Mr Akram Alhussein 
  
Mr Khaled Khalil 
  
Mr Manuel François 
  
Mrs Shabnam 
  
Arbab Chirani 
  
Mr Jérôme Favergeon 
  
Mr Ahmed Elmarakbi 
  
Mr Frédéric Jacquemin 
  
Zeinab Ibrahim 
  
Isabelle Leclercq 
  
Florent Uny 
  
Imane Bouabibsa 
  
Alexis De Monteynard 
  
Thibaut Perrin 
  
Guillaume Raine 
  
Sofiane Achache 
  
Sandrine Sanchette 
  
Christopher Swan 
  
Karima Aoudia 
  
Sébastien Remy 
  
Mohamed El Garah 
  
Fabrice Parent 
  
Alexandre Delblouwe 
  
Ioana Fechete 
  
Mohamed Amine Filali 
  
Nathan Liebgott 
  
Maoxiang Zhu 
  
Kamel Ouari 
  
Elias Kaady 
  
Ahlam Belgroune 
  
Fanny Perrot 
  
Frédéric Sanchette 
  
Vincent Cardot 
  
Dolly Salameh 
  
Semaan Zgheib 
  
  
  
  
  
  
  
  

at the University of Technology of Troyes. I would like to warmly thank them for believing in my potential and providing me with the right tools to strive in using my talents and curiosity during these three years. I revere their eminent support and most importantly, their humanitarian and professional values, which were reflected throughout the thesis work. Their equanimity and constant motivation inspired me to dare to aim high. Their erudite work was undoubtedly key to face all the challenges during the research time of the thesis. For the past three years, they have never stopped pushing me to deepen my knowledge in this field, so they constantly offered me to attend several conferences and workshops, which

Preface 1

New processes for obtaining materials in the form of thin films were developed in order to deal with various technological and economic constraints imposed in the industrial society.

Today, these coatings are widely used in many fields such as mechanics, electronics, optics, chemical and aeronautic industries, etc. A coating acts as a protective film in order to protect, for example, a mechanical part and improve its performance. The thickness of these coatings varies from a few nanometers to a few hundred micrometers. Besides, these thin films can be used individually as a single layer or in multilayers, depending on the required applications.

These coatings can be produced by different techniques, among which are given as examples:

Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD) and thermal spraying.

In this thesis, we will particularly focus on thin films produced by magnetron sputtering (one of the PVD techniques).

A thin film produced by magnetron sputtering is generally multiphased, textured, porous and has an ellipsoidal grain shape [Liu 2018, Slim 2019]. Besides, the microstructural properties (structure, texture, morphology and porosity) depend on the deposition parameters [Ait-Djafer 2015, Zhang 2017]. However, these microstructural properties can influence the physical and mechanical properties of the film and thus can provide anisotropic behavior to the film. In order to ensure the performance of the mechanical parts, it is necessary to control the properties of the coated components. Indeed, we will be particularly interested in the elastic properties of thin films produced by magnetron sputtering.

Predicting the elastic behavior of coatings requires a perfect knowledge of the elasticity constants of the film, which depend on its microstructural properties. The identification of the elasticity constants is important in the field of engineering, in the choice of material and in the dimensioning of structures. Since thin films deposited by magnetron sputtering are often anisotropic, the knowledge of the anisotropic elasticity constants is necessary to predict the elastic behavior of the material. The elasticity constants allow us also to predict the residual stresses generated during the deposition process. This thesis aims to determine the macroscopic elasticity constants of anisotropic thin films. Different methodologies will be proposed to determine the elasticity constants of thin Preface Preface 2 films having anisotropic elastic behavior. Two different approaches will be used in this work.

A macroscopic approach consists in determining the elasticity constants of a film by vibrational measurements using the Impulse Excitation Technique (IET). A microscopic approach consists of determining the elasticity constants of a film by taking into account its microstructural properties (porosity, morphological and crystallographic textures). The crystallographic texture will be obtained by X-ray diffraction. The porosity will be measured by image analysis. The morphological texture will be observed by scanning electron microscopy. This manuscript is therefore composed of five chapters.

The first chapter will present generalities on elasticity and its interest in engineering.

The compliance and rigidity tensors of generally anisotropic materials and some others with particular symmetries will be illustrated. The determination of elasticity constants from the rigidity tensors will also be presented. Then, we will introduce several characterization techniques used to determine the elasticity constants of thin films by indicating the different problems encountered. Among the different techniques, the Impulse Excitation Technique will be chosen to measure the macroscopic elasticity constants of our films. From a literature synthesis, we will show that thin films produced by magnetron sputtering are often porous, polycrystalline, textured, multiphased and their elastic behavior depends on the deposition conditions through the microstructure. Therefore, the characterization of a thin film at the microscopic scale is performed by taking into account its microstructural properties. In order to characterize the anisotropy of thin films, two approaches will be developed during this work.

The impulse excitation technique and the X-ray diffraction will be used for macroscopic and microscopic elastic characterizations, respectively.

The second chapter will be dedicated to the development of new models to determine the Young's and shear moduli of multilayer coatings, for any thickness, and mechanical and physical properties of the substrate and films. These models will be validated by comparing their results to those of a finite element model taken as a reference.

In the third chapter, the mechanical models (Ext-PM, Dev-CLBT and Ext-Slim) developed will be applied to titanium and niobium films deposited in multilayers. The elasticity constants of each film assumed isotropic, will be determined by means of the Impulse Excitation Technique. Then, the reduced moduli determined by this technique and nanoindentation will be compared.
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Chapter I Introduction to the elasticity of thin films

Chapter I

I.1. Anisotropy and elastic symmetries: Brief overview

The elastic behavior of any material is defined by a compliance tensor 𝑆 𝑖𝑗𝑘𝑙 or a stiffness tensor 𝐶 𝑖𝑗𝑘𝑙 , which links the stress to the elastic strain. These are fourth-rank tensors, containing 81 Cartesian components in an orthonormal base (𝑥 1 , 𝑥 2 , 𝑥 3 ) [Vannucci 2018]. According to Hooke's law, the linear relations between the stress 𝜎 and strain 𝜀 tensors are written for all the materials as follows [Vannucci 2018]:

𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑘𝑙 𝜀 𝑖𝑗 (I.1)

𝜀 𝑖𝑗 = 𝑆 𝑖𝑗𝑘𝑙 𝜎 𝑖𝑗 (I.2)
with i, j, k and l ∈ {1, 2, 3}.

The stiffness and compliance tensors are represented by second-rank symmetric tensors with 3 × 3 components in a three-dimensional space ℝ 3 and thus they have only 6 independent components. These six components can be rearranged into a column vector. Due to the symmetry of the stress and strain tensors, the symmetries in the stiffness and compliance tensors are:

𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑘𝑙𝑖𝑗 𝑆 𝑖𝑗𝑘𝑙 = 𝑆 𝑘𝑙𝑖𝑗 (I.3)

𝐶 𝑖𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 = 𝐶 𝑖𝑗𝑙𝑘 = 𝐶 𝑗𝑖𝑙𝑘 𝑆 𝑖𝑗𝑘𝑙 = 𝑆 𝑗𝑖𝑘𝑙 = 𝑆 𝑖𝑗𝑙𝑘 = 𝑆 𝑗𝑖𝑙𝑘 (I.4)

The 81 components of the compliance and stiffness tensors can then be reduced to 36 independent components. These components can then be rearranged into a second-rank symmetric tensor with 6 × 6 components. It can therefore be easily represented by a 6 × 6 symmetric square matrix.

According to the Kelvin's notation [START_REF] Kelvin | Elements of a mathematical theory of elasticity[END_REF] The Voigt's notation [Voigt 1910, François 2009] is not symmetric in terms of stress and strain and the contraction scheme of stiffness and compliance tensors is not the same.

Kelvin's notation does not have these drawbacks. Even though, the two notations are equivalent [François 2009]. Kelvin's notation is preferred in this work. It gives a representation of Chapter I

Introduction to the elasticity of thin films 9 elasticity by matrices, [𝐶] and [𝑆], representing second-rank symmetric tensors in ℝ 6 , which is not the case with the Voigt's notation [Mehrabadi 1990]. For instance, this fact helps the rotation of the matrices owing to the transferring from fourth-rank tensors in ℝ 3 , to secondrank tensors in ℝ 6 .

The stiffness matrix can be subdivided into various parts describing a particular effect.

The different mechanical effects are presented in composite, wood, multilayers, etc.). Thanks to the symmetries of the stress and strain tensors, the stiffness and compliance tensors contain 21 instead of 36 independent components. The material having the lowest symmetry is known as triclinic material with a general form of anisotropy. Matrix [𝐶] appears hence as:

[𝐶] = In the case of a material with hexagonal symmetry, the number of independent components is reduced to 5. This material presents an axis of cylindrical symmetry and is called transversely isotropic. Many materials belong to this class, like for instance composites, laminated steel and wood. The stiffness tensor is written as follows:

[𝐶] = (I.12) I. 1.3. The elasticity of material with cubic symmetry By considering a material with cubic symmetry, the number of independent components is reduced to only three, since the crystalline system presents a high symmetry. The stiffness tensor is then written as follows: 

. The engineering constants of elasticity

The engineers usually prefer to use the so-called elasticity constants instead of the elastic stiffness and compliance matrix components, 𝐶 𝑖𝑗 and 𝑆 𝑖𝑗 respectively. These elasticity constants must represent all the mechanical effects in a stressed material. They are defined as a function of the 𝐶 𝑖𝑗 or 𝑆 𝑖𝑗 . Several elasticity constants were defined in the literature, among which, Young's modulus, shear modulus, Poisson's ratio, Chentsov's ratio, etc.

Young's modulus measures the extension stiffness along the direction of one of the three axes. The mechanical meaning of the shear modulus is completely analogous to that of the Young's modulus but in shear stress and strain instead of normal ones. The Poisson's ratios measure the Poisson's effect i.e. the deformation in a direction transversal to that of the normal stress. These elasticity constants can be defined from the following expressions: Where 𝐸, 𝐺 and 𝜈 are Young's modulus, shear modulus and Poisson's ratio respectively. The elasticity constants can be expressed as a function of the components of the stiffness matrix 𝐶 𝑖𝑗 by inverting the compliance matrix:

𝐸 𝑖 = 1 𝑆 𝑖𝑖 𝑖 = 1,
[𝐶] = [𝑆] -1 .
The elasticity constants are very important physical quantities in the field of engineering. The prediction of the elastic behavior of a material is important when the material is subjected to different types of loading. Several analytical and numerical models were developed using the elastic properties of materials in order to design structures, to predict the lifetime of their constitutive materials and to have a safe operation of the stressed structure.

Furthermore, in the mechanical field, the elastic behavior is used as a criterion to choose the most suitable material for a well-defined application. In the next section, some methods of measuring the elasticity constants will be presented with their corresponding issues.

I.2. Methods of measuring the elasticity constants of thin films with the corresponding issues

Several methods were developed to determine the elasticity constants of bulk and coated materials. They can be classified into two groups: static and dynamic techniques. The tensile test is one of the first static (or, more precisely, quasi-static) techniques used to determine several mechanical characteristics of a material, such as Young's modulus, Poisson's ratio, yield strength, etc. It allows the prediction of the mechanical behavior, which can be used for structure calculation.

For thin film application, several studies have used the tensile test to determine the Young's modulus of different types of films [Hollman 1997, Chen 2009, Huang 2013, He 2016]. Hollman et al. [Hollman 1997] have noted that the tensile test is highly dependent on the residual compressive stresses in the film. Chen et al. [Chen 2009] found that the external load should be applied only on the substrate such that the film is loaded indirectly through displacement continuity. By determining the 3D elastic stress field in a composite structure, the elastic properties of thin films are accurately calculated with proper gripping and stress concentration. Huang et al. [Huang 2013] found a good agreement between the moduli extracted from the tensile loading and those obtained by nanoindentation for multilayered ZrCu/Cu thin films. In order to improve the quality of the results, Gong et al. [START_REF] Gong | [END_REF] delimited the test sample into three zones: two coated zones with different thicknesses and uncoated one. This decomposition enabled to simultaneously obtain the substrate and film strains, to study the relationship between the thickness of the films and their elasticity constants and to reduce the experimental error.

For small-scale tensile testing, the strain measurement must be performed in situ to prevent the gripping problems and tester compliance that make the strain values unreliable [Huang 2000]. For this reason, different in-situ methods were combined with tensile testing, such as interferometric strain/displacement gauge [Sharpe 1997], speckle interferometry [START_REF] Read | Tensile properties of free-standing aluminum thin films[END_REF]], X-ray diffraction (XRD) [Faurie 2005, Geandier 2010, Djaziri 2014] or laser diffraction [Huang 2000]. Sharpe et al. [Sharpe 1997] have used an interferometric strain/displacement
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Introduction to the elasticity of thin films 13 gauge, which is a non-contacting optical technique to measure the strain on brittle polysilicon thin films. The Young's modulus is then calculated from the slope of the experimental stressstrain curve.

The tensile test is one of the most techniques used to characterize the elastic behavior of materials but its application in the case of thin films remains restrictive because of the various problems encountered during the test (film delamination, film cracking during the test, stress concentration and gripping problem, etc.). It is also interesting to note that the sensitivity of this method decreases when the ratio between the substrate and film thicknesses increases owing to decreasing in the film sensitivity to the applied load. Consequently, this method is not suitable for the elastic characterization of thin films of few micrometers in thickness.

I.2.1.2. Bending test

The bending test also appears to be the most popular technique used, particularly for testing brittle materials, such as ceramics. For small-scale tests, this method is often easier to be implemented than the tensile one. Several works have used bending test to determine the Young's modulus of thin films. Rouzaud et al. [Rouzaud 1995] have performed a three-point bending test to determine the Young's modulus of C, W, CrC, and TiN coatings. Kraft et al.

[ Kraft 1998] and Schalko [START_REF] Schalko | [END_REF]] have also determined the Young's modulus and the internal tensile strength of thin films using bending tests. Mendels et al. [Mendels 2005] have performed four-point bending micro-tests to determine the Young's modulus of a Ti/TiN multilayer coating. Dong et al. [START_REF] Dong | [END_REF]] have performed bending tests to micro-beams using a nanoindenter and have determined the Young's modulus of a SiON film used in electromechanical microsystems (MEMS). Grieseler et al. [Grieseler 2016] have carried out insitu bending tests in a scanning electron microscope. The problems encountered with this test are the same as those encountered with the tensile test, due to the high level of applied loading during the test.

I.2.1.3. Nanoindentation test

Among many techniques available to assess the film Young's modulus, NanoIndentation (NI) technique is applied frequently for this purpose. It was developed to characterize different types of materials and particularly thin films. This static test is often used to determine the mechanical properties, such as hardness, elastic and elastoplastic properties.

Chen et al. [Chen 2005] have performed NI tests on W and Al films deposited on two different types of substrates and found that the type of substrate used influences the measured modulus. Gerthoffer et al. [START_REF] Gerthoffer | [END_REF]] have used NI to determine the Young's modulus of a Mo film for energy applications. NI measurements were performed on the cross-sectional and the surface of ZrO films obtained by EB-PVD [Lugscheider 2001]. A significant difference between the values was observed, they were between 10 GPa and 160 GPa for the measurements performed on the surface and between 20 GPa and 120 GPa for the measurements made on the cross-section. TiC films of 2 𝜇𝑚 thick were deposited on different Ti, Cr and Mo sub-layers by magnetron sputtering [Feng 1998]. The authors found that the films Young's moduli determined by NI depend on the sub-layer used. The measured values varied between 400 GPa and 500 GPa.

Furthermore, a coupling between the experimental results and the numerical simulations was performed [Zhao 2011[START_REF] Isselé | Determination of the Young's modulus of a TiN thin film by nanoindentation: analytical models and FEM simulation[END_REF], Pandure 2014] in order to overcome the effect of the substrate. This coupling can be used to extract mechanical properties like hardness, Young's modulus, optimal thickness, etc. Gamonpilas et al. [Gamonpilas 2004] have determined the indentation behavior of various coated structures by using a combination of dimensional and finite element analyses. The effect of substrate properties on the elastic behavior of the films was investigated. The results revealed that the indentation experiments should be carried out up to a maximum depth of 5 % of the film thickness to avoid any influence from the substrate.

This rule is applicable when the yield strength and Young's modulus ratios between the coating and the substrate 𝜎 𝑦,𝑐 /𝜎 𝑦,𝑠 and 𝐸 𝑐 /𝐸 𝑠 are higher than 10 and 0.1 respectively. If 𝜎 𝑦,𝑐 /𝜎 𝑦,𝑠 < 10, the maximum depth becomes 10 % of the film thickness. Saha et al. [Saha 2002] have evaluated by NI the effect of Al, glass, Si and sapphire substrates on the mechanical properties of Al and W thin films. They found that the elastic modulus of thin films is strongly affected by the substrate because the elastic field under the indenter is extended into the substrate, especially when the film thickness is small.

Although the nanoindentation test is one of the most frequently used techniques to determine the elasticity constants of thin films, the results of this test are influenced by the elastic interaction between the substrate and the film. In addition, since the majority of thin films are anisotropic, the Young's modulus determined by nanoindentation is a combination of the in-plane and out-of-plane Young's moduli. It also assumes that the Poisson's ratio of the tested film is known, which is not always true.

Chapter I The technique principle is based on the propagation velocity of an ultrasonic wave within a material, which is directly related to the elastic properties of the material. These specific velocity measurements can be performed by using contact or immersion measurement methods.

Several researchers [START_REF] Lima | Elastic Modulus Measurements via Laser-Ultrasonic and Knoop Indentation Techniques in Thermally Sprayed Coatings[END_REF], Tan 2010, Sedmák 2013] have used the ultrasonic method to determine the elasticity constants of coatings obtained by thermal spray. Thomasovà et al. [START_REF] Thomasovà | Young's moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite[END_REF]] have determined the Young's modulus of a NiTi thin film produced by magnetron sputtering using the ultrasonic method. The ultrasonic characterization of elastic anisotropy in plasma-sprayed alumina coatings was also performed by this method [Parthasarathi 1995]. Another alternative of this method consists in measuring the ultrasonic wave propagation velocity at the surface. Hurley et al. [Hurley 2001] and Schneider et al.

[ [START_REF] Schneider | [END_REF]] have determined respectively the elasticity constants of anisotropic TiN and Young's modulus of DLC films with the same method.

The advantage of employing the RUS technique for coatings is that small amplitude excitations are sufficient for the measurements. Furthermore, the ability to calculate the entire stiffness matrix from a single spectrum is a distinct advantage of this method. Despite the nondestructive nature and all other advantages, this technique has not been considered for thin films that have complex microstructures. The results may be influenced by the texture and structural defects present within the material. The non-linearity and anelasticity in the elastic properties of textured thin films make it difficult to determine uniquely the microstructure-dependent linear elastic properties except when the material is subjected to small strains [Liu 2008].

Ledbetter et al. [START_REF] Ledbetter | [END_REF]] have noted that an anisotropic distribution of dislocations in a material can influence the measurements of the elasticity constants.

I.2.2.2. Impulse Excitation Technique

The Impulse Excitation Technique (IET) consists in exciting a sample (beam, cylinder, disc, etc.) by a striker and let it freely vibrate without any constraint. The signal generated by these mechanical vibrations is recorded using a microphone or a transducer. This signal is then analyzed to extract the resonant frequencies of the vibrated sample by Fast Fourier Transform
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Introduction to the elasticity of thin films 16 (FFT). The measured resonant frequencies are used to determine the elasticity constants of the tested material using elasticity expressions. These expressions involve the dimensions and density of the sample.

This technique has been used by several researchers to determine the elastic constants of different materials, such as metals, composites, ceramics, polymers, glass, porous materials, coatings, etc. [START_REF] Atri | [END_REF], Schrooten 1999[START_REF] Radovic | [END_REF], Gadaud 2004, Gadaud 2009, Hauert 2009, Vasechko 2016] and over a wide range of temperatures [Peraud 1997, Gadaud 2009, Raj 2009;Patel 2018]. Peraud et al. [Peraud 1997], Etienne et al. [Etienne 2004] and Sanchette et al. [Sanchette 1999] have determined the Young's modulus of different thin films with this technique, respectively: ~2 𝜇𝑚 thick SiC and NiTi, 0.2 𝜇𝑚 thick TiN, and 10 𝜇𝑚 thick AlTiN and AlCrN. Gadaud et al. [Gadaud 2009] have measured the shear modulus of NiO thin films having two different thicknesses (40 𝜇𝑚 and 60 𝜇𝑚). Slim et al. [Slim 2017b] have determined the Young's and shear moduli of 2.88 𝜇𝑚 thick W film deposited by magnetron sputtering.

López-Puerto et al. [López-Puerto 2014] have determined the Young's moduli of 200 nm thick Al and 250 nm thick Au films in an Al/Au/Kapton multilayer composite using the same technique.

Other authors [Grüter 2010, Ma 2012] have employed the IET to simultaneously measure the density and Young's modulus of thin films. The proposed method requires the use of a beam composed of three layers (substrate + film 1+ film 2) in order to attribute one analytical expression for each film. Ma et al. [Ma 2012] have used this method to simultaneously measure the Young's modulus and density of Ni film deposited on Si cantilever beam. Furthermore, it has been shown recently that Young's modulus and density of thin films can also be simultaneously determined by measuring the in-plane and out-of-plane resonant frequencies [START_REF] Ilic | [END_REF]]. However, the in-plane excitation is difficult to be achieved in practice.

On the other hand, another non-destructive method was proposed to simultaneously determine the Young's modulus and either the density or the thickness of thin films [START_REF] Stachiv | Measurement of Young's modulus and volumetric mass density/thickness of ultrathin films utilizing resonant based mass sensors[END_REF]]. It consists in detecting the resonant frequency shifts of coated and uncoated resonators caused by an attached mass. Thanks to the well-established resonance-based mass sensors, film properties can be determined even if no shift of the resonant frequency was found.

This non-destructive technique is easily usable without any expensive equipment required. The advantage of this technique is that very low-stress levels are generated compared to the yield strength of most materials owing to very small strains generated during the test. The IET is qualified as a promising alternative for the characterization of the elastic behavior of thin films.

I.2.3. Other techniques

Other experimental techniques were used to determine the elasticity constants of thin films, namely atomic force microscopy, bulge test, Brillouin light scattering, surface acoustic wave spectroscopy, picosecond ultrasonic method, and ellipsometric porosimetry.

The Atomic Force Microscopy (AFM) was used to determine the Young's modulus of different types of thin films. For example, Kim et al [Kim 2009] have used force modulation AFM to obtain Young's modulus maps at a cross-section of a 150 nm thick film of UV cured OrganoSilicate Glass (OSG). Enhanced AFM techniques were used to determine the Young's modulus, namely Atomic Force Acoustic Microscopy (AFAM) and Contact Resonance Atomic Force Microscopy (CR-AFM). Kopycinska-Müller et al. [Kopycinska-Müller 2013] have used AFAM method to determine the Young's modulus of nanoporous OSG thin films. Stan et al.

[ Stan 2009] have used CR-AFM technique to determine the Young's modulus of 500 nm thick of low-k dielectric thin films. The CR-AFM method allows us to determine the effective tipsample contact stiffness from the analysis of the vibrations of an AFM cantilever excited by an ultrasonic source placed below the sample [Rabe 2006]. Kaman [Kaman 2014] have determined the Young's modulus of a chalcogenide film by measuring the force curves using an atomic force microscope.

Sungwoo et al. [Sungwoo 2005] have determined the Young's modulus and Poisson's ratio of Si film using the hole drilling method at a microscopic scale. The nanometric strains generated by the film under different loads were measured by image correlation obtained by atomic force microscopy. Cianci et al. [Cianci 2007] have determined the Young's modulus of thin silicon nitride film deposited by dual-frequency PECVD, by measuring the deflection of a circular membrane as a function of the load applied by means of a profilometer. Colombi et al.

[ Colombi 2013] have determined the Young's moduli of a series of amorphous titanium dioxide films, varying the thickness between 10 nm and 125 nm by extracting the resonance frequencies of polymer microbeams.

Vlassak et al. [Vlassak 1992] have determined the Young's modulus and Poisson's ratio of silicon nitride films using the bulge test. Martins et al. [Martins 2009] have performed the bulge test to determine Young's modulus and Poisson's ratio of very thin Si 3 N 4 dielectric films
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for micro-electro-mechanical systems. Bulge test was also used to determine the Young's modulus of Cu and Cu-Ni textured films [Tsakalakos 1981].

Apreutesei et al. [Apreutesei 2017] have determined the elasticity constants of metallic glass films using Brillouin Light Scattering (BLS). Chapelon et al. [Chapelon 2006] have determined the Young's modulus of porous a-SiOC:H films deposited by PECVD, using picosecond ultrasonic method. Abadias et al. [Abadias 2020] have determined the elasticity constants of cubic epitaxial TaN films deposited by reactive magnetron sputtering. They have determined 𝑐 44 and 𝑐 12 from the BLS method and 𝑐 11 from the Picosecond Laser Ultrasonics (PLU) method for the δ -Ta x N single cubic phase embedded in the film. The elasticity constants of Ta α and Ta β thin films were also determined by combining the BLS and PLU methods [Abadias 2019a]. The ellipsometric porosimetry [Mogilnikov 2002] and the Drum head test [Heinen 1995] were also used to determine the Young's modulus of thin films. V and it reduced to 98 GPa for the film deposited at -300 V bias voltage. V to -60 V. They also found that Young's modulus reduced from 311 GPa to 205 GPa by increasing the working pressure from 2 Pa to 5 Pa. Choudhary et al. [Choudhary 2015] have also studied the effect of the substrate bias voltage on AlN films produced by magnetron sputtering. They have reported an increase in the Young's modulus value, measured by nanoindentation, from 100 GPa to 215 GPa with the increase of bias voltage from 0 V to -100

I.3. Microstructural properties of thin films

V. Bramowicz et al [Bramowicz 2016] have deposited hydroxyapatite coatings of 450 nm thick with Radio Frequency (RF) magnetron sputtering at different temperatures. They have found that the film Young's modulus, measured by nanoindentation, reduced from 170 GPa to 80

GPa with increasing the deposition temperature from 400 ℃ to 800 ℃.

Zhang et al [Zhang 2017] have studied the influence of the deposition temperature on the Young's modulus of CrB 2 films of ~ 1 𝜇𝑚 thickness, deposited by magnetron sputtering on Si substrates. The NI measurements showed that varying the deposition temperature between 100 ℃ and 400 ℃ led to an increase in the Young's modulus from 425 GPa to 525 GPa.

Abegunde et al. [Abegunde 2020] have investigated, by NI measurements, the evolution of Young's modulus of TiC films deposited by RF magnetron sputtering as a function of RF Chapter I

Introduction to the elasticity of thin films 20 power, temperature and deposition time. They have noted that by increasing the RF power from 150 W to 200 W, the Young's modulus decreased and then increased with a power up to 250

W. These results were found similar for films deposited at 80 ℃, 90 ℃ and 100 ℃.

I.3.2. Morphology

Chawla et al. [Chawla 2009] have examined the morphology of Ti films deposited at 100 °C with constant working pressure and varying the sputtering power from 50 W to 150 W.

With increasing power, they have noticed that the density of the film has increased. They also examined the morphology of the films deposited at constant pressure, 50 W power and different substrate temperatures varied from 100 ℃ to 500 ℃. The morphology of the grains changed by increasing the substrate temperature and became denser. Liu et al. [Liu 2016] have studied the effect of substrate temperature on the texture of Ti6Al4V films obtained by magnetron sputtering. They have noticed a change in film texture by increasing the temperature from 100 ℃ to 400 ℃ while above 500 ℃, the film has no longer a texture. Zhang et al. [Zhang 2017] have noted that the texture of the CrB 2 films deposited by magnetron sputtering depends on the substrate temperature. They have reported that films obtained at temperatures below 300 ℃ did not have preferential orientations and that above 300 ℃, a (001) preferential orientation appeared. The effects of sputtering power, substrate temperature and working pressure on the texture of Ti films were determined using XRD analysis [Chawla 2009]. The Ti films exhibit an initial (100) preferred orientation but the ( 002) and (101) orientations were observed with the increasing of the sputtering power and substrate temperature, respectively. Recently, Abadias et al. [Abadias 2019b] have determined the residual stress of polycrystalline HfN thin films deposited by magnetron sputtering at 300 ℃ with oblique incidence. They have found that the residual stress changed from -5 GPa strongly compressive at 5° of inclination to slightly tensile for an inclination higher than 35°. The residual stress was measured by X-ray diffraction.

From this short literature review, it can be seen that thin films deposited by magnetron sputtering are generally multiphase, polycrystalline, textured, porous and present grains with columnar morphology. These characteristics provide them an anisotropic elastic behavior. In addition, their elastic properties, morphologies, structures and crystallographic orientations depend mainly on the deposition conditions. Therefore, in order to control the elastic behavior of thin films obtained by magnetron sputtering, their elasticity constants should be evaluated.

I.4. Methodology for measuring the elasticity constants

As we have seen from the previous section, one can conclude that the macroscopic characterization of the elasticity constants of thin films obtained by magnetron sputtering is insufficient to predict their elastic behavior. Therefore, the microscopic characterization of the elasticity constants of thin films is essential, along with the macroscopic one, to have a better assessment of the elastic behavior of thin films. It goes through the determination of the film X-ray elasticity constants (XEC) and thus the assessment of stresses within the deposited film.

The XRD gives us a mesoscopic quantity: the strain 𝜀 𝜙,𝜓 in the measurement direction that corresponds to the average of the strains of the crystallites in the diffraction position. This experimental quantity is specific to crystallites diffracted. Therefore, the macroscopic stress cannot be related to the strain of the diffracting volume via the macroscopic elasticity constants of the effective material. In order to study the stresses in polycrystalline materials, the macroscopic stresses were related to the elastic strains measured by diffraction using the XEC 𝐹 𝑖𝑗 (ℎ𝑘𝑙, 𝜙, 𝜓) [Hauk 1997] as follows: These XEC can be defined as the average of the elasticity constants of the diffracted crystallites [Dölle 1979]. The XEC can be determined experimentally or from the SCECs using a micromechanical model (Reuss, Voigt, Kröner-Eshelby, etc.). These models were applied to determine the XEC of isotropic and textured materials [Barral 1987, Baczmanski 2003]. The XEC were also determined experimentally by XRD or neutrons diffraction under applied loading [START_REF] Hayakawa | [END_REF][START_REF] Gnäupel-Herold | Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data[END_REF][START_REF] Howard | [END_REF][START_REF] Fréour | [END_REF], Martinschitz 2006, Gnäupel-Herold 2012].

In the following sections, several methodologies, developed in the literature, are presented based on different scale approaches.

I.4.1. Macroscopic approaches

The elasticity constants of isotropic or anisotropic materials can be determined using dynamic techniques. Two different methodologies were used in the literature. The first one consists in coupling numerical simulations to experimental measurements by minimizing different error functions [Nieves 2003[START_REF] Maletta | [END_REF][START_REF] Bruno | [END_REF], Alfano 2007, Pagnotta 2009, Gogu 2010, Barkanov 2015]. Using different optimization methods, such as simplex, gradient, least squares and genetic algorithms, the elasticity constants of anisotropic plates of any shape converge after several iterations. Using the IET, this methodology requires several frequency Chapter I
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The second methodology proposed in the literature consists of measuring the resonant frequencies of the tested sample using the vibrational technique. Then, these measured frequencies are correlated to the elasticity constants of the sample through a suitable model [START_REF] Astm | Standard Test Method for Dynamic Young's Modulus[END_REF]].

In the case of thin films, the principle of the measurement is to perform a two-steps frequency measurement before and after deposition. The resonance frequencies of the substrate and the composite beam (Substrate + film), the elasticity constants of the substrate and the properties (mass, dimensions, density) of the substrate and film were used to determine the elasticity constants of the film through mechanical models. The existing mechanical models in the literature for the determination of the Young's modulus are based on two different theories:

the flexural rigidity of a composite beam (FRCB) and the classical laminated beam theory (CLBT) [Slim 2017a]. Based on the Hamilton's principle, the shear modulus of thin films can be determined using IET [Gadaud 2009, Slim 2017b].

I.4.2. Microscopic approaches

The prediction of the elastic behavior of anisotropic material requires a perfect knowledge of the corresponding elasticity constants that depend on the microstructural properties of the material. Its elastic response should also be described at the microscopic scale.

For instance, the determination of the residual stress issued from any process requires the knowledge of the Single-Crystal Elasticity Constants (SCECs) of the different phases embedded in a material [Hauk 1997].

The SCECs can be determined experimentally either directly on single-crystal specimens [Tanaka 1996[START_REF] Leisure | Resonant ultrasound spectroscopy[END_REF], Sedlak 2005, Migliori 2005] or indirectly on macroscopic polycrystalline specimens. The second method can be applied by measuring the microscopic strain response by diffraction under applied loading [START_REF] Hayakawa | [END_REF][START_REF] Singh | [END_REF][START_REF] Gnäupel-Herold | Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data[END_REF][START_REF] Howard | [END_REF][START_REF] Fréour | [END_REF], Faurie 2005 Chapter I

polycrystal. The single-crystal elasticity tensor of a cubic phase (Section I.1.3) can be described using three independent constants (𝑐 11 , 𝑐 12 , 𝑐 44 ). Slim et al. [Slim 2019] have calculated the SCECs of the W β cubic phase through an inverse procedure using at least three independent experimental quantities. They determined two macroscopic quantities (𝐸 𝑥 , 𝐺 𝑦𝑧 ) using the IET and one quantity by strain measurement under applied loading. Then, they expressed them as a function of single-crystal stiffness tensor using the KE self-consistent micromechanical model.

Then, the SCECs were calculated by minimizing an objective function defined as the difference between the experimental and the calculated quantities.

The macroscopic elastic behavior of anisotropic materials can be predicted from the single-crystal elasticity constants using different scale-transition models, such as Voigt [Voigt 1910], Reuss [Reuss 1929], Neerfeld-Hill [Neerfeld 1942, Hill 1952], self-consistent of Kröner-Eshelby [Eshelby 1957, Kröner 1958], Vook-Witt [START_REF] Vook | [END_REF], Witt 1968], normalized selfconsistent [Li 1999], Hashin-Shtrikman [Hashin 1962] and Mori-Tanaka [Mori 1973] models.

Mori-Tanaka model is equivalent to one of Hashin and Shtrikman's models in the elastic regime. Table I.1 summarizes different methodologies used to determine the single-crystal or polycrystals elasticity constants of different types of materials, found in the literature.

Table I.1

Summary of different methodologies used to determine the elasticity constants of a singlecrystal or polycrystals of different types of materials.

Material

Modeling Experimental description Reference

SCECs in Fe-31Ni alloy

Self-consistent model of Kröner-Eshelby

Young's modulus was determined using fourpoints bending test.

XEC were determined using XRD under applied four-points bending loads. [START_REF] Hayakawa | [END_REF] SCECs in Al, Cu and Steel.

Self-consistent model of Kröner-Eshelby XEC were determined using neutron diffraction under applied uniaxial tensile and compressive loads.

[ [START_REF] Gnäupel-Herold | Calculation of single-crystal elastic constants for cubic crystal symmetry from powder diffraction data[END_REF] Polycrystalline Cu, TiN, Zn and Al 2 O 3

Self-consistent model of Kröner-Eshelby

The texture was taken into account by calculating the Orientation Distribution Functions (ODF). [Hendrix 1998] Resonant ultrasound spectroscopy and the crystallographic orientations [Tane 2017] In this context, this thesis aims to propose methodologies allowing the elastic characterization of anisotropic thin films at two different scales (Fig. I.9). The Impulse Excitation Technique (IET) is chosen, regarding its advantages compared with other techniques (Section I.2.2.2), in order to characterize macroscopically thin films. For the microscopic elastic characterization of thin films, the X-ray diffraction is chosen, thanks to its selective nature, to determine the different microstructural properties of the films. The microscopic approach will allow the determination of the elastic behavior of anisotropic thin films by taking into account its corresponding microstructural properties (phases, morphological texture, crystallographic texture and porosity). These methods will be applied first to thin films in multilayer with isotropic behavior (Chapter II and Chapter III) and then to thin films with anisotropic behavior deposited at oblique incidence (Chapter IV and Chapter V). 

I.5. Conclusions

In this first chapter, some generalities on elasticity were briefly introduced with its interest in engineering. The compliance and stiffness tensors of generally anisotropic materials and some others with particular symmetries were illustrated. The determination of the elasticity constants from the compliance and stiffness tensors was also presented.

The experimental methods that are mostly used to determine the elasticity constants of materials were presented. The corresponding issues encountered in the case of thin films were addressed. Several studies show that the elastic behavior of thin films depends on the deposition parameters (Section I.3). Furthermore, a thin film is generally polycrystalline, textured, maybe porous with columnar morphology, and composed of different phases, which give it an anisotropic elastic behavior. Therefore, a multiscale characterization of these elasticity constants is required to predict the anisotropic elastic behavior of thin films.

In order to characterize the anisotropy of thin films, two approaches will be developed during this work. The Impulse Excitation Technique (IET) and the X-ray Diffraction (XRD) will be used for macroscopic and microscopic elastic characterizations, respectively.

II.1. Introduction

The Impulse Excitation Technique (IET) is a non-destructive technique that can be easily used to determine the elasticity constants of different types of materials [START_REF] Atri | [END_REF][START_REF] Radovic | [END_REF], Gadaud 2004, Gadaud 2009]. Thanks to its high precision and the negligible stress generation, the IET can be used as a new alternative method to determine the Young's and shear moduli of thin films. Several mechanical models were developed to determine the Young's modulus of coatings using the IET. The first one was initiated by Berry [Berry 1975] and then other models were developed based on various theories [Mazot 1998, Gadaud 2004, López-Puerto 2014]. To guide the user in his choice, Slim et al. [Slim 2017a] have studied the difference between the models and their validity range. It can also be mentioned that the Hamilton's principle was applied in the literature to determine coating shear modulus using the IET [Gadaud 2009, Slim 2017b].

For multilayer coatings, several models were developed to determine the Young's modulus of each layer based on the Flexural Rigidity of a Composite Beam (FRGB) [Cho 1999] or the Classical Laminated Beam Theory (CLBT) [López-Puerto 2014]. In these studies, the models were developed by assuming that the thickness of the coating is negligible compared to the thickness of the substrate. Therefore, the determination of the shear modulus of each layer in multilayer coatings cannot be expressed in a closed-form analytical expression. Moreover, concerning the vibrational mode, a lack of information concerning the determination of Young's modulus using different modes measured by IET motivates us to carry out a thorough study and to develop new models, which allow the determination of the elasticity constants of each layer in multilayer coatings.

This chapter aims to extend the previous works by developing new models allowing the determination of the Young's and shear moduli of layers whatever the thickness and the mechanical and physical properties of the substrate and the deposited layers. In order to guide our choice of model, we will proceed as follows: Firstly, the mechanical models existing in the literature are presented for the determination of Young's and shear moduli of a thin film. Then, new models are developed for determining the elasticity constants of multilayer coatings. In the last section, a comparison between the analytical models existing in the literature, the developed models and a developed finite element model (FEM) is performed. This comparison allows us to identify the most reliable model among the analytical models taking the FEM as a reference.
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II.2. Review of the analytical models proposed for determining

Young's modulus of coatings in a bilayer structure II.2.1. Theoretical background For the analysis of the flexural vibrations of a uniform isotropic beam, the Euler-Bernoulli equation is considered, neglecting the effects of shear and rotational inertia. The motion of a beam subjected to flexural vibrations can be described by the following differential equation [Rao 2006]:

𝜌𝑆 𝜕 2 𝑤(𝑥, 𝑡) 𝜕𝑡 2 + 𝜕 2 𝜕𝑥 2 (𝐸𝐼 𝑦 𝜕 2 𝑤(𝑥, 𝑡) 𝜕𝑥 2 ) = 0 (II.1)
Where 𝜌 is the density, 𝑤(𝑥, 𝑡) is the displacement along the z-axis of a given point belonging to the excited structure as a function of its position This differential equation (Eq. (II.1)) can be solved analytically to determine the modal shapes and the natural frequencies of the vibration modes. In the case of IET, free-free (FF) boundary conditions are generally adopted and the characteristic equation corresponding to these boundary conditions is [Rao 2006]:
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𝑐𝑜𝑠 𝑋 𝑛 𝑐𝑜𝑠ℎ 𝑋 𝑛 -1 = 0 (II.2)
Where 𝑋 𝑛 is the eigenfrequency corresponding to the n th vibration mode. Using Newton-Raphson method [Walter 2015], Eq. (II.2) was solved and the values of 𝑋 𝑛 for the first four modes were determined:

( 𝑋 1 𝑋 2 𝑋 3 𝑋 4 ) = (
4.73004 7.85320 10.9956 14.1371

) (II.3)
Thus, the resonance frequencies can be determined from the following equation [Rao 2006]:

𝐹 (𝑛) = 𝑋 𝑛 2 2𝜋𝐿 2 √ 𝐸𝐼 𝑦 𝜌𝑆 (II.4)
Where 𝐹 (𝑛) is the resonance frequency of the n th mode and 𝐿 is the length of the beam.

By inverting Eq. (II.4), the corresponding Young's modulus can be determined from the following expression:

𝐸 = ( 2𝜋𝐿 2 𝑋 𝑛 2 ) 2 𝜌𝑆 𝐼 𝑦 (𝐹 (𝑛) ) 2 (II.5)
The IET can be used to determine the Young's modulus, in the case of a FF beam with a rectangular cross-section, according to the following equation [ASTM 2015]:

𝐸 = 𝑘 1 𝜌 𝐿 4 ℎ 2 𝑇 𝑓 (𝐹 (1) ) 2 (II.6)
Where 𝑘 1 ≈ 0.9465, 𝐹 (1) is the fundamental resonance frequency, ℎ is the thickness. 𝑇 𝑓 is a geometrical correction factor introduced to take into account the shear and rotary inertia effects, which are not considered in the Euler-Bernoulli theory [ASTM 2015]:

𝑇 𝑓 = 1 + 6.585(1 + 0.0752𝜈 + 0.8109𝜈 2 ) ( ℎ 𝐿 ) 2 -0.868 ( ℎ 𝐿 ) 4 -[ 8.34(1 + 0.2023𝜈 + 2.173𝜈 2 ) ( ℎ 𝐿 ) 4 (1 + 6.338(1 + 0.1408𝜈 + 1.536𝜈 2 ) ( ℎ 𝐿 ) 2 ]
(II.7)

Where 𝜈 is Poisson's ratio. In the case of ℎ 𝐿 ⁄ ≤ 0.05, Eq. (II.7) can be simplified into the following expression:

𝑇 𝑓 = 1 + 𝑘 2 ( ℎ 𝐿 ) 2 (II.8)
Where 𝑘 2 ≈ 6.585.

In the following sections, a composite beam (substrate + coating) with a rectangular cross-sectional area will be considered. The principle of the measurement is to perform a twosteps frequency measurement before and after deposition. Using the resonance frequencies of the substrate and the composite beam and knowing the density of both substrate and coating and their dimensions, the elasticity constants of the substrate and the film can be determined through mechanical models. The existing mechanical models in the literature are based on two different theories: the flexural rigidity of a composite beam (FRCB) and the classical laminated beam theory (CLBT).

II.2.2. Models based on the Flexural Rigidity of a Composite Beam

The FRCB theory assumes that the coatings are perfectly homogeneous and adherent to the substrate allowing a continuity in terms of deformations between the substrate and the coating. With these assumptions, the flexural rigidity of the entire composite beam can be expressed as the sum of the flexural rigidity of each layer (Eq. (II.9)) [Gere 2003]. Moreover, the product 𝜌 𝑡 𝑆 𝑡 is expressed as the summation of the corresponding product of each layer (Eq.

