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Abstract

In order to optimize the forming processes, modeling the thermomecanical behavior for large deformations
is particularly interesting. Objectivity of the models is therefore questioned. The need to develop the
existing models is the motivation of this work. This study investigates the spacetime approach as a mean
to build thermomechanical models respecting the covariance and causality principles as well as the laws
of thermodynamics. In this manuscript, spacetime models are mainly obtained using the relativization of
Newtonian models method and the spacetime thermodynamical method. Several models are proposed in
the spacetime framework and next compared to existing Newtonian models: heat conduction (FourierŠs and
CattaneoŠs models) and the thermo-hyperelastic behavior are discussed. The spacetime numerical resolution
is also investigated: the variational forms corresponding to thermal and thermomechanical problems are
developed. The study of material behavior is possible using these forms written in the proper frame.
Numerical simulations implementing these forms in the software FEniCS project are then conducted in
order to validate test cases with the spacetime models. Comparison of the spacetime models with the
classical Newtonian models at the non-relativistic limit shows the compatibility of their results. Applications
aiming to model the heat conduction in cooling Ąns, the self-heating occurring during fatigue tests and the
behavior of a bimetallic element show that the use of the spacetime approach enables predicting material
behaviors while guaranteeing objectivity of the models. We also suggest the use of this approach to model
the tube bending process, preliminary results requiring more investigation are given in the appendix. Since
this approach is shown advantageous for the applications proposed, further research could cover different
material behaviors e.g. plasticity.
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Résumé en français

La modélisation du comportement thermomécanique des grandes déformations est un sujet de recherche de
grand intérêt. LŠobjectivité des modèles est mise en question. Cette étude évalue lŠapproche de modélisation
en espace-temps (modélisation relativiste) comme un moyen de construire des modèles thermomécaniques
respectant à la fois les principes de covariance et de causalité ainsi que les lois de la thermodynamique.

Dans ce manuscrit, les modèles relativistes sont principalement obtenus soit par la relativisation des
modèles newtoniens, soit à partir des lois de la thermodynamique formulées en espace-temps. Plusieurs
modèles sont proposés dans le cadre de lŠespace-temps et ensuite comparés aux modèles existants: la
conduction thermique (modèles de Fourier et Cattaneo) et le comportement thermo-hyperélastique des
matériaux sont discutés.

La résolution numérique spatio-temporelle est également testée: les formes variationnelles correspondant
aux problèmes thermiques et thermomécaniques ont été développées. LŠétude du comportement des matériaux
est possible en utilisant ces formes écrites dans le référentiel propre. Des simulations numériques faites par
implémentation de ces formes dans le logiciel FEniCS project ont ensuite été réalisées aĄn de valider des
cas tests des modèles relativistes. La comparaison des modèles relativistes avec les modèles Newtoniens
classiques faite à la limite non relativiste montre la compatibilité de leurs résultats.

Des applications dans le but de la modélisation de la conduction thermique dans les ailettes de
refroidissement, lŠauto-échauffement survenant lors des essais de fatigue et le comportement dŠun bilame
montrent que lŠutilisation de lŠapproche relativiste permet de prédire les comportements des matériaux
tout en garantissant lŠobjectivité des modèles. Nous suggérons également lŠutilisation de cette approche
pour modéliser le processus de Ćexion des tubes, des résultats préliminaires sont donnés en annexe. Étant
donné que cette approche sŠavère avantageuse pour les applications proposées, il serait intéressant que des
recherches supplémentaires couvrent différents comportements des matériaux, comme la plasticité à titre
dŠexemple.
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Notations

List of operators

𝑋 Scalar

X Tensor

𝑋ij , 𝑋µν Contravariant components of a Newtonian respectively spacetime tensor

𝑋ij , 𝑋µν Covariant components of a Newtonian respectively spacetime tensor

𝑡𝑟(X) Trace of a 3D second-rank tensor

|𝑋| Determinant of a second-rank tensor

ei, eµ Covariant base vectors

⊗ Tensor product

∇i, ∇µ Covariant derivative
𝜕

𝜕𝑥i
,
𝜕

𝜕𝑡
Partial derivative to space respectively time

𝑑

𝑑𝑥i
,
𝑑

𝑑𝑡
Total derivative to space respectively time

ℒu(.) Lie derivative with respect to the velocity four-vector u

𝑢λ∇λ(.) Covariant transport

𝐿𝑇 Laplace transform

𝜃d(av) Average value of temperature over the time

||.|| Norm of a quantity

< . > Arithmetic mean value over particles

Πµν Orthogonal projector to the observer’s four-velocity

(.) Projection using the orthogonal projector Πµν

(̄.), (̄̄.), (̄̄̄.) Average over respectively one, two, three directions

(̂.) Variable in the proper/covariant frame

∆ Laplace differential operator

𝒮 Scalar density

V First-rank four-tensor

T Second-rank four-tensor density

𝐷X
3D Objective rate operator of 𝐷ij
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List of symbols

𝑎 Diffusivity of the material

𝑎(., .) Left hand-side of a bilinear functional

𝑎ν Spacetime acceleration

𝑎K Scalar mathematical functions

𝐴x Small area normal to the 𝑥 -direction at the abscissa 𝑥

𝐴µν
I

, 𝐴µν
II

Tensorial functions

𝑏ij , 𝑏µν (b) Newtonian respectively spacetime inverse of left Cauchy-Green deformation

𝐵𝑖 Biot number

𝑏K Invariants of b

𝑐 Speed of light

𝒞mP Specific heat coefficient at constant pressure

𝒞mω Specific heat capacity at constant 3D volume

𝐶ij , 𝐶µν (C) Newtonian respectively spacetime right Cauchy-Green deformation

𝑑ij , 𝑑µν (d) Newtonian respectively spacetime rate of deformation tensor

𝑑1 Intrinsic dissipation

𝑑𝑒𝑝i, 𝑑𝑒𝑝µ (dep) Newtonian respectively spacetime displacement vector

𝑑𝑒𝑝*i , 𝑑𝑒𝑝
*
µ (dep*) Newtonian respectively spacetime virtual displacement vector

𝜕𝒟 Frontier of a hypervolume in a spacetime

d𝐻Ω Spacetime hypervolume of integration

d𝑉ω 3D volume of integration

d𝑆Ω 3D surface of integration

𝑑𝑠 Interval between 2 close events

𝒟 Hypervolume in a spacetime continuum

𝐷ij , 𝐷µν (D) Newtonian respectively spacetime Lagrangian rate of deformation tensor

𝑒ij , 𝑒µν (e) Newtonian respectively spacetime Euler-Almansi strain tensor

𝑒int Specific internal energy

𝐸 Young’s modulus

𝐸t Tangent elastic modulus

𝐸ij , 𝐸µν (E) Newtonian respectively spacetime Green-Lagrange strain tensor

𝑓 Volume heat source

𝑓a Force applied

𝑓j
M

Mechanical body force per unit volume

𝑓L Frequency of cyclic loading

𝑓r Normalized heat source

𝑓IR Sampling frequency

𝑓SC Function representing the space boundary conditions

𝑓TC Function representing the initial time boundary conditions

𝐹i Generalized forces

𝐹 i
j , 𝐹

µ
ν (F ) Newtonian respectively spacetime deformation gradient

𝐹 ′i
j , 𝐹 ′µ

ν (F ′) Newtonian respectively spacetime inverse of deformation gradient

ℱ Mapping in the domain 𝒟

𝑔 Statistical distribution of heat carriers (electrons, photons or phonons ...)

𝒢(𝑥) Mean value of 𝑄 at any point

𝑔ij , 𝑔µν (g) Newtonian respectively spacetime second-rank metric tensor

𝐺 Temperature gradient

ℎ Coefficient of convection of the surrounding medium

𝐻 Isotropic hardening of modulus

𝐼ij 3D identity tensor

𝐼I , 𝐼II Invariants of the projected strain tensor

𝑗i Flux of particles through an area

𝐽 Mass density ratio
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𝑙(k) Free path of the particle 𝑘

𝑙, 𝐿, 𝐿1 Length at atomic, macroscopic and upper macroscopic scale

𝐿(.) Right hand-side of a bilinear functional

𝐿c Characteristic length of the body

𝐿ij , 𝐿µν (L) Newtonian respectively spacetime velocity gradient tensor

𝑛 Number of particles per unit volume

𝑛i, 𝑛µ (n) Outward unit normal to the 3D respectively 4D surface

n1, n2 Exponents of the power laws of 𝐼I , 𝐼II
𝑁t Step along 𝑡

𝑁x Step along 𝑥

p Hydrostatic pressure of fluid

𝑝L Laplace variable

𝑝 Cumulated equivalent plastic strain

𝒫 Perimeter of the fin

𝑃 Total potential energy

𝑃𝐸𝐸𝑄 Equivalent plastic strain

𝑄i
j(𝑡) Orthogonal matrix depending on time

𝑄 Physical quantity attached to a gas particle

𝑞i, 𝑞µ (q) Newtonian respectively spacetime volume heat flux four-vector

𝑞jext Surface heat flux in the proper frame imposed on the hypersurface 𝜕Ωq

𝑟 Bend radius

𝑟i Position vector

𝑅2 Coefficient of determination

𝑠thc Possible thermomechanical coupling source

𝑠the Thermoelastic source

𝑠ij Newtonian respectively spacetime deviatoric part of 𝜎ij

𝑠𝑡𝑟𝑎𝑖𝑛ij Newtonian respectively spacetime generalization of strain tensor in case of

small and large deformations

𝑠𝑡𝑟𝑎𝑖𝑛ij
P

Newtonian respectively spacetime strain due to plasticity behavior

𝑆 Section of the fin

𝑡 Time

𝑡i Initial time

𝑡f Final time

𝑇 Momentum acting on a group of heat carriers

𝑇 i
M Stress vector at the boundary applied on 𝜕ΩTM

𝑇µν
σ Stress four-tensor

u Spacetime velocity

𝒰 Energy density

𝑣i Newtonian velocity

𝑟*µ Test function combining the virtual temperature field 𝜃* and the virtual dis-

placement field 𝑑𝑒𝑝*µ
𝑣g Average of mean particle speeds

𝑣h Speed of propagation of temperature in the liquid Helium

𝑊 Weight of tensor density

𝑋µ Newtonian respectively spacetime coordinates

𝑥µ Spacetime event

𝑧i, 𝑧µ (z) Newtonian respectively spacetime spatial or Eulerian coordinates

𝑍i, 𝑍µ (Z) Newtonian respectively spacetime coordinates of the particles in the reference

configuration
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𝛼 Thermal expansion coefficient

𝛼s Internal state variables

β Left Cauchy-Green deformation

𝛽(k) Inclination of the speed of the particle 𝑘 with respect to the 𝑥-direction

𝛽1 Coupling for the second order terms

𝛾 Lorentz factor

𝛿i Elongation in the direction 𝑖

𝜀ij , 𝜀µν (ε) Newtonian respectively spacetime elastic strain tensor for small deformations

𝜂ij , 𝜂µν (η) Newtonian respectively spacetime second-rank Minkovski metric tensor

𝜂c Entropy density

𝜃 Temperature

𝜃* Virtual temperature

𝜃f Final temperature

𝜃0 Initial/Room temperature

𝜃d 𝜃 − 𝜃0

𝜃d, ¯̄𝜃d,
¯̄̄
𝜃d Average difference between the specimen temperature and the room temper-

ature made over respectively one, two, three directions

𝜅 Bulk modulus

𝜆 Thermal conductivity

𝜆i(𝑡) Vector depending on time

Λ, 𝜇 Lamé’s coefficients

𝜈 Poisson coefficient

𝜉i, 𝜉µ Newtonian respectively spacetime coordinate system

𝜋 Term related to viscous pressure

𝜋µν Mechanical stress not taking into account stress resulting from viscous pressure

̃︀𝜌c Mass density (at rest) with the specific internal energy 𝑒int = 0 interpreted

in the convective frame

𝜎n Amplitude of cyclic loading stress

𝐹l Fatigue limit

𝜎ij
c , 𝜎µν

c (σc) Newtonian respectively spacetime Cauchy stress

𝜎ij
PK2, 𝜎

µν
PK2 (σP K2) Newtonian respectively spacetime Piola-Kirchhoff stress

𝜎ij
TH

, 𝜎µν
TH

(σT H) Newtonian respectively spacetime stress due to thermal expansion

𝜎ijeq
elas

Elastic predictor

𝜎0 Von Mises yield condition of uniaxial strength

𝜏 , 𝜏1 relaxation time constants

𝜏0D, 𝜏1D, 𝜏2D, 𝜏S Time parameters characterizing the heat transfer perpendicular to the direction

of heat conduction flux

𝜑i, 𝜑µ (φ) Newtonian respectively spacetime specific heat flux

Φ Dissipation

Ψ Specific free energy

Ψσ Part of Ψ corresponding to the mechanical and thermomechanical phenomena

Ψθ,σ Part of Ψ corresponding thermomechanical phenomena

Ψθ Part of Ψ corresponding to the thermal phenomena

Ω Spacetime domain of integration

𝜔 3D spatial domain of integration

ω Spin tensor



We assume that space and time are universal constants because that explains
how we perceive the world. But it turns out that they are not universal constants.
And that changes everything.
What we believe is the universal constant of our experience is, in fact, not constant at all.
And, instead, much of what we assume to be true and real is relative to our own perception.

MARK MANSON
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General introduction

Scope of the research

Industrial sectors such as automotive, aeronautics, building equipment.. are in constant development.
The main motivation is the economic competition which has been growing in the last decades. Despite
the extensive development of these sectors (e.g. shape and material optimization of cars, performance
of aircraft), particular challenges remain unsolved. The reduction of the time-to-market and the cost
of development of forming processes were among the difficulties that motivated the use of numerical
simulations [Ablat and Qattawi,2017, Banabic,2010, Wang,2016]. Not to mention the fast improvement of
computational performance of devices which promoted them as a convenient means to alleviate the other
industries problems.

On one hand, numerical simulations for small deformations are already developed and used to design
mechanical systems. They are able to cover lots of applications [Banabic,2010]. On the other hand, one of
the obstacles facing the use of numerical simulations is modeling material behavior for large deformations
[Panicaud et al.,2015]. Several contributions in this Ąeld adopt a geometrical point of view to describe the
mechanics of materials for large deformations [Yavari et al.,2006, Yavari and Marsden,2012]. This is what
we also propose to do. Moreover, the standpoint adopted in the present study is to formulate physical
models whose form is preserved by changing frames. It leads us to study the action of changes of frames on
the physical equations/models.

In order to guarantee obtaining models independent with respect to frames changes, we are therefore
applying the principle of covariance to physical laws. In physics, the principle of covariance is ensured in
relativistic theories. As a consequence of the application of this principle, the theories of relativity describe
the phenomena in a domain of space and time simultaneously whatever the observers are.

Furthermore, dissipative models which are necessary for the modeling of the forming processes must be
compatible with the second principle of thermodynamics, which generally takes the form of the Clausius-
Duhem inequality. In order to propose covariant dissipation models, it will therefore be necessary to propose
a covariant formulation of this inequality as suggested in [Lamoureux-Brousse,1989] for small deformations.
This starting point should systematically allow providing satisfactory models of behavior and dissipation.

Relevance of the research

As previously mentioned, the aim of this study is to Ąnd representative models for industrial applications
especially the forming processes. These processes frequently involve thermal phenomena, hence the need to
take also into account thermomechanical couplings in the covariant modeling.

In the modeling of thermal phenomena, different modes of heat exchange can be considered: conduction,
convection/advection, radiation [Fourier,1988]. In this manuscript, we will aim to model particularly the
heat conduction phenomena: heat exchanges by convection/advection will only be taken into account
via boundary conditions and those related to radiation are not taken into consideration. The three main
questions to ask in order to verify the reliablity of thermal (and thermomechanical) models are: "Do they
respect the laws of thermodynamics?", "Do they respect the causality principle?" and "Do they respect
the covariance principle?" (section 1.6). Note that we designate by the terms "causality and covariance
principles" their deĄnitions in a relativistic framework. These questions may seem straightforward but it
turns out a Newtonian FourierŠs type model does not respect the causality principle because of the form of
the corresponding heat equation. This will be further detailed in section 1.5. Nothing paradoxical here, but
it suggests that, dealing with thermomechanics, we should assemble thermal and mechanical models that
understand causality and covariance in the same way.

In order to enhance this model, many authors [Cattaneo,1958, Osborne,1950, Tavernier,1962] suggested
Newtonian models by adding a relaxation term to the heat conduction equation. The problem of causality
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violation of the heat models is hence resolved. However, these Newtonian models are not necessarily covariant
with respect to changes of frames (section 1.6).

Other thermal models are obtained using a relativistic approach [Eckart,1940, Landau and Lifshitz,1975,
Stewart,1977, Carter,1988] which can be called "spacetime approach" (the models are built in a spacetime
or 3D+1D domain, further detailed in chapter 1). These models fulĄll the covariance criterion and are
thermodynamically compatible but not all of them respect the causality principle. This will be further
detailed in section 1.8. In this manuscript, we suggest the use of a spacetime thermodynamical approach in
order to develop heat conduction models respecting at the same time the notions of causality and covariance.

On another note, mechanical modeling of forming processes requires the ability to model large de-
formations. Hence the need to improve models of material behavior and of operating conditions of
processes. This requires numerical analysis of mechanical models on the base of experimental data
[Oliveira and Fernandes,2019]. These models should fulĄll the conditions of covariance and compatibil-
ity with laws of thermodynamics. Limitations encountered in Newtonian modeling open the discussion on
Ąnding a new approach.

First, the non linearity of the models is encountered when modeling large deformations [Bertram,2012]
or dissipative behaviors e.g. plasticity, viscosity...[Valanis,1970, Lubliner,1984, Prasolov,1997] or even a com-
bination of these two cases. This condition requires an incremental formulation in time of the corresponding
problem. The covariance is then not fulĄlled using Newtonian modeling because of the incremental form of
the models. This brings up the spacetime formalism as a convenient way of resolution as discussed about the
thermal models. In mechanical phenomena, it corresponds classically to the invariance with respect to rigid
body motion but also to the objectivity of equations of mechanical models [Rouhaud et al.,2013] especially for
large deformation [Truesdell,1966, Prost-Domasky et al.,1997]. Authors propose the use of objective trans-
ports in order to ensure objectivity in hypoelastic modeling (i.e stress rate) as well as in elastic modeling (i.e
velocity, deformation rate) [Frewer,2009, Jaumann,1911, Green and Naghdi,1965, Bruhns and Meyers,1998].
A geometric point of view is agreed to be able to ensure objectivity [Eringen,1962, Truesdell and Noll,2003,
Marsden and Hughes,1994, Venturi,2009], which will also be used in this manuscript via the spacetime
formalism.

Second, the argument of thermodynamic compatibility also holds for mechanical models [Eckart,1940,
Havas,1964, Grot and Eringen,1966a, Grot and Eringen,1966b, Muller,1969, Maugin,1971a, Maugin,1971b,
Maugin,1973, Bressan,1978, Vallée,1981, Israel,1987, Kijowski and Magli,1997, Yavari and Ozakin,2008,
Romano and Barretta,2011, Yavari and Marsden,2012, Schellstede et al.,2014]. To sum up, the aim of this
work is to model thermomechanical behavior in a relativistic framework. The use of a thermodynamical
approach built in a spacetime formalism seems to be able to solve the problems of both thermal and
mechanical types of models [Eckart,1940, Landau and Lifshitz,1975, Stewart,1977].

The models will have to be able to present the least possible assumptions in order to be applicable for
large deformations occurring during forming processes and to be also used to model materials behaviors
using large deformations such as modeling the plasticity/viscoplasticity behavior of steel or thermoplastic
behavior of polymers. The use of such a formalism may add new terms to models when modeling forming
processes for large deformations and when critical temperatures (very high/low temperatures) are reached
during manufacturing [Rouhaud et al.,2013, Eckart,1940].

We note that our approach is based on the study of the existing Newtonian and spacetime ther-
mal/mechanical models reviewed in parts 1 and 2 of the manuscript: some of our models are deduced by
relativization of Newtonian models in the suggested spacetime framework, others are deduced from a direct
application of laws of thermodynamics in spacetime.

Thesis statement and objectives

After its development in the Ąrst half of the 20th century, continuum mechanics is now a reliable theory
to describe transformations of media at macroscopic scale. Solids or Ćuids can be modeled through a
common framework obtained either from balance laws [Truesdell,1966] or the virtual work/power principle
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[Germain,1973]. However, despite the accumulated contributions to this theory, modeling of thermomechan-
ical behaviors faces particular challenges related to geometric description and the choice of constitutive
models. The goal of obtaining models that fulĄll the causality principle as well as the covariance principle
and respect the laws of thermodynamics, is not fully achieved yet. The innovative point of view used in this
manuscript is the use of a spacetime formalism to grant covariance in the context of large deformations for
modeling thermomechanical behaviors. Throughout this manuscript, we will be answering the questions:
How to build thermomechanical models in this spacetime formalism? Are these models the extensions of
Newtonian models for any displacement/velocity?

The spacetime framework scope

As previously discussed, differential geometry is used in this manuscript in the description of tensors,
techniques of differential calculus... It is reviewed in [Schouten,1954, Kerner,2014]. Moreover, vocabulary
and notations of the spacetime formalism used to develop the thermomechanical models in this manuscript
are reviewed in [Boratav,1991]. We will only introduce the concepts necessary to our study throughout the
manuscript (see chapters 1 and 4). Furthermore, the principles and applications of the theory of relativity
are found in [Eckart,1940, Weinberg,1972, Landau and Lifshitz,1975].

We develop our models in a similar framework. The following describes the scope of the study:
∙ A relativistic framework is considered where gravitation is not taken into account.
∙ Motion is described for continuous media.
∙ Models are built in this framework in order to be frame-indifferent.
∙ Models are written for large deformations in order to Ąt for forming processes during which deformations

are large enough to invalidate assumptions of the inĄnitesimal strain theory. Instead of it, a large
deformation theory is considered. In this case, initial and deformed conĄgurations of the continuum are
signiĄcantly different. Lagrangian and Eulerian point of views can be used to describe the motion 1.4.4.

Methodology for building and validating spacetime thermomechanical models

In order to build thermomechanical models as per the requirements previously mentioned, a spacetime
thermodynamic approach is suggested. The Ąnal goal is obtaining thermomechanical models which can
represent as close as possible the reality of materials analysis and characterization techniques (e.g. study of
self-heating occurring during fatigue test) and of forming processes (e.g. beam bending) in the spacetime
domain. This is all done in order to simulate the procceses numerically by implementing the models. Steps
of the modeling approach tested in this manuscript are as follows:
1. Recall of a spacetime framework guaranteeing the covariance of physical laws: spacetime geometry,

kinematics, energy-momentum tensor, spacetime covariant derivatives, projectors...
2. Relativization of the laws of thermodynamics (i.e. balance of internal energy, balance of momentum

and energy). This leads in particular to a covariant form of the Clausius-Duhem inequality.
3. Modeling the heat conduction phenomenon (Fourier-like and Cattaneo-like models) and the thermome-

chanical behavior in the spacetime formalism.
4. Formulation of the corresponding weak integral forms in order to simulate coupled multiphysics problem.
5. Numerical implementation and simulation run using FEniCS project.
6. Engineering applications, material characterization and forming processes modeling (e.g. heat conduction

in a cooling Ąn, self-heating phenomenon, beam bending...).
7. Comparison of results obtained using Newtonian models and spacetime models in order to validate the

latter at the Newtonian limit.
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Overall structure of the manuscript

This manuscript is divided into two parts: the Ąrst includes 3 chapters and is dedicated to spacetime thermal
modeling, while the second which includes 2 chapters is dedicated to spacetime thermomechanical modeling.
In chapter 1, we review the classical notations and deĄnitions of physics that are used in this manuscript.
We also analyze the features of the Newtonian and spacetime thermal models found in the literature. In
chapter 2, we remind elements of the spacetime formalism used for thermal modeling. These are further
used in developing spacetime thermal models using different methods in a thermodynamical approach. At
the end of chapter 2, an engineering application is illustrated: a spacetime modeling of heat transfer in a
cooling Ąn. Numerical simulations are done using FEniCS project. Chapter 3 holds another application:
we are interested in studying the self-heating phenomenon occurring during fatigue tests using a thermal
spacetime model as obtained in chapter 2 with the appropriate boundary conditions. This study is based on
experimental data which provides the input of the methodology used for modeling. Numerical simulations
enable the study of the model parameters. Note that, in the Ąrst part of the manuscript, we introduce
some notions about mechanics which are necessary for the spacetime thermal modeling. However these
notions are further extended in the second part. In chapter 4, we review the thermomechanical modeling
adapted for large deformations: several Newtonian and spacetime models are discussed. We also introduce
further notations of the spacetime formalism in order to add the mechanical ingredient to the spacetime
thermal models obtained in chapter 2. In chapter 5, we develop spacetime thermomechanical models. We
also consider the modeling of bimetallic element behavior and a tube bending process using our spacetime
thermomechanical model.
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Part 1: Modeling of thermal behavior of materials
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1 Bibliographic review on thermal modeling

1.1 Introduction

In this thesis the thermomechanical behavior of materials for large deformations will be modeled. For this
reason, the kinematic (i.e. mechanical and thermal) variables as well as the static/dynamic elements related
to this behavior will be respectively introduced all throughout the manuscript. In this Ąrst part of the
manuscript, the heat conduction modeling in a spacetime domain will be speciĄcally investigated. First, the
heat equation in case of heat conduction will be reviewed in both Newtonian and relativistic approaches.
Then, a model deriving from a thermodynamical approach in spacetime will be proposed. The application
of the obtained spacetime heat model to a self-heating study will be done in order to show its ability to
represent such a phenomenon.

At the beginning of this chapter, the deĄnitions of quantities and the elements of kinematics used
to describe a motion in continuous media are summarized. Different frames that can be used with the
Lagrangian and Eulerian descriptions of the motion of a particle in continuous media are also deĄned.
Difficulties facing thermal modeling in Newtonian and relativistic approaches are then discussed: they can
be summarized as the violation of the causality and covariance principles. These difficulties emphasize the
need of an innovative method to model thermal phenomena. The self-heating phenomenon is also reviewed
in this chapter: studies investigating this phenomenon in the literature are discussed, in order to deĄne the
parameters necessary for its modeling.

1.2 Classical/Newtonian kinematics in continuum thermomechanics

We Ąrst place ourselves within the framework of continuous media using a classical three-dimensional
approach (3D approach) related to the space variations of the Ąeld quantities. The term "classical" is here
equivalent to the adjective "Newtonian", which is used to oppose the adjective "relativisticŤ. In this section,
we will introduce vocabulary, concepts and notations of continuum thermomechanics that will be used in
this manuscript.

It is assumed in particular that the properties and characteristics of the medium are continuous and
differentiable in space and in time. The material point in this medium is considered as being a "representative

elementary volume" [Eringen,1962, Rougée,1997]. It is centered around a given position in the 3D space
(supposed to be Euclidean). It is worth noting that in geometry, Euclidean space is associated to a vector
product. It is, for example, the case of a three-dimensional space in which material points are designated
by coordinates and the distance between two material points can be computed using a distance formula
[Britannica,2011, Gray,1997, OŠNeill,1966].

The position of the material point is written by the coordinates 𝑧𝑖 (𝑖 = 1, 2, 3) in an orthonormal
coordinate system Ý𝑖. We denote e𝑖 the base unit vectors associated with this coordinate system representing
the frame in which quantities are observed. Note that the Latin letters are used to designate the coordinates
of the particle and the Greek letters to designate the coordinate systems.

In this manuscript EinsteinŠs summation will be used. Latin indices (𝑖, 𝑗, ...) ranging from 1 to 3
correspond to the spatial parts of the quantities.

In classical continuum thermomechanics, coordinate systems are generally considered as orthonormal,
hence in this manuscript we will consider orthonormal 3D coordinate systems only. Consequently, the metric
of the manifold in this framework is expressed by the tensor g of signature (1, 1, 1) [Marleau,2017]. We note
that the use of general curvilinear coordinates is possible and can be found in the literature also for 3D
coordinate systems [Eringen,1962].
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1.2.1 Classifications of frames in thermomechanics

In order to describe phenomena in physics (e.g. motion), the use of frames is essential. For the purpose of
classifying frames, we introduce the speed of light 𝑐 according to which the norm of the linear 3D velocity of
particles 𝑣𝑖 can be compared. Thermomechanics can therefore be divided into Newtonian thermomechanics
(♣♣𝑣♣♣ is negligible comparing to 𝑐) and relativistic thermomechanics (𝑣 is not negligible comparing to 𝑐). This
last category can be divided into thermomechanics description considering special relativity where gravitation
is not taken into account [Knudsen and Hjorth,1995] and thermomechanics description considering general
relativity where gravitation is considered.

Furthermore, privileged classes of frames are deĄned in thermomechanics [Landau and Lifshitz,1975].
In the following, we discuss classes of frames used in Newtonian thermomechanics. Frames in relativistic
thermomechanics will be later discussed (see section 1.3).

The description of thermomechanical behaviors of materials depends of these classes. Some frames are
related to the material body, others are not. Therefore, different measures of parameters (e.g. deformation)
are obtained for different classes.

1.2.2 Frames in Newtonian thermomechanics

Note that in this manuscript, we use the adjective "Newtonian" to indicate notions deĄned in Newtonian
thermomechanics and we deĄne the classical 3D space as the space in which relativity is not taken into
account (see section 1.2). The deĄnition of a Newtonian frame is not trivial. We review some of the deĄnitions
found in the literature:
∙ A general frame is deĄned in [Landau and Lifshitz,1975] as being a coordinate system giving the spatial

positions of particles and corresponding to a clock giving the time.
∙ A Newtonian frame is deĄned in [Wang,2016] as being the combination of "a chronology measuring the

instants of time and the 3D coordinates".

We will use the following deĄnition: A set of 3 non-collinear points associated to a chronology, that by the
deĄnition of a frame are Ąxed between them and one can locate a position or a motion with respect to them.
Therefore, the Newtonian frame enables the description of the thermomechanics of discrete elements that
can be assumed to be points for a certain scale (e.g. kinetics of gaz as well as satellite motion). Within the
continuum, these discrete elements correspond to the representative elementary volumes (REV) that are
assumed to be inĄnitely small. A frame in Newtonian thermomechanics can be deĄned using 3 parameters:
the base vectors e𝑖, the associated coordinate system Ý𝑖 and a chronology parameterized by the time 𝑡 (e.g.
(e𝑖, Ý𝑖, 𝑡)).

As previously mentioned, in the Newtonian thermomechanics approach, time is an external parameter
to the spatial coordinate system. It is therefore necessary to associate a chronology with the 3D coordinate
system allowing to locate the system and its evolution in time. Newtonian frames are (inĄnitely) rigid
bodies that can undergo rigid body motion in the Euclidean space. Two types of Newtonian frames can be
distinguished: Galilean and non Galilean frames.

Galilean frames are frames having a uniform rectilinear translation motion of velocity 𝑣𝑖 with respect
to each other while one of them is predetermined to be Galilean. Practically, it is convenient at Ąrst
approximation to consider the heliocentric frame as Galilean (because it can be considered roughly static
to the far stars during the observation) and deĄne/construct all other frames with respect to this one.
"Galilean" frames can also be called "inertial" frames. A more abstract but equivalent deĄnition is given in
[Landau and Lifshitz,1976]: a Galilean frame is a frame according to which time is uniform and space is
homogeneous and isotropic. It is an idealization of the previous deĄnition.

The transformation from one Galilean frame (𝑅) to another Galilean frame (𝑅′) is deĄned by the
Galilean transformation. As follows are examples of Galilean transformations. Let [𝑧1, 𝑧2, 𝑧3] be the spatial
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components of the position vector 𝑟𝑖 in (𝑅) and 𝑡 the time relative to (𝑅). And let [𝑧′1, 𝑧′2, 𝑧′3] be the
spatial components of the position 𝑟′𝑖 in (𝑅′) and 𝑡′ the time relative to (𝑅′).

Fig. 1: A transformation between frames (𝑅) and (𝑅′) where 𝑣i is parallel to the 𝑧1-direction.

In the particular case where the axes of the frames are parallel and the direction of the relative velocity
is parallel to the 𝑧1-direction, the Galilean transformation is written [Truesdell,1966]:

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑧′1 = 𝑧1 ⊗ 𝑣𝑡

𝑧′2 = 𝑧2

𝑧′3 = 𝑧3

𝑡′ = 𝑡

(1.1)

In the case where the axes of the frames remain parallel but the direction of the relative velocity is
arbitrary, the Galilean transformation is generalized to:

⎭
𝑟′𝑖 = 𝑟𝑖 ⊗ 𝑣𝑖𝑡

𝑡′ = 𝑡
(1.2)

Authors like [Taillet et al.,2009] generally deĄne non Galilean frames as being frames that do not check
the conditions necessary to be Galilean. In these frames, NewtonŠs second law of motion is only veriĄed by
adding additional forces called inertial forces which are due to the accelerated motion of the frame with
respect to a Galilean (or inertial) frame of reference.

1.3 Relativistic kinematics in continuum thermomechanics

We place ourselves now in the relativistic framework where frames are associated with the continuum.
This association enables the transition to the description of the thermomechanics of the continuum (e.g.
thermomechanical behaviors of material).

In addition to that, a set of four coordinates denoted:

𝑥Û = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥𝑖, 𝑐𝑡) (1.3)

is used to parameterize a point in a spacetime manifold. It is related to the spacetime coordinate system ÝÛ.
A frame in spacetime thermomechanics can then be deĄned using 2 parameters: a set of four base vectors

of spacetime eÛ and the associated coordinate system ÝÛ (e.g. (eÛ, ÝÛ)). Greek indices (Û, Ü... running from
1 to 4) label the spacetime quantities.
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1.3.1 Introduction of proper time and absolute time

In order to describe classes of frames in relativistic thermomechanics, it is important to note that time
is now a coordinate parameter which have a different value between frames for the measure of the same
phenomenon. As its name indicates the proper time is the time measured by a clock related to the matter
(at rest). It is represented by the red clock associated to the matter frame in Fig. 2. However, the absolute
time is independent of the matter frame. The matter can be in motion with respect to the clock measuring
the absolute time. This is represented by the blue clock in Fig. 2. The objectŠs red clock is in motion with
respect to the the blue clock. For example, the time taken by a spacecraft to travel between two locations
and measured by a Ąxed clock to earth is shorter than that measured by a clock related to the moving
spacecraft.

Fig. 2: Categorisation of time and corresponding frames. Note that the hat on the symbols denotes quantities described in the
frame related to the matter (i.e. proper/convective).

As follows, we discuss classes of frames in relativistic thermomechanics: inertial, convective and proper
frames.

1.3.2 Inertial frames in relativistic thermomechanics

It can be deĄned in relativistic thermomechanics generalizing the deĄnition of "a Galilean frame" in
Newtonian thermomechanics. Inertial frames are frames animated with respect to one another with a
rectilinear non accelerated motion with a predeĄned speed 𝑣, whatever the value of 𝑣 to 𝑐 is (especially
taking into account relativistic case). The motion is characterized by a linear 3D velocity 𝑣𝑖 having the
Euclidean norm 𝑣. Within these frames any isolated (no external forces acting on it) or pseudo-isolated
body (the resultant force acting on it is null) which is in motion at a constant speed remains at constant
speed. In the particular case where 𝑣 is negligible with respect to 𝑐 this frame coincides asymptotically with
Galilean frame (see section 1.2.2).

The metric in this framework is expressed either by η = (1, 1, 1,⊗1) or by η = (⊗1,⊗1,⊗1, 1). Note that
this (+,+,+,⊗) or (⊗,⊗,⊗,+) signature is conventional and has no physical implications [Marleau,2017].
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Different signatures are considered in the manuscript. In this bibliographic chapter, we will consider the
signature of metric (+,+,+,⊗). In the following chapters, since a spacetime domain is considered thus to
assign positive components in the time direction, we will consider the signature of metric (⊗,⊗,⊗,+). The
transformation from one inertial frame (𝑅) to another inertial frame (𝑅′) is now deĄned by the Lorentz
transformation.

In the particular case where the axes of the frames are parallel and the direction of the relative velocity
is parallel to the 𝑧1-direction, the Lorentz transformation is expressed by [Bernard,2019]:

∏︁
⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋃︁

𝑧′1 = Ò𝑧1 ⊗ Ò𝑣𝑡

𝑧′2 = 𝑧2

𝑧′3 = 𝑧3

𝑡′ = Ò𝑡+ Ò
𝑣

𝑐2
𝑧1

(1.4)

where Ò is the Lorentz factor deĄned by:

Ò =
1√︁

1 ⊗ 𝑣2

𝑐2

(1.5)

The Lorentz transformation is valid for every 3D velocity 𝑣𝑖 (♣♣𝑣♣♣ ⊘ 𝑐) [Gondran and Gondran,2014].
Moreover, the Galilean transformation is a limiting case of Lorentz transformation (at the non-relativistic
limit).

1.3.3 Proper and convective frames in relativistic thermomechanics

The proper frame is a notion deriving from relativistic physics that is very similar to the deĄnition of
the convective frame [López-Monsalvo,2011]. Both frames are related to the evolving matter (co-moving
with the matter [López-Monsalvo,2011, Louck and Galbraith,1976]). Thus, in these frames, a point of the
matter is stationary. Quantities described in both frames will be systematically marked with a hat on their
symbols [Wang,2016].

These frames may or may not be inertial. The difference between the two frames is that: the time
in the proper frame is proper to the evolving matter (it means that an internal process can be used to
deĄne the time measuring the evolution of phenomena) while in a convective frame the time is absolute
thus related to an exterior clock to the system (see 1.3.1). These two frames are introduced in details in
[Rouhaud et al.,2013, Wang,2016].

In addition to these classes of frames deĄned above, other classes are privileged in thermomechan-
ics for application to the general relativity [Einstein,1920] (such as the harmonic coordinate systems
[Belinfante and Garrison,1962, Soffel and Langhans,2013]).

1.3.4 Examples of possible configurations

A material body (object) is identiĄed using a continuous and differentiable 3D manifold. The projection of
the ensemble of material points into the three-dimensional space is called a conĄguration [Wang,2016]. In
every conĄguration, information about the positions of the material points at a given instant are obtainable,
as presented in Fig. 3. Different conĄgurations can be obtained when different types of frames taken into
account. In Fig. 3 and table 1, we give the notation of the space coordinates and time corresponding to
each frame.

An instant of reference 𝑡0 = 𝑡0 = 0 is chosen to deĄne the initial conĄguration. At this instant, we note
the conĄguration Ω0. Note that Ω0 is identical in the inertial frame and in the convective/proper frame.
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Then at an instant 𝑡 of the absolute time, the object is deformed. The conĄguration in an inertial
frame noted (1) in which the frame remains the same and the object is deformed, is different of that in a
convective/proper frame noted (3)/(4) in which the frame is deformed with the object.
There is also a difference between conĄgurations if we consider the proper time instead of the absolute time.
The instant 𝑡 is different from the instant 𝑡, then the conĄguration in an inertial frame is (2) (different from
conĄguration (1)) and in the object frame the conĄguration (4) (different from conĄguration (2)).

LetŠs consider that the object in Fig. 3 is a square whose sides have a length of 𝐿 and it is observed
respectively at a time 𝑡0 = 𝑡0 = 0 and after deformation at a time 𝑡 corresponding to the proper time 𝑡
at which its sides elongations are Ó𝑥 in the 𝑥⊗direction and Ó𝑦 in the 𝑦⊗direction. Then the dimensions
in the conĄgurations and times corresponding to frames will be: (1): (𝑧1, 𝑧2, 𝑡) = (𝐿+ Ó𝑥, 𝐿+ Ó𝑦, 𝑡), (2):
(𝑧1, 𝑧2, 𝑡) = (𝐿+ Ó𝑥, 𝐿+ Ó𝑦, 𝑡), (3): (𝑧1, 𝑧2, 𝑡) = (𝐿,𝐿, 𝑡) and (4): (𝑧1, 𝑧2, 𝑡) = (𝐿,𝐿, 𝑡).

This shows that conĄgurations vary according to the frames chosen for observation. Numbers in the
table correspond to the conĄgurations in Ągure 3.

Fig. 3: Different configurations and times corresponding to different frames to observe the same phenomenon (see table 1)

Frame/Time Absolute Proper

Inertial 1 2 (unusual use)
Convective 3 -
Proper - 4

Tab. 1: Different frames corresponding to different configurations and times corresponding to observe the same phenomenon
(see Fig. 3).

1.4 Additional notions for Newtonian and relativistic thermomechanics

1.4.1 Invariance

The notion of invariance is veriĄed when the value of the physical quantity does not differ during a
transformation on the elements of a group (e.g. change of frames) [Liu,2004]. The spacetime norm of a
velocity vector in spacetime, for example, is invariant with respect to the change of frames.
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Let us illustrate this notion: suppose that we dispose of an aquarium full of water and we deĄne a
Cartesian coordinate system associated with the time 𝑡 denoted: ÝÛ : [𝑥, 𝑦, 𝑧, 𝑡] to identify each point in
the recipient. A spacetime Cartesian frame (eÛ, ÝÛ) can be deĄned using this coordinate system, where eÛ
represents the base vectors associated to this spacetime frame. The water temperature at each point can
then be described by the function 𝜃(𝑥, 𝑦, 𝑧, 𝑡). It is a unique value representing the temperature of each
point of the space and time domain.

Let us then consider a cylindrical coordinate system associated with the time ̃︀𝑡 denoted ̃︀ÝÛ : [𝑟, Ð, ̃︀𝑧,̃︀𝑡]
that can move relatively to ÝÛ. The coordinates of ̃︀ÝÛ are functions of the coordinates of ÝÛ such that:
𝑟(𝑥, 𝑦, 𝑧, 𝑡), Ð(𝑥, 𝑦, 𝑧, 𝑡), ̃︀𝑧(𝑥, 𝑦, 𝑧, 𝑡),̃︀𝑡(𝑥, 𝑦, 𝑧, 𝑡). A spacetime cylindrical frame (̃︀eÛ, ̃︀ÝÛ) can be deĄned using
this coordinate system, where ̃︀eÛ represents the base vectors associated to this spacetime frame.
The value of the temperature 𝜃, at a given point and at a speciĄc time, is invariant compared to the change
of frame. We can then write:

𝜃(𝑥, 𝑦, 𝑧, 𝑡) = 𝜃(𝑟, Ð, ̃︀𝑧,̃︀𝑡) (1.6)

This is equivalent to say that the value of 𝜃 is independent of the coordinate system chosen therefore to
the change of the corresponding frames. This is related to the scalar nature of temperature, that we have
assumed based on experimental observations.

1.4.2 Material objectivity

Material objectivity is rather a notion characterizing quantities in Newtonian thermomechanics. It postulates
that the qualitative and quantitative descriptions of the phenomena remain the same when these phenomena
are observed in different frames. The historical development of the term can be found in [Eringen,1962,
Nemat-Nasser,2004, Truesdell and Noll,2003, Marsden and Hughes,1994, Speziale and Galbraith,1987].

In [Truesdell and Noll,2003], the principle of objectivity is deĄned as: "it is a fundamental principle

of classical physics that material properties are indifferent, i.e., independent of the frame of reference or

observer". In [Nemat-Nasser,2004], it is deĄned by: "Constitutive relations must remain invariant under

any rigid-body rotation of the reference coordinate system. This is called objectivity or the material frame

indifference."

A Newtonian constitutive model has to verify the principle of material objectivity. The notion of
objectivity actually covers two physical deĄnitions:
∙ The independence with respect to the change of frames (i.e. frame-indifference [Panicaud et al.,2014]):

The frame does not affect the motion of the body (the choice of frame has not consequences on the
motion itself). It is a fundamental principle in classical physics. This point of view is adopted in this
study. It is important in the formulation of constitutive models and the price to pay is to use differential
geometry in a spacetime domain [Rouhaud et al.,2013]. This notion in spacetime refers to the covariance
principle.

∙ The indifference with respect to the superposition of rigid body motions (i.e. material indifference
[Panicaud et al.,2014]): When a body is animated by a rigid body motion, there are no constraints
applied to this body [Frewer,2009]. It is the classical point of view that leads to the classical 3D
Euclidean geometry [Coxeter,1961].

To sum up, the notion of objectivity covers the notion of indifference with respect to the action of the group
of frame changes and the notion of indifference with respect to the action of the group of rotations of the
3D space. The two notions of objectivity merge in the classical 3D space previously deĄned.

-Objectivity requirement for a 3D tensor:

A 3D tensor is a tensor deĄned in the classical 3D space (see deĄnition in section 1.2). Let us consider 2
Newtonian frames (𝑒𝑖, Ý𝑖, 𝑡) and (̃︀𝑒𝑖, ̃︀Ý𝑖,̃︀𝑡) such that:
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̃︀Ý𝑖 = 𝑄𝑖𝑗(𝑡)Ý
𝑗 + Ú𝑖(𝑡) (1.7)

where 𝑄𝑖𝑗(𝑡) is an orthogonal matrix related to rotation and Ú𝑖(𝑡) is a vector related to translation, both
depending only on time.
Let us also consider a second-rank tensor observed in these 2 frames such that:

á = á 𝑖𝑗e𝑖 · e𝑗 = ̃︀á 𝑖𝑗̃︀e𝑖 · ̃︀e𝑗 (1.8)

where Ş·Ş denotes the tensor product. This tensor is frame-independent in case it veriĄes:

̃︀á 𝑖𝑗 = 𝑄𝑖𝑚(𝑡)𝑄𝑗𝑛(𝑡)á𝑚𝑛 (1.9)

1.4.3 Covariance principle

In this manuscript, the spacetime formalism is used for purposes explained in section 1.6 and section 4.3.
BrieĆy, this principle postulates that the form of the laws/models of physics is identical in all the frames,
inertial or not. The variables of these laws/models obey the law of change of frames and the laws/models
themselves conserve their form (i.e are form invariant). The notion of covariance brings to light the notion
of relativity and spacetime formalism. Within the spacetime formalism, three coordinates represent the
space and one coordinate represents time as presented in section 1.3 [Wang,2016]. Hence the observers are
completely deĄned once the spacetime frame is chosen and spacetime transformations describe change of
frames [Eringen,1962]. The indifference to the change of frames must apply to all spacetime tensors and to
all equations and operators.

As an illustration, EinsteinŠs theory of special relativity is based physically on the evidence that the
celerity of light in a vacuum remains constant for all the frames moving between them in uniform translation
with constant velocity [Einstein,1920]. Mathematically, the result of the invariance of celerity of light is
expressed by building covariant models (mechanical or others) with respect to the Lorentz transformation.

Let us now consider the example taken in section 1.4.1. Let us suppose that we have measured the
temperature gradient 𝐺(𝑥, 𝑦, 𝑧, 𝑡) at a given point of space at a speciĄc time in the different spacetime
frames used. The components of this spacetime vector are deĄned at each point by the derivatives:

𝐺𝑥 =
𝜕𝜃

𝜕𝑥
,𝐺𝑦 =

𝜕𝜃

𝜕𝑦
,𝐺𝑧 =

𝜕𝜃

𝜕𝑧
,𝐺𝑡 =

𝜕𝜃

𝜕𝑡
(1.10)

where
𝜕

𝜕𝑥𝑖
is the partial derivative to space. Now let us consider the Ąrst cylindrical coordinate of this

gradient resulting from a spacetime transformation, it is given by:

𝐺𝑟 =
𝜕𝜃

𝜕𝑟
(1.11)

To compute 𝐺𝑟, it is necessary to formulate the relation between the cylindrical coordinates and the
Cartesian coordinates:

𝐺𝑟 =
𝜕𝑥

𝜕𝑟
𝐺𝑥 +

𝜕𝑦

𝜕𝑟
𝐺𝑦 +

𝜕𝑧

𝜕𝑟
𝐺𝑧 +

𝜕𝑡

𝜕𝑟
𝐺𝑟 (1.12)

Therefore :
𝐺𝑟 ̸= 𝐺𝑥 (1.13)

In other words, the components of the temperature gradient are not individually independent of the
choice of coordinate system (consequently not independent of the frame in which the quantity is expressed)
although the temperature itself is. Entities like the spacetime temperature gradient 𝐺 should be build
covariant to preserve their form by change of frames.
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We thus propose to describe the large transformations of materials (including large deformations and
Ąnite temperature variations) with a spacetime covariant approach using the formalism of differential
geometry [Schouten,1954]. Differential geometry also used to describe motion in Newtonian formalism
[Eringen,1962, Truesdell and Noll,2003, Marsden and Hughes,1994, Venturi,2009] has found a major appli-
cation in the description of physics in spacetime formalism.

In a relativistic framework (referred to as the spacetime formalism), the covariance principle is intrinsi-
cally veriĄed with the use of four-tensors densities and four-operators that are by construction indifferent to
changes of observer (i.e. covariant). We speciĄcally consider a scalar density 𝒮 and the components of a
second-rank tensor density T :

Through coordinate transformations from corresponding to a material point 𝑥Û to ̃︁𝑥Û, the scalar density
𝒮 and the components of a second-rank tensor density T verify the relations:

̃︀𝒮 = 𝒮 (1.14a)

̃︀𝒯 ÛÜ =
𝜕̃︀𝑥Û
𝜕𝑥Ú

𝜕̃︀𝑥Ü
𝜕𝑥Ù

𝒯 ÚÙ (1.14b)

̃︀𝒯ÛÜ =
𝜕𝑥Ú

𝜕̃︀𝑥Û
𝜕𝑥Ù

𝜕̃︀𝑥Ü 𝒯ÚÙ, (1.14c)

These deĄnitions are detailed and developed in section 2.2.3.

1.4.4 Lagrangian and Eulerian descriptions of the motion in spacetime

Let us describe two descriptive approaches of the motion: the Lagrangian approach and the Eulerian
approach [Boratav and Kerner,1991, Havas,1964].

A Lagrangian description follows the matter in its motion. The initial conĄguration is considered to be
Lagrangian. The coordinates in this description are noted by 𝑋Û (Û varying from 1 to 4). In other words, it
is the description of the motion of a matter with respect to the initial conĄguration. For example, let us
reconsider the case mentioned in section 1.4.1, with water particles that can move in this aquarium: the
motion of a particle inside of the aquarium can be described with respect to an observer moving with the
particle, this illustrates the Lagrangian description.

However, Eulerian description is the description of matter with respect to the current deformed
conĄguration. After the deformation, the deformed conĄguration is deĄned at the time 𝑡 (𝑡 ̸= 𝑡0). The
coordinates at 𝑡 are noted 𝑥Û. Physical quantities such as density, velocity, temperature ... can then be
deĄned as a function of 𝑥Û (𝜌(𝑥Û) , 𝑣𝑖(𝑥Û), 𝜃(𝑥Û) ...).

The relation between the quantities in the two descriptions can be written:

𝑥Û = 𝑥Û(𝑋𝑖, 𝑡) =

⎭
𝑥𝑖 = 𝑥𝑖(𝑋𝑘, 𝑡)
𝑥4 = 𝑐𝑡

(1.15)

For example, let us reconsider the case mentioned in section 1.4.1, with water particles that can Ćow in
and out of this aquarium: The motion of the particles inside of the aquarium can be observed at a time 𝑡 by
an external observer, this illustrates the Eulerian description. These descriptions and the corresponding
deformations are further detailed in chapter 4.

1.4.5 Comparison between Newtonian and spacetime notions

Notions of independence with respect to the change of frames and indifference with respect to superposition
of rigid body motions are indiscernible in Newtonian thermomechanics.
On one hand, if we consider 2 frames (𝑒𝑖, Ý𝑖, 𝑡) and (̃︀𝑒𝑖, ̃︀Ý𝑖,̃︀𝑡), the equation representing the change of frame
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from Ý𝑖 to ̃︀Ý𝑖 is given in Eq. 1.7 of section 1.4.2. On the other hand, the transformation of Ý𝑖 into ̃︀Ý𝑖 via a
transformation of rigid body motion composed of a rotation 𝑄𝑖𝑗(𝑡) and a translation Ú𝑖(𝑡), is also written:

̃︀Ý𝑖 = 𝑄𝑖𝑗(𝑡)Ý
𝑗 + Ú𝑖(𝑡) (1.16)

However, in a spacetime domain the two concepts are different: Eq. 1.7 and Eq. 1.16 are different
because they are associated to different motions. The Ąrst corresponds to a motion in a frame (𝑒𝑖, Ý𝑖, 𝑡)
written with respect to the frame (̃︀𝑒𝑖, ̃︀Ý𝑖,̃︀𝑡) while the second corresponds to a rigid body motion described
in the frame (̃︀𝑒𝑖, ̃︀Ý𝑖,̃︀𝑡). Since the mapping of events in a spacetime frame includes time and the rotation
and translation matrix are function of time, thus there is no mathematical difference between these two
equations.

The approach discussed in this manuscript is based on the theory of relativity (without gravitation)
which allows the simpliĄcation of the formulations [Rouhaud et al.,2013, Edelen,1967]. In the theory of
relativity, the principle of covariance guarantees the independence with respect to the change of frames
of any physical law [Landau and Lifshitz,1975]. Table 2 sets the limits of the case of relativity considered.
However, if the studied systems are subjected to gravitation then a conventional treatment of gravitation
can be carried out.

Covariance: 4D Riemannian space 4D Euclidean space

Lorentz Group - Special relativity
Diffeomorphism General relativity The case we are considering

Tab. 2: Type of relativity applied for the spacetime approach studied in the manuscript

1.5 Newtonian heat conduction modeling in literature

We aim in the Ąrst part of this manuscript to write the heat equation and build a heat conduction model
and the associated weak integral forms in a spacetime domain. This is in order to overcome the difficulties
faced when using Newtonian modeling (section 1.6) and to develop new relativistic models. In the previous
paragraph, the elements of the continuum medium have been deĄned. The heat conduction modeling in
such a domain will be discussed hereinafter.
We begin by summarizing the heat conduction models found in literature in both Newtonian and relativistic
approaches. The evolution of the heat conduction models is investigated and comparison between models is
established. The necessity of a more developed model is then discussed: it can be summed up by the need
of a covariant model respecting both the laws of thermodynamics and the principle of causality.

According to [Battaglia,2007], the heat conduction phenomenon can be described as follows: "When a

heat source is applied to a body, the nearest atoms to the source undergo intense vibrations later transmitted

to the adjacent atoms. The result of these vibrations is the production of heat inside the body and its

diffusion. The intensity of the vibrations is function of the intensity of the heat source applied and it is

measured by the body temperature. The discovery of the thermodynamics as well as the discovery of static

and quantum physics led to the evolution of this definition especially the 19𝑡ℎ and 20𝑡ℎ centuries". This
phenomenon is characterized by 2 useful dependent parameters: the thermal conductivity Ú(𝑊.𝑚⊗1.𝐾⊗1)
and the thermal diffusivity 𝑎(𝑚2.𝑠⊗1) [Battaglia,2007]. They reĆect the material ability to conduct heat:
the material is called a conductor if it allows the Ćux of heat in one or more direction (e.g. metals with
a conductivity superior to 10𝑊.𝑚⊗1.𝐾⊗1), otherwise it is called an insulator (e.g. glass wool with a
conductivity inferior to 1𝑊.𝑚⊗1.𝐾⊗1). They also characterize the heat Ćux diffusion. These parameters
are function of the temperature notably when approaching the phase change domain in the case of solids
and Ćuids [Battaglia,2007]. The heat conduction phenomenon can be illustrated in the hot molding process
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(i.e. gravity die casting, Figure 4) [Prucha,2003]. During this process, a melt alloy is poured into a mold
in order to obtain a part having the same geometrical properties as the mold. The heat transfer between
the part and the mold is ensured by conduction. The heat conduction phenomenon can also be seen in
the functioning of a cooling Ąn (e.g. on a tubular body, Figure 4): heat is transferred by conduction from
the hot body to the external surfaces of the Ąn. Then, it is evacuated to the surrounding environment by
convection.

Fig. 4: On the left: thermal molding. On the right: cooling fin.

1.5.1 Summary of the Newtonian thermodynamic approach

The thermodynamic approach is one way to obtain Newtonian models of heat conduction. Heat con-
duction models should satisfy the heat dissipation obtained via this approach [Landau and Lifshitz,1975,
Onsager,1931, Zubarev,1974, Nakagawa and Sasa,2019].

The Clausius-Duhem inequality can be derived from the Ąrst and the second laws of thermodynamics
combined together in the Newtonian approach [Frémond,2006, Fer,1970, Muller,1985]. It can be written:

⊗ ̃︀𝜌𝑐(⊗𝜃
𝑑Ö𝑐
𝑑𝑡

+
𝑑𝑒𝑖𝑛𝑡
𝑑𝑡

) + à𝑖𝑗𝑑
𝑖𝑗 ⊗ ã𝑖∇𝑖𝜃

𝜃
⊙ 0 (1.17)

Where:
∙ ̃︀𝜌𝑐 can be interpreted in the convective frame as the mass density (at rest) with the speciĄc internal

energy 𝑒𝑖𝑛𝑡 = 0. (.𝑐) denotes convective as in the convective frame and (̃︀.) is to express that this quantity
is measured at rest for 𝑒𝑖𝑛𝑡 = 0.

∙ Ö𝑐 is the entropy density.

∙ 𝑑

𝑑𝑡
is the total derivative to time.

∙ à𝑖𝑗 is the 3D stress tensor.
∙ 𝑑𝑖𝑗 is the 3D rate of deformation.
∙ ã𝑖 is the speciĄc heat Ćux.

∙ ∇𝑖 is the spatial covariant derivative. 𝜃 is scalar and 𝑥𝑖 are orthogonal, thus ∇𝑖 =
𝜕

𝜕𝑥𝑖
.

Then the heat dissipation, which represents the heat transfer occuring during an irreversible process, can
be deduced from Eq. 1.17 by separating mechanical dissipation from the dissipation due to temperature
gradient:
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∀𝜃,∀(∇𝑖𝜃) ⊗ ã𝑖∇𝑖𝜃

𝜃
⊙ 0 (1.18)

1.5.2 Assumptions on Newtonian models of heat conduction in the literature

Many models of heat conduction are found in the literature [Battaglia,2007, Fourier,1988, Cattaneo,1958,
Osborne,1950, Vernotte,1961, Tavernier,1962]. They are built using different approaches under certain
assumptions. The Newtonian models reviewed in the next sections (1.5.3 to 1.5.6) are subject to the
assumptions listed as follows.

Assumptions

∙ The model is built for a continuous media
∙ The model is purely thermal. Thermomechnical couplings are not taken into account.
∙ Heat transfer by convection and radiation are taken into account through separate modeling.
∙ ∀𝑡, ∀𝑥𝑖 the material coefficients are constant.
∙ We consider the case of a homogeneous isotropic material.
∙ For simpliĄcation, no volume heat source is applied to the body in the following modeling unless

otherwise speciĄed.

Slightly different assumptions describing the spacetime domain considered, will be held for the spacetime
heat conduction models built in this work (see section 2.3.1).

1.5.3 Newtonian Fourier’s model of heat conduction and corresponding heat equation

The Newtonian Fourier model derives originally from experimental results. It results from the study of
heat transfer in a wire subjected to different temperatures at its 2 ends while being insulated on the
other boundaries [Battaglia,2007]. The Fourier heat conduction model can be expressed by [Battaglia,2007,
Fourier,1988]:

ã𝑖 = ⊗Ú𝐼𝑖𝑗 𝜕𝜃
𝜕𝑥𝑗

(1.19)

where Ú is the material conductivity and 𝐼𝑖𝑗 is the 3D second-rank identity tensor. Eq. 1.19 should also
verify the inequality in Eq. 1.18 to be compatible with laws of thermodynamics. The heat equation can
be deduced from the balance of internal energy [Battaglia,2007, Fourier,1988] which in case a volume heat
source 𝑓 is imposed, it is written:

𝒞𝑚æ ̃︀𝜌𝑐
𝜕𝜃

𝜕𝑡
+
𝜕ã

𝜕𝑥𝑖
⊗ 𝑓 = 0 (1.20)

where 𝒞𝑚æ is the speciĄc heat capacity (𝑑𝑒𝑖𝑛𝑡 = 𝒞𝑚æ𝑑𝜃 under the assumption that the state variables
are independent and mechanical phenomena are not occurring).

By replacing the Ćux of the heat conduction model (Eq. 1.19) in Eq. 1.20, we obtain the well-known
heat equation:

𝒞𝑚æ ̃︀𝜌𝑐
𝜕𝜃

𝜕𝑡
⊗ Ú𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
⊗ 𝑓 = 0 (1.21)

1.5.4 Motivation to find new models of heat conduction

Among the models of heat conduction proposed in the Newtonian approach, let us discuss in particular
the consequences of Newtonian Fourier model of heat conduction. When this model is used, we deal with
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the fundamental problem of instantaneous character of heat propagation [Straugham,2011, Auriault,2017]:
according to this model the thermal signals may propagate at a velocity greater than that of the speed of
light 𝑐 which implies a causal problem.

Let us illustrate the propagation of the heat signal for Newtonian Fourier model of heat conduction in
comparison to another Newtonian model of heat conduction respecting the causality principle (Figure 5).
We consider the case of a 1𝐷 heat model of length 𝐿. The initial temperature of the model is 𝜃0 = 0𝑜𝐶. We
impose the following boundary conditions: 𝜃(𝑥 = 0) = 𝜃𝑠 and 𝜃(𝑥 = 𝐿) = 0, where 𝜃(𝑥) is the temperature
at a position 𝑥 and 𝜃𝑠 = 100𝑜𝐶. The evolution of the temperature of a point located at a certain distance
0 < 𝑥 < 𝐿 is observed. The graph representing this evolution in a Fourier model of heat conduction (red line)
shows an instantaneous change of temperature of the point at 𝑥 at a certain time 𝑡. While the graph (blue
dots) representing the propagation of heat at a Ąnite speed shows a gradual evolution of the temperature
through the time. It corresponds to a "Cattaneo-like" model of heat conduction further detailed (see sections
1.5.5 and 1.5.6).

Fig. 5: Illustration of the causality problem. The figure shows the variation of the temperature of a spatial point located at a
certain distance 𝑥 from a heat source in 2 cases: the propagation of heat at an infinite speed (red line) and the propagation of

heat at a finite speed (blue dots).

The previous example shows that the heat transfer is instantaneous according to FourierŠs model,
therefore violating causality. In order to solve this conĆict and to obtain a heat transfer rate bounded by the
speed of light to respect the causality principle, different authors add a relaxation term to FourierŠs equation
[Cattaneo,1958, Christov,2009, Osborne,1950, Vernotte,1961, Tavernier,1962, Chapman and Cowling,1970].

1.5.5 Newtonian Cattaneo’s model of heat conduction and corresponding heat equation

This heat conduction model introduces a relaxation time to the Fourier heat conduction model.
CattaneoŠs model [Cattaneo,1958] is developed based on the kinetic gas theory and by taking into

account some delay on the collisions leading to heat transmission [Stewart,1977, Israel and Stewart,1979a,
Israel and Stewart,1979b, Murdoch,1983]. One-dimensional case is considered (propagation in the 𝑥-
direction).

Let 𝑄 be a random physical quantity attached to a gas particle and let 𝒢(𝑥) =< 𝑄 > be its arithmetic
mean value over gas particles at any point. < . > denotes the arithmetic mean value over particles. Let us
then consider a small area 𝐴𝑥 normal to the 𝑥 -direction at the abscissa 𝑥. This area is crossed in both
directions by particles of different speeds. 𝑄 is supposed to be the quantity of gas particle crossing 𝐴𝑥 at the
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instant 𝑡. Let M be the point where the particle undergoes the last collision with other particles and 𝑙(𝑘) the
free path of the particle 𝑘 between M and 𝐴𝑥. Let Ñ(𝑘) be the inclination of the speed of the particle 𝑘 with
respect to the 𝑥-direction. Let 𝑗𝑙(𝑥) be the total algebraic Ćux of the quantity 𝑄 through 𝐴𝑥. The average
value 𝒢(𝑥) of the quantity 𝑄 attached to gas particle is then calculated at M of abscissa 𝑥⊗ 𝑙(𝑘)𝑐𝑜𝑠Ñ(𝑘).

Fig. 6: The geometric description of Cattaneo’s hypothesis

To compute the Ćux 𝑗𝑙(𝑥) through 𝐴𝑥, we need to compute the variation of the quantity 𝒢 between the
points M at abscissa 0 and that of abscissa 𝑥 [Papon and Leblond,2005]. This last position is the position
of collision with 𝐴𝑥. We set á the time interval between two collisions:

á =
𝑙(𝑘)

< 𝑣(𝑘) >
(1.22)

where 𝑙(𝑘) is the free path of the particles having a speed 𝑣(𝑘), 𝑣(𝑘) is the speed of particles 𝑘 having the
same speed and < 𝑣(𝑘) > is the mean value over gas particles of 𝑣(𝑘).
The variation of 𝒢(𝑥) in the 𝑥-direction will be:

(𝑑𝒢(𝑥))𝑖 =
𝜕𝒢(𝑥)
𝜕𝑥𝑖

< 𝑣
(𝑘)
𝑥 > á (1.23)

where 𝑣(𝑘)
𝑥 is the speed of particles 𝑘 having the same speed in the 𝑥-direction. In the 𝑥-direction, the Ćux

of 𝑛 particles (per unit volume) is equal to 𝑛 < 𝑣
(𝑘)
𝑥 >. Consequently, using Eq. 1.23, 𝑗𝑙(𝑥) can be written:

𝑗𝑙(𝑥) = ⊗𝐼𝑙𝑚𝑛 < 𝑣
(𝑘)
𝑥 >2 á

𝜕𝒢(𝑥)
𝜕𝑥𝑚

(1.24)

Taking the equal energy hypothesis into account and by introducing the mean free path in 𝑗𝑙, it can be
expressed by:

𝑗𝑙(𝑥) = ⊗𝐼𝑙𝑚𝑛 < 𝑣(𝑘) >< 𝑙(𝑘) >

3
𝜕𝒢(𝑥)
𝜕𝑥𝑚

(1.25)

Where < 𝑣
(𝑘)
𝑥 >2=

< 𝑣(𝑘) >2

3
and < 𝑙(𝑘) >=< 𝑣(𝑘) > á .

In the particular case where 𝑄 (whose algebraic Ćow is 𝑗𝑙(𝑥)) is identiĄed with the kinetic energy of
the particles, 𝒢(𝑥) is then identiĄed to the absolute temperature 𝜃 of the gas and 𝑗𝑙(𝑥) is identiĄed to ã𝑖 by
a factor Ð (constant)[Cattaneo,1958]. In this case, we obtain:
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Ú =
1
3
𝑛 < 𝑣(𝑘)𝑙(𝑘) > Ð (1.26)

where < 𝑣(𝑘)𝑙(𝑘) > is the mean value over gas particles of 𝑣(𝑘)𝑙(𝑘). We also assume that the last collision

happens at 𝑡⊗ 𝑙

𝑘
.

