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Abstract

Over the years, maintenance has been gaining attention in so many different fields as
people have begun to realize the importance of keeping systems and facilities working in a
reliable state. From the production line to fighter aircraft, the cost related to maintenance
activities—or the lack of it—is enormous. Systems’ failures can result in as small as the
loss of production or as large as a major accident. Consequently, instead of focusing on
reactive maintenance, which aims to restore a system after an unexpected failure, people
are more interested in preventive and predictive maintenances that could anticipate fail-
ures or catastrophic scenarios. However, as the systems are getting increasingly complex,
scheduling an appropriate maintenance plan is not easy. The question is, what are the
appropriate maintenance actions, and when to implement them?

To answer this question, one needs to have a profound understanding of the system’s
failure mechanism. A typical starting point is to find out if the system is deteriorating
over time, and if yes, how to describe it? Could the failure occur randomly without any
measurable forewarning, or are there potential signs indicating that failure is approaching?
It is also crucial to investigate the effectiveness of maintenance activities that do not
necessarily restore the system to the as-good-as-new state. In the worst-case scenario,
maintenance could be harmful to the maintained device if it is inappropriately done. When
formulating the maintenance strategy, both the aging of systems and the maintenance
effectiveness should be considered.

This being, numerous mathematical models have been proposed to depict the failure/repair
process that undergoes imperfect repairs. In the time dimension, the instant of fail-
ure/repair is a point on the real line; in the state dimension, the deterioration and
restoration of the system are often modeled by the state transition, degradation path,
or simply the variation of system’s age. Naturally, the stochastic process is the central
tool for such modeling.

The thesis is, therefore, prepared in this context. On the one hand, we investigate the
application field of imperfect repair models while examining the consequences of inappro-
priate model fitting. On the other hand, new models, which we believe are more realistic,
are established. The mathematical properties, e.g., distributions, correlations, asymptotic
behaviors, are thoroughly studied. Particularly, the statistical inference is addressed as
it is always essential to estimate the model parameters when fitting a model to the ob-
servations. The theoretical developments are accompanied by several case studies, based
on not only simulated data but also data collected from the Norwegian railway network.
We intend to highlight the relevance of using imperfect repair models in evaluating the
reliability of systems, assessing the effectiveness of maintenance actions, and scheduling
optimal maintenance plans. We hope that this work would be helpful and inspiring to
practitioners and researchers.

Key words: Maintenance, Reliability, Service life (Engineering), Stochastic processes,
Parameter estimation.
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Résumé

Au fil des ans, la maintenance a attiré l’attention dans tant de domaines différents que les
propriétaires et opérateurs commencent à réaliser l’importance de maintenir les systèmes
et les installations dans un état de fonctionnement fiable. De la châıne de production
aux avions de chasse, les coûts liés aux activités de maintenance — ou leur absence —
sont énormes. Les défaillances du système peuvent entrâıner tout aussi bien des pertes
mineures en production que des accidents majeurs. Par conséquent, au lieu de se con-
centrer sur la maintenance réactive qui vise à restaurer un système après une panne
inattendue, les opérateurs sont de plus en plus intéressés par la mise en place de main-
tenances préventives et prédictives, qui peuvent anticiper et éviter les pannes ainsi que
tout scénario catastrophique. Cependant, comme les systèmes deviennent de plus en plus
complexes, établir un plan de maintenance approprié n’est pas une tâche facile. La ques-
tion est, quelles sont les actions de maintenance pertinentes et à quel moment les mettre
en œuvre?

Pour répondre à cette question, il faut avoir une compréhension approfondie du mécanisme
de défaillance du système. Un point de départ usuel consiste à savoir si le système se
détériore au fil du temps et si oui, parvenir à décrire le vieillissement. La panne se
produit-elle de manière aléatoire et sans avertissement préalable et mesurable, ou y a-t-il
des indicateurs permettant de détecter la défaillance? Il est également essentiel d’étudier
l’efficacité des activités de maintenance qui ne restaurent pas nécessairement le système
dans un état aussi bon que neuf. Dans le pire des cas, une maintenance peut être nuisible
à l’appareil entretenu si elle n’est pas effectuée correctement. Lors de la formulation de la
stratégie de maintenance, le vieillissement des systèmes et l’efficacité de la maintenance
doivent être pris en compte.

Cela étant, de nombreux modèles mathématiques ont été proposés pour décrire le pro-
cessus de défaillance/réparation d’un système qui subit des réparations imparfaites. En
dimension temporelle, l’instant de défaillance/réparation est un point sur la ligne réelle;
dans la dimension d’état, la détérioration et la restauration du système sont souvent
modélisées par la transition d’état, le chemin de dégradation ou simplement la variation
de l’âge du système. Naturellement, les processus stochastiques sont essentiels à cette
modélisation.

La thèse est donc préparée dans ce contexte. D’une part, nous étudions le domaine
d’application des modèles de maintenance imparfaite tout en examinant les conséquences
d’un ajustement de modèle inapproprié. D’autre part, de nouveaux modèles, que nous
pensons plus réalistes, sont mis en place. Les propriétés mathématiques, par exemple,
les distributions, les corrélations, les comportements asymptotiques, sont soigneusement
étudiées. En particulier, l’inférence statistique est abordée — lors de l’ajustement d’un
modèle aux observations, il est toujours essentiel d’estimer les paramètres du modèle.
Les développements théoriques sont accompagnés de plusieurs études de cas, basées non
seulement sur des données simulées mais également sur des données collectées auprès du
réseau ferroviaire norvégien. Nous avons l’intention de souligner la valeur des modèles
de réparation imparfaits dans l’évaluation de la fiabilité des systèmes, l’évaluation de
l’efficacité des réparations et l’élaboration de plans de maintenance, et nous espérons
que ce travail sera utile et une source d’inspiration pour les praticiens et les chercheurs
concernés.

iii
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A.3 Méthodes de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.4 Portée et limites de la recherche . . . . . . . . . . . . . . . . . . . . . . . . 115

B Chapter 3 117

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C Chapter 4 119

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



D Chapter 5 122

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E Chapter 6 124

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

F Conclusion 127

Bibliography 129

ix



x



List of Tables

3.1 Notations in stable Virtual Age models. . . . . . . . . . . . . . . . . . . . . 29

5.1 Estimated Copula parameters and results of test of goodness of fit. . . . . 80

5.2 Gini coefficients (10−3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Repair duration distribution for Corrective maintenance. . . . . . . . . . . 98

6.2 Preventive maintenance duration distribution. . . . . . . . . . . . . . . . . 98

6.3 A summary of the case studies. . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Inter-failure times of System 012110. . . . . . . . . . . . . . . . . . . . . . 100

6.5 Parameters of the models fitted to asset 012110. . . . . . . . . . . . . . . . 100

6.6 Reliability indicators for the 16 most frequently failed assets. . . . . . . . . 102

6.7 Distribution of the number of recorded CM. . . . . . . . . . . . . . . . . . 103

6.8 Signal failure times: right censoring is marked with ∗. . . . . . . . . . . . . 104

xi



xii



List of Figures

3.1 Pdf of Bt when t tends to infinity in an ARA∞. . . . . . . . . . . . . . . . 31

3.2 Example of Pdf and survival functions: α = 1, β = 2, ρ = 0.5. . . . . . . . 33

3.3 Pdf of V s
t when t tends to infinity in an ARA∞. . . . . . . . . . . . . . . . 35

3.4 Pdf of Vt when t tends to infinity in an ARA∞. . . . . . . . . . . . . . . . 36

3.5 Yt, X∞, V s
t and A∞ in a BP process. . . . . . . . . . . . . . . . . . . . . . 38

3.6 Optimal repair degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Optimal repair degrees determined by the contours that are tangent to each
other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Expected failure frequency of the system as a function of the repair effec-
tiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Bias for β̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Bias for ρ̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Bias and variance of β∗ (left) and of ρ∗ (right). The y-axis on the left side
represents the bias (drawn correspondingly in the graphs with solid lines)
while that on the right side shows the variance (dashed lines). . . . . . . . 53

4.4 Bias for k∗ (left) and for θ∗ (right). k∗a and θ∗a are plotted using dashed lines:
they are derived by fitting a gamma distribution to α. k∗b and θ∗b are plot-
ted using solid lines: they are obtained by maximizing the corresponding
likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Long-run repair cost rate per system. . . . . . . . . . . . . . . . . . . . . . 57

4.6 Long-run repair cost rate per system computed with the correctly specified
model (heterogeneity taken into account, red line with triangle marker)
and that computed with the erroneous model (heterogeneity ignored, blue
line with cycle marker). The former is obviously closer to the real cost rate
(orange line with cross marker) computed with true parameters. . . . . . . 58

xiii



xiv LIST OF FIGURES

4.7 Examples of the survival functions (left) and mean cycle durations (right)
of a heterogeneous BP population. The larger the variation of Z, the larger
the survival function of XZ

∞ and the larger its expected value. . . . . . . . 61

4.8 Variation of the mean lifetime. The blue curve and red curve represent
respectively the mean lifetime of machines maintained by A and B. The
population mean lifetime is their harmonic mean, drawn by the orange
line. The purple dashed line represents the homogeneous situation where
the two technicians share the same perfect repair probability. . . . . . . . . 64

4.9 Pdf of p for different σ2(p). E[p] = 0.5. . . . . . . . . . . . . . . . . . . . . 66

4.10 RXp
∞(x|fp) as a function of σ2(p). . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 E[X∞|β] as a function of β. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.12 Monotonicity of E[X∞|fβ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Pdf of Pareto distribution (left) and survival function of Xβ
∞ (right) when

β follows a Pareto distribution. Parameters are set as βmin = 1, k = 1, 2, 5. 67
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Chapter 1

Introduction

1.1 Background

Nowadays, many systems, such as production lines, weapon equipments, nuclear power
stations, vehicles, aircrafts, etc., have become more and more complex. The costs of their
usage are also getting even higher than before. Maintenance has to be carried out in
order to keep these systems’ performance close to the level of their original design. Most
systems used in practice are subject to deterioration and aging with usage. For those
wearing-out systems, maintenance, such as monitoring, repairs, and replacements, can
extend their usage lifetimes, keep the quality of operations, reduce the cost of operations,
and prevent system failures. Note that, in this work, we are only interested in repairable
systems that can be restored to the operating state through component replacement or
repair when a system failure occurs.

In practice, maintenance is divided into two major classes: one is corrective maintenance
(CM), the other preventive maintenance (PM). Corrective maintenance aims to restore
the system to a specified condition when the system fails. Preventive maintenance aims to
retain the system in a specified condition or to improve the reliability of the system. With
the ongoing trend of Industry 4.0, more and more effort is put into preventive, predictive,
or even proactive maintenances. The goal is to minimize the potential loss of a system
failure by carrying out preventive maintenance at the right time. Not only should we
gather all kinds of data on the system’s state, e.g., age and physical characteristics, which
help us evaluate the remaining lifetime and the instantaneous failure intensity, but also a
proper maintenance model is required to represent the interaction between maintenance
activities and the physical system correctly.

Maintenance models are the basis of any quantitative maintenance analysis, which can be
used to analyze and evaluate the performances of maintenance approaches. Several factors
distinguish these maintenance models, including but not limited to, maintenance policies
(age replacement, block replacement, failure limit...), system structures (series structure,
parallel structure, k-out-of-n...), maintenance degree (perfect, minimal, imperfect...), opti-
mization criteria (minimal cost rate, maximal availability, maximal reliability...), lifetime
distributions (Exponential, Weibull, Gamma...).

1
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The current dissertation focuses on imperfect maintenance models (IMMs) or imperfect
repair models, wherein maintenance activities do not have to be perfect (restore the
system to a good-as-new state) or minimal (bring the system back into the state just
before the failure without any kinds of improvement). Although the word “imperfect”
usually indicates that a system is brought back to a state between good-as-new and bad-
as-old, these models are also capable of modeling harmful maintenance (worse-than-old)
or over-perfect maintenance (better-than-new). Over the last decades, IMMs have been
widely studied as they are flexible enough to represent a large scale of situations, which in
turn leads to maintenance strategies that are more effective for minimizing the cost rate
or maximizing the reliability/availability of assets. Here we list some of the main factors
that characterize imperfect repair models:

• Type of maintenance. Both CM and PM can be imperfect. IMMs can involve only
CM or both CM and PM.

• Maintenance effect. Maintenance is usually supposed to reduce the age of an item,
but sometimes, they are assumed to reduce the failure intensity, or both.

• Stability. Some models are used to depict the deteriorating system with failures
occurring more and more often, while others are utilized to model systems having
a stationary state.

• Independence. In some models, the consecutive inter failure times are assumed to
be independent, while in other models like the Brown-Proschan process, the inter
failure times are correlated.

• Homogeneity of repairs. The imperfect repair is often characterized by a repair
degree, which determines to what extent a system is restored. It could be a constant
or evolve through time or be random.

IMMs are mathematically characterized by stochastic processes: this is not a surprise as
an early (and still very popular) IMM, proposed by Kijima in the 1980s, bears the name
of the “generalized renewal process.” In the literature, many mathematical properties of
IMMs have been exhibited: we can prove that certain models are stable while others
are not; we can estimate the model parameters given data on the failure/repair process;
there are statistical tests telling us whether a system may or may not be described by a
certain model given the observed inter failure times. Meanwhile, numerous papers study
the application of these models, e.g., finding the optimal PM policy when neither CM nor
PM is perfect. However, some topics are not addressed, and some seemingly elementary
questions should be answered.

1.2 Objectives

From a mathematical point of view, can we find out more about the IMMs? For example,
in a renewal process, the distribution of the forward/backward recurrence time has long
been known. Could it be generalized to stable IMMs? Moreover, if yes, how does it
influence the maintenance policies?
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IMMs are often applied to a single unit system or a homogeneous population composed of
independent, identical systems. If the heterogeneity is present in the population, which is
to say, the systems are similar but not identical, can we still estimate the model parameters
correctly from the observations? How do we account for the heterogeneity, and how does
it influence PM strategies?

Series systems are commonly used in reliability engineering. The system fails when one of
its components stops functioning. If the failed component is replaced while others are not
maintained, part of the system can be considered “renewed”, making the replacement an
imperfect repair at a system level. Can we use some simple IMMs to approximate series
systems? And what are the potential gain and losses of such modeling compared to other
approximation methods??

From a practical point of view, a maintenance manager usually needs to choose a proper
maintenance model from several candidates. All of them are realistic but may provide
different results when predicting the remaining lifetime, and may suggest different pre-
ventive maintenance strategies. How to identify the best (or the worst) IMM? How do we
evaluate their performances?

This thesis aims further to discover IMMs both in theory and in practice. To be more
specific, the main objectives include:

• Investigate the mathematical properties of stable IMMs.

• Model the heterogeneity and assess its influence on maintenance policies.

• Propose new models to approximate series systems.

• Evaluate and compare the performances of proposed models.

1.3 Research methods

The research is both theoretical and applied, exploratory and explanatory. New models
are developed by combining knowledge from different fields, e.g., survival analysis and
frailty analysis because the existing theories are not fully capable of explaining the ob-
servations. These models are then tested on field data, aiming to illustrate the potential
benefits of their usage.

Mathematical deduction

The existing mathematical and statistical properties of IMMs, e.g., distributions, corre-
lations, convergences, etc. form the foundation of our new theorems and propositions: all
of them are based on strict mathematical proofs.

Nevertheless, some quantities, e.g., the asymptotic distribution of the inter failure time
of a specific IMM or the long-run cost rate of repair activities when we want to evaluate
and compare some PM strategies, can hardly be expressed by explicit formulas. In those
cases, we resort to Monte Carlo simulation, as elaborated below.
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Data collection and analysis

Only quantitative analysis is used during this work. Simulated data on the failure/repair
process of a system is gathered via Monte Carlo simulation, with a specified model and
known parameters. These data include typically the inter failure times (a positive num-
ber), lifetime type (censored or uncensored), repair type (CM or PM), repair degree (a
proportion), etc. of a system described by a certain IMM. They have been utilized for
the following purposes:

1. Verify the mathematical propositions and theorems. When a formula is proposed, it is
first checked with simulated data, which allows a quick elimination of wrong guesses and
formulas. Once the proof is complete, Monte Carlo simulation is used again to examine
the validity of the propositions.

2. Verify the estimation procedures and evaluate the consistency and efficiency of the
estimators. The statistical inference is one of the main issues of our research: when a
model is fit to the observations, the underlying parameters have to be deduced by a certain
estimation procedure, e.g., moment-matching, Maximum Likelihood Estimation (MLE).
The validity of the inference procedures is examined by comparing the estimates to the
known parameters. Furthermore, tuning the data size helps to evaluate the consistency
and efficiency of the estimators.

3. Evaluate quantitatively maintenance strategies. We chose the long-run repair cost rate
as the optimization criteria, which often involves the renewal function, i.e., the expected
number of failures within a period of time. This is a typical quantity that does not
possess an explicit formula. Simulating the failure/repair process of a large number of
independent systems and recording the repair costs enables us to obtain the long-run
repair cost rate empirically.

Field data from Bane NOR has also been analyzed. The failure/repair records of the
Norwegian railway signaling system during the last decade contain information such as
intervention date, repair duration, repair type, as well as the location of the signals, the
manufacturer, and the administration. The data is then used to test and evaluate the
existing IMMs as well as the proposed new models.

1.4 Research scope, limitations and future perspec-

tives

The main focus of this work is on IMMs and quantitative maintenance optimization.
Thus, many issues and modeling techniques regarding the reliability and risk analysis
are not pursued. Below we list some of the main limitations within the framework of
imperfect repair model:

• A binary representation of the system is used: they can be either working or failed.
Therefore, multi-state modeling and the relevant approaches, e.g., Markov Chains,
are not pursued. Under such a binary assumption, the models investigated in this
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paper cannot be applied to systems that undergo continuous degradation, such as the
corrosion process of pipes, the crack length of pavement, the geometrical deviation
of railway tracks.

• The repair time is considered negligible. This is a quintessential assumption in reli-
ability engineering, aiming to simplify the model when the repair time is negligible
compared to its mean inter failure time. Although this assumption is valid for the
data provided by Bane NOR in the sense that railway signals usually survive years,
or even decades, while the repair activity generally lasts no more than a day, it
limits the range of applications of our findings.

From a maintenance optimization point of view, this study has the following limitations:

• The maintenance optimization that we address in this study is merely one of the
many steps in real maintenance management. It is a decision problem in the “ideal”
situation. Application of such an “optimal” maintenance plans is generally not
easy in practice. A typical problem could be a high backlog, which hinders the
implementation of preventive maintenances.

• Covariates are not considered in this study. That is to say, all the reliability indi-
cators of an asset, e.g., mean lifetime, failure frequency, aging speed, are derived
uniquely from the lifetime data without using covariates such as meteorological data,
train frequency, locations, etc..

• We deploy a purely quantitative method, which relies strongly on the quality and
size of collected data. Basically, we derive the aging speed of the assets from the
failure/repair records, and based on the estimated model parameters, a PM strategy
is proposed. Therefore, statistical power when the data size is small should be
questioned. Besides, a Bayesian framework that considers the expert’s opinions is
not pursued, but will be studied in the future.

To sum up, the limitations mentioned above point out some future research directions:
combine the IMMs with multi-state or continuous state degrading system, where the
repair duration or the stay time in different states is no longer negligible; incorporate
covariates into the models; develop possibly a Bayesian framework to consider experts’
opinion.

1.5 Dissertation structure

The rest of the dissertation comprises four chapters. In Chapter 2, we present state of
the art on IMMs. Some of the most popular models are introduced in a detailed manner,
along with proper mathematical definitions. Chapter 3 is dedicated to stable IMMs.
We prove that they have similar mathematical properties as the renewal process does,
before revealing the asymptotic distributions of the most crucial quantities, including
virtual age, in IMMs. In Chapter 4, we discuss the heterogeneity in IMMs. The object
under investigation is no longer a single system, but a group of similar systems that
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undergo imperfect repair. Chapter 5 is dedicated to series systems, modeled by the
superposition of renewal processes, and their approximations. We investigate the inner
relationship between the series system and IMMs and propose original approximation
approaches that help predict the remaining lifetime of series systems. In Chapter 6, the
investigated models are tested on simulated data and field data. Notably, we address
the maintenance optimization issue using the findings of Chapter 3 and 4. Concluding
remarks and discussions are given in Chapter 7.

Some chapters in the main part of the paper have been peer reviewed. One can refer to
[82] for Chapter 3, [83] for Sections 4.1 and 6.3, and [81] for Chapter 5 and Section 6.2.



Chapter 2

State of the art

Industrial systems are subject to repair actions when failures occur. As we adopt a
binary representation of the system’s state in this work, the gradual deterioration is not
considered: a system can be either working or failed. Therefore, failures that result from
external shocks or intrinsic aging are considered instantaneous events. To bring a damaged
system back to work, repairs are carried out with a certain duration, depending on the
complexity of the job. Nevertheless, the restoration (the state transition from failure to
working) is also assumed to be instantaneous. Mathematically, failures and restorations
are random events in time that could be represented by a collection of points located on
some underlying mathematical space, e.g., a real line, and point processes are used to
model these phenomena.

It has long been known that perfect repair and minimal repair correspond, in the frame-
work of the point process, to renewal processes (RP) and non-homogeneous Poisson pro-
cess (NHPP), respectively. Imperfect repairs, as elaborated in the following sections, are
often modeled by generalizations of RP, including the virtual age process. In the rest of
this chapter, the state of the art of IMMs are presented in the framework of point pro-
cess: starting with the most basic notions, we will cover the topics of the renewal process,
NHPP, virtual age process, superposition of renewal processes (SRP), geometric process,
before addressing the issue of heterogeneity in survival analysis.

2.1 Point process and repair

The instantaneous events occurring randomly in time can be described by a point process
{Nt, t ≥ 0} with a state space {0, 1, 2, ...}, where Nt represents the total number of events
in (0, t]. The number of points located in (s, t] with s < t and s, t > 0 is Nt − Ns. Note
that Ns ≤ Nt for s ≤ t and N0 = 0.

A process has independent increments if the number of events (points) in disjoint intervals
are independent random variables. A process has stationary increments if

Nt −Ns and Nt+τ −Ns+τ ,∀τ > 0, (2.1)

7
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have the same distribution, and is therefore called a stationary point process. Throughout
this study, we are interested only in regular process: there are no multiple occurrence or
simultaneous observations.

A point process is fully defined by its intensity:

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (Nt+∆t −Nt− = 1|Ht−), (2.2)

where Ht− is the corresponding natural filtration that records its “past behavior”, i.e.,
the set of all points events in (0, t].

Denote by {Ti}, i ∈ N the successive event times with T0 = 0 and {Xi} the inter-arrival
times (also called intervals or cycles) with X0 = 0 and Xi = Ti − Ti−1 for i ≥ 1. The
cumulative number of events up to t is denoted by

Nt =
∞∑
i=1

1{Ti≤t}, (2.3)

where 1{Ti≤t} is the indicator function that equals 1 if Ti ≤ t, and is equal to 0 otherwise.
Thus, the event occurrences over time can either be defined by {Nt}, a counting process
that gives the number of incidents at any instant, or by {Tn, n = 0, 1, 2, ...} the arrival
points over [0,∞). In the following, the terms “point process” and “counting process”
are used interchangeably.

2.1.1 Renewal process and perfect repair

The renewal theory [38] is widely applied in industry. For instance, the renewal func-
tion (that will be later defined) in practice can be interpreted as the mean number of
replacements/perfect repairs for a system operating in a given interval of time. Thus, the
mean number of the required spare parts can be estimated, so can be the probability of
the spare parts shortage. Furthermore, when describing the performance of, for example,
repairable production systems, renewal processes are generalized to the corresponding re-
newal reward processes that allow, among other things, to obtain the optimal, long-run
maintenance policies [22].

In the rest of this section, some of the basic notions regarding the renewal process are
introduced. Nevertheless, subjects that are not relevant to our contributions, e.g., delayed
renewal process or equilibrium renewal process, are not addressed. Besides, the proofs
of the theorems and propositions that appeared in this chapter are omitted, as they are
mainly classic results in renewal theory. One can refer to [38] for the proofs.

The definition of a renewal process is presented below.

Definition 2.1 A counting process {Nt, t ≥ 0} is called renewal process if its inter-arrival
times, {Xi}, i = 1, 2, ... are independent, identically distributed random variables.

A perfect repair, which generally consists of replacing the failed component by a new
identical one or bringing back the system to a good-as-new state, is, therefore, a renewal,
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and the instants of perfect repairs coincide with the arrival times in the point process.
The system is assumed to be as new at the time origin. Upon failure, it is instantaneously
replaced by a new and identical one. The sequential inter-failure times are, therefore, i.i.d
random variables, forming a renewal process.

Let F (t) be the cumulative distribution function (Cdf) of a generic interval X, and f(t)
and λ(t) be respectively the corresponding probability density function (Pdf) and failure
rate. For a renewal process, the stochastic intensity defined by Eq.(2.2) reduces to:

λt = λ(t− TNt− ), t ≥ 0. (2.4)

Nt− is the number of events before instant t, TNt− is the time of the last renewal. t−TNt− ,
also known as the backward recurrence time, is the time elapsed since the last renewal. It
can be interpreted as the “age” of the system at time t. Similarly, TNt−+1− t, also known
as the forward recurrence time, is the time till next renewal and stands usually for the
“remaining lifetime”. Denote by F (t) = 1−F (t) the survival function. Given the current
system age x, the Cdf of the remaining lifetime δ of a system is

P (δ ≤ t|x) = F (t|x) = 1− F (t+ x)/F (x). (2.5)

The asymptotic distributions of the forward and backward recurrence time, when t tends
to infinity, will be further addressed.

Following the relationship between a counting process and its arrival times, we have

{Nt < n} ≡ {Tn > t}, {Nt = n} ≡ {Tn ≤ t < Tn+1}. (2.6)

The probability of having exactly n events in interval (0, t] is, therefore,

P (Nt = n) = P (Nt ≥ n)− P (Nt ≥ n+ 1) (2.7)

= P (Tn ≤ t)− P (Tn+1 ≤ t)

= Fn(t)− Fn+1(t),

where Fn(t) is the n-fold convolution of F (t) with itself.

Renewal function

Definition 2.2 The renewal function is defined by the expectation:

M(t) = E[Nt]. (2.8)

This is the mean number of events within the period (0, t]. It can also be expressed by
the sum of convolutions:

M(t) =
∞∑
n=1

Fn(t). (2.9)
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Let m(t) = M ′(t). m(t) is called the renewal density function:

m(t) =
∞∑
n=1

fn(t), (2.10)

where fn(t) = dFn(t)/dt. m(t)dt could be interpreted as the probability of a renewal
occurring in (t, t+ dt].

Limiting properties

Let µ be a finite mean inter-arrival time with µ ≡ E[X] =
∫∞

0
F (u)du < ∞. For

convenience purpose, throughout the chapter, we assume that X is continuous. The
following theorem holds [95]:

Theorem 2.1 When t→∞,
Nt

t
→ 1

µ
, a.s., (2.11)

and
M(t)

t
→ 1

µ
. (2.12)

Relation (2.12), also known as elementary renewal theorem, has an intuitive interpretation:
the mean cycle duration, µ, is approximately t over number of renewals when t tends to
infinity, according to the strong law of large numbers.

Key renewal theorem

Theorem 2.2 Let M(t) be the renewal function with finite mean µ. For any directly
Riemann integrable function h(s):

lim
t→∞

∫ t

0

h(t− x)dM(x) =
1

µ

∫ ∞
0

h(s)ds. (2.13)

The key renewal theorem is one of the possible approaches to derive the asymptotic
distributions of forward/backward recurrence time, as elaborated below. It is also indis-
pensable for the theoretical developments for stable imperfect repair processes. For more
comprehensive discussions, one can refer to [95] and [24].

Renewal equation

Suppose that a : [0,∞) → R is locally bounded. Let ∗ be the convolution operator. An
integral equation of the form

u = a+ u ∗ F, (2.14)
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for an unknown function u : [0,∞)→ R is called a renewal equation for u. Denote by F
the Cdf of the inter-arrival times X. The renewal equation for the renewal function M is
given by:

M = F +M ∗ F, (2.15)

or, more commonly,

M(t) = F (t) +

∫ t

0

M(t− x)dF (x). (2.16)

Eq.(2.16) can be easily proved by conditioning on the time of the first renewal. If the
first cycle x ≤ t, then the process “restarts” and the expected number of renewals in
the interval (x, t] is M(t − x). The solution of the renewal equation by applying the
Laplace transform to Eq.(2.15). Yet, the explicit formula for M(t) can only be derived for
some specific cases, e.g., when the cycle X is gamma/exponential distributed, and often
one needs to resort to numerical solutions or approximations. Some recent literatures on
approximation of the renewal type equation includes [92], [90], [59] and [58].

Age, residual lifetime and spread

At a chronological time t, the backward recurrence time B(t), also known as age, as well
as the forward recurrence time δ(t), also known as residual lifetime, are given by:

B(t) = t− TNt , (2.17)

δ(t) = TNt+1 − t. (2.18)

The age and residual lifetime have the same limiting distribution [95] as t tends to infinity.
Denote by µ the mean cycle duration and F (t) the Cdf, then,

lim
t→∞

P (B(t) ≤ y) = lim
t→∞

P (δ(t) ≤ y) =
1

µ

∫ y

0

F (u)du. (2.19)

Let Y (t) = B(t) + δ(t). Y (t) represents the duration of the cycle that contains t, and is
called spread, or total life. The distribution of Y (t) as t tends to infinity is given by

lim
t→∞

P (Y (t) ≤ y) =
1

µ

∫ y

0

sf(s)ds. (2.20)

Obviously, Eq.(2.20) differs from F (t), meaning that if we observe at instant t a renewal
process that started a long time ago, then the observed cycle, i.e. the cycle containing t,
does not share the same distribution as other cycles. In fact, as t tends to infinity, Y (t)
is stochastically larger than X. This is known as the inspection paradox. The definition
of usual stochastic order [97] is given below.

Definition 2.3 A random variable X is said to be stochastically less (or equal to) Y ,
written X ≤ST Y , if the upper tail probability satisfies:

P (X > t) ≤ P (Y > t), t ≥ 0. (2.21)
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The inspection paradox has an intuitive explanation: parts with a longer actual life are
more likely to be observed than parts with a shorter actual life. Specifically, in a Poisson
process, the expected value of Y (t) as t tends to infinity is double the average lifetime,
due to the memorylessness of exponential distribution. Some extensions and implications
of the inspection paradox are addressed in [68] and [115].

Alternating renewal process and reward renewal process

Ordinary renewal processes are defined assuming that the repair durations can be ne-
glected. In practice, however, this is generally not true, although sometimes the lifetime
of the system is considerably larger than the repair duration. Let {Ui}, i = 1, 2, ... be
the i.i.d. lifetimes of a system and {Vi}, i = 1, 2, ... be i.i.d. repair durations. Then,
{Zi = Ui + Vi}, i = 1, 2, ... is called alternating renewal process.

The availability A(t) represents the probability that the system is operating at instant t.
While in practice, the limiting availability A = limt→∞A(t), is more widely used since it
shows the proportion of system being in the working state in the long term.

Let µu and µv be respectively the expected value of U and V . The limiting availability A
of a system in accordance with the above described alternating renewal process is given
by:

A =
µu

µu + µv
. (2.22)

The instant availability A(t) is usually calculated via numerical approaches. However,
for the simplest case where the lifetime U and repair time V are both exponentially
distributed with failure rate 1/µu and repair rate 1/µv, the explicit form exists [56]:

A(t) =
µu

µu + µv
+

µv
µu + µv

e−(1/µu+1/µv)t. (2.23)

The notion of stopping time should be introduced before addressing the reward renewal
process since it is indispensable for proving Wald’s equality. Stopping time is usually
defined by a stopping rule, a mechanism for deciding whether to continue or to stop the
process based on the present position and past events. In other words, the stopping time
is uniquely determined by history, as defined below.

Definition 2.4 Let Xn, n = 1, 2, ... be a sequence of random variables. An integer valued
random variable N is called a stopping time for Xn if for all n = 1, 2, ..., event {N = n}
is independent of Xn+1, Xn+2....

In this regard, the number of observed events N is a stopping time for a renewal process,
and

Theorem 2.3 (Wald’s equality) If N is a stopping time with E[N ] < ∞ for a renewal
process with finite mean inter-arrival times,

E

[ N∑
i=1

Xi

]
= E[N ]E[X]. (2.24)
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Maintenance cannot be carried out without needed resources: manpower, material, ad-
ministration...Repairs are therefore always accompanied by a cost, which is referred to as,
more generally, reward. Denote by Rn the reward after the n-th cycle. Assume that Rn

are i.i.d. random variables with finite mean E[R], and are independent from the cycles,
X. The total reward in (0, t] is therefore by the reward process:

R(t) =
Nt∑
n=1

Rn, (2.25)

and

lim
t→∞

E[R(t)]

t
=
E[R]

µ
. (2.26)

Eq.(2.26) shows that the long-run reward per unit of time, or long-run reward rate, is
simply the mean reward over the mean cycle duration. We will present next some classic
maintenance optimization problems wherein the reward is the repair cost.

Classic maintenance optimizations with renewal process

Since one of the major issues addressed in this work is maintenance optimization with
imperfect repairs, it is crucial to discuss first some basic maintenance strategies with
perfect repair, i.e., when the consecutive restorations form a renewal process. The basic
assumptions on the failures and corrective maintenances (CM) include:

• Instantaneous failure: no continuous deteriorating or multiple state between working
and failure.

• Instantaneous CM: no delay between the failure and the maintenance job.

• Maintenance duration is neglected.

• Perfect CM: systems restored to good-as-new state.

• Increasing failure intensity.

The first four assumptions guarantee that the CM forms a renewal process when no pre-
ventive maintenance (PM) is implemented, while the fifth assumption, increasing failure
rate, eliminates the situations where the system is not aging as time goes by; otherwise,
no PM is needed. Most industrial units and maintenance managers are looking for effec-
tive approaches to avoid the breakdown of a system because responding to an unexpected
failure generally costs more than replacing in advance the unit that is likely to fail, with
all the resources well prepared. In this context, hundreds of papers and books have been
published on maintenance optimization. One can refer to [25], [96], [104] for some most
recent review papers. Here, we specifically address two simple PM policies that have
been studied by many other researchers under the framework of imperfect repair and will
be thoroughly developed in Section 4 and 6 of this monograph: block replacement and
age-based replacement policy.
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Block replacement policy is a type of preventive replacement policy where the units are
always replaced at failure or at a scheduled time periodically [65]. Dating back to 1960
[4], it is still one of the most popular and widely applied PM policy due to its ease of
administering.