(II.10)) [Gere 2003]:

𝐸 𝑡 𝐼 𝑡 = ∑ 𝐸 𝑘 𝐼 𝑘 𝑁 𝑘=0
(II.9)
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𝜌 𝑡 𝑆 𝑡 = ∑ 𝜌 𝑘 𝑆 𝑘 𝑁 𝑘=0 (II.10)
Where the subscripts "0", "k", "t" and "N" correspond to substrate, k th layer, whole beam and the total number of layers of coating, respectively. By substituting Eq. (II.9) and Eq. (II.10) into Eq. (II.4), we obtain the n th resonance frequency of the composite beam as follows:

𝐹 𝑁 (𝑛) = 𝑋 𝑛 2 2𝜋𝐿 2 √ 𝐸 𝑡 𝐼 𝑡 𝜌 𝑡 𝑆 𝑡 (II.11)
Many models were developed [Berry 1975, Whiting 1995, Mazot 1998, Gadaud 2004] with analytical expressions for a FF composite beam (substrate + coating) with a rectangular cross-sectional area to determine the Young's modulus of a single layer coating (N = 1). Some of these models like Berry and Lopez's models [Berry 1975, Mazot 1998] assumed that the neutral axis remains fixed after deposition (it always corresponds to the mid-plane of the substrate cross-section). With this assumption, no shifting of the neutral surface is considered and a systematic error increases with the film thickness. However, Pautrot's model [Whiting 1995, Mazot 1998, Gadaud 2004] was developed in order to take into account the shift of the 

∫ ∫ 𝜎 0 𝑑𝑆 0 𝑒 1 -ℎ 0 +𝑒 1 𝑏 2 - 𝑏 2 + ∫ ∫ 𝜎 1 𝑑𝑆 1 𝑒 1 +ℎ 1 𝑒 1 𝑏 2 - 𝑏 2 = 0 (II.12) ∫ 𝐸 0 𝑧 𝑑𝑧 𝑒 1 -ℎ 0 +𝑒 1 + ∫ 𝐸 1 𝑧 𝑑𝑧 𝑒 1 +ℎ 1 𝑒 1 = 0 (II.13) 𝑒 1 = 𝐸 0 ℎ 0 2 -𝐸 1 ℎ 1 2 2𝐸 0 ℎ 0 + 2𝐸 1 ℎ 1 (II.14) 𝐼 0 = 𝑏ℎ 0 3 12 + 𝑏ℎ 0 ( ℎ 0 2 -𝑒 1 ) 2 (II.15) 𝐼 1 = 𝑏ℎ 1 3 12 + 𝑏ℎ 1 (𝑒 1 + ℎ 1 2 ) 2 (II.16)
Where b is the width of the cross-section, ℎ 0 is the substrate thickness, ℎ 1 is the film thickness and 𝜎 0 and 𝜎 1 are the stresses in the substrate and the coating respectively. and the coated substrate [Whiting 1995, Mazot 1998, Gadaud 2004]:

(𝑅 𝐹1 ) 2 = (𝑅 𝐸1 𝑅 ℎ1 3 + 1) (𝑅 𝐸1 𝑅 ℎ1 + 1) + 3𝑅 𝐸1 𝑅 ℎ1 (𝑅 ℎ1 + 1) 2
(𝑅 𝜌1 𝑅 ℎ1 + 1)(𝑅 𝐸1 𝑅 ℎ1 + 1) (II.17)

With:

𝑅 ℎ1 = ℎ 1 ℎ 0 (II.18) 𝑅 𝜌1 = 𝜌 1 𝜌 0 (II.19) 𝑅 𝐸1 = 𝐸 1 𝐸 0 (II.20) 𝑅 𝐹1 = 𝐹 1 𝐹 0 (II.21)
Where 𝐹 1 is the flexural resonance frequency of the whole bilayer beam and 𝐹 0 is the flexural resonance frequency of the uncoated substrate.

Then, by inverting Eq. (II.17), the Young's modulus of the coating can be calculated using the following expression:

𝐸 1 = 𝐸 0 2𝑅 ℎ1 4 [(𝑅 ℎ1 + 𝑅 𝜌1 𝑅 ℎ1 2 )(𝑅 𝑓1 ) 2 -4𝑅 ℎ1 3 -6𝑅 ℎ1 2 -4𝑅 ℎ1 + (4𝑅 ℎ1 4 [(1 + 𝑅 ℎ1 𝑅 𝜌1 )(𝑅 𝐹1 ) 2 -1] + [4𝑅 ℎ1 3 + 6𝑅 ℎ1 2 + 4𝑅 ℎ1 -(𝑅 ℎ1 + 𝑅 𝜌1 𝑅 ℎ1 2 )(𝑅 𝐹1 ) 2 ] 2 ) 0.5 ] (II.22)
Whiting et al. [Whiting 1995] have provided a simplified expression for a more direct calculation of the film elastic modulus with further simplification related to the thin film geometry as:

𝐸 1 = 𝐸 0 3 [ 2𝑅 𝐹1 + 𝑅 𝜌1 𝑅 ℎ1 -2 𝑅 ℎ1 ] (II.23)
Where 𝑅 ℎ1 << 1 so that the terms containing powers of 𝑅 ℎ1 greater than one may be neglected. The more general equation, Eq. (II.22), will be employed in this work to increase the accuracy. Note that all the models discussed above, for the resonance frequencies of a bilayer beam (substrate + coating), are based on FRCB of isotropic materials and they neglect material anisotropy and damping contributions, such as material viscoelasticity or other hysteretic effects [Gamboa 2016].

II.2.3. Model based on the Classical Laminated Beam Theory

A simplified one-dimensional (1D) model based on CLBT is proposed herein to determine the Young's modulus of an individual thin film. It fulfills Kirchhoff's law [Hyer 2009] and it is applicable for one, two and multiple layers [Hanada 1989, Ying 2010]. This theory assumes that the beam is symmetrical about the mid-surface of the composite beam with respect to the z-axis (Fig. II.3) and neglects the effect of shear deformations with no coupling

Chapter II Analytical development for the determination of the elasticity constants of multilayer coatings 40 between bending and extension [Hyer 2009, López-Puerto 2014]. These two assumptions are not respected in most cases where the film is deposited on one side of the substrate. However, the model can be used as an approximation in the case of an asymmetric beam of several thin films deposited on a thicker substrate. Certainly, the higher the ratio of Young's moduli and the thicknesses ratio, the higher the error associated with this model is [López-Puerto 2014, Slim 2017a]. In the case of a beam subjected to FF boundary conditions, the frequency ratio of the laminated beam is expressed as follows [López-Puerto 2014]:

(𝑅 𝐹1 ) 2 = 12𝜌 0 𝐸 0 ℎ 0 2 ( 1 𝑑 11 (𝜌 0 ℎ 0 + 𝜌 1 ℎ 1 ) ) (II.24)
In the case of a single layer coating:

𝑑 11 = 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝐸 1 𝐾 1 1 -𝜈 1 2 [ 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝐸 1 𝐾 1 1 -𝜈 1 2 ] 2 -[ 𝜈 0 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝜈 1 𝐸 1 𝐾 1 1 -𝜈 1 2 ] 2 (II.25)
Where 𝐾 0 and 𝐾 1 are functions of the layer thicknesses ℎ 0 and ℎ 1 and are defined as:

𝐾 0 = ℎ 0 4 ( ℎ 0 2 3 + ℎ 1 2 ) (II.26) 𝐾 1 = ℎ 1 4 ( ℎ 1 2 3 + ℎ 0 2 )
(II.27)

II.2.4. Models usage with application

In the previous section, the models developed to determine the Young's modulus of a coating in a bilayer structure using the IET were presented. Many researchers have used the IET to test samples of various films with different thicknesses. For instance, Kim et al. [Kim 1997] have used Pautrot's model to determine the Young's modulus of titanium (Ti) film [Mazot 1998] have reported that the Young's modulus calculated using

Berry and Lopez's models begins to diverge from a thickness ratio 𝑅 ℎ equal to 0.1. The difference between the models also becomes significant in the case of high 𝑅 𝐸 and 𝑅 𝜌 .

Cho et al. [Cho 1999] The torsional equation of beams with a rectangular cross-section was developed by Timoshenko and Goodier [Timoshenko 1951] and Spinner and Tefft [START_REF] Spinner | A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies[END_REF]]. The differential equation that describes the motion of a beam with a rectangular cross-section, subjected to torsional vibrations (Fig. II.4) can be written as follows [Rao 2006]: Where 𝜌 is the density, 𝜃(𝑥, 𝑡) is the angular displacement of a given point depending on its position x and time t, E is the Young's modulus. The parameter 𝐼 𝜓 is defined by:

𝜌𝐼 𝑝 𝜕 2 𝜃(𝑥,
𝐼 𝜓 = ∫ 𝜓(𝑦, 𝑧) 2 𝑑𝑆 𝑆 (II.29)
Where 𝜓(𝑦, 𝑧) is known as the warping function describing the warping of the beam section. The polar moment of inertia of the cross-section 𝐼 𝑝 is defined by:

𝐼 𝑝 = ∫ (𝑦 2 + 𝑧 2 )𝑑𝑆 𝑆 = ℎ𝑏 3 + 𝑏ℎ 3 12 (II.30)
The torsional rigidity C of a rectangular cross-section is defined by:

𝐶 = ∬ 𝐺 [( 𝜕𝜓 𝜕𝑦 -𝑧) 2 + ( 𝜕𝜓 𝜕𝑧 + 𝑦) 2 ] 𝑑𝑆 𝑆 (II.31)
With 𝐺 the shear modulus. In the case of a free-free beam with a rectangular cross-section, the shear modulus can be determined from the following equation [ASTM 2015]:

𝐺 = 4𝜌𝑅𝐿 2 𝑇 2 (II.32)
Where 𝑇 is the fundamental torsional resonance frequency of the beam and 𝑅 is the shape factor that takes into account the warping of the beam. 𝑅 is expressed as a function of the dimensions of the beam as follows: The existing mechanical models in the literature for torsional vibrations are based on Hamilton's principle [Berdichevsky 2009]. This principle lies in the minimization of the Lagrangian of the system, which is expressed as a function of the kinetic and potential energies of the structure subjected to vibrations.

𝑅 = [ 1 + ( 𝑏 ℎ 0 ) 2 4 -
In the case of a beam with a rectangular cross-section subjected to torsional vibrations, the warping function 𝜓(𝑦, 𝑧) is used to denote the axial displacement. However, for beams satisfying the condition ℎ 0 ≪ 𝑏, the warping function should be simplified and this depends only on y as [Timoshenko 1951, Laroze 1974, Rao 2006]:

𝑢 = 𝑧 𝜓(𝑦) 𝜕𝜃(𝑥, 𝑡) 𝜕𝑥 (II.34)
The other two displacement components can be expressed as follows: When 𝐿 ≫ ℎ 0 , the strain component along the x-axis can be neglected. Besides, the Lagrangian of a homogeneous beam can be written as a function of the kinetic and potential energies of the beam (uncoated substrate) as follows [Géradin 1994, Gadaud 2009, Slim 2017b[START_REF] Slim | Caractérisation multiéchelle de l'élasticité de films mincesméthode vibratoire et diffraction des rayons X[END_REF]]:

𝑣 = -
𝐿 = 1 2 ∫ ∫ ∫ 𝐺 0 ( 𝜕𝜃 𝜕𝑥 ) 2 [( 𝜕𝜓 𝜕𝑦 -1) 2 𝑧 2 + (𝜓 + 𝑦) 2 ] 𝑑𝑥 𝑑𝑦 𝑑𝑧 ℎ 0 2 - ℎ 0 2 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 -∫ ∫ ∫ 𝜌 0 (2𝜋𝑇 0 ) 2 𝜃 2 (𝑦 2 + 𝑧 2 ) 𝑑𝑥 𝑑𝑦 𝑑𝑧 ℎ 0 2 - ℎ 0 2 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 
(II.40) Applying Hamilton's principle, which is based on the minimization of the Lagrangian of the system, the warping function as well as the torsional resonance frequency of the beam can be determined [Gadaud 2009, Slim 2017b[START_REF] Slim | Caractérisation multiéchelle de l'élasticité de films mincesméthode vibratoire et diffraction des rayons X[END_REF]:

𝜓(𝑦) = -𝑦 + ℎ 0 sinh ( 2√3𝑦 ℎ 0 ) √3 cosh ( √3𝑏 ℎ 0 ) (II.41) 𝑇 0 = 1 2𝐿 √ 𝐾 𝑡1 𝐾 𝑡2 √ 𝐺 0 𝜌 0 (II.42)
With:

𝐾 𝑡1 = ℎ 0 3 3 [𝑏 - ℎ 0 √3 tanh ( √3𝑏 ℎ 0 )] (II.43) 𝐾 𝑡2 = 𝑏ℎ 0 12 (𝑏 2 + ℎ 0 2 ) (II.44)
In the case of torsional vibrations of a bilayer beam, the principle of the measurement is the same as for the case of flexural vibrations. Two torsional frequency measurements are performed: the first one for the substrate before deposition and the second one for the bilayer structure (substrate + coating). Then, using a mechanical model that involves the ratios between the two resonance frequencies, the Young's moduli, densities and dimensions of the substrate and the film, and the shear modulus of the uncoated substrate, we can retrieve the value of the shear modulus of the deposited film.

II.3.2.2. Gadaud's model

By applying the Hamilton's principle, Gadaud et al. [Gadaud 2009] have developed an analytical model (Eq. (II.45)) in order to determine the shear modulus of the film deposited on a beam substrate with a rectangular cross-section using the IET:

(𝑅 𝑇1 ) 2 ≈ 1 + 𝑅 𝐺1 𝑅 ℎ1 (3 - ℎ 0 𝑏√3 ) 1 + 𝑅 𝜌1 𝑅 ℎ1 ( 𝑏 2 + 3ℎ 0 2 𝑏 2 + ℎ 0 2 ) (II.45)
With:

𝑅 𝑇1 = 𝑇 1 𝑇 0 (II.46)
Where 𝑇 1 is the fundamental torsional resonance frequency of the whole bilayer beam and 𝑇 0 is the fundamental torsional resonance frequency of the uncoated substrate.

This model supposes that the thickness of the coating is very small, compared to that of the substrate. In addition, this model does not take into account the shift of the neutral axis due to the coating (Fig. II.2). Therefore, the error derived from Gadaud's model (Eq. (II.45))

increases with the rise of the thickness, density, Young's and shear moduli ratios because of this assumption.

II.3.2.3. Slim's model

After deposition, the neutral axis does not remain at the mid thickness of the substrate due to the addition of different film material. In order to decrease the error derived from Gadaud's model (Eq. (II.45)), Slim et al. [Slim 2017b] have developed an enhanced model that takes into account the shift of the neutral axis after deposition. The shift 𝑒 1 (Eq.(II.14)) is integrated for the determination of the torsional resonance frequency of the composite beam (substrate + coating). The Lagrangian of the composite system, to be minimized, can then be written as follows [Slim 2017b]:

𝐿 = 1 2 ∫ ∫ ∫ 𝐺 0 ( 𝜕𝜃 𝜕𝑥 ) 2 [( 𝜕𝜓 𝜕𝑦 -1) 2 𝑧 2 + (𝜓 + 𝑦) 2 ] 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑒 1 -ℎ 0 +𝑒 1 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 + 1 2 ∫ ∫ ∫ 𝐺 1 ( 𝜕𝜃 𝜕𝑥 ) 2 [( 𝜕𝜓 𝜕𝑦 -1) 2 𝑧 2 + (𝜓 + 𝑦) 2 ] 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑒 1 +ℎ 1 𝑒 1 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 -∫ ∫ ∫ 𝜌 0 (2𝜋𝑇 1 ) 2 𝜃 2 (𝑦 2 + 𝑧 2 ) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑒 1 -ℎ 0 +𝑒 1 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 -∫ ∫ ∫ 𝜌 1 (2𝜋𝑇 1 ) 2 𝜃 2 (𝑦 2 + 𝑧 2 ) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑒 1 +ℎ 1 𝑒 1 𝑏 2 - 𝑏 2 𝐿 2 - 𝐿 2 
(II.47) Applying Hamilton's principle as for the case of the uncoated substrate, the torsional resonance frequency ratio can be written [Slim 2017b[START_REF] Slim | Caractérisation multiéchelle de l'élasticité de films mincesméthode vibratoire et diffraction des rayons X[END_REF]:

𝑅 𝑇1 = [ 𝜌 0 𝑏 (ℎ 0 2 + 𝑏 2 ) 3 𝐺 0 ℎ 0 2 (𝑏 - ℎ 0 √3 tanh [ √3 𝑏 ℎ 0 ]) ] 0.5 [ [𝐴(3𝑏𝐶𝐻 3 (ℎ 0 𝐸 0 + ℎ 1 𝐸 1 ) -𝐻 4 √3𝐴)]
[(𝑏𝐶𝐻 3 (ℎ 0 𝐸 0 + ℎ 1 𝐸 1 )(𝐻 1 𝜌 0 ℎ 0 + 𝐻 2 𝜌 1 ℎ 1 ))] ] 0.5

(II.48)

Where:

𝐴 = 𝐸 0 2 ℎ 0 5 𝐺 0 + 𝐸 1 2 ℎ 1 5 𝐺 1 + 𝐸 0 ℎ 0 4 ℎ 1 (2𝐸 1 𝐺 0 + 3𝐸 0 𝐺 1 ) + 𝐸 1 ℎ 0 ℎ 1 4 (2𝐸 0 𝐺 1 + 3𝐸 1 𝐺 0 ) + 2ℎ 0 3 ℎ 1 2 (3𝐸 0 2 𝐺 1 + 2𝐸 1 2 𝐺 0 ) + 2ℎ 0 2 ℎ 1 3 (2𝐸 0 2 𝐺 1 + 3𝐸 1 2 𝐺 0 ) (II.49) 𝐵 = 2√3 𝑏 𝐶 (𝐸 0 ℎ 0 + 𝐸 1 ℎ 1 ) (II.50) 𝐶 = √𝐺 0 ℎ 0 + 𝐺 1 ℎ 1 (II.51) 𝐻 1 = 3ℎ 0 3 𝐸 0 2 (ℎ 0 + 2ℎ 1 ) + 𝐸 1 ℎ 1 (𝑏 2 + ℎ 1 2 )(2ℎ 0 𝐸 0 + 𝐸 1 ℎ 1 ) + 𝐸 0 2 ℎ 0 2 (𝑏 2 + 4ℎ 1 2 )
(II.52) Besides, Slim's model [Slim 2017b] was applied to determine the shear modulus of tungsten films deposited on glass substrates. A good agreement between the obtained shear modulus and the ones reported in the literature was obtained. It was concluded that the difference between the Poisson's ratios of two different tested samples measured by IET is lower than the measurement uncertainties. This difference was due to the measurement uncertainty on the elasticity constants and to the presence of a W β phase in the film structure.

𝐻 2 = 3ℎ 1 3 𝐸 1 2 (ℎ 1 + 2ℎ 0 ) + 𝐸 0 ℎ 0 (𝑏 2 + ℎ 0 2 )(2ℎ 1 𝐸 1 + 𝐸 0 ℎ 0 ) + 𝐸
In the following section, an analytical development applied to multilayer-coated beams will be presented. The new models were developed by describing the behavior of multilayer beams in flexural and torsional vibration modes. They were developed based on the theories presented above, taking into account the shift of the neutral axis after coating deposition.

II.4. Development of new analytical models to determine the elasticity constants of coatings in a multilayer structure

A composite beam with rectangular cross-sectional area and a total thickness ℎ 𝑡 constituted of a substrate and N dissimilar coatings is considered ( As Pautrot's model is approved to reliably determine the Young's modulus of singlelayer coatings, it was extended to develop the new model, where the neutral axis will shift after each layer deposited. This shift can be generalized for any number "N" of isotropic layers using a generalized equation of equilibrium of the axial forces as follows:

∑ ∬ 𝜎 𝑘 𝑑𝑆 𝑘 = 𝑁 𝑘=0 ∫ 𝐸 0 𝑧 𝑑𝑧 + ∑ ∫ 𝐸 𝑘 𝑧 𝑑𝑧 𝑍 2 𝑍 1 𝑁 𝑘=1 𝑒 𝑁 -ℎ 0 +𝑒 𝑁 = 0 (II.56)
With:

𝑍 1 = 𝑒 𝑁 + 𝛿 𝑘 ∑ ℎ 𝑗 𝑘-1 𝑗=1 𝑍 2 = 𝑍 1 + ℎ 𝑘 𝛿 𝑘 = { 0 𝑖𝑓 𝑘 = 1 1 𝑖𝑓 𝑘 ≠ 1 (𝑘 = 1, … , 𝑁) (II.57)
By integrating Eq. (II.56) and applying the static equilibrium of a beam in pure bending, the generalized shift 𝑒 𝑁 becomes: Knowing the thicknesses and the densities of the substrate and the two films, the Young's moduli of the substrate and the first film, and by inverting Eq. (II.59), the Young's modulus of the second film is determined using the following equation: 

𝑒 𝑁 = 𝐸 0 ℎ 0 2 -∑ 𝐸 𝑖 ℎ 𝑖 [ℎ 𝑖 + 2𝛿 𝑖 ∑ ℎ 𝑗-1 𝑖 𝑗=2 ] 𝑁 𝑖=1
𝐸 2 = -𝑏 1 + √𝑏 1 2 -4𝑎 1 𝑐 1 2𝑎 1 (II.
𝐷 𝑖𝑗 = ∫ 𝑄 ̅ 𝑖𝑗 (𝑘) 𝑧 2 𝑑𝑧 = 𝑧 𝑘 𝑧 𝑘-1 1 3 ∑ 𝑄 ̅ 𝑖𝑗 (𝑘) (𝑧 𝑘 3 -𝑧 𝑘-1 3 ) 𝑁+1 𝑘=1 { 𝑖, 𝑗 = 1, 2 𝑜𝑟 6 𝑘 = 1, … , 𝑁 + 1 (II.70)
Where 𝑧 𝑘 is the coordinate of the k th layer and 𝑄 ̅ 𝑖𝑗 (𝑘) are the transformed reduced stiffness elements. 𝑄 ̅ 𝑖𝑗 (𝑘) are a function of the reduced stiffness including information on elastic modulus, Poisson's ratio, and the orientation (𝜃 𝑘 ) of the k th layer [Hyer 2009, López-Puerto 2014].

Working with the x-y axes as principal axes for both substrate and film leads to obtain a zerolayer orientation (𝜃 𝑘 = 0) [López-Puerto 2014].

The enhancement of the CLBT model is performed herein for "N" dissimilar layers;

assuming that the neutral axis will shift after deposition using the shift of Eq. (II.58) and the following new 3×3 bending stiffness matrix: The frequency ratio of a laminated beam is expressed using Eq. (II.85) with the new expressions of 𝐷 𝑖𝑗 ′ and 𝑑 11 from Eq. (II.71) and Eq. (II.86), respectively. This expression is an implicit function. Therefore, in order to determine the solution, an iteration loop is applied using bisection method [Walter 2015]. The unknown elastic modulus of the second film (𝐸 2 ) is then found.

𝐷 𝑖𝑗 ′ = ∫ 𝑄 ̅ 𝑖𝑗 (0) 𝑧 2 𝑑𝑧 𝑒 𝑁 -ℎ 0 +𝑒 𝑁 + ∑ ∫ 𝑄 ̅ 𝑖𝑗 (𝑘) 𝑧
For bilayer coatings, López-Puerto et al. [López-Puerto 2014] proved that the solution depends on the stacking sequence selected (Au / Al / Kapton or Al / Au / Kapton) because the lack of symmetry can lead to large errors (> 1.3%) in the prediction of the frequency of a multicoated beam using CLBT. Therefore, the developed models, based on the two different theories (FRCB and CLBT), will be examined by comparing them to a numerical model based on Finite Element Model (FEM) in order to quantitatively analyze the difference between them. An outline of the analytical models proposed in the literature and the models developed in the present chapter is presented in Table II.1.

Table II.1

Summary of the analytical models.

Model Theory Nb. of layers Assumptions

Lopez [Mazot 1998] FRCB Bilayer Isotropy

Berry [Berry 1975 Hamilton's principle can also be applied for isotropic multilayer beam by extending Slim's model. The same development as that performed for a single layer coated beam was applied to obtain an extension to a multilayer beam. This extension allowed us to determine the shear modulus of each film.

For multilayer beam subjected to torsional vibrations, the Lagrangian is expressed as: Replacing Eq. (II.93) into Eq. (II.91) and by integrating with respect to the y-axis, the torsional resonance frequency for a bilayer-coated beam can be determined:

𝐿 = 1 2 ∫ ∫ ∫
𝐴 0,1 = 𝐸 0 ℎ 0 4 ℎ 1 (2𝐸 1 𝐺 0 + 3𝐸 0 𝐺 1 ) + 2ℎ 0 3 ℎ 1 2 (3𝐸 0 2 𝐺 1 + 2𝐸 1 2 𝐺 0 ) + 2ℎ 0 2 ℎ 1 3 (2𝐸 0 2 𝐺 1 + 3𝐸 1 2 𝐺 0 ) + 𝐸 1 ℎ 0 ℎ 1 4 (2𝐸 0 𝐺 1 + 3𝐸 1 𝐺 0 ) (II.96) 𝐴 0,2 = 𝐸 0 ℎ 0 4 ℎ 2 (2𝐸 2 𝐺 0 + 3𝐸 0 𝐺 2 ) + 2ℎ 0 3 ℎ 2 2 (3𝐸 0 2 𝐺 2 + 2𝐸 2 2 𝐺 0 ) + 2ℎ 0 2 ℎ 2 3 (2𝐸 0 2 𝐺 2 + 3𝐸 2 2 𝐺 0 ) + 𝐸 2 ℎ 0 ℎ 2 4 (2𝐸 0 𝐺 2 + 3𝐸 2 𝐺 0 ) (II.97) 𝐴 1,2 = 𝐸 1 ℎ 1 4 ℎ 2 (2𝐸 2 𝐺 1 + 3𝐸 1 𝐺 2 ) + 𝐸 2 ℎ 1 ℎ 2 4 (2𝐸 1 𝐺 2 + 3𝐸 2 𝐺 1 ) + 2ℎ 1 3 ℎ 2 2 (2𝐸 2 2 𝐺 1 + 3𝐸 1 2 𝐺 2 ) + 2ℎ 2 3 ℎ 1 2 (2𝐸
𝑇 2 = 1 2√3 𝐿 sech [ 𝐵 ′ 2√𝐴′ ] 𝐴′(𝐵 ′ ) 2 𝐵 ′ (𝑏𝐶 ′ ) 2 (𝐸 𝑡 ℎ 𝑡 ) [ 𝐵 ′ + 𝐵 ′ cosh [ 𝐵 ′ √𝐴′ ] -2√𝐴 ′ sinh [ 𝐵 ′ √𝐴′ ] (𝐻′ 1 𝜌 1 + 𝐻′ 2 𝜌 2 -𝐻′ 3 𝜌 0 ) + 2𝑏 2 (𝜌 𝑡 ℎ 𝑡 )(𝐸 𝑡 ℎ 𝑡 ) 3 ] 0.5 (II.104)
Where:

𝜌 𝑡 ℎ 𝑡 = ∑ 𝜌 𝑘 ℎ 𝑘 𝑁 𝑘=0
(II.105)

𝐻′ 1 = (𝐸 1 ℎ 1 2 + 𝐸 2 ℎ 2 (2ℎ 1 + ℎ 2 ) -𝐸 0 ℎ 0 2 ) 3 + (𝐸 1 ℎ 1 2 + 𝐸 0 ℎ 0 (2ℎ 1 + ℎ 0 ) -𝐸 2 ℎ 2 2 ) 3 (II.106) 𝐻′ 2 = (𝐸 0 ℎ 0 (2(ℎ 1 + ℎ 2 ) + ℎ 0 ) + 𝐸 1 ℎ 1 (ℎ 1 + 2ℎ 2 ) + 𝐸 2 ℎ 2 2 ) 3 -(𝐸 1 ℎ 1 2 + 𝐸 0 ℎ 0 (2ℎ 1 + ℎ 0 ) -𝐸 2 ℎ 2 2 ) 3 (II.107) 𝐻′ 3 = (𝐸 1 ℎ 1 2 + 𝐸 2 ℎ 2 (2ℎ 1 + ℎ 2 ) -𝐸 0 ℎ 0 2 ) 3 -(𝐸 2 ℎ 2 (2ℎ 0 + 2ℎ 1 + ℎ 2 ) + 𝐸 1 ℎ 1 (ℎ 1 + 2ℎ 0 ) + 𝐸 0 ℎ 0 2 ) 3 (II.108)
The corresponding torsional frequency ratio becomes:

𝑅 𝑇2 = 𝑇 2 √ 𝜌 0 𝐺 0 [ 12 ℎ 0 2 ( 𝑏 - ℎ 0 tanh [ √3𝑏 ℎ 0 ] √3 ) 𝑏(ℎ 0 2 + 𝑏 2 ) ] -0.5 (II.109)
The variety of choices made by the authors and the lack of information on the domain of validity of each model do not allow a global view of the technique. In order to check the reliability of the various formulations and to identify the most suitable model, a parametric comparison between the analytical expressions and a FEM will be made in the following section. Two different finite element models were constructed by bonding the coatings on the substrate already created through one of the two different functions: tie or partition; that gives no significant differences in the "n" modes of frequency extracted. The first model presents a single layer coated beam with a film thickness ℎ 1 that was varied from 0 to 1 mm. The second one presents a bi-coated beam with a first film thicknesses ℎ 1 of 4 μm (𝑅 ℎ1 = 4 × 10 -3 ) and 100 μm (𝑅 ℎ1 = 0.1) and a second film with a thickness ℎ 2 that varied from 0 to 0.55 mm.

II.5. Comparison between the analytical models and a

To mesh the structure, C3D20 quadratic element was used since it presents an excellent behavior for linear elastic calculations. A mesh convergence study of the first four frequency modes was performed to determine the mesh density at which the values of the first four resonance frequencies converge. By varying the number of elements in all three directions, the element size of 0.35×0.27×0.5 mm 3 was chosen for the substrate that led to invariant frequency values even with the smallest elements.

Considering the beam dimensions mentioned in the first paragraph, it gives 30,000 elements: 200 in the length direction, 75 in the width and 2 in the thickness. For a multilayer beam with 𝑅 ℎ1 > 0.5, one element through the film thickness was used (Fig. II.6(a)). For beam geometries whose substrate was significantly thicker than the first film (𝑅 ℎ1 ≤ 0.5), a variable element size through thickness was applied as shown in 

II.5.2. Flexural mode

In order to identify the most suitable model, a parametric comparison of the analytical models with the FEM was done with a combination of different Young's moduli and density ratios. Four combinations of different materials were chosen to operate at the extreme border where the former models remain invalid [Berry 1975, Mazot 1998, López-Puerto 2014].

Moreover, these combinations allow us to have a large and small shift of the neutral axis. The materials used are presented in Table II For a bilayer beam (substrate + film), the evolution of the frequency ratio 𝑅 𝐹1 as a function of the thickness, density and Young's modulus ratios, is presented in Fig. II.8 with the thickness ratio 𝑅 ℎ1 varying from 0 to 1. The ratios were chosen to cover a large range of materials used for surface coatings. A good agreement can be noted between the developed model (Dev-CLBT, Eq. (II.85)), Pautrot's model (Eq. (II.17)) and the FEM, for any 𝑅 ℎ1 , 𝑅 𝐸1

and 𝑅 𝜌1 ratios. The good reliability of Pautrot's model was already shown in a previous work [Slim 2017a]. As can be seen, the good agreement of the Dev-CLBT model shows that the influence of symmetry becomes negligible when taking into account the shift of the neutral axis after the deposition of the first film. For thickness ratios 𝑅 ℎ1 < 0.1, all models give approximately the same result. For thicker films (𝑅 ℎ1 > 0.1), the discrepancies between the different models increase due to the different assumptions on which is based each model. For small values of 𝑅 𝐸1 and 𝑅 ℎ1 , Lopez model [Mazot 1998] is the closest to the Pautrot, Dev- and the FEM. As for the case of a bilayer beam, we can clearly see the divergence of the CLBT model. This difference between the models increases with the thickness ratio 𝑅 ℎ2 .

The three models (Ext-PM, Dev-CLBT and FEM) predict very similar resonance frequencies for bilayer and three-layered beams. FEM is a numerical approach, which takes into account the slenderness * of the beam, and thus it can be considered as a reference to check analytical models. The difference between FEM and the two analytical models remains lower than 0.2% in the range of the tested ratios (𝑅 ℎ , 𝑅 𝐸 and 𝑅 𝜌 ), which is negligible. This good agreement means that, at least in the range explored in the present study, the rotatory and the shear effects are sufficiently corrected by the 𝑇 𝑓 factor in Eq. (II.7) or Eq. (II.8) of the substrate and are negligible in the numerical model for the first harmonic mode. It is interesting to note that, in Fig. II.9(c), (d), and (e), the frequency variation versus 𝑅 ℎ2 tends to stabilize which means that, for these configurations, the obtained modulus is not very sensitive to the film thickness. Consequently, the two models are validated and can be used for the prediction of the resonance frequencies. In the next chapter, the two models will be used to determine the Young's modulus of each film in a multilayer beam. In this section, the newly developed models were compared to a FEM. An agreement between the FEM and the new models has allowed us to validate them over a wide range of plausible parameters. In the next chapter, these new models will be applied to titanium (Ti) and niobium (Nb) thin films deposited in a multilayer by magnetron sputtering technique.

II.6. Conclusions

This chapter was dedicated on the development of new analytical models for the determination of the elasticity constants of isotropic thin films in a multilayer structure. For the determination of the Young's modulus, the proposed models are based on two different theories (FRCB and CLBT). It was shown that both Extended Pautrot's Model (Ext-PM) and the developed CLBT model (Dev-CLBT) are appropriate to determine the Young's moduli of thin films whatever the coating thickness and the elastic properties of the films and substrate. The Extended Slim model (Ext-Slim) was developed using Hamilton's principle to determine the shear moduli of thin films in multilayers. The comparison with the finite element model was performed to validate the developed models whatever the ratios 𝑅 ℎ , 𝑅 𝐸 , 𝑅 𝐺 and 𝑅 𝜌 .

In the next chapter, these new models will be applied to determine the elasticity constants of multilayer coatings by means of the impulse excitation technique. The multilayer structure is composed of titanium and niobium thin films deposited by magnetron sputtering. 

Chapter III

Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique

III.2. Experimental applications

III.2.1. Thin-film deposition technique

The deposition technique used during this thesis is magnetron sputtering. It is one of the physical vapor deposition (PVD) techniques, which mainly include thermal evaporation and sputtering in all its forms. The sputtering phenomenon was first observed in 1852 by Grove et al. [START_REF] Grove | On the electro-chemical polarity of gases[END_REF]] and was proposed by Wright et al. [START_REF] Wright | On the Production of transparent Metallic Films by Electrical Discharge in Exhausted Tubes[END_REF]] for the development of metallic thin films. This method of producing thin films is interesting because it allows all types of materials to be elaborated on any insulating or conductive substrate. It can be used to deposit pure metals as well as metal alloys and ceramics with a single layer or with multilayers. By varying the deposition conditions, materials with various properties can be deposited.

III.2.1.1. Conventional magnetron sputtering

Magnetron sputtering is a deposition technique used at low pressure. Before the deposition phase, the chamber is pumped down with a turbomolecular pump in order to Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 74 evacuate any species that can react with the sputtered materials and form undesirable components. The chamber is then filled with inert gas, generally argon (Ar) with a defined flow rate. Using the potential difference created between the cathode (the target) and the anode (the chamber walls plugged to the ground), a partially ionized plasma is formed between the two electrodes. This plasma is composed of ions, electrons and neutral species. Under the effect of a local electric field, the Ar + ions created in the discharge are accelerated towards the negatively polarized target to sputter its surface (Fig. III.1). A collision between the Ar + ions and the target surface is created. Following this collision, several mechanisms can occur: the sputtering, the adsorption, the nucleation and the diffusion [Pawlowski 2003, Billard 2005]. The sputtering phenomenon occurs when the atoms are expelled from the target surface. These ejected atoms with sufficient energy will eventually collide with the first surface encountered.

The growth of a thin film takes place in several stages [Pawlowski, 2003]: the adsorption stage appears in the first instant of atoms arrival at the substrate surface. Then, particle diffusion within the surface occurs followed by an interaction between the substrate and the deposited particles in order to form stable bonds. These initial stages lead to island nucleation and coalescence. The formation of a continuous film occurs after a sequence of island nucleation and coalescence with volumetric growth, and atoms diffusion inside the film and the substrate [Pawlowski 2003].

Argon ion (Ar + ) Argon atom (Ar) Sputtered atom 

III.2.2. Dimensions and Density

The coating has the same length and width as the substrate with different thicknesses.

The dimensions of each substrate were measured ten times in ten different locations. The average dimensions and their uncertainties are presented in Table III.1. Samples 1 and 2 correspond to Nb/Ti/AISI316 and Nb/Ti/Glass configurations, respectively. The standard uncertainties on the measured dimensions were evaluated by the type A method by computing the standard deviation [JCGM 2008]. The mass of the substrate was measured using a Sartorius precision balance (0.1 mg of precision), and then its density was calculated. The uncertainties on the substrate mass were evaluated following the type B procedure [JCGM 2008]. After deposition, the mass of the composite beam was measured. The bilayer beam corresponds to the Ti film deposited on the substrate. The second film was deposited on the previously coated beam in order to obtain a three-layered beam. The corresponding values are presented in Table III.2. The difference in mass measured before and after each deposited film corresponds to the mass of the film. Its specific mass was estimated by considering the mass and the dimensions of the film.

Chapter III

Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 

III.2.3. Impulse Excitation Technique

The theory and principle of the IET were discussed previously. In this section, we focus on presenting the experimental set-up and the handling during a test. In order to stabilize the temperature of the electronic components, the device is turned on for half an hour before starting the experiments. Before starting the test, the sample is placed on a support with negligible interaction (nylon wires placed along the nodal lines of the considered mode) in order to get as close as possible to a free-free (FF) boundary condition (Fig performing the measurements, the equipment was calibrated using a reference polycarbonate glass specimen. The films reduced moduli were determined by taking the average of ten indents and the uncertainty of measurements was determined from their standard deviation. The tests were carried out under controlled loading. In order to minimize the influence of the substrate or the previous layers, the indenter penetration depth was kept lower than 10% of the coating thickness [Buckle 1960]. The corresponding penetration depth was found to be about 270 nm (8 mN) for titanium and 300 nm (8 mN) for niobium. Assuming that the discharge curve is dominated by the elasticity of the material, the contact reduced modulus 𝐸 𝑟 𝑐 between the material tested and the indenter can be expressed as [Doerner 1986, Oliver 1992, Oliver 2004]:

𝐸 𝑐 𝑟 = 1 𝛽 𝑆 𝑐 2 √ 𝜋 𝐴 𝑐 (III.1)
Where 𝛽 is a constant that depends on the geometry of the indenter, which is equal to 1 in the case of axisymmetric geometry of the indenter, 𝑆 𝑐 is the contact stiffness and 𝐴 𝑐 is the projected contact area. Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 81 Knowing that the reduced modulus 𝐸 𝑐 𝑟 depends on the elastic properties of both the specimen and the tip, the Young's modulus of the indented material can be deduced from the following equation [Doerner 1986, Oliver 1992, Oliver 2004]:

1 𝐸 𝑟 = 1 -𝜈 2 𝐸 = 1 𝐸 𝑐 𝑟 - 1 -𝜈 𝑖𝑛𝑑 2 𝐸 𝑖𝑛𝑑 (III.2)
Where 𝐸 𝑟 is the reduced modulus of the indented material, 𝐸 𝑖𝑛𝑑 is the Young's modulus of the tip and 𝜈 and 𝜈 𝑖𝑛𝑑 are the Poisson's ratios of the tested material and the indenter, respectively.

The determination of the reduced modulus of the tested material 𝐸 𝑟 requires the knowledge of the applied load 𝑃, the elastic properties of the tip, the projected contact area 𝐴 𝑐 and the contact stiffness 𝑆 𝑐 . The elastic properties of the tip are often known and the applied load is directly measured during the test. The contact stiffness 𝑆 𝑐 can be determined from the discharge curve or directly during the loading using the CSM feature. The projected contact area 𝐴 𝑐 can be determined by several approaches. Among the most widespread approaches for the determination of 𝐴 𝑐 , one can quote the method of Doerner et al. [Doerner 1986], which was then improved by Oliver et al. [Oliver 1992] and the method of Loubet et al. [START_REF] Loubet | [END_REF], Hochstetter 1999].

Doerner et al. [Doerner 1986] assume that the discharge curve is linear. On the other hand, Oliver et al. [Oliver 1992] have shown by experimentation on different materials, that the discharge curves are rarely linear. They proposed to simulate the discharge curve by a power law as follows [Oliver 1992, Oliver 2004]:

𝑃 = 𝛼(ℎ -ℎ 𝑟 ) 𝑚 (III.3)
Where ℎ is the penetration depth, ℎ 𝑟 is the residual penetration depth after unloading and 𝛼 and 𝑚 are parameters depending on the tested material [Oliver 2004].

From Eq. (III.3), the contact stiffness can be determined from the slope of the unloading curve, which is the derivation of the load 𝑃 with respect to the penetration depth ℎ:

𝑆 𝑐 = 𝑑𝑃 𝑑ℎ = 𝛼𝑚(ℎ -ℎ 𝑟 ) 𝑚-1 (III.4)
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The depth along which the indenter and the specimen are in contact under a load P can be determined based on the Sneddon equation [Sneddon 1965, Oliver 1992, Oliver 2004]:

ℎ 𝑐 = ℎ -𝜀 𝑃 𝑆 𝑐 (III.5)
Where 𝜀 is a parameter depending on the tip geometry, which is equal to 0.72 in the case of a conical tip. The relation between the contact depth ℎ 𝑐 and the projected area 𝐴 𝑐 was developed by Oliver et al. [Oliver 1992, Oliver 2004]:

𝐴 𝑐 = 𝐶 0 ℎ 𝑐 2 + 𝐶 1 ℎ 𝑐 + 𝐶 2 ℎ 𝑐 1 2 + ⋯ + 𝐶 8 ℎ 𝑐 1 128 (III.6)
Where 𝐶 0 represents the coefficient relating 𝐴 𝑐 to ℎ 𝑐 in the case of an ideal Berkovich diamond tip. The other coefficients are introduced in order to take into account the imperfection of the tip geometry. They are determined by doing a calibration test on a homogeneous material with known elastic properties, as the polycarbonate glass specimen in this work. 

III.2.5. X-ray Diffraction

III.3. Uncertainty analysis

The uncertainty analysis was performed following the ISO standard guidelines: the Guide to the expression of Uncertainty in Measurement (GUM) [JCGM 2008] and the International Vocabulary of Metrology (IVM) [JCGM 2012]. The uncertainty on a quantity x is defined as the standard uncertainty calculated u(x) which is the standard deviation of the distribution of x values. In the present study, the uncertainty analysis is performed to compare the behavior of the different models with regard to their sensitivity to various uncertainty sources. The quantitative values of the uncertainties of different sources related to the frequency measurements were imported from a previous work [Slim 2017a] where the experimental study was performed using the same IET set-up. Thus, other components of the uncertainty are calculated using the uncertainty propagation equation [Bullough 2000].

In this study, the measured quantity is defined as the elasticity constants of the Ti and Nb films. The definitional uncertainty and instrumental measurement uncertainty were neglected in the uncertainty analysis. Moreover, the fluctuations due to the manufacturing process are neglected. Since the elastic behavior for the substrate and the film is assumed to

Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 84 follow the isotropic Hooke's law, the effects of texture are neglected. The uncertainties coming from the IET measurement system, such as those linked to the window used for computing the FFT and the signal discretization are assumed negligible. To analyze all the sources of uncertainties influencing the elasticity constants measurement using IET, two types of uncertainty components are analyzed: those that appear in the analytical expressions and those that are linked to the instruments and the measurement techniques. The comparison of the uncertainties generated by each of the developed models allows us to judge whether it is preferable to use a model based on the flexural theory rather than the laminated one. A model with better trueness may be less stable than another one and exhibits, in practice, a larger uncertainty.