Cattaneo shows that the Taylor expansion on ã𝑖 to a suitable order at least in the case of a quasi-stationary
regime leads to:

Õ
𝜕ã𝑖

𝜕𝑡
= ⊗Úã𝑖 ⊗ Ú2𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
(1.27)

Where we deĄne: Õ =
1
2
𝑛Ð < 𝑙2 >.

< 𝑙2 > is the mean quadratic value of the mean free path.
By substituting ã𝑖 we obtain a hyperbolic differential heat equation.

𝜕2𝜃

𝜕𝑡2
⊗ Ú2

Õ𝒞𝑚æ ̃︀𝜌𝑐
𝐼𝑖𝑗

𝜕

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
+
Ú

Õ

𝜕𝜃

𝜕𝑡
= 0 (1.28)

The same form of equation is obtained in function of ã𝑖 by substituting 𝜃.

𝜕2ã𝑖

𝜕𝑡2
⊗ Ú2

Õ𝒞𝑚æ ̃︀𝜌𝑐
𝐼𝑖𝑗

𝜕ã𝑘

𝜕𝑥𝑙
𝜕ã𝑙

𝜕𝑥𝑘
+
Ú

Õ

𝜕ã𝑖

𝜕𝑡
= 0 (1.29)

The parabolic heat equation corresponding to the classical FourierŠs model of heat diffusion (Eq. 1.21)
is thus replaced by a hyperbolic heat equation (Eq. 1.28) corresponding to a model of heat propagation.

The heat waves propagate at a group speed and the propagation speed depends on the average of mean
particle speeds [Cattaneo,1958] can be deduced from Eqs. 1.28 or 1.29:

𝑣𝑔 =

√︃
Ú2

Õ𝒞𝑚æ ̃︀𝜌𝑐
=

1√
3

< 𝑣(𝑘)𝑙(𝑘) >

< 𝑙2 >
(1.30)

1.5.6 Other arguments justifying Newtonian Cattaneo-like heat conduction models and

corresponding heat equations

Several arguments ending to Cattaneo-like models of heat conduction that respect the causality principle
are found in the literature.

Osborne [Osborne,1950] built a heat conduction model with relaxation terms using the analogy with
the transmission lines of MaxwellŠs electrodynamics [Narasimhan,1999, Ekoue et al.,2013] to obtain the
heat equation expressing the propagation of heat for liquid Helium by conduction.

𝜕2𝜃

𝜕𝑡2
⊗ 𝑣2

ℎ𝐼
𝑖𝑗 𝜕

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
+

1
á

𝜕𝜃

𝜕𝑡
= 0 (1.31)

Where: á is the relaxation time introduced in Eq. 1.22.
𝑣ℎ represents the speed of propagation of temperature in the liquid Helium.

Vernotte [Vernotte,1961] added a term of production of internal energy 𝑒𝑖𝑛𝑡 in a Cattaneo type model.
The heat equation in this case can be expressed by:

𝜕

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
𝐼𝑖𝑗 +

1
Ú

⎦
𝑒𝑖𝑛𝑡(𝑥, 𝑡) + á

𝜕𝑒𝑖𝑛𝑡(𝑥, 𝑡)
𝜕𝑡

⎢
=

1
Ð

⎦
á
𝜕2𝜃

𝜕𝑡2
+
𝜕𝜃

𝜕𝑡

⎢
(1.32)

Tavernier [Tavernier,1962] derives the same equation from the Boltzmann transport equation of electrons
and phonons in solids:
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𝜕𝑔

𝜕𝑡
+ 𝑣𝑖∇𝑖𝑔 + 𝑓𝑎

𝜕𝑔

𝜕𝑇
=

⎦
𝜕𝑔

𝜕𝑡

⎢

𝑑𝑖𝑓𝑓

(1.33)

Where: 𝑔 is a statistical distribution of heat carriers (electrons, photons or phonons ...), 𝑇 is the momentum

acting on this group of heat carriers, 𝑓𝑎 the force applied and

⎦
𝜕𝑔

𝜕𝑡

⎢

𝑑𝑖𝑓𝑓

is the diffusion term also called

collision term.
The Boltzmann equation therefore describes the variation in time of the distribution of the heat carriers
because of the diffusion. Its reduced form in one dimension is expressed by:

𝜕𝑔

𝜕𝑡
+ 𝑣𝑖

𝜕𝑔

𝜕𝑥𝑖
=

⎦
𝜕𝑔

𝜕𝑡

⎢

𝑑𝑖𝑓𝑓

(1.34)

In order to linearize it, Tavernier suggests the following approximation:
⎦
𝜕𝑔

𝜕𝑡

⎢

𝑑𝑖𝑓𝑓

= ⊗𝑔 ⊗ 𝑔0

á
(1.35)

𝑔0 is a statistical distribution of heat carriers (i.e. electrons in the case of heat diffusion in metals) at
equilibrium.
á is the relaxation term corresponding to the heat carriers having a speed 𝑣.

The same hyperbolic model of heat conduction in [Osborne,1950, Vernotte,1961, Tavernier,1962] is
consequently obtained:

á
𝜕ã𝑖

𝜕𝑡
= ⊗ã𝑖 ⊗ Ú𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
(1.36)

Another textbook [Tzou,2014] presents also scales aspect, showing that CattaneoŠs model was obtained by
Maxwell from his kinetic theory [Maxwell,1867, Nayfeh and Nemat-Nasser,1971, Joseph and Preziosi,1989].
It can also be given by the linearized form of the Chapman-Enskog kinetic theory [Chapman and Cowling,1970].
Throughout this manuscript, CattaneoŠs model is referring to Vernotte-Maxwell-CattaneoŠs type model.

1.5.7 Effect of spatial scales on the treatment of the heat equation

The non-separation of scales can be a possible explanation of the reason of violation of causality principle in
the heat conduction models [Auriault,2017]. According to Auriault, the problem derives from inconsistencies
resulting from the application of the heat conduction model on different scales and that by distinction of
scales the dilemma may vanish.

He claims that Fourier and Maxwell-Cattaneo-Vernotte models seek to explain the macroscopic behavior
of the quantity 𝜃 valid at a scale 𝐿 larger than the atomic scale. He therefore distinguishes three characteristic
lengths 𝑙, 𝐿 and 𝐿1 which are respectively the atomic scale, the macroscopic scale where the FourierŠs model
and Maxwell-Cattaneo-Vernotte model are deĄned (i.e the scale large enough to be visible with the naked
eye, without magnifying optical instruments [Reif,1965, Jaeger,2014]) and Ąnally the upper macroscopic
scale. These scales are deĄned such that:

𝑙

𝐿
= 𝜖1 ⪯ 1, ,

𝐿

𝐿1
= 𝜖2 ⪯ 1 (1.37)

Hence, according to Auriault, one cannot apply the classical models of behavior in the case where the
scales are not clearly separated since the coefficients of the models will not be convenient. According to the
argument of homogenisation used in [Auriault,2017], the macroscopic model equivalent to a heat conduction
phenomenon and on which the application of equations of Fourier and Maxwell-Cattaneo-Vernotte is allowed,
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derives from the separation of scales. Two equations derive from the approximations, they can be expressed
in a 1𝐷 space by:

Ú
𝜕2𝜃

𝜕𝑥2
= 𝒞𝑚æ ̃︀𝜌𝑐

𝜕𝜃

𝜕𝑡
+ O(𝜖) (1.38)

Ú
𝜕2𝜃

𝜕𝑥2
= 𝒞𝑚æ ̃︀𝜌𝑐(

𝜕𝜃

𝜕𝑡
+ 𝜖á

𝜕2𝜃

𝜕𝑡2
) + O(𝜖2) (1.39)

The term O(𝜖) includes the inĄnite speed of an inĄnitesimal heat signal.

Auriault deduces that the Maxwell-Cattaneo-Vernotte model describes the phenomenon of heat con-
duction well and is reduced to the Fourier model by a Ąrst-order Taylor expansion, only at a particular
scale provided that the separation of scales should respect: 𝜖1 ⪯ 1 and 𝜖2 ⪯ 1 . In addition to that, all
Newtonian models are deĄned at scales that are large compared to the atomic scale. This approximation
shortens their domains of validity.

These spatial scales can be combined to temporal scales marked by three characteristic orders of time:
the small time scale 𝑡𝑠𝑚𝑎𝑙𝑙 ⊘ 1Û𝑠, the macroscopic time scale 𝑡𝑚𝑎𝑐𝑟𝑜 ⊙ 1Û𝑠 which is the temporal domain
where FourierŠs model and Maxwell-Cattaneo-Vernotte model are deĄned [Guillemet and Bardon,2000] and

the large time scale 𝑡𝑙𝑎𝑟𝑔𝑒 ⪰ 𝑡𝑚𝑎𝑐𝑟𝑜 ⇔ 𝑡𝑚𝑎𝑐𝑟𝑜
𝑡𝑙𝑎𝑟𝑔𝑒

= 𝜖3 ⪯ 1 i.e. thermal phenomenon taking a time considered

large with respect to classical phenomena.

Others have also given similar arguments to explain this problem:
∙ According to Fichera [Fichera,1992], FourierŠs model is a result of experimental observations, therefore

it is related to the conditions and the nature of the matter considered. Fichera states:"Fourier theory

has a limited range which will become more and more restricted with the technical progress of the

experimental instruments for measurements and of the computing facilities which, respectively, will

permit more refined measures and sharper numerical approximations". However, he admits that as a
result the small heat Ćows that propagate at an inĄnitely high speed cannot be modeled using FourierŠs
hypothesis since they cannot be noticed experimentally. In [Fichera,1992], Fichera investigates also
the value of the heat Ćow propagating at inĄnite speed based on FourierŠs statements in [Fourier,1988]
by taking the example of thermal propagation in a wire. He states:" But while this influence can be

expressed mathematically from the first instant, its numerical value is excessively small... The sensible

propagation of heat, so far from being instantaneous, is excessively slow process and the time required to

produce... change of temperature... is proportional to the square of the linear dimension (i.e. length of

the wire)".
Hence according to Fichera, when it is not required to have extremely high precision on neither mea-
surements nor evaluations/simulations, FourierŠs heat conduction model results are quite satisfactory.

∙ According to Day [Day,1997], if a small fraction of the heat Ćow propagates at an inĄnitely high speed,
therefore the physically most signiĄcant part of the signal (bulk of the signal), is at a Ąnite speed.

1.5.8 Validity of the parabolic and hyperbolic models of heat conduction with respect to spatial and

temporal domains

Guillemet and Bardon [Guillemet and Bardon,2000] raise the debate in their article on the spatial and
temporal domains of the heat equation. According to [Guillemet and Bardon,2000], the time domain used
by the heating engineer should be greater than the maximum duration for which the FourierŠs model is
questioned (it is of the order of 10⊗6 s). Thus, the utility of introducing relaxation time into the heat
equation as a solution to the problem caused by the parabolic model is questioned. This term added for
reasons of consistency is in fact negligible depending on the Ąelds of use of the heat equation.
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Moreover, the hyperbolic model supposed to be the answer to the problem of instantaneous heat
propagation is needed just at the start of the transient regime. In this domain which corresponds generally
to a distance smaller than 7 mean free path lengths (7 𝑙𝑝𝑚) and a duration of ten relaxation times (10 á),
several disadvantages of the hyperbolic equation arise [Guillemet and Bardon,2000].

First, singular persistence appears numerically in the form of a temperature discontinuity front at a
certain abscissa (corresponding to space) and propagates with time: its amplitude (corresponding to the
amplitude of the variation of temperature) decreases over time but the front remains vertical giving 2 values
of temperature at a given time: this can be physically interpreted by the lack of diffusion at the front. The

front vanishes starting an abscissa of 7 mean paths. Second, the inertial term á
𝜕2𝜃

𝜕𝑡2
gives a temperature

behavior with apparent contradiction to the second law of thermodynamics. A heat Ćux from the cold
zone towards a hot zone can be numerically observed and the points reach temperatures higher than the
temperature imposed on the limit. This is due to the few interactions between heat carriers in this domain
of space and time in which the local thermodynamics balance is not ensured. Beyond this domain the
diffusive phenomenon covers the effect of this term.

Consequently, boundary conditions of the diffusion problem using the hyperbolic model are developed in
[Guillemet and Bardon,2000] to solve the previous problems occurring at small spaces and small times. In
[Guillemet and Bardon,2000], the possibility of extending the validity of the hyperbolic model up to a space
scale of about one mean free path is investigated. In the resulting modiĄed model, boundary conditions are
added to compensate the discontinuity of macroscopic quantities at the observed space frontiers (ranging in
⊘ 7 𝑙𝑝𝑚).

1.6 Compatibility of thermal models with constraints imposed by large
transformation thermomechanics

A correct description of the thermal behavior of materials is often required in models dedicated to the
large transformations of the matter. For example, a realistic heat conduction model is often essential
for simulating forming processes [Battaglia,2007]. Researches nowadays are focusing on heat conduction
models for applications including new materials especially at microscopic scales, such as nanomaterials
[Pourasghar and Chen,2019], as well as for application to new forming processes, such as additive manufac-
turing [Stump and Plotkowski,2019]. Experimental works are also frequently performed in order to verify
the proposed models by comparison [Both et al.,2016]. Numerous approaches have led to the existing heat
conduction models whose descriptions can be found in the literature and are reviewed in [Liu et al.,2017].
Moreover, heat conduction is of primary importance for modeling dissipation. Its modeling requires to
verify some general properties. These properties are not systematically fulĄlled by the existing models. This
aspect is discussed in the manuscript in order to improve the quality of the modeling and improve the
identiĄcation of the dissipation.

1.6.1 Review on the frame indifference of Newtonian heat conduction models

Frame-indifference of thermomechanical Ąelds and constitutive models is sought. This is also called objectivity
in the solid thermomechanics community [Christov and Jordan,2005] (detailed in section 1.4).

However, frame-indifference is not veriĄed by Newtonian quantities as the time derivative of temperature
which may appear in the formulation of heat conduction models and does not take into account corrective
terms describing the evolution of time. The following is a summary on the frame indifference of two
Newtonian heat conduction models found in literature.

In a Newtonian framework, FourierŠs model is frame-indifferent because temperature and spatial gradient
of temperature are objective quantities but CattaneoŠs model is not, due to the time derivative appearing in
its equation. This is deeply discussed in [Christov and Jordan,2005, Christov,2009] who have proposed to
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use one of the many existing objective transports to overcome this difficulty. [Christov and Jordan,2005]
have further demonstrated that an objective transport has to be introduced in CattaneoŠs model to
prevent paradoxical evolution of thermal waves in a moving frame. No satisfying physical justiĄcation was
proposed in [Christov and Jordan,2005] to validate the choice of an objective transport versus another. As
in visco-elasticity, such formulations in terms of different objective time derivatives give different models
(e.g. lower-convected or upper-convective Maxwell models, etc.), which are all objective but which exhibit
different non-linear effects without generally satisfying physical justiĄcations.

Other approaches adopting a microscopic scale as a starting point do not lead to frame-indifferent
models either [Murdoch,1983]. The reason is that the Newtonian principle of dynamics leading to the kinetic
theory of gases is not frame-indifferent. This characteristic propagates upscale, leading to heat conduction
models that are not frame-indifferent at the macroscopic scale.

1.6.2 Causality and finite propagation of heat

FourierŠs model of heat conduction (see section 1.5.3) is probably the most often cited heat model in
the literature and the most often used for numerical applications. FourierŠs heat equation is parabolic,
i.e. corresponds to a diffusion of heat. In other words, the use of FourierŠs model leads to consider that
heat propagates at an inĄnite velocity [Straugham,2011] (this is detailed in section 1.5.4). Consequently, a
material point submitted to a heat source may reach a given temperature at a velocity that might exceed
the velocity of light. This is in contradiction with the theories of relativity, hence violating the causality
principle [Auriault,2017, Landau and Lifshitz,1975]. This defect is shared by other models.

To solve this difficulty, several authors have proposed to add a relaxation term to FourierŠs equation (see
sections 1.5.5 and 1.5.6). The equation becomes hyperbolic, then corresponding to a model of heat propagation
as opposed to heat diffusion for the classical FourierŠs model [Vitokhin and Ivanova,2017, Mariano,2017].
Despite the fact that they agree with the necessity to improve FourierŠs equation with a relaxation term,
these authors have different points of view concerning the physical interpretation of this term [Cattaneo,1958,
Christov,2009, Osborne,1950, Vernotte,1961, Tavernier,1962, Chapman and Cowling,1970].

Other models treat the previous problem in the framework of generalized continuous media. For example
in [Liu et al.,2017], a micromorphic approach is proposed and a heat equation is derived from Helmholtz
free energy potentials depending on an additional micromorphic temperature and its Ąrst gradient. Such
a model takes non-local thermal effects into account and changes the heat equation in ways involving an
internal length scale, which may represent a characteristic length of the system. This approach leads to
various models of heat conduction avoiding the aforementioned problem of instantaneous propagation of
heat.

It is worth noting that experimental results have clearly identiĄed the heat propagation effect, as
presented in [Ván et al.,2013, Kovács and Ván,2015, Ván,2016]. For the second sound characterizing this
propagation, there are also investigations with experimental results at room temperature [Both et al.,2016,
Ván et al.,2017]. It is remarkable that in those experiments, not the Cattaneo equation but one of its
possible extension the Guyer-Krumhansl type heat conduction was frequently observed [Ván et al.,2017].
The later model is not investigated in this manuscript.

More details concerning causality can be found in [Fichera,1992]. Also the Cattaneo type Ąnite speed
has a material origin, and nothing prevents it to be larger than the speed of light in the material in a
non-relativistic spacetime model. Finally, the best mathematical formulation of causality is the requirement
of symmetric hyperbolicity of the governing partial differential equations, as proposed in the monograph of
Müller and Ruggeri [Müller and Ruggeri,1998].

To conclude, on one hand, in a Newtonian Framework, FourierŠs model is frame-indifferent but does not
respect the causality principle [Fichera,1992]. On the other hand, CattaneoŠs model alleviates the causality
problem but its form depends on the choice of the observer or on the choice of an objective transport for its
improved versions [Christov,2009]. None of these two models systematically satisĄes both frame-indifference
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and causality principles and open issues remain to be solved to construct a heat conduction model merging
directly all physical requirements.

1.6.3 Irreversibility of transformations

The modeling of thermomechanical behavior of materials used in forming processes requires taking into
account large deformations, the inĆuence of temperature on the thermomechanical behavior, as well as the
dissipative behavior of materials.

This last notion is essential in most of the applications e.g. in modeling the elastomers behavior, the
dissipative mechanisms are in form of internal friction and reinforcement by loads [Boukamel,2006] and in
modeling a fabrication process of a metal (which is intrinsically irreversible since it induces a change of shape),
it is in form of modeling the evolution of temperature, viscosity and plasticity [Vitokhin and Ivanova,2017].

A dissipative behavior leads to thermodynamically irreversible changes. Hence, the state of the system
at any given time depends on the history of its evolution.

In order to model this irreversible behavior, it is necessary to formulate the Clausius Duhem inequality
deriving from the Ąrst and second laws of thermodynamics. The aim is to build models representing processes
showing dissipation behaviors such as heat conduction, viscosity and plasticity via a thermodynamic approach
with internal variables. We brieĆy recall the assumptions delimiting the corresponding thermodynamic
framework:
∙ The formulation of models for large transformations (large strain, large displacement and Ąnite variation

of temperature).
∙ The decoupling of thermal and mechanical phenomena which allows us to consider the thermal behavior

and the mechanical behavior separately.

Consequently, every model (including the spacetime models later discussed) should be thermodynamically
compatible with these conditions.

1.7 Possible solutions to improve the heat conduction modeling

1.7.1 Covariance

The notion of frame-indifference is advantageously replaced with the covariance principle introduced
by Einstein in the theories of relativity [Havas,1964, Muschik and Restuccia,2008, Panicaud et al.,2014,
Rouhaud et al.,2013] (discussed in 1.4.3). Since the transformations corresponding to changes of observer
involve space and time, it is relevant to explore the possibilities offered by a spacetime description of
thermomechanical problems. This further ensures the fact that all equations and models are necessarily
indifferent to changes of observer. The space and time components of spacetime tensors are obtained using
projectors [Eckart,1940]. Also, the well-known difficulties associated with the choice of objective transports
[Truesdell and Noll,2003, Rouhaud et al.,2013] are solved with the use of spacetime derivatives (covariant
derivative in the direction of the velocity or the Lie derivative along the motion), which are by construction
indifferent to changes of observers [Rouhaud et al.,2013]. This will be further detailed in sections 2.2.4 and
2.2.7.

1.7.2 Spacetime thermodynamics

The elements of the spacetime formalism in which a thermodynamical approach can be built are detailed in
[Hayward,1999]. Furthermore, obtaining spacetime heat equations has already motivated many thermody-
namical studies. These studies have developed relativistic theories of dissipation of Ąrst or second order. The
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nomenclature corresponds to the degree of expansion of the variables used in the equations of these theories.
Those theories extend the space of variables (heat, entropy, temperature...) of the classical theories to include
some dissipation effects. The Ąrst order theories lead to the historically Ąrst relativistic and thermodynamics
model proposed by Eckart [Eckart,1940]. He proposed the Ąrst generalization of FourierŠs model in a
spacetime formalism. Landau and Lifshitz come next to propose another model [Landau and Lifshitz,1975].
It has the same basis as EckartŠs model with the only difference that it is written with respect to the
proper observer, i.e. comoving with a material particle. It is worth to mention that [Bressan,1978] proposed
an approach ending to spacetime heat conduction based on Stefan and BoltzmannŠs laws. As previously
mentioned, the second order theories differ in the order of expansion of the variables. For example, Israel
and StewartŠs model [Israel and Stewart,1979a, Israel and Stewart,1979b, Stewart,1977] added second order
corrections to the Ćux of entropy, while CarterŠs model [Carter,1988] is based on a multi-Ćuid approach.
Section 1.8 expands the explanation on these relativistic models.

1.8 Relativistic models of heat conduction in literature

As discussed before, models deriving from linear thermodynamics lead to the instantaneous propagation of
heat problem (the problem of causality is then identiĄed) [Hayward,1999, Narasimhan,1999]. Other models
introduce relaxation terms that change the structure of the heat equation, while having limited effects on
the results [Eringen,1962, Auriault,2017, Ekoue et al.,2013, Tavernier,1962, Vernotte,1961, Liu et al.,2017].
In this section, several relativistic thermal behaviors are reviewed.

The heat conduction equation in the spacetime domain has been obtained in several studies based on a
thermodynamic approach [López-Monsalvo,2011].

All relativistic theories of dissipation in these studies are similar in construction: they consist in
proposing a form of the energy-momentum tensor and a deĄnition of the entropy Ćow in order to apply the
Ąrst and second laws of thermodynamics.

Below is a brief description of the models [Eckart,1940, Landau and Lifshitz,1975, Carter,1988,
Israel and Stewart,1979b, Israel and Stewart,1979a, Stewart,1977] already cited in section 1.7.2. This does
not restrict all possible models from theories of dissipation [Hayward,1999, López-Monsalvo,2011], but
these listed relativistic models are among the most used models.

1.8.1 First order models

In this section, EckartŠs model [Eckart,1940] and Landau and LifshitzŠs model [Landau and Lifshitz,1975]
are reviewed. EckartŠs model [Eckart,1940](1940) is the result of the Ąrst development of thermodynamics
in the relativistic framework. The relativistic theory of dissipation and the existence of a material whose
number of particles is conserved with a local energy balance are assumed.

According to this model, the symmetric energy-momentum tensor can written using the following
decomposition:

𝑇ÛÜ = 𝜌𝑐𝑐
2𝑢Û𝑢Ü + 𝑢Û𝑞Ü + 𝑢Ü𝑞Û + 𝑇ÛÜà (1.40)

Where: 𝜌𝑐 = ̃︀𝜌𝑐
(︀
1 + 𝑒int

𝑐2

)︀
is the mass density in case 𝑒𝑖𝑛𝑡 ≠ 0 in the convective frame, 𝑢Û is the

spacetime velocity, 𝑞Û is the volume heat Ćux four-vector and 𝑇ÛÜà is the stress four-tensor as measured by
an observer moving with the particle Ćux, which is equivalent to the stress four-tensor expressed in the
convective frame.
The simple deĄnition of relativistic entropy leads to EckartŠs model which is equivalent to a FourierŠs model
written in spacetime.
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ãÛ = 𝑐𝑞Û = ⊗ÚΠÛÜ(∇Ü𝜃 + 𝜃
𝑑𝑢Ü
𝑑𝑡

) (1.41)

Where: ΠÛÜ = 𝑔ÛÜ + 𝑢Û𝑢Ü is the orthogonal projector to the observerŠs four-velocity. 𝑔ÛÜ is the metric
four-tensor. Note that in the following chapters ΠÛÜ is deĄned differently due to the opposite signature of
the metric taken into account. We presently respect the choice of Eckart.

The term ⊗ÚΠÛÜ𝜃
𝜕𝑢Ü
𝜕𝑡

is an acceleration term that does not exist in the expression of the equivalent

model built in a reference frame in the Newtonian approach. It represents a thermal heat Ćux which
direction is opposite to the acceleration [López-Monsalvo,2011, Eckart,1940]. Hence, in this generalization
of FourierŠs model in spacetime, this term is associated to thermal inertia: it formally results from the
local energy balance and reĆects the effect of the world line curvature on the inĄnitesimal 3D spaces
[Eckart,1940, López-Monsalvo,2011]. The resulting model of heat equation is parabolic. It keeps the defect
of instantaneous propagation of heat Ćow and then leads to inconsistencies due to violating the causality
principle.

The Landau and Lifshitz model [Landau and Lifshitz,1975] is another Ąrst order model. It does not
differ fundamentally from EckartŠs model. The only difference is the choice of the frame. In fact, the Eckart
and Landau and Lifshitz models are particular applications of the same more general covariant model.

1.8.2 Second order models

The inconsistencies (due to the violation of the causality principle) caused by the previous theories lead
to the necessity of "second-order" theories of dissipation. In this section, Israel and StewartŠs model
[Israel and Stewart,1979b, Israel and Stewart,1979a, Stewart,1977] and CarterŠs model [Carter,1988] are
reviewed. In Israel and StewartŠs model [Israel and Stewart,1979b, Israel and Stewart,1979a, Stewart,1977],
the entropy Ćow is corrected such that it includes second order terms interpreted as truncated expansions
due to the deviation from equilibrium. It leads naturally to a generalized heat conduction equation for
CattaneoŠs model [Christov,2009] in spacetime combined with a mechanical term. This is equivalent to an
equation expressing the propagation of thermal signals for a model with relaxation terms. In this model
the validity of the hypothesis of local equilibrium is assumed and a thermal propagation at Ąnite speed is
obtained. This assumption remains valid for small deviations to the equilibrium so that the energy density
remains a function of the number of particles and of entropy densities.

This approach, which is based on the kinetic theory, is known as transient relativistic thermodynamics
or as the relativistic second order theory of dissipation. The difference between this theory and EckartŠs
theory is in the energy-momentum tensor: the term related to viscosity and its resulting momentum are
taken into account. Consequently this tensor is written:

𝑇ÛÜ = 𝜌𝑐𝑐
2𝑢Û𝑢Ü + (p + Þ)ΠÛÜ + 𝑢Û𝑞Ü + 𝑢Ü𝑞Û + ÞÛÜ (1.42)

Where: p is the hydrostatic pressure of the Ćuid deĄned through the trace of the stress tensor: p =
1
3
𝑡𝑟(𝑇à).

Þ is a term related to viscous pressure. ÞÛÜ is the mechanical stress not taking into account stress resulting
from viscous pressure. In comparison with EckartŠs model, the following deĄnition is obtained:

𝑇ÛÜà = (p + Þ)ΠÛÜ + ÞÛÜ (1.43)

Israel and Stewart also generalized the deĄnition of the density entropy. The second order terms added
to this deĄnition must be measured separately by direct or indirect means of the kinetic theory.
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In a purely thermal case p = Þ = ÞÛÜ = 0, the generalization of the CattaneoŠs model in spacetime is
then obtained including the relaxation term:

ãÛ = 𝑐𝑞Û = ⊗Ú𝜃ΠÛÜ
⎤

1
𝜃

∇Ü𝜃 +
𝜕𝑢Ü
𝜕𝑡

+
1
2

∇Ù

⎤
Ñ1𝑢

Ù

𝜃

⎣
𝑞Ü𝜃 + ∇Ù(𝑞Ü)𝑢ÙÑ1

⎣
(1.44)

Where: Ñ1 is introduced as a coupling parameter for the second order terms. It can be interpreted as a
relaxation time for the propagation of thermal disturbances.

However, the stability conditions in this theory are rather artiĄcial. Such theories do not systematically
fulĄll all the requirements.

A model is also proposed by Carter [Carter,1988]. CarterŠs theory is based on the multi-Ćuid approach
of the relativistic dissipation study. This approach introduces the Ćux of entropy density.

1.8.3 A categorization by César Simón López-Monsalvo

In order to study the historical problem of heat conduction, a thesis was conducted in 2011 by César Simón
López-Monsalvo [López-Monsalvo,2011]. This study recalls the bases of theories of dissipation of thermo-
dynamics and applies the multi-Ćuid approach to solve the problems of temperature propagation. In this
study the notions of linear classical irreversible thermodynamics and extended irreversible thermodynamics
are introduced as in the deĄnitions below. This categorization is added to the one based on the order of the
theory of dissipation. We are interested in the terms that these theories add to the spacetime heat equation.

1.8.3.1 Linear classical irreversible thermodynamics (CIT)

It is an approach developed by Onsager and extended by Prigogine [Prigogine,1980]. Its most important
result are the reciprocal relations of Onsager, from which the FourierŠs model can be derived. The only
assumption taken into account is that at each point a local equilibrium is ensured at the macroscopic scale
and for which the entropy satisĄes the Gibbs law (although the system is not at global equilibrium).

In this approach, it is considered that the production of entropy Ö𝑐 is a bilinear form of the generalized
thermodynamical forces 𝐹𝑖 (temperature gradients, chemical potential gradients ...) and Ćuxes 𝑞𝑗 which
represent the irreversible processes which take place (heat Ćux, heat resulting from chemical reactions ...).

Ö𝑐 =
∑︁

𝑖

𝐹𝑖𝑞𝑗 ⊙ 0 (1.45)

Despite the precise results that this approach provides experimentally, it shows failures when the
thermal relaxation time scale is long compared to the dynamical one. The failures are shown, for example,
in the case of superĆuid Helium, even if the deviations of the equilibrium are not large. The CIT, however,
retains the instantaneous character of the heat equation, hence the need for a more advanced development
to overcome this problem.

1.8.3.2 The hyperbolic equation of heat conduction based on extended irreversible thermodynamics

(EIT)

Similarly to FourierŠs model, CattaneoŠs model can be constructed by interpreting heat conduction as an
exchange of energy during the collisions of the particles of the material. This model takes two approximations
into account: the heat Ćow 𝑞Û is no longer linked to a force gradient as in the FourierŠs model and that

the quantity á
𝜕

𝜕𝑡
(
𝜕𝜃

𝜕𝑥
) is small, thus corresponding to a long dissipation time compared to the dynamic

evolution of the system.
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In general, the EIT [Muller,2008, Jou et al.,1988] is designed to examine the variables varying slowly
in phenomena extended by dissipation terms and describing the systems outside of their equilibrium state.
For example, in the case of a Ćuid, the EIT considers the energy as a function of conserved quantities and
slow dissipation Ćuxes, which transforms the Gibbs equation naturally to the hyperbolic heat equation.

We are talking here about the second order theories in which it is premature to simplify the higher
order terms immediately at the deviation of equilibrium: these terms may revert to linear terms after
the differentiation required by the second law of thermodynamics. In these theories the Ćow of entropy
includes all the possible combinations of the dissipation effect. They show encouraging results with regard
to stability and causality, however by introducing second order couples (introduced by the expansion of
entropy Ćux) that are measurable.

The particular interest to this subject is greater because of its contribution in the Ąeld of the hydrody-
namic description of relativistic energies of high plasma. However, the motivation of [López-Monsalvo,2011]
is to carry out the modeling of the dynamics of superĆuid neutron stars and high energy gas where photons
contribute to the dominant pressure.

1.8.3.3 On the multi-fluid approach developed [López-Monsalvo,2011]

One method of EIT is developped in [López-Monsalvo,2011]. It is the multi-Ćuid approach previously
discussed in [Carter,1988]. In this investigation the entropy is considered as being a kind of Ćuid: the
entropy density current is decomposed into a component corresponding to the one measured in the Eckart
convective frame and another component which is transverse to the particles Ćow. In this case, we are
dealing with both a Ćow of particles and entropy. Moreover, the principles of equivalence and covariance
are the basis of this approach. The laws of thermodynamics then lead to the relativistic theory of heat
conduction formulated in [López-Monsalvo,2011]. In addition to that, one of the most important results in
this work is the analysis of the stability of the relativistic generalization of the heat equation.

To sum up, we notice that existing relativistic heat models fulĄll the conditions of respecting the
causality principle only if they derive from second order theories or in other words are built using EIT in a
relativistic framework.

1.9 The self-heating phenomenon

In this part of the manuscript, we aim to build spacetime heat models respecting laws of thermodynamics,
causality and the covariance principle. These models should be able to represent the reality of thermal
phenomena. One possible way to test the reliability of the spacetime models in materials analysis is by
using them in modeling the self-heating phenomenon occurring during fatigue tests.

As its name implies, the self-heating phenomenon is a thermomechanical transformation that leads
to a variation of temperature of a material body without external heat supply [Doudard et al.,2009,
Katunin,2017]. During such a transformation, a variable amount of mechanical energy is converted ir-
reversibly into heat because of inelastic behaviors [Favier et al.,2016, Chrysochoos et al.,2009]. This phe-
nomenon can be particularly investigated during fatigue tests [Favier et al.,2016, Chrysochoos et al.,2009,
Boulanger et al.,2004, Benaarbia et al.,2016] during which, besides self-heating another amount of mechan-
ical energy is converted reversibly into heat and is compensated at every mechanical cycle. Nowadays,
very high cycle fatigue regime (VHCF) is becoming increasingly a topic of interest. A main reason is that
many components used in aircraft, railway and automobile industries require to have a high fatigue lifetime
exceeding the conventional range of megacycles [Cowles,1996].

VHCF corresponds typically to a gigacycle regime of fatigue [Ruben,2010]. Researches are actually
focused on the resulting dissipation, which comes from the volume heat sources associated with irreversible
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processes such as inelastic deformation mechanisms (internal friction [Guo et al.,2015] or microplasticity
[Pu et al.,2019]) or heat diffusion.

1.9.1 Gigacycle fatigue testing machines

Fatigue strength is studied by applying cyclic load to specimens until their failure. 𝑆 ⊗𝑁 curves diagram
results from such tests [Ruben,2010] (e.g. Figure 7).

Fig. 7: Results of cyclic fatigue tests of various steels alloys in the range of high-cycle (I) and gigacycle regime (II)
[Terentev,2004]. Tests are carried out at a load ratio R= –1 and a 20 𝑘𝐻𝑧 frequency for high strength Cr-Si steel specimens.

Multiple classiĄcations of fatigue testing machines can be found: classiĄcation by the type of load
applied to the specimen (e.g. direct or axial stress, bending, torsion, applied strain, combined or complex
stress) and classiĄcation related to the number of cycles that can be reached with the machine which
depends on its testing frequency [Ruben,2010, Bathias and Paris,2005].

In order to reduce the total time of experiments of gigacycle fatigue tests, Bathias [Bathias and Paris,2005]
develops an experimental method based on the application of the ultrasonic theory and technology. It
is known as ultrasonic fatigue tests. The range of frequencies provided by ultrasonic fatigue machines is
capable of producing 1010 cycles in less than one week while conventional fatigue machines took the average
of three years to reproduce the same experiments [Blanche,2015].

Ultrasonic fatigue machines control the displacement. They mainly include a high frequency generator,
a piezoelectric converter, and a displacement control system. Details on the function of each component are
given in section 3.3 (see Figure 8). The nominal frequency is set to 20 𝑘𝐻𝑧 (for the system shown in Figure
8). If a frequency of less than 19.5 𝑘𝐻𝑧 is detected by the control system, the test system stops and reports
a crack initiation.

1.9.2 Review on the measurement of self-heating in VHFC

The chronological development of self-heating investigation can be divided into 4 stages as detailed
in [Munier,2012]. The Ąrst stage is between 1914 and 1937: The Ąrst investigations on the fatigue of
materials were presented for the Ąrst time in [Wohler,1867] in 1867. The problem of identiĄcation of
the time parameter á𝑠 characterizing the heat transfer perpendicular to the direction of heat conduc-
tion Ćux (also called characteristic time) arises. At the beginning of the 20𝑡ℎ century, the Ąrst identi-
Ącations methods are discovered and empirical methods of determination of fatigue limit also appear
[Stromeyer,1914, Moore and Kommers,1921, [Lehr,1926, Welter,1937]. StromeyerŠs [Stromeyer,1914] work
in 1914 is considered to be the Ąrst to study self-heating phenomenon.

His tests consisted of applying rotary bending on specimens. Temperature in his tests is measured using
a differential temperature measurement device shown in Figure 9. A controlled Ćow of water at a certain
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Fig. 8: Ultrasonic testing machine

temperature is introduced in his device through the input I. Once in contact with the specimen previously
subjected to the fatigue test, the temperature of the water Ćow changes. It can be measured at the output
O.

Fig. 9: Stromeyer’s temperature measuring device for a conical specimen in rotary bending [Stromeyer,1914]

According to Stromeyer, the endurance limit (i.e. fatigue strength) is the minimum cyclic loading stress
which leads to generate heat within the specimen. He showed the existence of a good correlation between
his test results and the expression:

∘ à𝑛 = 𝐹𝑙 + 𝐶(106/𝑁)(1/4) (1.46)

where à𝑛 (also known as 𝑆𝑛 in the literature) is the the amplitude of cyclic loading stress, 𝐹𝑙 the fa-
tigue limit, 𝐶 a coefficient and 𝑁 is the number of cycles. These tests represent the birth of self-heating tests.

In the second stage between 1937 and 1980, research neglected the self-heating phenomenon. Only one
study [Cazaud,1948] was published. Then in between 1980 and 2000 new methods based on experiments
were published. Many materials were subject of study as well as the inĆuence of the value of the stress
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applied and the type of load [Galtier,1993, Luong,1998, Krapez et al.,1999]. The last stage is characterized
by the research in modeling the mechanisms occurring during the change of temperature [Mareau,2007,
Chrysochoos et al.,2009, Doudard et al.,2009, Maquin and Pierron,2009, Poncelet et al.,2011]. All the cited
studies aimed to predict properties of material subjected to fatigue.

1.9.3 Recent methods of measurement of self-heating in VHFC

The resulting temperature from self-heating can be measured using different experimental arrange-
ments: calorimeter [Shenogin et al.,2002], thermocouple [Zehnder et al.,1998], infrared (IR) sensors
[Chrysochoos and Louche,2000, Wagner et al.,2009]. In general, according to the different studies, these
measurements give similar results. A promising approach to study the dissipation is based on the
use of quantitative IR thermography and optical extensometry [Boulanger et al.,2004, Berthel,2007,
Maquin and Pierron,2009]. Indeed, these tools aim at assessing the dissipated energy associated with the
cyclic loading. SpeciĄcally, IR and visible CCD cameras (charge-coupled device) can be used to record simul-
taneously Ąelds corresponding to temperature variations and in-plane displacements over the sample gauge
part [Chrysochoos et al.,2009]. Moreover, IR camera performances have been considerably improved with
the discovery of infrared focal plane array sensors (IRFPA) [Poncelet et al.,2011]. These cameras nowadays
provide IR Ąlms with a Ąne spatial resolution and low thermal noise. Consequently, several experimental
approaches based on temperature measurements via quantitative IR techniques have recently been adopted
to estimate the energy transformation [Chrysochoos et al.,2009, Boulanger et al.,2004, Blanche,2015]. Dis-
sipation can be derived from thermal data Ąelds by estimating the partial differential operators of the heat
diffusion equation [Boulanger et al.,2004]. A number of simpliĄed formulations, using different assumptions,
can be then used for dissipation assessments. These assessments are based on averaging the variation of
temperature through different directions which leads to emerging terms function of the time parameter á𝑠
detailed in section 3.3.3.

1.9.4 Self-heating models in literature

A realistic heat conduction model is an essential ingredient for modeling self-heating. The reason is that
mechanical transformations occur in the body subject to ultrasonic fatigue tests which leads to an important
change of its temperature: an evolution over time due to the dynamic character of the fatigue phenomenon
which involves a spatial evolution due to heat conduction in all the specimen. However, the high cycle fatigue
tests are considered as quasi-static processes from a thermodynamic point of view [Boulanger et al.,2004,
Blanche,2015] (the statement of the local state axiom is found in [Germain,1983]). Thus considering high
cycle fatigue, it is possible to study the heat conduction phenomenon occurring by starting from a quasi-static
thermodynamical approach. A Ąnite set of variables including: the absolute temperature 𝜃, the (small)
strain tensor ε and a vector Ð𝑠 of 𝑛 internal state variables that describe the material state, is considered.
The Ąrst and second laws of thermodynamics, together with FourierŠs heat conduction model, lead to the
local heat conduction equation which can be expressed as in [Chrysochoos et al.,2009, Boulanger et al.,2004,
Blanche,2015] by:

̃︀𝜌𝑐𝑐𝑚,𝑣
𝜕𝜃

𝜕𝑡
⊗ Ú

𝜕

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
𝐼𝑖𝑗 = 𝑑1 + 𝑠𝑡ℎ𝑒 + 𝑠𝑡ℎ𝑐 + 𝑓 (1.47)

Where: 𝐼𝑖𝑗 is the 3𝐷 identity, 𝑑1 = à𝑖𝑗
𝑑𝜀𝑖𝑗

𝑑𝑡
⊗ ̃︀𝜌𝑐

𝜕Ψ
𝜕𝜀

𝑑𝜀𝑖𝑗

𝑑𝑡
⊗ ̃︀𝜌𝑐

𝜕Ψ
𝜕Ð𝑠

𝑑Ð𝑠
𝑑𝑡

is the intrinsic dissipation, in which

à𝑖𝑗 is the Cauchy stress tensor, 𝜀𝑖𝑗 is the elastic strain tensor and Ψ is the speciĄc free energy.

𝑠𝑡ℎ𝑒 + 𝑠𝑡ℎ𝑐 = ̃︀𝜌𝑐𝜃
𝜕2Ψ
𝜕𝜃𝜕𝜀𝑒

𝑑𝜀𝑖𝑗

𝑑𝑡
+ ̃︀𝜌𝑐𝜃

𝜕2Ψ
𝜕𝜃𝜕Ð𝑠

𝑑Ð𝑠
𝑑𝑡

is the thermoelastic source and another possible thermome-

chanical coupling source due to internal state variable evolution (such as plasticity).
𝑓 is the volume heat source. Some hypotheses were considered to simplify the local heat conduction equation:
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the isotropic material conductivity Ú and the parameters ̃︀𝜌𝑐 and 𝑐𝑚,𝑣 are constant and independent of the
state variables, thermoelastic effects were the only thermomechanical coupling factors considered hereafter,
the convective terms of the total time derivative of the temperature are neglected, the external heat supply
is time-independent then the equilibrium temperature Ąeld 𝜃𝑓 fulĄlled 𝑓 = ⊗ÚΔ𝜃𝑓 (where Δ represents the
Laplace differential operator) and a change of variables 𝜃𝑑 = 𝜃 ⊗ 𝜃𝑓 can be applied.

Consequently, the left hand side of Eq. 1.47 is a differential operator that can be applied to 𝜃𝑑. The
right hand side states different heat sources: the intrinsic dissipation 𝑑1 and the thermoelastic source 𝑠𝑡ℎ𝑒.
In this manuscript, the right hand side term is investigated, in the section 3.3.4 of chapter 3, in order to be
used in the validation of the spacetime modeling of the phenomenon.

Analysis of temperature variations can be found in some references [Lemaitre and Chaboche,1990,
Galtier,1993, La Rosa and Risitano,2000, Boulanger et al.,2004]. We analyse the temperature variation
induced by thermoelastic coupling and dissipation during homogeneous uniaxial tests (Eq. 1.47). We deĄne
𝜃𝑑(𝑠𝑡ℎ𝑒) and 𝜃𝑑(𝑑1) the temperatures induced respectively by 𝑠𝑡ℎ𝑒 and 𝑑1.

1.9.4.1 Thermoelastic coupling source

The thermoelastic behavior is assumed to be linear and isotropic [Boulanger et al.,2004]. The expression of
the coupling source found in [Lemaitre and Chaboche,1990] shows that it is negative during loading and
positive during unloading. Hence, the thermoelastic energy vanishes at the end of each complete loading
cycle [Boulanger et al.,2004]. The span of 𝜃𝑑(𝑠𝑡ℎ𝑒) is noted Δ𝜃𝑑(𝑠𝑡ℎ𝑒). [Lemaitre and Chaboche,1990] also
shows that Δ𝜃𝑑(𝑠𝑡ℎ𝑒) vanishes when the frequency of cyclic loading 𝑓𝐿 tends to 0 and for high frequencies
(⪰ 1/(2Þá𝑠)) this quantity becomes independent of 𝑓𝐿(Figure 10).

1.9.4.2 Dissipation source

The span of 𝜃𝑑(𝑑1), noted Δ𝜃𝑑(𝑑1) is always positive since it is the result of dissipation 𝑑1 which must be

positive. 𝑑1 can derive from the strain rate
𝑑𝜀𝑖𝑗

𝑑𝑡
and from the micro structural evolution represented by

𝑑Ð𝑠
𝑑𝑡

(see Eq. 1.47). We can then conclude that the amplitude of 𝜃𝑑(𝑑1) is related to the amplitude of the

strain rate. Moreover, in [La Rosa and Risitano,2000], it is shown that 𝜃𝑑(𝑑1) is proportional to 𝑓𝐿 and in
[Galtier,1993] a linear expression is given.

Let us consider an example of fatigue test: a unixial test where Δà = 360𝑀𝑃𝑎 at 𝑅 = 0 on a DP60
steel specimen [Boulanger et al.,2004] The evolution of Δ𝜃𝑑(𝑠𝑡ℎ𝑒) and Δ𝜃𝑑(𝑑1) through the time is observed
for respectively 𝑓𝐿 = 50, 𝑓𝐿 = 1, 𝑓𝐿 = 30𝐻𝑧. Results show that for 𝑓𝐿 = 50𝐻𝑧, Δ𝜃𝑑(𝑠𝑡ℎ𝑒) ≡ 0.3 °𝐶 and
Δ𝜃𝑑(𝑑1) = 1.8 °𝐶 at the stabilized thermoelastic regime (Figure 10). This shows that the preponderant
variation of temperature is related to dissipation (Figure 10). Moreover the same test at 𝑓𝐿 = 1𝐻𝑧,
gives Δ𝜃𝑑(𝑠𝑡ℎ𝑒) ≡ 0.3 °𝐶 and Δ𝜃𝑑(𝑑1) ≡ 0°𝐶. The same test at 𝑓𝐿 = 30𝐻𝑧, gives Δ𝜃𝑑(𝑠𝑡ℎ𝑒) ≡ 0.3°𝐶 and
Δ𝜃𝑑(𝑑1) ≡ 1.1 °𝐶. These results show the independence of 𝜃𝑑(𝑠𝑡ℎ𝑒) from 𝑓𝐿 and the proportionality between
𝜃𝑑(𝑑1) and 𝑓𝐿.

1.9.5 Summary of required assumptions for modeling self-heating

FourierŠs model for heat conduction is often used to analyze self-heating occurring during fatigue tests in
the Newtonian approach (see section 1.9.4). As reviewed in section 1.5, other models of heat conduction
can be used in a Newtonian approach. We recall that the steady-state diffusion is described using these
models in a continuous media where neither some of the thermomechanical couplings (the terms 𝑠𝑡ℎ𝑒 and
𝑠𝑡ℎ𝑐 of Eq. 1.47) nor the heat transfer by radiation are taken into account. Only the resulting thermal
dissipation 𝑑1 is considered. Moreover, spacetime models of heat conduction can also be used in the study
of self-heating: parabolic and hyperbolic heat conduction models derive respectively from Ąrst and second
order theories of dissipation using a spacetime approach (see section 1.8).
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Fig. 10: Evolution of temperature of a specimen subjected to fatigue at (a) 𝑓L = 50𝐻𝑧, (b) 𝑓L = 1𝐻𝑧 at the stabilized
regime, (c) 𝑓L = 30Hz at the stabilized regime

The evolution of temperature in time during fatigue tests which also involves a spatial evolution
of temperature due to heat conduction in the specimen, promotes the use of spacetime models of heat
conduction. Besides, the necessity of coupling the mechanical behavior to the thermal behavior in the
dissipation term, endorses the spacetime point of view to ensure the frame-indifference of such a coupling.

For all these reasons, we are considering the spacetime FourierŠs model built with a spacetime thermo-
dynamic approach. The convenience of solving thermal problems by the use of spacetime computation will
be proved in this particular application. The study is based on experimental data resulting from fatigue
test. Note that to avoid numerical inconsistencies, the models are deĄned in a macroscopic spatial domain
of order 𝐿 and a temporal domain of order 𝑡𝑚𝑎𝑐𝑟𝑜 = 𝑡 (see section 1.5.7) where FourierŠs heat conduction
model is adapted.

1.10 Conclusions

In this chapter, deĄnitions and notions of continuum thermodynamics are reviewed. First, deĄnitions
of classical 3D thermomechanics are given then the spacetime framework is introduced (section 1.2).
Comparison of notions between these 2 frameworks is established in section 1.4.

Objectivity of the material is deĄned in Newtonian thermomechanics. It includes in its meaning the
independence of models with respect to change of frames as well as with respect to superposition of rigid
body motion. These two can not be distinguished in a 3D space. In spacetime thermomechanics, the notion
of covariance used in EinsteinŠs theory takes place. It postulates frame-indifference of laws and models. In
such a formalism, spacetime tensors are covariant and covariant derivatives can be deĄned [Wang,2016].

The Ąrst part of this manuscript aims at modeling the thermal conduction behavior. Several Newtonian
models in the literature exist [Fourier,1988, Cattaneo,1958, Tavernier,1962, Osborne,1950, Vernotte,1961,
Battaglia,2007] (section 1.5). However, it has been identiĄed that all the models do not fulĄll all the
requirements for an accurate modeling.

Here are the difficulties encountered in Newtonian thermomechanics (section 1.6): some of the mod-
els found in literature do not respect the causality principle [Fourier,1988], some are not covariant
[Cattaneo,1958, Tavernier,1962, Osborne,1950, Vernotte,1961] (see table 3). Since both of these principles
are necessary for a correct heat conduction model, together with taking into account correctly irreversibility
for large transformations, a spacetime thermodynamical formalism guaranteeing covariance of models is
needed (section 1.7). Its elements will be detailed in the following chapters.
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Properties/Models Fourier Cattaneo Osborne Vernotte

Verifies covariance principle in the 3D sense Yes No No No
Verifies causality principle No Yes Yes Yes
Thermod. compatibility Yes NA NA NA

Tab. 3: List of the different Newtonian models reviewed in the literature with their properties (NA = not applicable)

Some relativistic models of heat conduction already exist in the literature [Eckart,1940, Carter,1988,
Landau and Lifshitz,1975, Israel and Stewart,1979a, Israel and Stewart,1979b](section 1.8). Therefore, rela-
tivistic models deriving from CIT do not respect the causality principle [Eckart,1940, Landau and Lifshitz,1975].
Others deriving from EIT respect this principle [Israel and Stewart,1979a, Carter,1988] but the price to
pay is to Ąnd coefficients of the second order corrections for the entropy sources (see table 4). Moreover
the stability conditions in these models are rather artiĄcial. Since existing relativistic models do not
systematically meet all the requirements, complementary investigations on spacetime models are required.

Properties/Models Eckart Landau and Lifshitz Israel and Stewart Carter

Verifies covariance principle Yes Yes Yes Yes
Verifies causality principle No No Yes Yes
Thermod. compatibility Yes Yes Yes Yes

Tab. 4: List of the different spacetime models reviewed in the literature with their properties

Our aim is to develop a framework that guarantees covariance of heat conduction models, respects the
causality principle and at the same time could be derived from classical irreversible thermodynamics. This
framework will be built in a spacetime Euclidean domain without gravitation.

This framework will enable us to build spacetime heat conduction models that can be used for engineering
applications (see chapter 2). The self-heating is one of the phenomena that can be modeled (section 1.9). It
occurs during various processes especially fatigue tests. Newtonian studies of this self-heating are found in
[Chrysochoos et al.,2009, Boulanger et al.,2004, Lemaitre and Chaboche,1990, La Rosa and Risitano,2000,
Galtier,1993, Poncelet et al.,2011, Munier,2012]. The resulting dissipation enables the study of the fatigue
limit. We will model this phenomenon in chapter 3 to prove the possibility of use of the spacetime heat
models obtained in chapter 2 to represent materials analysis and characterization techniques and to improve
the numerical resolution of such a phenomenon.
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2 Spacetime modeling of thermal problems

2.1 Introduction and description of the problem

As discussed in chapter 1, frame-indifference of thermomechanical models has to be questioned to deal
correctly with the behavior of matter undergoing large transformations. As reviewed, existing models show
difficulties to verify frame-indifference [Cattaneo,1958] or/and causality principle [Fourier,1988]. Relativistic
models verifying these two conditions may be derived from EIT, thus thermodynamically compatible, but
this adds challenges to identify the coefficients of variables and laws [Israel and Stewart,1979a, Carter,1988].

In this chapter, we thus aim at obtaining heat conduction models verifying the covariance principle
[Eringen,1962, Grot and Eringen,1966a, Rouhaud et al.,2013, Panicaud et al.,2014] and we will then sys-
tematically check the causality and the thermodynamics compatibility of the proposed models built from a
CIT framework.

To do so, we will develop heat conduction models in a spacetime framework. The spacetime formalism
developed in previous articles [Rouhaud et al.,2013, Panicaud et al.,2014, Panicaud et al.,2015, Wang,2016]
is Ąrst brieĆy introduced. Then, we apply this framework to thermodynamics and derive a covariant form
of the Clausius-Duhem inequality from the Ąrst and second principles of thermodynamics.

Two heat conduction models are proposed in this spacetime formalism. Models can be directly deduced
from the thermodynamical approach or from inducing methods. A new method is especially proposed
for the generalization of CattaneoŠs model in the spacetime domain by use of a complexiĄcation method.
Different expressions of the heat equation under their variational forms in the spacetime formalism are
then presented, without mechanical couplings, in view of numerical investigations. Numerical simulations
are then performed in order to emphasize the advantages and the drawbacks of Newtonian and spacetime
formalisms. In the Ąrst formalism, time is discretized, while in the second it is a variable in the spacetime
domain. These comparisons will be performed through an example. At the end of the chapter, the spacetime
model obtained will be used in an engineering application: the study of heat diffusion through a cooling Ąn.

2.2 Spacetime formalism

The description of physical systems in this manuscript is built in a spacetime formalism, for which gravitation
is not taken into account. The considered spacetime is (pseudo-) Euclidean and we deĄne a metric tensor g.

Throughout the manuscript, quantities that vary like the base vectors are called covariant e.g. XÛ

and those that vary like the dual base vectors are called contravariant e.g. XÛ [Schouten,1954]. The upper
indices denote contravariant quantities, while lower indices denote covariant quantities. We note that in
Euclidean space (section 1.2), covariant and contravariant quantities are equivalent [Stover and Eric,2020].

2.2.1 Motion and frames

Consider a material body in space and time described by the spacetime continuum of hypervolume 𝒟
with frontier 𝜕𝒟. The motion of the body is described by the speciĄcation of events 𝑥Û corresponding
to the coordinates of the material particles of the body within a four-dimensional spacetime manifold
[Bressan,1963]. The motion of these particles corresponds to a set of worldlines that spans a linked open
domain of the spacetime manifold. The quantities introduced in this work are deĄned for all 𝑥Û in 𝒟. The
transformation from one coordinate system 𝑥Û to another ̃︁𝑥Û is given by:

𝑑̃︁𝑥Û =
𝜕̃︁𝑥Û
𝜕𝑥Ü

𝑑𝑥Ü (2.1)

As previously introduced in section 1.3, a frame is deĄned as a set of four base vectors of this
spacetime. Therefore, a choice of a spacetime coordinate system deĄnes a frame and spacetime coordinate
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transformations describe changes of frames [Landau and Lifshitz,1975]. A speciĄc coordinate system is
associated to inertial frames, for which the covariant components of the metric tensor are:

𝑔ÛÜ = ÖÛÜ =

∏︀
̂︁̂︁∐︁

⊗1 0 0 0
0 ⊗1 0 0
0 0 ⊗1 0
0 0 0 +1

⎞
̂︂̂︂̂︀ (2.2)

A proper frame is also deĄned, as a frame comoving with a material particle of the body (see section 1.3.3).
It generalizes the notion of standard (imbedded) material coordinates and can be deĄned for any particle of
the body. In this case, the fourth coordinate 𝑥4 corresponds to the proper time of the material particle
multiplied by a reference velocity, hence having a dimension that is homogeneous with a spatial length. We
choose here this reference as the velocity of light 𝑐. The Minkowski tensor of components ÖÛÜ is written in a
form that does not depend on 𝑐 value. In this work, a hat is written above all quantities expressed for the
speciĄc proper frame, the coordinate system associated to this frame is thus 𝑥̂Û. A particular case of proper
and inertial frame are also considered. It corresponds to material particles that have a constant linear speed
and does not have any acceleration. In this case, the hat above the quantity is not necessary.

An inĄnitesimal interval 𝑑𝑠 between 2 close events is further deĄned as a generalized element of length:

𝑑𝑠2 = 𝑔ÛÜ(𝑥Ù)𝑑𝑥Û𝑑𝑥Ü (2.3)

where 𝑔ÛÜ are the covariant components of the metric tensor in the coordinate system 𝑥Ù. The interval is
invariant with respect to coordinate transformations.

2.2.2 Four-vector velocity

Using the deĄnition of the interval above (Eq. 2.3), the four-vector velocity is deĄned as:

𝑢Û =
𝑑𝑥Û

𝑑𝑠
(2.4)

Note that it is a dimensionless quantity for all its components and that its norm is equal to one due to the
deĄnition of the interval 𝑑𝑠. Depending on the choice of the frame, the velocity takes speciĄc values:
∙ For an inertial frame, we deduce from Eqs. 2.2 and 2.3:

𝑑𝑠2 = (𝑐𝑑𝑡)2

⎤
1 ⊗ 𝑣2

𝑐2

⎣
= (𝑐𝑑𝑡/Ò)2 (2.5)

where Ò is the Lorentz factor and 𝑣 = ♣♣𝑣♣♣ =
√︀
𝑣𝑖𝑣𝑖 is the velocity norm as calculated in the Newtonian

approach. The four-vector velocity is then given by:

𝑢Û =
Ò

𝑐
𝑣Û =

⎤
Ò

𝑐

𝑑𝑥𝑖

𝑑𝑡
, Ò

⎣
. (2.6)

∙ For a proper frame (comoving with a material particle)(section 1.3.3), the four-vector velocity takes the
particular value:

𝑢̂Û = (0, 0, 0, 1). (2.7)

Eq. 2.7 corresponds to a normalized speed and is independent of the 𝑐 value.

2.2.3 Tensor densities

In section 1.4.3 four-tensors densities are introduced. In the coordinate transformation below, the weight of
tensor density 𝑊 has been introduced [Schouten,1954]. Typically the weight of CauchyŠs stress tensor, is
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equal to one (𝑊 = 1), while the weight of a deformation or strain tensor or temperature is equal to zero
(𝑊 = 0) [Oldroyd,1950, Schouten,1954].

Through coordinate transformations from 𝑥Û to ̃︁𝑥Û, the scalar density 𝒮, the components of a Ąrst-rank
tensor density V and the components of a second-rank tensor density T verify the relations:

̃︀𝒮 =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊

𝒮 (2.8a)

̃︀𝒱Û =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊
𝜕̃︀𝑥Û
𝜕𝑥Ü

𝒱Ü (2.8b)

̃︀𝒱Û =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊
𝜕𝑥Ü

𝜕̃︀𝑥Û𝒱Ü (2.8c)

̃︀𝒯 ÛÜ =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊
𝜕̃︀𝑥Û
𝜕𝑥Ú

𝜕̃︀𝑥Ü
𝜕𝑥Ù

𝒯 ÚÙ (2.8d)

̃︀𝒯ÛÜ =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊
𝜕𝑥Ú

𝜕̃︀𝑥Û
𝜕𝑥Ù

𝜕̃︀𝑥Ü 𝒯ÚÙ (2.8e)

where

⧹︃⧹︃⧹︃⧹︃
𝜕̃︀𝑥Û
𝜕𝑥Ü

⧹︃⧹︃⧹︃⧹︃ is the determinant of the Jacobian matrix
𝜕̃︀𝑥Û
𝜕𝑥Ü

.

Example The weight of a mass density is equal to one. A coordinate transformations from 𝑥Û to ̃︁𝑥Û of
the mass density can be expressed by:

̃︀𝜌 =

⧹︃⧹︃⧹︃⧹︃
𝜕𝑥Ð

𝜕̃︀𝑥Ñ
⧹︃⧹︃⧹︃⧹︃
𝑊

𝜌 = 𝐽𝜌 (2.9)

where 𝐽 =
⧹︃⧹︃⧹︃𝜕𝑥α

𝜕̃︀𝑥β

⧹︃⧹︃⧹︃ is the mass density ratio.

2.2.4 Projection operators

In order to construct the models, we wish to be able to separate temporal and spatial contributions of
the four-dimensional tensors. Note that the spatial contribution does not necessarily correspond to the
components that are associated to the Ąrst three coordinates: it depends on the chosen frame. For example,
for an inertial frame, the direct projection is comparable to the Newtonian case. However, for other frames,
the comparison may be not so simple. Therefore, if we require to clearly separate the different components
of a spacetime tensor on the different directions of spacetime, either space or time or both, then we have to
introduce projectors.

The time projection operator (or time projector) is simply u because the four-velocity by construction
points toward the direction of the proper time (see Eq. 2.7). The spatial projection operator (or spatial
projector) projects on the space that is perpendicular to the four-velocity and is deĄned as:

ΠÛÜ = 𝑔ÛÜ ⊗ 𝑢Û𝑢Ü (2.10)

Projected variables using ΠÛÜ are denoted using a bar under variables (.) e.g. 𝑒ÛÜ = 𝑒ÐÑ(ÓÛÐ ⊗𝑢Û𝑢Ð)(ÓÜÑ ⊗
𝑢Ü𝑢Ñ) is the projected spacetime elastic strain tensor.

2.2.5 Shift of a tensor

The contravariant components of a tensor can be changed to its covariant components and vice versa by use
of the shift operation with the metric tensor. For a second-rank tensor, it can be done using the relations:

𝒯ÛÜ = 𝑔ÛÐ𝑔ÜÑ𝒯 ÐÑ (2.11)
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𝒯 ÛÜ = 𝑔ÛÐ𝑔ÜÑ𝒯ÐÑ (2.12)

Moreover, mixed tensor densities can be shifted. For a second-rank tensor it can be done using the
relation:

𝒯 Û
Ü = 𝑔ÛÐ𝑔ÜÑ𝒯 Ñ

Ð (2.13)

The same operations can be carried out for tensors densities of different orders. The contravariant
components of a Ąrst-rank tensor (e.g. velocity) can be changed to its covariant components and vice versa,
using the relations:

𝒱Û = 𝑔ÛÜ𝒱Ü (2.14)

𝒱Û = 𝑔ÛÜ𝒱Ü (2.15)

The theory of relativity intrinsically ensures the covariance of models through the use of tensors and
spacetime operations. And as the change of coordinate system is equivalent to the change of frame, then
the tensors and the spacetime equations are by construction form invariant with respect to change of frame.

2.2.6 The Newtonian hypothesis

Among the hypotheses that may be taken into account in this manuscript we note:
𝑣

𝑐
<< 1 ≺ Ò ≡ 1, which

corresponds to the hypothesis of Newton. It will be used to express models at the limit of the spacetime
framework, which corresponds to the Newtonian framework (see section 5.5.3). Under this approximation,
proper time can then be approximated to the absolute time. Moreover, the spacetime velocity is noted 𝑣Û

and expressed by:

𝑣Û =
𝑑𝑥Û

𝑑𝑡
=

⎤
𝑑𝑥𝑖

𝑑𝑡
, 𝑐

⎣
= (𝑣𝑖, 𝑐) ≡ 𝑐𝑢Û (2.16)

2.2.7 Covariant derivative

The use of covariant derivative is essential in the spacetime domain in order to write covariant models
[Semay and Silvestre-Brac,2007]. The covariant derivatives of respectively, a scalar density 𝒮 denoted ∇Ú𝒮,
a Ąrst-rank tensor density V denoted ∇Ú𝒱Û (or ∇Ú𝒱Û) and a second-rank tensor density T denoted ∇Ú𝒯 ÛÜ

(or ∇Ú𝒯ÛÜ) are given by:

∇Ú𝒮 =
𝜕𝒮
𝜕𝑥Ú

⊗𝑊ΓÙÙÚ𝒮 (2.17a)

∇Ú𝒱Û =
𝜕𝒱Û
𝜕𝑥Ú

+ ΓÛÙÚ𝒱Ù ⊗𝑊ΓÙÙÚ𝒱Û (2.17b)

∇Ú𝒱Û =
𝜕𝒱Û
𝜕𝑥Ú

⊗ ΓÙÛÚ𝒱Ù ⊗𝑊ΓÙÙÚ𝒱Û (2.17c)

∇Ú𝒯 ÛÜ =
𝜕𝒯 ÛÜ

𝜕𝑥Ú
+ ΓÛÙÚ𝒯 ÙÜ + ΓÜÙÚ𝒯 ÛÙ ⊗𝑊ΓÙÙÚ𝒯 ÛÜ (2.17d)

∇Ú𝒯ÛÜ =
𝜕𝒯ÛÜ
𝜕𝑥Ú

⊗ ΓÙÛÚ𝒯ÙÜ ⊗ ΓÙÜÚ𝒯 ÙÛ ⊗𝑊ΓÙÙÚ𝒯ÛÜ (2.17e)

where ΓÐÑÒ are the coefficients of the metric connection identiĄed with ChristoffelŠs symbols [Talpaert,2000,
Weinberg,1972] given by:

ΓÛÙÚ =
1
2
𝑔ÛÐ

⎤
𝜕𝑔ÐÙ
𝜕𝑥Ú

+
𝜕𝑔ÐÚ
𝜕𝑥Ù

⊗ 𝜕𝑔ÙÚ
𝜕𝑥Ð

⎣
= ΓÛÚÙ (2.18)

Note that in this case ∇Ú𝑔
ÛÜ = 0. Also not that for every point of the spacetime domain, for an inertial

frame, all ChristoffelŠs symbols vanish.
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It is important to stress that, as a consequence of the absence of gravitation, the Riemann cur-
vature tensor of this spacetime domain is equal to zero, although the ChristoffelŠs symbols may not
[Landau and Lifshitz,1975, Kobayashi and Nomizu,1996, Schellstede et al.,2014, Charnock,2017]. In other
words, the considered spacetime is (pseudo-) Euclidean, thus Ćat, whether the frame is inertial (⇒ ΓÛÙÚ = 0),
or not (⇒ ΓÛÙÚ ̸= 0) [Landau and Lifshitz,1975].

