,i ε,ℓz is continuously Fréchet differentiable with respect to h,

• Φ h,i ε,ℓz is C 1 on I i (ε,ℓz) and satisfies

Φ i ε,ℓz -Φ K,i ε,ℓz C 1 I i (ε,ℓz )
< δ 0 .

(3.6.9)

Lemma 57. There exists 0 < δ 0 such that ∀(ε,

ℓ z ) ∈ B bound , ∀h ∈ B δ 0 ⊂ L Θ × L σ × L X , ∀K ⊂⊂ ] -β, β[, ∀z ∈ K,
there exists a unique Φ h,abs ε,ℓz (z) ∈ B δ 0 (Φ K,abs ε,ℓz (z)) which solves (3.6.3). Moreover, we have • Φ h,abs is smooth respect to (ε, ℓ z ).

• Φ h,abs is continuously Fréchet differentiable with respect to h,

• Φ h,abs has the same regularity as h seen as functions of z on K.

Remark 36. We could have applied the implicit function theorem to show the existence of solutions in a neighbourhood of each point of Z K , but the neighbourhood will a priori depend on the point and on (ε, ℓ z ). Hence, we used the fixed point theorem instead to obtain a uniform δ 0 , using the compactness of B bound . Now, we choose δ 0 so that Lemma 55, 56 and 57 are satisfied. It remains to show that ∀(ε, ℓ z ) ∈ B bound , ∀h ∈ B δ 0 , Z(h, ε, ℓ z ) consists of two connected components: Z abs (h, ε, ℓ z )and Z trapped (h, ε, ℓ z ) which is diffeomorphic to S 1 . Now, we prove Proposition 25

Proof. First, we apply lemmas 55, 56 and 57: ∀(ε, ℓ z ) ∈ B bound , ∀h ∈ B δ 0 ⊂ L Θ × L σ × L X there exists a unique set of solutions Z i (h, ε, ℓ z ) in the region B i given by • on every compact of B abs :

Z abs (h, ε, ℓ z ) = Graph Φ abs (ε,ℓz) ,
• on B 1 :

Z 1 (h, ε, ℓ z ) = Graph Φ h,1 (ε,ℓz) ,
• on B 2 :

Z 2 (h, ε, ℓ z ) = Graph Φ h,2 (ε,ℓz) ,
• on B 3 :

Z 3 (h, ε, ℓ z ) = Graph Φ h,3 (ε,ℓz) ,
• on B 4 :

Z 4 (h, ε, ℓ z ) = Graph Φ h,4 (ε,ℓz) .
By uniqueness of solutions on B i , we obtain:

Z i (h, ε, ℓ z ) = Z j (h, ε, ℓ z ) on B i ∩ B j such that i = j.
(3.6.10)

We set

Z trapped (h, ε, ℓ z ) := i=1•••4 Z i (h, ε, ℓ z ).
(3.6.11) and Z abs (h, ε, ℓ z ) := Z abs (h, ε, ℓ z ).

(3.6.12)

It is easy to see that

Z abs (h, ε, ℓ z ) ∩ Z trapped (h, ε, ℓ z ) = ∅. (3.6.13)
Therefore, Z(h, ε, ℓ z ) has two connected components. It remains to show that Z trapped (h, ε, ℓ z ) is diffeomorphic to S 1 . To see this, we construct a complete curve α : R → Z trapped (h, ε, ℓ z ) which is periodic and which will parametrise Z trapped (h, ε, ℓ z ).

1. there exist two unique points

(ρ i (h, ε, ℓ z ), 0) ∈ Z i (h, ε, ℓ z ).
2. We set α(0) := (ρ 1 (h, ε, ℓ z ), 0) α 1 2 := (ρ 2 (h, ε, ℓ z ), 0).

3. Let t 0 < t 1 ∈ 0, 1 2 . We set:

ρ 0 := Φ 1 (ε,ℓz) z K min - c 2 and ρ 1 := Φ 3 (ε,ℓz) (z K min - c 2 
and z i := z K min - c 2 i ∈ {0, 1} so that (ρ 0 , z 0 ) ∈ Z 1 (h, ε, ℓ z ) ∩ Z 3 (h, ε, ℓ z ) and (ρ 1 , z 1 ) ∈ Z 2 (h, ε, ℓ z ) ∩ Z 3 (h, ε, ℓ z ).
4. We construct the path α on ]0, t 0 [ by setting:

α(t) := Φ 1 ε,ℓz (z(t)), z(t) := z 0 t t 0 .
5. On ]t 0 , t 1 [, α is defined by

α(t) := ρ(t) := ρ 0 t 1 -t t 1 -t 0 + ρ 1 t -t 0 t 1 -t 0 , z(t) := Φ 3 ε,ℓz (ρ(t)) . spacetime 6. On t 1 , 1 2 , α is defined by α(t) := Φ 2 ε,ℓz (z(t)), z(t) := z 1 t 1 -1 2 t - z 1 2t 1 -1 .
One can easily check that α is continuous on 0, 1 2 . Now, by similar constructions, we extend continuously the construction to 1 2 , 1 so that we obtain α(0) = α(1).

7. Note that the constructed curve is in fact C 1 due to regularity of Φ i 's.

8. Therefore, α is homeomorphic to S 1 .

Remark 37. We note that δ 0 depends on B bound and the parameters of the Kerr black hole (a, M ).

Further properties of the functions Φ i

In order to introduce the dimensions of the matter cloud, we need the following lemma concerning the extrema of the functions Φ i (ε,ℓz) (h, •) at a fixed h and (ε, ℓ z ) Lemma 58. Let δ 0 > 0 be given by Proposition 25. Then, after possibly shrinking δ 0 , ∀h ∈ B(0, δ 0 ), ∀(ε, ℓ z ) ∈ B bound , there exist

1. a unique z 0 (h, ε, ℓ z ) ∈ B δ 0 (0) ⊂] -γ, γ[ such that ∂Φ abs ε,ℓz ∂z (h, z 0 ) = 0.
Moreover, Φ abs ε,ℓz (h, •) is maximal at this point.

a unique

ρ 1 max (h, ε, ℓ z ) ∈ B δ 0 (ρ max (ε, ℓ z )) ⊂ I 1 (ε,ℓz) such that ∂Φ 1 ε,ℓz ∂ρ (h, ρ 1 max (h, ε, ℓ z )) = 0 , Moreover, Φ 1 ε,ℓz (h, •) is maximal at this point. 3. a unique ρ 2 max (h, ε, ℓ z ) ∈ B δ 0 (ρ max (ε, ℓ z )) ⊂ I 2 (ε,ℓz) such that ∂Φ 2 ε,ℓz ∂ρ (h, ρ 2 max (h, ε, ℓ z )) = 0 , Moreover, Φ 2 ε,ℓz (h, •) is minimal at this point. 4. a unique z c1 (h, ε, ℓ z ) ∈ B δ 0 (0) ⊂ I 3 (ε,ℓz) such that ∂Φ 3 ε,ℓz ∂z (h, z c2 (h, ε, ℓ z )) = 0 , Moreover, Φ 3 ε,ℓz (h, •
) is minimal at this point.

a unique z

c2 (h, ε, ℓ z ) ∈ B δ 0 (0) ⊂ I 4 (ε,ℓz) such that ∂Φ 4 ε,ℓz ∂z (h, z c2 (h, ε, ℓ z )) = 0 , Moreover, Φ 4 ε,ℓz (h, •
) is maximal at this point.

Proof. For example, in order to obtain the second point, we consider the mapping

∂ ρ Φ 1 ε,ℓz : B δ 0 (0) × I 1 (ε,ℓz) → R defined by ∂Φ 1 ε,ℓz ∂ρ (h, ρ).
and we consider the equation

∂Φ 1 ε,ℓz ∂ρ (h, ρ) = 0.
By Lemma 51, the point (0, ρ max (ε, ℓ z )) is zero of the above equation. Moreover, by Lemma 55, ∂ ρ Φ 1 ε,ℓz is continuously Fréchet differentiable on its domain. Furthermore,

∂ 2 Φ 1 ε,ℓz ∂ρ 2 (0, ρ max (ε, ℓ z )) = ∂ 2 Φ K,1 ε,ℓz ∂ρ 2 (ρ max (ε, ℓ z )) = 0.
Therefore, we apply the same method used in Lemma 55 (fixed point arguments) to obtain that there exists δ 0 > 0 independent of (ε, ℓ z ) (eventually smaller than the one chosen by Proposition 25) such that ∀h ∈ B δ 0 (0

) ⊂ L Θ × L σ × L X there exists a unique ρ 1 max (h, ε, ℓ z ) ∈ B δ 0 (ρ max (ε, ℓ z )) ⊂ I 1 (ε,ℓz) such that ∂Φ 1 ε,ℓz ∂ρ (h, ρ 1 max (h, ε, ℓ z )) = 0 , Moreover, Φ 1 ε,ℓz (h, •
) is maximal at this point and ρ 1 max (•, ε, ℓ z ) is continuously Fréchet differentiable on B δ 0 (0).

Localisation of the matter cloud

In this section, we will localise the matter cloud moving in the perturbed spacetime. More precisely, we will prove that for δ 0 sufficiently small, all trapped non-spherical timelike future-directed geodesics with (ε, ℓ z ) ∈ B bound moving the perturbed spacetime are located inside B ±,trapped (a, M ), defined in Proposition 22. We will also construct a compact region of B ±,trapped (a, M ) which depends only on B bound and (a, M ) which contains the support of the distribution function. Finally, we will arrange so that the domain of trapped non-spherical geodesics moving in the perturbed spacetime remains in B A .

First, we recall

B H = (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| < 1 + 1 b β , B A = (ρ, z) ∈ B, ρ 2 + (z ± β) 2 > β a , |z| + |ρ| > 1 - 1 b β .
We generalise Lemma 53 to the perturbed spacetimes in the following way.

Lemma 59. There exists δ 0 > 0 such that for all h ∈ B(0, δ 0 ) and for all (ε, ℓ z ) ∈ B bound we have

ρ 1 (h, ε, ℓ z ) -ρ 0 (h, ε, ℓ z ) > η,
where η is given by Lemma 47.

Proof. Let δ 0 > 0 be given by Proposition 25. Let h ∈ B(0, δ 0 ) and (ε, ℓ z ) ∈ B bound . Then, for sufficiently small δ 0 , we have

ρ 1 (h, ε, ℓ z ) > ρ K 1,min - η 2 and ρ 0 (h, ε, ℓ z ) < ρ K 0,max + η 2 .
Therefore,

ρ 1 (h, ε, ℓ z ) -ρ 1 (h, ε, ℓ z ) > ρ K 1,min -ρ K 0,max -η. By (3.3.156), we obtain ρ 1 (h, ε, ℓ z ) -ρ 1 (h, ε, ℓ z ) > 2η -η = η.
Finally, we obtain Proposition 27. Assume that the distribution function f has the ansatz defined by (3.4.2). Then

supp (ρ,z) f ⊂⊂ [ρ min (h), ρ max (h)] × [Z min (h), Z max (h)] . (3.6.15) 
Proof. Let (ρ, z) ∈ supp (ρ,z) f . Then,

(ε, ℓ z ) ∈ B bound and χ η (ρ -ρ 1 (h, (ε, ℓ z ))) > 0.
By (3.2.14) and since (ε, ℓ z ) ∈ B bound , (ρ, z) must lie either in the region bounded by Z trapped (h, ε, ℓ z ) or in the region bounded by ∂(B H ∪ B A ) Z abs (h, ε, ℓ z ). Since

χ η (ρ -ρ 1 (h, (ε, ℓ z ))) > 0,
by Lemma 59, we have ρ > ρ 1 (h, ε, ℓ z )η > ρ 0 (h, ε, ℓ z ).

Thus, (ρ, z) cannot lie in the region bounded by ∂(B H ∪ B A ) Z abs c (h, ε, ℓ z ). We conclude that

(ρ, z) ∈ [ρ 1 (h, ε, ℓ z ), ρ 2 (h, ε, ℓ z )]×[z min (h, ε, ℓ z ), z max (h, ε, ℓ z )] ⊂ [ρ min (h), ρ max (h)]×[Z min (h), Z max (h)] .
This ends the proof.

3.7 Set-up for solving the renormalised equations

Two fixed point lemmas

In this section, we state two variations of the classical fixed point theorem whose applications will allow us to solve the system of equations for the renormalised unknowns. These versions were derived and used in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF].

Theorem 19 (Banach fixed point theorem). Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T admits a unique fixed point in X.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

The following theorem is a consequence of 19.

Theorem 20. Suppose that we have Banach spaces L, Q, and P, ǫ > 0 and a map

T : B ǫ (L) × B ǫ (Q) × B ǫ (P) → B ǫ (L).
Furthermore, suppose that 1. There exists a constant D > 0 such that (l, q, p) ∈ B ǫ (L) × B ǫ (Q) × B ǫ (P), we have

||T (l, q, p)|| L ≤ D(||l|| 2 L + ||q|| 2 Q + ||p|| P ).
2. There exists a constant D > 0 such that (l 1 , q 1 , p 1 ), (l 2 , q 2 , p 2 ) ∈ B ǫ (L)×B ǫ (Q)×B ǫ (P) implies

||T (l 1 , q 1 , p 1 ) -T (l 2 , q 2 , p 2 )|| L ≤ D [(||l 1 || L + ||l 2 || L )||l 1 -l 2 || + ||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ] .
Then after choosing ǫ > 0 sufficiently small, there exists a solution map G :

B ǫ (Q) × B ǫ (P) → B ǫ (L) such that 1. (q, p) ∈ B ǫ (Q) × B ǫ (P) implies
T (G(q, p), q, p) = G(q, p).

2. There exists a constant D > 0 such that (q, p) ∈ B ǫ (Q) × B ǫ (P) implies

||G(q, p)|| L ≤ D ||q|| 2 Q + ||p|| P .
3. There exists a constant D > 0 such that (q 1 , p 1 ), (q 2 , p 2 ) ∈ B ǫ (Q) × B ǫ (P) implies

||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L ≤ D ((||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ) .
Proof. We apply Theorem 19 to

T (., q, p) : B ǫ (L) → B ǫ (L).
For this we choose ǫ sufficiently small so that T (., p, q) is a contraction map. First we fix (q,p). By the second assumption, one has

||T (l 1 , q, p) -T (l 2 , q, p)|| L ≤ D ((||l 1 || L + ||l 2 || L )||l 1 -l 2 || L ) ≤ 2Dǫ||l 1 -l 2 || L .
We choose ǫ such that 2Dǫ < 1.

We apply Theorem 19 to have the first point of the theorem. Now we derive the quadratic estimates,

||G(q, p)|| L = ||T (G(q, p), q, p)|| L ≤ D(||G(q, p)|| 2 L + ||q|| 2 Q + +||p|| P ), ≤ Dǫ||G(q, p)|| L + D(||q|| 2 Q + ||p|| P ), ≤ 1 2 ||G(q, p)|| L + D(||q|| 2 Q + ||p|| P ).
Hence

||G(q, p)|| L ||q|| 2 Q + ||p|| P .
For the second quadratic estimates, we proceed in the same way:

||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L = ||T (G(q 1 , p 1 ), q 1 , p 1 ) -T (G(q 1 , p 1 ), q 2 , p 2 )|| L , ≤ D((||G(q 1 , p 1 )|| L + ||G(q 2 , p 2 )|| L )||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L + (||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ) ≤ 2Dǫ||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L + D((||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ) ≤ 1 2 ||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L + D((||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ). Hence ||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L ((||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ) .
As a consequence of Theorem 20, we have the following version of the fixed point theorem Theorem 21. Suppose we have a linear operator L : L → L, an operator N : L × Q × P → L, E : B ǫ (L) × B ǫ (Q) × B ǫ (P) → L for some ǫ > 0, such that 1. For all (l, q, p) ∈ B ǫ (L) × B ǫ (Q) × B ǫ (P), we have E(l, q, p) = L(l) -N (l, q, p).

2. We have a Banach space N ⊂ L and a bounded map L -1 : N → L such that H ∈ N implies

L(L -1 (H)) = H. 3. We have N (B ǫ (L) × B ǫ (Q) × B ǫ (P)) ⊂ N and there exists a constant D > 0 such that (l, q, p) ∈ B ǫ (L) × B ǫ (Q) × B ǫ (P) implies ||N (l, q, p)|| N ≤ D(||l|| 2 L + ||q|| 2 Q + ||p|| P )
4. There exists a constant D > 0 such that (l 1 , q 1 , p 1 ), (l 2 , q 2 , p 2 ) ∈ B ǫ (L)×B ǫ (Q)×B ǫ (P) implies

||N (l 1 , q 1 , p 1 )-N (l 2 , q 2 , p 1 )|| N ≤ D [(||l 1 || L + ||l 2 || L )||l 1 -l 2 || + ||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || + ||p 1 -p 2 || P ] .
Then, after choosing a sufficiently small ǫ, there exists a solution map G : B ǫ (Q) × B ǫ (P) → B ǫ (L) such that 1. (q, p) ∈ B ǫ (Q) × B ǫ (P) implies E(G(q, p), q, p) = 0.

2. There exists a constant D > 0 such that (q, p) ∈ B ǫ (Q) × B ǫ (P) implies

||G(q, p)|| L ≤ D ||q|| 2 Q + ||p|| P .
3. There exists a constant D > 0 such that q 1 , q 2 ∈ B ǫ (Q) and p 1 , p 2 ∈ B ǫ (P) imply

||G(q 1 , p 1 ) -G(q 2 , p 2 )|| L ≤ D [(||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || Q + ||p 1 -p 2 || P ] .
Proof. Define T to be

T : B ǫ (L) × B ǫ (Q) × B ǫ (P) → B ǫ (L) ( l , q , p ) → L -1 (N (l, q, p)).
We verify the assumptions

||T (l, q, p)|| L = ||L -1 (N (l, q, p))|| L ≤ |||L -1 |||||N (l, q, p)|| N ≤ D(||l|| 2 L + ||q|| 2 Q + ||p|| P )
Here we used the continuity of L -1 and the third assumption. Similarly,

||T (l 1 , q 1 , p 1 ) -T (l 2 , q 2 , p 1 )|| L = ||L -1 (N (l 1 , q 1 , p 1 ) -N (l 2 , q 2 , p 2 ))|| L ≤ |||L -1 |||||N (l 1 , q 1 , p 1 ) -N (l 2 , q 2 , p 2 )|| N ≤ D [(||l 1 || L + ||l 2 || L )||l 1 -l 2 || + (||q 1 || Q + ||q 2 || Q )||q 1 -q 2 || + ||p 1 -p 2 || P ] .
Here we used the fourth assumption. Now since the assumptions of Theorem 20 are all satisfied, there exists a solution map G : B ǫ (Q) × B ǫ (P) → B ǫ (L) such that L -1 (N (G(q, p), q, p)) = T (G(q, p), q, p) = G(q, p).

Therefore, E(G(q, p), q, p) = L(G(q, p)) -N (G(q, p), q, p) = 0.

Toy Model

In this section, we present a model problem which indicates the general structure that we will exploit when we solve the equations for the renormalised unknowns. where N : B δ 0 (L) × [0, δ 0 [→ L is the mapping defined by

N (h, δ)(x) := K F (x, v, δ)Ψ(h(x), v) dv
where K ⊂⊂ R 3 , L := C k+2,α 0 (B 1 ) with α 0 ∈ (0, 1), k ≥ 0 and B δ 0 (L) is the open ball of L of radius δ 0 > 0 centred at 0. We make the following assumptions on F :

• F : R n × K × [0, δ 0 [→ R + is continuous and C k,α 0 with respect to the first variable,

• ∀v ∈ K , ∀δ ∈ [0, δ 0 [ , F (•, v, δ) is supported on B 1 , • ∀x ∈ B 1 , ∀v ∈ K , F (x, v, 0) = 0, • ∀x ∈ B 1 , ∀v ∈ K , F (x, v, •) is differentiable at δ = 0,
• Ψ : R × K → R + is smooth and compactly supported.

We have the trivial solution given by h = 0 with δ = 0. We will use the fixed point argument in order to construct a one-parameter family of solutions (h(δ)) [0,δ 0 [ of (3.7.1) which equals the trivial solution when δ = 0. We state the following result: δ -1 h(δ) = ĥ where ĥ is the solution of linear Poisson problem:

   ∆h = K ∂ δ F (x, v, 0)Ψ(0, v) dv on B 1 h| ∂B 1 = 0. (3.7.2)
Proof. Let δ 0 > 0. The proof relies on the application Theorem 21 with L = ∆ : L → C 0 (B 1 ) and N : L × R → C 0 (B 1 ). To this end, we check the following assumptions:

1. E :

B δ 0 (L) × [0, δ 0 [→ C 0 (B 1 ) has the form E(h, δ) = ∆(h) -N (h, δ).
It is well defined by the dominated convergence theorem.

4. The remaining step is to show that there exists

C > 0 such that δ 1 , δ 2 ∈ [0, δ 0 [ implies ||h(δ 1 ) -h(δ 2 )|| L ≤ C||δ 1 -δ 2 ||.
Now, we make an analogy with the reduced EV system: h corresponds to the renormalised quantities, the function F corresponds to the distribution function and K corresponds to B bound . Moreover, the compact support of F corresponds to the compact support of the matter terms. Finally, the ability to invert the Laplacian and solve for h corresponds to the use of the modified Carter-Robinson theory.

3.8 Solving for the renormalised quantities

Further analytical properties of the Kerr metric

As in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF], We start by introducing the following function defined on B by :

h(ρ, z) := log ρ 2 + (z -β) 2 -(z -β) + log ρ 2 + (z + β) 2 + (z + β) . (3.8.1)
This function will allow us to capture the singular behaviour of the Kerr metric coefficients. In fact, it behaves in the same way as log(X K ) near the horizon, the axis of symmetry, the poles and near at infinity. More precisely, we have Lemma 60. Define a function x K (ρ, z) := log(X K )h.

Then, x K ∈ Ĉ∞ (B).

Proof. The proof is based on Taylor expansions of the different metric components around the singularities. First of all, note that away from the horizon, the axis of symmetry and the poles, x k is smooth and all the derivatives are bounded.

• Near the axis:

Define A N := (ρ, z) ∈ B A \A , z > β and let (ρ, z) ∈ A N .
Then,

h = 2 log ρ + log ρ 2 + (z + β) 2 + (z + β) ρ 2 + (z -β) 2 + (z -β) . (3.8.2)
Thus,

x k = log ρ 2 Π Σ 2 ∆ -2 log ρ -log ρ 2 + (z + γ) 2 + (z + γ) ρ 2 + (z -γ) 2 + (z -γ) , = log Π Σ 2 ∆ -log ρ 2 + (z + γ) 2 + (z + γ) ρ 2 + (z -γ) 2 + (z -γ) .
Next note that Π Σ 2 ∆ is smooth on A N since both functions Σ 2 and ∆ do not vanish on this set.

Thus x K is smooth around A N . In the same way x K is smooth on A S := (ρ, z) ∈ B A \A , z < -β . spacetime

• Near the horizon: Similarly, let H ⊂ H be a neighbourhood of the horizon. By the extendibility of Kerr around the horizon, we have

log(X K ) = log(X H ),
where X H (0, z) > 0. Thus, log(X K ) is smooth near the horizon.

By Taylor expansion of h around the horizon, we find that the latter is also regular.