III.3.1. Frequency uncertainty

A series of experimental measurements was performed to identify and estimate the different sources of uncertainty on the measured frequencies. The sources of uncertainty were determined for the IET [Slim 2017a] and they led to a significant influence on the frequency measurement. Table III.3 presents the uncertainty of the first four resonance frequencies.

Table III.3

Standard uncertainty on the first four resonance frequencies. The global uncertainty of the resonant frequencies can be calculated from the following expression [Slim 2017a]:

𝑢(𝑓) = √𝑢 𝑝𝑜𝑠 2 + 𝑢 𝑎𝑙𝑖𝑔𝑛 2 + 𝑢 𝑟𝑒𝑝 2 + 𝑢 𝑠𝑢𝑝𝑝 2 (III.7)
Where 𝑢 𝑝𝑜𝑠 , 𝑢 𝑎𝑙𝑖𝑔𝑛 , 𝑢 𝑟𝑒𝑝 and 𝑢 𝑠𝑢𝑝𝑝 are the uncertainties caused by the position of the microphone, the misalignment between the sample nodal lines and the supporting wires, the repeatability and the nature of the support, respectively.

It was found that the measurements are mostly affected by the nature of the support and the misalignment. The support and misalignment uncertainties present the highest contributions. This can be due to the approximate free-free condition [Slim 2017a Similarly, the uncertainty of the coatings elasticity constants was calculated using the 

III.4. Characterizations

III.4.1. Morphology

Using a Scanning Electron Microscope, Hitachi S3500N SEM-FEG operated at 15 kV, the thickness of each layer in the film was measured ten times in ten different positions in order to determine the average thicknesses and their uncertainties (Table III.1 relatively marked columnar growth. This can be due to the change in energy of incident ions transferred to the adatoms during deposition [Musil 1998, Achache 2016]. The deposition rate can be affected by the pressure and hence the energy of incident ions [Liu 2018, Xu 2019a].

Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 86 Besides, the absence of bias (samples polarization) can also favor this columnar film growth [Gao 2016, Achache 2016]. Table III.4 lists a summary of the measured flexural and torsional resonance frequencies (average value) and the uncertainties for each layered system. The table presents the values measured on two consecutive coatings of Ti and Nb deposited on AISI316 (sample 1) and glass (sample 2) substrates under the same deposition parameters. An increase in flexural and torsional frequencies is observed when each film is added. We can clearly see that the differences Δ𝐹 and Δ𝑇 in the measured frequencies before and after each deposition, are higher than their corresponding uncertainties, which give us the confidence to use them to determine the elasticity constants of each film. We can see that the contribution (in %) on the measured frequency decreases by taking a higher mode which presents a higher frequency. III.5 gives the elasticity constants and their uncertainties of stainless steel and glass substrates measured by IET. These constants were calculated using Eq. (II.6) for the fundamental flexural frequency, Eq. (II.5) for the other flexural frequency modes and Eq. (II.42)

for the torsional frequency. The Poisson's ratio was calculated by assuming an isotropic elastic behavior of the substrate. The measured elasticity constants of the substrates (Table III.5) are coherent with those reported in the literature for AISI316 [Smithells 1983] and glass substrates [START_REF] Jämting | Investigation of the elastic modulus of thin films using simple biaxial bending techniques[END_REF], Rouxel 2007, Gadaud 2009, Slim 2017b].

Table III.5

Substrate elasticity constants and their uncertainties.

III.4.4.2. Young's modulus of the coatings

In Table III.6 and Table III.7, the Young's moduli and their uncertainties of the deposited Ti and Nb films were obtained using Pautrot's, Dev-CLBT and Extended Pautrot's (Ext-PM) models. We can notice that the difference between the Young's moduli increases with the frequency mode. The difference between the elasticity moduli determined from the first frequency and the higher frequencies may be due to the shear and inertia effects. They were The values of Young's moduli of the titanium film presented in Table III.6 varied from 97 GPa to 112 GPa. The values reported in the literature are highly dispersed: the values found in the present work are consistent with some of them [Chinmulgund 1995, Tsuchiya 2005, Verkhovtsev 2013] and differ from some others [Kim 1997, Cho 1999]. Differences can be explained by the microstructural features, such as phase proportions and the presence of pores [Slim 2019]. It can also be explained by the process itself like in reference [Peraud 1997], where ions are implanted into the crystalline structure during the deposition process.

For the first sample, the uncertainty on the Ti film Young's modulus is in the order of 4.6 GPa (4.4 %), 2.7 GPa (2.5 %), 2.5 GPa (2.3 %) and 2 GPa (1.8 %), respectively in mode I, II, III, and IV, approximately for the two models (Table III.6). By moving from the first to the fourth mode, the resonant frequency of the system increases while its contribution to the uncertainty decreases (Table III.4). Therefore, the uncertainty of Ti film Young's modulus decreases at higher modes. The same reasoning is applied to the second sample.

Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique given in other studies determined using the Neerfeld-Hill model [Okolo 2004, Czichos 2014] and those of bulk material [Brandes 1992]. This can also be due either to the presence of pores in the film or to the layering of different materials that can toggle the results and the prediction of the Young's modulus of each thin film in a multilayer system.

For a three-layered system, the uncertainty of the Nb film Young's modulus is in the order of 8 GPa (9 %), 5.4 GPa (5.8 %), 5 GPa (5.7 %) and 4 GPa (4.8 %) respectively in mode I, II, III, IV with a slight difference between the two models, which was not the case for the bilayer beam. This difference appears starting from the second layer because of the difference in theory and the symmetry assumption of the laminated theory that can relatively affect the results even if it was corrected by the shift of the neutral axis after deposition. The uncertainty of the second film Young's modulus is higher than that of the first film. This can be due to the layering where the cumulating effect of the uncertainties of the two precedent layers (substrate and the first film) contributes to the second film Young's modulus. Since the Nb film has lower elasticity constants and thickness than those of the Ti film, its influence on the resonance frequency is lower.

Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 92 The Poisson's ratios used in CLBT and Dev-CLBT models for titanium and niobium films were respectively 0.36 [Brandes 1992] and 0.4 [START_REF] Zhang | [END_REF]], which were taken from the literature for bulk material. In Table III.8, the shear moduli and their uncertainties of the deposited Ti and Nb films were obtained using Slim's and Extended Slim's (Ext-Slim) models. These values were obtained for the fundamental torsional resonance frequency. From the table, we can conclude that the difference between the shear moduli of the two tested samples measured by IET is due to the measurement uncertainties. All the observed variations between the two samples are lower than the measurement uncertainties. The measured values of the Ti and Nb Young's and shear moduli are lower than the bulk one [Brandes 1992], E = 120.2 GPa, G = 45.6 GPa for Ti and E = 104.9 GPa, G = 37.5 GPa for Nb. This can be attributed to the presence of pores in the film owing to our deposition parameters. By assuming the isotropic behavior of the films, the Poisson's ratio of each film was calculated using the corresponding Young's and shear moduli (Table III.9).

A difference between the measured values of the Poisson's ratio and the values found in the literature [Brandes 1992, Donachie 2000, Okolo 2004[START_REF] Zhang | [END_REF] was observed. This difference is attributed to the measurement uncertainty on the Young's and shear moduli. For the titanium and niobium films, a slight decrease in the Poisson's ratio was observed compared to the corresponding bulk material, respectively 0.361 and 0.397 [Brandes 1992]. The uncertainty of the Poisson's ratio increases for the second film due to the cumulating effect of the uncertainties of the substrate and the Ti film. The difference between the values reported in the literature and the measured values may be due not only to the measurement uncertainty on the Young's and shear moduli but also to the different used elaboration techniques. The same consequence was found in the literature for tungsten films. Faurie et al. [Faurie 2004] have observed a difference between the Poisson's ratios of a tungsten film deposited by Ion Beam Sputtering and bulk tungsten. Slim et al. [Slim 2017b] have found that the difference in tungsten film Poisson's ratios can be due to the difference in the elaboration techniques used. Table III.12 presents the contributions of each source of error on the 316 steel substrate shear modulus. By comparing Table III.12 with Fig. III.12, we can see that, for the steel substrate, the most significant sources of uncertainty are the same for both Young's and shear moduli. It is thus recommended to carefully measure the thickness and the density of the substrate by performing more than 10 measurements. 

III.5. Conclusions

This chapter was focused on the experimental measurement of the elasticity constants of isotropic thin films in multilayer structure by means of the Impulse Excitation Technique (IET). The mechanical models developed in Chapter II were applied to different coatings.

Titanium (4.84 µm) and niobium (3.97 µm) thin films were sputter-deposited on AISI316 steel, glass substrates and silicon wafers. Columnar growth was observed in the films, which gives them a lower density than that of the bulk materials. The structural analysis of the Ti film by X-ray diffraction reveals the presence of two phases: a high stable phase of hexagonal closed packed structure Ti α and a low metastable phase of body-centered cubic structure Ti β . The formation of the Ti β phase can be attributed to the presence of oxygen or carbon in the film.

The Young's and shear moduli of the deposited Ti and Nb films were determined using the developed models and the IET. The Poisson's ratio was determined by assuming that the Chapter III Experimental measurements of the elasticity constants of multilayer coatings using Impulse Excitation Technique 101 elastic behavior of the film is isotropic. A good agreement was found between the obtained moduli and the values reported in the literature. However, some previous studies present values different from the measured ones. This difference might be due to the presence of pores in the two films. However, the presence of the metastable phase Ti β in the titanium film can also alter the elasticity constants of the titanium film. The validation was also performed by comparing the reduced moduli obtained by nanoindentation and IET.

An uncertainty study was carried out according to the recommendations of the ISO standard of the Guide for the expression of Uncertainty of Measurement (GUM). The uncertainty study was applied to titanium and niobium films deposited by magnetron sputtering on the stainless steel substrate (Nb / Ti / AISI316). The measurement uncertainty of the IET represents about 1.1 % for the substrate Young's and shear moduli. The measurement uncertainties on the first and second films Young's moduli were calculated as a function of the frequency mode. By increasing the vibrational mode number, the measurement uncertainty decreases from about 4.4 % to 1.8 % for the first film and from about 9 % to 4.8 % for the second film. The increase of the measurement uncertainties with the addition of another film may be due to the accumulation of uncertainties from the successive films. For the films shear modulus, the measurement uncertainty of the IET represents about 2.38 % and 5.74 % for the Ti and Nb films, respectively. The measured values of the film elasticity constants were lower than the bulk one. This might be due to the presence of pores in the as-deposited films.

In the case of the studied materials, the standard uncertainty on the substrate elasticity constants comes mainly from the uncertainty on its thickness (~79 % of the total uncertainty) and density (~20 % of the total uncertainty). The uncertainty study carried out on the films Young's modulus has shown that the error comes mainly from the measurements of the density of the two coatings, the Young's modulus of the substrate, the Young's modulus of the precedent coating, and the frequency before and after deposition. The same sources of error as for the films Young's modulus were found for the films shear modulus with some equivalences:

the flexural frequencies and the Young's moduli were replaced by the torsional frequencies and the shear moduli, respectively.

In this chapter, the macroscopic elasticity constants of titanium film of 4.84 µm thick, consisting of two phases, were determined using IET for a single layer coated beam. Niobium film of 3.97 µm thick was deposited on the bi-coated beam leading to a three-layered beam.
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The elasticity constants of the niobium film were determined using the IET, and the methodology proposed for a multilayer structure was approved. In the next chapter, a second step providing the determination of the macroscopic elasticity constants of anisotropic film will be described. The study will be extended to evaluate macroscopically the anisotropic behavior This anisotropy can be attributed to the crystalline texture or the morphology of the grains. In classical PVD/CVD processes, there is generally no (or small) anisotropy in the film plane due to the growth towards the plane normal. The originality of this study is to introduce anisotropy in the plane of the film by tilting substrates. This elastic anisotropy arises inherently owing to the film microstructure developed during deposition. In this context, a new type of coating presenting a broad anisotropy is handled in this chapter wherein the surface anisotropy is utmost. A methodology is developed by improving the IET in order to determine the elasticity constants of a coating having anisotropy in its plane using the IET.

This chapter aims to extend the methodology developed for transversely isotropic coatings to determine their anisotropic constants using the IET. The IET is a reliable technique used for the determination of the film elasticity constants whatever the thickness, the mechanical and the physical properties of the substrate and the film. 

IV.2. Glancing Angle Deposition (GLAD) of thin films

IV.2.1. GLAD technology

Since the appearance of thin-film technology, there has been a growing interest in using the film structure to control its physical properties. Several technological advances have been achieved in terms of surface morphology and film microstructure. Glancing angle deposition technique (GLAD), first reported more than one hundred years ago [START_REF] Kundt | Ueber die electromagnetische drehung der polarisationsebene des lichtes im eisen[END_REF], Kaempf 1905, Bergholm 1913] has been one of the techniques employed to control the structure of thin films.

Several studies between the 1950s and 1970s were focused on thin films with tilted columnar

Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 106 microstructure and the factors controlling its development [START_REF] König | [END_REF], Knorr 1959[START_REF] Nieuwenhizen | [END_REF], Dirks 1977]. [START_REF] Kundt | Ueber die electromagnetische drehung der polarisationsebene des lichtes im eisen[END_REF]] recognized that obliquely deposited films exhibit anisotropy in their optical [START_REF] Holland | The effect of vapor incidence on the structure of evaporated aluminum films[END_REF]], electrical [Pugh 1960] and magnetic [Smith 1959] properties. These anisotropic properties were directly associated with the microstructural effect owing to the oblique deposition conditions and were not a side effect of non-uniformity or stress generation in the film. The technique was initially demonstrated in 1995 [Robbie 1995] when the interest in the GLAD process has rapidly grown. Compared with films prepared at normal incidence, the films deposited at oblique incidence exhibit particular properties.

IV.2.1.1. Principle

This technique provides a simple method to design various nanostructured columnar architectures using prevalent processes, such as sputtering or evaporation. The method consists in modifying the substrate inclination to control the ballistic shadowing and nanocrystallized film growth during deposition. The ballistic effect becomes dominant in GLAD extending the total shadow lengths thanks to the oblique deposition geometry. A highly porous film microstructure was developed with directional column growth. Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence As the present work is the first to characterize these nanosculptured films with the vibrational technique (IET), the simplest architecture is chosen (i.e. the inclined columns obtained under stationary mode where the substrate position is controlled only by the glancing angle 𝛼) among the various GLAD processes.

IV.2.1.2. Controlling the film microstructure Thanks to their dedicated porosity, texture and anisotropic properties, the GLAD nanostructured thin films were used in many fields. The GLAD coatings are extensively used in optics, thanks to their ability to control the thin film structure on a scale relevant to optical applications [Lakhtakia 2002, Kennedy 2003, Mansour 2010]. Several researchers have elaborated GLAD optical coatings based on controlling the optical anisotropy orientation and thus the refractive index by changing the glancing angle 𝛼. Among the optical applications, we cite the birefringent transparent conducting films [Harris 2008], the luminescent devices [Hrudey 2006], the optical filters [Robbie 1997] and the 3D photonic crystals, where the material is precisely structured to form a 3D dielectric crystal lattice [START_REF] Toader | [END_REF]].

Furthermore, GLAD thin films can be applied to sensing applications thanks to their controlled morphology and high porosity. They are used as electrical [Steele 2006], optical [Lakhtakia 2001], gas [Xu 2019b] and mechanical pressure sensors [Kesapragada 2006a].

Many other fields, including catalysis applications [He 2008], energy applications [START_REF] Bonakdarpour | [END_REF]], magnetic materials [Ali 2019], microelectronics [Glassford 1992],

neutron phase imaging [Samoto 2019] and nano-mechanical devices [Singh 2004] have used GLAD thin films.

IV.2.2. Mechanical properties of GLAD thin films

The determination of the mechanical properties of these structured thin films was mostly performed by nanoindentation (NI) as a static technique. Among the works in the literature, we In this work, the crystallographic orientations will be determined from the pole figures plotted using DIFFRAC.TEXTURE software. The pole figures will be represented in stereographic projections. If a lattice has a hexagonal symmetry, the Miller-Bravais [Jackson 1991, Schwarzenbach 2003] indices (ℎ 𝑘 𝑖 𝑙), where ℎ + 𝑘 + 𝑖 = 0 will be used to define the crystallographic planes of the hexagonal crystal lattice.

IV.3. Measurement methodology of the elastic properties of GLAD films using the IET

The Impulse Excitation Technique (IET) is used to measure the resonance frequencies In the case of anisotropic films, the determination of the elasticity constants along two perpendicular directions seems to be easier by using a plate since it can be easily excited along its two perpendicular directions. This method was used with the IET to determine the anisotropic moduli of a bulk plate [START_REF] Maletta | [END_REF][START_REF] Bruno | [END_REF], Gogu 2010, Barkanov 2015].

Contrariwise, the analytical formulations of a plate are rather complex in the case of a bulk plate since they are 2D expressions and require the use of discretization methods and structural optimization with genetic algorithms [START_REF] Maletta | [END_REF]].

In this work, the methodology used consists of depositing different pairs of coatings at an oblique incidence; the x-axis, defined as the longest dimension of the specimen, (resp. yaxis, defined as the transverse dimension) of the first sample coincides with the Δ direction (resp. Π direction). The reciprocal perspective is rather applied for the second sample where the x-axis (resp. y-axis) is parallel to the Π direction (resp. A simplified 1D model based on the laminated beam theory is developed in this section.

It fulfills Kirchhoff hypotheses [Hyer 2009], and it is applicable for thin films with plane anisotropy. Using the plane-stress assumption, three of the six components of stress are generally much smaller than the other three. For a coated substrate, the stresses in the plane of the beam are much higher than the stresses perpendicular to that plane [Hyer 2009]. These negligible components can then be set to zero which simplifies the solution.

From the relation between stresses and strains for the state of plane-stress and taking into account the shift of the neutral axis after deposition, the third-order bending stiffness matrix 𝐷 𝑖𝑗 can be expressed as follows [Hyer 2009]:

𝐷 𝑖𝑗 = ∫ 𝑄 ̅ 𝑖𝑗 (𝑠) 𝑧 2 𝑑𝑧 𝑒 -ℎ 𝑠 +𝑒 + ∫ 𝑄 ̅ 𝑖𝑗 (𝑐) 𝑧 2 𝑑𝑧 𝑒+ℎ 𝑐 𝑒 (𝑖, 𝑗 = 1, 2 𝑜𝑟 6) (IV.1)
Where:

The indexes s and c refer to the substrate and the coating respectively. 𝑄 ̅ 𝑖𝑗 are the transformed reduced stiffness elements that are a function of the reduced stiffness elements 𝑄 𝑖𝑗 . The 𝑄 𝑖𝑗 elements are a function of the elasticity constants of the corresponding layer. The shift of the neutral axis 𝑒, in the case of the two beams, is calculated in unidirectional by taking only the longitudinal component [Gere 2003] of the Young's modulus for each pair of beams, as follows:

( 𝑒 𝑥 𝑒 𝑦 ) = 1 2 ( 𝐸 𝑠 ℎ 𝑠 2 -𝐸 𝑥 ℎ 𝑐 2 (𝐸 𝑠 ℎ 𝑠 + 𝐸 𝑥 ℎ 𝑐 ) 𝐸 𝑠 ℎ 𝑠 2 -𝐸 𝑦 ℎ 𝑐 2 (𝐸 𝑠 ℎ 𝑠 + 𝐸 𝑦 ℎ 𝑐 ) ) (IV.2)
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Working with the x-y axes as principal axes for both substrate and film, the stiffness elements become:

For isotropic substrate [Hyer 2009]:

𝑄 ̅ 11 (𝑠) = 𝑄 11 (𝑠) = 𝑄 ̅ 22 (𝑠) = 𝑄 22 (𝑠) = 𝐸 𝑠 1 -𝜈 𝑠 2 (IV.3) 𝑄 ̅ 12 (𝑠) = 𝑄 12 (𝑠) = 𝜈 𝑠 𝑄 11 (𝑠) = 𝜈 𝑠 𝐸 𝑠 1 -𝜈 𝑠 2 (IV.4) 𝑄 ̅ 66 (𝑠) = 𝑄 66 (𝑠) = 𝐺 𝑠 = 𝐸 𝑠 2(1 + 𝜈 𝑠 ) (IV.5)
For anisotropic film [Hyer 2009]: 𝑄 ̅ 66 (𝑥) = 𝑄 ̅ 66 (𝑦) = 𝑄 66 (𝑥) = 𝑄 66 (𝑦) = 𝐺 𝑥𝑦 (IV.9)

( 𝑄 ̅ 11 (𝑥) 𝑄 ̅ 11 (𝑦) ) = ( 𝑄 11 (𝑥) 𝑄 11 (𝑦) ) = 1 
Where:

𝐸 𝑥 : Young's modulus of the film along the longitudinal direction, Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 

( 𝑅 𝑥 𝑅 𝑦 ) = 1 3 ( 𝑒 𝑥 3 -(-𝑒 𝑥 + ℎ 𝑠 ) 3 𝑒 𝑦 3 -(-𝑒 𝑦 + ℎ 𝑠 ) 3 ) (IV.14) ( 𝐻 𝑥 𝐻 𝑦 ) = 1 3 ( -𝑒 𝑥 3 + (𝑒 𝑥 + ℎ 𝑐 ) 3 -𝑒 𝑦 3 + (𝑒 𝑦 + ℎ 𝑐 ) 3 ) (IV.15)

IV.5. Comparison between the anisotropic model and a finite element model

A 3D finite element model (FEM) was developed using the commercial finite element code ABAQUS [Abaqus 2016] to check the reliability of the developed formulation. A comparison between the developed model and the FEM was performed. The geometrical model is composed of two parts: the substrate and the film. For linear elastic calculations, the 3D stress C3D20 quadratic element was used to mesh the composite beam with free boundary conditions.

The same meshing principle as the one used in Section II.5. The values of the elasticity constants along the z-axis were assumed equal to those along

x or y since there is no influence of the perpendicular direction on the frequency found in the

x-y plane. The highest Poisson's ratio of the film 𝜈 𝑥𝑦 was assumed equal to that for an isotropic material since the Poisson's ratio has a negligible effect on the frequency determined using 

IV.6.2. Morphology

The grain morphology of the deposited titanium films was analyzed using a Hitachi S3500 N SEM-FEG electron microscope. The column tilt angle 𝛽 is ordinarily lower than the glancing angle 𝛼 due to the shadowing effect [Abelmann 1997] and it is measured from the cross-sectional SEM images using ImageJ software [ImageJ 2017], shown in Table IV.1. In order to improve the accuracy of the measured values of 𝛽, the average of ten column tilt angle measurements was taken. The Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 122 measurement uncertainty of 𝛽 was estimated from the standard deviation over the ten columns.

The experimental 𝛽 values can be compared with several models proposed in the literature providing different predictive relationships between 𝛼 and 𝛽. One of them is called "tangent rule" (Eq. (IV.19)), which is a semi-empirical formula [START_REF] Nieuwenhizen | [END_REF], Hawkeye 2014],

and it is applicable only for 𝛼 < 50° since it is not derived from a physical model [Dirks 1977[START_REF] Hawkeye | [END_REF], Besnard 2010]:

tan 𝛽 𝑡𝑎𝑛 = 1 2 tan 𝛼 (IV.19)
Another relationship was reported to provide a physically based description of the growth mechanism with a geometrical analysis of the inter-columnar geometry. It is called "cosine rule" and was derived by Tait et al. [Tait 1993] as follows:

𝛽 𝑐𝑜𝑠 = 𝛼 -arcsin ( 1 -cos 𝛼 2 ) (IV.20)
This is a purely geometrical equation and takes into account the ballistic shadowing growth mechanism without considering the growth kinetics [Hawkeye 2014]. found column tilt angles between 15° and 40° for 𝛼 = 80°. Alvarez et al. [Alvarez 2019] showed that 𝛽 varies between 34° and 52° depending on the sputtering power. The column tilt angle depends on different parameters. The difference between the column tilt angles can be attributed to the angular spread of the incoming adatoms owing to the collisional transport process [Mahieu 2006a]. The sputtered particles can collide with the Ar gas atoms during transport from the target to the substrate and hence change its initial direction leading to a spreading of the angular distribution of particles when arriving at the substrate. Alvarez et al. [Alvarez 2014] proposed another phenomenon that can explain the low values of column tilt angle. The phenomenon associates the 𝛽 angle to the surface trapping probability 𝑠 𝑡 by a mechanism attributing the low 𝛽 angle (low shadowing effect) to the increase of 𝑠 𝑡 [Alvarez 2014].

Compared to the theoretical values of 𝛽 𝑐𝑜𝑠 and 𝛽 𝑡𝑎𝑛 , the experimental column tilt angle 𝛽 presents large deviations (Table IV.1). This can be due to the ballistic parameters that affect the column tilt angle like the working pressure [START_REF] Okamoto | [END_REF][START_REF] Pedrosa | [END_REF], Dervaux 2017[START_REF] Bouaouina | [END_REF]], the crystalline structure [Siad 2016], the temperature [Sadeghi-Khosravieh 2017], or the geometry of the target [Siad 2016]. Furthermore, Zhu et al. [Zhu 2012] have proved that the column tilt angle 𝛽 depends on the material type and thus, the two laws (Eqs.

(IV.19) and (IV.20)) cannot be general. Furthermore, Siad et al. [Siad 2016] proved that the incidence angle of the incoming particles should be used instead of the substrate angle (𝛼) since it cover the chamber and target geometries (substrate inclination and the particle transport).

They also mentioned that the two angles could be merged in some particular conditions, i.e.

low pressure or small vapor sources. In this work, the substrate inclination angle is used as glancing angle 𝛼, and it was directly measured from the substrate-holder.

The film thickness was measured from the cross-sectional SEM images. Note that the film thickness is defined as the vertical thickness of the film (i.e. measured along the substrate normal), which may be different from the length of a column element depending on the column shape and orientation. From Table IV.1, we can notice that the thicknesses of the Ti films deposited at a constant glancing angle are not equivalent to the same deposition conditions.

This can be explained by the different locations of the substrates on the GLAD holder (Fig.

IV.8). Several works [Sit 1999, Buzea 2005, Wakefield 2007] have studied the uniformity of where the substrates were placed along the longitudinal and the transverse directions, was used.

They found that the uniformity of the GLAD films varies with the structure and the glancing angle. For a constant glancing angle, a significant difference between the longitudinal and transverse directions was observed. They also found that an increase in 𝛼 will lead to larger thickness variations in the longitudinal direction than in the transverse one, which represents the same observation as the Ti films in our case (Table IV.1).

IV.6. This structure was observed on pure titanium films deposited by different techniques [Savaloni 2004, Chawla 2008, Sadeghi-Khosravieh 2017, Liedtke 2018]. It can be noted that the relative intensity of the (0002) diffracted plane is higher than that of the reference data. As we will see in the texture analysis below, it is due to a [0002] preferential orientation developed in the Ti films. The reader can refer to Section IV.2.3 for more explanation about the formation of the out-ofplane texture.

This tilting of the fiber axis with respect to the film normal was also shown in Ti

[Sadeghi-Khosravieh 2017], Cr [Elofsson 2014], Mo [Chen 2012, Liedtke-Grüner 2019], Mg [Tang 2007], HfN [Abadias 2019b], TiN [START_REF] Bouaouina | [END_REF]], AlN [Dellas 2006, Deniz 2007],

TiAlN [Shetty 2012] thin films. Despite the presence of a preferential out-of-plane orientation, these studies indicate the presence of in-plane alignment in thin films when tilting the substrate with respect to the material flux i.e. glancing deposition [Hashimoto 1989, Sato 2001, Mahieu 2006a]. The development of the biaxial alignment in thin films is well explained by Mahieu et al. [Mahieu 2006a]. Therefore, the absence of the in-plane orientation is well noticed in the experimental pole figures of the Ti α phase (Fig. IV.11). This can be due to the deposition parameters that can limit the development of the in-plane orientation [Mahieu 2006a]. Among the parameters that influence the degree of in-plane alignment: the working pressure, the targetto-substrate distance, the glancing angle 𝛼, the film thickness ℎ 𝑐 , and the degree of unbalancing of the magnetron [Mahieu 2006b, Ghekiere 2006]. Thereby, these parameters can influence the angular spread on the incoming flux and/or the mobility of the adatoms at the surface and thus the resulting in-plane alignment.

The fiber tilt angle 𝜂 of the Ti grown films of each sample is listed in Table IV.1. It is noticeable from Table IV.1 that the angle calculated using the well-known "cosine rule" is in coherence with the experimental fiber tilt angle 𝜂 at least in the present case. This is being explained by the physical approach on which is based the "cosine rule" [Tait 1993].

Furthermore, the fiber tilt angle 𝜂 is not equal to the column tilt angle 𝛽 as can be seen in Table IV.1, i.e. the crystalline growth direction does not correspond to the column growth direction.
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The observations reported in the literature for the hcp crystallites show that the texture formation strongly depends on the material component [Hagemeyer 1993]. For instance, the two axes (column axis and c-axis) are not equal for Ti-hcp films [Sadeghi-Khosravieh 2017,

Liedtke 2018] and in contrast, can coincide for Co-hcp in Co-Cr films [Hagemeyer 1993] and Mg-hcp films [Tang 2007]. The flexural and torsional resonance frequencies of the samples, measured by the IET before and after deposition, are presented in Table IV The Young's moduli 𝐸 𝑥 and 𝐸 𝑦 of the titanium films were determined by solving the developed formulation (Eq. (IV.10)) assuming 𝜈 𝑥𝑦 = 𝜈 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 = 0.32 [Leonhardt 2004] and

𝜈 𝑦𝑥 = 𝜈 𝑥𝑦 𝐸 𝑦
𝐸 𝑥 [Hyer 2009]. The shear moduli 𝐺 𝑦𝑧 and 𝐺 𝑥𝑧 of the titanium films were determined using (Eq. (II.48)) with 𝐸 𝑥 and 𝐸 𝑦 respectively. The shear moduli were determined by taking the corresponding Young's modulus and using the isotropic model. Using the x and y components, the torsional vibrations are produced in y-z and x-z planes respectively. Table IV.4

and Table IV.5 present the elasticity constants and the anisotropic ratios 𝐴𝑅 𝐸 (Eq. (IV.17)) and 𝐴𝑅 𝐺 (Eq. (IV.18)) with their corresponding uncertainty u(x) as a function of the glancing angle 𝛼. For the sake of comparison, the Young's moduli of the Ti films were also determined using Eq. (II.22) by assuming the isotropic behavior of the film.
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IV.7.2. Discussions

The macroscopic elasticity constants of the glass substrates are consistent with the values calculated in Chapter III (Table III.5) and the literature [Rouxel 2007, Gadaud 2009, Slim 2017b]. In this chapter, the average measurements of the thickness and the density were precisely calculated by taking 15 measurements, as they strongly contribute on the measurement of the substrate elasticity constants. Therefore, the uncertainties on the substrate elasticity constants presented in Table IV GPa) [Leonhardt 2004, Tsuchiya 2005] and differ from the values calculated in Chapter III (Table III.6) (97 GPa < E <112 GPa) and some others (~115 GPa) [Chinmulgund 1995, Savaloni 2004]. The values of the titanium film shear modulus, presented in Table IV.5, are lower than the values found in Chapter III (~42.64 GPa) and the bulk material (45.6 GPa) [Brandes 1992]. These differences in moduli can be due to the influence of the GLAD process on the elastic properties. However, we can notice that the anisotropic Young's moduli are in good agreement with those calculated by assuming isotropic material of the coating. This can be explained by the negligible effect of the elastic coupling between 𝐸 𝑥 and 𝐸 𝑦 , defined in 𝑑 𝑥𝑥 and 𝑑 𝑦𝑦 of Eq. (IV.13).

These results allow us to conclude that the IET leads to a correct value of Young's modulus toward a proper direction i.e. the longitudinal direction even if it is used with the isotropic model instead of the anisotropic one. Upon increasing the glancing angle, the anisotropic ratios 𝐴𝑅 𝐸 and 𝐴𝑅 𝐺 increase owing to different factors, among which the nonstandard columnar growth and the inclined crystallites toward the vapor flux direction. Another deposition series (samples B) was performed (the details of the microstructural analyses are shown in Chapter V with the same conditions as the present series (samples A) but at 0.42 Pa of working pressure and target-to-substrate distance of 22 cm. The same conclusions can be established to the second deposition series (samples B) and the results of the elasticity constants of samples B will be presented in Chapter V, where they will be used for comparison.

IV.7.3. Effect of film porosity on the elasticity constants

In order to quantify the influence of porosity on the elasticity constants of the Ti film, it is necessary to determine the elasticity constants using a model that takes into account the material porosity. Several models were developed in the literature, based on different assumptions [Schrooten 1999, Vasechko 2016]: the empirical model [Duckworth 1953, Spriggs 1961, Luo 1999] and the one obtained from the first-order Taylor series expansion of different micromechanical models [Nemat-Nasser 1993].

The empirical model is a function of a k constant that is encountered by several disputations and seems dependent on different parameters. Some studies show that this k constant depends on the material type, the elaboration process, the technique of measurement

Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 132 and the porosity [Spriggs 1961, Luo 1999], and it is thus hardly a constant. Other works used the empirical model with k equal to 7 regardless of material [Anya 1997]. However, the developed relations proposed by Nemat-Nasser et al. [Nemat-Nasser 1993] were inferred from several models with spherical pores. They are independent of experimental factors and are applicable for low volume fraction of pores having a spherical shape, far enough from each other. In the following, Eq. (IV.21) and Eq. (IV.22) [Nemat-Nasser 1993] are used to determine the elasticity constants of the Ti films as follows:

𝐸 * ≈ 𝐸 0 (1 -3𝑝) (IV.21) 𝐺 * ≈ 𝐺 0 (1 - 4𝑝 1 + 𝜈 0 ) (IV.22)
Where:

𝐸 * , 𝐺 * : Young's and shear moduli of the material with porosity, 𝐸 0 , 𝐺 0 , 𝜈 0 : Young's, shear moduli and Poisson's ratio of the material that are free of pores (here we used 𝐸 0 = 116 GPa [Leonhardt 2004], 𝜈 0 = 0.32 [Leonhardt 2004], 𝐺 0 = 𝐸 0 2 (1+𝜈 0 )

),

𝑝: volume fraction of porosity.

The volume fraction of porosity within the Ti films is estimated as follows [Duckworth 1953, Spriggs 1961, Luo 1999, Slim 2019]:

𝑝 = 1 - 𝜌 𝑐 𝜌 0 (IV.23)
Where:

𝜌 𝑐 : film density, 𝜌 0 : bulk density without pores. For bulk titanium, the bulk density used to calculate the volume fraction is 4500 𝑘𝑔/𝑚 3 [Brandes 1992, Verkhovtsev 2013].

Furthermore, the porosity in the film deposited in GLAD sputtering can be compared to that deposited in conventional sputtering. The relative void fraction, in the former case, is primarily predicted via geometric shadowing analysis of oblique deposition using the following expression [Tait 1993]:
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𝑝 𝛼 = 1 - 2 cos 𝛼 1 + cos 𝛼 (IV.24)
In this study, the volume fraction of porosity is calculated using Eq. (IV.23) by comparing the film density to the bulk one. The film density was determined by dividing its mass over its volume. The film mass was determined by subtracting the mass of the substrate alone from the mass of the composite beam after deposition. The dimensions were measured taking the average over ten measures in ten different positions. The film thickness was measured from the SEM cross-sectional images.

The porosity assessment was also performed by image analysis using ImageJ software IV.7. We can notice that the values of 𝐸 and 𝐺 calculated (Table IV.7) are different from the values measured by IET (Table IV.4 and Table IV.5). The difference (𝐸 * -𝐸 𝐼𝐸𝑇 ) and (𝐺 * -𝐺 𝐼𝐸𝑇 ) between the elasticity constants measured by IET (Table IV.4 and Table IV.5) and those calculated with porosity (Table IV.7) is presented in Table IV.8. These differences correspond to the contribution of the microstructure. We can notice that the difference is higher than the measurement uncertainties and thus the decrease of the elasticity constants is not only attributed to the presence of pores within the Ti film. Theoretically, this comparison can be used to represent the overall influence of the microstructural properties, as a whole, on the elasticity constants of the films.

Contrariwise, the analytical model proposed by Nemat-Nasser et al. [Nemat-Nasser 1993] presents several assumptions. One of them is that the cavities are simulated as spherical inclusions (isotropic shape) while in GLAD, the cavities should have anisotropic shape.

Moreover, the model supposes that the cavities are well separated from each other (without mechanical interaction). However, when the beam is vibrated by the IET, the gap between the column can lead the column to move relative to each other or to bend that would dissipate part of the mechanical energy. Consequently, the influence of the film microstructure needs to be quantified and dissociated in order to determine the contribution of each microstructural parameter (morphology (𝛽), texture (𝜂), etc.) on the elasticity constants of thin films. This aspect will be investigated in the next chapter.
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IV.8. Hardness and reduced modulus of titanium GLAD films

The hardness and reduced Young's modulus of the Ti films were measured using a

TriboIndenter TI 980-Hysitron (Fig. III.6) with Continuous Stiffness Measurement (CSM) option. A Berkovich diamond tip (𝐸 𝑖𝑛𝑑 = 1140 GPa, 𝜈 𝑖𝑛𝑑 = 0.07) was used. Before performing the tests, a calibration procedure was carried out using a polycarbonate glass specimen. The hardness and reduced Young's modulus of the indented material were determined using the Oliver and Pharr method [Oliver 2004]. The hardness was determined from its usual definition [Oliver 2004]:

𝐻 = 𝑃 𝑚𝑎𝑥 𝐴 𝑐 (IV.25)
Where 𝐻 is the hardness, 𝑃 𝑚𝑎𝑥 is the maximum load applied to the indented material and 𝐴 𝑐 is the projected contact area. The reduced Young's modulus can be deduced from Eq.

(III.2) [Oliver 2004].

The film hardness and reduced modulus were determined from the average of ten indents and the measurement uncertainty u(x) was determined from the standard deviation. In order to minimize the effect of the substrate on the film hardness and reduced modulus measurements, the indenter penetration depth was kept lower than 10 % of the film thickness [Buckle 1960] controlled by the indenter penetration load. We can notice that the hardness as well as the reduced modulus of the Ti film decrease when the glancing angle increases. As discussed in the previous section, this can be due to the increase in porosity with the glancing angle. IV.4 and Table IV.5) measurements, we can conclude that the elasticity constants of the Ti anisotropic films depend on many factors (porosity, morphology, texture, etc.). The anisotropic properties of the Ti films are affected by the deposition parameters and notably the glancing angle 𝛼.

IV.9. Conclusions

This chapter presents an enhancement in the determination of the macroscopic elasticity Upon increasing the glancing angle to 45° and 80°, the micro-columns formed were tilted respectively by 10° and 23° toward the vapor flux direction. X-ray diffraction characterization revealed the presence of a single hcp Ti α phase. Moreover, the film exhibited an out-of-plane {0002} fiber texture oriented along the z-axis of the crystallites. The fiber axis was tilted with the c-axis to follow the vapor flux direction. For zero incidence (𝛼 = 0°), the [0002] fiber axis was relatively tilted. The fiber tilt angle becomes 21° and 46° at glancing angles of 45° and 80°

respectively. The shadowing effect led to the mechanism behind the micro-column tilt angle.

The crystallites were kinetically grown to form a preferential orientation related to their evolutionary growth habit.

The anisotropic ratios, respectively by increasing the glancing angle from 0° to 80°. The effect of film porosity on the elasticity constants of the Ti film was evaluated. It is noteworthy that the elasticity constants are affected, but not mostly, by the film porosity. The results confirm the influence of other microstructural properties on the elasticity constants of the Ti films. Besides, the hardness and the reduced modulus measured by nanoindentation decreased with increasing the glancing angle. The elastic properties of GLAD films are required in order to use these films at the forefront of engineering and materials science. The macroscopic elasticity constants of anisotropic titanium thin films with a thickness from 1 to 1.5 𝜇m and exhibiting a hcp phase, were determined using the IET. A first step in the methodology has been reached in this chapter.

The future improvement of nanostructured thin films requires further study on the determination of their elastic properties taking into account their functional structure, texture development and porosity. In the next chapter, a second step will be tackled, which will require the determination of the macroscopic elasticity constants of the textured Ti films deposited at oblique incidence by taking into account its microstructural properties.

V.1. Introduction

The determination of the global behavior of a generally multiphase material, known as macroscopic law behavior, requires knowledge of the behavior of its constituent elements and their arrangement in the material. The physico-chemical properties, the microstructure, the crystallographic texture, the residual stresses and the hardening state of each phase represent complex elements, which are added to the coexistence of the phases within the material, and yield to the analysis and prediction of their complicated behavior.

The objective of this chapter is to present an advanced methodology developed to determine the macroscopic elasticity constants of a thin, textured and porous film. This methodology requires the use of multiscale models that present the macroscopic elastic behavior as a function of the film microstructure. Several studies were performed to determine the macroscopic elasticity constants of anisotropic thin films [Faurie 2010, Hounkpati 2014a, b] (Table I.1). However, to our knowledge, none of these studies were applied to anisotropic films deposited at oblique incidence. Besides, most studies overlook the texture of the film.

Thereby, we are mainly interested in the influence of the microstructure (crystallographic and morphological textures) on the elastic properties.

In this chapter, the film microstructure is considered in the multiscale modeling in order to achieve our goal. At first, a brief introduction to the X-ray diffraction (XRD) is presented.

Then, we will introduce the different scale transition models used in the literature to link the mesoscopic quantities measured by XRD to the macroscopic ones. Next, the effective rigidity tensor as well as the microscopic strain measured by XRD of a multiphase material are formulated in the framework of the self-consistent model of Kröner-Eshelby (KE) [Eshelby 1957]. This model is used in the present work, to determine the macroscopic elasticity constants of polycrystalline textured titanium films exhibiting a single-phase (Ti α ) and deposited at different glancing angles 𝛼.

The influence of the morphological and crystallographic texture on the elastic properties is quantified. The influence of the glancing angle on the microscopic elastic response was also quantified. The residual stress state within the Ti films was determined as a function of the incidence angle. Indeed, the texture of the Ti α hexagonal phase, the grain shape and the porosity Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 142 in the titanium film will be taken into account in the modeling. This work will allow us to have a first set of elasticity constants values of a film deposited at oblique incidence. Where 𝑛 is the order of diffraction (usually 𝑛 = 1), 𝜆 is the x-ray wavelength of the radiation used and 𝑑 ℎ𝑘𝑙 is the lattice spacing between planes of given Miller's indices.

V.2. X-Ray

The diffraction enables us to reveal the crystalline structure of materials and their crystalline properties, such as the position of atoms inside the unit cell, the defects of the crystal lattice, and the nature of phases embedded in the material and their proportions. From XRD, the preferred orientations (crystallographic textures), the crystallite size and the residual stresses can also be determined.

V.2.2. Principle of strain analysis by X-ray diffraction

XRD is one of the most powerful techniques used for the characterization of the elastic behavior of crystalline materials. The stress state can be determined by using the crystal lattice of the material as a strain gauge. Under the stress effect, a variation in the lattice spacing is generated owing to the deformation of the crystal lattice and thus the diffraction peak is shifted The strain measured by XRD is estimated by different methods, such as conventional, rational and linear methods. Although these methods are mathematically different, they lead to very close strain values. Indeed, the diffraction is only sensitive to elastic strains (small strains) but even with that, uncertainty is still introduced. Qualitative and quantitative evaluations of the trueness of these strain expressions were proposed in the literature [Ferreira 2004]. It was shown from a mechanical point of view that rational strain is the exact strain definition (it is Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 145 not based on the approximations). Therefore, the strain measured by XRD is directly linked to the position of the diffraction peak, corresponding to a crystallographic plane {ℎ 𝑘 𝑙}, by the following rational expression [Badawi 1993 allow only the analysis of the periodic domain of the material. However, the periodicity of a crystal is altered by material discontinuities (gaps, grain boundaries, precipitates, etc.) that define the non-defects element volume called consistent diffraction domains (Fig.