A covariant transport corresponding to the projection of the covariant derivative on the proper time
𝑢Ú∇Ú(.) is also deĄned. In an inertial coordinate system 𝑧Û, in which the ChristoffelŠs symbols vanish, the
covariant transport may be rewritten as:

𝑢Ú∇Ú(.) = 𝑢Ú
𝜕

𝜕𝑧Ú
(.) = 𝑢4 𝜕

𝜕𝑧4
(.) + 𝑢𝑖

𝜕

𝜕𝑧𝑖
(.) =

𝑑(.)
𝑑𝑠

(2.19)

2.2.8 Spacetime thermodynamics

In this section we introduce the elements needed to build models in a spacetime thermodynamical approach.
∙ Energy-momentum tensor

The energy-momentum tensor Ąeld T describes the density Ćux of energy and momentum in spacetime.
It is deĄned ∀𝑥Û in the hypervolume 𝒟 of the spacetime continuum of the material with frontier 𝜕𝒟.
Remember that, in the present work, electromagnetism and gravitation phenomena are not considered.
The energy-momentum tensor is advantageously decomposed into 3 parts [Eckart,1940, Carter,1988,
Landau and Lifshitz,1975, Israel and Stewart,1979a], with the use of projectors in the direction of time
and the space perpendicular to time (see section 2.2.4):

𝑇ÛÜ = 𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà (2.20)

where

𝑇ÛÜ
𝒰

= 𝒰𝑢Û𝑢Ü with 𝒰 = 𝑢Ð𝑇
ÐÑ𝑢Ñ (2.21)

𝑇ÛÜ𝑞 = 𝑞Û𝑢Ü + 𝑢Û𝑞Ü with 𝑞Û = ΠÛÐ𝑇
ÐÑ𝑢Ñ (2.22)

𝑇ÛÜà = ΠÛÐ𝑇
ÐÑΠÜÑ (2.23)

In the particular proper frame where 𝑢̂Û = (0, 0, 0, 1), the components of this tensor are:

𝑇ÛÜ =

∏︀
̂︁̂︁̂︁∐︁

𝑇à
11

𝑇à
12

𝑇à
13

𝑞1

𝑇à
12

𝑇à
22

𝑇à
23

𝑞2

𝑇à
13

𝑇à
23

𝑇à
33

𝑞3

𝑞1 𝑞2 𝑞3 𝒰

⎞
̂︂̂︂̂︂̂︀ (2.24)

This particular form of the energy-momentum tensor in the proper frame enables an interpretation of
its components, which are in this case: the energy density 𝒰 = 𝑢̂Ð𝑇

ÐÑ 𝑢̂Ñ , which equals to ̃̂︀𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)
because of the Einstein equivalence [Landau and Lifshitz,1975], the heat Ćux 𝑞Û = Π̂ÛÐ𝑇ÐÑ 𝑢̂Ñ , and
the mechanical stress applied on the studied body 𝑇ÛÜà = Π̂ÛÐ𝑇ÐÑΠ̂ÜÑ . As a consequence, it is worth
noting that 𝑞4 = 0. The four projection is necessary but may not be sufficient to obtain covariant heat
conduction. The main problem is that 𝑞Û is not a simple spacelike vector, but a tensor component.
That is reĆected in the related entropy production expression as mentioned in [Ván and Biró,2012], and
in the complicated non-relativistic transformation properties, see e.g. [Müller and Ruggeri,1998] in a
kinetic theory context or [Ván et al.,2016] in a direct approach.
The deĄnitions of the entities related to the energy-momentum tensor are summed up in Table 11:
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Variable Physical interpretation Unit

in the proper frame in the international system

𝒰 energy density 𝑘𝑔.𝑚−1.𝑠−2

𝜌c mass density at rest 𝑘𝑔.𝑚−3

𝑒int specific internal energy 𝐽.𝑘𝑔−1

𝑢µ velocity four-vector dimensionless
𝑞µ volume heat flux four-vector 𝐽.𝑚−3

𝑇µν
𝒰

energy four-tensor 𝑘𝑔.𝑚−1.𝑠−2

𝑇µν
q heat four-tensor 𝑘𝑔.𝑚−1.𝑠−2

𝑇µν
σ stress four-tensor 𝑃𝑎 = 𝑘𝑔.𝑚−1.𝑠−2

Tab. 5: The spacetime variables used in the energy-momentum tensor

At this stage of the manuscript, we look to Ąnd models of the thermal behavior of materials only.
Consequently, no mechanical stress is applied to the model and then the mechanical stress is supposed
be null, which is equivalent to: 𝑇ÛÜà = 0. This assumption reduces the equation of energy-momentum to:

𝑇ÛÜ = 𝒰𝑢Û𝑢Ü + 𝑞Û𝑢Ü + 𝑢Û𝑞Ü (2.25)

∙ Spacetime equations for thermodynamics of continuous media

The energy-momentum tensor enables to write the spacetime equations of thermodynamics for continuous
media. To begin with, the Ąrst principle of thermodynamics leads to the conservation of internal
energy in spacetime. It comes from the projection of the conservation of energy-momentum tensor
(∀𝑥Û ∈ 𝒟,∇Ü𝑇

ÛÜ = 0) on the proper time [Grot and Eringen,1966a]:

∀𝑥Û ∈ 𝒟, 𝑢Û∇Ü𝑇
ÛÜ = 0 (2.26)

Second, the Ćux of entropy in the spacetime domain 𝒟 can be deĄned as a four-vector:

𝑆Û = ̃︀𝜌𝑐Ö𝑐𝑢Û +
𝑞Û

𝜃
(2.27)

where Ö𝑐 can be interpreted as the speciĄc entropy for the proper frame and 𝜃 is the thermodynamics
temperature [Landau and Lifshitz,1975]. Then, through the covariant variation of Eq. 2.27, it is possible
to express the second principle of thermodynamics as [Eckart,1940, Muschik and Borzeszkowski,2015]:

∀𝑥Û ∈ 𝒟,∇Û𝑆
Û ⊙ 0

⇒ ∇Û( ̃︀𝜌𝑐Ö𝑐𝑢Û) + ∇Û

⎤
𝑞Û

𝜃

⎣
⊙ 0 (2.28)

∙ The four-dimensional form of the Clausius-Duhem inequality

The Clausius-Duhem inequality can be obtained at least by two ways. First, it can be derived by use
of Eckart type Gibbs relation, as it can be found in [Eckart,1940, Landau and Lifshitz,1966]. For all
points of the spacetime domain, we assume a local thermodynamic identity:

∀𝑥Û ∈ 𝒟, ̃︀𝜌𝑐(𝜃𝑑Ö𝑐 ⊗ 𝑑𝑒𝑖𝑛𝑡) = ⊗ ̃︀𝜌𝑐
𝜕𝑒𝑖𝑛𝑡
𝜕Ð𝑖

𝑑Ð𝑖 (2.29)

where Ð𝑖 represents the state variables of the system other than temperature. A closed system is
considered and Ð𝑖 reduces to a mechanical variable (volume or strain). The second member of Eq.
2.29 has to be calculated along a reversible path. By use of Eq. 2.28, with the rest mass balance

∀𝑥Û ∈ 𝒟,∇Û( ̃︀𝜌𝑐𝑢Û) = 0, we can easily prove that ̃︀𝜌𝑐𝜃𝑑Ö𝑐 ⊙ ⊗𝜃∇Û

⎤
𝑞Û

𝜃

⎣
𝑑𝑠. From Eq. 2.26 and
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expression of 𝑇ÛÜ , we can also express the derivative of the speciĄc internal energy 𝑒. Finally, after
calculation, we can obtain the Clausius-Duhem inequality as proposed in Eq. 2.31.
Second, the Ąrst and second principles of thermodynamics can be combined to directly obtain the
Clausius-Duhem inequality in the spacetime domain:

∀𝑥Û ∈ 𝒟, 𝜃∇Û𝑆
Û ⊗ 𝑢Û∇Ü𝑇

ÛÜ ⊙ 0 (2.30)

The terms of this inequality have been deĄned in the previous sections. It is worth noting that balance
law has also to be simultaneously veriĄed, i.e.: ∇Ü𝑇

ÛÜ = 0. In Eq. 2.30, the use of the deĄnitions
of energy-momentum tensor (Eq. 2.25) and of entropy vector (Eq. 2.27), with the rest mass balance
∀𝑥Û ∈ 𝒟,∇Û( ̃︀𝜌𝑐𝑢Û) = 0 leads to the Clausius-Duhem inequality as proposed in Eq. 2.31. However,
the inequality of Eq. 2.30 may be problematic in this form. It should be interpreted as a conditional
inequality, where the energy-momentum balance is a constraint. Here the presentation is slightly different,
as the Lagrange-Farkas multiplier is Ąxed in advance as an equivalent four-temperature, proportional to
the four-velocity. The fact that equivalent temperature is moving with the rest mass is a questionable
point, too. It is not obvious that one can choose such a velocity Ąeld. There are reasonable arguments
that the origin of the instabilities of dissipative relativistic Ćuids are connected to that term, see in
[Ván and Biró,2012]. This second way thus introduces different problems, which means that it may not
be the best way for interpretation. Both methods however lead to the same Clausius-Duhem inequality
given by Eq. 2.31:

̃︀𝜌𝑐𝜃𝑢Û∇ÛÖ𝑐 ⊗ ̃︀𝜌𝑐𝑢Û∇Û𝑒𝑖𝑛𝑡 ⊗ 1
𝜃
𝑞Û∇Û𝜃 + 𝑞Ü𝑢

Û∇Û𝑢
Ü ⊙ 0 (2.31)

In this inequality, terms are related, respectively, to the evolution of entropy, the evolution of internal
energy and the thermal dissipations (one is coupled to mechanics with the term 𝑢Û∇Û𝑢

Ü).
The proposed equation shows an additional term compared to the classical form of the Clausius-Duhem
inequality [Jou et al.,1988, Liu et al.,2017]. It is the acceleration, 𝑎Ü = 𝑢Û∇Û𝑢

Ü (that takes the value

𝑢Û𝜕Û𝑢
Ü =

𝑑𝑢Ü

𝑑𝑠
for an inertial frame), coupled to the heat Ćux and temperature. A similar term has

already been proposed by Eckart [Eckart,1940], but with a non-covariant form. It is worth noting that
this acceleration term is a relativistic one, depending on 𝑐⊗2, which vanishes at the non-relativistic
limit.

2.3 Spacetime Fourier’s model of heat conduction

The goal of this section is to propose generalized FourierŠs models written to suit the spacetime formalism,
with 2 different methods.

2.3.1 General hypotheses

We remind that we place ourselves in a spacetime description in the context of general relativity in the
sense of kinematics : gravitation is not taken into account, the metric is Euclidean and has null curvature
(see table 2). The model which is built in a continuous media, is purely thermal. Indeed, thermomechanical
couplings are not taken into account. Heat transfer by radiation are not taken into account.

All the material coefficients (especially the thermal conductivity) are assumed to be independent of time
and temperature (∀𝑥Û). Moreover, the description is performed at the macroscopic scale and the thermal
problem is supposed to be isotropic at this scale.
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2.3.2 Method 1: Direct relativization of Fourier’s model of heat conduction

One method to obtain a spacetime FourierŠs model of heat conduction is to induce its generalization from
the Newtonian FourierŠs model of heat conduction.
∙ We start from Newtonian FourierŠs model expressed for any frame by:

𝑞𝑗 = ⊗Ú

𝑐
𝐼𝑗𝑖∇𝑖𝜃 (2.32)

where Ú is the thermal conductivity of the considered material and I is the 3D metric of signature
(+1,+1,+1).

∙ We extend to spacetime by increasing the dimension of the heat vector. For the proper frame, we remind
that 𝑞4 = 0 according to Eq. 2.24. Consequently, we have to use the spatial projector to link the heat
vector to the temperature gradient. We induce the covariant expression for any frame of the heat Ćux:

𝑞Û =
Ú

𝑐
ΠÛÜ∇Ü𝜃 =

Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)∇Ü𝜃 (2.33)

The positive sign before the second member of Eq. 2.33 is due to the signature of the 4D metric
(⊗1,⊗1,⊗1,+1).

Eq. 2.33 reduces to Eq. 2.32 (with hat on quantities) as expected, when expressed in the proper frame. The
compatibility of Eq. 2.33 with the Clausius-Duhem inequality limited to the thermal dissipation (Eq. 2.35)
is ensured at the non-relativistic limit or if the motion speed is strictly constant (to neglect the acceleration
term), provided that ⊗ÚΠÛÜ is a positive-deĄnite matrix [Bressan,1978].

Moreover, for the proper frame, the spacetime model, for which the spatial components correspond to
the Newtonian ones, violates similarly the causality principle when used in the internal energy balance (Eq.
2.34)(see sections 1.5.4 and 1.6.2).

2.3.3 Method 2: Spacetime thermodynamical approach

In this second method, we use the thermodynamic approach to obtain spacetime heat conduction models.
This ensures thermodynamic compatibility for any motion. We start directly from the four-dimensional
form of the Clausius-Duhem inequality limited to the thermal dissipation (Eq. 2.35).

By introducing the speciĄc free energy deĄned by: Ψ = 𝑒𝑖𝑛𝑡 ⊗ 𝜃Ö𝑐, the previous inequality is equivalent
to:

⊗ ̃︀𝜌𝑐(𝑢Û∇ÛΨ + Ö𝑐𝑢
Û∇Û𝜃) ⊗ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
⊙ 0 (2.34)

Because of Eq. 2.29 for a closed system and without thermomechanical couplings, the Ąrst and second
terms of Eq. 2.34 correspond to mechanical dissipations [Landau and Lifshitz,1966]. In the rest of this
manuscript, we will only deal with the third term of Eq. 2.34, corresponding to "thermal" dissipations,
theoretically coupled with acceleration:

∀𝜃,Φ = ⊗𝑞Û

𝜃
(∇Û𝜃 ⊗ 𝜃𝑢Ü∇Ü𝑢Û) ⊙ 0 (2.35)

As in method 1, we have to use the spatial projector to link the heat vector to the temperature gradient.
Assuming 𝜃 positive, we propose the following expression of 𝑞Û, which veriĄes Eq. 2.35 for any motion,
provided that ⊗ÚΠÛÜ is a positive-deĄnite matrix [Bressan,1978]:

𝑞Û =
Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)(∇Ü𝜃 ⊗ 𝜃𝑢Ù∇Ù𝑢Ü) (2.36)

A similar additional term, linked to an acceleration effect, has already been proposed by Eckart
[Eckart,1940], but with a non-covariant form (see section 1.8.1, Eq. 1.41).
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For the proper frame, the spacetime model, for which the spatial components correspond to the
Newtonian ones, violates similarly the causality principle when used in the internal energy balance (Eq.
2.26).

2.4 Spacetime Cattaneo’s model of heat conduction

The goal of this section is to propose CattaneoŠs model written to suit the spacetime formalism, with 2
different methods.

2.4.1 Method 3: Direct relativization of Cattaneo’s model of heat conduction

A method to obtain a spacetime Cattaneo model of heat conduction is to induce its generalization from the
Newtonian Cattaneo model of heat conduction.
∙ We assume a priori a Newtonian CattaneoŠs type model expressed for any frame as in Eq. 2.37:

𝑞𝑗 ⊗ á
𝜕𝑞𝑗

𝜕𝑡
= ⊗Ú

𝑐
𝐼𝑗𝑖
⎤

∇𝑖𝜃 ⊗ á1
𝜕∇𝑖𝜃

𝜕𝑡

⎣
(2.37)

where Ú is the thermal conductivity of the considered material and á and á1 are relaxation time constants
of the material. The sign of the coefficients must be positive. That would be a natural consequence in a
thermodynamic theory.

∙ To deal with covariant derivative valid for any frame, we use spacetime derivative; this treatment is
different from the one proposed by Christov [Christov,2009]:

𝑞𝑗 ⊗ á𝑐𝑢Ü∇Ü𝑞
𝑗 = ⊗Ú

𝑐
𝐼𝑗𝑖 (∇𝑖𝜃 ⊗ á1𝑐𝑢

Ù∇Ù(∇𝑖𝜃)) (2.38)

This equation is still a Newtonian one in the sense deĄned in section 1.2.2.
∙ We then extend to spacetime by increasing the dimension of the heat vector. For the proper frame, we

require that 𝑞4 = 0. Consequently, we have to use the spatial projector to relate the heat vector to the
temperature gradient. We induce the covariant expression for any frame of the heat Ćux, which reduces
to the expected expression for the proper frame (Eq. 2.38 with hat on the quantities):

𝑞Û ⊗ á𝑐𝑢Ü∇Ü𝑞
Û =

Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (∇Ü𝜃 ⊗ á1𝑐𝑢

Ù∇Ù(∇Ü𝜃)) (2.39)

The positive sign before the second member of Eq. 2.39 is due to the signature of the 4D metric
(⊗1,⊗1,⊗1,+1).

By use of the Clausius-Duhem inequality limited to thermal dissipation (Eq. 2.35), we cannot directly verify
whether this equation is thermodynamically compatible and thus physically plausible. The reason is further
detailed (see section 2.4.2). However, this model veriĄes the causality principle.

All these equations reduce to their corresponding FourierŠs versions when the relaxation time constants
are equal to zero, i.e. á1 = á = 0.

2.4.2 Method 4: Complexification of the spacetime Fourier’s model of heat conduction from CIT

As illustrated in the previous section (see method 2), we can derive a model of heat conduction from
the four-dimensional form of the Clausius-Duhem inequality limited to the thermal dissipation (Eq. 2.35).
However, it is not possible to induce a solution that corresponds to a spacetime Cattaneo model. Indeed, we
choose to limit the proposed methods to linear classical irreversible thermodynamics (CIT). As mentioned
in the introduction, it corresponds to the Ąrst order of expansion of thermodynamic theories. To obtain
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a model of CattaneoŠs type could require to derive an extended irreversible thermodynamical approach
(EIT) [Jou et al.,1988, López-Monsalvo,2011, Muller,2008]. The linear classical irreversible thermodynamics
[Prigogine,1980] in the relativistic framework succeeds in describing motion for any frame (Eckart, Landau
and Lifshitz), but cannot ensure the validity of the principle of causality of dissipative models. Many authors
such as Israel and Stewart [Israel and Stewart,1979a], Carter [Carter,1988] have thus used the EIT approach.
The theories of EIT consider that it is necessary to keep the second order terms of the thermodynamic
equations. Then in these theories, the Ćux of entropy includes all the possible combinations of dissipative
effects, as proposed in [Israel and Stewart,1979a]. It has been developed for thermomechanical aspects, and
can then be applied for pure thermal effects. As mentioned in chapter 1, such approaches present also
difficulties especially concerning stability.

Therefore, we are proposing an alternative way to obtain a spacetime model of CattaneoŠs type. To
achieve such a goal, we propose here to introduce relaxation time constants from complexiĄcation of
dissipative relations (step 3 of the procedure below). The procedure is such that:
∙ We require at least to ensure the covariance for consistency. Galilean frames are highly special cases of

the time-dependent Euclidean frames allowed by objectivity. Therefore, we start from the spacetime
dissipative relation written for an inertial frame (Eq. 2.36). This can be obtained from the Clausius-
Duhem inequality in a CIT framework.
Hyp1: we assume that the projectors do not vary with time (in other word that the velocity is constant
with time). Without loss of generality, we also further consider that

𝑠

𝑐
⊙ 0, where 𝑠 is a spacetime

variable.

𝑞Û(𝑠) =
Ú

𝑐
(ÖÛÜ ⊗ 𝑢Û𝑢Ü)(𝜕Ü𝜃)(𝑠) (2.40)

∙ We apply the Laplace transform to this relation. The Laplace transform (𝐿𝑇 ) relates each function
𝑓Û(𝑠) ∈ R

4 to its associate in the complex numbers space ℱÛ(𝑝𝐿) ∈ C
4:

𝐿𝑇 (𝑓Û(𝑠)) = ℱÛ(𝑝𝐿) =
1
𝑐

∞∫︁

0−

𝑓Û(𝑠)𝑒⊗
pLs

c 𝑑𝑠 (2.41)

This deĄnition can easily be extended if the function depends on other variables. Now all the terms, in
addition to the heat Ćux and temperature gradient, depend on the Laplace variable 𝑝𝐿.

𝒬Û(𝑝𝐿) =
Ú

𝑐
(ÖÛÜ ⊗ 𝑢Û𝑢Ü)(𝒟ÜΘ)(𝑝𝐿) (2.42)

where 𝒬Û(𝑝𝐿) = 𝐿𝑇 (𝑞Û(𝑠)) and (𝒟ÜΘ)(𝑝𝐿) = 𝐿𝑇 ((𝜕Ü𝜃)(𝑠)).
∙ To reach spacetime CattaneoŠs model, it is now required to add an assumption.

Hyp2: we assume that the conductivity can depend on the Laplace variable 𝑝𝐿, so we replace Ú by
Λ(𝑝𝐿):

𝒬Û(𝑝𝐿) =
Λ(𝑝𝐿)
𝑐

(ÖÛÜ ⊗ 𝑢Û𝑢Ü)(𝒟ÜΘ)(𝑝𝐿) (2.43)

It is worth noting that the dissipative relation is still linear in the Laplace space, even for Λ(𝑝𝐿) ∈ C.
∙ We now have to explicit the transfer function for conductivity as function of the Laplace variable 𝑝𝐿.

We require that CattaneoŠs model converges toward FourierŠs model, for inĄnite times i.e. when 𝑝𝐿 ⊃ 0.
It means that we must impose that:

lim
𝑝L⊃0

Λ(𝑝𝐿) = Ú (2.44)

The transfer function has thus to represent a low-pass Ąlter, introducing two relaxation time constants
á et á1;
Hyp3: and we assume the simplest rational function:

Λ(𝑝𝐿) = Ú
1 ⊗ á1𝑝𝐿
1 ⊗ á𝑝𝐿

(2.45)
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∙ We apply the inverse Laplace transform (𝐿𝑇⊗1) to the dissipative relation, with null initial boundaries:

𝐿𝑇⊗1

⎤
𝒬Û(𝑝𝐿) =

Λ(𝑝𝐿)
𝑐

(ÖÛÜ ⊗ 𝑢Û𝑢Ü)(𝒟ÜΘ)(𝑝𝐿)

⎣

⇔ 𝐿𝑇⊗1

⎤
𝒬Û(𝑝𝐿) =

Ú

𝑐

1 ⊗ á1𝑝𝐿
1 ⊗ á𝑝𝐿

(ÖÛÜ ⊗ 𝑢Û𝑢Ü)(𝒟ÜΘ)(𝑝𝐿)

⎣

⇔ 𝐿𝑇⊗1 ((1 ⊗ á𝑝𝐿)𝒬Û(𝑝𝐿)) =
Ú

𝑐
(ÖÛÜ ⊗ 𝑢Û𝑢Ü)𝐿𝑇⊗1 ((1 ⊗ á1𝑝𝐿)(𝒟ÜΘ)(𝑝𝐿))

⇔
⎤

1 ⊗ á𝑐
𝑑

𝑑𝑠

⎣
𝑞Û =

Ú

𝑐
(ÖÛÜ ⊗ 𝑢Û𝑢Ü)

⎤
1 ⊗ á1𝑐

𝑑

𝑑𝑠

⎣
𝜕Ü𝜃 (2.46)

∙ We generalize the expression to any frame by replacing the "time" derivative and the gradients with a
covariant spacetime form. It leads to:

𝑞Û ⊗ á𝑐𝑢Ü∇Ü𝑞
Û =

Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (∇Ü𝜃 ⊗ á1𝑐𝑢

Ù∇Ù(∇Ü𝜃)) (2.47)

This equation is exactly the one obtained with method 3 (section 2.4.1) and it veriĄes the covariance
principle. In addition to that, it has been obtained from a model built without using the EIT framework.
More general models could be obtained from this method, by considering more complicated expressions
instead of Eq. 2.45 in step 4 and introducing new time relaxation constants.

Laplace transform is used as a way to build a relativized version of a Cattaneo type equation (and not as
a proof for generalisation relevance). Concerning the second relaxation time, method 3 aims at introducing
it a priori, whereas method 4 aims at introducing it by use of the rational function (Eq. 2.45) that describes
the conductivity behavior function of angular frequency that can be justiĄed from experimental results.

We cannot verify whether this equation (Eq. 2.47) is thermodynamically compatible, with the Clausius-
Duhem inequality limited to thermal dissipation (Eq. 2.35), as for method 3. The reason is that we
should develop an EIT method. Similarly to method 3, it is possible to verify a posteriori that our
propositions are eventually thermodynamically compatible with EIT by comparison with bibliography
[Israel and Stewart,1979a, Carter,1988]. Moreover, it veriĄes the causality principle.

2.5 Resume on methods 1,2,3 and 4

It is worth noting that methods 3 (section 2.4.1) and 4 (section 2.4.2) lead to the same expression for
spacetime CattaneoŠs model (Eq. 2.39 compared to Eq. 2.47) for the choice of Λ(𝑝) given by Eq. 2.45, as
well as methods 1 (section 2.3.2) and 2 (section 2.3.3) lead to the same expressions for spacetime FourierŠs
model (Eq. 2.33 compared to Eq. 2.36) if and only if acceleration term is neglected. In table 6, we have
summarized the properties of the different heat conduction methods proposed in this work.

Methods 1 2 3 4

Properties/Models Fourier Fourier Cattaneo Cattaneo

Eq. 2.33 2.36 2.39 2.47
Verifies covariance principle Yes Yes Yes Yes
Verifies causality principle No No Yes Yes
Order of expansion of the NA Linear NA Linear
thermodynamics starting point
Coupling to acceleration No Yes No No
Thermod. compatibility with Eq. 2.35 ≈ Yes Yes No No

(a post.) (a priori) (a post.) (a post.)
Thermod. compatibility with EIT NA NA Yes Yes

Tab. 6: List of the different methods with their properties (NA = not applicable; a post. = a posteriori)
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2.6 Spacetime weak integral forms for thermal problems

2.6.1 Introduction

We now solve heat conduction problems using the proposed spacetime models with a Ąnite element method
[Debard,2011]. In many domains of the physics, it is possible with the energy expression of the system to
formulate the problem as a variational principle, from which we can derive an integral form [Oudin,2008].
The advantage is that we do not have to formulate the partial differential equations (local form of the
problem) and express the related boundary conditions to obtain the integral forms (strong or weak integral
forms). Moreover, it is useful to build weak integral forms, under a set of assumptions that lead to an
existing unique solution due to the Lax-Milgram theorem [Clément and Martin,2016]. The assumptions can
be resumed by:
∙ The weak integral forms are built in a Hilbert space ℋ characterized by its scalar product and the norm

denoted ♣♣ . ♣♣ [Colmez,2009]
∙ The left hand-side denoted 𝑎(., .) is a bilinear functional veriĄed to be continuous on ℋ × ℋ (∃𝑐 >

0,∀(𝑢, 𝑣) ∈ ℋ2, ♣𝑎(𝑢, 𝑣)♣ ⊘ 𝑐♣♣𝑢♣♣ ♣♣𝑣♣♣ and coercive on ℋ (∃Ð > 0,∀𝑢 ∈ ℋ, 𝑎(𝑢, 𝑣) ⊙ Ð♣♣𝑢♣♣2).
∙ The right hand-side denoted 𝐿(.) is a continuous linear form on ℋ

In the following, we are describing the different steps leading to the expressions of the heat conduction
problem under its weak integral form with boundary conditions, in order to implement it in a programming
environment (FEniCS project presented in section 2.7.1). We consider a spacetime numerical scheme of
Ąnite elements based directly on the previous spacetime physical models.

2.6.2 Specific assumptions for numerical resolution

2.6.3 Spacetime weak integral form with spacetime Fourier’s model of heat conduction

Building the spacetime weak integral form derives Ąrst from injecting the spacetime FourierŠs model of heat
conduction in the local equation of balance for internal energy (Eq. 2.26), which can be written in the case
of an inertial and proper frame as:

̃︀𝜌𝑐
𝜕𝑒𝑖𝑛𝑡
𝜕𝑡

+ 𝑐
𝜕𝑞Û

𝜕𝑥Û
⊗ 𝑓 = 0 (2.48)

where 𝑓 is an additional term representing the possible volume heat source. We assume here a linear relation
between the speciĄc energy 𝑒𝑖𝑛𝑡 and temperature 𝜃, with the proportional coefficient 𝒞𝑚æ (𝐽.𝑘𝑔⊗1.𝐾⊗1)
deĄned as the speciĄc heat capacity at constant 3D volume. We also introduce the thermal diffusivity of

the material as expressed by: 𝑎 =
Ú

̃︀𝜌𝑐𝒞𝑚æ
; and the normalized volume heat source: 𝑓𝑟 =

𝑓

̃︀𝜌𝑐𝒞𝑚æ
. It leads to:

𝜕𝜃

𝜕𝑡
+
𝑎𝑐

Ú

𝜕𝑞Û

𝜕𝑥Û
⊗ 𝑓𝑟 = 0 (2.49)

Eq. 2.49 represents the local equation of heat. Then, the weak integral form is obtained by multiplying this
expression by an arbitrary temperature 𝜃*, considered as a test function or virtual temperature Ąeld, and
then integrating it on the spacetime hypervolume d𝐻Ω. For spacetime FourierŠs model, Eq. 2.33 is used. By
replacing the equation for heat Ćux in Eq. 2.49 by its expression in Eq. 2.33, the strong integral form of the
problem is then obtained:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*

⎤
𝜕𝜃

𝜕𝑡
+ 𝑎ÖÛÜ

𝜕

𝜕𝑥Ü

⎤
𝜕

𝜕𝑥Û
𝜃

⎣
⊗ 𝑎

𝜕

𝜕𝑥Û

⎤
𝑢Û𝑢Ü

𝜕

𝜕𝑥Ü
𝜃

⎣
⊗ 𝑓𝑟

⎣
d𝐻Ω = 0,∀𝜃* (2.50)



61

It can also be written as:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω ⊗

∫︁

Ω

𝑎ÖÛÜ
𝜕𝜃*

𝜕𝑥Ü
𝜕𝜃

𝜕𝑥Û
d𝐻Ω +

∫︁

Ω

𝑎ÖÛÜ
𝜕

𝜕𝑥Ü

⎤
𝜃*

𝜕𝜃

𝜕𝑥Û

⎣
d𝐻Ω

+
∫︁

Ω

𝑎
𝜕𝜃*

𝜕𝑥Û
𝑢Û𝑢Ü

𝜕𝜃

𝜕𝑥Ü
d𝐻Ω ⊗

∫︁

Ω

𝑎
𝜕

𝜕𝑥Û

⎤
𝜃*𝑢Û𝑢Ü

𝜕𝜃

𝜕𝑥Ü

⎣
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω = 0,∀𝜃* (2.51)

where Ω is the spacetime domain of integration, d𝐻Ω = d𝑉æd𝑡 is the corresponding spacetime hypervolume
of integration, d𝑉æ is the 3D volume of integration.

2.6.3.1 Dirichlet boundary conditions

In the particular case of Dirichlet boundary conditions, the third and the Ąfth integrals in Eq. 2.51 can
be written as integrals over hypersurfaces using Green-Ostrogradski theorem. The test temperature 𝜃* is
supposed to be null at the boundaries 𝜕Ω. The problem is then formulated by:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω = 0,∀𝜃* (2.52)

Except for the integration domain, the terms in Eq. 2.52 are similar to their 3D equivalent [Debard,2011].
This is because we have expressed the model in the proper and inertial frame. It would exhibit differences if
it was expressed for another frame and/or with thermomechanical couplings.

In order to place boundary conditions, we deĄne: 𝜕Ω𝑗 = 𝜕æ ∪ 𝑡 as the space boundaries of the domain
(where 𝜕æ = 𝜕𝑥𝑗) and 𝜕Ω4 = æ ∪ 𝜕𝑡 as the time boundaries of the domain, where æ is the 3D spatial
domain of integration.

Then, the boundary conditions of this weak integral form can be divided into boundary conditions on
the space and on the time. The Ąrst type can be written: 𝜃(𝑥Û ∈ 𝜕Ω𝑗) = 𝑓𝑆𝐶(𝑥Û ∈ 𝜕Ω𝑗), where 𝑓𝑆𝐶 is
the function representing the space boundary conditions. The second type can be written: 𝜃(𝑥Û ∈ 𝜕Ω4) =
𝑓𝑇𝐶(𝑥Û ∈ 𝜕Ω4), where 𝑓𝑇𝐶 is the function representing the initial time boundary conditions. The only
condition required (on the temperature) on the time boundaries is at the initial time since the temperature
at the Ąnal time has to be calculated as per the deĄnition of a heat conduction problem. This aspect is
detailed in section 2.6.5.

2.6.3.2 Neumann-Dirichlet boundary conditions

In the particular case of Neumann-Dirichlet boundary conditions, the problem is formulated by:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω

⊗
∫︁

𝜕Ωq

𝜃*
𝑐 𝑞𝑗𝑒𝑥𝑡
̃︀𝜌𝑐𝒞𝑚æ

𝑛𝑗 d𝑆Ω = 0,∀𝜃* (2.53)

Where 𝑞𝑗𝑒𝑥𝑡 is the surface heat Ćux in the proper frame imposed on the hypersurface 𝜕Ω𝑞 and 𝑛𝑗 is the
normal vector to the 3D surface. We have to remind that 𝑞4 = 0, because the inertial frame is proper.
The boundaries where the heat Ćux and temperature are applied should respect 𝜕Ω𝑞 ∪ 𝜕Ω𝜃 = 𝜕Ω and
𝜕Ω𝑞 ∩𝜕Ω𝜃 = ∅. The boundary conditions in this case are the Ćux boundary conditions (on 𝜕Ω𝑞) represented
by the imposed heat Ćux 𝑞𝑗𝑒𝑥𝑡 and the temperature boundary conditions (on 𝜕Ω𝜃).

2.6.4 Spacetime weak integral form with spacetime Cattaneo’s model of heat conduction

The same scheme is used to write the spacetime weak integral form with CattaneoŠs model of heat conduction.
For this model, we use Eq. 2.47 with á1 = 0 to simplify. Then the injection in the global balance of internal
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energy (Eq. 2.49) leads to the the partial differential equation, which enables us to write the spacetime
weak integral form for an inertial and proper frame:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*

⎤
𝜕𝜃

𝜕𝑡
+ 𝑎ÖÛÜ

𝜕

𝜕𝑥Ü

⎤
𝜕

𝜕𝑥Û
𝜃

⎣
⊗ 𝑎

𝜕

𝜕𝑥Û

⎤
𝑢Û𝑢Ü

𝜕

𝜕𝑥Ü
𝜃

⎣
⊗ á

𝜕2𝜃

𝜕𝑡2
⊗ 𝑓𝑟

⎣
d𝐻Ω

= 0,∀𝜃* (2.54)

2.6.4.1 Dirichlet boundary conditions

In the particular case of Dirichlet boundary conditions, the third and the Ąfth integrals in Eq.2.54 can be
reduced as integrals over surfaces using Green-Ostrogradski theorem. The test temperature 𝜃* is supposed
to be null at the boundaries 𝜕Ω. The problem is then formulated by:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω +

∫︁

Ω

á
𝜕𝜃*

𝜕𝑡

𝜕𝜃

𝜕𝑡
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω = 0,∀𝜃*(2.55)

Except for the integration domain, the terms in Eq. 2.55 are similar to their 3D equivalent [Debard,2011].
This is because we have expressed the model in the proper and inertial frame. It would exhibit differences if
it was expressed in another frame and/or with thermomechanical couplings.

Similarly to the strategy leading to the weak integral form representing spacetime FourierŠs model,
boundary conditions have to be placed. We deĄne: 𝜕Ω𝑗 = 𝜕æ ∪ 𝑡 as the space boundaries of the domain and
𝜕Ω4 = æ ∪ 𝜕𝑡 as the time boundaries of the domain. Then, the boundary conditions of this weak integral
form can be decomposed into boundary conditions on the space and on the time. The Ąrst type can be
written: 𝜃(𝑥Û ∈ 𝜕Ω𝑗) = 𝑓𝑆𝐶(𝑥Û ∈ 𝜕Ω𝑗). The second type can be written: 𝜃(𝑥Û ∈ 𝜕Ω4) = 𝑓𝑇𝐶(𝑥Û ∈ 𝜕Ω4).

2.6.4.2 Neumann-Dirichlet boundary conditions

In the particular case of Neumann-Dirichlet boundary conditions, the problem is formulated by:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω +

∫︁

Ω

á
𝜕𝜃*

𝜕𝑡

𝜕𝜃

𝜕𝑡
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω

⊗
∫︁

𝜕Ωq

𝜃*
𝑐 𝑞𝑗𝑒𝑥𝑡
̃︀𝜌𝑐𝑐𝑚,æ

𝑛𝑗 d𝑆Ω ⊗
∫︁

𝜕Ωq

á𝜃*
𝜕𝜃

𝜕𝑡
𝑛4 d𝑉 = 0,∀𝜃* (2.56)

where 𝑞𝑗𝑒𝑥𝑡 is the surface heat Ćux in the proper frame imposed on the hypersurface 𝜕Ω𝑞 and 𝑛𝑗 is the
normal vector to the 3D surface. We have to remind that 𝑞4 = 0, because the inertial frame is proper. 𝑛4 is
the time normal to the 3D volume (= 1 for Ąnal time; = ⊗1 for initial time). The boundaries where the
heat Ćux and temperature are applied should respect 𝜕Ω𝑞 ∪ 𝜕Ω𝜃 = 𝜕Ω and 𝜕Ω𝑞 ∩ 𝜕Ω𝜃 = ∅.

2.6.5 Discussion on the boundary conditions

In the spacetime formalism, the spacetime domain is meshed for use with a Ąnite element method.
Consequently, the boundary conditions should be given for all the spacetime domain. As in 3D, the
space boundary conditions are either Dirichlet conditions (temperature) or Neumann-Dirichlet conditions
(temperature and heat Ćux).

The time boundary conditions could also be a priori placed on the initial and the Ąnal times. The
temperature of the initial time (in the case of Dirichlet conditions) is Ąxed as a constraint. The temperature of
the Ąnal time is a priori unknown and left without conditions. This can be compared to space unconditioned
boundaries when modeling in 3D.

Furthermore, from a numerical point of view, the present calculation is performed with the spacetime
Ąnite element method, which means that the integration of the forms is over an hypervolume including the
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time in its domain. But when considering terms such as
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω, we notice that it is not necessary

to have a Ąnal time condition on temperature since the weak integral form depends only on the Ąrst time
derivative of the trial function. This argument presently holds for all the considered heat conduction models.
Indeed, even if the corresponding partial differential equation is hyperbolic [Vitokhin and Ivanova,2017],
the use of spacetime formalism enables to obtain weak integral form with only Ąrst time derivatives of the
trial function requiring only one time condition.

2.7 Numerical simulations of heat conduction

2.7.1 Features of using FEniCS project

The following simulations are performed with FEniCS. FEniCS project is an automated programming envi-
ronment for solving variational equations [Langtangen and Logg,2017]. Unlike other modeling environments
where the user should follow predeĄned modules reproducing the physics of the phenomena, the user of
FEniCS has only to specify the variational problem to be solved. This allows us to solve Newtonian thermal
problems, as well as spacetime ones. Consequently, FEniCS is particularly useful for the implementation of
the variational forms that we have introduced in section 2.6.

2.7.2 Numerical simulation of a spacetime Cattaneo’s heat model

2.7.2.1 An archetypal example

Let us consider CattaneoŠs heat conduction model (Eq. 2.47) for an application in 1D+1D: one dimension is
dedicated to the space in the direction 𝑥 and one to the time 𝑡. The spacetime boundary conditions are
illustrated in Fig. 11.

We chose a geometry with small domains of space and time of the material in order to illustrate
the physical and numerical problems that can occur at these scales to distinguish the considered heat
conduction models. Indeed, at these scales, the different models for heat conduction may exhibit signiĄcant
differences [Guillemet and Bardon,2000]. Furthermore, because of the chosen value of the thermal diffusivity,
the corresponding relaxation time constant is around few 𝑛𝑠.

The result is a map showing the evolution of temperature through space and time. The function
(1 ⊗ 𝑒𝑥𝑝(⊗Ñ𝑡)) introduced as a space boundary condition at 𝑥 = 0 gives precision to the solution and
help to obtain smoothed curves of temperature without noise near the boundaries, especially at the very
short times. We notice in Fig. 12 that, for values of Ñ largely deviating from 1.3 × 1010, accuracy on the
temperature decreases. Moreover, the function on the border (𝑥 = 0, 𝑡) does not contradict the condition on
the border (𝑥, 𝑡 = 0) at the intersection (𝑥 = 0, 𝑡 = 0).

Fig. 11: Illustration showing the geometry, the boundary conditions and the section at a position 𝑥 = 𝑥1 through the time.
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Parameter Value

Thermal diffusivity 𝑎 = 10−5 𝑚2.𝑠−1

Relaxation time constant 𝜏 = 0.8× 10−10 𝑠

Volume heat source 𝑓r = 0

Tab. 7: Values of the variables used in the implemented heat model.

Fig. 12: Evolution of the temperature 𝜃 of an event at a given position 𝑥 as a function of the time 𝑡 for different values of the
coefficient 𝛽. The study is applied with spacetime Cattaneo’s model. The coefficients 𝛽/(1010) = 0, 0.5, 1, 1.2, 1.3, 100, 1000

are respectively tested.

In the latter, we discuss, for FourierŠs and/or CattaneoŠs models respectively, the inĆuence of spacetime
meshing and of the material parameters. The variation of the parameters allows to examine their physical
and numerical inĆuences.

2.7.2.2 Influence of the spacetime meshing

The mesh along the position and the time of the heat model, described in this section (for á = 0, i.e.
considering spacetime FourierŠs heat conduction model), is analyzed relatively to the admitted absolute error.
This latter is computed with respect to the Newtonian analytical solution of the problem [Battaglia,2007]
𝜃(𝑥, 𝑡) = 1 ⊗ 𝑒𝑟𝑓(

𝑥

2
√
𝑎𝑡

), where 𝑒𝑟𝑓 is the error function. Let us deĄne 𝑁𝑥, to be the step along 𝑥 and

𝑁𝑡, the step along 𝑡. For a Ąxed 𝑁𝑡 = 150, 𝑁𝑥 is changed, for an arbitrary position 𝑥1 and time 𝑡1, the
temperature is investigated. The temperature converges toward values within the admissible margin for
values of 𝑁𝑥 around 5550.

The tests are repeated at different instants of time and the relative error on the temperature is computed.
The error decreases and tends to the admitted error at the same value of 𝑁𝑥. The same investigation can
be led by varying 𝑁𝑡 for the same parameters of the model. Then, for this archetypal example, the meshing
is required to be Ąner in the space than in the time dimension.
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Fig. 13: The evolution of the logarithm of the error on the temperature value log(|∆𝜃|) function of log(𝑁x) and log(𝑁t) at
different times 𝑡. The evolution of the error is investigated at 𝑥1 = 10−7𝑚 for a 1D+1D spacetime Fourier’s model.

The graphs in Fig. 13 show that the logarithm of the error on the temperature has a faster rate decrease
as a function of the time meshing than as a function of the space meshing. Indeed, for the time meshing,
the linear regression gives ♣Δ𝜃♣ = 0.1(𝑁⊗1.68

𝑡 ) at 𝑡 = 4𝑛𝑠 with a coefficient of determination 𝑅2 = 0.89
and ♣Δ𝜃♣ = 0.06(𝑁⊗1.36

𝑡 ) at 𝑡 = 20𝑛𝑠 with 𝑅2 = 0.96. For the space meshing, the linear regression gives
♣Δ𝜃♣ = 0.006(𝑁⊗0.41

𝑥 ) at 𝑡 = 4𝑛𝑠 with a 𝑅2 = 0.94 and ♣Δ𝜃♣ = (𝑁⊗0.202
𝑥 ) at 𝑡 = 20𝑛𝑠 with 𝑅2 = 0.99.

Although this meshing leads to plate elements, tests have been performed with balanced meshing on the
spacetime domain and the results show that the variations of the temperature superimpose with the values
obtained with plate elements. Consequently, the inĆuence of the shape of the elements does not signiĄcantly
affect the convergence.

2.7.2.3 Influence of the material parameters

Concerning the material parameters, the thermal diffusivity and the relaxation time constant are examined
for the heat model described in this section. As expected, tests show that the more the value of the thermal
diffusivity is, the faster the temperature of a point subject to a source of heat raises (Fig. 14(a)) for all the
models of heat conduction.

We have also tested the inĆuence of the relaxation time constant á used in CattaneoŠs model. The
longer the relaxation time is, the slower the temperature of a point subjected to a heat source raises (Fig.
14(b)). This can be explained by the decelerating effect on the conduction of heat.
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Fig. 14: On the left: Evolution of temperature for a 1D+1D spacetime Cattaneo’s model function of the time at the position
𝑥1 = 10−7𝑚 for different diffusivities 𝑎 = 0.5× 10−5, 10−5, 10−3𝑚2 · 𝑠−1 represented by the curves in green, red and blue
respectively. On the right: Evolution of temperature for a 1D+1D spacetime Cattaneo’s model function of the time at the

position 𝑥1 = 10−7𝑚 for different relaxation time constants of 𝜏 = 0.8× 10−10, 0.8× 10−9, 0.8× 10−8𝑠 represented by the
curves in green, red and blue curves respectively.

2.7.3 Comparison between spacetime Fourier’s model and spacetime Cattaneo’s model

A comparison between the two models of heat conduction has been also performed. Similarly to the
Newtonian cases, the comparison between FourierŠs model and CattaneoŠs model shows a delay of the
temperature conduction for this latter. This is illustrated in Fig. 15(a).

Fig. 15: On the left: Evolution of temperature through the time at a position 𝑥 for spacetime Fourier’s model (green curve)
and spacetime Cattaneo’s model (red curve). On the right: Evolution of the difference of temperature through the time

between spacetime Fourier’s and Cattaneo’s models.

It is noticed that the graph representing the spacetime CattaneoŠs model has a delay in comparison
with the graph representing the spacetime FourierŠs model starting at a time 𝑡1 = 2.5 × 10⊗10 𝑠. At the
same time, the temperature obtained by the spacetime CattaneoŠs model is lower, which is justiĄed by
the relaxation term that has been added to the model. Below this value of 𝑡1 an inverse phenomenon is
observed, it can be related to the boundaries effect (recovery of the boundary condition).
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The evolution of the difference of temperature between both models through the time is shown in Fig.
15(b). It shows that at a certain inĆection time 𝑡1, the difference of temperature obtained by a FourierŠs
model and a CattaneoŠs model for a same point is positive. It means that CattaneoŠs model is delayed in
respect to FourierŠs model. Moreover the difference reaches a maximum near this inĆection point 𝑡1 and
decreases through the time. As known and expected, the two models have the same results asymptotically
for long times, since the difference between them vanishes. It emphasizes the importance for the choice of
the domain of integration to be able to observe the phenomenon of delay modeled by CattaneoŠs model for
short times.

2.7.4 Comparison with Newtonian simulations using the discretization of time

In order to validate the simulations performed with spacetime Ąnite elements, for each model, a comparison
with the simulations in Newtonian approach with discretization of the time is done. In the latter, for the
simulations, the space is solved with Ąnite elements, while the time is discretized separately to be solved
(Ąnite differences).

We write the discretized weak integral form for CattaneoŠs model or FourierŠs model (á = 0) using the
explicit method with a forward difference at the Ąrst time derivative and a second-order central difference
at the second time derivative, which guarantees the stability of the numerical scheme [Debard,2011]. In the
case of Dirichlet boundary conditions, the weak integral form is written as:

𝑊 3𝐷(𝜃, 𝜃*) =
∫︁

æ

𝜃*

⎤
𝜃𝑛+1 ⊗ 𝜃𝑛

Δ𝑡
+ á

𝜃𝑛+1 ⊗ 2𝜃𝑛 + 𝜃𝑛⊗1

Δ𝑡2

⎣
d𝑉æ

+
∫︁

æ

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃𝑛+1

𝜕𝑥𝑗
d𝑉æ ⊗

∫︁

æ

𝜃*𝑓𝑟 d𝑉æ = 0,∀𝜃* (2.57)

where æ is the 3D domain of integration. The weak integral form has the following boundary conditions:
𝜃(𝑥𝑗 ∈ 𝜕æ) = 𝑓𝑆𝐶(𝑥𝑗 ∈ 𝜕æ). An initial condition is also required such that: 𝜃(𝑡 = 𝑡0) = 𝑓𝑇𝐶(𝑡 = 𝑡0)(= 0 °𝐶
for the example illustrated in Figures 16(a) and (b)).

The comparison between spacetime FourierŠs model solved in spacetime Ąnite elements and Newtonian
FourierŠs model with discretized time is shown in Fig. 16(a). Both models have been tested with the same
conditions.

Fig. 16: On the left: evolution of temperature through the time at a position 𝑥 for spacetime Fourier’s model (green curve)
and Newtonian Fourier’s model with discretized time (red curve), assuming 𝑓r = 0. On the right: the same for Cattaneo’s

model.
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The same study has been performed with CattaneoŠs model. Similar results have been obtained as
shown in Fig. 16(b). For all the heat conduction models, graphs closely superimpose, which veriĄes the
spacetime simulation for these particular models.

2.7.5 Comparison of the computation time

The impact of using the spacetime Ąnite element method on the computation time is studied. Fig. 17
shows that the variation of the computation time is function of the time mesh of a spacetime model. It
changes exponentially to this latter, while the variation is linear in the case of the Newtonian model with
discretization of time. The Ąner the mesh is, the bigger the difference is between the two approaches. In the
example given, the ratio of the two computation times varies between 2 and 5 with the mesh reĄnement.
Note that thermomechanical couplings are not taken into consideration in this example. Besides, the source
of heat is constant in time.

Fig. 17: Evolution of the computation time with the time mesh for spacetime Fourier’s model (red squares) and the
corresponding Newtonian model with the discretized time (blue stars).

2.7.6 Application: Spacetime modeling of the heat conduction for a cooling fin

This section presents an application of the spacetime modeling of the heat equation, previously proposed
and formulated in the weak forms in Eqs. 2.51 and 2.54, for a 2D spatial geometry (2D cooling Ąn used
in the industrial applications) using Neumann-Dirichlet boundary conditions. The Ćux representing the
Neumann boundary condition is also a function of the temperature Ąeld [Lagrée,2010, Cengel,2008]. The
Ąeld of temperature obtained with the spacetime method will be compared to the one obtained from the
analytical formulation of the problem.

2.7.6.1 Description of the problem

Fins are elements that extend the surface of an object in order to increase the rate of heat transfer with the
environment by increasing the convection [Lagrée,2010]. Figure 18 shows a plate surface and a Ąnned one.
The convection Ćux exchanged differs between the two conĄgurations since the surface of exchange of the
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Ąnned body is clearly larger than in the Ćat one, consequently the heat transfer is more important in the
Ąnned body.

Fig. 18: On the left: The geometrical difference between a flat surface and a finned surface. On the right: The geometrical
features of a fin.

We choose to do the simulation of a 2D spatial model, corresponding to the case for which 𝜃(𝑡, 𝑥, 𝑦) is
homogeneous with respect to the 𝑧 axis. The corresponding geometry of the Ąn is represented in Figure 19.

Fig. 19: The configuration of a 2D fin with the boundary conditions.

According to the application of the Vaschy-Buckingham theorem to the simulated Ąn, it is possible to
prove that the solution of this problem can be written as 𝑓( 𝜃⊗𝜃0

𝜃⊗𝜃(𝑥=0,𝑡) ,
𝑎𝑡
𝐿2 ,

𝑥
𝐿 ,

𝑦
𝑙 ,

𝑙
𝐿 , 𝐵𝑖) = 0 [Vaschy,1892,

Buckingham,1914]. The Biot number 𝐵𝑖 is a dimensionless number used in heat transfer calculations. By

deĄnition, 𝐵𝑖 =
ℎ𝐿𝐶
Ú

, where 𝐿𝑐 is a characteristic length of the body. In the present case of the 2D Ąn:

𝐵𝑖 =
ℎ𝑙

Ú
[Lagrée,2010].

The temperature is transported by conduction in the Ąn (Figure 19). The thermal diffusivity of the

material is 𝑎 =
Ú

̃︀𝜌𝑐𝑐𝑚,æ
. The Ąn exchanges heat Ćux by convection with its surrounding environment

through its external surfaces. The (surface) convective heat Ćux exchanged through any surface 𝑑𝑆æ can be
written in the Newtonian inertial proper frame: ã𝑗𝑑𝑆æ = ℎ𝐼𝑖𝑗(𝜃 ⊗ 𝜃0)𝑛𝑖𝑑𝑆æ, where ℎ is the coefficient of
convection of the surrounding medium, 𝜃 is the temperature at a point of the surface of the Ąn and 𝜃0 is the
temperature of the surrounding medium far away. No volume heat source is taken into account, i.e. 𝑓𝑟 = 0.

The Newtonian FourierŠs model is usually chosen in the literature in order to model this heat transfer
[Lagrée,2010, Cengel,2008]. We choose to model the heat conduction using a spacetime FourierŠs model.
This choice guarantees obtaining a covariant model of the heat transfer. The weak form corresponding to
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this problem is expressed with Eq. 2.53 where 𝑐𝑞𝑗𝑒𝑥𝑡 represents the convective heat Ćux imposed on the
hyper-surface 𝜕Ω𝑗𝑞.

The surface source of heat changing the thermal equilibrium, through the temperature of the hot base
of the Ąn, is represented by a Dirichtet boundary condition at 𝑥 = 0.

The boundary conditions can be resumed by: 𝜃(𝑥Û ∈ 𝜕Ω1) = 𝑓𝑆𝐶1(𝑥Û ∈ 𝜕Ω1) = 1000 °𝐶, where 𝜕Ω1 is
the space boundary where 𝑥 = 0 and 𝜃(𝑥Û ∈ 𝜕𝜕Ω𝑗𝑞) = 𝑓𝑆𝐶2(𝑥Û ∈ 𝜕Ω1) = 𝑐𝑞𝑗𝑒𝑥𝑡, where 𝜕Ω𝑗𝑞 is the space
boundary where 𝑦 = 0, 𝑦 = 𝑙 and 𝑥 = 𝐿.

The time boundary condition can be written: 𝜃(𝑥Û ∈ 𝜕Ω2) = 𝑓𝑇𝐶(𝑥Û ∈ 𝜕Ω2) = 0°𝐶, where 𝜕Ω2 is the
initial time boundary (𝑡 = 0).

To avoid contradictory boundary conditions of the temperature at 𝑥 = 0, which is conditioned by
spatial and initial boundary conditions at 𝑡 = 0, it is considered to be function of the time such as:
𝜃(𝑥 = 0, 𝑡) = 1000 ⊗ 1000 𝑒𝑥𝑝(⊗130𝑡) (Ñ = 130 is obtained from an optimization method similar to the
one done in section 2.7.2.1). This function enables to reach progressively but quickly 𝜃(𝑥 = 0, 𝑡) = 1000°𝐶
without contradicting 𝜃(𝑥 = 0, 𝑡 = 0) = 0 °𝐶.

By introducing the Biot number in the weak form, an equivalent equation of the problem can also be
written as:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

1
𝑎
𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝜕𝜃*

𝜕𝑥𝑗
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω +

∫︁

𝜕Ωj
q

𝜃*
𝐵𝑖(𝜃 ⊗ 𝜃0)

𝑙
𝑛𝑗 d𝑆Ω = 0,∀𝜃* (2.58)

2.7.6.2 Simulation using FEniCS project

We consider the case of a 2D+1D Ąn (2 dimensions assigned to space and 1 to time) simulated using Eq.
2.58.

The Neumann condition that represents the convection heat Ćux imposed at the external surfaces is
implemented carefully. This heat Ćux is function of the temperature of the position and is, at the same
time, part of the two members of the bilinear form.

In fact, the term:
∫︁

𝜕Ωj
q

𝜃*
𝐵𝑖(𝜃 ⊗ 𝜃0)

𝑙
𝑛𝑗 d𝑆Ω has to be divided into two parts corresponding to the right hand

side and to the left hand side of the bilinear form such as:
∫︁

𝜕Ωj
q

(𝐴𝜃*𝜃 +𝐵𝜃*) d𝑆Ω = 0, where 𝐴 and 𝐵 are

constants. This could be avoided by normalizing the temperature and computing a normalized temperature
Ąeld: 𝜃𝑑 = 𝜃 ⊗ 𝜃0. Consequently, this term would not be an interesting issue and a post-treatment of results
would be necessary to visualize the temperature Ąeld.

The selected material of the Ąn for the simulation is the aluminum. The parameters of the simulation
are summarized in table 22 :
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Variable Value

Thermal diffusivity of Al 𝑎 = 9.7× 10−5 𝑚2/𝑠

Conductivity of Al 𝜆 = 205 𝑊.𝑚−1.𝐾−1

Coefficient of heat convection of the air surrounding the fin ℎ = 0.04 𝑘𝑊.𝑚−2.𝐾−1

Temperature of the air surrounding the fin 𝜃0 = 0𝐾

Corresponding Biot number 𝐵𝑖 = 0.01

Characteristic time of the conduction phenomenon 𝜏c =
𝐿2

𝑎
Interval of time of simulation 𝑡f = 10310 𝑠 ≥ 𝜏c

Geometry 𝐿 = 1𝑚, 𝑙 = 0.05𝑚

Mesh 𝑁x = 60, 𝑁y = 𝑁t = 30

Tab. 8: The parameters of the simulation

As a result of the simulation, we obtain a cartography of the temperature propagating through the Ąn
and dissipating through its surfaces, function of the time. The graphs of the evolution of the temperature
through the Ąn can be obtained at any instant of time 𝑡, as presented in Fig. 20a.

2.7.6.3 Comparison with analytical results

We compare the asymptotic temperature distribution that we previously get with respect to the analytic
steady-state thermal distribution of the cooling Ąn. We chose the steady-state regime to compare since the
previous simulation is reaching this state and since at this state the comparison of the temperature evolution
through the position is time-independent. A comparison of evolution of temperature at a non-steady-state
is also possible but the corresponding analytical solution takes a more complicated form.

Let us consider a uniform differential cross-section of the Ąn along the 𝑥-direction. In the analytical
study, we include more hypothesis: The variation of the temperature transversely is considered to be
negligible, then we consider the one-dimensional conduction through the 𝑥-direction. In addition to that, the
convection across the surface area is considered to be uniform. Taking these assumptions into consideration,
the energy balance on this cross section can be expressed by:

𝑑2𝜃(𝑥)
𝑑𝑥2

=
ℎ𝒫
Ú𝑆

(𝜃(𝑥) ⊗ 𝜃0) (2.59)

where 𝒫 is the perimeter of the Ąn and 𝑆 is the section of the Ąn in the orthogonal direction to 𝑥. It leads
to write the fundamental equation of heat conduction of a Ąn, using the deĄnition of 𝐵𝑖 number:

𝑑2𝜃(𝑥)
𝑑𝑥2

⊗ 2𝐵𝑖
𝑎2

(𝜃(𝑥) ⊗ 𝜃0) = 0 (2.60)

This differential equation has to be solved between 𝑥 = 0 and 𝑥 = 𝐿. The solution that can be obtained
is:

𝜃 = 𝜃0 +𝐴′ cosh(
√

2𝐵𝑖(𝑥/𝑙)) +𝐵′ sinh(
√

2𝐵𝑖(𝑥/𝑙)) (2.61)

where 𝐴′ and 𝐵′ are constants. The boundary condition representing the temperature of the hot base of
the Ąn can be written: 𝜃(𝑥 = 0, 𝑡). The boundary at 𝑥 = 𝐿 is free, the Ćux at this boundary is then:

𝑑𝜃(𝑥 = 𝐿)
𝑑𝑥

⊗ 𝐵𝑖

𝑙
(𝜃(𝑥 = 𝐿) ⊗ 𝜃0) = 0 (2.62)

The analytical solution of Eq. 2.60 can be expressed as [Lagrée,2010]:

𝜃(𝑥) ⊗ 𝜃0

𝜃(𝑥 = 0, 𝑡) ⊗ 𝜃0
=

cosh(
√

2𝐵𝑖(𝐿/𝑙 ⊗ 𝑥/𝑙)) +
√︀
𝐵𝑖/2 sinh(

√
2𝐵𝑖(𝐿/𝑙 ⊗ 𝑥/𝑙))

cosh(
√

2𝐵𝑖(𝐿/𝑙)) +
√︀
𝐵𝑖/2 sinh(

√
2𝐵𝑖(𝐿/𝑙))

(2.63)
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The comparison between the results obtained from the analytical method and from the 2D+1D
simulation shows that, for the same inputs of material parameters and boundary conditions, at a same
position 𝑦 and for time 𝑡 in the steady-state regime for the numerical simulation (meaning a calculation
time 𝑡 >> á𝑐), the graphs of evolution of the temperature through the length of the Ąn superimpose (Fig.
20b).

Fig. 20: a) On the left: Evolution of the temperature through the fin at 𝑦 = 0.025𝑚, at different instants of time:
𝑡 = 500𝑠, 2000𝑠 and 10310𝑠 corresponding respectively to the red, blue and green graphs. and b) On the right: Comparison
between the evolution of temperature through the length of the fin at 𝑦 = 0.025𝑚 and 𝑡 = 10310𝑠 for the theoretical model

represented by the analytical formula and the numerical 2D+1D heat model simulated in section 2.7.6.2, respectively
represented by the red and the blue graphs. The results superimpose.

The results show a compatibility of the 2D+1D numerical model of the heat conduction with analytical
results for the cooling Ąn in the steady-state regime. It is a simple application of the use of one of the
proposed heat models of the manuscript (spacetime FourierŠs heat model with Neumann-Dirichlet boundary
conditions) for industrial applications demanding precision on the temperature on different time intervals.
Different geometries can be applied and the boundary conditions can be easily adapted.

2.8 Conclusions

In this chapter of the manuscript, we Ąrst investigated the modeling of a thermal behavior using a
thermodynamical approach. The originality comes from the systematic use of a spacetime formalism to
ensure the indifference to change of frames, for both the physical models as well as for the numerical
resolution schemes. Using the conservation of internal energy written in the spacetime domain and the
variation of the four-vector entropy Ćux, a covariant statement of the Clausius-Duhem is proposed with
covariant terms.

The pure thermal evolution in case of heat conduction is speciĄcally focused. Spacetime counterparts
of FourierŠs and CattaneoŠs equations have been obtained through the spacetime generalization of the
Newtonian equations, or deduced from the aforementioned covariant statement of Clausius-Duhem inequality,
or obtained from a complexiĄcation method. Without thermomechanical dissipative couplings, two kinds of
models have been obtained from these different methods. It is worth noting that a particular methodology
involving only the CIT framework has been also proposed to obtain CattaneoŠs model in the spacetime
domain, by use of Laplace transform and complexiĄcation. It can be easily generalized to obtain other
models leading to third order (or more) space/time derivatives of temperature in the heat equation. Different
covariant models which generalize CattaneoŠs Newtonian model can thus be obtained from a CIT framework
without the need to use an EIT framework. Such terms remain to be deeply studied from a numerical point
of view.
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As in its original form, CattaneoŠs model contains relaxation terms that delay the conduction of heat
in the body. The existence of these terms consequently lead to overcome the problems of causality faced
in some other thermal models, which assume a heat propagation at an inĄnite velocity. Therefore, this
spacetime formalism reaches its goal in building covariant spacetime heat conduction models and respecting
simultaneously the causality principle.

Numerical simulations with FEniCS have been also performed to illustrate this approach without
thermomechanical couplings. For pure thermal problems, the proposed spacetime weak integral forms
(Eqs.2.52, 2.53, 2.55 and 2.56) for heat conduction models differ from the Newtonian ones (Eq. 2.57) only
through the integration domain. In the Ąrst ones, the time is a dimension of the domain of integration.
However in the second, it is generally discretized using the explicit method with a forward difference for the
Ąrst time derivative and a second-order central difference for the second time derivative (if required for
CattaneoŠs model). This clears up the difference in the integration forms obtained. Corollary, the initial
required condition on the discretized time becomes a boundary condition on the spacetime integration
domain.

The numerical models have been successfully benched with respect to the classical version of FourierŠs
and CattaneoŠs models. However, the spacetime Ąnite element method has a CPU time complexity of
higher order (second order) than the one of the classical approach. Moreover, the inĆuence of the domain of
integration, the mesh and the material parameters have been studied with 1D+1D models that show no
difficulty to perform such a new method for thermal problems. It has been successfully applied to the cooling
Ąn problem and the spacetime model is able to predict the heat diffusion in this particular application.

Eventually, the use of a spacetime formalism seems to have less numerical interest in the case of
motionless body experiencing only heat transfer by conduction. However, in the next chapter, we will prove
some numerical advantage of the spacetime method. Moreover, this chapter is considered as a prequel to the
cases of bodies experiencing simultaneously heat transfers and mechanical Ąnite transformations at large
scales, as in forming processes, in a way that accommodates simultaneously the covariance and causality
principles. It will be further investigated in the second part of the manuscript (chapters 4 and 5).
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3 Application of spacetime modeling to self-heating

3.1 Introduction

Self-heating phenomenon represents thermal evolution in materials resulting from mechanical loading. It can
be especially investigated during fatigue tests (see section 1.9). The aim of this chapter is to compute the
variation of temperature of a material body due to self-heating from an innovative point of view: requiring
a covariant formulation of the thermomechanical behavior (detailed in section 1.7), we use a spacetime
heat conduction model as developed in the previous chapter (section 2.3). Then computational methods
performed with FEniCS platform lead to a new approach for investigating self-heating.