Let Cc be the cost of CM and Cp that of PM, with Cc > Cp. The PM is implemented at
scheduled and fixed intervals: τ, 2τ, 3τ.... We assume that the PM is perfect and that the
costs of CM and PM are constant. In practice, this is not necessarily the case: they could
under certain circumstances be varying with time, e.g., if the difficulty of maintenance
is gradually increasing and more resources are needed. Let M(t) be the corresponding
renewal function when no PM is involved. Following Eq.(2.26), the long-run average cost
per unit of time is given by:

c(τ) =
Cp + Cc ·M(τ)

τ
. (2.27)

Due to the intractability of M(t), the approximate form is more commonly used: assuming
that it is not probable to have more than one CM within a PM interval, i.e., P (Nτ >
1) = 0, then, M(t) in Eq.(2.27) could be replaced by F (t).

Another typical PM is called age-based replacement policy. A system whose lifetime X
is described by the Cdf F (t), the pdf f(t) and the failure rate λ(t) is replaced at time
T from the last renewal point or at failure, whichever comes first. The idea is, block
replacement sometimes generates unnecessary waste: a PM could be nearly useless if a
CM occurred just before. Therefore, it may be wise to wait till that the age of the unit
reaches a predefined threshold, T , forcing the PM to keep its distance from the previous
maintenances.

The duration of a renewal cycle is therefore min(X,T ), with the expectation
∫ T

0
F (u)du.

The expected cost on the renewal cycle is CpF (T ) + CcF (T ). Using the renewal reward
Theorem 2.26, the long-run repair cost per unit of time is given by:

c(T ) =
CpF (T ) + CcF (T )∫ T

0
F (u)du

. (2.28)

2.1.2 Minimal repair and non-homogeneous Poisson process

First introduced by [4] in 1960, the minimal repair was studied and applied in numerous
fields, such as the modeling of repair and maintenance or bio-demographic studies [108].
In contrast to perfect repair, the minimal repair usually describes a minor maintenance
or repair operation that does not make the system “younger”. Let a system be described
with Cdf F (t) and failure intensity λ(t). At age x, the system fails and is instantaneously
minimally repaired if its survival function after the repair is [57]

F (x+ t)

F (x)
= e−

∫ x+t
x λ(u)du. (2.29)

Eq. (2.29) indicates that after the repair, the failure intensity is just λ(x), the same
as it was prior to the maintenance. A minimal repair has, therefore, no impact on the
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future stochastic behavior of the system, as if a failure did not occur. This is described
as the repair that restores the system to a state it had been in prior to the failure; in
other words, as-bad-as-old. A common interpretation of minimal repair is, when a complex
system consisting of many independent parts, replacing one of them could be considered as
minimal repair at a system level since the proportion of system being renewed is relatively
small.

Now, let’s consider it from the perspective of a stochastic process. First, we give the
proper definition of a non-homogeneous Poisson process (NHPP).

Definition 2.5 A counting process {Nt, t ≥ 0} is called a non-homogeneous Poisson
process with intensity λ(t), if
(I) N0 = 0;
(II) The process {Nt, t ≥ 0} has independent increments;
(III) P (Nt+h −Nt = 1) = λ(t)h+ o(h);
(IV) P (Nt+h −Nt ≥ 2) = o(h).

The stationary increments property as in homogeneous Poisson process is no longer con-
served under the third assumption: the distribution of the i-th inter-arrival time depends
on its predecessors, i.e., the sum of all the previous intervals. Hence, the cycles are not
necessarily i.i.d random variables as in a renewal process. Using the properties (ii) and
(iii) of definition 2.5, it is straightforward to prove that the stochastic intensity of an
NHPP is:

λt = λ(t), t ≥ 0. (2.30)

Denote by Λ(t) the cumulative intensity with Λ(t) =
∫ t

0
λ(u)du, the number of events

within the interval (u, u+ t] is distributed as:

P (N(u+ t)−N(u) = n) =
(Λ(u+ t)− λ(u))n

n!
e−(Λ(u+t)−λ(u)), (2.31)

and the expected number of events within the interval (0, t] is:

E[N(t)] = Λ(t). (2.32)

In reliability applications, when a system having an increasing failure intensity undergoes
minimal repairs, failures shall appear more and more frequently. Thus, an overhaul that
rejuvenates the whole system completely is usually required, and PM policies should
be made accordingly. Particularly, for NHPP, the previously defined block replacement
coincide with the aged-based PM definition: replacing the system at age T is equivalent
to a periodic replacement with period T , since the system’s age is not influenced by CM,
and is set to 0 at PM. The corresponding long-run average repair cost rate is given by:

c(τ) =
Cp + Cc · Λ(τ)

τ
. (2.33)
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2.1.3 Brown Proschan model

Having introduced the perfect and minimal repair, let us look into a basic imperfect repair
model, the Brown Proschan model, or BP process. Proposed in [6] and [15], a BP process
combines the perfect repair with minimal repair by assuming that, when a failure occurs,
a repair is either perfect with probability p or minimal with probability 1 − p, and that
the type of maintenance is independent from the past maintenances types. This model
is relevant, e.g., in situations where some of the minor failures of a complex system are
minimally repaired, whereas other, more serious failures result in an overhaul of the failed
system. Theoretical results on the BP model and the corresponding statistical inference,
as well as identifiability issues, have been addressed in [111], [55], [79], and [76]. Here, we
focus particularly on the distributions and asymptotic properties.

The repair effects can be defined by i.i.d random variables Bn, n ∈ N∗ that follows a
Bernoulli distribution:

Bn =

{
1, if the n-th repair is perfect;
0, if the n-th repair is minimal.

(2.34)

Let Tn, n ∈ N be the occurrence times of a BP process and Xn, n ∈ N the inter-arrival
times. The failure rate is λ(t). Denote by An, n ∈ N the age just after the n-th repair
with A0 = 0. If the system is perfectly repaired, it is brought back to an as-good-as-new
state, and the age is reduced to 0. Otherwise, it is minimally repaired, and An is the sum
of Xn, the latest interval and An−1, the previous age:

An = (1−Bn)(Xn + An−1). (2.35)

Let
∑l

j=k · = 0 and
∏l

k=j · = 1 for k > l, then

An =
n∑
j=1

[ n∏
k=j

(1−Bk)

]
Xj. (2.36)

At time t, the system is equivalent to a new system that has been in operation for the
time elapsed since the last perfect repair. Therefore, its stochastic intensity verifies:

λt = λ

(
t− TNt− +

Nt−∑
j=1

[Nt−∏
k=j

(1−Bk)

]
Xj

)
. (2.37)

The survival function of a system with age x is showed in Eq.(2.5). The distribution of
each interval in a BP process depends on the age just before the latest repair, which in
turn depends on all the intervals after the latest perfect repair, as suggested by Eq.(2.35).
The intervals Xn are, therefore, neither independent nor identically distributed. The
distribution of the age An should be addressed before showing that of Xn.

Theorem 2.4 [76] The Cdf of age An in a BP process characterized by p, the probability
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of perfect repair and Λ(t), the cumulative intensity function is given by:

FAn(t) = 1− (1− p)e−Λ(t)

[ n−1∑
k=0

(1− p)kΛk(t)

k!

]
. (2.38)

Consequently, the ages An converge in distribution: if p > 0, An
D−→ A∞, and

FA∞(t) = 1− (1− p)e−Λ(t). (2.39)

Similar convergence results have been proved by Last and Szekli [75] for a larger class
of imperfect repair models. The expected values of age are obtained by integrating the
corresponding survival functions:

E[An] = (1− p)
∫ ∞

0

e−Λ(x)

[ n−1∑
k=0

(1− p)kΛk(x)

k!

]
dx, (2.40)

and

E[A∞] = (1− p)
∫ ∞

0

e−Λ(x)dx. (2.41)

The survival function of intervals Xn can be deduced from theorem 2.4. For n ≥ 1,

RXn+1(t) = (1− p)n
∫ ∞

0

λ(u)
Λn−1(u)

(n− 1)!
e−Λ(t+u)du+

p

[ n−1∑
i=0

(1− p)i
∫ ∞

0

λ(u)
Λi−1(u)

(i− 1)!
e−Λ(t+u)du

]
+ pe−Λ(t), (2.42)

and, if p > 0, Xn
D−→ X∞, with

RX∞(t) = p

∫ ∞
0

λ(t+ u)e−Λ(t+u)+(1−p)Λ(u)du. (2.43)

The expected values are given by

E[Xn] =

∫ ∞
0

e−Λ(u)

[
(1− p)n−1 Λn−1(u)

(n− 1)!
+ p

n−2∑
k=0

(1− p)kΛk(u)

k!

]
dx, (2.44)

and

E[X∞] = p

∫ ∞
0

e−pΛ(x)dx. (2.45)

The perfect repairs in a BP process form an embedded renewal process [15]. Let λp(t) and
Fp be respectively the failure rate and Cdf of the duration between two perfect repairs.
Then,

λp(t) = pλ(t), (2.46)
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and
F p(t) = F

p
(t). (2.47)

These properties will be further used in Chapter 3. More industrial applications including
specifically the maintenance optimization problems, could be found in, [70], [74], [30], [31]
and [45], to name a few. Other extensions of the BP process were addressed in, among
others, [9], where the probability of perfect repair is an age-dependent function p(t), and
in [7] where multiple failure types were considered.

2.1.4 Virtual age process

Among imperfect maintenance models, virtual age (VA) models [67] are some of the
most popular ones, wherein the aging of a repairable system is assumed to depend on
VA, which can have a value between zero and the operating time. We will start with
definitions, interpretations, and meanings of virtual age before addressing the general
repair process and their limiting properties.

Let a new system with a lifetime T be described by the Cdf F (t) and failure rate λ(t).
It starts working at t = 0. Then, at the age of x, the Cdf of the remaining lifetime is
given by F (t|x) = 1− F (t+ x)/F (x). Assume that after the instantaneous maintenance
(corrective or preventive) carried out at time t, the remaining lifetime is defined as the
lifetime of a new and unmaintained system having age y. Then y is called the virtual age,
the calendar age after this operation is, obviously, still t.

A repair with a negligible duration is carried out immediately after Ti and is supposed to
reduce a system’s age to Ai, A0 = 0, which is called the virtual age or effective age after
the i-th failure. Then, the remaining lifetime of the repaired system does not depend on
the entire failure/repair history but depends on the virtual age of the system after the
most recent repair. Mathematically, this is described by

P (Xi+1 ≤ t|T1, T2 . . . Ti) = F (t|Ai), ∀i ∈ N, ∀t ≥ 0. (2.48)

Thus, a virtual age process is fully defined by the age reduction mechanism, which deter-
mines the virtual ages {Ai}, and by F (t), the Cdf of a new system. Nt− being the number
of failure before t, the virtual age at time t is given by

Vt = t− TNt− + ANt− , (2.49)

and the stochastic intensity of the VA process is

λt = λ(t− TNt− + ANt− ). (2.50)

The failure rate of a new system, λ(t), is particularly referred to in the context of the VA
process as baseline failure rate. As the shape of the baseline failure rate is fixed, the virtual
age at the start of a cycle is uniquely defined by the “position” of the corresponding point
on the failure rate curve after the repair.
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General repair

Let the age reduction mechanism of an imperfect repair be described by a function q(x),
where q(x) is increasing, satisfying 0 ≤ q(x) ≤ x. The harmful repair (q(x) > x, system
“older” than before) and better-than-new repair (q(x) < 0) are not considered. The
sequence of virtual ages {An} at the start of the cycles are therefore given by:

An = q(An−1, Xn), n ∈ N∗. (2.51)

The specific linear case where q(x) = (1−ρ)x, 0 < ρ < 1, is generally referred to as Kijima
Type II model with constant repair degree [66], although it has early been considered
descriptively in [15]. ρ represents the repair efficiency or restoration factor: the larger ρ,
the more effective the repair is. Even though it seems very simple, the constant restoration
factor is widely used in the literature and can describe the maintenance effect in many
real industrial cases. In [86], the constant restoration factor is used to describe the effect
of planned maintenance on systems’ virtual age. Other papers considering the constant
repair efficiency includes [51], [84], [117] and [50], to name a few. Kijima Type I models,
on the other hand, assumes that the reduced amount of virtual age after a repair is
proportional to the last inter-failure time [103] [5], i.e., An = An−1 + q(Xn). These two
models were unified in [34] by introducing the model of Arithmetic Reduction of Age with
memory m:

Definition 2.6 The Arithmetic Reduction of Age with memory m (ARAm) is defined by
the stochastic intensity:

λt = λ

(
t− ρ

min(m−1,Nt−−1)∑
j=0

(1− ρ)jTNt−−j

)
. (2.52)

When m = 1, Eq.(2.52) reduces to

λt = λ(t− ρTNt− ), (2.53)

which indicates that the virtual age after the latest repair is (1− ρ)TNt− . In other words,
the VA after the n-th repair can be calculated iteratively by

An = An−1 + (1− ρ)Xn. (2.54)

Therefore, ARA1 corresponds to Kijima Type I model with constant restoration factor.
Consider now the case where m = ∞. The stochastic intensity in an ARA∞ process is
given by:

λt = λ

(
t− ρ

Nt−−1∑
j=0

(1− ρ)jTNt−−j

)
, (2.55)

which indicates that the VA after the n-th repair can be expressed by

An = (1− ρ)nA0 +
n∑
j=1

(1− ρ)n−j+1Xj, (2.56)
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or, in an iterative form,
An = (1− ρ)(An−1 +Xn). (2.57)

Thus, ARA∞ corresponds to Kijima Type II model with constant repair efficiency. These
two models represent two marginal cases of history for the corresponding stochastic re-
pair processes, i.e., the history that “remembers” all the previous repair times and that
“remembers” only the last repair time. Maintenance scheduling and optimizations based
on Kijima models have been investigated in [29], [60], [67], [84], and [85].

Aging and limiting properties

Last and Szekli [75] have proven the convergence of the Kijima Type II model, and hence
of the ARA∞ model to a steady-state regime under relative weak conditions. Finkelstein
[39] has proven the convergence of the ARA∞ model to a steady-state regime when the
repair efficiency depends on the chronological age of the system. To begin with, consider
the sequence formed by consecutive virtual ages.

Theorem 2.5 [57] The virtual ages just after the n-th repair defined in Eq.(2.51), {An},
form a stochastically increasing sequence:

An <ST An+1, n ∈ N∗. (2.58)

Under such an imperfect repair, the system seems to become “older and older” when
more and more failures occur. However, the following theorem shows that the virtual
ages converge and become stable, eventually.

Theorem 2.6 [57] Assume that the baseline failure rate is increasing. Then, the virtual
ages defined in Eq.(2.51), {An}, converge in distribution:

An
D−→ A∞. (2.59)

A direct consequence of this theorem is the convergence of the cycles {Xn} [57], given
that the distribution of Xn depends uniquely on the age after the latest repair, as shown
in Eq.(2.48):

Xn
D−→ X∞. (2.60)

In contrast, Doyen [33] has proven that the ARA1 model behaves asymptotically as a
non-homogeneous Poisson process. In fact, in ARA1 model, the virtual age is strictly
increasing. A major difference between the ARA1 and ARA∞ models could be therefore
highlighted when the restoration factor is in the interval (0, 1). If the failure rate of a new
system is increasing monotonically to infinity, the inter-failure times converge to zero for
the ARA1 model and to a stationary distribution for the ARA∞ model.
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Weibull ARA∞

Nguyen et al. [89] considered the special case at which an ARA∞ obeyed a Weibull
baseline distribution with shape parameter β and pseudo-scale parameter α:

F (t) = 1− e−αtβ , α > 0, β > 0. (2.61)

The corresponding baseline failure intensity, λ(t), is given by

λ(t) = αβtβ−1. (2.62)

The Weibull distribution is widely applied in industry due to its flexibility to model
different shapes of monotonic failure rate: λ(t) is increasing when β > 1, decreasing when
β < 1 and is a constant when β = 1. α is called pseudo-scale parameter because the true
scale parameter is often denoted by η, with α = η−β. The Weibull ARA∞ process is thus
fully determined by the triple (α, β, ρ). Let q = (1 − ρ)β. The survival functions of Xn

and An, denoted respectively by RXn(t) and RAn(t), are given by [89]

RAn(t) =
n∑
k=1

1

(q, q)n−k

(
1
q
, 1
q

)
k−1

e
−αt

β

qk , n ∈ N∗, (2.63)

and

RXn+1 (t) =
n∑
k=1

∫∞
0
αβxβ−1e−α(x+t)β+α(1−q−k)xβdx

qk (q, q)n−k

(
1
q
, 1
q

)
k−1

, n ∈ N∗. (2.64)

where (a, q)k =
∏k−1

j=0 (1− aqj) is the q-Pochhammer symbol. For n = 0, RX1(t) = e−αt
β
.

By integrating the survival functions over [0,∞) we can derive the expected values of the
cycles and virtual ages:

E[An] = α−
1
βΓ(

1

β
+ 1)

n∑
k=1

q
k
β

(q, q)n−k

(
1
q
, 1
q

)
k−1

, n ∈ N∗, (2.65)

E[Xn+1] = α−
1
βΓ(

1

β
+ 1)

n+1∑
k=1

q
k−1
β (1− q

1
β + qn+1−k+ 1

β )

(q, q)n+1−k

(
1
q
, 1
q

)
k−1

, n ∈ N. (2.66)

The limiting distributions as n tends to infinity are denoted as RX∞ and RA∞ and can be
expressed as follows:

RA∞ (t) =
∞∑
k=1

1

(q, q)∞

(
1
q
, 1
q

)
k−1

e
−αt

β

qk , (2.67)

RX∞ (t) =
∞∑
k=1

∫∞
0
αβxβ−1e−α(x+t)β+α(1−q−k)xβdx

qk (q, q)∞

(
1
q
, 1
q

)
k−1

. (2.68)
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The expected values of X∞ and A∞ are also stated below.

E[A∞] = α−
1
βΓ(

1

β
+ 1)

∞∑
k=1

q
k
β

(q, q)∞

(
1
q
, 1
q

)
k−1

, (2.69)

E[X∞] = α−
1
βΓ(

1

β
+ 1)

∞∑
k=1

q
k
β (q−

1
β − 1)

(q, q)∞

(
1
q
, 1
q

)
k−1

. (2.70)

2.1.5 Superposition of renewal processes

The superposition of independent renewal processes, or superimposed renewal process
(SRP), is generally not a renewal process. An SRP can be determined by the times of
events, {Ti}, and the source of events, {Ui}, where Ui = k if the event that occurred at
time Ti comes from the k-th source.

Initially employed in neurophysiology to model pulses or spikes from independent neurons
received at the central nervous system [21, 26], or in queuing theory to model the inter-
arrival times in a network of independent servers [113], an SRP describes, in reliability
engineering, repairable series systems composed of independent units that undergo perfect
and instantaneous repair: the failures in each unit form independent renewal processes,
which result in an SRP when the outputs are pooled. Denote by λi the stochastic intensity
of the i-th renewal process (which is a function of time, but we omit the subscript t for
notational convenience). By virtue of the additive property of counting processes, the
stochastic intensity of an SRP composed of n renewal processes is given by:

λs =
n∑
i=1

λi. (2.71)

This simple relation explains why the superposition process is usually not renewal. In a
renewal process, λt = λ(B(t)) where B(t) stands for the age, as defined in Eq.(2.17). In
an SRP, however, the process intensity at a given time t depends on the times elapsed
since the last arrival from each source, i.e., Bi(t), instead of the time elapsed since last
arrival, i.e., min(B1(t), B2(t)...Bn(t). Although the inter-arrival times in the superposition
process are statistically dependent, it is straightforward to compute their distribution in
the stationary state [77]:

Rs (t) = lim
k→∞

P (Xk ≥ t) =
ν1ν2 . . . νn

ν1 + ν2 + . . . νn

n∑
i=1

Ri(t)
∏

j=1...n
j 6=i

Ψj(t), (2.72)

where n is the number of renewal processes, Ri is the survival function of the i-th renewal
process, Ψi is defined as Ψi (t) =

∫∞
t
Ri (u) du and νi, defined as νi = 1

Ψi(0)
, is the equilib-

rium rate of the i-th renewal process, which corresponds to the inverse of the mean cycle
duration. The joint distribution of m adjacent intervals has been discussed in [77], and
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the special case where m = 2 is given by

Rs(s, t) = lim
k→∞

P (Xk ≥ s,Xk+1 ≥ t) =
ν1ν2 . . . νp

ν1 + ν2 + . . . νp

p∑
i=1

Ri(s)Ri(t)
∏
j=1...p
j 6=i

Ψj(s+ t).

(2.73)

The behavior of an SRP in a non-stationary state has been considered in [11], and the
renewal theory has been generalized for SRP by [71]. Industrial applications could be
found in, among others, [87], [118], [88], [62] and [116] where the SRP has been used to
model the failure/repair process for systems such as diesel engines, sockets of aero-engines,
coating of steel structures and air-conditioning equipment.

2.1.6 Geometric Process

Definition 2.7 Let {Xn, n ∈ N∗} be a sequence of independent random variables and
Fn(t) the Cdf of Xn. If

Fn(t) = F (an−1t), n = 1, 2, ... (2.74)

where a is a positive constant, then the sequence {Xn} is called a geometric process.

The geometric process (GP) is another generalization of a renewal process. First intro-
duced by Smith & Leadbetter [102], the GP is used by Lam [72] to describe inter failure
times with trends. The GP is referred to in [110] as a quasi-renewal process. A compre-
hensive theory with applications can be found in [73]. Another extension of GP has been
considered in [12]. Obviously, if a > 1, {Xn} is stochastically decreasing and converge
to zero with probability 1; if 0 < a < 1, {Xn} is stochastically increasing and converge
to infinity with probability 1; for a = 1, GP reduces to a renewal process. In reliability
engineering, the case a < 1 is less common, as it suggests that the system is improving
with each repair. Following Eq.(2.74),

E[Xn] =
E[X1]

an−1
, (2.75)

and

V ar(Xn) =
V ar(X1)

a2(n−1)
. (2.76)

Furthermore, for a > 1, the sum of expected cycle durations is converging:

∞∑
n=1

E[Xn] =
a

a− 1
E[X1]. (2.77)

The renewal-type equation for a geometric process is given by

M(t) = F (t) +

∫ t

0

M(a(t− x))dF (x). (2.78)
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It has been proved in [13] that for a > 1, M(t) is infinite for all t > 0, which is not so evi-
dent: intuitively, M(t) should be infinite when t is sufficiently large. More generalizations
of the geometric process can be found in [14] and [41].

2.2 Heterogeneous population

Perfect homogeneity of objects is rare in nature and in the industry: it can be created
in a laboratory, but not outside it. Due to the instability of production processes, envi-
ronmental and other factors, most populations of manufactured items are heterogeneous.
Nevertheless, most of the reliability modeling assume an homogeneous population. Ignor-
ing heterogeneity can lead to serious errors in the reliability assessment of items and, as
a consequence, to crucial economic losses.

In survival analysis, the term “frailty” instead of “heterogeneity” is more commonly used.
It was suggested in [109] in a demographic context, based on the idea that heterogeneity
in the human population might lead to differences in their mortality curve. The effects of
frailty in survival analysis have been addressed in many key reference papers, including
but not limited to [1], [2], [19]. As an extension of the proportional hazards model
[20], frailty models could be classified as a univariate/multivariate frailty model, shared
frailty model, or correlated frailty model [114]. In its simplest form, when no covariate is
considered, frailty is an unobserved random proportionality factor, often denoted by Z,
with realizations z, that modifies the failure rate of an individual, or of related individuals:

λi(t) = ziλ(t). (2.79)

Before introducing the frailty analysis for repairable systems and imperfect repair pro-
cesses, let us have a closer look at how the heterogeneity influences the reliability of
non-repairable systems.

2.2.1 Non-repairable system

The literature on heterogeneity in non-repairable systems and its influence is rich: the
presence of unobserved heterogeneity will not only distort the shape of the failure/mortality
rate curve [1] [44] [42], but will also influence the estimation of baseline distribution pa-
rameters. For example, Lindqvist [80] has observed that overlooking unobserved hetero-
geneity between monitored systems might lead to non-optimal, or completely erroneous,
decisions. Heckman and Singer [54] have remarked that the parameter estimation is sensi-
tive to the mixing distribution and proposed the use of nonparametric mixtures. Vallejos
and Steel [106] have introduced a Bayesian inference on the mixture of Weibull survival
distributions. Cha and Finkelstein [17] have presented several meaningful examples of
models combining heterogeneity with reliability models. Here, for illustrative purposes,
we present two typical cases: the mixture of two distributions and the continuous mixture.
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Mixture of two distributions

Suppose that some good products are mixed with some defective ones. The time to failure
of an item selected randomly from this population can be obviously described in terms
of mixtures. Denote by F1(t) and F2(t), f1(t) and f2(t), λ1(t) and λ2(t) the Cdf, Pdf and
failure rates of respectively the two subpopulations. Then, the mixture is defined by a
mass π, representing the proportion of good products in the population. The mixture
failure rate λm(t) in this case, is given by

λm(t) =
πf1(t) + (1− π)f2(t)

πF 1(t) + (1− π)F 2(t)
(2.80)

= π(t)λ1(t) + (1− π(t))λ2(t), (2.81)

with

π(t) =
πF 1(t)

πF 1(t) + (1− π)F 2(t)
. (2.82)

Specifically, if λ1(t) ≤ λ2(t) for all t > 0, then

λ1(t) ≤ λm(t) ≤ λ2(t), (2.83)

and π(t) is increasing. The failure rate of the population converges therefore to λ1(t),
the failure rate of the most “robust” item. This simply suggests that the most vulnerable
items break down first. If both λ1(t) and λ2(t) are decreasing, i.e., DFR, then the mixture
rate λm(t) is also DFR [57]. However, the inverse is not true: the mixture of the population
with IFR is not necessarily IFR. More information on specific shapes of the mixture failure
rate of two distributions can be found in [53], [52], [8], [10] and [61].

Continuous mixture

Now, consider the situation where the frailty Z is a continuous random variable defined
on [0,∞), with the Pdf π(z). This is the case where all items in the population have
different failure rates. Denote by F (t|z), f(t|z) and λ(t|z) the conditional Cdf, Pdf and
failure rate of an individual having frailty Z = z. Then, the conditional failure rate of an
item drawn randomly from the population is given by

λm(t) =

∫∞
0
f(t|z)π(z)dz∫∞

0
F (t|z)π(z)dz

. (2.84)

The most classic assumption on the mixture is the multiplicative model

λ(t|z) = zλ(t). (2.85)

If the lifetime of the individuals are Weibull distributed with IFR, i.e., λ(t) = βtβ−1 with
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β > 1, and that Z follows a gamma distribution with shape k and scale θ:

π(z|k, θ) =
1

Γ(k)θk
zk−1e−

z
θ , (2.86)

then, Eq.(2.84) reduces to:

λm(t) =
kθβtβ−1

1 + θtβ
. (2.87)

Thus, λm(t) = 0 at t = 0, increases to its maximum at

tmax =

(
β − 1

θ

) 1
β

, (2.88)

and converges to 0 as t tends to infinity. This gamma-distributed frailty model combined
with the Weibull lifetime distribution has been studied in [107] to model the unobserved
heterogeneity presented in safety valves from the North Sea. The shape of the mixture
failure rate differs dramatically from the IFR λ(t). Similar to the mixture of two dis-
tributions, this corresponds to the fact that the most vulnerable ones break down first:
λm(t) is initially increasing because the frail ones are failing, and is eventually decreasing
because only the robust individual remains alive.

2.2.2 Repairable system

The literature on heterogeneity for repairable systems is less abundant than the one for
non-repairable systems.. One of the early works is [37], where a compound Poisson process
is used to model the behavior of repairable systems that have different failure intensities.

Minimal repair is then combined with the unobserved heterogeneity: Asfaw and Lindqvist
[3] have investigated the heterogeneous population composed of independent NHPP using
gamma-distributed frailty, while Slimacek and Lindqvist [100] have studied the param-
eter estimations in heterogeneous NHPP population when the distribution of frailty is
unspecified. The results are then generalized in [101] to incorporate covariates. It should
be mentioned that if the heterogeneity is erroneously ignored, the estimation of model
parameters will be biased.

For illustrative purposes, consider m independent repairable systems that undergo min-
imal repair [3]. If the population is homogeneous, all individual systems share the same
failure rate, λ(t). Let the j-th systems be observed from time 0 to Tj. The i-th failure
instant of the j-th system is denoted by Tj,i, with j ∈ 1...m and i ∈ 1...nj. Then, the
likelihood of these data is given by

L =
m∏
j=1

( nj∏
i=1

λ(Tj,i)

)
e−Λ(Tj). (2.89)

Now, if the j-th individual is characterized by the failure rate λj(t) = zjλ(t), the likelihood
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of this single system is given by:

L(zj) =

( nj∏
i=1

zjλ(Tj,i)

)
e−zjΛ(Tj). (2.90)

Denote by π(z) the distribution for the frailty z. Since zj is often unobservable, the
contribution to the full likelihood from this system is obtained by conditioning with respect
to zj, i.e., compute the expected value:

Lj = E[L(z)] =

∫ ∞
0

L(z)π(z)dz, (2.91)

and the log-likelihood function of the population is obtained by summing up the individ-
ual log-likelihoods. The bias and standard deviations of the estimates when the model is
not correctly specified have been thoroughly developed in [3], with the underlying power
law failure intensity and gamma-distributed frailty. Maintenance optimization issues have
been addressed in [98], where the authors investigated a fleet of repairable systems op-
erating in different environments (covariates) by introducing a covariate-dependent trend
renewal process and showed that the ignorance of the heterogeneity could lead to non-
optimal maintenance plans as well as increased repair costs.



Chapter 3

Stable imperfect repair models:
asymptotic properties

This chapter discusses relevant asymptotic properties for the steady-state virtual age
processes. It is shown that the limiting distributions of age, the residual lifetime, and
the spread that describe an ordinary renewal process can be generalized to the stable
virtual age process, although the cycles of the latter are not independent. Asymptotic
distributions of the virtual age at time t, as well as of the virtual ages at the start and the
end of a cycle containing t (as t tends to infinity) are explicitly derived for two popular
in practice imperfect maintenance models, namely, the Arithmetic Reduction of Age with
infinite memory (ARA∞) and the Brown-Proschan (BP) models. Some applications of
the obtained results to maintenance optimization are discussed.

As shown in the previous chapter, ordinary renewal processes are stationary in the sense
that the corresponding renewal density function is constant as time tends to infinity.
The NHPP that describes minimal repairs is, obviously, non-stationary, and if, e.g., its
rate is increasing, the failures are arriving more frequently with time. Kijima Type I
and Geometric Process [79], like NHPP, are non-stationary and can be used to model
the lifetime with trends. Although there are many publications on various applications
of the virtual age models in reliability, not much has been done in the literature on
the description of the relevant asymptotic properties of the corresponding virtual age
processes.

It should be noted that the limiting properties of the ordinary renewal processes are
especially important in various applications. For instance, obtaining the corresponding
renewal functions can be computationally challenging, and simple asymptotic values pro-
vided by the renewal-type theorems are beneficial in practice. Another example is the
alternating renewal process. The stationary availability in this case, which is usually of
the main interest, is obtained simply via the mean up and downtimes of a system. The
life cycles of many industrial systems are quite long, meaning that a large number of
maintenance actions are performed. Moreover, in many instances, the operational data
is recorded only when a system enters its stable regime. Therefore, the importance of
asymptotic methods in the described context is hard to overestimate.

The study of asymptotic properties of the imperfect repair processes that more adequately

28
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Notation Interpretation Expression
Xn duration of the n-th cycle Xn = Tn − Tn−1

An virtual age after the n-th repair
X∞ duration of the asymptotic cycle X∞ = limn→∞Xn

RX∞ limiting survival function of X∞ RX∞(t) = P (X∞ > t)
fX∞ limiting Pdf of X∞ fX∞(t) = − d

dt
RX∞(t)

A∞ asymptotic virtual age at the start of a cycle A∞ = limn→∞An
RA∞ limiting survival function of A∞ RA∞(t) = P (A∞ > t)
fA∞ limiting Pdf of A∞ fA∞(t) = − d

dt
RA∞(t)

µ mean cycle duration in stationary state µ = E(X∞) =
∫∞

0
RX∞(x)dx

Bt backward recurrence time at t Bt = t− TNt−
δt remaining lifetime (forward recurrence time) at t δt = TNt−+1 − t
Yt spread at time t Yt = Bt + δt
V s
t virtual age at the start of the cycle containing t V s

t = ANt−
Vt virtual age at time t Vt = ANt− + t− TNt−
V e
t virtual age at the end of the cycle containing t V e

t = Vt + δt

Table 3.1: Notations in stable Virtual Age models.

than ordinary renewal processes describe the maintenance of the real-world systems, seems
to be a natural and practically sound task that is addressed in the current paper. For
achieving this goal, we had to answer first the following questions: can asymptotic results
for the age, the residual lifetime, and the spread for ordinary renewal processes be gener-
alized (and under what conditions) to the case of the imperfect repair processes? What
are the asymptotic distributions for these quantities? To answer these questions, specific
theoretical results had to be obtained and illustrated by several practical examples.

The notations used in the rest of this section are gathered in Table 3.1, and the chapter is
organized as follows: Section 3.1 presents the generalization of the limiting distributions
of the age, the residual lifetime and the spread to the case of stable virtual age models;
Section 3.2 discusses the distribution of virtual age; finally, some applications in main-
tenance optimization are addressed in Section 3.3 and concluding remarks are given in
Section 3.4.

3.1 Asymptotic distributions of backward recurrence

time, residual lifetime and spread in stable vir-

tual age processes

Various generalizations of the ’standard renewal theory’ were addressed in the literature
in several publications. With relevance to our topic, the following papers (to name a
few) can be of interest. For example, Chow and Robbins [18] considered the renewal
theory in sequences with dependent and non-identically distributed intervals; Dagpunar
[23] studied the renewal-type equations for a generalized Kijima type II process (see also
[39] and [40]). Lam and Lehoczky [71] considered the generalizations of renewal theory
to the superposition of renewal processes.
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Our interest lies in the virtual age processes with cycles Xn converging in distribution to
X∞ as n tends to infinity. This property guarantees that the cycles are asymptotically
identically distributed. The following theorem defines distributions of the backward re-
currence time Bt, the residual lifetime δt and the spread Yt for these stable virtual age
processes.