• Near p N :

Let (ρ, z) ∈ B N . We compute

h = log ρ 2 + (z -β) 2 -(z -β) + log ρ 2 + (z + β) 2 + (z + β) = log s 2 χ 2 + 1 4 (χ 2 -s 2 ) 2 - 1 2 (χ 2 -s 2 ) + log s 2 χ 2 + ( 1 2 (χ 2 -s 2 ) + 2β) 2 + ( 1 2 (χ 2 -s 2 ) + 2β) .
The first term of the right hand side is given by

I := log s 2 χ 2 + 1 4 (χ 2 + s 2 -2sχ) - 1 2 (χ 2 -s 2 ) , = log 1 4 (χ 2 + s 2 + 2sχ) - 1 2 (χ 2 -s 2 ) , = 2 log s.
We compute the second term of the right hand side

II := log s 2 χ 2 + 1 4 (χ 2 + s 2 -2s 2 χ 2 ) + β(χ 2 -s 2 ) + 2γ 2 + ( 1 2 (χ 2 -s 2 ) + 2β) , = log 1 2 (χ 2 + s 2 ) 2 + 4β(χ 2 -s 2 ) + 4β 2 + ( 1 2 (χ 2 -s 2 ) + 2β) .
II is clearly smooth on B N . Now, we have

x k (s, χ) = log ρ 2 Π Σ 2 ∆ -h, = 2 log s + log χ 2 ∆ + log Π Σ 2 -h, = log χ 2 ∆ + log Π Σ 2 -log 1 2 (χ 2 + s 2 ) 2 + 4β(χ 2 -s 2 ) + 4β 2 + ( 1 2 (χ 2 -s 2 ) + 2β) .
∆ vanishes at p N . We make a Taylor expansion for log χ 2 ∆ around p N : r = r+ + χ 2 rN (s, χ), where rN is smooth and does not vanish on B N . It is given by where h is some smooth function defined on B H . Recall that, X H is given by

rN (s, χ) := 2β 4β -s 2 + O(s 2 χ 2 ).
X H (ρ 2 , z) = β 2 -z 2 β 2 4r 2 H Σ 2 (ρ 2 , z) + X H (ρ 2 , z)
where X H is some smooth function defined on B H . Now, we compute:

∂ z X H (ρ 2 , z) = ∂ z β 2 -z 2 β 2 4r 2 H Σ 2 (ρ 2 , z) -4r 2 H β 2 -z 2 β 2 ∂ z Σ 2 (ρ 2 , z) Σ 4 (ρ 2 , z) + ∂ z X H (ρ 2 , z).
On the horizon, we have

∂ z X H (0, z) = 0 , X H (ρ 2 , z) = 0 , ∂ z h(0, z) = 0 , Σ 2 (0, z) = r 2 H + z 2 β 2 .
Now, straightforward computations imply:

∂ z X H (0, z) X H (0, z) = - 4r H z β 2 -z 2 and ∂ z h(0, z) = - 2z β 2 -z 2 .
Therefore,

lim ρ→0;|z|<β |∂X K | X K |∂h| = 4r 2 H . (b) Near A : We have ∂ log X K = 2 1 ρ 0 t + ∂f A , ∂h = 2 1 ρ 0 t + ∂g A ,
where f A , g A ∈ Ĉ∞ (B A ) with bounded derivatives. Therefore,

|∂ log X K | 2 |∂h| 2 = 4 ρ 2 + 4 ρ ∂ ρ f + |∂f | 2 4 ρ 2 + 4 ρ ∂ ρ g + |∂g| 2 .
The latter goes to 1 when ρ → 0.

(c) Near p N and p S :

log X K = 2 log s + f N (s, χ) h = 2 log s + g N (s, χ)
where f N , g N ∈ Ĉ∞ (B N ). Hence,

|∂X K | 2 X 2 K |∂h| 2 = |∂X K | 2 X 2 K |∂h| 2 = 2 s + ∂ s f N 2 + (∂ χ f N ) 2 2 s + ∂ s g N 2 + (∂ χ g N ) 2 .
The latter goes to 1 when (s, χ) → (0, 0).

2. Now, we prove that there exist c, C > 0 such that ∀(ρ, z) ∈ B, we have

ce h |∂h| ≤ |∂X K | ≤ Ce h |∂h| .
We write ∀(ρ, z) ∈ B:

|∂X K | e h |∂h| = |∂X K | X K |∂h| X K e -h = e x K |∂X K | X K |∂h| .
By Lemma 60, x K ∈ Ĉ∞ (B). Moreover, we have 

|∂X K | X K ∼ |∂h|
∂h B A ∩A = 2 ρ ∂ ρ + e A , ∂h B N = 2 s ∂ s + e s , ∂h B S = 2 s ′ ∂ ′ s + e s ,
Moreover, e A verifies the decay estimate at infinity:

|e A | = O r→+∞ 1 r 2 . (3.8.3) 
Proof.

1. Let à ⊂ B A be a neighbourhood of the axis and let (ρ, z) ∈ à . Then

∂| Ã = 2 1 ρ 0 t + ∂g A = 2 1 ρ ∂ ρ + e A ,
where e A := ∂g A ∈ Ĉ∞ (B A ) and which can be extended smoothly to B.

By (3.8.2), we have

|∂g A | 2 = ∂ log ρ 2 + (z + β) 2 + (z + β) ρ 2 + (z -β) 2 + (z -β) 2 . Set P ± (ρ, z) := ρ 2 + (z ± β) 2 + (z ± β).
Then

|∂g A | 2 = P 2 -(ρ, z) P 2 + (ρ, z) 1 P 4 -(ρ, z) |∂P + (ρ, z)| 2 P 2 -(ρ, z) + |∂P -(ρ, z)| 2 P 2 + (ρ, z) -2P + (ρ, z)P -(ρ, z)∂P + (ρ, z) • ∂P -(ρ, z)) .
When r = 1 + ρ 2 + z 2 → ∞, we have

P 2 -(ρ, z) P 2 + (ρ, z) = O(1) and 1 P 4 -(ρ, z) = O(r -4 ). spacetime Moreover, |∂P ± (ρ, z)| 2 = ρ ρ 2 + (z ± β) 2 2 + z ρ 2 + (z ± β) 2 + 1 2 = O(r -2 ) and |∂P + (ρ, z) • ∂P -(ρ, z)| = O(r -2 ).
Therefore,

|∂g A | = O r→∞ 1 r 2 .
2. The expansion near p N and near p S is obtained in the same manner.

Regularity of the matter terms F i

First of all, we recall that F i are given by

F 1 (W, X, σ)(ρ, z) := -e 2λ 2πρ σ D(ρ,z) (X+2(ρL) 2 )Φ(E+ρωL, ρL)Ψ η (ρ, (E+ρωL, ρL), (X, W, σ)) dEdL, (3.8.4) 
F 2 (W, X, σ)(ρ, z) := 2πρ σ X D(ρ,z)
ρLEΦ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.8.5)

F 3 (W, X, σ)(ρ, z) := 2πρ 3 σ X 2 D(ρ,z)
L2 -L 2 Φ(E + ρωL, ρL)Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL,

(3.8.6) F 4 (W, X, σ, λ)(ρ, z) := - 4πe 2λ ρ σ D(ρ,z) X 2 ρ 2 σ 2 E 2 + 1 - X ρ 2 1 + ρ 2 X L 2 Φ(E + ρωL, ρL) Ψ η (ρ, (E + ρωL, ρL), (X, W, σ)) dEdL, (3.8.7) 
Lemma 64. Let δ 0 > 0 be given by Proposition 25 and let h :=

• Θ, • σ, • X ∈ B δ 0 ⊂ L Θ × L σ × L X .
Then, the matter terms F i (h) as defined in (3.8.4)-(3.8.7) are well-defined on B.

Proof. By Proposition 27, we have

B H ∪ B N ∪ B S ∩ supp (ρ,z) f = ∅ and supp (ρ,z) f ⊂⊂ B A . Now let (ρ, z) ∈ B A . If (ρ, z) ∈ Ã
where à is some open neighbourhood of the axis, then by Proposition 9, there exists a smooth function X A : à → R such that X A (0, z) > 0 and

X K (ρ, z) = ρ 2 X A (ρ 2 , z). (3.8.8)
Hence, near the axis, L is given by

L(E, • X, • σ, ρ, z) = √ X K ρ 1 + • X   -1 + X K ρ 2 1 + • X (1 + • σ) 2 E 2   1 2 = X A 1 + • X   -1 + X A 1 + • X (1 + • σ) 2 E 2   1 2
which is well defined on à . The term σ √ X is also well defined on à since

σ √ X = ρ(1 + • σ) X K (1 + • X) = 1 √ X A 1 + • σ 1 + • X .
Therefore, the matter terms

F i ( • Θ, • X, • σ) are well defined on à , thus on B A . Now, if (ρ, z) ∈ B H ∪ B N ∪ B S , then F i ( • Θ, • X,
• σ) vanish. Hence, they are well defined.

Further computations of the matter terms F i

In this section, we compute explicitly the intersection of D(ρ, z) with supp Φ. To this end, we will have to distinguish between direct and retrograde orbits. In this case, we write

f (x, v) = (Φ + (ε, ℓ z ) + Φ -(ε, ℓ z )) Ψ η (ρ, (ε, ℓ z ), h) (3.8.9)
where Φ + is supported on B + bound and Φ -is supported on B - bound . Let (ρ, z) ∈ B A . Recall the definition of D(ρ, z): .8.11) This is equivalent to

D(ρ, z) = (E, L) : E ≥ σ √ X and |L| ≤ L(E, X, σ, ρ, z) where L(E, X, σ, ρ, z) := √ X ρ -1 + X σ 2 E 2 1 2 . (3.8.10) Now, let (E, L) ∈ D(ρ, z). Then, E ≥ σ √ X and 0 ≤ ρ 2 X L 2 ≤ X σ 2 E 2 -1. ( 3 
E ≥ σ √ X and σ 2 X ≤ σ 2 X ρ 2 X L 2 + 1 ≤ E 2 .
(3.8.12)

Thus, E ≥ Ẽ(L, X, σ, ρ, z)

where Ẽ is defined by

Ẽ(L, X, σ, ρ, z) := σ √ X 1 + ρ 2 X L 2 . (3.8.13) • Otherwise, supp Φ + (•, ρ•) ∩ D + (ρ, z) ⊂ (ξ, s) : E ρs (h, ρ, z) ≤ ξ ≤ ε + 2 and L(ε + 2 , h, ρ, z) ≥ s ≥ ℓ + 1 ρ , supp Φ -(•, ρ•) ∩ D -(ρ, z) ⊂ (ξ, s) : E ρs (h, ρ, z) ≤ ξ ≤ ε - 2 and -L(ε - 2 -ωℓ - 1 , h, ρ, z) ≤ s ≤ ℓ - 2 ρ , Proof. Let (ξ, s) ∈ D(ρ, z) ∩ supp Φ(•, ρ•). Then,
ξ ≥ E ρs (h, (ρ, z)) and (ξ, ρs) ∈ B bound .

• If ρ = 0. Then, (ξ, ρs) / ∈ B bound . Hence, D(ρ, z) ∩ supp Φ(•, ρ•) = ∅. • Otherwise, 1. If (ξ, s) ∈ D + (ρ, z) ∩ supp Φ + (•, ρ•), then ωs ≥ 0 and ξ ≥ E ρs (h, ρ, z), ε + 1 ≤ ε ≤ ε + 2 and ℓ + 1 ρ ≤ s ≤ ℓ + 2 ρ .
This implies

E ρs (h, ρ, z) = Ẽ(s, h, ρ, z) + ωρs ≤ ε + 2 . Since ωs ≥ 0, we obtain Ẽ(s, h, ρ, z) ≤ ε + 2 .
Since Ẽ is monotonically increasing on R + with respect to s, we obtain a upper bound on s: s ≤ L(ε + 2 , h, ρ, z).

Finally, we recall that we also have an upper bound on s, given by ℓ 1 ρ , which provides the desired result.

Similarly

, if (ξ, s) ∈ D -(ρ, z) ∩ supp Φ -(•, ρ•), then, ωs ≤ 0 and ξ ≥ E ρs (h, ρ, z), ε - 1 ≤ ξ ≤ ε - 2 and ℓ - 1 ρ ≤ s ≤ ℓ - 2 ρ . This implies, ωℓ - 2 ≤ -ωρs ≤ ωℓ - 1 and E ρs (h, ρ, z) ≤ ε - 2 . Hence, Ẽ(s, h, ρ, z) ≤ ε - 2 -ωρs ≤ ε - 2 -ωℓ - 1 .
Since Ẽ is monotonically decreasing on R -with respect to s, we obtain a lower bound on s:

s ≥ -L(ε - 2ωℓ - 1 , h, ρ, z) and we also have

s ≤ ℓ - 2 ρ .
This ends the proof. spacetime Finally, we set f i,± φ ± ,η to be

f 1,± Φ ± ,η (s, h, ρ, z) := ε ± 2 Eρs(h,ρ,z) (X K (1 + • X) + 2(ρs) 2 )Φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h) dξ, (3.8.18) f 2,± Φ ± ,η (s, h, ρ, z) := ε ± 2 Eρs(h,ρ,z) ρs(ξ -ρ - • Θ + ω K s)Φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h) dξ, (3.8.19) f 3,± Φ ± ,η (s, h, ρ, z) := ε ± 2 Eρs(h,ρ,z) L2 ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z -s 2 Φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h) dξ, (3.8.20) f 4,± Φ ± ,η (s, h, ρ, z) := ε ± 2 
Eρs(h,ρ,z) g 4 (s, h, ρ, z, ξ)Φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h) dξ, where (3.8.21)

g 4 (s, h, ρ, z, ξ) :=    X 2 K (1 + • X) 2 ρ 4 1 + • σ 2 ξ -ρ - • Θ + ω K s 2 +   1 - X K (1 + • X) ρ 2     1 + ρ 2 X K (1 + • X) s 2      (3.8.22) 
Hence, F i (h) are given by:

• ∀(ρ, z) ∈ B A F i (h, • λ)(ρ, z) := F i + (h, • λ, ρ, z) + F i -(h, • λ, ρ, z), (3.8.23) 
where

F 1 + (h, ρ, z) := - 2πe 2 • λ+λ K 1 + • σ L(ε + 2 ,h,ρ,z) ℓ + 1 ρ f 1,+ Φ + ,η (s, h, ρ, z) ds, (3.8.24) 
F 2 + (h, ρ, z) := 2πX K (1 + • X) 1 + • σ L(ε + 2 ,h,ρ,z) ℓ + 1 ρ f 2,+ Φ + ,η (s, h, ρ, z) ds, ( 3 
.8.25)

F 3 + (h, ρ, z) := ρ 4 X 2 K 2π(1 + • σ) (1 + • X) 2 L(ε + 2 ,h,ρ,z) ℓ + 1 ρ f 3,+ Φ + ,η (s, h, ρ, z) ds, (3.8.26) 
F 4 + (h, • λ, ρ, z) := - 4πe 2 • λ+λ K 1 + • σ L(ε + 2 ,h,ρ,z) ℓ + 1 ρ f 4,+ Φ + ,η (s, h, ρ, z) ds, (3.8.27) spacetime Proof. Let u ∈ R and define, for x ∈] -δ 0 , δ 0 [ 3 , (ρ, z) ∈ B, E u (x, (ρ, z)) := x 1 ρu -W K X -1 K (ρ, z)ρu + ρ X K (ρ, z) 1 + x 2 1 + x 3 (ρu) 2 + X K (ρ, z)(x 2 + 1).
By Proposition 9, ∀u ∈ R , E u is well-defined on B and it is smooth on ]δ 0 , δ 0 [ 3 ×B. Moreover, ∀u ∈ R, ∀(x, (ρ, z)) ∈]δ 0 , δ 0 [ 3 ×B :

∂ x E u (x, (ρ, z)) =         ρu ρ X K (ρ, z) 1 1 + x 3 (ρu) 2 + X K (ρ, z)(x 2 + 1) + (1 + x 2 )X K (ρ, z) 2 (ρu) 2 + X K (ρ, z)(x 2 + 1) - ρ X K (ρ, z) 1 + x 2 (1 + x 3 ) 2 (ρu) 2 + X K (ρ, z)(x 2 + 1)         Now, we set DE u ( • Θ, • X, • σ)[ Θ, X, σ](ρ, z) = (( Θ(ρ, z) X(ρ, z) σ(ρ, z))∂ x E u (( • Θ, • X, • σ)(ρ, z), (ρ, z)). Set h = ( • Θ, • X,
• σ) and h = ( Θ, X, σ). We will show that for

lim || h|| L Θ L X ×Lσ →0 ||E u (h + h) -E u (h) -DE u (h)[ h]|| Ĉ2,α (B) || h|| L Θ ×L X ×Lσ ∀(ρ, z) ∈ B, we have E u (h + h)(ρ, z) -E u (h)(ρ, z) -DE u (h)[ h](ρ, z) = E u (h(ρ, z) + h(ρ, z), (ρ, z)) -E u (h(ρ, z), (ρ, z)) -h(ρ, z) • ∂ x E u (h(ρ, z), (ρ, z)).
Denote by ′ the differential with respect to (ρ, z), then

E u (h + h)(ρ, z) -E u (h)(ρ, z) -DE u (h)[ h](ρ, z) ′ = (∂ x E u (h(ρ, z) + h(ρ, z), (ρ, z))) t (h ′ (ρ, z) + h′ (ρ, z)) + (E u ) ′ (h(ρ, z) + h(ρ, z), (ρ, z)) -(∂ x E u (h(ρ, z), (ρ, z))) t (h ′ (ρ, z)) -(E u ) ′ (h(ρ, z), (ρ, z)) -(∂ x E u (h(ρ, z), (ρ, z))) t h′ (ρ, z) -h(ρ, z)(∂ x E u ) ′ (h(ρ, z), (ρ, z)) -h(ρ, z)∂ xx E u (h(ρ, z), (ρ, z))h ′ (ρ, z).
In the same way, we compute the second derivatives. We provide only the second derivative of the term E u (h)(ρ, z) in order to detail the Hölder estimates. the other terms are estimated using similar arguments:

E u (h) ′′ (ρ, z) = ((∂ x E u (h(ρ, z), (ρ, z))) t (h ′ (ρ, z))) ′ + ((E u ) ′ (h(ρ, z), (ρ, z))) ′ = 3 i=1 (∂ x E u ) i (h(ρ, z), (ρ, z))h ′′ i (ρ, z) + h ′ (ρ, z) t (E u ) ′ (h(ρ, z), (ρ, z)) + ((∂ x E u ) ′ (h(ρ, z), (ρ, z))) t h ′′ (ρ, z) + (E u ) ′′ (h(ρ, z), (ρ, z)) + 3 i=1 (h ′ (ρ, z)) t (∂ xx E u ) i (h(ρ, z), (ρ, z))h ′ (ρ, z). Now, we estimate the C 2,α (B) norm of E u (h + h) -E u (h) -DE u (h)[ h]
1. Since E u is smooth and bounded with respect to x, there exists

C = C(u, δ 0 ) such that ∀(ρ, z) ∈ B E u (h + h)(ρ, z) -E u (h)(ρ, z) -DE u (h)[ h](ρ, z) ≤ C|| h|| 2 L Θ ×L X ×Lσ .
2. Moreover,

(E u ) ′ (h(ρ, z) + h(ρ, z), (ρ, z)) -(E u ) ′ (h(ρ, z), (ρ, z)) -h(ρ, z)(∂ x E u ) ′ (h(ρ, z), (ρ, z)) = (E u ) ′ (h(ρ, z) + h(ρ, z), (ρ, z)) -(E u ) ′ (h(ρ, z), (ρ, z)) -h(ρ, z)(∂ x (E u ) ′ )(h(ρ, z), (ρ, z)) = O(| h(ρ, z)| 2 ).
Since E u is smooth and bounded with respect to (ρ, z) and their derivatives with respect to (ρ, z) are also bounded on B by Proposition 9, then there exists C = C(u, δ 0 ) > 0 such that ∀(ρ, z) ∈ B, we have

(E u ) ′ (h(ρ, z) + h(ρ, z), (ρ, z)) -(E u ) ′ (h(ρ, z), (ρ, z)) -h(ρ, z)(∂ x E u ) ′ (h(ρ, z), (ρ, z)) ≤ C|| h|| 2 L Θ ×L X ×Lσ .
3. Furthermore,

(∂ x E u (h(ρ, z) + h(ρ, z), (ρ, z))) t (h ′ (ρ, z) + h′ (ρ, z)) -(∂ x E u (h(ρ, z), (ρ, z))) t (h ′ (ρ, z)) -(∂ x E u (h(ρ, z), (ρ, z))) t h′ (ρ, z) -h(ρ, z)∂ xx E u (h(ρ, z), (ρ, z))h ′ (ρ, z) = (∂ x E u (h(ρ, z) + h(ρ, z), (ρ, z)) -∂ x E u (h(ρ, z), (ρ, z)) -∂ xx E u (h(ρ, z), (ρ, z))( h(ρ, z)) t ) t (h ′ (ρ, z)) + ∂ x E u (h(ρ, z) + h(ρ, z), (ρ, z)) -∂ x E u (h(ρ, z), (ρ, z))) t (h ′ (ρ, z)) (∂ x E u (h(ρ, z) + h(ρ, z), (ρ, z)) -∂ x E u (h(ρ, z), (ρ, z)) -∂ xx E u (h(ρ, z), (ρ, z))( h(ρ, z)) t ) t ( h′ (ρ, z)) + ( h(ρ, z)∂ x E u (h(ρ, z), (ρ, z))) t h′ (ρ, z) = (h ′ (ρ, z))O(( h(ρ, z)) 2 ) + O(| h′ (ρ, z)|| h(ρ, z)|)
Thus, there exists C = C(u, δ 0 ) > 0 such that ∀(ρ, z), we have

E u (h + h)(ρ, z) -E u (h)(ρ, z) -DE u (h)[ h](ρ, z) ′ ≤ C|| h|| 2 L Θ ×L X ×Lσ .
4. The C 2,α estimates and the Hölder semi-norm of the second derivatives are obtained as above: we use the smoothness ad boundedness of E u as well as its derivatives.

Therefore, E u is Fréchet-differentiable on B δ 0 and its Fréchet differential is given by It remains to show that DE u is continuous on

B δ 0 . Let h 1 , h 2 ∈ B δ 0 and let h ∈ L Θ × L X × L σ such that || h|| L Θ ×L X ×Lσ ≤ 1. We have ||DE u (h 1 )[ h] -DE u (h 2 )[ h]|| Ĉ2,α (B) = || h • (∂ x E u (h 1 (•), •) -∂ x E u (h 2 (•), •))|| Ĉ2,α (B) ≤ || h|| L Θ ×L X ×Lσ ||(∂ x E u (h 1 (•), •) -∂ x E u (h 2 (•), •))|| Ĉ2,α (B)
Since E u is smooth, we have ∀(ρ, z) ∈ B,

∂ x E u (h 1 (ρ, z), (ρ, z))-∂ x E u (h 2 (ρ, z), (ρ, z)) = ∂ xx E u (h 1 (ρ, z), (ρ, z))•(h 1 (ρ, z)-h 2 (ρ, z)) t +O(|h 1 (ρ, z)-h 2 (ρ, z)| 2 ) spacetime
Now, since h 1 ∈ B δ 0 and by Proposition 9, there exists

C = C(u, δ 0 ) such that ∀(ρ, z) ∈ B |∂ xx E u (h 1 (ρ, z), (ρ, z))| ≤ C and O(|h 1 (ρ, z) -h 2 (ρ, z)| 2 ) = O(||h 1 -h 2 || 2 ). Consequently, ||(∂ x E u (h 1 (•), •) -∂ x E u (h 2 (•), •))|| Ĉ0 (B) ≤ C(u, δ 0 )||h 1 -h 2 ||.
In the same way, we estimate the Ĉ1 , Ĉ2 norms and the Hölder part. We conclude that E u is continuously Fréchet differentiable on B δ 0 Remark 38. As in the previous lemma, we will show the Fréchet differentiabilty of functionals of ( 

• Θ, • X, • σ) defined on B δ 0 (0) ⊂ L Θ × L X × L σ which
(E, •, •) : B δ 0 ⊂ (L X × L σ ) → C 2,α (B A ) defined by L(E, h, ρ, z) := √ X K ρ 1 + • X   -1 + 1 + • X (1 + • σ) 2 X K ρ 2 E 2   1 2 
.

Then, L(E, •, •) is well-defined and it is continuously Fréchet differentiable on B δ 0 .

Proof. Let E ∈ R.