However, other steps have also to be investigated, especially the identiĄcation process of numerical
values of the different parameters to see its inĆuence on the accuracy and reliability of this new kind of
numerical simulations. This optimization by inverse analysis is performed by use of a classical Newtonian
approach.

Some numerical values for these parameters are provided, as well as the integral form of the spacetime
problem with the adapted boundary conditions that can directly be used.

The layout of the chapter is as follows: section 3.3 describes the fatigue tests, in which the self-heating
phenomenon is occurring. In this section, we also discuss the different methods used in the Newtonian
approach to identify the dissipation term and the time parameter and we explain the data treatment
required for their calculation and/or optimization. In section 3.4, based on section 2.3, the spacetime Fourier
heat model for self-heating is built. The identiĄed parameters in section 3.3 are input parameters of the
spacetime heat model. The variational problem is thus proposed in the spacetime approach in order to be
solved. In Section 3.5, numerical simulations of the spacetime variational problem are done using FEniCS
project. Moreover, some comparative results with experimental data are illustrated in order to prove the
reliability of the present approach in the case of self-heating.

3.2 Methodology for modeling of the self-heating phenomenon in spacetime

In order to fulĄll the task of modeling the self-heating phenomenon in a spacetime domain, many steps are
necessary:
∙ Study of parameters of the fatigue test which includes analyzing experimental data and identiĄca-

tion of the parameters of the Newtonian model (section 3.3). The thermal dissipation, expressed in
Eq. 2.35, is one important parameter to be computed. Based on previous studies [Favier et al.,2016,
Chrysochoos et al.,2009, Boulanger et al.,2004], several identiĄcation methods are developed in order
to reduce the probable errors of this step.

∙ Injection of the resulting thermal dissipation in a spacetime heat model representing the self-heating
phenomenon. The boundary conditions are investigated in order to reproduce the conditions of the
fatigue test provided by the experimental data (section 3.5.1.1).

∙ Numerical simulation of the spacetime variational problem of the model. The evolution of the temperature
in a spacetime domain is then obtained (section 3.5).

∙ Comparison between the evolution of the temperature occuring during self-heating obtained from
experimental results and that obtained by a spacetime approach (results of the simulation of the
spacetime heat model, see section 3.5.2).

This last step aims to validate the spacetime model by showing its ability to reproduce the self-heating
phenomenon and consequently validate the spacetime heat conduction equation used as well as the
method/framework proposed to build it.
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3.3 Self-heating study based on experimental data measurements

3.3.1 Description of the gigacycle fatigue tests

Gigacycle fatigue testing using piezoelectric devices is used to test smooth samples under axial loading.
Frequency of the cycle usually stands around 20𝑘𝐻𝑧 in order to rapidly achieve fatigue life up to 1010 cycles.
The ultrasonic machines used offer a signiĄcant reduction in test time compared to conventional testing
machines. In addition to that, high frequency loading raises the intrinsic dissipation and consequently
induces large temperature variations easily detectable even by standard temperature measurement devices
[Favier et al.,2016].

Fig. 21: Specimen geometry and
dimensions in mm.

Variable Value

Mass density ̃︀𝜌c 7800 𝑘𝑔.𝑚−3

Specific heat capacity (constant volume) 𝒞mω 473 𝐽.𝑘𝑔−1.𝐾−1

Thermal conductivity 𝜆 50.2 𝑊.𝑚−1.𝐾−1

Thermal diffusivity 𝑎 =
𝜆

̃︀𝜌c𝒞mω

13.6× 10−6 𝑚2.𝑠−1

Tab. 9: Thermophysical properties of the considered C65 steel [ASM,1998]

The fatigue specimen is thin and Ćat hourglass shaped (Fig. 21). The fatigue tests were carried out at
20 𝑘𝐻𝑧 using an ultrasonic fatigue device at the Laboratory of Energetics Mechanics and Electromagnetism
(LEME) of the University Paris-Nanterre. The cyclic loading is stress imposed at 221 𝑀𝑃𝑎 and at a load
ratio of 𝑅 = ⊗1. No cooling device (air or gas Ćow) is used during the tests. The studied specimen is
made of C65 steel frequently used in parts fabrication. Table 9 shows the thermophysical properties of the
considered steel.

The specimen is subjected to natural convection with its surrounding environment (having convective
heat transfer coefficient ℎ and being at room temperature 𝜃0). It is also subjected to heat conduction with
the titanium horn, on which the specimen is clamped during the tests using a small piece of steel. The
temperature of the horn remains fairly close to the room temperature during the test.

The piezoelectric fatigue machine used to perform the fatigue tests is designed according to
[Bathias and Paris,2005]. The vibratory fatigue system illustrated in Fig. 22 is made of several ele-
ments. The Ąrst one is the generator that can reach a power of 2 𝑘𝑊 and whose frequency is tuned between
19.5 𝑘𝐻𝑧 and 20.5 𝑘𝐻𝑧. It gives a sinusoidal signal to the converter, which produces vibrations. The
function of this latter is to turn electric vibrations into mechanical ones. Moreover, an ampliĄer called
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ŞboosterŤ increases or decreases (1.5 times) the displacement of the converter. At last, a horn made of a
cylindrical part followed by a cone-shaped proĄle section completes the equipment. As the displacement
amplitude of the system (converter and booster) is limited, the cone allows to increase the vibratory
amplitude of the specimen in order to reach the required stress. The specimen is screwed to the horn
and its bottom extremity is stress-free. A calibration of the setup is needed to set the required stress. It
consists of Ąnding a linear relation existing between control voltage and displacement amplitude of the
horn/specimenŠs boundary. This latter is measured by a laser sensor.

Fig. 22: (a) On the left: Components of the fatigue testing machine: 1) converter, 2) amplifier, 3) horn, 4) generator, 5) laser
sensor, (b) On the right: Illustration corresponding to the testing machine

Thermography detection was performed using an infrared FLIR A325sc camera. This is a microbolometer-
based camera with a 320 × 240 detector and a thermal resolution (noise equivalent temperature difference,
NETD) of 0.1 𝑜𝐶. It is the mean used to measure the surface temperature of the specimen at different
intervals of time 𝑡. During the tests, the lens axis of the camera was kept Ąxed and perpendicular to
the surface of the specimen. The adopted spatial resolution enables us to observe the central gauge part
of the specimen. The frame-rate of the IR camera is 3.75 pictures per second (i.e. sampling frequency
𝑓𝐼𝑅 = 3.75 𝐻𝑧).

3.3.2 Experimental results

Pictures provided by the camera between 𝑡𝑖 = 0 𝑠 and 𝑡𝑓 = 3 𝑚𝑖𝑛 46.366 𝑠 are presently processed in order
to compute dissipation and temperature evolution during this interval of time corresponding to ≡ 45 × 105

cycles to illustrate the methodology. We must note that 𝑡𝑖 and 𝑡𝑓 are chosen in such a way that a large
temporal variation of temperature can been observed.
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Fig. 23: (a) On the left: Example of an infrared picture taken by the IR camera at a time 𝑡, (b) On the right: Evolution of the
measured specimen temperature 𝜃(𝑡) at a surface point located around its center as function of the time (red cross in left

figure)

At each time step, we obtain a 2D cartography showing the distribution of temperature as illustrated
in Fig. 23(a). On each picture obtained at a time step, the high and low parts of the specimen are cut
for further data treatment. Furthermore, the specimen is connected to the horn at the top, consequently
the temperature proĄle at the center of the specimen is slightly asymmetrical, due to the heat conduction
with the horn. The obtained map of temperature of the sample surface will further be used as a reference
for comparison with the spacetime simulations. The sequence of the maps through the time enables to
deduce the evolution of the temperature at each point of the specimen through the time. Fig. 23(b) shows
the evolution of the measured specimen temperature 𝜃(𝑡) at a surface point located around its center as
function of the time.

3.3.3 Newtonian self-heating modeling for parameters identification

The spacetime simulations require to have input parameters. The latter should be related as close as possible
to the experimented systems. SpeciĄc experiments could be used for such identiĄcations of parameters, but
we choose to deduce them from the one presented in section 3.3.2. For the identiĄcation process, we propose
to test the following hypothesis: identiĄcation can be done by use of classical thermomechanical modeling
with less accuracy than the spacetime simulations; in other words, identiĄcation can be performed with
very simple modeling with rough approximation because of the material features (thermal diffusivity is
small) and geometric dimensions (thickness ⪯ width ⪯ length).

It enables to propose the use of a spacetime approach only for numerical simulations. Therefore, we
will only consider Newtonian approaches for identiĄcation process, with simpliĄed equations. The aim
is eventually to test the robustness of the process: how simple identiĄcations inĆuence the spacetime
simulations in terms of accuracy and reliability?
Whatever the modeling is, its error due to a lack of causality is negligible providing that the sampling
of the experimental results is less than 105 𝑘𝐻𝑧 calculated by a Cattaneo time of 10𝑛𝑠 [Ván et al.,2013]
for the studied material, as previously explained in section 1.6. However, other errors due to modelling or
calculating can occur that may require to use spacetime simulations as further demonstrated.

All material parameters are also supposed to be temperature-independent in the temperature range of
the tests [0; 100 °𝐶], whatever the temperature variations induced by fatigue test are. As a consequence,
thermal diffusivity, mass density and speciĄc heat capacity are not affected and remain constant.

In addition to that, in order to simplify the heat conduction models, many assumptions are usually made
about the type of the heat Ćux diffusing through the specimen dimensions. The result of these assumptions
leads to different methods of computation (designated as 2D, 1D or 0D method) [Favier et al.,2016,
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Chrysochoos et al.,2009, Boulanger et al.,2004] as illustrated in Fig. 24. In particular, given the small
thickness, the temperature can be considered constant through the thickness; it can be checked by calculating
the Biot number (𝐵𝑖 ≡ 5.10⊗4 << 1). Moreover, the 2D method will not be further used, considering that
the variations of temperature along the width of the specimen are negligible compared to the variations
along its length. We only propose to test the 1D and 0D methods.

The implementation of these methods requires a spatial averaging process: for a Ąeld 𝑋(𝑥𝑁 ), one can
calculate its averaged value on coordinate 𝑥𝑁 as 𝑋̄ = 1

𝐿N

∫︀
𝑋(𝑥𝑁 )𝑑𝑥𝑁 where 𝐿𝑁 is the length of the

spatial domain for the considered coordinate/direction.

Fig. 24: Illustration of the 2D, 1D or 0D methods of computation for the heat transfers models

Two parameters are used in the different models. A characteristic time á𝑁𝐷 with 𝑁 depending on the
dimension of the modeling is Ąrst introduced. This parameter characterizes the thermal inertia related to
heat conduction along the averaged directions and balanced at boundaries by heat convection Ćux. This
parameter is theoretically and possibly related to thermophysical quantities ̃︀𝜌𝑐𝒞𝑚æ, heat convection Ćux ℎ

and radiation out the surface. A heat source term
𝑑1

̃︀𝜌𝑐𝒞𝑚æ
is also considered. This parameter characterizes

the intrinsic dissipation related to the mechanical power dissipated by irreversible processes within the
material through thermomechanical couplings. With a Newtonian approach for elastoplastic behavior,
it can be calculated with 𝑑1 = à : 𝜀̇ ⊗ ̃︀𝜌𝑐

∑︀
𝑖
𝜕å
𝜕Ði

Ð̇𝑖 with à the stress tensor, 𝜀̇ the strain rate tensor,
Ð𝑖 the internal states variables other than temperature or total strain, and å the speciĄc free energy
[Chrysochoos and Louche,2000].

3.3.3.1 The 2D method

In this method, we assume that the variations of temperature are negligible through the thickness of
the specimen. This hypothesis allows reducing the 3D problem to a 2D problem. Consequently, this
method is called the 2D method. It allows working with the surface temperature Ąelds as those provided
by an IR thermographic device, assuming that these surface temperature Ąelds are representative of
the average temperature through the thickness [Blanche,2015]. A Newtonian approach can be proposed
[Chrysochoos and Louche,2000] to obtain the corresponding heat equation as following:

𝜕𝜃𝑑(𝑥, 𝑦, 𝑡)
𝜕𝑡

+
𝜃𝑑(𝑥, 𝑦, 𝑡)
á2𝐷(𝑦)

⊗ 𝑎

⎤
𝜕2𝜃𝑑(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝜃𝑑(𝑥, 𝑦, 𝑡)

𝜕𝑦2

⎣
=
𝑑1(𝑥, 𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(3.1)

where: 𝜃𝑑 = 𝜃⊗𝜃0 is the average difference between the specimen temperature and the room temperature
(assumed to be independent of time and space, and equal to the initial temperature of the specimen). The
average, denoted here by the "bar", is made in this case over the thickness (𝑧 direction). á2𝐷 is the time
parameter characterizing the heat transfer perpendicular to the direction of heat conduction Ćux. It is
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worth noting that it may be function of the length 𝑦; it would be linked to the variation of the thickness of
the specimen through the length. In this case, it characterizes the heat transfer through the 𝑧 direction.
𝑑1(𝑥, 𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

is the average intrinsic dissipation term over the thickness.

A computation of heat sources using the 2D-method can be found in [Benaarbia et al.,2016]. Moreover,
[Benaarbia et al.,2014, Berthel,2007] develop extensively imaging techniques (i.e. infrared thermography
(IR) and digital image correlation (DIC)) related to the use of this method.

3.3.3.2 The 1D method

In this method, we assume that the variations of temperature are negligible/not considered through
the thickness and the width of the specimen. This hypothesis allows reducing the 3D problem to a
1D problem. Consequently, this method is called the 1D method. It allows working with the surface
temperature Ąelds as those provided by an IR thermographic device. A Newtonian approach can be proposed
[Chrysochoos and Louche,2000] to obtain the corresponding heat equation as following:

𝜕 ¯̄𝜃𝑑(𝑦, 𝑡)
𝜕𝑡

+
¯̄𝜃𝑑(𝑦, 𝑡)
á1𝐷(𝑦)

⊗ 𝑎

(︃
𝜕2 ¯̄𝜃𝑑(𝑦, 𝑡)
𝜕𝑦2

)︃
=

¯̄𝑑1(𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(3.2)

where: ¯̄𝜃𝑑 = ¯̄𝜃 ⊗ 𝜃0 is the average difference between the specimen temperature and the room temperature
(assumed to be independent of time and space, and equal to the initial temperature of the specimen). The
average, denoted here by the "double bar", is made in this case over the thickness (𝑧 direction) and the width
(𝑥 direction). á1𝐷 is the time parameter characterizing the heat transfer perpendicular to the direction of

heat conduction Ćux. In this case, it characterizes the heat transfer through the 𝑥 and 𝑧 directions.
¯̄𝑑1(𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

is the average intrinsic dissipation term over the thickness and the width corresponding to self-heating. The
described 1D method takes less time of treatment of the fatigue tests than the 2D method, while generally
ensuring accurate results.

3.3.3.3 The 0D method

In this method, we assume that the variations of temperature are negligible/not considered through
the thickness, length and width of the specimen. This hypothesis allows reducing the 3D problem to
a 0D problem. Consequently, this method is called the 0D method. It allows working with the surface
temperature Ąelds as those provided by an IR thermographic device. A Newtonian approach can be proposed
[Chrysochoos and Louche,2000] to obtain the corresponding heat equation as following:

𝜕
¯̄̄
𝜃𝑑(𝑡)
𝜕𝑡

+
¯̄̄
𝜃𝑑(𝑡)
á0𝐷

=
¯̄̄
𝑑1(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(3.3)

where:
¯̄̄
𝜃𝑑 =

¯̄̄
𝜃 ⊗ 𝜃0 is the difference between the average specimen temperature and the room temperature

(assumed to be independent of time and space, and equal to the initial temperature of the specimen). The
average is made in this case over the thickness (𝑧 direction), the width (𝑥 direction) and the length (𝑦

direction). We note the averaged quantities in this case by the "triple bar".
¯̄̄
𝑑1(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

is the average dissipation

term over the thickness, the length and the width corresponding to self-heating. á0𝐷 is the time parameter
characterizing the heat transfer perpendicular to the direction of heat conduction Ćux. In this case, it
characterizes the heat transfer through all the spatial directions.

For Eq. 3.3, in the case of constant value for
¯̄̄
𝑑1

̃︀𝜌𝑐𝒞𝑚æ
and for initial conditions

¯̄̄
𝜃𝑑(𝑡𝑖) = 0, the analytical

solution is (for initial time 𝑡𝑖 = 0):

¯̄̄
𝜃𝑑(𝑡) =

¯̄̄
𝑑1

̃︀𝜌𝑐𝒞𝑚æ
á0𝐷

⎤
1 ⊗ exp

⎤
⊗ 𝑡

á0𝐷

⎣⎣
(3.4)
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3.3.4 Data treatment methods for parameters identification

In addition to the thermophysical parameters (table 9), several parameters are required for further calcula-

tions and comparison, such as the time parameter á𝑁𝐷, with 𝑁 = 0, 1 and the dissipation term
𝑑1

̃︀𝜌𝑐𝒞𝑚æ
,

that is now noted 𝑓𝑟 for simpliĄcation/convenience. In order to identify these parameters, several methods
are presently investigated by use of the 0D or 1D method (presented in section 3.3.3).

Average is performed on experimental data by considering spatial averaging as previously deĄned in
section 3.3.3, either on two or three directions. It is applied to temperature 𝜃𝑑 or to intrinsic dissipation 𝑑1

for Newtonian computation:
∙ To apply the 0D method, the maps of surface temperature obtained at each time step by the IR camera

are thus subjected to temperature averaging through the width and length. The result is a temperature

Ąeld only function of time
¯̄̄
𝜃(𝑡). The averaged difference between the specimen temperature

¯̄̄
𝜃(𝑡) and its

surrounding temperature leads to
¯̄̄
𝜃𝑑(𝑡).

∙ When 1D method is considered, then only an average of surface temperature through the width is
performed. The result is a temperature Ąeld function of space and time ¯̄𝜃(𝑦, 𝑡). The averaged difference
between the specimen temperature ¯̄𝜃(𝑦, 𝑡) and its surrounding temperature leads to ¯̄𝜃𝑑(𝑦, 𝑡).

For both models, 1D and 0D, it is reminded that the surface temperature measured by the camera can be
considered as the mean temperature through the specimen thickness (𝐵𝑖 ⪯ 1).

𝑓r global global local

identification optimization optimization calculation

𝜏ND calculation global global
identification from ℎ optimization optimization *

0D method Meth. A Meth. B Meth. C
1D method × × Meth. D

Tab. 10: Features of the different methods to identify 𝜏ND and 𝑓r (* for method C, it is used from method B; whereas for
method D, it is simultaneous)

The different methods and their features are summarized in Table 10, then detailed in the different
next paragraphs.

3.3.4.1 Method A: use of the 0D method and parameters identification by calculation of τ0D and

global optimization of fr

∙ First, identiĄcation of the time parameter á0𝐷

The time parameter is directly computed using its deĄnition: it is the constant characterizing the
perpendicular heat exchanges through the specimen. It is demonstrated that it corresponds to the

approximation [Chrysochoos and Louche,2000]: á0𝐷 ≡ ̃︀𝜌𝑐𝒞𝑚æ𝑒𝑠
2ℎ

≡ 123 𝑠 if losses by radiation are

neglected. 𝑒𝑠 = 1 𝑚𝑚 is the specimen thickness and ℎ = 15 𝑊.𝑚⊗2.𝐾⊗1 is the heat transfer coefficient
for natural convection. The latter value is evaluated from bibliography for similar experimental conditions.
However, the hypothesis of natural convection and the uncertainty on the heat transfer coefficient lead
to a signiĄcant uncertainty on the á0𝐷 value (as discussed in section 3.3.5). For this reason, further
methods are also studied in order to obtain this time parameter with more accuracy.

∙ Second, identiĄcation of the dissipation term 𝑓𝑟 assumed as constant
Assuming that the time parameter is known from the previous step, the solution of Eq. 3.3 , given by
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Eq. 3.4, is:
¯̄̄
𝜃𝑑(𝑠𝑜𝑙)(𝑡, 𝑐1) = 𝑐1 á0𝐷

⎤
1 ⊗ exp

⎤
⊗ 𝑡

á0𝐷

⎣⎣
(3.5)

In Eq. 3.5, parameter 𝑐1 is a priori unknown. So we optimize a functional to this parameter to obtain
the less distance between the experimental data and the solution given by Eq. 3.5:

𝑐1 = 𝐼𝑛𝑓𝑘

∏︀
∐︁∑︁

𝑗

{︁ ¯̄̄
𝜃𝑑(𝑠𝑜𝑙)(𝑡𝑗 , 𝑐1𝑘) ⊗ ¯̄̄

𝜃𝑑(𝑒𝑥𝑝)(𝑡𝑗)
}︁2

⎞
̂︀ (3.6)

The optimization process has been programmed with Matlab by using the "fminsearch" function of
Matlab toolbox to get a local minimum of the function. This is a nonlinear programming solver that
searches for the minimum of a problem. This function strongly depends on the initial value of the
iteration process, that is why we have systematically tested different initial values to be sure to obtain
the same minimum, which thus becomes global (in the tested range). By plotting the error function
(see Fig. 25(a)), we can also check that this minimum is global (in the tested range). The error function
for this method shows a narrow minimum for the dissipation term. The value obtained for 𝑐1 = 𝑓𝑟 is
0.34825 °𝐶.𝑠⊗1.
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Fig. 25: On the left: a) Error function
∑︀

j

{︁
¯̄̄
𝜃d(sol)(𝑡j , 𝑐1)−

¯̄̄
𝜃d(exp)(𝑡j)

}︁2
obtained from method A as function of 𝑐1 = 𝑓r

in the range [0; 1]𝐶.𝑠−1. On the right: b) Error function
∑︀

j

{︁
¯̄̄
𝜃d(sol)(𝑡j , 𝑐1, 𝑐2)−

¯̄̄
𝜃d(exp)(𝑡j)

}︁2
obtained from method B as

function of 𝑐1 = 𝑓r in the range [0; 1] 𝐶.𝑠−1 and of 𝑐2 = 𝜏0D in the range [40; 130] 𝑠

3.3.4.2 Method B: use of the 0D method and parameters identification by simultaneous and global

optimization of τ0D and fr

We consider here that both parameters are unknown and should be simultaneously optimized. The solution
of Eq. 3.3 , given by Eq. 3.4, is:

¯̄̄
𝜃𝑑(𝑠𝑜𝑙)(𝑡, 𝑐1, 𝑐2) = 𝑐1 𝑐2

⎤
1 ⊗ exp

⎤
⊗ 𝑡

𝑐2

⎣⎣
(3.7)

In Eq. 3.7, parameters 𝑐1 and 𝑐2 are a priori unknown. So we optimize a functional to these parameters to
obtain the less distance between the experimental data and the solution given by Eq. 3.7:

(𝑐1, 𝑐2) = 𝐼𝑛𝑓𝑘,𝑚

∏︀
∐︁∑︁

𝑗

{︁ ¯̄̄
𝜃𝑑(𝑠𝑜𝑙)(𝑡𝑗 , 𝑐1𝑘, 𝑐2𝑚) ⊗ ¯̄̄

𝜃𝑑(𝑒𝑥𝑝)(𝑡𝑗)
}︁2

⎞
̂︀ (3.8)
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The optimization process has been also programmed with Matlab by using the "fminsearch" function of
Matlab toolbox to get a local minimum of the function, as explained in the previous section. The value
obtained for the two parameters are 𝑐1 = 𝑓𝑟 = 0.47519 °𝐶.𝑠⊗1 and 𝑐2 = á0𝐷 = 72.73 𝑠. The error function
for this method is mapped in Fig. 25(b) and shows a narrow minimum for the dissipation term, whereas the
minimum for the time parameter is broader, but convergence is ensured.

3.3.4.3 Method C: use of the 0D method and parameters identification by global optimization of

τ0D and local calculation of fr

∙ First, identiĄcation of the time parameter á0𝐷 assumed as constant
We choose to use the value optimized from method B, corresponding to á0𝐷 = 72.73 𝑠.

∙ Second, identiĄcation of the dissipation term 𝑓𝑟(𝑡)
By use of Eq. 3.3, we can directly write:

𝑓𝑟(𝑡) =
𝑑

¯̄̄
𝜃𝑑(𝑒𝑥𝑝)

𝑑𝑡
+

¯̄̄
𝜃𝑑(𝑒𝑥𝑝)

á0𝐷
(3.9)

with á0𝐷 the time parameter chosen in the previous step. The time gradient of temperature is directly
computed using mathematical tool of Matlab (numerical derivative by centred Ąnite differences). The
injection of this calculation in Eq. 3.9 leads to the evolution of the dissipation term as function of

time. The result is shown in Fig. 26. Between 𝑡 = 𝑡𝑖 = 0 and 𝑡 = 𝑡𝑓 , where
¯̄̄
𝜃𝑑(𝑡) varies between 0 and

34.02 °𝐶, the value of 𝑓𝑟 tends to 0.51 °𝐶.𝑠⊗1. Except at short times, the dissipation term could be
roughly considered as constant with time. For further calculations, the full time-dependence of this
parameter is considered.
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3.3.4.4 Method D: use of the 1D method and parameters identification by simultaneous global

optimization of τ1D and local calculation of fr

Since the experimental temperature maps show variations through the length (𝑦 direction), it is interesting
to compute an identiĄcation process using the 1D method for comparison with the previous methods (A, B,
C). We then expect more accuracy on the dissipation values and thus on the temperature prediction.

We note that a variation of á1𝐷 with the length 𝑦 could also be considered: it would be linked to the
variation of the width of the specimen through the length. We neglect this effect in what follows. We assume
thus that the value of á1𝐷 does not depend on the 𝑦 direction at Ąrst approximation. Calculations (not
presented here) have been performed to check this assumption, which show that no signiĄcant difference
occurs.

Moreover, the identiĄcation of the time parameter by optimization is relevant but numerical value has
to be adapted because of the use of the 1D method. We look thus for simultaneous identiĄcation of both the
dissipation term 𝑓𝑟(𝑦, 𝑡) by local calculation and the time parameter á1𝐷 as a result of global optimization.
By the use of Eq. 3.2, we can write:

𝑓𝑟(𝑦, 𝑡, á1𝐷) =
𝜕 ¯̄𝜃𝑑(𝑒𝑥𝑝)

𝜕𝑡
+

¯̄𝜃𝑑(𝑒𝑥𝑝)

á1𝐷
⊗ 𝑎

(︃
𝜕2 ¯̄𝜃𝑑(𝑒𝑥𝑝)

𝜕𝑦2

)︃
(3.10)

An optimisation process similar to that of methods A and B is implemented to obtain simultaneously the
characteristic time á1𝐷 and the heat source term 𝑓𝑟(𝑦, 𝑡):

𝑐2 = 𝐼𝑛𝑓𝑘

∏︀
∐︁∑︁

𝑖

∑︁

𝑗

{︁
¯̄𝜃𝑑(𝑠𝑜𝑙)(𝑦𝑖, 𝑡𝑗 , 𝑐2𝑘, 𝑓𝑟(𝑦𝑖, 𝑡𝑗 , 𝑐2𝑘)) ⊗ ¯̄𝜃𝑑(𝑒𝑥𝑝)(𝑦𝑖, 𝑡𝑗)

}︁2

⎞
̂︀ (3.11)

Unlike previous methods, 𝑓𝑟 is a function of á1𝐷. This function is introduced in the optimisation process
by numerically calculating Eq. 3.2 whose numerical solution is denoted ¯̄𝜃𝑑(𝑠𝑜𝑙). The computation process
has been programmed with Matlab. The time gradient and the space Laplacian operators in Eq. 3.10 can
directly be computed using mathematical tools in Matlab based on Ąnite differences scheme. Because of
the derivative in Eq. 3.10, the results for heat dissipation source presents important noise. Consequently, a
smooth step is added using moving average Ąlter on dissipation. The result of the calculation is eventually the
(smoothed) heat source term 𝑓𝑟(𝑦, 𝑡) depending on space and time and the time parameter 𝑐2 = á1𝐷 = 43 𝑠.
The results are presented in Fig. 27. The negative values of 𝑓𝑟(𝑦, 𝑡) seen on Fig. 27 b) are due to the noise
in experimental data, therefore these values are insigniĄcant.
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Fig. 27: Evolution of 𝑓r(𝑦, 𝑡) =
¯̄𝑑1(𝑦, 𝑡)

̃︀𝜌c𝒞mω

obtained from the Newtonian computation (method D): a) On the left, as function

of the time at 𝑦 = 30 𝑚𝑚, b) On the right, as function of the space at 𝑡f = 226.366 𝑠
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3.3.5 Uncertainties estimation

Uncertainty of the Newtonian thermal model can derive from a lack of knowledge on the thermomechanical
parameters, from the error on measurement/sampling (e.g. error on the camera measurements) or from
the choice of models [Makowski,2009]. We are looking for the uncertainties of the characteristic time

Δá𝑁𝐷, 𝑁 = 0, 1 and of the intrinsic dissipation Δ𝑓𝑟 = Δ

⎤
𝑑1

̃︀𝜌𝑐𝒞𝑚æ

⎣
. We can divide the types of uncertainty

as follows:
∙ Relative uncertainty on the physical properties of the model as: relative uncertainty on the thermal

diffusivity
Δ𝑎
𝑎

= 7%, relative uncertainty on the heat convection coefficient
Δℎ
ℎ

= 25% and relative

uncertainty on the speciĄc heat capacity
Δ𝒞𝑚æ
𝒞𝑚æ

= 5% [Ogawa et al.,2001, Conner,2013]

∙ Measurement errors related to the camera features. The uncertainty of the measured temperature is

Δ
¯̄̄
𝜃𝑑(𝑒𝑥𝑝)(𝑡) = Δ¯̄𝜃𝑑(𝑒𝑥𝑝)(𝑡) = 0.1 °𝐶, it is a marked-up value of that given by the manufacturer. The

uncertainty on the Laplacian operator of temperature is thus Δ

(︃
𝜕2 ¯̄𝜃𝑑(𝑒𝑥𝑝)

𝜕𝑦2

)︃
= 0.02

(︃
𝜕2 ¯̄𝜃𝑑(𝑒𝑥𝑝)

𝜕𝑦2

)︃
; it is

deduced from the spatial resolution of the camera and the uncertainty on the measured temperature, but
this latter is numerically negligible. Finally, the uncertainty of the camera frequency is assumed to be

negligible, thus uncertainty of the time gradient of temperature is supposed to be null: Δ

∏︀
∐︁𝑑

¯̄̄
𝜃𝑑(𝑒𝑥𝑝)

𝑑𝑡

⎞
̂︀ =

Δ

(︃
𝜕 ¯̄𝜃𝑑(𝑒𝑥𝑝)

𝜕𝑡

)︃
= 0

Looking for uncertainties is applicable for the methods A (for á0𝐷, having a direct consequence on the
identiĄcation of 𝑓𝑟), C (for 𝑓𝑟), and D (for á1𝐷 and 𝑓𝑟). For method B with full optimization for both
parameters, it is useless to consider.

For method A, because á0𝐷 ≡ ̃︀𝜌𝑐𝒞𝑚æ𝑒𝑠
2ℎ

, we can calculate its relative uncertainty by propagating

uncertainties of heat convection coefficient and speciĄc heat capacity according to the GUM recommendation

[JCGM,1995], leading to
Δá0𝐷

á0𝐷
= 25.5%. Even if it is not calculated with the same approach, we can assume

the same value for
Δá1𝐷

á1𝐷
= 25.5%. We notice that the uncertainty is quite important for this parameter. It

can be related to the difficulty of its identiĄcation as seen for the different methods.
Concerning intrinsic dissipation, it depends on the dimension of the method. For method C (0D), we

can calculate the uncertainties by use of Eq. 3.9:

Δ2𝑓𝑟(𝑡) =

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝜕𝑓𝑟

𝜕

∏︀
∐︁𝑑

¯̄̄
𝜃𝑑(𝑒𝑥𝑝)(𝑡)

𝑑𝑡

⎞
̂︀

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

2

Δ2

∏︀
∐︁𝑑

¯̄̄
𝜃𝑑(𝑒𝑥𝑝)

𝑑𝑡

⎞
̂︀+

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
𝜕𝑓𝑟

𝜕
¯̄̄
𝜃𝑑(𝑒𝑥𝑝)(𝑡)

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

2

Δ2 ¯̄̄
𝜃𝑑(𝑒𝑥𝑝)(𝑡)

+

⧹︃⧹︃⧹︃⧹︃
𝜕𝑓𝑟
𝜕á0𝐷

⧹︃⧹︃⧹︃⧹︃
2

Δ2á0𝐷

⇒ Δ𝑓𝑟(𝑡) =
1
á0𝐷

√︂
0.12 + 0.2552

¯̄̄
𝜃2
𝑑(𝑒𝑥𝑝)

(𝑡) (3.12)

Thus Δ𝑓𝑟(𝑡) is a function of time. We notice that the uncertainty Δ𝑓𝑟(𝑡) varies between 0 and 0.119 °𝐶.𝑠⊗1

for method C, which corresponds to a relative uncertainty
Δ𝑓𝑟(𝑡)
𝑓𝑟(𝑡)

× 100 varying between 0 and 23.5%.

Similarly, the expression for uncertainty of intrinsic dissipation obtained using method D and corresponding
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to Eq. 3.10 can be calculated as:

Δ𝑓𝑟(𝑦, 𝑡) =

⎯⎸⎸⎷ 1
á2

1𝐷

(︁
0.12 + 0.2552 ¯̄𝜃2

𝑑(𝑒𝑥𝑝)(𝑦, 𝑡)
⎡

+ (0.022 + 0.072)

(︃
𝑎
𝜕2 ¯̄𝜃𝑑(𝑒𝑥𝑝)(𝑦, 𝑡)

𝜕𝑦2

)︃2

(3.13)

Thus Δ𝑓𝑟(𝑦, 𝑡) is a function of space and time. The uncertainty Δ𝑓𝑟(𝑦, 𝑡) varies between 0 and 0.497 °𝐶.𝑠⊗1

for method D, which corresponds to a relative uncertainty varying between 0 and 4.43%. We notice that
the relative uncertainty of 𝑓𝑟 obtained using method D corresponding to the 1𝐷 model is almost Ąve times
smaller than that obtained by using method C corresponding to the 0𝐷 model. This is due to the additional
information on the parameters dependence to spatial length provided by the 1𝐷 model.

3.3.6 Discussion on the results of the parameters identification

We can see that the four previous Newtonian methods lead to different values for á𝑁𝐷, 𝑁 = 0, 1 and
𝑓𝑟. For the time parameter, the optimization process, used in methods B and C, gives a value (72.73 𝑠)
approximately two times smaller than the direct calculation by use of its deĄnition (123 𝑠), as used in
method A. The latter is strongly dependent on the choice for the numerical value of the natural convection
coefficient ℎ with a signiĄcant uncertainty as proved in section 3.3.5.

In the literature, values of the time parameter are given for similar experiments: In [Boulanger et al.,2004],
computations give á𝑁𝐷 = 80𝑠 for a dual phase steel (DP 60) specimen, knowing that its width is 2.5𝑚𝑚.
Also experiments for different loadings in [Munier,2012] show that á𝑁𝐷 is around 36.9 𝑠, knowing that the
dual phase steel (DP 600) specimen had a width of 3.6𝑚𝑚.

For the heat source term, values for methods A to C are in the range of 0.34825 °𝐶.𝑠⊗1 to 0.8424 °𝐶.𝑠⊗1

(for long times). This is quite consistent with values found in bibliography [Munier,2012] (the heat source
value is 0.022 °𝐶.𝑠⊗1 for a variation of temperature of 1.8 °𝐶). We see that its evolution with time tends to
a constant value, which strongly depends on the type of 0D method used.

Considering thermal diffusivity with a Laplacian term in method D increased the accuracy on the
values of the parameters. For self-heating, the heat source term is related to thermomechanical couplings
[Boulanger et al.,2004, Lemaitre and Chaboche,1990, Saanouni,2012]. The space variations of 𝑓𝑟(𝑦, 𝑡) are
directly related to the stress amplitude variations in the sample with the length (𝑦 direction). Through
the method D, we are then able to take it into account. For a time parameter á1𝐷 = 43 𝑠, the heat source
term is a function of space and time, reaching a maximum at 𝑓𝑟(𝑦 = 30 𝑚𝑚, 𝑡𝑓 = 226.366 𝑠) = 11.2 °𝐶.𝑠⊗1

(non-smoothed data).
We remind that even if the identiĄcation process does not provide unique and accurate values of

á𝑁𝐷, 𝑁 = 0, 1 and 𝑓𝑟, the introduced discrepancies will enable to test the spacetime simulations and its
inĆuence on the numerical results in comparison to experimental results.

3.4 Spacetime heat model

3.4.1 Spacetime heat equation of the model

The spacetime heat model of self-heating is constructed based on a spacetime FourierŠs heat model (Eq. 2.51)
with the Neumann-Dirichlet boundary conditions reproducing the fatigue tests conditions. To complete the
heat model, we have to take into consideration that it is also subject to external conditions of temperature
and heat Ćux. Therefore comes the necessity of writing the spacetime weak integral form with spacetime
FourierŠs model of heat conduction in the Neumann-Dirichlet boundary conditions that will be useful for
modeling self-heating experiments.

In the particular case of Neumann-Dirichlet boundary conditions, the third and the Ąfth integrals in Eq.
2.51 can be written as integrals over hypersurfaces using Green-Ostrogradski theorem. The test temperature
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𝜃* is supposed to be null at the boundaries 𝜕Ω. After simpliĄcation, the problem is then formulated by:

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎𝐼𝑖𝑗
𝜕𝜃*

𝜕𝑥𝑖
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω

+
∫︁

Ω

𝜃*
𝜃

á𝑁𝐷
d𝐻Ω ⊗

∫︁

𝜕Ωq

𝜃*
𝑐 𝑞𝑗𝑒𝑥𝑡
̃︀𝜌𝑐𝒞𝑚æ

𝑛𝑗 d𝑆Ω = 0,∀𝜃* (3.14)

where 𝐼𝑖𝑗 is the 3D identity matrix. 𝑞𝑗𝑒𝑥𝑡 is the surface heat Ćux imposed on the hypersurface 𝜕Ω𝑞 in the
proper observer and 𝑛𝑗 is the normal vector to the 3D surface. We remind that 𝑞4 = 0, because the inertial
observer is also proper. In the considered approximations (especially without thermomechanical couplings),
the variational problem is very similar to the Newtonian one, except for the integral over space volume that
is replaced by a spacetime hypervolume.

The last two terms of Eq. 3.14 are related to the boundary condition effect. Indeed, by analogy with the
equations in Newtonian approach, an additional term is added to the spacetime formulation. This additional

term
∫︁

Ω

𝜃*
𝜃

á𝑁𝐷
d𝐻Ω, which value varies between the 0D, 1D and 2D methods, has to be introduced if some

averages are performed to simplify the simulation: it corresponds to the perpendicular heat exchanges. This
term is then the result of the averaging of the temperature necessary to the transition to a 2D, 1D or 0D
model and which has direct impact on the boundary conditions. In order to place boundary conditions, we
deĄne: 𝜕Ω𝑗 = 𝜕æ ∪ 𝑡 as the space boundaries of the domain and 𝜕Ω4 = æ ∪ 𝜕𝑡 as the time boundaries of
the domain, where æ is the 3D spatial domain of integration.

Then, the boundary conditions of this weak integral form can be divided into boundary conditions on
the space and on the time. The Ąrst type can be written: 𝜃(𝑥Û ∈ 𝜕Ω𝑗) = 𝑓𝑆𝐶(𝑥Û ∈ 𝜕Ω𝑗), where 𝑓𝑆𝐶 is
the function representing the space boundary conditions. The second type can be written: 𝜃(𝑥Û ∈ 𝜕Ω4) =
𝑓𝑇𝐶(𝑥Û ∈ 𝜕Ω4), where 𝑓𝑇𝐶 is the function representing the initial time boundary conditions. The only
condition required (on the temperature) on the time boundaries is at the initial time since the temperature
at the Ąnal time has to be calculated by the resolution of the heat diffusion problem (incrementally).

The boundaries where the heat Ćux and temperature are applied should respect 𝜕Ω𝑞 ∪ 𝜕Ω𝜃 = 𝜕Ω and
𝜕Ω𝑞 ∩𝜕Ω𝜃 = ∅. The boundary conditions in this case are the Ćux boundary conditions (on 𝜕Ω𝑞) represented
by the imposed heat Ćux 𝑞𝑗𝑒𝑥𝑡 and the temperature boundary conditions (on 𝜕Ω𝜃).

3.5 Self-heating computation using FEniCS project

3.5.1 Input data requirement

In this paragraph, we discuss the input data required for the simulations of the self-heating problem by
use of weak forms. Data about the material and geometrical dimensions of the specimen must be precised,
as well as time parameter, heat source term and boundary conditions. The simulation is based on the
resolution of Eq. 3.14.

First, the parameters 𝑎, ̃︀𝜌𝑐 and 𝒞𝑚æ are related to the material corresponding to the studied fatigue
tested specimen and are supposed to be known (as given in table 9).

Second, the numerical model is eventually a 1D+1D geometry of dimension 𝐿 = 60 𝑚𝑚 dedicated for the
space (corresponding to the 𝑦 direction) and 𝑡𝑓 = 226.366 𝑠 dedicated for the time. The associated meshing
is deĄned by the number of divisions in the dimensions of space and time respectively: 𝑁𝑦 = 𝑁𝑡 = 850.

Third, for the time parameter á𝑁𝐷, we will use the different values obtained by the identiĄcation
methods A to D (see section 3.3.4) to investigate their inĆuence on the calculation.

Fourth, the dissipation term 𝑓𝑟(𝑥Û) resulting from the mechanical loading represents the source of heat
in the spacetime model. This intrinsic dissipation is computed with values obtained by the different methods
A to D illustrated in section 3.3.4 and are also used to investigate their inĆuence on the calculation. In the
methods A and B, it is assumed as constant value, which is directly implemented in the 1D+1D simulation.
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However, in the methods C and D the result is respectively function of time 𝑓𝑟(𝑡) and function of space and
time 𝑓𝑟(𝑦, 𝑡). Remind that 𝑥̂4 = 𝑥4 = 𝑐𝑡 such that expressing a function with 𝑡 or 𝑥4 is equivalent.

3.5.1.1 Boundary conditions

Since the specimen is clamped to the horn from one side and free from the other side, a Neumann condition
on the upper spatial boundary of the specimen represents the conductive Ćux through the horn and a
Neumann condition on the other spatial boundary represents the convective heat Ćux, on the external
surfaces. The boundaries of the specimen where the conductive heat Ćux and the convective heat Ćux are
applied, are represented in Figure 28.

Fig. 28: Boundaries of the specimen where the conductive heat flux and the convective heat flux are applied. The red part
represents the horn..

In the present experiment, the Ćux of heat due to the existence of the horn holding the specimen depends

on time. It can be obtained by the computation of 𝑐 𝑞𝑦ℎ𝑜𝑟𝑛(𝑡) = ⊗Ú𝜕
¯̄𝜃𝑑
𝜕𝑦

at 𝑦 = 0, applied on 𝜕Ω𝑞horn
. The

conductive heat Ćux direction is from the specimen (the hot body) to the horn. According to the experimental

results, identiĄcation of this function leads to
𝑐 𝑞𝑦ℎ𝑜𝑟𝑛(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

= ⊗0.0035 + 0.004 exp(⊗0.01752𝑡) (°𝐶.𝑚.𝑠⊗1).

Calculations to study the inĆuence of this Ćux on the inĆuence of temperature distribution have been
performed. Results show a negligible effect. Therefore, it can be neglected in the further simulations.

The other spatial boundary is subjected to a Neumann condition representing the thermal exchange
(convection Ćux) with the surrounding environment at the lower spatial boundary. Since the convection
coefficient of the surrounding air is not directly measured in the experiment, it can be approximated using:

ℎ ≡ ̃︀𝜌𝑐𝒞𝑚æ𝑒𝑠
2á𝑁𝐷

. The boundary condition in this case is a convection Ćux at 𝑦 = 𝐿, applied on 𝜕Ω𝑞air
with

𝑐 𝑞𝑦𝑎𝑖𝑟(𝑡) = ℎ ¯̄𝜃𝑑. A Dirichlet boundary condition deĄnes the temperature at the initial time. It represents

the initial state of temperature at 𝑡 = 𝑡𝑖 = 0. It can be expressed by ∀𝑦, ¯̄𝜃𝑑(𝑦, 𝑡 = 0) = 0.
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The mathematical problem to be solved is thus as follows with the unknown function ¯̄𝜃𝑑(𝑥Û) = ¯̄𝜃𝑑(𝑦, 𝑡):

𝑊 ( ¯̄𝜃𝑑, 𝜃
*) =

∫︁

Ω

𝜃*
𝜕 ¯̄𝜃𝑑
𝜕𝑡

d𝐻Ω +
∫︁

Ω

𝑎
𝜕𝜃*

𝜕𝑦

𝜕 ¯̄𝜃𝑑
𝜕𝑦

d𝐻Ω ⊗
∫︁

Ω

𝜃*𝑓𝑟(𝑥Û) d𝐻Ω

+
∫︁

Ω

𝜃*

¯̄𝜃𝑑
á𝑁𝐷

d𝐻Ω ⊗
∫︁

𝜕Ωqhorn

𝜃*
𝑐 𝑞𝑦ℎ𝑜𝑟𝑛(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

d𝑆Ω

⊗
∫︁

𝜕Ωqair

𝜃*
𝑐 𝑞𝑦𝑎𝑖𝑟(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

d𝑆Ω = 0,∀𝜃* (3.15)

and ∀𝑦 ∈ [0;𝐿], ¯̄𝜃𝑑(𝑥Û ∈ 𝜕Ω4) = 𝑓𝑇𝐶(𝑦, 𝑡 = 0) = 0 (3.16)

and ∀𝑡 ∈ [0; 𝑡𝑓 ], 𝑐 𝑞𝑦ℎ𝑜𝑟𝑛(𝑡) = 0 (3.17)

and ∀𝑡 ∈ [0; 𝑡𝑓 ], 𝑐 𝑞𝑦𝑎𝑖𝑟(𝑡) = ℎ ¯̄𝜃𝑑(𝑦 = 𝐿, 𝑡) (3.18)

3.5.1.2 Review of the numerical approach

To sum up, as follows the spacetime numerical approach is based on:
∙ the parameter identiĄcations methods (𝑓𝑟 and á𝑁𝐷) obtained from different identiĄcation methods

using the experimental results fatigue tests
∙ the choice of the spacetime method (in this case the 1D+1D method) corresponding to the weak integral

form given by Eq. 3.15
∙ the different system parameters: material and geometry of the specimen, the boundary conditions

expressed by Dirichlet conditions and Neumann conditions with Ćux terms in the weak integral form
of the problem, the IR camera frequency and the loading frequency. These last two parameters allow
the computation of the total time, and the time step which are input parameters of the numerical
simulation.

Figure 29 describes brieĆy the procedure used in 1D+1D modeling of self-heating in this chapter. The
parameters in red are computed using the experimental data.

Fig. 29: Scheme resuming the spacetime modeling of self-heating
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3.5.2 Simulation results

3.5.2.1 Influence of the identification process with 0D methods (A,B,C)

In section 3.3.4, 3 different identiĄcation methods are discussed using the Newtonian 0D method. The
results of these methods are 3 different sets of the time parameter and dissipation term. The latter is either
constant 𝑓𝑟 or slightly varying with time 𝑓𝑟(𝑡) (see in Fig. 26). In the latter, the prediction of temperature
using a spacetime model is consequently more accurate. The implementation of these sets on the 1D+1D
FEniCS script gives maps of temperature function of space and time. From this spacetime simulation,
we can then compute the average of temperature through the dimension of space used in the model (𝑦
direction); for this computation, we use a sampling step of 2 time divisions and then compute the average
over these steps. Consequently we can compare this average to the average of temperature through the
space obtained from experimental data. Results of this comparison are shown in Fig. 30.
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Fig. 30: On the left: a) Evolution of ¯̄̄
𝜃d(𝑡) obtained from experimental measurements and from the different spacetime

simulations as function of the time. On the right: b) Evolution of the relative error, between ¯̄̄
𝜃d(𝑡) obtained from experimental

measurements and from the different spacetime simulations compared to the maximum value of temperature over the time, as
function of the time

A quantitative study between the spacetime simulation results and the experimental data shows their

compatibility, as presented in Fig. 30. Graphs of variation of
¯̄̄
𝜃𝑑(𝑡) through the time obtained by different

methods show a similar behavior trend in the studied time interval, for the different sets of input parameters
values. For method C, where considering time evolution of the dissipation term, graph of the simulation
results and the experimental results nearly superimpose in the studied time interval. This superposition
shows that temperatures resulting from self-heating computed with the spacetime approach are close to
those experimentally measured. This consequently validates the spacetime approach in the modeling of
self-heating for space-averaged temperatures varying with time, providing that the temporal dynamic of the
dissipation term is accurate enough.

The slight differences seen in Fig. 30(a) are surveyed by computation of the model error. The relative

error is computed by Ąnding the difference between
¯̄̄
𝜃𝑑(𝑡)(𝑒𝑥𝑝) obtained from experimental measurements

and
¯̄̄
𝜃𝑑(𝑡)(𝑠𝑖𝑚𝑢) obtained from the different spacetime simulations compared to the maximum value of

temperature over the time, as:

%relative error(𝑡) = 100 ×

∏︀
∐︁

¯̄̄
𝜃𝑑(𝑡)(𝑒𝑥𝑝) ⊗ ¯̄̄

𝜃𝑑(𝑡)(𝑠𝑖𝑚𝑢)

𝑚𝑎𝑥(
¯̄̄
𝜃𝑑(𝑒𝑥𝑝))

⎞
̂︀ (3.19)

The relative error is always less than 12% (in absolute value). This relative error (in absolute value) of
modeling is roughly maximum at the beginning and is decreasing with time and for method C tends toward
zero for the steady-state temperature. For method C, the error is less than 2% (in absolute value). Whatever
the method, the error is mainly due to the step of identiĄcation. Its evolution with time at long times for
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method A and B should be related to the Ąnal value of temperature calculated for those methods. The Ąnal
value of temperature (for 𝑡 ⊃ ∞) is different for the different methods. The error increases outside of the
studied time interval, especially for method A and B. It means that a better identiĄcation for methods A
and B (global optimization with time) could be obtained with more experimental points beyond the Ąnal
time 𝑡𝑓 that would lead to a better Ątting at long times, and thus would reduce the relative error at long
times. At the contrary, method C does not depend on additional points at long times (local calculation
with time of 𝑓𝑟), providing that the time parameter is correctly Ątted. According to these results, averaging
the temperature in the 3 directions of space is relevant when studying only the time dynamics of the
temperature of self-heating through numerical simulations. Eventually, the identiĄcation method C seems
to be more adapted to provide the most accurate input parameters in the studied time interval.

We can also compare the results of the 1D+1D simulation performed with a spacetime model with the
1D simulation performed with a Newtonian model, which has the same input parameters as obtained in
sections 3.3.4.2 or 3.3.4.3. The evolution of temperature through time obtained from these two models for a
given method can then be compared. The relative error of the Newtonian model can also be obtained using
Eq. 3.19. When comparing simulation obtained with method B, the temperature values are almost similar
(magenta to green lines). The calculation with Newtonian or spacetime approach are thus similar in the
case of constant input parameters. However, when considering method C that is more accurate in terms of
the dissipation term, because time-dependent, the Newtonian numerical scheme (Ąnite difference in time) is
not relevant for calculation of the distribution of temperature compared to the spacetime numerical scheme
(blue to orange lines). It proves the interest of the spacetime approach for the temperature evolution in a
self-heating system, from a numerical point of view.

3.5.2.2 Influence of the identification process with 1D method (D)

Moreover, simulations based on data from method D corresponding to the Newtonian 1D method have
been also performed. Figs.31 present respectively the comparison of the evolution of ¯̄𝜃𝑑(𝑦, 𝑡) as function
of the time at different positions 𝑦 = 𝐿

2 = 30 𝑚𝑚 and 𝑦 = 9 𝑚𝑚, and the evolution of ¯̄𝜃𝑑(𝑦, 𝑡) as
function of the space at different times 𝑡 = 147.36 𝑠 and 𝑡 = 𝑡𝑓 = 226.366 𝑠. Graphs present similar
trends showing that the simulation results are close to the experimental ones. Furthermore, the relative
model error is studied and plotted in Figs.32. The relative error in this case is computed by Ąnding the
difference between ¯̄𝜃𝑑(𝑦, 𝑡)(𝑒𝑥𝑝) obtained from experimental measurements and ¯̄𝜃𝑑(𝑦, 𝑡)(𝑠𝑖𝑚𝑢) obtained from
the different spacetime simulations compared to the maximum value of temperature over the time and
space, as:

%relative error(𝑦, 𝑡) = 100 ×

∏︀
∐︁

¯̄𝜃𝑑(𝑦, 𝑡)(𝑒𝑥𝑝) ⊗ ¯̄𝜃𝑑(𝑦, 𝑡)(𝑠𝑖𝑚𝑢)

𝑚𝑎𝑥(
¯̄̄
𝜃𝑑(𝑒𝑥𝑝))

⎞
̂︀ (3.20)

The evolution of the relative error as function of the time shows a peak (around 8.5% in absolute value)
at the beginning of the experiment then decreases and tends to a roughly constant value (less than 3%).
However, its evolution as function of the space shows a different behavior with oscillations. The error value
is less than 5% whatever the time is (in absolute value). It means that the spacetime simulation is relevant
for modeling the space and time variations of temperature. However, its accuracy strongly depends on the
input parameters accuracy and on the choices performed during the identiĄcation step.
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Fig. 31: On the left: a) Evolution of ¯̄𝜃d(𝑡) obtained from experimental measurements and from the spacetime simulation
based on method D as function of the time at different positions. On the right: b) Evolution of ¯̄𝜃d(𝑦) obtained from

experimental measurements and from the spacetime simulation based on method D as function of space at different times
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Fig. 32: On the left: a) Evolution of the relative error between ¯̄𝜃d(𝑡) obtained from experimental measurements and from
spacetime simulation using method D compared to the maximum value of temperature as function of the time at different
positions. On the right: b) Evolution of the relative error between ¯̄𝜃d(𝑦) obtained from experimental measurements and from
the spacetime simulation using method D compared to the maximum value of temperature as function of space at different

times

We also highlight from the results of Fig. 31 the inĆuence of the variability of the input parameters
especially the dissipation 𝑓𝑟 on the results of the simulations. In other words, we are studying the inĆuence
on the simulation results of the choice of the Newtonian identiĄcation method leading either to 𝑓𝑟(𝑡)

(method C) or to 𝑓𝑟(𝑦, 𝑡) (method D). By comparing the time evolution of ¯̄𝜃𝑑(𝑦, 𝑡) and
¯̄̄
𝜃𝑑(𝑡) at 𝑦 = 30 𝑚𝑚

(geometric center of the specimen) obtained from FEniCS spacetime simulations with the evolution obtained
from experimental measurements, it can be noticed that a signiĄcantly better agreement is found when
using parameters values from method D in spacetime simulation than from method C.

3.5.2.3 Sensibility to the thermal diffusivity

Another questioning aspect is the importance of the thermal diffusivity in the heat conduction equation. Thus,
we aim here at studying the effect of the thermal diffusivity on the time evolution and space distribution
of the temperature. We consider respectively values of 𝑎 = 13.6 × 10⊗5 𝑚2.𝑠⊗1, 𝑎 = 13.6 × 10⊗6 𝑚2.𝑠⊗1

(corresponding to the material used in the experiment) and 𝑎 = 13.6 × 10⊗7 𝑚2.𝑠⊗1. Input parameters
á1𝐷 and 𝑓𝑟 obtained from method D are used. Evolutions of ¯̄𝜃𝑑(𝑦, 𝑡) through the time and space obtained
from FEniCS spacetime simulations related to different values of thermal diffusivity are reported in Fig.
33. The temperature proĄles obtained from experimental measurements are also added into the graphs for
comparison.
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Fig. 33: On the left: a) Evolution of ¯̄𝜃d(𝑦 = 30𝑚𝑚, 𝑡) as function of the time obtained respectively from experimental
measurements, spacetime simulations using method D for different diffusivities. On the right: b) Evolution of

¯̄𝜃d(𝑦, 𝑡 = 226.366𝑠) as function of the space obtained respectively from experimental measurements, spacetime simulations
using method D for different diffusivities

Large discrepancies on the temperature proĄles are observed, emphasizing the important role played by
the thermal diffusivity in the heat conduction equation. The thermal diffusivity term occurs in the Laplacian
term. This term strongly inĆuences the distribution of intrinsic dissipation in the hourglass specimen, which
reĆects the distribution of stress resulting from the fatigue tests. This conclusion is also supported by the
identiĄcation step, for which the thermal diffusivity has strong inĆuence on the accuracy when spatial
distribution of temperature (method D) is considered. The resulting behaviors are consistent with the heat
conduction modelŠs logic: for 𝑎 = 13.6 × 10⊗5 𝑚2/𝑠, the heat diffuses faster than for 𝑎 = 13.6 × 10⊗6 𝑚2/𝑠,
which leads to lower temperatures at a certain position of the specimen. Similarly, for 𝑎 = 13.6 × 10⊗7 𝑚2/𝑠

the heat diffuses slower than for 𝑎 = 13.6 × 10⊗6 𝑚2/𝑠, which leads to higher temperatures at a certain
position of the specimen.

Even if the thermal diffusivity of the material is small (compared to other materials), it has a crucial
effect on the prediction of the temperature evolution of the specimen. Especially when looking for spatial
distribution of the temperature, it has to be taken into account both in the identiĄcation step (for an
accurate space and time distribution of the heat source term) and in the simulation step.

3.6 Conclusions

This chapter investigates the use of the spacetime approach in the modeling of self-heating phenomenon.
The self-heating phenomenon occurs particularly during fatigue tests. The mechanical transformation
during these tests causes thermal changes and especially dissipation. We investigate the transformation by
measurement of the variations of temperature and its analyze for VHCF tests. Indeed, gigacyclic fatigue
tests are studied in order to obtain signiĄcant values of Ąnite variations of temperature. Consequently
we focus on the study of intrinsic dissipation related to self-heating. Data of the resulting variation of
temperature have been obtained using an IR camera and then processed with different data treatments.

To compute these variations in a spacetime domain, we require the identiĄcation of intrinsic dissipation
term and characteristic time parameter. Many methods are possible in order to compute these parameters.
We have studied different methods of identiĄcation especially for the intrinsic dissipation, either by direct
calculation with the Newtonian heat equation or by optimization of an analytic solution in speciĄc cases.
The obtained values depending on time and/or space are consistent with bibliography for the studied
material (C65 steel). The different methods present slight discrepancies. The heat source term is roughly
time independent, but not strictly, when averaged over the space. Its variation with space has also been
obtained when considering the 1D method. Such a method provides more information. However, its variation
is difficult to deeply analyze in terms of material mechanisms. The trend is directly related to the mechanical
loading leading to self-heating for the geometry of the specimen, because of the stress variation along its
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length. In fact, the hourglass specimen geometry leads to the stress variation hence to the variation of
temperature through the length, since a constant fatigue load is applied on surfaces varying along the length
of the specimen.

We have also proposed spacetime variational forms directly adapted for modeling the self-heating. The
resulting spacetime simulations from the obtained model give the variations of temperature through space
and time, by use of a suitable programming environments (e.g. FEniCS project). In this chapter, we choose
to use the 1D+1D method for application to the self-heating. Simulations of the spacetime model have been
compared with the experimental data measurements. Results show a good agreement with slight differences
deriving from thermal inertia and/or approximation of smoothing of the experimental data (especially 𝑓𝑟).
Agreement is correct when comparing fully space averaged values of temperature, whatever the identiĄcation
method is. It means that averaged values of the parameters identiĄed with less accurate model than the one
used for simulation are relevant to obtain a further reliable, accurate and quick simulations.

Considering spatial dependence of the dissipation, through the use of thermal diffusivity in the
identiĄcation step, is also required for a correct description of the temperature variations along the sample
length, provided that the spatial boundary condition are realistic enough. More accurate results could be
obtained by complexifying the identiĄcation step. The effect of thermal diffusivity on the 1D+1D simulations
has also directly been studied and shows a strong inĆuence on the results when considering space variation
of the temperature and of the heat source term.

The agreement between simulation and experimental results leads to admit the spacetime modeling
introduced in the manuscript as a convenient approach to describe the self-heating phenomenon especially
when parameters are time dependent. The detailed study of self-heating induced by gigacylic fatigue, in
this chapter, is a concrete example. More accuracy could be obtained by modeling the mechanical behavior
and adding explicitly the thermomechanical couplings that will be investigated in the following chapters
(Chapters 4 and 5). More research could be done in order to provide a complete spacetime approach in
modeling self-heating by Ąnding a spacetime method for the parameters identiĄcation step.
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Part 2: Modeling of thermo-mechanical behavior in materials
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4 Bibliographic review on mechanical modeling and illustrations

for large deformations

4.1 Introduction

In part 1 of the manuscript, spacetime models of heat conduction are developed and applied to a thermal
engineering application and a study of self-heating. In this second part, spacetime thermomechanical models
will be developed based on the spacetime thermal models already obtained and taking into account the
mechanical stress.
In this Ąrst chapter of part 2, mechanical models taking into account the large deformation of materials are
introduced. A deformation is generally deĄned as the variation of form (linear/angular length) thus the
variation of a scalar product [Sidoroff]. Large deformations are characterized by a difference between the
Lagrangian and Eulerian measure of the variables (see section 1.4.4). Geometrical/kinematics non-linearities
with respect to the reference conĄguration are not neglected in this case. Practically, deformations not
negligible with respect to 1 are considered as large deformations.

First, the existing mechanical models built in a Newtonian framework are reviewed. Numerical simula-
tions using these models are performed using FEniCS project. The results of the corresponding models
will be used for comparison between Newtonian and spacetime models further developed (see chapter 5).
The difficulties faced while modeling the mechanical or thermomechanical behaviors of material considering
large deformations in a Newtonian framework are then listed: difficulties in modeling non-linear classical
behaviors written in rate forms (plasticity, viscosity, large deformations or a combination of non-linearity)
and respecting material objectivity (see section 4.3). These problems can be alleviated by means of spacetime
thermodynamical modeling. Spacetime models introduced by previous studies are reviewed. In order to
overcome the aforementioned problems of the Newtonian models and the existing spacetime models, a
spacetime thermodynamical approach will be proposed in the next chapter of this part. It extends the one
used in part 1 by taking into account the mechanical stress.

4.2 Newtonian thermomechanical models

We Ąrst review existing Newtonian mechanical/thermomechanical models built in the classical Newtonian
continuum. Among the models, we will focus on the elastic, hyperelastic, thermoelastic and elastoplastic
models. In this section, the weak integral forms of these models are written.

4.2.1 Strain tensors for small and large deformations

One important parameter in modeling Newtonian behavior is the deĄnition of Newtonian strain. The
concept of strain is used to evaluate variation of displacement with respect to a reference length
[Belytschko et al.,2006]. The models are developed in cases of small and large deformations which require
the introduction of different deĄnitions of strain.

In a speciĄc frame, it is possible to specify the positions of each of the particles of the material body.
The coordinates of the particles in the reference conĄguration are noted 𝑍𝑖, which deĄnes the material or
Lagrangian coordinates (see section 1.4.4). After deformation, the current conĄguration is deĄned at the
current time 𝑡, with the spatial or Eulerian coordinates 𝑧𝑖 (see section 1.4.4). Both the material and spatial
conĄgurations are usually expressed using the same frame (e𝑖, Ý𝑖, 𝑡). The deformation of the continuum can
thus be described using 𝑍𝑖 or 𝑧𝑖.

The deformation gradient 𝐹 𝑖𝑗 and its inverse 𝐹 ′𝑖
𝑗 can then be deĄned as:

𝐹 𝑖𝑗 =
𝜕𝑧𝑖

𝜕𝑍𝑗
(4.1)
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𝐹 ′𝑖
𝑗 =

𝜕𝑍𝑖

𝜕𝑧𝑗
(4.2)

From this deformation gradient, several strain tensors may then be deĄned on the reference or spatial
conĄgurations.

In the small deformation theory, the Eulerian strain tensor is linearized such as [Bertram,2012]:

𝜀𝑖𝑗 =
1
2

(𝐹 𝑖𝑗 + 𝐹 𝑖𝑗) ⊗ 𝐼𝑖𝑗 (4.1)

where 𝜀𝑖𝑗 is the symmetric strain tensor (symmetric gradient of displacement), and 𝐹 𝑖𝑗 corresponds to the
transpose of 𝐹 𝑖𝑗 . Another deĄnition for the small strain can be expressed using the displacement vector
𝑑𝑒𝑝𝑖 [Brunet,2009]:

𝜀𝑖𝑗 =
1
2

(∇𝑗𝑑𝑒𝑝
𝑖 + ∇𝑖𝑑𝑒𝑝

𝑗) (4.2)

The relationship between 𝑑𝑒𝑝𝑖 and 𝐹 𝑖𝑗 can be expressed by:

𝐹 𝑖𝑗 = 𝐼𝑖𝑗 + ∇𝑗𝑑𝑒𝑝
𝑖 (4.3)

For large deformations, a Lagrangian description can be used. The Newtonian right Cauchy-Green deforma-
tion [Bertram,2012, Lai et al.,2010] is given by:

𝐶𝑖𝑗 = 𝐹 𝑎𝑖 𝐹
𝑏
𝑗 𝐼𝑎𝑏 (4.4)

The Green-Lagrange strain tensor is then deĄned as:

𝐸𝑖𝑗 =
1
2

(𝐶𝑖𝑗 ⊗ 𝐼𝑖𝑗) (4.5)

For large deformations, a Eulerian description can also be used. The Newtonian left Cauchy-Green deforma-
tion [Bertram,2012] is given by:

Ñ𝑖𝑗 = 𝐹 𝑖𝑎𝐹
𝑗
𝑏 𝐼
𝑎𝑏 (4.6)

Its inverse is given by:
𝑏𝑖𝑗 = 𝐹 ′

𝑖
𝑎𝐹 ′

𝑗
𝑏𝐼𝑎𝑏 (4.7)

The Euler-Almansi strain tensor is then deĄned as:

𝑒𝑖𝑗 =
1
2

(𝐼𝑖𝑗 ⊗ 𝑏𝑖𝑗) (4.8)

In this section we will designate by the tensor "𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗" indifferently one of these 3 types of strain. To
represent variations with respect to time, several quantities are deĄned. First, we introduce the Newtonian
velocity as this parameter will later interfere generally in the projection on the space domain of: the balance
of molecules number and the components of energy four-tensor in the spacetime approach. In an inertial
frame, it is deĄned as:

𝑣𝑖 =
𝑑𝑧𝑖

𝑑𝑡
(4.9)

We also introduce the deĄnition of the variation with time of the strain which is used for example in
modeling the rate-form constitutive models. Generally, we can deĄne the velocity gradient as the derivative
of the velocity, denoted 𝐿𝑖𝑗 and such that:

𝐿𝑖𝑗 =
𝑑𝐹 𝑖𝑎
𝑑𝑡

𝐹 ′

𝑗
𝑎 (4.10)

The rate of deformation and spin then correspond to the symmetric and antisymmetric parts of the velocity
gradient [Bertram,2012] and are respectively:

𝑑𝑖𝑗 =
1
2

(𝐿𝑖𝑗 + 𝐿𝑗𝑖) (4.11)
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æ𝑖𝑗 =
1
2

(𝐿𝑖𝑗 ⊗ 𝐿𝑗𝑖) (4.12)

Note that the operator
𝑑(.)
𝑑𝑡

(in Eq. 4.9 and Eq. 4.10) corresponds to a total derivative in the Newtonian

space and is also called the material derivative deĄned as:

𝑑(.)
𝑑𝑡

=
𝜕(.)
𝜕𝑡

+ 𝑣𝑖
𝜕(.)
𝜕Ý𝑖

(4.13)

Note that this operator is an expression of a variation with respect to time and it has to be applied in
an inertial frame to be properly used. Otherwise, Christoffel symbols have to be taken into account. In
other words, this operator is not frame-indifferent. In classical Newtonian mechanics and in spacetime
mechanics, many objective transports are proposed to Ąx the non-objectivity of total derivatives [Venturi,2009,
Eshraghi et al.,2013, Rouhaud et al.,2013]. The covariant derivative is one of them, thus the material
derivative will be replaced by the covariant derivative while developing covariant models (see section 2.2.7).