Theorem 3.1 In a stable virtual age processes with asymptotically identically distributed
cycles, the limiting distributions of Bt and δt , similar to the standard renewal processes,
are given by the following equilibrium distributions:

lim
t→∞

P (Bt ≤ x) = lim
t→∞

P (δt ≤ x) =
1

µ

∫ x

0

RX∞(s)ds, (3.1)

whereas the limiting distribution of the spread Yt is

lim
t→∞

P (Yt ≤ x) =
1

µ

∫ x

0

s · fX∞(s)ds. (3.2)

proof 1 Denote by m′(t) the generalized renewal density function for the virtual age pro-
cess. Thus, m′(t) can be interpreted as the rate of the corresponding point process (similar
to the ’standard’ renewal density, which is the rate of the ordinary renewal process). De-
note by F (x, u) the Cdf of a cycle that had started at the calendar time u. Then, the Cdf
of Bt, denoted by FBt(x), can be written as the following integral

FBt(x) =


∫ t

t−x
F (t− u, u)m′(u)du, 0 ≤ x ≤ t

1, x > t,

(3.1.1)

where u is the time of the last repair before t and, accordingly, m′(u)du is the probability
that the cycle starts in [u, u+ du). The corresponding pdf is

fBt(x) =

{
F (x, t− x)m′(t− x), 0 ≤ x ≤ t

0, x > t.
(3.1.2)

Let x be fixed. Then for t→∞

lim
t→∞

fBt(x) =
RX∞(x)

µ
, (3.1.3)

because
F (x, t− x)→t→∞ RX∞(x), ∀x ≥ 0, (3.1.4)

as the cycles converge in distribution to X∞ and

m′(t− x)→t→∞
1

µ
, (3.1.5)

which results from the convergence of the cycles of the virtual age process and was shown
in [23], Eq.(22) and in [18], Theorem 1.
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The previous reasoning was for the backward recurrence time. A similar approach can be
applied to the remaining lifetime δt and the spread Yt. Thus, asymptotically, as t → ∞,
it is not necessary that the cycles are independent, as in the standard renewal theory, and
it is sufficient that they are identically distributed. Moreover, in this case, the limiting
distributions of Bt, δt and Yt can be also proved similar to how it is elegantly performed
in [95] using the corresponding alternating renewal process. The backward recurrence
time is interpreted as the on-time, whereas the remaining lifetime is the off-time of the
generalized alternating renewal process.

Due to Theorem 3.1 and, similar to the standard renewal theory, it holds asymptotically
in our case that (the inspection paradox)

∀s ∈ [0,∞), lim
t→∞

RYt(s) ≥ RX∞(s), (3.3)

and

lim
t→∞

E[Yt] =
E[X2

∞]

µ
, (3.4)

lim
t→∞

E[Bt] = lim
t→∞

E[δt] =
E[X2

∞]

2µ
. (3.5)

The limiting distribution of X∞ for the specific VA processes are given in the previous
section, e.g., Eq.(2.68) for the Weibull ARA∞ or Eq.(2.45) for the Brown Proschan process,
whereas the existence of such distributions for a general ARA∞ model is proved, e.g., in
[39]. For illustration, the Pdf of the backward recurrence time Bt as t tends to infinity in
an ARA∞ process configured with α = 1 are plotted in Figures 3.1a (β = 1.5) and 3.1b
(β = 4). Clearly, the smaller ρ is, the more the Pdf of Bt is skewed towards the left.

(a) β = 1.5 (b) β = 4

Figure 3.1: Pdf of Bt when t tends to infinity in an ARA∞.

3.2 Limiting distributions of V s
t , Vt and V e

t

As defined previously, F (t) is the Cdf of the baseline distribution, and F (t|a) is the Cdf
of a cycle that starts with age a. The corresponding survival function is thus denoted
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by F (t|a), whereas the mean residual life function is µa =
∫∞

0
F (t|a)dt. The Pdf of a

cycle that starts with age a is denoted as f(t|a) = F ′(t|a). For stable VA processes (i.e.,
with asymptotically identically distributed cycles), it is important both from theoretical
and practical points of view to obtain limiting distributions of the virtual age. This can
be done for the two imperfect repair models, namely the ARA∞ and Brown Proschan
process.

3.2.1 ARA∞ model

The limiting distributions of V s
t , Vt and V e

t for the ARA∞ virtual age process are given
by the following theorems.

Theorem 3.2 Let V s
∞ = limt→∞ V

s
t . The asymptotic Pdf of V s

t is

fV s∞(a) := lim
t→∞

fV st (a) =
µa
µ
· fA∞(a). (3.6)

proof 2 Conditioning the asymptotic distribution of Bt on V s
t :

1

µ

∫ y

0

RX∞(s)ds = lim
t→∞

P (Bt ≤ y) =

∫ ∞
0

lim
t→∞

P (Bt ≤ y|V s
t = a)fV st (a)da. (3.6.1)

Fixing a, we arrive at the standard renewal process. Therefore,

lim
t→∞

P (Bt ≤ y|V s
t = a) =

1

µa

∫ y

0

F (s|a)ds. (3.6.2)

The left hand side of Eq.(3.6.1) can be alternatively expressed by conditioning on the
virtual age at the start of a cycle:

1

µ

∫ y

0

RX∞(s)ds =
1

µ

∫ y

0

∫ ∞
0

F (s|a)fA∞dads, (3.6.3)

which results in

1

µ

∫ y

0

∫ ∞
0

F (s|a)fA∞dads =

∫ ∞
0

∫ y

0

1

µa
F (s|a)fV s∞(a)dsda. (3.6.4)

Thus, obtaining the derivatives with respect to y,

1

µ

∫ ∞
0

F (y|a)fA∞(a)da =

∫ ∞
0

1

µa
F (y|a)fV s∞(a)da. (3.6.5)

Therefore, an evident solution of the Pdf of V s
∞ is

fV s∞(a) =
µa
µ
· fA∞(a). (3.6.6)
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However, the equality in integral does not guarantee the equality in the integrand, so we
need to prove the uniqueness of fV s∞(a). Assume that a function g(t) is the limiting Pdf
of V s

∞, with
∫∞

0
g(t) = 1 and

fV s∞(a) = g(a) 6= µa
µ
· fA∞(a). (3.6.7)

Reformulating Eq.(3.6.5) as:

1

µ
RX∞(y) =

∫ ∞
0

1

µa
F (y|a)g(a)da, (3.6.8)

and considering the right hand side of above equation, we see that assuming g(a) 6= µa/µ ·
fA∞(a) implies that the integrand could not be further simplified. Using the mean value
theorem for integrals, there exists some a∗ ∈ [0,∞) such that

1

µ
RX∞(y) =

1

µa∗
F (y|a∗)

∫ ∞
0

g(a)da =
1

µa∗
F (y|a∗), (3.6.9)

resulting in
F (y|a∗)
RX∞(y)

=
µa∗

µ
= const. (3.6.10)

This ratio cannot be a constant on all the points of R+ unless two survival functions are
identical, which in our case, contradicts the assumption. Thus, the corresponding solution
is unique, as given in Eq.(3.6).

(a) fA∞ , fV s∞ and µa/µ (b) Survival functions

Figure 3.2: Example of Pdf and survival functions: α = 1, β = 2, ρ = 0.5.

Interpretation of Eq.(3.6) depends on the baseline failure rate. For the IFR Weibull
distribution, µa is a decreasing function of a and satisfies: µ0 > µ and lima→∞ µa = 0.
The Pdf of V s

∞ is formed by shifting fA∞ to the left, and the two curves intersect at the
point a = Ã with µÃ = µ. An example is shown in Figure 3.2a.

A straightforward result of Theorem 3.2 is A∞ being stochastically larger than limt→∞ V
s
t .

It can be observed in Figure 3.2b that the survival function of A∞ is constantly above
that of V s

∞. This means when a system that undergoes repairs of type ARA∞ is observed
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at time t with t tending to infinity, the repair just before t will make the system “younger”
(with virtual age V s

∞), compared to other repairs which reduce the virtual age to A∞.

Consider now some aging notions related to stable states. Finkelstein [39] has defined the
equilibrium age A∗ that satisfies, if a cycle starts with age A∗, then the next cycle will
also start with A∗ but in expectation: E[Ai+1|Ai = A∗] = A∗. As defined previously, Ã
satisfies µÃ = µ, meaning that a cycle starting with age Ã has the mean µ. Let E[A∞]
be the expected value of A∞. Then, for the IFR baseline distributions,

Ã ≤ A∗ ≤ E[A∞]. (3.7)

proof 3 Begin with the convexity of the function g(a) = µa. g(a) has derivative

g′(a) =

∫ ∞
0

(−λ(t+ a) + λ(a))
F (t+ a)

F (a)
dt. (3.7.1)

This is an increasing function with g′(0) = −1 and g′(∞) = 0. Thus, g(a) is convex
function.

Consider first A∗ and E[A∞]. Let i tends to infinity. Since

E[Ai+1|Ai] = E[(1− ρ)(Ai +Xi+1)] = (1− ρ)Ai + (1− ρ)E[Xi+1|Ai], (3.7.2)

E[Ai+1|Ai] is also a convex function of Ai. Therefore,

E[A∞] = E[E[Ai+1|Ai]] ≥ E[Ai+1|Ai = E[A∞]]. (3.7.3)

Let h(Ai) = E[Ai+1|Ai] − Ai. h(Ai) is a decreasing function with h(0) = (1 − ρ)µ0 and
h(∞) = −∞. Obviously,

h(A∗) = E[Ai+1|Ai = A∗]− A∗ = 0, (3.7.4)

and because of Eq.(3.7.3),

h(E[A∞]) = E[Ai+1|Ai = E[A∞]]− E[A∞] ≤ 0. (3.7.5)

Thus, E[A∞] ≥ A∗ given that h is decreasing.

Consider now A∗ and Ã. Since E[Ai+1Ai = A∗] = (1− ρ)A∗ + (1− ρ)µA∗, we have

µA∗ =
ρ

1− ρ
A∗. (3.7.6)

According to the definition of Ã, µÃ = µ. However, in the steady state of an ARA∞
process, the following equality holds

µ =
ρ

1− ρ
E[A∞], (3.7.7)

leading to

µÃ = µ =
ρ

1− ρ
E[A∞] ≥ ρ

1− ρ
A∗ = µA∗ . (3.7.8)
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Ã ≤ A∗ given that µa is a decreasing function of a.

Theorem 3.3 The limiting distributions of Vt and V e
t are given, respectively, by

lim
t→∞

P (Vt ≤ y) =
1

µ

∫ y

0

∫ y−a

0

F (s|a)fA∞(a)dsda, (3.8)

lim
t→∞

P (V e
t ≤ y) =

1

µ

∫ y

0

∫ y−a

0

s · f(s|a)fA∞(a)dsda. (3.9)

proof 4

limt→∞ P (Vt ≤ y) =
∫ y

0
limt→∞ P (Vt ≤ y|V s

t = a)fV st (a)da
=
∫ y

0
limt→∞ P (Bt ≤ y − a|V s

t = a)fV st (a)da

=
∫ y

0
1
µa

∫ y−a
0

F (s|a)fV st (a)dsda

= 1
µ

∫ y
0

∫ y−a
0

F (s|a)fA∞(a)dsda.

limt→∞ P (V e
t ≤ y) =

∫ y
0

limt→∞ P (V e
t ≤ y|V s

t = a)fV st (a)da
=
∫ y

0
limt→∞ P (Yt ≤ y − a|V s

t = a)fV st (a)da

=
∫ y

0
1
µa

∫ y−a
0

s · f(s|a)fV st (a)dsda

= 1
µ

∫ y
0

∫ y−a
0

s · f(s|a)fA∞(a)dsda.

Example 3.2.1 Consider the ARA∞ process with a power law baseline failure rate. Pa-
rameters are α = 1, β and ρ. The Pdf of V s

t and of Vt are given in Figures 3.3 and 3.4
for different values of β and of ρ. Figures 3.3a and 3.4a represent the case where β = 1.5,
whereas Figures 3.3b and 3.4b stand for the case where β = 4. Unlike Bt, Vt and V s

t are
stochastically decreasing in ρ: the larger ρ is, the more the Pdf is skewed towards the left,
which is comprehensible since repairs with a large ρ are more close to ‘perfect’, and that
the ages after such repairs are stochastically ‘smaller’.

(a) β = 1.5 (b) β = 4

Figure 3.3: Pdf of V s
t when t tends to infinity in an ARA∞.
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(a) β = 1.5 (b) β = 4

Figure 3.4: Pdf of Vt when t tends to infinity in an ARA∞.

3.2.2 Brown-Proschan model

Distinct from the ARA∞ model, the virtual age just after a repair in the BP process is
not a continuous random variable, as it has a mass in the origin [76]. Therefore, our
results formulated in Eqs.(3.6, 3.8, 3.9) cannot be directly applied, and the corresponding
theorems should be proved differently. It should also be noted that it is practically
important to obtain the mass for V s

t in the origin, as it shows with what probability the
last repair was perfect.

In accordance with our previous notation, let µ0 be the mean duration of the first cycle,
i.e., µ0 =

∫∞
0
F (t)dt.

Theorem 3.4 As t tends to infinity, V s
t equals to 0 with probability

lim
t→∞

P (V s
t = 0) =

pµ0

µ
, (3.10)

and its density on (0,∞) is given by:

lim
t→∞

fV st (a) =
µa
µ
fA∞(a). (3.11)

proof 5 The event {V s
t = 0 as t→∞} is equivalent to {the last repair before t as t→∞

is perfect}. Let Tp be the waiting time between two perfect repairs in the corresponding
BP process and Fp be its Cdf. By analogy with the alternating renewal process,

lim
t→∞

P (V s
t = 0) =

E[X1]

E[Tp]
=

µ0∫∞
0
F p(s)ds

. (3.10.1)

Following Lemma 2.1 in [15], F p(t) = F
p
(t), leading to∫ ∞

0

F p(s)ds =

∫ ∞
0

e−pΛ(s)ds =
µ

p
, (3.10.2)
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which completes the proof of Eq.(3.10). To prove equation Eq.(3.11), condition the r.h.s.
of Eq.(3.1) on V s

t :

lim
t→∞

P (Bt ≤ y) = lim
t→∞

P (Bt ≤ y|V s
t = 0)P (V s

t = 0)+ lim
t→∞

∫ ∞
a=0+

P (Bt ≤ y|V s
t = a)fV st (a)da,

(3.11.1)
whereas conditioning of the l.h.s. on the virtual age at the start of a cycle results in

1

µ

∫ y

0

RX∞(s)ds =
1

µ

∫ y

0

F (s|0)P (A∞ = 0)ds+
1

µ

∫ y

0

∫ ∞
a=0+

F (s|a)fA∞(a)dads. (3.11.2)

The first term of the r.h.s of Eq.(3.11.1) is equal to that of Eq.(3.11.2), because, using
the corresponding alternating renewal process,

lim
t→∞

P (Bt ≤ y|V s
t = 0) =

E[min(y,X1)]

E[X1]
=

∫ y
0
F (s)ds

µ0

, (3.11.3)

thus,

lim
t→∞

P (Bt ≤ y|V s
t = 0)P (V s

t = 0) =
p

µ

∫ y

0

F (s)ds, (3.11.4)

which obviously equals to the first term of the r.h.s of Eq. (3.11.2). This also guarantees
that the second terms of the r.h.s of Eqs. (3.11.1) and (3.11.2) are equal. Eq.(3.11) can
therefore be proved in the same way as for the ARA∞.

Corollary 3.2.1 For the Weibull baseline distribution, µ = E[X∞] = p1−1/βµ0, which
results in

lim
t→∞

P (V s
t = 0) = p

1
β . (3.12)

Theorem 3.5 The limiting distributions of Vt and V e
t are respectively given by:

lim
t→∞

P (Vt ≤ y) =
p

µ

∫ y

0

F (s)ds+
1

µ

∫ y

0+

∫ y−a

0

F (s|a)fA∞(a)dsda, (3.13)

lim
t→∞

P (V e
t ≤ y) =

p

µ

∫ y

0

s · f(s)ds+
1

µ

∫ y

0+

∫ y−a

0

s · f(s|a)fA∞(a)dsda. (3.14)

proof 6 Consider first Vt.

lim
t→∞

P (Vt ≤ y) = lim
t→∞

P (Vt ≤ y|V s
t = 0)P (V s

t = 0) + lim
t→∞

∫ y

0+
P (Vt ≤ y|V s

t = a)fV st (a)da.

(3.13.1)
The first term of the r.h.s. of Eq.(3.13.1) can be further developed as:

limt→∞ P (Vt ≤ y|V s
t = 0)P (V s

t = 0)
= limt→∞ P (Bt ≤ y|V s

t = 0) limt→∞ P (V s
t = 0)

= 1
µ0

∫ y
0
F (s)ds · µ0

µ
p

= p
µ

∫ y
0
F (s)ds,
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whereas the second term of the r.h.s. of Eq.(3.13.1) can be derived in the same way as
for the ARA∞ model. Consider now V e

t .

lim
t→∞

P (V e
t ≤ y) = lim

t→∞
P (V e

t ≤ y|V s
t = 0)P (V s

t = 0)+

∫ y

0+
lim
t→∞

P (V e
t ≤ y|V s

t = a)fV st (a)da.

(3.14.1)
The first term of the r.h.s. of Eq.(3.14.1) can be further developed as:

limt→∞ P (V e
t ≤ y|V s

t = 0)P (V s
t = 0)

= limt→∞ P (Yt ≤ y|V s
t = 0) limt→∞ P (V s

t = 0)
= 1

µ0

∫ y
0
s · f(s)ds · pµ0

µ

= p
µ

∫ y
0
s · f(s)ds,

whereas the second term of the r.h.s. of Eq.(3.14.1) can be derived in the same way as
for the ARA∞ model.

Example 3.2.2 Consider the BP process with a power law baseline failure rate configured
as α = 1, β = 2, p = 0.5. The survival function of X∞ (the asymptotic interval) and of
limt→∞ Yt (the limiting spread) is plotted in Figure 3.5a. Since the blue curve is above the
red one, Yt is stochastically larger than X∞, as stated in the inspection paradox. In Figure
3.5b, the Pdf of A∞ (the asymptotic virtual age after a repair) and of limt→∞ V

s
t (the

limiting virtual age at the start of a cycle) on (0,∞) have been drawn with respectively the
red curve and the blue curve. The mass on 0 is not shown in the figure. Obviously, the
area under the red curve is significantly larger than that under the blue one. Therefore,
the mass on 0 of limt→∞ V

s
t is larger than that of A∞. This is consistent with corollary

3.2.1: when β > 1, the probability that virtual age at the start of a cycle containing t as
t tends to infinity is perfect, is larger than p.

A physical interpretation is that, if we observe an intrinsically aging system that undergoes
imperfect repair of type BP at an instant t long after the system begins to work, then the
most recent repair has a higher probability of being perfect compared to a repair randomly
drawn from the failure/repair process.

(a) Yt vs X∞ (b) A∞ vs V s
t

Figure 3.5: Yt, X∞, V s
t and A∞ in a BP process.
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3.3 Application in maintenance: Optimal degree of

imperfect repair

In this section, we focus mainly on the repair process of the ARA∞- type with the increas-
ing baseline failure rate. Finkelstein [43] has considered the optimal degree of imperfect
repair that achieves the minimal, expected long-run cost rate for the repaired system ac-
cordingly. In the following, we shall make two extensions of this optimization problem.
But first, let us recall the setting.

Assume that the cost of an imperfect maintenance action at any cycle depends only on
the degree of repair ρ. Denote by C(ρ) this cost. It is natural to assume that it is an
increasing function of ρ and

Cm = C(0) ≤ C(ρ) ≤ C(1) = Cp, (3.15)

where Cm and Cp are the costs of minimal and perfect repairs, respectively. Consider
now the long-run average maintenance cost rate. The ARA∞ process enters its steady-
state and the mean cycle length for the corresponding Weibull IFR baseline distribution,
µ(ρ) = E[X∞|α, β, ρ], is an increasing function of ρ. Based on the renewal reward theory
reasoning, the expected long-run cost per unit of time c(ρ) is given by:

c(ρ) =
C(ρ)

µ(ρ)
. (3.16)

Assume a rather flexible functional form for C(ρ)

C(ρ) = Cm + (Cp − Cm)ρu, u > 0. (3.17)

Existence of an optimal maintenance degree ρ∗, which minimizes the long-run average
cost rate c(ρ) has been addressed in [43]. Basically, it requires that c(ρ) be increasing as
ρ tends to 1.

3.3.1 Recycling: reward based on backward recurrence time or
on virtual age at retirement

The above reasoning considers the expected cost for an infinite horizon. In practice, how-
ever, systems are not operating forever, i.e., a ‘retirement’ threshold Tr is often predefined
in a way that once the total working time exceeds Tr, system’s operation is terminated
(and it is usually replaced by a new one). The replaced system can sometimes be recy-
cled, and the corresponding gain is generated following its condition, i.e., the better the
condition, the larger the gain. A typical example is the garage of used cars, where the
status of the used car and its accident history, are carefully examined to determine an
appropriate price.

The optimization problem is formulated as follows: a system is under imperfect repair
and is planned to ‘retire’ at time Tr. The expected lifetime in the steady-state regime,
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µ(ρ) is a function of the repair degree ρ and satisfies µ(1) << Tr. This is the condition
guaranteeing that the system enters its steady-state before retiring. The cost of the repair
actions is defined by Eq.(3.17). At time Tr, the system is recycled, and a reward, Rw, is
assigned based on the state variable Y that can either be the backward recurrence time,
BTr or the virtual age, VTr . Assume that the relation between the reward and Y is given
by the following functional form:

Rw = re−νY , r > 0, ν > 0, (3.18)

where r defines the maximal reward that could be obtained if the system is in the state
”Good as New” at Tr. Under the condition µ(1) << Tr, the expected long-run cost per
unit of time can be defined, for instance, as

cr(ρ) =
C(ρ)

µ(ρ)
− r

Tr
E[e−νY ], (3.19)

We are now interested in obtaining the optimal degree of repair ρ∗r that minimizes the cost
rate defined by Eq.(3.19). In practice, the corresponding decisions can be made either
based on the virtual age of a system or on the elapsed time since the last repair (backward
recurrence time). The latter, although giving less information on the state of a system,
can be easier obtained, whereas Vt needs more information on the history of the repair
process, which often can be unavailable. For ordinary renewal processes, these quantities
are the same, whereas they are obviously different for the imperfect repair process.

3.3.1.1 Reward based on backward recurrence time: Y = BTr

Since Tr >> µ(1), the distribution of the backward recurrence time at retirement can be
described by Eq.(3.1). The expected long-run cost rate is, therefore,

cr(ρ|Y = BTr) =
C(ρ)

µ(ρ)
− r

Trµ(ρ)

∫ ∞
0

e−νxRX∞(x|ρ)dx. (3.20)

Consider the effect of a repair efficiency ρ on the expected value of the reward Rw. It can
be seen from Definition 3.18 that this expected value for the IFR baseline distributions
decreases when ρ is increasing (as the cycles of the corresponding steady-state virtual age
process are stochastically increasing with ρ). Thus, given the parameters of the model,
an optimal degree of repair can be found that minimizes Eq.(3.20). This is illustrated by
the lowest curve in Figure (3.6).

3.3.1.2 Reward based on virtual age: Y = VTr

Assume now the reward is defined according to the virtual age VTr at the retirement time.
As Tr >> µ(1), the virtual age tends to its asymptotic value and its distribution is given
by Eq.(3.8). Given the Weibull baseline distribution, the expected long-run cost rate is
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then defined as

cr(ρ|Y = VTr) =
C(ρ)

µ(ρ)
− r

Trµ(ρ)

∫ ∞
0

∫ x

0

e−νx−αx
β+αaβfA∞(a|ρ)dadx. (3.21)

It is shown that the virtual age Vt as t tends to infinity is decreasing in ρ. Specifically, it
tends to infinity when ρ tends to 0 (minimal repair) and then decreases to the asymptotic
virtual age of the ordinary renewal process (which is just the corresponding backward
recurrence time) when ρ tends to 1 (perfect repair). This behavior dramatically differs
from that for BTr in the previous subsection (it was increasing in ρ), which is a meaningful
fact. Eventually, it results in a larger optimal value of ρ than that defined by the cost rate
function (Eq.(3.20)). Moreover, the optimal ρ for the case without recycling (Eq.(3.16))
lies between these two values, as is shown in Figure 3.6. The following numerical example
illustrates our reasoning.

Example 3.3.1 Let α = 1, β = 3. Thus, the baseline survival function is R(t) = e−t
3
.

Let Cp = 1, Cm = 0.3, u = 4. Then the long-run expected cost per unit of time without
the recycling reward, is plotted by the solid line in Figure 3.6. The optimal repair degree
ρ∗ ≈ 0.57 with a minimal expected cost c(ρ∗) = 0.6966.

Consider now the reward policy defined as Tr = 20, r = 20, ν = 2. The expected maximal
reward defined by r/Tr equals one and is of the same order of magnitude as Cp. It
is, therefore, necessary to take into account the reward when optimizing the maintenance
degree. When the reward is based on the backward recurrence time at retirement, ρ∗r = 0.52
with the corresponding expected cost rate c(ρ∗r) = 0.1363 (dashed line) and when the reward
is given according to the corresponding virtual age, then ρ∗r = 0.65 with the expected cost
rate c(ρ∗r) = 0.4195 (dash-dotted line). These results are consistent with our previous
analysis showing that Bt and Vt have an opposite impact on the value of ρ∗r.

Figure 3.6: Optimal repair degrees.
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3.3.2 Minimization of the long-run expected failure frequency
of a series system under constrained budget

In this section, as another example, we deal with the constrained optimal imperfect main-
tenance problem [91] of the following type. We consider a series system of n independently
operating and instantaneously maintained/repaired components with the imperfect repair
of the ARA∞ type. The first interval of the repair process of the ith component is Weibull-
distributed with parameters (αi, βi), accordingly. The repair degrees of each component,
~ρ = {ρ1, ρ2...ρn} form the vector of decision variables. The repair cost, Ci(ρi), depends
only on the repair degree and is independent of the initial lifetime distribution. It is
defined by Eq.(3.17) with different parameters for components. The expected long-run
repair cost per unit of time of the system must not exceed the predefined cost threshold,
Cmax, i.e.,

n∑
i=1

Ci(ρi)

µ(αi, βi, ρi)
≤ Cmax, (3.22)

By the ”long-run”, as previously, we mean the steady-state case. Therefore, the denomi-
nator µ(αi, βi, ρi) is the mean duration of the asymptotic cycle of the component i given
αi, βi and ρi.

Under the constraint 3.22, we would like to minimize the steady-state failure frequency
for the system. Thus, the corresponding objective function is defined as:

λs =
n∑
i=1

1

µ(αi, βi, ρi)
. (3.23)

In the following, for illustration, we will consider the simplest case of two components in
series that differ only in the shape parameter β. Assume also that the cost function is
the same for each component, i.e. C1(ρ) = C2(ρ) = C(ρ).

Example 3.3.2 Parameters of the Weibull distributions for the components are chosen
as α1 = α2 = 1, β1 = 1.5, β2 = 3, whereas parameters of the cost function are: Cp = 1,
Cm = 0.3 and u = 2. ~ρ = (ρ1, ρ2) is the decision vector. Obviously, without the constraint,
the optimal repair degree is just ~ρ∗ = (1, 1). However,when the maintenance cost threshold
Cmax is not large enough, we may not have enough resources to perform perfect repairs.

The optimal repair degrees vector ~ρ∗ = (ρ∗1, ρ
∗
2) is defined by the points where the contour

of the expected cost and that of the system’s expected failure frequency are tangent to
each other (Figure 3.7). When, for instance, Cmax = [1.7, 1.8, 1.9, 2.0], the corresponding
optimal degrees are

(ρ∗1, ρ
∗
2) = [(0.39, 0.67), (0.47, 0.89), (0.58, 0.98), (0.71, 1)],

accordingly, and the resulting minimal expected failure frequencies of the series system are
[3.36, 2.87, 2.62, 2.47]. Additionally, Figure 3.8 shows the corresponding pattern for the
expected failure frequency of the system in the unconstrained case (no costs involved).
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Figure 3.7: Optimal repair degrees deter-
mined by the contours that are tangent to
each other.

Figure 3.8: Expected failure frequency of the
system as a function of the repair effective-
ness.

3.4 Conclusion

This chapter studies asymptotic distributions for stable virtual age processes. We first
show that the limiting distributions of the backward recurrence time, the remaining life-
time, and the spread that characterize an ordinary renewal process can be generalized to
the case of the virtual age processes with asymptotically identically distributed cycles.
Then we derive new analytical expressions for all limiting distributions of interest. We
also discuss the importance of the age reduction mechanism for the obtained results. The
provided examples highlight the practical value of our findings in reliability engineering.

This topic could be continued in the future in several directions. For instance, asymptotic
distributions in stable virtual age models involving imperfect preventive maintenances
can be considered. A typical example is the ARA1CM-ARA∞PM process described in
[32]: corrective maintenances of the ARA1 type are unable to keep the repaired system in
a steady-state, whereas stationarity can be achieved by the periodic PMs of the ARA∞
type. Therefore, it could be of interest to look at the asymptotic distribution of the virtual
age just after the PM in this case. Limiting distributions in other imperfect maintenance
models such as the Arithmetic reduction of intensity with infinite memory (ARI∞) model
[34] can also be worthy of further investigation.



Chapter 4

Imperfect repair models:
heterogeneity

This chapter investigates the effect of heterogeneity on the failures of repairable systems
that undergo imperfect repairs, which are extensively used in reliability engineering. When
considering a group of similar systems, the assumption that the repair processes are
independent and identically distributed becomes questionable owing to the unobserved
heterogeneity in these systems. The basic models we consider include ARA∞, ARA1,
Brown Proschan, and geometric process.

In Section 4.1, for the ARA∞ process, we use the frailty model to study the proportional
baseline hazard rate between the systems and, in particular, the gamma-distributed frailty
is investigated. Thus, we derive the asymptotic properties of the mixed repair process and
corresponding likelihood estimates and then evaluate the effects on the model parameter
estimation when heterogeneity is erroneously ignored. Furthermore, when the model is
established correctly by accounting for the gamma-distributed frailty, we find that the
maximum likelihood estimator is inconsistent, and we propose an alternative approach.
Two case studies are presented to illustrate the benefits of taking account of unobserved
heterogeneity in scheduling preventive maintenance activities.

In Section 4.2, for the BP process, not only the proportional hazard rate is considered,
but new parametric models have been proposed to describe the heterogeneous repair
effectiveness and working environment as well. The impact of the heterogeneity on the
mean lifetime of the population is revealed, and particularly, we highlight the importance
of employing consistently adept maintenance crew.

In Section 4.3, for ARA1 and geometric process, the influence of heterogeneous scale
parameter have been addressed. We focus specifically on the parameter estimation issue.
It is shown that when heterogeneity is erroneously overlooked, the aging parameter is
constantly underestimated.

Finally, some applications of the relevant results in the analysis of the railway signaling
system are presented in Chapter 6, showing the advantages of taking into account the
heterogeneity when estimating the system’s aging speed and reliability.

44
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4.1 ARA∞ model

We propose a multiplicative frailty model combined with ARA∞-type imperfect mainte-
nance. This is motivated by the observed decreasing failure rate of the railway signaling
system, which contrasts with the common belief that electric components should have a
constant or increasing failure rate (more details are given in Section 6). Some exchanges
with experts in railway infrastructures lead us to consider individual heterogeneity, and
to the intuition that a multiplicative frailty model could be a start because of its mathe-
matical convenience.

4.1.1 Heterogeneous ARA∞ population

In the context of frailty analyses, each individual in the population has its own intensity.
This is modeled by Zλ(t), whereby Z (mixing variable or frailty) is a non-negative random
variable, and λ(t) is the baseline intensity, which is common for all items. In general, it is
assumed that the expectation of Z equals one, which makes λ(t) an “average” intensity.
There exist several potential distributions for Z, but the gamma distribution is the most
commonly used one.

With the Weibull baseline distribution, λ(t) is given by λ(t) = αβtβ−1. Therefore, merg-
ing Z with α leads to a new pseudo scale parameter, Zα. We address the influence of
heterogeneity on the population without specifying the distribution of Z, before discussing
the asymptotic properties and likelihood functions when Z is gamma-distributed.

4.1.1.1 Influence of unspecified frailty on the population mean lifetime

Let µZ be the mean inter-failure time of an ARA∞ sequence with frailty Z:

µZ = E[X∞|Zα, β, ρ] = Z−1/βµ0, (4.1)

where µ0 = E[X∞|α, β, ρ]. µZ is thus a random variable that represents the expected cycle
durations in an individual ARA∞ sequence given the frailty Z. E[µZ ], on the other hand,
can be regarded as the expected value of the duration of a cycle drawn from an ARA∞
population when all the members have entered the stable regime. In the following of this
section, E[µZ ] is referred to as the population mean lifetime. The following proposition
specifies its relationship with µ0:

Proposition 1 The population mean lifetime, E[µZ ], if it exists, is larger than or equal
to µ0. Furthermore, if β > 1, E[1/µZ ] ≤ 1/µ0.

The proof is straightforward using Jensen’s inequality, given that E[Z] = 1. Proposition
1 suggests that the frailty leads to a larger population mean lifetime, compared to the
homogeneous case. Its application is shown later.
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4.1.1.2 Survival function, mean and likelihood

We postulate the assumption that the pseudo scale parameter α follows a gamma distri-
bution with a shape parameter k and scale parameter θ.

fα(s|k, θ) =
1

Γ(k)θk
sk−1e−

s
θ , (4.2)

with mean kθ = α. This is equivalent to Z following a gamma distribution with mean
1. Thus, α is an “average” scale parameter to some degree. Consequently, an ARA∞
population is fully determined by the quadruple (k, θ, β, ρ).

Let Xp
∞ be the steady-state population cycle duration. Xp

∞ does not represent any indi-
vidual steady-state cycle duration but could be regarded as the duration of a cycle drawn
from the ARA∞ population when all the members have entered the stable regime. Simi-
larly, let Ap∞ be the steady-state population’s virtual age, which is the VA after a repair of
an item randomly drawn from the population that has entered the steady-state. The sur-
vival functions of Ap∞ and Xp

∞, given parameters (k, θ, β, ρ), are obtained by conditioning
RA∞ and RX∞ on the gamma distribution of α:

RAp∞(t|k, θ, β, ρ) =

∫ ∞
0

RA∞(t|s, β, ρ)fα(s|k, θ)ds

=
∞∑
s=1

1

(q, q)∞(1
q
, 1
q
)s−1

(1 +
θtβ

qs
)−k, (4.3)

RXp
∞(t|k, θ, β, ρ) =

∫ ∞
0

RX∞(t|s, β, ρ)fα(s|k, θ)ds

=
βk

θk

∞∑
s=1

1

qs(q, q)∞(1
q
, 1
q
)s−1

∫ ∞
0

xβ−1[(x+ t)β − (1− q−s)xβ +
1

θ
]−(k+1)dx.

(4.4)

The population mean lifetime, E[µZ ], and the necessary condition of E[µZ ] being finite
when α is gamma-distributed is shown in Proposition 2:

Proposition 2 Let an ARA∞ population be described by (k, θ, β, ρ) with kθ = α. E[µZ ]
is finite if and only if k > 1

β
. Let cv be the coefficient of variation of α. As cv = k−1/2 in a

gamma distribution, E[µZ ] <∞ if and only if cv <
√
β. When this condition is satisfied,

E[µZ ] = µ0k
1/βΓ(k − 1/β)

Γ(k)
, (4.5)

and

E[1/µZ ] =
1

µ0

k−1/βΓ(k + 1/β)

Γ(k)
, (4.6)

The proof is straightforward and is omitted here.
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To compute the likelihood function, begin with a single ARA∞ sequence without consid-
ering the heterogeneity. Throughout Section 4.1, we use the notation

LΩ
∆(·|·), (4.7)

to represent the log-likelihood functions: Ω = s if the log-likelihood is derived for a single
ARA∞ process, and Ω = p for an ARA∞ population; ∆ = f if the pseudo scale parameter
α is a constant (fixed), and ∆ = r if α is a random variable because of the frailty.