1. First, we introduce the mapping g

E :] -δ 0 , δ 0 [ 2 ×B A g E (x, y, ρ, z) := √ X K ρ √ 1 + x -1 + 1 + x (1 + y) 2 X K ρ 2 E 2 1 2 . By Proposition 9, ∀(x, y) ∈] -δ 0 , δ 0 [ 2 ; g E (x, y, •) is well-defined on B A and it is smooth. Moreover, ∀(ρ, z) ∈ B A , g E (•, ρ, z) is smooth on ] -δ 0 , δ 0 [ 2 and we have, ∀(ρ, z) ∈ B A , ∇ (x,y) g E (x, y, ρ, z) = √ X K ρ (∇ (x,y) -(1 + x) + (1+x) 2 (1+y) 2 E 2 2 -(1 + x) 2 + (1+x) 2 (1+y) 2 E 2 . ∀(x, y) ∈] -δ 0 , δ 0 [ 2 , ∇ (ρ,z) g E (x, y, ρ, z) = √ 1 + x ∇ (ρ,z) -X K ρ 2 + 1+x (1+y) 2 X 2 K ρ 4 E 2 2 -X K ρ 2 + 1+x (1+y) 2 X 2 K ρ 4 E 2 . 2. Let h = ( • X, • σ) ∈ B δ 0 . First, we show that L(E, h, •) ∈ C 2,α (B A ). We have L(E, h, ρ, z) = g E ( • X(ρ, z), • σ(ρ, z), ρ, z). g E (x, •) is smooth on B A and • X, • σ ∈ C 2,α (B A )
. Thus, L(E, h, •) is well-defined and it also lies in C 2,α (B A ). where L is defined by (3.8.10) and

P 4 (h, s, ξ)(ρ, z) :=    X 2 K (1 + • X) 2 ρ 4 1 + • σ 2 ξ -ρ - • Θ + ω K s 2 +   1 - X K (1 + • X) ρ 2     1 + ρ 2 X K (1 + • X) s 2      φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h), (3.8.40) 
with derivatives:

D h P 1 (h, s, ξ)[ h](ρ, z) = -D h ρ 1 (h, ξ, ρs)[ h]χ ′ η (ρ -ρ 1 (h, ξ, ρs))(X K (1 + • X) + 2(ρs) 2 )φ ± (ξ, ρs) + X K Xφ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h), (3.8.41) 
D h P 2 (h, s, ξ)[ h](ρ, z) = -ρsD h ρ 1 (h, ξ, ρs)[ h]χ ′ η (ρ -ρ 1 (h, ξ, ρs))(ξ -ρ - • Θ + ω K s)φ ± (ξ, ρs) + ρ 2 s Θφ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h), (3.8.42) 
D h P 3 (h, s, ξ)[ h](ρ, z) = -D h ρ 1 (h, ξ, ρs)[ h]χ ′ η (ρ -ρ 1 (h, ξ, ρs)) L2 ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z -s 2 φ ± (ξ, ρs) + 2 L ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z φ ± (ξ, ρs)Ψ η (ρ, (ξ, ρs), h) ρs Θ ∂ L ∂E ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z + X K X ∂ L ∂X ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z +ρσ ∂ L ∂σ ξ -ρ - • Θ + ω K s, X K (1 + • X), σ, ρ, z (3.8.43) DF 3 (h)[ h](ρ, z) = ρ 4 X 2 K 2π(1 + • σ) (1 + • X) 2 D L(ε + 2 , h, ρ, z)[ h]f 3,+ φ + ,η L(ε + 2 , h, ρ, z)h, ρ, z +D L(ε - 2 , h, ρ, z)[ h]f 3,- φ -,η L(ε - 2 , h, ρ, z)h, ρ, z + L(ε + 2 ,h,ρ,z) ℓ + 1 ρ D h   ρ 4 X 2 K 2π(1 + • σ) (1 + • X) 2 f 3,+ φ + ,η (s, h, ρ, z)   [ h] ds + ℓ - 1 ρ -L(ε - 2 ,h,ρ,z) D h   ρ 4 X 2 K 2π(1 + • σ) (1 + • X) 2 f 3,- φ -,η (s, h, ρ, z)   [ h] ds (3.8.47) DF 4 (h, • λ)[ h, λ](ρ, z) = - 8π λe 2 • λ+λ K 1 + • σ L(ε + 2 ,h,ρ,z) ℓ + 1 ρ f 4,+ φ + ,η (s, h, ρ, z) ds, + ℓ - 1 ρ -L(ε - 2 ,h,ρ,z) f 4,- φ -,η (s, h, ρ, z) ds   - 4πe 2 • λ+λ K 1 + • σ D L(ε + 2 , h, ρ, z)[ h]f 4,+ φ + ,η L(ε + 2 , h, ρ, z)h, ρ, z +D L(ε - 2 , h, ρ, z)[ h]f 4,- φ -,η L(ε - 2 , h, ρ, z)h, ρ, z + L(ε + 2 ,h,ρ,z) ℓ + 1 ρ D h   - 4πe 2 • λ+λ K 1 + • σ f 4,+ φ + ,η (s, h, ρ, z)    [ h] ds + ℓ - 1 ρ -L(ε - 2 ,h,ρ,z) D h   - 4πe 2 • λ+λ K 1 + • σ f 4,- φ -,η (s, h, ρ, z)    [ h] ds (3.8.48)
Proof.

1. Since the matter terms vanish in the regions B N , B S , B H and near the axis we prove the result only in B A \ à , where à is some neighbourhood of the axis given by Lemma 66.

2. By the first point of the proposition, the mappings F i are well defined. In order the show the Fréchet differentiability, we apply lemmas 68, 69 and Lebesgue dominated convergence theorem.

3. Since χ η is either 0 or 1 on the support of φ ± (ξ, ρs), DΨ η (•, (ξ, ρs), h) vanishes. Hence, we can eliminate the terms including DΨ η in the derivatives of P i 's.

4. The estimates follow by using similar arguments from the previous lemmas.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

Introduce the bifurcation parameter δ

Solutions to the Einstein-Vlasov system will be obtained by perturbing the Kerr spacetime using a bifurcation parameter δ ≥ 0. The latter turns on in the presence of Vlasov matter supported on B bound ⊂⊂ A bound . In order to introduce the latter in the equations, we adjust the ansatz for f (3.4.2) in oder to make the dependence on δ explicit:

f δ (t, φ, ρ, z, φ, p ρ , p φ , p z ) = Φ(ε, ℓ z ; δ)Ψ η (ρ, (ε, ℓ z ), (X, W, σ)) (3.8.49) such that ∀(ε, ℓ z ) ∈ A bound , Φ(ε, ℓ z ; 0) = 0,
where Φ : A bound × R + → R + . We will impose the regularity assumptions on Φ given in Lemma 69 so that the solution operator is well defined. Assuming that (g, f δ ) solves the EV-system, we can apply Theorem [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF] with the ansatz (3.8.49) to obtain the explicit dependence of F i on the bifurcation parameter δ:

F 1 ( • Θ, • X, • σ; δ)(ρ, z) := - 2πe 2 • λ+λ K 1 + • σ D(ρ,z) (X K (1 + • X) + 2(ρL) 2 )Φ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ(- • Θ + ω K )L, ρL), ( • Θ, • X, • σ)) dEdL, F 2 ( • Θ, • X, • σ; δ)(ρ, z) := 2π 1 + • σ X K (1 + • X) D(ρ,z) ρLEΦ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ - • Θ + ω K L, ρL), ( • Θ, • X, • σ)) dEdL, F 3 ( • Θ, • X, • σ; δ)(ρ, z) := ρ 4 X 2 K 2π(1 + • σ) 1 + • X 2 D(ρ,z) L2 -L 2 Φ(E + ρ - • Θ + ω K L, ρL) Ψ η (ρ, (E + ρ - • Θ + ω K L, ρL), ( • Θ, • X, • σ)) dEdL, F 4 ( • Θ, • X, • σ; δ)(ρ, z) := - 4πe 2 • λ+λ K 1 + • σ D(ρ,z)      X 2 K 1 + • X 2 ρ 4 1 + • σ 2 E 2 + 1 - X K ρ 2 1 + • X 1 + ρ 2 X K 1 1 + • X L 2      Φ(E + ρ - • Θ + ω K L, ρL)Ψ η (ρ, (E + ρ - • Θ + ω K , ρL), ( • Θ, • X, • σ)) dEdL.
Finally, we note that ∀(

• Θ, • X, • σ), ∀(ρ, z) , F i ( • Θ, • X, • σ; •)(ρ, z) is continuously Fréchet differentiable on [0, δ 0 [.

Solving for σ

In this section, we solve for • σ in terms of the renormalised unkonws

• X, • Θ, • λ and δ. We recall that • σ verifies ∆ R 4 • σ = ρ -1 σ -1 Xe 2λ F 3 ( • Θ, • X, • σ, δ)(ρ, z),
where ∆ R 4 is the Laplacian corresponding to the flat metric on R 4 given by g R 4 = dρ 2 + dz 2 + ρ 2 dS 2 .

To any function f : B → R, we associate a function f R 4 : R 4 → R defined in the following way: let

x = (x i ) i=1...4 ∈ R and define its cylindrical coordinates (ρ, θ, φ, z) ∈ [0, ∞[×S 2 × R such that x 1 = ρ sin θ cos φ x 2 = ρ cos θ sin φ x 3 = ρ cos θ x 4 = z. Now define f R 4 by f R 4 (x) := f (ρ = x 2 1 + x 2 2 + x 2 3 , z = x 4
). In the following, we confound f with f 4 R . We start with solving the linear problem.

Linear problem

We prove the following result Proposition 30. Let H σ ∈ N σ . Then, there exists a unique

• σ ∈ L σ which solves the equation ∆ R 4 • σ = H σ .
It is given by Then, we have

• σ(ρ, z) = • σ R 4 (x) = - R 4 1 |x -y| 2 (H σ ) R 4 (y) dy.
|u(x)| ≤ C sup y∈R n y k F (y) x 2-n + x 2-k , (3.8.50) and |∂u(x)| ≤ C sup y∈R n y k F (y) x 1-n + x 1-k . (3.8.51) Proof. 1. First of all, we have ∀x ∈ R |u(x)| ≤ R n |x -y| 2-n |F (y)| dy ≤ sup y∈R n y k F (y) R n |x -y| 2-n y -k dy. spacetime Set A(x) := R n |x -y| 2-n y -k dy, we have A(x) = y,|x-y|≤ x 4 |x -y| 2-n y -k dy + y,|x-y|≥ x 4
|x -y| 2-n y -k dy = I + II.

We estimate the first term in the right hand side.

I := y,|x-y|≤ x 4 |x -y| 2-n y -k dy.
By the reversed triangular inequality, we have

|y| = |x -(x -y)| ≥ ||x| -|x -y||, Thus, y -k = (1 + |y| 2 ) -k 2 ≤ ( x 2 -2 x |x -y| + |x -y| 2 ) -k 2 ,
We obtain,

I ≤ y,|x-y|≤ x 4 |x -y| 2-n ( x 2 -2 x |x -y| + |x -y| 2 ) -k 2 dy, ≤ x 4 0 r 2-n ( x 2 -2 x r + r 2 ) k 2 r n-1 dr, ≤ x 4 0 r 2-n ( x 2 -2 x r) k 2 r n-1 dr, = x -k x 4 0 r (1 -2 x -1 r) k 2 r n-1 dr, = x 2-k 1 4 0 r ′ (1 -2r ′ ) k 2 dr ′ .
In the last line, we changed the variable by setting r ′ = x -1 r Hence

I ≤ C x 2-k .
Now we estimate the second term II given by

II := y,|x-y|≥ x 4
|x -y| 2-n y -k dy.

We will deal with two cases k ≤ n and k ≥ n. |x -y| 2-n y -k dy,

≤ C x 2-n y,|x-y|≥ x 4 y -k dy, ≤ C x 2-n R n y -k dy, ≤ C x 2-n ∞ 0 r n-1 (1 + r 2 ) k 2 dr, When r → ∞, we have r n-1 (1 + r 2 ) k 2 ∼ 1 r k-n+1
Since k > n the integral converges. Thus, Now

I ≤ C x 2-n . Now suppose that k ≤ n. We write II = D 1 (x) |x -y| 2-n y -k dy + D 2 (x) |x -y| 2-n y -k dy = II 1 + II 2 ,
II 2 := D 1 (x) |x -y| 2-n y -k dy, = |y|≥2 x |x -y| 2-n y -k dy, ≤ |y|≥2 x ||x| -|y|| 2-n y -k dy, by reversed triangle inequality, = |y|≥2 x (|y| -|x|) 2-n y -k dy, ≤ |y|≥2 x (|y| -x ) 2-n y -k dy, = ∞ 2 x 1 (r -x ) n-2 1 (1 + r 2 ) k 2 r n-1 dr, = ∞ 2 x 1 (1 -x r ) n-2 r (1 + r 2 ) k 2 
dr. spacetime Since r ≥ 2 x , we have the following estimate

1 (1 -x r ) n-2 ≤ 2 n-2 .
Hence,

II 2 ≤ C ∞ 2 x r (1 + r 2 ) k 2 dr, = C 1 -k 2 + 1 (1 + r 2 ) -k 2 +1 , ≤ C x 2-k . Now we estimate II 1 . II 1 = |x-y|≥ x 4 ∩{|y|≤2 x } |x -y| 2-n y -k dy, = B(0,2 x )\B(x, x 4 ) |x -y| 2-n y -k dy, ≤ C x 2-n B(0,2 x )\B(x, x 4 ) 
y -k dy,

≤ C x 2-n 2 x 0 r n-1 (1 + r 2 ) k 2 dr If k < n then, II 1 ≤ C x 2-n 2 x 0 1 r k-n+1 dr, ≤ C x 2-n x n-k = x 2-k . If k = n, then II 1 ≤ C x 2-n 2 x 0 r n-1 (1 + r 2 ) -n 2 dr, ≤ C x 2-n log x .
2. For the first order estimates, by the integrability condition of F and the regularisation property of the convolution product u is differentiable and we have

∂ x i u(x) = (2 -n) R n ∂ x i (|x -y|)|x -y| 1-n F (y) dy, = (2 -n) R n (x i -y i )|x -y| -n F (y) dy. Thus, |∂u(x)| ≤ (n -2) R n |x i -y i ||x -y| -n F (y) dy, ≤ (n -2) R n |x -y| 1-n F (y) dy, ≤ C sup y∈R n y k F (y) R n |x -y| 1-n y -k dy.
We use similar arguments to the first point in order to obtain the first order estimates. 

u(x) := R n |x -y| 2-n F (y) dy. Then |∂ 2 u(x)| ≤ C sup y∈R n y k F (y) + sup y∈R n y k sup z,|z-y|≤1 |F (z) -F (y)| |z -y| α log(4 x ) x -n + x -k , Proof . 
1. We write20 the second weak derivatives of u ,∂ ij u:

∂ 2 x i x j u(x) = R n ∂ 2 x i x j G(x, y)(F (y) -F (x)) dy, where G(x, y) := 1 |x -y| n-2 . 2. Note that ∀λ > 0 S n-1 ∂ 2 G ∂ x i ∂x j (0, λσ) dσ = 0.
Indeed, we compute

∂ 2 G ∂x i ∂x j (x, y) = (2 -n)∂ x i (x j -y j )|x -y| -n , = (2 -n)δ ij |x -y| -n -n(2 -n)(x i -y i )(x j -y j )|x -y| -n-2 .
Besides, observe that

S n-1 σ i σ j dσ = 0, if i = j, and 
S n-1 σ 2 i dσ = |S n-1 | n , if i = j.
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Hence S n-1 ∂ 2 G ∂x i ∂x j (0, λσ) dσ = (n -2)λ -n (nσ i σ j -δ ij ), = 0.
3. Now we proceed as in the previous lemma and we use Holder estimates for F in order to control the terms when |x -y| ≤ 1.

We have

∂ 2 x i x j u(x) = R n ∂ 2 x i x j G(x, y)(F (y) -F (x)) , = y,|x-y|≤ x 4 ∂ 2 x i x j |x -y| 2-n (F (y) -F (x)) dy + y,|x-y|≥ x 4 ∂ 2 x i x j |x -y| 2-n (F (y) -F (x)) dy, = I + II. I := y,|x-y|≤ x 4 ∂ 2 x i x j |x -y| 2-n (F (y) -F (x)) dy, = y,|y|≤ x 4 ∂ 2 G ∂x i ∂x j (0, y)(F (y + x) -F (x)) dy, = {y,|y|≤1} ∂ 2 G ∂x i ∂x j (0, y)(F (y + x) -F (x)) dy + y,1≤|y|≤ x 4 ∂ 2 G ∂x i ∂x j (0, y)(F (y + x) -F (x)) dy, = I 1 + I 2 .
Note that the set y,

1 ≤ |y| ≤ x 4 is empty if x < 2. |I 2 | := y,1≤|y|≤ x 4 ∂ 2 G ∂x i ∂x j (0, y)(F (y + x) -F (x)) dy , = y,1≤|y|≤ x 4 ∂ 2 G ∂x i ∂x j (0, y)F (y + x) dy , ≤ y,1≤|y|≤ x 4 |F (y)| |x -y| n dy, ≤ C sup y∈R n y k F (y) y,1≤|y|≤ x 4 y -k |x -y| n dy, We estimate for x ≥ 2, y,1≤|y|≤ x 4 y -k |x -y| n dy ≤ y,1≤|y|≤ x 4 |x -y| -n ( x 2 -2|x||x -y| + |x -y| 2 ) -k 2 dy, ≤ x 4 1 1 r ( x 2 -2|x|r + r 2 ) -k 2 dr, ≤ x -k 1 4 1 x 1 r (1 -2 |x| x r) -k 2 dr, ≤ x -k + x -k log(4 x ).
Now we estimate I 1 :

|I 1 | ≤ {y,|y|≤1} |y| -n |F (y + x) -F (x)| dy, = {y,|y|≤1} |y| α-n |F (y + x) -F (x)| |y| α dy, ≤ C x -k sup y∈R n y k sup z,|z-y|≤1 |F (z) -F (y)| |z -y| α {y,|y|≤1} |y| α-n dy, = C x -k sup y∈R n y k sup z,|z-y|≤1 |F (z) -F (y)| |z -y| α 1 0 r α-1 dr.
The integral of the last line converges. Hence,

|I 1 | ≤ C x -k sup y∈R n y k sup z,|z-y|≤1 |F (z) -F (y)| |z -y| α .
Thus,

|I| ≤ C sup y∈R n y k F (y) + sup y∈R n y k sup z,|z-y|≤1 |F (z) -F (y)| |z -y| α log(4 x ) x -k .
(3.8.52) Now we estimate the remaining term,

|II| = y,|x-y|≥ x 4 ∂ 2 x i x j |x -y| 2-n (F (y) -F (x)) dy , = y,|x-y|≥ x 4 ∂ 2 x i x j |x -y| 2-n F (y) dy , ≤ sup y∈R n y k F (y) R n |x -y| 1-n y -k dy.
Set 

|II 1 | ≤ C x -n {y,|y|≤4 x } y -k dy, ≤ C x -n 4 x 0 r n-k-1 dr, ≤ C x -n |B 1 | + C x -n 4 x 1 r n-k-1 dr, ≤ C x -n +          x -k 4 x 1 1 r if n -k ≥ 0, x -n 4 x 1 1 r else, ≤ x -n + log(4 x ) x -n + x -k . Now we estimate |II 2 | ≤ {y,|y|≥4 x } |x -y| -n y -k dy, ≤ {y,|y|≥4 x } ||x| -|y|| -n y -k dy, = ∞ 4 x (r -x ) -n r n-1 (1 + r 2 ) k 2 dr, ≤ C ∞ 4 x 1 r(1 + r 2 ) k 2 dr, ≤ C ∞ 4 x 1 r k+1 dr, = C x -k .
Finally we obtain the second order estimate. The Hölder part follows by using similar arguments. Now, we prove Proposition 30.

Proof. Let H σ ∈ N σ . Then, ∀x ∈ R 4 |H(x)| ≤ x -5 .
We set

• σ := - R 4 
|x -y| -2 H σ (y) dy and we apply Lemma 70 with n = 4 and k = 5. We obtain:

||r 2 • σ|| L ∞ (B) ≤ C||H σ || Nσ and ||r 3 ∂ • σ|| L ∞ (B) ≤ C||H σ || Nσ . Since H σ ∈ C 1,α (R 4 ) and H σ ∈ L 1 ∩ L ∞ (R 4
), we obtain Theorem 25 in order to obtain

• σ ∈ C 3,α (B) and || • σ|| C 3,α (B) ≤ C||H σ || C 1,α (B) ≤ C||H σ || Nσ .
Finally, we apply Lemma 71 with with n = 4, k = 4 and F = H σ in order to obtain:

||r 4 log -1 (4r)∂ 2 f || L ∞ (B) ≤ C||H σ || C 1,α (R 4 ) ≤ C||H σ || Nσ .

Non-linear estimates

We apply Theorem 21 in order to obtain Proposition 31. Let α 0 ∈ (0, 1) and let δ 0 > 0. Then, there exists 0 < δ 0 ≤ δ 0 such that

∀ • X, • Θ, • λ, δ ∈ B δ 0 (L X × L Θ × L λ × [0, ∞[) there exists a unique one parameter family • σ • X, • Θ, • λ, δ ∈ B δ 0 (L σ ) which solves (3.4.49) and which satisfies • σ • X, • Θ, • λ, δ Lσ ≤ C(α 0 ) || • X|| 2 L X + || • Θ|| 2 L Θ + || • λ|| 2 L λ + δ and ∀ • X i , • Θ i , • λ i , δ i ∈ B δ 0 (L X × L Θ × L λ × [0, ∞[), • σ • X 1 , • Θ 1 , • λ 1 , δ 1 - • σ • X 2 , • Θ 2 , • λ 2 , δ 2 L X ≤ C(α 0 ) • X 1 , • Θ 1 , • λ 1 L X ×L Θ ×L λ + • X 2 , • Θ 2 , • λ 2 L X ×L Θ ×L λ • X 1 , • Θ 1 , • λ 1 - • X 2 , • Θ 2 , • λ 2 L X ×L Θ ×L + |δ 1 -δ 2 |) .
Before we prove the above proposition, we introduce the following notations 1. Define H σ on B to be the mapping

H σ (ρ, z) = X K e 2λ K ρ 2 1 + • X 1 + • σ e 2 • λ F 3 ( • X, • Θ, • σ, δ)(ρ, z). 2. Let δ 0 > 0. Define the nonlinear operator N σ on B δ 0 (L σ ) × B δ 0 (L X × L Θ × L λ × [0, ∞[) by N σ • σ, ( • X, • Θ, • λ; δ) (ρ, z) := H σ (ρ, z).
In order to prove the above proposition, we will need the following lemma Lemma 72.

1. There exists

δ 0 > 0 such that N σ B δ 0 (L σ ) × B δ 0 (L X × L Θ × L λ × [0, ∞[) ⊂ N σ .
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• σ, ( • X, • Θ, • λ; δ) ∈ B δ 0 (L σ ) × B δ 0 (L X × L Θ × L λ × [0, ∞[) ||H σ || Nσ ≤ C(α 0 ) || • σ|| 2 Lσ + ||( • X, • Θ, • λ)|| 2 L X ×L Θ ×L λ + δ . Proof. 1. Let δ 0 > 0 and let ( • σ, • X, • Θ, • λ; δ) ∈ B δ 0 (L σ ) × B δ 0 (L X × L Θ × L λ × [0, ∞[).
By Proposition 29, we have F 3 ( • X,

• Θ,

• σ; δ) ∈ Ĉ1,α (B). Moreover, it is compactly supported in

B and K := supp F 3 ( • X, • Θ, • σ; δ) ⊂ (B N ∩ B S ).
Therefore, 1ξ Nξ S = 1 on K and we have Hence,

||r 4 H σ || C 1,α (B) = ||r 4 X K e 2λ K ρ 2 1 + • X 1 + • σ e 2 • λ F 3 ( • X, • Θ, • σ, δ)|| C 1,α (B) = r 4 X K e 2λ K ρ 2 F 3 ( • X, • Θ, • σ; δ) C 1,α (K) ≤ C r 4 X K e 2λ K ρ 2 C 1,α (K) 1 + • X 1 + • σ e 2 • λ C 1,α (K) ||F 3 ( • X, • Θ, • σ; δ)|| C 1,α (K) ≤ C||(1 -ξ N -ξ S )F 3 ( • X, • Θ, • σ; δ)|| C 1,α (R 3 ) ≤ C||F 3 ( • X, • Θ, • σ; δ)|| Ĉ1,α (B) .
2. By Proposition 29, we have F 3 is continuously Fréchet differentiable on B δ 0 . Hence, there

exists δ 0 ≤ δ 0 such that ∀( • σ, • X, • Θ; δ) ∈ B δ 0 F 3 ( • X, • Θ, • σ; δ) = D h F 3 (0, 0, 0; 0; 0)[( • X , • Θ, • σ)] + D δ F 3 (0, 0, 0; 0)δ + O(||( • X, • Θ, • σ)|| 2 + δ 2 ) = D δ F 3 (0, 0, 0; 0)δ + O(||( • X, • Θ, • λ)|| 2 + δ 2 ).
Therefore,

||r 4 H σ || C 1,α (B) ≤ C||F 3 ( • X, • Θ, • σ; δ)|| Ĉ1,α (B) ≤ C(||D δ F 3 (0, 0, 0; 0)||δ + ||( • X, • Θ, • λ)|| 2 + δ 2 ) ≤ C || • σ|| 2 Lσ + || • X|| 2 L X + || • Θ|| 2 L Θ + δ ≤ C(α 0 ) || • σ|| 2 Lσ + ||( • X, • Θ, • λ)|| 2 L X ×L Θ ×L λ + δ .
Now, we prove Proposition 31.

Proof. We apply Theorem 21 with Lemma 93, the assumptions of Theorem 21 are satisfied. Therefore, we obtain the desired result. spacetime It is given by

L = ∆ R 4 , N = N σ , L = L σ , Q = L X × L Θ × L λ , P = [0, δ 0 [. By
B (A) z (ρ, z) = ρ 0 (1 -ξ 2 N -ξ 2 S )(ρ, z)H (A) B (ρ, z) dρ.
Moreover, there exists C(α 0 ) > 0 0, 0,

B (A) z L B ≤ C(δ 0 ) 0, 0, H (A) B N B .
Proof.