Generally, the variation of stress for a mechanical body at equilibrium i.e. that experiences neither
linear acceleration nor angular acceleration, under CauchyŠs general theory of stress, can be expressed by
[Ugural and Fenster,2003]:

⊗ ∇𝑗à
𝑖𝑗 = ̃︀𝜌𝑐𝑓 𝑖𝑀 (4.14)

where à𝑖𝑗 is the Cauchy Newtonian stress tensor, 𝑓 𝑗𝑀 is the mechanical body force per unit volume.
Note that the subscript "𝑀" corresponds to mechanical. Eq. 4.14 corresponds to the equation of mechanical
balance.

Further, we will investigate Newtonian thermomechanical/mechanical models taking into account the
following assumptions:
∙ Thermomechanical/mechanical models are built for continuous media
∙ Thermomechanical couplings (thermoelastic coupling corresponding to the thermal expansion) are taken

into account in the modeling.
∙ The hypothesis of local thermodynamic equilibrium is assumed.
∙ Material coefficients are constant (∀𝑡, ∀𝑥𝑖) and thus are temperature independent except if mentioned

otherwise.
∙ Materials are assumed to be homogeneous and isotropic.
∙ Gravitation could be considered under the Newtonian hypothesis, but in this manuscript it is not.

4.2.2 Elastic constitutive models

The stress and strain inside a continuous elastic material are connected by a linear relationship that is
analogous to HookeŠs spring model, and is often referred to by that name [Ugural and Fenster,2003].

The equation governing small elastic deformations of a body Ω can be written as:

à𝑖𝑗 = Λ𝜀𝑎𝑏𝐼𝑎𝑏𝐼
𝑖𝑗 + 2Û𝜀𝑖𝑗 (4.15)

where Λ =
𝐸 Ü

(1 + Ü)(1 ⊗ 2Ü)
and Û =

𝐸

2(1 + Ü)
are LaméŠs elasticity parameters for the material in Ω, 𝐸

is YoungŠs modulus, Ü is Poisson coefficient and 𝐼𝑖𝑗 is the identity tensor.
The modern theory of elasticity generalizes HookeŠs model to say that the strain (as well as the

deformation i.e. stretch) of an elastic object or material is proportional in a tensorial/matricial point of
view to the stress applied to it.

This linear model can be generalized to the case of large deformations.



98

Characteristics of the elastic model in light of large deformation using Green-Lagrange

strain or Euler-Almansi strain

Eq. 4.15 can be transformed to express the elastic behavior for large deformations using Green-Lagrange
strain (Eq. 4.5) or Euler-Almansi strain (Eq. 4.8). This can be done by the replacement of the small strain
by the Green-Lagrange strain or Euler-Almansi strain. In this case:
∙ we consider large deformation instead of small deformation. Therefore, the undeformed and deformed

conĄgurations of the continuum are signiĄcantly different requiring a clear distinction between them
∙ using Green-Lagrange strain, we consider a Lagrangian description of the motion of the continuum
∙ using Euler-Almansi strain, we consider an Eulerian description of the motion. Thus parameters of the

elastic model, e.g. density, are dependent on the current conĄguration.
∙ for small deformations or large deformations deĄned using Euler-Almansi strain, the stress (see Eq.

4.16) corresponds to Cauchy stress tensor. However, in the case of elastic constitutive models for large
deformations deĄned using Green-Lagrange strain, the stress (see Eq. 4.16) is a second Piola-Kirchhoff
stress which can be expressed as: à𝑖𝑗𝑃𝐾2 = 𝐽 𝐹 ′

Ð
𝑖 àÐÑ𝑐 (𝐹 ′

Ñ
𝑗)𝑇 , where 𝐽 is the determinant of 𝐹 𝑖𝑗 and àÐÑ𝑐

is the Cauchy stress tensor.

The generalized form of Eq. 4.15 can be written:

à𝑖𝑗 = Λ𝑠𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝐼𝑎𝑏𝐼
𝑖𝑗 + 2Û𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 (4.16)

The 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor will then be replaced with the corresponding type of strain (Eqs. 4.2,4.5 or 4.8) to obtain
the elastic constitutive models corresponding respectively to small deformation and large deformations
deĄned using Green-Lagrange (Kirchhoff Saint-Venant model) or Euler-Almansi strain tensors [Bertram,2012,
Sidoroff, Lejeunes,2014]. In case of small deformations and large deformations using Euler-Almansi strain,
we have à𝑖𝑗 = à𝑖𝑗𝑐 . In case of large deformations using Green-Lagrange strain, we have à𝑖𝑗 = à𝑖𝑗𝑃𝐾2.

Newtonian weak integral form of the elastic models

In order to solve a mechanical problem using the proposed Newtonian elastic model with a Ąnite element
method, we write the weak integral of the problem [Oudin,2008]. The weak integral form is obtained by
multiplying Eq. 4.14 by an arbitrary displacement 𝑑𝑒𝑝*

𝑖 ∈ 𝑉𝑑𝑒𝑝i
, considered as a test function or virtual

displacement Ąeld (𝑉𝑑𝑒𝑝i
is the displacement function space), and then integrating it on the 3D volume æ:

⊗
∫︁

æ

(∇𝑗à
𝑖𝑗)𝑑𝑒𝑝*

𝑖 𝑑𝑉æ =
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ,∀𝑑𝑒𝑝*

𝑖 (4.17)

Since ∇𝑗à
𝑖𝑗 contains second-order derivatives of the primary unknown 𝑑𝑒𝑝𝑖, we integrate this term by

parts:

⊗
∫︁

æ

(∇𝑗à
𝑖𝑗)𝑑𝑒𝑝*

𝑖 𝑑𝑉æ =
∫︁

æ

à𝑖𝑗∇𝑗𝑑𝑒𝑝
*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æ

(à𝑖𝑗𝑛𝑗)𝑑𝑒𝑝*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑗 (4.18)

where 𝑛𝑗 is the outward unit normal to the 3D surface. The quantity à𝑖𝑗𝑛𝑗 is known as the stress vector
at the boundary, and is often prescribed as a boundary condition [Langtangen and Logg,2017]. We here
assume that it is prescribed on a part 𝜕æ𝑇M

of the boundary as a Neumann boundary condition: à𝑖𝑗𝑛𝑗 = 𝑇 𝑖𝑀 .
Note that the subscript "𝑀" corresponds to mechanical. On the remaining part of the boundary, we assume
that the value of the displacement is given as a Dirichlet condition therefore the associated terms in the
integral are null. Thus, for Neumann-Dirichlet boundary conditions we obtain:

∫︁

æ

à𝑖𝑗∇𝑗𝑑𝑒𝑝
*

𝑖 𝑑𝑉æ =
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ +
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑖 (4.19)

We then obtain a variational form function of 𝑑𝑒𝑝𝑖 and 𝑑𝑒𝑝𝑖*, such that:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ

à𝑖𝑗(𝑑𝑒𝑝𝑖)∇𝑗𝑑𝑒𝑝
*

𝑖 𝑑𝑉æ ⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑖 (4.20)
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One can show that the inner product of a symmetric tensor 𝐴 and an antisymmetric tensor 𝐵 vanishes.
If we express ∇𝑗𝑑𝑒𝑝

*

𝑖 as a sum of its symmetric and antisymmetric parts, only the symmetric part will
remain in the product à𝑖𝑗(𝑑𝑒𝑝𝑖)∇𝑗𝑑𝑒𝑝

*

𝑖 since à𝑖𝑗(𝑑𝑒𝑝𝑖) is a symmetric tensor (as a consequence of to the
conservation of angular momentum [Brunet,2009]). Thus the replacement of the terms by their values rise
to the slightly different variational form:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ

à𝑖𝑗(𝑑𝑒𝑝𝑖)𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗(𝑑𝑒𝑝*

𝑖 )𝑑𝑉æ ⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑗 (4.21)

By replacing 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 by the deĄnitions of strain previously introduced in section 4.2.1, we obtain:
∙ In the small deformation theory [Bertram,2012, Lejeunes,2014]:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ

à𝑖𝑗𝑐 (𝑑𝑒𝑝𝑖)𝜀𝑖𝑗(𝑑𝑒𝑝*

𝑖 )𝑑𝑉æ ⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑖 (4.22)

∙ In a Lagrangian description of large deformations [Bertram,2012, Lejeunes,2014]:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ

à𝑖𝑗𝑃𝐾2(𝑑𝑒𝑝𝑖)𝐸𝑖𝑗(𝑑𝑒𝑝*

𝑖 )𝑑𝑉æ ⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑖 (4.23)

∙ In an Eulerian description of large deformations [Bertram,2012, Lejeunes,2014]:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ(𝑡)

à𝑖𝑗𝑐 (𝑑𝑒𝑝𝑖)𝑒𝑖𝑗(𝑑𝑒𝑝*

𝑖 )𝑑𝑉æ ⊗
∫︁

æ(𝑡)

̃︀𝜌𝑐(𝑑𝑒𝑝𝑖)𝑓 𝑖𝑀𝑑𝑒𝑝*

𝑖 𝑑𝑉æ ⊗
∫︁

𝜕æTM
(𝑡)

𝑇 𝑖𝑀𝑑𝑒𝑝
*

𝑖 𝑑𝑆æ,∀𝑑𝑒𝑝*

𝑖

(4.24)
where æ(𝑡) and 𝜕æ𝑇M

(𝑡) are respectively the domain of integration and the boundary where Neumann
boundary conditions are applied, that both depend on time.

We remind that in case the Eulerian description is used, ̃︀𝜌𝑐 is a function of 𝑑𝑒𝑝𝑖. We also note that the
non-linearity of Eq. 4.23 and Eq. 4.24 caused by the introduction of large deformations, lead to the necessity
of use of a non-linear resolution type of resolution methods when implemented for numerical simulation (in
this manuscript this is done using FEniCS project).

𝜕æ is the space boundary of the domain. It is divided into 𝜕æ𝑑𝑒𝑝i
where the Dirichlet conditions on

displacement are applied and 𝜕æ𝑇M
where the surface force is applied. They should respect: 𝜕æ𝑑𝑒𝑝i

∪𝜕æ𝑇M
=

𝜕æ and 𝜕æ𝑑𝑒𝑝i
∩ 𝜕æ𝑇M

= ∅.
A function representing the space boundary conditions is denoted 𝑓𝑆𝐶 . Dirichlet boundary conditions

of this problem can then be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i
) = 𝑑𝑒𝑝𝑖(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i

, 𝑡) and Neumann boundary
conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑇M

) = 𝑇 𝑖𝑀 (𝑥𝑖 ∈ 𝜕æ𝑇M
, 𝑡).

4.2.3 Thermoelastic constitutive models

Thermoelastic models are used in modeling reversible thermomechanical behaviors, for example when mod-
eling the behavior of near-incompressible elastomers [Nicholson and Lin,1996]. The linearized thermoelastic
constitutive equations (for small deformations) are given by:

à𝑖𝑗 = Λ𝜀𝑎𝑏𝐼𝑎𝑏𝐼
𝑖𝑗 + 2Û𝜀𝑖𝑗 ⊗ 3ÙÐ(𝜃 ⊗ 𝜃0)𝐼𝑖𝑗 (4.25)

̃︀𝜌𝑐Ö𝑐 = ̃︀𝜌𝑐Ö𝑐0 +
̃︀𝜌𝑐𝑐𝑚𝑣
𝜃0

(𝜃 ⊗ 𝜃0) + 3ÙÐ𝜀𝑖𝑗𝐼𝑖𝑗 (4.26)

where Ù = Λ + 2Û/3, Ð is the thermal expansion coefficient and 𝜃0 is the reference temperature. In
addition to that, we can derive from Eq. 1.20 the heat equation by replacing the total derivative by a
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covariant derivative and using the deĄnition of entropy (Eq. 4.26) when the deformation is null:

𝜃0 ̃︀𝜌𝑐
𝑑Ö𝑐
𝑑𝑡

⊗ ∇𝑖ã
𝑖 = 0 (4.27)

where isotropic FourierŠs model of heat conduction is considered to calculate ã𝑖 = ⊗Ú𝐼𝑖𝑗∇𝑗𝜃. As seen in Eq.
4.27, we suppose that no volume heat source is applied to æ.

Newtonian weak integral form of the thermoelastic models

Eqs. 4.26 and 4.27, together with the expression of heat Ćux in FourierŠs model and with replacing the
time derivatives by an implicit Euler scheme lead to the thermal weak integral form of the problem in the
inertial proper frame at the time increment 𝑛+ 1:

𝑊 (𝜃, 𝜃*) =
∫︁

æ

⎤
̃︀𝜌𝑐𝑐𝑚𝑣

𝜃𝑛+1 ⊗ 𝜃𝑛

Δ𝑡
+ 3ÙÐ𝜃0

(𝜀𝑖𝑗)𝑛+1 ⊗ (𝜀𝑖𝑗)𝑛

Δ𝑡
𝐼𝑖𝑗

⎣
𝜃*𝑑𝑉æ +

∫︁

æ

Ú𝐼𝑖𝑗
𝜕𝜃𝑛+1

𝜕𝑥𝑖
𝜕𝜃*

𝜕𝑥𝑗
𝑑𝑉æ

⊗
∫︁

𝜕æq

Ú𝐼𝑖𝑗
𝜕𝜃𝑛+1

𝜕𝑥𝑖
𝜃*𝑛𝑗𝑑𝑆æ,∀𝜃* (4.28)

where 𝜃 and 𝜀𝑖𝑗 are the unkown Ąelds of temperature and strain at the time increment 𝑛+ 1. Note that
in section 2.7.4 a similar Newtonian model is used under the assumption that no mechanical stress nor
surface heat Ćux are applied. Contrarily, in section 2.7.4 a volume heat source is taken into consideration as
well as relaxation term corresponding to the use of a Cattaneo-like heat conduction model. Moreover, in
[Lejeunes,2014, Farhat et al.,1991], a similar thermoelastic model was found. The generalisation of Eq. 4.28
in order to include other deĄnitions of strain for application to large deformation, is then:

𝑊 (𝜃, 𝜃*) =
∫︁

æ

⎤
̃︀𝜌𝑐𝑐𝑚𝑣

𝜃𝑛+1 ⊗ 𝜃𝑛

Δ𝑡
+ 3ÙÐ𝜃0

(𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗)𝑛+1 ⊗ (𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗)𝑛

Δ𝑡
𝐼𝑖𝑗

⎣
𝜃*𝑑𝑉æ

+
∫︁

æ

Ú𝐼𝑖𝑗
𝜕𝜃𝑛+1

𝜕𝑥𝑖
𝜕𝜃*

𝜕𝑥𝑗
𝑑𝑉æ ⊗

∫︁

𝜕æq

Ú𝐼𝑖𝑗
𝜕𝜃𝑛+1

𝜕𝑥𝑖
𝜃*𝑛𝑗𝑑𝑆æ,∀𝜃* (4.29)

The (𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗)𝑛+1 tensor will then be replaced with the corresponding type of strain (Eqs. 4.2,4.5 or
4.8). In case the Eulerian description is used, ̃︀𝜌𝑐 is a function of 𝑑𝑒𝑝𝑖. In addition to the previous thermal
weak form, the mechanical weak form is as expressed in Eq. 4.21 that has to be simultaneously resolved. For
simpliĄcation, the unknown temperature 𝜃𝑛+1, respectively 𝜃𝑛 are replaced by the temperature variation
Δ𝜃𝑛+1 = 𝜃𝑛+1 ⊗ 𝜃0, respectively Δ𝜃𝑛 = 𝜃𝑛 ⊗ 𝜃0 which appear naturally in the stress constitutive relation
(Eq. 4.25). Then, the solution of the coupled problem at 𝑡 = 𝑡𝑛+1 is now (𝑑𝑒𝑝𝑛+1

𝑖 ,Δ𝜃𝑛+1)=(𝑑𝑒𝑝𝑖,Δ𝜃).
The spatial domain is divided into 𝜕æ𝑑𝑒𝑝i

where the Dirichlet conditions on displacement are applied and
𝜕æ𝑇M

where the surface force is applied. They should respect: 𝜕æ𝑑𝑒𝑝i
∪𝜕æ𝑇M

= 𝜕æ and 𝜕æ𝑑𝑒𝑝i
∩𝜕æ𝑇M

= ∅.
In addition to that, Dirichlet conditions on temperature are applied on 𝜕æ∆𝜃.
Dirichlet boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i

) = 𝑑𝑒𝑝𝑖(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i
, 𝑡),

𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ∆𝜃) = Δ𝜃(𝑥𝑖 ∈ 𝜕æ∆𝜃, 𝑡) on the space and 𝑓𝑇𝐶(𝑡 = 𝑡0) = Δ𝜃(𝑡 = 𝑡0) on the time. Neumann
boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑇M

) = 𝑇 𝑖𝑀 (𝑥𝑖 ∈ 𝜕æ𝑇M
, 𝑡).

4.2.4 Hyperelastic constitutive models

The behavior of some materials can not be accurately described using the linear elastic models reviewed
in section 4.2.2. Many examples can be found in the literature such as rubber materials [Muhr,2005],
elastomers, biological tissues [Gao et al.,2014]... Moreover elastic models may not derive from a potential
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energy, consequently the deformation may depend on the path of transformation. Such a behavior is
dissipative hence irreversible. This shows the need to develop hyperelastic models [Lejeunes,2014].

A material is called hyperelastic, if a differentiable function of the deformation gradient 𝐹 called
speciĄc strain energy exists and the speciĄc stress power is equal to the rate of this function [Bertram,2012].
Consequently, the mechanical behavior is totally deĄned by the speciĄc strain energy which is a form
of potential energy. Moreover, the hyperelastic behavior is reversible and, as a deĄnition, no mechanical
dissipation occurs with such a behavior [Lejeunes,2014].

This notion is also called perfect elasticity or "Green" elasticity. According to [Bertram,2012], any
hyperelastic material is elastic, however the inverse is not true.

By deĄnition, boundary value problems for hyperelastic media can be expressed as minimization
problems [Bechir et al.,2006, Khajehsaeid,2013]. The total potential energy to minimize is given by:

𝑃 =
∫︁

æ

̃︀𝜌𝑐Ψ(𝑑𝑒𝑝𝑖) dæ ⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀𝑑𝑒𝑝𝑖 dæ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀𝑑𝑒𝑝𝑖 d𝑆æ (4.30)

where Ψ is the speciĄc free energy, 𝑓 𝑖𝑀 is a body force (per unit reference volume) and 𝑇 𝑖𝑀 is a surface
force (per unit reference area).

At minimum points of 𝑃 , the directional derivative of 𝑃 with respect to change in 𝑑𝑒𝑝𝑖:

𝐿(𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
𝑑𝑃 (𝑑𝑒𝑝𝑖 + 𝜖 𝑑𝑒𝑝*

𝑖 )
𝑑𝜖

♣𝜖=0 (4.31)

is equal to zero for all 𝑑𝑒𝑝𝑖 ∈ 𝑉𝑑𝑒𝑝i
:

𝐿(𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) = 0,∀𝑑𝑒𝑝𝑖 ∈ 𝑉𝑑𝑒𝑝i
(4.32)

To minimize the potential energy, a solution of the variational equation above is sought. Depending
on the speciĄc free energy Ψ, 𝐿(𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) can be nonlinear in 𝑑𝑒𝑝𝑖. In such a case, the Jacobian of 𝐿 is
required in order to solve this problem using Newton-Raphson method [Galántai,2000]. The Jacobian of 𝐿
is deĄned as [Langtangen and Logg,2017]:

𝐴(𝑑𝑒𝑝𝑖; Δ𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) =
𝑑𝐿(𝑑𝑒𝑝𝑖 + 𝜖Δ𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 )
𝑑𝜖

♣𝜖=0 (4.33)

where Δ𝑑𝑒𝑝𝑖 is the variation of 𝑑𝑒𝑝𝑖 deĄning the direction of derivative.

Newtonian weak integral form of the hyperelastic models

The weak integral form is expressed by:

𝑊 (𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) = 𝐴(𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) ⊗ 𝐿(𝑑𝑒𝑝𝑖, 𝑑𝑒𝑝*

𝑖 ) (4.34)

The speciĄc strain energy for a Hooke-like model is:

̃︀𝜌𝑐Ψ(𝑑𝑒𝑝𝑖) =
Λ
2

(︀
𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 𝐼𝑖𝑗

)︀2
+ Û 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 (4.35)

In case the Eulerian description is used, ̃︀𝜌𝑐 is a function of 𝑑𝑒𝑝𝑖. The 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor will then be replaced
with the corresponding type of strain (Eqs. 4.2,4.5 and 4.8). 𝜕æ is the space boundary of the domain. It is
divided into 𝜕æ𝑑𝑒𝑝i

where the Dirichlet conditions on displacement are applied and 𝜕æ𝑇M
where the surface

force is applied. They should respect: 𝜕æ𝑑𝑒𝑝i
∪ 𝜕æ𝑇M

= 𝜕æ and 𝜕æ𝑑𝑒𝑝i
∩ 𝜕æ𝑇M

= ∅.
Dirichlet boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i

) = 𝑑𝑒𝑝𝑖(𝑥𝑖 ∈ 𝜕æ𝑑𝑒𝑝i
, 𝑡)

and Neumann boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑇M
) = 𝑇 𝑖𝑀 (𝑥𝑖 ∈ 𝜕æ𝑇M

, 𝑡).
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4.2.5 Illustration of the elastic and hyperelastic behaviors using a Hooke-like model

4.2.5.1 Description of the problem

Let us consider a beam geometry Ąxed at its left boundary and subjected to a traction load applied in the
form of stretch at its right boundary (see Fig. 34). Let us deĄne the stretch as a process parameter evolving
linearly with time and that is imposed as an input for the calculation: ä(𝑡) = 𝑑𝑒𝑝𝑛/𝐿 𝑡 in the 𝑥-direction,
where 𝑑𝑒𝑝𝑛 is the increment of displacement at each increment of time, chosen as a constant, 𝑑𝑒𝑝𝑛 = 0.1𝑚
for this example, 𝐿 is the length of the beam and 𝑡 is the time varying between 0 and 𝑡𝑚𝑎𝑥. 𝑡𝑚𝑎𝑥 is the
time at which the maximum loading of stretch is applied.

Fig. 34: Beam subjected to traction load.

Let us consider that the beam has the behavior of a Hooke-like model. We will investigate this model
in case of elasticity (Eq. 4.21) and hyperelastacity (Eq. 4.34), consequently we assume that the yield stress
of the material is not reached such that no plasticity occurs. Then for each case, we will simulate traction
using small strain (Eq. 4.2), Green-Lagrange strain (Eq. 4.5) and Euler-Almansi strain (4.8).

In the following example, we are applying a signiĄcant value of ä(𝑡) to the beam, as it enables us to
clearly show the different behaviors of evolution of the stress through time for the different models. Time is
here introduced as proportional to loading.

4.2.5.2 Weak integral forms and boundary conditions corresponding to the elastic and hyperelastic

modeling of the beam subjected to traction

In order to simulate the model described in section 4.2.5.1 using FEniCS project, we need to explicit the
weak integral forms related to the behaviors simulated and the boundary conditions corresponding to the
studied case. Eqs. 4.22, 4.23 and 4.24 represent the weak integrals forms of elastic models using respectively
small strain, Green-Lagrange strain and Euler-Almansi strain.

For the hyperelastic models, Eq. 4.34 represents the weak integral form together with Eq. 4.35, where
the 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor is respectively replaced with the corresponding type of strain (Eqs. 4.2, 4.5 and 4.8) to
obtain models using respectively small strain, Green-Lagrange strain and Euler-Almansi strain.

For the boundary conditions, all the models are constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦) = (0, 0) on the clamped boundary of the beam.
∙ ∀𝑦 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦) = (ä(𝑡) × 𝐿, 0) = (0.1 𝑡, 0) on the right boundary of the beam.

4.2.5.3 Parameters of the numerical simulation

As follows are the input parameters of the numerical simulation of the Hooke-like model subjected to
traction:



103

Parameter Value

Geometry Length 𝐿 = 1 (𝑚)

Width 𝑊 = 0.1 (𝑚)

Thickness 𝐻 = 0.1 (𝑚)

Material Young’s modulus 𝐸 = 250000 (𝑀𝑃𝑎)

Poisson coefficient 𝜈 = 0 (𝑎𝑑𝑖𝑚)

Density ̃︀𝜌c = 7850 (𝑘𝑔/𝑚3)

Thermal expansion 𝛼 = 0 (𝐾−1)
Thermal conductivity 𝜆 = 500000 (𝑤.𝑚−1.𝐾−1)

Specific heat capacity at constant 3D volume 𝒞mω = 520 (𝐽.𝑘𝑔−1.𝐾−1)

Mesh and time stepping Number of nodes through the 𝑥−direction of space 𝑁x = 100 (𝑎𝑑𝑖𝑚)

Number of nodes through the 𝑦−direction of space 𝑁y = 10 (𝑎𝑑𝑖𝑚)

Number of loading steps 𝑁step = 40 (𝑎𝑑𝑖𝑚)

Loading Time at which the maximum loading is applied 𝑡max = 10 (𝑠)

Stretch applied on the right boundary of the beam 𝜒(𝑡) = 0.1 𝑡

Volume force vector 𝑓M = (0, 0) (𝑁)

Surface force vector 𝑇M = (0, 0) (𝑁)

Tab. 11: Parameters of the numerical simulation of the beam subjected to traction (except for the stretch on the right
boundary, all other paratemers are applied in all the integration domain 𝜔)

The space mesh of the model (2D triangular) is given in Fig. 35. In the next section the evolution of
à11 is given at the center of the beam marked by the red dot.

Fig. 35: Meshing used in the numerical simulation of the beam subjected to traction load.

Below (Fig. 36) is the result of evolution of à11
𝑐 at the center of the beam, as a function of time

(thus loading increment) for Newtonian elastic models (using small deformation, Green-Lagrange large
deformation and Euler-Almansi large deformation) and the hyperelastic model function of Euler-Almansi
large deformation. Note that the evolution of stress corresponding to the hyperelastic models using small
deformation and Green-Lagrange large deformation is identical to that obtained using the elastic model
respectively function of small deformation and Green-Lagrange large deformation. Fig. 37 a) and Fig. 37 b)
show respectively the evolution of à11

𝑐 in function of 𝑥 at 𝑦 = 𝑊/2 and in function of 𝑦 at 𝑥 = 𝐿/2.
The error as well as the percentage of error on the Ąeld à11

𝑐 (𝑥, 𝑦, 𝑡) are computed by Ąnding the
difference between à11

𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙) obtained from analytical computation of the solution (à11
𝑐 (𝑠𝑜𝑙) = 𝐸 ä(𝑡))

and à11
𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑖𝑚𝑢) obtained from the spacetime simulation compared to the norm value of stress over

the time and space ♣♣à11
𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙)♣♣, as:

error(𝑥, 𝑦, 𝑡) =
∫︁

æ

(︀
à11
𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙) ⊗ à11

𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑖𝑚𝑢)

)︀2
𝑑æ (4.36)

and

%relative error(𝑥, 𝑦, 𝑡) = 100 ×
⎤

error(𝑥, 𝑦, 𝑡)
♣♣(à11

𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙)♣♣

⎣
(4.37)
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Fig. 36: The variation of 𝜎11
c as a function of time for a beam under traction load for different Newtonian elastic and

hyperelastic models between 0 and 7𝑠.

The error and percentage of error on à11
𝑐 are respectively around 1.59 × 10⊗8 𝑀𝑃𝑎 and 2.01 × 10⊗13 %.

Fig. 37: On the left: a) Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution (𝜎11

c (sol) = 𝐸 𝜒(𝑡max)) and simulation for
a Newtonian elastic model as function of the space in the 𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. On the right: b) Evolution
of 𝜎11

c (𝑥, 𝑦, 𝑡) obtained from analytical solution (𝜎11
c (sol) = 𝐸 𝜒(𝑡max)) and simulation for a Newtonian elastic model as

function of the space in the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.

A similar case study of a beam subjected to a bending load can be found in appendix A. Moreover, the
Cauchy stress values obtained in this illustration for different models are signiĄcant. In reality, non-linear
behaviors interfere preventing these high values of stress e.g. the plasticity which is reviewed in section 4.2.6.

4.2.6 Elasto-plastic constitutive model

The material is now represented by an isotropic elasto-plastic von Mises yield condition of uniaxial strength
à0 and with isotropic hardening of modulus 𝐻. The yield condition in case of normal stress with linear
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isotropic hardening is thus given by [Bonnet,2014, Brunet,2009]:

𝑓(à𝑖𝑗) =

√︂
3
2
𝑠𝑖𝑗𝑠𝑖𝑗 ⊗ à0 ⊗𝐻 𝑝 (4.38)

where 𝑠𝑖𝑗 is the deviatoric part of à𝑖𝑗 , à0 is the yield strength, 𝐻 is the hardening modulus which can

be obtained from tangent modulus: 𝐸𝑡 =
𝐸𝐻

𝐸 +𝐻
and 𝑝 is the cumulated equivalent plastic strain. We deĄne

à𝑖𝑗𝑒𝑞𝑒𝑙𝑎𝑠 =

√︂
3
2
𝑠𝑖𝑗𝑠𝑖𝑗

Before writing the variational form, we consider à𝑖𝑗 obtained from a Hooke-like model as in Eq. 4.15
[Bonnet,2014].

The return mapping procedure consists in Ąnding a new stress (à𝑖𝑗)𝑛+1 and internal variable 𝑝𝑛+1

state verifying the current plasticity condition from a previous stress (à𝑖𝑗)𝑛 and internal variable 𝑝𝑛 state
for an increment of total deformation Δ𝜖 applied.

∙ An elastic predictor stress à𝑖𝑗𝑒𝑙𝑎𝑠 = (à𝑖𝑗)𝑛 + à𝑖𝑗(Δ𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗) is Ąrst computed [Bonnet,2014].
∙ The plasticity criterion is then evaluated with the previous plastic strain using Eq. 4.38. If 𝑓𝑒𝑙𝑎𝑠 < 0,

no plasticity occurs during this time increment and Δ𝑝,Δ𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗𝑃 = 0, where 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗𝑃 is the strain due
to plasticity behavior. Otherwise, plasticity occurs and in the case of linear isotropic hardening, the
increment of plastic strain is given by :

Δ𝑝 =
𝑓𝑒𝑙𝑎𝑠

3Û+𝐻
(4.39)

where 𝑓𝑒𝑙𝑎𝑠 = à𝑖𝑗𝑒𝑞𝑒𝑙𝑎𝑠 ⊗ à0 ⊗ 𝐻 𝑝. The Ąnal stress state is corrected by the plastic strain as follows

(à𝑖𝑗)𝑛+1 = à𝑖𝑗𝑒𝑙𝑎𝑠 ⊗ 3Û
à𝑖𝑗𝑒𝑞𝑒𝑙𝑎𝑠

𝑠𝑖𝑗Δ𝑝, this is the plastic corrector [Bonnet,2014]. It can be observed that

the last term vanishes in case of elastic evolution so that the Ąnal stress is the one calculated from the
elastic predictor.

In order to use a Newton-Raphson procedure to resolve global equilibrium, we also need to derive the
algorithmic consistent tangent matrix. In this problem, it corresponds to minimizing the speciĄc free energy
given by Ψ in Eq. 4.35.

Newtonian weak integral form of the elasto-plastic models

The global problem with its associated Newton-Raphson procedure can then be derived. Each iteration
will require establishing equilibrium by driving to zero the residual between the internal forces associated
with the current stress state (à𝑖𝑗)𝑛 and the external force vectors 𝑓 𝑖𝑀 and 𝑇 𝑖𝑀 . The weak integral form
resolved at each iteration for the elastic prediction is:

𝑊 (Δ𝑑𝑒𝑝𝑖,Δ𝑑𝑒𝑝*

𝑖 ) =
∫︁

æ

̃︀𝜌𝑐Ψ(Δ𝑑𝑒𝑝𝑖) dæ +
∫︁

æ

(à𝑖𝑗)𝑛
𝜕𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗(Δ𝑑𝑒𝑝𝑖 + 𝜖Δ𝑑𝑒𝑝𝑗*)

𝜕𝜖
♣𝜖=0 dæ

⊗
∫︁

æ

̃︀𝜌𝑐𝑓 𝑖𝑀Δ𝑑𝑒𝑝𝑖 dæ ⊗
∫︁

𝜕æTM

𝑇 𝑖𝑀Δ𝑑𝑒𝑝𝑖 d𝑆æ (4.40)

Where Δ𝑑𝑒𝑝𝑖 is the increment of elastic displacement and Δ𝑑𝑒𝑝*

𝑖 is the corresponding test function. The
𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor is then replaced with the corresponding type of strain (Eqs. 4.2,4.5 and 4.8). In case the
Eulerian description is used, ̃︀𝜌𝑐 is a function of Δ𝑑𝑒𝑝𝑖. 𝜕æ is the space boundary of the domain. It is divided
into 𝜕æ∆𝑑𝑒𝑝i

where the Dirichlet conditions on displacement are applied and 𝜕æ𝑇M
where the surface force

is applied. They should respect: 𝜕æ∆𝑑𝑒𝑝i
∪ 𝜕æ𝑇M

= 𝜕æ and 𝜕æ∆𝑑𝑒𝑝i
∩ 𝜕æ𝑇M

= ∅.
Dirichlet boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ∆𝑑𝑒𝑝i

) = Δ𝑑𝑒𝑝𝑖(𝑥𝑖 ∈
𝜕æ∆𝑑𝑒𝑝i

, 𝑡) on the space. Neumann boundary conditions of this problem can be written: 𝑓𝑆𝐶(𝑥𝑖 ∈ 𝜕æ𝑇M
) =

𝑇 𝑖𝑀 (𝑥𝑖 ∈ 𝜕æ𝑇M
, 𝑡).
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4.2.7 Numerical simulation of the elasto-plastic behavior

4.2.7.1 Description and parameters of the problem

Let us consider the same beam geometry as in section 4.2.5.1 Ąxed at its left boundary and subjected to a
traction load applied in the form of stretch at its right boundary (see Fig. 34). However, this time the yield
stress is set to be à0 = 60000𝑀𝑃𝑎 and the hardening modulus is 𝐻 = 25000𝑀𝑃𝑎.

This stretch causes a mechanical stress exceeding the yield stress in the beam, hence causing a plastic
behavior of the material. The other parameters of the simulation concerning the geometry, the material, the
mesh and time step as well as volume and surface force vectors remain the same (see table 11).

4.2.7.2 Weak integral forms and boundary conditions corresponding to the elasto-plastic modeling of

the beam subjected to traction

In order to simulate the model described in section 4.2.7.1 using FEniCS project, we need to explicit the
weak integral forms related to the behaviors simulated and the boundary conditions corresponding to the
studied case.

Eq. 4.40 represents the weak integral form, where the 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor is respectively replaced with the
corresponding type of strain (Eqs. 4.2,4.5 and 4.8) to obtain elasto-plastic models using respectively small
strain, Green-Lagrange strain and Euler-Almansi strain.

As for the boundary conditions, all the models are constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = Δ𝑑𝑒𝑝(𝑥 = 0, 𝑦) = (0, 0) on the clamped boundary of the beam.
∙ ∀𝑦 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = Δ𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦) = (𝑑𝑒𝑝𝑛, 0) = (0.1, 0) on the right boundary of the beam.

Below (Fig. 38) is the result of evolution of à11
𝑐 at the center of the beam, as a function of time for Newtonian

elasto-plastic models (using small deformation, Green-Lagrange large deformation and Euler-Almansi large
deformation).

Fig. 38: The variation of 𝜎11
c as a function of time for a beam under traction load for different Newtonian elasto-plastic

models examined.
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4.3 Difficulties encountered during Newtonian modeling of the
thermomechanical behavior of materials

4.3.1 Classical continuum behavior models

In the second part of the manuscript, we are interested in modeling the mechanical behavior of models in order
to couple it with the thermal behavior as detailed in part 1. Besides HookeŠs model for linear elasticity which
is convenient in modeling the behavior of materials in small transformations, most constitutive models in
solid mechanics lead to non-linear problems. These are conveniently formulated under a rate form. Examples
of such a difficulty are: plasticity [Valanis,1970, Lubliner,1984, Prasolov,1997] (illustrated in section 4.2.7),
viscosity depending on time [Wiechert,1893, Zener,1948, Oldroyd,1950, Wineman,2009], elasticity for large
deformation used to model elastomers [Mooney,1940, Rivlin,1948, Rivlin and Saunders,1951, Ogden,1984,
Boyce and Arruda,2000, Steinmann et al.,2012, Hossain and Steinmann,2013] (illustrated in section 4.2.5),
or even a combination of these difficulties in the cases of biomaterials [Prost-Domasky et al.,1997] or metal
manufacturing [Saanouni,2012]. Such constitutive models take the form of relations between stress and
strain tensors, and their respective rates. Consequently, rate-form modeling is often convenient, and these
types of time-dependent phenomena require an incremental formulation of the chosen elastic model. Note
that such so called hypoelastic models need to be strictly equivalent to the initial elastic one; if not, it can
lead to the well-known deĄciencies of hypoelastic formulations, such as hysteresis with dissipation for elastic
loading [Altemeyer et al.,2016].

4.3.2 The problem of material objectivity

There are many possible deĄnitions of stress rate for use in large deformation, due to the choice of the stress
tensor as well as the choice of the time transport [Dogui and Sidoroff,1985]. Moreover, constitutive models
shall not generate stress when the material undergoes a rigid body motion. This is classically referred to as
(material) objectivity (see 1.4.2). Objectivity may then be enforced by using objective transports (see details
in [Frewer,2009]), but a particular attention has to be paid when using such operators in large deformation
[Truesdell,1966, Prost-Domasky et al.,1997]. A large number of these transports verifying material objec-
tivity can be found in the literature [Jaumann,1911, Green and Naghdi,1965, Bruhns and Meyers,1998],
but none seems to be strictly better than the others [Truesdell,1966] and their use does not guar-
antee a priori a reversible behavior for large elastic deformations, which would contradict thermody-
namics. Differences and similarities between objectivity and frame-indifference are also discussed in
[Panicaud et al.,2014, Romano et al.,2018].

In addition to the invariance of stress with respect to rigid body motion, including translation and
rotation, the covariance of equations with respect to any observer is required, and that for any diffeomorphism
of a spacetime continuum. The notion of the action of diffeomorphism on a spacetime continuum introduces
differential geometry. Using a geometric point of view on continuum mechanics has lead so far to important
contributions [Eringen,1962, Truesdell and Noll,2003, Marsden and Hughes,1994, Venturi,2009] (see section
1.4.3). For example, Marsden and Hughes use geometry to clarify the exposition of the kinematics of
continuum and of mechanical principles [Marsden and Hughes,1994]. Recent works on the geometry for
non-linear elasticity can also be found in [Romano et al.,2014].

4.4 Possible solutions for modeling the thermomechanical behavior of materials

4.4.1 A solution using a spacetime formalism

As in the case of thermal modeling (introduced in section 1.7), the difficulties faced in mechanical modeling can
also be solved using a spacetime formalism. These can be summarized by the violation of material objectivity
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and the difficulty to choose and guarantee objective transports. The interest of using differential geometry
in this formalism is to impose covariance to the equations of continuum mechanics. Especially, differential
geometry introduces a very powerful tool, the Lie derivative along the motion, which answers the need
expressed by [Eringen,1962, Nemat-Nasser,2004, Besson et al.,2009, Xiao et al.,1999, Eshraghi et al.,2013]
of a cautious construction of a rate-form elastic model. By use of a spacetime framework, the Lie derivative
along the motion guarantees simultaneously the covariance of the transport and the invariance to the
superposition of rigid body motion [Rouhaud et al.,2013]. Since frame changes proceed on space and time,
it leads to the use of four-dimensional vectors and four-dimensional tensors. In this manuscript and in the
articles [Rouhaud et al.,2013, Panicaud et al.,2014], this refers to spacetime formalism.

The use of a spacetime diffeomorphisms group makes a clear distinction between this work and
others [Romano et al.,2018, Romano et al.,2014, De Saxce and Vallée,2016] that intended to be a geometric
representation of Newtonian mechanics using a Galilean group. On the one hand, the mathematical structure
is more simple comparing to when using a Poincaré group (group of motion in the Minkowski spacetime of
special relativity [Hehl,2012]), compared to the use of a Galilean group, since it is possible to use a spacetime
(pseudo-)metric. On the other hand, we will just have to lug some negligible terms in the equations that
can be killed when the velocity of the material is small compared to a reference velocity [Weinberg,1972].
Moreover, as mentioned in part 1, in the present manuscript, we do not deal with gravitation, thus we only
consider a Ćat spacetime (i.e. not Riemannian) [Weinberg,1972].

4.4.2 Thermodynamics in a spacetime formalism for mechanical modeling

As detailed in section 1.7.2, to obtain suitable constitutive models, it is useful to deal with thermodynam-
ics. Thermodynamics and spacetime formalism have led to numerous publications concerning theoretical
aspects, such as balance equations or constitutive models [Eckart,1940, Havas,1964, Grot and Eringen,1966a,
Grot and Eringen,1966b, Muller,1969, Maugin,1971a, Maugin,1971b, Maugin,1973, Israel,1987, Muller,2008,
Ottinger,1998, Kijowski and Magli,1997, Beig and Schmidt,2005, Vallée,1981, Yavari and Ozakin,2008,
Romano and Barretta,2011, Yavari and Marsden,2012, Schellstede et al.,2014, Bressan,1978]. For example,
signiĄcant works on relativistic thermodynamics have been performed by Tolman [Tolman,1930], Moller
[Moller,1972], Lichnerowicz [Lichnerowicz,1994] and Tsallis [Tsallis et al.,1995]. These works aim at a
covariant formulation of thermodynamics, especially including the coupling between the mechanical and the
thermal behavior independently of the frame, or at some generalizations of the Clausius-Duhem inequality
[Muschik and Borzeszkowski,2015, Bressan,1978, Muschik and Borzeszkowski,2014]. Relations between
relativistic and non-relativistic thermodynamics have been speciĄcally detailed in [Schellstede et al.,2014].

In this manuscript, we aim to propose an innovative method to obtain mechanical behavior. We will
use the modeling of reversible processes as an illustration. One important goal is to derive new covariant
constitutive models for large deformation. We will see the advantages of the spacetime method compared
to the Newtonian case, especially by the use of the spacetime Lie derivative. An approach considering
a spacetime thermodynamical framework is thus proposed in chapter 5. The aim is to obtain a general
method fully covariant, i.e. that can be adapted for any frame, and thus any motion, to be applied to the
construction of thermomechanical constitutive models.

4.5 Complements for the spacetime formalism for thermomechanical modeling

4.5.1 Spacetime deformation in different frames

In Newtonian continuum mechanics, a mapping from one conĄguration to another is used to describe
the deformation of a material continuum. When this concept is extended to a spacetime formalism, the
conĄguration can be characterized directly by the spacetime coordinates of the events, because it contains
simultaneously the information on both space and time. Here we introduce the deformation of the domain
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𝒟 that can be described by the mapping ℱ :

∀𝑥Û ∈ 𝒟, 𝑥Û = ℱÛ(𝑋Ù) ⇔
⎭

𝑥𝑖 = ℱ 𝑖(𝑋𝑘, 𝑋4)
𝑥4 = ℱ4(𝑋𝑘, 𝑋4)

(4.41)

Here two particular coordinate systems can be speciĄed:
1. The inertial spacetime frame, whose base vectors eÛ are homogeneous in the spacetime, with the metric

tensor components ÖÛÜ (see section 1.3.2). For simplicity, the 3D space part of the frame (i.e. coordinate
system) is chosen to be Cartesian, whatever the conĄguration is. Coordinates in the inertial spacetime
frame correspond to the observed coordinates 𝑥Û in the current conĄguration and 𝑋Û in the reference
conĄguration, as deĄned previously and used in Eq. 4.41.

2. The proper spacetime frame, in which the current conĄguration is always considered as a reference
conĄguration:

𝑥̂Û = 𝑋Û (4.42)

The proper frame is the one previously introduced in section 1.3.3. This frame is spacetime curvilinear,
including possible acceleration and rotation because of the deformation of materials. Moreover, for all
the conĄgurations, this coordinate system is chosen to be identical to the spacetime inertial coordinate
system at the time of reference (i.e. only initially).

The different conĄgurations and spacetime frames are summarized in Table 12.

inertial frame 𝑧µ proper frame 𝑥̂µ

current configuration
coordinate 𝑥µ 𝑥̂µ = 𝑋µ

base vectors gµ = eµ ĝµ

metric 𝑔µν = 𝜂µν 𝑔µν

reference configuration
coordinates 𝑋µ 𝑋̂µ

base vectors Gµ = eµ Ĝµ = eµ

metric 𝐺µν = 𝜂µν 𝐺̂µν = 𝜂µν

Tab. 12: Configurations and frames; for simplicity and for the reference configuration, all the coordinate systems used are
considered with 3D Cartesian coordinates.

4.5.2 Spacetime deformation gradient and strain tensor

In a spacetime formalism, the deformation gradient and strain tensors can be deĄned, following the general
deĄnitions proposed by Lamoureux-Brousse [Havas,1964]. To deĄne spacetime strain tensors, it is proposed
to compare two different conĄgurations of the same material continuum: its current conĄguration and its
reference conĄguration (see section 1.4.4). The choice of a reference conĄguration should not enter directly
in a constitutive relation, as being completely arbitrary.

These two conĄgurations are described indifferently with two different frames either 𝑥Û or 𝑥̂Û, associated
with the two respective covariant components of the metric tensor ÖÛÜ or 𝑔ÛÜ . The material continuum is
deĄned at a given instant of reference, with a unique reference conĄguration that is described either by 𝑋Û

or 𝑋̂Û, within each respective frame.
To deĄne a spacetime deformation gradient, the two coordinate sytems are compared by deĄning the

gradient 𝐹ÛÜ and its inverse 𝐹 ′Û
Ü such that:

𝐹ÛÜ =
𝜕𝑥Û

𝜕𝑥̂Ü
and 𝐹 ′Û

Ü =
𝜕𝑥̂Û

𝜕𝑥Ü
(4.43)
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In other words, these equations deĄne the deformation gradient as the matrix of the coordinate transformation
between the proper and inertial frames, independently of the reference conĄguration. Moreover, because of
Eq. 4.42, Eqs. 4.43 turns to be quantities similar to the deĄnitions of deformation gradient in the classical
Newtonian continuum mechanics:

𝐹ÛÜ =
𝜕𝑥Û

𝜕𝑋Ü
and 𝐹 ′Û

Ü =
𝜕𝑋Û

𝜕𝑥Ü
(4.44)

Hence, as usually done in Newtonian continuum mechanics, the comparison between two conĄgurations is
done through the deĄnition of the strain tensors. According to Lamoureux-Brousse [Havas,1964], a spacetime
Euler-AlmansiŠs strain tensor e can be deĄned as:

𝑒ÛÜ =
1
2

(𝑔ÛÜ ⊗ 𝑏ÛÜ) (4.45)

It has the same form as the 3D Euler-AlmansiŠs strain tensor, where the tensor b is the spacetime
generalization of the inverse of the left Cauchy-Green deformation tensor deĄned by:

𝑏ÛÜ = 𝐹 ′Ð
Û𝐹

′Ñ
Ü𝐺ÐÑ (4.46)

Note that there is also a "material" counterpart of the above strain tensor [Panicaud et al.,2014]. A
spacetime Green-LagrangeŠs strain tensor E can also be deĄned as:

𝐸ÛÜ =
1
2

(𝐶ÛÜ ⊗ 𝑔ÛÜ) (4.47)

It has the same form as the 3D Green-LagrangeŠs strain tensor, where the tensor C is the spacetime
generalization of the inverse of the right Cauchy-Green deformation tensor deĄned by:

𝐶ÛÜ = 𝐹ÐÛ𝐹
Ñ
Ü𝐺ÐÑ (4.48)

We have preserved, with the capital letters, the usual notations proposed by Eringen [Grot and Eringen,1966a]
for the deĄnitions of the spacetime deformation and strain tensors. After the choice of the inertial or proper
frames, using Eqs. 2.8d, 2.8e and 4.42, the relations for the different metrics components can be obtained:

𝑔ÛÜ = 𝐹 ′Û
Ð𝐹

′Ü
ÑÖ
ÐÑ (4.49a)

𝑔ÛÜ = 𝐹ÐÛ𝐹
Ñ
ÜÖÐÑ (4.49b)

From the deĄnitions of spacetime strain tensors, it is easy to Ąnd the transformation between the
different counterparts:

𝐸ÛÜ = 𝐹ÐÛ𝐹
Ñ
Ü𝑒ÐÑ = 𝑒ÛÜ (4.50)

Because of Eq. 4.42 and deĄnition of the 4D transformation gradient, it can be proved that Eq. 4.50 can be
interpreted as a change of frames between two equivalent measures/components of the same strain tensor
(corresponding to different observers). The detailed proof can be found in [Panicaud et al.,2014]. BrieĆy, we
have thus 𝐸ÛÜ = 𝑒ÛÜ , because 𝑔ÛÜ = 𝐶ÛÜ = 𝐶ÛÜ and 𝑏̂ÛÜ = 𝐺̂ÛÜ = 𝐺ÛÜ in Eqs. 4.45 and 4.47. This shows
that 𝐸ÛÜ (Eq. 4.47) actually corresponds to some components of 𝑒ÛÜ written in the proper frame. These
respectively correspond to the Lagrangian and Eulerian expressions of the strain.

4.5.3 Spacetime Lie derivative

In addition to the frame-indifferent covariant transport (introduced in section 2.2.7), it is possible to deĄne
a spacetime rate operator whose result is both frame-indifferent and invariant to the superposition of rigid
body motions. Among the spacetime rate operators, the spacetime Lie derivative is the only derivative that
fulĄlls the two aspects of the principle of objectivity [Rouhaud et al.,2013].
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The explicit expressions of the Lie derivative with along the velocity four-vector u (deĄned in section
2.2.2) of a 4-scalar density 𝒮, of the covariant components and of the contravariant components of a
second-rank four-tensor density T with a weight of tensor density 𝑊 [Schouten,1954], are:

ℒ𝑢(𝒮) = 𝑢Ú
𝜕𝒮
𝜕𝑥Ú

+𝑊𝒮 𝜕𝑢
Ú

𝜕𝑥Ú
(4.51a)

ℒ𝑢(𝒯ÛÜ) = 𝑢Ú
𝜕𝒯ÛÜ
𝜕𝑥Ú

+ 𝒯ÚÜ
𝜕𝑢Ú

𝜕𝑥Û
+ 𝒯ÛÚ

𝜕𝑢Ú

𝜕𝑥Ü
+𝑊𝒯ÛÜ

𝜕𝑢Ú

𝜕𝑥Ú
(4.51b)

ℒ𝑢(𝒯 ÛÜ) = 𝑢Ú
𝜕𝒯 ÛÜ

𝜕𝑥Ú
⊗ 𝒯 ÚÜ 𝜕𝑢

Û

𝜕𝑥Ú
⊗ 𝒯 ÛÚ 𝜕𝑢

Ü

𝜕𝑥Ú
+𝑊𝒯 ÛÜ 𝜕𝑢

Ú

𝜕𝑥Ú
. (4.51c)

The Lie derivative is intrinsic because the derivative of tensor Ąeld is taken along a physical vector Ąeld:
the velocity. This operator could be interpreted as a Lagrangian entity (as it is deĄned for a particle of matter),
and it is computed within an Eulerian formalism (as it is deĄned at a given event of spacetime). Moreover, the
Lie derivative obeys to LeibnitzŠs rule [Protter,1985] and chainŠs rule [Rodriguez and Lopez Fernandez,2010].

Note that in particular the Lie derivative of the metric tensor g does not vanish, except if the motion is
isometric. This is the reason why the formulas are different for contravariant or covariant components.

4.5.4 Rate of deformation and spin tensors

The deĄnition of the variation of the strain with time is important. For example, it is used in modeling the
rate-form constitutive models. Generally, in spacetime, we can deĄne the velocity gradient as the covariant
derivative of the velocity, denoted L and such that:

𝐿ÛÜ(𝑢Ð) = ∇Ü𝑢
Û =

𝜕𝑢Û

𝜕𝑥Ü
+ ΓÛÙÜ𝑢

Ù (4.52)

The symmetric and antisymmetric parts of the velocity gradient correspond respectively to the rate of
deformation d and spin ω tensors, deĄned by:

𝑑ÛÜ(𝑢Ð) =
1
2

(∇Ü𝑢
Û + ∇Û𝑢

Ü) (4.53a)

æÛÜ(𝑢Ð) =
1
2

(∇Ü𝑢
Û ⊗ ∇Û𝑢

Ü) (4.53b)

Here the velocity gradient L(𝑢Û), rate of deformation d(𝑢Û) and spin ω(𝑢Û) are functions depending on the
chosen velocity Ąelds, so they can also be deĄned with the four-vector velocity 𝑣Û instead of the four-vector
velocity 𝑢Û (see Eq. 2.6). As follows, when using L or d or ω without precision, it will refer to the deĄnition
using the dimensionless four-velocity 𝑢Û.

Moreover, by giving the deĄnition of the Lie derivative and of the rate of deformation, it can be derived
such that [Rouhaud et al.,2013]:

ℒ𝑢(𝑔ÛÜ) = 2𝑑ÛÜ and ℒ𝑢(𝑔ÛÜ) = ⊗2𝑑ÛÜ (4.54)

Then, with the deĄnition of the Euler-Almansi strain tensor e (Eq. 4.45), it is possible to verify that the
rate of deformation represents the variation of the Euler-Almansi strain in the sense of the Lie derivative,
such that [Rouhaud et al.,2013]:

ℒ𝑢(𝑒ÛÜ) = 𝑑ÛÜ and ℒ𝑢(𝑒ÛÜ) = 𝑑ÛÜ ⊗ 2𝑒ÐÑ𝑑
ÐÜ𝑔ÑÛ ⊗ 2𝑒ÐÑ𝑔

ÐÜ𝑑ÑÛ (4.55)

4.6 Example on the principle of covariance applied to Euclidean mechanical
transformations

Now that we have introduced the elements of a spacetime modeling which enable us to obtain covariant
mechanical models, let us illustrate the importance of such a modeling. The notion of objectivity deĄned
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in section 1.4.2 is now discussed under the light of the principle of covariance in order to illustrate this
principle.

Let us consider 2 Euclidean spacetime frames noted (eÛ, ÝÛ) and (̃︀eÛ, ̃︀ÝÛ) such that:

Ý𝑖 = 𝑄𝑖𝑗
̃︀Ý𝑗 + Ú𝑖 (4.56)

Ý4 = ̃︀Ý4 = 𝑐𝑡 (4.57)

where the orthogonal matrix 𝑄𝑖𝑗 describes a rigid body rotation and the vector Ú𝑖 represents a translation.
This represents an Euclidean transformation in spacetime. Note that Euclidean transformations (i.e rigid
body transformations in classical Newtonian continuum) preserve the 3D Euclidean distance between any
two points [Thurston,1997, Gurtin,1982, Garrigues,2007, De Souza Neto et al.,2011]. The Jacobian matrix
of this transformation is expressed by:

𝜕ÝÛ

𝜕̃︀ÝÜ
=

∏︀
̂︁∐︁
𝑄𝑖𝑗

1
𝑐

[︃
𝑑𝑄𝑖𝑗
𝑑𝑡
̃︀Ý𝑗 +

𝑑Ú𝑖

𝑑𝑡

⟨

0 0 0 1

⎞
̂︂̂︀ (4.58)

The determinant of this Jacobian matrix is then:
⧹︃⧹︃⧹︃⧹︃
𝜕ÝÛ

𝜕 ̃︀ÝÜ

⧹︃⧹︃⧹︃⧹︃ =
⧹︃⧹︃𝑄𝑖𝑗
⧹︃⧹︃ = 1 (4.59)

The velocity of one frame with respect to the other is expressed by:

𝑑Ý𝑖

𝑑𝑡
= 𝑐

𝜕Ý𝑖

𝜕̃︀Ý4
=
𝑑𝑄𝑖𝑗
𝑑𝑡
̃︀Ý𝑗 +

𝑑Ú𝑖

𝑑𝑡
(4.60)

As an illustration on the application of the objectivity and the covariance principles, let us consider the
second-rank tensor τ . The principle of covariance applied in spacetime leads to write (see Eq. 2.8e):

áÛÜ =
𝜕ÝÛ

𝜕̃︀ÝÐ
𝜕ÝÜ

𝜕̃︀ÝÑ
̃︀áÐÑ (4.61)

We consider the spatial components of this tensor; they can be expressed by:

á 𝑖𝑗 =
𝜕Ý𝑖

𝜕̃︀Ý𝑚
𝜕Ý𝑗

𝜕̃︀Ý𝑛
̃︀á𝑚𝑛 +

𝜕Ý𝑖

𝜕̃︀Ý𝑚
𝜕Ý𝑗

𝜕̃︀Ý4
̃︀á𝑚4 +

𝜕Ý𝑖

𝜕̃︀Ý4

𝜕Ý𝑗

𝜕̃︀Ý𝑛
̃︀á4𝑛 +

𝜕Ý𝑖

𝜕̃︀Ý4

𝜕Ý𝑗

𝜕̃︀Ý4
̃︀á44 (4.62)

We assume that the tensor τ is symmetric and the Euclidean transformation expressed in Eq. 4.56 and
4.57 is applied to this tensor, then:

á 𝑖𝑗 = 𝑄𝑖𝑚𝑄
𝑗
𝑛̃︀á𝑚𝑛 +

2
𝑐

(
𝑑Ú𝑗

𝑑𝑡
+

𝑑𝑄𝑗𝑘
𝑑𝑡
̃︀Ý𝑘)𝑄𝑖𝑚̃︀á𝑚4 +

1
𝑐2

(
𝑑Ú𝑖

𝑑𝑡
+

𝑑𝑄𝑖𝑙
𝑑𝑡
̃︀Ý𝑙)(𝑑Ú

𝑗

𝑑𝑡
+

𝑑𝑄𝑗𝑘
𝑑𝑡
̃︀Ý𝑘)̃︀á44 (4.63)

The second and third terms of Eq. 4.63 are the result of application of the covariance principle (on the
spatial components of a second-rank tensor). If these terms are omitted, the equation corresponds exactly
to the deĄnition of objectivity for a second-rank tensor in the classical Newtonian continuum (see Eq. 1.9).

These terms are respectively proportional to
̃︀á𝑚4 𝑣

𝑐
and

̃︀á44 𝑣2

𝑐2
. In other words, the objectivity of the tensor

τ is respected in a motion for which
̃︀á𝑚4 𝑣

𝑐
<< ̃︀á𝑚𝑛 and

̃︀á44 𝑣2

𝑐2
<< ̃︀á𝑚𝑛.

Otherwise the covariance of the tensor τ is ensured thanks to all the additional terms which can be
obtained from the development of the last 2 terms of Eq. 4.63.
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4.7 Spacetime thermomechanical models in previous studies

One main objective of this study is to build models which can describe the thermomechanical phenomena
taking place during forming processes by the use of a spacetime formalism. The spacetime thermal modeling
has been discussed in part 1 of the manuscript. As for the spacetime mechanical modeling, many authors
have evoked this subject [Vitokhin and Ivanova,2017, Badreddine,2006, Bertram,2012, Besson et al.,2009,
Zhang et al.,2011, Borja,2013]. As follows, thermomechanical/mechanical models found in the literature
are reviewed.

The spacetime modeling is possible using different methods [Panicaud et al.,2014, Panicaud et al.,2015,
Wang,2016]:
1. Copying the existing Newtonian relationships and replace their variables with their spacetime equivalent.

This is known as the direct relativization of Newtonian models or the 3D analogy method.
2. Starting from a thermodynamic approach by deriving a free energy function under non-dissipative

conditions (which leads to spacetime hyperelastic models).
3. Using the representation theory in spacetime, between strain/strain-rate and stress/stress-rate tensors.
4. Building a speciĄc spacetime stiffness for linear behaviors.
5. Deriving the spacetime hyperelastic/elastic models to obtain hypoelastic models.

Other methods to obtain various spacetime models can also be found in the literature. As follows, the
spacetime thermoelastic, thermo-hyperelastic and hypoelastic models, as well as the methods used in the
literature to obtain them, are reviewed.

4.7.1 Spacetime thermoelastic model

This model can be constructed by a direct relativization of the classical thermoelastic constitutive model
[Panicaud et al.,2014]. This generalization is summarized by:

àÛÜ = 𝑓(Δ𝜃, 𝑏ÚÙ) (4.64)

where 𝑓 is a function of the variables Δ𝜃 and 𝑏ÚÙ previously deĄned in Eq. 4.46.
Eq. 4.64 is constrained by the 2 assumptions that: the material is homogeneous and 11 degrees of

freedom have been chosen corresponding to Δ𝜃 and the 10 components of the symmetrical spacetime
tensor 𝑏ÚÙ. As discussed in section 4.2.4, the thermoelastic model is not suitable to describe the behavior of
all materials. Furthermore, this model is not ensured to be reversible since it does not derive from a 4D
potential energy. Hence, spacetime thermo-hyperelastic models are generally required.

4.7.2 Spacetime thermo-hyperelastic model

To build a constitutive relation in the classical three-dimensional space, one possible approach consists
of expressing the problem in a variational form [Bertram,2012]. In the spacetime formalism, the same
methodology can be used. The advantage of such a method is that the use of four-tensors and four-
operators ensures the covariance of models [Panicaud et al.,2014]. In order to obtain the constitutive
relation, [Panicaud et al.,2014] assumes the existence of a function F4𝐷 = Ψ(Δ𝜃,b) such that:

àÛÜ = ⊗2
̃︀𝜌𝑐
̃︀𝜌𝑐′
𝑏ÛÙ
𝜕Ψ(Δ𝜃,b)

𝜕𝑏ÜÙ
(4.65)

Where ̃︀𝜌𝑐 and ̃︀𝜌𝑐′ are respectively associated to 𝜕Ω and 𝜕Ω′ representing the respective hypervolumes
of the undeformed and deformed matters.

Eq. 4.65 represents a constitutive relation for thermo-hyperelastic materials where no assumption has
been done on Ψ(Δ𝜃,b). It is frame-indifferent because it is constructed following the covariant principle.
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However, its generality (i.e. ability to represent any 3D constitutive model) is not guaranteed as demonstrated
in [Panicaud et al.,2015]; it depends on the 3D constitutive model chosen.

Note that, a similar spacetime formulation can also be obtained starting from a spacetime ther-
modynamical approach [Muller,1969, Vallée,1981, Landau and Lifshitz,1966]. However, there is still a
debate regarding these works, especially on coupling different phenomena or concerning irreversible pro-
cesses [Israel and Stewart,1979a, Israel and Stewart,1979b, Jou et al.,1988]. For simple elastic behavior and
isothermal conditions, this approach can be considered as valid [Muller,1969, Panicaud et al.,2014].

In the following, the material is assumed to be isotropic. To ensure material isotropy together with
the indifference with respect to the change of frames of Ψ, the representation theory is used. Ψ(Δ𝜃,b) is
formulated using the invariants of 𝑏: 𝑏𝐼 , 𝑏𝐼𝐼 , 𝑏𝐼𝐼𝐼 , 𝑏𝐼𝑉 [Broer,2019] such that:

Ψ(Δ𝜃, 𝑏) = Ψ(Δ𝜃, 𝑏𝐼 , 𝑏𝐼𝐼 , 𝑏𝐼𝐼𝐼 , 𝑏𝐼𝑉 ) (4.66)

The invariants of b being:

𝑏𝐼 = 𝑔ÜÙ𝑏
Ù
Ü ; 𝑏𝐼𝐼 = 𝑏ÜÙ𝑏

Ù
Ü ; 𝑏𝐼𝐼𝐼 = 𝑏ÜÙ𝑏

Ù
Ú𝑏
Ú
Ü (4.67)

The expression of àÛÜ is then deduced by developing Eqs.4.65 and 4.66:

àÛÜ = 𝑎𝐼𝑏
Û
Ü + 𝑎𝐼𝐼𝑏

Û
Ù(𝑏ÙÜ ⊗ 𝑏ÙÚ𝑏

Ú
Ü ) (4.68)

where: 𝑎𝐾 (𝐾 running from 𝐼 to 𝐼𝐼𝐼, and 𝑎𝐼𝐼𝐼 = ⊗𝑎𝐼𝐼) are three scalar valued functions depending on Δ𝜃,
invariants of b and properties of the material studied and expressed by:

𝑎𝐾(Δ𝜃,b) = ⊗2𝐾
𝜌

𝜌′

𝜕Ψ
𝜕𝑏𝐾

(4.69)

Note that if 𝑎𝐼𝐼𝐼 = 0, Eq. 4.69 can be interpreted as a direct relativization in spacetime of Newtonian
Eulerian elastic model. Another assumption is done on the form of 𝑎𝐾 : the coefficients 𝑎𝑖 (𝑖 running from 0
to 2) are introduced such that they only depend on the temperature variation. It leads to the spacetime
thermo-hyperelastic model:

àÛÜ =
√︁

♣𝑏ÐÑ ♣(𝑎1𝑏
ÛÚ(𝑔ÛÚ ⊗ 𝑏ÛÚ) + 𝑎0Δ𝜃)𝑏ÛÜ +

√︁
♣𝑏ÐÑ ♣𝑎2𝑏

Û
Ù(𝑏ÙÜ ⊗ 𝑏ÙÚ𝑏

Ú
Ü ) (4.70)

This model is constrained by the choice of Ψ(Δ𝜃, 𝑏) resulting from the assumption of isotropic material.
Moreover, the generalization to anisotropic behaviors is possible but quite complex.