V.4). The size of these domains is smaller than the grain size and thus they form the element volume contributing to the formation of the diffraction peak. Nevertheless, for simplification, we will call the quantities associated with these domains, the second-order quantities. Therefore, the strain measured by XRD corresponds to only one part of the material, so no direct access to the macroscopic mechanical state can be obtained by XRD. In order to determine the macroscopic mechanical state, a relationship between the different scales must be established. The modeling of the elastic behavior of the polycrystal is performed by considering it compactly composed of a large number of crystallites. Here, the influence of the grain boundaries is assumed negligible as the volume fraction of the grain boundaries is often low compared to the grain size usually observed in thin films. Each crystallite is also considered as a domain where the mechanical fields are homogeneous and constitute the basic volume taken in simulations. As described in Section V.2.2, the RVE of the simulated material will therefore consist of a sufficient number of these crystallites to ensure good convergence of the simulated results with accuracy. This large number of crystallites allows also defining an average material behavior that is uniform.

The selective nature of the XRD presented in Section V.2 leads to define a classification in three orders of stresses and strains (Fig. V.4) [Macherauch 1973]:
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 Order II corresponds to the mesoscopic scale, which is an intermediate scale between the macroscopic and the microscopic scales. The stresses and strains vary continuously over distances in the order of a micrometer. This scale is proportional to the diffracting volume and is relative to the mechanical state {𝜎 𝐼𝐼 , 𝜀 𝐼𝐼 } of the crystallites.

 Order III corresponds to the microscopic scale, where the stresses and strains vary continuously over distances in the order of the inter-atomic distance. The mechanical state at this scale is noted {𝜎 𝐼𝐼𝐼 , 𝜀 𝐼𝐼𝐼 }.

In this work, the macroscopic scale corresponds to the thin film and the mesoscopic scale corresponds to the crystallites.

V.3.2. Description of the crystallographic orientation

A polycrystalline material is constituted of crystallites randomly or preferentially distributed in the material depending on the elaboration process. Their orientations depend on the elaboration process and the treatments that the material undergoes during the various stages of production. The preferential orientation generated during the process can influence the mechanical and physical properties. The reader can refer to Section IV.2.3, for more details about the crystallographic orientation in thin films.

In order to describe the crystallographic orientation, two different coordinate systems are assigned to the crystal and the sample, respectively. Fig. V.5 presents the crystal coordinate system (𝐶 1 , 𝐶 2 , 𝐶 3 ) and the sample coordinate system (𝑆 1 , 𝑆 2 , 𝑆 3 ). The sample vectors 𝑆 1 and 𝑆 2 are defined in the substrate plane and 𝑆 3 is defined in such way that the coordinate system (𝑆 1 , 𝑆 2 , 𝑆 3 ) becomes a direct orthonormal system. The 𝑆 1 vector is chosen parallel to the To describe a crystallographic orientation, it is necessary to link the crystal coordinate system to the sample one. To do this, a matrix allowing the transformation from the crystal to the sample coordinate system is defined. This matrix can be defined in different ways [Hauk 1997, Kocks 1998, Randle 2001]. In this work, the relation between the sample system and the crystal system is described through a transformation matrix using the Euler angles according to the Bunge convention (𝜑 1 , 𝜙, 𝜑 2 ) [Bunge 1982]. These Euler angles will be used to describe the orientation (𝛺) of Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties the crystallites. The transformation matrix is defined by three consecutive rotations around the axes of a coordinate system that is parallel initially to the crystal system (𝐶 1 , 𝐶 2 , 𝐶 3 ) and finally to the sample system (𝑆 1 , 𝑆 2 , 𝑆 3 ) with two intermediate orientations: The transformation matrix 𝑔(𝜑 1 , 𝜙, 𝜑 2 ) is defined by [Kocks 1998, Hauk 1997]:


𝑔(𝜑 1 , 𝜙, 𝜑 2 ) = 𝑔 𝜑 2 . 𝑔 𝜙 . 𝑔 𝜑 1 (V.4)
With:

𝑔 𝜑 1 = ( cos 𝜑 1 sin 𝜑 1 0 -sin 𝜑 1 cos 𝜑 1 0 0 0 1 ) , 𝑔 𝜙 = ( 1 0 0 0 cos 𝜙 sin 𝜙 0 -sin 𝜙 cos 𝜙 ) , 𝑔 𝜑 2 = ( cos 𝜑 2 sin 𝜑 2 0 -sin 𝜑 2 cos 𝜑 2 0 0 0 1 ) (V.5)
The expression of 𝑔 becomes: 

( 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 ) (𝑆 1 ,𝑆 2 ,𝑆 3 ) = 𝑔(𝜑 1 , 𝜙, 𝜑 2 ) ( 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 ) (𝐶 1 ,𝐶 2 ,𝐶 3 ) (V.7)
The Bunge angles (𝜑 1 , 𝜙, 𝜑 2 ) used to define the crystallographic orientation of the film {ℎ 𝑘 𝑙} 〈𝑢 𝑣 𝑤〉 relative to the sample coordinate system can be determined from the following relations [Bunge 1982]:

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties

𝜑 1 = sin -1 [ 𝑤 √𝑢 2 + 𝑣 2 + 𝑤 2 √ ℎ 2 + 𝑘 2 + 𝑙 2 ℎ 2 + 𝑘 2 ] (V.8) 𝜙 = cos -1 [ 𝑙 √ℎ 2 + 𝑘 2 + 𝑙 2 ] (V.9) 𝜑 2 = cos -1 [ 𝑘 √ℎ 2 + 𝑘 2 ] = sin -1 [ ℎ √ℎ 2 + 𝑘 2 ] (V.10)
The transformation matrix that allows writing the sample system tensor in the crystal system is therefore the inverse of the transformation matrix 𝑔, i.e. it also represents the transpose of 𝑔 since this latter is being orthonormal. The rigidity tensor of a crystallite 𝑐(𝛺)

expressed in the sample coordinate system is then determined, from the rigidity tensor 𝑐 seen from the crystal system, as follows:

𝑐 𝑖𝑗𝑘𝑙 (𝛺) = 𝑔 𝑖𝑚 . 𝑔 𝑗𝑛 . 𝑔 𝑘𝑜 . 𝑔 𝑙𝑝 . 𝑐 𝑚𝑛𝑜𝑝 (V.11)

Where 𝛺 represents the crystallographic orientation of the crystallite defined in the sample coordinate system by three Euler angles 𝛺 = (𝜑 1 , 𝜙, 𝜑 2 ).

V.3.3. Homogenization steps of a heterogeneous material

The mechanical behavior of a heterogeneous material requires the analysis of its microstructure. The homogenization procedure consists in replacing the real heterogeneous material by an equivalent homogeneous material having similar behavior at the macroscopic scale. This procedure presents three main steps [Bornert 2001]: the representation, localization and homogenization steps. We will introduce the laws defining the elastic behavior of the material at each scale. Then, we will present the localization and the concentration laws that ensure the transformation from a mesoscopic scale to a macroscopic scale. The microscopic mechanical states of order III will not be modeled in this work. The macroscopic elastic behavior of the material is described by defining the elastic behavior of the RVE. Using the generalized Hooke's law, the relation between the stress and strain of the RVE at the macroscopic scale is given by the following expressions:

𝜎 𝐼 = 𝐶 ∶ 𝜀 𝐼 (V.12)

𝜀 𝐼 = 𝑆 ∶ 𝜎 𝐼 (V.13)
Where the ":" sign represents the double dot tensor product. 𝐶 and 𝑆 represent the rigidity and compliance tensors of the polycrystal, respectively. 𝜎 𝐼 and 𝜀 𝐼 represent the macroscopic stress and strain tensors of the material, respectively. On the mesoscopic scale, Hooke's law is also used to link the stress to the strain of a crystallite of a given phase, according to the following relations:

𝜎 𝛺 𝐼𝐼 = 𝑐 𝛺 𝑖 ∶ 𝜀 𝛺 𝐼𝐼 (V.14) 𝜀 𝛺 𝐼𝐼 = 𝑠 𝛺 𝑖 ∶ 𝜎 𝛺 𝐼𝐼 (V.15)
Where 𝑐 𝛺 𝑖 and 𝑠 𝛺 𝑖 represent the rigidity and compliance tensors of the considered phase 𝑖, respectively. 𝜎 𝛺 𝐼𝐼 and 𝜀 𝛺 𝐼𝐼 represent the mesoscopic stress and strain tensors of the crystallite, respectively. Subscript 𝛺 corresponds to the orientation of the crystallite defined in the sample coordinate system.

V.3.3.2. Mesoscopic to macroscopic scale transition: localization and concentration laws

The transition from a mesoscopic scale to a macroscopic scale is carried out using a relation expressing the proportionality between the local and the macroscopic mechanical states. According to Kröner [Kröner 1958], the mesoscopic stress can be defined by the sum of the macroscopic stress and another term expressing the difference between the mesoscopic and the macroscopic stresses. The corresponding expression is called the concentration equation (Eq. (V.16)). An equivalent relation is also defined for the strain and the corresponding Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 152 expression is called the localization equation (Eq. (V.17)). In linear elasticity, these relations are expressed as follows: The homogenization step requires the consistency between the local mechanical state and the macroscopic mechanical state. For this, the macroscopic stress and strain must be necessarily equal to the average of the mesoscopic stress and strain in all the crystallites, respectively. The effective behavior of the heterogeneous material is often formulated using the two Hill's relations on the means of the local mechanical states [Hill 1967]:

𝜎 𝛺 𝐼𝐼 =
𝜎 𝐼 = 〈𝜎 𝛺 𝐼𝐼 〉 (V.18) 𝜀 𝐼 = 〈𝜀 𝛺 𝐼𝐼 〉 (V.19)
Where 〈 〉 defines the average of all the crystallites belonging to the RVE. By substituting Eqs.

(V.14) and (V.17) into Eq. (V.18), the following expression can be found:

𝜎 𝐼 = 〈𝜎 𝛺 𝐼𝐼 〉 = 〈𝑐 𝛺 𝑖 ∶ 𝜀 𝛺 𝐼𝐼 〉 = 〈𝑐 𝛺 𝑖 ∶ 𝐴 𝛺 𝑖 〉 ∶ 𝜀 𝐼 (V.20)
By comparing Eq. (V.20) with Eq. (V.12), the effective tensor of the elasticity constants of the polycrystal can be deduced as:
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𝐶 = 〈𝑐 𝛺 𝑖 ∶ 𝐴 𝛺 𝑖 〉 (V.21)
The homogenization problem is thus summarized on the determination of the strain localization tensors whose expression depends on the homogenization model used.

V.4. Scale transition models

For homogenization, several scale transition models can be used for the elasticity. They can be classified into two groups: interaction models in which the grain shape is not defined and interaction models where grain shape is defined through a 4 th rank tensor or assumptions 

V.4.1. Voigt model

The Voigt's model was the first scale transition model developed [Voigt 1910]. It assumes that each crystallite develops the same strain 𝜀 𝛺 𝐼𝐼 as the macroscopic material (in the RVE). The strain homogeneity can be expressed as follows:

𝜀 𝛺 𝐼𝐼 = 𝜀 𝐼 ⟹ 𝐴 𝛺 = 𝐼 4 (V.22)
By replacing Eq. (V.22) into Eq. (V.21), we find the effective rigidity tensor 𝐶 𝑉 of the polycrystal based on the Voigt approximation, as follows:

𝐶 𝑉 = 〈𝑐 𝛺 𝑖 〉 (V.23) V.4.2.

Reuss model

It assumes that each crystallite develops the same stress 𝜎 𝛺 𝐼𝐼 as the polycrystal [Reuss 1929]. Stress homogeneity can be expressed as follows:
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𝜎 𝛺 𝐼𝐼 = 𝜎 𝐼 ⟹ 𝐵 𝛺 = 𝐼 4 (V.24)
By replacing Eqs. (V.15) and (V.24) into Eq. (V.19), the macroscopic rigidity tensor can be expressed as a function of the single-crystal rigidity tensor:

𝜀 𝐼 = 〈𝜀 𝛺 𝐼𝐼 〉 = 〈𝑠 𝛺 𝑖 ∶ 𝜎 𝛺 𝐼𝐼 〉 = 〈𝑠 𝛺 𝑖 〉 ∶ 𝜎 𝐼 (V.25)
By analogy with Eq. (V.13), one can write the effective compliance 𝑆 𝑅 and rigidity 𝐶 𝑅 tensors within the framework of the Reuss model:

𝑆 𝑅 = 〈𝑠 𝛺 𝑖 〉 ⟹ 𝐶 𝑅 = [〈[𝑐 𝛺 𝑖 ] -1 〉] -1 (V.26)
Voigt and Reuss approximations are the first and simplest proposed transition relations.

Indeed, they are reduced to a law of mixture on the properties of the constituents.

V.4.3. Neerfeld-Hill model

The Voigt and Reuss models are based on the assumptions of a strain field 𝜀 𝛺 𝐼𝐼 kinematically admissible and of a stress field 𝜎 𝛺 𝐼𝐼 statically admissible, respectively. Therefore, Voigt model satisfies the condition of strain consistency but does not ensure the stress equilibrium. The model neglects all sources of elastic heterogeneity on the mesoscopic strain.

However, Reuss model satisfies the stress consistency but does not ensure the strain compatibility. The influence of the elastic heterogeneity on the mesoscopic strain is overestimated in this case. Hill has demonstrated that the Voigt and Reuss models define the upper and lower limits of the polycrystal behavior [Hill 1952] and thus has proposed to calculate the macroscopic rigidity tensor 𝐶 𝐻 by averaging the rigidity tensors given by Voigt and Reuss models [Neerfeld 1942]:

𝐶 𝐻 = 1 2 (𝐶 𝑉 + 𝐶 𝑅 ) (V.27)
Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 155 Hill's model can be adapted to obtain an approximation of the macroscopic rigidity tensor by calculating the arithmetic or the geometric mean of the effective rigidity tensors calculated by Voigt and Reuss models [Hill 1952, Watt 1976]. Even if he does not allow finding the local mechanical states, this model can reproduce accurately the experimental results on a macroscopic scale for polycrystals. It also found that this approach has no clear mechanical meaning and satisfies neither the strain compatibility nor the stress equilibrium.

V.4.4. Kröner-Eshelby self-consistent model

The basic principle of the self-consistent model was proposed by Kröner [Kröner 1958].

It consists of relating the macroscopic mechanical state with the mesoscopic mechanical state using a polarization tensor (Eqs. (V. 16) and (V.17)) satisfying both the strain and stress consistencies. In order to determine this polarization tensor, Kröner has used the work done by

Eshelby [Eshelby 1957] to solve the inclusion problem immersed in an infinite matrix and subjected to infinite mechanical loading.

The polarization tensor developed by Kröner to determine the effective rigidity tensor from the single-crystal rigidity tensor can be expressed as:

𝑢 𝛺 𝑖 = [𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 -𝐼 4 (V.28)
The strain localization tensor becomes:

𝐴 𝛺 𝑖 = [𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 (V.29)
Where 𝑃(𝐶) is a non-symmetric 4 th order tensor, called Morris tensor [Morris 1970]. It depends on the morphology of the inclusion and the rigidity tensor of the polycrystal. The use of this model implies that the stress/strain field is considered homogeneous in a RVE of the film and a crystallite. This latter was demonstrated by Eshelby in the case of linear elasticity for an ellipsoidal heterogeneity embedded in an infinite matrix [Eshelby 1957]. Assuming that crystallites can be represented by ellipsoids, the components of the Morris tensor 𝑃(𝐶) can be expressed as follows [Kocks 1998]:
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𝑃 𝑖𝑗𝑘𝑙 = 1 4𝜋 ∫ sin 𝜃 𝑑𝜃 𝜋 0 ∫ 𝛾 𝑖𝑘𝑗𝑙 𝑑𝜙 2𝜋 0 (V.30)
With:

𝛾 𝑖𝑘𝑗𝑙 = 𝐾 𝑖𝑗 -1 (𝜉) 𝜉 𝑘 𝜉 𝑙 (V.31) 𝐾 𝑖𝑝 (𝜉) = 𝐶 𝑖𝑗𝑝𝑙 𝜉 𝑗 𝜉 𝑙 (V.32) 𝜉 1 = sin 𝜃 cos 𝜙 𝑎 1 𝜉 2 = sin 𝜃 sin 𝜙 𝑎 2 𝜉 3 = cos 𝜃 𝑎 3 (V.33)
Where 𝜃 ∈ [0 ; 𝜋] and 𝜙 ∈ [0 ; 2𝜋] are spherical coordinates that define the direction of the vector 𝜉 with respect to the principal axes of the ellipsoid, of length 2𝑎 1 , 2𝑎 2 and 2𝑎 3 [Kocks 1998]. The morphological texture can be described using the ratios introduced in Eq. (V.33).

By substituting Eq. (V.29) into Eq. (V.17), the strain localization equation can be rewritten as follows:

𝜀 𝛺 𝐼𝐼 = [𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 ∶ 𝜀 𝐼 (V.34) V.4.4.1.
Effective rigidity tensor of the polycrystal for a multiphase material

Based on Hooke's law, the macroscopic elastic behavior of the polycrystal and the mesoscopic elastic behavior of each phase embedded in the film can be defined as:

𝜎 𝐼 = 𝐶 ∶ 𝜀 𝐼 (V.35) 𝜎 𝛺 𝑖 = 𝑐 𝛺 𝑖 ∶ 𝜀 𝛺 𝑖 (V.36)
In order to reduce the indexes in the equations, the mesoscopic strain will be noted 𝜀 𝑖 instead of 𝜀 𝐼𝐼 in the following, where the index 𝑖 represents the phase. The average elastic behavior of a multiphase polycrystal is expressed as follows:
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𝜎 𝐼 = ∑ 𝑥 𝑖 〈𝜎 𝛺 𝑖 〉 𝛺 ∈ 𝑉 𝑖 𝑛 𝑖=1 (V.37) 𝜀 𝐼 = ∑ 𝑥 𝑖 〈𝜀 𝛺 𝑖 〉 𝛺 ∈ 𝑉 𝑖 𝑛 𝑖=1 (V.38)
Where 〈 〉 𝛺 ∈ V defines the mean over the phase volume. 〈𝜎 𝛺 𝑖 〉 𝛺 ∈ V 𝑖 and 〈𝜀 𝛺 𝑖 〉 𝛺 ∈ V 𝑖 represent respectively the average mesoscopic stress and strain on all the orientations over the phase 𝑖 volume with the corresponding volume fraction 𝑥 𝑖 .

The strain localization equation of Eq. (V.34) can be rewritten as follows:

𝜀 𝛺 𝑖 = [𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 ∶ 𝜀 𝐼 = [𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 ∶ 𝐶 -1 ∶ 𝜎 𝐼 (V.39)
From Eqs. (V.37) and (V.39), the macroscopic stress can be written in the following form:

𝜎 𝐼 = ∑ 𝑥 𝑖 〈𝑐 𝛺 𝑖 ∶ 𝜀 𝛺 𝑖 〉 𝛺 ∈ V 𝑖 𝑛 𝑖=1 = ∑ [𝑥 𝑖 〈𝑐 𝛺 𝑖 ∶ [𝑃(𝐶): (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 〉 𝛺 ∈ V 𝑖 ] ∶ 𝜀 𝐼 𝑛 𝑖=1 (V.40)
Through identification with Eq. (V.35), we can deduce the expression of the effective rigidity tensor 𝐶 of the polycrystal through an implicit equation, which must be solved by iterations:

𝐶 = ∑ 𝑥 𝑖 〈𝑐 𝛺 𝑖 ∶ [𝑃(𝐶): (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 〉 𝛺 ∈ V 𝑖 𝑛 𝑖=1 (V.41)
This expression gives the macroscopic elasticity constants of the film as a function of the Single-Crystal Elasticity Constants (SCECs). The tensor 𝑃(𝐶) is function of the crystallite shape and the macroscopic rigidity tensor 𝐶. The volume fractions can be calculated from XRD patterns. It can be noted here that tensor 𝐶 can be anisotropic depending on the shape of the Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties inclusions and the averaging on the orientations 𝛺 describing the crystallographic texture of the film.

V.4.4.2. Strain obtained by X-ray diffraction for a multiphase material

As described in Section V.2.2, the elastic strain is measured by XRD along the measurement direction defined by the scattering diffraction vector 𝑛 ⃗ (Eq. (V.3)). The strain of a crystallite belonging to phase 𝑖 is expressed by Eq. (V.39). Using XRD, a DV is analyzed and the measured strain is the average of all the strains of crystallites belonging to the DV. Thus, the strain measured by XRD can also be obtained by projecting the strain determined using the KE model, in the measurement direction, as follows:

𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝑖 = ln ( sin 𝜃 0 {ℎ𝑘𝑙} 𝑖 sin 𝜃 𝜙,𝜓 {ℎ𝑘𝑙} 𝑖 ) = 𝑛 ⃗ . [〈𝜀 𝛺 𝑖 〉 𝛺∈V 𝑖 ] . 𝑛 ⃗ (V.42)
Where 𝜃 0 {ℎ𝑘𝑙} 𝑖 and 𝜃 𝜙,𝜓 {ℎ𝑘𝑙} 𝑖 are respectively the position of the diffraction peaks of a non-stressed and a stressed material, 𝜙 and 𝜓 are the azimuth and tilt angles respectively. By substituting Eq. (V.39) into Eq. (V.42), we obtain the strain measured by XRD as follows:

𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝑖 = 𝑛 ⃗ . [〈[𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ] -1 〉 𝛺∈V 𝑖 ∶ 𝐶 -1 ∶ 𝜎 𝐼 ] . 𝑛 ⃗ (V.43) V.4.4.3

. Limitations of the Kröner-Eshelby self-consistent model

Other direction-dependent grain-interaction models were used to describe the elasticity of materials, such as Vook-Witt and Inverse Vook-Witt [START_REF] Vook | [END_REF], Witt 1968], Hashin-Shtrikman [Hashin 1962], Mori-Tanaka [Mori 1973] and Normalized self-consistent [Li 1999] models. These models, except for Vook-Witt, were also developed based on the Eshelby inclusion problem and today they are very relevant approaches with an extended predictive nature. Welzel et al. [Welzel 2005, Welzel 2007] have demonstrated that similarities between the Vook-Witt and the Kröner-Eshelby models occur for a polycrystal with extreme flat discshaped grains. Such similarities between the inverse Vook-Witt and the Kröner-Eshelby models occur also but much less in the case of extreme needle-like grains. Moreover, the Hashin-Shtrikman and Mori-Tanaka models present similar behavior in the case of linear elasticity.
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In this chapter, the elastic behavior of titanium thin films sputter-deposited at oblique incidence is determined. The choice of the micromechanical approach depends on its ability to simulate the strong crystalline and morphological anisotropy developed in this type of film.

Voigt, Reuss and Neerfeld-Hill models are not adapted for thin films which generally present grain shape texture (needle-like grains) [Kumar 2006]. At zero incidence, where the growth direction (morphological texture) is normal to the substrate surface, the columnar morphology of the films can induce an elastic anisotropy between the film surface plane and growth direction (morphological texture) [Kumar 2006]. This effect can be studied by taking a mixed Vook-Witt and KE model, as proposed by Baczmanski et al. [Baczmanski 2008]. Furthermore, this effect could be studied using the KE self-consistent model by taking an Eshelby tensor (and therefore a Morris tensor) corresponding to an elongated inclusion (grain) in the growth direction [Nemat-Nasser 1993, Slim 2019].

Therefore, the scale transition models based on the study of Eshelby's unique heterogeneous inclusion are not, by constitution, able to integrate within the same model, the existence of inclusions with different morphologies or inclusions of the same morphology but disoriented with each other. The specific microstructures that can be modeled are therefore limited to polycrystalline assemblies consisting only of spherical or ellipsoidal grain shape preferably oriented in a certain direction of the sample. It was demonstrated by Benveniste et al [Benveniste 1991] that asymmetrical macroscopic rigidity tensor was predicted using the KE self-consistent model in the case of materials comprising more than one or two constituents of different morphologies but having a certain preferential orientation. They have also shown that the KE self-consistent model did not satisfy simultaneously the two relations of Hill on the means of the local mechanical states. Hounkpati et al. [START_REF] Hounkpati | Analyse multiéchelle du comportement mécanique des matériaux métalliques biphasés[END_REF]] have noticed that the symmetry of the macroscopic rigidity tensor as well as the model consistency are not verified simultaneously when modeling different morphologies within a RVE. By imposing the symmetry to the rigidity tensor, the self-consistency is lost (〈𝐴 Ω 〉 ≠ 𝐼 4 , 〈𝐵 Ω 〉 ≠ 𝐼 4 ).

To overcome the limits of the KE self-consistent model, the normalized self-consistent model was proposed [Li 1999]. It consists in normalizing the strain localization tensor 𝐴 Ω by multiplying it by the inverse of its mean, namely [〈𝐴 Ω 〉] -1 . The difference between the KE and the normalized self-consistent models, from a physical point of view, lies in the description of the grain. In the case of thin films, the grains are assumed identical and the columns are all oriented toward the incident vapor flux and thus present the same geometrical orientation.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties Hence, The KE self-consistent model is the one used in our work. Furthermore, he will allow the quantification of the grains-shape effect on the macroscopic elasticity constants and the elastic behavior of the diffracting volume. Mori-Tanaka model can also be used to determine the elastic behavior of these films.

In most cases, thin films deposited by magnetron sputtering are textured and multiphase.

Indeed, the determination of the elasticity constants requires both macroscopic and microscopic measurements. In the case of thin films, it is difficult to make accurate measurements by tensile or resonance ultrasound techniques, which make interesting the methods using the Impulse Excitation Technique (IET), which were developed in the previous chapters. In the following, a methodology for determining the elasticity constants of anisotropic polycrystalline thin films will be presented by modeling the film microstructure. It will be applied to determine the elasticity constants of anisotropic titanium films sputter-deposited using the GLancing Angle Deposition (GLAD) process. The elastic behavior of such polycrystalline films is not known in the literature, which motivates the present study. 

V.5. Oblique deposition and characterization

V.5.2. Morphology

The grain morphology of the deposited titanium films was analyzed using a Hitachi S3500 N SEM-FEG electron microscope. It can be seen that the films exhibit a columnar growth, as commonly observed in Fig.

IV.9. For zero incidence (𝛼 = 0°), the obtained structure is only slightly porous since no significant shadowing is performed and the micro-columns are not separated. As the glancing angle increases, the shadowing effect increases progressively and the structure becomes more porous. With increasing the deposition glancing angle 𝛼, the column tilt angle 𝛽 increases. The film surface is considerably influenced by the glancing angle 𝛼. At zero incidence, the tops of the columns appear at the film surface with low inter-columnar porosity. For 𝛼 > 0°, the inplane anisotropic shadowing is formed owing to the oblique configuration and the gap between columns significantly increases. The column tilt angle 𝛽 is ordinarily lower than the glancing angle 𝛼 due to the shadowing effect [Abelmann 1997]. The shadowing effect on film growth at oblique deposition was explained in Section IV.6.2. The microstructural properties of the Ti films are presented in Table V.3.
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The film porosity was determined from densities using Eq. (IV.23). The film density was calculated using its dimensions and mass. The density of the bulk titanium used in the calculation is 4500 𝑘𝑔/𝑚 3 . The obtained values for the porosity of samples B are presented in Table V.8. As we can see from The films deposited on the steel substrates (AISI316) have the same texture as those deposited on the glass substrates. This allows concluding that, in our case, the texture is more managed by the growth of the film rather than an epitaxy on the substrate. The XRD measurements presented herein were for samples deposited horizontally (mentioned as Y index). Very similar XRD patterns and pole figures measurements were also observed on the second sample of each pair of the samples that were deposited toward the transverse direction, i.e. the X-axis of the samples is parallel to the Δ direction.

Eqs. (V.8), (V.9) and (V.10) can be used to determine the angles, which define an ideal orientation. In our case, the Ti films develop a polycrystalline growth with fiber-texture type, which is not perfect and obviously does not represent an ideal orientation. The experimental data were compared to theoretical values calculated using the "Groupes ponctuels"

Crystallography software [Rousseau 2018]. The {0002} and {101 ̅ 1} ideal orientations of the The relation between the sample system and the crystal system is described through the transformation matrix (Eq. (V.6)) using the Euler angles according to the Bunge convention [Bunge 1982]. The orientation of each crystallite is defined as Ω ≡ (𝜑 1 , 𝜙, 𝜑 2 ). In the mechanical modeling, the angular spread of the texture around the ideal components is and (𝜑 1 = 90°, 𝜙 = 𝜂, 0 ≤ 𝜑 2 ≤ 360°) for those vertically deposited (B 0,X , B 45,X , B 80,X ).

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties V.6. Application of the self-consistent model to polycrystalline titanium thin films sputter-deposited at oblique incidence V.6.1. Determination of the macroscopic elasticity constants of the titanium films using the Impulse Excitation Technique

The torsional and flexural resonance frequencies of the glass substrates before and after deposition are given in Table V.4. The macroscopic elasticity constants of the glass substrates, and their uncertainties, are presented in Table V.5. Table V.6 and Table V.7 present the macroscopic elasticity constants of the titanium thin films deposited on the glass substrates and their uncertainties. The elasticity constants and their uncertainties were calculated using the methodology presented in Section IV.3. The dimensions and masses of the substrates and films are presented respectively in Table V.1 and Table V.2.

Table V.4

Resonance frequencies of glass substrates measured by IET before and after deposition of the Ti films. Young's and shear moduli measured with IET (Table V.6 and Table V.7) are significantly lower than those of the bulk material (~ 120.2 GPa and ~ 45.6 GPa respectively) [Brandes 1992, Donachie 2000], even for the film deposited with normal incidence. This may be due to the high porosity present in the film. The density and porosity calculated using Eq.

(IV.23), are presented in Table V.8. The density of bulk titanium used in the calculation of porosity is 𝜌 = 4500 𝑘𝑔/𝑚 3 [Brandes 1992, Verkhovtsev 2013]. The density of the film was calculated using the mass and dimensions of the film (Table V.1 and Table V.2).

The porosity assessment was also performed by image analysis using ImageJ software [ImageJ 2017]. Image analysis of SEM top-view images was done as described in Section IV.7.3. This method was carefully performed on five different SEM images of each film and the mean value with the uncertainty of the area fraction of porosity were quantified. The results

Chapter V

Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties of the image analysis are also presented in Table V.8. We can notice, from either Eq. (IV.23)

or image analysis, that the porosity within the Ti films increases by increasing the glancing angle. The difference between the values obtained using the two approaches is lower than the measurement uncertainties. Nemat-Nasser et al. [Nemat-Nasser 1993] have shown that with a first-order Taylor series development on different micromechanical models, the same relations for spherical pores, were obtained whatever the model. Young's and shear moduli calculated using Eqs.

(IV.21) and (IV.22) with their uncertainties are presented in Table V.9. The Young's modulus and Poisson's ratio of the compact material are respectively 116 GPa and 0.32 [Leonhardt 2004]. The shear modulus is calculated from the Young's modulus and Poisson's ratio, assuming an isotropic behavior.

Table V.9

Elasticity constants of the Ti films calculated by taking into account the volume fraction of porosity of Eq. (IV.23) and the values of the compact material (without porosity). Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties

The comparison between the elasticity constants measured by IET and those calculated with porosity are presented in Table V.10. The difference corresponds to the contribution of the microstructure. We can notice that the influence of the microstructure on the measured Young's moduli becomes significant at 45° and 80° of incidence, where this influence is higher than the measurement uncertainty. Therefore, the decrease in Young's modulus of the deposited titanium film cannot be due only to the presence of pores within the film. The influence of the microstructure on the measured shear modulus remains approximately constant.

Theoretically, this comparison can be used to represent the overall influence of the microstructural properties, as a whole, on the elasticity constants of such type of films.

Nevertheless, their influence needs to be quantified and dissociated in order to determine the contribution of each microstructural parameter (morphology (𝛽), texture (𝜂), etc.) on the elasticity constants of thin films. This effect will be investigated in the next sections.

Table V.10

Comparison between the macroscopic elasticity constants of the titanium films calculated using Eq. (IV.21) and Eq. (IV.22) and those measured by IET. V.6.2. The macroscopic elasticity constants of the titanium films recalculated using the self-consistent model

The macroscopic elasticity constants were recalculated using the microscopic approach.

The KE self-consistent model was used to determine the effective rigidity tensor 𝐶 by taking into account the microstructure of the Ti film. Since the analytical expression of the effective stiffness tensor of the polycrystal calculated with the KE model cannot be determined Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties analytically, the calculation of the macroscopic elasticity constants of the Ti films was done by numerical iterations. The SCECs of the Ti α phase and its Zener anisotropy ratio 𝐴 𝛼 [Zener 1948, François 2009] used in the calculation are the average of data found in the literature (Table V.11). Zener anisotropy ratio 𝐴 allows us to quantify the anisotropy of a crystal. For hexagonal crystal, 𝐴 is defined by [Kocks 1998]:

𝐴 = 𝑐 11 + 𝑐 12 -𝑐 33 𝑐 13 (V.45)
The crystalline orientation Ω of the films was taken into account using the Euler angles (Bunge convention) determined in Section V.5.3.2. Kelvin's notation was used for the index contraction [START_REF] Kelvin | Elements of a mathematical theory of elasticity[END_REF], Mehrabadi 1990]. The porosity (Table V.8) was taken into account in the calculation as a second phase and supposing its rigidity tensor equal to zero. Thus, Eq.

(V.41) is rewritten as follows:

𝐶 = [𝑉 𝛼 〈𝑐 𝛺 𝛼 ∶ [𝑃(𝐶): (𝑐 𝛺 𝛼 -𝐶) + 𝐼 4 ] -1 〉 𝛺 ∈ V 𝛼 + 𝑉 𝑝 𝑐 𝛺 𝑝 ∶ [𝑃(𝐶): (𝑐 𝛺 𝑝 -𝐶) + 𝐼 4 ] -1 ] (V.46)
Where 𝑉 𝛼 and 𝑉 𝑝 represent the volume fractions of the 𝛼 phase and the porosity. With zero rigidity of porosity, the second term on the right hand side of Eq. (V.46) will disappear and the volume fraction of the 𝛼 phase becomes equal to (1 -𝑉 𝑝 ). Therefore, no particular shape was attributed to the porosity. The simulation was achieved using the KE model with 5000 crystallites. This choice of Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties low multiplicity. Using the SCECs of the Ti α phase found previously (Table V.11) and assuming that the Ti α phase exhibits an ideal fiber texture, the macroscopic rigidity tensor of the effective material was calculated. The components of the elasticity tensor were presented in Table V.12 for the Ti films at different configurations.

Table V.12

The components of the macroscopic rigidity tensor of the Ti films calculated using the KE model and using the average crystal values of Table V The effective rigidity tensors (in GPa) are slightly anisotropic in the film plane, with different properties between direction 3 (perpendicular to the film plane) and the other two directions for the three different glancing angles. At 𝛼 = 0° and 45°, transversely isotropic films were obtained with axis 3 perpendicular to the film surface (𝐶 11 ≈ 𝐶 22 , 𝐶 13 ≈ 𝐶 23 and 𝐶 44 ≈ 𝐶 55 ). It is noted that (𝐶 11 and 𝐶 22 ), (𝐶 13 and 𝐶 23 ) and (𝐶 44 and 𝐶 55 ) become slightly different at 𝛼 = 80°. The corresponding elasticity constants in the different directions are shown in Table V.13. The uncertainties presented in Table V.14 were calculated using the Monte Carlo method:

knowing the distribution (standard uncertainty) of the input data, the distribution of the macroscopic elasticity constants can be computed by generating random sets of synthetic data centered on the values of the SCECs found in the literature.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 

Table V.14

The measurement uncertainty on the macroscopic elasticity constants of the Ti films calculated using the KE model in GPa. It can be observed from Table V.13 that the films exhibit a transversely isotropic behavior with weak anisotropy in the plane of the film surface at 𝛼 = 80°. The difference between 𝐸 𝑥 and 𝐸 𝑦 can be attributed to the calculation uncertainty. The elasticity constants measured by IET and the recalculated elasticity constants are presented in Table V.15. The measured Young's moduli 𝐸 𝑥 and 𝐸 𝑦 obtained for 𝛼 = 0° and 45° are different from those recalculated. The difference can be attributed to the measurements or the KE calculations uncertainties, which are in the same order. However, for 𝛼 = 80°, we can see that the difference between the measured and recalculated Young's modulus in the x-direction 𝐸 𝑥 is higher than the measurements or calculations uncertainties. The value measured by IET is lower than the value obtained by the calculation. This can be attributed to the effect of the modulus in the zdirection on the one in the x-direction, that becomes significant at 𝛼 = 80° and which is not considered in the analytical model (Eq. (IV.13)). Unlike the Young's moduli, the shear moduli Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 𝐺 𝑦𝑧 and 𝐺 𝑥𝑧 measured by IET are lower than those calculated using KE model. This difference can be attributed to the isotropic assumption on which is based the analytical model used for shear modulus determination (Eq. (II.48)). On the other hand, the difference between the measured and calculated elasticity constants can be attributed to the inability of the KE model to model the microstructures presenting high porosity (𝑝 ≥ 12%). In order to verify the trueness of this presumption, a prediction of the Ti films of series A will be provided and discussed subsequently.
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Table V.15

Comparison between the macroscopic elasticity constants of the titanium films calculated with the KE model and those measured by IET in GPa. V.6.3. Influence of the microstructural properties on the macroscopic behavior

Sample

The influences of the porosity, the crystallographic and morphological textures on the elasticity constants were taken into account in the calculation of the rigidity tensor of the film.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties However, it can be interesting to study the relative influence of these factors on the elasticity constants of the film. It is indeed easy to imagine that a very small tilt angle of the columns would lead to very poor sensitivity. To quantify this effect, the factors were varied one by one with the help of the KE model. A reference configuration was chosen (no texture, no porosity, spherical inclusions) and the various factors were introduced one by one with respect to this reference. The results are presented in Table V.16 and shown in Fig. V.16. The vertical samples (B 0,X , B 45,X , B 80,X ) were chosen to study the effect on the elasticity constants 𝐸 𝑥 , 𝐺 𝑦𝑧 with their uncertainty u(𝐸 𝑥 ), u(𝐺 𝑦𝑧 ), while the horizontal samples (B 0,Y , B 45,Y , B 80,Y ) were chosen to study the effect on the modulus 𝐸 𝑦 , 𝐺 𝑥𝑧 with their uncertainty u(𝐸 𝑦 ), u(𝐺 𝑥𝑧 ).

Table V.16

Effect of the porosity, the morphological and crystallographic textures on the Young's and shear moduli in GPa. 

G yz 43.35 -3 -3 -2 +4 +8 +21 ≈ 0 -0.1 ≈ 0 1.5 1.3 1.0 G xz -3 -3 -2 +6 +8 +18 -0.2 -0.2 -0.1 1.5 1.6 1.8 G xy +7 +6 +3 +5 +8 +18 +0.2 +0.2 +0.2 -
It can be observed from Table V.16 or Fig. V.16 that the porosity has a dominant effect on the Young's and shear moduli, while the morphological texture has a negligible effect for all films deposited at three glancing angles. We can also notice that the texture has a negligible effect (less than uncertainty) on Young's moduli determined in the three directions for 𝛼 = 80°.

However, for 𝛼 = 0° and 45°, its effect is superior to the uncertainty. However, the effect of the texture on the shear moduli is higher than the measurement uncertainty for all films deposited at three glancing angles. The results of a comparison between non-textured and textured thin films are presented in Table V.17. It can be noticed that the effect of non-tilted fiber (𝜂 = 0°) is higher than the measurement uncertainty. Then, by tilting the fiber texture, the effects of the texture and the tilted fiber compensate each other and thus the combined effect becomes negligible compared to the measurement uncertainty. It can also be noticed that no plane anisotropy is induced due to the texture of Ti α phase. It might be possible to obtain a difference in Young's moduli in the

x and y directions for textures different from the fiber texture found in this study. Furthermore, the porosity, the morphological and crystallographic textures do not have a significant effect on the Poisson's ratios in the different directions. In conclusion, the porosity has the strongest effect on the Young's and shear moduli of the Ti film.

Table V.17

Effect of the texture of the Ti α phase in GPa. V.6.4. Influence of the microstructural properties on the elastic behavior of the diffracting volume

Sample

As can be seen from Table V.18, the effect of the morphological texture on the macroscopic elasticity constants is not very pronounced. However, several studies [Hendrix 1998, Koch 2004, Slim 2019] showed that the grain shape texture has a more pronounced effect on the microscopic elastic response than on the macroscopic elastic response. The influence of the microstructural properties on the behavior of the diffraction volume is evaluated by analyzing the microscopic elastic response of the Ti α phase presented in Eq. (V.43). To do this, we suppose that the composite (substrate + film) of thickness h is subjected to a biaxial stress state determined by bending under applied strain. Assuming a null curvature radius on the transverse direction (𝜀 𝑦𝑦 = 0) and a planar stress state (𝜎 𝑧𝑧 = 0), the macroscopic stress and strain tensors can be expressed as a function of a curvature radius R on the longitudinal direction (x-direction) as follows:

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties

𝜀 𝐼 = ℎ 2𝑅 ( 1 0 0 0 0 0 0 0 - 𝐶 13 𝐶 33 ) (V.47) 𝜎 𝐼 = ℎ 2𝑅 ( 𝐶 11 - 𝐶 13 2 𝐶 33 0 0 0 𝐶 12 - 𝐶 13 𝐶 23 𝐶 33 0 0 0 0 ) (V.48)
Since the initial residual stress state is not known yet, the variation of strains between an initial (𝑅 0 = 790 mm) and a loaded stress (𝑅 = 530 mm, 400 mm, 330 mm, 210 mm, 150 mm and 120 mm) is considered in the following expression:

Δ𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝛼 = [𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝛼 ] 𝑅 -[𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝛼 ] 𝑅 0 =790𝑚𝑚 (V.49)
This expression is applicable for a purely elastic behavior where the initial residual stress state remains constant and thus the stress-free lattice parameters are not necessarily .17. Among the calculated intensity poles presented in Table A .1,Table A.2,and Table A.3, only four poles of each plane family were taken into account in the microscopic calculation. The microscopic strains were calculated on the poles indicated by red dots in Fig.

V.17. of the morphological texture is more pronounced on the elastic behavior of the diffracting volume than on the elastic behavior of the film itself, as mentioned in the literature [Hendrix 1998, Koch 2004, Slim 2019]. The effects of the morphological and crystallographic textures are more or less pronounced depending on the crystallographic plane {ℎ 𝑘 𝑙}, the measurement direction and the glancing angle. For instance, we can notice from the intensity pole 1 of the {112 ̅ 4} 𝛼 family of planes that the effect of the crystallographic texture predominates at 𝛼 = 0°.

However, at 𝛼 = 80° of the same intensity pole, the microscopic behavior is influenced by the morphological texture. The porosity effect on the elastic behavior of the diffracting volume is less important than the effects of the grain shape and the crystallographic texture.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties V.6.5. Prediction of the elasticity constants of titanium thin films presented in chapter IV

The experimental protocol and conditions adopted to characterize the films are the same as those presented in Section V.5.3. Using the single-crystal elasticity constants of the Ti α phase (Table V.11) and assuming that the phase exhibits an ideal fiber texture, the elasticity constants in the different directions were calculated and presented in Table V.18. Their corresponding uncertainties, presented in Table V.19, were calculated using Monte Carlo method. The simulation was also carried out on 5000 crystallites by taking into account the microstructure of the films determined in Chapter IV. It can be noticed that all the films exhibit a transversely isotropic behavior with the absence of any plane anisotropy. These results can confirm the discussion and conclusion extracted from the results of Ti films of series B. The difference between the elasticity constants of the films presented in this chapter and those presented in Chapter IV can be attributed to the difference in the microstructure (porosity, morphology and texture).