1. First of all, since

(1 + ρ 15 )(1 + r 10 ) ρ 15 H (A) B Ĉ1,α 0 (B A ∪B H ) < ∞, B (A) z is well-defined on B A ∪ B H .
2. As for the estimates, we will show that

(1 -ξ 2 N -ξ 2 S ) (1 + ρ 10 )(1 + r 10 ) ρ 10 B (A) z R 3 ∈ C 1,α 0 (R 3 ).
First of all, we recall the following change of variables x = ρ cos ϑ y = ρ sin ϑ.

We have

∂ x = x x 2 + y 2 ∂ ρ , ∂ y = y x 2 + y 2 ∂ ρ .
• if (ρ, z) ∈ à where à is a neighbourhood of the axis. We assume that ρ < 1. Then

ρ 15 1 + ρ 15 ≤ ρ 10 1 + ρ 10
and we have

B (A) z ≤ C ρ 0 ρ10 1 + ρ10 1 1 + (1 + ρ2 + z 2 ) 5 dρ ≤ C ρ 10 1 + ρ 10 ρ 0 1 1 + (1 + ρ2 + z 2 ) 5 dρ ≤ C ρ 10 (1 + ρ 10 )(1 + r 10 ) ρ 0 1 + (1 + ρ 2 + z 2 ) 5 1 + (1 + ρ2 + z 2 ) 5 dρ.
The integrand is bounded uniformly in z. Moreover, since ρ ∈ [0, 1], we can bound the

term ρ 0 1 + (1 + ρ 2 + z 2 ) 5 1 + (1 + ρ2 + z 2 ) 5 dρ uniformly in (ρ, z).
• Away from the axis, say (ρ, z) ∈ [ρ 0 , ∞[×R for some ρ 0 > 1. We have

1 ≤ ρ 10 (1 + ρ 10 ) and ρ 0 ρ15 1 + ρ15 1 1 + (1 + ρ2 + z 2 ) 5 dρ ≤ C ρ 0 ρ8 1 + ρ15 4ρ(1 + ρ2 + z 2 ) 3 (1 + ρ2 + z 2 ) 5 dρ ≤ Cr(ρ, z) -10 ≤ C 1 1 + r 10
Hence,

B (A) z ≤ C ρ 0 ρ15 1 + ρ15 1 1 + (1 + ρ2 + z 2 ) 5 dρ ≤ C ρ 10 (1 + ρ 10 )(1 + r 10 )
.

• Away from the axis, the L ∞ estimate and the Hölder estimate of the derivative are straightforward.

• Near the axis, we use the above change of coordinates in order to estimate the derivatives and the Hölder part.

Non-linear estimates

We apply Theorem 21 in order to obtain Proposition 33. Let α 0 ∈ (0, 1) and let δ 0 > 0. Then, there exists 0 < δ 0 ≤ δ 0 such that 

∀ • X, • Θ, • λ, δ ∈ B δ 0 (L X × L Θ × L λ × [0, ∞ 
σ, 0, 0, B (A) z • X, • Θ, • λ, δ Lσ×L B ≤ C(α 0 ) || • X|| 2 L X + || • Θ|| 2 L Θ + || • λ|| 2 L λ + δ and ∀ • X i , • Θ i , • λ i , δ i ∈ B δ 0 (L X × L Θ × L λ × [0, ∞[), • σ, 0, 0, B (A) z • X 1 , • Θ 1 , • λ 1 , δ 1 - • σ, 0, 0, B (A) z • X 2 , • Θ 2 , • λ 2 , δ 2 Lσ×L B ≤ C(α 0 ) • X 1 , • Θ 1 , • λ 1 L X ×L Θ ×L λ + • X 2 , • Θ 2 , • λ 2 L X ×L Θ ×L λ • X 1 , • Θ 1 , • λ 1 - • X 2 , • Θ 2 , • λ 2 L X ×L Θ ×L + |δ 1 -δ 2 |) .
Before we prove the above proposition, we introduce the following notations

Define H (A)

B on B to be the mapping

H (A) B (ρ, z) = 2σ -1 e 2λ F 2 ( • Θ, • X, • σ, δ)(ρ, z).
3.8.6 Solving for (X, Y )

Linear problem

The aim of this section is to solve the linear problem for

• X,

• Y : 

∆ R 3 • X + 2∂Y K • ∂ • Y X K - 2|∂Y K | 2 X 2 K • X + 2 ∂X K • ∂Y K X 2 K • Y = H X , ∆ R 3 • Y - 2∂Y K • ∂ • X X K - (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y = H Y . ( 3 
> 0 independent of (H X , H Y ) such that • X, • Y L X ×L Y ≤ C ||(H X , H Y )|| N X ×N Y 3 
Y ) := R 3 |∂ • X + X -1 K (∂Y K ) • Y | 2 + |∂ • Y -X -1 K (∂Y K ) • X| 2 + X -2 K | • X∂Y K - • Y ∂X K | 2 + 2 • XH X + 2 • Y H Y .
(3.8.56) We state the following lemmas from [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF]. We recall the proofs in order to be self-contained.

Lemma 74.

• L is well-defined on Ḣ1

axi (R 3 ) × Ḣ1 axi (R 3 ) ∩ L 2 |∂h| (R 3 ) .
• (3.8.55) are the Euler-Lagrange equations associated with the Lagrangian L.

Before we prove the above result, we will need the following inequalities

Lemma 75. Let f (ρ, z) ∈ C ∞ 0 (R 3 ). Then R 3 |∂X K | 2 f 2 ≤ C R 3 X 2 K |∂f | 2
Proof. By Lemma 62, there exist c, C > 0 such that ∀(ρ, z) ∈ B, we have

ce h |∂h| ≤ |∂X K | ≤ Ce h |∂h| .
Therefore, it suffices to show that

R 3 e 2h |∂h| 2 f 2 ≤ C R 3 e 2h |∂f | 2
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Recall that ∆ R 3 h = 0 and note that div R 3 (e 2h f 2 ∂h) = e 2h f 2 ∆ R 3 h + ∇h • ∇(e 2h f 2 ) = ∇h • ∇(e 2h f 2 ).
Now, let 0 < ǫ < 1, Z > 0 large , R > 0 large so that f (ρ, z) = 0 ∀ρ ≥ 0, and consider the domain

U (R, ǫ, h) ⊂ R 3 defined by U (R, ǫ, Z) := {(r, φ, z) : ǫ < r < R , 0 < φ < 2π , |z| < Z} .
We apply the divergence theorem to obtain

U (R,ǫ,Z) div R 3 (e 2h f 2 ∂h)ρdρdφdz = -2π Z -Z (e 2h f 2 ∂ ρ h)(ǫ, z) dz.
Therefore,

R 3 div R 3 (e 2h f 2 ∂h)ρdρdφdz = -2π lim ǫ→0 ∞ -∞ (e 2h f 2 ∂ ρ h)(ǫ, z) dz.
We have

∂ ρ h(e 2h )(ρ, z) = ρ 2 + (z -γ) 2 -(z -γ) ρ ρ 2 + (z -γ) 2 ρ 2 + (z + γ) 2 + (z + γ) 2 + ρ 2 + (z -γ) 2 -(z -γ) 2 ρ ρ 2 + (z + γ) 2 ρ 2 + (z + γ) 2 + (z + γ) .
Therefore, there exists f (z, γ) > 0 which is compactly supported in the z-variable such that ρ ∈ [0, 1] (e 2h f 2 ∂h)(ρ, z) ≤ f (z, γ).

Moreover, lim ǫ→0

∂ ρ h(e 2h )(ǫ, z) = 0.

Therefore, by the dominated convergence theorem, we obtain

R 3 ∇h • ∇(e 2h f 2 )ρdρdφdz = R 3 div R 3 (e 2h f 2 ∂h)ρdρdφdz = 0. Now, we compute: ∇h • ∇(e 2h f 2 ) = 2e 2h f 2 |∇h| 2 + f ∇h • ∇f . Therefore R 3 e 2h |∂h| 2 f 2 ≤ R 3 e 2h |f | |∂f | |∂h| ≤ q R 3 e 2h |∂f | 2 + 1 4q R 3 e 2h f 2 |∂h| 2 ∀q > 0.
Finally, we choose q so that we obtain the desired ineaquality.

Lemma 76. Let f ∈ C ∞ 0 (R 3 ). Then, R 3 r -2 f 2 ≤ C R 3 |∂f | 2 .
where, r is given by

r := (1 + x 2 + y 2 + z 2 ) 1 2 .
Proof. We apply Theorem 23 with p = 2 and δ satisfying:

-2δ -3 = -2 ⇐⇒ δ = - 1 2 .
Thus,

||f r || 2 2,-3 2 = R 3 | r -1(x,y,z) t •∂f | 2 r 3-3 , ≤ R 3 |∂f | 2 .
Therefore,

R 3 r -2 f 2 ≤ C R 3 |∂f | 2 .

Now, we state the following lemma

Lemma 77. There exists

C ≥ 0 such that if • X ∈ C ∞ 0 (R 3 ), • Y ∈ C ∞ 0 (R 3 ), R 3 |∂X K | 2 X 2 K • Y 2 < ∞, then R 3 |∂ • X| 2 + |∂ • Y | 2 + |∂h| 2 • Y 2 ≤ C L( • X, • Y ) + 2 R 3 | • XH X | + | • Y H Y | . (3.8.57) Proof. 1. Set L 0 ( • X, • Y ) := L( • X, • Y ) -2 R 3 | • XH X | + | • Y H Y | . (3.8.58)
We have

∂ • Y -X -1 K ∂X k • Y 2 = ∂ • Y -X -1 K ∂Y k • X + X -1 K ∂Y k • X -X -1 K ∂X k • Y 2 , ≤ ∂ • Y -X -1 K ∂Y k • X 2 + X -2 K ∂Y k • X -∂X k • Y 2 .
Hence,

R 3 ∂ • Y -X -1 K ∂X k • Y 2 ≤ CL 0 ( • X, • Y ). Now, we define Ỹ : R 3 \ {0} → R by Ỹ := X -1 K • Y and compute ∂ • Y -X -1 K ∂X k • Y = ∂X K Ỹ + X K ∂ Ỹ -X -1 K ∂X k Ỹ, = X K ∂ Ỹ.
Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Thus,

R 3 X K ∂ Ỹ 2 ≤ CL 0 ( • X, • Y ).
By Lemma 75, we have

R 3 |∂X K | 2 Ỹ 2 ≤ C R 3 X K ∂ Ỹ 2 ≤ CL 0 ( • X, • Y ), R 3 |∂h| 2 • Y 2 = R 3 X 2 K |∂h| 2 Ỹ 2 ≤ C R 3 |∂X K | 2 Ỹ 2 ≤ CL 0 ( • X, • Y ), and 
R 3 |∂Y K | 2 X -2 K • X 2 = R 3 | • X∂Y K | 2 X -2 K , = R 3 X -2 K | • X∂Y K - • Y ∂X K + • Y ∂X K | 2 , ≤ R 3 X -2 K | • X∂Y K - • Y ∂X K | 2 + + R 3 Ỹ 2 |∂X K | 2 , ≤ CL 0 ( • X, • Y ).
Similarly, we obtain

R 3 |∂ • X| 2 ≤ C R 3 |∂ • X + X -1 K ∂Y K • Y | 2 + C R 3 X 2 K • Y 2 |∂Y K | 2 . Now, we show that R 3 X 2 K • Y 2 |∂Y K | 2 ≤ C R 3 r -2 • Y 2 . By Lemma 61, ρ |∂Y K | X 2 K ≤ C r -4 on B A ∪ B H . This implies ρ |∂Y K | 2 X 2 K ≤ C X K ρ 2 r -8 . Moreover, ∀(ρ, z) ∈ B : X K ρ = ρ Π Σ 2 ∆ = ρ 2 (r(ρ, z) 2 + a 2 ) 2 -aρ 2 (r(ρ, z) 2 + z 2 (r(ρ,z)-M ) 2 )(r(ρ, z) 2 -2M r(ρ, z) + a 2 ) , when r goes to ∞, X K ρ 2 ≤ C r 2 Thus, |∂Y K | 2 X 2 K ≤ r -6 ≤ C r -2 .
3.8. Solving for the renormalised quantities 259 Therefore, by Lemma 76, we obtain

R 3 X 2 K • Y 2 |∂Y K | 2 ≤ C R 3 r -2 • Y 2 ≤ C R 3 |∂ • Y | 2 ≤ CL 0 ( • X, • Y ).
This finishes the proof. Now, we prove Lemma 74

Proof. 1. Let ( • X, • Y ) ∈ Ḣ1 axi (R 3 ) × Ḣ1 axi (R 3 ) ∩ L 2 |∂h| (R 3 ) . We show that X -1 K (∂Y K ) • Y , X -1 K (∂Y K ) • X ∈ L 2 (R 3 ).
By Lemma 61, we have

|∂Y K | X K ≤ Cr -4 X K ρ on B A ∪ B H and |∂Y K | ≤ Cs 3 on B N on |∂Y K | ≤ C(s ′ ) 3 on B S .
Moreover, by Proposition 9, we have

X K (ρ, z) = s 2 X N (s 2 , χ 2 ) X N (0, χ), X N (s, 0) > 0. Therefore, R 3 X -2 K |∂Y K | 2 • Y 2 = 2π B X -2 K |∂Y K | 2 • Y 2 dρdz = 2π B A ∪B H (1 -ξ N -ξ S )X -2 K |∂Y K | 2 • Y 2 ρdρdz + 2π B N ξ N 1 s 4 X 2 N |∂Y K | 2 • Y 2 sχ dsdχ + 2π B S ξ S 1 (s ′ ) 4 X 2 S |∂Y K | 2 • Y 2 s ′ χ ′ ds ′ dχ ′ .
By the decay estimates for Y K , the above integrals are all finite. Therefore,

X -1 K (∂Y K ) • Y , X -1 K (∂Y K ) • X ∈ L 2 (R 3 ) and L( • X, • Y ) is finite. 2. Let ( • X, • Y ) ∈ Ḣ1 axi (R) 3 × Ḣ1 axi (R) 3 ∩ L 2 ∂h (R 3 ) be minimiser for L, let (φ, ψ) ∈ C ∞ 0 (R 3
) and consider the real-valued function

L(τ ) := L(( • X, • Y ) + τ (φ, ψ)).
L has a minimum at τ = 0. Therefore,

L ′ (0) = 0. spacetime Hence, d dτ τ =0 L(( • X, • Y ) + τ (φ, ψ)) = 0. Now, we compute d dτ τ =0 L(( • X, • Y ) + τ (φ, ψ)) = d dτ τ =0 R 3 |∂( • X + tφ) + X -1 K (∂Y K )( • Y + tψ)| 2 + |∂ • Y -X -1 K (∂Y K )( • X + tφ)| 2 + X -2 K |( • X + tφ)∂Y K -( • Y + tψ)∂X K | 2 +2( • X + tφ)H X + 2( • Y + tψ)H Y = 2 R 3 ∂ • X • ∂φ - 2∂Y K • ∂ • Y X K φ + 2|∂Y K | 2 X 2 K • Xφ -2 ∂X K • ∂Y K X 2 K • Y φ + H X φ + ∂ • Y • ∂ψ + 2∂Y K • ∂ • X X K ψ + (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y ψ + H Y ψ
Here, we applied the dominated convergence theorem in order to invert the derivative and the integral. Therefore, for (φ, 0) we obtain

R 3 ∂ • X • ∂φ - 2∂Y K • ∂ • Y X K φ + 2|∂Y K | 2 X 2 K • Xφ -2 ∂X K • ∂Y K X 2 K • Y φ + H X φ = 0
and for (0, ψ), we have

R 3 ∂ • Y • ∂ψ + 2∂Y K • ∂ • X X K ψ + (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y ψ + H Y ψ = 0.
Finally, we integrate by part

R 3 -∆ R 3 • Xφ - 2∂Y K • ∂ • Y X K φ + 2|∂Y K | 2 X 2 K • Xφ -2 ∂X K • ∂Y K X 2 K • Y φ + H X φ = 0, R 3 -∆ R 3 • Y ψ + 2∂Y K • ∂ • X X K ψ + (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y ψ + H Y ψ = 0.
The latter holds for all (φ, ψ) ∈ C ∞ 0 (R 3 ). Therefore, (3.8.55) are the Euler-Lagrange equations associated to L.

We apply classical variational methods in order to prove the existence and uniqueness of weak solutions to (3.8.55). More precisely, we state Lemma 78. Let H X , H Y ∈ C ∞ 0 (R 3 ). Then, the system (3.8.55) has a unique weak solution (

• X, • Y ) ∈ Ḣ1 axi (R) 3 × Ḣ1 axi (R) 3 ∩ L 2 ∂h (R 3 ) i.e (φ 1 , φ 2 ) ∈ Ḣ1 axi (R) 3 × Ḣ1 axi (R) 3 ∩ L 2 ∂h (R 3 ) we have R 3 ∇ • X • ∇φ 1 - 2∂Y K • ∂ • Y X K φ 1 + 2|∂Y K | 2 X 2 K • Xφ 1 -2 ∂X K • ∂Y K X 2 K • Y φ 1 + H X φ 1 + ∇ • Y • ∇φ 2 + 2∂Y K • ∂ • X X K φ 2 + (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y φ 2 + H Y φ 2 = 0. (3.8.59)
Finally, the solution is uniquely determined in the class Ḣ1

axi (R) 3 × Ḣ1 axi (R) 3 ∩ L 2 ∂h (R 3 ) .
Before we prove the above lemma, we state the following result on the properties of L Lemma 79.

1. There exist C, C > 0 such that ∀

• X, • Y ∈ U := Ḣ1 axi (R) 3 × Ḣ1 axi (R) 3 ∩ L 2 ∂h (R 3 ) L • X, • Y ≥ C ∂ • X 2 L 2 (R 3 ) + ∂ • Y 2 L 2 (R 3 ) + • Y 2 L 2 ∂h (R 3 ) - C 2.
L is weakly lower semi-continuous on U .

Proof.

1. By Lemma 77, there exists C > 0 such that ∀(

• X, • Y ) ∈ C ∞ 0 (R 3 ) and R 3 |∂X K | 2 X 2 K • Y 2 < ∞, we have R 3 |∂ • X| 2 + |∂ • Y | 2 + |∂h| 2 • Y 2 ≤ C L( • X, • Y ) + 2 R 3 | • XH X | + | • Y H Y | .
Thus, ∀q > 0,

R 3 |∂ • X| 2 + |∂ • Y | 2 + |∂h| 2 • Y 2 ≤ CL( • X, • Y ) + 2Cq|| • X|| 2 L 2 (R 3 ) + C 2q ||H X || 2 L 2 (R 3 ) + 2Cq|| • Y || 2 L 2 (R 3 ) + C 2q ||H X || 2 L 2 (R 3 ) .
By Poincaré inequality, we obtain

R 3 |∂ • X| 2 + |∂ • Y | 2 + |∂h| 2 • Y 2 ≤ CL( • X, • Y ) + 2Cq||∂ • X|| 2 L 2 (R 3 ) + C 2q ||H X || 2 L 2 (R 3 ) + 2Cq||∂ • Y || 2 L 2 (R 3 ) + C 2q ||H Y || 2 L 2 (R 3 ) .
Finally, we choose q > 0 so that

R 3 |∂ • X| 2 + |∂ • Y | 2 + |∂h| 2 • Y 2 ≤ C L( • X, • Y ) + ||H X || 2 L 2 (R 3 ) + ||H Y || 2 L 2 (R 3 )
2. Let (f k , g k ) k∈N be a sequence of U which converges weakly in U to (f, g). We show that L(f, g) ≤ lim k→∞ L(f k , g k ).

We have,

L 0 (f k , g k ) = R 3 |∂f k | 2 + |∂g k | 2 + |∂Y K | 2 X 2 K g 2 k + 2f 2 k + |∂X K | 2 X 2 K g 2 k + 2g k ∂f k • ∂Y K X K -2f k ∂g k • ∂Y K X K -2f k g k ∂X K • ∂Y K X 2 K
, spacetime 3.8.6.1.2 Linear estimates

We have obtained so far:

• • X,
• Y are smooth classical solutions in the region R 3 \ {(0, z) z ∈ R} .

•

• X,

• Y are compactly supported.

Moreover, the equations for (

• X,

• Y ) have a singular behaviour on the the boundary because of the asymptotics for (X K , Y K ) near the horizon and the axis:

• the equation for In order to overcome this difficulty, we introduce a change of variable on every region, work in higher dimensions in order to obtain the required estimates for the new quantities on each region, then deduce the estimates for the original unknowns. Let (H X , H Y ) ∈ C ∞ 0 (R 3 ) and let (

• X,

• Y ) ∈ U be the unique weak solution of (3.8.55). We define Ỹ on R 3 \ {(0, z) z ∈ R} to be the function

Ỹ := X -1 K • Y . (3.8.62) 
Lemma 80. Ỹ is a weak solution of the equation

∆ R 3 Ỹ + 2 ∂X K • ∂ Ỹ X K -2 ∂Y K • ∂ • X X 2 K -2 |∂Y K | 2 X 2 K Ỹ = H Y X -1 K .
(3.8.63)

Proof. We compute

∂ • Y = Ỹ ∂X K + X K ∂ Ỹ, ∆ R 3 • Y = Ỹ ∆ R 3 X K + X K ∆ R 3 Ỹ + 2∂X K • ∂ Ỹ.
We plug the latter in the equation satisfied by

• Y in order to obtain

Ỹ ∆ R 3 X K + X K ∆ R 3 Ỹ + 2∂X K • ∂ Ỹ - 2∂Y K • ∂ • X X K - |∂X K | 2 X K Ỹ - |∂X K | 2 X K Ỹ = H Y .
Now, recall that the pair (X K , Y K ) satisfies (3.4.54). Therefore, on R 3 \ (0, z), z ∈ R 3 , we have

|∂X K | 2 X K Ỹ - |∂Y K | 2 X K Ỹ + 2∂X K • ∂ Ỹ -2 ∂Y K • ∂ • X X K - |∂X K | 2 X K Ỹ + X K ∆ R 3 Ỹ - |∂Y K | 2 X K Ỹ = H Y .
Hence, Ỹ satisfies (3.8.63) .

Lemma 81.

1. there exists a smooth vector field ẽA defined on B A such that ∀(ρ, z) ∈ B : Proof. This follows from Lemmas 61, 62 and 63.

∂X K X K = 2 ρ ∂ ρ + ẽA ,
Therefore, Ỹ satisfies the equation

∆ R 3 Ỹ + 4 ρ ∂ ρ Ỹ + ẽA • ∂ Ỹ -2 |∂Y K | 2 X 2 K Ỹ -2 dA • ∂ • X - 2d A ρ ∂ ρ • X = H Y X -1 K (3.8.64)
Moreover, by Lemma 97, we have

∂ ρ • X R 3 ρ (0,0,z) = ∂ 2 x • X R 3
{(x,y,z)=(0,0,z)}

.

For any x ∈ R 7 , let (ρ, ϑ, θ, z) ∈ [0, ∞[×(0, π) 4 × (0, 2π) × R be the coordinates defined in the following way x 1 = ρ cos ϑ 1

x 2 = ρ sin ϑ 1 cos ϑ 2

x 3 = ρ sin ϑ 1 sin ϑ 2 cos ϑ 3

x 4 = ρ sin ϑ 1 sin ϑ 2 sin ϑ 3 cos ϑ 4

x 5 = ρ sin ϑ 1 sin ϑ 2 sin ϑ 3 sin ϑ 4 cos θ

x 6 = ρ sin ϑ 1 sin ϑ 2 sin ϑ 3 sin ϑ 4 sin θ

x 7 = z.
Hence, ρ is given by ρ = In particular, we associate to Ỹ a function ỸR 7 defined on R 7 . Now, note that

∆ R 7 = 4 ρ ∂ ρ + ∆ R 3 .
Therefore, ỸR 7 satisfies the equation 1. there exists a smooth vector field ẽN defined on B N such that ∀(s, χ) ∈ B N :

∆ R 7 ỸR 7 + ẽA • ∂ Ỹ -2 |∂Y K | 2 X 2 K ỸR 7 -2 dA • ∂ • X - 2d A ρ ∂ ρ • X = H Y X -1 K (3.
∂X K X K = 2 s ∂ s + ẽN ,
2. there exists a smooth vector field ẽS defined on B S such that ∀(s ′ , χ ′ ) ∈ B S : 

∂X K X K = 2 s ′ ∂ s ′ + ẽS ,
∆ R 4 • X + 2 ∂Y K • ∂ • Y X K -2 |∂Y K | 2 X 2 K • X + 2 ∂X K • ∂Y K X 2 K • Y = (s 2 + χ 2 )H X ∆ R 8 Ỹ + ẽN • ∂ Ỹ -2 |∂Y K | 2 X 2 K Ỹ -2 ∂Y K • ∂ • X X 2 K = (s 2 + χ 2 )X -1 K H Y , (3.8.67) 
on B N , where ∂ is the gradient with respect to (s, χ) coordinates and ẽN is given by Lemma 82. The above equations hold on B S provided that we replace ẽN by ẽS and we use (s ′ , χ ′ ) coordinates.