In [89], the log-likelihood function based on a single ARA∞ set of observations X =
X1, X2...Xn is:

Lsf (α, β, ρ|X ) = n · log(αβ) + (β− 1)
n∑
i=1

log(ai−1 +Xi)−α
n∑
i=1

(ai−1 +Xi)
β − aβi−1, (4.8)

where ai−1 is the virtual age at the beginning of the i-th cycle. Consider now a homoge-
neous ARA∞ population, i.e., all the systems are identical. Let XM be the observation
matrix where each row represents an individual ARA∞ sequence of length nj, whereby
j ∈ 1...M . Xj,i is the i-th interval in the j-th sequence, and aj,i−1 is the virtual age at the
beginning of the i-th cycle in the j-th sequence. The log-likelihood function is given by
[32]:

Lpf (α, β, ρ|XM) = log(αβ)
M∑
j=1

nj + (β − 1)
M∑
j=1

nj∑
i=1

log(aj,i−1 +Xj,i)

− α
M∑
j=1

nj∑
i=1

(aj,i−1 +Xj,i)
β − aβj,i−1. (4.9)

Our interest is in the heterogeneous population. First, consider a single ARA∞ process.
When the pseudo scale parameter α is gamma distributed, the survival function of a cycle
X starting at age v is given by:

RX|v(t|β, k, θ) =

∫ ∞
0

e−s((v+t)β−vβ) · fα(s)ds = (θ[(v + t)β − vβ + 1/θ])−k, (4.10)

with the Pdf and failure rate being expressed as,

fX|v(t|β, k, θ) = kθ−kβ(v + t)β−1[(v + t)β − vβ + 1/θ]−k−1, (4.11)

λX|v(t|β, k, θ) =
kβ(v + t)β−1

(v + t)β − vβ + 1/θ
. (4.12)

For a single observation sequence X = X1, X2...Xn with no censored data, the likelihood
can be written as follows:

L(β, ρ, k, θ|X ) =
n∏
i=1

kθ−kβ(ai−1 +Xi)
β−1[(ai−1 +Xi)

β − aβi−1 +
1

θ
]−k−1. (4.13)
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Therefore, its corresponding log-likelihood is:

Lsr(β, ρ, k, θ|X ) = n·log(kθ−kβ)+(β−1)
n∑
i=1

log(ai−1+Xi)−(k+1)
n∑
i=1

log((ai−1+Xi)
β−aβi−1+

1

θ
).

(4.14)

It should be noted that if only one ARA∞ sequence is observed, the pair (k, θ) is non-
identifiable because no information on the variation of α is available. Consider the case
at which M independent ARA∞ sequences are observed. Using the same notations, the
log-likelihood of the ARA∞ population becomes

Lpr(k, θ, β, ρ|XM) =
M∑
j=1

nj · log(kθ−kβ) + (β − 1)
M∑
j=1

nj∑
i=1

log(aj,i−1 +Xj,i)

− (k + 1)
M∑
j=1

nj∑
i=1

log((aj,i−1 +Xj,i)
β − aβj,i−1 +

1

θ
). (4.15)

4.1.2 Inferences when heterogeneity is ignored

Given an observation matrix XM , it is important to properly specify the model if we want
to estimate the parameters, which determines some reliability indicators for the system,
e.g., the Weibull shape parameter β itself represents the aging speed of the asset. When
the number of events of each system within a period of time does not differ from each
other significantly, the heterogeneity is often overlooked. Under the faulty assumption
that all the individual ARA∞ sequences come from a certain triple (α, β, ρ), one may try
to maximize the likelihood function defined by Eq.(4.9). In a statistical context, this is
often referred to as the MLE of the misspecified model [112].

The following example shows how the variation of α influences the amplitude of the
underestimation of β and overestimation of ρ. The ARA∞ parameters are configured
as follows: ρ ∈ {0.25, 0.5, 0.75} for the cases associated with low/medium/high repair
effectiveness, and β ∈ {1.5, 3.5} associated the slow/fast wear out. In addition, α follows
a gamma distribution Γ(k, θ), whereby the mean is fixed to unity: kθ = α = 1. Let σ2(α)
be the variance of α. If the variation of α is considerably big, then the mean cycle duration
E[X∞] will also present considerable heterogeneity. Accordingly, maximization of the
likelihood defined by Eq.(4.9) is obviously inappropriate. Thus, we will only investigate
the situations at which the cv value is smaller than one. For illustration, two vectors of
σ2(α) are considered: ~σ2(α) = 0.01 : 0.01 : 0.15 for the case β = 1.5, and ~σ2(α) = 0.05 :
0.05 : 1 for the case β = 3.5. The pseudocode of the Monte Carlo simulation is given
below.

The length of a single ARA∞ observation, N , was selected as 1000, and the total number
of pooled ARA∞, M , was set to 5000. These values were aimed at reducing the variance
of the MLE estimators such that when the curves of the estimation bias are plotted, there
should be some observable patterns or trends instead of points exhibiting large variations.

The estimation biases for the shape parameter β, defined by Dβ = β − β̂, are positive,
plotted in Figures 4.1a and 4.1b. This indicates that β is underestimated when the
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Algorithm 1 Measurement of the estimation bias when the inappropriate model is
used

1: for β = [1.5, 3.5] do //aging rate
2: for ρ = [0.25, 0.5, 0.75] do //repair effectiveness
3: if β = 1.5 then
4: ~σ2(α) = 0.01 : 0.01 : 0.15
5: else
6: ~σ2(α) = 0.05 : 0.05 : 1
7: end if
8: for σ2 ∈ ~σ2(α) do // variance of α
9: Determine k, θ: θ = σ2, k = 1/θ

10: Generate vector ~α of length M = 5000 from Γ(k, θ)
11: for i = 1 : M do
12: Generate ARA∞ sequence of length N = 1000
13: with parameters (~α(i),β,ρ)
14: end for
15: Construct observation matrix XM of dim M ×N where each line

represents a single observation

16: Formulate an inference on XM using MLE (maximizing equation

4.9) and obtain β̂ and ρ̂
17: Calculate bias: Dβ = β − β̂, Dρ = ρ− ρ̂
18: end for
19: end for
20: end for

(a) Bias for β̂, β = 1.5 (b) Bias for β̂, β = 3.5

Figure 4.1: Bias for β̂.

heterogeneity on α is overlooked. The amplitude of the underestimation of β̂ (vertical
axis) increases with the variation of α (horizontal axis). Blue, red and yellow curves
represent the variation of estimation bias according to different repair efficiencies: the
larger the ρ, the smaller the bias. Conversely, as shown in Figures 4.2a and 4.2b, Dρ =
ρ− ρ̂ is negative, thus indicating that ρ is overestimated. Furthermore, the amplitude of
under/overestimation increases with σ2(α), and decreases when the repair effectiveness
increases.
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(a) Bias for ρ̂, β = 1.5 (b) Bias for ρ̂, β = 3.5

Figure 4.2: Bias for ρ̂.

4.1.3 Inferences based on the correct model

Here we discuss the parameter estimation based on the correct model, i.e., we suppose
that the population is heterogeneous, and the systems share the proportional hazard rates.
Nevertheless, the problem is not as easy as it may look like: the traditional MLE method
appears to be inconsistent, and some alternative inference procedure is proposed.

4.1.3.1 Maximum Likelihood Estimation

The ML estimators are obtained by maximizing Eq.(4.15):

(k̂, θ̂, β̂, ρ̂) = arg max
k,θ,β,ρ

Lpr(k, θ, β, ρ|XM). (4.16)

The ML estimators are not consistent, that is, when the sample size tends to infinity,
k̂, θ̂, β̂, and ρ̂ do not converge to real parameter values. Nevertheless, the population
mean lifetime (given by Eq.(4.5)) as well as the survival function (given by Eq.(4.4))
calculated with k̂, θ̂, β̂, and ρ̂, do not differ considerably from those computed using real
parameters. This is shown in the following example.

Example 4.1.1 Consider the case where the ARA∞ population is configured as follows:
k = 2, θ = 0.5, β = 3.5, and ρ = 0.5. The mean value of the scale parameter, α, equals
one. To construct the observation matrix XM , generate M = 10000 independent ARA∞
sequences, each with a length of N = 1000. The ML estimators obtained using Eq.(4.16)
are: k̂ = 6.3328, θ̂ = 0.3859, β̂ = 2.072, and ρ̂ = 0.8471. Thus, although the likelihood is
correctly established, β is still underestimated, whereas ρ is overestimated.

Underestimation of β and overestimation of ρ causes overestimation of the reliability of
the item. In our case, the reliability is not overestimated because the average value of
the scale parameter following the gamma distribution with k and θ was overestimated:
α̂ = k̂θ̂ = 2.4437 > 1 = α. Thus, the mean cycle durations of the population are very close,
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that is, E[Xp
∞|k, θ, β, ρ] = 0.5263, and E[Xp

∞|k̂, θ̂, β̂, ρ̂] = 0.5268. When the sample size
tends to infinity, the population mean lifetime calculated with ML estimators, is observed
to converge to the that computed with the true parameters. This is also observed for
other configurations that we tested. Besides, the distance between the survival functions,
RXp

∞(t|k, θ, β, ρ) and RXp
∞(t|k̂, θ̂, β̂, ρ̂), is also almost negligible.

Although, in Example 4.1.1, the population mean lifetime is nearly unbiased when the
model is erroneously specified, the consequences of a biased estimator are highlighted
later in maintenance optimization. We present in the following an alternative estimator,
which is asymptotically consistent, i.e., converge to the true parameter values when the
sample size tends to infinity.

4.1.3.2 Alternative approach

The principle on which our alternative approach is based is that the estimation of β and
ρ could be achieved independently from α. This is illustrated by the fact that when only
one ARA∞ sequence is observed, β and ρ could be accurately estimated if the failure data
is sufficiently long. Thus, in our proposed alternative approach, we first estimate β and
ρ and then deduce k and θ.

Estimation of β and ρ

Consider the observation matrix XM in which the j-th row represents a single ARA∞
observation with a length nj: Xj = Xj,1, Xj,2...Xj,nj . Given β and ρ, the scale parameter
αj can be estimated by setting the derivative of the likelihood function (Eq.(4.8)) with
respect to αj to zero:

α̂j(β, ρ) =
nj∑nj

i=1(aj,i−1 +Xj,i)β − aβj,i−1

. (4.17)

This means that we can estimate individually the pseudo parameters αj. The likelihood of
a single ARA∞ sequence given β and ρ is thus Lsf (α̂j(β, ρ), β, ρ|Xj). When M independent
ARA∞ sequences are superimposed in total, the likelihood given β and ρ is simply the
sum of all individual log-likelihoods:

L∗(β, ρ|XM) =
M∑
j=1

nj · log(α̂j(β, ρ)β) + (β − 1)
M∑
j=1

nj∑
i=1

log(aj,i−1 +Xj,i)

−
M∑
j=1

α̂j(β, ρ)

nj∑
i=1

(aj,i−1 +Xj,i)
β − aβj,i−1. (4.18)

The alternative estimators of β and ρ, denoted as β∗ and ρ∗, are given as follows:

(β∗, ρ∗) = arg max
β,ρ

L∗(β, ρ|XM). (4.19)
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Estimation of k and θ

Two possible measures are required to evaluate k and θ once β and ρ have been estimated.
The first among them is to derive the individual scale parameters αj, j ∈ 1...M using β∗,
ρ∗:

α∗j =
nj∑nj

i=1(aj,i−1 +Xj,i)β
∗ − (aj,i−1)β∗

. (4.20)

α∗j , j ∈ 1...M are independently and identically distributed (i.i.d.) random variables
following a gamma distribution with parameter (k∗a, θ

∗
a), which could be estimated from

the standard MLE for gamma distribution. An alternative approach is to estimate k
and θ by maximizing the population likelihood function in Eq.(4.15). The derivatives of
Eq.(4.15) with respect to k and θ are:

∂Lpr(k, θ, β, ρ|XM)

∂k
=

1

k

M∑
j=1

nj − log(θ)
M∑
j=1

nj −
M∑
j=1

nj∑
i=1

log((aj,i−1 +Xj,i)
β − aβj,i−1 +

1

θ
),

(4.21)

∂Lpr(k, θ, β, ρ|XM)

∂θ
= −k

θ

M∑
j=1

nj+(k+1)
M∑
j=1

nj∑
i=1

1

θ2(aj,i−1 +Xj,i)β − (aj,i−1)β + 1
θ

. (4.22)

θ∗b and k∗b can in turn be numerically obtained by setting the derivatives to zero,
∂Lpr(k, θ, β∗, ρ∗|XM)

∂k


k=k∗b ,θ=θ

∗
b

= 0

∂Lpr(k, θ, β∗, ρ∗|XM)

∂θ


k=k∗b ,θ=θ

∗
b

= 0

(4.23)

(k∗a, θ
∗
a) and (k∗b , θ

∗
b ) are compared in the next section.

4.1.4 Bias and variance of the alternative estimator

We address the consistency of the proposed alternative estimator when the sample size is
finite or infinite. For illustrative purpose, we study the ARA∞ population configured as
β = 2, ρ = 0.75, k = 4, θ = 0.25. The individual ARA∞ sequences share the common
length: n1 = n2 = ... = nM = N .

The asymptotic consistency of the estimators is demonstrated by estimating the parame-
ters from a very large sample (generated by Monte Carlo simulation): setting N = 20000
and M = 20000, the parameters are estimated as: β∗ = 2.0004, ρ∗ = 0.7499, k∗ = 3.9914
and θ∗ = 0.2508. In practice, however, the “infinite sample” can never be achieved, which
makes it necessary to investigate how the bias and variance of the estimates change as a
function of N and M .
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4.1.4.1 β∗ and ρ∗

The combinations of M ∈ {20, 50, 100, 200} and N ∈ {20, 50, 100, 200} are studied. A
total of 5000 independent samples, each of size M ×N , are generated. 5000 estimates of
the parameters, β∗1 , β

∗
2 , ...β

∗
5000 and ρ∗1, ρ

∗
2, ...ρ

∗
5000 are obtained for a given M and N . The

bias for β∗ is defined as 1/5000
∑

i β
∗
i − β (the same goes for ρ).

On the one hand, the bias for β∗ is positive, decreasing in N (solid lines in Figure 4.3a),
whereas the bias for ρ∗ (solid lines in Figure 4.3b) is negative and its absolute value
is also decreasing in N . M has, however, no influence on the bias, which means that
the accuracy of the estimates is not improved by increasing the number of independent
ARA∞ sequences. We conclude that the alternative estimators over-estimates β and
under-estimates ρ. On the other hand, their variances are decreasing in both N and M
(dashed lines in Figures 4.3a and 4.3b).

Compare now β∗ and ρ∗ to the maximum likelihood estimators, β̂ and ρ̂. For the config-
uration studied above, the bias for β̂ ranges from -0.47 to -0.55, whereas that of ρ̂ ranges
from 0.18 to 0.21. MLE estimators are, therefore, much more biased (with finite or infinite
sample) than the alternative estimators.

(a) β∗ (b) ρ∗

Figure 4.3: Bias and variance of β∗ (left) and of ρ∗ (right). The y-axis on the left side
represents the bias (drawn correspondingly in the graphs with solid lines) while that on
the right side shows the variance (dashed lines).

4.1.4.2 k∗ and θ∗

The accuracy of the estimators k∗ and θ∗ relies on 1) an accurate estimation of β and ρ
and 2) a sufficient number of independent ARA∞ sequences. Figures 4.4a and 4.4b show
that the estimates of k and θ, no matter obtained with gamma fit (k∗a and θ∗a) or with
likelihood maximization (k∗b and θ∗b ), converge to k and θ only if both M and N are very
large (the pink line with cross marker, representing the bias when M = 200, is the only
one that converge to 0 (the black line) as N grows). This being, the practitioner who
wishes to estimate k and θ needs to choose the appropriate inference method according
to the data size: for example, when a total of 20 ARA∞ sequences are observed, using
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the gamma fit approach is more suitable than utilizing the likelihood maximization when
a large number of observations is recorded for each individual sequence (when N = 200,
dashed red lines are closer to 0 compared to solid red lines); if, however, the numbers of
observations in each ARA∞ sequence are also limited, e.g., 20, then the ML estimators,
k∗b and θ∗b , becomes preferable than k∗a and θ∗a.

Besides, the variance of k∗a/b and θ∗a/b is not influenced by N but decreases when M
increases.

(a) k∗a and k∗b (b) θ∗a and θ∗b

Figure 4.4: Bias for k∗ (left) and for θ∗ (right). k∗a and θ∗a are plotted using dashed lines:
they are derived by fitting a gamma distribution to α. k∗b and θ∗b are plotted using solid
lines: they are obtained by maximizing the corresponding likelihood.

4.1.5 Maintenance optimization for heterogeneous ARA∞ pop-
ulation

We consider here two typical maintenance optimization problems. First, the issue of
optimal repair degree when the cost of corrective maintenance is an increasing function
of ρ is examined for heterogeneous ARA∞ population. Second, the block replacement
PM policy is investigated. We show that the heterogeneity does not influence the optimal
repair degree, but affects the long-run cost per unit of time per system and the optimal PM
interval. Particularly, Example 4.1.3 illustrates the benefits of taking the heterogeneity
into account when scheduling the periodic PM with unknown parameters.

4.1.5.1 Optimal repair degree

In this section, we focus mainly on the repair process of heterogeneous ARA∞ population
with the increasing baseline failure rate. Finkelstein [43] has considered the optimal
degree of imperfect repair that achieves the minimal, expected long-run cost rate for one
single system. In the following, we investigate how the frailty, not necessarily gamma-
distributed, influence the expected long-run cost rate as well as the optimal repair degree.
But first, let us recall the setting.



4.1. ARA∞ model 55

Assume that the degree of repair, ρ, is a decision variable and that the cost of an imperfect
maintenance action at any cycle depends only on ρ. This situation occurs when one can
decide to what extent the system is maintained. For example, let a series system be
composed of many independent components that are aging. When one component fails,
one may choose to 1) replace the failed item (which almost corresponds to a minimal repair
since only a small proportion of the system is renewed) or 2) replace all (a perfect repair)
or 3) replace a certain number of components, including the failed one. The third case
corresponds to an imperfect repair at a system level, and the proportion of the replaced
items determines ρ. Denote by C(ρ|α, β) this cost. It is natural to assume that it is an
increasing function of ρ and

Cm = C(0|α, β) ≤ C(ρ|α, β) ≤ C(1|α, β) = Cp, (4.24)

where Cm and Cp are the costs of minimal and perfect repairs, respectively. Consider
now the long-run average maintenance cost rate. The ARA∞ process enters its steady-
state and the mean cycle length for the corresponding Weibull IFR baseline distribution,
µ(ρ|α, β) = E[X∞|α, β, ρ], is an increasing function of ρ. Based on the renewal reward
theory reasoning, for a single system, the expected long-run cost per unit of time c(ρ) is
given by:

c(ρ|α, β) =
C(ρ|α, β)

µ(ρ|α, β)
. (4.25)

This is also the long-run average repair cost per unit of time per system when mainte-
nance activities are carried out on a homogeneous population. Existence of an optimal
maintenance degree ρ∗, which minimizes c(ρ|α, β), has been addressed in [43]. Basically,
it requires that c(ρ|α, β) be increasing as ρ tends to 1.

Consider now a heterogeneous ARA∞ population. The baseline failure intensity of the
systems is characterized by frailty Z. The corresponding long-run average cost rate is
therefore given by:

c(ρ|Zα, β) =
C(ρ|α, β)

µZ(ρ|α, β)
, (4.26)

where µZ(ρ|α, β) = E[X∞|Zα, β, ρ]. The long-run average cost rate per system can be
obtained by taking the expectation:

E[c(ρ|Zα, β)] = C(ρ|α, β)E[
1

µZ(ρ|α, β)
] ≤ c(ρ|α, β). (4.27)

The inequality follows Proposition 1. It seems that the frailty reduces the long-run av-
erage cost per unit of time per system. This is because the systems in a heterogeneous
population survive, on average, “longer” than those in a homogeneous one. In addition,
it is obvious that the optimal repair degree ρ∗ minimizing c(ρ|α, β) will also minimize
E[c(ρ|Zα, β)]. We, therefore, conclude that the frailty reduces the long-run average cost
rate per system without influencing the optimal repair degree.
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4.1.5.2 Block replacement policy in ARA∞ population

The block replacement policy [67] is widely used in industry because it is easier to ad-
minister than other policies that are potentially more cost-effective, like age-based PM or
failure-limit PM [89]. It consists of replacing the item periodically at a fixed interval of
τ, 2τ, 3τ..., and the periodic replacement is supposed to be perfect in the current study.
Here, we make the assumption that if an item fails within an interval, it is imperfectly
repaired with a repair degree ρ. There is no maintenance delay, and the repair time is
assumed to be negligible.

For a single ARA∞ process, the long-run average cost per unit of time is given by:

c(τ |α, β, ρ) =
Cp + Cc ·M(τ, 0|α, β, ρ)

τ
, (4.28)

where Cp and Cc are respectively the cost of PM and of CM. M(t, v|α, β, ρ) is the renewal-
type function in an ARA∞ process with parameters (α, β, ρ), representing the expected
value of number of events within an interval t when the system starts working at age v.
It is the solution to the following renewal-type equation:

M(t, v|α, β, ρ) =

∫ t

0

[1 +M(t− y, (1− ρ)(v + y)|α, β, ρ)]
f(v + y|α, β, ρ)

F (v|α, β, ρ)
dy, (4.29)

where f and F are the Pdf and survival function of the first interval (see [23] for more
details). Eq.(4.28) holds for a homogeneous population, wherein each item shares the
same PM period. Now, let us consider a heterogeneous ARA∞ population governed by
the frailty Z. When the population size is large, the average long-run cost per unit of
time per system is obtained by taking the expectation of c(τ |Zα, β, ρ):

E[c(τ |Zα, β, ρ)]) =
Cp + Cc · E[M(τ, 0|Zα, β, ρ)]

τ
. (4.30)

Eq.(4.30) shows that the frailty has a direct impact on the renewal-type function. A
thorough study of how M(t, v|Zα, β, ρ) is influenced by Z is part of future work but
is beyond the scope of the current report. Since there exists no explicit formula for
M(t, v|α, β, ρ), Monte Carlo simulation is used to determine the optimal replacement
period τ ∗. The following example demonstrates how a homogeneous population differs
from a heterogeneous one in maintenance cost and optimal PM period.

Example 4.1.2 A heterogeneous population is composed of M = 25000 independent
ARA∞ sequences with α = 1, β = 3, ρ = 0.6. The heterogeneity is governed by the
variance of α, σ2(α), ranging in {0, 0.1, 0.2, 0.3}. α follows a gamma distribution with
mean 1. The repair costs are set as Cp = 1, Cc = 5. In Figure 4.5, the long-run repair
cost rate per system for a homogeneous population (when σ2(α) = 0) is shown by the blue
line with a circle marker. When frailty is introduced, it decreases monotonically with the
amplitude of heterogeneity (red, yellow, and purple curves). However, in this example, it
is not clear how the optimal PM interval, τ ∗, changes with σ2(α).

The model parameters are seldom known in real life: they have to be estimated from
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Figure 4.5: Long-run repair cost rate per system.

existing failure/repair records. We have previously shown that the parameters estimated
under the faulty assumption that the population is homogeneous are proved to be biased.
When scheduling PM activities for a heterogeneous population, the biased estimates will
lead to non-optimal PM intervals, as is shown in the following example. We are not
advocating that an optimal PM interval be assigned individually for each item: this
usually leads to cumbersome computation and is not easy to implement or administer.
Instead, we argue that an optimal PM period, same for all items in the population, could
be obtained by accounting for the heterogeneity.

Example 4.1.3 Consider a fleet of M = 100 independent repairable systems under im-
perfect repair of type ARA∞. The individuals have different baseline failure intensities
governed by the pseudo scale parameter αj, j ∈ 1...M , which follows a gamma distri-
bution with mean 1 and variance 0.2 (k = 5, θ = 0.2). Other parameters are set as
β = 3, ρ = 0.6, Cc = 5, Cp = 1. A total of N = 50 observations are recorded for each
system (generated with Monte Carlo simulation). Therefore, the failure histories of the
population consist of a matrix of dimension 100 × 50, based on which we will determine
the optimal PM interval.

Three circumstances are considered: A) the PM interval is determined using the true
parameters: this is the ideal situation and serves as a reference; B) We ignore the het-
erogeneity, and assume that all systems in the ARA∞ population are identical (share the
same parameters); C) We assume that the baseline failure intensities of the systems differ
only in α (with the same β and ρ).

Circumstance A: When the true parameters αj, β, ρ are known, c̄(τ |αj, β, ρ) = 1/100
∑100

j=1 c(τ |αj, β, ρ)
is drawn by the orange line with cross marker in Figure 4.6. c(τ |αj, β, ρ) is defined by
Eq.(4.28), representing the long-run repair cost per unit of time for system j when the
PM interval is τ . It is obtained via Monte Carlo simulation due to the intractability of
the renewal-type function. The true optimal PM interval τ ∗ ' 0.47 (the orange diamond
in Figure 4.6), with c̄(τ ∗|αj, β, ρ) = 3.207.
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Circumstance B: Under the incorrect assumption that all items are identical, the triple
(α̂, β̂, ρ̂) is estimated as (1.4717, 2.2932, 0.758): β and ρ are under/over estimated, which
is consistent with the previous findings. For such a homogeneous ARA∞ population,
c(τ |α̂, β̂, ρ̂) is shown by the blue line with cycle marker in Figure 4.6. τ̂ ' 0.405 is
the optimal PM period.

Circumstance C: Taking the heterogeneity into consideration, the ARA∞ parameters are
estimated as β̃ = 3.0891, ρ̃ = 0.5960 using the inference method given in section 5.2.1. The
pseudo parameters α̃j, j ∈ 1...M are estimated individually for each item with Eq.(4.20).
For such a heterogeneous ARA∞ population, c̄(τ |α̃j, β̃, ρ̃) is drawn by the red line with
triangle marker in Figure 4.6, and the optimal PM period τ̃ ' 0.485.

The advantage of considering the heterogeneity among the individual systems when schedul-
ing PM activities is therefore highlighted by the fact that, red line is much closer to the
orange line compared to the blue line. This is further verified by comparing τ̃ and τ̂ :
c̄(τ̃ |αj, β, ρ) = 3.212, whereas c̄(τ̂ |αj, β, ρ) = 3.285. The maintenance cost is therefore re-
duced when implementing PM with period τ̃ on the ARA∞ population governed by αj, β, ρ.

Figure 4.6: Long-run repair cost rate per system computed with the correctly specified
model (heterogeneity taken into account, red line with triangle marker) and that computed
with the erroneous model (heterogeneity ignored, blue line with cycle marker). The former
is obviously closer to the real cost rate (orange line with cross marker) computed with
true parameters.

It should be noticed that the significant reduction of long-run repair cost in Example 4.1.3
is related to the large size (100 × 50) of the simulated dataset: the more data we have,
the more accurately we can estimate the parameters and the more the red line converges
to the orange line. When the data size is limited, the red line’s position may have a large
variation (depending on the dataset itself), and a more cost-effective PM interval is not
necessarily achieved by accounting for the heterogeneity, due to the potential bias of the
estimates.
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Considering the heterogeneity, if we further assign a specific PM interval for each sys-
tem, the average long-run repair cost rate for the population depicted in Example 4.1.3
is around 3.088, which is the mean value of the minimums of 100 different cost curves.
Although administering such a PM policy is generally troublesome, the maintenance cost
is reduced significantly compared to the situation where all systems are preventively main-
tained with the same period. In Bane NOR, a compromised approach which consists in
classifying assets into different groups (subpopulations) before planning the maintenance
activities accordingly, is frequently used. This allows a balance between the practicability
of the maintenance strategy and the maintenance expenditure.

4.2 Brown Proschan

BP model is another widely applied stable process used to characterize imperfect main-
tenance. When a fleet of repairable systems undergoes repair of type BP, i.e., the repair
is perfect with a probability p and minimal with a probability 1− p, the heterogeneity is
shown to play an important role in the population’s mean lifetime and reliability. In this
section, we address the heterogeneous BP population from a mathematical point of view,
and the issue of statistical inference is not pursued.

Imperfect repair models commonly have three parameters: two of them define the baseline
failure rate, i.e., power law function λ(t) = αβtβ−1, and a repair efficiency parameter ρ
or perfect repair probability p that measures how efficient the maintenance is. For the
ARA∞ process, we have explicitly considered the frailty model where the heterogeneity
is characterized by the proportional hazard rate of the individual systems. If the systems
are working in different environments, the aging speed, often described by the Weibull
shape parameter β, may present a heterogeneity because some harsh environments are
more likely to accelerate the wear. If workers of different skills or experience maintain
the systems, then it is also possible that identical systems will undergo repairs of differ-
ent efficiency, and will present distinct mean lifetime and requires different maintenance
resources.

In this section, for the BP model, we consider three types of heterogeneity: frailty (pro-
portional failure rate), heterogeneous perfect repair probability, and heterogeneous shape
parameter when the baseline distribution is Weibull. Particularly, we focus on the influ-
ence of heterogeneity on the population mean lifetime.

4.2.1 Frailty in BP

Let Z be the frailty variable with expectation 1. Similarly to ARA∞ process, the failure
intensity becomes therefore proportional, and the mean lifetime of a single BP process in
its stable state given Z is:

µZ = E[X∞|Z] = p

∫ ∞
0

e−pZΛ(x)dx, (4.31)
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which is a convex function of Z. Following Jensen’s inequality, the expectation of µZ is
larger than µ, the mean lifetime without heterogeneity:

E[µZ ] ≥ µ, µ = p

∫ ∞
0

e−pΛ(x)dx. (4.32)

Same as in an ARA∞ population, the heterogeneity will enlarge the mean lifetime of the
assets in the population. We can then discuss the existence of E[µZ ] by specifying the
distribution of Z, denoted by fZ , and the baseline failure rate Λ(t). For example, consider
the power law intensity:

Λ(t) = (
t

η
)β = αtβ, (4.33)

then the mean lifetime of a BP process when it enters stable state given the frailty Z is:

µZ = p

∫ ∞
0

e−pZαt
β

dx = µZ−1/β, (4.34)

and the mean lifetime of the heterogeneous population is:

E[µZ ] = µE[Z−1/β]. (4.35)

This results holds for ARA∞ population as shown in Eq.(4.1). Consequently, if Z is
gamma distributed as in Eq.(4.2) with parameters k and θ, then the population mean
lifetime E[µZ ] is finite only if β > 1

k
, or, equivalently, cv(Z) <

√
β. If the variation of Z

is too large, the mean lifetime of the population tends to infinity, as shown in Example
4.2.2.

It is also important to look into the population’s reliability function. Let XZ
∞ be the

steady-state population cycle duration. XZ
∞ does not represent any individual steady-

state cycle duration but could be regarded as the duration of a cycle drawn from the BP
population when all the members have entered the stable regime. Similarly, let AZ∞ be
the steady-state population’s VA, which is the VA after a repair of an item randomly
drawn from the population that has entered the steady-state. The survival functions of
AZ∞ and XZ

∞, when the frailty Z is gamma distributed with parameter k and θ = 1/k, are
respectively given by

RAZ∞
(x|k) = (1− p)(1 +

pΛ(x)

k
)−k, (4.36)

and

RXZ
∞

(x|k) = p

∫ ∞
0

λ(x+ v)(1 +
Λ(x+ v)− (1− p)Λ(x)

k
)−k−1dv. (4.37)

Example 4.2.1 Consider the gamma-distributed frailty variable Z and the power law
intensity λ(x) = x2. The perfect repair probability p equals to 0.75. Figure 4.7a shows
that RXZ

∞
(x|k) is increasing in σ2(Z): when σ2(Z) rises from 0 to 2, the tail of the

survival function becomes heavier and heavier, resulting in eventually an infinite value of
the integral.

Example 4.2.2 Let Z be gamma distributed and β ∈ {0.75, 1.5, 2.5}, p = 0.75. Figure
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4.7b shows that the mean population lifetime E(XZ
∞|k) is increasing in σ2(Z), and that

E(XZ
∞|k) rises to infinity once σ2(Z) > β.

(a) RXZ
∞

(x|k) increases with σ2(Z) (b) E(XZ
∞|k) increases with σ2(Z)

Figure 4.7: Examples of the survival functions (left) and mean cycle durations (right) of
a heterogeneous BP population. The larger the variation of Z, the larger the survival
function of XZ

∞ and the larger its expected value.

We can now investigate the inverse of µZ and its expectation. Previously, we have shown
for ARA∞ population that E[1/µZ ] is vital for the calculation of the long-run repair cost
for specific maintenance efficiency. For the Brown Proschan process, if the perfect repair
probability p is a decision variable, a similar optimization framework could be established
by assuming that the cost of a repair is an increasing function of p. In this way, the
long-run average repair cost is proportional to E[1/µZ ], as shown in Eq.(4.27).

Let Z be gamma distributed with parameter k and θ and let E(Z) = kθ = 1. The survival
function of 1/µZ is given by

P (
1

µZ
> t) = P (Z > (µt)β) =

Γ(k, (µt)β

θ
)

Γ(k)
, (4.38)

where Γ(s, x) represents the upper incomplete Gamma function:

Γ(s, x) =

∫ ∞
x

ts−1e−tdt. (4.39)

Integrating the survival function, the inverse of the mean cycle durations has the following
expectation:

E[
1

µZ
] =

1

µ
θ1/βΓ(k + 1/β)

Γ(k)
=

1

µ
k−1/βΓ(k + 1/β)

Γ(k)
. (4.40)

Once again, the same result can be found in ARA∞ processes, as shown in Eq.(4.6). This
is because when the baseline failure rate is power law, the mean cycle duration of a BP
or ARA∞ process entering its stable state is proportional to its scale parameter η. For
other baseline distribution, e.g., gamma or log-normal distribution, Eq.(4.40) does not
necessarily hold.
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4.2.2 Heterogeneous perfect repair probability

When the maintenance crew members are of different skill levels, the repair effectiveness
could be dissimilar. Most likely, we would face the situation where the assets could be
divided into subpopulations, each maintained by one maintenance personnel. In the case
of BP imperfect repair models, the most skilled technician is more likely to conduct a
perfect repair because they rarely make mistakes, whereas the less experienced one may
have a higher probability of carrying out a minimal repair. Let us first look at a discrete
mixture.