Furthermore, a deĄnition of spacetime stiffness of linear behaviors can be obtained by considering
a general linear relationship between second-order stress tensor and second-order elastic strain tensor
[Truesdell and Noll,2003, Panicaud et al.,2015]. Using this method, a spacetime hyperelastic model is pro-
posed in [Panicaud et al.,2015] for isotropic behavior, with isothermal conditions at a macroscopic scale
such that:

àÛÜ = 2𝑎1(𝑔ÐÑ𝑒
ÐÑ)𝑔ÛÜ + 2𝑎2𝑒

ÛÜ (4.71)

⇐⇒ àÛÜ = 2𝑎1(𝑔ÐÑ𝑒ÐÑ)𝑔ÛÜ + 2𝑎2𝑒ÛÜ (4.72)

This spacetime model is considered as a reference model for comparing other material behaviors (e.g.
spacetime hypoelastic models). However, it is limited by the assumptions used to obtain it.

4.7.3 Spacetime hypoelastic model

The Newtonian hypoelastic model is Ąrst reviewed since it is used in developing the spacetime hypoelastic
model [Panicaud et al.,2015, Wang,2016]. The hypoelastic model in classical Newtonian continuum mechan-
ics is associated with the system of ordinary differential equation [Eringen,1962, Grot and Eringen,1966a]
such that:
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𝐷𝑋3𝐷à𝑖𝑗 = F3𝐷(à𝑖𝑗 , 𝐷𝑖𝑗) (4.73)

where: 𝐷𝑖𝑗 represents the Lagrangian rate of deformation tensor in the classical 3D space, 𝐷𝑋3𝐷 an objective
rate operator of 𝐷𝑖𝑗 (𝑋 represents the randomness of type of the objective rate operator) and F3𝐷 is a
function of à𝑖𝑗 and 𝐷𝑖𝑗 in the classical 3D space. The dependence on 𝐷𝑖𝑗 must be linear and the relation
is integrable on a closed domain and the result is not necessarily null which shows a dissipative effect
throughout the domain.

A spacetime hypoelastic model can then be deduced using the direct relativization of Newtonian
hypoelastic model such that:

𝐷𝑋4𝐷à
ÛÜ = F4𝐷(𝑔ÛÜ , àÛÜ , 𝐷ÛÜ) (4.74)

where: 𝐷𝑋4𝐷 is a spacetime rate operator which can be the covariant derivative or Lie derivative. It can be
also obtained from spacetime thermodynamics and using the representation theory. The assumptions, hence
the limitations of these models are similar to the ones discussed for thermo-hyperelastic models in section
4.7.2.

The derivation of hyperelastic models such as the models mentioned in section 4.7.2 can also be used to
obtain hypoelastic models. Hence, models will carry the same defects of the models derived.

Hooke-like hypoelastic models obtained using different methods can be classiĄed according to the
integrability criterion [Panicaud et al.,2015, Wang,2016]. The models obtained are:
∙ Non-integrable hypo-elastic models obtained by replacing the deformation and the stress by their

spacetime rate. The model obtained is expressed by:

𝐷𝑋4𝐷à
ÛÜ = 2𝑎1(𝑔ÐÑ𝐷ÐÑ)𝑔ÛÜ + 2𝑎2𝑔

ÛÐ𝑔ÜÑ𝐷ÐÑ (4.75)

These correspond to the models obtained by the Ąrst three methods previously reviewed and match the
deĄnition of a spacetime hypoelastic model as given by Eq. 4.74.

∙ Integrable non-hypo-elastic models obtained by deriving the reference model (Eq. 4.71) which correspond
to the models obtained by the fourth method previously reviewed. The model obtained is expressed by:

𝐷𝑋4𝐷à
ÛÜ = 𝐷𝑋4𝐷(2𝑎1(𝑔ÐÑ𝐷ÐÑ)𝑔ÛÜ + 2𝑎2𝑔

ÛÐ𝑔ÜÑ𝐷ÐÑ) (4.76)

∙ Integrable hypo-elastic models obtained by replacing the strain 𝑒ÛÜ in Eq. 4.76 by its deĄnition and the
use of Lie derivative. The model obtained is expressed by:

ℒ𝑢(àÛÜ) = 𝜙1𝑔
ÛÜ + 𝜙2𝑔

ÛÐ𝑔ÜÑ𝐷ÐÑ + 𝜙3à
ÛÜ ⊗ 4𝑔ÛÐ𝐷ÐÑ𝑔

ÑÜ (4.77)

where:

𝜙1 =
2(𝑎1)2

𝑎2(𝑁𝑎1 + 𝑎2)
(𝑔ÐÑ𝐷ÐÑ)(𝑔ÐÑàÐÑ) + 2𝑎1(𝑔ÐÑ𝐷ÐÑ) ⊗ 2𝑎1

𝑎2
(àÐÑ𝐷ÐÑ) (4.78)

𝜙2 =
2𝑎1

𝑁𝑎1 + 𝑎2
(𝑔ÐÑàÐÑ) + 2𝑎2 (4.79)

𝜙3 = (𝑔ÐÑ𝐷ÐÑ) (4.80)

This model shows advantages because of the use of Lie derivative [Grot and Eringen,1966a, Bressan,1978]
which corresponds to a true time derivative: it includes naturally the effect of time variation, it is
independent to any rigid body superposition and it is frame-indifferent.
In [Panicaud et al.,2014], these proposed models are numerically tested. The third model shows particular
advantages since it is integrable and covariant because of the use of Lie derivative.

4.7.4 Spacetime mechanical models discussed in [Wang,2016]

A PhD thesis carried out by Wang [Wang,2016] at the LASMIS laboratory at the University of Technology
of Troyes investigates the spacetime mechanical models. In [Wang,2016], the thermodynamical approach is
used under some assumptions to obtain these models:
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∙ A framework as described in [Eckart,1940, Grot and Eringen,1966a] is considered. In this framework
three Ąeld variables: the momentum-energy tensor 𝑇ÛÜ , the particle current and the entropy vector,
have been chosen to construct balance equations.

∙ The particle current is as described in [Eckart,1940].
∙ The decomposition of momentum-energy tensor results from the assumptions made on the form of the

spacetime Cauchy stress tensor (see section 2.2.8).
∙ Thermal phenomena and thermomechanical couplings are not taken into account in this study.
∙ Relativistic models are developed. However, numerical simulations are performed at the non-relativistic

limit. Hence, approximations are applied directly within the spacetime balance equations even if they
are initially formulated in a spacetime formalism.

In this spacetime formalism, in addition to the isotropic hyperelastic and hypoelastic models previously
discussed (sections 4.7.2 and 4.7.3 ), Wang has developed anisotropic elastic then elastoplastic models
[Rougée,1997, Mandel,1983, Lubarda,2002, Maugin,1971a, Nemat-Nasser,1974].

The anisotropic elastic model is obtained using the deĄnition spacetime stiffness of linear behaviors:
it is a generalization of the elastic isotropic model reviewed in section 4.7.2. The elastoplastic models are
constructed using the Ćow theory for plasticity from thermodynamics. Under the assumption of a speciĄc
choice of the state variables, the speciĄc strain energy used was written:

Ψ = Ψ𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(Λ/ ̃︀𝜌𝑐, Û/ ̃︀𝜌𝑐, 𝑠𝑡𝑟𝑎𝑖𝑛ÛÜ , 𝑔ÛÜ) + Ψ𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑝,𝐻𝑚) (4.81)

where 𝑠𝑡𝑟𝑎𝑖𝑛ÛÜ is the elastic strain, 𝑝 is the cumulated plastic strain and 𝐻𝑚 are 𝑚 constants of
material for isotropic hardening. Besides, an additive decomposition of rate of deformation is considered
such that: 𝑑ÛÜ = 𝑑𝐸ÛÜ + 𝑑𝑃 ÛÜ , where 𝑑ÛÜ , 𝑑𝐸ÛÜ and 𝑑𝑃 ÛÜ are respectively the total, elastic and plastic
rate of deformations. Under the assumption of isotropic hardening, 3 elastoplastic models are developed: an
elastoplastic model with a reversible hypoelastic part constructed with a Lie derivative, an elastoplastic
model with an irreversible hypoelastic part constructed with a Lie derivative, and an elastoplastic model
with an irreversible hypoelastic part constructed with a Jaumann transport.

The Ąrst model is the only one to have a non-linear hypoelastic part that can be proved to be reversible.
Hence, it is the only model that corresponds to the assumption that only the plastic deformation causes
dissipations of energy.

In general, models developped in [Wang,2016] are covariant since they are built in a spacetime framework.
For incremental models, the Lie derivative is used [Panicaud et al.,2015], allowing to express variation with
respect to time, while being simultaneously covariant and invariant with respect to the superposition of rigid
body motion. However, thermomechanical couplings are not taken into account in these models and models
are limited by the assumptions made (the choice of variables and decomposition of momentum-energy
tensor). Besides this thesis was limited to the development of these models, although this formalism could
cover other models such as the viscoelastic and viscoplastic models.

Simulations are done to compare different spacetime models. However, Wang implemented numerically
the spatial components of these spacetime models (i.e. their projection on the classical Newtonian continuum)
and not directly the spacetime model. Simulations of these models using "Zset", which does not consider
numerical spacetime scheme of resolution, are done for different geometries and loading (Fig. 39).

Simulations using projection of the spacetime hypoelastic models are performed for two geometries
using different loads. First, the case of a cubic element subjected to gliding, traction load and then unloaded
is studied. Then, the case of a bar meshed with 320 reduced quadrilateral elements subjected to torsion,
traction and then unloaded, is studied. The hypoelastic reversible model constructed with the Lie derivative
shows a total compatibility with the Hookean model of reference for these two cases (example in Fig. (39)).
However, the use of this model takes a computation time superior by 15% to that required when using the
spacetime hypoelastic irreversible models constructed respectively with the Lie derivative and with the
Jaumann derivative.

Similarly, simulations using the projection of the 3 spacetime elastoplastic models previously described
are performed for two geometries. The case of a cubic element subjected to gliding then unloaded is studied,
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Fig. 39: The variation of 𝜎22
c as a function of time for a cycle of deformation (gliding, traction, release), obtained using Zset,

of a cubic element at large deformation and without plasticity for the different models examined: the elastic model, the
hypoelastic irreversible model (IREP) constructed with the Lie derivative, the hypoelastic irreversible model constructed with

the Jaumann derivative and the hypoelastic reversible model (REP) constructed with the Lie derivative.

as well as the case of a beam meshed into 320 quadrilateral elements subjected to the same cycle of stress.
The spacetime elastoplastic model with a reversible elastic part and the Lie derivative is shown to be the
most precise.

These simulations compare advantageously different methods used to obtain spacetime models by
illustrating the results of these models (Fig. 40). However, the projection of the models obtained in
spacetime and the numerical simulations in the Newtonian domain, show advantageous results compared to
the Newtonian models numerical results (due to the projection of additional terms obtained in spacetime
modeling, e.g. expressed by the difference between the blue and black curves of Fig. 40) but do not illustrate
all the beneĄts of covariant models. This is why the space projection studied in [Wang,2016] is not enough to
illustrate the beneĄts of the use of the spacetime formalism. Contrarily, the spacetime models are covariant
and therefore carry additional terms derived from this fact and that the spatial projection may neglect.
These differences will be studied in the next chapter of the manuscript and this will be possible by the use
of spacetime projectors in the modeling and using a simulation tool enabling a full spacetime numerical
resolution. We therefore expect more accurate models than Newtonian models that might be matched more
correctly with reality in case of large deformations.

4.8 Conclusions

In this chapter, the mechanical modeling for large deformations found in the literature was reviewed. The
non-linearity of mechanical models was introduced by the use of Green-Lagrange and Euler-Almansi strains
(section 4.2.1). Using these deĄnitions and the mechanical balance law (Eq. 4.14), the Newtonian elastic,
thermoelastic, hyperlastic and elasto-plastic models and corresponding weak integral forms for small then
large deformations (sections 4.2.2, 4.2.3, 4.2.4 and 4.2.6) were reminded for continuous media in the case
of homogeneous isotropic materials. Thermomechanical couplings were taken into account only for the
thermoelastic models. Lagrangian and Eulerian descriptions were used for large deformations models using
respectively Green-Lagrange and Euler-Almansi strains. The weak forms of these models were then deduced
by multiplying the models by arbitrary test functions and integrating them on the 3D domain. This step
will be further useful in order to compare the Newtonian models to different spacetime models which will
be later developed in chapter 5.
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Fig. 40: The variation of 𝑇 11
σ as a function of stretch for a beam under traction without plasticity for the different Newtonian

elastic and hyperelastic models and the spacetime hyperelastic model projected [Wang,2016]. These models are implemented
using "MATLAB" and using the same material parameters as in section 4.2.5.3 and for a the stretch of 𝜒(𝑡) = 0.1 𝑡, where

0 < 𝑡 < 𝑡max = 10𝑠.

Two examples illustrated the Newtonian models reviewed. In the Ąrst example, elastic and hyperelastic
models were illustrated (section 4.2.5). It consisted in applying a traction load using a Dirichlet boundary
condition on a beam geometry. The evolution of the Cauchy stress tensor in the 𝑥-direction à11

𝑐 in function
of time shows that the model using Green-Lagrange strain has different elastic and hyperelastic behaviors
while the other models have the same elastic and hyperelastic behaviors.

In the second example, the plastic behavior was observed: the same geometry, load and boundary
conditions as in the previous example were applied (section 4.2.7). Results of the evolution of à11 in function
of time show that the plastic model using Green-Lagrange has a different evolution of à11(𝑡) than the one
using small strain and Euler-Almansi strain due to its different elastic behavior. These examples help to
visualize the behavior of different models using different strain deĄnitions and thus give some expected
behaviors of such models when considering spacetime approach.

Moreover, the difficulties facing the mechanical modeling in a classical Newtonian continuum can be
summarized by: the non linearity of the models (e.g. plastic models) and the need to fulĄll the material
objectivity of the models. The use of a thermodynamical approach built in a spacetime formalism (as the
one introduced in part 1 of the manuscript) seems to be able to alleviate these problems. Since the spacetime
method will be further used, the spacetime tools necessary for mechanical modeling in a spacetime formalism
were introduced e.g. spacetime deformation gradient, spacetime strain tensors, the Lie derivative, the rate
of deformation, spin tensors. In section 4.6, an example was used to illustrate the additional terms resulting
from applying the covariance principle on transformations and especially in the case of a second-order
tensor.

Eventually, in the literature, different spacetime mechanical models were proposed, such as space-
time expansions of the HookeŠs model taking into account kinematic/geometric non-linearities. In
[Rouhaud et al.,2013] and [Panicaud et al.,2015], spacetime thermoelastic, thermo-hyperelastic and hypoe-
lastic models were obtained using different methods such as direct relativization of Newtonian models,
thermodynamics approach, using the representation theory... However, in [Rouhaud et al.,2013] and
[Panicaud et al.,2015] the covariant models were obtained under hypotheses that limit their use (isotropy,
isothermal conditions, macroscopic scale...)and the numerical simulation were not conducted with spacetime
resolution. Besides, in some models, Lie derivative and projection operators were not used in the methodology,
which requires further development of the constitutive models obtained.
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Furthermore, a study by Wang [Wang,2016] (section 4.7.4) investigated the spacetime anisotropic elastic
and elastoplastic models. This study was limited to the mechanical modeling thus the modeling of thermal
behavior of material and thermomechanical coupling was neglected in the resulting models. In addition
to that, only the spatial projection of the spacetime models were implemented for simulation and were
compared to Newtonian mechanical models. This limits the ability to study the impact of a spacetime
approach on the mechanical models from a numerical point of view since the resolution of the problem is
Newtonian. Thus, the advantages of a spacetime numerical resolution: use of covariant derivatives, spacetime
metric, expression of the spacetime energy-momentum tensor... were not reached yet.
In the next chapter, we propose a spacetime thermodynamical methodology leading to a spacetime
thermomechanical coupled model. This methodology respects the covariance principle and the use of
covariant derivatives. It also respects the use of projection operators in the development of spacetime models.
The weak form of the problem will be then implemented for simulation without any spatial projection
using FEniCS project which actually enables a spacetime numerical resolution. The results obtained from
spacetime models will then be compared to results obtained from the corresponding Newtonian models.
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5 Spacetime modeling of the thermomechanical behavior of

materials

5.1 Introduction

In the aim of building thermomechanical models respecting laws of thermodynamics as well as the causality
and covariance principles, spacetime weak integral forms for thermomechanical behaviors are developed in
this chapter. We also aim to obtain a spacetime numerical resolution of the thermomechanical problem, this
is why the spacetime methodology will be further developed to take into account projectors, the deĄnitions
of covariant derivatives and thermomechanical couplings (beyond the assumption made in chapters 2 and 3).

In the following, we suggest a spacetime thermomechanical model obtained by the same procedure
used in chapter 2 for obtaining spacetime thermal models. On one hand, the thermomechanical model
will be formulated using the spacetime formalism. On the other hand, thermomechanical models showing
dissipative behavior should be compatible with the second principle of thermodynamics. This latter combined
with the Ąrst principle leads to the inequality of Clausius-Duhem for thermomechanics [Bertram,2012,
Besson et al.,2009, Bonet and Wood,2008].

To obtain the Ąrst and second principles of thermodynamics, the energy-momentum balance law
coupling thermal and mechanical phenomena will be introduced [Landau and Lifshitz,1975]. The spacetime
formulation of thermomechanical models and weak forms can then be deduced for general applications to
large deformations, as well as for small deformations..

Furthermore, in order to compare the Newtonian and the spacetime modeling, test cases similar to the
examples of chapters 4, are done to compare the use of both approaches. The case of a bimetallic element is
also simulated as an application of the spacetime thermo-hyperelastic modeling for small deformations.

5.2 Energy-momentum tensor

At this stage of the manuscript, we look to Ąnd models of the thermo-mechanical behavior of materials.
Consequently, the mechanical stress applied to the material body is now taken into consideration, which is
equivalent to: 𝑇ÛÜà ≠ 0. We remind that the modeling is done under the following assumptions: gravitation,
electromagnetic Ąelds, volume heat source, diffusion of molecules, chemical reactions, change in physical
states are not taken into account. The hypothesis of local thermodynamic equilibrium is assumed.

The equation of energy-momentum for this case of study (see section 2.2.8):

𝑇ÛÜ = 𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà = 𝒰𝑢Û𝑢Ü + 𝑞Û𝑢Ü + 𝑢Û𝑞Ü + 𝑇ÛÜà (5.1)

where: 𝒰 is the energy density and 𝑞Û is the volume heat Ćux four-vector (see table 11).

5.2.1 Energy four-tensor

Using the deĄnition of mass density 𝜌, the mass density in a convective frame for 𝑒𝑖𝑛𝑡 ≠ 0 denoted 𝜌𝑐 and
the mass density at rest in the convective frame, considering no internal energy denoted ̃︀𝜌𝑐, the energy
four-tensor 𝑇ÛÜ

𝒰
can be further developed to:

𝒰 = 𝜌𝑐2/Ò = 𝜌𝑐𝑐
2 = ̃︀𝜌𝑐𝑐2

(︁
1 +

𝑒𝑖𝑛𝑡
𝑐2

⎡
(5.2)

⇒ 𝑇ÛÜ
𝒰

= 𝒰𝑢Û𝑢Ü = ̃︀𝜌𝑐𝑐2
(︁

1 +
𝑒𝑖𝑛𝑡
𝑐2

⎡
𝑢Û𝑢Ü (5.3)

where 𝜌𝑐 = ̃︀𝜌𝑐
(︀
1 + 𝑒int

𝑐2

)︀
is the mass density in case 𝑒𝑖𝑛𝑡 ≠ 0 and the speciĄc internal energy 𝑒𝑖𝑛𝑡 depends

on the following state variables: the temperature 𝜃 and the displacement 𝑑𝑒𝑝Û. This term naturally includes
the macroscopic kinetic energy.
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5.2.2 Heat four-tensor

The heat four-tensor 𝑇ÛÜ𝑞 is developed in part 1 of this manuscript. Four methods are illustrated in sections
2.3 and 2.4 in order to obtain respectively the spacetime FourierŠs and CattaneoŠs models of heat conduction.
CattaneoŠs model of heat conduction can be expressed as in Eq. 2.38. This model veriĄes the covariance
principle, the causality principal and is built using a thermodynamical approach. When á and á1 (of the
order of 𝑛𝑠) are negligible with respect to the time (𝑡 ∈ 𝑡𝑚𝑎𝑐𝑟𝑜, see section 1.5.7), the advantages of this
model are limited. We thus propose to use in this chapter the spacetime Fourier model of heat conduction
expressed in Eq. 2.32.

𝑇ÛÜ𝑞 = 𝑞Û𝑢Ü + 𝑢Û𝑞Ü (5.4)

=
Ú

𝑐
ΠÛÙ (∇Ù𝜃)𝑢Ü + 𝑢Û

Ú

𝑐
ΠÜÙ (∇Ù𝜃) (5.5)

=
Ú

𝑐
(ΠÛÙ𝑢Ü + ΠÜÙ𝑢Û)∇Ù𝜃 (5.6)

5.2.3 Stress four-tensor

We assume that the stress four-tensor 𝑇ÛÜà depends on the following state variables: the temperature 𝜃
and the displacement 𝑑𝑒𝑝Û. In addition to this, it depends on the projection operator, thus on the metric
tensor 𝑔ÛÜ . The impact of use of the projection operator is one of the aims of this chapter. It will be further
expressed for spacetime hyperelastic models as a function of the speciĄc free energy Ψ (see section 5.5).

5.3 Four-dimensional balance laws for continuous media

5.3.1 Balance of the molecules number

We assume that the molecules cannot be created or annihilated, which leads to the principle of balance of
molecules number. We consider again the spacetime global domain of the material of hypervolume 𝒟 with
frontier 𝜕𝒟. We introduce the molecules current 𝑛Û which thus veriĄes:

∀𝑥Û ∈ 𝒟,∇Û𝑛
Û = 0 (5.7)

Problems occur when deĄning this molecule current four-vector velocity. In the general context of relativistic
physics, this molecule current may be deĄned as:

𝑛Û = 𝑛𝑢Û + ÜÛ (5.8)

where the scalar 𝑛 represents the molecules number density (per unit of volume) in the proper frame and
the four-vector velocity ÜÛ represents the molecules diffusion current. When non-thermomechanical
dissipation occurs, two different assumptions can be adopted: they are proposed by [Eckart,1940]
and by [Landau and Lifshitz,1975]. Different authors have attempted to merge these two approaches
[Schellstede et al.,2014, Israel,1989]. In this manuscript, since such dissipations are not considered, the
diffusion term is chosen such that ÜÛ = 0. Consequently, the balance equation of all the molecules in 𝒟
eventually leads to:

∀𝑥Û ∈ 𝒟,∇Û(̃︀𝜌𝑐𝑢Û) = 0 (5.9)

It corresponds to the balance of the rest mass per unit of volume. At the non-relativistic limit, it would
lead to the classical continuity equation.
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5.3.2 Balance of the momentum and energy

The spacetime energy-momentum balance can be obtained from the deĄnition of the energy-momentum
tensor. In a general frame of reference, it can be locally written as:

∀𝑥Û ∈ 𝒟,∇Ü𝑇
ÛÜ = 0 (5.10)

⇔ ∀𝑥Û ∈ 𝒟,∇Ü𝑇
ÛÜ
𝒰

+ ∇Ü𝑇
ÛÜ
𝑞 + ∇Ü𝑇

ÛÜ
à = 0 (5.11)

Using Eq. 5.1 and Eq. 5.6, we obtain:

∀𝑥Û ∈ 𝒟,∇Ü(𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà ) = 0 (5.12)

⇔ ∀𝑥Û ∈ 𝒟,∇Ü

⎤
̃︀𝜌𝑐𝑐2

(︁
1 +

𝑒𝑖𝑛𝑡
𝑐2

⎡
𝑢Û𝑢Ü +

Ú

𝑐
(ΠÛÙ𝑢Ü + ΠÜÙ𝑢Û)𝜕Ù𝜃 + 𝑇ÛÜà

⎣
= 0 (5.13)

The expressions of 𝑒𝑖𝑛𝑡(𝜃, 𝑑𝑒𝑝Û) and 𝑇ÛÜà (𝜃, 𝑑𝑒𝑝Û, 𝑔ÛÜ) can then be injected in Eq. 5.13 leading to:

∇Ü

⎤
̃︀𝜌𝑐𝑐2

⎤
1 +

𝑒𝑖𝑛𝑡(𝜃, 𝑑𝑒𝑝Û)
𝑐2

⎣
𝑢Û𝑢Ü +

Ú

𝑐
(ΠÛÙ𝑢Ü + ΠÜÙ𝑢Û)𝜕Ù𝜃 + 𝑇ÛÜà (𝜃, 𝑑𝑒𝑝Û, 𝑔ÛÜ)

⎣
= 0 (5.14)

We now have to determine the expression of 𝑒𝑖𝑛𝑡 and 𝑇ÛÜà which can be connected.

5.3.3 Balance of the internal energy

It is interesting to calculate the balance of the energy-momentum tensor along the direction of the velocity
four-vector to obtain the balance of internal energy of the system. With the time projector (see section
2.2.4), it leads locally to:

∀𝑥Û ∈ 𝒟, 𝑢Û∇Ü𝑇
ÛÜ = 0 (5.15)

In order to develop Eq. 5.15, we use :

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝑢Û𝑇ÛÜ) ⊗ 𝑇ÛÜ∇Ü𝑢Û = 0 (5.16)

First using the fact that ∇Ü(𝑢Û𝑇
ÛÜ
à ) = 0 because 𝑢Û𝑇

ÛÜ
à = 0 (because of its construction by the

projection of 𝑇ÛÜ , see section 2.2.8 [Wang,2016]) and 𝑢Û𝑇
ÛÜ
𝑞 = 𝑞Ü which is obtained using Eq. 2.21:

𝑢Û𝑇
ÛÜ
𝑞 = 𝑢Û𝑞

Ü𝑢Û + 𝑢Û𝑞
Û𝑢Ü

= 𝑞Ü + (ÓÛÐ ⊗ 𝑢Û𝑢Ð)𝑢Û𝑇ÐÑ𝑢Ñ𝑢
Ü = 𝑞Ü (5.17)

We obtain:

∇Ü(𝑢Û𝑇ÛÜ) = ∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞
Ü (5.18)

Second, using 𝑢Û𝑢Û = 1, we can deduce that: 𝑢Û∇Ü𝑢Û = 𝑢Û∇Ü𝑢
Û = 0. Then:

𝑇ÛÜ∇Ü𝑢Û = 𝑞Û𝑢Ü∇Ü𝑢Û + 𝑇ÛÜà ∇Ü𝑢Û (5.19)

Eqs. 5.18 and 5.19 lead to:

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝜌𝑐(𝑐2 + 𝑒)𝑢Ü) + ∇Ü𝑞

Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û ⊗ 𝑇ÛÜà ∇Ü𝑢Û (5.20)

If 𝑇ÛÜ is symmetric, then according to its deĄnition (Eq. 2.23), 𝑇ÛÜà is symmetric. Eq. 5.20 can then be
rewritten using the rate of deformation 𝑑ÛÜ (symmetric part of the velocity gradient):

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞

Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û ⊗ 𝑇ÛÜà 𝑑ÛÜ = 0 (5.21)
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We then conclude on the internal energy balance :

∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞
Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û = 𝑇ÛÜà 𝑑ÛÜ (5.22)

In the special case of adiabatic behavior and because 𝑢Û𝑢Ü𝑑ÛÜ = 0 (meaning that 𝑑ÛÜ = 𝑑ÛÜ), it is also
possible to write the internal energy balance directly as a function of the total energy-momentum tensor
such that:

∀𝑥Û ∈ 𝒟,∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) = 𝑇ÛÜ𝑑ÛÜ (5.23)

We can now derive Eq. 5.22:
∙ In an inertial frame with the choice of a 3D Cartesian coordinate system, the covariant derivative

reduces to the partial derivative and the four-vector velocity can be expressed as in Eq. 2.6.

̃︀𝜌𝑐𝑢Ü𝜕Ü((𝑐2 + 𝑒𝑖𝑛𝑡)) + 𝜕Ü𝑞
Ü ⊗ 𝑞Û𝑢Ü𝜕Ü𝑢Û = 𝑇ÛÜà 𝑑ÛÜ

⇔ ̃︀𝜌𝑐
𝑑

𝑑𝑠
(𝑐2 + 𝑒𝑖𝑛𝑡) +

𝜕𝑞𝑖

𝜕𝑥𝑖
+
𝜕𝑞4

𝑐𝑑𝑡
⊗ 𝑞Û

𝑑𝑢Û
𝑑𝑠

= 𝑇ÛÜà 𝑑ÛÜ

⇔ ̃︀𝜌𝑐
𝑑𝑒𝑖𝑛𝑡
𝑑𝑠

+
𝜕𝑞𝑖

𝜕𝑥𝑖
+
𝜕𝑞4

𝑐𝑑𝑡
⊗ 𝑞Û

𝑑𝑢Û
𝑑𝑠

= 𝑇ÛÜà 𝑑ÛÜ (5.24)

∙ In an inertial frame with the choice of a 3D Cartesian coordinate system, for which the motion would
be non-relativistic (𝑣 ⪯ 𝑐), we obtain:

̃︀𝜌𝑐
𝑑𝑒𝑖𝑛𝑡
𝑑𝑡

+
𝜕ã𝑖

𝜕𝑥𝑖
+
𝜕𝑞4

𝜕𝑡
⊗ 𝑞Û

𝑑𝑢Û
𝑑𝑡

= 𝑐(𝑇 𝑖𝑗à 𝑑𝑖𝑗 + 2𝑇 𝑖4à 𝑑𝑖4 + 𝑇 44
à 𝑑44) (5.25)

Since 𝜕𝑞4

𝜕𝑡 is negligible with respect to 𝜕ãi

𝜕𝑥i , Eq. 5.25 can then be approximated to:

̃︀𝜌𝑐
𝑑𝑒𝑖𝑛𝑡
𝑑𝑡

+
𝜕ã𝑖

𝜕𝑥𝑖
⊗ 𝑞Û

𝑑𝑢Û
𝑑𝑡

≡ 𝑐(𝑇 𝑖𝑗à 𝑑𝑖𝑗 + 2𝑇 𝑖4à 𝑑𝑖4 + 𝑇 44
à 𝑑44) (5.26)

Eq. 5.26 is the non-relativistic balance of internal energy. If the acceleration term 𝑑𝑢µ

𝑑𝑡 is null, in addition
to 𝑇 4𝑗

à = 𝑇 44
à = 0 or ≡ 0, and/or if 𝑑4𝑗 = 𝑑44 = 0 or ≡ 0, it reduces to the Newtonian balance of

internal energy [Brunet,2009], noting that 𝑐d(u) ≡ d(v).

5.3.4 Balance of the entropy

Now we can locally express the balance of entropy through the inequality:

∀𝑥Û ∈ 𝒟,∇Ü𝑆
Ü =

Φ
𝜃 𝑐

(5.27)

where Φ is the dissipation, which is the irreversibility source with the constraint that Φ ⊙ 0, and 𝜃 is the
temperature also assumed to be strictly positive. Besides, we can deĄne the entropy current as in Eq. 2.27
which leads to:

∀𝑥Û ∈ 𝒟,∇Ü(̃︀𝜌𝑐Ö𝑐𝑢Ü) + ∇Ü(
𝑞Û

𝜃
) =

Φ
𝜃 𝑐

(5.28)

This is the equivalent to Eq. 2.28.
∙ For an inertial frame with the choice of a 3D Cartesian coordinate system, the covariant derivative

reduces to the partial derivative and the four-vector velocity can be expressed as in Eq. 2.16. We can
then write:

̃︀𝜌𝑐
𝑑Ö

𝑑𝑠
+

𝜕

𝜕𝑥𝑖
(
𝑞𝑖

𝜃
) +

𝜕

𝑐𝜕𝑡
(
𝑞4

𝜃
) =

Φ
𝜃 𝑐

(5.29)
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∙ For an inertial frame with the choice of a 3D Cartesian coordinate system, for which the motion would
be non-relativistic (𝑣 ⪯ 𝑐), we obtain:

̃︀𝜌𝑐
𝑑Ö

𝑑𝑡
+

𝜕

𝜕𝑥𝑖
(
ã𝑖

𝜃
) ≡ Φ

𝜃
(5.30)

Eq. 5.30 is the balance of entropy in the absence of chemical phenomena or diffusion species. It
corresponds to the second principle of thermodynamics written in the Newtonian case [Brunet,2009].

5.4 The four-dimensional form of the Clausius-Duhem inequality

As in Newtonian mechanics, it is possible to locally express the second principle by construction of a
generalized spacetime expression of the Clausius-Duhem inequality. Consequently:

∀𝑥Û ∈ 𝒟, 𝜃∇Ü𝑆
Ü ⊗ 𝑢Û∇Ü𝑇

ÛÜ =
Φ
𝑐

⊙ 0 (5.31)

⇒ ∀𝑥Û ∈ 𝒟, 𝜃∇Ü(̃︀𝜌𝑐Ö𝑐𝑢Ü) + ∇Ü(
𝑞Û

𝜃
) ⊗ ∇Ü(𝜌𝑐𝑐2𝑢Ü)

⊗∇Ü(𝑞Ü) + 𝑞Û𝑢Ü∇Ü(𝑢Û) + 𝑇ÛÜ𝑑ÛÜ =
Φ
𝑐

⊙ 0

̃︀𝜌𝑐𝜃𝑢Û∇ÛÖ𝑐 ⊗ ̃︀𝜌𝑐𝑢Û∇Û𝑒𝑖𝑛𝑡 ⊗ 1
𝜃
𝑞Û∇Û𝜃 + 𝑞Ü𝑢

Û∇Û𝑢
Ü + 𝑇ÛÜà 𝑑ÛÜ ⊙ 0 (5.32)

In this inequality, terms are related, respectively, to the evolution of entropy, the evolution of internal
energy, the thermal dissipations (one is coupled to mechanics with the term 𝑢Û∇Û𝑢

Ü) and the internal
mechanical power 𝑇ÛÜà 𝑑ÛÜ .

By introducing the speciĄc free energy deĄned by: å = 𝑒𝑖𝑛𝑡 ⊗ 𝜃Ö𝑐, the previous inequality is equivalent
to:

⊗ ̃︀𝜌𝑐(𝑢Û∇Ûå + Ö𝑐𝑢
Û∇Û𝜃) ⊗ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
+ 𝑇ÛÜà 𝑑ÛÜ =

Φ
𝑐

⊙ 0 (5.33)

In the following, the spacetime form of Clausius-Duhem inequality is expressed in different frames:
∙ In an inertial frame with the choice of a 3D Cartesian coordinate system, the covariant derivative

reduces to the partial derivative and the four-vector velocity can be expressed as in Eq. 2.6. We can
then write using Eq. 2.35:

̃︀𝜌𝑐𝑐
⎤
𝜃
𝑑Ö

𝑑𝑠
⊗ 𝑑𝑒𝑖𝑛𝑡

𝑑𝑠

⎣
⊗ 𝑐

𝑞Û

𝜃
(𝜕Û𝜃 ⊗ 𝜃

𝑑𝑢Û
𝑑𝑠

) + 𝑐𝑇ÛÜà 𝑑ÛÜ = Φ ⊙ 0 (5.34)

∙ For an inertial frame with the choice of a 3D Cartesian coordinate system, for which the motion would
be non-relativistic (𝑣 ⪯ 𝑐), we obtain:

̃︀𝜌𝑐
⎤
𝜃
𝑑Ö

𝑑𝑡
⊗ 𝑑𝑒𝑖𝑛𝑡

𝑑𝑡

⎣
⊗ ã𝑖

𝜃
𝜕𝑖𝜃 ⊗ 𝑞4

𝜃

𝜕𝜃

𝜕𝑡
+ 𝑞𝑖

𝑑𝑢𝑖
𝑑𝑡

+ 𝑞4 𝑑𝑢4

𝑑𝑡

+𝑐(𝑇 𝑖𝑗à 𝑑𝑖𝑗 + 2𝑇 𝑖4à 𝑑𝑖4 + 𝑇 44
à 𝑑44) = Φ ⊙ 0 (5.35)

Since 𝜕𝑞4

𝜕𝑡 is negligible with respect to 𝜕ãi

𝜕𝑥i , Eq. 5.35 can then be approximated to:

̃︀𝜌𝑐
⎤
𝜃
𝑑Ö

𝑑𝑡
⊗ 𝑑𝑒𝑖𝑛𝑡

𝑑𝑡

⎣
⊗ ã𝑖

𝜃
𝜕𝑖𝜃 + 𝑞𝑖

𝑑𝑢𝑖
𝑑𝑡

+ 𝑞4 𝑑𝑢4

𝑑𝑡

+𝑐(𝑇 𝑖𝑗à 𝑑𝑖𝑗 + 2𝑇 𝑖4à 𝑑𝑖4 + 𝑇 44
à 𝑑44) ≡ Φ ⊙ 0 (5.36)

Eq. 5.36 is the non-relativistic expression of the Clausius-Duhem inequality. It corresponds to another
expression of the second principle of thermodynamics. If the acceleration term 𝑑𝑢µ

𝑑𝑡 is null, in addition
to 𝑇 4𝑗

à = 𝑇 44
à = 0 or ≡ 0, and/or if 𝑑4𝑗 = 𝑑44 = 0 or ≡ 0, it reduces to the expected Newtonian

Clausius-Duhem inequality (see Eq. 1.17), noting that 𝑐d(u) ≡ d(v).
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5.5 Spacetime thermo-hyperelastic model formulation

From the spacetime generalization of the Clausius-Duhem, it is possible to obtain constitutive behaviors of
materials. In this section, we aim to obtain a formulation of the spacetime thermo-hyperelastic behavior of
materials. As in the Newtonian case, it is assumed that hyperelasticity also ensures that the material models
are non-dissipative (i.e. Φ = 0). Moreover, we build the constitutive behavior using Lie derivative since this
rate is objective in spacetime (see section 4.5.3). In order to obtain directly the constitutive behavior, we
replace equivalently the covariant derivative by the Lie derivative where possible in Eq. 5.33: especially
for occurrence of 𝑢Û∇Û(.) for scalars that have a weight 𝑊 = 0 (this is the case of the speciĄc free energy
and temperature). It is an important innovative step of the proposed methodology. Eq. 5.33 can then be
rewritten as:

⊗̃︀𝜌𝑐(Ö𝑐ℒ𝑢(𝜃) + ℒ𝑢(Ψ)) ⊗ 𝑞Û
⎤

1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
+ 𝑇ÛÜà 𝑑ÛÜ = 0 (5.37)

It is worth noting that the use of the Lie derivative is a particular choice that is, at this step of the
derivation, not better than an other choice. In order to develop Eq. 5.37, it is necessary to deĄne all the
arguments of the Lie derivative: the materials parameters, the kinematic tensors and the temperature.
Choosing the constitutive model consists in choosing a speciĄc free energy Ψ.

Assumptions:

Several assumptions are made at this stage:
∙ We suppose that the temperature is coupled to the mechanical behavior through a strong coupling.
∙ We assume an isotropic behavior of materials at macroscopic scale. Full isotropic behavior requires at

least 2 independent material parameters (for example the Lamé coefficients) [Wang,2016]. Therefore,
the chosen behavior is also invariant under spacetime rotation, consequently invariant to the Galilean
translation at the non-relativistic limit. This full symmetry is assumed in the following.

Moreover, the resulting model should satisfy:
∙ The balance of molecules number (Eq. 5.7), the balance of momentum and energy (Eq. 5.11), the balance

of internal energy (Eq. 5.15), the balance of entropy (Eq. 5.27) and the Clausius-Duhem inequality (Eq.
5.32).

∙ 𝑇ÛÜà 𝑢Û = 0 to respect the construction of 𝑇ÛÜ .
∙ The symmetry of 𝑇ÛÜ and 𝑇ÛÜà .
∙ 𝑇ÛÜà is as a function of the speciĄc free energy Ψ. Thus, the designated Ψ should a priori depend on

spatial projected quantities at least for its mechanical part.

Therefore, we consider the following partition of Ψ such that:

Ψ = Ψ𝜃(𝒞𝑚𝑃 , 𝜃) + Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝐼𝐼 , 𝐼𝐼𝐼) + Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝐼𝐼) + Ψ0 (5.38)

where 𝒞𝑚𝑃 is the speciĄc heat coefficient at constant pressure, Λ/̃︀𝜌𝑐 and Û/̃︀𝜌𝑐 are the Lamé speciĄc
coefficients for elasticity (per unit of mass). ÙÐ/̃︀𝜌𝑐 is a speciĄc coefficient coupling the bulk modulus
Ù = Λ + 2Û/3 and the thermal expansion coefficient Ð. These 3 coefficients are supposed to be temperature
independent. 𝐼𝐼 and 𝐼𝐼𝐼 are the invariants of the projected strain tensor. The thermomechanical coupling
is expressed by Ψ𝜃,à in which Δ𝜃 = 𝜃 ⊗ 𝜃0 is the variation of temperature caused by the thermoelastic
behavior, measured with respect to a reference temperature 𝜃0. This choice is a general form of the speciĄc
free energy Ψ depending on invariants. Other equivalent choices of Ψà and Ψ𝜃,à are possible:
∙ We could consider the functions Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝑒ÛÜ , 𝑔ÛÜ) and Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝑒ÛÜ , 𝑔ÛÜ), where 𝑒ÛÜ is

the Eulerian covariant component of the projected elastic strain tensor, and 𝑔ÛÜ is the contravariant
component of the projected metric tensor.

∙ We could also consider the functions Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝑏ÛÜ , 𝑔ÛÜ) and and Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝑏ÛÜ , 𝑔ÛÜ), with
𝑏ÛÜ deĄned in Eq. 4.46. Note that ℒ𝑢(𝑏ÛÜ) = 0, which could help in simplifying the expression of the
behavior model.
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For simpliĄcation, we use the Euler-Almansi strain 𝑒ÛÜ when referring to the elastic strain in this chapter.
It is worth noting that the speciĄc free energy Ψ is supposed to be, at the macroscopic scale, a function of
the only state variables temperature 𝜃 and projected elastic strain 𝑒ÛÜ . However, because of the use of the
Lie derivative, all the arguments/parameters have to be listed for further derivation.

5.5.1 Application for a specific free energy based on the invariants of the projected strain tensor

Using Eq. 5.37, we can write for a reversible behavior:

⊗̃︀𝜌𝑐(Ö𝑐ℒ𝑢(𝜃) + ℒ𝑢(Ψ𝜃)) ⊗ ̃︀𝜌𝑐ℒ𝑢(Ψà) ⊗ ̃︀𝜌𝑐ℒ𝑢(Ψ𝜃,à) ⊗ 𝑞Û
⎤

1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
+ 𝑇ÛÜà 𝑑ÛÜ = 0 (5.39)

⇔ ̃︀𝜌𝑐
⎤
Ö𝑐ℒ𝑢(𝜃) +

𝜕Ψ𝜃

𝜕𝒞𝑚𝑃
ℒ𝑢(𝒞𝑚𝑃 ) +

𝜕Ψ𝜃

𝜕𝜃
ℒ𝑢(𝜃)

⎣
+

̃︀𝜌𝑐
⎤

𝜕Ψà

𝜕(Λ/̃︀𝜌𝑐)
ℒ𝑢(Λ/̃︀𝜌𝑐) +

𝜕Ψà

𝜕(Û/̃︀𝜌𝑐)
ℒ𝑢(Û/̃︀𝜌𝑐) +

𝜕Ψ𝜃,à

𝜕(ÙÐ/̃︀𝜌𝑐)
ℒ𝑢(ÙÐ/̃︀𝜌𝑐) +

𝜕Ψ𝜃,à

𝜕Δ𝜃
ℒ𝑢(Δ𝜃)

⎣
+

̃︀𝜌𝑐
⎤
𝜕Ψà

𝜕𝐼𝐼
ℒ𝑢(𝐼𝐼) +

𝜕Ψ𝜃,à

𝜕𝐼𝐼
ℒ𝑢(𝐼𝐼) +

𝜕Ψà

𝜕𝐼𝐼𝐼
ℒ𝑢(𝐼𝐼𝐼)

⎣
+ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
=

𝑇ÛÜà 𝑑ÛÜ (5.40)

The speciĄc free energy is expressed in Eq. 5.38 as an additive decomposition of three effects. The
two invariants 𝐼𝐼 and 𝐼𝐼𝐼 should physically correspond respectively to the deformation of volume and
deformation of surface of the material continuum. We propose for the expressions of the speciĄc free energy
terms by analogy with Newtonian approaches [Farhat et al.,1991, Nayfeh and Nemat-Nasser,1971]:

Ψà =
Λ
̃︀𝜌𝑐
𝐼n1

𝐼

n1
+
Û

̃︀𝜌𝑐
𝐼n2

𝐼𝐼

n2
(5.41)

Ψ𝜃,à = ⊗3ÙÐ
̃︀𝜌𝑐

Δ𝜃𝐼𝐼 (5.42)

with n1 and n2 exponents of the power laws (∈ N
+*). The invariants 𝐼𝐼 and 𝐼𝐼𝐼 are supposed to be

independent to get a decoupling of the mechanical effects, but they will be expressed as a function of the
strain tensor e and/or the metric tensor g. According to Eqs. 4.54 to 4.55, the Lie derivatives of these
invariants are linear functions of the deformation rate tensor d, as it will be illustrated further. We can
then calculate the different terms of Eq. 5.40 with:
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𝜕Ψà

𝜕(Λ/̃︀𝜌𝑐)
=

𝐼n1

𝐼

n1
(5.43)

ℒ𝑢(Λ/̃︀𝜌𝑐) =
Λ
̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (5.44)

𝜕Ψà

𝜕(Û/̃︀𝜌𝑐)
=

𝐼n2

𝐼𝐼

n2
(5.45)

ℒ𝑢(Û/̃︀𝜌𝑐) =
Û

̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (5.46)

𝜕Ψ𝜃,à

𝜕(ÙÐ/̃︀𝜌𝑐)
= ⊗3Δ𝜃𝐼𝐼 (5.47)

ℒ𝑢(ÙÐ/̃︀𝜌𝑐) =
ÙÐ

̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (5.48)

𝜕Ψà

𝜕𝐼𝐼
+
𝜕Ψ𝜃,à

𝜕𝐼𝐼
=

Λ
̃︀𝜌𝑐
𝐼n1⊗1
𝐼 ⊗ 3ÙÐ

̃︀𝜌𝑐
Δ𝜃 (5.49)

ℒ𝑢(𝐼𝐼) = 𝐴ÛÜ𝐼 𝑑ÛÜ (5.50)
𝜕Ψà

𝜕𝐼𝐼𝐼
=

Û

̃︀𝜌𝑐
𝐼n2⊗1
𝐼𝐼 (5.51)

ℒ𝑢(𝐼𝐼𝐼) = 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ (5.52)

ℒ𝑢(Δ𝜃) = ℒ𝑢(𝜃) ⊗ ℒ𝑢(𝜃0) = ℒ𝑢(𝜃) (5.53)

ℒ𝑢(𝒞𝑚𝑃 ) = 0 (5.54)

with 𝐴ÛÜ𝐼 and 𝐴ÛÜ𝐼𝐼 tensorial functions that remain to be explicited. Note that the Lie derivative of a constant
scalar of density 𝑊 = 0 is null. By using Eqs. 5.43 to 5.54 in Eq. 5.40, then it is possible to write:

̃︀𝜌𝑐
(︀
Öℒ𝑢(𝜃) + 𝜕Ψθ

𝜕𝜃 ℒ𝑢(𝜃)
)︀

+ ̃︀𝜌𝑐
(︁
𝐼
n1

I

n1

Λ

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ +
𝐼
n2

II

n2

Û

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ ⊗ 3Δ𝜃𝐼𝐼
ÙÐ

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ ⊗ 3ÙÐ̃︀𝜌c

𝐼𝐼ℒ𝑢(𝜃)
⎡

+ ̃︀𝜌𝑐
(︁

( Λ

̃︀𝜌c

𝐼n1⊗1
𝐼 ⊗ 3ÙÐ

̃︀𝜌c

Δ𝜃)𝐴ÛÜ𝐼 𝑑ÛÜ + Û

̃︀𝜌c

𝐼n2⊗1
𝐼𝐼 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ

⎡
⊗ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
= 𝑇ÛÜà 𝑑ÛÜ (5.55)

By considering independent and reversible transformations, we obtain simultaneously:

∀ℒ𝑢(𝜃), Ö𝑐 = ⊗𝜕Ψ𝜃

𝜕𝜃
+ 3

ÙÐ

̃︀𝜌𝑐
𝐼𝐼 (5.56)

∀𝜃, 𝑞Û
⎤

1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
⊙ 0 (5.57)

∀𝑑ÛÜ , 𝑇ÛÜà =
𝐼n1

𝐼

n1
Λ𝑔ÛÜ +

𝐼n2

𝐼𝐼

n2
Û𝑔ÛÜ ⊗ 3Δ𝜃𝐼𝐼ÙÐ𝑔

ÛÜ

+
(︀
(Λ𝐼n1⊗1

𝐼 ⊗ 3ÙÐΔ𝜃)𝐴ÛÜ𝐼 + Û𝐼n2⊗1
𝐼𝐼 𝐴ÛÜ𝐼𝐼

)︀𝑆𝑦𝑚
(5.58)

As expected, this equation is symmetric and the choice of 𝐼n1⊗1
𝐼 has to respect 𝑇ÛÜà 𝑢Û = 0 (the other terms

already respect this condition).

5.5.2 Spacetime thermo-hyperelastic behavior of a specific reversible model

In this model, spatial projectors to deĄne the speciĄc free energy. The invariants of the projected strain tensor
are chosen by generalizing the invariants of Newtonian Hookean-like models [Ugural and Fenster,2003]. The
Ąrst invariant, related to the spatial volume variation, is given by:

𝐼𝐼 = 𝑒ÛÜ𝑔
ÛÜ = 𝑒ÛÜ𝑔

ÛÜ = 𝑒ÛÜ𝑔
ÛÜ (5.59)

that leads then to:

ℒ𝑢(𝐼𝐼) = 𝐴ÛÜ𝐼 𝑑ÛÜ = (𝑔ÛÜ ⊗ 2𝑒ÛÜ)𝑑ÛÜ (5.60)
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The second invariant, related to the spatial surface variation, is:

𝐼𝐼𝐼 = 𝑒ÛÜ𝑒
ÛÜ = 𝑒ÛÜ𝑒

ÛÜ = 𝑒ÛÜ𝑒
ÛÜ (5.61)

that leads then to:

ℒ𝑢(𝐼𝐼𝐼) = 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ = (2𝑒ÛÜ ⊗ 2𝑒ÛÑ𝑒
ÑÜ ⊗ 2𝑒ÛÑ𝑒 Ü

Ñ )𝑑ÛÜ (5.62)

Assuming a quadratic form for the speciĄc free energy, according to the choice of these invariants, it leads
to n1 = 2 and n2 = 1. Using Eqs. 5.59 to 5.62 and 5.58, the stress-strain curve can be obtained:

𝑇ÛÜà =
(𝑒ÐÑ𝑔ÐÑ)2

2
Λ𝑔ÛÜ + (𝑒ÐÑ𝑒

ÐÑ)Û𝑔ÛÜ + Λ(𝑒ÐÑ𝑔
ÐÑ)(𝑔ÛÜ ⊗ 2𝑒ÛÜ)

+ 2Û𝑒ÛÜ ⊗ 4Û
(︁
𝑒ÛÑ𝑒

ÑÜ
⎡𝑆𝑦𝑚

⊗ 3ÙÐΔ𝜃(𝑒ÐÑ𝑔
ÐÑ)𝑔ÛÜ ⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 2𝑒ÛÜ) (5.63)

= Λ(𝑒ÐÑ𝑔
ÐÑ)

⎤
𝑔ÛÜ +

1
2

(𝑒ÐÑ𝑔
ÐÑ)𝑔ÛÜ ⊗ 2𝑒ÛÜ

⎣

+ 2Û

⎤
𝑒ÛÜ +

1
2

(𝑒ÐÑ𝑒
ÐÑ)𝑔ÛÜ ⊗ 2

(︁
𝑒ÛÑ𝑒

ÑÜ
⎡𝑆𝑦𝑚⎣

⊗ 3ÙÐΔ𝜃
(︀
(𝑒ÐÑ𝑔

ÐÑ)𝑔ÛÜ + 𝑔ÛÜ ⊗ 2𝑒ÛÜ
)︀

(5.64)

As expected, this expression is symmetric because the spatial projector keeps the property of symmetry.
Moreover, Eq. 5.64 veriĄes 𝑇ÛÜà 𝑢Û = 0 (since it can be proved that 𝑒ÛÜ𝑢Û = 0 and 𝑔ÛÜ𝑢Û = 0). The non-linear
terms in Eq. 5.58 correspond to terms in the Lie derivative that can be related to the derivative to the material
parameters and to the metric components. By use of Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝑒ÛÜ , 𝑔ÛÜ) and Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝑒ÛÜ , 𝑔ÛÜ)
instead of Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝐼𝐼 , 𝐼𝐼𝐼) and Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝐼𝐼), we would obtain exactly the same constitutive
model. As expected, Eq. 5.64 leads to the absence of spacetime stress for 𝑒ÐÑ = 0 and Δ𝜃 = 0.

5.5.3 The thermo-hyperelastic behavior under different assumptions

5.5.3.1 For small deformations and finite temperature variation

We assume that the deformations are small (∀Û, Ü, 𝑒ÛÜ ⪯ 1 ⇔ ♣♣𝑒♣♣ ⪯ 1) and the variation of temperature is
Ąnite, then Eq. 5.64 leads to:

𝑇ÛÜà = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð (ÓÐÑ ⊗ 𝑢Ð𝑢Ñ))(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)

+ 2(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(ÓÛÐ ⊗ 𝑢Û𝑢Ð)(ÓÜÑ ⊗ 𝑢Ü𝑢Ñ)

⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (5.65)

Eq. 5.65 shows that 𝑒ÐÑ = 0 or 𝑒ÐÑ = 𝒩𝑢Ð𝑢Ñ , with 𝒩 ∈ R
* (and Δ𝑡ℎ𝑒𝑡𝑎 = 0) leads to the absence of

spacetime stress. When expressed in an inertial frame, Eq. 5.65 leads to:

𝑇ÛÜà = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð (ÓÐÑ ⊗ Ò2𝑣Ð𝑣Ñ/𝑐

2))(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2)

+ 2(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(ÓÛÐ ⊗ Ò2𝑣Û𝑣Ð/𝑐
2)(ÓÜÑ ⊗ Ò2𝑣Ü𝑣Ñ/𝑐

2)

⊗ 3ÙÐΔ𝜃(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2) (5.66)

where 𝑒ÛÜ = 1
2 (ÖÛÜ ⊗ 𝑏ÛÜ) from Eq. 4.45. At the non-relativistic limit, it leads to:

𝑇ÛÜà ≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð ÓÐÑ)ÖÛÜ + 2(Û+ 3ÙÐΔ𝜃)𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (5.67)

≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)Ö

ÛÜ + 2(Û+ 3ÙÐΔ𝜃)𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (5.68)

In absence of thermomechanical coupling, Eq. 5.68 leads to the Hookean-like model for small deformation
for thermoelasticity, assuming that 𝑒 4

4 ≡ 0 if the loading speed is non-relativistic, so that only the spatial
components remain in the trace of 𝑒ÛÜ .
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When expressed in the proper frame, where 𝑢̂Û = (0, 0, 0, 1), Eq. 5.65 leads for the spatial components
to:

𝑇 𝑖𝑗à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖𝑗 (5.69)

where 𝑒ÛÜ = 1
2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) = 1

2 (𝑔ÛÜ ⊗ 𝑔ÛÐ𝑔ÜÑÖÐÑ) from Eq. 4.45. Because Λ and Û are scalar densities,
the determinant 𝐽 has to be introduced and for small deformations 𝐽 ≡ 1. It leads to the Hookean-like
model for small deformation (Eq. 4.25), with new terms coupling the deformation to the Ąnite temperature
variation ⊗3ÙÐΔ𝜃(𝑒 𝑏

𝑎 Ó
𝑎
𝑏)𝑔

𝑖𝑗 + 6ÙÐΔ𝜃𝑒𝑖𝑗 and the term 𝑒 4
4 ⊗ 𝑒 Ñ

4 𝑢̂Ñ that strictly vanishes when the proper
frame is also locally inertial (𝑔ÛÜ = ÖÛÜ leading to 𝑢̂Û = (0, 0, 0, 1)). In the proper but non-inertial frame,
this term may be neglected if and only if the loading speed is non-relativistic [Panicaud et al.,2014]. And
for the time components, it leads to:

𝑇 𝑖4à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖4 + 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒𝑖Ñ(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖4 (5.70)

and

𝑇 44
à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏

𝑎 Ó
𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)(𝑔44 ⊗ 1)

+ 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(Ó4
Ð ⊗ 𝑢̂Ð)(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃(𝑔44 ⊗ 1) (5.71)

Eq. 5.71 vanishes if and only if the proper frame is also inertial (𝑔ÛÜ = ÖÛÜ leading to 𝑢̂Û = (0, 0, 0, 1)).
For other frames, some terms appear for the time components, which can be considered as very small, as for
example for the proper frame, if the loading speed is non-relativistic. In this proper frame, because of the
choice of the strain tensor, Eq. 5.69 vanishes for 𝑒ÐÑ = 0, only if the additional hypothesis Δ𝜃 = 0 is taken
into account. The use of projector in the speciĄc free energy ensures the modeling of spatial contributions
for the stress and strain expressions for the proper frame if the loading speed is small enough.

5.5.3.2 For small deformations and small temperature variation

We assume the deformations and the temperature variation are small (∀Û, Ü, 𝑒ÛÜ ⪯ 1 ⇔ ♣♣𝑒♣♣ ⪯ 1 and
Δ𝜃 ⪯ 𝜃0, such that Δ𝜃𝑒ÛÜ ⊃ 0, Eq. 5.65 leads to:

𝑇ÛÜà = Λ(𝑒 Ñ
Ð (ÓÐÑ ⊗ 𝑢Ð𝑢Ñ))(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)

+ 2Û𝑒ÐÑ(ÓÛÐ ⊗ 𝑢Û𝑢Ð)(ÓÜÑ ⊗ 𝑢Ü𝑢Ñ)

⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (5.72)

Eq. 5.72 shows that 𝑒ÐÑ = 0, Δ𝜃 = 0 or 𝑒ÐÑ = 𝒩𝑢Ð𝑢Ñ , Δ𝜃 = 0, with 𝒩 ∈ R
* leads to the absence of

spacetime stress. When expressed in an inertial frame, Eq. 5.72 leads to:

𝑇ÛÜà = Λ(𝑒 Ñ
Ð (ÓÐÑ ⊗ Ò2𝑣Ð𝑣Ñ/𝑐

2))(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2)

+ 2Û𝑒ÐÑ(ÓÛÐ ⊗ Ò2𝑣Û𝑣Ð/𝑐
2)(ÓÜÑ ⊗ Ò2𝑣Ü𝑣Ñ/𝑐

2)

⊗ 3ÙÐΔ𝜃(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2) (5.73)

where 𝑒ÛÜ = 1
2 (ÖÛÜ ⊗ 𝑏ÛÜ) from Eq. 4.45. At the non-relativistic limit, it leads to:

𝑇ÛÜà ≡ Λ(𝑒 Ñ
Ð ÓÐÑ)ÖÛÜ + 2Û𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (5.74)

≡ Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)Ö

ÛÜ + 2Û𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (5.75)

Eq. 5.75 leads to the Hookean-like model for small deformation coupled with small temperature variation,
assuming that 𝑒 4

4 ≡ 0 if the loading speed is non-relativistic, so that only the spatial components remain.
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When expressed in the proper frame, where 𝑢̂Û = (0, 0, 0, 1), Eq. 5.72 leads for the spatial components
to:

𝑇 𝑖𝑗à = 𝐽Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2𝐽Û𝑒𝑖𝑗

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖𝑗 (5.76)

where 𝑒ÛÜ = 1
2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) = 1

2 (𝑔ÛÜ ⊗ 𝑔ÛÐ𝑔ÜÑÖÐÑ) from Eq. 4.45. Because Λ and Û are scalar densities,
the determinant 𝐽 has to be introduced and for small deformations 𝐽 ≡ 1. It leads to the Hookean-like
model for small deformation coupled with small temperature variation, with a new term 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ that

strictly vanishes when the proper frame is also locally inertial (𝑔ÛÜ = ÖÛÜ leading to 𝑢̂Û = (0, 0, 0, 1)). In the
proper but non-inertial frame, this term may be neglected if and only if the loading speed is non-relativistic
[Panicaud et al.,2014]. And for the time components, it leads to:

𝑇 𝑖4à = 𝐽Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖4 + 2𝐽Û𝑒𝑖Ñ(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖4 (5.77)

and

𝑇 44
à = 𝐽Λ(𝑒 𝑏

𝑎 Ó
𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)(𝑔44 ⊗ 1)

+ 2𝐽Û𝑒ÐÑ(Ó4
Ð ⊗ 𝑢̂Ð)(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃(𝑔44 ⊗ 1) (5.78)

As previously said, these two expressions vanish if and only if the proper frame is also inertial (𝑔ÛÜ = ÖÛÜ

leading to 𝑢̂Û = (0, 0, 0, 1)). For other frames, some terms appear for the time components, which can be
considered as very small, as for example for the proper frame, if the loading speed is non-relativistic.

In this proper frame, because of the choice of the strain tensor, Eq. 5.76 vanishes for 𝑒ÐÑ = 0, since Δ𝜃
is small. However, this condition is equivalent to consider that the proper frame is inertial. Indeed, because
of the deĄnition of the strain tensor, we have 𝑒ÛÜ = 1

2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) that is equivalent to 𝑏̂ÛÜ = 𝑔ÛÜ ⊗ 2𝑒ÛÜ .
The deĄnition of b leads to 𝑏̂ÛÜ = ÖÛÜ . Moreover, if the proper frame is inertial, then 𝑔ÛÜ = ÖÛÜ , thus
𝑏̂ÛÜ = 𝑔ÛÜ . Consequently, 𝑔ÛÜ = ÖÛÜ is equivalent to have 𝑒ÛÜ = 0. The last equations are three equivalent
expressions leading to say that if the proper frame is inertial, the elastic strain components vanish which
leads to the absence of spacetime stress for the considered hyperelastic material. Reciprocally, no spacetime
strain corresponds to the undeformed conĄguration that is necessarily inertial.

5.5.3.3 For large transformations (i.e. large deformations and finite temperature variation)

For small deformations, no difference is expected between the spacetime formalism at the non-relativistic
approximation and the classical Newtonian approach from a modeling point of view as proved in section
5.5.3.2. It is now interesting to investigate the relations obtained for large deformations. We consider Eq.
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5.64 expressed in the proper frame, for the spatial components:

𝑇 𝑖𝑗à /𝐽 = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))𝑔𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

+
1
2

Λ(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))2𝑔𝑖𝑗 + Û(𝑒ÙÚ(𝑔ÙÐ ⊗ 𝑢̂Ù𝑢̂Ð)(𝑔ÚÑ ⊗ 𝑢̂Ú𝑢̂Ñ)𝑒ÐÑ)𝑔𝑖𝑗

⊗2Λ(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))𝑒𝑖𝑗 ⊗ 4Û(𝑒𝑖Ð𝑒 𝑗
Ð ⊗ 𝑒𝑖Ð𝑒 𝑗

4 𝑢̂Ð)𝑆𝑦𝑚

⊗3ÙÐΔ𝜃𝑔𝑖𝑗 (5.79)

= (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

+
1
2

Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)2𝑔𝑖𝑗 + Û(𝑒ÐÑ𝑒ÐÑ ⊗ 𝑒Ð4𝑒Ð4 ⊗ 𝑒 4

Ð 𝑒4Ñ +

+𝑒44𝑒44)𝑔𝑖𝑗 ⊗ 2Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑒𝑖𝑗

⊗4Û(𝑒𝑖𝑎𝑒 𝑗
𝑎 + 𝑒𝑖4𝑒 𝑗

4 ⊗ 𝑒𝑖𝑎𝑒 𝑗
4 𝑢̂𝑎 ⊗ 𝑒𝑖4𝑒 𝑗

4 𝑢̂4)𝑆𝑦𝑚

⊗3ÙÐΔ𝜃𝑔𝑖𝑗 (5.80)

≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)𝑔

𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗 +
1
2

Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)

2𝑔𝑖𝑗 + Û(𝑒ÐÑ𝑒ÐÑ)𝑔𝑖𝑗

⊗2Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)𝑒

𝑖𝑗 ⊗ 4Û(𝑒𝑖𝑎𝑒 𝑗
𝑎 )𝑆𝑦𝑚 ⊗ 3ÙÐΔ𝜃𝑔𝑖𝑗 (5.81)

Eq. 5.81 has been obtained by considering that the loading speed is non-relativistic. In this equation, four
non-linear geometrical terms correspond to a natural expansion of the Hookean model for large deformations.
Besides, the linear terms ⊗3ÙÐΔ𝜃(𝑒 𝑏

𝑎 Ó
𝑎
𝑏)𝑔

𝑖𝑗 and 6ÙÐΔ𝜃𝑒𝑖𝑗 correspond to the expansion of the Hookean
model resulting from Ąnite temperature variation. These two terms strongly couple the deformation and the
quadratic deformation respectively to the Ąnite variation of temperature. The resulting effect of these terms
depend on the value of the deformation. For large deformations, their value is important with respect to
the last term of Eq. 5.81. Thus, by comparison with a Hookean Newtonian thermoelastic model (Eq. 4.25),
six terms depending on three material parameters are added to the model for large transformations. In
case the transformation is isothermal Δ𝜃 = 0, Eq. 5.81 can be compared with a Hookean Newtonian elastic
model (Eq. 4.15), four quadratic terms depending on two material parameters are added to the model for
large transformations.