Proof. Insert computations

In order to prove Proposition 34, we will prove the following estimates:

1. First of all, we establish estimates for • X away from B N and B S using the first equation of (3.8.55).

Next, we establish estimates for

• X on B N and B S using the first equation of (3.8.67). 

We establish estimates for

+ • Y Ḣ1 axi (R 3 )∩L 2 ∇h (R 3 ) ≤ C H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

Proof. Since ( • X,

• Y ) is a weak solution, it minimises the Lagrangian L. Therefore,

L( • X, • Y ) ≤ L(X, Y ) ∀(X, Y ) ∈ U .
In particular,

L(

• X,

• Y ) ≤ L(0, 0) = 0. Now, by Lemma 77, there exists C > 0

• X 2 Ḣ1 axi (R 3 ) + • Y 2 Ḣ1 axi (R 3 )∩L 2 ∇h (R 3 ) ≤ C L( • X, • Y ) + 2 H X • X L 1 (R 3 ) + H Y • Y L 1 (R 3 )
.

Therefore, by convexity of x → x 2 , we obtain the desired estimate. Now, we write

• X = (1 -ξ N -ξ S ) • X + ξ N • X + ξ S • X, • Y = (1 -ξ N -ξ S )(1 -ξ A ) • Y + (1 -ξ N -ξ S )ξ A • Y + ξ N • Y + ξ S • Y .

We have

Lemma 85. There exists C > 0 such that

(1 -ξ N -ξ S ) • X Ḣ2 (R 3 ) ≤ C ||(1 -ξ N -ξ S )H X || L 2 (R 3 ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

Proof.

1. First of all, we set

• X A := (1 -ξ N -ξ S )
• X and we claim that

• X A satisfies ∆ R 3 • X A = 2∂ • X • ∂(ξ N + ξ S ) + ∆ R 3 (ξ N + ξ S ) • X -2(1 -ξ N -ξ S ) ∂Y K • ∂ • Y X K + 2(1 -ξ N -ξ S ) • Y ∂X K • ∂Y K X 2 K + 2 |∂Y K | 2 X 2 K (1 -ξ N -ξ S ) • X + (1 -ξ N -ξ S )H X .
(3.8.68) spacetime 2. We will apply Theorem 26 with p = 2, n = 3 and f given by

f (x) := 2∂ • X • ∂(ξ N + ξ S ) + ∆ R 3 (ξ N + ξ S ) • X -2(1 -ξ N -ξ S ) ∂Y K • ∂ • Y X K + 2(1 -ξ N -ξ S ) • Y ∂X K • ∂Y K X 2 K + 2 |Y K | 2 X 2 K (1 -ξ N -ξ S ) • X + (1 -ξ N -ξ S )H X
(3.8.69) We recall here the identification of f with f R 3 . To this end, we show that f ∈ L 2 (R 3 ).

• First of all, we have ∂(ξ N + ξ S ), ∆ R 3 (ξ N + ξ S ) are compactly supported in B N ∪ B S and they vanish near p N and p S . Denote by Q the support of their identifications on R 3 .

• • X ∈ Ḣ1 axi (R 3 ). Therefore, -2∂ • X • ∂(ξ N + ξ S ) ∈ L 2 (R 3 ).
• By Poincaré inequality, we have

||∆ R 3 (ξ N + ξ S ) • X|| L 2 (R 3 ) = ||∆ R 3 (ξ N + ξ S ) • X|| L 2 (Q) ≤ C|| • X|| L 2 (Q) ≤ C||∇ • X|| L 2 (Q) ≤ C|| • X|| Ḣ1 axi (R 3 ) .
• By Lemma 61 and Lemma 76, we have

(1 -ξ N -ξ S ) • Y ∂X K • ∂Y K X 2 K L 2 (R 3 ) ≤ C • Y L 2 ∇h (R 3 )
.

• Moreover, by Lemma 62 and Lemma 61, we have

(1 -ξ N -ξ S ) ∂Y K • ∂ • Y X K L 2 (R 3 ) ≤ C • Y Ḣ1 axi (R 3 )
.

• Since H X ∈ C ∞ 0 (R 3 ), the term (1ξ Nξ S )H X ∈ L 2 (R 3 ). Thus, f ∈ L 2 (R 3 ) and we apply Theorem 26 to obtain

(1 -ξ N -ξ S ) • X Ḣ2 (R 3 ) ≤ C ||f || L 2 (R 3 ) .
3. Now, we use the latter estimates to obtain

||f || L 2 (R 3 ) ≤ C ||(1 -ξ N -ξ S )H X || L 2 (R 3 ) + || • X|| Ḣ1 axi (R 3 ) + • Y Ḣ1 axi (R 3 ) + • Y L 2 ∇h (R 3 )
.

4. Finally, we use Lemma 84 to conclude. spacetime Lemma 88. There exists C > 0 such that

(1 -ξ N -ξ S )ξ A Ỹ Ḣ2 (R 7 A ) ≤ C (1 -ξ N -ξ S )ξ A H Y X -1 K L 2 (R 7 A ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

Proof. Although the proof is similar to the previous lemmas, we give details leading to L 2 estimates of the different terms.

1. We multiply (3.8.66) by ξ := (1-ξ Nξ S )ξ A and we write ∆ R 7 ξ Ỹ in terms of the remaining quantities:

∆ R 7 ξ Ỹ = ξH Y X -1 K -ξẽ A -2∂ ξ • Ỹ + 2 |∂Y K | 2 X 2 K ξ + ∆ R 7 ξ Ỹ.
2. In order to apply Calderon-Zygmund theory, we need to show that the function

g = ξH Y X -1 K -ξẽ A -2∂ ξ • ∂ Ỹ + 2 |∂Y K | 2 X 2 K ξ + ∆ R 7 ξ Ỹ + 2 ξ dA ∂ • X + 2d A ξ ∂ ρ • X ρ lies in L 2 (R 7 A ).
• Denote by à the support of ξ and recall from Lemma 63 the decay estimate for ẽA :

|ẽ A | = O r→+∞ r -2 . • We have ξH Y X -1 K 2 L 2 (R 7 A ) = (2π) 5 Ã ξ2 X -2 K H 2 Y ρ 5 dρdz = (2π) 5 Ã ξ2 X -2 A (ρ 2 , z)H Y ρdρdz
where X A is given by Definition 19. Moreover, X A are bounded on à . Therefore,

ξH Y X -1 K 2 L 2 (R 7 A ) ≤ 2πC Ã ξ2 H 2 Y ρdρdz ≤ C R 3 ξ2 H 2 Y ρdρdz ≤ C ξH Y 2 L 2 (R 3 )
.

• We have

ξẽ A -2∂ ξ • ∂ Ỹ 2 L 2 (R 7 A ) = (2π) 5 Ã ξẽ A -2∂ ξ • ∂ Ỹ 2 ρ 5 dρdz ≤ (2π)C Ã ∂ Ỹ 2 ρ 5 dρdz.
We have

∀(ρ, z) ∈ Ã : Ỹ = 1 ρ 2 X -1 A (ρ 2 , z) • Y .
Hence,

∂ Ỹ = - 1 ρ 3 X -1 A (ρ 2 , z) • Y + 1 ρ 2 ∂X -1 A (ρ 2 , z) • Y + X -1 A (ρ 2 , z)∂ • Y .
Therefore,

∀(ρ, z) ∈ Ã : ∂ Ỹ 2 ≤ C      • Y 2 ρ 6 + ∂ • Y 2 ρ 4      and ξẽ A -2∂ ξ • ∂ Ỹ 2 L 2 (R 7 A ) ≤ (2π)C   Ã • Y 2 ρ 2 ρdρdz + Ã ∂ • Y 2 ρdρdz   .
By Lemma 63,

∀(ρ, z) ∈ à : 1 ρ 2 ≤ |∂h| 2 . This yields à • Y 2 ρ 2 ρdρdz ≤ à |∂h| • Y 2 ρdρdz ≤ • Y 2 L 2 ∇h (R 3 )
and the estimate

ξẽ A -2∂ ξ • ∂ Ỹ L 2 (R 7 A ) ≤ C • Y Ḣ1 axi (R 3 )∩L 2 ∇h (R 3 ) ≤ C H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

• In order to estimate d A ξ ∂ ρ • X ρ , we write

d A ξ ∂ ρ • X ρ 2 L 2 (R 7 A ) ≤ C Ã ξ2 (∂ ρ • X) 2 ρdρdz ≤ C • X 2 Ḣ1 axi (R 3 )
.

• The other terms follow in the same way.

Lemma 89. There exists C > 0 such that

ξ N Ỹ Ḣ2 (R 8 N ) ≤ C (s 2 + χ 2 )H Y L 2 (B N ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 ) , ξ S Ỹ Ḣ2 (R 8 S ) ≤ C ((s ′ ) 2 + (χ ′ ) 2 )H Y L 2 (B S ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
. Lemma 90. There exists C > 0 such that

(1 -ξ N -ξ S )ξ A • Y Ḣ2 (R 3 ) ≤ C ||(1 -ξ N -ξ S )ξ A H Y || L 2 (R 3 ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 ) , ξ N • Y Ḣ2 (R 4 N ) ≤ C (s 2 + χ 2 )H Y L 2 (B N ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 ) , ξ S • Y Ḣ2 (R 4 S ) ≤ C ((s ′ ) 2 + (χ ′ ) 2 )H Y L 2 (B S ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

Proof.

1. First of all, we claim that ∀f ∈ C ∞ 0 (R 3 ), such that ∀z ∈ R : lim . The other terms follow using similar arguments. We have Therefore,

ξ • Y 2 Ḣ2 (R 3 ) = 2π Ã ∂ 2 ( ξ • Y ) 2 ρdρdz = 2π Ã ∂ 2 (X K ξ Ỹ ) 2 ρdρdz ≤ C Ã X 2 K ∂ 2 ( ξ Ỹ ) 2 + ( ξ Ỹ ) 2 ∂ 2 X K 2 + |∂X K | 2 ∂( ξ Ỹ )
ξ • Y 2 Ḣ2 (R 3 ) ≤ C (1 -ξ N -ξ S )ξ A Ỹ Ḣ2 (R 7 A ) ≤ C (1 -ξ N -ξ S )ξ A H Y X -1 K L 2 (R 7 A ) + H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 )
.

Here, we used Lemma 88 to obtain the latter estimate. Finally, by similar arguments, we show that 

||(1 -ξ N -ξ S )ξ A H Y || L 2 (R 7 
+ Ỹ Ĉ1 (B) ≤ C H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 ) + ||(1 -ξ N -ξ S )H X || L 2 (R 3 )∩L ∞ (R 3 ) + ||(1 -ξ N -ξ S )(1 -ξ A )H Y || L 2 (R 3 )∩L ∞ (R 3 ) + (1 -ξ N -ξ S )ξ A X -1 K H Y L 2 (R 7 A )∩L ∞ (R 7 A ) + (s 2 + χ 2 )ξ N X -1 K H Y L ∞ (R 8 N ) + ((s ′ ) 2 + (χ ′ ) 2 )ξ S X -1 K H Y L ∞ (R 8 S ) + (s 2 + χ 2 )ξ N H X L ∞ (R 4 N ) + ((s ′ ) 2 + (χ ′ ) 2 )ξ S H X L ∞ (R 4 S ) .
Proof. We will detail the Ĉ1 (B) estimates for To this end, we need to show that

ξ N • X, ξ S • X ∈ C 1 (R 4 ) and (1 -ξ N -ξ S ) • X ∈ C 1 (R 3 ).

By Lemma 85,

•

X A = (1 -ξ N -ξ S ) • X, ∂ • X A ∈ Ḣ1 (R 3 ).
2. Now, we recall the continuous embedding Ḣ1 (R 3 ) ⊂ L 6 (R 3 ).

(3.8.71)

3. Recall that (1ξ Nξ S )

• X satisfies (3.8.68). spacetime 4. Now, we claim that ∂ 2

• X A ∈ L 6 (R 3 ). To prove the latter, we use equation (3.8.68) and we apply Theorem 26 with f given by (3.8.69), p = 6 and n = 3. We need to show that f ∈ L 6 (R 3 ). Recall that f is given by

f (x) = 2∂ • X • ∂(ξ N + ξ S ) + ∆ R 3 (ξ N + ξ S ) • X -2(1 -ξ N -ξ S ) ∂Y K • ∂ • Y X K + 2(1 -ξ N -ξ S ) • Y ∂X K • ∂Y K X 2 K + 2 |Y K | 2 X 2 K (1 -ξ N -ξ S ) • X + (1 -ξ N -ξ S )H X
• It is easy to see that the terms ∂

• X • ∂(ξ N + ξ S ), ∆ R 3 (ξ N + ξ S )
• X and (1ξ Nξ S )H X lie in L 6 (R 3 )

• By the decay estimates of ∂Y K X K , we obtain

(1 -ξ N -ξ S ) ∂Y K • ∂ • Y X K L 6 (R 3 ) ≤ C • Y Ẇ 1,6 axi (R 3 )
.

• We have

(1 -ξ N -ξ S ) • Y ∂X K • ∂Y K X 2 K L 6 (R 3 ) ≤ (1 -ξ N -ξ S ) • Y ∂X K X K L 2 (R 3 ) ∂Y K X K L 2 (R 3 ) ≤ C (1 -ξ N -ξ S ) • Y L 2 ∇h (R 3 )
• Moreover, by Theorem 23 with n = 3, p = 6 and δ = 1 2

(1ξ Nξ S )

• X |Y K | 2 X 2 K L 6 (R 3 ) ≤ C (1 -ξ N -ξ S ) • X r -8 L 6 (R 3 ) ≤ C (1 -ξ N -ξ S ) • X 6, 1 2 ≤ C ∂ • X A 6,-1 2 = C ∂ • X A L 6 (R 3 )
5. Finally, we use the Sobolev embedding

W 2,6 (R 3 ) ⊂ C 1, 1 2 (R 3 )
in order to obtain

• X A ∈ C 1 (R 3 ).
Furthermore,

• X A C 1 (R 3 ) ≤ C||f || L 6 (R 3 ) ≤ C (1 -ξ N -ξ S ) • X Ḣ2 (R 3 ) + (1 -ξ N -ξ S ) • Y Ḣ2 (R 3 ) + (1 -ξ N -ξ S ) • Y L 2 ∇h (R 3 ) ≤ C H X • X 1 2 L 1 (R 3 ) + H Y • Y 1 2 L 1 (R 3 ) + ||(1 -ξ N -ξ S )H X || L 2 (R 3 )∩L ∞ (R 3 ) + ||(1 -ξ N -ξ S )(1 -ξ A )H Y || L 2 (R 3 )∩L ∞ (R 3 ) + (1 -ξ N -ξ S )ξ A X -1 K H Y L 2 (R 7 A )∩L ∞ (R 7 
A ) .

6. Using similar arguments and the previous lemmas, we estimate the C 1 norm of ξ N • X and ξ S • X.

Finally, we prove Proposition 34

Proof. We prove that there exists C = C(α 0 ) > 0 such that

( • X, • Y ) L X ×L Y ≤ C ||(H X , H Y )|| N X ×N Y .
Recall the norms: 1. First of all, by we have

||(1 -ξ N -ξ S )H X || L 2 (R 3 )∩L ∞ (R 3 ) ≤ C ||(1 -ξ N -ξ S )H X || C 0,α (R 3 ) (s 2 + χ 2 )ξ N H X L ∞ (R 4 N ) ≤ C (s 2 + χ 2 )ξ N H X C 0,α (B N ) ((s ′ ) 2 + (χ ′ ) 2 )ξ S H X L ∞ (R 4 S ) ≤ C ((s ′ ) 2 + (χ ′ ) 2 )ξ S H X C 0,α (B S )
2. Similarly, we show that

(s 2 + χ 2 )ξ N X -1 K H Y L ∞ (R 8 N ) ≤ C (s 2 + χ 2 )ξ N X -1 K H Y C 0,α (B N ) ((s ′ ) 2 + (χ ′ ) 2 )ξ S X -1 K H Y L ∞ (R 8 S ) ≤ C ((s ′ ) 2 + (χ ′ ) 2 )ξ S X -1 K H Y C 0,α (B S )
Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime 3. By similar arguments, we have

||(1 -ξ N -ξ S )(1 -ξ A )H Y || L 2 (R 3 )∩L ∞ (R 3 ) + (1 -ξ N -ξ S )ξ A X -1 K H Y L 2 (R 7 A )∩L ∞ (R 7 A ) ≤ C 4. We estimate the term H X • X 1 2 L 1 (R 3 )
:

H X • X 1 2 L 1 (R 3 ) ≤ ||H X || L 6 5 (R 3 ) • X L 6 (R 3 ) 1 2 ≤ ||H X || 1 2 L 6 5 (R 3 ) (1 -ξ N -ξ S ) • X L 6 (R 3 ) + ξ N • X L 6 (R 3 ) + ξ S • X L 6 (R 3 ) 1 2 
.

• ξ N • X and ξ S

•

X are compactly supported on B N and B S respectively. Hence,

ξ N • X L 6 (R 3 ) + ξ S • X L 6 (R 3 ) ≤ C ξ N • X L ∞ (R 3 ) + ξ S • X L ∞ (R 3 )
.

• By (3.8.71),

(1 -ξ N -ξ S ) • X L 6 (R 3 ) ≤ C (1 -ξ N -ξ S ) • X Ḣ1 (R 3 )
.

• Thus, ∀q > 0, we have

H X • X 1 2 L 1 (R 3 ) ≤ C q -1 ||H X || L 6 5 (R 3 ) + q (1 -ξ N -ξ S ) • X Ḣ1 (R 3 ) + q ξ N • X L ∞ (R 3 ) + q ξ S • X L ∞ (R 3 ) ≤ C q -1 ||(1 -ξ N -ξ S )H X || L 6 5 (R 3 ) + q (1 -ξ N -ξ S ) • X Ḣ1 (R 3 ) + q -1 ||ξ N H X || L 6 5 (R 3 ) +q ξ N • X L ∞ (R 3 ) + q -1 ||ξ S H X || L 6 5 (R 3 ) + q ξ S • X L ∞ (R 3 )
,

• ξ N H X and ξ S H X are compactly supported on B N and B S respectively. Hence,

||ξ N H X || L 6 5 (R 3 ) ≤ C ||ξ N H X || L 1 (R 3 )∩L ∞ (R 3 ) and ||ξ S H X || L 6 5 (R 3 ) ≤ C ||ξ S H X || L 1 (R 3 )∩L ∞ (R 3 )
• Furthermore,

ξ N • X L ∞ (R 3 ) + ξ S • X L ∞ (R 3 ) ≤ C • X Ĉ1 (B)
• We obtain similar estimates for H Y • Y .

3.8. Solving for the renormalised quantities 277 5. We choose q > 0 so that by Lemma 91, we obtain

|| • X|| Ẇ 1,2 axi (B) + || • Y || Ẇ 1,2 axi (B) + • X Ĉ1 (B) + • Y Ĉ1 (B) ≤ C(α 0 ) ||(H X , H Y )|| N X ×N Y .
6. Now, we estimate the C 2,α 0 part of ( In the following, we establish the C 2,α 0 estimates for ( 

L( • X, Ỹ ) =       ∆ R 3 • X + 2∂Y K • ∂ • Y X K - 2|∂Y K | 2 X 2 K • X + 2 ∂X K • ∂Y K X 2 K • Y ∆ R 7 ỸR 7 + ẽA • ∂ Ỹ -2 |∂Y K | 2 X 2 K ỸR 7 -2 dA • ∂ • X - 2d A ρ ∂ ρ • X.      
is uniformly elliptic on B A ∪ B H . We apply Theorem 24 with Ω = 

F R 3 := H X - 2∂Y K • ∂ • Y X K + 2|∂Y K | 2 X 2 K • X -2 ∂X K • ∂Y K X 2 K • Y .
Indeed, we have (b) then on the region B N with F given by

F R 4 := (s 2 + χ 2 )H X -2 ∂Y K • ∂ • Y X K + 2 |∂Y K | 2 X 2 K • X -2 ∂X K • ∂Y K X 2 K • Y .

Non-linear estimates

We apply Theorem 21 in order to obtain 

• Y • Θ 2 , • λ 2 , δ 2 Lσ×L B ×L X ×L Y ≤ C(α 0 ) • X 1 , • Θ 1 , • λ 1 L X ×L Θ ×L λ + • X 2 , • Θ 2 , • λ 2 L X ×L Θ ×L λ • Θ 1 , • λ 1 - • Θ 2 , • λ 2 L Θ ×L λ + |δ 1 -δ 2 |) .
Before we prove the above proposition, we introduce the following notations 1. Define H X and H Y on B to be the mappings H X (ρ, z) = N 

X ( • X, • Y )(ρ, z) := X 2 K (|∂ • X| 2 -|∂ • Y | 2 ) + ( • X∂Y K - • Y ∂X K ) • (2X K ∂ • Y - • X∂Y K + • Y ∂X K ) X 2 K (1 + • X) (1) 
, spacetime

By Proposition 31, we have

• σ • X, • Θ, • λ, δ Lσ ≤ C(α 0 ) || • X|| 2 L X + || • Θ|| 2 L Θ + || • λ|| 2 L λ + δ .
Thus,

||F 1 ( • Θ, • X, • σ( • X, • Θ, • λ; δ); δ)|| Ĉ1,α 0 (B) ≤ C(α 0 ) || • X|| 2 L X + || • Θ|| 2 L Θ + || • λ|| 2 L λ + δ .
Now, we write

X -1 K F 1 = (1 -ξ N -ξ S )X -1 K F 1 + ξ N X -1 K F 1 + ξ S X -1 K F 1 .
By Proposition 29, F 1 is compactly supported in B A . Therefore,

||X -1 K F 1 ( • Θ, • X, • σ( • X, • Θ, • λ; δ); δ)|| N X = ||r 3 (1 -ξ N -ξ S )X -1 K F 1 || C 0,α 0 (R 3 ) ≤ C||F 1 ( • Θ, • X, • σ( • X, • Θ, • λ; δ); δ)|| Ĉ1,α 0 (B) ≤ C(α 0 ) || • X|| 2 L X + || • Θ|| 2 L Θ + || • λ|| 2 L λ + δ 2.
We refer to the proof of Proposition 9.2.1 in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] in order to estimate N

X , N

Y , N (1) 
Y and the remaining terms of N 2. We apply Theorem 21 with L defined by 

L( • X, • Y ) :=       ∆ R 3 • X + 2∂Y K • ∂ • Y X K - 2|∂Y K | 2 X 2 K • X + 2 ∂X K • ∂Y K X 2 K • Y ∆ R 3 • Y - 2∂Y K • ∂ • X X K - (|∂X K | 2 + |∂Y K | 2 ) X 2 K • Y       , N = N (X,Y ) , L = L X × L Y , Q = L Θ ×

Solving for Θ

We recall that Therefore,

• Θ satisfies ∂ ρ • Θ = - σ X 2 (∂ z Y + B z ) + ρ X 2 K ∂ z Y K , ∂ z • Θ = σ X 2 (∂ ρ Y + B ρ ) - ρ X 2 K ∂ ρ Y K .
• Θ is well defined.

2. Now, we show that 

∂ ρ • Θ = (H Θ ) ρ (ρ, z).
We apply the dominated convergence theorem to obtain

∂ z • Θ = - ∞ ρ ∂ z (H Θ ) ρ (ρ, z) dρ = - ∞ ρ ∂ ρ (H Θ ) z (ρ, z) dρ = (H Θ ) z .
3. Finally, we prove that

• Θ lies in L Θ , that is (1 -ξ N -ξ S )r 2 • Θ R 3 ∈ C 2,α 0 (R 3 ) , ξ N r 2 • Θ R 4 ∈ C 2,α 0 (R 4 ) and ξ N r 2 • Θ R 4
∈ C 2,α 0 (R 4 ). Indeed,

• if (ρ, z) ∈ [ρ 0 , ∞[×R ∩ B((0, 0), 1), then the estimates are straightforward.

• Otherwise, we have ρ 2 + z 2 > 1. Therefore, We have

(r 2 ξ N • Θ) R 4 ≤ C s 0 sds ≤ C.
Here, we used the estimate of s -1 (H Θ ) s in the region B N .