4.2.2.1 Discrete mixture

Consider a population composed of identical systems, governed by the baseline failure
rate Λ(t), undergoing imperfect repair of type BP. It is divided into two subpopulations,
the first maintained by a skilled technician who is able to repair perfectly the systems
with probability p1 or minimally restore the systems with probability 1− p1; the second
subpopulation is maintained by a less experienced worker, with a perfect repair probability
p2, and minimal repair probability 1− p2. p1 > p2.

The mean lifetimes when the system enters its stable state for the first subpopulation, µ1,
and that for the second subpopulation, µ2, are respectively given by

µ1 = p1

∫ ∞
0

e−p1Λ(x)dx, µ2 = p2

∫ ∞
0

e−p2Λ(x)dx. (4.41)

Clearly, µ1 > µ2 if the baseline failure rate is increasing: for aging systems, the lifetime
after a renewal is larger than that after a minimal repair. For the mixed population, the
mean lifetime is given by its harmonic mean:

µ =
2

1
µ1

+ 1
µ2

=
2µ1µ2

µ1 + µ2

. (4.42)

This being, an interesting question arises: is it better to employ two technicians having
heterogeneous repair skills, i.e., p1 and p2, or to train the maintenance crew so that they
have the same skill, i.e., an averagely satisfying perfect repair probability p̄ = (p1+p2)

2
?

Currently, the criteria are simple: we want to maximize the mean population lifetime, or
in other words, we would like to minimize the total number of failures of the systems in
the long term.

Assume that both of the technicians have a perfect repair probability, p̄. Then the popula-
tion is homogeneous: they share the same baseline failure rate and undergo homogeneous
repair actions. Thus, the population mean lifetime is simply the mean cycle duration of
a single BP process:

ν = p̄

∫ ∞
0

e−p̄λ(x). (4.43)

When the baseline failure intensity is described by an increasing power law function, i.e.,
Eq.(4.33) with β > 1, the population mean lifetime when the repairs are heterogeneous,
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µ, is smaller than ν :

µ =
2µ1µ2

µ1 + µ2

≤ √µ1µ2 ≤ ν. (4.44)

The first inequality results from harmonic mean being smaller than the geometric mean,
and the second inequality comes from the power law failure rate:

µ1µ2 = (p1p2)1−1/β(ηΓ(1 +
1

β
))2, (4.45)

and

ν2 = (
p1 + p2

2
)2−2/β(ηΓ(1 +

1

β
))2. (4.46)

Obviously, (p1+p2
2

)2 ≥ p1p2, and therefore ν ≥ √µ1µ2. This means in order to minimize
the number of system failures over a long period of time, it is better to employ some
homogeneous maintenance crew who have similarly adequate skill/experience, rather than
a mixture of some highly skillful personnel and inexperienced rookies. On the contrary, if
the baseline failure rate λ(t) is decreasing, i.e., systems are getting younger as time goes
by, then the inequality in Eq.(4.44) is inversed, which means it would be better to employ
rookies who can generally ensure a minimal repair to minimize the long-run number of
failures. This is demonstrated by the following example.

Example 4.2.3 Consider two independent and identical machines maintained by techni-
cian A and B. The repair process is described by BP, where the perfect repair probabilities
of technician A and B are denoted respectively pA and pB with pA ≤ pB. Assume that
the average perfect repair probability is 0.5. Let d = (pB − pA)/2 be a measure of the
heterogeneity of the perfect repair probability. Figure 4.8a depicts how the mean lifetimes
of the two machines, as well as the mean lifetime of the population, change with d when
the aging parameter β = 2: the dashed line represents the mean population lifetime when
pA = pB = 0.5. When the assets are aging, the machine maintained by technician B (A)
has a longer (shorter) mean lifetime but overall, the mean cycle duration of the popula-
tion is decreasing in d; conversely, the mean lifetime of the population is increasing in d
when the systems are getting younger (β = 0.9) as shown in Figure 4.8b. The results are
consistent with Eq.(4.44).

4.2.2.2 Continuous mixture

To complete this section, we shall discuss a continuous mixture. This happens when our
maintenance crew has an instable performance: in average, the personnel has a probability
p to restore the system to the as-good-as-new state; but sometimes he or she can do better
and sometimes much worse, depending, for example, on the mental state or some external
factors. This being, the performance of the maintenance crew, i.e., the perfect repair
probability p, can be regarded as a continuous random variable defined on [0, 1], which
suggests implicitly that better-than-new and worse-than-old repairs are excluded from the
current discussion.
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(a) β = 2 (b) β = 0.9

Figure 4.8: Variation of the mean lifetime. The blue curve and red curve represent re-
spectively the mean lifetime of machines maintained by A and B. The population mean
lifetime is their harmonic mean, drawn by the orange line. The purple dashed line repre-
sents the homogeneous situation where the two technicians share the same perfect repair
probability.

Let fp be the probability density/mass function of p and p̄ = E[p] be the mean probability
of perfect repair. For now, we do not specify fp. Let Xp

∞ be the steady-state population
cycle duration. It should be noted that we adopt the superscript ‘p’ rather than ‘Z’
because the source of the heterogeneity is no longer a frailty variable. This being, the
expected value of Xp

∞ is given by:

E[Xp
∞|fp] =

∫ 1

0

∫ ∞
0

se−sΛ(x)fp(s)dxds. (4.47)

From a practical point of view, it is useful to define an ‘average’ mean lifetime, which
represents the mean lifetime of a BP population that undergoes homogeneous repairs with
perfect repair probability p̄ = E[p]:

E[X∞|p̄] = p̄

∫ ∞
0

e−p̄Λ(x)dx. (4.48)

The relation between E[Xp
∞|fp], and its ‘averaged’ version E[X∞|p̄], is given below.

Proposition 3 Consider the power law baseline failure intensity: λ(x) = αβxβ−1. Then,

E[Xp
∞|fp, β] ≤ E[X∞|p̄, β] if β ≥ 1, (4.49)

and
E[Xp

∞|fp, β] ≥ E[X∞|p̄, β] if β ≤ 1. (4.50)

proof 7 Let h(p) = p
∫∞

0
e−pαx

β
dx. When β > 1, αxβ is a convex function of x, making
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h(p) a concave, but increasing function of p. Applying Jensen’s inequality: E[h(p)] ≤
h[E(p)] leads to E[Xp

∞|fp, β] ≤ E[X∞|p̄, β]. Conversely, when β < 1, αxβ is concave and
h(p) is convex, resulting in E[Xp

∞|fp, β] ≥ E[X∞|p̄, β].

This result can be interpreted as follows: consider two fleets of identical repairable systems
under imperfect repair of type BP. The first fleet is repaired by workers having homoge-
neous skills: each item is maintained to perfect state with probability p. Technicians of
different expertise maintain the assets in the second fleet: some are more likely to repair
the asset to a perfect state than others, but on average, the probability of perfect repair is
also p. This being, if the assets under consideration are wearing out (β > 1), the average
lifetime of the assets in the second fleet is smaller than that of the assets in the first fleet.
This is consistent with what has been observed for the discrete mixture.

The Beta distribution is usually utilized to model the behavior of random variables limited
to intervals of finite length, particularly the proportion or probability outcomes. Assume
now that the perfect repair probability p in BP models follows a Beta distribution:

fp(s) =
sa−1(1− s)b−1

B(a, b)
, a > 0, b > 0, (4.51)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function. Then the expected value and
survival function of the asymptotic cycle duration of the population are given by:

E[Xp
∞|fp] =

∫ 1

0

∫ ∞
0

se−sΛ(x) s
a−1(1− s)b−1

B(a, b)
dxds

=
a

a+ b

∫ ∞
0

Φ(a+ 1; a+ b+ 1;−Λ(x))dx, (4.52)

and

RXp
∞(x|fp) =

a

a+ b

∫ ∞
0

λ(x+ v)e−Λ(x+v)+Λ(v) · Φ(a+ 1; a+ b+ 1;−Λ(v))dv, (4.53)

where Φ(b; c; z) =
∑∞

n=0
B(b+n,c−b)
B(b,c−b)

zn

n!
is the extended confluent hyper-geometric function.

Unlike heterogeneous failure intensity, the variance of p will not lead to infinite mean
cycle duration of the population when the asset is aging: E[Xp

∞] reaches its maximum
(the mean lifetime of a renewal process) when p constantly equals to 1; However, when
β < 1, the existence of E[Xp

∞] depends on fp and on λ.

Example 4.2.4 Let λ(x) = x2. The perfect repair probability p follows a Beta distribution
with mean E[p] = 0.5 and variance σ2(p) = [0.05, 0.1, 0.15, 0.2]. The pdf of p are drawn
in Figure 4.9. The corresponding survival functions of the population lifetime are shown
in Figure 4.10. It is observed that ∀x > 0, the larger σ2(p), the smaller RXp

∞(x|fp) would
be.
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Figure 4.9: Pdf of p for different σ2(p).
E[p] = 0.5.

Figure 4.10: RXp
∞(x|fp) as a function of

σ2(p).

4.2.3 Heterogeneous aging parameter

Assume that the first intervals of all systems in the population are Weibull distributed.
This corresponds to the power law failure intensity: λ(x) = αβxβ−1. Under different
working conditions, the assets may have different wearing velocities, resulting in a non-
homogeneous aging parameter β. We assume that there is no frailty variable and that
repair effectiveness, p, is homogeneous. We investigate in this section how the heteroge-
neous β influences the population mean lifetime.

Let fβ be the probability density/mass function of β and β̄ =
∫∞

0
sfβ(s)ds be its expected

value. Let Xβ
∞ be the steady-state population cycle duration. It should be noted that we

adopt the superscript ‘β’ rather than ‘Z’ or ’p’ because the source of the heterogeneity is
neither a frailty variable nor the repair effectiveness.

The convexity of E[X∞] as a function of β, depends on β. Therefore, no direct result can
be drawn regarding the relationship between E[X∞|β̄], the “average” mean cycle duration
and E[Xβ

∞|fβ], the true mean lifetime of the heterogeneous population. This is shown in
the following example.

Figure 4.11: E[X∞|β] as a function of β. Figure 4.12: Monotonicity of E[X∞|fβ].
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Example 4.2.5 Let λ(x) = βxβ−1 be the failure intensity and g(β) = E[X∞|β] =
p
∫∞

0
e−px

β
dx be a function of β. Figure 4.11 shows that E[X∞|β] is first a convex then a

concave function of β. The inflection point β∗ (where the second derivative changes sign)
when p = 0.99 is around 3.45: E[X∞|β] is a convex function before 3.45 and a concave
one after.

Consider the situation where the diverse aging parameters of the n systems in a population,
β1, β2...βn, are deterministic and known. β̄ =

∑n
i=1 βn/n is the mean aging rate. The

mean lifetime of the population, E[Xβ
∞|β1, β2...βn] is the harmonic mean of the mean cycle

durations of each individual system. When max(βi) < β∗, all the shape parameters belong
to the domain on which E[X∞|β] is convex, resulting in E[Xβ

∞|β1, β2...βn] ≥ E[X∞|β̄].
Conversely, if min(βi) > β∗, the concavity leads to E[Xβ

∞|β1, β2...βn] ≤ E[X∞|β̄].

Now, let us consider a specific distribution for β. If a reliability engineer says: “We know
the machines are aging, and that 80% of the aging rates are smaller than 2”, then this may
be referred to as the “80-20 rule”, or the Pareto principle, which may further inspire the
utilization of the Pareto distribution to describe the empirical dispersion of the Weibull
shape parameters.

Let fβ be the Pdf of a Pareto law with scale parameter βmin > 0 and shape parameter
k > 0:

fβ(s) =
kβkmin
sk+1

, s ≥ βmin. (4.54)

βmin represents the lower bound of β and k decides the shape of the density: the larger
the k, the more β cluster around βmin. Some Pdf of the Pareto distribution with βmin =
1, k = 1, 2, 5 are drawn in Figure 4.13a. For a Pareto distributed random variable, the
mean exists only if k > 1, and that the variance exists only if k > 2.

(a) Pareto distribution (b) R
Xβ
∞

(x|fβ)

Figure 4.13: Pdf of Pareto distribution (left) and survival function of Xβ
∞ (right) when β

follows a Pareto distribution. Parameters are set as βmin = 1, k = 1, 2, 5.

The population mean lifetime E[Xβ
∞|fβ] is given by:

E[Xβ
∞|fβ] =

∫ ∞
βmin

∫ ∞
0

pe−p(x/η)s kβ
k
min

sk+1
dxds = ηpkβkmin

∫ 1
βmin

0

p−tΓ(1 + t)tk−1dt. (4.55)
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The monotonicity of E[X∞|fβ] is relatively complex. For illustrative purpose, let’s con-
sider the special case where βmin = 1: the systems are simply wearing out. Then, the
derivatives of E[Xβ

∞|fβ] with respect to η, p and k are given by:

∂E(X∞|fβ)

∂η
= pk

∫ 1

0

p−tΓ(1 + t)tkdt,

∂E(X∞|fβ)

∂p
= ηk

∫ 1

0

p−tΓ(1 + t)tk−1(1− t)dt,

∂E(X∞|fβ)

∂k
= ηp

∫ 1

0

p−tΓ(1 + t)tk−1(1 + klog(t))dt.

(4.56)

When βmin = 1, the partial derivatives are both positive, indicating that E[Xβ
∞|fβ] is

increasing in η, p and k. This is because 1) in a Weibull distribution, the mean lifetime
is proportional to η 2) when the asset is aging, the larger the p, the more we repair and
the longer the average lifetime and 3) The larger the k, the more the shape parameters
cluster around βmin which is 1, so the BP processes behave more like a renewal process.

Example 4.2.6 Let p = 0.95 be the perfect repair probability. Figure 4.12 shows that the
monotonicity of E[X∞|fβ] with respect to k depends on βmin: the red curve with triangle
marks reveals that E[X∞|fβ] is decreasing in k when βmin = 4, whereas the blue curve
with circle marks suggests that E[X∞|fβ] is increasing in k when βmin = 0.75.

4.3 Geometric Process and ARA1

Assume that the baseline failure intensity is described by the power law: λ(t) = β/η(t/η)β−1.
For a Weibull distributed random variable, the scale parameter η is proportional to the
mean lifetime. Thus, for ARA1 and geometric process, we investigate the situation where
the scale parameter itself is heterogeneous, e.g., characterized by a gamma distribution.
This is slightly different from the previous studies where the heterogeneity is imposed
on the pseudo parameter α with α = η−β: we are no longer in the framework of frailty
analysis where the hazard rates of individual systems are proportional.

Let the heterogeneity among the individuals be characterized by a gamma-distributed
Weibull scale parameter η, with shape parameter k and scale parameter θ:

fη(s|k, θ) =
1

Γ(k)θk
sk−1e−

s
θ , (4.57)

with mean kθ = η. Thus, η is an ”average” scale parameter to some extent. On the
other hand, the degree of heterogeneity between the individuals can be modeled by the
variance, σ2(η), which equals to kθ2. k and θ are therefore fully determined by η and
σ2(η). In the following, η is set to 1. We reveal for ARA1 and GP how σ2(η) influence the
estimation bias for the aging parameter and maintenance efficiency when the heterogeneity
is erroneously overlooked. The issue of the population mean lifetime is not pursued, since
the ARA1 and geometric process, unlike ARA∞ or BP, are not stable: the cycles are
stochastically decreasing.
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4.3.1 Geometric process

First introduced in [79], GP is used to describe inter failure times with trends. Let F
be the Cdf of the first interval X1. If Xi, i ∈ N∗ are independent and the distribution
function of Xi is given by F (ai−1x) where a is a positive constant, then {Xi, i ∈ N} is
called a geometric process (GP). Obviously, if a > 1, {X} is stochastically decreasing and
converge to zero with probability 1; if 0 < a < 1, {X} is stochastically increasing and
converge to infinity with probability 1; for a = 1, GP becomes a renewal process.

Monte Carlo simulation is used to generate several large datasets, from which we shall try
to estimate the parameters. The model is misspecified, i.e., the heterogeneity is wrongly
overlooked, and the scale parameters of each system are assumed to be identical. A total
of M = 5000 independent GP is generated. The scale parameters ηj of the j-th sequence,
j ∈ 1...,M , are gamma-distributed. Let β be the common shape parameter, and a be
the common multiplier. nj = N = 200 is the length of the j-th sequence and Xj,i is
the i-th interval in j-th sequence. We investigate the cases where a ∈ {0.5, 1.5, 3.5} and
β ∈ {0.75, 1.5, 2.5}. This being, the likelihood function given the observation matrix is:

LGP (η, β, ρ|XM) = −βlog(η)
M∑
j=1

nj +
1

2
βlog(a)

M∑
j=1

n2
j − nj

+ log(β)
M∑
j=1

nj + (β − 1)
M∑
j=1

nj∑
i=1

log(Xj,i)− η−β
M∑
j=1

nj∑
i=1

(
Xj,i

a1−i )
β. (4.58)

Obviously, Eq.(4.58) does not account for the heterogeneity. Unlike ARA∞ or BP, the
intervals in a GP sequence are independent, and the distribution of i-th interval is not
influenced by the age just after the i − 1 th repair. As a result, the multiplier a in
GP population is neither affected by the heterogeneity of η, nor the value of β (Figure
4.14). In fact, â is always unbiased. β, on the other hand, is consistently underestimated,
although the amount of underestimation depends only on β and σ2(η) and is not affected
by a.

4.3.2 ARA1 model

The ARA1 population is generated in the same way as geometric process and the likelihood
function to maximize is given in Eq.(4.9) with aj,i = aj,i−1 + (1− ρ)Xj,i. This is because
the main difference between ARA1 and ARA∞ lies in the age reduction mechanism. The
configurations studied are: ρ ∈ {0.25, 0.5, 0.75} and β ∈ {0.75, 1.5}. ARA1 is more
sensitive to heterogeneities than ARA∞ or BP, and the bias of estimation when the
model is mis-specified depends manifestly on σ2(η). Therefore, we focus first on a small
scale where σ2(η) = 10−3 : 10−3 : 10−2, before investigating the estimation bias with
σ2(η) = 0.02 : 0.02 : 0.5.

When β = 0.75, ρ is overestimated and β is underestimated. In Figure 4.15a, the estima-
tion bias for ρ is plotted: The blue curve with cross marker represents ρ̂ when ρ = 0.25. As
σ2(η) increases, ρ is more and more overestimated. The same is observed for ρ = 0.75 and
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Figure 4.14: â (left) and β̂ (right) in GP with σ2(η) = 0.02 : 0.02 : 0.5. The estimation of
multiplier a is drawn in the figure on the left: no matter what value β takes, â is unbiased.
On the right side, the estimations of β are shown by different curves: circle marker for
β = 3.5, plus marker for β = 1.5 and cross marker for β = 0.75. Clearly, regardless of
a, β̂ is decreasing in σ2(η), indicating that β is constantly underestimated, and that the
amount of underestimation is increasing in the heterogeneity.

0.5, i.e., the yellow curve with the circle marker and the red curve with a plus marker.
Figure 4.15b shows that β is underestimated and that the amount of underestimation
seems to be independent of ρ, as suggested by the closeness of the curves.

(a) ρ̂ (b) β̂

Figure 4.15: Parameter estimation with β = 0.75, σ2(η) = 10−3 : 10−3 : 10−2.

In Figure 4.16, the estimation bias for ρ and β is plotted on a large scale: the behaviors
of the estimators are consistent to what has previously been observed: the Figure 4.16a
shows that ρ is overestimated, whereas Figure 4.16b shows that β is underestimated.

When β = 1.5, with a minor heterogeneity, ρ and β are underestimated and ρ̂ quickly
reaches to 0 (Figures 4.17). In contrary to the case β = 0.75, we can now observe, on a
small scale, the underestimation of ρ in Figure 4.17a: the blue curve with cross marker
representing ρ̂ when ρ = 0.25 quickly drops to 0 as σ2(η) increases. The same trend is
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(a) ρ̂ (b) β̂

Figure 4.16: Parameter estimation with β = 0.75 and σ2(η) = 0.02 : 0.02 : 0.5.

observed for ρ = 0.75 and 0.5, i.e., the yellow curve with the circle marker and the red curve
with the plus marker. Nevertheless, Figure 4.17b shows that β is still underestimated, and
the amount of underestimation is hardly influenced by ρ, as suggested by the closeness of
the curves.

(a) ρ̂ (b) β̂

Figure 4.17: Parameter estimation with β = 1.5 and σ2(η) = 10−3 : 10−3 : 10−2.

If we zoom out and consider larger σ2(η), it is observed in Figure 4.18 that once the
heterogeneity is large enough, ρ̂ will increase dramatically to 1. The sudden rise leads to
a swift drop of β̂. In a larger scale, ρ̂ remains 0 until the variance of η is too large: once
σ2(η) reaches some values between 0.2 and 0.3, ρ̂ jumps to 1, which obviously makes no
sense because an ARA1 process with a repair efficiency 1 is just a renewal process. The
jump is also observed in ARA∞ process but in the opposite direction. On the right side,
β is always observed to be underestimated.
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c

(a) ρ̂ (b) β̂

Figure 4.18: Parameter estimation with β = 1.5 and σ2(η) = 0.02 : 0.02 : 0.5.

4.4 Conclusion

In this chapter, we have considered the case wherein heterogeneity among systems is
combined with stable imperfect repair models. For ARA∞ process, after investigating
the influence of unspecified frailty on the population mean lifetime, we considered specif-
ically the gamma distribution on the pseudo-scale parameter of the ARA∞ process and
derived the asymptotic properties, including the distributions of the population mean
cycle duration and population VA and then presented the consequences for instances
wherein the heterogeneity among systems was erroneously ignored. In particular, when
the model was misspecified, the aging rate was underestimated, while the repair efficiency
was overestimated. Furthermore, owing to the specialty of ARA∞, that is, dependent
intervals, the MLE established on the correct model was still inconsistent. Therefore, an
alternative approach has been proposed, and its consistency was verified. Finally, the
issue of maintenance optimization for the population that undergoes imperfect repair is
addressed, and the benefits of considering the heterogeneity when scheduling preventive
maintenance activities are demonstrated.

For the Brown Proschan model, we have investigated not only the frailty-originated het-
erogeneity but considered the heterogeneous maintenance effectiveness as well. It has been
highlighted that in order to minimize the long-run average number of systems’ failures,
it is better to employ an ‘averagely’ skillful crew than a combination of highly skilled
personnel and some rookies.

Finally, for two instable imperfect repair process, ARA1 and geometric process, we show
that estimating the model parameters without considering the hidden heterogeneity may
lead to biased estimates. Specifically, the aging parameter, when the baseline distribution
is Weibull, is always underestimated. This is an important fact that emphasizes the
importance of accounting for the system’s heterogeneity when analyzing the maintenance
history; otherwise, with the underestimated aging parameter and an often overestimated
repair efficiency, it is hard to optimize the maintenance plan.

The industrial applications of these results shall be demonstrated in Chapter 6, where a
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case study on failure data collected from signals alongside a Norwegian railway station
is carried out, illustrating the benefits of taking account of unobserved heterogeneity in
the estimation of the aging speed and reliability of assets and in scheduling preventive
maintenance activities.

Nevertheless, there are several limitations to the current study. First and foremost, no
covariate is taken into consideration. In practice, the covariates explain the sources of the
heterogeneity and allow us to measure/control it more proficiently, while in our study, the
heterogeneity is regarded as an intrinsic property of the systems. This shall be addressed
again in Chapter 6 when we analyze the failure history of the railway signaling systems
operated by Bane NOR. Second, it would be interesting to investigate how different
heterogeneities interact with each other, given that we have only studied separately the
heterogeneous failure rate, heterogeneous repair effectiveness, and different aging velocity.
We believe that these two directions merit further investigation.



Chapter 5

Approximation of the Superposition
of Renewal Processes

The Superposition of Renewal Processes (SRP) consists of the observation of inter-arrival
times based on multiple independent renewal processes. In imperfect maintenance anal-
ysis, SRP characterizes the repairable series system when maintenance consists of re-
placing the failed component while leaving the other components unchanged (minimally
repaired). The components can be either physical or virtual structures as in a competing
risk situation. After a repair, the system is often between the states as-good-as-new and
as-bad-as-old since only one of the components has been renewed.

In practice, maintenance records are often incomplete, and the information on the identity
of the failed components is not necessarily available. Consequently, the observations are
commonly reduced to a pooled output [21], consisting of the failure times at a system level.
Assessing the health of the system, such as its overall aging and maintenance efficiency,
usually starts by estimating model parameters. When the number of components is
known, and all components are identical, inference procedures have been carried out
by Zhang et al. [118] directly on the pooled output using computational partitioning.
Nevertheless, when the number of pooled events is limited, or when the components are
different from each other, direct inference methods are difficult to implement, inspiring
diverse approximation approaches.

Since the inter-occurrence times of an SRP tend to an equilibrium distribution, a natural
simplification is to use a renewal process [69, 113, 105] to approximate the SRP. There
exist multiple choices for the lifetime distribution of the approximating renewal process.
Two of them are most commonly employed: the first is the exponential distribution,
which forms a Homogeneous Poisson process (HPP) [113]; the second is the limiting
distribution of intervals in the approximated SRP given in Eq.(2.72), which ensures that
the approximating renewal process and the approximated SRP have the same expected
lifetime. This is referred to in [105] as the stationary interval method (SIM).

However, the main drawback of approximating an SRP by a renewal process is the loss of
dependency between the inter-occurrence times, in particular two successive inter-arrival
times. In this chapter, we propose three novel approximation approaches of an SRP based
on virtual age models and copula, before comparing them to existing models, e.g., HPP

74
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and SIM. Since we are interested mainly in the situation where the SRP parameters are
unknown, we shall present first the five approaches while emphasizing on the estimation
procedures that derive the parameters of the approximating models from the observed
pooled output of an SRP. Then, we evaluate the performance of the proposed methods,
i.e., to see if they can correctly estimate the mean lifetime or capture the correlation
between adjacent intervals or implement other methods to assess the “distance” between
the SRP and its approximations.

5.1 Approximation methods

In this section, we introduce five models that will be later used to approximate an SRP
and focus particularly on the statistical inference methods. But first, let us define the
notations.

Consider a series system wherein corrective maintenance (CM), which consists of replacing
the failed component while not maintaining the others, is carried out immediately after a
failure. Periodic preventive maintenance (PM) is performed at ∆, 2∆, 3∆...., and ∆ =∞
if no PM is implemented. It is also assumed that at the beginning of the observations, the
system is in its stationary (equilibrium) regime, which implies that it is not as-good-as-
new at t = 0. The failure times are denoted by {Ti}i≥1, with inter-arrival times {Xi}i≥1,
and the indicator of the maintenance types are {δi}i≥1. δi = 0 for CM and δi = 1 for PM.

Five approximation models are considered, namely,

• HPP. The Homogeneous Poisson Process with a rate equaling the asymptotic rate
of the SRP. This model is the simplest SRP approximation and is valid when the
number of sources in the SRP tends to infinity [35].

• SIM. The Stationary Interval Method [105] corresponds to a renewal process whose
intervals are distributed as in an SRP.

• IAT1. The Inter-Arrival-Time copula of memory 1. This is a semi-parametric model
that combines the generic distribution of the SRP with a parametric copula that
models the correlation between two adjacent intervals. The IATk consists of a copula
taking into account the joint distributions of the last k inter-arrival times.

• ARA∞. The ARA∞ process belongs to the family of virtual age models. It is
a plausible candidate because two adjacent intervals in an ARA∞ are negatively
correlated, as in an SRP.

• BP. The Brown Proschan model assumes that maintenance is either perfect with
probability p or imperfect with probability 1− p. Like an SRP, BP has a stationary
regime. It is conceivable that SRP with heterogeneous components are relatively
better approximated by BP, wherein the maintenance is heterogeneous.

The use of IAT1, ARA∞ and BP to approximate an SRP is an original contribution. The
reason why these approximations are considered will be elaborated later.
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5.1.1 Homogeneous Poisson process

HPP has one parameter, i.e., the failure rate λ. Given the repair times {Ti}i≥1 and repair
types {δi}i≥1, λ can be assessed by MLE:

λ̂ =
n−

∑n
i=1 δi

Tn
. (5.1)

The mean lifetime of the HPP, E[X∞], equals 1/λ̂. The correlation between intervals,
Corr, is 0 since the intervals are independent in an HPP. Although HPP will generally
not cause errors in the mean lifetime, it is not perfect: take, for example, the Pdf of the
lifetime in the steady-state. Consider the superposition of two Weibull renewal process
with common scale 1 and shape 2, with a total of 106 successive failure times. The
HPP parameter is estimated as λ̂ = 0.4434. It can be observed in Figure 5.1a that the
distance between the Pdf of X∞ in an SRP (drawn with blue curves) and that in its HPP
approximation (red curve) is significant. When three renewal processes (with η = 1 and
β = 2) are superimposed, λ̂ = 0.2955, and the distance between the densities is reduced,
as is shown in Figure 5.1b.

(a) η = [1, 1], β = [2, 2] (b) η = [1, 1, 1], β = [2, 2, 2]

Figure 5.1: Pdf of the cycle X∞ in an SRP and in the approximating HPP.

5.1.2 Stationary interval method

The SIM method approximates an SRP by a renewal process whose interval is distributed
identically as X∞. Although the exact distribution of X∞ is given by Eq.(2.72), we do
not attempt to estimate its parameters because there will be too many parameters if the
superimposed RP are different, and the statistical power will be weak if the dataset is
small. Instead, this distribution is estimated by the Kaplan-Meier estimator [63], a widely
applied non-parametric estimation approach:

Ŝ(t) =
∏
i:ti≤t

1− di
ni

(5.2)
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with ti a time when at least one event happened, di the number of events (e.g., failures)
that happened at time ti, and ni the individuals known to have survived (have not yet
had an event or been censored) up to time ti.

To evaluate the accuracy of SIM approximation, E[X∞] is computed by numerically inte-
grating a piecewise-linear version of the estimated survival function, and the correlation
is 0 given that successive inter-arrival times are independent. Within the course of the
inference procedures, additional non-parametric estimations of the reliability function
have been tested using different kernels and several bandwidths, but the piecewise-linear
version of the Kaplan-Meier has been chosen as it consistently provided the best results.

In the presence of PM, the Kaplan-Meier estimator is not defined beyond the largest
observation if the longest interval is censored, making it impossible to compute the ex-
pected value. Therefore, we adopt the conventional approach, which consists of changing
the largest observation to a death time if it is censored [36].

5.1.3 IAT1 model

The IAT1 is a refined version of SIM: it takes into account additionally the dependence
between two successive intervals in the stationary regime by defining a copula. Copulas
are an important part of the study of dependence between two variables since they allow us
to separate the effect of dependence from the effects of the marginal distributions. In our
case, for an SRP, the study of the dependence structure between two successive intervals
can, therefore, be done independently from the marginal distributions by adopting a
semi-parametric approach wherein the marginal survival function is assessed in the same
way as the SIM method using a Kaplan-Meier estimator, and the dependence is modeled
by a Frank copula. The latter is characterized by a single parameter θ. Both negative
dependency (θ < 0), positive dependency (θ > 0) and independence (θ = 0) can be
modeled within the Frank family. Its distribution is given below:

Cθ(x, y) = −1

θ
log

(
1 +

(e−θx − 1)(e−θy − 1)

e−θ − 1

)
. (5.3)

Before explaining why we use particularly the Frank copula instead of Gaussian, t, or
others, we introduce first the notion of the copula.

5.1.3.1 Copula and Sklar’s theorem

In probability theory and statistics, a copula is a multivariate cumulative distribution
function for which the marginal probability distribution of each variable is uniform on
the interval [0, 1]. Consider a random vector (X1, X2, . . . , Xd) with continuous marginals
distributions Fi(x) = P (Xi ≤ x). By applying the probability integral transform to each
component, the random vector

(U1, U2, . . . , Ud) = (F1(X1), F2(X2), . . . , Fd(Xd)) ,
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has marginals that are uniformly distributed on the interval [0, 1]. The copula of (X1, X2, . . . , Xd)
is defined as the joint cumulative distribution function of (U1, U2, . . . , Ud):

C(u1, u2, . . . , ud) = P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud). (5.4)

The copula C contains all information on the dependence structure between the com-
ponents of (X1, X2, . . . , Xd) whereas the marginal cumulative distribution functions Fi
contain all information on the marginal distributions.

The role that copulas play in the relationship between bivariate distribution functions
and their univariate marginals is explained by Sklar’s theorem [99]:

Theorem 5.1 Let H be a joint distribution with marginals F and G. Then, there exists
a copula C such that, for all x, y ∈ [−∞,∞],

H(x, y) = C(F (x), G(y)). (5.5)

In other words, a bivariate copula is simply the uniform representation of the joint dis-
tribution in question. Recall that for an SRP, the bivariate distribution of two adjacent
intervals is given by Eq.(2.73). Deriving the exact copula function from Eq.(2.73) is not
apparent. Instead, we attempt to estimate the marginal distribution and the copula from
the SRP pooled output empirically.

5.1.3.2 Justification of the selection of the Frank copula.

The choice of the Frank family is explained as follows. For illustration, consider the
following four configurations of the SRP:

• I: a system formed of 3 homogeneous components with a low wear-out rate: η =
[1, 1, 1],β = [1.5, 1.5, 1.5].

• II: a system formed of 3 homogeneous components with a fast wear-out rate: η =
[1, 1, 1],β = [3.5, 3.5, 3.5].

• III: a system formed of 3 heterogeneous components with a low wear-out rate:
η = [1, 2, 10],β = [1.5, 1.5, 1.5].

• IV: a system formed of 3 heterogeneous components with a fast wear-out rate:
η = [1, 2, 10],β = [3.5, 3.5, 3.5].

For each configuration, an SRP sequence of length N = 500000 is generated, and several
copula families (Gaussian [48], t [27], Frank, Gumbel, Clayton and independent copula)
are then fitted to the data. It has been found that there exists a certain convergence
between the families:
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• The degree of freedom ν in the t-copula is systematically estimated to be extremely
large, corresponding to the Gaussian copula. Therefore only the Gaussian copula is
maintained in the comparative study.

• The parameter of the Gumbel family, θ̂Gumbel is evaluated to be 1, and that of the
Clayton family, θ̂Clayton is estimated to be 0+, which corresponds in both cases to
the independent copula. As the Gumbel and Clayton copulas do not account for
the negative dependency, both models are not kept for the comparative study.

Since the correlation between the intervals is of interest to the current paper, the inde-
pendent copula, as well as the Gumbel and Clayton, are excluded from consideration.
Gaussian and Frank copula are now the two candidates. In the following, we investigate
whether they differ in estimating the tail dependence.

(a) Lower tail dependence function (b) Upper tail dependence function

Figure 5.2: An example of tail dependence functions estimated by different copulas.