Table V.18

The macroscopic elasticity constants of the Ti films of series A (presented in Chapter IV) calculated using KE model in GPa. In order to verify the results of the elasticity constants calculated using the KE model, they were compared with those measured experimentally. The comparison was presented in Table V.20. As expected, the difference in Young's modulus between the two approaches is lower than the measurements or calculations uncertainties at 𝛼 = 0° and 45°. It becomes higher than the uncertainties at 𝛼 = 80°, while the film porosity remains lower than 10 % (Table IV It can be concluded that the elastic behavior of the GLAD films is not well described by the KE model. The KE model may not be well adapted to high porous materials, where significant pores interaction can probably be achieved. Although the porosity is described as an additional phase with zero rigidity, its shape (geometry) cannot be modeled with the KE model.

Sample

However, this can be a preliminary study presenting the elastic behavior of such films. In order to study the validity range of the KE model, a comparison with other scale transition models is necessarily required.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties A comparison between the nanoindentation (NI) experimental results and the calculated results was performed. Delafargue et al. [START_REF] Delafargue | [END_REF]] have proposed explicit relations used to recalculate the reduced modulus of transversely isotropic and general orthotropic materials using the macroscopic rigidity tensor of the effective material. The reduced modulus measured by NI was compared to the recalculated reduced modulus. In the case of an orthotropic material indented in the 𝑥 3 direction, perpendicular to the sample surface, the reduced modulus can be recalculated as follows: Most of the materials are not perfectly homogeneous in reality and present heterogeneities (defects), such as porosity or inclusions and grain boundaries. Discontinuities exist also at the microscopic scale inside a grain: dislocations, precipitates [Chomel 2000]. The residual stresses are therefore the static stresses existing in a material with the absence of any external loading and being in mechanical equilibrium. They result from incompatible or stressfree strains created by a process [Hauk 1997]. We can highlight residual stresses generated thanks to thermal or plastic sources. Further, they can appear due to volume changes induced by phase transformations or due to strain ensuring the continuity of the material exhibiting point defects (interstitial or substitutional atom, gap) and linear (dislocations) or 2D (grain and interphase boundaries) defects.

𝑀 3 =
The residual stresses can also be linked to different out-of-equilibrium processes used for material production. In the case of thin films with columnar growth obtained by magnetron sputtering, these intrinsic stresses can be generated due to attractive forces at the columns boundary. The intrinsic stresses can be modified subsequently by applying external stresses or finishing treatments.

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties V.7.2. Determination of the residual stresses and the strain/stress-free diffraction angle V.7.2.1. Curvature method

Residual stresses in thin films can be measured using the curvature method [Stoney 1909]. The method is based on measuring the curvature of the substrate before and after deposition. The residual stresses 𝜎 𝑅 𝐼 are determined using the following Stoney's formula [Stoney 1909]:

𝜎 𝑅 𝐼 = ℎ 𝑠 2 6 ℎ 𝑐 𝐸 𝑠 (1 -𝜐 𝑠 ) ( 1 𝑅 2 - 1 𝑅 1 ) (V.55)
Where 𝐸 𝑠 and 𝜐 𝑠 are respectively the Young's modulus and Poisson's ratio of the substrate, ℎ 𝑠 and ℎ 𝑐 are respectively the thickness of the substrate and the film and 𝑅 1 and 𝑅 2 are respectively the curvature measured on the substrate before and after deposition. The curvatures of the substrate before and after deposition were measured using an Altisurf 500 profilometer. The residual stresses 𝜎 𝑅 𝐼 measured using the curvature method are presented in Table V.22.

Table V.22

The residual stresses in the Ti films determined using the curvature method. One can mention that Stoney's formula is only valid for macroscopically isotropic materials. Indeed, the anisotropy found for the Ti films is between the z-direction and the x-y plane and thus it does not influence the formula. As the thickness of the films is higher than 1 𝜇m (the minimal value), the stress measurements will be less influenced by the thickness The residual stress state of the examined samples can be determined by means of the Crystallite Group Method (CGM) using different {ℎ 𝑘 𝑙} reflections from the diffraction patterns [START_REF] Noyan | [END_REF], Zaouali 1991, Hauk 1997, Kurz 2014]. As seen previously, the macroscopic elastic behavior of the Ti films can be supposed transversely isotropic (𝐶 11 = 𝐶 22 , 𝐶 13 = 𝐶 23 and 𝐶 44 = 𝐶 55 ). The isotropy in the film plane was also tested by evaluating the microscopic strain measured at different 𝜙 angles and constant 𝜓 angle. It can be seen that the difference between the measured strains presented in Table V.23 at different 𝜙 values is attributed to the measurement uncertainty. Furthermore, no shear stress was considered in the residual stress state as no obvious dependence of the measured strain was obtained at positive and negative 𝜓 values. In addition, the components of stress along the z-direction can be considered null, as the film is thin. From these elements, the residual stress state in the films deposited by magnetron sputtering can be considered as follows:

Sample

𝜎 𝑥𝑥 = 𝜎 𝑦𝑦 ; 𝜎 𝑥𝑦 ≈ 0 ; 𝜎 𝑖𝑧 ≈ 0 (V.56)

Using at least two independent measurement directions, the residual stress state 𝜎 𝑅 {ℎ𝑘𝑙} 𝑖 as well as the position of the diffraction peaks of a non-stressed material (reference diffraction angle) 𝜃 0 {ℎ𝑘𝑙} 𝑖 can be determined using the following expression:

Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties The residual stress and the reference diffraction angle were determined on two different plane families, {112 ̅ 4} 𝛼 and {202 ̅ 3} 𝛼 using the SCECs of the Ti α (Table V.11) and the calculated rigidity tensors (Table V.12). The experiments achieved on the {213 ̅ 1} 𝛼 family of planes were not used because of their diffraction peaks not well defined (Fig. V.17(c)). The results were presented in Table V.24. The strain measurements using the CGM were performed at specific (𝜙,𝜓) angles corresponding to intensity poles of the theoretical pole figures (Fig.

V.17) as the deposited Ti films had a tilted fiber texture.

Table V.24

The reference diffraction positions and the residual stresses in the Ti films determined using the crystallite group method. Knowing the residual stress in the Ti α phase and the phase proportion, the macroscopic residual stress 𝜎 𝑅 𝐼 in the film can be determined using Eq. (V.37) (𝜎 𝑅 𝐼 = 𝑥 𝛼 𝜎 𝑅 𝛼 ). The mean of Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 195 the stresses measured on the two planes {112 ̅ 4} 𝛼 and {202 ̅ 3} 𝛼 were used in the calculations.

The phase proportion was taken equal to (1 -𝑝). Table V.25 shows a comparison between the residual stresses determined using the curvature and the crystallite group methods. It can be noticed that, except for the films at 𝛼 = 80°, the difference between the residual stresses determined using the two methods is attributed to the measurements or the calculations uncertainties. At 80° of inclination, no consistency between the residual stress measured using the curvature method and the one calculated using the KE model (CGM) was present. From the residual stress analysis, this is related to incorrect values of XEC calculated using the KE model and hence the same conclusion as above can be extracted.

Table V.25

Comparison between the residual stresses determined using the curvature and the crystallite group methods. The decrease of the stress level with the increase of the glancing angle is explained by the increase of porosity, i.e. voids between the columns [Stoney 1909, Hawkeye 2014]. Indeed the density of the films decreases with the increase of the glancing angle [Tait 1990[START_REF] Jensen | [END_REF]]. Generally, the stress state depends on adatoms mobility and thus on the energy of the incoming particles. Since all the films were deposited in only one deposition process, the energy distribution is the same for each sample. In this case, the stress state is only influenced by the particle transport conditions: the geometry of the target, the position of the samples on the holder relative to the center of the target, the self-shadowing effect and the shape of the racetracks [Siad 2016]. The drop of the tensile stress at 𝛼 = 80° can be explained by two combined phenomena: the decrease of the particles energy at the grain level and the increase of the intercolumnar voids due to self-shadowing at the column level. The increase of the Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties intercolumnar voids leads to the relaxation of the film stress while suggesting that the stress state remains almost constant inside a polycrystalline column.

V.8. Conclusions

After determining the elasticity constants of titanium films in the previous chapter using the IET, this chapter has described this determination by taking into account the film microstructure. The objective was focused on modeling the microstructure of titanium films using the self-consistent KE model. From the determined elasticity constants, we can conclude that the elastic behavior of the titanium films is transversely isotropic at any glancing angle. The elasticity constants of the titanium films calculated using the KE model are in good agreement with those measured by IET, except for the films deposited at 𝛼 = 80°. It can be concluded that the KE model is not able to simulate films presenting high porosity. The analysis of uncertainty sources on the macroscopic rigidity tensors comes mainly from the uncertainties of the experimental quantities and the SCECs found in the literature. The uncertainties in the experimental quantities should be improved in further studies.

To check the accuracy of the model, the elasticity constants of the titanium films of series A measured by IET in Chapter IV were predicted. These films present microstructures different from the ones deposited in this chapter. The same conclusions as those found for series B were predicted. Using different simulations, we were able to show the effects of the porosity, the crystallographic texture and the grain-shape texture on the macroscopic elasticity constants Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties of the films. A significant effect of the porosity with a decrease in Young's and shear moduli was observed. The higher porosity contribution has a primordial role in the determination of the elasticity constants using the KE model. The effects of the porosity, the crystallographic texture and the grain-shape texture on the microscopic behavior of the films were studied. A significant effect of the crystallographic and morphological textures was observed. The domination of one factor over the other was noticed depending on the crystallographic plane, the measurement direction and the glancing angle. The porosity effect on the elastic behavior of the diffracting volume is less important than the effects of the grain shape and the crystallographic texture.

The trueness of the KE model was also evaluated by comparing the reduced modulus measured by nanoindentation with the reduced modulus calculated through explicit relations function of the components of the effective rigidity tensor. The residual stresses within the film and the Ti α phase were determined using the curvature method and the crystallite group method used in the strain measurements by XRD. In addition, improving the quality of XRD strain measurements is essential to ensure better quality results. Other analyses of the microscopic elastic behavior of asymmetrical textured Ti films will be evaluated under applied loading. This analysis allows us to study the validity range of the KE model by comparing the experimental and recalculated microscopic strains. In order to model more precisely the microstructure of GLAD films, other scale transition models will be used in future works. In addition, improving the quality of strain measurements by XRD is essential to ensure more accuracy in the results.

The objective of this thesis is to develop a methodology for measuring the macroscopic elasticity constants of polycrystalline, porous and textured coatings. The approach presented in this work was proceeded using experimental and theoretical tools. The experimental tools used during this thesis are the Impulse Excitation Technique (IET) to measure the macroscopic elasticity constants of the film and the X-Ray Diffraction (XRD) to determine the microstructural properties of the film and to characterize the microscopic behavior of the phases. The micromechanical models were used as theoretical tools to simulate the macroscopic and microscopic elastic behavior of the films.

We started with a macroscopic characterization of the elastic behavior of multilayers by assuming that their properties are isotropic. Different analytical models (Ext-PM, Dev-CLBT and Ext-Slim) that allow us to determine the elasticity constants of coatings were developed.

These developed models were compared with a finite element model taken as a reference. We have shown that the Ext-PM, Dev-CLBT and Ext-Slim models are reliable in determining the elasticity constants of multilayers. This is due to the shift of the neutral axis taken by these models after each deposition.

The new models were applied to titanium and niobium films deposited in multilayers on stainless steel and glass substrates. The elasticity constants of each film were determined using the impulse excitation technique. The study of the uncertainties on the measurements of Young's and shear moduli was carried out in Chapter III. The study has shown that the uncertainty on the measurements of the substrate Young's and shear moduli is mainly due to the film thickness and density. While in the case of Young's modulus of the titanium film, the measured density of the film, the substrate Young's modulus and the two frequencies represent a significant contribution. By depositing a second film of niobium, the contribution of the Ti film Young's modulus was added to the factors in the case of the three-layered system. As the number of vibration modes increases, the contribution of frequency on the films Young's modulus decreases, while that of the density and Young's modulus of the substrate and the previous films increases.

General conclusions and future works

By evaluating the measurement uncertainties of the shear modulus, the most influential sources on the measurement of the film shear modulus are the density of the film, the torsional frequencies of the substrate and the composite and the shear moduli of the previous layers (substrate and titanium first film). By comparing the two uncertainty analyses on the films Young's and shear moduli, it can be confirmed that the most influential factors on the measurement remain the same with some equivalences. The Young's modulus and the flexural frequencies (in Ext-PM and Dev-CLBT) correspond to the shear modulus and the torsional frequencies respectively (in Ext-Slim). These factors have the highest influence on the measurement of the film elasticity constants.

A new model for determining the elasticity constants of thin films sputter-deposited at oblique incidence was developed through the application of the Classical Laminate Beam Theory (CLBT). This new model takes into account the shift of the neutral axis after deposition and the anisotropy in the film plane. The model was validated by comparing it with a finite element model taken as a reference. Titanium thin films were deposited by magnetron sputtering at different glancing angles (𝛼 = 0°, 45° and 80°), its Young's moduli were determined using the new model and the IET and its shear moduli using Slim's model with the corresponding Young's modulus. By increasing the glancing angle, a decrease in the Young's and shear moduli of the titanium film compared to that of the bulk material was observed. The growth morphology of all films exhibits a well-defined columnar growth inclined by an angle 𝛽 with respect to the surface normal for glancing angle different than zero. The structural analysis of the films shows the presence of a single hcp (hexagonal closed acked) Ti α stable phase for the three glancing angles. The texture of this phase represents a fiber with {0002} axis tilted by an angle 𝜂 with respect to the surface normal. According to calculations made with the Nemat-Nasser model, the decrease in Young's modulus cannot be attributed solely to the decrease in the density of the film (related to porosity) compared to the density of the bulk material.

The macroscopic elasticity constants were recalculated using a micromechanical model.

In this work, we used the Kröner-Eshelby (KE) model. The texture of the titanium films was determined from the pole figures. The fiber tilt angle 𝜂 was measured by X-ray diffraction. The columns tilt angle 𝛽 was measured on the images observed by scanning electron microscopy.

The porosity in the film was measured by image analysis and by comparing the density of the film and the bulk material with no pores. Using the self-consistent model, we formulated the effective rigidity tensor of porous and single-phase (Ti α ) films with tilted columns and fibers.

Then, the macroscopic elasticity constants of the titanium films were determined by taking into account the microstructural properties (porosity, crystallographic and morphological textures) of each film. According to the calculation, it was found that the films exhibit a transversely isotropic behavior weakly anisotropic in the film plane at 𝛼 = 80°. The differences between the Young's and shear moduli measured by the IET and recalculated by the self-consistent model were attributed to the measurement and calculation uncertainties for films deposited at 0° and 45° of inclination. On the other hand, for 𝛼 = 80°, we noticed that this difference is greater than the uncertainties. This may be due to the inability of the self-consistent model to model the microstructures presenting high porosity (p > 12%). The macroscopic elasticity constants of the titanium films presented in Chapter IV were recalculated and the same conclusion was found.

We have shown that the porosity in the film has a dominant effect on the Young's and shear moduli. The effect of morphological or/and crystallographic textures on the microscopic behavior becomes dominant. The influence of the glancing angle on the microscopic elastic behavior was also demonstrated and quantified. This work allowed us to have a first set of elasticity constants values of a film deposited at oblique incidence.

Another comparison can be proposed to evaluate the results calculated using the KE model. It consists in measuring the microscopic strain by XRD under applied loading. The loading can be performed in bending using different bending templates with different curvature radii as those used in Section V.6.4. By comparing the experimental strains at different families of planes, measurement directions and glancing angles to the corresponding strains calculated in Section V.6.4, one can realize if the elastic behavior of the Ti films is well described by the KE model or not.

In this work, the elastic behavior of GLAD films is not well described by the KE model.

The KE model may not be well adapted to highly porous materials, where significant pores interaction can probably be achieved. The macroscopic elastic anisotropy can be studied using other scale transition models like the Mori-Tanaka model that could more precisely simulate the microstructure of GLAD films.

In order to determine the macroscopic elasticity constants of titanium films, we used the Single-Crystal Elasticity Constants (SCECs) of the Ti α phase from the literature. However, it may be possible that the behavior of our Ti α phase is different from that found in the literature.

The determination of the rigidity tensor of this phase will allow us to compare the coefficients 𝑐 𝑖𝑗 𝛼 calculated with those existing in the literature and not to impose a set of values that may not correspond to our case. For this, it will be necessary to carry out strain measurements on the diffraction peaks of the Ti α phase under applied loading.

The Crystallite Group Method (CGM) was used in the self-consistent model and the strain measurements by X-ray diffraction. The crystallographic texture of the films was taken into account by idealizing the crystallographic orientations of the Ti α phase. However, the texture of the films can be described more precisely using the orientation distribution functions. 

Modélisation et caractérisation multiéchelle du comportement élastique des couches minces anisotropes Appendix B Résumé en Français

Dans de nombreuses applications industrielles, des nouveaux matériaux sous forme de revêtements ont été développés pour faire face aux différentes contraintes technologiques et économiques imposées dans la société industrielle. Aujourd'hui, les revêtements sont largement utilisés dans des domaines aussi divers que la mécanique, l'électronique, l'optique, les industries chimique et aéronautique, etc. Un revêtement joue un rôle d'une couche protective dans le but de protéger, par exemple, une pièce et d'améliorer sa tenue en service. L'épaisseur de ces couches varie de quelques nanomètres à quelques centaines de micromètres. De plus, un revêtement peut être constituer d'une seule couche ou de multicouches en fonction des applications exigées. Les revêtements peuvent être élaborés par différentes techniques parmi lesquelles nous citons à titre d'exemple : dépôts physiques en phase vapeur (PVD), dépôts chimiques en phase vapeur (CVD) et la projection thermique. Dans cette thèse, nous nous intéresserons en particulier aux couches minces élaborées par pulvérisation cathodique magnétron (l'une des techniques PVD). D'un point de vue général, une couche mince élaborée par pulvérisation cathodique magnétron est multiphasée, texturée, poreuse et présente des grains sous forme de colonnes [Liu 2018, Slim 2019]. De plus, les propriétés microstructurales (la structure, la texture, la morphologie et la porosité) dépendent des paramètres d'élaboration [Ait-Djafer 2015, Zhang 2017]. Cependant, ces propriétés microstructurales peuvent influencer les propriétés physiques et mécaniques de la couche. Ce qui provoque un comportement anisotrope à la couche. Afin d'assurer la bonne tenue en service des pièces mécaniques, il est indispensable de contrôler les propriétés des composants revêtus. En effet, nous nous intéresserons en particulier aux propriétés élastiques des couches minces élaborées par pulvérisation cathodique magnétron.

La prédiction du comportement élastique des composants revêtus nécessite une connaissance parfaite des constantes d'élasticité de la couche qui dépendent de ses propriétés microstructurales. L'identification des constantes d'élasticité est importante dans le domaine de l'ingénierie où le choix du matériau repose sur la détermination de ses constantes d'élasticité. Etant donné que les couches minces déposées par pulvérisation cathodique magnétron sont souvent anisotropes, la connaissance des constantes d'élasticité anisotropes est nécessaire pour la prédiction du comportement élastique du matériau. Les constantes d'élasticité permettent également de prédire le niveau de contraintes résiduelles issues du procédé d'élaboration.

Cette thèse a pour objectif de déterminer les constantes d'élasticité macroscopiques des couches minces anisotropes. Nous proposerons des méthodologies qui permettent de déterminer les constantes d'élasticité des couches minces ayant un comportement élastique anisotrope. Deux différentes approches seront utilisées dans ce travail. Une approche macroscopique consiste à déterminer les constantes d'élasticité d'un film par mesures vibratoires à l'aide de la technique d'excitation impulsionnelle. Une approche microscopique consiste à déterminer les constantes d'élasticité d'un film en prenant en compte ses propriétés microstructurales (porosité, texture morphologique et texture cristallographique). La texture cristallographique

Introduction générale

Enfin, le cinquième chapitre portera sur la deuxième méthodologie de caractérisation des films anisotropes. Nous commencerons par une brève introduction sur la diffraction des rayons X. Puis nous formulerons le tenseur de rigidité effectif et la déformation microscopique mesurée par diffraction des rayons X dans le cadre du modèle micromécanique de Kröner-Eshelby [Eshelby 1957]. Ensuite, à l'aide des propriétés microstructurales obtenues par diffraction des rayons X et du modèle autocohérent, les constantes d'élasticité macroscopiques des couches de titane déposées à incidence oblique (couches poreuses, texturées et monophasées) seront déterminées. Ceci nous permettra d'avoir un premier jeu de valeurs des constantes d'élasticité macroscopiques des couches déposées à incidence oblique car ces dernières ne sont pas été déterminées dans la littérature. Enfin, nous étudierons l'effet de la porosité et de la texture morphologique et cristallographique sur les constantes d'élasticité macroscopiques et sur le comportement microscopique des dépôts de titane.

Chapitre I Introduction à l'élasticité des couches minces

Le comportement élastique d'un matériau quelconque est défini par un tenseur de souplesse 𝑆 𝑖𝑗𝑘𝑙 ou un tenseur de rigidité 𝐶 𝑖𝑗𝑘𝑙 , qui relie l'état des contraintes à celui des déformations élastiques. Ce sont des tenseurs de quatrième ordre, ils contiennent 81 composantes dans une base orthonormée (𝑥 1 , 𝑥 2 , 𝑥 3 ) [Vannucci 2018]. Selon la loi de Hooke, les relations linéaires entre la contrainte 𝜎 et la déformation 𝜀 s'écrivent sous une forme tensorielle comme suit [Vannucci 2018 Les constantes d'élasticité sont nécessaires pour prédire le comportement élastique d'un matériau sous différents types de sollicitations. Plusieurs modèles analytiques et numériques ont été développés, en utilisant les propriétés élastiques d'un matériau, afin de concevoir des structures, de prédire la durée de vie de leurs matériaux constitutifs et de prévoir la fiabilité de la structure sollicitée.

Plusieurs méthodes ont été développées pour déterminer les constantes d'élasticité des matériaux massifs et revêtus. Elles peuvent être classées en deux groupes: les techniques statiques et dynamiques. L'essai de traction est l'un des essais statiques le plus utilisé pour caractériser le comportement élastique des matériaux [Hollman 1997, Chen 2009, Huang 2013[START_REF] Gong | [END_REF], He 2016]. Cet essai permet la détermination de plusieurs caractéristiques mécaniques d'un matériau. Par contre, son application dans le cas des couches minces reste restrictive à cause des différents problèmes rencontrés au cours de l'essai (délamination de la couche, fissuration de la couche au cours de l'essai, etc.). Il est aussi intéressant de noter que la sensibilité de cet essai décroit lorsque le rapport entre l'épaisseur du substrat et celle de la couche croit en raison de la diminution de la sensibilité de la couche à la contrainte appliquée. Par conséquence, cet essai n'est pas adapté à la caractérisation élastique des couches minces ayant une épaisseur de l'ordre du micromètre.

L'essai de flexion est souvent utilisé particulièrement pour tester les matériaux ayant un comportement fragile tel que les céramiques. Plusieurs auteurs ont effectué l'essai de flexion pour déterminer le module d'Young [Rouzaud 1995[START_REF] Schalko | [END_REF], Grieseler 2016]. Les problèmes rencontrés avec cet essai sont les mêmes que ceux rencontrées avec l'essai de traction et qui ont comme principale cause le niveau de chargement élevé appliqué au cours de l'essai. Parmi les nombreuses techniques statiques disponibles pour mesurer le module d'Young, on trouve l'essai de nanoindentation qui est souvent utilisé pour déterminer les propriétés élastiques des couches minces [Chen 2005[START_REF] Gerthoffer | [END_REF]]. Bien que l'essai de nanoindentation représente l'un des essais les plus utilisés pour déterminer les constantes d'élasticité des couches minces, les résultats issus de cet essai sont influencés par l'interaction élastique entre le substrat et la couche. De plus, étant donné que la majorité des dépôts sont anisotropes, le module d'élasticité déterminé par nanoindentation est une combinaison des modules d'élasticité parallèle et perpendiculaire à la surface de la couche. Il est aussi généralement supposé que le coefficient de Poisson de la couche est connu, ce qui n'est pas toujours vrai.

Parmi les techniques dynamiques, on trouve la méthode par mesure de vitesse de propagation d'ondes ultrasonores. Cette méthode se distingue par son caractère non destructif. Plusieurs auteurs ont utilisé la méthode ultrasonore pour déterminer les constantes d'élasticité de dépôts obtenus par projection thermique [START_REF] Lima | Elastic Modulus Measurements via Laser-Ultrasonic and Knoop Indentation Techniques in Thermally Sprayed Coatings[END_REF], Tan 2010, Sedmák 2013] ou par pulvérisation cathodique [START_REF] Thomasovà | Young's moduli of sputter-deposited NiTi films determined by resonant ultrasound spectroscopy: Austenite, R-phase, and martensite[END_REF]]. Des excitations de faibles amplitudes sont suffisantes pour effectuer des mesures ultrasonores. Cette caractéristique donne l'avantage d'utiliser la méthode ultrasonore pour les couches minces. De plus, la possibilité de calculer la matrice de rigidité entière à partir d'un spectre unique est un avantage distinct de cette méthode. Malgré le caractère non destructif de cette technique, les résultats peuvent être influencés par la texture et les défauts structuraux présents au sein du matériau [START_REF] Ledbetter | [END_REF], Liu 2008].

Une technique dynamique connue dans la littérature est la Technique d'Excitation Impulsionnelle (TEI). Le principe de base de cette technique est d'exciter un échantillon D'après cette courte synthèse de la bibliographie, on peut constater que les couches minces déposées par pulvérisation cathodique magnétron sont généralement polycristallines, texturées et composées de différentes phases ce qui leurs confèrent un comportement élastique anisotrope. De plus, leurs propriétés élastiques, leurs orientations cristallographiques, leurs morphologies et leurs structures dépendent principalement des paramètres de dépôt. Donc, afin de contrôler le comportement élastique des films élaborés par pulvérisation cathodique magnétron, leurs constantes d'élasticité doivent être évaluées. 

Chapitre II Développement analytique pour la détermination des constantes d'élasticité des couches minces en multicouches

La Technique d'Excitation Impulsionnelle (TEI) est une technique non destructive qui peut être facilement utilisée pour déterminer les constantes d'élasticité de divers matériaux [START_REF] Atri | [END_REF][START_REF] Radovic | [END_REF], Gadaud 2004, Gadaud 2009]. Grâce à sa grande précision et les faibles niveaux de contraintes qui génère, la TEI peut être utilisée comme une nouvelle alternative pour déterminer le module d'Young et le module de cisaillement des couches minces. En se basant sur différentes théories, plusieurs modèles permettant de déterminer le module de d'Young des revêtements par TEI ont été développés [Berry 1975, Mazot 1998, Gadaud 2004, López-Puerto 2014]. Par ailleurs, pour déterminer le module de cisaillement d'une couche par TEI, des modèles analytiques ont été développés en appliquant le principe d'Hamilton [Gadaud 2009, Slim 2017a]. Pour des multicouches, plusieurs modèles analytiques ont été développés pour déterminer le module d'Young de chaque couche [Cho 1999, López-Puerto 2014] en se basant sur la théorie de rigidité en flexion d'une poutre revêtue (FRCB) ou bien sur la théorie classique des poutres stratifiées (CLBT).

A notre connaissance, aucune étude n'a été faite pour déterminer le module de cisaillement de chaque couche dans un revêtement multicouche. De plus, un manque d'information concernant la détermination du module d'Young à l'aide de différents modes vibratoires mesurés par TEI nous motive à mener une étude approfondie sur le développement de nouveaux modèles qui permettent la détermination des constantes d'élasticité de chaque couche dans un revêtement multicouche. L'objectif de ce chapitre est d'améliorer les études précédentes en développant de nouveaux modèles permettant la détermination du module d'Young et du module de cisaillement des couches quelle que soit l'épaisseur et les propriétés mécaniques et physiques du substrat et des couches déposées. En vue de guider notre choix de modèle pour déduire les constantes d'élasticité d'un revêtement, nous procéderons de la manière suivante :

𝜌𝑆 𝜕 2 𝑤(𝑥, 𝑡) 𝜕𝑡 2 + 𝜕 2 𝜕𝑥 2 (𝐸𝐼 𝑦 𝜕 2 𝑤(𝑥, 𝑡) 𝜕𝑥 2 ) = 0 (II.1)
Avec 𝜌 la masse volumique, 𝑤(𝑥, 𝑡) le déplacement d'un point quelconque appartenant à la structure excite en fonction de sa position et du temps, 𝐸 le module d'Young, 𝐼 𝑦 le moment quadratique par rapport à l'axe z de la section droite et 𝑆 l'aire de la section.

La résolution de cette équation différentielle (équation (II.1)) permet de déterminer les fréquences de résonance 𝐹 (𝑛) de la structure excitée. Dans le cas de la TEI, les conditions aux limites « libre-libre » sont généralement adoptées. Une solution analytique de l'équation du mouvement peut être déterminée [Rao 2006] :

𝐹 (𝑛) = 𝑋 𝑛 2 2𝜋𝐿 2 √ 𝐸𝐼 𝑦 𝜌𝑆 (II.2)
Avec 𝐿 la longueur de l'échantillon, 𝑛 l'ordre du mode de vibration, et 𝑋 𝑛 la fréquence adimensionnelle qui dépend des conditions aux limites et de l'ordre du mode de vibration. Dans le cas d'une poutre de section rectangulaire, le module d'Young peut être déterminé à partir de la formule suivante [ASTM 2015] : 𝐸 = 𝑘 1 𝜌 𝐿 4 ℎ 2 𝑇 𝑓 (𝐹 (1) ) 2 (II.3)

Avec 𝑘 1 ≈ 0.9465, 𝐹 (1) la fréquence fondamentale de résonance de flexion, ℎ l'épaisseur de la poutre et 𝑇 𝑓 un facteur de correction introduit pour corriger les effets d'inertie et de cisaillement non pris en compte par la théorie d'Euler-Bernoulli.

Par la suite, une poutre composite (substrat + couche) de section rectangulaire sera considérée. Le principe de la mesure est de faire deux mesures de fréquence : une première du substrat nu sans revêtement et une deuxième du substrat revêtu. Puis à l'aide d'un modèle mécanique qui fait intervenir le rapport des deux fréquences, le module d'Young du substrat, la densité du substrat et du dépôt et leurs dimensions on peut remonter au module d'Young de la couche déposée. Les modèles mécaniques existants dans la littérature se basent sur deux différentes théories : modèles basés sur la rigidité en flexion d'une poutre composite (FRCB) et modèles basés sur la théorie classique des poutres stratifiées (CLBT).

La rigidité en flexion d'une poutre composite peut être exprimée comme la somme des rigidités en flexion de chaque matériau (équation (II.4)) [Gere 2003]. La masse volumique multipliée par unité de surface d'une poutre composite peut être exprimée à l'aide de l'équation (II.5) [Gere 2003] : (II.5) Avec les indices "0", "k", "t" and "N" correspondent respectivement au substrat, à la k ième couche, à la poutre composite et le nombre total de couches. En substituant les équations (II.4) et (II.5) dans l'équation (II.2), on obtient la fréquence de résonance de la poutre composite 𝐹 𝑁 (𝑛) :

𝐹 𝑁 (𝑛) = 𝑋 𝑛 2 2𝜋𝐿 2 √ 𝐸 𝑡 𝐼 𝑡 𝜌 𝑡 𝑆 𝑡 (II.6)
Parmi les modèles analytiques existants dans la littérature, les modèles de Berry et Lopez [Berry 1975, Mazot 1998] supposent que la fibre neutre reste au centre du substrat et ne se décale pas après dépôt. Par contre, le modèle de Pautrot [Whiting 1995, Mazot 1998, Gadaud 2004] 

𝑑 11 = 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝐸 1 𝐾 1 1 -𝜈 1 2 [ 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝐸 1 𝐾 1 1 -𝜈 1 2 ] 2 -[ 𝜈 0 𝐸 0 𝐾 0 1 -𝜈 0 2 + 𝜈 1 𝐸 1 𝐾 1 1 -𝜈 1 2 ] 2 (II.8) 𝐾 0 = ℎ 0 4 ( ℎ 0 2 3 + ℎ 1 2 ) (II.9) 𝐾 1 = ℎ 1 4 ( ℎ 1 2 3 + ℎ 0 2 ) (II.10)
L'équation du mouvement de torsion pour des poutres de section rectangulaire a été développée par Timoshenko et Goodier [Timoshenko 1951] et Spinner et Tefft [START_REF] Spinner | A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies[END_REF]]. L'équation qui décrit le mouvement d'une poutre de section prismatique soumise à des vibrations de torsion s'écrit comme suit [Rao 2006 Avec 𝑇 la fréquence fondamentale de résonance de torsion de la structure excitée, L sa longueur et 𝑅 un facteur de correction prenant en compte le gauchissement de la section.

En se basant sur le principe de Hamilton [Berdichevsky 2009] qui consiste à minimiser le Lagrangien du système qui est exprimé en fonction de l'énergie potentielle et l'énergie cinétique de la structure en vibration (substrat + dépôt), Gadaud et al. [Gadaud 2009] ont développé un modèle analytique qui permet de déterminer le module de cisaillement d'un film déposé sur une poutre de section rectangulaire. Le modèle de Gadaud ne prend pas en compte le décalage de la fibre neutre après dépôt (Figure II.1). Plus le rapport des épaisseurs, le rapport des densités et les rapports des modules augmentent plus l'erreur commise en utilisant ce modèle augmente à cause de cette hypothèse. Slim et al. [Slim 2017b] ont développé un nouveau modèle analytique qui prend en compte le décalage de la fibre neutre. Par application du principe de Hamilton au Lagrangien, le rapport de fréquences en torsion 𝑅 𝑇1 = 𝑇 1 𝑇 0 peut s'écrire comme suit :

𝑅 𝑇1 = [ 𝜌 0 𝑏 (ℎ 0 2 + 𝑏 2 ) 3 𝐺 0 ℎ 0 2 (𝑏 - ℎ 0 √3 tanh [ √3 𝑏 ℎ 0 ]) ] 0.5 [ [𝐴(3𝑏𝐶𝐻 3 (ℎ 0 𝐸 0 + ℎ 1 𝐸 1 ) -𝐻 4 √3𝐴)]
[(𝑏𝐶𝐻 3 (ℎ 0 𝐸 0 + ℎ 1 𝐸 1 )(𝐻 1 𝜌 0 ℎ 0 + 𝐻 2 𝜌 1 ℎ 1 ))] ] 0.5

(II.14)

𝐴 = 𝐸 0 2 ℎ 0 5 𝐺 0 + 𝐸 1 2 ℎ 1 5 𝐺 1 + 𝐸 0 ℎ 0 4 ℎ 1 (2𝐸 1 𝐺 0 + 3𝐸 0 𝐺 1 ) + 𝐸 1 ℎ 0 ℎ 1 4 (2𝐸 0 𝐺 1 + 3𝐸 1 𝐺 0 ) + 2ℎ 0 3 ℎ 1 2 (3𝐸 0 2 𝐺 1 + 2𝐸 1 2 𝐺 0 ) + 2ℎ 0 2 ℎ 1 3 (2𝐸 0 2 𝐺 1 + 3𝐸 1 2 𝐺 0 ) (II.15) 𝐵 = 2√3 𝑏 𝐶 (𝐸 0 ℎ 0 + 𝐸 1 ℎ 1 ) (II.16) 𝐶 = √𝐺 0 ℎ 0 + 𝐺 1 ℎ 1 (II.17) 𝐻 1 = 3ℎ 0 3 𝐸 0 2 (ℎ 0 + 2ℎ 1 ) + 𝐸 1 ℎ 1 (𝑏 2 + ℎ 1 2 )(2ℎ 0 𝐸 0 + 𝐸 1 ℎ 1 ) + 𝐸 0 2 ℎ 0 2 (𝑏 2 + 4ℎ 1 2 ) (II.18) 𝐻 2 = 3ℎ 1 3 𝐸 1 2 (ℎ 1 + 2ℎ 0 ) + 𝐸 0 ℎ 0 (𝑏 2 + ℎ 0 2 )(2ℎ 1 𝐸 1 + 𝐸 0 ℎ 0 ) + 𝐸 1 2 ℎ 1 2 (𝑏 2 + 4ℎ 0 2 ) (II.19) 𝐻 3 = 𝐵 𝑒 √𝐴 + 1 (II.20) 𝐻 4 = 𝐵 𝑒 √𝐴 -1 (II.21)
Comme le modèle de Pautrot est déjà validé dans la littérature [Slim 2017a] pour la détermination du module d'Young d'une seule couche en prenant en compte le décalage de la fibre neutre, on a développé un nouveau modèle noté « Ext-PM » qui est basé sur la théorie FRCB afin de l'utiliser pour des structures multicouches. En appliquant l'équilibre statique des forces axiales d'une poutre en flexion pure, le décalage de la fibre neutre généralisé pour des structures à N couches, peut s'écrire comme suit :

𝑒 𝑁 = 𝐸 0 ℎ 0 2 -∑ 𝐸 𝑖 ℎ 𝑖 [ℎ 𝑖 + 2𝛿 𝑖 ∑ ℎ 𝑗-1 𝑖 𝑗=2 ] 𝑁 𝑖=1 2 ∑ 𝐸 𝑖 ℎ 𝑖 𝑁 𝑖=0 (II.22) 𝛿 𝑘 = { 0 𝑖𝑓 𝑘 = 1 1 𝑖𝑓 𝑘 ≠ 1 (𝑘 = 1, … , 𝑁) (II.23)
En développant l'équation (II.6) pour une structure composée d'un substrat et de deux couches (N = 2) avec un décalage 𝑒 2 , on obtient l'expression du rapport des fréquences 𝑅 𝐹2 en flexion : Concernant la détermination du module de cisaillement, le principe de Hamilton peut être appliqué pour une poutre qui présente multicouches en étendant le modèle de Slim [Slim 2017b]. La fréquence de résonance en torsion est donc déterminée et exprimée pour N = 2 comme suit : L'analyse structurale des couches déposées a été réalisée à l'aide d'un diffractomètre à rayons X, Bruker D8 Advance, équipé d'une anticathode de cuivre délivrant un rayonnement de longueur d'onde 𝜆 = 0.15418 𝑛𝑚. Afin de déterminer la structure de chaque couche, des acquisitions sous différents angles d'inclinaison 𝛹 ont été réalisées dans le but de faire diffracter la plupart des plans cristallographiques. Les données ont été collectées avec un angle de diffraction 2θ qui varie entre 20° et 150°. L'analyse des diffractogrammes a été réalisée à l'aide du logiciel DIFFRAC.EVA. L'analyse d'incertitude a été effectuée en se basant sur la méthodologie référencée dans les documents de métrologie : le Guide pour l'expression de l'incertitude de mesure (GUM) (Guide to the expression of Uncertainty in Measurment) [JCGM 2008] et la norme de vocabulaire international de métrologie [JCGM 2012]. Dans cette étude, l'incertitude liée à la fréquence quantifiée expérimentalement en étudiant sa répétabilité et d'autres facteurs a été prise de la littérature [Slim 2017a]. Toutes les incertitudes liées aux différentes grandeurs apparentes dans l'équation (II.3) ont été explicitées. Les incertitudes globales du module d'Young et du module de cisaillement du substrat et des couches ont été calculées à l'aide de l'équation de propagation d'incertitude donnée dans le GUM [JCGM 2008] ou de la méthode de Monte Carlo en générant une dispersion aléatoire sur les valeurs expérimentales.

(𝑅 𝐹2 ) 2 = 1 + (𝑅 ℎ1 2 𝑅 𝐸1 ) 2 + (𝑅 ℎ2 2 𝑅 𝐸2 ) 2 + 2𝑋
𝑇 2 = 1 2√3 𝐿 sech [ 𝐵 ′ 2√𝐴′ ] 𝐴′(𝐵 ′ ) 2 𝐵 ′ (𝑏𝐶 ′ ) 2 (𝐸 𝑡 ℎ 𝑡 ) [ 𝐵 ′ + 𝐵 ′ cosh [ 𝐵 ′ √𝐴′ ] -2√𝐴 ′ sinh [ 𝐵 ′ √𝐴′ ] (𝐻′ 1 𝜌 1 + 𝐻′ 2 𝜌 2 -𝐻′ 3 𝜌 0 ) + 2𝑏
La morphologie des multicouches a été observée à l'aide d'un microscope électronique Hitachi S3500 SEM-FEG. Une épaisseur régulière des couches peut être observée tout au long de la section (Figure III.3). En plus, la Figure III.3 montre que les deux couches déposées présentent une croissance colonnaire favorisant la formation de pores entre les colonnes. Les analyses de diffraction par rayons X révèlent la présence de deux phases dans la couche de titane : une phase stable de structure hexagonale compacte Ti α et une phase métastable de structure cubique centré Ti β . Par contre, l'analyse structurale de la couche de niobium montre la présence d'une seule phase stable de structure cubique centrée Nb α . La présence de la phase métastable dans la couche de Ti peut être due aux paramètres d'élaboration [START_REF] Bunshah | [END_REF], Savaloni 2004, Chawla 2008, Chawla 2009, Achache 2016] ou à la formation des phases d'oxydes dues à la présence de quelques traces de gaz résiduelles durant le dépôt [Vijaya 1996]. Les valeurs rapportées dans la littérature sont très dispersées. Les valeurs calculées dans cette étude sont cohérentes avec certains d'entre eux [Chinmulgund 1995, Tsuchiya 2005, Verkhovtsev 2013] et diffèrent de quelques autres [Kim 1997, Cho 1999]. Les différences peuvent être expliquées par les caractéristiques microstructurales telles que les proportions de phase [Slim 2019], la présence de pores ou par le processus lui-même comme dans la référence [Peraud 1997] où les ions sont implantés dans la structure cristalline pendant le dépôt. Les valeurs de module d'Young de la couche de niobium varient entre 77 GPa et 92 GPa. Ces valeurs sont proches de celles rapportées dans des études précédentes pour une seule couche de niobium [Seifried 2018, Xu 2019] et sont inférieures à celles données dans d'autres études [Okolo 2004, Czichos 2014]. Cela peut également être dû soit à la présence de pores dans le film, soit à la superposition de différents matériaux qui peuvent faire basculer les résultats et la prédiction du module d'Young d'une couche mince dans une structure multicouche. Une analyse de la fréquence de résonance en fonction du coefficient de Poisson a montré que l'influence de ce dernier sur la détermination du module d'Young en flexion est négligeable pour les deux modèles Ext-PM et Dev-CLBT. Par suite, les deux modèles peuvent être utilisés pour déterminer le module d'Young d'une couche mince dans une structure multicouche en tenant compte des différentes sources d'incertitude.