(b) We control the

L ∞ norm of ∇ R 3 (r 2 (1 -ξ N -ξ S ) • Θ) R 3 , ∇ R 4 (r 2 ξ N • Θ) R 4 and ∇ R 4 (r 2 ξ S • Θ) R 4 We have ∂ x (r 2 • Θ) R 3 = x x 2 + y 2 ∂ ρ r 2 (ρ, z) • Θ(ρ, z) , ∂ y (r 2 • Θ) R 3 = y x 2 + y 2 ∂ ρ r 2 (ρ, z) • Θ(ρ, z) , ∂ z (r 2 • Θ) R 3 = ∂ z r 2 (ρ, z) • Θ(ρ, z) .
i. Away from the boundary {0} × R, the estimates are straightforward since H Θ ∈ N Θ . ii. In à ∪ H , we have

∂ x (r 2 • Θ) R 3 = x x 2 + y 2 ∂ ρ r 2 (ρ, z) • Θ(ρ, z) = x • Θ(ρ, z) + r 2 (ρ, z) x x 2 + y 2 ∂ ρ • Θ.
The first term is easily bounded by r -2 thanks to (a). As for the second term, we have ii. In à ∪ H , we have

r 2 (ρ, z) x x 2 + y 2 ∂ ρ • Θ = r 2 (ρ, z) x x 2 + y 2 |(H Θ ) ρ | ≤ Cr -1 ρ 1 + ρ x x 2 + y 2 ≤ C.
∂ xx r 2 • Θ R 3 = • Θ + x 2 x 2 + y 2 ∂ ρ • Θ + x∂ x r 2 ρ (H Θ ) ρ + r 2 ρ (H Θ ) ρ .
The above terms are controlled using the previous estimates and the L ∞ estimate of

∇ R 3 r 3 1 + 1 ρ H Θ .
iii. In B N , we have

∂ ss (r 2 • Θ) R 4 = ∂ ss r 2 • Θ(s, χ) + r 2 ∂ s (H Θ ) + 2∂ s r 2 (H Θ ) s .
The estimate is straigthforward.

(d) Finally, we control sup

X 1 =X 2 ∇ 2 R 3 r 2 • Θ (X 1 ) -∇ 2 R 3 r 2 • Θ (X 2 ) |X 1 -X 2 | α 0 ≤ Cr -2 .
The estimates are straightforward thanks to the control of H Θ and the regularity of the different terms.

i. Away from the boundary {0} × R, the estimates are straightforward. ii. if X i ∈ Ã ∪ H

iii. If X i ∈ B N ,

Non-linear estimates

We apply Theorem 21 in order to obtain Proposition 37. Let α 0 ∈ (0, 1) and let δ 0 > 0. Then, there exists 0 < δ 0 ≤ δ 0 such that ∀ Before we prove the above proposition, we introduce the following notations 1. Define H Θ on B to be the one form which expression in the (ρ, z) coordinates is • λ; δ))

(H Θ ) ρ = - ρ X 2 K (1 + • σ) (1 + • X) 2 (∂ z (Y K + X K • Y ) + B z ) + ρ X 2 K ∂ z Y K , (H Θ ) z = ρ X 2 K (1 + • σ) (1 + • X) 2 (∂ ρ (Y K + X K • Y ) + B ρ ) - ρ X 2 K ∂ ρ Y K .
(1 + • X( • Θ, • λ; δ)) 2 (∂ z (Y K + X K • Y ( • Θ, • λ; δ)) + B z ( • Θ, • λ; δ)) + ρ X 2 K ∂ z Y K N Θ • Θ, • λ; δ) z (ρ, z) := ρ X 2 K (1 + • σ( • Θ,
• λ; δ)) In order to prove the above proposition, we will need the following lemma First of all, we show that N Θ • Θ,

(1 + • X( • Θ, • λ; δ)) 2 (∂ ρ (Y K + X K • Y ( • Θ, • λ; δ)) + B ρ ( • Θ, • λ; δ)) - ρ X 2 K ∂ ρ Y K and set N Θ • Θ, • λ; δ) = N Θ • Θ, • λ; δ) ρ dρ + N Θ • Θ, • λ; δ)
• λ; δ is a differentiable closed one-form on B.

• For the differentiability, the only terms that we need to analyse are

ρ X 2 K ∂ z Y K , ρ X 2 K ∂ ρ Y K and ρ X 2 K .
The differentiability of the remaining terms as well as the differentiability away from the ∂B follow because ( -Therefore,

N Θ • Θ, • λ; δ) = - σ X 2 (θ z dρ -θ ρ dz) + ρ X 2 K θ K z -θ K ρ dz .
-Moreover, θ verifies • λ; δ) provided δ sufficiently small. To this end, we show the estimates in the region B A ∪ B H , then in B N and B S .

σ -1 ∂ ρ (σθ ρ ) + σ -1 ∂ z (σθ z ) = 2θ ρ ∂ ρ X + 2θ z ∂ z X X -Straightforward
In order to lighten the expressions, we omit the dependence of • λ; δ). We re-write (N Θ ) ρ and (N Θ ) z on the form

(N Θ ) ρ = - ρ X 2 K (1 + • σ) (1 + • X) 2 (∂ z (X K • Y + Y K )) + B z ) + ρ X 2 K ∂ z Y K = ρ X 2 K -1 - • σ + (1 + • X) 2 (1 + • X 2 ) 2 ∂ z Y K - ρ X K (1 + • σ) (1 + • X) 2 B z - σ X 2 K (1 + • X) 2 ∂ z (X 2 K (X -1 K • Y )) = ρ X 2 K - • σ + • X 2 + 2 • X (1 + • X 2 ) 2 ∂ z Y K - ρ X K (1 + • σ) (1 + • X) 2 B z - ρ(1 + • σ) (1 + • X) 2 ∂ z (X -1 K • Y ) -2 ρ(1 + • σ) (1 + • X) 2 X -1 K • Y ∂ z log X K . (N Θ ) z = ρ X 2 K - • σ + • X 2 + 2 • X (1 + • X 2 ) 2 ∂ ρ Y K - ρ X K (1 + • σ) (1 + • X) 2 B ρ - ρ(1 + • σ) (1 + • X) 2 ∂ ρ (X -1 K • Y )-2 ρ(1 + • σ) (1 + • X) 2 X -1 K • Y ∂ ρ log X K .
• In B A ∪ B H , we prove that r 3 (1 + ρ -1 ) (N Θ ) ρ and r 3 (N Θ ) z are bounded in Ĉ1,α 0 . We have -By Lemma 61,

1 X 2 K |∂ z Y K | ≤ Cr -5 , |∂ X -2 K ∂Y K | ≤ Cr -6 , |∂ 2 X -2 K ∂Y K | ≤ Cr -7
and ρ X 2

K |∂Y K | ≤ Cr -4 , |∂ X -1 K ∂Y K | ≤ Cr -4 , |∂ 2 X -1 K ∂Y K | ≤ Cr -5 .
Thus, the term -Moreover, the quantities r 3 X -1

ρ X 2 K ∂ z Y K is bounded by r 3 (1 + ρ -1 ) ρ X 2 K ∂ z Y K is bounded in Ĉ1,α 0 .
K • Y , r 4 X -1 K • Y and r 5 X -1 K • Y are bounded in L ∞ (B),
which implies that the term r 3 (1 + ρ -1 )X -1 -Moreover,

K • Y is bounded in Ĉ1,
∂ ρ = χ χ 2 + s 2 ∂ s + s χ 2 + s 2 ∂ χ , ∂ z = -s χ 2 + s 2 ∂ s + χ χ 2 + s 2 ∂ χ .
-Therefore,

(N Θ ) s = χ - σ X 2 -s χ 2 + s 2 ∂ s Y + χ χ 2 + s 2 ∂ χ Y -s σ X 2 χ χ 2 + s 2 ∂ s Y + s χ 2 + s 2 ∂ χ Y - σ X 2 B χ = sχ X 2 K - • σ + • X 2 + 2 • X (1 + • X 2 ) 2 ∂ χ Y K - sχ(1 + • σ) (1 + • X) 2 ∂ χ (X -1 K • Y ) -2 sχ(1 + • σ) (1 + • X) 2 X -1 K • Y ∂ χ log X K - σ X 2 B χ .
In the same manner, we obtain

(N Θ ) χ = sχ X 2 K - • σ + • X 2 + 2 • X (1 + • X 2 ) 2 ∂ s Y K - sχ(1 + • σ) (1 + • X) 2 ∂ s (X -1 K • Y )-2 sχ(1 + • σ) (1 + • X) 2 X -1 K • Y ∂ s log X K - σ X 2 B s
• Now, we estimate s -1 (N Θ ) s in Ĉ1,α 0 :

-We start with sχ∂ χ Y K X 2

K

. We recall that Y K dY K = θ K which takes the following form in the (s, χ) coordinates

∂ s (X -1 K W K )ds + ∂ χ (X -1 K W K )dχ = sχ X 2 K (∂ χ Y K -∂ s Y K ) .
Moreover, we recall the (x, y, u, v) coordinates defined by (??) so that any function f (s, χ) defined on B N can be see as a function f R 4 (x, y, u, v) defined on R 4 Therefore, sχ X 2 

K ∂ χ Y K = ∂ s (X -1 K W K ) = s ∂ xx W K X K (0, √
∂ z • λ = α z -(α K ) z - 1 2 ∂ z log(1 + • X).

Conclusion

Finally, we combine the previous results in order to prove Proposition 38:

Proof.

1. First of all, we apply Proposition 37 to find a one-parameter family of solutions 

Proof of the Main Result

By the previous section, we obtain the following result Proposition 39. Let δ 0 > 0 and let δ ∋ [0, δ 0 [→ • σ, B,

• X,

• Y be the one parameter family family of solutions to the reduced EV-system obtained by Proposition 38. Then,

• the metric g δ given by g δ := -V δ dt 2 + 2W δ dtdφ + X δ dφ 2 + e 2λ δ dρ 2 + dz 2

where

λ δ := • λ(δ) + λ K X δ : = X K (1 + • X(δ)) W δ : = X δ ( • Θ(δ) + X -1 K W K ) V δ := σ 2 δ -W 2 δ
X δ where σ δ := ρ(1 +

• σ(δ)),

• and the distribution function f δ given by f δ (t, φ, ρ, z, p ρ , p φ , p z ) := Φ(ε δ , ℓ z )Ψ η (ρρ 1 ((ε δ , (ℓ z ) δ ), (X δ , W δ , σ δ )))

where 

ε δ := σ δ √ X δ (1 + |p| 2 ) 1 2 - W δ X δ (ℓ z ) δ , ( ℓ 

3.C Classical Carter-Robinson theory

In the absence of a matter field, the metric quantities X, W, σ, θ, λ satisfy the following equations on B:

• σ = ρ. Hence, ∆ R 3 σ = 0.

• θ is given by θ = X 2 σ (∂ z (X -1 W )dρ -∂ ρ (X -1 W )dz).

• W satisfies the equation

∂ ρ (X -1 W )dρ + ∂ z (X -1 W )dz = ρ X 2 ((∂ ρ Y )dz -(∂ z Y )dρ).
• (X, Y ) satisfies the following system on

R 3        ρ -1 ∂ ρ (ρ∂ ρ X) + ρ -1 ∂ z (ρ∂ z X) = (∂ ρ X) 2 + (∂ z X) 2 -(∂ ρ Y ) 2 -(∂ z Y ) 2 X , ρ -1 ∂ ρ (ρ∂ ρ Y ) + ρ -1 ∂ z (ρ∂ z Y ) = 2(∂ ρ Y )(∂ ρ X) + 2(∂ z Y )(∂ z X) X .
(3.C.1)

• λ satisfies the equation

     ∂ ρ λ = 1 4 ρX -2 ((∂ ρ X) 2 -(∂ z X) 2 + (∂ ρ Y ) 2 -(∂ z Y ) 2 ) - 1 2 ∂ ρ log X, ∂ ρ λ = 1 4 ρX -2 ((∂ ρ X)(∂ z X) + (∂ ρ Y )(∂ z Y )) - 1 2 ∂ z log X.
(3.C.2)

In particular (X K , Y K , σ K , θ K , λ K ) satisfies the above equations. 
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  B(r Sch i (E, ℓ), δ1) = r ∈ I : |rr Sch i (E, ℓ)| < δ1 .
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 35 It is easy to see that µ(δ) and λ δ are actually C 2 on I. In fact, since µ(δ) is C 1 on I, m(µ(δ); δ) given by (2.4.3) is C 2 on I and r → H(r, µ(δ); δ) is C 1 on I by Proposition 7. Moreover, G(µ(δ); δ) = 0. Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime

.A. 13 ) 2 .

 132 This implies that r must lie in the region 2M, r Sch 0 ∪ [r Sch 1 , r Sch 2 ]. Two cases are possible either the geodesic starts at some point in ]2M, r Sch 0 ] and reaches the horizon r = 2M in a finite proper time, -or the geodesic is trapped between r Sch 1 and r Sch 2 . If (E, ℓ) ∈ A unbound , then there exists r Sch i := r Sch i (E, ℓ), i ∈ {0, 1, } solutions of (2.A.4) and satisfying (2.A.8). By (2.A.13), r must lie in the region ]2M, r Sch 0 ] ∪ [r Sch 1 , ∞[. Therefore, two cases are possible either the geodesic starts at some point in ]2M, r Sch 0 ] and reaches the horizon r = 2M in a finite proper time, -or the geodesic stars at some point in [r Sch 1 , ∞[, hits the potential barrier at r Sch 1 and goes to back to infinity (case of negative initial radial velocity); or the geodesic stars at some point in [r Sch 1 , ∞[ and goes to infinity (case of positive initial radial velocity). 3. If (E, ℓ) ∈ A abs , then the equation (2.A.4) has at most one positive root r Sch 0 . Two cases are possible:
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 311 Figure 3.11: Shape of ZVC associated to γ with (ε, ℓ z ) ∈ A bound .
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 63321 Figure 3.21: Boundaries of B A (magenta), of B H (blue), B N and B S (green).
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 317 21 for a diagram of B. Now, we define a partition of unity subordinate to (B A ∪ B H , B N , B S ). To this end, we first give a definition of smooth functions on B Let f : B → R. f is said to be smooth on B if and only if 1. f |BN is smooth on Int B N and extends smoothly to ∂ B N , 2. f |BS is smooth on Int B S and extends smoothly to ∂ B S , 3. f |(BA∪BH ) is smooth on Int B A ∪ B H and extends smoothly to ∂ B A ∪ B H .
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We state the following lemma 3 . 3 . 105 Lemma 20 .

 3310520 Timelike future directed geodesics in Kerr spacetime Assume that (ε,ℓ z , q) ∈ R × R × [0, ∞[ and consider the equation in Y T (Y, ε, ℓ z , q) = 0. (3.3.33) on ] -1, 1[. Then, T has • two roots counted with their multiplicity in the region ] -1, 1[ if and only if d 2 (ε 2 -1) ≤ ℓ 2 z . They are given by Y = ± √ y + ,

Lemma 24 . 1 .Figure 3 . 31 : 3 2 -3r 1 2 3 2 -3r 1 2 ± 2d = 0 110 Chapter 3 .

 24133131311103 Figure 3.31: Shape of the the energy and the angular momentum in terms of the radius of circular motion for retrograde and direct orbit at d = 0.8. The horizontal lines represent the energy levels at ε = 0.97, ε = 1 and ε = 1.2.
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  The latter can not vanish since r > r H . Therefore, by(3.3.45), Φ and Ψ have the same critical points.
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 3 Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime • It remains to solve the equation -3d 2 + 8d √ r + r(r -6) = 0 on ]r ph , ∞[. Again, we introduce the change of variables u = √ r and we obtain the quartic polynomial:
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.3. 68 )

 68 Proof. By Lemma 22, the quadruplet (r s , ε, ℓ z , q) verifies R(r, ε, ℓ z , q, d) = 0 (3.3.69) ∂R ∂r (r, ε, ℓ z , q, d) = 0. (3.3.70) Moreover, by Lemma 18, we require q ≥ 0. (3.3.71) Solving the equations (3.3.69) and (3.3.70) simultaneously eliminates two of the four unknowns r s , ε, ℓ z and q. We introduce the following change of variables

  3.69) and (3.3.70) solve the equations (3.3.69) and (3.3.70).In the following, we will determine the set of admissible parameters (r s , ε 2 ) so that solutions of (3.3.69)-(3.3.70) are given by a two parameter family indexed by (r s , ε 2 ). Lemma 33.

Lemma 34 .

 34 Let (r, ε) ∈ D s . Then η c is positive (≥ 0) if and only if (r, ε) ∈ D s := D ≤1 s ⊔ D ≥1 s (3.3.80) where D ≥1 s := (r, ε) ∈ D ≥1 s : r ∈ [r + max (ε), r - max (ε)] . (3.3.81) and D ≤1 s

  .3.87) r ∈ [r + max (ε), r + min (ε)]. Therefore, r c (ε) is a triple root of the polynomial R with parameters (ε, εℓ c (ε), ε 2 η c (r c (ε), ε 2 )). This cannot happen because of Lemma 17. 2. Since ℓ c (•, ε 2 ) does not have critical points, η c (•, ε 2 ) admits two critical points, given by • r ± (ε). A study of the function • r -on [1, ∞[ shows that this function is always negative. Since we are looking for critical points in the region

  then we use Lemmas 36 and 38 to obtain the result. 2. If ε 2 ≥ 1, then we use Lemma 37 to obtain the result. Now, instead of writing the solutions of the system of equations (3.3.69)-(3.3.70) as a two parameter family (ℓ c , η c )(r, ε 2 ) indexed by (r, ε 2 ) ∈ D s , we will write the solutions of (3.3.69)-(3.3.70) as a two-parameter family (r, η c )(ε 2 , ℓ z ) indexed by (ε 2 , ℓ z ) ∈ D sph where D sph is the set of admissible

Lemma 40 .

 40 Let d ∈]0, 1] and let (ε, ℓ z ) ∈]0, ∞[×R. The system of equations (3.3.69) -(3.3.70) admits solutions (r, q) ∈]r H , ∞[×[0, ∞[ if and only if one of the following cases occur.

33 :

 33 Possible roots or R in the unbounded case Proof. Let (ε, ℓ z , q) ∈ [1, ∞[×R × R and consider the equation in r R(r, ε, ℓ z , q) = 0.(3.3.110)
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 3311933 Timelike future directed geodesics in Kerr spacetime 139 B.
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 332 Figure 3.32: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) = (ε + min , ℓ + min ) when d = 0.9
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 333 Figure 3.33: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A <1 abs when d = 0.9
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 334 Figure 3.34: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A ≥1abs when d = 0.9
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 3335 Figure 3.35: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A circ and ε < 1 when d = 0.9

Figure 3 . 36 :

 336 Figure 3.36: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A circ and ε ≥ 1 when d = 0.9
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 3337 Figure 3.37: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A bound when d = 0.9

Figure 3 . 38 : 9 •

 3389 Figure 3.38: Shape of the zero velocity curve associated to a direct orbit with (ε, ℓ z ) ∈ A scattered when d = 0.9

4 .

 4 Therefore (ρ c , z c ) are given by ρ ± s (ℓ z ), 0 and (ρ ± min (ℓ z ), 0), where ρ ± s (ℓ z ) and ρ ± min (ℓ z ) are defined by (3.3.143) and (3.3.144). Moreover, the corresponding ε c satisfy ε s c (ℓ z ) := E K ℓz (ρ s (ℓ z ), 0) = ε s (ℓ z ) and ε m c (ℓ z ) := E K ℓz (ρ min (ℓ z ), 0) = ε m (ℓ z ) where ε s (ℓ z ) and ε m (ℓ z ) are given by (3.3.61) and (3.3.62) respectively. Proposition 20 (Study of critical points). Let ℓ z ≥ ℓ + min or ℓ z ≤ ℓ - min . Then,
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 339 Figure 3.39: Shape of E K ℓz with d = 0.8. On the left: ℓ z = 1. On the right: ℓ z = 4

  are the two largest roots of the equation (3.3.148) with z = 0 and z

4 Figure 3 .

 43 Figure 3.310: The set A bound with d = 0.8 as the union of the two set bounded by the red curve, the blue curve and the black curve. On the left: A + bound . On the right: A - bound .

Figure 3 . 311 :

 3311 Figure 3.311: The zero velocity curve (in blue) with d = 0.5 and (ε, ℓ z ) = (0.98, 4) ∈ A bound . The dashed lines separate B into six regions: B 0 is the region that contains Z K,abs and it is delimited by the red line (Figure (a)). The region B 5 is the region bounded by the cyan rectangle in Figure (b). B 3 is the region delimited by the two green lines in Figure (b). B 4 is the region delimited by the cyan vertical line from the left. The horizontal black line above the equatorial plane delimits the region B 1 from below and the horizontal black line below the equatorial plane delimits the region B 2 from above.

  mb,-(a, M ) never vanishes and ρ mb,+ (a, M ) vanishes if and only if |a| = M . Indeed, 1. ρmb,+ : [0, 1[→ R + is monotonically decreasing on ]0, 1[ and we have lim d→1 ρmb,+ (d) = 0. 2. ρmb,-: [0, 1[→ R + is monotonically increasing on ]0, 1[ and we have lim d→1 ρmb,-(d) ≈ 4.83.
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 33312 Figure 3.312: Intersection of E (d) (blue curve) and Z K,trapped (ε, ℓ z ) (red curve) when d = 0.95. The remaining parameters are set to :ε = 0.99 and ℓ z = 2.5.
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 3313 Figure 3.313: Shape of S in the following cases from the left to the right: d = 0.1, d = √ 0.5 and d = 0.99
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  4.11), (3.4.12), (3.4.13), (3.4.14) and (3.4.15) and obtain Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime
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 34393 With this construction, B is defined by B (N ) can define the Ernst potential Y : Definition 34. We define, up to a constant, the Ernst potential Y : B → R to be the function which satisfies: dY = θ -B. (3.4.40)

spacetime 2 .

 2 The equation for B follows from the definition of B(N ) 

3. 4 . 4 .

 44 Reduced Einstein-Vlasov system 193 We derive the equation for • Θ:

•Y

  and B before solving the • Θ equation since the necessary boundary condition to integrate the equation for • Θ.

3 196Chapter 3 .

 33 16 C ∞ 0 (R 3 ) denotes the space of smooth compactly supported functions defined on R Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

3. 4 . 7 . 1 Function spaces for σ Definition 35 .

 47135 The Banach space (L σ , || • || Lσ ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm||f || Lσ := ||f || C 3,α 0 (B) + ||r 2 f || L ∞ (B) + ||r 3 ∂f || L ∞ (B) + ||r 4 log -1 (4r)∂ 2 f || L ∞ (B) + ||r 4 log -1 (4r)∂ 2 f || C 0,α 0 (B) .The Banach space (N σ , || • || Nσ ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm ||f || Nσ := ||r 5 f || C 1,α 0 (B) . 3.4.7.2 Function spaces for B Definition 36. The Banach space (L B , || • || L B ) is defined to be the completion of triples

3. 4 . 7 . 4

 474 Function spaces for Θ Definition 39. The Banach space (L Θ , || • || L Θ ) is defined to be the completion of smooth functions f ∈ Ĉ∞ 0 (B) under the norm ||f || L Θ := ||r 2 f || Ĉ2,α 0 (B) .

. 4 . 7 . 5 Function spaces for λ Definition 40 .

 47540 The Banach space (L λ , || • || L λ ) is defined to be the completion of smooth functions f ∈ Ĉ∞ (B) under the norm ||f || L λ := ||f || Ĉ1,α 0 (B) .

Chapter 3 .Θ

 3 Note that• σ depends on the other renormalised quantities and δ. Therefore, after the application of the fixed point theorem, we will obtain a one parameter family of solutions (B, • σ) which depend in C 1 manner of ( and continuously on δ. 200 Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime • We iterate the solving process in order to solve the equations for ( in terms of ( • λ; δ) and finally the equations for • λ in terms of δ only.

3. 6 .•

 6 Perturbation of trapped Kerr geodesics 209 Uniqueness: We show, after possibly shrinking δ 0 , that ∀h ∈ B δ 0 , ∀(ε, ℓ z ) ∈ B bound , ∀ρ ∈ I 1 (ε,ℓz)

  Consider the following non-linear Poisson equation on the open unit ball of R n with Dirichlet boundary condition: ∆h = N (h, δ)(x) on B 1 h| ∂B 1 = 0. (3.7.1)

Proposition 28 .

 28 There exists δ 0 > 0 sufficiently small such that there exists a solution map h : [0, δ 0 [→ B δ 0 (L) such that 1. ∀δ ∈ [0, δ 0 [ , h(δ) solves (3.7.1) and 2. there exists C > 0 such that ∀δ ∈ [0, δ 0 [, ||h(δ)|| L ≤ Cδ 3. The one parameter family of solutions bifurcates from the trivial solution in the sense that δ → h(δ) is differentiable at δ = 0 and lim δ→0
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  also depend (smoothly) on (ρ, z) ∈ B. The steps are similar to what has been done in the previous lemma and we only compute the differential in the proofs. Lemma 68. Let E ∈ R and consider the mapping L

Chapter 3 .
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  Moreover, there exists C(α 0 ) > 0 such that || • σ|| Lσ ≤ C(α 0 )||H σ || Nσ . The proof is based on Theorem 25 and the following Newtonian estimates Lemma 70. Let n ≥ 3 and F : R n → R satisfies |F (x)| ≤ C x -k where x := (1 + |x| 2 ) 1 2 for some k > 2 and k = n. Let u : R n → R be the corresponding Newton potential: u(x) := R n |x -y| 2-n F (y) dy.