The tail dependence concept describes the amount of dependence in the lower-left-quadrant
tail or upper-right-quadrant tail of a bivariate distribution. Let F1 and F2 be the marginal
distributions of variables X1 and X2. A common measure of tail dependence is given by
the so-called upper/lower tail-dependence function [47]:

λL(v) = P (F1(X1) ≤ v|F2(X2) ≤ v) =
C(v, v)

v
, (5.6)

λU(v) = P (F1(X1) ≥ v|F2(X2) ≥ v) =
1− 2v + C(v, v)

1− v
. (5.7)

An example of the tail dependence functions λL(v), v ∈ [0, 0.5] and λU(v), v ∈ [0.5, 1]
are shown respectively in Figures 5.2a and 5.2b for the SRP configuration II. The tail
dependence of the intervals in SRP is estimated empirically [16]. It is observed that the
Frank (triangle marker) and the Gaussian copulas (circle marker) are both close to the
empirical SRP (cross marker). The independent copula is clearly inadequate.
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SRP θ in Frank Copula ρ in Gaussian Copula GOF Frank GOF Gaussian
I -0.7372 -0.1234 0.949 0.966
II -2.3652 -0.3634 0.926 0.952
III -0.6137 -0.1046 0.955 0.963
IV -2.0441 -0.3151 0.926 0.946

Table 5.1: Estimated Copula parameters and results of test of goodness of fit.

The goodness-of-fit tests [49] are then used to assess to what extent the copula in an SRP
resembles a Frank copula or a Gaussian copula. The copula under the null hypothesis
is Frank or Gaussian. Let α be the level of significance. With unlimited data, an SRP
copula can never be approximated by a Frank/Gaussian copula, meaning that the null
hypothesis will be 100 percent rejected (p value less or equal to α). When the number of
observations is limited, however, the SRP copula can be estimated very satisfyingly by a
Frank/Gaussian copula.

Let α = 0.05. An SRP sequence of length N = 20 is generated 1000 times, and the
corresponding copula (which describes the dependence structure between two successive
intervals in an SRP) is tested against Frank/Gaussian, using the Cramer-Von Mises statis-
tics [49]. The total proportion of an SRP copula being classified as Frank/Gaussian is
recorded in Table 5.1, column ”GOF Frank” and ”GOF Gaussian.” It is found that the
proportion of SRP copula, which ”look like” a Gaussian copula, is slightly higher than
that for a Frank copula.

To sum up, both Frank and Gaussian copula have similar performance in estimating the
tail dependence. In terms of goodness of fit test, Gaussian is slightly better than Frank.
Nevertheless, Frank copula admits an explicit formula, which is not possible for Gaussian.
This facilitates the inference procedure greatly when missing/censored data is involved,
or when PM is implemented, as shown later in this chapter.

5.1.3.3 Parameter estimation

Suppose that we have observed n+ 1 successive intervals, X1, X2...Xn+1 in an SRP when
it has entered its steady state. To determine Frank copula that describes the dependence
structure, we first decompose the observation sequence into two vectors:

U = {U1, U2...Un} = {X1, X2...Xn}, (5.8)

and
V = {V1, V2...Vn} = {X2, X3...Xn+1}. (5.9)

Note that U and V are the interval lengths and take value from R+. Since we are in the
stationary state, the marginal distributions for U and V are the same: both could be
described by Eq.(2.72) and are empirically estimated by the Kaplan-Meier estimator. In
order to estimate parametrically the Frank copula, we need to transform U and V into
“pseudo-observation”, Fu(Ui) and Fv(Vi), that are defined on [0, 1]. The functions Fu and
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Fv are defined as:

Fu(x) =
1

n+ 1

n∑
i=1

1(Ui ≤ x), Fv(x) =
1

n+ 1

n∑
i=1

1(Vi ≤ x), (5.10)

where the factor n + 1 (instead of n) allows the avoidance of boundary problems. The
quantities Fu(Ui) and Fv(Vi) are the ranks of Ui and Vi, strictly less than 1.

Given the Frank copula assumption and the pseudo-observations Fu(Ui) and Fv(Vi), θ
can be estimated from classic maximum likelihood estimation. The density of the Frank
copula is given by

cθ(x, y) =
∂2

∂x∂y
Cθ(x, y) =

θe−θ(x+y)(1− e−θ)
[e−θ − 1 + (e−θx − 1)(e−θy − 1)]2

, (5.11)

with the likelihood

L(θ|Ui, Vi) =
n∏
i=1

cθ(Fu(Ui), Fv(Vi)). (5.12)

When preventive maintenance is implemented, the pairs (Ui, Vi) may be censored: the
system is still working at the repair instant, and it is no longer appropriate to multiply
the density functions. Let δi, i ∈ 1...n + 1 be the maintenance types with δi = 0 for CM
and δi = 1 for PM. Four scenarios are to be considered:

(1). δi = 0 and δi+1 = 0. The two adjacent intervals Ui and Vi are failure times, we can
apply directly the density function:

M(θ, x, y|δi = 0, δi+1 = 0) = cθ(x, y). (5.13)

(2). δi = 1 and δi+1 = 0. The first interval is censored. We shall replace the density by
the partial derivative

M(θ, x, y|δi = 1, δi+1 = 0) =
∂

∂y
Cθ(x, y) =

e−θy(e−θx − 1)

e−θ − 1 + (e−θx − 1)(e−θy − 1)
. (5.14)

(3). δi = 0 and δi+1 = 1. The first interval is a failure time and the second interval is
censored. We shall replace the density by

M(θ, x, y|δi = 0, δi+1 = 1) =
∂

∂x
Cθ(x, y) =

e−θx(e−θy − 1)

e−θ − 1 + (e−θx − 1)(e−θy − 1)
. (5.15)

(4). δi = 1 and δi+1 = 1. The two intervals are censored. We shall replace the density by
the distribution function:

M(θ, x, y|δi = 1, δi+1 = 1) = Cθ(x, y). (5.16)

Finally, the likelihood with censored data is given by:

L(θ|Ui, Vi, δi) =
n∏
i=1

M(θ, Fu(Ui), Fv(Vi)|δi, δi+1). (5.17)
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Compare now the empirical copula in an SRP and its Frank fit. Two identical Weibull
renewal processes form the SRP with scale 1 and shape 2. With a total of 106 successive
failure times, the Frank copula parameter is estimated to be θ = −1.7736. The empirical
density and fitted Frank copula density are respectively plotted in Figures 5.3a and 5.3b.

(a) Empirical copula (b) Frank copula fit

Figure 5.3: The dependence structure in SRP and its Frank copula fit.

5.1.3.4 Correspondence between SRP and Frank copula

When the amount of observation is considerable, i.e., the SRP sequence has an infinite
length, the SRP parameters uniquely define the parameter of the Frank copula fitted
to the data. In other words, when fitting a Frank copula to the pooled output of the
superposition of ns independent Weibull renewal processes with underlying parameters
η = η1, η2...ηns and β = β1, β2...βns, there exists some function g: R2×ns

+ → R such that

θ = g(η,β). (5.18)

We have not found the explicit form of the function g, and θ still needs to be estimated by
maximizing the likelihood function defined in Eq.(5.17). Yet, the correspondence could
easily be visualized by inferencing on a large SRP dataset. For illustration, consider the
superposition of ns identical renewal processes, with common scale parameter ηc and shape
βc. ηc is set to 1. The number of renewal process ns ∈ {2, 3, 4, 5}, as we are interested
in the case where relatively few renewal processes are superposed. βc ∈ 1 : 0.05 : 5 since
β is rarely more comprehensive than 5 in practice. θ̂ is plotted in Figure 5.4a, whereas
the Pearson’s correlation between two successive intervals in an SRP is shown in Figure
5.4b, for a given βc and ns. The positive correlation between θ̂ and Pearson’s correlation
is evident.

5.1.4 ARA∞ model

ARA∞ is an alternate possibility to approximate an SRP. The idea is that both SRP
and ARA∞ have a stationary state: the failures arrive at a constant rate asymptotically.
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(a) θ̂ (b) Pearson’s correlation

Figure 5.4: θ̂ of the Frank copula (left) and Pearson’s correlation between two successive
intervals in an SRP (right).

Particularly, they exhibit a negative correlation between two adjacent intervals when the
baseline failure rate is an increasing function of time: the larger Xn is, the smaller Xn+1

may be. On the one hand, for ARA∞, the larger Xn is, the larger An will be, which means
the system is “older”. Thus the next interval Xn+1 may be small. On the other hand, for
an SRP, the larger Xn is, the more other components are aging (except for the one that
is renewed at the n-th repair), so the next failure may arrive soon. This is also illustrated
by the negative values of θ of the Frank copula fitted to the SRP observation, as shown
in Table 5.1. The mathematical modeling and comparison of the negative dependence are
given below.

5.1.4.1 Negative dependence

The negative dependence is described by the Reverse Regular of Order 2 (RR2), stronger
than the famous negative quadrant dependent (NQD). A pair of real-valued random
variables (X1, X2) and its density function f(·, ·) are called RR2 dependent [78] if

f(x1, y1)f(x2, y2) ≤ f(x2, y1)f(x1, y2), (5.19)

whenever x1 > x2 and y1 > y2. According to [64], this is equivalent to :

f(x, y)
∂2f

∂x∂y
≤ ∂f

∂x

∂f

∂y
. (5.20)

Proposition 4 Two successive intervals in an SRP, formed by identical components with
IFR, are RR2 dependent.

proof 8 We introduce the following corollary when the superimposed RP are identical:

Corollary 5.1.1 Note R,f the survival function and density function of an interval in
the superposed RP. define φ(t) =

∫∞
t
R(u)du. Then two successive intervals in the SRP
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in stationary regime is RR2 dependent if and only if

φ(t)f(t) ≤ R(t)2. (5.21)

The proof is straightforward. Inequality 5.21 is easily satisfied in the case IFR since

λ(t)

∫ ∞
t

e−Λ(u)du ≤
∫ ∞
t

λ(u)e−Λ(u)du = R(t),

which proves that SRP is RR2 dependent.

Proposition 5 Two successive inter-arrival times of an ARA∞ process with increasing
baseline failure intensity are RR2 dependent.

proof 9 The joint survival of two successive intervals in ARA∞ conditioned on the pre-
vious virtual age satisfies equation 5.20, because

R(x, y) = P (Xn+1 ≥ y,Xn ≥ x|An−1 = a)
=
∫∞
x
P (Xn+1 ≥ y|Xn = u,An−1 = a)fXn|An−1=a(u)du

=
∫∞
x
P (Xn+1 ≥ y|An = (1− ρ)(a+ u))(− d

du
P (Xn ≥ u|An−1 = a))du.

Let Ra(t) = P (Xn ≥ t|An−1 = a) and Rb
u(t) = P (Xn+1 ≥ t|An = (1 − ρ)(a + u)). The

derivative of R(x, y) with respect to x, y and mixed derivative are respectively:

∂R

∂x
= −Rb

x(y)(− d

dx
Ra(x)),

∂R

∂y
=

∫ ∞
x

d

dy
Rb
u(y)(− d

du
Ra(u))du,

∂2R

∂x∂y
= − d

dy
Rb
x(y)(− d

dx
Ra(x)).

The derivative of survival function Rb
x(t)is the product of failure rate and survival: − d

dy
Rb
x(y) =

λbx(y)Rb
x(y). Therefore, R is RR2 if and only if∫ ∞

x

Rb
u(y)(− d

du
Ra(u))duλbx(y) ≤

∫ ∞
x

λbu(y)Rb
u(y)(− d

du
Ra(u))du. (5.22)

Using mean value theorem, the r.h.s. is reformulated as

λbs(y)

∫ ∞
x

Rb
u(y)(− d

du
Ra(u))du, s ∈ [x,∞].

When the system is IFR, λbx(y) ≤ λbs(y), leading to Eq.(5.22). Therefore, ARA∞ is RR2

dependent.

Although SRP and ARA∞ display the RR2 negative dependence between adjacent in-
tervals, we must point out that the dependence structure in an SRP is different from
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that in an ARA∞ process. Consider, for example, the situation where all the superim-
posed renewal processes are identical with IFR. Depending on the number of renewal
processes, the correlation between non-adjacent SRP intervals may exhibit negative or
positive dependence, as displayed later. For ARA∞ with an increasing baseline failure
intensity, however, this is not true: any two intervals in an ARA∞ process are negatively
dependent.

To investigate the dependence in ARA∞ intervals, we introduce first the notions of Posi-
tively Regression Dependent and Negatively Regression Dependent [78].

Definition 5.1 Y is said to be positively regression dependent in X, if P (Y > y|X = x)
is increasing in x, for all y. Conversely, Y is said to be negatively regression dependent
in X, if P (Y > y|X = x) is decreasing in x, for all y.

The following proposition shows that the virtual ages after any two repairs in an ARA∞
are PRD dependent.

Proposition 6 Denote by An the virtual age after the n-th repair in an ARA∞ process.
∀n = 1, 2, ..., k = 1, 2, ..., An+k is stochastically increasing (SI) in An: P (An+k > t|An =
a) is increasing in a.

proof 10 Let Ra(t) = P (Z > t|Z > a). When k = 1,

P (An+1 > x|An = a) = 1 · 1(x < (1− ρ)a) +Ra(
x

1− ρ
− a) · 1(x > (1− ρ)a).

Obviously, ∀a1 < a2, P (An+1 > x|An = a1) ≤ P (An+1 > x|An = a2). P (An+1 > x|An =
a) is thus increasing in a. Assume the corollary 6 holds for K = k:

∀a1 < a2, P (An+k > x|An = a1) ≤ P (An+k > x|An = a2).

We want to prove P (An+k+1 > x|An = a1) ≤ P (An+k+1 > x|An = a2). Let R1(t) =
P (An+k > t|An = a1) and R2(t) = P (An+k > t|An = a2), f1(t) = − d

dt
R1(t) and f2(t) =

− d
dt
R2(t), F1(t) = 1−R1(t) and F2(t) = 1−R2(t). Then,

P (An+k+1 > s|An = a1) =

∫ ∞
0

P (An+k+1 > s|An+k = a)f1(a)da

=

[
P (An+k+1 > s|An+k = a)F1(a)

]∞
0

−
∫ ∞

0

[
d

da
P (An+k+1 > s|An+k = a)]F1(a)da

= 1−
∫ ∞

0

[
d

da
P (An+k+1 > s|An+k = a)]F1(a)da.

Similarly,

P (An+k+1 > s|An = a2) = 1−
∫ ∞

0

[
d

da
P (An+k+1 > s|An+k = a)]F2(a)da.

a1 < a2 −→ R1(t) < R2(t) −→ F1(t) > F2(t) −→ P (An+k+1 > s|An = a1) < P (An+k+1 >
s|An = a2). This indicates that if Proposition 6 holds for K = k, then it holds for
K = k + 1. Proof completed.
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Having proved the PRD between any two virtual ages, we can now address the Negatively
Regression Dependent (NRD) between any two intervals:

Proposition 7 Denote by Xn the n-th interval in an ARA∞ process. ∀n = 1, 2, ..., k =
1, 2, ..., Xn+k is negatively regression dependent in Xn: P (Xn+k > t|Xn = x) is decreasing
in x.

proof 11 Since An = (1 − ρ)(An−1 + Xn) is increasing in Xn, An+k is thus positively
regression dependent in Xn: ∀x1 < x2, P (An+k > t|Xn = x1) ≤ P (An+k > t|Xn = x2).
Let R1(t) = P (An+k ≥ t|Xn = x1) and R2(t) = P (An+k ≥ t|Xn = x2), f1(t) = − d

dt
R1(t)

and f2(t) = − d
dt
R2(t), F1(t) = 1−R1(t) and F2(t) = 1−R2(t). Then,

P (Xn+k+1 > s|Xn = x1) =

∫ ∞
0

P (Xn+k+1 > s|An+k = a)f1(a)da

=

[
P (Xn+k+1 > s|An+k = a)F1(a)

]∞
0

−
∫ ∞

0

[
d

da
P (Xn+k+1 > s|An+k = a)]F1(a)da

= −
∫ ∞

0

[
d

da
P (Xn+k+1 ≥ s|An+k = a)]F1(a)da.

Similarly,

P (Xn+k+1 > s|Xn = x2) = −
∫ ∞

0

[
d

da
P (Xn+k+1 > s|An+k = a)]F2(a)da.

x1 < x2 −→ R1(t) < R2(t) −→ F1(t) > F2(t) −→ P (Xn+k+1 > s|Xn = x1) >
P (Xn+k+1 > s|Xn = x2). Therefore, P (Xn+k+1 > s|Xn = x) is decreasing in x.

To visualize the difference in the dependence structure of an SRP and of an ARA∞,
consider the SRP configured as ηc = 1, βc = 5, p = 2. Generating an SRP observation
of length N = 106, we can then derive the parameters of the approximating ARA∞ by
maximizing the likelihood defined in Eq.(5.24): α̂ = 0.254, β̂ = 5.505, ρ̂ = 0.375. Generate
now an ARA∞ sequence of length N with (α̂, β̂, ρ̂). We can empirically obtain the auto-
correlation of gap k: ck = corr(Xn, Xn+k) is the Pearson’s correlation between Xn and
Xn+k in the SRP and in its ARA∞ approximation.

In Figure 5.5a, the vertical axis represents the value of ck while the horizontal axis stands
for k. The correlation between intervals in the SRP is plotted with blue curve, while that
in the approximating ARA∞ is drawn with red curve. When k = 0, corr(Xn, Xn) = 1 for
both SRP and ARA∞; when k = 1, the correlations between two adjacent intervals are
both negative, as stated in Propositions 4 and 5; when k = 2, the correlation between
Xn and Xn+2 in the ARA∞ is still negative, whereas that in the SRP becomes positive.
The same could be observed for the SRP configured as ηc = 1, βc = 5, p = 5. This
time, the parameters of the approximating ARA∞ are α̂ = 0.572, β̂ = 5.406, ρ̂ = 0.155,
and the correlations between the intervals are plotted in Figure 5.5b: when when k = 1,
the correlations between two adjacent intervals are both negative; but when k = 5, the
correlation in SRP becomes positive while that in ARA∞ is always negative. These
observations are consistent with Proposition 7.
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(a) p = 2, βc = 5 (b) p = 5, βc = 5

Figure 5.5: Pearson’s correlation for SRP and its ARA∞ approximation.

It is concluded here that although ARA∞ is a plausible candidate to approximate an SRP,
given that both of them have a steady-state and a negative correlation between adjacent
intervals, ARA∞ is not capable of imitating the dependence structure in an SRP fully,
i.e., the correlation between Xn and Xn+k, which can sometimes be positive depending
on its configuration.

5.1.4.2 Parameter estimation

Inference procedures have been implemented for virtual age models when the system,
under CM, is assumed to be in its stationary regime at the beginning of the observations
[28] for any given initial intensity. In the following, it is assumed that the initial intensity
is given by the power law, which is a common assumption for aging systems in reliability
engineering. Thus, three parameters, α, β (Weibull pseudo-scale and shape), and ρ0 (the
efficiency of CM), are to be estimated.

When both CM and PM are presented in the SRP, the ARA∞ inference procedures need
to be adapted since the maintenance is now heterogeneous. We shall integrate periodic
PM into the ordinary ARA∞ process: it is assumed that the PM efficiency follows an
ARA∞ assumption, i.e., reduces the virtual age by (1− ρ1) where ρ1 is likely in practice
to be greater than ρ0. The model parameters can be estimated by Maximum Likelihood
Estimation. Denote by λ(t) = αβtβ−1 the initial Weibull intensity and Λ(t) = αtβ the
cumulative intensity. First, the likelihood function La0 associated with the observation of
the n first maintenance times and types (X, δ)1..n and an initial age a0 can be expressed
as in Eq.(5.23). The effective ages in Eq.(5.23) can be obtained by induction given a0 and
using ai = (1− ρδi)(ai−1 + xi).

La0((X, δ)1..n) =
n∏
i=1

(λ (ai−1 + xi))
1−δi × exp

(
n∑
i=1

−Λ (ai−1 + xi) + Λ (ai−1)

)
. (5.23)

Second, as the SRP is assumed to be in its stationary regime at the beginning of the ob-
servations, the same assumption is proposed for its approximating model. It implies that
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a0 is the realization of the limiting age distribution AARA∞ with pdf fARAA∞ . The resulting
likelihood function L associated with the observation of the n first maintenance times and
types (X, δ)1..n and an initial mixing distribution AARA∞ is presented in Eq.(5.24). The
mixing distribution AARA∞ has been characterized theoretically by Eq.(2.67) for CM only
and can be derived empirically from intensive simulations considering CM and PM.

L((X, δ)1..n) =

∫ ∞
0

La((X, δ)1..n)fARAA∞ (a)da. (5.24)

Finally, once the parameters of the model estimated, E[X∞] can be computed numerically
by Eq.(2.70), and the correlation Corr can be obtained via Monte Carlo simulation.

Consider the Pdf of the lifetime in the steady-state. When two Weibull renewal process
with common scale 1 and shape 2 are superimposed, with a total of 106 successive failure
times, the ARA∞ parameters are estimated as α̂ = 1.85, β̂ = 2.075, ρ = 0.5992. It can be
observed in Figure 5.6a that the distance between the Pdf of X∞ in an SRP (drawn with
blue curves) and that in its HPP approximation (red curve) is insignificant. When three
renewal processes (with η = 1 and β = 2) are superimposed, α̂ = 2.8386, β̂ = 2.0632,
ρ = 0.4352, and the distance between the densities is even smaller, as is shown in Figure
5.6b.

(a) η = [1, 1], β = [2, 2] (b) η = [1, 1, 1], β = [2, 2, 2]

Figure 5.6: Pdf of the cycle X∞ in an SRP and in the approximating ARA∞.

5.1.4.3 Correspondence between SRP and ARA∞

Similarly to the Frank copula and SRP, there is a correspondence between the SRP
sequence and its ARA∞ approximation: when fitting an ARA∞ process to the pooled
output of the superposition of ns independent Weibull renewal processes with underlying
parameters η = η1, η2...ηns and β = β1, β2...βns, there exists some function g: R2×ns

+ → R3
+

such that
(α, β, ρ) = g(η,β). (5.25)

We have not found the explicit form of the function g, and the ARA∞ parameters still
need to be estimated by maximizing the likelihood function defined in Eq.(5.24). Yet,
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the correspondence could easily be visualized by inferencing on a large SRP dataset.
Consider the same SRP configurations: ηc = 1, ns ∈ {2, 3, 4, 5}, and βc ∈ 1 : 0.05 : 5 The
parameters of the approximating ARA∞, (β̂, η̂, ρ̂), are plotted in Figure 5.7.

(a) β̂ (b) η̂ (c) ρ̂

Figure 5.7: Parameters of the approximating ARA∞ as a function of βc and of ns.

The linear relation between β̂ and βc is shown in Figure 5.7a. β̂ is slightly larger than βc,
and the difference is more significant when βc is large. The overlap of the curves shows
that the number of renewal process has barely an influence on β̂ when βc is small.

Figure 5.7b shows that η̂ increases with βc and decreases with ns. In fact, when βc = 1,
η̂ = 1/ns: this is because the renewal processes become HPP. ηc in SRP and η̂ in ARA∞
are both proportional to the mean lifetime. Thus, when more renewal processes are
superimposed, the mean lifetime of the SRP decreases, reducing the value of η̂.

Figure 5.7c shows that ρ̂ is a decreasing function of βc and of ns. This is because the
more components are superimposed, the less the proportion of a system-level renewal,
which in turn results in a drop in maintenance efficiency. In addition, when β = 1, ρ̂ is
non-identifiable.

5.1.5 Brown-Proschan model

The Brown-Proschan model is another candidate to approximate an SRP as both converge
to a stationary regime. Consider an initial Weibull intensity. Estimation methods have
been presented in [79] and [76]. With only CM, the parameters to estimate are the scale
and shape of the Weibull distribution and the probability of perfect CM, p0. When both
CM and PM are presented in the SRP, ordinary BP should be modified by incorporating
periodic PM, which is perfect with probability p1 and minimal with probability 1 − p1.
The likelihood function associated with the observation of n maintenance times and types
can be derived in three steps. First, the likelihood function LNHPPa0

associated with the
observation of a system with initial age a0 under minimal repair are reminded in Eq.(5.26)
using the classic results of Non-Homogeneous Poisson processes [94]:

LNHPPa0
((X, δ)1..n) =

n∏
i=1

(λ (a0 + ti))
1−δi × exp (−Λ (a0 + tn) + Λ (a0)) . (5.26)

Second, the likelihood function LBPa0 associated with the observation of a system with
initial age a0 and BP efficiencies are derived recursively in Eq.(5.27) using a similar



90 Chapter 5. Approximation of the Superposition of Renewal Processes

approach as in [28]:

LBPa0 ((X, δ)1..n) =

[
n−1∏
k=1

(1− pδk)

]
× LNHPPa0

((X, δ)1..n)

+
n−1∑
i=1

LBPa0 ((X, δ)1..i)pδi

[
n−1∏
k=i+1

(1− pδk)

]
× LNHPP0 ((X, δ)i+1..n). (5.27)

Finally, the initial age a0 is unknown and can be regarded as a realization of the random
variable ABP∞ , which is the asymptotic effective age in the stationary regime. The resulting
likelihood function LBP associated with the observation of the n first maintenance times
and types (X, δ)1..n and ABP∞ is given by

LBP ((X, δ)1..n) =

∫ ∞
0

LBPa ((X, δ)1..n)fABP∞ (a)da. (5.28)

The distribution of ABP∞ is given by Eq.(2.39) with only CM. With CM and PM, the pdf
of ABP∞ can be obtained via simulation. Once the model parameters estimated, E[X∞]
and Corr can be obtained from a plugged-in version of their theoretical expressions or
numerically.

Consider the Pdf of the lifetime in the steady-state. When two Weibull renewal process
with common scale 1 and shape 2 are superimposed, with a total of 200 consecutive failure
times, the BP parameters are estimated as α̂ = 2.5528, β̂ = 1.8938, ρ = 0.6381. It can be
observed in Figure 5.6a that the distance between the Pdf of X∞ in an SRP (drawn with
blue curves) and that in its HPP approximation (red curve) is significant for small values
of t. When three renewal process (with η = 1 and β = 2) are superimposed, α̂ = 5.2058,
β̂ = 1.6458, ρ = 0.6571, and the densities are plotted in Figure 5.8.

(a) η = [1, 1], β = [2, 2] (b) η = [1, 1, 1], β = [2, 2, 2]

Figure 5.8: Pdf of the cycle X∞ in an SRP and in the approximating BP.
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5.2 Performance evaluation

In this section, we propose two approaches to evaluate the performance of the approx-
imating models. The first one is based on level set and is particularly useful when the
parameters are known. The second one consists of accessing the approximation error in
the mean lifetime and correlation between adjacent intervals. When the model param-
eters are unknown and have to be estimated, the amplitude of approximation error is
dependent on the length of available data. For illustration, five SRP configurations are
studied, and the lifetimes are supposed to be Weibull distributed:

• I: a system formed of 3 homogeneous components with a low wear-out rate: η =
[1, 1, 1],β = [1.5, 1.5, 1.5].

• II: a system formed of 3 homogeneous components with a fast wear-out rate: η =
[1, 1, 1],β = [3.5, 3.5, 3.5].

• III: a system formed of 3 heterogeneous components with a low wear-out rate:
η = [1, 2, 10],β = [1.5, 1.5, 1.5].

• IV: a system formed of 3 heterogeneous components with a fast wear-out rate:
η = [1, 2, 10],β = [3.5, 3.5, 3.5].

• V: a system formed of 6 relatively homogeneous components with a moderate wear-
out rate: η = [1, 1, 1, 2, 2, 2],β = [2.5, 2.5, 2.5, 2.5, 2.5, 2.5].

5.2.1 A level-set procedure

Let us consider a risk α and a trajectory of SRP observations where the parameters of the
model and the age of each component are available. At time Ti, it is straightforward to
compute the confidence interval of smallest amplitude I = [Ti + a, Ti + b] with confidence
level 100(1 − α)% from the actual model. Next, an interval J = [Ti + a′, Ti + a′ +
b − a] of amplitude b − a can be determined which maximizes the confidence set of the
approximating model. The probability that Ti+1 belongs to I is naturally 1− α and the
probability that Ti+1 belongs to J is automatically less than 1 − α. The quality of the
approximating model lies in how the latter probability is close to 1−α. This probability pα
can be estimated empirically from a unique and sufficiently long trajectory by assessing the
proportion of times when the prediction has been correct. Furthermore, the approximated
model’s overall performance can be synthesized by its Gini index G = 2

∫ 1

0
(1−α−pα)dα.

If G = 0, the approximating model is indistinguishable from the actual model, and G = 1
is the worst-case scenario where the approximating model is totally inconsistent with SRP.

For each model (HPP, SIM...BP) and each configuration (I, II...V), the level set pα is
computed and compared to the initial confidence level 100(1− α)% through the identity
line. Figure 5.9a and 5.9b present the results with a fast wear-out for the configurations
II and IV, respectively. The figures for other configurations are not presented as the plots
are almost indistinguishable from the identity line. In addition, each Gini coefficient is
provided in Table 5.2.
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(a) Homogeneous case (Conf. II) (b) Heterogeneous case (Conf. IV)

Figure 5.9: Level sets in the fast aging rate cases.

HPP SIM IAT1 ARA∞ BP
I 9.1 8.9 8.5 8.2 8.6
II 119.2 119.5 137.0 89.4 144.0
III 6.5 7.2 6.2 3.0 5.9
IV 222.7 230.1 116.1 133.8 204.5
V 2.8 4.3 4.3 3.0 5.6

Table 5.2: Gini coefficients (10−3).

The analysis of the level sets and Gini is given below:

• For each model, the Gini index is relatively low, between 0.002 and 0.2, which
indicates that each model provides an efficient approximation of an SRP. The Gini
index is particularly low when the components’ aging is moderate or when the
number of components is important.

• The model under ARA∞ assumption almost consistently provides the best index,
regardless of the heterogeneity of the components and the aging rates of the com-
ponents.

• The IAT1 and BP models present satisfactory but more contrasting results. The
BP approximation is comparatively much less efficient when the components are
aging fast (Configuration II and IV). The IAT1 approximation outperforms the
other models in the heterogeneous case with fast aging rates (Configuration IV) but
provides otherwise similar results to the HPP approximations.

• The two static models HPP and SIM present decent and very similar results. When
the aging rate is moderate, their efficiency has the same order of magnitude as the
other adaptive models, but they are outperformed by ARA∞ when the wear-out
rate is fast.

• All the models are extremely efficient when the number of components is significant,
particularly the HPP, which is the theoretical limiting case when the number of
components tends to infinity [35].
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5.2.2 Mean and correlation

The parameters of the models are commonly not known and need to be estimated first
from a relatively small dataset. The number of observations is assumed to be larger than
10 without exceeding 200, and the system is assumed to be in its stationary regime at the
beginning of the observation. Three configurations previously studied in Section 5.2.1 are
considered, two with only CM and one with both CM and periodic PM:

• A. The configuration II.

• B. The configuration IV.

• C. The configuration II with periodic PM. The periodicity of the preventive mainte-
nance policy is ∆ = 0.425. The periodicity has been chosen so that the proportion
of PM in the actual SRP model is 70%. The maintenance efficiency is assumed to
be imperfect but of great quality on each component. Therefore, it has been opted
to assume that PM efficiencies are ARA∞ with an improvement factor ρ = 0.7. The
virtual age of each component after a preventive maintenance action is 30% of its
virtual age just before the PM.

These three configurations are not exhaustive but are quite representative of the behavior
of an SRP with or without homogeneity. The PM policy in (C), which corresponds to
the case where imperfect PM is carried out simultaneously on all the components, is
investigated because it is easy to implement and widely applied in practice.

Two predictors, the mean lifetime E[X∞] and the Pearson’s correlation coefficient Corr of
two successive inter-failure times of an SRP in its stationary state, have been considered.

These two predictors are assumed to be known for the SRP models. They can be obtained
theoretically considering only CM or based on Monte Carlo simulations at any given
precision when both CM and periodic PM are implemented. Given a sample size N of
an SRP configuration, the mean-squared error (MSE) of the two predictors E[X∞] and
Corr are derived empirically for the five approximated models based on 5000 replicates of
histories. A general structure of the simulation procedure is presented in the Algorithm
2.

The results are as follows: the MSE of the two predictors E[X∞] and Corr are respec-
tively plotted in Figure 5.10a,5.10b for configuration A, 5.11a,5.11b for configuration B
and 5.12a,5.12b for configuration C. The MSE of the two predictors E[X∞] and Corr are
respectively plotted in Figures 5.10a,5.10b for configuration A, 5.11a,5.11b for configura-
tion B and 5.10a,5.10b for configuration C.

When no PM is involved (Conf. A and B), HPP has the smallest error in the estimation
of E[X∞] (see Figures 5.10a and 5.11a). Virtual age models (ARA∞ and BP) perform
better than IAT1 and SIM. With more than 50 data, the differences between the MSEs
given by the tested models are less important.

As for the error of the predictor Corr (see Figures 5.10b and 5.11b), HPP and SIM
have the largest error since their intervals are independent. BP is an auto-correlated



94 Chapter 5. Approximation of the Superposition of Renewal Processes

Algorithm 2 Empirical MSE computation

1: Select a SRP configuration

2: Compute the predictors e = E[X∞] and r = Corr
3: for N ∈ {10, 20, 50, 100, 200} do //N=length of a trajectory
4: for k = 1 : 5000 do //kth sample
5: Simulate a SRP trajectory Hist of length N
6: for i = 1 : 5 do //ith model (HPP, SIM, IAT1, ARA∞, BP)
7: Assess the parameters of the ith model from Hist

8: Estimate the predictors by êi(k) and r̂i(k)
9: end for

10: end for
11: for i = 1 : 5 do
12: Compute the empirical MSE of each measure for a trajectory of

length N and the approximated model i:

13: ̂MSEE(i, N) = 1/5000
∑5000

k=1 (êi(k)− e)2

14: ̂MSECorr(i, N) = 1/5000
∑5000

k=1 (r̂i(k)− r)2

15: end for
16: end for

process with a weak dependence between intervals, but its estimation of correlation is far
from accurate. IAT1 has the smallest MSE when the superimposed RP is homogeneous,
which may support the practice of using a Frank copula to approximate the dependence
structure in such an SRP. If the superimposed RP differ strongly from each other as in
configuration B, ARA∞ outperforms other models in estimating the correlation between
adjacent intervals.

When periodic PM are implemented (Figures 5.12a and 5.12b), the SIM and IAT1 have
a considerable error in E[X∞]. HPP performs the best when estimating E[X∞], but with
more data, the advantage of HPP over BP/ARA∞ is less significant. As for the correlation
estimator, the performance of the tested models depends on the data length: with less than
50 data, HPP outperforms the others; otherwise, BP and ARA∞ are the best. It should
be emphasized that the implementation of periodic PM results in a non-null correlation
in HPP/SIM sequences.