Les modules de cisaillement ont été déterminés à l'aide des modèles de Slim (pour la première couche de Ti) et de Ext-Slim (pour la deuxième couche de Nb). Le module de cisaillement de la couche de Ti est égal à 42.84 GPa (± 1.02 GPa) et celui de la couche de Nb est égal à 35.17 (± 5.74 GPa). La différence entre les modules de cisaillement des deux échantillons (316L et verre) mesurés par TEI est attribuée à l'incertitude de mesure. En supposant que les couches admettent un comportement isotrope et en utilisant le module d'Young et le module de cisaillement déterminés à partir de la TEI, le coefficient de Poisson a été calculé. Le coefficient de Poisson est égal à 0.228 (± 0.062) et 0.273 (± 0.139) pour les couches de Ti et de Nb respectivement. Une différence entre les valeurs mesurées du coefficient de Poisson et les valeurs trouvées dans la littérature [Brandes 1992, Donachie 2000, Okolo 2004[START_REF] Zhang | [END_REF]] a été observée. Cette différence peut être attribuée à l'incertitude de mesure sur les deux modules. Pour les couches de titane et de niobium, une légère diminution du coefficient de Poisson a été observée par rapport au matériau nu correspondant. L'incertitude de mesure du coefficient de Poisson de la deuxième couche de Nb augmente à cause de l'effet cumulatif des incertitudes du substrat et de la couche de Ti. Afin de comparer les deux techniques (TEI et NI), une comparaison entre les modules réduits déterminés à l'aide des deux techniques a été faite. Les résultats montrent un module d'Young de 107.26 GPa et 87.55 GPa par NI et de 105.28 GPa et 82.64 GPa par TEI pour les couches de Ti et de Nb respectivement. La différence entre les modules d'Young des couches de Ti et de Nb mesurés par NI et TEI est inférieure à l'incertitude de mesure. La faible variation observée entre les valeurs peut être due à la différence de volume analysé par les deux techniques. Le module réduit mesuré par NI dépend des modules parallèles et perpendiculaires à la surface de la couche tandis que le module mesuré par TEI est celui parallèle à la surface de la couche selon l'axe x. Cet argument n'est valable que si les couches présentent une certaine anisotropie liée à sa texture cristalline. Ces questions de texture et d'anisotropie seront analysées en détail au chapitre qui suit. De plus, même si les essais de NI ont été réalisés à une profondeur de pénétration contrôlée inférieure à 10% de l'épaisseur de la couche, les résultats restent influencés par l'interaction élastique entre le substrat et la couche.

Dans le chapitre qui suit, une deuxième étape qui permet la détermination des constantes d'élasticité macroscopiques d'une couche mince anisotrope, sera décrite. L'étude sera étendue pour évaluer macroscopiquement le comportement anisotrope des couches minces. Par rapport à Ext-PM, le modèle Dev-CLBT peut prendre en compte l'anisotropie et va nous permettre de développer la technique vibratoire (TEI) afin de déterminer les modules anisotropes d'un revêtement dans différentes directions.

Chapitre IV Amélioration de la technique d'excitation impulsionnelle pour la détermination des constantes d'élasticité des couches minces déposées à incidence oblique

Comme nous l'avons vu dans le chapitre précédent, les mono ou multicouches élaborées par pulvérisation cathodique magnétron présentent souvent une anisotropie avec des propriétés différentes entre la direction perpendiculaire à la couche (l'axe z) et le plan de la couche (le plan x-y). Cette anisotropie peut être due à la texture cristalline ou bien à la morphologie des grains. En général, il n'y a presque pas une anisotropie dans le plan d'une couche déposée par un procédé PVD classique, du fait de la croissance selon la normale au plan de la couche. L'originalité de cette étude est d'introduire une anisotropie dans le plan de la couche en inclinant des substrats. Cette anisotropie élastique résulte intrinsèquement de la microstructure du film développée pendant le dépôt. Dans ce contexte, un nouveau type de revêtement présentant une large anisotropie, est traité dans ce chapitre dans lequel l'anisotropie de surface est la plus élevée. Dans le but de développer encore plus la technique d'excitation impulsionnelle, une méthodologie est développée. Elle permet de déterminer les constantes d'élasticité d'un revêtement admettant une anisotropie dans son plan en utilisant la TEI. Tout d'abord, un nouveau modèle a été développé à partir du modèle Dev-CLBT (Eq. (II.38)) en prenant en compte des propriétés anisotropes de la couche. Ce modèle a été validé par comparaison avec un MEF pris comme une référence. Ensuite, le modèle développé a été appliqué pour déterminer les constantes d'élasticité des couches minces de titane élaborées par pulvérisation cathodique magnétron à une incidence oblique (GLAD : GLancing Angle Deposition). La morphologie et la structure des couches déposées ont été analysées et les constantes d'élasticité correspondantes ont été corrélées aux propriétés microstructurales. Cette technique présente une méthode simple pour concevoir diverses architectures colonnaires nanostructurées en utilisant des processus courants tels que la pulvérisation ou l'évaporation.

Le but du processus GLAD est de modifier la microstructure d'une couche en inclinant le substrat. Cette inclinaison permet de contrôler l'ombrage balistique et la croissance d'un film cristallisé durant le dépôt. L'effet balistique devient dominant dans un procédé GLAD étendant les longueurs totales d'ombre grâce à la géométrie oblique du dépôt. Une microstructure de film très poreuse est développée avec une croissance directionnelle des colonnes qui forment un angle 𝛽 par rapport à la normale de la cible. Dans un procédé GLAD, le substrat est incliné d'un angle d'incidence 𝛼 ( Dans ce chapitre, la méthodologie utilisée consiste à déposer différentes paires de revêtements à incidence oblique. L'axe x, défini comme la dimension longitudinale, (resp. l'axe y, défini comme la dimension transversale) du premier échantillon coïncide avec la direction Δ (resp. direction Π). L'inverse est plutôt appliqué au deuxième échantillon où l'axe x (resp. l'axe y) est parallèle à la direction Π (resp. direction Δ), pour obtenir des colonnes inclinées selon deux différentes directions avec un angle d'incidence 𝛼 constant. De cette manière, chaque paire de poutres est soumise en vibration selon l'axe x conduisant à des mesures fréquentielles différentes. Après vibration, les fréquences de résonance mesurées par TEI sont utilisées avec un modèle 1D simplifié pour chaque paire de poutres afin de déterminer les propriétés élastiques dans chaque direction. Cette méthodologie nous permet de déterminer les constantes d'élasticité inconnues du film anisotrope à l'aide d'un modèle mécanique.

A partir de la relation entre contraintes et déformations pour un état de contrainte plane et en tenant compte du décalage de la fibre neutre après dépôt, la matrice de rigidité en flexion du troisième ordre 𝐷 𝑖𝑗 est exprimée dans l'équation (II.28) avec N = 1. Le décalage est calculé en unidirectionnel tout en prenant la composante longitudinale du module d'Young pour chaque paire de poutres, comme suit: La détermination des propriétés élastiques des films déposés par GLAD est importante afin d'utiliser ces films dans le domaine de l'ingénierie et de la science des matériaux. Au niveau de ce chapitre, une première étape de la méthodologie a été atteinte. Dans le chapitre qui suit, une deuxième étape sera abordée et portera sur la détermination des constantes d'élasticité macroscopiques des films de Ti texturés déposés à incidence oblique en tenant compte de ses propriétés microstructurales.

( 𝑒 𝑥 𝑒 𝑦 ) = 1 

Chapitre V Détermination des constants d'élasticité des couches minces anisotropes en modélisant leurs propriétés microstructurales

L'objectif de ce chapitre est de présenter une méthodologie avancée et développée durant ce travail pour déterminer les constantes d'élasticité macroscopiques d'un film texturé et poreux. Cette méthodologie nécessite l'utilisation des modèles analytiques présentant le comportement élastique macroscopique en fonction de la microstructure du film et des constantes d'élasticité du cristal. Des études antérieures ont été faites pour déterminer les constantes d'élasticité macroscopiques de couches minces à comportement anisotrope [Faurie 2010, Hounkpati 2014a, b]. En revanche, à notre connaissance, aucune étude n'a été faite sur des dépôts anisotropes déposés à incidence oblique. De plus, la plupart des études négligent la texture du film. On s'intéresse ainsi principalement à l'influence de la microstructure (la porosité et les textures cristallographiques et morphologiques) sur les propriétés élastiques du film.

Dans ce chapitre, la microstructure du film a été modélisée analytiquement afin d'atteindre notre objectif. Dans un premier temps, une brève introduction sur la diffraction des rayons X (DRX) a été présentée. Ensuite, nous avons introduit les différents notions et modèles de transition d'échelles utilisés dans la littérature qui permettent de relier les quantités mésoscopiques mesurées par DRX aux quantités macroscopiques. Puis, le tenseur de rigidité effective ainsi que la déformation microscopique mesurée par DRX d'un matériau multiphasé ont été formulés dans le cadre du modèle auto-cohérent de Kröner-Eshelby [Eshelby 1957]. Ce modèle a été utilisé dans ce travail pour déterminer les constantes d'élasticité macroscopiques de films de titane polycristallin et texturé présentant une seule phase (Ti α ) et déposés à différents angles d'incidence 𝛼.

L'influence de la texture morphologique ou/et cristallographique sur les propriétés élastiques a été quantifiée. L'influence de l'angle d'incidence sur la réponse élastique microscopique a également été démontrée et quantifiée. L'état de contrainte résiduelle dans les films de titane a été déterminé en fonction de l'angle d'incidence. En effet, la texture de la phase hexagonale Ti α , la forme du grain et la porosité du film de titane ont été prises en compte dans la modélisation. Ce travail nous a permet d'avoir un premier jeu de valeurs de constantes d'élasticité d'un film déposé à incidence oblique.

Le principe des modèles de transition d'échelles est de relier l'état mécanique macroscopique à l'état mécanique mésoscopique. Le principe de base du modèle autocohérent a été proposé par Kröner [Kröner 1958]. Il consiste à relier l'état mécanique macroscopique à l'état mécanique mésoscopique à l'aide d'un tenseur de polarisation satisfaisant à la fois la cohérence des déformations et la cohérence des contraintes. Pour déterminer ce tenseur de polarisation, Kröner s'est basé sur les travaux effectués par Eshelby [Eshelby 1957] pour résoudre le problème d'une inclusion plongée dans une matrice infinie et soumise à des chargements mécaniques à l'infini. Le modèle contient des tenseurs de polarisation, un tenseur de localisation des déformations, un tenseur de concentration des contraintes, l'orientation de chaque cristallite dans le repère de l'échantillon et les différentes phases incluses dans le matériau. Le tenseur de rigidité macroscopique 𝐶 peut être déterminé à partir de l'équation suivante : Avec 𝐶 le tenseur de rigidité macroscopique, 𝑐 Ω 𝑖 le tenseur de rigidité du monocristal,

V 𝑖 et 𝑥 𝑖 le volume et la fraction volumique de la phase 𝑖, respectivement et 𝐼 4 la matrice d'identité d'ordre 4. L'indice Ω représente l'orientation de chaque cristallite dans le repère de l'échantillon. 𝑃(𝐶) représente un tenseur d'ordre 4, appelé tenseur de Morris [Morris 1970], dépend de la forme de l'inclusion et de la rigidité du polycristal. Il peut être déterminé à partir de l'équation suivante [Kocks 1998] : (V.5)

𝑃 𝑖𝑗𝑘𝑙 =
Les angles 𝜃 ∈ [0 ; 𝜋] et 𝜙 ∈ [0 ; 2𝜋] sont les angles qui définissent la direction en coordonnées sphérique du vecteur 𝜉 par rapport aux axes de l'ellipsoïde de longueurs 2𝑎 1 , 2𝑎 2 et 2𝑎 3 . La texture morphologique du matériau peut être décrite par les trois rapports présentés par l'équation (V.5) [Kocks 1998].

Une machine PVD DEPHIS4 a été utilisée pour déposer des couches minces de titane à température flottante par pulvérisation cathodique magnétron à incidence oblique (GLAD) sur des substrats en verre et en silicium. Une cible circulaire de titane, 200 mm de diamètre, ayant une pureté de l'ordre de 99.95 % a été utilisée. Des substrats en verre, ont été utilisés pour déterminer le module d'Young et le module de cisaillement des films par TEI et pour les caractérisations microscopiques par DRX. Les substrats de silicium ont été utilisés pour l'imagerie par microscope électronique à balayage (MEB). Les substrats ont été nettoyés à l'éthanol et à l'acétone puis fixés sur un porte-substrat afin de garantir l'homogénéité du dépôt. La distance cible-substrat a été fixée à 22 cm. Un vide poussé de l'ordre de 10 -4 Pa a tout d'abord été créé à l'intérieur de l'enceinte grâce à un système de pompage. Les angles d'incidence 𝛼 fixés pour une configuration en GLAD sont 0°, 45° et 80°. Le dépôt a été réalisé sous une pression de 0,42 Pa avec un débit d'argon de 40 sccm et une décharge de 1.5 A, appliquée à la cible de titane à l'aide d'un générateur de courant continu pulsé. Le dépôt a été réalisé pendant 240 min sur l'une des deux faces des substrats et nous avons obtenu une couche de titane d'une épaisseur ℎ 𝑐 qui varie entre 850 nm (pour 𝛼 = 80°) et 1.2 µm (pour 𝛼 = 0°).

Une morphologie colonnaire a été observée sur les couches de titane avec une inclinaison d'un angle 𝛽 qui varie en fonction de l'angle d'incidence 𝛼. La forme colonnaire des grains a été introduite dans la simulation en utilisant le modèle autocohérent de Kröner-Eshelby (KE) en utilisant les rapports (tenseur de Morris) présentés dans l'équation (V.5). Les grains ont été considérés comme des inclusions ellipsoïdales avec un rayon dans la direction perpendiculaire à la surface du film six fois plus grand que les rayons dans les deux autres directions. L'orientation des grains décrite selon la convention de Bunge [Bunge 1982] module de cisaillement du substrat provient principalement de la mesure de son épaisseur et de sa masse volumique. Alors que dans le cas du module d'Young de la couche de titane, les facteurs les plus influents sont la masse volumique du film, la fréquence de résonnance du substrat et du composite (substrat + dépôt) et le module d'Young du substrat. En déposant la deuxième couche de niobium, le module d'Young de la première couche de titane a été ajouté à la liste des facteurs les plus influents. En augmentant le nombre de modes de vibration, la contribution de la fréquence sur le module d'Young des couches diminue, bien que celle de la masse volumique et du module d'Young du substrat et des couches précédentes augmente.

Par évaluation des incertitudes sur la mesure du module de cisaillement, les sources les plus influentes sur la mesure du module de cisaillement du film sont : la densité des films, les fréquences de torsion du substrat et du composite et les modules de cisaillement des couches précédentes (substrat et premier film de titane). En comparant les deux analyses d'incertitude sur le module d'Young et le module de cisaillement des films, on peut confirmer que les facteurs les plus influents sur la mesure restent les mêmes avec quelques équivalences. Le module d'Young et les fréquences de flexion (pour les modèles Ext-PM et Dev-CLBT) correspondent respectivement au module de cisaillement et aux fréquences de torsion (pour le modèle Ext-Slim). Ces facteurs ont la plus grande influence sur la mesure des constantes d'élasticité des films.

Un nouveau modèle pour déterminer les constantes d'élasticité des films minces déposés à incidence oblique a été développé grâce à l'application de la théorie classique des poutres stratifiées (CLBT). Ce nouveau modèle prend en compte le décalage de la fibre neutre après dépôt et l'anisotropie dans le plan du film. Le modèle a été validé par comparaison avec un modèle éléments finis pris comme une référence. Des dépôts de titane pur ont été élaboré par pulvérisation cathodique magnétron à différents angles d'incidence (𝛼 = 0°, 45° et 80°), ses modules d'Young ont été déterminés à l'aide du nouveau modèle et la technique d'excitation impulsionnelle et ses modules de cisaillement à l'aide du modèle de Slim avec le module d'Young correspondant. En augmentant l'angle d'incidence, une baisse du module d'Young et du module de cisaillement du film de titane par rapport à ceux du matériau massif a été observée. L'analyse de morphologie a montré que les couches déposées montrent des morphologies colonnaires inclinées d'un angle 𝛽 par rapport à la normale pour des angles d'incidence différents de zéro. L'analyse de structure des couches présente une seule phase Ti α , stable de structure hexagonale compacte pour les trois angles d'incidence. La texture de cette phase représente une fibre d'axe {0002} inclinée d'un angle 𝜂 selon la normale à la surface. Selon les calculs faits avec le modèle de Nemat-Nasser, la baisse du module d'Young ne peut pas être attribuée uniquement à la diminution de la masse volumique du dépôt (liée à la porosité) comparée à la masse volumique du matériau massif.

Les constantes d'élasticité macroscopiques ont été recalculées à partir d'un modèle micromécanique. Dans ce travail, nous avons utilisé le modèle de Kröner-Eshelby. La texture des films de titane a été déterminée à l'aide de figures des pôles. L'angle d'inclinaison de la fibre 𝜂 a été mesuré par diffraction des rayons X. L'angle d'inclinaison des colonnes 𝛽 a été mesuré sur les images observées par microscopie électronique à balayage. La porosité dans le film a été mesurée par analyse d'images et par comparaison entre la masse volumique du film et du matériau massif sans pores. À l'aide du modèle autocohérent, nous avons formulé le tenseur de rigidité effectif des dépôts poreux, monophasé (Ti α ) et ayant des colonnes et des fibres inclinées. Puis, les constantes d'élasticité macroscopiques des films de titane ont été déterminées en prenant en compte les propriétés microstructurales (porosité, texture cristallographique et texture morphologique) de chaque film. D'après le calcul, on a trouvé que les films présentent un comportement transversalement isotrope avec une faible anisotropie dans le plan du film déposé à 𝛼 = 80°. Les différences entre les modules d'Young et de cisaillement mesurés par la technique d'excitation impulsionnelle et recalculés par le modèle autocohérent ont été attribuées aux incertitudes de mesures et de calculs pour les films déposés à 0° et 45° d'incidence. Par contre, pour 𝛼 = 80°, on a remarqué que cette différence est supérieure aux incertitudes. Ceci peut être due à l'incapacité du modèle autocohérent à modéliser les microstructures présentant une porosité élevée (p > 12%). Les constantes d'élasticité macroscopiques des dépôts de titane présentées dans le Chapitre IV ont été recalculées et la même conclusion a été retrouvée. Nous avons montré que la porosité dans le film a un effet dominant sur les modules d'Young et de cisaillement. L'effet de la texture morphologique ou/et cristallographique sur le comportement microscopique devient dominant. L'influence de l'angle d'incidence sur la réponse élastique microscopique a également été démontrée et quantifiée. Ce travail nous a permet d'avoir un premier jeu de valeurs de constantes d'élasticité d'un film déposé à incidence oblique.

Dans ce travail, le comportement élastique des films GLAD n'est pas bien décrit par le modèle KE. Le modèle KE peut ne pas être bien adapté aux matériaux très poreux, où une interaction significative des pores peut probablement être obtenue. L'anisotropie élastique macroscopique peut être étudiée en utilisant d'autres modèles de transition d'échelle comme celui de Mori-Tanaka qui pourrait simuler plus précisément la microstructure des films en GLAD.

Afin de déterminer les constantes d'élasticité macroscopique des films de titane, nous avons utilisé les constantes d'élasticité de la phase Ti α de la littérature. Alors qu'il peut être possible que le comportement de notre phase Ti α soit différent. Une détermination du tenseur de rigidité de cette phase, nous permettra de comparer les coefficients 𝑐 𝑖𝑗 𝛼 calculés avec celles qui existent dans la littérature et ne pas imposer un jeu de valeurs qui peut ne pas correspondre à notre cas. Pour cela, il conviendra d'effectuer des mesures de déplacement des pics de diffraction de la phase Ti α sous chargement imposé.

La méthode des blocs de texture a été utilisée dans la mesure des déformations par diffraction des rayons X et dans le modèle autocohérent. La texture des dépôts a été prise en compte en idéalisant les orientations cristallographiques de la phase Ti α . Cependant, la texture du dépôt peut être décrite plus précisément à l'aide de fonctions de distributions des orientations.

Résumé

L'objectif de ce travail est de développer une méthodologie qui permet de déterminer les constantes d'élasticité d'un dépôt à une échelle macroscopique. Différents modèles analytiques ont été développés pour déterminer les constantes d'élasticité d'un revêtement multicouches à l'aide de la Technique d'Excitation Impulsionnelle (TEI). La méthodologie que nous avions développée a permis de déterminer les constantes d'élasticité macroscopiques d'un revêtement multicouches de titane et niobium et des couches minces de titane déposées à incidence oblique par pulvérisation cathodique magnétron. Une formulation améliorée pour déterminer les constantes d'élasticité d'un revêtement anisotrope a été développée. Le comportement élastique des couches anisotropes a été étudié théoriquement par différents modèles analytiques et expérimentalement à l'aide de la diffraction des rayons X, la nanoindentation et la TEI. Le comportement élastique des couches anisotropes déposées à incidence oblique s'agit d'un aspect qui n'est pas bien connu dans la littérature. L'anisotropie peut être attribuée à la texture cristalline et la morphologie des grains. Les constantes d'élasticité macroscopiques des couches anisotropes de titane ont également été déterminées à l'aide du modèle micromécanique de Kröner-Eshelby. La porosité au sein de la couche, et les textures morphologiques et cristallographiques de la phase Ti α ont été prises en compte dans la modélisation pour une analyse exacte du comportement élastique de la couche. Ecole Doctorale "Sciences pour l'Ingénieur"
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  Fig. I.1. The Poisson's and Chentsov's effects shown on this figure correspond respectively to the shearing strains produced by a normal stress and the coupling between a shear stress and the shearing strains in orthogonal planes. A similar partition is also possible for the compliance matrix [S].

Fig. I. 1 .

 1 Fig. I.1. The different mechanical effects of the stiffness matrix.

  material has the same elastic properties in all directions. It represents highest level of symmetry. In this case, only two independent components 𝐶 11 and 𝐶 12 are sufficient to characterize the elastic behavior of the material, as follows:

  . [Shaochen 2018] have determined the hardness and Young's modulus of ZrN films deposited by magnetron sputtering on zirconium alloy substrates at different working pressures. They have found that the best mechanical properties were obtained at a working pressure of 0.7 Pa (H = 16 GPa and E = 193.5 GPa). Bao et al. [Bao 2018] have measured by nanoindentation the Young's modulus of a 1.5 𝜇𝑚 thick SiC film deposited at different working pressures by magnetron sputtering on a Zircaloy-4 (zirconium alloy) substrate. They have found that Young's modulus decreased from 214 GPa to 100 GPa by increasing the working pressure from 0.4 Pa to 2.4 Pa (Fig. I.2). Achache et al. [Achache 2016] have reported that Young's modulus of TNTZ superelastic films produced by magnetron sputtering depends on the working pressure and the substrate bias voltage. Using nanoindentation tests, they have shown that Young's modulus is inversely proportional to the working pressure; it reduced from 104 GPa to 89 GPa with increasing the pressure from 0.2 Pa to 2 Pa. The bias voltage differently influenced the film Young's modulus. It slightly increased from 104 GPa to 108 GPa with increasing the substrate bias voltage from 0 V to -200

Fig. I. 2 .

 2 Fig. I.2. Evolution of the hardness and Young's modulus of SiC films deposited at different working pressures [Bao 2018].

  By varying the working pressure between 0.1 Pa and 1.6 Pa, Bao et al.[Bao 2018] have noticed that the SiC films deposited at low pressure below 0.3 Pa were cracked and delaminated from the substrate. The films deposited at 0.4 Pa were dense and those deposited at a pressure above 0.8 Pa presented a columnar growth. Zhang et al.[Zhang 2017] reported that the deposition temperature of CrB 2 thin film influenced its morphology. A fine and dense structure at 100 °C. Beyond 100 ℃ and up to 400 ℃, the deposited films showed columnar growth.Achache et al.[Achache 2016] have shown that by varying the working pressure between 0.5 Pa and 2 Pa, the TNTZ deposited films presented columnar growth. By reducing the pressure to 0.2 Pa, they have obtained dense films. In addition, the films deposited at 0.2 Pa with high bias voltage varied between -100 V and -300 V presented a crater-like surface.I.3.3. StructureThin films produced by magnetron sputtering are generally polycrystalline and composed of different phases. Since magnetron sputtering is an out of equilibrium deposition process, it favors the formation of metastable phases, such as W β in tungsten films[Shen 2000, Girault 2013, Slim 2017b], Ti β in Ti-17 films[Liu 2018] and Ta β in tantalum films[Javed 2010, Colin 2017]. Pfeiler et al.[Pfeiler 2007] have reported the presence of different phases within the Ti-Al-V-N films. With increasing the bias voltage, the fraction of the hcp phase decreased and then disappeared at -160 V (Fig.I.3).

Fig. I. 3 .

 3 Fig. I.3. X-ray diffraction patterns of Ti-Al-V-N coatings deposited at different bias voltages [Pfeiler 2007].

Fig. I. 4 .

 4 Fig. I.4. (110) and (100) measured pole figures for Ni-Mn-Ga based films deposited at: a) 30 W, b) 50 W, c) 70 W and d) 90 W [Sharma 2016].

  Moreover, several studies have examined the evolution of the film texture as a function of the substrate inclination angle 𝛼. Abadias et al. [Abadias 2019b] have determined the texture of HfN films deposited at oblique angle deposition conditions. With increasing 𝛼 above 35°, the development of biaxial texture with double in-plane alignment was noticed (Fig. I.5).

Fig. I. 5 .

 5 Fig. I.5. {111} (a, c, e, g) and {200} (b, d, f, h) X-ray diffraction pole figures of oblique angle deposition HfN films at different substrate inclination angles [Abadias 2019b].

  ℎ, 𝑘 and 𝑙 are Miller's indices. 𝜀 𝜙,𝜓 {ℎ𝑘𝑙} represents the average strain measured on a family of planes {ℎ𝑘𝑙} in the measurement direction defined by the tilt 𝜓 and azimuth 𝜙 angles. 𝜎 𝑖𝑗 𝐼 represents the macroscopic stress. Chapter I Introduction to the elasticity of thin films 26

  Fig. I.8. Schematic representation of a) the measurement system of the elasticity constants and b) the flow chart used for elasticity constants identification [Pagnotta 2009].

Fig. I. 9 .

 9 Fig. I.9. Schematic representation of the methodology adopted for the characterization of the elastic behavior of thin films.

  x and time t (Fig. II.1), 𝐸 is the Young's modulus, 𝐼 𝑦 is the second moment of area with respect to the z-axis of the cross-section and 𝑆 is the cross-sectional area.

Fig. II. 1 .

 1 Fig. II.1. Schematic representation of a beam subjected to flexural vibrations.

  neutral axis after deposition (Fig. II.2(a)). The second moments of area of the substrate and the coating were expressed as a function of the shift 𝑒 1 presented in Fig. II.2. This shift can be determined using the equilibrium of the axial forces [Gere 2003] generated during pure bending (Fig. II.2(b)) as follows:

2 .

 2 Fig. II.2. Schematic representation of the shift of the neutral axis: a) cross-sectional view, b) stress distribution in a three-layer composite beam.

Fig. II. 3 .

 3 Fig. II.3. Schematic view of a symmetrical laminated beam.

Fig. II. 4 .

 4 Fig. II.4. Schematic representation of a beam subjected to torsional vibrations.

  Fig. II.5. Schematic representation of a multilayer beam: a) free configuration of a multilayer beam and b) The z-coordinates of each layer in a cross-sectional view.

  (FEA) was carried out using the commercial finite element code ABAQUS[Abaqus 2016] in order to determine the frequencies in the flexural and torsional modes of the naked substrate, the bilayer and the three-layered beams. The beam has a length 𝐿 of 70 mm, width 𝑏 of 20 mm and thickness ℎ 0 of 1 mm with a rectangular crosssection.

  Fig. II.6. Cross-section of FEM with the meshing configuration: a) 𝑅 ℎ1 > 0.5, b) 𝑅 ℎ1 ≤ 0.5.

  Fig. II.7. Deformed flexural vibrating beam: a) mode I, b) mode II, c) mode III and d) mode IV. The colors indicate the vertical displacement (in mm).

  Fig. II.8. Comparison between analytical and numerical models for bilayer isotropic beam (substrate + film) for different Young's moduli and density ratios: a) 𝑅 𝐸1 =0.17, 𝑅 𝜌1 =0.14, b) 𝑅 𝐸1 =2.07, 𝑅 𝜌1 =2.41, c) 𝑅 𝐸1 =3.56, 𝑅 𝜌1 =8.28, and d) 𝑅 𝐸1 =18.98, 𝑅 𝜌1 =13.6.

  Fig. II.9. Comparison between analytical and numerical models for a multilayer beam comprising three isotropic materials for different Young's moduli and density ratios: a) 𝑅 ℎ1 =0.004, 𝑅 𝐸2 =0.26, 𝑅 𝜌2 =0.44, b) 𝑅 ℎ1 =0.1, 𝑅 𝐸2 =0.26, 𝑅 𝜌2 =0.44, c) 𝑅 ℎ1 =0.004, 𝑅 𝐸2 =3.56, 𝑅 𝜌2 =8.28, d) 𝑅 ℎ1 =0.1, 𝑅 𝐸2 =3.56, 𝑅 𝜌2 =8.28, e) 𝑅 ℎ1 =0.004, 𝑅 𝐸2 =18.68, 𝑅 𝜌2 =1.9, and f) 𝑅 ℎ1 =0.1, 𝑅 𝐸2 =18.68, 𝑅 𝜌2 =1.9.

For a bilayer

  Fig. II.11. Comparison between analytical and numerical models for torsional bilayer beam: a) 𝑅 𝐺1 =0.16, 𝑅 𝐸1 =0.17, 𝑅 𝜌1 =0.14, b) 𝑅 𝐺1 =2.05, 𝑅 𝐸1 =2.07, 𝑅 𝜌1 =2.41, c) 𝑅 𝐺1 =3.56, 𝑅 𝐸1 =3.56, 𝑅 𝜌1 =8.28, and d) 𝑅 𝐺1 =17.4, 𝑅 𝐸1 =18.98, 𝑅 𝜌1 =13.6.

III. 1 .

 1 IntroductionAfter developing analytical models for the determination of the elasticity constants of multilayer coatings, this chapter presents the experimental application of these mechanical models to multilayer coatings deposited by magnetron sputtering. The Ext-PM, Dev-CLBT and Ext-Slim models were applied to determine the Young's and shear moduli of pure titanium, and niobium thin films deposited by DC magnetron sputtering. An uncertainty analysis is performed according to the recommended ISO standard guidelines[JCGM 2008]. The measurement uncertainties are determined in order to quantify the most influencing factors on the global uncertainty of the elasticity constants.In this chapter, the methodology is developed for evaluating the measurement uncertainties and is applied to determine the Young's and shear moduli of titanium (Ti), and niobium (Nb) films in multilayers deposited by DC magnetron sputtering on different substrates. The morphology and structure of the deposited layers are analyzed. The elastic constants of each layer are discussed with regard to its morphology and structure. A comparison between the reduced modulus determined by IET and NanoIndentation (NI) is performed.

Fig. III. 1 .

 1 Fig. III.1. Illustration of the magnetron sputtering technique.

3 .

 3 Fig. III.3. Fundamental flexural (a) and torsional (b) configurations applied to the IET.

Fig. III. 4 .

 4 Fig. III.4. Experimental equipment of the IET.

Fig. III. 6 .

 6 Fig. III.6. TriboIndenter TI 980-Hysitron.

X

  Fig. III.7. X-ray Diffractometer, Bruker D8 Advance.

  equation of uncertainty propagation for Ext-PM (Eqs. (II.22)) and (II.66)). The analytical expressions of Dev-CLBT (Eq. (II.85)) and Ext-Slim (Eqs. (II.48) and (II.109)) models present implicit functions. Their corresponding uncertainties cannot be evaluated using the equation of uncertainty propagation. They are calculated using Monte Carlo method by generating a random dispersion on the experimental values.

  ). Fig. III.8 shows a cross-section SEM image of Nb/Ti/Si multilayer sample. No significant variation appeared in the film thickness. It can be seen that the two films present a porous microstructure with a

Fig. III. 8 .

 8 Fig. III.8. Cross-section SEM image of the titanium and niobium films deposited on silicon substrate.

  Fig. III.10. Comparison between analytical and numerical models for bilayer isotropic beam (substrate + film) with 𝑅 ℎ1 =0.3 and for different Young's moduli, and density ratios: a) 𝑅 𝐸1 =0.53, 𝑅 𝜌1 =1.07, b) 𝑅 𝐸1 =1.65, 𝑅 𝜌1 =1.76. a) b)

Fig

  Fig. III.12. Contribution of each error source (in %) on the AISI 316 substrate Young's modulus uncertainty.

Fig

  Fig. III.13 and Fig. III.14 present the contribution of each source on the uncertainty of the Ti and Nb film Young's moduli, respectively. They are calculated using the equation of uncertainty propagation for Pautrot's and Ext-PM models based on the flexural theory. For

  of thin films. Compared to Ext-PM, the Dev-CLBT model can take into account the anisotropy and allow us to develop the vibrational technique (IET) in order to determine the anisotropic moduli of coating in different directions.Thin films, in monolayer or multilayer, often exhibit anisotropy with different properties between the direction perpendicular to the film (z-axis) and the plane of the film (x-y plane).

  Firstly, a new model is developed using the Dev-CLBT model (Eq. (II.85)) with anisotropic film. Then, this model is validated by comparison with a Finite Element Model (FEM) taken as a reference. Finally, it is applied to determine the elasticity constants of titanium thin films deposited by magnetron sputtering with GLancing Angle Deposition (GLAD). The morphology and structure of the Ti deposited films are analyzed and the corresponding elasticity constants were correlated to the microstructural properties.

1 .

 1 Fig. IV.1. Schematic illustration of PVD configurations in: a) conventional sputtering and b) GLAD sputtering.

  can cite those performed on TiO2-SiO2 multilayers with different microstructures[Roa 2016], TiO2 thin films in inclined columns and zigzag multilayers[Jiménez-Piqué 2014, Gaillard 2009], TiAlN tilted columns[Shetty 2011], Cr zigzag multilayers[Lintymer 2005[Lintymer , 2006]], and Ti, Cr and SiO thin films as micro springs[Seto 2001]. Gaillard et al[Gaillard 2006] showed that the reduced Young's modulus of Yttria-Stabilized Zirconia (YSZ) thermal barrier coatings are closely related to their columnar microstructure. From these references, the NI technique Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 109 simply leads to a global elastic modulus that depends on the elastic moduli in the three directions.For nanoporous thin films, a new method was developed to determine the indentation modulus using Atomic Force Acoustic Microscopy (AFAM). A recent work [Kopycinska-Müller 2013] has shown a very good agreement between the values of the indentation modulus obtained by the AFAM method and those determined by nanoindentation. Tokas et al.[Tokas 2015] used the AFAM to characterize HfO2 thin films deposited at glancing angles of 0°, 40°, 57°, 68° and 80°. They found that the indentation modulus increases with a decrease in the glancing angle. More information about the elastic behavior of nanostructured thin films seems inexistent in the literature. Hence, it is important to investigate not only on the elastic properties but also on the plane anisotropy of such films, which are different from conventional films.In this context, the present chapter aims to propose a new methodology to characterize the elastic anisotropy of thin films deposited with the GLAD technique. This methodology is applied using the impulse excitation technique (IET), which is a dynamic technique, with a newly developed model, based on the laminated beam theory that takes into account the anisotropy of these thin films. The laminated beam theory was previously used to determine the Young's modulus of multilayer thin films as presented in Chapter II.IV.2.3. Crystallographic orientationA polycrystalline material is composed of crystallites distributed in the material depending on the elaboration process. The preferential orientation generated during the process can influence the mechanical and physical properties. When depositing a thin film by magnetron sputtering at zero incidences (𝛼 = 0°), polycrystalline structure with a preferential orientation can be obtained in zone T or zone2 (Fig. IV.3) of an extended Structure Zone Model (SZM)[Van der Drift 1967, Thornton 1974]. Different crystallites with random out-of-plane orientation will nucleate. Some crystallites will overgrow the others owing to an anisotropic growth rate that depends on the crystallographic orientation. This phenomenon will evolutionary lead to only one crystallographic out-of-plane orientation with faceted columns. This preferential out-of-plane alignment corresponds either to the geometrically fastestgrowing direction in zone T structure or to the plane of the lowest surface energy in zone 2 structure (Fig.IV.3) [Mahieu 2006a].

Fig. IV. 3 .

 3 Fig. IV.3. Structure zone diagram applicable to energetic deposition. The reader should avoid reading specific values or predictions since the actual values depend on the material and many other conditions [Anders 2010].

  Fig. IV.5. Schematic illustration of the 𝛥 and 𝛱 directions.

  Fig. IV.6. Schematic illustration of the orientation of the columns in a film deposited towards: a) the longitudinal direction (𝛥) of the beam and b) the transverse direction (𝛱) of the beam.

  𝐸 𝑦 : Young's modulus of the film along the transverse direction, 𝜈 𝑥𝑦 : highest Poisson's ratio of the film, 𝜈 𝑦𝑥 : lowest Poisson's ratio of the film, 𝐺 𝑥𝑦 : in-plane shear modulus of the film.

FEM

  Fig. IV.7. Comparison between the developed analytical model and the numerical model: a) 𝐴𝑅 𝐸 = 1, b) 𝐴𝑅 𝐸 = 1.67, c) 𝐴𝑅 𝐸 = 5 and d) 𝐴𝑅 𝐸 = 25.

  Fig. IV.9. Cross-section (a) and top view (b) SEM images of Ti films grown by glancing angle deposition at various glancing angles 𝛼 (0°, 45° and 80°).

  For a glancing angle of 45° and 80°, the shadowing effect becomes significant and the columns are tilted approximately by 10° ± 3° and 23° ± 3° respectively as shown in the cross-Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 123 sectional SEM images (Fig.IV.9(a)). The values of the experimental column tilt angle are closed to those reported in the literature for Ti films[Siad 2016[START_REF] Pedrosa | [END_REF], Dervaux 2017, Alvarez 2019]. At low sputtering pressures (0.2 Pa -0.4 Pa), Pedrosa et al.[START_REF] Pedrosa | [END_REF] 

  IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 124 the GLAD films as a function of the substrate position. The same configuration as Fig. IV.8,

3 .

 3 Crystalline structure and texture evolution of the deposited thin filmsIn order to characterize the crystalline structure of the Ti films, a Bruker D8 Advance diffractometer equipped with a CuKα tube radiation (𝜆 = 0.15418 nm) and operated at 40 kV and 40 mA was used to acquire X-ray diffraction patterns (XRD) (Fig.III.7). A point focus mode with a 1 mm collimator was used for the incident beam. The diffractometric angle 2𝜃 was varied between 30° and 150°. As thin films sputter-deposited by magnetron sputtering had generally non-random crystallographic orientation, an experimental protocol was adopted in order to diffract all the planes families {ℎ𝑘𝑖𝑙}. It consists of diffracting the film along different measurement directions (𝜙,𝜓). In order to acquire the sum of the X-ray diffraction patterns as well as pole figures, the azimuthal angle 𝜙 was varied between 0° and 360°, and the tilt angle 𝜓 was varied between 0° and 70°. The equal-area projection method[Matthies 1992, Kocks 1998] was used to define the measurement increment (step) on the (𝜙,𝜓) angles. The resolution was taken equal to 10° for the azimuth and tilt angles. The XRD patterns of the deposited titanium films are shown in Fig. IV.10, for the three values of the glancing angle 𝛼. The identification of the titanium film phases was performed on the sum of the diffraction patterns collected in the range of azimuth and tilt angles mentioned above. It can be clearly seen that all structures exhibit a single hcp (hexagonal closed packed) Ti α stable phase, compared to the reference powder diffraction data (COD CIF file 1532765).

Fig. IV. 10 .

 10 Fig. IV.10. Sum of the X-ray diffraction patterns of titanium films grown for the three values of glancing angle α (0°, 45° and 80°).

Fig

  Fig. IV.11 shows the experimental pole figures drawn with the DIFFRAC.TEXTURE software and measured for two diffraction peaks that correspond to {0002} and {101 ̅ 1} planes of the Ti α phase. In order to perform the texture measurements, the samples were placed on the XRD stage so that the incident flux direction lies with the goniometer azimuthal angle 𝜙 of 270°. This direction was chosen as a reference for all samples and the black arrows shown in Fig. IV.11, correspond to the incident flux direction. At normal incidence (𝛼 = 0°), the pole figure of the {0002} plane exhibits a maximum diffracted intensity approximately at the centerwith a small inclination of 7° ± 3°. This small deviation of the texture is usual in such sputtering processes and can be due to small angular spread between the substrate normal and the vapor flux direction[Sohn 1994, Slim 2019]. Besides, the {101 ̅ 1} pole figure shows a ring around the 7° shifted center with an inclination angle 𝜓 of 61.3° ± 0.5°, which is coherent with the angle between (0002) and (101 ̅ 1) planes in a hexagonal symmetry. It shows an out-of-plane fiber texture of the film along the [0002] direction that explains the high intensity of the (0002) diffracted plane shown on the XRD pattern. These indications show that the crystalline growth is faster along the c axis of the crystal than along other directions.

  Fig. IV.11. {0002} (a) and {101 ̅ 1} (b) experimental pole figures of the 𝑇𝑖 𝛼 phase by glancing angle deposition at various glancing angles 𝛼 (0°, 45° and 80°). The pole figures are represented in stereographic projections and the black arrows at the right of the figures show the vapor flux direction.

[

  Fig. IV.13. Binary images made by ImageJ software based on SEM top-view images that were used for image analysis at various glancing angles 𝛼 (0°, 45° and 80°).

  Fig. IV.14 shows the evolution of hardness 𝐻 and reduced modulus 𝐸 𝑟 of the Ti films as a function of the glancing angle 𝛼. The measurements were performed on the samples oriented toward x (𝐻 𝑥 , 𝐸 𝑥 𝑟 ) and y axes (𝐻 𝑦 , 𝐸 𝑦 𝑟 ).

Fig. IV. 14 .

 14 Fig. IV.14. Influence of the deposition glancing angle 𝛼 on the mean value of the hardness 𝐻 𝑐 and the reduced modulus 𝐸 𝑟 of the titanium films measured by nanoindentation.

  constants of thin films with anisotropic behavior. An enhanced formulation was developed allowing the determination of the elasticity constants of a coating by means of the Impulse Chapter IV Improvement of the IET to determine the anisotropic elasticity constants of coatings sputter-deposited at oblique incidence 138 Excitation Technique. The model was validated by comparing the results to those obtained from a numerical finite element model. Titanium thin films were sputter-deposited on inclined glass substrates and Si wafers with three different deposition glancing angles (𝛼 = 0°, 45° and 80°). Several substrate-holders were fabricated to obtain the same deposition conditions for all inclined samples. Analyses of morphology, crystalline structure and texture development of Ti thin films deposited at different glancing angles were performed. A porous microstructure with columnar growth was formed.

Diffraction theory V. 2 . 1 .

 21 Fig. V.1. a) Schematic illustration of X-ray diffraction, b) diffraction pattern representing the intensity as a function of the diffraction angle, acquired on a titanium film.

(

  Fig. V.2). The shift of the diffraction peak is used to measure the elastic strain of the material along the measurement direction.

Fig. V. 2 .Fig. V. 3 .

 23 Fig. V.2. Schematic representation of a diffraction peak shifted under the stress effect.

V. 3 .

 3 Fig. V.4. The three orders of stresses and strains in the framework of a micromechanical procedure.

  Fig. V.5. Crystal coordinate system (𝐶 1 , 𝐶 2 , 𝐶 3 ) and sample coordinate system (𝑆 1 , 𝑆 2 , 𝑆 3 ).

  Fig. V.6. Definition of the crystal coordinate system with respect to the crystal lattice: a) cubic and b) hexagonal.

  First rotation of angle 𝜑 1 around the 𝑆 3 axis, where 𝜑 1 ∈ [0 ; 2𝜋].  Second rotation of angle 𝜙 around the new 𝑆 1 ′ axis, where 𝜙 ∈ [0 ; 𝜋].  Third rotation of angle 𝜑 2 around the new 𝑆 3 ′′ axis, where 𝜑 2 ∈ [0 ; 2𝜋].

1 .

 1 Macroscopic and mesoscopic elastic behavior: representation step

  on the mechanical state of the material. As examples of the first group are Voigt, Reuss and the Neerfeld-Hill models, which offer analytical expressions to determine approximately the effective mechanical properties of a material. However, as examples of direction-dependent grain-interaction models are the KE self-consistent model, the Mori-Tanaka model, the Vook-Witt and the inverse Vook-Witt models.