3. 8 .

 8 Solving for the renormalised quantities 243 Suppose that k ≥ n. Then II = y,|x-y|≥ x 4

where D 1

 1 (x) := y, |x -y| ≥ x 4 and |y| ≤ 2 x , D 2 (x) := y, |x -y| ≥ x 4 and |y| ≥ 2 x .

Lemma 71 .

 71 Let n ≥ 3 and F : R n → R satisfies |F (x)| + sup |x-y|≤1 |F (x)-F (y)| |x-y| α ≤ C x -kfor some k > 2 and k = n. Let u : R n → R be the corresponding Newton potential:

II 1

 1 := y,|x-y|≥ x 4 and |y|≤4 x |x -y| -n y -k dy, II 2 := y,|x-y|≥ x 4 and |y|≥4 x |x -y| -n y -k dy. spacetime Then,

  [) there exists a unique one parameter family • ∈ B δ 0 (L σ × L B ) which solves (3.4.49) and (3.8.53) and which satisfies •

•X

  is singular only near p N and p S , provided • Y in the right space. • the equation for • Y is singular near p N , p S and B A ∪ B H .

2 .X 2 K

 22 there exist a smooth vector field dA and a smooth function d A defined on B A such that ∀(ρ, z) ∈ B :∂Y K function |∂Y K | X Kextends smoothly to B A .

6 i=1 x 2 i

 62 . Moreover, to any function f : B → R we associate an axisymmetric function f R 7 : R 7 → R by setting f R 7 (x) := f (ρ, z).(3.8.65)

8 . 66 ) 3 .

 8663 Chapter Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime on R 7 . Note that this identification with R 7 only makes sense within the set B A ∪ B H . In this case, we denote by R 7 A the set (B A ∪ B H ) × S 5 ⊂ R 7 and we introduce the following norms||f || W k,p (R 7 A ) := |i|≤k B A ∪B H ∂ i f p ρ 5 dρdz 1 p , ||u|| C k,α (R 7 A ) := |α|≤k ||D α u|| C 0 (B A ∪B H ) + |α|=k [D α u] 0,α;B A ∪B Hand the semi norm||f || Ẇ k,p (R 7 A ) f : B A ∪ B H → R. Now,we recall the coefficients behavior of the elliptic operator associated to (3.8.55) near p N and p S Lemma 82.

3

  . the function |∂Y K | X K extends smoothly to B N and to B S . Proof. This follows from Lemmas 61, 62 and 63. Now, we consider the system (3.8.55) near p N and p S and we write the latter in terms of the coordinates (s, χ) Lemma 83. ( • X, Ỹ ) is a weak solution of the system

•Y

  away from the region (ρ, z) ∈ B , ρ = 0 ; z ∈ R .

4 .Lemma 84 .

 484 In order to handle the estimates for • Y near the boundary of B, we establish the estimates for Ỹ near A using equation(3.8.66). Then, we use the second equation of (3.8.67) so that we obtain estimates of Ỹ on B N and B S .5. Finally, we deduce the estimates for• Y . There exists C > 0 such that • X Ḣ1 axi (R 3 )
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 3 Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Proof. The proof is similar to the previous lemmas. Now, we derive the estimates for • Y .

f 2 ρ 3 dρdz ≤ C ∞ 0 (∂ ρ f ) 2 ρ 5 dρdz ∞ 0 f 2 ρdρdz ≤ C ∞ 0 (∂ ρ f ) 2 ρ 3 dρdz( 3 . 8 . 70 ) 2 .

 000338702 Indeed, we apply the second estimate of Theorem 23 to the function ρ → f (ρ, z) with n = 1, p = 2, δ = -1 in order to obtain the second inequality and δ = -2 in order to obtain the first inequality. We estimate the term (1ξ Nξ S )ξ A • Y Ḣ2 (R 3 )

2 ρ 3 2 ρ 3 ∂ 2 (

 23232 dρdz + à ( ξ Ỹ ) 2 ρdρdz. Now, we use (3.8.70) to obtain à ∂( ξ Ỹ ) dρdz ≤ C Ã

  A ) ≤ C ||(1ξ Nξ S )ξ A H Y || L 2 (R 3 )This ends the proof.Lemma 91. There exists C > 0 such that

•X.

  Ĉ1 (B) estimates for• Y and Ỹ follow using similar argument.

•Y

  X|| Ĉ2,α 0 (B) + ||r • X|| L ∞ (B) + ||r 2 ∂ • X|| L ∞ (B) + ||r 3 log -1 (4r) ∂2 • X|| C 0,α 0 (B) , || • || L Y = || • Y || Ẇ 1,2 axi (B) + |||∂h| • Y || L 2 (R 3 ) + || • Y || Ĉ2,α 0 (B) + ||X -1 K • Y || Ĉ2,α 0 (B) + ||r 3 X -1 K • Y || L ∞ (B) + ||r 4 ∂(X -1 K • Y )|| L ∞ (B) + ||r 5 log -1 (4r) ∂2 (X -1 K • Y )|| C 0,α 0 (B) , ||H X || N X = ||r 3 (1ξ Nξ S )H X || C 0,α 0 (R 3 ) + ||(χ 2 + s 2 )ξ N H X || C 0,α 0 (B N ) + ||((χ ′ ) 2 + (s ′ ) 2 )ξ S H Y || C 0,α 0 (B S ) , ||H Y || N Y = ||H Y r 5 X -1 K || Ĉ0,α 0 ((BH∪BA)∩{ρ≤1}) + ||H Y r 4 || Ĉ0,α 0 (B∩{ρ≥1}) + ||(χ 2 + s 2 )ξ N H X || C 0,α 0 (B N ) + ||((χ ′ ) 2 + (s ′ ) 2 )ξ S H Y || C 0,α 0 (B S )

YY ) R 3 ⊂

 3 ) in terms of ||(H X , H Y )|| N X ×N Y . • First, since (H X , H Y ) R 3 are compactly supported in R 3 , ( supp(H X R 3 ) ∩ supp(H Y R 3 ).Denote by K ⊂⊂ B the support of • X and • Y and assume for simplicity that K = B(x 0 , 1) where x 0 ∈ B. Depending on the position of x 0 , K lies either in B A ∪ B H , B N or B S .

Y

  ) in the regions. To this end, we use Theorem 24. First of all, note that (• X, • Y ) ∈ Ĉ2,α 0 (B). Now, we have (a) if K ⊂⊂ B A ∪ B H , the second order operator ( • X, Ỹ ) → L( • X, Ỹ ) defined by

•

  K, L and f = (H X , X -1 K H Y ) (b) if K ⊂⊂ B N , (c) if K ⊂⊂ B S , 7. Now, we show that ||r • X|| L ∞ (B) + ||r 2 ∂ • X|| L ∞ (B) + ||r 3 log -1 (4r) ∂2 • X|| C 0,α 0 (B) ≤ C ||(H X , H Y )|| N X ×N Y .In order to apply the latter estimate, we apply the newtonian estimates provided by Lemma 70 and Lemma 71 on each region B A ∪ B H , B N and B S : (a) on the region B A ∪ B H , with F given by

•

  by Lemma 61, we have • Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Therefore, there exists C > 0 such that ∀x ∈ R 3 |F (x)| ≤ Cr -4 .

Proposition 35 .

 35 Let α 0 ∈ (0, 1) and let δ 0 > 0. Then, there exists 0 < δ 0 ≤ δ 0 such that∀ • Θ, • λ, δ ∈ B δ 0 (L Θ × L λ × [0, ∞[) there exists a unique one parameter family • σ, 0, 0, B ∈ B δ 0 (L σ × L B × L X × L Y ) which solves (3.4.49), (3.8.53) and (3.4.51) δ i ∈ B δ 0 (L Θ × L λ × [0, ∞[),

1 .

 1 First of all, by Proposition 31 and Proposition 33, there exists a solution map ( defined on B δ 0 which solves (3.4.49) and (3.4.50).

  L λ and P = [0, δ 0 [. By the previous lemma, all the assumptions are satisfied and we obtain the desired result.

3. 8 . 3 . 8 . 7 . 1 • 1 .

 838711 Solving for the renormalised quantities 281 Linear problem We prove the following result Proposition 36. Let H Θ ∈ N Θ . Then, there exists • Θ ∈ L Θ which solves the equation d ) ρ (ρ, z) dρ.(3.8.74)Moreover, there exists C(α 0 ) > 0 such that|| • σ|| Lσ ≤ C(α 0 )||H σ || Nσ .Recall that N Θ is the completion of smooth compactly supported closed 1-forms under the norm||F || N Θ := ||r 3 (1 + ρ -1 )F ρ || Ĉ1,α 0 (BH∪BA) + ||r 3 F z || Ĉ1,α 0 (BH∪BA) + ||s -1 F s || Ĉ1,α 0 (B N ) + ||F χ || Ĉ1,α 0 (B N ) + ||(s ′ ) -1 F s ′ || Ĉ1,α 0 (B S ) + ||F χ ′ || Ĉ1,α 0 (B S ) .Proof. First of all, we show that • Θ given by (3.8.74) is well-defined . When ρ → ∞, we have (H Θ ) ρ = O ρ→∞ (ρ -3 ).

282 Chapter 3 .

 3 Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetimeTo this end, we prove the estimates on the different region: away from the boundary of B, near the axis, the horizon and near the poles. First of all, recall the following change of variables x = ρ cos ϑ y = ρ sin ϑ.We have∂ x = x x 2 + y 2 ∂ ρ , ∂ y = y x 2 + y 2 ∂ ρ .(a) We control the L ∞ norm of r 2• Θ: i. Away from the region ∂B, say [ρ 0 , ∞[×R for some ρ 0 > 0, there exists C > 0 such that ∀(ρ, z) ∈ [ρ 0 , ∞[×R :• Θ(ρ, z) ≤ Cr -2

1 (ρ 2 + z 2 + 2ρτ + τ 2 ) 3 2 dτ≤ 1 ( 1 + u 2 ) 3 2 du≤dρ 3 . 8 .

 122211238 C(ρ 2 + z 2 ) -Cr -2 (ρ, z).Therefore, we obtain the estimate for r 2•Θ.ii. In à ⊂ B A , a neighbourhood of the axis or in H ⊂ B H , a neighbourhood of the horizon, we have• Θ(ρ, z) =r -3 (ρ, z) dρ ≤ C ∞ ρ 2ρ 1 + ρ2 + z 2 -3 2Solving for the renormalised quantities 283iii. In B N , we write (3.8.73) in the (s, χ) coordinate system. We have∂ s • Θ = (H Θ ) s ; ∂ χ • Θ = (H Θ ) χ .) s (s, χ) ds.

We control ∂ y (r 2 •Θ) R 3

 23 in a similar way. As for∂ z (r 2 • Θ) R 3 , it is straightforward. iii. In B N , we have ∂ s (r 2 • Θ) R 4 = ∂ s r 2 • Θ(s, χ) + r 2 (H Θ ) sThe previous point and the estimate for H Θ yield the result.(c) Now, we control theL ∞ norm of ∇ 2 R 3 r 2 • Θ .i. Away from the boundary {0} × R, the estimates are straightforward since H Θ ∈ N Θ . spacetime

•B 2 , δ 2 +

 22 λ, δ ∈ B δ 0 (L λ × [0, ∞[) there exists a unique one parameter family• δ 0 (L σ × L B × L X × L Y × L Θ ) which solves (3.4.49), (3.8.53), (3.4.51) and (3.4.52) and which satisfies • σ, 0, 0, B (A)Lσ×L B ×L X ×L Y ×L Θ ≤ C(α 0 ) || • λ|| 2 L λ + δ and ∀ • λ i , δ i ∈ B δ 0 (L λ × [0, ∞[), • σ, 0, 0, B (A) Lσ×L B ×L X ×L Y ×L Θ ≤ C(α 0 ) |δ 1δ 2 | .

3. 8 .

 8 Solving for the renormalised quantities 285

2 .

 2 Let δ 0 > 0 be obtained by Proposition 35. Define the nonlinear operatorN Θ on B δ 0 (L Θ ) × B δ 0 (L λ × [0, ∞[) by

Y

  ) are the solution mappings obtained byProposition 35. 

Lemma 93 . 1 . 1 .

 9311 There exists δ 0 > 0 such thatN Θ B δ 0 (L Θ ) × B δ 0 (L λ × [0, ∞[) ⊂ N Θ . 2. There exist 0 < δ 0 ≤ δ 0 and C(α 0 ) > 0 such that ∀ • Θ, • λ; δ ∈ B δ 0 (L Θ ) × B δ 0 (L λ × [0, ∞[) ||H Θ || Nσ ≤ C(α 0 ) Let δ 0 > 0 be obtained by Proposition 35 and let ( ) ∈ (B δ 0 (L Θ )×B δ 0 (L λ ×[0, ∞[).

  ) is differentiable.• Now, we check that N Θ • ) solve (3.4.51) and(3.4.50). We set θ := dY + B and θ K := dY K .

  computations and the used of the above equation imply that the one formsσ X 2 (θ z dρθ ρ dz) ) ∈ (B δ 0 (L Θ ) × B δ 0 (L λ × [0, ∞[). We show that N Θ ( • Θ,

3. 8 .-

 8 Solving for the renormalised quantities 287 By Lemma 63, the term ∂ z (log X K ) ∈ C ∞ (B) and satisfies|∂ z log X K | = O r→∞ (r -2 ).

α 0 --

 0 Finally, recall that we control (1 + ρ 10 )(1 + r 10 ) ρ 10 B z in Ĉ1,α 0 . This yields to estimates in the regionB A ∪ B H . • In the region B N , we write N Θ in (s, χ) coordinates -We have N Θ = (N Θ ) ρ dρ + (N Θ ) z dz = (χ(N Θ ) ρ (s, χ)s(N Θ ) z (s, χ))ds + (s(N Θ ) ρ (s, χ) + χ(N Θ ) z (s, χ))dχ.

x 2 Chapter 3 .≤ c 0 c 1 2 ρ - 2 .•

 2322 +y2 ,u,v) . Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Hence,|f z (ρ)| ≤ c 0 ∞ ρ |f z (τ )| τ -3 dτ • Therefore ∀n ∈ N , ∀(ρ, z) ∈ [ρ 0 , ∞[×R |f z (ρ)| ≤ c 1Hence, when n → ∞, the right hand side goes to 0 and thus,∀ρ 0 > 0 , ∀(ρ, z) ∈ [ρ 0 , ∞[×R : f z (ρ) = 0. Finally, by continuity of f z , f z vanishes on [0, ∞[.Therefore, by the previous Lemma, we have

2 . 3 .Θ

 23 to their respective equations which depends continuously on (• λ, δ) ∈ B δ 0 (L λ ) × [0, δ 0 [. We apply Lemma 95 in order to show that L satisfies the assumptions of Theorem 20. We apply Theorem 20 with:T = L , L = L λ , P = [0, δ 0 [Therefore, after choosing 0 < δ 0 ≤ δ 0 , we obtain a one-parameter family of solutions ( • λ(δ)) δ∈[0,δ 0 [ can be seen as a one-parameter family depending on δ in the following way• σ, 0, 0, B (A) z , Lσ×L B ×L X ×L Y ×L Θ ≤ C(α 0 ) || • λ(δ)|| 2 L λ + δ ≤ C(δ 2 + δ) ≤ Cδ.

3. 9 . 2 )+ |δ 1 -δ 2 |≤

 9212 Proof of the Main Result 295and ∀δ i ∈ [0, δ 0 [, Lσ×L B ×L X ×L Y ×L Θ ≤ C(α 0 ) C(α 0 )δ.
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 3 z ) δ := X δ p φ , and ρ 1 is the second largest solution of the equationE (ℓz) δ (X δ , W δ , σ δ , ρ, 0) = ε δ . solve the Einstein-Vlasov system on M = R × S 1 × B.It remains to prove the following 1. the spacetime (M, g δ ) is C 2,α -extendable to a black hole spacetime in the sense of Definition 9, Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

  ) 2 + (p 1 ) 2 + (p 2 ) 2 + (p 3 ) 2 = -1 i.e p 0 = 1 + |p| 2 , , p 2 , p 3 ) ∈ R 3 and | • | is the Euclidean norm on R 3 . It is convient to introduce an angle variable χ ∈ [0, 2π[ such that

	r) ∂ ∂t forms an orthonormal frame of T x M. In terms of the new momentum coordinates, the mass shell , e 1 := e -λ(r) ∂ ∂r , e 2 := 1 r ∂ ∂θ , e 3 := 1 r sin θ ∂ ∂φ , (2.2.40) condition becomes Schwarzschild spacetime -(p 0 Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the where p = (p 1

  We call the latter nonlinear system for µ and λ the reduced Einstein-Vlasov system. We note that when inserting the ansatz of f (2.2.35) in the definition of the energy momentum tensor, the matter terms G Φ and H Φ become functionals of the yet unknown metric function µ and of the radial position r. Besides, from the reduced Einstein-Vlasov system (2.2.48)-(2.2.49), we will show that one can express λ in terms of the unknown metric µ so that we are left with the problem of solving only for µ. Therefore, we will define the solution operator used in the implicit function theorem for µ only . For this, let ρ > 0 and R > 0 be such that:

	Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the
								Schwarzschild spacetime
		R >	max (E,ℓ)∈B bound	r Sch 2 (E, ℓ),	(2.2.50)
		0 < 2M + ρ <	min (E,ℓ)∈B bound	r Sch 0 (E, ℓ)	(2.2.51)
	and set I :=]2M + ρ, R[. We will solve (2.2.48)-(2.2.49) on I. Then, we extend the solution to
	]2M, ∞[ by the Schwarzschild solution. In this context, we state the following lemma:
	Lemma 3. Let ρ > 0 and R > 2M + ρ. Let (λ, µ) be a solution of the reduced Einstein Vlasov
	system such that f is on the form (2.2.35), with boundary conditions
		λ(ρ + 2M ) = -	1 2	log 1 -	2M 2M + ρ	:= λ 0 ,	(2.2.52)
	and	µ(ρ + 2M ) =	1 2	log 1 -	2M 2M + ρ	:= µ 0 .	(2.2.53)
	Moreover, we assume that						
	where	∀r ∈ I , 2m(µ)(r) < r. m(µ)(r) := M + 4π r s 2 G Φ (s, µ) ds	(2.2.54) (2.2.55)
								2M +ρ
	is the Hawking mass.						
	Then, we have						
		e -2λ(r) = 1 -	2m(µ)(r) r	.	(2.2.56)
								.2.47)
	The equations (2.2.43) and (2.2.44) become			
		e -2λ(r) 2rλ ′ (r) -1 + 1 = 8πr 2 G Φ (r, µ), e -2λ(r) 2rµ ′ (r) + 1 -1 = 8πr 2 H Φ (r, µ).	(2.2.48) (2.2.49)

  Schwarzschild metric up to 2M . Note that in this context, the ansatz on f is no longer valid for r > 2M so that the distribution function is not purely a function of E and ℓ. This is related to our cut-off function χ η . In fact, we recall from Proposition 4 that for a particle with (E, ℓ) ∈ A bound , two orbits are possible. The Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime cut-off function selects only the trapped ones which are located in the region r ≥ r 1 (E, ℓ), "similar to" the region r ≥ r + in Rein's work.

			.2.76)
	Note that A Rein bound is strictly included in A bound . Indeed, there exists trapped geodesics of the Schwarzschild spacetime such that E < 1 and ℓ < 16M 2 , cf Figure 2.2 and Proposition
	4. In contrast, our solutions can be possibly supported on	8 9	, 1 ×]12M 2 , +∞[.
	2. Now, one can impose the distribution function to be zero in the region ]2M, r -[ and extend the metric with a

  3, we investigate the regularity of the matter terms and in Subsection 2.4.4, we check that (2.2.54) is always satisfied after possibly shrinking δ0 .

	Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the
	Schwarzschild spacetime

  Now we state a regularity result of G Φ and H Φ . Φ and h Φ defined respectively by (2.4.19) and (2.4.21) are C 2 with respect to r and E respectively on I, ]E 1 , E 2 [ and C 1 with respect to δ on [0, δ 0 [. Furthermore, they are continuously Fréchet differentiable with respect to µ on B(µ Sch , δ 0 ).
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  .3.46) r ± ms (d) is a minimiser for Φ ± , Ψ + and -Ψ -and their minima are respectively given by Ψ + is monotonically decreasing on ]r + ph , r + ms [ and monotonically increasing on ]r + ms , ∞[, 3. Ψ -is monotonically increasing on ]r - ph , r - ms [ and monotonically decreasing on ]r - ms , ∞[. Now, we go back to the equations (3.3.41) and (3.3.42): let ε ∈]0, ∞[ and consider the equations

		ε ± min (d) := Φ ± (r ± ms (d))	(3.3.47)
	and		
	ℓ +	ms )	(3.3.48)
	Moreover, we have		
		ε + min ≤ ε -min	(3.3.49)
	and	ε + min = ε -	

min (d) := Ψ + (r + ms ) and ℓ - min (d) := -Ψ -(r - min (3.3.50) if and only if d = 0. In this case, ε ± min (0) = 8 9

. From now on, we do not write the dependence of the above quantities on d. From the previous lemma, we obtain the following monotonicity properties for Φ ± and Ψ ± :

Lemma 26.

1. Φ ± is monotonically decreasing on ]r ± ph , r ± ms [ and monotonically increasing on ]r ± ms (d), ∞[, 2.

  1. If ε < ε + min , then the equations (3.3.51) and (3.3.52) do not have solutions. 2. If ε = ε + min , then (3.3.51) admits a unique solution given by r = r + ms and (3.3.52) does not have solutions.

	3. If ε + min < ε < ε -min , then (3.3.51) admits two solutions r + max (ε) and r + min (ε) which satisfy
	r + max (ε) < r + ms < r + min (ε).
	and the second one does not have solutions.
	4. If ε = ε -min , then (3.3.51) admit two solutions and (3.3.52) admits one solution given by r = r -ms .
	5. If ε -min < ε < 1, then both equations (3.3.51) and (3.3.52) admit two distinct solutions r ± max (ε) and r ± min (ε) which satisfy r ± max (ε) < r ± ms < r ± min (ε).

6. If ε ≥ 1, then both equations (3.3.51) and (3.3.52) admit a unique solution r ± max (ε, d) satisfying

  Now, we state the monotonicity properties of the functions defined in the previous lemma spacetime Lemma 29. 1. r + max is monotonically decreasing on ]ε + min , ∞[, 2. r - max is monotonically decreasing on ]ε - min , ∞[, 3. r + min is monotonically increasing on ]ε + min , 1[, 4. r - min is monotonically increasing on ]ε - min , 1[. Proof. The proof is straightforward using Lemma 26. First, we have

	r + ms [ such that
	r + max (ε) solves (3.3.51),
	2. there exists a unique smooth function r -max : [ε -min , ∞[→]r -ph (d), r + ms [ such that r -max (ε) solves (3.3.52),
	3. there exists a unique smooth function r +

min : [ε + min , 1[→]r

+ ms , ∞[ such that r + min (ε) solves (3.3.51), 4. there exists a unique smooth function r - min : [ε - min , 1[→]r - ms , ∞[ such that r - min (ε) solves (3.3.52).

  .3.76) We have shown so far that (3.3.69) and (3.3.70) imply (3.3.75) and (3.3.76). Tedious but straightforward computations imply that if

  then the equation (3.3.79) does not admit solutions. 2. If ε = ε + min , then the equation (3.3.79) admits a unique solution given by r + ms . 3. If ε + min < ε < ε - min , then the equation (3.3.79) admits two solutions r+ max (ε) and r + min (ε). 4. If ε = ε - min , then the equation (3.3.79) admits three solutions r+

max (ε), r + min (ε) and r - ms . 5. If ε - min < ε < 1, then the equation (3.3.79) admits four solutions r+ max (ε), r + min (ε), rmax (ε) and r - min (ε). 6. If ε ≥ 1, then the equation (3.3.79) admits two solutions r + max (ε) and r - max

Table 3 .