5.3 Conclusion

In this chapter, we have introduced and compared five approximating models for an SRP:
two imperfect repair models (ARA∞ and Brown-Proschan), two renewal processes (SIM
and HPP) and IAT1, constructed by the Kaplan-Meier estimated marginal distribution
and a Frank copula which captures the dependence structure between successive intervals.
The performances of these models are evaluated by investigating the amplitude of errors
of mean interval length and correlations when the approximations mentioned above are
used. Further, their capabilities in the prognosis of RUL are examined using the level-set
approach and Gini index. It is difficult to say which model is overall the best: their
performances depend on the aging rate as well as the available data amount.
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(a) MSE of E[X∞] (b) MSE of Corr

Figure 5.10: Configuration A: η = [1, 1, 1],β = [3.5, 3.5, 3.5].

(a) MSE of E[X∞] (b) MSE of Corr

Figure 5.11: Configuration B: η = [1, 2, 10],β = [3.5, 3.5, 3.5].

(a) MSE of E[X∞] (b) MSE of Corr

Figure 5.12: Configuration C: η = [1, 1, 1],β = [3.5, 3.5, 3.5] with periodic PM.
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The benefits of using these approximation approaches will be demonstrated in the next
chapter, where failure data collected from the Norwegian railway signaling system shall be
investigated. We show how these models could be used to evaluate the system’s reliability
and the remaining useful life, and highlight particularly the gain of using imperfect repair
models that conserve the negative dependence between intervals in an SRP.



Chapter 6

Bane NOR failure data analysis

Previously in Chapters 3 and 4, we have investigated the asymptotic properties and the
heterogeneity of imperfect repair models. Specifically, in Chapter 5, we have addressed
how these models could approximate the superposition of renewal processes–a common
modeling approach for series systems under partial repair. In this chapter, we apply the
imperfect repair models to the data collected from the signaling systems operated by Bane
NOR, aiming to demonstrate the potential benefits in accurately evaluating the system’s
reliability and its remaining lifetime.

This chapter is organized as follows: a brief description of the signaling system, as well
as the collected data, is given in Section 6.1; Section 6.2 presents three case studies in
which the imperfect repair models are fitted to the data; after highlighting the necessity of
accounting for the heterogeneity, ARA∞ model, combined with gamma-distributed frailty,
is applied to the signal failure data at Brumunddal station in Section 6.3. Concluding
remarks are given in Section 6.4.

6.1 General description

Signaling is essentially a sophisticated traffic light system for the railway. The complexities
of moving trains around such a large network, keeping them safely apart, and allowing for
their long stopping distances, means the signaling system is very complex and comprises
a great many parts.

The signals themselves are the line-side pieces of equipment that tell train drivers when
it is safe to proceed and what route their train will take. A light signal comprises 1)
signal head with light sources, background screen, and shadow screens, 2) mast with
platform/ ladder when needed, and 3) devices for controlling the signal with the interface
to interlocking equipment.

We focus on the sub-system of the light sources in a signal head, formed by two to five
lights of different colors (red, green, yellow, white). One lamp can be either LED or
incandescent. A priori, there is no manifest heterogeneity in the lights of the same type,
but the maintenance strategy depends on the importance of the lamp: since the failure of
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a red light which gives the signal ”stop” is often more severe than the failure of a green
one, preventive maintenances have been performed only on the signals that consist of red
light bulbs. Both corrective and preventive maintenances consist of replacing the light
bulb, burned or still working, by a new one. Some preventive maintenances, like periodic
inspection or cleaning, are planned for other parts of the signal (cables, covering glass,
etc.), and are not considered here.

Since the lamps are not considered to be critical parts, the identity of the failed light bulb
is usually not recorded, i.e., we do not know which exact light bulb has been changed.
Thus, the failure history of an individual light bulb is not available, resulting in a pooled
output. An SRP can, therefore, be used to describe the successive failures of the light
sources in a signal.

6.1.1 Data profile

The data we possess contains various information, among which the dates and durations
of the recorded maintenances are the most important. As soon as the failure of a signal
is spotted (often by the train operator, during maintenance work, or via inspection),
maintenance is scheduled and carried out. The delay between the discovery of the failure
and the beginning of the repair action is usually not 0, and so is the repair duration. The
distribution of CM and PM durations are gathered respectively in Table 6.1 and 6.2.

<= 1 h <= 24 h <= 30 days > 1 months
9240 9566 9715 14

Table 6.1: Repair duration distribution for Corrective maintenance.

<= 24 h <= 7 days <= 15 days <= 1 months <= 6 months
62036 79629 85281 85749 85806

Table 6.2: Preventive maintenance duration distribution.

Our models are based on point processes, and the repair durations must be neglected.
Most recorded CM are completed within one hour and are effectively “negligible” com-
pared to the inter-failure times. The delay between the failure occurrence time and the
start of maintenance action is a bit challenging since the former is in practice unknown.
Following the suggestion from experts in Bane NOR, we have decided to use the repair
start time as the failure time.

6.2 Imperfect repair models fitting

In the following, we investigate particularly the dwarf signals. A dwarf signal is composed
of four white lights. Different combinations of lighted bulbs give the train driver signals
such as ‘Driving prohibited’, ‘Warning driving allowed’, ‘Driving permitted’, and ‘Released
for local change’. An error in the light signal that causes light sources not to light must
be detectable by interlocking equipment. As we have said, no PM has been implemented
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for dwarf signals since there is no red lamp. Figure 6.1 presents a hypothetical trajectory
of a maintenance process for a dwarf signal.

Figure 6.1: Illustrative trajectory of a CM process for a dwarf signal.

Three case studies are presented where the five approximation models proposed in the
previous chapter, namely HPP, SIM, IAT1, ARA∞, and BP, are fitted to the failures
times of dwarf signals. In the first study, a single system is investigated, showing how
to use these models to compute the expectation of the remaining lifetime and evaluating
the virtual age given the failure history; the second one focuses on a group of frequently
failed systems; the third one studies all the dwarf signals, showing a whole picture of the
signals’ reliability.

Object Inference Censoring Nb. asset
Case study 1 System 012110 Individual No 1
Case study 2 Signals having 7+ failures Grouped Yes 16
Case study 3 All dwarf signals Grouped Yes 1608

Table 6.3: A summary of the case studies.

The maintenance records provided by Bane NOR contains not only failure histories (CM)
but also some invalid (for dwarf signals) PM plans. For the first case study, the observa-
tions start at the first recorded CM and end at a failure time, i.e., there is no censored
data. For the second and third case studies, the beginning of observation is considered
to be the earliest date of the PM plans, determined individually for each system; and the
end of observation is the last date of CM, which is 28 March 2019. Thus, for each system,
the last inter-event time is right-censored.

6.2.1 Case study 1: System 012110

The investigated signal is located in Dovre Line, a main national connection between
Eastern Norway and Trøndelag and further north for passenger and freight traffic. The
consecutive lifetimes are shown in Table 6.4.
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X1 X2 X3 X4 X5 X6 X7 X8

133 10 283 763 19 378 203 920

Table 6.4: Inter-failure times of System 012110.

Parameters of fitted models and some reliability indicators are gathered in Table 6.5. The
second column A0 represents the expected virtual age at the beginning of the observation
and needs to be calculated only for imperfect maintenance models, namely ARA∞ and
BP, wherein the system is considered to have entered its steady-state and is, therefore,
not as-good-as-new at the beginning of observation. The third column E[X] records the
unconditional mean lifetime of the system, whereas the last column E[X9] is the expected
value of the 9-th lifetime.

Parameters A0 E[X] E[X9]

ARA∞

α = 3.34 · 10−10

β = 2.9737 1717.1 321.38 239.83
ρ = 0.1577

BP
α = 3.27 · 10−10

β = 3.3571 460.77 321.91 293.36
p = 0.4113

HPP 339.08 0 339.08 339.08
IAT1 θ = −1.32 0 281.52 210.49
SIM 0 281.52 281.52

Table 6.5: Parameters of the models fitted to asset 012110.

For ARA∞, the parameters (α, β, ρ) are estimated by maximizing the likelihood function
defined in Eq.(5.24). The age at the start of the observation, A0, is assumed to be equal
to E[A∞|α, β, ρ] and is computed using Eq.(2.69). We can then compute the effective
ages after each repair by An = (1− ρ)(An−1 +Xn). Figure 6.2 shows the variation of the
virtual age of the system under consecutive CM. The 9-th lifetime is computed based on
A8, the virtual age after the latest repair. Its survival function is given by

RX9(t|A8) = e−α(t+A8)β+αAβ8 . (6.1)

E[X9] is obtained by integrating Eq.(6.1). Since the last lifetime X8 is relatively large,
E[X9] is smaller than the unconditional mean lifetime E[X], which is consistent with the
negative correlation between successive intervals in an ARA∞ process.

As for BP, one should first assess the most likely maintenance effects using the method
described in [79]. The repair effect of the 1st-7th maintenance actions can be represented
by a binary vector B = [0, 0, 1, 0, 1, 0, 1], where 0 signifies a minimal repair and 1 a perfect
one. Remark that the maintenance effect of the last recorded CM is non-identifiable in the
absence of further data. The BP parameters are estimated by maximizing the likelihood
function defined in Eq.(5.28). A0 is then calculated using Eq.(2.41), and the consecutive
virtual ages are plotted in Figure 6.3. After the 7th repair (just before X8 = 920), the
system is assumed to be good as new. The repair after the last observed lifetime has the
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probability p to be perfect and 1 − p to be minimal. Thus, the survival function of the
9th interval is given by

RX9(t|X8, 7-th repair is perfect) = pe−αt
β

+ (1− p)e−α(t+X8)β+αXβ
8 , (6.2)

and E[X9] under BP model is obtained by integrating the above equation.

Figure 6.2: Virtual ages in the approximat-
ing ARA∞ model.

Figure 6.3: Virtual ages in the approximat-
ing BP model.

It can be observed from Figures 6.2 and 6.3 that the asset seems to be older under ARA∞
assumption than it is under the BP model. This is because 1) a low maintenance efficiency
was estimated for ARA∞, which limits the reduction of age at each repair, and 2) three
maintenances are estimated to be perfect in BP model, making the asset relatively young.
Consequently, the remaining lifetime predicted by ARA∞ is smaller than that evaluated
by BP. Survival functions of the unconditional lifetimes have been plotted in Figure 6.4.
It could be noticed that the tails of ARA∞ and of BP are beneath the exponential fit,
which indicates an increasing failure rate when the system has been working long enough.

In addition, ARA∞ and BP approximations suggest that the system is aging: the Weibull
shape β in both models is larger than 1. The IAT1 does not directly model the failure
rate of the system. Instead, it describes the correlation between adjacent intervals with
θ < 0. As a result, the expected values of the 9th lifetime calculated under ARA∞, BP,
and IAT1 are both smaller than E[X], the unconditional mean lifetime.

6.2.2 Case study 2: the most frequently failed systems

One common issue in survival analysis is that failures are generally rare. The power of
the statistical inference should be questioned when fitting a parametric model to a small
dataset. Therefore, the aggregated data, gathered from a group of similar assets based
on the assumption that they are identical, is often used. We investigate the 16 most
frequently failed systems and assume that they share the same parameters. The inference
procedure for such a group of systems is to maximize the product of the likelihood function
of all group members.
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The model parameters and reliability indicators are gathered in Table 6.6, and the un-
conditional survival functions are plotted in Figure 6.5. It can be observed that the
exponential curve fits well the Kaplan Meier estimate, signifying a weak dependence be-
tween intervals as well as a constant failure rate. The parameter of IAT1 indicates a weak
positive dependence, whereas ARA∞ and BP suggest an increasing failure rate.

Parameters A0 E[X]

ARA∞

α = 2.16 · 10−12

β = 3.5363 1706.1 502.97
ρ = 0.2277

BP
α = 2.55 · 10−7

β = 2.2417 575.07 509.63
p = 0.4698

HPP 460.27 0 460.27
IAT1 θ = 0.1365 0 440.12
SIM 0 440.12

Table 6.6: Reliability indicators for the 16 most frequently failed assets.

Figure 6.4: Survival functions of the inter-
failure times of system 012110.

Figure 6.5: Survival function derived from
the 16 most frequently failed assets.

The validity of assuming that the most frequently failed system share the same model
parameters should be questioned. In fact, it is important to know if the systems under
consideration have similar physical characteristics, e.g., assets located at the same station
and composed by lamps of the same type may be alike because the external environment is
common for each individual. Gathering the systems based on merely the failure numbers
lacks a theoretic foundation.

6.2.3 Case study 3: all dwarf signals

1608 assets are investigated, half of which has never had a failure during the observation
frame. The following table gathers the distribution of the number of CM:
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NB. Failure 0 1 2 3 4 5 6 7 8 9 10 11
NB. Systems 821 419 178 95 51 17 11 8 2 4 0 2

Table 6.7: Distribution of the number of recorded CM.

The data set is, therefore, highly censored. Since there is no proof suggesting that the
signals are alike (we know nothing about their external environments or the frequency of
usage), we do not attempt to fit imperfect repair models to the aggregated data. Instead,
we compare the empirical survival function to the exponential fit, as shown in Figure 6.6.

The fitted exponential model has a mean lifetime 6227 days (around 17 years). As for
the Kaplan Meier estimator, if we want to calculate the expected lifetime, we have to
change the largest observation to a “death” (as shown in Figure 6.7) since the Kaplan
Meier estimator is not defined beyond the largest observation which is right-censored.
Integrating the piecewise linear version of the Kaplan-Meier estimator results in a mean
lifetime of 2576 days (about 7 years).

Figure 6.6: Survival functions derived from
the failure times of all dwarf signals.

Figure 6.7: Piecewise linear version of the
Kaplan-Meier estimator.

The fact that the empirical survival curve crosses its exponential fit once only, and from
below, strongly suggests that the failure distribution has a decreasing failure rate [93].
As discussed in Chapter 4, the DFR is possibly related to a heterogeneous population.
In our case, the explicit heterogeneity is perhaps related to some measurable covariates,
i.e., working environment (average temperature, humidity, precipitation) and usage (total
lighted time of the lamps or the frequency of switching on and off), whereas the ”unob-
served” heterogeneity includes the variation in the quality or robustness of the lamps. For
instance, some of the light bulbs are so robust that they can survive the fluctuation of
voltage that could kill the others. Without external damage, their lifetime can be up to
several decades.

6.3 Heterogeneity

In the following case study, we reveal the influences of unobserved heterogeneity on the
evaluation of the system’s reliability. The signals at the Brumunddal station are investi-
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gated. Their inter-failure times are listed in table 6.8. Previously, five models have been
fitted to the SRP dataset, yet, we investigate here only the ARA∞ approximation: as
shown in Chapter 5, Figures 5.1, 5.6, and 5.8, when using ARA∞ to approximate an SRP,
the distance between the density functions is relatively moderate in comparison with BP
or HPP. As for the IAT1 that utilizes a Frank copula to depict the correlation between
adjacent intervals, its parameter θ is non-identifiable if no failure has ever occurred during
the observation window.

Although the geometrical closeness of the nine signals at Brumunddal station could elim-
inate certain sources of heterogeneity, such as environmental conditions (humidity, tem-
perature, precipitation, etc.), different frequencies of use (numbers of switching on and
off) and manufacturers still constitute an origin of heterogeneity. Since there is currently
no available data regarding the relevant covariates, we assume that the heterogeneity lies
in gamma-distributed frailty, which makes the hazard rates proportional to each other.
This being, each signal would have the same aging rate β (because of similar external
environmental conditions) and the same repair effectiveness ρ (performed by the same
maintenance crew) and different pseudo scale parameter α.

Systems Inter-failure times
1 250, 23, 163, 533, 55, 1528, 637∗

2 529, 17, 735, 370, 1026, 883∗

3 82, 872, 928, 1308∗

4 1608, 94, 1488∗

5 424, 1887, 879∗

6 84, 3106∗

7 268, 2922∗

8 2667, 523∗

9 3190∗

Table 6.8: Signal failure times: right censoring is marked with ∗.

6.3.1 Homogeneous assumption

As a comparison, let us consider first fitting an ARA∞ model to the observations without
accounting for the heterogeneity. Since the systems are already in their steady states, the
likelihood for a single ARA∞ sequence, X , can be obtained as indicated in [28]:

L̃sf (α, β, ρ|X ) =

∫ ∞
(1−ρ)X1

Lsf (α, β, ρ|X , a0 =
y

1− ρ
−X1)fA∞(y)dy. (6.3)

where Lsf is given in Eq.(4.8). The log-likelihood of ARA∞ population, i.e., the nine
systems under consideration, is computed by summing up individual log-likelihoods. The
estimated parameters, as well as the 90% confidence intervals (CI, calculated using the
observed Fisher information [36]) when the heterogeneity between the systems is ignored,
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are therefore given below:
α̂ = 1.1833 · 10−5, CI = [1.1828 · 10−5, 1.1838 · 10−5],

β̂ = 1.46, CI = [1.22, 1.70],

ρ̂ = 0.59, CI = [0.56, 0.64].

(6.4)

6.3.2 Heterogeneous assumption

Assume now that the nine systems at Brumunddal station are heterogeneous. With a
gamma-distributed frailty, the ARA∞ model is determined by the quadruple (k, θ, β, ρ)
where k and θ are parameters of the gamma distribution followed by α, as described in
Eq.(4.2). In Chapter 4, we discussed the inference procedure that allows us to estimate
first β and ρ (Eq.(4.19)), then k and θ (Eq.(4.20)) based on an observation matrix XM .
Nevertheless, these two equations are only valid if the virtual age of the systems is known
at the beginning of the observation. In the current study, the systems were already in
their steady states, and the initial virtual age should be considered as a random variable,
i.e., Ap∞, defined as the virtual age after a repair of an item randomly drawn from the
heterogeneous population that has entered the steady-state. Its survival function is given
in Eq.(4.3). Consequently, a modification of Eq.(4.19) can be expressed as follows:

(β∗, ρ∗) = arg max
β,ρ

M∏
j=1

L̃sf (αj(β, ρ), β, ρ|Xj), (6.5)

with
αj(β, ρ) = arg max

α
L̃sf (α|β, ρ,Xj). (6.6)

Using Eqs.(6.6) and (6.5), β and ρ are estimated as{
β∗ = 2.74, CI = [2.56, 2.93],

ρ∗ = 0.22, CI = [0.03, 0.40].
(6.7)

Clearly, when the heterogeneity is overlooked, the estimated aging parameter β̂ is sig-
nificantly smaller than β∗ and ρ̂ is much larger than ρ∗. This is consistent with what
has been discovered in Chapter 4. Let us now look into the variation of the pseudo-scale
parameter α.

Since the system is in the steady-state at the beginning of the observation, k and θ can
no longer be estimated using Eq.(4.23). Instead, they can be determined numerically
by maximizing the corresponding likelihood. The likelihood of a single ARA∞ with an
unknown initial age and gamma-distributed α is given by:

L̃sr(k, θ, β, ρ|X ) =

∫ ∞
(1−ρ)X1

Lsr(k, θ, β, ρ|X , a0 =
y

1− ρ
−X1)fpA∞(y)dy, (6.8)

where Lsr is given by Eq.(4.14) and fpA∞(t) is the Pdf of Ap∞, obtained by taking the
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derivative of Eq.(4.3):

fpA∞(t) =
∞∑
s=1

1

(q, q)∞(1
q
, 1
q
)s−1

(1 +
θtβ

qs
)−k−1 · kθβ

qs
· tβ−1. (6.9)

Correspondingly, the likelihood of the ARA∞ population, with an unknown initial age
and a gamma-distributed α value, given the observation matrix XM , is the product of
individual likelihoods. Having estimated β∗ and ρ∗, we can derive k and θ as follows:

(k∗, θ∗) = arg max
k,θ

M∏
j=1

L̃sr(k, θ|Xj, β∗, ρ∗). (6.10)

Using the equations listed above along with β∗ and ρ∗, k and θ are estimated as{
k∗ = 0.37, CI = [0.18, 0.77],

θ∗ = 4.37 · 10−10, CI = [1.18 · 10−10, 1.62 · 10−9].
(6.11)

(a) On the scale 1:2000 (b) Tails of ARA∞ and HPP

Figure 6.8: Kaplan-Meier estimator, HPP and ARA∞ fit.

We can now compare the survival functions of the time between failure for the signals.
Without considering the heterogeneity, the survival function is given by Eq.(2.67) with
α̂ = 1.18 · 10−5, β̂ = 1.46, and ρ̂ = 0.59 (red solid line in Figure 6.8b). Assuming that the
gamma-distributed frailty is present among the signals, the survival function is computed
using Eq.(4.4) with β∗ = 2.74, ρ∗ = 0.22, k∗ = 0.37 and θ∗ = 4.37 · 10−10 (blue dashed
line in Figure 6.8b). The pseudo-scale parameter is now regarded as a gamma-distributed
random variable with mean k∗θ∗ = 1.6169 · 10−10 and variance k∗θ∗2 = 7.0659 · 10−20.
Obviously, the survival function has a heavier tail when the heterogeneity is taken into
consideration.

We can further decompose the observed inter-failure times and fit an HPP to the individual
sequences while assuming that they share the same failure rate. For HPP, the first intervals
in Table 6.8 are considered to be right-censored, i.e., the first lifetime is larger than the
observed first interval. The HPP fit is given by the orange line in Figure 6.8, with a mean



6.4. Conclusion 107

lifetime of 2392 days. On the scale of 1:2000, the HPP fit is slightly above the ARA∞
curves (Figure 6.8a), whereas the tail for HPP is beneath that of the heterogeneous ARA∞
model as is shown in Figure 6.8b. This agreed with the observed decreasing failure rate
when we investigated all the dwarf signals in the previous case study.

6.4 Conclusion

In this chapter, we have investigated the dwarf signals in the Norwegian railway. The
signals heads consist of light bulbs in a series configuration and can be, therefore, modeled
by the superposition of renewal processes. To study the reliability and remaining lifetime
of such system, the most convenient model is HPP, which assumes that the systems have
an exponentially distributed inter-failure time. However, the empirical survival function
crosses the exponential fit from below when investigating overall the 1608 dwarf signals:
the signal head has seemingly a decreasing failure rate.

The DFR, however, is not necessarily due to the DFR of the components that compose
the signal head, i.e., the light bulbs. In fact, according to the frailty analysis, the DFR
is a result of “weakest objects die out first” reasoning: some light bulbs are more robust
than others. This is supported by the fact that more than half of the dwarf signals (821
out of 1608) have never had a failure during ten years of observation.

Each signal head being modeled by an independent SRP, it is not a good idea to decompose
the inter-failure times and merge them. That is why we did not try to fit a Weibull
renewal process to the inter-failure times of all the systems. Actually, it is essential to
treat individual failure sequences as a whole. Otherwise, the intrinsic correlation between
adjacent intervals in an SRP will be lost.

Thus, the heterogeneous ARA∞ seems to be a plausible model that could be used to
evaluate the mean lifetime and reliability of the systems: the variation of the pseudo scale
α makes it possible to depict a DFR situation even with an increasing baseline failure
rate. The sources of heterogeneity for the signal heads include not only the reliability of
light bulbs but also the external environment or maintenance crews. Using a heteroge-
neous ARA∞ implies that all heterogeneities, no matter the sources, are modeled by the
proportional hazard rates.

Finally, for future work, it would be of value to incorporate the fore-mentioned covariates
into the current model. This will certainly lead to a better understanding of the aging
process by explaining why some systems are more robust than others and will enable the
formulation of maintenance plans that are more targeted and cost-effective.
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Conclusion and perspective

Imperfect maintenance models are simple, flexible and realistic. We have first investigated
the mathematical properties of some existing models. For those used to describe the
situations where failures arrive asymptotically at a constant rate, i.e., having a steady-
state, we have proven that they share similar properties as the renewal process: the
explicit formulas for the distribution of age, remaining lifetime and spread in a renewal
process are also valid for these steady-state imperfect repair models. Moreover, for two
virtual age processes, ARA∞ and BP, we have found the asymptotic distribution of virtual
age.

Next, we have studied the mixture of heterogeneous imperfect repair models—an issue
that often rises when estimating parameters from aggregated data. For ARA1, ARA∞,
BP, and the geometric process, we have shown that the unobserved heterogeneity, if
overlooked, would result in biased estimates, i.e., an overestimated repair efficiency and
an underestimated aging rate. Traditional MLE methods reveal to be inconsistent facing
heterogeneity, and alternative estimators have been established. Moreover, parametric
models have been proposed for ARA∞ and BP to characterize the heterogeneity originated
in proportional failure rates, aging speed, and repair efficiency.

Then, we postulate the approximation of superposition of renewal processes—a common
modeling approach for repairable series systems—by imperfect repair models that gener-
ally have less parameters than the SRP and thus allow us to avoid cumbersome inference
procedures. We have investigated the approximation errors in the distributions and mean
value of lifetimes. Besides, the correlation between adjacent intervals in ARA∞ and IAT1

has been proven to be a plausible approximation of the dependence structure between two
intervals in an SRP. This enables a better evaluation of the system’s aging and a more
accurate prognosis.

Finally, the theoretical developments are tested on simulated data as well as data col-
lected from the Norwegian railway network. Fitting imperfect repair models to the signal
failure data that was originally modeled by an SRP while accounting for the unobserved
heterogeneity, we have highlighted the value of imperfect repair models in evaluating the
reliability of systems, assessing the effectiveness of repairs and making optimal mainte-
nance plans.

Based on the current work, several straightforward topics for future research include the
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asymptotic properties for imperfect repair models combined with preventive maintenance,
the interaction of different sources of heterogeneity and their influence, an explicit formu-
lation of heterogeneity using covariates, to name a few.

From a broader perspective, we believe it is of value to integrate imperfect maintenance
models with other mathematical tools such as the Markov chain. Currently, we have
only considered binary systems. Allowing the multiple states while adopting the imper-
fect repair assumptions would possibly lead to a generalization of the Markov renewal
process. Another example consists of a variant external environment: ordinary ARA∞
and BP are governed by a baseline failure intensity, which would become less realistic
if the external environment is changing. The asymptotic properties, e.g., the existence
of steady-state and limiting the mean lifetime distribution, will also change accordingly
under such assumptions. The combination of imperfect maintenance models with shock
models, load-sharing systems, or competing risk models are also worth of careful attention
in the future research topics.
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Appendix A

Introduction

A.1 Contexte

De nos jours, de nombreux systèmes, tels que les lignes de production, les équipements
d’armes, les centrales nucléaires, les appareils, les véhicules, les avions, etc., sont devenus
de plus en plus complexes. Les coûts de leur utilisation deviennent également encore
plus élevés qu’auparavant. La maintenance doit être effectuée afin de maintenir les per-
formances de ces systèmes proches du niveau de la conception d’origine. La plupart des
systèmes utilisés dans la pratique sont sujets à une détérioration avec l’utilisation et l’âge.
Pour ces systèmes détériorés, la maintenance, comme la surveillance, les réparations et
les remplacements, peut prolonger leur durée de vie, maintenir la qualité des opérations,
réduire le coût des opérations et prévenir les défaillances du système. Notez que, dans
ce travail, nous nous intéressons uniquement aux systèmes réparables qui peuvent être
restaurés à l’état de fonctionnement via le remplacement ou la réparation de composants
en cas de défaillance du système.

En pratique, la maintenance est divisée en deux grandes classes: l’une est dite mainte-
nance corrective (CM), l’autre maintenance préventive (PM). La maintenance corrective
vise à restaurer le système dans un état spécifié en cas de défaillance du système. La main-
tenance préventive vise à maintenir le système dans un état spécifié lorsque le système
fonctionne. Avec la tendance actuelle de l’Industrie 4.0, de plus en plus d’efforts sont
consacrés aux maintenances préventives, voire proactives. L’objectif est de minimiser la
perte potentielle d’une défaillance du système en effectuant des tâches préventives au bon
moment. Non seulement devons-nous rassembler toutes sortes de données sur l’état du
système, par exemple, l’âge et les caractéristiques physiques, qui nous aident à évaluer la
durée de vie restante et l’intensité de défaillance instantanée, mais également un modèle
de maintenance approprié est nécessaire pour représenter l’interaction entre les activités
de maintenance et correctement le système physique.

Les modèles de maintenance sont à la base de toute analyse de maintenance quantitative,
qui peut être utilisé pour analyser et évaluer les performances des approches de mainte-
nance. Plusieurs facteurs distinguent ces modèles de maintenance, notamment, mais sans
s’y limiter, les politiques de maintenance (remplacement d’âge, remplacement de bloc,
limite de défaillance ...), les structures de système (structure série, structure parallèle, k-
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out-of-n ...), degré de maintenance (réparation parfaite, réparation minimale, réparation
imparfaite ...), critères d’optimisation (taux de coût minimal, disponibilité maximale,
fiabilité maximale ...), distributions de durée de vie (Exponentiel, Weibull, Gamma ...).

Le document actuel se concentre sur les modèles de maintenance imparfaits (IMM) ou les
modèles de réparation imparfaits, dans lesquels les activités de maintenance ne doivent
pas être parfaites (restaurer le système dans un état neuf) ou minimes (ramener le système
dans l’état juste avant l’échec sans aucune amélioration). Bien que le mot �imparfait� in-
dique généralement qu’un système est ramené à un état entre bon comme neuf et mauvais
comme vieux, ces modèles sont également capables de modéliser la maintenance nuisible
(pire que l’ancien) ou maintenance parfaite (meilleure que neuve) Au cours des dernières
décennies, les IMM ont été largement étudiés car ils sont suffisamment flexibles pour
représenter une grande échelle de situations, ce qui conduit à son tour à des stratégies
de maintenance plus efficaces pour minimiser le taux de coût ou maximiser la fiabilité
/ disponibilité des actifs. Nous énumérons ici certains des principaux facteurs qui dis-
tinguent les modèles de réparation imparfaits:

• Type d’entretien. CM et PM peuvent être imparfaits. Les IMM peuvent impliquer
uniquement CM ou CM et PM.

• Mécanisme de réparation. La maintenance est généralement censée réduire l’âge
d’un élément, mais parfois, elle est supposée réduire l’intensité de la défaillance.

• Stabilité. Certains modèles sont utilisés pour représenter le système en détérioration
avec des pannes se produisant de plus en plus souvent, tandis que d’autres sont
utilisés pour modéliser des systèmes ayant un état stationnaire.

• Indépendance. Dans certains modèles, les temps de défaillance consécutifs inter
sont supposés indépendants; et dans d’autres modèles comme le processus Brown-
Proschan, les temps d’inter-échec sont corrélés.

• Homogénéité des réparations. La réparation imparfaite est souvent caractérisée par
un degré de réparation, qui détermine dans quelle mesure un système est restauré.
Cela pourrait être une constante ou changer avec le temps.

L’outil mathématique pour les IMM est le processus stochastique: ce n’est pas une surprise
car le premier IMM (et toujours très populaire), proposé par Kijima dans les années 1980,
porte le nom de �processus de renouvellement généralisé�. beaucoup a été fait concernant
les propriétés mathématiques de ces processus: nous pouvons prouver que certains modèles
sont stables tandis que d’autres ne le sont pas; nous pouvons estimer les paramètres du
modèle en fonction des données sur le processus de défaillance/réparation; il existe des
tests statistiques nous indiquant si un système peut ou peut ne pas être décrit par un
certain modèle compte tenu des temps d’inter échec observés; en attendant, de nombreux
articles étudient l’application de ces modèles, par exemple, trouver la politique optimale
de gestion des particules lorsque ni CM ni PM n’est parfait. Cependant, certains sujets
restent inaperçus, et il faut répondre à quelques questions apparemment simples.
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A.2 Objectifs

D’un point de vue mathématique, peut-on en savoir plus sur les IMM? Par exemple, dans
un processus de renouvellement, la distribution du temps de récurrence avant/arrière est
connue depuis longtemps. Pourrait-il être généralisé à des IMM stables? De plus, si oui,
comment influence-t-il les politiques de maintenance?

Les IMM sont souvent appliqués à un système unitaire ou à une population hétérogène
composée de systèmes indépendants et identiques. Si l’hétérogénéité est présente dans la
population, c’est-à-dire que les systèmes sont similaires mais pas identiques, peut-on en-
core estimer correctement les paramètres du modèle à partir des observations? Comment
tenir compte de l’hétérogénéité et comment influence-t-elle les stratégies de gestion des
particules?

Les systèmes en série sont couramment utilisés dans l’ingénierie de la fiabilité. Le système
tombe en panne lorsque l’un de ses composants tombe en panne. Si le composant
défectueux est remplacé alors que d’autres ne sont pas entretenus, une partie du système
peut être considérée comme �renouvelée�, ce qui fait du remplacement une réparation
imparfaite au niveau du système. Pouvons-nous utiliser quelques IMMs simples pour
approximer les systèmes en série? gains et pertes potentiels?

D’un point de vue pratique, un responsable de la maintenance doit généralement choisir
un modèle de maintenance approprié parmi plusieurs candidats. Tous représentent le
système physique de manière plausible, mais peuvent avoir des résultats différents lors
de la prévision de la durée de vie restante et peuvent suggérer différentes stratégies de
maintenance préventive. Comment identifier le meilleur (ou le pire) IMM? Comment
évaluons-nous leurs performances?

Cette thèse vise à approfondir la découverte des IMM à la fois en théorie et en pratique.
Pour être plus précis, les principaux objectifs sont les suivants:

• Étudiez les propriétés mathématiques des IMM stables.

• Modéliser l’hétérogénéité et évaluer son influence sur les politiques de maintenance.

• Proposer de nouveaux modèles pour rapprocher les systèmes en série.

• Évaluer et comparer les performances des modèles proposés.

A.3 Méthodes de recherche

La recherche est à la fois fondamentale et appliquée, exploratoire et explicative. De nou-
veaux modèles sont développés en combinant les connaissances dans différents domaines,
par exemple, l’analyse de survie et l’analyse de fragilité parce que les théories existantes
ne sont pas entièrement capables d’expliquer les observations. Ces modèles sont ensuite
testés sur des données de terrain, dans le but d’illustrer les avantages potentiels de leur
utilisation.
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Les propriétés mathématiques et statistiques existantes des IMM, par exemple, les distri-
butions, les corrélations, les convergences, etc., forment la base de nos nouveaux théorèmes
et propositions: tous sont basés sur des preuves mathématiques strictes.

Néanmoins, certaines quantités, par exemple, la distribution asymptotique du temps entre
défaillances d’un IMM spécifique ou le taux de coût à long terme des activités de réparation
lorsque nous voulons évaluer et comparer certaines stratégies de MP, peuvent difficilement
être exprimées par des formules explicites. Lorsque cela se produit, nous avons recours à
la simulation de Monte Carlo, comme expliqué ci-dessous.

Seule une analyse quantitative est utilisée lors de ce travail. Les données simulées sur
le processus de défaillance / réparation d’un système sont collectées via la simulation
Monte Carlo, avec un modèle spécifié et des paramètres connus. Ces données incluent
généralement les temps d’inter échec (un nombre positif), le type de durée de vie (cen-
suré ou non censuré), le type de réparation (CM ou PM), le degré de réparation (une
proportion), etc., d’un système décrit par un certain IMM. Ils ont été utilisés aux fins
suivantes:

1. Vérifiez les propositions et les théorèmes mathématiques. Lorsqu’une formule est
proposée, elle est d’abord vérifiée avec des données simulées, ce qui permet d’éliminer
rapidement les suppositions et les formules erronées. Une fois la preuve terminée, la sim-
ulation de Monte Carlo est à nouveau utilisée pour examiner la validité des propositions.