5.5.4 Summary on the equations and the variables for a reversible spacetime thermo-hyperelastic

model

Input data and summary of the model:

The governing equations of the thermoelastic model are written under the following assumptions:
∙ The thermoelastic behavior is reversible.
∙ The strain in these equations is the total strain caused by the thermal and the mechanical behaviors.
∙ The residual stress is null.
∙ The material parameters: Λ, Û, 𝒞𝑚𝑃 , Ú, Ù = (Λ + 2Û)/3 and Ð are constants.

The governing equations of the thermo-hyperelastic model are summarized by:
∙ The balance of molecules number given in Eq. 5.9.
∙ The speciĄc free energy given in Eq. 5.38, Eq. 5.41 and Eq. 5.42 where the invariants are deĄned in Eq.

5.59 and Eq. 5.61.
∙ The stress-strain relation given in 5.64 which is expressed in the chosen frame for the type of transfor-

mation considered (small or large deformation, small or Ąnite temperature variation).
∙ The heat equation of the phenomena which should be compatible with Eq. 5.57 for the heat conduction

model.
∙ The deĄnition of the spacetime strain tensor used given in: Eq. 4.2 for small deformations and Eq. 4.45

for a spacetime Euler-AlmansiŠs strain tensor in case of large deformations.
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For the output of the problem, the unknown variables of the problem are: 𝜃(𝑥Ð) and 𝑑𝑒𝑝Ú(𝑥Ð).

5.6 Spacetime weak integral form of a thermomechanical problem

Eq. 5.10 represents the local balance of spacetime energy-momentum tensor. The weak integral form of a
thermomechanical problem is obtained by multiplying this expression by a test function 𝑟*

Û combining the
virtual temperature Ąeld 𝜃* and the virtual displacement Ąeld 𝑑𝑒𝑝*

Û such that:

𝑟*

Û =

⎤
𝜃*

𝑑𝑒𝑝*
Û

⎣
(5.82)

Then the resultant expression is integrated on the spacetime hypervolume d𝐻Ω.

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑟*

Û∇Ü𝑇
ÛÜ 𝑑𝐻Ω = 0,∀𝑟*

Û (5.83)

where the trial function 𝑟Û is given by:

𝑟Û =

⎤
𝜃

𝑑𝑒𝑝Û

⎣
(5.84)

Eq. 5.83 can be developed to:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
∇Ü(𝑇ÛÜ 𝑟*

Û) ⊗ 𝑇ÛÜ∇Ü𝑟
*

Û

)︀
𝑑𝐻Ω = 0,∀𝑟*

Û (5.85)

Using Green-Ostrogradski theorem, Eq. 5.85 can be written:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑇ÛÜ ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

𝑇ÛÜ 𝑟*

Û𝑛Ü d𝑆Ω = 0,∀𝑟*

Û (5.86)

where 𝑛Ü is the normal vector to the hypersurface of integration d𝑆Ω.
The boundary conditions of the problem are summarized in table 13.

Type of boundary Variable Boundary Condition Functions representing

conditions the boundary conditions

Dirichlet boundary 𝑑𝑒𝑝µ 𝜕Ωdepµ 𝜕Ωdepµ ∪ 𝜕ΩTM
= 𝜕Ω 𝑓SC(𝑥µ ∈ 𝜕Ωdepµ ) = 𝑑𝑒𝑝µ(𝑥µ ∈ 𝜕Ωdepµ )

on the space

conditions

𝜕Ωdepµ ∩ 𝜕ΩTM
= ∅ 𝑓TC(𝑥µ ∈ 𝜕Ωdepµ ) = 𝑑𝑒𝑝µ(𝑥µ ∈ 𝜕Ωdepµ )

on the time
𝜃 𝜕Ωθ - 𝑓SC(𝑥µ ∈ 𝜕Ωθ) = 𝜃(𝑥µ ∈ 𝜕Ωθ)

on the space
𝑓TC(𝑥µ ∈ 𝜕Ωθ) = 𝜃(𝑥µ ∈ 𝜕Ωθ)

on the time

Neumann boundary 𝑇M 𝜕ΩTM
𝜕Ωdepµ ∪ 𝜕ΩTM

= 𝜕Ω 𝑓SC(𝑥µ ∈ 𝜕ΩTM
) = 𝑇M (𝑥µ ∈ 𝜕ΩTM

)

on the space
conditions 𝜕Ωdepµ ∩ 𝜕ΩTM

= ∅ 𝑓TC(𝑥µ ∈ 𝜕ΩTM
) = 𝑇M (𝑥µ ∈ 𝜕ΩTM

)

on the time

Tab. 13: Boundary conditions for a spacetime thermomechanical model
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Specific developments for numerical resolution:

In order to implement this example for simulation using FEniCS project, we need to determine the
weak integral forms related to the behaviors simulated and the corresponding boundary conditions.

To implement the weak integral form obtained in section 5.6, Eq. 5.83 is further developed to:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑟*

Û∇Ü(𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑑𝐻Ω = 0,∀𝑟*

Û (5.87)

The Ąrst term of Eq. 5.87 can be developed to:

∫︁

Ω

𝑟*

Û∇Ü𝑇
ÛÜ
𝒰

𝑑𝐻Ω =
∫︁

Ω

𝑟*

Û∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Û𝑢Ü) 𝑑𝐻Ω

=
∫︁

Ω

𝑟*

Û∇Ü(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑑𝐻Ω

=
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑟*

Û𝑛Ü d𝑆Ω (5.88)

Using Green-Ostrogradski theorem, Eq. 5.87 can be written:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑟*

Û𝑛Ü d𝑆Ω

+
∫︁

Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑟*

Û𝑛Ü d𝑆Ω

= 0,∀𝑟*

Û (5.89)

Then the thermomechanical problem is written for a proper frame convenient to study material behaviors
(see section 1.3.3) and for which 𝑢̂Û = (0, 0, 0, 1). In a proper frame, Eq. 5.89 can be written:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡) ∇4𝑟
*

4 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡) 𝑟*

4 𝑛̂4 d𝑆Ω

+
∫︁

Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑟*

Û𝑛̂Ü d𝑆Ω

= 0,∀𝑟*

Û (5.90)

Verification for purely thermal problem:

In the case of an inertial proper frame, assuming a linear relation between the speciĄc energy 𝑒𝑖𝑛𝑡
and temperature 𝜃 with the proportional coefficient 𝒞𝑚æ (𝐽.𝑘𝑔⊗1.𝐾⊗1), and in absence of 𝑇ÛÜà and the
thermomechanical coupling (the function 𝑟Û is reduced to 𝑟4 = 𝜃), Eq. 5.90 can be written:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
(𝜌𝑐𝒞𝑚æ𝜃) ∇4𝑟

*

4 + 𝑇 4Ü
𝑞 ∇Ü𝑟

*

4

)︀
𝑑𝐻Ω

⊗
∫︁

𝜕Ω

(︀
𝑇 4Ü
𝑞 𝑟*

4 𝑛̂Ü + 𝜌𝑐𝒞𝑚æ𝜃 𝑟*

4 𝑛̂4

)︀
d𝑆Ω = 0,∀𝑟*

Û
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Besides in this particular frame, 𝑞4 = 0. Then Eq. 5.91 can then be written:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
(𝜌𝑐𝒞𝑚æ𝜃) ∇4𝑟

*

4 + 𝑞𝑖𝑢4 ∇𝑖𝑟
*

4

)︀
𝑑𝐻Ω

⊗
∫︁

𝜕Ω

(︀
𝑞𝑖𝑢4 𝑟*

4 𝑛̂𝑖 + 𝜌𝑐𝒞𝑚æ𝜃 𝑟*

4 𝑛̂4

)︀
d𝑆Ω = 0,∀𝑟*

Û

Dividing Eq. 5.91 by
𝜌𝑐𝒞𝑚æ
𝑐

and replacing 𝑞𝑖 =
Ú

𝑐
𝐼𝑖𝑗∇𝑗𝜃 since it is written in an inertial proper frame,

we obtain:

𝒲(𝜃, 𝜃*) =
∫︁

Ω

⎤
𝜃
𝜕𝜃*

𝜕𝑡
+ 𝑎𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
𝜕𝜃*

𝜕𝑥𝑖

⎣
𝑑𝐻Ω ⊗

∫︁

𝜕Ω

⎤
𝜃*

𝑐 𝑞𝑖

̃︀𝜌𝑐𝒞𝑚æ
𝑛𝑖 + 𝑐𝜃 𝜃*𝑛̂4

⎣
d𝑆Ω = 0,∀𝑟*

Û

Besides, ⊗
∫︀
𝜕Ω

𝑐𝜃 𝜃*𝑛̂4 d𝑆Ω = ⊗
∫︀

Ω
𝑐
𝜕(𝜃 𝜃*)
𝑐𝜕𝑡

𝑑𝐻Ω = ⊗
∫︁

𝜕Ω

𝜃*
𝜃

𝜕𝑡
𝑑𝐻Ω ⊗

∫︁

𝜕Ω

𝜃
𝜃*

𝜕𝑡
𝑑𝐻Ω. Eq. 5.91 can then be

written:

𝒲(𝜃, 𝜃*) =
∫︁

Ω

⎤
𝜃*
𝜕𝜃

𝜕𝑡
+ 𝑎𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
𝜕𝜃*

𝜕𝑥𝑖

⎣
𝑑𝐻Ω ⊗

∫︁

𝜕Ωq

𝜃*
𝑐 𝑞𝑖

̃︀𝜌𝑐𝒞𝑚æ
𝑛𝑖 d𝑆Ω = 0,∀𝑟*

Û

Thus, we obtain again the spacetime weak integral form with spacetime FourierŠs model of heat
conduction (section 2.6.3.2). Eq. 5.91 will reduce to Eq. 2.53 with 𝑓𝑟 = 0 and 𝑞𝑖𝑒𝑥𝑡 = 𝑞𝑖.

5.7 Newtonian vs spacetime modeling

The spacetime modeling which we have proposed can be compared to the Newtonian classical modeling. The
main difference between the two approaches is that the spacetime modeling enables us to obtain covariant
models which can be then written in the proper frame and should properly deal with large deformations. A
spacetime thermomechanical model systematically has 4 degrees of freedom (including the displacement
and temperature) even if the external source of heat and temperature are null. This is not the case for a
Newtonian thermomechanical model for which the existence of the fourth degree of freedom is necessary
only if in the existence of external source of heat or temperature.

Table 14 summarizes the main differences and similarities between the Newtonian and spacetime
modeling of the thermomechanical behavior, for respectively small and large deformations.
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Newtonian modeling Spacetime modeling

Small deformations theory Use of small deformation ij Use of small deformation 𝜖µν

Variational form function of 𝜖ij Variational form function of 𝜖µν

Proper/inertial frame Proper/inertial frame
Metric tensor: 𝜂ij Metric tensor: 𝜂µν

Jacobian determinant: 𝐽 = 1 Jacobian determinant: 𝐽 = 1

𝜎ij of first order 𝑇µν
σ of first order

(Without external source • 3 degrees of freedom (𝑑𝑒𝑝i) • 4 degrees of freedom (𝑑𝑒𝑝µ, 𝜃)
of heat/temperature)
(With external source • 4 degrees of freedom (𝑑𝑒𝑝i, ∆𝜃) • 4 degrees of freedom (𝑑𝑒𝑝µ, 𝜃)
of heat/temperature)

Large deformations theory Use of large deformation 𝐸ij/𝑒ij Use of large deformation 𝐸µν/𝑒µν

Variational form function of 𝐸ij/𝑒ij Variational form function of 𝐸µν/𝑒µν

Proper/inertial frame Proper frame (Γµ
κλ

̸= 0)
Metric tensor: 𝜂ij Metric tensor: 𝑔µν

Jacobian determinant: 𝐽 ̸= 1 Jacobian determinant: 𝐽 ̸= 1

𝜎ij of first order 𝑇µν
σ of second order

(Without external source • 3 degrees of freedom (𝑑𝑒𝑝i) • 4 degrees of freedom (𝑑𝑒𝑝µ, 𝜃)
of heat/temperature)
(With external source • 4 degrees of freedom (𝑑𝑒𝑝i, ∆𝜃) • 4 degrees of freedom (𝑑𝑒𝑝µ, 𝜃)
of heat/temperature)

Tab. 14: Summary on the difference of Newtonian and spacetime modeling using small and large deformations theories

In this manuscript, the Newtonian modeling of some behaviors for small and large deformations was
conducted (sections 4.2.2, 4.2.3, 4.2.4 and 4.2.6) in order to be a reference of comparison for the spacetime
modeling. In section 5.8 and Appendix B, many cases are considered in order to test the spacetime
thermo-hyperelastic model for small deformations using spacetime numerical simulations. Test cases include
numerical simulations of the spacetime thermo-hyperelastic behavior using a Hooke-like model::
∙ For a beam under traction load (linear load) for the case when thermal expansion is null (see section

5.8)
∙ For a beam under bending load for the case when thermal expansion is null (see Appendix B)
∙ For a beam under pure thermal constraints for the cases when thermal expansion is null and not null

(see Appendix B)
∙ For a beam traction (sinusoidal load) for the case when thermal expansion is not null (see Appendix B)

Simulations are done under the assumptions of spacetime modeling for small deformations (see sections 5.5
and 5.5.4).

5.8 Test case: Numerical simulation of the spacetime thermo-hyperelastic
behavior using a Hooke-like model: beam under traction load

In this section, we describe a test case applied on spacetime model and compared to the results obtained
using a Newtonian model as a step of validation for a speciĄc loading. The problem is the same as the one
described in section 4.2.5.1 except that here the numerical resolution is performed in the spacetime domain.

Let us consider that the beam has the behavior of a Hooke-like model. We will investigate this model
in case of (thermo-)hyperelasticity (the weak integral form is given in Eq. 5.86), consequently we assume
that the yield stress of the material is not reached. We will simulate a traction problem using small strain
(Eq. 4.2).

The model is constrained by:
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∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦, 𝑡) = (0, 0) on the clamped boundary of the beam.
∙ ∀𝑦 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦, 𝑡) = (ä(𝑡), 0, 𝑡) = (0.1 𝑡, 0) on the right boundary of the beam.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition on the displacement.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶2 = 𝜃(𝑥, 𝑦, 𝑡 = 0) = 𝜃0 = 0 °𝐶 represents the initial condition on the temperature (𝜃0 is the

initial temperature considered as reference temperature).

The parameters for the numerical simulation are the same as in section 4.2.5.3 (cf. table 11). The numerical
simulation is done for Ð = 0, hereby the traction is expected to be isothermal.

Fig. 41: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution and spacetime simulation as function of the space in the

𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max.

Fig. 42: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution and spacetime simulation as function of the space in the

𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.
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Fig. 43: On the left: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and

𝑦 = 𝑊/2. On the right: Evolution of 𝜃(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2.

The error and percentage of error on à11
𝑐 are respectively around 556.4𝑀𝑃𝑎 and 0.0038 %, which are

mainly deriving form border effects (clearly seen in Fig. 41). More test cases can be found in appendix B

5.9 Application: the modeling of a bimetallic element behavior

5.9.1 Description of the problem

We consider the case of a bimetallic element of 2 layers of equal width having different materials (1 and 2)
as represented in Figure 44. For simpliĄcation, the two materials are considered to have identical mechanical
properties but different thermal expansion coefficients. We suppose that the bimetallic element is clamped
at one end and simply supported at the other such that its displacement in the 𝑦-direction is blocked.

Fig. 44: Bimetallic element subjected to temperature

This case is studied under some assumptions [Timoshenko,1925]:
∙ Material coefficients remain constant during heating. Thus, the difference in the coefficients of expansion

remain constant.
∙ Friction at the supports can be neglected.
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∙ Thickness 𝐻 of the element is taken equal to unity.
∙ Cross-sections of the element originally plane and perpendicular to the axis remain plane during bending

and become perpendicular to the curved axis of the element.

For these conditions, the analytical solution of the problem leads to the maximum bending moment
expression at the clamped end:

This leads to the maximum bending stress [Timoshenko,1925]:

à11
𝑐 (𝑚𝑎𝑥) =

9
8
𝐸(Ð2 ⊗ Ð1)Δ𝜃 (5.91)

5.9.2 Boundary conditions, weak integral form of the problem for the Newtonian thermo-hyperelastic

model and parameters of the numerical simulation of the bending behavior

The model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1, ∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦) = (0, 0) on the clamped boundary of the bimetallic element.
∙ ∀𝑦 ∈ 𝜕æ2, ∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦) = (𝑥, 0) on the right boundary of the bimetallic element to block

the displacement at the boundary along the 𝑥-direction.
∙ ∀𝑥 ∈ 𝜕æ3, ∀𝑡, 𝑓𝑆𝐶3 = Δ𝜃(𝑥, 𝑦 = 𝑊 ) = 100°𝐶 on the upper boundary of the bimetallic element.
∙ 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition of the displacement on the time boundary

æ𝑡=0 deĄned at 𝑡 = 0.
∙ 𝑓𝑇𝐶2 = Δ𝜃(𝑥, 𝑦, 𝑡 = 0) = 0°𝐶 represents the initial condition of the temperature on the time boundary

æ𝑡=0 deĄned at 𝑡 = 0.

We will investigate this model in case of thermoelasticity (the weak integral form is given in Eq. 4.29). We
will simulate a bending problem using small strain (Eq. 4.2).

5.9.3 Boundary conditions, weak integral form of the problem for the spacetime thermo-hyperelastic

model of the numerical simulation of the bending behavior

The model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1, ∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦, 𝑡) = (0, 0) on the clamped boundary of the bimetallic element.
∙ ∀𝑦 ∈ 𝜕æ2, ∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦, 𝑡) = (𝑥, 0) on the right boundary of the bimetallic element to block

the displacement of the end along the 𝑥-direction.
∙ ∀𝑥 ∈ 𝜕æ3, ∀𝑡, 𝑓𝑆𝐶 = 𝜃(𝑥, 𝑦 = 𝑊, 𝑡) = 100°𝐶 + 𝜃0 on the upper boundary of the bimetallic element.
∙ 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition of the displacement on the time boundary

æ𝑡=0 deĄned at 𝑡 = 0.
∙ 𝑓𝑇𝐶2 = 𝜃(𝑥, 𝑦, 𝑡 = 0) = 𝜃0 = 20°𝐶 represents the initial condition of the temperature on the time

boundary æ𝑡=0 deĄned at 𝑡 = 0.

For the thermo-hyperelastic model, Eq. 5.90 with the deĄnition of small deformation (Eq. 4.2) represents
the weak integral form using small strain.

5.9.4 Numerical simulation of the bimetallic element behavior using Newtonian and spacetime

thermo-hyperelastic models using FEniCS project

As follows are the input parameters of the numerical simulation of the Hooke-like model subjected to
bending:
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Parameter Value

Geometry (beam) Length 𝐿 = 0.2 (𝑚)
Width 𝑊 = 0.02 (𝑚)

Thickness 𝐻 = 0.0001 (𝑚)

Material 1 and 2 Young’s modulus 𝐸 = 220000 (𝑀𝑃𝑎)
Poisson coefficient 𝜈 = 0.315 (adim)

Density ̃︀𝜌c = 8950 (𝑘𝑔/𝑚3)
Thermal expansion of material 1 𝛼1 = 1.3× 10−6 (𝐾−1)
Thermal expansion of material 2 𝛼2 = 13.5× 10−6 (𝐾−1)

Thermal conductivity 𝜆 = 91 (𝑤.𝑚−1.𝐾−1)
Specific heat capacity at constant 3D volume 𝒞mω = 460 (𝐽.𝑘𝑔−1.𝐾−1)
Width of material 1 in the bimetallic element ℎ1 = 𝑊/2

Width of material 2 in the bimetallic element ℎ2 = 𝑊/2

Mesh and time stepping Number of nodes through the 𝑥-direction of space 𝑁x = 100 (adim)
Number of nodes through the 𝑦-direction of space 𝑁y = 50 (adim)

Number of loading steps 𝑁step = 6 (adim)

Thermal load Time of application of temperature 𝑡max = 500 (𝑠)

Tab. 15: Parameters of the numerical simulation for the beam subjected to bending

Below are the results of the stress and displacement obtained from Newtonian and spacetime numerical
simulations:

Fig. 45: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as function of the space in the

𝑥-direction at 𝑦 = 0 and 𝑡 = 𝑡max.

These values can be compared to the analytical solution of stress obtained from Eq. 5.91. For the
parameters of table 15, the maximum value of Cauchy stress using the analytical solution is à11

𝑐 (𝑚𝑎𝑥) =
301.95𝑀𝑃𝑎. The relative error resulting from the Newtonian simulation is 12.7 % and that resulting from
the spacetime simulation is 3.5 %. Graphs nearly superimpose since the resulting deformations are small.
The observed differences may derive from the difference between the meshing in a 2D domain and a 2D+1



140

domain. In addition, the variation of stress at a cross section is as expected [Timoshenko,1925]: maximums
are at the boundaries. Border effects are also seen; even in simulations using a Ąner mesh at the borders.

Fig. 46: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as function of the space in the

𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.

The resulting displacements show that small deformations are occuring. The displacement along the
𝑥-direction resulting from the Newtonian and spacetime simulations nearly superimpose. However, a relative
error of maximum 27% is noted for the displacement along the 𝑦-direction. It may also derive from the
difference between the meshing in a 2D domain and a 2D+1 domain.

Fig. 47: Evolution of 𝑑𝑒𝑝x obtained from Newtonian and spacetime simulations as function of the space in the 𝑥-direction at
𝑦 = 0 and 𝑡 = 𝑡max.
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Fig. 48: Evolution of 𝑑𝑒𝑝y obtained from Newtonian and spacetime simulations as function of the space in the 𝑥-direction at
𝑦 = 0 and 𝑡 = 𝑡max.

Then the inĆuence of one material property is tested. The aim is to verify that the model varies accord-
ingly. Results from spacetime numerical simulations for different values of YoungŠs modulus are illustrated.
The percentage of error with respect to the correponding analytical solutions are 3.8, 3.8, 3.4, 3.5 % for
respectively 𝐸 = 55000, 110000, 165000, 220000𝑀𝑃𝑎.

Fig. 49: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulations as function of the space in the 𝑥-direction at 𝑦 = 0

and 𝑡 = 𝑡max for different materials.

5.10 Application on the tube bending process

As a perspective, we propose the study of a forming process to illustrate results of the two approaches. The
tube bending process is considered for the comparison. As follows, we describe the purpose of modeling
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the tube bending process. Due to the complexity of spacetime simulations for large deformation our study
is not yet completed. The modeling of this process and results obtained from Newtonian simulations (for
small and large deformations) and spacetime simulations (for small deformations) are thus summed up in
appendix C.

Many techniques could lead to tube deformation. One important type of tube forming is the tube
bending process. Over the last decade, technologies of tube bending were a center of interest since they are
important in many industries such as aerospace, automotive and HVAC systems e.g. forming of large-diameter
thin-walled TiŰ6AlŰ4V tubes used in light-weight and high-performance components [Zhijun et al.,2017].

Research aimed at improving the process and reducing the manufacturing defects in order to obtain
high quality end-products with lower costs and shortened production times. Some of the defects encountered
are wrinkling, spring back, breakage and ovalisation [Koseoglu and Parlak,2012]. The geometry of the
material such as the bending radius and the tube thickness as well as the friction factor between dies and
the tube are factors that affect the productions of these defects. These difficulties for example faced the
developement of waveguides having severe requirements on the tolerance as they are used aircraft and missile
applications in which high speeds and power are used. One way to overcome these difficulties is by modeling
the tube bending process in the most representative way possible. This requires a good understanding of
the bending phenomena. To do so, we begin by the study of the bending phenomena in the Newtonian
space. This requires a thermomechanical coupling and an assessment using the plastic deformation theory
[Tang,2000, Koseoglu and Parlak,2012].

We then propose in this manuscript, a study of the process using a spacetime model since we believe
that the modeling and numerical aspects covered by this model is advantageous compared to the Newtonian
models. We will limit the spacetime modeling to the study of the thermo-hyperelastic behaviors in small
deformations which opens horizons for later studies covering the springback computation and plasticity
modeling in large deformations.

Moreover, numerical simulations using FEniCS project are possible for 3D problems without any special
programming. Under the assumption of invariant bending on the thickness of the beam and planar stress
state, for the Newtonian models, a 2D beam geometry can be studied instead of a 3D beam geometry. These
models will be compared to spacetime models with a 2D+1D beam geometry (2D for the space and 1D for
the time), which is possible using FEniCS project.

The effect of the bending machine parts including; wiper die, mandrel, booster and supporter die is
explained in the appendix C in order to identify the model parameters and the boundary conditions. Then,
by applying these requirements to the suggested behavior models, it will be possible to have a prediction on
the stress inside the tube. This could be used in sizing the bending system and in identifying the changes
necessary to avoid defects.
Note that our aim is to model a cold bending process, consequently we assume that no external heat is
applied to the model. Thus, we limit the modeling to cover the mechanical behavior in the Newtonian case.
However, keeping the same assumption, spacetime modeling involves a degree of freedom on the variation
of temperature thus the modeling will cover the thermomechanical behavior.

In appendix C, we Ąrst describe the components of this forming process, we then investigate the
parameters necessary for its modeling. In this manuscript, the bending tube process is studied by modeling
the (thermo-)mechanical behavior of a 2D beam geometry subjected to a bending load expressed using
Dirichlet conditions. First, the Newtonian mechanical model is illustrated using the weak forms of elastic,
hyperelastic and elasto-plastic which are then implemented in FEniCS project in addition to the parameters
and the boundary conditions corresponding to the bending process (see Fig. 50). Then, the spacetime model
is sought. Parameters for the simulations of Newtonian and spacetime models are the same. Results show
the compatibility of Newtonian and spacetime models for small deformations. Border effects are also seen.
Finner meshing on borders may improve the precision of the constant value of Von mises stress investigated
along the tube geometry.
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Fig. 50: On the left: A sample of the mesh used for the simulation of the tube bending problem using a Newtonian
hyperelastic model for small deformations. On the right: The displacement field magnitude in 𝑚𝑚 resulting from the

simulation of the tube bending problem using a Newtonian hyperelastic model for small deformations.

5.11 Conclusions

In this chapter, the aim was to deĄne the methodology enabling the spacetime thermomechanical modeling
for small and large deformations using a thermodynamical approach. As previously mentionned, this
guarantees obtaining thermomechanical models respecting the covariance and causality principles while
being compatible with the laws of thermodynamics.

First, the covariant forms of laws of thermodynamics taking into account the mechanical behavior were
Ąrst investigated using the deĄnition of the energy-momentum tensor (section 5.3).This enables writing
these laws in different frames. The classical laws of thermodynamics can be obtained using the spacetime
laws written in an inertial frame at the non-relativistic limit.

Second, the spacetime thermo-hyperelastic behaviors of a general model then of a speciĄc reversible
model (section 5.5) were obtained under the assumptions of: strong coupling between thermal and mechanical
behaviors, isotropic behavior of materials and respect of balance laws (molecules number, momentum and
energy, internal energy and entropy). Moreover, to obtain correct behavior models, it is also required to use
the spatial projector (introduced in section 2.2.4) when deriving the spacetime stress tensor contribution
using the invariants. The obtained model was investigated in the case of (section 5.5.3):
∙ small deformations and Ąnite temperature variation. At the non-relativistic limit, compared to the

Newtonian thermo-hyperelastic model, this model shows additional terms related to the evolution of
temperature and its impact on the mechanical behavior due to the thermomechanical coupling.

∙ small deformations and small temperature variation. At the non-relativistic limit, this model converges
to the Newtonian thermo-hyperelastic model.

∙ for large transformations. At the non-relativistic limit, this model shows additional terms related to the
evolution of temperature and large deformations and their impact on the mechanical behavior due to
the thermomechanical coupling.

Note that, the beneĄts of the use of the spacetime approach come essentially from the use of the Lie
derivative, because this derivative of the strain tensor reveals the deformation rate. Moreover, the use of
spacetime framework includes naturally the time derivative part to build the non-autonomous Lie derivative.

The expression of the spacetime thermo-hyperelastic model in the proper frame is used to write the
variational forms which enabled their implementation to simulate the model (section 5.6). We chose to
validate in this manuscript the spacetime model obtained under the assumptions of small deformations
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and small temperature variation as a Ąrst step of veriĄcation. Results of the simulations of the 2D and
2D+1D models under simple traction and bending loads, shows the compatibility of the Newtonian and the
spacetime results. Slight numerical errors may appear due to the difference of mesh construction between
the two models which leads to border effects.

The Newtonian and spacetime modeling of the thermomechanical behavior, for respectively small and
large deformations, are compared in section 5.7.

One important result of the modeling is that a spacetime thermomechanical model has 4 degrees of
freedom (including the displacement and temperature) even if the external source of heat and temperature
are null. Moreover, for small deformations, the proper and inertial frame are indiscernible for Newtonian
and spacetime modeling. However, for large deformations, they are. The spacetime modeling enables us to
write covariant models. When written in a proper frame, these models show additional terms compared
to the corresponding Newtonian models and which are not taken into account in a Newtonian approach.
Since this proposed approach is able to model material behavior for small and large deformations, it has
various applications in the industry. In this chapter, the spacetime thermo-hyperelastic model was used to
study the behavior of a bimetallic element (section 5.9). Results of stress and displacement obtained from
Newtonian and spacetime simulations superimpose since the resulting deformations are small.

Moreover, we proposed an approach for modeling the behavior of a tube bending system including the
corresponding boundary conditions as a mean to improve this process (section 5.10). In appendix C, we
propose the modeling of such a behavior in spacetime. However, the numerical resolution was limited under
the assumption of considering small deformations because of the complexity of a numercial simulation for
large deformations which was not completely tested and validated.
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6 Conclusions and perspectives

6.1 Conclusions

This research aimed to study the thermomechanical behavior of materials for large deformations. The main
interest of this investigation is to Ąnd models that help to overcome the difficulties faced in the development
of forming processes to reduce their cost and time. The methodology used offers to build thermomechanical
models respecting the laws of thermodynamics, the causality principle and the covariance principle. Based
on a quantitative and qualitative analysis, it can be concluded that the thermodynamical relativistic
approach used in this manuscript enables obtaining spacetime models that cover large deformations and are,
at the same time, compatible with the classical behavior models at the Newtonian limit. The results indicate
that even though spacetime models need the development of distinctive methods to be obtained, they can
solve the problems faced in Newtonian mechanics. These latter can be summarized by: the causality of ther-
mal signals, obtaining models independent of the frame and the modeling of dissipative mechanical behaviors.

In order to write models in the spacetime framework, spacetime operators and variables were Ąrst
deĄned and discussed. The use of covariant derivatives in such a framework guarantees obtaining covariant
spacetime thermomechanical models. In the Ąrst part of the manuscript, the aim was to obtain covariant
models covering the thermal conduction behavior in materials. The covariant forms of thermodynamics
laws were obtained by relativization of the classical laws, by generalizing their variables into spacetime,
without taking the mechanical behavior into account.

The spacetime heat conduction models were then investigated. Spacetime FourierŠs model was obtained
using two methods: the direct relativization of FourierŠs model of heat conduction and a spacetime
thermodynamical approach. The obtained models are covariant, thermodynamically compatible with the
linear classical irreversible thermodynamics (CIT), however do not respect the causality principle. Moreover,
spacetime CattaneoŠs model which takes into consideration the relaxation time was obtained using: the
direct relativization of CattaneoŠs model of heat conduction and the complexiĄcation of the spacetime
FourierŠs model of heat conduction from CIT. The obtained models are covariant, thermodynamically
compatible with the extended irreversible thermodynamics (EIT) and respect the causality principle (see
table 6). The main added value of these last two models compared to Newtonian models is their covariant
character. Additional terms also appear in the spacetime models in comparison with Newtonian models. At
the non-relativistic limit, in an inertial proper frame, in which we choose to do the numerical simulations in
the Ąrst part of the manuscript, these terms vanish.

The variational forms of the spacetime heat conduction models are then written in the inertial proper
frame in order to be simulated using FEniCS project. Validation tests were conducted on 2D+1D FourierŠs
and CattaneoŠs models (2 dimensions dedicated to the space and 1 dimension to the time). Results show
that the spacetime thermal models obtained have a consistent behavior with respect to mesh reĄnement and
change of material parameters. Spacetime thermal behaviors are also compared to the Newtonian thermal
behaviors (integrated on a 2D domain). Results show a compatibility between the two modes of resolution.
However, the spacetime Ąnite element method is more expensive in terms of CPU time than the one of
the classical approach. For a simulation using FourierŠs model, the CPU time needed for the spacetime
model is about 5 times the CPU time needed for the Newtonian model for a meshing respectively stepping
𝑁𝑡 = 160 over time. It is also shown that the spacetime FourierŠs model can be used in predicting the heat
conduction phenomenon occurring in a cooling Ąn, which can be useful in the mechanical dimensioning and
design of Ąns when the development of a model is required.

The spacetime thermal model was then used to model self-heating occurring during fatigue tests. The
aim is to test the advantages of this model in predicting the resulting temperature of such a phenomenon
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especially when the thermal dissipation is variable through time. An innovative methodology is developed:
it consists of using experimental data to compute the time parameter characterizing the heat transfer
perpendicular to the direction of heat conduction Ćux á𝑁𝐷 and the normalized heat source 𝑓𝑟 via Newtonian
thermal models and injecting them in the spacetime models. Its use shows that spacetime models are able
to predict the temperature variation resulting from self-heating during the fatigue test. Various methods
can be used for the parameters (á𝑁𝐷, 𝑓𝑟) identiĄcation step using the Newtonian models. These methods
can be classiĄed as 0D, 1D and 2D methods. To apply the 0D method, the maps of surface temperature
obtained at each time step by the IR camera are subjected to temperature averaging through the width
and length. To apply the 1D method, the maps of surface temperature are subjected to temperature
averaging through the width only. However, to apply the 2D method, the maps of surface temperature are
directly used in the computation of thermal dissipation. Using these methods, the self-heating parameters
identiĄcation is possible in different ways. The 0D method can be used together with the calculation of á0𝐷

and global optimization of 𝑓𝑟 (method A), or with the simultaneous and global optimization of á0𝐷 and 𝑓𝑟
(method B), or with the global optimization of á0𝐷 and local calculation of 𝑓𝑟 (method C). Moreover, the
1D method can be used with the parameters identiĄcation by simultaneous global optimization of á1𝐷 and
local calculation of 𝑓𝑟 (method D).

The four Newtonian methods described lead to different values for á𝑁𝐷, 𝑁 = 0, 1 and 𝑓𝑟. For the case
studied in this manuscript, the time parameter obtained by the optimization process, used in methods B
and C, has a value of 72.73 𝑠 approximately two times smaller than the direct calculation by use of its
deĄnition 123 𝑠, as used in method A. The latter is strongly dependent on the choice for the numerical
value of the natural convection coefficient ℎ with a signiĄcant uncertainty. For the heat source term, values
for methods A to C are in the range of 0.34825 °𝐶.𝑠⊗1 to 0.51 °𝐶.𝑠⊗1 (for long times). Its evolution with
time tends to a constant value, which strongly depends on the type of 0D method used. The use of method
D increased the accuracy on the values of the parameters since the space variations of 𝑓𝑟(𝑦, 𝑡), which are
directly related to the stress amplitude variations in the sample with the length (𝑦-direction), are taken into
account. For a time parameter á1𝐷 = 43 𝑠, the heat source term is a function of space and time, reaching a
maximum at 𝑓𝑟(𝑦 = 30𝑚𝑚, 𝑡𝑓 = 226.366 𝑠) = 1.2 °𝐶.𝑠⊗1.
A study of uncertainty is also done based on relative uncertainty on the physical properties and measurement
errors related to the camera features. The relative uncertainty on the time parameter value is estimated to
25.5 % because of the difficulty of its identiĄcation as seen for the different methods. The relative uncertainty
on the intrinsic dissipation varies for different methods: for method C (0D) it is estimated to vary between
0 and 23.5 %, however, for method D (1D) it is estimated to vary between 0 and 4.43 % since the diffusivity
is taken into account.

Spacetime FourierŠs model of heat conduction is then used for the numerical simulation using the
parameters previously identiĄed and boundary conditions reproducing the fatigue test conditions. This use
is especially advantageous when the intrinsic dissipation is a function of time in the aim of increasing the
precision on its value. A quantitative study between the spacetime simulation results and the experimental
data shows their compatibility and that the use of method D increases the accuracy because of the signiĄcant
effect of diffusivity in the self-heating phenomenon. Fully space averaged values of temperature from
simulations show good agreement with experimental averaged values resulting from the use of 0D methods
as well, whatever the identiĄcation method is. These can also be relevantly used for quick simulations
requiring only average values on space. They enable obtaining the temporal dynamics of the self-heating
phenomenon.

The spacetime modeling introduced in the manuscript can then be used as a reliable approach in
modeling the self-heating phenomenon. It is justiĄed by the convergence of experimental results and
simulation results using different methods. The hypothesis taken into account in building the spacetime
model are the only constraints on the model. There is no limit on the loading frequency nor the value of
variation of temperature. The material properties are assumed to be constants in this model. Thus, the model
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can be further developed by adding their variation, which can be caused by the variation of temperature,
in function of time. The spacetime model enables a more precise computation of dissipation in function
of time since the time derivative used is covariant. The suggested methodology helps predicting the tem-
perature resulting from the self-heating phenomenon independently of the number of fatigue cycles causing it.

BrieĆy, the results in this part of the manuscript show that the spacetime modeling and numerical
resolution guarantees the covariance of thermal calculations, which is important for the coupling with
mechanical behaviors studied in the second part. However, the precision on the variation of temperature
is not improved in case the time is in the macroscopic scale; the results of spacetime and Newtonian
models superimpose. The main beneĄt of such a modeling is to be used in the formulation of spacetime
thermomechanical models.

In the second part of the manuscript, the aim was to obtain covariant models covering the ther-
momechanical behavior of materials. Newtonian models of the elastic, thermoelastic, hyperelastic and
elasto-plastic behaviors were reviewed for small and large deformations in order to have reference behaviors
to compare with the spacetime thermomechanical models proposed later. Moreover, the elastic, hyperelastic
and plastic models were illustrated. A traction respectively bending load was applied to Newtonian elastic
respectively hyperelastic and plastic models using a Dirichlet boundary condition on a beam geometry. The
evolution of the Cauchy stress tensor in the 𝑥-direction in function of time shows that the model using
Green-Lagrange strain has different elastic, hyperelastic and plastic behaviors than the ones using small
strain and Euler-Almansi strain.

Then the thermodynamical approach taking into account the stress contribution and thermomechanical
couplings was used to build the spacetime models. Covariant laws of thermodynamics were Ąrst formulated.
Small and large deformations obey to these laws whatever the frame is. These laws are then used to model
the thermomechanical behavior. The covariant derivative was replaced by the Lie derivative where possible.
This choice is related to the existence of derived terms multiplied by the spacetime velocity Ąeld. The
resulting models are covariant as per the requirements in this manuscript. Some assumptions were taken
into consideration: the strong coupling between thermal and mechanical behaviors (coupling between
the deformation and the variation of temperature which is proportional to the thermal expansion), the
isotropic behavior of materials and the respect of balance laws. The speciĄc free energy used is an additive
decomposition of three effects: the thermal effect, the stress effect and the thermomechanical coupling effect.
These effects are expressed in function of independent projected invariants 𝐼𝐼 and 𝐼𝐼𝐼 . These latter should
correspond respectively to the deformation of volume (including the effect of thermomechanical coupling)
and deformation of surface of the material continuum. They are written using spatial projectors. The
use of covariant derivatives and the spatial projector in the modeling, enables the obtention of additional
terms in comparison to Newtonian equivalent models. The spacetime thermo-hyperelastic model was
written under these assumptions for a general model then for a speciĄc reversible model. The projected
invariants are thus chosen by generalizing the invariants of Newtonian Hookean-like models. We chose:
𝐼𝐼 = 𝑒ÛÜ𝑔

ÛÜ = 𝑒ÛÜ𝑔
ÛÜ = 𝑒ÛÜ𝑔

ÛÜ and 𝐼𝐼𝐼 = 𝑒ÛÜ𝑒
ÛÜ = 𝑒ÛÜ𝑒

ÛÜ = 𝑒ÛÜ𝑒
ÛÜ .

The obtained model for a speciĄc reversible model was then investigated for different cases:
∙ For small deformations and Ąnite temperature variation: this model, at the non-relativistic limit,

was compared to the Newtonian thermo-hyperelastic model. It shows additional terms related to the
evolution of temperature and its impact on the mechanical behavior due to the thermomechanical
coupling.

∙ For small deformations and small temperature variation: this model, at the non-relativistic limit,
converges to the Newtonian thermo-hyperelastic model (see section 5.5.3.2).

∙ For large transformations: this model, at the non-relativistic limit, shows additional terms related to
the evolution of temperature and large deformations and their impact on the mechanical behavior due
to the thermomechanical coupling.
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The corresponding variational form for the speciĄc reversible model was formulated and implemented for
numerical simulation in FEniCS project. Validation tests are conducted: The thermo-hyperelastic behavior
of a beam subjected to different load applications such as traction and bending resulting from thermal and
mechanical loads, is studied. The evolution of displacement, temperature and Cauchy stress are investigated.
Results of validation tests show that using non-relativistic computation conditions (but using equations
valid for all loading velocities), the spacetime (2D+1) and Newtonian (2D) models (for which the time is
discretized) have the same behavior for small deformations and Ąnite temperature variation. This means
that results of spacetime models converge to the results of classical behavior models, which fulĄlls the
requirements. In section B.4, the validation test reproduces the self-heating problem: a cyclic mechanical
load is applied and the resulting temperature variation is computed. This enables further developments of
the method investigated in chapter 3 in order to take into account the thermomechanical couplings.

The spacetime thermo-hyperelastic model was then used to simulate the behavior of a bimetallic
element. Results of stress obtained from spacetime simulations superimpose with results obtained from
Newtonian simulations since only small deformations are considered. The modeling of the tube bending
process was also proposed in this study. Only the modeling of the thermo-hyperelastic behavior using small
deformations could be justiĄed in this manuscript. This is the Ąrst step towards a realistic modeling of the
process which requires the use of large deformations. The results obtained can be used as a reference to
evaluate the behavior obtained using spacetime models for large deformations and to estimate the added
value of such a modeling.

The main difference between the modeling using small and large deformations is the that variational
forms are consequently function of different variables e.g. small and large strains. The Jacobian determinant
is also different: it is equal to 1 for small deformations and not equal to 1 for large deformations. The
stress is of Ąrst order for both in the Newtonian modeling but of second order using large deformations in
spacetime. Moreover, it is shown that the thermomechanical modeling in spacetime implies 4 degrees of
freedom of the model (including the displacement and temperature) even if the external source of heat
and temperature are null. This guarantees the conservation of internal energy in spacetime and is an
important difference with the Newtonian classical modeling. The spacetime framework also enables writing
thermomechanical models in the proper frame (for which Christoffel symbols are not null) as well as in the
inertial frame independently, since they derive from covariant models. This is an important contribution in
the large deformations modeling where these two frames are clearly different.

To sum up, the methodology used for writing covariant thermomechanical models in this manuscript
enables the obtaining of models respecting the causality principle and the laws of thermodynam-
ics. We then, through this approach, propose the possibility to resolve problems faced while mod-
eling thermal problems [Straugham,2011, Auriault,2017, Cattaneo,1958, Christov,2009, Osborne,1950,
Vernotte,1961, Tavernier,1962, Chapman and Cowling,1970] and mechanical problems [Valanis,1970,
Lubliner,1984, Prasolov,1997, Wiechert,1893, Zener,1948, Oldroyd,1950, Wineman,2009, Mooney,1940,
Rivlin,1948, Rivlin and Saunders,1951, Ogden,1984, Boyce and Arruda,2000, Steinmann et al.,2012]. This
brings the spacetime modeling in continuum mechanics as an important topic to explore and develop.
Moreover, this research clearly illustrates the modeling of thermomechanical behavior of materials for large
deformations in a spacetime domain, but it also raises the question of the completeness of the assumptions
taken into consideration and their implementation for the spacetime simulations.

6.2 Perspectives

The modeling and simulation of spacetime thermomechanical material behaviors were discussed in this
manuscript. The spacetime modeling covered small and large deformations. However, only the numerical
results of the spacetime simulation for small deformations are given in this manuscript for the considered
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applications (tube bending and behavior of bimetallic element). This is because the integration of large
deformations in a spacetime numerical simulation is complex and requires further checking to be compatible
with the theoretical challenges. Thus, further calculations concerning the spacetime simulation for large
deformations should be done. This latter step is important to better understand the implications of
the results of the spacetime modeling. Hence, future studies could address the spacetime simulation of
applications for large deformations and estimate the added value of this formalism in critical cases. Moreover,
the spacetime thermo-hyperelastic model was speciĄcally studied. This behavior covers a limited type of
thermomechanical modeling. In order to cover the forming processes modeling, in which the material is
deformed permanently, the plasticity should also modeled in the spacetime framework.

In addition to that, the method proposed in this manuscript for building spacetime models can be
used to develop any type of material behavior in spacetime. It is useful since it systematically guarantees
the covariance, the causality and the thermodynamical compatibility of the obtained material models.
It is especially interesting to be developed is the case of rate-dependent models e.g. when viscoelastic-
ity and viscoplasticity behaviors occur [Wineman,2009, Bertram,2012]. The Lie derivative introduced
in this manuscript can particularly be advantageous in such cases. The generality of this formalism
opens the discussion on the possible value of its use in modeling different types of materials (homoge-
neous, isotropic, anisotropic...) and even composite materials facing challenges in predicting the dynamic
mechanical behavior e.g. the sliding wear, the ageing of linen reinforced composites subjected to temperature.

Throughout this manuscript, many phenomena occurring during mechanical applications were also
modeled. Some phenomena can be further studied in the spacetime formalism in order to obtain a more
realistic modeling. We proposed in chapter 3 the spacetime modeling of the self-heating phenomenon
occurring during fatigue tests. The heat dissipation resulting from this transformation was used to model
the phenomenon in spacetime without explicitly modeling the thermomechanical coupling. The modeling
the thermomechanical coupling can be done at each cycle using the spacetime thermomechanical model
developed in the second part of the manuscript and which may give a more accurate modeling. A load
similar to the one used in section B.4 can be added to the model in order to apply the thermoelastic source
of dissipation. Then, another thermomechanical coupling source due to internal state variable evolution
(such as plasticity) can also be possibly used. The amount of contribution of these sources can consequently
be deduced. Furthermore, the parameters identiĄcation (i.e. identiĄcation of time parameter characterizing
the heat transfer perpendicular to the direction of heat conduction Ćux á𝑁𝐷 and the normalized heat source
𝑓𝑟) was suggested in the Newtonian formalism using four different methods. One possible way to improve
the model can be by developing spacetime methods for the identiĄcation step.

We also proposed, in chapter 5, the modeling of the tube bending process which should require, for more
realistic predictions, the assumptions of large deformations but also of the dissipative behavior (plasticity,
friction for the contact). Many critical phenomena (ovalisation, elastic spring-back...) also interfere in the
modeling of such a process. In this manuscript (Appendix C), the Newtonian elasto-plastic model was
studied to reproduce the reality of the process. For spacetime modeling, at Ąrst approximation, the thermo-
hyperelastic behavior was only taken into account. The Newtonian and spacetime thermo-hyperelastic models
representing this process were developed. For simulation, these two models were compared in a resolution
considering small deformations only. The numerical simulation taking into account large deformations is
to be studied in future works. The implementation of Christoffel symbols should be particularly tested.
A study of convergence for the meshing of the suggested geometry can also be conducted. The general
modeling and simulation of plasticity in spacetime for this particular application is also to be done: the
variational forms for plasticity in spacetime should be developed.

Despite the advantages of using a formalism guaranteeing the covariance, causality and thermodynamical
compatibility of models, an additional time of computation or the need of a bigger computational capacity
can be encountered (as proved for the spacetime thermal models). This is why it will be important to
specify the necessity and advantages of use of the spacetime formalism for each case of study. Its use for
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modeling large transformations is useful for developing existing models but should hence be coupled with a
proĄtability study. If the cost of the modeling and the computational complexity can be made affordable
for the processes facing challenges, the use of a spacetime formalism will be prioritized.

Eventually, the simulations of validation tests and thermomechanical applications were all conducted
for 0D/1D/2D Newtonian models and 0D+1D/1D+1D/2D+1D spacetime models since the tool used for
simulation (FEniCS project) enables the implementation of 3 dimensions Ąnite elements for resolution.
Simulations using a higher-order Ąnite elements solver which enables the spacetime meshing of 3D+1D
spacetime models would be more accurate for models in some applications e.g. where symmetry is not
applicable. Firedrake is an example of a solver that may be used for this cause by extruding meshes
hence "allowing users to construct many Ąnite element spaces beyond those supported by existing software
packages" [McRae et al.,2016].
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7 Résumé en français

7.1 Introduction

Les procédés de fabrication dans lŠindustrie sont divers, on distingue par exemple: lŠobtention par enlèvement
de matière, les techniques par fabrication additive, la fonderie... CŠest un secteur en développement perpétuel.
En particulier, les procédés de mise en forme envisagent des déĄs pour optimiser la qualité et le prix des
pièces fabriquées. Ces déĄs peuvent être potentiellement résolus par le biais de la simulation numérique. Un
des verrous pour la modélisation des procédés de mise en forme est la modélisation du comportement des
matériaux en grandes déformations [Panicaud et al.,2015].

Plusieurs contributions dans ce domaine adoptent un point de vue géométrique pour la mécanique des
matériaux en grandes transformations. CŠest ce que nous proposons également de faire. La base du point de
vue adopté dans cette étude est de formuler des lois physiques dont la forme se conserve en changeant de
référentiels [Wang,2016]. Adopter un point de vue géométrique est réalisé en examinant lŠaction du groupe
des changements de référentiels sur les équations de la physique. On sŠassure donc que la physique reste
la même quel que soit le référentiel, ce qui conduit à postuler la covariance des équations. On parle alors
de relativité ou de théories relativistes en physique. Comme conséquence de lŠapplication du principe de
covariance, les théories de la relativité décrivent des phénomènes dans un domaine dŠespace et de temps
simultanément.

En plus, les lois de comportement dissipatives, nécessaires à la modélisation des procédés de mise en
forme, devront être compatibles avec le second principe de la thermodynamique, qui prend en général la
forme de lŠinéquation de Clausius-Duhem. AĄn de proposer des lois de dissipation covariantes plastiques
ou visqueuses, il faudra donc proposer une formulation covariante de cette inéquation de Clausius-Duhem
[Lamoureux-Brousse,1989]. Cette étude a donc pour but de trouver des modèles représentatifs et applicables
aux procédés de mise en forme qui nous intéressent, incluant également les phénomènes thermiques, dŠoù la
nécessité de prendre en compte certains couplages thermomécaniques. La modélisation du comportement
comprend donc des phénomènes thermiques qui posent dans lŠapproche Newtonienne (dite 3D) comme dans
lŠapproche espace-temps (dite 4D) le problème de causalité. Par exemple, la loi de propagation de chaleur
par conduction selon Fourier suppose une propagation instantanée de la chaleur. Ceci ouvre la discussion
sur la possibilité de résoudre ce problème par différentes approches, en 3D à lŠaide de modèles plus élaborés,
mais aussi en 4D à lŠaide des théories relativistes de la dissipation.

De façon générale, lŠobjectif de ce travail est donc dŠobtenir le comportement thermomécanique dans
un cadre relativiste, à partir des principales grandeurs cinématiques et physiques. Le comportement
thermomécanique attendu devrait alors assurer les notions de covariance et de causalité, souvent violées dans
les cadres thermodynamiques Newtoniens [Christov and Jordan,2005, Fichera,1992]. Les modèles devront
pouvoir présenter le moins dŠapproximation possibles pour pouvoir être applicables en grandes déformations
et en grandes vitesses de déformations (néanmoins non-relativistes pour les vitesses des procédés qui nous
intéressent, ce qui les rend comparables aux modèles 3D.

7.2 Démarche proposée

La démarche proposée pour les modélisations et les simulations souhaitées se résume à la construction
dŠune approche thermodynamique espace-temps dans laquelle on développe la modélisation thermique
et mécanique de procédés de mise en forme. Le but Ąnal étant la simulation thermo-mécanique, la plus
représentative possible de ces procédés, dans un domaine espace-temps.

Les détails de la démarche que nous envisageons dans le cadre de ce projet sont décrits ci-dessous:
∙ La description dŠun formalisme espace-temps garantissant la covariance des lois physiques.
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∙ La généralisation des lois de la thermodynamique dans un formalisme espace-temps en partant des lois
Newtoniennes (conservation de lŠénergie interne, du moment et de lŠénergie totale). Ceci aboutit aussi
et notamment à une écriture covariante de lŠinéquation de Clausius-Duhem.

∙ La formulation espace-temps de modèles de conduction thermique et des modèles thermomécaniques en
sŠappuyant sur différentes méthodes, notamment lŠapproche thermodynamique espace-temps précédem-
ment construite.

∙ La construction des formes variationnelles espace-temps de ces modèles aĄn de dŠeffectuer la simulation
numérique de problèmes multi-physiques.

∙ La simulation numérique des modèles espace-temps via le logiciel FEniCS project.
∙ LŠutilisation des modèles espace-temps pour la modélisation dŠapplications dŠingénierie, de caractérisation

de matériaux et de procédés de mise en forme (modélisation de la conduction thermique dans une
ailette refroidissante, modélisation de lŠautoéchauffement, modélisation du procédé de Ćexion de tube et
du comportement de bilame).

∙ Comparaison des résultats obtenus par les approches Newtonienne et relativiste aĄn de valider la
dernière à la limite Newtonienne.

7.3 Modélisation thermique du comportement des matériaux

7.3.1 Etude bibliographique sur la modélisation thermique en 3D et en espace-temps

LŠaspect thermique dans la modélisation du comportement dŠun matériau est une partie essentielle dans la
plupart des applications [Lamoureux-Brousse,1989]. La première partie de ce manuscrit vise à modéliser
le comportement de conduction thermique. Plusieurs modèles Newtoniens existent dans la littérature
[Fourier,1988, Cattaneo,1958, Tavernier,1962, Osborne,1950, Vernotte,1961, Battaglia,2007] (section 1.5).
Cependant, il a été identiĄé que tous les modèles ne remplissent pas toutes les exigences pour une modélisation
précise.

Les difficultés rencontrées en thermomécanique Newtonienne (section 1.6) peuvent être résumées par:
certains des modèles trouvés dans la littérature ne respectent pas le principe de causalité [Fourier,1988] et
certains ne sont pas covariants [Cattaneo,1958, Tavernier,1962, Osborne,1950, Vernotte,1961] (voir tableau
16). Puisque ces deux principes sont nécessaires pour un modèle de conduction thermique, ainsi que la prise en
compte correctement de lŠirréversibilité pour les grandes transformations, un formalisme thermodynamique
spatio-temporel garantissant la covariance des modèles est nécessaire (section 1.7).

Propriétés/Modèles Fourier Cattaneo Osborne Vernotte

Vérifie le principe de covariance dans le sens 3D Oui Non Non Non
Vérifie le principe de causalité Non Oui Oui Oui
Compatibilité thermodynamique Oui NA NA NA

Tab. 16: Liste des différents modèles Newtoniens trouvés dans la littérture et de leurs propriétés (NA = non applicable)

Quelques modèles relativistes de conduction thermique existent déjà dans la littérature [Eckart,1940,
Carter,1988, Landau and Lifshitz,1975, Israel and Stewart,1979a, Israel and Stewart,1979b] (section 1.8).
Les modèles relativistes issus de CIT ne respectent pas le principe de causalité [Eckart,1940]. DŠautres
issus de lŠEIT respectent ce principe [Israel and Stewart,1979a, Carter,1988] mais le prix à payer est de
trouver des coefficients de correction du second ordre pour les sources dŠentropie (voir tableau 17). De plus,
les conditions de stabilité dans ces modèles sont plutôt artiĄcielles. Les modèles relativistes existants ne
répondant pas systématiquement à toutes les exigences, des investigations complémentaires sur les modèles
spatio-temporels sont nécessaires.
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Propriétés/Modèles Eckart Landau and Lifshitz Israel and Stewart Carter

Vérifie le principe de covariance Oui Oui Oui Oui
Vérifie le principe de causalité Non Non Oui Oui
Compatibilité thermodynamique Oui Oui Oui Oui

Tab. 17: Liste des différents modèles relativistes trouvés dans la littérture et de leurs propriétés

Notre objectif est de développer un cadre qui garantit la covariance des modèles de conduction thermique,
respecte le principe de causalité et pourrait en même temps être dérivé de la thermodynamique irréversible
classique. Ce cadre est construit dans un domaine euclidien de lŠespace-temps sans gravitation.

Ce cadre nous permet de construire des modèles de conduction de chaleur spatio-temporels utilisables
pour des applications dŠingénierie (voir chapitre 2). LŠauto-échauffement est lŠun des phénomènes modélisables
(section 1.9). Il se produit au cours de divers processus, en particulier les tests de fatigue. Des études
Newtoniennes de lŠauto-échauffement se trouvent dans [Chrysochoos et al.,2009, Boulanger et al.,2004,
Lemaitre and Chaboche,1990, La Rosa and Risitano,2000, Galtier,1993, Poncelet et al.,2011, Munier,2012].
La dissipation qui en résulte permet dŠétudier la limite de fatigue. Nous modélisons ce phénomène au
chapitre 3 pour prouver la possibilité dŠutiliser les modèles de chaleur spatio-temporels obtenus au chapitre 2
pour représenter des techniques dŠanalyse et de caractérisation des matériaux et pour améliorer la résolution
numérique dŠun tel phénomène.

7.3.2 La modélisation thermique en espace-temps dans ce manuscrit

Nous avons dŠabord étudié la modélisation dŠun comportement thermique en utilisant une approche
thermodynamique. LŠoriginalité vient de lŠutilisation systématique dŠun formalisme dŠespace-temps pour
assurer lŠindifférence au changement de référentiels, tant pour les modèles physiques que pour les schémas
de résolution numérique. En utilisant la conservation de lŠénergie interne écrite dans lŠespace-temps et la
variation du Ćux dŠentropie, la forme covariante de lŠinégalité de Clausius-Duhem est proposée.

LŠévolution thermique pure en cas de conduction thermique est spéciĄquement étudiée. Les équivalents
spatio-temporels des équations de Fourier et de Cattaneo ont été soit obtenus par la généralisation de lŠespace-
temps des équations Newtoniennes, soit déduits de la forme covariante de lŠinégalité de Clausius-Duhem. En
assumant lŠabsence des couplages thermomécaniques dissipatifs, deux types de modèles ont été obtenus à
partir de ces différentes méthodes. CŠest à noter quŠune méthodologie particulière nŠimpliquant que le cadre
CIT a également été proposée pour obtenir le modèle de Cattaneo dans le domaine de lŠespace-temps, en
utilisant la transformée de Laplace et la complexiĄcation. Elle peut être facilement généralisée pour obtenir
dŠautres modèles conduisant à une dérivée espace/temps du troisième ordre (ou plus) de la température
dans lŠéquation de la chaleur. Différents modèles covariants généralisants le modèle Newtonien de Cattaneo
peuvent ainsi être obtenus à partir dŠun cadre CIT sans avoir besoin dŠutiliser un cadre EIT. De tels termes
restent à être étudié dŠun point de vue numérique. Quel que soit le référentiel, le modèle spatio-temporel de
Fourier peut être exprimé par (section 2.3):

𝑞Û =
Ú

𝑐
ΠÛÜ∇Ü𝜃 =

Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)∇Ü𝜃 (7.1)

où 𝑞Û est le Ćux de chaleur spatio-temporel, Ú est la conductivité thermique, 𝑐 est la célérité de la lumière,
ΠÛÜ est le projecteur spatial, ∇Ü est la dérivée covariante, 𝜃 est la température, 𝑔ÛÜ est la métrique spatio-
temporelle et 𝑢Û est la vitesse spatio-temporelle. Quel que soit le référentiel, le modèle spatio-temporel de
Cattaneo peut être exprimé par(section 2.4):

𝑞Û ⊗ á𝑐𝑢Ü∇Ü𝑞
Û =

Ú

𝑐
(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (∇Ü𝜃 ⊗ á1𝑐𝑢

Ù∇Ù(∇Ü𝜃)) (7.2)

où á et á1 sont les temps de relaxation.
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Comme dans sa forme Newtonienne, le modèle de Cattaneo en espace-temps contient des termes de
relaxation qui expriment le caractère non-instantané de conduction de la chaleur dans le corps. LŠexistence
de ces termes conduit par conséquent à surmonter les problèmes de causalité rencontrés dans certains
autres modèles thermiques, qui supposent une propagation de chaleur à une vitesse inĄnie. Par conséquent,
ce formalisme de lŠespace-temps atteint son objectif en créant des modèles de conduction de chaleur
spatio-temporels covariants et en respectant simultanément le principe de causalité.

7.3.3 Formes variationelles du problème thermique

Une fois que les modèles thermiques à utiliser ont été identiĄés, on a choisi dŠécrire le problème variationnel
des modèles de Fourier et de Cattaneo dans un formalisme espace-temps. Ce problème est dans ce muscrit
écrit dans le référentiel inertiel et intégré sur un hypervolume (volume spatial ×𝑑𝑢𝑟é𝑒).

Le problème variationnel correspondant à un modèle de Fourier dans un repère inertiel dans des
conditions aux limites de Dirichlet est :

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎
𝜕𝜃*

𝜕𝑥𝑗
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω = 0,∀𝜃* (7.3)

𝜃, étant la température dŠessai. 𝜃*, étant la température test. Ω, étant le domaine dŠintégration
espace-temps. 𝑎, étant la diffusivité du milieu.

Pour écrire les conditions aux limites, on déĄnit: 𝜕Ω𝑗 = 𝜕æ ∪ 𝑡 comme étant la limite spatiale du
domaine et 𝜕Ω4 = æ ∪ 𝜕𝑡 comme étant la limite temporelle du domaine, æ étant le domaine dŠintégration
spatial (3D).

Le problème variationnel correspondant à un modèle de Cattaneo dans un repère inertiel et dans des
conditions aux limites de Dirichlet est :

𝑊 (𝜃, 𝜃*) =
∫︁

Ω

𝜃*
𝜕𝜃

𝜕𝑡
d𝐻Ω +

∫︁

Ω

𝑎
𝜕𝜃*

𝜕𝑥𝑗
𝜕𝜃

𝜕𝑥𝑗
d𝐻Ω ⊗

∫︁

Ω

á
𝜕𝜃*

𝜕𝑡

𝜕𝜃

𝜕𝑡
d𝐻Ω ⊗

∫︁

Ω

𝜃*𝑓𝑟 d𝐻Ω = 0,∀𝜃* (7.4)

Les conditions aux limites des deux formes variationnelles sont ainsi divisées en conditions sur lŠespace
et conditions sur le temps. Le premier type peut être exprimé par: 𝜃(𝑥Û ∈ 𝜕Ω𝑗) = 𝑓𝑆𝐶(𝑥Û ∈ 𝜕Ω𝑗), 𝑓𝑆𝐶
étant la fonction représentant les conditions limites sur lŠespace. Le second type peut être exprimé par:
𝜃(𝑥Û ∈ 𝜕Ω4) = 𝑓𝑇𝐶(𝑥Û ∈ 𝜕Ω4), 𝑓𝑇𝐶 étant la fonction représentant les conditions limites sur le temps initial.
La seule condition temporelle sur la température est au temps initial puisque la température au temps Ąnal
est calculée par le modèle de conduction thermique.

Les formes variationnelles correspondant aux deux modèles dans un repère inertiel dans des conditions
aux limites de Neumann-Dirirchlet sont aussi formulées dans la section 2.6. Des simulations numériques
avec FEniCS ont également été effectuées pour illustrer cette approche. Pour les problèmes thermiques purs,
les formes intégrales faibles en espace-temps proposées pour les modèles de conduction thermique (Eqs.
2.52, 2.53, 2.55 et 2.56) diffèrent de celles des modèles Newtoniens (Eq. 2.57) uniquement par le domaine
dŠintégration. Dans les premières, le temps est une dimension du domaine de lŠintégration. Cependant
dans les secondes cŠest un paramètre et il est généralement discrétisé à lŠaide dŠune méthode explicite par
une différence décentrée amont pour la dérivée temporelle de premier ordre et une différence centrée pour
la dérivée temporelle de second ordre (si nécessaire pour le modèle de Cattaneo). La condition initiale
sur le temps discrétisé (modèle Newtonien) est dans ce cas équivalente à une condition aux limites pour
lŠintégration spatio-temporelle (modèle relativiste).

Les modèles numériques spatio-temporels ont été comparés aux modèles Newtoniens de Fourier et
Cattaneo. Les résultats montrent une compatibilité entre les deux (Figure 51). La juxtaposition des graphes
des modèles espace-temps (courbe rouge) et Newtonien (courbe verte) avec le temps discrétisé pour chacun
des modèles justiĄe cette validation. La Ągure ci-dessous montre cette comparaison pour un modèle de
Fourier.
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Fig. 51: Evolution de la temperature en fonction du temps à la position 𝑥 pour les modèles de Fourier spatio-temporel
(courbe verte) et Fourier 3D avec le temps discrétisé (courbe rouge), en supposant que 𝑓r = 0.

Cependant, la méthode des éléments Ąnis en espace-temps a un temps de calcul dŠordre supérieur
(second ordre) par rapport à celui nécessaire pour lŠapproche classique. De plus, lŠinĆuence du domaine de
intégration, du maillage et des paramètres du matériau ont été étudiées pour des modèles 1D + 1D. Ainsi,
des simulations montrant la comparaison entre les modèles de Fourier et de Cattaneo dans un formalisme
espace-temps dans les mêmes conditions ont été faites. La Ągure 52 montre lŠévolution de la température en
un point dŠun modèle 1D+1D au cours du temps. Les résultats montrent quŠà partir dŠun certain temps le
modèle de Cattaneo (courbe verte) est en retard par rapport au modèle de Fourier (courbe rouge) ce qui est
logique vu le temps de relaxation introduit dans ce dernier. Ceci permet Ąnalement dŠassurer simultanément
la covariance et la causalité.

Fig. 52: Evolution de la temperature en fonction du temps à une position 𝑥 pour les modèles de Fourier (courbe verte) et de
Cattaneo (courbe rouge) dans un formalisme espace-temps.

Le modèle spatio-temporel de Fourier a été ensuite utilisé pour résoudre un problème de conduction
thermique dans une ailette de refroidissement. Les résultats montrent que ce modèle est capable de prédire
la conduction de chaleur dans cette application particulière.
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LŠutilisation dŠun formalisme dŠespace-temps semble avoir moins dŠintérêt dans le cas dŠun corps
immobile subissant la conduction thermique en termes de temps de calcul. Cependant, ce cas particulier
est considéré comme un cas limite du cas de corps subissant simultanément des transferts de chaleur par
conduction et des grandes déformations mécaniques, comme dans un procédé de mise en forme. Ce dernier
cas est approfondi dans la deuxième partie du manuscrit (chapitres 4 et 5).