 3 

35: 

Possible roots or R in the bounded case

3.3.1.4.2 Case ε 2 < 1 Proposition 16. Assume that (ε, ℓ z , q) ∈] -1, 1[×R × [0, ∞[. The possible number of roots of R(•, ε, ℓ z , q) are summarised in Table

3

.34 and Table

3

.35. Proof. Let (ε, ℓ z , q) ∈]0, 1[×R × [0, ∞[. By

Lemma 17

, R admits either one root or three roots in the region ]r H , ∞[. Note also that ∂ r R has either no roots or two roots in the region]r H , ∞[. By Lemma 14, R(•, ε, ℓ z , 0) admits three roots if and only if ε + min

  .3.146) with parameters (ε c , ℓ z ). To prove the latter, it suffices to note that the system (3.3.146) is the system (3.3.145) written in the isothermal coordinates (ρ, z).3. ByLemma 41, stationary solutions of (3.3.146) exist if and only if ℓ z ∈ [ℓ min , ∞[, where ℓ min is defined by (3.3.48). They are given by

	r max (ℓ z ),	π 2	and	r min (ℓ z ),	π 2	.

  Lemma 50. ∀(ε, ℓ z ) ∈ A bound , we have

	(3.3.166)
	where r 0 abs , r 1 abs , r 2 abs and (3.3.166) are defined by (3.3.119), (3.3.120), (3.3.121), (3.3.122) respec-tively. We state the following lemma

.165)

ρ tr (ε, ℓ z , r) := ∆(r) sin θ tr (ε, ℓ z , r), z tr (ε, ℓ z , r) := (r -1) cos θ tr (ε, ℓ z , r),

  e 2λ δ dρ 2 + dz 2 then (O, g δ , f δ ) is a stationary and axially symmetric solution to the Einstein-Vlasov system (1.1.6) -(1.1.14) -(1.1.16) describing a matter shell orbiting a Kerr like black hole in the following sense:

	• ∃ρ δ min , ρ δ max ∈]0, ∞[ and Z δ min , Z δ max ∈ R which satisfy
	ρ δ min < ρ δ max , and ρ δ min

  • • • 5 and B abs such that B = B abs ∪ (∪ i=1•••5 B i ) .

	(3.6.1)

  near H , A , p N , p S by the first point. Hence |∂X K | ∼ e h |∂h| on B.Lemma 63. There exist smooth vector fields e A , e N and e S defined on B A , B N and B S respectively, which all extend to smooth vector fields on B, such that

  .8.[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] where (X K , Y K ) are the renormalised quantities for the Kerr metric and where (H X , H Y ) ∈ N X ×N Y . More precisely, the remaining of this section is devoted to the proof of the following resultProposition 34. Let (H X , H Y ) ∈ N X ×N Y .Then there exists a unique solution

•

X,

• Y ∈ L X ×L Y of (3.8.55). Moreover, there exists C

  solves(3.8.73). Since H θ is closed, we have d(H ρ dρ + H z dz) = dH Θ = 0.

	Therefore,
	∂

• Θ z (H Θ ) ρ = ∂ ρ (H Θ ) z .

Now, we compute

We note that L is the Lagrangian of a free-particle.

See[START_REF] Sarbach | The geometry of the tangent bundle and the relativistic kinetic theory of gases[END_REF],Lemma 7. 

Here we assumed that v = 0. In fact, v 0 vanishes if and only if v itself vanishes. In the massive case, it holds that v 0 >0 for future-directed particles

The latin indices run from 1...3.1.2. Newtonian and relativistic self-gravitating steady states

The definition of future null-infinity is actually not simple in the general case. We refer to[START_REF] Christodoulou | On the global initial value problem and the issue of singularities[END_REF] for details.

We note that under suitable assumptions, B is always closed and we refer to [129, Section 12.2] for a proof.

We will show that the matter shell is actually located outside the photon sphere.

We still have a cut-off depending on ρ as in the spherically symmetric case.1.4. Main results and overview of the thesis

The uniqueness uses a divergence identity, generalised to the so-called Mazur identity, see[START_REF] Heusler | Black hole uniqueness theorems[END_REF] Chapter 10].

Interestingly, the solutions that we construct are vacuum near the horizon and thus they emphasise the need for a global analysis to address the uniqueness conjecture of Kerr.

Chapter 2. Static spherically symmetric Einstein-Vlasov bifurcations of the Schwarzschild spacetime

r1 will be the second largest root of the equation e

2µ(r) 1 + ℓ r 2 = E 2 corresponding to the metric g.2 We note that the dependence of ri in (E, ℓ) is smooth.

In the small data regime, one expects that the range of parameters leading to trapped geodesics to be close to that of Schwarzschild.

In the regions ]2M, R δ min [ and ]R δ max , ∞[, there exits no matter; Hence, by Birkhoff's theorem, the metric must be the Schwarzschild metric.

See Theorem 17.6 , Ch. 17 of[START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for a proof.

We still have a cut-off depending on ρ as in the spherically symmetric case.

Theses constants will be fixed below, seeSection 52 

(ρc, zc) depends also on the metric coefficients. We omitted the dependence in order to lighten the expressions.

The equivalence is valid only for timelike future-directed geodesics.

Here, (γ, I) is a maximal solution in O of the geodesic equation.

By a small abuse of notation, we will make the confusion between O and the set ]r+(a, M ), ∞[×(0, π) in this section.

The system of equations is obtained by a linear combination of(3.3.39). We refer to the computations performed in Section 3.3.1.3 for the general case (non-vanishing q).

Proposition 13. Let γ : τ ∋ I → O be a timelike future directed geodesic with constants of motion (ε, ℓ z , q). If (ε, ℓ z , q) ∈ A spherical and γ starts at (t, φ, r s , θ) where r s is determined by one of the cases of Lemma 39. Then, γ is spherical.

constraints on q can be seen as restriction on the angular direction.

In this region, particles with positive energies in the local observer's frame can have negative energy with respect to infinity.

For the sole purpose of the main theorem, we could have constructed an atlas only for Z K,trapped (ε, ℓz). We also do the analysis of Z K,abs (ε, ℓz)

The details of computations are given in[START_REF] Elliott H Lieb | Graduate studies in mathematics[END_REF] Chapter 10].

Remerciements

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime

• θ tr (ε, ℓ z , q(•)) has a global maximum at θ <1 max (ε, ℓ z ) and

Graph (θ tr (ε, ℓ z , q(•))) ⊂ r K 1 (ε, ℓ z ), r K 2 (ε, ℓ z ) × 0, θ <1 max (ε, ℓ z ) .

• πθ tr (ε, ℓ z , q(•)) has a global minimum at πθ <1 max (ε, ℓ z ) and

Therefore,

or if we use the coordinates (ρ, z), we have

Now, let B bound ⊂⊂ A bound . We claim that B bound can be included in a finite union of products of closed intervals. More precisely, we have Lemma 45. Let B bound ⊂⊂ A bound . Then, there exists a finite number N of products of closed intervals

and ε i,± j and ℓ i,± j satisfy ε ± min < ε i,± 1 < ε i,± 2 < 1 , ℓ lb (ε + 2 ) < ℓ i,+ 1 < ℓ i,+ 2 < ℓ ub (ε + 1 ) and ℓ ub (ε - 1 ) < ℓ i,- 1 < ℓ i,- 2 < ℓ lb (ε - 2 ). (3.3.151) Proof. By compactness of B bound , there exists a finite number N of product closed intervals

.152)

We need to check that ε i,± j and ℓ i,± j satisfy (3.4.3). Let i ∈ {1, . . . N }. Then,

Lemma 48. ∀z ∈ [0, z K max (ε, ℓ z )], there exist ρ 1 (z, ε, ℓ z ), ρ 2 (z, ε, ℓ z ) ∈ [ρ K 1 (ε, ℓ z ), ρ K 2 (ε, ℓ z )] solutions of the equation E K ℓz (ρ, z) = ε which satisfy ρ 1 (z, ε, ℓ z ) ≤ ρ max (ε, ℓ z ) ≤ ρ 2 (z, ε, ℓ z )

Let (ε, ℓ z ) ∈ B bound .

• If z max (ε, ℓ z ) = 0, then by Lemma 44, Z K (ε, ℓ z ) is confined in the equatorial plane:

• Otherwise, we can choose z max (ε, ℓ z ) and zmax (ε, ℓ z ) such that 0 < z max (ε, ℓ z ) < zmax (ε, ℓ z ) < z max (ε, ℓ z ).

By Lemma 48, there exist ρ i (ε, ℓ z ), ρi (ε, ℓ z ) ∈]ρ K 1 (ε, ℓ z ), ρ K 2 (ε, ℓ z )[, i ∈ {1, 2} which solve the equations E K ℓz (ρ, z max (ε, ℓ z )) = ε and E K ℓz (ρ, zmax (ε, ℓ z )) = ε respectively and which satisfy

We introduce the following open subsets of B:

B abs := 0, ρ K 0,max + 3η 2 × R, (3.3.157)

.158)

.159)

.160)

In order to define B 5 , we choose z r (ε, ℓ z ) ∈]z max (ε, ℓ z ), zmax (ε, ℓ z )[, ρ 1 r (ε, ℓ z ) ∈]ρ 1 (z, ε, ℓ z ), ρ1 (z, ε, ℓ z )[ and ρ 2 r (ε, ℓ z ) ∈]ρ 2 (z, ε, ℓ z ), ρ2 (z, ε, ℓ z )[ and we set

Remark 30. If z max (ε, ℓ z ) = 0, then the geodesic is confined in the equatorial plane and Z K (ε, ℓ z ) is reduced to the set of points ρ K i (ε, ℓ z ). In this case, there is no work to be done here. Indeed, the classification of the equatorial orbits is the same as that of Schwarzschild geodesics. See Proposition 4.

In our work, we are interested in the general case (not necessarily equatorial orbits.). Therefore, we will assume that z max (ε, ℓ z ) > 0.

By construction, the above subsets cover B (See Figure 3.311): Proposition 23. Suppose that (M, g, f ) solves the Einstein-Vlasov equations where g is given by

Then the metric data (X, W, θ, σ, λ) satisfies the following equations on B

1. X satisfies

2. W satisfies

as well as

5. λ satisfies the following equations at the points where |∂σ| = 0

where

Independent of the behaviour of σ, λ satisfies

As for III, we set

A ℓz is smooth on B 1 ×]δ 0 , δ 0 [ 2 and we have

and

by compactness of B bound , the latter are bounded independently from (ε, ℓ z ). Therefore, there exists

Now, we have

X and σ 0 are bounded (with their derivatives) on B. In particular, we have

Moreover,

where

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Proposition 26. There exist

We set the quantities :

Now, we introduce the "dimensions of the matter shell" by defining:

We give the proof of Proposition 26

Proof. Let δ 0 be sufficiently small and let (ε,

By Lemma 53,

Recall that,

Therefore, there exists r > 0 uniform in (ε 0 , ℓ 0 ) such that

From Proposition 25, we have

Now, we adjust δ 0 so that

Therefore,

Hence, (ρ, z) / ∈ B H .

Before we construct the compact support of the distribution function (for the spacetime variables), we will need the following lemma Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime 2. We consider the linear Poisson equation with the previous Dirichlet boundary conditions :

where H is compactly compactly supported on B 1 and lies in N := C k,α 0 (B 1 ). Then, we can solve uniquely 17 for h ∈ C k+2,α 0 (B 1 ) : More precisely, h is given by

where G is the Green function for the unit ball. Now, the a priori estimates on h result from the potential estimates. More precisely, we apply Theorem 4.13 of [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] in order to obtain

and we have ||h|| C k+2,α 0 (B 1 ) ≤ C||H|| N .

(3.7.5)

Therefore, L -1 : N → L is well defined, it is bounded and we have

3. We need to check that

and that there exists

We show the result for k = 0. The general case is obtained using the same arguments.

• Let (h, δ) ∈ B δ 0 (L) × [0, δ 0 [. Then, by the regularity assumptions on F , ∀v ∈ K, the function F (•, v, δ)Ψ(h(•), v) lies in C 0,α 0 . Since Ψ and F (•, •, δ) are compactly supported, we apply the dominated convergence theorem. Therefore N (h, δ) lies in C 0 (B 1 ).

• It remains to show that N (h, δ) is Hölder continuous. This follows using the Hölder regularity assumption for F and h and the dominated convergence theorem.

• Now, we show the estimates (3.7.6). We claim that the mapping N is Fréchet differentiable at (0, 0). Therefore, we have ∀(h, δ) ∈ B δ 0 (L) × [0, δ 0 [ with δ 0 sufficiently small, we have

By the assumptions on F , we have

The Hölder part is estimated using similar arguments.

Moreover, ∆ = (r -r+ )(rr-).

Hence,

.

The latter is smooth on B N . The same arguments are applied near p S . Now, we recall from [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] the following decay estimates for Y K , the Ernst potential defined by (3.4.33):

We have the stronger bound for the z-component of the derivative of

On B N we have the estimates

The latter estimates remain valid on B S . Here, r is defined by:

Lemma 62. We have

• There exist c, C > 0 such that ∀(ρ, z) ∈ B, we have

Proof.

1. We prove the equivalence in every region: B H , B A , B N and B S .

(a) Near H : We have

Now, we introduce the following change of variables

Therefore 18 ,

and the matter terms are given by

Since the matter shell contains retrograde and direct orbits, we introduce

We state the following result:

• Otherwise, they vanish.

Following the previous lemma, we obtain

there exists an open neighbourhood of the axis of symmetry A , say à ⊂ B A , such that the matter terms

. By Proposition 27, we have

Before we study the regularity of the matter terms, we state the following lemmas from which we obtain the regularity of the different matter terms.

Lemma 67. Let u ∈ R and define the mapping

.

Then E u is well defined on B δ 0 and it is continuously Fréchet differentiable on B δ 0 with derivative:

Moreover , by smoothness of g E with respect to (x, y), there exists

The latter follows by similar arguments in the proof of Lemma 67

Lemma 69. Let s ∈ R and assume that

Then, ∀i ∈ {1, 2},

and ∀j ∈ {3, 4},

are well-defined and are continuously Fréchet differentiable mappings on B δ 0 with Fréchet differen- α (B A ) are the continuously Fréchet différentiable mappings defined by

(3.8.37)

and

Proof. The proof follows from Lemma 67, Lemma 68 and the dominated convergence theorem. We give details for f 1,± Φ,η (s, •, •). Regularity for the remaining functions is proved in the same manner. First of all, let s ∈ R and recall the definition of f 1,± Φ,η (s, •, •):

where

• We recall

• Hence, P 1 is Fréchet differentiable with respect to h with derivative given by (3.8.41).

• Now, let P 1 (h, s, •)(ρ, z) be a primitive of P 1 (h, s, •)(ρ, z). We write 

The first term of the latter expression was obtained by the dominated convergence theorem and the second term is obtained by the definition of P 1 .

• It remains to show that the derivative of f 1,± Φ,η with respect to h is continuous. This follows using similar arguments.

Proposition 29.

1. Let (

• σ,

• λ) lies in Ĉ1,α (B). Moreover, they are compactly supported in B A .

2. Let δ 0 > 0 and let F i be defined on B δ 0 19 . Then F i , i ∈ {1, 2, 3}, are a well-defined mappings from B δ 0 to Ĉ2,α (B) and F 4 is a well-defined mapping from B δ 0 to Ĉ1,α (B). Furthermore, F i , i ∈ {1, 2, 3, 4}, are continuously Fréchet differentiable on B δ 0 with Fréchet differential given by In this section, we solve the equations

for

• Θ,

• λ and δ.

By Proposition 27, we have

Therefore,

Linear problem

In order to solve for

z , we start with solving the linear problem:

for (H

with boundary condition B (A) z (0, z) = 0. We state the following result Proposition 32. Let (0, 0, H 

and B (A) z (0, z) = 0.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime 2. Let δ 0 > 0 be obtained by Proposition [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF]. Define the nonlinear operator

where

σ is the mapping obtained by Proposition 31.

Lemma 73.

2. There exist 0 < δ 0 ≤ δ 0 and C(α

Proof. We use the same arguments used to prove Lemma 93: the compact support of F 2 (

• Θ,

• X,

• σ; δ) and the differentiability of F 2 with respect to each variable. In order to obtain (3.8.72), we write

By Proposition 31, we have

The estimate (3.8.72) follows from the latter and the compact support of

Now, we prove Proposition 33.

Proof.

1. First of all, by Proposition 31, there exists a solution map

• λ; δ) defined on B δ 0 which solves (3.4.49).

We apply Theorem 21 with

By the previous lemma, all the assumptions are satisfied and we obtain the desired result.

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime where L 0 is defined by (3.8.58). Since (f k , g k ) ⇀ (f, g) in U , there exists a subsequence of (f k , g k ) kN which converges strongly in L 2 (B R ) for all R > 0. Now, by convexity of x → x 2 , we have

Therefore,

Moreover,

We have,

Moreover, ∂hg k ⇀ ∂hg in L 2 (B R ) and g∂h ∈ L 2 (B R ). Hence,

The remaining terms are tackled in the same manner. Therefore,

(3.8.60) Now, we have,

By positivity of the integrand, we can apply the monotone convergence theorem to obtain

Finally, we take the limit of (3.8.60) when R → ∞, we obtain the desired result.

Now, we prove Lemma 78

Proof. We begin by setting

1. First, we claim that m exists and it is finite. Indeed, the set

is not empty. Moreover, by Lemma 79, L is bounded from below. Thus, m exists. The latter is finite by Lemma 74.

2. By the first point, there exists a minimising sequence

Therefore, (L(f k , g k )) k∈N is bounded. Moreover, there exist C, C > 0 such that ∀k ∈ N,

Hence, (f k , g k ) k∈N is bounded in U and we can extract a subsequence that converges weakly in U . • Y ) = 0. By Lemma 77, we obtain

Proof. We proceed as in Lemma 85. We only mention the main steps.

1. First of all, we multiply the first equation of (3.8.67) by ξ N and we express ∆ R 4 ξ N

•

X in terms of the remaining quantities:

We apply Theorem 26 with n = 4, p = 2 and f given by the right hand side of the above equation. To this end, we show that f ∈ L 2 (R 4 N ). We give details for the term

The other terms follow in the same manner.

We have

By Lemma 9, Lemma 61, we have

Therefore,

.

Here, we used Poincaré inequality to obtain the latter estimate.

We use Lemma 84 to conclude.

Lemma 87. There exists C > 0 such that

.

Proof. The proof is similar to the previous lemmas. Here we apply Calderon-Zygmund theory to the second equation of (3.8.55).

Let δ 0 > 0 be obtained by Proposition [START_REF] Choquet-Bruhat | Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville[END_REF]. Define the nonlinear operator

where • σ and B are the mappings obtained by Proposition 33. Now, we state the following lemma Lemma 92.

2. There exist 0 < δ 0 ≤ δ 0 and C(α

Proof.

1. We use the same arguments used to prove Lemma 93 and Lemma 92: the compact

• σ; δ) and the differentiability of F 1 with respect to each variable. In order to obtain (3.8.72), we write

Chapter 3. Stationary axi-symmetric Einstein-Vlasov bifurcations of the Kerr spacetime Now, we recall that

-The remaining terms are easily controlled in Ĉ1,α 0 due to the estimates for X -1

-Finally, the estimates for (N Θ ) χ follow similarly. • In the region B S , the estimates are obtained as in B N .

Solving for λ

In this section, we prove the following result Proposition 38. Let α 0 ∈ (0, 1) and let δ 0 > 0. Then, there exists 0 < δ 0 ≤ δ 0 such that ∀δ ∈ [0, δ 0 [ there exists a unique one parameter family 

First of all, we recall the following Theorem 1.2 from [START_REF] Chodosh | Stationary axisymmetric black holes with matter[END_REF] Theorem 22 (O.CHODOSH, Y.SHLAPENTOKH-ROTHMAN). Assume that the metric data (X, W, θ, σ, λ) is chosen. Assume the energy momentum tensor T is chosen so that it satisfies (3.4.16). Suppose that 

where β = (β 2 ) ρ dρ + (β 2 ) z dz is a one-form which depends on my on σ through the equations:

3.8. Solving for the renormalised quantities 289 Furthermore, under the above hypothesis, if λ satisfies its first order equation (3.4.22), then we automatically have λ ∈ C 2,α loc (B) and that λ satisfies the second order equation given in Theorem 17.

Now we recall that

• λ satisfies the following equations

where

, where α ρ and α z satisfy

Moreover λ =

• λ + λ K satisfies the second order equation

Note that if we try to solve

• λ by integrating directly equations (3.8.77), then we do not know a posteriori whether α satisfies the compatibility condition (3.8.75) and thus dα = 0.

1. In this case, we proceed as in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] and we solve the following system of equations

(τ, z) dτ. The remaining of this section is devoted to the proof of the above steps. This will allow us to obtain Proposition 38. We also note that we follow the same steps in Section 12 of [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] and we write down details in order to be self-contained. We begin by introducing some notations: let δ 0 > 0 and let α 0 ∈ (0, 1). Let 0 < δ 0 ≤ δ 0 be obtained by Proposition 37. Let L : B δ 0 (L λ ) × [0, δ 0 [→ L λ be the mapping defined by

Here, (σ,

• X,

We omit the dependence on the ( 

where β 2 is defined by (3.8.76).

Proof. We check the assumptions of Theorem 22

1. The regularity assumptions are satisfied since the quantities 3. Since σ K = ρ, dσ K = dρ on B. Therefore |dσ K | = 0. Now, we choose δ 0 > 0 sufficiently small so that |dσ| = 0. Indeed,

On B, we have

The latter is obtained by assuming that δ 0 < 1 and by the control of L ∞ norm of ρ∂ ρ • σ. Therefore, we choose δ 0 so that the latter is positive. Therefore, we apply Theorem 22 to obtain that

• α satisfies (3.8.75),

• if λ satisfies (3.8.77), then λ also satisfies (3.8.80).

The remaining of this section is to prove the following result Lemma 95. Let δ 0 > 0 and let α 0 ∈ (0, 1). There exists 0 < δ 0 ≤ δ 0 such that ∀

Proof. The proof is similar to what has been done before: the estimates are proven in each region

1. First of all, we claim that there exists C(α 0 ) > 0 such that

Recall from Lemma 62 and Lemma 63 that ∂ ρ log X K and thus ∂ ρ log X behave like 1 ρ near the axis. Furthermore, since the renormalised unknowns lie in the right space, the Ĉ1,α 0 estimates is straightforward for all the terms except the following:

In order to estimate the latter, we write

Since ρ∂ ρ log X K is bounded and smooth near the axis and all the remaining terms are C 1,α controlled. We obtain the desired estimate.

• We apply the dominated convergence theorem and obtain that L ( • λ, δ) is well defined and lies in Ĉ1,α 0 (B A ∪ B H ). Moreover, we have the bounds

We recall that

Hence,

3.8. Solving for the renormalised quantities 293 3. The estimates in the region B N follow in the same manner up to computations for the change of coordinates from (ρ, z) to (s, χ). We refer to the proof of Lemma 12.2.2 in [START_REF] Chodosh | Time-periodic Einstein-Klein-Gordon bifurcations of Kerr[END_REF] for details.

4. The remaining estimates follow in the same manner.

5. Finally, we choose δ 0 > 0 sufficiently small that L ( 

To this end, let z ∈ R be fixed and set

We state the following lemma Lemma 96. ∀z ∈ R we have ∀ρ ≥ 0 , f z (ρ) = 0.

Proof.

• First of all, since

• λ(δ) solves (3.8.81), we have

Therefore ∀ρ 0 > 0, there exists c 0 = c 0 (ρ 0 ) > 0 such that 2. there exists κ(δ) > 0 such that e 2λκ -2 ρ -2 V -2ΩW -Ω 2 X H = 0.

3. On the set B N , we have (χ 2 + s 2 )e 2λs -2 X {s=0}∪{χ=0} = 0.

4. On the set B N , we have

5. On the set B S , we have

= 0.

6. On the set B S , we have

Proof.

1. First of all, note that we can choose δ 0 sufficiently small so that ρ -2 X A > 0 2. Now, we claim that Therefore, a stationary axisymmetric spacetime (M, g) is asymptotically flat if the (t, x, y, z) coordinates defined above, the metric g has the following expansion in the region R × (0, 2π) × B\K g = 1 + O r -1 -dt 2 + dx 2 + dy 2 + dz 2 + O r -2 (dtdx + dtdy + dxdy) .

3.B Classical inequalities and estimates

Theorem 23 ([21]). If δ < 0, then there exists C > 0 such that ∀u ∈ W 1,p δ (R 3 ) ||u|| p,δ ≤ C||u r || p,δ-1 , where u r is defined by u r := r -1 (x, y, z) t • ∂u.

Lemma 97. Let f : R 2 → R be a C 2 spherically symmetric function and (ρ, φ)denote polar coordinates on R 2 . Then, for any point (x 0 , y 0 ) ∈ R 2 we have 

Theorem 26 (Calderon-Zygmund estimates). Let f ∈ L p (R n ) and let K f be as defined in Theorem 25. Then, K f has weak second derivative in L p (R n ) and we have

List