2. Vérifier les procédures d’estimation et évaluer la cohérence et l’efficacité des es-
timateurs. L’inférence statistique est l’un des principaux problèmes de la recherche:
lorsqu’un modèle est adapté aux observations, les paramètres sous-jacents doivent être
déduits par une certaine procédure d’estimation, par exemple, l’appariement des mo-
ments, l’estimation du maximum de vraisemblance (MLE). La validité des procédures
d’inférence est examinée en comparant les estimations aux paramètres connus. De plus,
le réglage de la taille des données permet d’évaluer la cohérence et l’efficacité des estima-
teurs.

3. Évaluer les stratégies d’entretien quantitativement. Nous avons choisi le taux de coût de
réparation à long terme comme critère d’optimisation, qui implique souvent la fonction de
renouvellement, c’est-à-dire le nombre prévu de défaillances dans une période de temps. Il
s’agit d’une quantité typique qui ne possède pas de formule explicite. Simuler le processus
de défaillance/réparation d’un grand nombre de systèmes indépendants et enregistrer les
coûts de réparation nous permet d’obtenir empiriquement le taux de coût de réparation
à long terme.

Les données de terrain de Bane NOR ont également été analysées. Les enregistrements
de défaillance/réparation du système de signalisation ferroviaire norvégien au cours de la
dernière décennie contiennent des informations telles que la date d’intervention, la durée
de la réparation, le type de réparation, ainsi que l’emplacement des signaux, le fabricant
et l’administration. Les données sont ensuite utilisées pour découvrir la carence des IMM
existants et pour tester et évaluer les nouveaux modèles proposés.
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A.4 Portée et limites de la recherche

Ces travaux portent principalement sur les IMM et l’optimisation quantitative de la main-
tenance. Ainsi, de nombreux problèmes et techniques de modélisation concernant la fia-
bilité et l’analyse des risques ne sont pas traités. Ci-dessous, nous énumérons certaines
des principales limitations dans le cadre d’un modèle de réparation imparfait:

• Une représentation binaire du système est utilisée: ils peuvent fonctionner ou échouer.
Par conséquent, la modélisation multi-états et les approches connexe, par exemple,
les châınes de Markov, ne sont pas poursuivies. Dans une telle hypothèse binaire,
les modèles étudiés dans cet article ne peuvent pas être appliqués à des systèmes qui
subissent une dégradation continue, tels que le processus de corrosion des tuyaux,
la longueur de fissure de la chaussée, la déviation géométrique des voies ferrées.

• Le temps de réparation est considéré comme négligeable. Il s’agit d’une hypothèse
quintessentielle en ingénierie de la fiabilité, visant à simplifier le modèle lorsque le
temps de réparation est négligeable par rapport à son temps moyen entre défaillances.
Bien que cette hypothèse soit valide pour les données fournies par Bane NOR dans
le sens où les signaux ferroviaires survivent généralement des années, voire des
décennies, alors que l’activité de réparation ne dure généralement pas plus d’une
journée, elle limite la gamme d’applications de nos résultats.

Du point de vue de l’optimisation de la maintenance, cette étude présente les limites
suivantes:

• L’optimisation de la maintenance que nous abordons dans cette étude n’est qu’une
des nombreuses étapes d’une gestion de maintenance réelle. C’est un problème
de décision dans la situation ”idéale”. L’application d’un tel plan de maintenance
”optimal” n’est généralement pas aisée en pratique. Un problème typique pourrait
être un arriéré élevé, ce qui entrave la mise en œuvre de maintenances préventives.

• Les covariables ne sont pas prises en compte dans cette étude. C’est-à-dire que
tous les indicateurs de fiabilité d’un actif, par exemple la durée de vie moyenne, la
fréquence de défaillance, la vitesse de vieillissement, sont dérivés uniquement des
données de durée de vie sans utiliser d’autres mesures qui pourraient éventuellement
aider à évaluer l’état actuel d’un actif et son durée de vie restante. Par exemple, dans
les données fournies par Bane NOR, les dates de défaillance/réparation des lampes
de signalisation sont enregistrées, ce qui nous indique leur durée de vie et leur durée
de réparation. Nous pouvons mieux comprendre leur mécanisme de défaillance et
planifier la PM en conséquence si nous connaissons l’heure de leur mise sous/hors
tension, qui est logiquement une variable pertinente pour les ampoules.

• Nous déployons une méthode purement quantitative, qui repose fortement sur la
qualité et la taille des données collectées. Fondamentalement, nous dérivons la
vitesse de vieillissement des actifs des enregistrements de défaillance/réparation, et
sur la base des paramètres estimés du modèle, une stratégie PM est proposée. Par
conséquent, la puissance statistique lorsque la taille des données est petite doit être
remise en question. De plus, ce n’est pas un cadre qui peut facilement intégrer les
opinions d’experts.
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Pour résumer, les limites mentionnées ci-dessus indiquent certaines orientations de recherche
futures: combiner les IMM avec un système de dégradation d’état multi-états ou continu,
où la durée de réparation ou le temps de séjour dans différents états n’est plus négligeable;
incorporer des covariables dans les modèles; développer éventuellement un cadre bayésien
pour prendre en compte l’avis des experts.

Le reste du rapport comprend quatre chapitres. Dans le chapitre 2, nous présentons l’état
de l’art sur les IMM. Certains des modèles les plus populaires sont présentés de manière
détaillée, avec des définitions mathématiques appropriées. Le chapitre 3 est consacré
aux IMM stables. Nous prouvons qu’ils ont des propriétés mathématiques similaires à
celles du processus de renouvellement, avant de révéler les distributions asymptotiques des
quantités les plus cruciales, y compris l’âge virtuel, dans les IMM. Dans le chapitre 4, nous
discutons de l’hétérogénéité des IMM. L’objet étudié n’est plus un système unique, mais
un groupe de systèmes similaires qui subissent des réparations imparfaites. Le chapitre
5 est consacré aux systèmes en série, à la superposition des processus de renouvellement
et à ses approximations. Nous étudions la relation interne entre le système série et les
IMM et proposons de nouvelles approches d’approximation qui aident à prédire la durée
de vie restante des systèmes série. Au chapitre 6, les modèles étudiés sont testés sur des
données simulées et des données de terrain. En particulier, nous abordons le problème
de l’optimisation de la maintenance en utilisant les conclusions des chapitres 3 et 4. Des
remarques finales et des discussions sont données au chapitre 7.



Appendix B

Chapter 3

B.1 Introduction

Ce chapitre traite des propriétés asymptotiques pertinentes pour les processus d’âge
virtuel à l’état stationnaire. On montre que les distributions limites d’âge, la durée de vie
résiduelle et la vie totale qui décrivent un processus de renouvellement ordinaire peuvent
être généralisées au processus d’âge virtuel stable, bien que les cycles de ce dernier ne
soient pas indépendants. Les distributions asymptotiques de l’âge virtuel au moment t,
ainsi que des âges virtuels au début et à la fin d’un cycle contenant t (quand t tend
vers l’infini) sont explicitement dérivées pour deux modèles de maintenance imparfaite
populaires dans la pratique, à savoir la réduction arithmétique de l’âge à mémoire in-
finie (ARA∞) et les modèles Brown-Proschan (BP). Certaines applications des résultats
obtenus à l’optimisation de la maintenance sont discutées.

Comme indiqué dans la section précédente, les processus de renouvellement ordinaires
sont stationnaires dans le sens où la fonction de densité de renouvellement correspondante
a tendance à être constante lorsque le temps tend vers l’infini. Le NHPP qui décrit les
réparations minimales est, de toute évidence, non stationnaire, et si, par exemple, son taux
augmente, les défaillances arrivent plus fréquemment avec le temps. Le type Kijima I et
le processus géométrique ([79]), comme NHPP, ne sont pas stationnaires et peuvent être
utilisés pour modéliser la durée de vie avec les tendances. Bien qu’il existe de nombreuses
publications sur diverses applications des modèles d’âge virtuel en matière de fiabilité, peu
a été fait dans la littérature sur la description des propriétés asymptotiques pertinentes
des processus d’âge virtuel correspondants.

Il convient de noter que les propriétés limitantes des processus de renouvellement ordi-
naires sont particulièrement importantes dans diverses applications. Par exemple, l’obtention
des fonctions de renouvellement correspondantes peut être difficile à calculer, et les valeurs
asymptotiques simples fournies par les théorèmes de type renouvellement sont avan-
tageuses dans la pratique. Un autre exemple est le processus de renouvellement alterné.
La disponibilité stationnaire dans ce cas, qui est généralement du principal intérêt, est
obtenue simplement via les temps de montée et de descente moyens d’un système. Les cy-
cles de vie de nombreux systèmes industriels sont assez longs, ce qui signifie qu’un grand
nombre d’actions de maintenance sont effectuées. De plus, dans de nombreux cas, les
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données opérationnelles ne sont enregistrées que lorsqu’un système entre dans son régime
stable. Par conséquent, l’importance des méthodes asymptotiques dans le contexte décrit
est difficile à surestimer.

L’étude des propriétés asymptotiques des processus de réparation imparfaits qui décrivent
plus adéquatement que les processus de renouvellement ordinaires la maintenance des
systèmes du monde réel, semble être une tâche naturelle et pratiquement saine qui est
abordée dans le présent article. Pour atteindre cet objectif, nous avons d’abord dû
répondre aux questions suivantes: les résultats asymptotiques pour l’âge, la durée de
vie résiduelle et la vie totale pour les processus de renouvellement ordinaires peuvent-ils
être généralisés (et dans quelles conditions) au cas des processus de réparation imparfaits?
Quelles sont les distributions asymptotiques de ces quantités? Pour répondre à ces ques-
tions, des résultats théoriques spécifiques ont dû être obtenus et illustrés par plusieurs
exemples pratiques.

B.2 Conclusion

Ce chapitre étudie les distributions asymptotiques pour les processus d’âge virtuel stable.
Nous montrons d’abord que les distributions limites du temps de récurrence en arrière, de
la durée de vie restante et de la vie totale qui caractérisent un processus de renouvellement
ordinaire peuvent être généralisées au cas des processus d’âge virtuel avec des cycles
asymptotiquement répartis de manière identique. Ensuite, nous dérivons de nouvelles
expressions analytiques pour toutes les distributions limites d’intérêt. Nous discutons
également de l’importance du mécanisme de réduction de l’âge pour les résultats obtenus.
Les exemples fournis mettent en évidence la valeur pratique de nos résultats en ingénierie
de la fiabilité.

Ce sujet pourrait être poursuivi à l’avenir dans plusieurs directions. Par exemple, des
distributions asymptotiques dans des modèles d’âge virtuel stables impliquant des main-
tenances préventives imparfaites peuvent être envisagées. Un exemple typique est le
processus ARA1 CM-ARA∞ PM décrit dans [32]: les maintenances correctives du type
ARA1 ne peuvent pas maintenir le système réparé dans un état stable , tandis que la
stationnarité peut être obtenue par les PM périodiques de type ARA ∞. Par conséquent,
il pourrait être intéressant d’examiner la distribution asymptotique de l’âge virtuel juste
après le PM dans ce cas. Limite distributions dans d’autres modèles de maintenance
imparfaits tels que le modèle de réduction arithmétique de l’intensité à mémoire infinie
(ARI∞) ([34]) peut également être digne d’être approfondi.
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Chapter 4

C.1 Introduction

Ce chapitre étudie l’effet de l’hétérogénéité sur les défaillances des systèmes réparables
qui subissent des réparations imparfaites, qui sont largement utilisées en ingénierie de
la fiabilité. Lorsque l’on considère un groupe de systèmes similaires, l’hypothèse que les
processus de réparation sont indépendants et distribués de manière identique devient dis-
cutable en raison de l’hétérogénéité non observée de ces systèmes. Les modèles de base que
nous considérons incluent ARA∞, ARA1, Brown Proschan et le processus géométrique.

Dans la section 4.1, pour le processus ARA∞, nous utilisons le modèle de fragilité pour
étudier le taux de risque de base proportionnel entre les systèmes et, en particulier, la
fragilité charactérisée par la loi gamma est étudiée. Ainsi, nous dérivons les propriétés
asymptotiques du processus de réparation mixte et les estimations de vraisemblance cor-
respondantes, puis évaluons les effets sur l’estimation des paramètres du modèle lorsque
l’hétérogénéité est ignorée par erreur. De plus, lorsque le modèle est correctement établi en
tenant compte de la fragilité, nous constatons que l’estimateur du maximum de vraisem-
blance est incohérent et nous proposons une approche alternative. Deux études de cas
sont présentées pour illustrer les avantages de la prise en compte de l’hétérogénéité non
observée dans la planification des activités de maintenance préventive.

Dans la section 4.2, pour le processus BP, non seulement le taux de risque proportionnel
est pris en compte, mais de nouveaux modèles paramétriques ont également été proposés
pour décrire l’efficacité de réparation hétérogène et l’environnement de travail. L’impact
de l’hétérogénéité sur la durée de vie moyenne de la population est révélé, et en particulier,
nous soulignons l’importance d’employer une équipe de maintenance toujours compétente.

Dans la section 4.3, pour ARA1 et le processus géométrique, l’influence du paramètre
d’échelle hétérogène a été abordée. Nous nous concentrons spécifiquement sur la question
de l’estimation des paramètres. Il est démontré que lorsque l’hétérogénéité est négligée
par erreur, le paramètre de vieillissement est constamment sous-estimé.

Enfin, certaines applications des résultats pertinents dans l’analyse du système de sig-
nalisation ferroviaire sont présentées au chapitre 6, montrant les avantages de la prise en
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compte de l’hétérogénéité lors de l’estimation de la vitesse et de la fiabilité du vieillisse-
ment du système.

C.2 Conclusion

Dans ce chapitre, nous avons considéré le cas où l’hétérogénéité entre les systèmes est
combinée avec des modèles de réparation imparfaits stables. Pour le processus ARA∞,
après avoir étudié l’influence d’une fragilité non spécifiée sur la durée de vie moyenne de
la population, nous avons examiné spécifiquement la distribution gamma sur le paramètre
pseudo-échelle du processus ARA∞ et dérivé le propriétés asymptotiques, y compris les
distributions de la durée moyenne du cycle de la population et de la VA de la population,
puis présenté les conséquences pour les cas où l’hétérogénéité entre les systèmes a été
erronément ignorée. En particulier, lorsque le modèle était mal spécifié, le taux de vieil-
lissement était sous-estimé, tandis que l’efficacité de la réparation était surestimée. De
plus, en raison de la spécialité de ARA∞, c’est-à-dire des intervalles dépendants, le MLE
établi sur le modèle correct était toujours incohérent. Par conséquent, une approche al-
ternative a été proposée et sa cohérence a été vérifiée. Enfin, la question de l’optimisation
de la maintenance pour la population qui subit une réparation imparfaite est abordée, et
les avantages de la prise en compte de l’hétérogénéité lors de la planification des activités
de maintenance préventive sont démontrés.

Pour le modèle de Brown Proschan, nous avons étudié non seulement l’hétérogénéité due
à la fragilité, mais également pris en compte l’efficacité d’entretien hétérogène. Il a été
souligné que pour minimiser le nombre moyen à long terme de défaillances de systèmes,
il est préférable d’employer une équipe habile �moyenne� plutôt qu’une combinaison de
personnel hautement qualifié et de quelques recrues.

Enfin, pour deux processus de réparation imparfaits et instables, ARA1 et le processus
géométrique, nous montrons que l’estimation des paramètres du modèle sans tenir compte
de l’hétérogénéité cachée peut conduire à des estimations biaisées. Plus précisément, le
paramètre de vieillissement, lorsque la distribution de référence est Weibull, est toujours
sous-estimé. Il s’agit d’un fait important qui souligne l’importance de tenir compte de
l’hétérogénéité du système lors de l’analyse de l’historique de maintenance; sinon, avec le
paramètre de vieillissement sous-estimé et une efficacité de réparation souvent surestimée,
il est difficile d’optimiser le plan de maintenance.

Les applications industrielles de ces résultats seront démontrées au chapitre 6, où une
étude de cas sur les données de défaillance collectées à partir de signaux le long d’une gare
norvégienne est réalisée, illustrant les avantages de la prise en compte de l’hétérogénéité
non observée dans l’estimation de la vitesse et de la fiabilité du vieillissement des actifs
et dans la planification des activités de maintenance préventive.

Néanmoins, la présente étude comporte plusieurs limites. D’abord et avant tout, aucune
covariable n’est prise en compte. En pratique, les covariables expliquent les sources de
l’hétérogénéité et permettent de mesurer/contrôler plus efficacement, alors que dans notre
étude, l’hétérogénéité est considérée comme une propriété intrinsèque des systèmes. Cette
question sera à nouveau abordée au chapitre 6 lorsque nous analyserons l’historique des
défaillances des systèmes de signalisation ferroviaire exploités par Bane NOR. Deuxièmement,
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il serait intéressant d’étudier comment différentes hétérogénéités interagissent les unes
avec les autres, étant donné que nous n’avons étudié que séparément le taux de défaillance
hétérogène, l’efficacité de la réparation hétérogène et la vitesse de vieillissement différente.
Nous pensons que ces deux directions méritent une enquête plus approfondie.



Appendix D

Chapter 5

D.1 Introduction

La superposition des processus de renouvellement (SRP) consiste en l’observation des
temps entre arrivées sur la base de multiples processus de renouvellement indépendants.
Dans l’analyse de maintenance imparfaite, SRP caractérise le système en série réparable
lorsque la maintenance consiste à remplacer le composant défaillant tout en laissant les
autres composants inchangés (réparés de façon minimale). Les composants peuvent être
des structures physiques ou virtuelles comme dans une situation de risque concurrentiel.
Après une réparation, le système est souvent entre les états aussi bon que neuf et aussi
mauvais que vieux, car un seul des composants a été renouvelé.

Dans la pratique, les enregistrements de maintenance sont souvent incomplets et les infor-
mations sur l’identité des composants défaillants ne sont pas nécessairement disponibles.
Par conséquent, les observations sont généralement réduites à une sortie groupée [21],
constituée des temps de défaillance au niveau du système. L’évaluation de la santé du
système, comme son vieillissement global et son efficacité de maintenance, commence
généralement par l’estimation des paramètres du modèle. Lorsque le nombre de com-
posants est connu et que tous les composants sont identiques, des procédures d’inférence
ont été effectuées par [118] directement sur la sortie regroupée à l’aide d’un partition-
nement informatique. Néanmoins, lorsque le nombre d’événements regroupés est limité,
ou lorsque les composants sont différents les uns des autres, les méthodes d’inférence
directe sont difficiles à mettre en œuvre, inspirant diverses approches d’approximation.

Étant donné que les temps d’inter-occurrence d’un SRP tendent vers une distribution
d’équilibre, une simplification naturelle consiste à utiliser un processus de renouvellement
[69, 113, 105] pour approximer le SRP. Il existe plusieurs choix pour la distribution à vie
du processus de renouvellement approximatif. Deux d’entre eux sont les plus courants:
le premier est la distribution exponentielle, qui forme un processus de Poisson homogène
(HPP) [113]; la seconde est la distribution limite des intervalles dans la SRP approximé,
donnée dans l’équation (??), ce qui garantit que le processus de renouvellement approxi-
matif et la SRP approximé ont la même durée de vie attendue. Ceci est appelé dans [105]
la méthode à intervalle stationnaire (SIM).
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Cependant, le principal inconvénient de l’approximation d’un SRP par un processus de re-
nouvellement est la perte de dépendance entre les temps d’inter-occurrence, en particulier
deux temps d’inter-arrivée successifs. Dans ce chapitre, nous proposons trois nouvelles
approches d’approximation d’un SRP basées sur des modèles d’âge virtuels et une cop-
ule, avant de les comparer aux modèles existants, par exemple, HPP et SIM. Puisque
nous nous intéressons principalement à la situation où les paramètres SRP sont inconnus,
nous présenterons d’abord les cinq approches tout en mettant l’accent sur les procédures
d’estimation qui dérivent les paramètres des modèles d’approximation à partir de la sor-
tie groupée observée d’un SRP. Ensuite, nous évaluons les performances des méthodes
proposées, c’est-à-dire pour voir si elles peuvent conserver correctement la durée de vie
moyenne ou capturer la corrélation entre des intervalles adjacents ou utiliser d’autres
méthodes pour accéder à la “ distance ” entre le SRP et ses approximations.

D.2 Conclusion

Dans ce chapitre, nous avons présenté et comparé cinq modèles approximatifs pour un
SRP: deux modèles de réparation imparfaits (ARA∞ et Brown-Proschan), deux processus
de renouvellement (SIM et HPP) et IAT1, construits par la distribution marginale estimée
de Kaplan-Meier et une copule de Frank qui capture la structure de dépendance entre
les intervalles successifs. Les performances de ces modèles sont évaluées en étudiant
l’amplitude des erreurs de longueur d’intervalle moyenne et les corrélations lorsque les
approximations mentionnées ci-dessus sont utilisées. En outre, leurs capacités dans le
pronostic de RUL sont examinées en utilisant l’approche level-set et l’indice de Gini. Il
est difficile de dire quel modèle est globalement le meilleur: leurs performances dépendent
du taux de vieillissement ainsi que de la quantité de données disponibles.

Les avantages de l’utilisation de ces approches d’approximation seront démontrés dans le
chapitre suivant, où les données de défaillance collectées à partir du système de signali-
sation ferroviaire norvégien seront étudiées. Nous montrons comment ces modèles pour-
raient être utilisés pour évaluer la fiabilité du système et la durée de vie utile restante, et
soulignons en particulier le gain de l’utilisation de modèles de réparation imparfaits qui
conservent la dépendance négative entre les intervalles dans un SRP.



Appendix E

Chapter 6

E.1 Introduction

Auparavant, nous avons étudié les propriétés asymptotiques et l’hétérogénéité des modèles
de réparation imparfaits. Plus précisément, au chapitre 5, nous avons examiné comment
ils pourraient se rapprocher de la superposition des processus de renouvellement - une
approche de modélisation commune pour les systèmes en série. Dans ce chapitre, nous
appliquons les modèles de réparation imparfaits aux données collectées des systèmes de
signalisation exploités par Bane NOR, dans le but de démontrer les avantages potentiels
de l’évaluation de la fiabilité du système et de la durée de vie restante.

La signalisation est essentiellement un système sophistiqué de feux de circulation pour le
chemin de fer. La complexité de déplacer des trains autour d’un si grand réseau, de les
maintenir en sécurité et de tenir compte de leurs longues distances d’arrêt, signifie que le
système de signalisation est très compliqué et comprend de nombreuses parties.

Les signaux eux-mêmes sont les équipements côté ligne qui indiquent aux conducteurs de
train quand il est sûr de continuer et quelle route leur train prendra. Un signal lumineux
comprend 1) une tête de signal avec des sources de lumière, un écran de fond et des
écrans d’ombre, 2) un mât avec plate-forme/échelle si nécessaire, et 3) des dispositifs
pour contrôler le signal avec l’interface avec l’équipement de verrouillage.

Nous nous concentrons sur le sous-système des sources lumineuses dans une tête de signal,
formé de deux à cinq lumières de couleurs différentes (rouge, vert, jaune, blanc). Une
lampe peut être à LED ou à incandescence. A priori, il n’y a pas d’hétérogénéité manifeste
dans les feux du même type, mais la stratégie de maintenance dépend de l’importance
de la lampe: car la panne d’un feu rouge qui donne le signal “stop” est souvent plus
grave que la panne de vert, des entretiens préventifs ont été effectués uniquement sur
les signaux constitués d’ampoules rouges. Les maintenances correctives et préventives
consistent à remplacer l’ampoule, brûlée ou en fonctionnement, par une neuve. Certains
entretiens préventifs, comme l’inspection périodique ou le nettoyage, sont prévus pour
d’autres parties du signal (câbles, verre de couverture, etc.) et ne sont pas pris en compte
ici.

Étant donné que les lampes ne sont pas considérées comme des pièces critiques, l’identité
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de l’ampoule défectueuse n’est généralement pas enregistrée, c’est-à-dire que nous ne
savons pas quelle ampoule exacte a été changée. Ainsi, l’historique des défaillances d’une
ampoule individuelle n’est pas disponible, ce qui entrâıne une sortie groupée. Un SRP
peut donc être utilisé pour décrire les défaillances successives des sources lumineuses dans
un signal.

Ce chapitre est organisé comme suit: une brève description des données collectées est
donnée dans la section 6.1; La section 6.2 présente trois études de cas dans lesquelles
les modèles de réparation imparfaits sont ajustés aux données; après avoir souligné la
nécessité de tenir compte de l’hétérogénéité, le modèle ARA∞, combiné à la fragilité, est
appliqué aux données de défaillance du signal à la station de Brumunddal dans la section
6.3. Des remarques finales sont données dans la section 6.4.

E.2 Conclusion

Dans ce chapitre, nous avons étudié les signaux nains dans le chemin de fer norvégien. Les
têtes de signaux sont constituées d’ampoules dans une configuration en série et peuvent
donc être modélisées par la superposition de processus de renouvellement. Pour étudier la
fiabilité et la durée de vie restante d’un tel système, le modèle le plus pratique est HPP,
qui suppose que les systèmes ont un temps d’inter-échec distribué de façon exponentielle.
Cependant, cela contredit le fait que la fonction de survie empirique croise l’ajustement
exponentiel d’en bas lors de l’enquête globale sur les 1608 signaux nains: la tête de signal
a apparemment un taux d’échec décroissant.

Le DFR, cependant, n’est pas nécessairement dû au DFR des composants qui composent la
tête de signal, c’est-à-dire les ampoules. En fait, selon l’analyse de fragilité, le DFR est le
résultat d’un raisonnement “les objets les plus faibles s’éteignent en premier”: certaines
ampoules sont plus robustes que d’autres. Ceci est soutenu par le fait que plus de la
moitié des signaux nains (821 sur 1608) n’ont jamais connu de panne pendant dix ans
d’observation.

Chaque tête de signal étant modélisée par un SRP indépendant, ce n’est pas une bonne
idée de décomposer les temps d’inter-échec et de les fusionner. C’est pourquoi nous n’avons
pas essayé d’adapter un processus de renouvellement de Weibull aux temps d’interruption
de tous les systèmes. En fait, il est essentiel de traiter les séquences de défaillance individu-
elles dans leur ensemble. Sinon, la corrélation intrinsèque entre les intervalles adjacents
dans un SRP sera perdue.

Cela étant, l’hétérogène ARA ∞ semble être un modèle plausible qui pourrait être utilisé
pour évaluer la durée de vie moyenne et la fiabilité des systèmes: la variation de la
pseudo-échelle α permet de représenter un situation DFR même avec un taux d’échec de
base croissant. Les sources d’hétérogénéité des têtes de signal incluent non seulement la
fiabilité des ampoules mais aussi l’environnement extérieur ou les équipes de maintenance.
L’utilisation d’un ARA∞ hétérogène implique que toute hétérogénéité, quelle que soit sa
provenance, soit modélisée par les taux de risque proportionnels.

Enfin, pour les travaux futurs, il serait utile d’incorporer les covariables susmentionnées
dans le modèle actuel. Cela permettra certainement de mieux comprendre le processus de
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vieillissement en expliquant pourquoi certains systèmes sont plus robustes que d’autres et
permettra la formulation de plans de maintenance plus ciblés et plus rentables.



Appendix F

Conclusion

Les modèles de maintenance imparfaits sont populaires dans la pratique en raison de
leur simplicité et de leur flexibilité simultanées. Nous avons d’abord étudié les propriétés
mathématiques de certains modèles existants. Pour ceux utilisés pour décrire les situations
où les échecs arrivent à un taux constant, c’est-à-dire ayant un état stationnaire, nous
avons prouvé qu’ils partagent des propriétés similaires au processus de renouvellement: les
formules explicites pour la distribution de l’âge, la durée de vie restante et la propagation
dans un processus de renouvellement est également valable pour ces modèles de réparation
imparfaits en régime permanent. De plus, pour deux processus d’âge virtuel, ARA∞ et
BP, nous avons trouvé la distribution asymptotique de l’âge virtuel.

Ensuite, nous avons étudié le mélange de modèles de réparation hétérogènes imparfaits —
un problème qui se pose souvent lors de l’estimation des paramètres à partir de données
agrégées. Pour ARA1, ARA∞, BP et processus géométrique, nous avons montré que
l’hétérogénéité non observée, si elle était négligée, entrâınerait des estimations biaisées,
c’est-à-dire une efficacité de réparation surestimée et un taux de vieillissement sous-estimé.
Les méthodes MLE traditionnelles pourraient être incohérentes face à l’hétérogénéité, et
d’autres estimateurs ont été établis. De plus, des modèles paramétriques ont été proposés
pour ARA∞ et BP pour caractériser l’hétérogénéité provenant des taux de défaillance
proportionnels, de la vitesse de vieillissement et de l’efficacité des réparations.

Ensuite, nous postulons l’approximation de la superposition des processus de renouvelle-
ment — une approche de modélisation commune pour les systèmes en série réparables —
par des modèles de réparation imparfaits qui ont généralement moins de paramètres que
le SRP et nous permettent ainsi d’éviter des procédures d’inférence lourdes. Nous avons
étudié les erreurs d’approximation dans les distributions et la valeur moyenne des durées
de vie. En outre, la corrélation entre les intervalles adjacents dans ARA∞ et IAT1 s’est
avérée être une approximation plausible de la structure de dépendance entre deux inter-
valles dans un SRP. Cela permet une meilleure évaluation du vieillissement du système
et un pronostic plus précis.

Enfin, les développements théoriques sont testés sur des données simulées ainsi que des
données collectées sur le réseau ferroviaire norvégien. En adaptant les modèles de réparation
imparfaits aux données de défaillance du signal qui ont été initialement modélisées par
un SRP tout en tenant compte de l’hétérogénéité non observée, nous avons souligné la
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valeur des modèles de réparation imparfaits dans l’évaluation de la fiabilité des systèmes,
l’évaluation de l’efficacité des réparations et l’élaboration de plans d’entretien optimaux.

Sur la base des travaux en cours, plusieurs sujets simples pour de futures recherches com-
prennent les propriétés asymptotiques pour les modèles de réparation imparfaits com-
binés à la maintenance préventive, l’interaction de différentes sources d’hétérogénéité et
leur influence, une formulation explicite d’hétérogénéité à l’aide de covariables, pour n’en
nommer que quelques-unes.

Dans une perspective plus large, nous pensons qu’il est utile d’intégrer des modèles de
maintenance imparfaits à d’autres outils mathématiques tels que la châıne de Markov.
Actuellement, l’état du système est binaire. Autoriser les états multiples tout en adop-
tant les hypothèses de réparation imparfaites pourrait éventuellement conduire à une
généralisation du processus de renouvellement de Markov. Un autre exemple consiste en
une variante d’environnement externe: les ARA∞ et BP ordinaires sont régis par une
intensité de défaillance de base, qui deviendrait moins réaliste si l’environnement externe
change. Les propriétés asymptotiques, par exemple, l’existence d’un état stationnaire
et la limitation de la distribution de durée de vie moyenne, changeront également en
conséquence sous de telles hypothèses. La combinaison de modèles de maintenance im-
parfaits avec des modèles de choc, des systèmes de partage de charge ou des modèles de
risque concurrents mérite également quelques recherches.
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[99] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de
l’Institut Statistique de l’Université de Paris, 8:229–231, 1959.
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Modèles de maintenance imparfaite : 
état  stationnaire,  hétérogénéité  et  
applications 
 
 
Au fil des ans, la maintenance a attiré l'attention 
dans de nombreux domaines. Les défaillances des 
systèmes peuvent entraîner des pertes de la produc-
tion ou des accidents majeurs. Par conséquent, au 
lieu de se concentrer sur la maintenance réactive, 
qui vise à restaurer un système après une panne 
inattendue, les gens sont plus intéressés par les 
maintenances préventives et prédictives qui pour-
raient nous préparer à la panne ou éviter un scéna-
rio catastrophique. Pour faire un plan de mainte-
nance rentable, il faut décider quelles sont les ac-
tions de maintenance appropriées et quand les 
mettre en œuvre. Une compréhension approfondie 
du mécanisme de défaillance du système est donc 
nécessaire. De nombreux modèles mathématiques 
ont été proposés pour illustrer le processus de dé-
faillance/réparation qui subit des réparations impar-
faites. Dans ce contexte, nous étudions le domaine 
d'application des modèles de réparation imparfaits 
tout en examinant les conséquences d'un ajuste-
ment de modèle inapproprié, et proposons de nou-
veaux modèles que nous pensons plus réalistes. Les 
propriétés mathématiques sont étudiées et l'infé-
rence statistique est abordée. Les développements 
théoriques sont accompagnés de plusieurs études 
de cas, basées sur des données collectées du réseau 
ferroviaire norvégien. Nous avons l'intention de 
souligner la valeur des modèles de réparation im-
parfaits pour évaluer la fiabilité des systèmes, éva-
luer l'efficacité des réparations et optimiser les 
plans de maintenance. Nous espérons que ce travail 
sera utile et inspirant pour les praticiens et cher-
cheurs concernés. 
 
 
Mots clés : entretien – fiabilité – durée de vie (ingé-
nierie) – processus stochastiques – estimation de 
paramètres. 
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Imperfect Maintenance Models: Steady-
state, Heterogeneity and Applications 
 
 
 
Over the years, maintenance has been gaining atten-
tion in many different fields. Failures of systems can 
result in as small as the loss of production or as 
large as a major accident. Consequently, instead of 
focusing on reactive maintenance, which aims to 
restore a system after an unexpected failure, people 
are more interested in preventive and predictive 
maintenances that could prepare us for the failure or 
avoid a catastrophic scenario. To make a cost-
effective maintenance plan, one must decide what 
the appropriate maintenance actions are, and when 
to implement them? A profound understanding of 
the system's failure mechanism is necessary to 
answer these questions. Numerous mathematical 
models have been proposed to depict the fail-
ure/repair process that undergoes imperfect repairs. 
The thesis is completed in this context. On the one 
hand, we investigate the application field of imper-
fect repair models while examining the consequenc-
es of inappropriate model fitting. On the other hand, 
new models, which we believe are more realistic, 
are established. The mathematical properties are 
thoroughly studied, and statistical inference is ad-
dressed. The theoretical developments are accom-
panied by several case studies, based on not only 
simulated data but also data collected from the 
Norwegian railway network. We intend to highlight 
the value of imperfect repair models in evaluating 
the reliability of systems, assessing the effective-
ness of repairs, and optimizing maintenance plans. 
We hope that this work would be helpful and inspir-
ing for relevant practitioners and researchers. 
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