V. 5 . 1 .

 51 Glancing angle deposition: procedure and conditions A DEPHIS4 PVD machine (Fig. III.2) was used to deposit titanium thin films at floating temperature, by magnetron sputtering, at oblique incidence on glass, iron and silicon substrates. A high purity (99.99 %) Ti circular target of 200 mm diameter was used. The glass substrates were used for NI and XRD measurements, and to determine the elasticity constants of the Ti films by means of the IET. Iron substrates were used to determine the film residual stresses using the curvature method (Stoney's formula). Silicon substrates were used for Scanning Electron Microscope (SEM) imaging. The substrates were ultrasonically cleaned in ethanol and acetone for 10 min. Then, they are fixed on the same aluminum holders as those used in Chapter IV, with three different inclinations 𝛼 = 0°, 45° and 80° for deposition with respect to the target normal (Fig. IV.1). The target-to-substrate distance was set at 22 cm. The deposition chamber was first pumped down with a turbo-molecular pump to less than 10 -4 Pa. Before the deposition process, the titanium target was sputter-cleaned for 20 min in pure argon discharge (Ar flow rate: 50 sccm) to remove impurities and surface contamination. The deposition process was carried out under a low pressure of 0.42 Pa with an argon flow rate of 40 sccm. The electrical Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties current intensity applied to the Ti target was 1.5 A using a DC-pulsed power supply for 240 min of deposition. The dimensions, mass and density of the glass substrates and Ti films are presented in Table V.1 and Table V.2. As for the case of series A, one pair of samples B were used for each glancing angle configuration, one along the longitudinal direction and the other one along the transverse direction.

  Fig. V.7. Cross-section (a) and top view (b) SEM images of Ti films grown by glancing angle deposition at various glancing angles 𝛼 (0°, 45° and 80°).

  Fig. V.8. Ellipsoidal grain (needle-like grain) [Slim 2019].

Fig. V. 9 .

 9 Fig. V.9. Sum of the XRD patterns of titanium films grown at the three values of glancing angle 𝛼 (0°, 45° and 80°) for the samples of series B.

Fig. V. 10 .

 10 Fig. V.10. Intensity profile around the (0002) peak of Ti α at the three values of glancing angle 𝛼 (0°, 45° and 80°).

Fig

  Fig. V.14. {0002} 𝛼 (a) and {101 ̅ 1} 𝛼 (b) simulated pole figures of the Ti α phase with ideal orientation. The pole figures are represented in stereographic projections. The Red Crosses represent the poles of the northern hemisphere.

  figures of Ti α phase (Fig. V.11 and Fig. V.12), we can notice that the intensity poles are approximately located at the same positions. So we can conclude that the texture of Ti α phase can be described using the following Euler angles, according to the Bunge convention: Ω ≡ (𝜑 1 = 0°, 𝜙 = 𝜂, 0 ≤ 𝜑 2 ≤ 360°) for the samples horizontally deposited (B 0,Y , B 45,Y , B 80,Y )

  Fig. V.16. Effect of the porosity, the morphological and crystallographic textures on: a) Young's moduli and b) shear moduli, (MT): Morphological texture, (CT): Crystallographic texture.

  figures of the Ti α phase at different glancing angles.

  Fig. V.18 shows the linear relationship between the strain variation and the inverse of the curvature radius at the three glancing angles. It can be noticed that the microscopic strain varies depending on the crystallographic plane {ℎ 𝑘 𝑙}, the measurement direction and the glancing angle.

  21 shows the recalculated and measured reduced moduli of the Ti films and their uncertainties. By comparing the recalculated reduced modulus and the reduced modulus obtained by NI on the Ti films of series A presented in Fig. IV.14, we can notice a differenceat 𝛼 = 0° and 45° that can be attributed to the measurements and calculations uncertainties. For 𝛼 = 80°, the difference is higher than the measurements and calculations uncertainties. As expected, this is influenced by coupled effects: high porosity and high fiber tilt angle and thus the KE model cannot accurately model such microstructure. It can also be noted that this difference can be due to the contribution of the substrate or the influence of the porosity and the morphological and crystallographic textures on the film when performing NI. The agreement between the results of NI and KE at 𝛼 = 0° and 45° confirms the absence of anisotropy in the film plane, and thus the difference between the directions x and y found at 𝛼 = 45° using the IET is rather due to the porosity.Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties

  variation [Detor 2009]. It can be noticed that the residual stress of the Ti film under normal deposition (𝛼 = 0°) conditions is tensile. It is consistent with some results found in the literature Chapter V Determination of the elasticity constants of anisotropic coatings by modeling their microstructural properties 193 (50 MPa [Fang 2000], 200 MPa [Siad 2016]). With the change of glancing angle, the absolute value of the stress suddenly drop for 𝛼 > 45° to reach a low value at 𝛼 = 80°. V.7.2.2. Crystallite group method Among the techniques for determining residual stresses in crystalline materials, XRD has attracted special attention because it allows a non-destructive and quantitative evaluation of surface stresses. This technique allows us also to obtain complex information on the mechanical state of material precisely of its diffracting volume, intermediate between the macroscopic and mesoscopic scales (Fig. V.4). Using XRD, the stress state can be determined in the closest volume to the film surface.

  figures plotted using the data collected by XRD. The morphological texture was taken into account through the Morris tensor. The anisotropic KE model was used to simulate the macroscopic and microscopic elastic behavior of the deposited titanium films. The SCECs of the Ti α phase, used as entry data, were the average of data found in the literature.

1 . 2 . 3 .

 123 Fig. A.1. Strain variation of the {112 ̅ 4} 𝛼 family of planes as a function of the inverse of the curvature radius calculated using the KE model at various glancing angles 𝛼 (0°, 45° and 80°).
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  'après la bibliographie, on peut conclure qu'une caractérisation macroscopique des constantes d'élasticité des dépôts élaborés par pulvérisation cathodique magnétron est insuffisante pour prédire son comportement élastique. En conséquence, une caractérisation microscopique des constantes d'élasticité des couches minces est nécessaire qui permettra une meilleure prédiction du comportement élastique de ces couches. Plusieurs modèles de transition d'échelles ont été utilisés pour déterminer les constantes d'élasticité du monocristal et du polycristal.Le but de cette thèse est de proposer des méthodologies permettant de caractériser le comportement élastique des couches minces anisotropes à deux échelles différentes(Figure I.1). Pour la caractérisation élastique macroscopique des dépôts élaborés, notre choix s'est reposé sur la Technique d'Excitation Impulsionnelle (TEI) étant donné les avantages qu'elle présente par rapport aux autres techniques. Quant à la caractérisation mésoscopique, on a choisi d'effectuer des essais de diffraction des rayons X (DRX). Grâce à son caractère sélectif, la DRX permettra de déterminer les différentes propriétés microstructurales des couches. L'approche microscopique permettra de déterminer le comportement élastique des couches minces anisotropes en tenant compte de leurs propriétés microstructurales (phases, textures morphologique et cristallographiques, porosité). Ces méthodes seront appliquées à des couches minces en multicouches ayant un comportement isotrope (Chapitres II et III) et puis à des couches déposées à incidence oblique ayant un comportement anisotrope (Chapitres IV et V).

Figure I. 1 .

 1 Figure I.1. Représentation schématique de la méthodologie adoptée pour la caractérisation du comportement élastique des revêtements.

Figure II. 1 .

 1 Figure II.1. Représentation schématique du décalage de la fibre neutre a) vue de section, b) répartition de contraintes dans une poutre composée d'un substrat et de deux couches.

  caractérisations par la TEI, la DRX et la nanoindentation. Les substrats de Si ont été utilisés pour l'imagerie MEB. La TEI consiste à placer un échantillon sur un support lui permettant de vibrer sans contrainte. L'échantillon est excité, par un coup léger, à l'aide d'un outil d'excitation automatique ou manuelle. Ensuite, on enregistre le signal généré par cette excitation qui est détecté à l'aide d'un microphone ou un transducteur. Ce signal est par la suite analysé afin d'en extraire les fréquences de résonance par transformée de Fourier rapide. Le dispositif expérimental de la TEI est équipé d'un transducteur RFDA, une unité d'excitation automatique, un microphone capable de détecter des fréquences de l'ordre de 100 𝑘𝐻𝑧, un support universel et un ordinateur équipé du logiciel RFDA (Figure III.1). Les mesures de fréquences de résonance ont été faites à l'aide d'un système d'analyse de signal professionnel RFDA (Resonance Frequency and Damping Analysis) construit par l'entreprise IMCE (Genk, Belgique).

Figure III. 1 .

 1 Figure III.1. Dispositif expérimental utilisé pour la TEI.

Figure III. 2 .

 2 Figure III.2. Fréquences fondamentales de résonance avant et après dépôts.

Figure III. 3 .

 3 Figure III.3. Image MEB de la section transversale du revêtement multicouches Nb/Ti/Si.

Figure IV. 1 .Figure IV. 2 .

 12 Figure IV.1. Représentation schématique des configurations PVD en : a) pulvérisation conventionnelle et b) pulvérisation à incidence oblique (GLAD).

Figure IV. 3 .

 3 Figure IV.3. Représentation schématique des directions 𝛥 et 𝛱.

  est Ω ≡ (𝜑 1 = 0°, 𝜙 = 𝛽, 𝜑 2 = 0°) pour les échantillons déposés horizontalement (B 0,Y , B 45,Y , B 80,Y ) et (𝜑 1 = 90°, 𝜙 = 𝛽, 𝜑 2 = 0°) pour ceux déposés verticalement (B 0,X , B 45,X , B 80,X ). À partir des figures de pôles expérimentales, la texture de la phase Ti α a été décrite par une fibre d'axe {0002} perpendiculaire à la surface du film. Cette fibre est décalée d'un certain angle d'inclinaison 𝜂 qui dépend de l'angle d'incidence 𝛼. Afin de déterminer les valeurs de l'angle d'inclinaison de la fibre 𝜂 à différents angles d'incidence 𝛼, les échantillons ont été diffractés en mode 𝜓. La Figure V.1 montre le profil d'intensité du plan diffracté {0002} 𝛼 pris selon la direction 𝜓 à 𝜙 = 0° pour les échantillons déposés verticalement (B 0,X , B 45,X , B 80,X ) et à 𝜙 = 90° pour les échantillons déposés horizontalement (B 0,Y , B 45,Y , B 80,Y ). Le lissage des données expérimentales a été fait à l'aide d'une fonction pseudo-Voigt et par suite les angles d'inclinaison des fibres avec les incertitudes de mesure ont été déterminés.

  Mots clés : Couches minces, Élasticité, Vibrations, Titane, Anisotropie, Microstructure (Physique), Texture (Cristallographie), Analyse multiéchelle. Modélisation et caractérisation multiéchelle du comportement élastique des couches minces anisotropes L'objectif de ce travail est de développer une méthodologie qui permet de déterminer les constantes d'élasticité d'un dépôt à une échelle macroscopique. Différents modèles analytiques ont été développés pour déterminer les constantes d'élasticité d'un revêtement multicouches à l'aide de la Technique d'Excitation Impulsionnelle (TEI). La méthodologie que nous avions développée a permis de déterminer les constantes d'élasticité macroscopiques d'un revêtement multicouches de titane et niobium et des couches minces de titane déposées à incidence oblique par pulvérisation cathodique magnétron. Une formulation améliorée pour déterminer les constantes d'élasticité d'un revêtement anisotrope a été développée. Le comportement élastique des couches anisotropes a été étudié théoriquement par différents modèles analytiques et expérimentalement à l'aide de la diffraction des rayons X, la nanoindentation et la TEI. Le comportement élastique des couches anisotropes déposées à incidence oblique s'agit d'un aspect qui n'est pas bien connu dans la littérature. L'anisotropie peut être attribuée à la texture cristalline et la morphologie des grains. Les constantes d'élasticité macroscopiques des couches anisotropes de titane ont également été déterminées à l'aide du modèle micromécanique de Kröner-Eshelby. La porosité au sein de la couche, et les textures morphologiques et cristallographiques de la phase Ti ont été prises en compte dans la modélisaproposed methodology was used to determine the macroscopic elasticity constants of titanium and niobium multilayer coatings and titanium anisotropic thin films sputter-deposited at oblique incidence. An enhanced formulation to determine the elasticity constants of anisotropic thin film was developed. The elastic behavior of aniso

  

  

  

  

  

  

  

  

  

  

  Introduction to the elasticity of thin films I.2.2. Dynamic techniques I.2.2.1. Resonant Ultrasound Spectroscopy Resonant Ultrasound Spectroscopy (RUS) is one of the non-destructive testing methods.

II.3. Review of the analytical models proposed for determining shear modulus of coatings in a bilayer structure

  have evaluated the Young's modulus of different metallic films:

	Chapter II	Analytical development for the determination of the elasticity
		constants of multilayer coatings
	thickness of 250 nm (𝑅 ℎ1 < 0.002). A recent study [Slim 2017a] shows that the minimal error
	zone associated with the CLBT model is centered at Young's modulus ratio equal to 1. This is
	due to the assumption of symmetry on which is based the CLBT model. It found that Pautrot's
	model presents results, which are the closest to FEM. In order to identify the most suitable
	model for determining the Young's modulus, a parametric comparison between the analytical
	models and a FEM was made [Slim 2017a]. It noticed that Pautrot's model is the most suitable
	model to determine the Young's modulus. The good agreement between Pautrot's model and
	FEM confirms that the shift of the neutral axis after deposition is an important factor affecting
	the solution, and it should be taken into account in the development. It was applied to determine
	the Young's modulus of Al and W thin films by means of the IET [Slim 2017a, Slim 2017b].
	II.3.1. Theoretical background
	Ni, Co, Cr and Ti thin films deposited by RF magnetron sputtering with different thicknesses
	on Si wafers. In terms of film thickness variation, they found that the Young's modulus of Ni
	films decreases as the thickness of the film increases. For Cr and Co films, they did not find
	any significant difference. Etienne et al. [Etienne 2004] have used Pautrot's model and
	determined the Young's modulus of titanium nitride (TiN) of 0.2 µm of thickness elaborated
	by ion implantation. Bellan et al. [Bellan 2004] have evaluated the elasticity constants of 35 µm
	thick SiC and 95 µm thick Pyrolytic Carbon (PyC) films elaborated by Chemical Vapor
	Deposition (CVD). They have shown that IET gives good and accurate results. The crystalline
	thin films are also used in the nanometric range, such as in nano and microelectronic devices
	[Williams 1992, Ziegele 1997, Romero 2003, Deng 2005]. Hoy-Benítez et al. [Hoy-Benítez
	2012] have tested bilayer beams in a cantilever configuration and they measured the Young's
	modulus of gold (Au) films of 100 nm thickness deposited on polysulfone (PSF) substrates of
	130 µm of thickness. They found similar results to those reported in the literature.
	Several researches have already been performed using the CLBT model in order to
	determine the Young's modulus of thin films [López-Puerto 2014, Slim 2017a]. By comparing
	the CLBT model to a FEM, López-Puerto et al. found that the CLBT model is limited to a film

Table III . 1

 III1 Average dimensions and measurement uncertainty.

			Length (mm)	Width (mm)	Thickness (𝛍𝐦)
			L	u(L)	b	u(b)	h	u(h)
		Substrate (AISI316)	69.98 0.027	19.97 4.7x10 -3	505	2.6
	Sample 1	Film 1 (Ti)	69.98 0.027	19.97 4.7x10 -3	4.84	0.013
		Film 2 (Nb)	69.98 0.027	19.97 4.7x10 -3	3.97	0.029
		Substrate (Glass)	75.33 0.036	25.38 9.4x10 -3	1016	8.1
	Sample 2	Film 1 (Ti)	75.33 0.036	25.38 9.4x10 -3	4.84	0.013
		Film 2 (Nb)	75.33 0.036	25.38 9.4x10 -3	3.97	0.029

Table III . 2

 III2 Mass and specific mass with the measurement uncertainty.

			Mass (g)	Specific mass (kg/m 3 )
			m	ρ	u(ρ)
		Substrate (AISI316)	5.561	7879.70	40.75
	Sample 1	Film 1 (Ti)	0.029	4287.47	148.37
		Film 2 (Nb)	0.044	7930.68	189.36
		Substrate (Glass)	4.774	2457.70	19.66
	Sample 2	Film 1 (Ti)	0.039	4214.63	108.82
		Film 2 (Nb)	0.063	8300.24	145.12

  ]. III.3.2. Uncertainty on the substrate and coating elasticity constants Using the equation of uncertainty propagation, the global uncertainty of the substrate elasticity constants was calculated by developing all the uncertainties that appear in Eqs. (II.5), (II.6) and (II.32). The equation of uncertainty propagation is expressed by assuming that the covariance between the different parameters is null [JCGM 2008]. Using the dimensions

uncertainties (Table

III

.1) and the mass uncertainties (Table

III

.2) discussed in Section III.2.2, the values of the uncertainty on the substrate specific mass are calculated and also presented in Table

III

.2. Using the uncertainty of each quantity, the global uncertainty on the substrate elasticity modulus was calculated.

Table III

 III 

			Resonance frequency (Hz)	𝚫𝐅 𝟏	𝚫𝐅 𝟐	u(F) or u(T)
	Mode	Sample	Before deposition	After first deposition	After deposition second	or 𝚫𝐓 𝟏 (Hz)	or 𝚫𝐓 𝟐 (Hz)	(Hz)	%
	I	1 AISI316	534.54	537.12	537.90	2.58	0.78 0.117	0.02
	Flexural	2 Glass	980.84	986.93	987.22	6.09	0.29 0.117	0.01
	I	1	1154.26	1160.11	1161.62	5.85	1.51 0.117	0.01
	Torsional	2	1815.69	1826.31	1827.00	10.62 0.69 0.117 6.4×10 -3
	II	1	1481.98	1489.38	1491.70	7.40	2.32 0.147	0.01
	Flexural	2	2712.05	2728.55	2729.43	16.50 0.88 0.147 5.4×10 -3
	III	1	2907.49	2922.14	2925.87	14.65 3.73 0.250 8.6×10 -3
	Flexural	2	5317.45	5351.86	5353.71	34.41 1.85 0.250 4.7×10 -3
	IV	1	4807.60	4832.67	4839.57	25.07 6.90 0.201 4.2×10 -3
	Flexural	2	8692.02	8743.18	8745.74	51.16 2.56 0.201 2.3×10 -3

.4 Resonance frequencies (F: flexion, T: torsion) of samples measured by IET before and after deposition. III.4.4. Determination of the elasticity constants in a three-layered system III.4.4.1. Elasticity constants of the substrates Table

  in the frequency equation of the first mode (Eq. (II.6)) using the correction factor, which is not the case in the frequency equation of the other modes (Eq. (II.5)). Young's modulus of the first Ti film obtained by IET.

	Chapter III	Experimental measurements of the elasticity constants of
			multilayer coatings using Impulse Excitation Technique
	taken into account Table III.6							
									First film (Ti)
						Pautrot				Dev-CLBT
	Sample	Mode	𝐄 𝟏		u(𝐄 𝟏 )		𝐄 𝟏	u(𝐄 𝟏 )
					GPa		GPa	%		GPa	GPa	%
		I			105.22		4.69		4.46		104.56	4.66	4.46
	1	II			108.74		2.72		2.50		108.07	2.75	2.54
	AISI316	III		109.55		2.54		2.32		108.87	2.55	2.34
		IV		112.11		2.06		1.84		111.41	1.98	1.77
		I			105.28		2.81		2.67		102.62	2.82	2.75
	2	II			104.54		2.37		IET 2.27	101.90	2.22	2.18
	Mode Sample Glass III	𝐄 𝟎	u(𝐄 𝟎 ) 108.45		2.40	𝐆 𝟎	2.21	u(𝐆 𝟎 )	105.72	𝛎 𝟎	u(𝛎 𝟎 ) 2.40 2.27
		IV	GPa	GPa 100.31	%	2.18	GPa 2.17 GPa	% 97.77	-	-2.17	% 2.22
	I	1 AISI316 2 Glass	200.47 69.90	2.33 1.16 1.25 1.78	80.51 0.93 1.16 28.79 0.51 1.77	0.245 0.020 8.16 0.214 0.031 14.49
	II	1 2		202.70 70.24	2.36 1.16 1.26 1.79		--		--	--	--	--	--
	III	1 2		203.01 70.26	2.36 1.16 1.26 1.79		--		--	--	--	--	--
	IV	1 2		203.13 68.70	2.36 1.16 1.23 1.79		--		--	--	--	--	--
	90									

Table III .7

 III Young's modulus of the second Nb film obtained by IET.

					Second film (Nb)		
				Ext-PM			Dev-CLBT	
	Sample	Mode	𝐄 𝟐	u(𝐄 𝟐 )		𝐄 𝟐	u(𝐄 𝟐 )	
			GPa	GPa	%	GPa	GPa	%
		I	89.53	8.31	9.28	88.21	7.68	8.71
	1	II	92.37	5.3	5.74	91.01	5.42	5.95
	AISI316	III	87.74	5.01	5.71	86.45	4.91	5.68
		IV	90.42	4.38	4.84	89.09	4.09	4.59
		I	82.64	5.89	7.13	79.35	5.76	7.26
	2	II	83.36	5.3	6.36	80.04	4.96	6.2
	Glass	III	83.78	5.37	6.41	80.44	4.9	6.09
		IV	81.11	4.98	6.14	77.89	4.52	5.8

The measured values of the niobium film Young's moduli varied in the range of 77 ~ 92 GPa (Table

III.7

). These values are close to those reported in previous studies for a single layer of niobium characterized by

NI [Seifried 2018, Xu 2019a

] and they are lower than those

Table III .8

 III Shear moduli of the Ti and Nb layers obtained by IET. Poisson's ratios of the Ti and Nb films obtained by IET. of the films obtained by NI and their uncertainties can be calculated using the reduced moduli measured by NI (TableIII.10) and the Poisson's ratios determined by IET (TableIII.9). The corresponding Young's moduli of the films are presented in TableIII.11. The difference between the Young's moduli of the Ti and Nb films measured by nanoindentation and IET is lower than the measurement uncertainty. The small variation observed between the values may be due to the difference in the volume analyzed by the two techniques. The Young's modulus measured by NI depends on the moduli parallel and perpendicular to the film surface a controlled penetration depth less than 10 % of the film thickness, the results remain influenced by the elastic interaction between the substrate and the film. The reduced Young's moduli of the Ti and Nb films deposited on glass substrates.

	Chapter III	Experimental measurements of the elasticity constants of
		multilayer coatings using Impulse Excitation Technique
	Sample carried out at Table III.10	𝐆 𝟏	u(𝐆 𝟏 ) First layer (Ti) Slim model		𝐆 𝟐	u(𝐆 𝟐 ) Second layer (Nb) Ext-Slim
		GPa	GPa		% Reduced modulus GPa		GPa		%
	1 (AISI316) 2 (Glass) Film	42.84 42.64 𝐄 𝐈𝐄𝐓 𝐫	1.02 0.87 IET	u(𝐄 𝐈𝐄𝐓 𝐫 )	2.38 2.04	35.17 32.28 𝐄 𝐍𝐈 𝐫		2.02 2.09 NI	u(𝐄 𝐍𝐈 𝐫 )	5.74 6.47
		GPa	GPa		%	GPa		GPa		%
	Table III.9 Ti (on Glass)	111.38	3.73		3.35	113.47	3.83		3.38
	Nb (on Glass)	89.67	9.26		10.33	94.99		8.25		8.69
					Poisson's ratio			
	Sample								
		𝛎 𝟏		u(𝛎 𝟏 )		𝛎 𝟐			u(𝛎 𝟐 )
		-	-		%	-		-		%
	1 (AISI316)	0.228	0.062		27.19	0.273	0.139	50.92
	2 (Glass)	0.234	0.041		17.52	0.280	0.123	43.93
										95

III.4.4.4. Comparison between Nanoindentation and Impulse Excitation Technique Since the nanoindentation (NI) technique cannot separate the Young's modulus and the Poisson's ratio, a comparison between the reduced moduli determined by NI and IET was performed. The reduced moduli of the Ti and Nb films measured by the two techniques are presented in Table

III

.10. From Eq. (III.2), the reduced modulus 𝐸 𝑟 measured by IET was calculated as a function of the Young's modulus and Poisson's ratio determined by IET. The Young's moduli while the modulus measured by IET is the one parallel to the film surface along the x-axis. This argument is only valid if the films have an anisotropic elastic behavior. This question of anisotropy will be analyzed in detail in Chapter IV. Even if the nanoindentation tests were

Table III .

 III 11The Young's moduli of the Ti and Nb films deposited on glass substrates. The global uncertainty and the various contributions are approximately the same for the first four frequency modes with percentages of approximately 79 % and 20 % respectively, for the substrate thickness and density. Thus, very precise and accurate measurements should be performed on the measurement of the thickness and the density of the substrate. The other

				Young's modulus		
	Film	𝐄 𝐈𝐄𝐓	IET	u(𝐄 𝐈𝐄𝐓 )	𝐄 𝐍𝐈	NI	u(𝐄 𝐍𝐈 )
		GPa	GPa	%	GPa	GPa	%
	Ti (on Glass)	105.28	2.81	2.67	107.26	2.89	2.70
	Nb (on Glass)	82.64	5.89	7.13	87.55	3.87	4.42
	III.4.5. Contribution of each uncertainty source on the coating elasticity constants

III.4.5.1. Contribution on the substrate elasticity constants The measurement uncertainty of the substrate Young's modulus was calculated using the equation of uncertainty propagation applied to Eqs. (II.5) and (II.6) as indicated in the GUM [JCGM 2008] (Section III.3.2). The contribution of each source of error on the substrate Young's modulus uncertainty is presented in Fig. III.12, which corresponds to sample No. 1 (AISI316).

quantities can be neglected. The overall uncertainty is around 2.36 GPa, which represents 1.16% of the substrate Young's modulus value taken as an example in this study.

Table III .

 III 12Contribution of each source of error on the uncertainty of the AISI316 substrate shear modulus.

		Contribution	
	Quantity		
		GPa	%
	𝐿	4.18 × 10 -3	0.45
	𝑏	1.58 × 10 -3	0.17
	𝒉 𝟎	0.74	79.29
	𝑇 0	2.79 × 10 -4	0.03
	𝝆 𝟎	0.19	20.06
	𝐺 0	0.93	100
	III.4.5.2. Uncertainty budget for the coating Young's modulus	

Table III .

 III 13Contribution of each source of error on the uncertainty of the shear modulus of the Ti film.

	Chapter III	Experimental measurements of the elasticity constants of
		multilayer coatings using Impulse Excitation Technique
		Contribution	
	Quantity	
		GPa	%
	𝐿	10 -7	9.4 × 10 -6
	𝑏	10 -7	9.5 × 10 -6
	ℎ 0	0.02	1.95
	ℎ 1	0.04	3.57
	𝜌 0	4.7 × 10 -3	0.41
	𝝆 𝟏	0.23	22.53
	𝑻 𝟎	0.27	26.46
	𝑻 𝟏	0.26	25.48
	𝐸 0	10 -6	9.6 × 10 -5
	𝐸 1	2.96 × 10 -7	2.6 × 10 -5
	𝑮 𝟎	0.20	19.60
	𝐺 1	1.02	100
	100		

Table III .

 III 14Contribution of each source of error on the uncertainty of the shear modulus of the Nb film.

		Contribution	
	Quantity		
		GPa	%
	𝐿	1.98 × 10 -8	9.8 × 10 -7
	𝑏	7.47 × 10 -9	3.7 × 10 -7
	ℎ 0	0.03	1.38
	ℎ 1	0.03	1.50
	ℎ 2	0.02	1.10
	𝜌 0	0.02	1.22
	𝝆 𝟏	0.18	8.82
	𝝆 𝟐	0.20	9.73
	𝑻 𝟎	0.23	11.37
	𝑻 𝟐	0.24	11.65
	𝐸 0	1.7 × 10 -8	8.8 × 10 -7
	𝐸 1	2.6 × 10 -7	1.3 × 10 -5
	𝐸 2	1.1 × 10 -6	5.4 × 10 -5
	𝑮 𝟎	0.42	21.03
	𝑮 𝟏	0.65	32.20
	𝐺 2	2.02	100

  Using the same development as in Section II.4.2 for the isotropic film, the frequency

	ratio becomes:									
													1
						( 𝑅 𝐹 𝑦 𝑅 𝐹 𝑥	) =	2 ℎ 𝑠	√ 𝐸 𝑠 𝜌 𝑒𝑓𝑓 3𝜌 𝑠	√𝑑 𝑥𝑥 1	(IV.10)
													(	√ 𝑑 𝑦𝑦 )
	Where:											
								𝜌 𝑒𝑓𝑓 = 𝜌 𝑠 ℎ 𝑠 + 𝜌 𝑐 ℎ 𝑐	(IV.11)
										𝑅 𝐹 =	𝐹 𝑡 𝐹 𝑠	(IV.12)
	The index t refers to the whole beam,			
	𝐹 ( 𝑑 𝑦𝑦 𝑑 𝑥𝑥	) =	[	𝑅 𝑥 𝐸 𝑠 1 -𝜐 𝑠 2 +	𝐻 𝑥 𝐸 𝑥 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	] . [	𝑅 𝑥 𝐸 𝑠 1 -𝜐 𝑠 2 + 𝑅 𝑥 𝐸 𝑠 1 -𝜐 𝑠 2 + 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦 𝐻 𝑥 𝐸 𝑦 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦 𝐻 𝑥 𝐸 𝑦 ] -[ 𝑅 𝑦 𝐸 𝑠 1 -𝜐 𝑠 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦 2 + 𝐻 𝑦 𝐸 𝑥	𝜈 𝑠 𝑅 𝑥 𝐸 𝑠 1 -𝜐 𝑠 2 +	𝜈 𝑦𝑥 𝐻 𝑥 𝐸 𝑥 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	]	2	(IV.13)
		(	[	𝑅 𝑦 𝐸 𝑠 1 -𝜐 𝑠 2 +	𝐻 𝑦 𝐸 𝑦 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	] . [ 1 -𝜐 𝑠 𝑅 𝑦 𝐸 𝑠 2 +	𝐻 𝑦 𝐸 𝑥 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	] -[	𝜈 𝑠 𝑅 𝑦 𝐸 𝑠 1 -𝜐 𝑠 2 +	𝜈 𝑥𝑦 𝐻 𝑦 𝐸 𝑦 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	2 ]	)
	With:											

𝑠 : first flexural resonance frequency of the naked substrate, 𝐹 𝑡 : first flexural resonance frequency of the composite beam (substrate + film), 𝜌 𝑒𝑓𝑓 : weighted area density (in kg/m 2 ), 𝑑 𝑥𝑥 and 𝑑 𝑦𝑦 represent the (1,1) element of bending matrix [𝐷] -1 that can be expressed as:

  1, is applied herein. The ABAQUS/Implicit Lanczos eigensolver is used to extract the resonant frequencies of the composite beam. Fig. IV.7 shows the evolution of the frequency ratio 𝑅 𝐹 as a function of the thickness ratio 𝑅 ℎ (Eq. (IV.16)) of the developed and the numerical models for four different anisotropic ratios 𝐴𝑅 𝐸 (Eq. (IV.17)). The 𝐴𝑅 𝐸 are chosen to give examples of high and low anisotropy that can correspond to realistic situations.

	𝑅 ℎ =	ℎ 𝑐 ℎ 𝑠		(IV.16)
	𝐴𝑅 𝐸 =	𝐸 𝑦 𝐸 𝑥	=	𝜈 𝑦𝑥 𝜈 𝑥𝑦	(IV.17)
	𝐴𝑅 𝐺 =	𝐺 𝑦𝑧 𝐺 𝑥𝑧	(IV.18)

Table IV . 1

 IV1 Microstructural properties of the Ti thin films.

	Sample	Deposition 𝚫 direction	Glancing angle 𝛂 (±2°)	Column tilt angle 𝛃 𝐞𝐱𝐩 𝛃 𝐜𝐨𝐬 𝛃 𝐭𝐚𝐧 (±3°) (±2°) (±2°)	Fiber tilt angle 𝛈 u(𝛈) (°) (°)	Film thickness 𝐡 𝐜 u(𝐡 𝐜 ) (𝛍m) (𝛍m)
	A 0,X	X-axis	0	0	0	0	5.34	0.05	1.101	0.02
	A 0,Y	Y-axis	0	0	0	0	3.97	0.03	1.172	0.02
	A 45,X	X-axis	45	10	31	39	20.62	0.03	1.472	0.011
	A 45,Y	Y-axis	45	8	31	39	26.47	0.04	1.391	0.022
	A 80,X	X-axis	80	23	46	77	45.90	0.03	1.015	0.015
	A 80,Y	Y-axis	80	29	46	77	46.37	0.02	0.914	0.013

Table IV . 2

 IV2 Resonance frequencies of glass substrates measured by IET before and after the deposition of the Ti films. Macroscopic elasticity constants of the glass substrates (assumed to be elastically isotropic).

	Chapter IV	Improvement of the IET to determine the anisotropic elasticity
		constants of coatings sputter-deposited at oblique incidence
	Flexural resonance frequencies (Hz)	Torsional resonance frequencies (Hz)
	Sample						
	Before deposition	After deposition	Before deposition	After deposition
	A 0,X	1005.28		1006.19		1860.60	1861.35
	A 0,Y	1006.55		1007.63		1861.55	1862.82
	A 45,X	1018.51		1019.56		1886.91	1888.32
	A 45,Y	1008.74		1009.91		1867.09	1868.02
	A 80,X	1004.35		1003.78		1858.15	1858.61
	A 80,Y	1017.73		1017.76		1884.86	1884.45
	Table IV.3						
	Sample	𝐄 𝐬 (GPa) u(𝐄 𝐬 ) (GPa)	𝐆 𝐬 (GPa) u(𝐆 𝐬 ) (GPa)	𝛎 𝐬	u(𝛎 𝐬 )
	A 0,X	67.53	0.21	27.381	0.079	0.233 0.005
	A 0,Y	67.92	0.20	27.443	0.078	0.238 0.005
	A 45,X	67.75	0.19	27.397	0.077	0.236 0.005
	A 45,Y	67.53	0.20	27.337	0.077	0.235 0.005
	A 80,X	67.42	0.21	27.262	0.078	0.236 0.005
	A 80,Y	67.79	0.19	27.416	0.076	0.236 0.004
	Average	67.66	-	27.373	-	0.236	-
	Standard deviation	0.19	-	0.065	-	0.002	-
								129

.2. The elasticity constants of the glass substrates (assumed isotropic) were determined using Eqs. (II.6) and (II.32), and they are listed in Table IV.3. The uncertainty analysis was performed using the guidelines of the expressions of uncertainty in measurement [JCGM 2008]. It precisely estimates the main sources of uncertainty: thickness and density (Fig. III.12, Table

III

.12), as detailed in the literature

[Slim 2017a

]. The main uncertainty values u(x) of the substrate elasticity constants are also listed in Table

IV

.3. The uncertainties u(x) are the standard uncertainties, i.e. they correspond to one standard deviation.

Table IV .4

 IV Macroscopic Young's moduli of the deposited titanium films at various deposition glancing angles. Macroscopic shear moduli of the deposited titanium films at various deposition glancing angles.

	Sample	𝐄 𝐱 (GPa)	u(𝐄 𝐱 ) (GPa)	𝐄 𝐲 (GPa)	u(𝐄 𝐲 ) (GPa)	𝐀𝐑 𝐄 (Eq. (IV.17))	u(𝐀𝐑 𝐄 )	𝐄 𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐢𝐜 (GPa)	u(𝐄 𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐢𝐜 ) (GPa)
	A 0,X A 0,Y	88.77 -	8.72 -	-84.71	-8.59	0.95	0.13	88.07 85.43	5.97 6.05
	A 45,X A 45,Y	82.96 -	7.39 -	-78.42	-9.82	0.95	0.15	82.16 79.22	4.34 6.18
	A 80,X A 80,Y	31.79 -	6.40 -	-45.86	-7.44	1.44	0.46	34.39 43.47	3.98 8.87
	Table IV.5							
	Sample		𝐆 𝐲𝐳 (GPa)	u(𝐆 𝐲𝐳 ) (GPa)		𝐆 𝐱𝐳 (GPa)	u(𝐆 𝐱𝐳 ) (GPa)	𝐀𝐑 𝐆 (Eq. (IV.18))	u(𝐀𝐑 𝐆 )
	A 0,X A 0,Y		27.92 -	1.34 -		-29.10	-1.38	0.96	0.06
	A 45,X A 45,Y		30.20 -	0.96 -		-23.98	-1.34	1.26	0.08
	A 80,X A 80,Y		23.52 -	2.14 -		-13.08	-2.02	2.26	0.39

Table IV .6

 IV Density and Porosity values in the Ti films estimated using Eq. (IV.23) and ImageJ with their uncertainties. Elasticity constants of the Ti films calculated by taking into account the volume fraction of porosity of Eq. (IV.23). Comparison between the macroscopic elasticity constants of the titanium films calculated using Eq. (IV.21) and Eq. (IV.22) and those measured by IET.

	Sample	Film density 𝛒 𝐜 (𝐊𝐠/𝐦 𝟑 )	u(𝛒 𝐜 ) (𝐊𝐠/𝐦 𝟑 )	u(𝐩) (%) Eq. (IV.23) ImageJ Eq. (IV.23) ImageJ Porosity 𝐩 (%)
	A 0,X		4508.74		94.99			1.98	1.43	2.06	0.10
	A 0,Y		4531.30		90.00			1.49	0.74	1.96	0.39
	A 45,X		4327.57		48.04			5.92	4.71	1.04	0.65
	A 45,Y		4385.55		78.87			4.66	4.23	1.71	1.16
	A 80,X		4213.91		80.77			8.39	10.51	1.76	1.03
	A 80,Y		4171.97		82.40			9.31	10.81	1.79	1.86
	Table IV.7							
	Sample	Porosity 𝐩 (%) Eq. (IV.23)							Eq. (IV.22)	u(𝐆 * ) (GPa)
	A 0,X		1.98		2.06	109.09		7.19	41.30	2.75
	A 0,Y		1.49		1.96	110.80		6.81	41.95	2.61
	A 45,X		5.92		1.04	95.39		3.64	36.05	1.39
	A 45,Y		4.66		1.71	99.78		5.97	37.73	2.29
	A 80,X		8.39		1.76	86.79		6.12	32.76	2.34
	A 80,Y		9.30		1.79	83.62		6.24	31.55	2.39
	Table IV.8							
	Sample	u(𝐄) (GPa) IET Eq. (IV.21)	[𝐄 * -𝐄 𝐈𝐄𝐓 ] (GPa)	Relative difference (%)	u(𝐆) (GPa) Eq. IET (IV.22)	[𝐆 * -𝐆 𝐈𝐄𝐓 ] (GPa)	Relative difference (%)
	A 0,X	8.72	7.19		20.32	18.6		1.34	2.75	13.38	32.4
	A 0,Y	8.59	6.81		26.09	23.5		1.38	2.61	12.85	30.6
	A 45,X	7.39	3.64		12.43	13.0		0.96	1.39	5.85	16.2
	A 45,Y	9.82	5.97		21.36	21.4		1.34	2.29	13.75	36.4
	A 80,X	6.40	6.12		55.00	63.4		2.14	2.34	9.24	28.2
	A 80,Y	7.44	6.24		37.76	45.2		2.02	2.39	18.47	58.5

u(𝐩) (%)

𝐄 * (GPa)

Eq. (IV.21) u(𝐄 * ) (GPa)

𝐆 * (GPa)

Table V . 1

 V1 Average dimensions and measurement uncertainties of the samples of series B.

		Length (mm)	Width (mm)		Thickness		
	Sample					Substrate (mm)	Film (𝛍𝐦)
		L	u(L)	b	u(b)	𝐡 𝐬	u(𝐡 𝐬 )	𝐡 𝐜	u(𝐡 𝐜 )
	B 0,X	75.41	0.01	25.31	0.01	1.003	0.001	1.461	0.032
	B 0,Y	75.48	0.05	25.35	0.03	0.975	0.001	1.380	0.032
	B 45,X	75.36	0.01	25.35	0.01	1.016	0.002	2.063	0.067
	B 45,Y	75.49	0.01	25.38	0.02	0.986	0.001	1.592	0.056
	B 80,X	75.36	0.02	25.38	0.01	1.039	0.002	1.997	0.057
	B 80,Y	75.43	0.04	25.4	0.01	0.969	0.002	1.187	0.059

Table V . 2

 V2 Mass and density with the measurement uncertainties of the samples of series B.

		Mass (± 10 -4 g)		Density (kg/m 3 )	
	Sample			Substrate		Film
		Substrate	Film	𝛒 𝐬	u(𝛒 𝐬 )	𝛒 𝐜	u(𝛒 𝐜 )
	B 0,X	4.7178	0.0119	2464.44	2.66	4267.52	100.13
	B 0,Y	4.5745	0.0111	2452.05	4.17	4203.72	104.73
	B 45,X	4.7641	0.0155	2454.53	4.94	3932.91	130.24
	B 45,Y	4.6217	0.0124	2446.49	3.16	4065.35	146.75
	B 80,X	4.8741	0.0129	2452.71	4.86	3377.37	99.91
	B 80,Y	4.5663	0.0081	2459.59	5.33	3561.69	182.43

Table V . 3

 V3 Microstructural properties of the Ti thin films of series B.

	Sample	Deposition 𝚫 direction	Glancing angle 𝛂 (±2°)	Column tilt angle 𝛃 (±3°)	Fiber tilt angle 𝛈 u(𝛈)
	𝐵 0,𝑋	X-axis	0	0	14.79	0.07
	𝐵 0,𝑌	Y-axis	0	0	15.06	0.07
	𝐵 45,𝑋	X-axis	45	5	27.75	0.04
	𝐵 45,𝑌	Y-axis	45	4	26.66	0.05
	𝐵 80,𝑋	X-axis	80	21	42.95	0.04
	𝐵 80,𝑌	Y-axis	80	21	42.05	0.09

  Macroscopic elasticity constants of the glass substrates (assumed to be elastically isotropic). Macroscopic Young's moduli of the titanium films deposited at various deposition glancing angles. Macroscopic shear moduli of the titanium films deposited at various deposition glancing angles.

	Chapter V	Determination of the elasticity constants of anisotropic coatings
			by modeling their microstructural properties
	Table V.6								
	Sample	𝐄 𝐱 (GPa)	u(𝐄 𝐱 ) (GPa)	𝐄 𝐲 (GPa)	u(𝐄 𝐲 ) (GPa)	𝐀𝐑 𝐄 u(𝐀𝐑 𝐄 )	𝐄 𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐢𝐜 (GPa)	u(𝐄 𝐢𝐬𝐨𝐭𝐫𝐨𝐩𝐢𝐜 ) (GPa)
	B 0,X B 0,Y	99.56 -	7.85 -		-95.82	-8.66	0.96	0.11	98.88 96.47	5.34 5.88
	B 45,X B 45,Y	62.83 -	6.69 -		-92.05	-7.83	1.46	0.19	68.23 87.08	3.95 5.48
	B 80,X B 80,Y	15.63 -	8.22 -		-65.34	-9.26	4.18	2.27	19.44 57.32	3.89 6.87
	Table V.7								
	Sample	𝐆 𝐲𝐳 (GPa)		u(𝐆 𝐲𝐳 ) (GPa)		𝐆 𝐱𝐳 (GPa)	u(𝐆 𝐱𝐳 ) (GPa)	𝐀𝐑 𝐆	u(𝐀𝐑 𝐆 )
	B 0,X B 0,Y	Flexural resonance frequencies (Hz) 33.83 1.46 --	-33.27	Torsional resonance frequencies (Hz) -0.98 0.06 1.52
	Sample B 0,X B 45,X B 45,Y	Before deposition 966.334 27.75 -	After deposition 968.105 1.27 -	Before deposition 1792.796 -29.65 -1.55	After deposition 1795.170 1.07 0.07
	B 0,Y B 45,X B 80,X B 80,Y	936.110 975.923 11.24 -		0.98 -	937.745 977.284	-17.89		1739.270 1810.487 -1.76	1.59	1741.480 1812.940 0.21
	B 45,Y		946.571			948.199			1757.214	1759.310
	B 80,X	1000.010			999.504			1852.695	1852.360
	B 80,Y		936.616			937.193			1734.936	1735.380
	Table V.5								
	Sample	𝐄 𝐬 (GPa)	u(𝐄 𝐬 ) (GPa)	𝐆 𝐬 (GPa)		u(𝐆 𝐬 ) (GPa)	𝛎 𝐬	u(𝛎 𝐬 )
	B 0,X	70.31		0.21		28.341		0.084	0.240	0.005
	B 0,Y	69.73		0.26		28.200		0.090	0.236	0.006
	B 45,X	69.42		0.41		28.112		0.164	0.235	0.010
	B 45,Y	69.38		0.22		28.078		0.086	0.236	0.005
	B 80,X	69.45		0.21		28.131		0.081	0.234	0.005
	B 80,Y	70.71		0.44		28.559		0.175	0.238	0.010

Table V .8

 V Density and Porosity in the Ti films estimated using Eq. (IV.23) and ImageJ with their uncertainties.

	Sample	Film density 𝛒 𝐜 (𝐊𝐠/𝐦 𝟑 )	u(𝛒 𝐜 ) (𝐊𝐠/𝐦 𝟑 )	u(𝐩) (%) Eq. (IV.23) ImageJ Eq. (IV.23) ImageJ Porosity 𝐩 (%)
	B 0,X	4267.52	100.13	5.17	4.62	2.23	0.51
	B 0,Y	4203.72	104.73	6.58	5.83	2.33	0.78
	B 45,X	3932.91	130.24	12.60	11.21	2.90	0.94
	B 45,Y	4065.35	146.75	9.66	7.54	3.26	1.31
	B 80,X	3377.37	99.91	24.95	26.81	2.22	1.12
	B 80,Y	3561.69	182.43	20.85	22.21	4.05	1.08

Table V .

 V 11SCECs of the Ti α in GPa (Voigt's notation).

	Material	𝐜 𝟏𝟏 𝛂	𝐜 𝟏𝟐 𝛂	𝐜 𝟏𝟑 𝛂	𝐜 𝟑𝟑 𝛂	𝐜 𝟒𝟒 𝛂	𝐀 𝛂	Reference
	Ti α	162.4	92	69	180.7	46.7	1.068 [Simmons 1971]
	Ti α	162	91	69	181	46.7	1.043	[Chung 1967]
	Ti α	160	90	66	181	46.5	1.045 [Brandes 1992]
	Average	161.47	91	68	180.9	46.63	1.052	
	Standard deviation	1.28	1	1.73	0.17	0.11	0.014	

  .11 in GPa (Kelvin's notation).

	Sample	𝐂 𝟏𝟏	𝐂 𝟐𝟐	𝐂 𝟑𝟑	𝐂 𝟏𝟐	𝐂 𝟏𝟑	𝐂 𝟐𝟑	𝐂 𝟒𝟒	𝐂 𝟓𝟓	𝐂 𝟔𝟔
	B 0,X	130.7	131.1	162.5	68.3	55.4	55.5	84.1	84.1	62.6
	B 0,Y	123.1	123.4	158.3	63.2	51.9	52.1	81.6	81.5	60.1
	B 45,X	94.1	94.4	135.9	43.3	40.7	40.8	70.5	70.2	50.7
	B 45,Y	108.1	108.7	144.6	52.0	46.9	47.1	75.7	75.5	56.4
	B 80,X	47.8	49.8	91.9	18.0	21.1	22.5	49.8	45.6	30.8
	B 80,Y	62.3	76.4	100.9	28.1	27.2	30.7	55.0	49.9	41.6

Table V .

 V 13The macroscopic elasticity constants of the Ti films calculated using KE model in GPa.

	Sample	𝐄 𝐱	𝐄 𝐲	𝐄 𝐳	𝛎 𝐱𝐲	𝛎 𝐱𝐳	𝛎 𝐲𝐳	𝐆 𝐱𝐲	𝐆 𝐱𝐳	𝐆 𝐲𝐳
	B 0,X	90.1	90.4	131.6	0.44	0.19	0.19	31.3	42.0	42.0
	B 0,Y	86.1	86.3	129.3	0.43	0.19	0.19	30.0	40.8	40.8
	B 45,X	70.1	70.3	111.8	0.38	0.19	0.19	25.4	35.1	35.2
	B 45,Y	78.4	78.8	117.0	0.39	0.20	0.20	28.2	37.8	37.9
	B 80,X	38.7	39.7	75.6	0.29	0.16	0.16	15.1	22.2	23.4
	B 80,Y	48.9	59.3	81.6	0.30	0.19	0.19	20.6	24.6	26.3

Table V .

 V 19The measurement uncertainty on the macroscopic elasticity constants of the Ti films of series A calculated using KE model in GPa.

	Chapter V	Determination of the elasticity constants of anisotropic coatings
			by modeling their microstructural properties		
	Sample u(𝐄 𝐱 )	u(𝐄 𝐲 )	u(𝐄 𝐳 )	u(𝛎 𝐱𝐲 )	u(𝛎 𝐱𝐳 )	u(𝛎 𝐲𝐳 ) u(𝐆 𝐱𝐲 ) u(𝐆 𝐱𝐳 ) u(𝐆 𝐲𝐳 )
	A 0,X	13.8	13.8	4.8	0.06	0.02	0.02	4.4	1.8	2.2
	A 0,Y	14.8	16.2	2.3	0.07	0.03	0.02	4.8	1.5	1.5
	A 45,X	10.4	9.1	2.2	0.07	0.03	0.02	6.0	3.1	3.2
	A 45,Y	12.5	15.4	2.3	0.07	0.03	0.02	5.9	2.5	2.2
	A 80,X	7.4	9.0	12.0	0.07	0.06	0.05	5.2	4.6	5.2
	A 80,Y	7.2	12.6	11.7	0.08	0.05	0.04	6.9	5.1	4.3
		𝐄 𝐱	𝐄 𝐲	𝐄 𝐳	𝛎 𝐱𝐲	𝛎 𝐱𝐳	𝛎 𝐲𝐳	𝐆 𝐱𝐲	𝐆 𝐱𝐳	𝐆 𝐲𝐳
	A 0,X	98.9	98.8	140.5	0.47	0.19	0.19	33.6	44.9	44.9
	A 0,Y	100.1	100.1	141.5	0.47	0.19	0.19	34.0	45.3	45.3
	A 45,X	88.8	88.9	126.3	0.42	0.20	0.20	31.2	41.2	41.3
	A 45,Y	93.2	93.4	124.4	0.41	0.22	0.22	33.0	42.3	42.3
	A 80,X	86.5	88.0	103.0	0.33	0.26	0.27	32.7	37.2	38.0
	A 80,Y	83.7	88.5	98.9	0.32	0.26	0.27	32.4	35.7	37.1

  .6).The two samples A 80,X and A 80,Y present low porosity (p = 8.39% and 9.30% respect.) compared with those of samples B 45,X , B 45,Y , B 80,X and B 80,Y . However, their fiber tilt angles (𝜂 = 45.9° for A 80,X and 46.4° for A 80,Y . (TableIV.1) are higher than those of series B. This indicates that the accuracy of the KE model does not depend on the porosity presented in the material but on a combined effect (porosity + texture).

Table V .

 V 20Comparison between the macroscopic elasticity constants of the Ti films of series A calculated using the KE model and those measured by IET in GPa.

	Sample		𝐄 𝐱	u(𝐄 𝐱 )	𝐄 𝐲	u(𝐄 𝐲 )	𝐆 𝐲𝐳	u(𝐆 𝐲𝐳 )	𝐆 𝐱𝐳	u(𝐆 𝐱𝐳 )
		IET	88.77	8.72	-	-	27.92	1.34	-	-
	A 0,X	KE model	98.88 13.82 98.76 13.84 44.86	2.24	44.88	1.75
		Difference 10.11		-		16.94		-	
		IET	-	-	84.71	8.59	-	-	29.10	1.38
	A 0,Y	KE model 100.14 14.83 100.13 16.18 45.30	1.50	45.30	1.49
		Difference	-		15.42		-		16.20	
		IET	82.96	7.39	-	-	30.20	0.96	-	-
	A 45,X	KE model	88.76 10.35 88.93	9.10	41.29	3.23	41.29	3.12
		Difference	5.80		-		11.09		-	
		IET	-	-	78.42	9.82	-	-	23.98	1.34
	A 45,Y	KE model	93.22 12.51 93.38 15.39 42.32	2.23	42.28	2.45
		Difference	-		14.96		-		18.30	
		IET	31.79	6.40	-	-	29.52	2.14	-	-
	A 80,X	KE model	86.45	7.42	87.96	8.97	38.01	5.15	37.16	4.56
		Difference 54.66		-		8.49		-	
		IET	-	-	45.86	7.44	-	-	13.08	2.02
	A 80,Y	KE model	83.66	7.24	88.49 12.57 37.11	4.34	35.69	5.14
		Difference	-		42.63		-		22.61	

Table V .

 V 

	Chapter V	Determination of the elasticity constants of anisotropic coatings
		by modeling their microstructural properties
									-1
		𝑀 31 = 2 √	𝐶 31 2 -𝐶 13 2 𝐶 11	( 1 2	1 𝐶 55	+	2 𝐶 31 + 𝐶 13	)	(V.51)
									-1	(V.52)
		𝑀 32 = 2 √	𝐶 32 2 -𝐶 23 2 𝐶 22	( 1 2	1 𝐶 44	+	2 𝐶 32 + 𝐶 23	)
				𝐶 31 = √𝐶 11 𝐶 33		(V.53)
				𝐶 32 = √𝐶 22 𝐶 33		(V.54)
					√𝑀 31 𝑀 32		(V.50)
	With:							

Table V .

 V 21Recalculated and measured reduced modulus of the Ti films of series A with their uncertainties in GPa.

		Reduced modulus	Uncertainty	
	Sample				
		Nanoindentation Recalculated Nanoindentation Recalculated
	A 0,X	130.41	137.77	4.93	2.96
	A 0,Y	133.56	139.06	4.48	1.76
	A 45,X	125.25	124.81	3.81	2.67
	A 45,Y	128.53	126.22	4.84	2.17
	A 80,X	88.07	109.63	3.11	6.97
	A 80,Y	87.30	105.90	5.90	7.07
	V.7. Residual stress analysis			
	V.7.1. Residual stresses: definition and origin		

Table V .

 V 23The microscopic strain measured at different plane families and measurement directions.

	𝜀 𝜙,𝜓 {ℎ𝑘𝑙} 𝑖 = ln (	sin 𝜃 0 {ℎ𝑘𝑙} sin 𝜃 𝜙,𝜓 {ℎ𝑘𝑙} ) = 𝑛 ⃗ . [〈[𝑃(𝐶) ∶ (𝑐 𝛺 𝑖 -𝐶) + 𝐼 4 ]	-1 〉 𝛺∈V 𝑖 ∶ 𝐶 -1 ∶ 𝜎 𝑅 𝑖 ] . 𝑛 ⃗	(V.57)
			{𝟏𝟏𝟐 ̅ 𝟒} 𝜶				{𝟐𝟎𝟐 ̅ 𝟑} 𝜶
	Sample	𝛙 (°)	𝛟 (°)	𝛆 𝛟,𝛙 𝐡𝐤𝐥 (× 𝟏𝟎 𝟔 )	u(𝛆 𝛟,𝛙 𝐡𝐤𝐥 ) (× 𝟏𝟎 𝟔 )	𝛙 (°)	𝛟 (°)	𝛆 𝛟,𝛙 𝐡𝐤𝐥 (× 𝟏𝟎 𝟔 )	u(𝛆 𝛟,𝛙 𝐡𝐤𝐥 ) (× 𝟏𝟎 𝟔 )
	B 0,Y	40.86	18.13 161.87	831.63 780.88	265.45 256.56	44.59	197.33 342.67	2384.93 2375.76	340.17 318.71
	B 45,Y	45.57	29.48 150.52	939.14 976.61	247.12 247.27	42.30	5.26 174.74	1106.56 1202.39	325.14 341.12
	B 80,Y	54.44	40.16 139.84	982.32 1019.78	247.08 247.23	43.16	168.45 11.55	740.75 836.62	325.39 341.36

Table A . 1

 A1 The theoretical position of the intensity poles of the {112 ̅ 4} 𝛼 family of planes, tilted owing to the oblique configuration, and calculated using Eq. (V.44).

	Appendix A							
		Normal			GLAD		
		configuration	𝜶 = 0°	𝜶 = 45°	𝜶 = 80°
	Intensity								
	pole								
		𝛙 (°)	𝛟 (°)	𝛙 (°)	𝛟 (°)	𝛙 (°) 𝛟 (°)	𝛙 (°)	𝛟 (°)
	4 5	38.44	240 300	26.33	-134.45 -45.51	19.69	22.66 157.34	19.57	158.12 21.88
	6 3	38.44	0 180	40.86	18.13 161.87	45.57	29.48 150.52	54.44	40.16 139.84
	1 2	38.44	60 120	51.94	66.75 113.25	62.71	69.53 110.47	77.23	71.41 108.59

Table A . 2

 A2 The theoretical position of the intensity poles of the {202 ̅ 3} 𝛼 family of planes, tilted owing to the oblique configuration, and calculated using Eq. (V.44).

		Normal			GLAD		
		configuration	𝜶 = 0°	𝜶 = 45°	𝜶 = 80°
	Intensity								
	pole								
		𝛙 (°)	𝛟 (°)	𝛙 (°)	𝛟 (°)	𝛙 (°) 𝛟 (°)	𝛙 (°)	𝛟 (°)
	5	50.70	270	35.64	270	24.05	270	8.65	270
	4 6	50.70	210 330	44.59	-162.67 -17.33	42.30	5.26 174.74	43.16	168.45 11.55
	1 3	50.70	30 150	59.26	38.77 141.23	66.89	43.23 136.77	77.81	46.72 133.28
	2	50.70	90	65.76	90	77.36	90	92.75	90

Table A . 3

 A3 The theoretical position of the intensity poles of the {213 ̅ 1} 𝛼 family of planes, tilted owing to the oblique configuration, and calculated using Eq. (V.44).

		Normal			GLAD		
		configuration	𝜶 = 0°	𝜶 = 45°	𝜶 = 80°
	Intensity								
	pole								
		𝛙 (°)	𝛟 (°)	𝛙 (°)	𝛟 (°)	𝛙 (°)	𝛟 (°)	𝛙 (°)	𝛟 (°)
	10 5	78.36	-109.11 -70.89	64.20	-110.86 -69.14	53.45	-113.52 -66.48	39.67	-120.15 -59.85
	4 9	78.36	-130.89 -49.11	67.22	-134.06 -45.94	59.17	-138.27 -41.70	49.78	-147.11 -32.89
	11 6	78.36	-169.11 -10.89	75.94	-172.52 -7.48	74.73	-175.55 -4.45	74.11	-179.87 359.87
	8 3	78.36	10.89 169.11	81.56	13.51 166.49	84.42	14.90 165.10	88.52	15.82 164.18
	1 12	78.36	49.11 130.89	89.86	50.12 129.88	98.73	49.56 130.44	110.25	46.89 133.11
	7 2	78.36	70.89 109.11	92.62	71.28 108.72	103.58	70.74 109.26	118.04	68.70 111.30

  ] :Un matériau anisotrope élastiquement est un matériau qui présente des propriétés élastiques différentes selon les directions (monocristal, polycristal à morphologie orientée, texture, multiphase, composite, bois, multicouches, etc.). Grâce aux symétries des tenseurs de contraintes et de déformations, le nombre de composantes des tenseurs de rigidité et de souplesse passe de 36 à 21 composantes indépendantes. Ce matériau présente une anisotropie quelconque (symétrie triclinique) et son tenseur de rigidité peut s'écrire comme suit :

	{ √2𝜀 23 𝜀 11 𝜀 22 𝜀 33 √2𝜀 31 √2𝜀 12 }	=	[	𝑆 1111 𝑆 2211 𝑆 3311 √2𝑆 2311 √2𝑆 3111 √2𝑆 1211	𝑆 1122 𝑆 2222 𝑆 3322 √2𝑆 2322 √2𝑆 3122 √2𝑆 1222	𝑆 1133 𝑆 2233 𝑆 3333 √2𝑆 2333 √2𝑆 3133 √2𝑆 1233	√2𝑆 1123 √2𝑆 2223 √2𝑆 3323 2𝑆 2323 2𝑆 3123 2𝑆 1223	√2𝑆 1131 √2𝑆 2231 √2𝑆 3331 2𝑆 2331 2𝑆 3131 2𝑆 1231	𝜎 11 𝜎 22 𝜎 33 √2𝜎 12 } √2𝜎 31 2𝑆 1212 ] { √2𝑆 1112 √2𝑆 2212 √2𝑆 3312 2𝑆 3112 2𝑆 2312 √2𝜎 23	(I.4)
	Les équations (I.3) et (I.4) peuvent s'écrire avec contraction d'indice sous la forme
	suivante :									
				{	𝜎 1 𝜎 2 𝜎 3 𝜎 4 𝜎 5 𝜎 6 }	=	[ 𝐶 21 𝐶 11 𝐶 31 𝐶 41 𝐶 51 𝐶 61	𝐶 12 𝐶 22 𝐶 32 𝐶 42 𝐶 52 𝐶 62	𝐶 13 𝐶 23 𝐶 33 𝐶 43 𝐶 53 𝐶 63	𝐶 14 𝐶 24 𝐶 34 𝐶 44 𝐶 54 𝐶 64	𝐶 15 𝐶 25 𝐶 35 𝐶 45 𝐶 55 𝐶 65	𝐶 16 𝐶 26 𝐶 36 𝐶 46 𝐶 66 ] { 𝜀 6 } 𝜀 1 𝐶 56 𝜀 2 𝜀 3 𝜀 5 𝜀 4	(I.5)
				{	𝜀 1 𝜀 2 𝜀 3 𝜀 4 𝜀 5 𝜀 6 }	=	[ 𝑆 21 𝑆 11 𝑆 31 𝑆 41 𝑆 51 𝑆 61	𝜎 𝑖𝑗 = 𝐶 𝑖𝑗𝑘𝑙 𝜀 𝑖𝑗 𝑆 12 𝑆 22 𝑆 32 𝑆 42 𝑆 52 𝑆 62 𝑆 13 𝑆 23 𝑆 33 𝑆 43 𝑆 53 𝑆 63 𝑆 14 𝑆 24 𝑆 34 𝑆 44 𝑆 54 𝑆 64 𝑆 15 𝑆 25 𝑆 35 𝑆 45 𝑆 55 𝑆 65 𝑆 16 𝑆 26 𝑆 36 𝑆 46 𝑆 66 ] { 𝜎 6 } 𝜎 1 𝑆 56 𝜎 2 𝜎 3 𝜎 5 𝜎 4	(I.1) (I.6)
											𝜀 𝑖𝑗 = 𝑆 𝑖𝑗𝑘𝑙 𝜎 𝑖𝑗	(I.2)
	Avec i, j, k et l ∈ {1, 2, 3}.			
	Du fait de la symétrie des tenseurs des contraintes et des déformations, les tenseurs de
	rigidité et de souplesse peuvent être réarrangées en un tenseur d'ordre 2 à 6×6 composantes.
	Les équations (I.1) et (I.2) s'écrivent sous forme non contractée selon la convention de Kelvin
	comme suit [Kelvin 1856] : { 𝜎 11 𝜎 22 𝜎 33 √2𝜎 23 √2𝜎 31 √2𝜎 12 } = [ 𝐶 1111 𝐶 2211 𝐶 3311 √2𝐶 2311 √2𝐶 3111 √2𝐶 1211 √2𝐶 2322 𝐶 1122 𝐶 2222 𝐶 3322 √2𝐶 3122 √2𝐶 1222 [𝐶] = 𝐶 11 𝐶 12 𝐶 1133 𝐶 2233 𝐶 3333 √2𝐶 2333 √2𝐶 3133 √2𝐶 1233 𝐶 22 𝐶 13 √2𝐶 1123 √2𝐶 2223 √2𝐶 3323 2𝐶 2323 2𝐶 3123 2𝐶 1223 𝐶 23 𝐶 33 𝐶 15 √2𝐶 1131 √2𝐶 2231 √2𝐶 3331 2𝐶 2331 2𝐶 3131 2𝐶 1231 𝐶 16 𝐶 14 𝐶 25 𝐶 26 𝐶 24 𝐶 34 𝐶 44 𝐶 35 𝐶 45 𝐶 36 𝐶 46 𝑠𝑦𝑚 𝐶 55 𝐶 56 [ 𝐶 66 ] Grâce à d'autres symétries matérielles, ces 21 composantes peuvent se réduire jusqu'à √2𝐶 1112 √2𝐶 2212 √2𝐶 3312 𝜀 11 𝜀 22 (I.7) 𝜀 33 (I.3) √2𝜀 23 2𝐶 2312 2𝐶 3112 2𝐶 1212 ] { √2𝜀 31 √2𝜀 12 } deux composantes dans le cas d'un matériau isotrope.

  ] :Dans le cas d'une poutre de section prismatique soumise à des conditions aux limites « libre-libre », le module de cisaillement peut être déterminé à l'aide de la relation suivante[START_REF] Astm | Standard Test Method for Dynamic Young's Modulus[END_REF] 

			𝐺 = 4𝜌𝑅𝐿 2 𝑇 2		(II.13)
		𝜌𝐼 𝑝	𝜕 2 𝜃(𝑥, 𝑡) 𝜕𝑡 2 -+ 𝜕𝑡𝜕𝑥 𝜕 2 𝜕 2 𝜕𝑥 2 (𝐸𝐼 𝜓 (𝜌𝐼 𝜓	𝜕 2 𝜃(𝑥, 𝑡) 𝜕𝑥𝜕𝑡 𝜕𝑥 2 ) = 0 ) -𝜕 𝜕𝑥 𝜕 2 𝜃(𝑥, 𝑡)	(𝐶	𝜕𝜃(𝑥, 𝑡) 𝜕𝑥	)	(II.11)
	Avec 𝜌 la masse volumique, 𝜃(𝑥, 𝑡) l'angle de torsion qui dépend de la position 𝑥 et du
	temps 𝑡, 𝐼 𝑝 =	ℎ𝑏 3 +𝑏ℎ 3 12	le moment polaire de la section (avec ℎ l'épaisseur et 𝑏 la largeur), C la
	rigidité de torsion d'une section non circulaire et 𝐼 𝜓 = ∬ 𝜓(𝑦, 𝑧) 2 𝑑𝑆 avec 𝜓(𝑦, 𝑧) une fonction
	décrivant le gauchissement de la section de la poutre. La rigidité de torsion d'une section
	rectangulaire est définie comme suit :				
			𝐶 = ∬ 𝐺 [( 𝜕𝜓 𝜕𝑦	-𝑧) 2	+ ( 𝜕𝜓 𝜕𝑧	2 + 𝑦)	] 𝑑𝑆

𝑆

(II.12) Avec 𝐺 le module du cisaillement.

  1 𝑅 𝐸1 𝑅 ℎ1 + 2𝑋 2 𝑅 𝐸2 𝑅 ℎ2 (1 + 𝑅 ℎ1 𝑅 𝜌1 + 𝑅 ℎ2 𝑅 𝜌2 )(1 + 𝑅 𝐸1 𝑅 ℎ1 + 𝑅 𝐸2 𝑅 ℎ2 )(II.24) Young de la deuxième couche 𝐸 2 est déterminé en fonction du module d'Young du substrat 𝐸 0 et celui de la première couche 𝐸 1 , l'épaisseur et la densité du substrat et des deux couches.Comme dans le case d'une seule couche, le modèle CLBT peut être utilisé pour déterminer le module d'Young de la k ième couche 𝐸 𝑘 si les modules d'Young des (k-1) ième , (k-2) ième , … et 1 ère couches sont connus. Par contre, ce modèle ne prend pas en compte le décalage de la fibre neutre. Le nouveau modèle noté « Dev-CLBT » est développé en introduisant ce décalage dans l'expression de la matrice de rigidité en flexion comme suit :

	𝑗=1 𝑍 1 = 𝑒 𝑁 + 𝛿 𝑘 ∑ ℎ 𝑗 La résolution de cette équation différentielle permet de déterminer les fréquences de (II.29) 𝑘-1 résonance 𝐹 𝑁 (𝑛) de la structure excitée et par suite le rapport des fréquences :
	𝑍 2 = 𝑍 1 + ℎ 𝑘 (𝑘) = 𝑄 ̅ 22 𝑄 ̅ 11 (𝑘) = 𝑄 11 (𝑘) = 𝑄 22 (𝑘) = (𝑅 𝐹(𝑁) ) 2 = 12𝜌 0 𝐸 0 ℎ 0 2 ( 𝑑 11 (𝑁) 𝜌 𝑒𝑓𝑓 1 -(𝜈 𝑘 ) 2 𝐸 𝑘 1 (𝑁) )	(II.30) (II.38)
	𝑄 ̅ 12 (𝑘) = 𝑄 12 (𝑘) =	𝜈 𝑘 𝐸 𝑘 1 -(𝜈 𝑘 ) 2	(II.31)
	𝑄 ̅ 16 (𝑘) = 𝑄 ̅ 26 (𝑘) = 0 ; 𝑄 ̅ 66 (𝑘) = 𝑄 66 (𝑘) =	𝐸 𝑘 2 (1 + 𝜈 𝑘 )	(II.32)
	Le moment fléchissant par unité de largeur 𝑀 𝑦 qui produit un déplacement 𝑤(𝑥, 𝑡) peut
	s'écrire comme suit [Hyer 2009]:			
	𝑀 𝑦 = -	1 𝑑 11 𝑁	𝜕 2 𝑤 𝜕𝑥 2	(II.33)
	𝑅 ℎ𝑖 = 𝑑 11 (𝑁) = ℎ 𝑖 ℎ 0 𝑑𝑒𝑡 [𝐷] ; 𝑅 𝜌𝑖 = 𝐷 22 ; 𝑑𝑒𝑡[𝐷] = 𝐷 11 𝐷 22 -𝐷 12 𝜌 𝑖 𝜌 0 ; 𝑅 𝐸𝑖 = 𝐸 𝑖 𝐸 0 ; 𝑅 𝐹2 = 𝐹 2 𝐹 0 2	(II.25) (II.34)
	𝑋 1 = 2 + 6𝑅 ℎ1 (𝑅 ℎ1 + 𝑅 ℎ2 + 1) + 𝑅 ℎ2 (3 + 2𝑅 ℎ2 ) Selon la théorie CLBT, une poutre stratifiée en vibration soumise à un moment (II.26)
	𝑋 2 = 𝑅 𝐸2 𝑅 ℎ2 (2𝑅 ℎ1 2 + 3𝑅 ℎ1 𝑅 ℎ2 + 2𝑅 ℎ2 2 ) + 2𝑅 ℎ1 2 + 3𝑅 ℎ1 + 2 fléchissant 𝑀 𝑦 peut s'exprimer comme suit :	(II.27)
	𝜕 2 𝑀 𝑦 𝜕𝑥 2 = 𝜌 𝑒𝑓𝑓 (𝑁) 𝜕 2 𝑤 𝜕𝑡 2 (𝑁) = ∫ 𝜌 𝑒𝑓𝑓 𝜌 𝑘 𝑑𝑧 = ∑ 𝜌 𝑘 ℎ 𝑘 𝑁 𝑘=0 (∑ ℎ 𝑘 𝑁 𝑘=0 )/2 -(∑ ℎ 𝑘 𝑁 𝑘=0 )/2 En substituant l'équation (II.33) dans l'équation (II.35), on obtient l'équation (II.35) (II.36) En inversant l'équation (II.24), le module d'𝐷 𝑖𝑗 ′ = ∫ 𝑄 ̅ 𝑖𝑗 (0) 𝑧 2 𝑑𝑧 𝑒 𝑁 -ℎ 0 +𝑒 𝑁 + ∑ ∫ 𝑄 ̅ 𝑖𝑗 différentielle de vibration pour une poutre stratifiée : Avec : 𝑁 𝑍 2 (𝑘) 𝑧 2 𝑑𝑧 𝑍 1 𝑘=1 (𝑖, 𝑗 = 1, 2 𝑜𝑟 6) (II.28) 1 𝑑 11 (𝑁) 𝜌 𝑒𝑓𝑓 (𝑁) 𝜕 4 𝑤 𝜕𝑥 4 + 𝜕 2 𝑤 𝜕𝑡 2 = 0 (II.37)

III Mesures expérimentales des constantes d'élasticité des multicouches en utilisant la technique d'excitation impulsionnelle

  2 (𝜌 𝑡 ℎ 𝑡 )(𝐸 𝑡 ℎ 𝑡 )3 ] Les valeurs de 𝐴′, 𝐵′, 𝐶′, 𝐻′ 1 , 𝐻′ 2 et 𝐻′ 3 se trouvent dans Chapter II (version anglaise). Le rapport des fréquences en torsion devient :Les différents modèles analytiques proposés dans la littérature et les nouveaux modèles développés dans ce chapitre sont présentés dans le Tableau II.1.Ext-Slim développé pour la détermination du module de cisaillement a été comparé avec un MEF. Un accord entre le MEF et le nouveau modèle nous a permis de le valider sur un large domaine de paramètres plausibles. Dans le chapitre qui suit, ces nouveaux modèles seront appliqués à des multicouches de titane et de niobium déposées par pulvérisation cathodique magnétron.Après avoir développé des nouveaux modèles qui permettent de déterminer les modules d'élasticité des multicouches, ce chapitre présente l'application expérimentale de ces modèles mécaniques à des multicouches élaborées par pulvérisation cathodique magnétron. Les modèles Ext-PM, Dev-CLBT et Ext-Slim ont été appliqués pour déterminer le module d'Young et le module de cisaillement des multicouches de titane pur et de niobium pur élaborées par pulvérisation cathodique magnétron. Une étude d'incertitude conforme aux recommandations de la norme ISO du Guide pour l'Expression de l'Incertitude de Mesure[JCGM 2008] est faite. La méthodologie d'évaluation des incertitudes de mesure a été développée sur les multicouches de titane pur et de niobium pur élaborées. La morphologie et la structure de chaque couche déposée ont été analysées. Les constantes d'élasticité de chaque couche, sa morphologie et sa structure ont été corrélées. Une comparaison entre les modules réduits déterminés par TEI et par nanoindentation (NI) a été faite.

	Chapitre					
							0.5
							(II.39)
		𝑁				𝑁
	𝐸 𝑡 ℎ 𝑡 = ∑ 𝐸 𝑘 ℎ 𝑘	; 𝜌 𝑡 ℎ 𝑡 = ∑ 𝜌 𝑘 ℎ 𝑘	(II.40)
		𝑘=0			𝑘=0
		12 ℎ 0 2		𝑏 -	√3 ℎ 0 tanh [ √3𝑏 ℎ 0	]	-0.5
	𝑅 𝑇2 = 𝑇 2 √	𝜌 0 𝐺 0	(	𝑏(ℎ 0 2 + 𝑏 2 )	)	(II.41)
		[					]

  en bon accord avec celles calculées en supposant un comportement isotrope du film. Ces résultats nous permettent de conclure que la TEI conduit à une valeur correcte de constantes d'élasticité selon une direction appropriée, par exemple la direction longitudinale pour le module d'Young, même si le module est calculé à partir du modèle isotrope au lieu du modèle anisotrope. En augmentant l'angle d'incidence 𝛼, les rapports d'anisotropie 𝐴𝑅 𝐸 = 𝐸 𝑦 /𝐸 𝑥 et 𝐴𝑅 𝐺 = 𝐺 𝑦𝑧 /𝐺 𝑥𝑧 augmentent à cause de différents facteurs parmi lesquels la croissance colonnaire avec des cristallites inclinées selon la direction du flux incident. L'effet de la porosité du film sur les constantes d'élasticité du film de Ti a été évalué. Cependant, les constantes d'élasticité du film de Ti déterminées à l'aide de la TEI étaient différentes de celles calculées théoriquement en tenant compte de la porosité du film. Les résultats confirment l'influence d'autres propriétés microstructurales sur les constantes d'élasticité des films de Ti. La dureté et le module d'Young réduit mesuré par nanoindentation diminuent avec l'augmentation de l'angle d'incidence à cause de l'augmentation de la porosité du film.

						𝐸 𝑠 ℎ 𝑠 2 -𝐸 𝑥 ℎ 𝑐 2
					2	(𝐸 𝑠 ℎ 𝑠 + 𝐸 𝑥 ℎ 𝑐 ) 𝐸 𝑠 ℎ 𝑠 2 -𝐸 𝑦 ℎ 𝑐 2	(IV.1)
					(	(𝐸 𝑠 ℎ 𝑠 + 𝐸 𝑦 ℎ 𝑐 ) )
	Pour un film anisotrope, les éléments de rigidité deviennent :
	( 𝑄 ̅ 11 𝑄 ̅ 11 (𝑥) (𝑦) ) = ( 𝑄 11 𝑄 11 (𝑥) (𝑦) ) =	1 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	(	𝐸 𝑥 𝐸 𝑦	)		(IV.2)
	( 𝑄 ̅ 22 𝑄 ̅ 22 (𝑥) (𝑦) ) = ( 𝑄 22 𝑄 22 (𝑥) (𝑦) ) =	1 1 -𝜈 𝑦𝑥 𝜈 𝑥𝑦	(	𝐸 𝑦 𝐸 𝑥	)		(IV.3)

Premièrement, une représentation des modèles mécaniques existants dans la littérature sera faite pour la détermination de modules d'Young et de cisaillement d'une couche mince. Deuxièmement, des nouveaux modèles seront développés pour la détermination des constantes d'élasticité de chaque couche dans un revêtement multicouche. Troisièmement, une comparaison sera faite entre les modèles analytiques de la littérature, les modèles développés et un modèle éléments finis (MEF) qui sera développé dans ce deuxième chapitre. Cette comparaison permettra d'identifier le modèle le plus fiable parmi les modèles existants dans la littérature et ceux développés en prenant comme référence le MEF.En se basant sur la théorie des vibrations des poutres classiques d'Euler-Bernoulli qui ne prend pas en compte les effets de cisaillement et d'inertie, l'équation du mouvement d'une poutre soumise à des vibrations en flexion s'écrit comme suit[Rao 2006] :

La technique de dépôt utilisée durant cette thèse est la pulvérisation cathodique magnétron. C'est une technique d'élaboration de couches minces sous basse pression. Les couches de titane et de niobium ont été déposées, à température flottante, par pulvérisation cathodique magnétron, sur des substrats d'acier 316L (échantillon 1), de verre (échantillon 2) et de silicium (Si) par pulvérisation cathodique magnétron en mode continu (DC). Une machine PVD « DEPHIS4 » a été utilisée constituant une enceinte d'un diamètre de 600 mm et de 400 mm de hauteur. Avant la phase de pulvérisation, un vide de l'ordre de 10 -4 Pa a été créé à l'intérieur de l'enceinte grâce à un système de pompage constitué d'une pompe primaire et une pompe secondaire turbomoléculaire. Après pompage, l'enceinte est remplie d'argon envoyé avec un débit constant égal à 50 sccm (sccm : débit volumique de gaz à des conditions standard de température et de pression exprimé en cm 3 /min) ce qui ramène la pression dans l'enceinte à une pression égale à 0.2 Pa. À l'aide d'un générateur continu pulsé, une décharge d'intensité de 3 A a été appliquée sur une cible ayant un diamètre de 200 mm et une épaisseur de 6 mm (soit le titane comme première couche ou le niobium comme deuxième couche). Afin d'assurer l'homogénéité du dépôt, le porte substrat a été animé en rotation (10 rpm) tout en fixant une distance entre les substrats et la cible de l'ordre de 10 cm. Avant d'être mis dans l'enceinte, les substrats ont été nettoyés à l'acétone puis à l'éthanol et séchés à l'air chaud. Sous ces conditions, la vitesse de croissance obtenue sur les dépôts est égale à 16.13 nm/min pour la couche de Ti et 18.90 nm/min pour la couche de Nb. Les substrats d'acier et de verre ont été utilisés pour les
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Résumé en Français 246 sera obtenue par diffraction des rayons X. La porosité sera mesurée par analyse d'images. La texture morphologique sera observée par un microscope électronique à balayage.

Ce manuscrit s'articule donc autour de cinq chapitres.

Le premier chapitre présentera des généralités sur l'élasticité et son intérêt pour l'ingénierie. Les tenseurs de souplesse et de rigidité de matériaux généralement anisotropes et de certains autres avec des symétries particulières seront illustrés. La détermination des constantes d'élasticité à partir des tenseurs de rigidité sera également présentée. Ensuite, nous introduirons plusieurs techniques de caractérisation utilisées pour déterminer les constantes d'élasticité des couches minces tout en énumérant les différents problèmes rencontrés. La technique d'excitation impulsionnelle sera choisie parmi les différentes techniques pour mesurer les constantes d'élasticité macroscopiques de nos couches. À l'aide d'une synthèse bibliographique nous montrerons que les couches minces élaborées par pulvérisation cathodique magnétron sont souvent poreuses, polycristallines, texturées, multiphasées et leur comportement élastique dépend des paramètres du procédé au travers de la microstructure. Donc une caractérisation des constantes d'élasticité des couches minces, en tenant compte de leurs microstructures, est nécessaire. Afin de caractériser l'anisotropie des couches minces, deux approches seront développées au cours de ce travail. La technique d'excitation impulsionnelle et la diffraction des rayons X seront utilisées pour les caractérisations élastiques macroscopiques et microscopiques, respectivement. Le substrat est une poutre de section rectangulaire avec une longueur L = 70 𝑚𝑚, une largeur 𝑏 = 20𝑚𝑚 et une épaisseur ℎ 0 = 0.5 𝑚𝑚. Deux différents MEF ont été développés pour une (N = 1) et deux couches (N = 2) sur le substrat. Afin d'assembler les couches l'une sur l'autre et sur le substrat, la fonction Tie d'Abaqus a été utilisée. Les conditions aux limites « libre-libre » ont été appliquées aux deux poutres composites. Le modèle géométrique a été maillé en utilisant l'élément quadratique C3D20. Le solveur Lanczos du module ABAQUS\Implicit a été utilisé pour extraire les fréquences de résonance de la poutre composite. D'après la comparaison paramétrique, on a trouvé que les modèles les plus en accord avec les résultats obtenus par éléments finis pour la détermination du module d'Young sont ceux de Ext-PM et de Dev-CLBT. L'accord entre ces nouveaux modèles permet de confirmer la validité de l'hypothèse du décalage de la fibre neutre après dépôt sur laquelle sont fondés ces modèles et de négliger au moins dans le cas de la présente étude les effets de cisaillement et d'inertie (qui sont pris en compte par le MEF). De plus, L'accord entre le nouveau modèle Dev-CLBT et celui MEF montre que l'effet de symétrie sur lequel est basée la théorie CLBT devient négligeable en prenant en compte le décalage de la fibre neutre. (IV.7)

Un modèle éléments finis (MEF) a été développé à l'aide du logiciel de simulation numérique ABAQUS 6.13 [Abaqus 2016] pour vérifier la fiabilité de la formulation développée. Une comparaison entre le modèle développé et le MEF a été réalisée. Le même principe d'assemblage et de maillage que celui utilisé au Chapitre II est appliqué ici. À partir d'une étude paramétrique des deux modèles analytique et numérique, on a remarqué un bon accord entre les résultats calculés et ceux obtenus par éléments finis pour un faible rapport d'épaisseur 𝑅 ℎ . La différence entre les deux modèles augmente avec l'augmentation de 𝑅 ℎ et plutôt avec l'augmentation du rapport d'anisotropie 𝐴𝑅 𝐸 = 𝐸 𝑦 /𝐸 𝑥 . Avec l'augmentation de 𝐴𝑅 𝐸 , l'effet de couplage entre les directions augmente. Le modèle développé néglige le couplage avec la troisième direction (l'axe z) qui devient significatif du fait de l'augmentation d'épaisseur. La différence entre le modèle analytique et le MEF reste approximativement constante en augmentant le rapport d'anisotropie. Dans le reste de cette étude, des substrats en verre ont été utilisés et les constantes d'élasticité des couches minces de Ti ayant 𝑅 ℎ < 0.05 ont été déterminées à l'aide du modèle développé (équation (IV.6)). La dispersion de la texture autour des composantes idéales a été négligée. Afin de définir l'orientation cristallographique d'un matériau, deux différents repères sont attribués respectivement au cristal et à l'échantillon. La Figure V.2 représente le repère du cristal et le repère de l'échantillon. Pour décrire une orientation cristallographique, il est nécessaire de relier le repère du cristal au repère de l'échantillon. Pour ce faire, on définit une matrice de passage qui permet le passage du repère du cristal au repère de l'échantillon. Cette matrice peut être définie de différentes manières [Randle 2001, Kocks 1998]. Dans ce travail, les angles d'Euler selon la convention de Bunge [Bunge 1982] ont été utilisés pour décrire l'orientation cristallographique. L'orientation de chaque cristallite est donc définie par Ω ≡ (𝜑 1 , 𝜙, 𝜑 2 ). Dans la modélisation mécanique, la répartition angulaire de la texture autour des composants idéaux est négligée. Cela nous permet de décrire la texture de la phase Ti α à l'aide Résumé en Français 275 d'une seule orientation. En comparant les figures de pôles simulées avec les figures de pôles expérimentales de la phase Ti α , on a remarqué que les pôles d'intensité sont approximativement situés aux mêmes positions. On peut donc conclure que la texture de la phase Ti α peut être décrite en utilisant les angles d'Euler (𝜑 1 = 0°, 𝜙 = 𝜂, 0 ≤ 𝜑 2 ≤ 360°) pour les échantillons déposés horizontalement (B 0,Y , B 45,Y , B 80,Y ) et (𝜑 1 = 90°, 𝜙 = 𝜂, 0 ≤ 𝜑 2 ≤ 360°) pour ceux déposés verticalement (B 0,X , B 45,X , B 80,X ). Le Tableau V.1 présente les angles d'incidence 𝛼, les angles d'inclinaison des micro-colonnes 𝛽, les angles d'inclinaison de la fibre 𝜂 et les constantes d'élasticité macroscopiques calculées à partir du modèle de KE pour les couches de titane. On peut observer que les films présentent un comportement transversalement isotrope avec une faible anisotropie dans le plan du film à 𝛼 = 80°. La différence entre 𝐸 𝑥 et 𝐸 𝑦 peut être attribuée à l'incertitude sur les mesures des angles et sur les constantes d'élasticité du cristal.
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Tableau V.1

Les propriétés microstructurales et les constantes d'élasticité macroscopiques déterminées par KE des couches de titane déposées à différents angles d'incidence. En utilisant au moins deux directions de mesure indépendantes, l'état de contraintes résiduelles dans les couches minces déposées en GLAD à différents angles d'incidence 𝛼 ainsi que l'angle de diffraction de référence 𝜃 0 {ℎ𝑘𝑙} 𝑖 du plan utilisé ont été déterminés à l'aide de l'équation suivante : 
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Appendix D Abstract

In this work, a methodology to determine the macroscopic elasticity constants of thin films was proposed. Different analytical models were developed to determine the macroscopic elasticity constants of multilayer coatings using the Impulse Excitation Technique (IET). The proposed methodology was used to determine the macroscopic elasticity constants of titanium and niobium multilayer coatings and titanium anisotropic thin films sputter-deposited at oblique incidence. An enhanced formulation to determine the elasticity constants of anisotropic thin film was developed. The elastic behavior of anisotropic thin films was investigated theoretically by different analytical models, and experimentally by several complementary techniques, namely X-ray diffraction, nanoindentation and IET. The elastic behavior of anisotropic films deposited at oblique incidence represents an aspect that is not well known in the literature. The anisotropy can be attributed to the crystallographic and morphological textures of the grains. The macroscopic elasticity constants of titanium anisotropic films were also determined using the Kröner-Eshelby micromechanical model. The porosity within the film, and the morphological and crystallographic textures of the Ti α phase were taken into account in the modeling for a proper analysis of the elastic behavior of the film.