7.3.4 Etude bibliographique sur l’autoéchauffement

Le phénomène dŠautoéchauffement est également étudié à lŠaide des modèles thermiques spatio-temporels.
Il est présenté dans nombreux ouvrages et articles [Boulanger et al.,2004, Chrysochoos and Louche,2000].
Comme son nom lŠindique, ce phénomène implique une variation de température du corps soumis à une
transformation mécanique (souvent cyclique), sans apport de chaleur de lŠextérieur. Il se produit au cours
de nombreux processus de mise en forme et dans de nombreux tests mécaniques, par exemple les essais de
fatigue. Au cours de ces tests, une quantité variable dŠénergie mécanique est convertie en chaleur via un
comportement inélastique. La chaleur peut être mesurée à lŠaide de différents dispositifs expérimentaux: par
un calorimètre [Shenogin et al.,2002], par des thermocouples [Zehnder et al.,1998], ou par des capteurs IR
[Chrysochoos and Louche,2000]. Selon les études réalisées, ces mesures donnent des résultats sensiblement
similaires.

De nos jours, la "fatigue à très grand nombre de cycles" (VHCF) devient de plus en plus un sujet
dŠintérêt. La raison principale revient à lŠintérêt donné aux nombreux composants utilisés dans les industries
aéronautiques, ferroviaires et automobiles qui doivent avoir une durée de vie en fatigue supérieure au
mégacycle. Cela correspond au VHCF ou au régime de fatigue gigacylique. Les recherches se concentrent
sur la dissipation résultante qui est une source de chaleur en volume associée à des processus irréversibles
induits par des mécanismes de déformation et une diffusion de chaleur.

Une approche prometteuse pour étudier la dissipation repose sur lŠutilisation de la thermographie
infrarouge (IR) quantitative et de lŠextensométrie optique. Ces outils visent à évaluer lŠénergie dissipée
associée au chargement cyclique. SpéciĄquement, les caméras infrarouges peuvent être utilisées pour
enregistrer simultanément les champs correspondant aux variations de température et aux déplacements
dans le plan sur la partie testée de lŠéchantillon. De plus, les performances des caméras infrarouges ont
été considérablement améliorées avec la découverte des capteurs infrarouges. De nos jours, ces caméras
fournissent une résolution spatiale Ąne et un faible bruit thermique. En conséquence, plusieurs approches
expérimentales basées sur des mesures de température via des techniques IR quantitatives ont récemment
été adoptées pour estimer cette transformation énergétique. En effet, la dissipation peut être déduite des
champs de données thermiques en estimant les opérateurs différentiels partiels de lŠéquation de diffusion
de la chaleur [Boulanger et al.,2004]. Un certain nombre de formulations simpliĄées, utilisant différentes
hypothèses, peuvent être utilisées pour les évaluations de cette dissipation.

La première consiste à considérer que le champ de température varie très peu dans lŠépaisseur de
lŠéprouvette. Cette hypothèse permet de passer dŠun problème 3D à un problème 2D. Elle permet de
travailler avec les champs de température en surface de lŠéprouvette tels que ceux fournis par un dispositif
de thermographie IR, en supposant que cette température de surface est représentative de la température
moyennée suivant lŠépaisseur. AĄn dŠalléger les calculs, des approches dites 1D puis 0D ont aussi été étudiées
(Figure 54). Ces dernières sont moins contraignantes au niveau des temps de traitement des essais mais
elles donnent des résultats moins précis.

7.3.5 La méthodologie pour l’étude d’autoéchauffement en espace-temps

AĄn de modéliser le phénomène dŠauto-échauffement dans un domaine spatio-temporel, de nombreuses
étapes sont nécessaires:
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∙ Etude des paramètres du test de fatigue qui comprend lŠanalyse des données expérimentales et
lŠidentiĄcation des paramètres du modèle Newtonien (section 3.3). La dissipation thermique ex-
primée en Eq. 2.35, est un paramètre important à calculer. Sur la base des études précédentes
[Favier et al.,2016, Chrysochoos et al.,2009, Boulanger et al.,2004], Plusieurs méthodes dŠidentiĄcation
sont développées aĄn de réduire les erreurs probables de cette étape.

∙ Injection de la dissipation thermique résultante dans un modèle de chaleur spatio-temporel représentant
le phénomène dŠauto-échauffement. Les conditions aux limites sont étudiées aĄn de reproduire les
conditions du test de fatigue fournissant les données expérimentales (section 3.5.1.1).

∙ Simulation numérique du problème variationnel spatio-temporel du modèle. LŠévolution de la température
dans un domaine spatio-temporel est alors obtenue (section 3.5).

∙ Comparaison entre lŠévolution de la température survenant lors de lŠauto-échauffement obtenue à
partir de résultats expérimentaux et celle obtenue par une approche spatio-temporelle (résultats de la
simulation du modèle de chaleur spatio-temporelle, voir section 3.5.2).

Cette dernière étape a pour but de valider le modèle spatio-temporel en montrant sa capacité à reproduire
le phénomène dŠauto-échauffement et par conséquent valider le modèle de conduction thermique spatio-
temporelle utilisée ainsi que la méthode et le cadre proposés pour le construire.

7.3.6 Le cas expérimental d’autoéchauffement étudié

Dans ce manuscrit, lŠautoéchauffement survenant durant le test de fatigue est étudié en se basant sur des
données expérimentales.

LŠéprouvette de fatigue est mince et plate en forme de sablier (Fig. 53). Les essais de fatigue ont
été réalisés à une fréquence de 20 𝑘𝐻𝑧 à lŠaide dŠun appareil de fatigue par ultrasons au Laboratoire
de mécanique énergétique et dŠélectromagnétisme (LEME) de lŠUniversité Paris-Nanterre. Le chargement
cyclique est une contrainte imposée à 221 𝑀𝑃𝑎 et à un rapport de charge de 𝑅 = ⊗1. Aucun dispositif de
refroidissement (débit dŠair ou de gaz) nŠest utilisé pendant les essais. LŠéprouvette étudiée est en acier C65
fréquemment utilisé dans la fabrication de pièces. Le tableau 18 montre les propriétés thermophysiques de
lŠacier considéré.
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Fig. 53: La géométrie et les dimensions de
l’échantillon en mm.

Variable Valeur

Densité ̃︀𝜌c 7800 𝑘𝑔.𝑚−3

Chaleur massique 𝒞mω 473 𝐽.𝑘𝑔−1.𝐾−1

Conductivité thermique 𝜆 50.2 𝑊.𝑚−1.𝐾−1

Diffusivité thermique 𝑎 =
𝜆

̃︀𝜌c𝒞mω

13.6× 10−6 𝑚2.𝑠−1

Tab. 18: Propriétés thermophysiques de l’acier
C65 [ASM,1998]

LŠéchantillon est soumis à une convection naturelle avec son environnement (ayant un coefficient
de transfert de chaleur convectif ℎ et étant à température ambiante 𝜃0). Il est également soumis à une
conduction thermique avec un mors en titane, sur laquelle lŠéprouvette est serrée lors des essais à lŠaide
dŠune petite pièce dŠacier. La température du mors reste assez proche de la température ambiante pendant
le test.

La machine de fatigue piézoélectrique utilisée pour effectuer les essais de fatigue est conçue selon
[Bathias and Paris,2005]. Le système de fatigue vibratoire est constitué de plusieurs éléments. Le premier
est le générateur qui peut atteindre une puissance de 2 𝑘𝑊 et dont la fréquence est accordée entre
19,5 𝑘𝐻𝑧 et 20,5 𝑘𝐻𝑧. Il génère un signal sinusoïdal au convertisseur, qui produit des vibrations. La
fonction de ce dernier est de transformer les vibrations électriques en vibrations mécaniques. De plus, un
ampliĄcateur appelé ńboosterż augmente ou diminue (1,5 fois) le déplacement du convertisseur. EnĄn,
une borne constituée dŠune partie cylindrique suivie dŠune section proĄlée en forme de cône complète
lŠéquipement. LŠamplitude de déplacement du système (convertisseur et booster) étant limitée, le cône
permet dŠaugmenter lŠamplitude vibratoire de lŠéprouvette pour atteindre la contrainte requise. LŠéchantillon
est vissé sur la borne et son extrémité inférieure est sans contrainte. Un étalonnage de la conĄguration
est nécessaire pour déĄnir la contrainte requise. Il consiste à trouver une relation linéaire existant entre
la tension de commande et lŠamplitude de déplacement de la limite cône /éprouvette. Cette dernière est
mesurée par un capteur laser.

La détection par thermographie a été réalisée à lŠaide dŠune caméra infrarouge FLIR A325sc. Il sŠagit
dŠune caméra à base de microbolomètres avec un détecteur à 320 ×240 et une résolution thermique (différence
de température équivalente au bruit) de 0,1 𝑜𝐶. CŠest la moyenne utilisée pour mesurer la température de
surface de lŠéchantillon à différents intervalles de temps 𝑡. Pendant les tests, lŠaxe de lŠobjectif de la caméra a
été maintenu Ąxe et perpendiculaire à la surface de lŠéchantillon. La résolution spatiale adoptée nous permet
dŠobserver la partie centrale de la jauge de lŠéchantillon. La fréquence dŠimages de la caméra infrarouge est
de 3,75 images par seconde (cŠest-à-dire que la fréquence dŠéchantillonnage est de 𝑓𝐼𝑅 = 3, 75 𝐻𝑧).
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Les images fournies par la caméra entre 𝑡𝑖 = 0 𝑠 et 𝑡𝑓 = 3 𝑚𝑖𝑛 46, 366 𝑠 sont traitées aĄn de calculer
la dissipation et lŠévolution de la température pendant cet intervalle de temps correspondant à ≡ 45105

cycles pour illustrer la méthodologie. Il faut noter que 𝑡𝑖 et 𝑡𝑓 sont choisis de telle manière quŠune grande
variation temporelle de température puisse être observée. A chaque pas de temps, une cartographie 2D est
obtenue par thermographie.

7.3.7 La modélisation Newtonienne du cas d’autoéchauffement étudié

On commence par le calcul Newtonien de la dissipation intrinsèque. LŠéquation de diffusion de chaleur selon
ces différentes approches se réduit selon lŠapproximation considérée à:

Dans l’approche 2D:

𝜕𝜃𝑑(𝑥, 𝑦, 𝑡)
𝜕𝑡

+
𝜃𝑑(𝑥, 𝑦, 𝑡)
á2𝐷(𝑦)

⊗ 𝑎

⎤
𝜕2𝜃𝑑(𝑥, 𝑦, 𝑡)

𝜕𝑥2
+
𝜕2𝜃𝑑(𝑥, 𝑦, 𝑡)

𝜕𝑦2

⎣
=
𝑑1(𝑥, 𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(7.5)

où: 𝜃𝑑 = 𝜃 ⊗ 𝜃0 est la différence entre la temperature moyennée sur une dimension dŠespace et la
température ambiante. La moyenne est notée par une "barre" et est effectuée dans ce cas sur lŠépaisseur
(la direction 𝑧). á2𝐷 est le paramètre de temps qui caractérise lŠéchange de chaleur perpendiculaire à la
direction du Ćux de conduction de chaleur. Notons que ce temps peut être fonction de la direction de
longueur 𝑦. Ceci revient à la variation de lŠépaisseur de lŠéchantillon en fonction de la longueur. Dans ce cas,

il caractérise lŠéchange de chaleur dans la direction 𝑧.
𝑑1(𝑥, 𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

est la moyenne sur lŠépaisseur du terme de

dissipation intrinsèque.
Dans l’approche 1D:

𝜕 ¯̄𝜃𝑑(𝑦, 𝑡)
𝜕𝑡

+
¯̄𝜃𝑑(𝑦, 𝑡)
á1𝐷(𝑦)

⊗ 𝑎

(︃
𝜕2 ¯̄𝜃𝑑(𝑦, 𝑡)
𝜕𝑦2

)︃
=

¯̄𝑑1(𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(7.6)

où: ¯̄𝜃𝑑 = ¯̄𝜃 ⊗ 𝜃0 est la différence entre la temperature moyennée sur deux dimensions dŠespace et la
température ambiante. La moyenne est notée par une "double barre" et est effectuée dans ce cas sur
lŠépaisseur et la largeur (les directions 𝑧 et 𝑥). á1𝐷 est le paramètre de temps qui caractérise lŠéchange de
chaleur perpendiculaire à la direction du Ćux de conduction de chaleur. Dans ce cas, il caractérise lŠéchange

de chaleur dans les directions 𝑧 et 𝑥.
¯̄𝑑1(𝑦, 𝑡)
̃︀𝜌𝑐𝒞𝑚æ

est la moyenne sur lŠépaisseur et la largeur du terme de

dissipation intrinsèque. La méthode 1D nécessite moins de temps de traitement des tests de fatigue que
celui nécessaire pour la méthode 2D tout en donnant des résultats moins précis.

Dans l’approche 0D:

𝜕
¯̄̄
𝜃𝑑(𝑡)
𝜕𝑡

+
¯̄̄
𝜃𝑑(𝑡)
á0𝐷

=
¯̄̄
𝑑1(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

(7.7)

où:
¯̄̄
𝜃𝑑 =

¯̄̄
𝜃⊗𝜃0 est la différence entre la temperature moyennée sur trois dimensions dŠespace et la température

ambiante. La moyenne est notée par une "triple barre" et est effectuée dans ce cas sur lŠépaisseur, la largeur

et la longueur de lŠéchantillon (les directions 𝑧, 𝑥 et 𝑦).
¯̄̄
𝑑1(𝑡)
̃︀𝜌𝑐𝒞𝑚æ

est la moyenne sur lŠépaisseur, la largeur et

la longueur du terme de dissipation intrinsèque. á0𝐷 est le paramètre de temps qui caractérise lŠéchange de
chaleur perpendiculaire à la direction du Ćux de conduction de chaleur. Dans ce cas, il caractérise lŠéchange
de chaleur dans toutes les directions spatiales.
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Fig. 54: Schéma montrant la différence entre les approches 0D, 1D et 2D.

7.3.8 La modélisation spatio-temporelle du cas d’autoéchauffement étudié

Pour calculer les variations de température dans un domaine dŠespace-temps, nous avons besoin de
lŠidentiĄcation du terme de dissipation intrinsèque et du paramètre de temps. De nombreuses méthodes sont
possibles pour calculer ces paramètres. Nous avons étudié différentes méthodes dŠidentiĄcation notamment
pour la dissipation intrinsèque et du temps caractéristique, soit par calcul direct avec lŠéquation de chaleur
Newtonienne, soit par optimisation dŠune solution analytique dans des cas spéciĄques (méthodes A à
D, section 3.3.4). Les valeurs obtenues en fonction du temps et/ou de lŠespace sont cohérentes avec la
bibliographie du matériau étudié (acier C65). Les différentes méthodes présentent de légères divergences.

Le terme de source de chaleur est à peu près indépendant du temps lorsquŠil est moyenné sur lŠespace.
Sa variation avec lŠespace a également été obtenue en considérant la méthode 1D. Une telle méthode fournit
plus dŠinformations. Cependant, sa variation est difficile à analyser en termes de mécanismes matériels. La
tendance est directement liée au chargement mécanique conduisant à lŠauto-échauffement de la géométrie de
lŠéprouvette, en raison de la variation de contrainte sur sa longueur. En effet, la géométrie de lŠéprouvette
en forme de sablier conduit à la variation de contrainte donc à la variation de température sur la longueur,
puisquŠune charge de fatigue constante est appliquée sur des surfaces de lŠéprouvette variant le long de la
longueur.

Fig. 55: A gauche: a) Evolution de ¯̄̄
𝜃d(𝑡) obtenue des mesures expérimentales et des simulations numériques en espace-temps,

en fonction du temps. A droite: b) Evolution de ¯̄𝜃d(𝑡) obtenue des mesures expérimentales et de la simulation numérique en
espace-temps basée sur la méthode D, en fonction du temps.

Nous avons également proposé des formes variationnelles spatio-temporelles directement adaptées à la
modélisation de lŠauto-échauffement. Les simulations dŠespace-temps qui en résultent à partir du modèle
obtenu donnent les variations de température dans lŠespace et le temps, en utilisant un environnement de
programmation approprié. La méthode 1D+1D est ainsi choisie pour lŠapplication à lŠauto-échauffement.
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Des simulations du modèle dŠespace-temps ont été comparées aux mesures de données expérimentales. Les
résultats montrent une bonne concordance avec de légères différences dérivant de lŠinertie thermique et / ou
de lŠapproximation du lissage des données expérimentales (en particulier 𝑓𝑟). La concordance est correcte
lors de la comparaison des valeurs moyennes de température dans lŠespace, quelle que soit la méthode
dŠidentiĄcation. Cela signiĄe que les valeurs moyennes des paramètres identiĄés avec un modèle moins précis
que celui utilisé pour la simulation sont pertinentes pour obtenir des simulations Ąables, précises et rapides.

La prise en compte de la dépendance spatiale de la dissipation, grâce à lŠutilisation de la diffusivité
thermique dans lŠétape dŠidentiĄcation, est également nécessaire pour une description correcte des variations
de température sur la longueur de lŠéchantillon, à condition que les conditions aux limites spatiales
soient suffisamment réalistes. Des résultats plus précis pourraient être obtenus en complexiĄant lŠétape
dŠidentiĄcation. LŠeffet de la diffusivité thermique sur les simulations 1D + 1D a également été directement
étudié et montre une forte inĆuence sur les résultats lorsque lŠon considère la variation spatiale de la
température et du terme de la source de chaleur.

LŠaccord entre la simulation et les résultats expérimentaux conduit à admettre la modélisation de
lŠespace-temps introduite dans le manuscrit comme une approche pratique pour décrire le phénomène
dŠauto-échauffement en particulier lorsque les paramètres dépendent du temps. LŠétude détaillée de lŠauto-
échauffement induit par la fatigue gigacylique, dans ce manuscrit, en est un exemple concret. Une plus grande
précision pourrait être obtenue en modélisant le comportement mécanique et en ajoutant explicitement
les couplages thermomécaniques qui sont étudiés dans la deuxième partie du manuscrit. Des recherches
supplémentaires pourraient être menées aĄn de fournir une approche spatio-temporelle complète dans la
modélisation de lŠauto-échauffement en proposant une méthode spatio-temporelle pour lŠétape dŠidentiĄcation
des paramètres.

7.4 Modélisation thermomécanique du comportement des matériaux

7.4.1 L’étude bibligraphique sur la modélisation thermomécanique du comportement des matériaux

Dans cette deuxième partie du manuscrit, la modélisation thermomécanique des grandes déformations a
été revue. La non-linéarité des modèles mécaniques a été introduite par lŠutilisation des déformations de
Green-Lagrange et dŠEuler-Almansi (section 4.2.1). La déformation Newtonienne de Green-Lagrange est
déĄnie par:

𝐸𝑖𝑗 =
1
2

(𝐶𝑖𝑗 ⊗ 𝐼𝑖𝑗) (7.8)

𝐶𝑖𝑗 étant le tenseur de Cauchy-Green droit déĄnit par:

𝐶𝑖𝑗 = 𝐹 𝑎𝑖 𝐹
𝑏
𝑗 𝐼𝑎𝑏 (7.9)

où 𝐹 𝑖𝑗 et 𝐹 ′𝑖
𝑗 sont respectivement le gradient de déformation et son inverse.

La déformation Newtonienne dŠEuler-Almansi est déĄnie par:

𝑒𝑖𝑗 =
1
2

(𝐼𝑖𝑗 ⊗ 𝑏𝑖𝑗) (7.10)

𝑏𝑖𝑗 étant lŠinverse du tenseur de Cauchy-Green gauche déĄnit par:

𝑏𝑖𝑗 = 𝐹 ′

𝑖
𝑎𝐹 ′

𝑗
𝑏𝐼𝑎𝑏 (7.11)

En utilisant ces déĄnitions et la loi dŠéquilibre mécanique (Eq. 4.14), les modèles Newtoniens élastiques,
thermoélastiques, hyperlastiques et élasto-plastiques et les formes intégrales faibles correspondantes pour
les petites puis grandes déformations (sections 4.2.2 , 4.2.3, 4.2.4 et 4.2.6) ont été construits pour des
milieux continus dans le cas de matériaux isotropes homogènes. Les couplages thermomécaniques nŠont
été pris en compte que pour les modèles thermoélastiques. Des descriptions lagrangiennes et eulériennes
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ont été utilisées pour des modèles de grandes déformations utilisant respectivement les déformations de
Green-Lagrange et dŠEuler-Almansi.

Les formes faibles de ces modèles ont ensuite été déduites en multipliant les modèles par des fonctions
de test arbitraires et en les intégrant sur le domaine 3D. Cette étape est utile pour comparer les modèles
Newtoniens à différents modèles dŠespace-temps qui sont développés au chapitre 5.

Deux exemples illustrent les modèles Newtoniens examinés. Dans le premier exemple, des modèles
élastiques et hyperélastiques ont été étudiés (section 4.2.5). Le problème consistait à appliquer une charge
de traction en utilisant une condition aux limites de Dirichlet sur une géométrie de poutre. LŠévolution
du tenseur de contraintes de Cauchy à11

𝑐 dans la direction 𝑥 en fonction du temps montre que le modèle
utilisant la déformation de Green-Lagrange a des comportements élastiques et hyperélastiques différents
tandis que les autres modèles (utilisant une petite déformation et la déformation dŠEuler-Almansi) ont les
mêmes comportements élastiques et hyperélastiques.

Fig. 56: Variation de 𝜎11
c en fonction du temps pour une poutre en traction pour différents modèles élastiques et

hyperélastiques Newtoniens pour un temps allant de 0 à 7𝑠.

Dans le deuxième exemple, le comportement plastique a été observé: la même géométrie, la même
charge et les mêmes conditions aux limites que dans lŠexemple précédent ont été appliquées (section 4.2.7).
Les résultats de lŠévolution de à11

𝑐 en fonction du temps montrent que le modèle plastique utilisant la
déformation de Green-Lagrange a une évolution de à11

𝑐 (𝑡) différente de celle utilisant utilisant une petite
déformation et la déformation dŠEuler-Almansi due à son comportement élastique différent.

Ces exemples aident à visualiser le comportement de différents modèles en utilisant différentes déĄnitions
de déformation et donnent ainsi quelques comportements attendus de ces modèles mécaniques.

De plus, la modélisation mécanique Newtonienne présente des difficultés qui sont principalement: la
non-linéarité des modèles (par exemple les modèles plastiques) et la nécessité de respecter lŠobjectivité
matérielle des modèles. LŠutilisation dŠune approche thermodynamique construite dans un formalisme
dŠespace-temps (comme celle introduite dans la partie 1 du manuscrit) semble pouvoir réduire ces problèmes.
Davantage dŠoutils dŠespace-temps nécessaires à la modélisation mécanique dans un formalisme dŠespace-
temps ont été introduits dans cette deuxième partie par ex. le gradient de déformation spatio-temporel, les
tenseurs de déformation spatio-temporels, la dérivée de Lie, le taux de déformation... Dans la section 4.6,
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Fig. 57: Variation de 𝜎11
c en fonction du temps pour un poutre en traction pour différents modèles élasto-plastiques

Newtoniens.

un exemple illustre les termes supplémentaires résultant de lŠapplication du principe de covariance sur les
transformations et en particulier dans le cas dŠun tenseur du second ordre.

Des auteurs ont proposés différents modèles mécaniques spatio-temporels, tels que des expansions
spatio-temporelles du modèle de Hooke prenant en compte les non-linéarités provenants de la cinéma-
tique/géométrie. Dans [Rouhaud et al.,2013] et [Panicaud et al.,2015], des modèles spatio-temporels ther-
moélastiques, thermo-hyperélastiques et hypoélastiques ont déjà été obtenus en utilisant différentes méthodes
telles que la relativisation directe des modèles Newtoniens, lŠapproche thermodynamique, en utilisant la
théorie de la représentation ... Cependant, dans [Rouhaud et al.,2013] et [Panicaud et al.,2015], les modèles
covariants ont été obtenus sous des hypothèses qui limitent leur utilisation. En outre, dans certains modèles,
les opérateurs de dérivation de Lie et de projection nŠont pas été utilisés dans la méthodologie, ce qui
nécessite un développement plus poussé des modèles obtenus.

De plus, Wang [Wang,2016] (section 4.7.4) a étudié les modèles élastiques et élastoplastiques anisotropes
spatio-temporels. Cette étude sŠest limitée à la modélisation mécanique, ainsi la modélisation du comporte-
ment thermique du matériau et le couplage thermomécanique ont été négligés dans les modèles résultants.
De plus, seule la projection spatiale des modèles dŠespace-temps a été utilisée pour la simulation numérique
et a été comparée aux modèles mécaniques Newtoniens. Cela limite la capacité dŠétudier lŠimpact dŠune
approche spatio-temporelle sur les modèles mécaniques dŠun point de vue numérique puisque la résolution
numérique du problème est quasiment Newtonienne. Ainsi, les avantages dŠune résolution numérique
de lŠespace-temps: utilisation de dérivées covariantes, métrique dŠespace-temps, expression du tenseur
énergie-impulsion dŠespace-temps ... ne sont pas appliqués.

Dans ce qui suit, nous proposons une méthodologie thermodynamique spatio-temporelle conduisant à
des modèles spatio-temporels qui prennent en compte le couplage thermomécanique. Cette méthodologie
respecte le principe de covariance et lŠutilisation de dérivées covariantes. Elle respecte également lŠutilisation
des opérateurs de projection dans le développement de modèles dŠespace-temps. La forme faible du problème
sera ensuite implémentée pour la simulation sans projection spatiale en utilisant le projet FEniCS qui permet
une résolution numérique spatio-temporelle. Les résultats obtenus à partir des modèles dŠespace-temps
seront ensuite comparés aux résultats obtenus à partir des modèles Newtoniens correspondants.
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7.4.2 La modélisation thermomécanique en espace-temps dans ce manuscrit

Dans lŠobjectif de déĄnir la méthodologie permettant la modélisation thermomécanique spatio-temporelle
des petites et grandes déformations, lŠapproche thermodynamique spatio-temporelle est étudiée. Comme
mentionné précédemment, cela garantit lŠobtention de modèles thermomécaniques respectant les principes de
covariance et de causalité tout en étant compatibles avec les lois de la thermodynamique. Pour la causalité,
cŠest le fait dŠobtenir des équations hyperboliques qui le garantira à la toute Ąn.

Dans un premier temps, les formes covariantes des lois de la thermodynamique prenant en compte le
comportement mécanique ont été étudiées en utilisant la déĄnition du tenseur impulsion-énergie (section
5.3), ce qui permet dŠécrire ces lois dans différents cadres. Ci-dessous sont les lois de conservation covariantes
du nombre molécules, de lŠimpulsion-énergie, de lŠénergie interne et de lŠentropie.

7.4.2.1 La conservation du nombre de molécules

Nous supposons que les molécules ne peuvent pas être créées ou détruites, ce qui conduit à la loi de
conservation du nombre de molécules. Nous considérons à nouveau lŠespace-temps global domaine du
matériau de lŠhypervolume 𝒟 ayant la frontière 𝜕𝒟. Nous introduisons le Ćux de molécules 𝑛Û qui vériĄe:

∀𝑥Û ∈ 𝒟,∇Û𝑛
Û = 0 (7.12)

Des problèmes surviennent lors de la déĄnition de la vitesse spatio-temporelle de ce Ćux de molécules.
Dans le contexte général de la physique relativiste, ce Ćux de molécules peut être déĄni comme:

𝑛Û = 𝑛𝑢Û + ÜÛ (7.13)

𝑛 étant la densité des molécules (par unité de volume) dans le référentiel propre et la vitesse
spatio-temporelle ÜÛ représente le courant de diffusion des molécules. En cas de dissipation non ther-
momécanique, deux hypothèses peuvent être adoptées: elles ont été proposées par [Eckart,1940] et par
[Landau and Lifshitz,1975]. Différents auteurs ont tenté de fusionner ces deux approches [Schellstede et al.,2014,
Israel,1989]. Dans ce manuscrit, puisque de telles dissipations ne sont pas considérées, le terme de diffusion
est choisi tel que ÜÛ = 0. Par conséquent, la loi de conservation des molécules dans 𝒟 conduit Ąnalement à:

∀𝑥Û ∈ 𝒟,∇Û(̃︀𝜌𝑐𝑢Û) = 0 (7.14)

Eq. 7.14 correspond à lŠéquilibre de la masse au repos par unité de le volume. Dans la limite non relativiste,
cela conduirait à lŠéquation de continuité classique.

7.4.2.2 La conservation de l’impulsion-énergie

LŠéquilibre de lŠimpulsion-énergie dans un domaine spatio-temporel peut être obtenu à partir de la déĄnition
du tenseur impulsion-énergie. Dans un référentiel quelconque, elle peut être écrite localement:

∀𝑥Û ∈ 𝒟,∇Ü𝑇
ÛÜ = 0 (7.15)

⇔ ∀𝑥Û ∈ 𝒟,∇Ü𝑇
ÛÜ
𝒰

+ ∇Ü𝑇
ÛÜ
𝑞 + ∇Ü𝑇

ÛÜ
à = 0 (7.16)

Eq. 5.1 et Eq. 5.6 donnent:

∀𝑥Û ∈ 𝒟,∇Ü(𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà ) = 0 (7.17)

⇔ ∀𝑥Û ∈ 𝒟,∇Ü

⎤
̃︀𝜌𝑐𝑐2

(︁
1 +

𝑒𝑖𝑛𝑡
𝑐2

⎡
𝑢Û𝑢Ü +

Ú

𝑐
(ΠÛÙ𝑢Ü + ΠÜÙ𝑢Û)𝜕Ù𝜃 + 𝑇ÛÜà

⎣
= 0 (7.18)

Les expressions de 𝑒𝑖𝑛𝑡(𝜃, 𝑑𝑒𝑝Û) et 𝑇ÛÜà (𝜃, 𝑑𝑒𝑝Û, 𝑔ÛÜ) peuvent ensuite être injectées dans Eq. 7.18:
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∇Ü

⎤
̃︀𝜌𝑐𝑐2

⎤
1 +

𝑒𝑖𝑛𝑡(𝜃, 𝑑𝑒𝑝Û)
𝑐2

⎣
𝑢Û𝑢Ü +

Ú

𝑐
(ΠÛÙ𝑢Ü + ΠÜÙ𝑢Û)𝜕Ù𝜃 + 𝑇ÛÜà (𝜃, 𝑑𝑒𝑝Û, 𝑔ÛÜ)

⎣
= 0 (7.19)

Les expressions de 𝑒𝑖𝑛𝑡 et 𝑇ÛÜà doivent ensuite être déterminées et sont reliées.

7.4.2.3 La conservation de l’énergie interne

Il est utile de calculer le bilan du tenseur impulsion-énergie suivant la direction de la vitesse spatio-temporelle
pour obtenir lŠéquilibre de lŠénergie interne du système. Avec le projecteur de temps (voir section 2.2.4), il
conduit localement à:

∀𝑥Û ∈ 𝒟, 𝑢Û∇Ü𝑇
ÛÜ = 0 (7.20)

Dans le but de développer lŠEq. 7.20, on utilise :

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝑢Û𝑇ÛÜ) ⊗ 𝑇ÛÜ∇Ü𝑢Û = 0 (7.21)

En utilisant: ∇Ü(𝑢Û𝑇
ÛÜ
à ) = 0 car 𝑢Û𝑇

ÛÜ
à = 0 (par construction en projettant 𝑇ÛÜ , voir section 2.2.8

[Wang,2016]) et 𝑢Û𝑇
ÛÜ
𝑞 = 𝑞Ü obtenu en utilisant Eq. 2.21:

𝑢Û𝑇
ÛÜ
𝑞 = 𝑢Û𝑞

Ü𝑢Û + 𝑢Û𝑞
Û𝑢Ü

= 𝑞Ü + (ÓÛÐ ⊗ 𝑢Û𝑢Ð)𝑢Û𝑇ÐÑ𝑢Ñ𝑢
Ü = 𝑞Ü (7.22)

On obtient:

∇Ü(𝑢Û𝑇ÛÜ) = ∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞
Ü (7.23)

Puis, en utilisant 𝑢Û𝑢Û = 1, on déduit que: 𝑢Û∇Ü𝑢Û = 𝑢Û∇Ü𝑢
Û = 0. Par conséquent:

𝑇ÛÜ∇Ü𝑢Û = 𝑞Û𝑢Ü∇Ü𝑢Û + 𝑇ÛÜà ∇Ü𝑢Û (7.24)

Eqs. 7.23 and 7.24 lead to:

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝜌𝑐(𝑐2 + 𝑒)𝑢Ü) + ∇Ü𝑞

Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û ⊗ 𝑇ÛÜà ∇Ü𝑢Û (7.25)

Si 𝑇ÛÜ est symétrique, alors comme par déĄnition (Eq. 2.23), 𝑇ÛÜà est métrique. En utilisant le taux de
déformation 𝑑ÛÜ , Eq. 7.25 donne:

𝑢Û∇Ü𝑇
ÛÜ = ∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞

Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û ⊗ 𝑇ÛÜà 𝑑ÛÜ = 0 (7.26)

On en déduit la loi de conservation de lŠénergie interne:

∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) + ∇Ü𝑞
Ü ⊗ 𝑞Û𝑢Ü∇Ü𝑢Û = 𝑇ÛÜà 𝑑ÛÜ (7.27)

Dans le cas de comportement adiabatique et puisque 𝑢Û𝑢Ü𝑑ÛÜ = 0 (𝑑ÛÜ = 𝑑ÛÜ), la loi de conservation
dŠénergie interne peut être écrite comme une fonction du tenseur impulsion-énergie:

∀𝑥Û ∈ 𝒟,∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Ü) = 𝑇ÛÜ𝑑ÛÜ (7.28)

7.4.2.4 L’inégalité de Clausius-Duhem

Comme en mécanique newtonienne, il est possible dŠexprimer localement le second principe de thermody-
namique par construction de lŠinégalité Clausius-Duhem généralisée en espace-temps. Par conséquent:



166

∀𝑥Û ∈ 𝒟, 𝜃∇Ü𝑆
Ü ⊗ 𝑢Û∇Ü𝑇

ÛÜ =
Φ
𝑐

⊙ 0 (7.29)

⇒ ∀𝑥Û ∈ 𝒟, 𝜃∇Ü(̃︀𝜌𝑐Ö𝑐𝑢Ü) + ∇Ü(
𝑞Û

𝜃
) ⊗ ∇Ü(𝜌𝑐𝑐2𝑢Ü)

⊗∇Ü(𝑞Ü) + 𝑞Û𝑢Ü∇Ü(𝑢Û) + 𝑇ÛÜ𝑑ÛÜ =
Φ
𝑐

⊙ 0

̃︀𝜌𝑐𝜃𝑢Û∇ÛÖ𝑐 ⊗ ̃︀𝜌𝑐𝑢Û∇Û𝑒𝑖𝑛𝑡 ⊗ 1
𝜃
𝑞Û∇Û𝜃 + 𝑞Ü𝑢

Û∇Û𝑢
Ü + 𝑇ÛÜà 𝑑ÛÜ ⊙ 0 (7.30)

Dans cette inégalité, les termes sont respectivement liés à lŠévolution dŠentropie, lŠévolution de lŠénergie
interne, les dissipations thermiques (dont une partie est couplée à la mécanique avec le terme 𝑢Û∇Û𝑢

Ü) et
la puissance mécanique interne 𝑇ÛÜà 𝑑ÛÜ .

En introduisant lŠénergie libre spéciĄque: å = 𝑒𝑖𝑛𝑡 ⊗ 𝜃Ö𝑐, lŠinégalité précédente est équivalente à:

⊗ ̃︀𝜌𝑐(𝑢Û∇Ûå + Ö𝑐𝑢
Û∇Û𝜃) ⊗ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
+ 𝑇ÛÜà 𝑑ÛÜ =

Φ
𝑐

⊙ 0 (7.31)

Les lois classiques de la thermodynamique peuvent être obtenues en utilisant les lois de lŠespace-temps
écrites dans un référentiel inertiel à la limite non relativiste.

Ensuite, les comportements thermo-hyperélastiques spatio-temporels dŠun modèle général puis dŠun
modèle réversible spéciĄque (section 5.5) ont été obtenus sous les hypothèses suivantes:
∙ couplage fort entre les comportements thermiques et mécaniques
∙ comportement isotrope des matériaux à lŠéchelle macroscopique. Le comportement isotrope nécessite au

moins 2 paramètres de matériau indépendants (par exemple les coefficients de Lamé) [Wang,2016]. Par
conséquent, le comportement choisi est également indépendant de la rotation dans lŠespace-temps, par
conséquent invariant à la translation galiléenne à la limite non-relativiste. Cette symétrie complète est
supposée dans ce qui suit.

En plus, le modèle doit statisfaire:
∙ La loi de conservation du nombre de molécules (Eq. 7.12), de lŠimplusion-énergie (Eq. 7.16), de lŠénergie

inetrne (Eq. 5.15), de lŠentropie (Eq. 5.27) et lŠinégalité de Clausius-Duhem (Eq. 7.30).
∙ 𝑇ÛÜà 𝑢Û = 0 pour respecter la construction de 𝑇ÛÜ .
∙ La symétrie de 𝑇ÛÜ and 𝑇ÛÜà .
∙ 𝑇ÛÜà est une fonction de lŠénergie libre spéciĄque Ψ qui dépend de quantités projetées sur lŠespace au

moins pour sa partie mécanique.

On propose la forme suivante de Ψ:

Ψ = Ψ𝜃(𝒞𝑚𝑃 , 𝜃) + Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝐼𝐼 , 𝐼𝐼𝐼) + Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝐼𝐼) + Ψ0 (7.32)

𝒞𝑚𝑃 étant la chaleur massique à pression constante, Λ/̃︀𝜌𝑐 et Û/̃︀𝜌𝑐 sont les coefficients de Lamé spéciĄque (par
unité de masse). ÙÐ/̃︀𝜌𝑐 est le coefficient spéciĄque de couplage relié au module de compression Ù = Λ + 2Û/3
et au coefficient dŠexpansion thermique Ð .

Ces 3 coefficients sont censés être indépendants de la température. 𝐼𝐼 et 𝐼𝐼𝐼 sont les invariants projetés
du tenseur de déformation. Le couplage thermomécanique est exprimé par Ψ𝜃,à dans lequel Δ𝜃 = 𝜃⊗ 𝜃0 est
la variation de température provoquée par le comportement thermoélastique et mesurée par rapport à une
température de référence 𝜃0. Ce choix est une forme générale de lŠénergie libre spéciĄque Ψ dépendant des
invariants.

Il est également nécessaire dŠutiliser le projecteur spatial en construisant les modèles de comportement
(présenté dans la section 2.2.4) surtout lors de la dérivation du tenseur de contrainte dŠespace-temps à lŠaide
des invariants.
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7.4.3 Application en utilisant une énergie libre spécifique basée sur des invariants projetés

En utilisant Eq. 7.31, le comportement réversible peut être exprimé par:

⊗̃︀𝜌𝑐(Ö𝑐ℒ𝑢(𝜃) + ℒ𝑢(Ψ𝜃)) ⊗ ̃︀𝜌𝑐ℒ𝑢(Ψà) ⊗ ̃︀𝜌𝑐ℒ𝑢(Ψ𝜃,à) ⊗ 𝑞Û
⎤

1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
+ 𝑇ÛÜà 𝑑ÛÜ = 0 (7.33)

⇔ ̃︀𝜌𝑐
⎤
Ö𝑐ℒ𝑢(𝜃) +

𝜕Ψ𝜃

𝜕𝒞𝑚𝑃
ℒ𝑢(𝒞𝑚𝑃 ) +

𝜕Ψ𝜃

𝜕𝜃
ℒ𝑢(𝜃)

⎣
+

̃︀𝜌𝑐
⎤

𝜕Ψà

𝜕(Λ/̃︀𝜌𝑐)
ℒ𝑢(Λ/̃︀𝜌𝑐) +

𝜕Ψà

𝜕(Û/̃︀𝜌𝑐)
ℒ𝑢(Û/̃︀𝜌𝑐) +

𝜕Ψ𝜃,à

𝜕(ÙÐ/̃︀𝜌𝑐)
ℒ𝑢(ÙÐ/̃︀𝜌𝑐) +

𝜕Ψ𝜃,à

𝜕Δ𝜃
ℒ𝑢(Δ𝜃)

⎣
+

̃︀𝜌𝑐
⎤
𝜕Ψà

𝜕𝐼𝐼
ℒ𝑢(𝐼𝐼) +

𝜕Ψ𝜃,à

𝜕𝐼𝐼
ℒ𝑢(𝐼𝐼) +

𝜕Ψà

𝜕𝐼𝐼𝐼
ℒ𝑢(𝐼𝐼𝐼)

⎣
+ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
=

𝑇ÛÜà 𝑑ÛÜ (7.34)

LŠénergie libre spéciĄque est exprimée en Eq. 7.32 comme une décomposition additive de trois effets.
Les deux invariants doivent correspondre physiquement respectivement à la déformation du volume et à la
déformation de surface du milieu matériel [Farhat et al.,1991, Nayfeh and Nemat-Nasser,1971]:

Ψà =
Λ
̃︀𝜌𝑐
𝐼n1

𝐼

n1
+
Û

̃︀𝜌𝑐
𝐼n2

𝐼𝐼

n2
(7.35)

Ψ𝜃,à = ⊗3ÙÐ
̃︀𝜌𝑐

Δ𝜃𝐼𝐼 (7.36)

où n1 et n2 sont les exposants des lois de puissance (∈ N
+*). Les invariants sont censés être indépendants

pour obtenir un découplage des effets mécaniques, et ils seront exprimés en fonction du tenseur de déformation
e et/ou du tenseur métrique g. Suivant les Eqs. 4.54 à 4.55, les dérivées de Lie de ces invariants sont des
fonctions linéaires du tenseur du taux de déformation d, comme il sera illustré plus loin. Nous pouvons
ensuite calculer les différents termes de lŠEq. 7.34 avec:

𝜕Ψà

𝜕(Λ/̃︀𝜌𝑐)
=

𝐼n1

𝐼

n1
(7.37)

ℒ𝑢(Λ/̃︀𝜌𝑐) =
Λ
̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (7.38)

𝜕Ψà

𝜕(Û/̃︀𝜌𝑐)
=

𝐼n2

𝐼𝐼

n2
(7.39)

ℒ𝑢(Û/̃︀𝜌𝑐) =
Û

̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (7.40)

𝜕Ψ𝜃,à

𝜕(ÙÐ/̃︀𝜌𝑐)
= ⊗3Δ𝜃𝐼𝐼 (7.41)

ℒ𝑢(ÙÐ/̃︀𝜌𝑐) =
ÙÐ

̃︀𝜌𝑐
𝑔ÛÜ𝑑ÛÜ (7.42)

𝜕Ψà

𝜕𝐼𝐼
+
𝜕Ψ𝜃,à

𝜕𝐼𝐼
=

Λ
̃︀𝜌𝑐
𝐼n1⊗1
𝐼 ⊗ 3ÙÐ

̃︀𝜌𝑐
Δ𝜃 (7.43)

ℒ𝑢(𝐼𝐼) = 𝐴ÛÜ𝐼 𝑑ÛÜ (7.44)
𝜕Ψà

𝜕𝐼𝐼𝐼
=

Û

̃︀𝜌𝑐
𝐼n2⊗1
𝐼𝐼 (7.45)

ℒ𝑢(𝐼𝐼𝐼) = 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ (7.46)

ℒ𝑢(Δ𝜃) = ℒ𝑢(𝜃) ⊗ ℒ𝑢(𝜃0) = ℒ𝑢(𝜃) (7.47)

ℒ𝑢(𝒞𝑚𝑃 ) = 0 (7.48)



168

où 𝐴ÛÜ𝐼 et 𝐴ÛÜ𝐼𝐼 sont les fonctions tensorielles qui doivent être explicitées. A noter que la dérivée de Lie dŠune
densité scalaire et constante est nulle 𝑊 = 0. En utilisant les Eqs. 7.37 à 7.48 in Eq. 7.34, il est possible
dŠécrire:

̃︀𝜌𝑐
(︀
Öℒ𝑢(𝜃) + 𝜕Ψθ

𝜕𝜃 ℒ𝑢(𝜃)
)︀

+ ̃︀𝜌𝑐
(︁
𝐼
n1

I

n1

Λ

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ +
𝐼
n2

II

n2

Û

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ ⊗ 3Δ𝜃𝐼𝐼
ÙÐ

̃︀𝜌c

𝑔ÛÜ𝑑ÛÜ ⊗ 3ÙÐ̃︀𝜌c

𝐼𝐼ℒ𝑢(𝜃)
⎡

+ ̃︀𝜌𝑐
(︁

( Λ

̃︀𝜌c

𝐼n1⊗1
𝐼 ⊗ 3ÙÐ

̃︀𝜌c

Δ𝜃)𝐴ÛÜ𝐼 𝑑ÛÜ + Û

̃︀𝜌c

𝐼n2⊗1
𝐼𝐼 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ

⎡
⊗ 𝑞Û

⎤
1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
= 𝑇ÛÜà 𝑑ÛÜ (7.49)

En considérant des transformations indépendantes et réversibles, nous obtenons simultanément:

∀ℒ𝑢(𝜃), Ö𝑐 = ⊗𝜕Ψ𝜃

𝜕𝜃
+ 3

ÙÐ

̃︀𝜌𝑐
𝐼𝐼 (7.50)

∀𝜃, 𝑞Û
⎤

1
𝜃

∇Û𝜃 ⊗ 𝑢Ü∇Ü𝑢Û

⎣
⊙ 0 (7.51)

∀𝑑ÛÜ , 𝑇ÛÜà =
𝐼n1

𝐼

n1
Λ𝑔ÛÜ +

𝐼n2

𝐼𝐼

n2
Û𝑔ÛÜ ⊗ 3Δ𝜃𝐼𝐼ÙÐ𝑔

ÛÜ

+
(︀
(Λ𝐼n1⊗1

𝐼 ⊗ 3ÙÐΔ𝜃)𝐴ÛÜ𝐼 + Û𝐼n2⊗1
𝐼𝐼 𝐴ÛÜ𝐼𝐼

)︀𝑆𝑦𝑚
(7.52)

Comme prévu, cette équation est symétrique et le choix de 𝐼n1⊗1
𝐼 doit respecter 𝑇ÛÜà 𝑢Û = 0

7.4.4 Comportement thermo-hyperélastique spatio-temporel d’un modèle réversible spécifique

Dans ce modèle, des projecteurs spatiaux permettent de déĄnir lŠénergie libre spéciĄque. Les invariants
projetés sont choisis en généralisant les invariants des modèles de type hookéen [Ugural and Fenster,2003].
Le premier invariant projeté est donné par:

𝐼𝐼 = 𝑒ÛÜ𝑔
ÛÜ = 𝑒ÛÜ𝑔

ÛÜ = 𝑒ÛÜ𝑔
ÛÜ (7.53)

cela conduit alors à:

ℒ𝑢(𝐼𝐼) = 𝐴ÛÜ𝐼 𝑑ÛÜ = (𝑔ÛÜ ⊗ 2𝑒ÛÜ)𝑑ÛÜ (7.54)

Le deuxième invariant projeté est:

𝐼𝐼𝐼 = 𝑒ÛÜ𝑒
ÛÜ = 𝑒ÛÜ𝑒

ÛÜ = 𝑒ÛÜ𝑒
ÛÜ (7.55)

cela conduit alors à:

ℒ𝑢(𝐼𝐼𝐼) = 𝐴ÛÜ𝐼𝐼 𝑑ÛÜ = (2𝑒ÛÜ ⊗ 2𝑒ÛÑ𝑒
ÑÜ ⊗ 2𝑒ÛÑ𝑒 Ü

Ñ )𝑑ÛÜ (7.56)

En supposant une forme quadratique pour lŠénergie libre spéciĄque, suivant le choix de ces invariants,
cela conduit à n1 = 2 et n2 = 1. En utilisant Eqs. 7.53 à 7.56 et 7.52, la courbe contrainte-déformation peut
alors être obtenue:

𝑇ÛÜà =
(𝑒ÐÑ𝑔ÐÑ)2

2
Λ𝑔ÛÜ + (𝑒ÐÑ𝑒

ÐÑ)Û𝑔ÛÜ + Λ(𝑒ÐÑ𝑔
ÐÑ)(𝑔ÛÜ ⊗ 2𝑒ÛÜ)

+ 2Û𝑒ÛÜ ⊗ 4Û
(︁
𝑒ÛÑ𝑒

ÑÜ
⎡𝑆𝑦𝑚

⊗ 3ÙÐΔ𝜃(𝑒ÐÑ𝑔
ÐÑ)𝑔ÛÜ ⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 2𝑒ÛÜ) (7.57)

= Λ(𝑒ÐÑ𝑔
ÐÑ)

⎤
𝑔ÛÜ +

1
2

(𝑒ÐÑ𝑔
ÐÑ)𝑔ÛÜ ⊗ 2𝑒ÛÜ

⎣

+ 2Û

⎤
𝑒ÛÜ +

1
2

(𝑒ÐÑ𝑒
ÐÑ)𝑔ÛÜ ⊗ 2

(︁
𝑒ÛÑ𝑒

ÑÜ
⎡𝑆𝑦𝑚⎣

⊗ 3ÙÐΔ𝜃
(︀
(𝑒ÐÑ𝑔

ÐÑ)𝑔ÛÜ + 𝑔ÛÜ ⊗ 2𝑒ÛÜ
)︀

(7.58)
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Comme prévu, cette expression est symétrique puisque le projecteur spatial conserve la propriété de
symétrie. De plus, Eq. 7.58 vériĄe 𝑇ÛÜà 𝑢Û = 0. Les termes non linéaires dans lŠEq. 7.52 correspondent
aux termes de la dérivée de Lie pouvant être liés à la dérivée par rapport aux paramètres du matériau et
aux composantes du tenseur métrique. En utilisant Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝑒ÛÜ , 𝑔ÛÜ) et Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝑒ÛÜ , 𝑔ÛÜ)
au lieu de Ψà(Λ/̃︀𝜌𝑐, Û/̃︀𝜌𝑐, 𝐼𝐼 , 𝐼𝐼𝐼) et Ψ𝜃,à(ÙÐ/̃︀𝜌𝑐,Δ𝜃, 𝐼𝐼), nous obtiendrions exactement le même modèle
de comportement. Comme prévu, Eq. 7.58 conduit à lŠabsence de contrainte spatio-temporelle pour
𝑒ÐÑ = 0, Δ𝜃 = 0.

Dans ce qui suit, le modèle obtenu a été étudié dans pour différents cas de déformation et de température.

7.4.4.1 Pour les petites déformations et les variations finies de température

On suppose que les déformations sont petites (∀Û, Ü, 𝑒ÛÜ ⪯ 1 ⇔ ♣♣𝑒♣♣ ⪯ 1) et la variation de température
est Ąnie, alors Eq. 7.58 conduit à:

𝑇ÛÜà = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð (ÓÐÑ ⊗ 𝑢Ð𝑢Ñ))(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)

+ 2(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(ÓÛÐ ⊗ 𝑢Û𝑢Ð)(ÓÜÑ ⊗ 𝑢Ü𝑢Ñ)

⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (7.59)

LŠEq. 7.59 montre que 𝑒ÐÑ = 0 ou 𝑒ÐÑ = 𝒩𝑢Ð𝑢Ñ , avec 𝒩 ∈ R
* et Δ𝜃 = 0 conduisent à lŠabsence de

contrainte spatio-temporelle. Dans un référentiel inertiel, Eq. 7.59 conduit à:

𝑇ÛÜà = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð (ÓÐÑ ⊗ Ò2𝑣Ð𝑣Ñ/𝑐

2))(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2)

+ 2(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(ÓÛÐ ⊗ Ò2𝑣Û𝑣Ð/𝑐
2)(ÓÜÑ ⊗ Ò2𝑣Ü𝑣Ñ/𝑐

2)

⊗ 3ÙÐΔ𝜃(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2) (7.60)

où 𝑒ÛÜ = 1
2 (ÖÛÜ ⊗ 𝑏ÛÜ) déduit de lŠEq. 4.45. A la limite non-relativiste, ça conduit à:

𝑇ÛÜà ≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 Ñ
Ð ÓÐÑ)ÖÛÜ + 2(Û+ 3ÙÐΔ𝜃)𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (7.61)

≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)Ö

ÛÜ + 2(Û+ 3ÙÐΔ𝜃)𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (7.62)

En lŠabsence de couplage thermomécanique, Eq. 7.62 conduit à un modèle de type Hookéen pour les
petites déformations en thermoélasticité, tout en supposant que 𝑒 4

4 ≡ 0 si la vitesse de chargement est non
relativiste, de sorte que seules les composantes spatiales restent dans la trace de 𝑒ÛÜ .

Dans un référentiel propre, où 𝑢̂Û = (0, 0, 0, 1), Eq. 7.59 mène aux composantes spatiales:

𝑇 𝑖𝑗à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖𝑗 (7.63)

où 𝑒ÛÜ = 1
2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) = 1

2 (𝑔ÛÜ ⊗ 𝑔ÛÐ𝑔ÜÑÖÐÑ) à partir de lŠEq. 4.45. Puisque Λ et Û sont des densités
scalaires, le determinant 𝐽 doit être introduit et pour les petites déformations 𝐽 ≡ 1. Ce qui mène au
modèle classique de Hooke pour les petites déformations (Eq. 4.25), avec des nouveaux termes couplant la
déformation et la variation Ąnie de température ⊗3ÙÐΔ𝜃(𝑒 𝑏

𝑎 Ó
𝑎
𝑏)𝑔

𝑖𝑗 + 6ÙÐΔ𝜃𝑒𝑖𝑗 et le terme 𝑒 4
4 ⊗ 𝑒 Ñ

4 𝑢̂Ñ qui
est strictement nul quand le référentiel propre et locallement inertiel (𝑔ÛÜ = ÖÛÜ leading to 𝑢̂Û = (0, 0, 0, 1)).
Dans le référentiel propre mais non-inertiel, ce terme peut être négligé si et seulement si la vitesse de
chargement est non-relativiste [Panicaud et al.,2014]. Pour les composantes temporelles:

𝑇 𝑖4à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖4 + 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒𝑖Ñ(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖4 (7.64)

et

𝑇 44
à = 𝐽(Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏

𝑎 Ó
𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)(𝑔44 ⊗ 1)

+ 2𝐽(Û+ 3ÙÐΔ𝜃)𝑒ÐÑ(Ó4
Ð ⊗ 𝑢̂Ð)(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃(𝑔44 ⊗ 1) (7.65)
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LŠEq. 7.65 est nulle si et seulement si le référentiel propre est aussi inertiel (𝑔ÛÜ = ÖÛÜ menant à
𝑢̂Û = (0, 0, 0, 1)). Pour les autres référentiels, certains termes apparaissent pour les composantes de temps
et peuvent être considérées très petites, comme par exemple dans le référentiel propre, si la vitesse de
chargement est non relativiste. Dans ce référentiel, en raison du choix du tenseur de déformation, Eq. 7.63
est nulle pour 𝑒ÐÑ = 0, uniquement si lŠhypothèse supplémentaire Δ𝜃 = 0 est prise en compte. LŠutilisation
du projecteur dans lŠénergie libre spéciĄque assure la modélisation des contributions spatiales pour les
expressions de contrainte et de déformation pour le référentiel propre si la vitesse de chargement est très
petite.

7.4.4.2 Pour les petites déformations et les petites variations de température

On suppose que les déformations et la variation de température sont petites (∀Û, Ü, 𝑒ÛÜ ⪯ 1 ⇔ ♣♣𝑒♣♣ ⪯ 1 et
Δ𝜃 ⪯ 𝜃0, tel que Δ𝜃𝑒ÛÜ ⊃ 0, alors Eq. 7.59 conduit à:

𝑇ÛÜà = Λ(𝑒 Ñ
Ð (ÓÐÑ ⊗ 𝑢Ð𝑢Ñ))(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü)

+ 2Û𝑒ÐÑ(ÓÛÐ ⊗ 𝑢Û𝑢Ð)(ÓÜÑ ⊗ 𝑢Ü𝑢Ñ)

⊗ 3ÙÐΔ𝜃(𝑔ÛÜ ⊗ 𝑢Û𝑢Ü) (7.66)

Eq. 7.66 montre que 𝑒ÐÑ = 0, Δ𝜃 = 0 sauf que 𝑒ÐÑ = 𝒩𝑢Ð𝑢Ñ , Δ𝜃 = 0, où 𝒩 ∈ R
* ce qui conduit à

lŠabsence de contrainte spatio-temporelle. Dans un référentiel inertiel, Eq. 7.66 conduit à:

𝑇ÛÜà = Λ(𝑒 Ñ
Ð (ÓÐÑ ⊗ Ò2𝑣Ð𝑣Ñ/𝑐

2))(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2)

+ 2Û𝑒ÐÑ(ÓÛÐ ⊗ Ò2𝑣Û𝑣Ð/𝑐
2)(ÓÜÑ ⊗ Ò2𝑣Ü𝑣Ñ/𝑐

2)

⊗ 3ÙÐΔ𝜃(ÖÛÜ ⊗ Ò2𝑣Û𝑣Ü/𝑐2) (7.67)

où 𝑒ÛÜ = 1
2 (ÖÛÜ ⊗ 𝑏ÛÜ) est déduit de lŠEq. 4.45. A la limite non-relativiste, cela conduit à:

𝑇ÛÜà ≡ Λ(𝑒 Ñ
Ð ÓÐÑ)ÖÛÜ + 2Û𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (7.68)

≡ Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)Ö

ÛÜ + 2Û𝑒ÛÜ ⊗ 3ÙÐΔ𝜃ÖÛÜ (7.69)

Eq. 7.69 conduit au modèle classique de Hooke pour les petites déformations en élasticité couplé à
de petites variation de température, tout en supposant que 𝑒 4

4 ≡ 0 si la vitesse de chargement est non
relativiste, de sorte que seules les composantes spatiales restent dans la trace de 𝑒ÛÜ .

Dans un référentiel propre, où 𝑢̂Û = (0, 0, 0, 1), Eq. 7.66 mène aux composantes spatiales:

𝑇 𝑖𝑗à = 𝐽Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2𝐽Û𝑒𝑖𝑗

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖𝑗 (7.70)

où 𝑒ÛÜ = 1
2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) = 1

2 (𝑔ÛÜ ⊗ 𝑔ÛÐ𝑔ÜÑÖÐÑ) à partir de lŠEq. 4.45. Puisque Λ et Û sont des densités
scalaires, le determinant 𝐽 doit être introduit et pour les petites déformations 𝐽 ≡ 1. Ceci mène au
modèle classique de Hooke pour les petites déformations couplé au petites variations de température, en
addition dŠun nouveau terme 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ qui est strictement nul si le référentiel propre est localement

inertiel aussi (𝑔ÛÜ = ÖÛÜ ce qui mène à 𝑢̂Û = (0, 0, 0, 1)). Dans un référentiel propre mais non-inertiel, ce
terme peut être considéré comme négligeable si et seulement si la vitesse de chargement est non-relativiste
[Panicaud et al.,2014]. Pour les composantes temporelles:

𝑇 𝑖4à = 𝐽Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖4 + 2𝐽Û𝑒𝑖Ñ(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃𝑔𝑖4 (7.71)

and

𝑇 44
à = 𝐽Λ(𝑒 𝑏

𝑎 Ó
𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)(𝑔44 ⊗ 1)

+ 2𝐽Û𝑒ÐÑ(Ó4
Ð ⊗ 𝑢̂Ð)(Ó4

Ñ ⊗ 𝑢̂Ñ)

⊗ 3𝐽ÙÐΔ𝜃(𝑔44 ⊗ 1) (7.72)
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Comme annoncé précédemment, ces deux expressions sont nulles si et seulement si le référentiel propre
est aussi inertiel (𝑔ÛÜ = ÖÛÜ ce qui mène à 𝑢̂Û = (0, 0, 0, 1)). Pour dŠautres référentiels, certains termes qui
peuvent être considérés comme très petits apparaissent en plus dans les composantes temporelles. CŠest le
cas pour le référentiel propre par exemple, si la vitesse de chargement nŠest pas relativiste.

Dans le référentiel propre, et à cause du choix du tenseur de déformation, les composantes du tenseur de
contrainte calculé par lŠEq. 7.70 sont nulles pour 𝑒ÐÑ = 0, puisque Δ𝜃 est petite. En revanche, cette condition
est équivalente à lŠhypothèse que le référentiel propre est inertiel aussi. Par conséquence, et à lŠaide de la
déĄnition de la déformation choisie, on déduit: 𝑒ÛÜ = 1

2 (𝑔ÛÜ ⊗ 𝑏̂ÛÜ) qui est équivalent à 𝑏̂ÛÜ = 𝑔ÛÜ ⊗ 2𝑒ÛÜ .
La déĄnition de b ce qui mène à 𝑏̂ÛÜ = ÖÛÜ . De plus, si le référentiel propre est inertiel alors 𝑔ÛÜ = ÖÛÜ , thus
𝑏̂ÛÜ = 𝑔ÛÜ . Par conséquence, 𝑔ÛÜ = ÖÛÜ est équivalent à avoir 𝑒ÛÜ = 0. Les trois dernières équations sont
des expressions équivalentes qui mènent à déduire que si le référentiel propre est inertiel, les composantes
du tenseur de déformation élastique sont nulles et donc les composantes du tenseur de contraintes sont
nulles aussi pour le modèle hyperélastique considéré. Réciproquement, la déformation spatio-temporelle
dans la conĄguration non déformée qui est nécessairement inertielle est nulle.

7.4.4.3 Pour les grandes transformations (grandes déformations et variations finies de température)

Pour les petites déformations, aucune différence nŠest prévue entre lŠapproche espace-temps à la limite
non relativiste et lŠapproche Newtonienne classique dŠun point de vue de modélisation. Il est maintenant
intéressant dŠétudier les expressions obtenues pour les grandes déformations et les variations Ąnies de
température..

A partir de lŠEq. 7.58 exprimée dans un référentiel propre, les composantes spatiales du modèle sŠécrivent:

𝑇 𝑖𝑗à /𝐽 = (Λ ⊗ 3ÙÐΔ𝜃)(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))𝑔𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

+
1
2

Λ(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))2𝑔𝑖𝑗 + Û(𝑒ÙÚ(𝑔ÙÐ ⊗ 𝑢̂Ù𝑢̂Ð)(𝑔ÚÑ ⊗ 𝑢̂Ú𝑢̂Ñ)𝑒ÐÑ)𝑔𝑖𝑗

⊗2Λ(𝑒ÐÑ(𝑔ÐÑ ⊗ 𝑢̂Ð𝑢̂Ñ))𝑒𝑖𝑗 ⊗ 4Û(𝑒𝑖Ð𝑒 𝑗
Ð ⊗ 𝑒𝑖Ð𝑒 𝑗

4 𝑢̂Ð)𝑆𝑦𝑚

⊗3ÙÐΔ𝜃𝑔𝑖𝑗 (7.73)

= (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑔𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗

+
1
2

Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)2𝑔𝑖𝑗 + Û(𝑒ÐÑ𝑒ÐÑ ⊗ 𝑒Ð4𝑒Ð4 ⊗ 𝑒 4

Ð 𝑒4Ñ +

+𝑒44𝑒44)𝑔𝑖𝑗 ⊗ 2Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏 + 𝑒 4

4 ⊗ 𝑒 Ñ
4 𝑢̂Ñ)𝑒𝑖𝑗

⊗4Û(𝑒𝑖𝑎𝑒 𝑗
𝑎 + 𝑒𝑖4𝑒 𝑗

4 ⊗ 𝑒𝑖𝑎𝑒 𝑗
4 𝑢̂𝑎 ⊗ 𝑒𝑖4𝑒 𝑗

4 𝑢̂4)𝑆𝑦𝑚

⊗3ÙÐΔ𝜃𝑔𝑖𝑗 (7.74)

≡ (Λ ⊗ 3ÙÐΔ𝜃)(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)𝑔

𝑖𝑗 + 2(Û+ 3ÙÐΔ𝜃)𝑒𝑖𝑗 +
1
2

Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)

2𝑔𝑖𝑗 + Û(𝑒ÐÑ𝑒ÐÑ)𝑔𝑖𝑗

⊗2Λ(𝑒 𝑏
𝑎 Ó

𝑎
𝑏)𝑒

𝑖𝑗 ⊗ 4Û(𝑒𝑖𝑎𝑒 𝑗
𝑎 )𝑆𝑦𝑚 ⊗ 3ÙÐΔ𝜃𝑔𝑖𝑗 (7.75)

LŠEq. 7.75 est obtenue en considérant que la vitesse de chargement est non-relativiste. Dans cette équation 4
termes non-linéaires correspondent à lŠexpansion du modèle Hookéen pour les grandes déformations. De plus,
les termes supplémentaires (linéaires en la déformation) ⊗3ÙÐΔ𝜃(𝑒 𝑏

𝑎 Ó
𝑎
𝑏)𝑔

𝑖𝑗 et 6ÙÐΔ𝜃𝑒𝑖𝑗 correspondent à
lŠexpansion causée par la variation Ąnie de la température par rapport au modèle Hookéen. LŠeffet résultant
de ces termes dépend de la valeur de la déformation. Pour les grandes déformations, la valeur de ces termes
est importante par rapport à la valeur du dernier terme de lŠEq. 7.75. Par conséquent, en comparant
au modèle Newtonien Hookéen thermoélastique (Eq. 4.25), six termes dépendant de trois paramètres du
matériau sont ajoutés au modèle spatio-temporel comme résultat de lŠutilisation de lŠhypothèse de grandes
transformations. Au cas où la transformation est isotherme Δ𝜃 = 0, lŠEq. 7.75 peut être comparée à
lŠexpression du modèle Hookéen Newtonien élastique (Eq. 4.15). Quatre termes quadratiques dépendant de
deux paramètres du matériau sont ajoutés au modèle comme résultat de lŠutilisation de lŠhypothèse des
grandes transformations.
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7.4.4.4 La dérivée de Lie

Notons que les avantages de lŠutilisation de lŠapproche spatio-temporelle proviennent essentiellement de
lŠutilisation de la dérivée de Lie, car cette dérivée du tenseur de déformation donne le taux de déformation.
De plus, lŠutilisation du cadre de lŠespace-temps inclut naturellement la partie dérivée du temps. Le résultat
de cette dérivée est indépendant du référentiel et de la superposition de mouvements de corps rigides. Par
conséquent, on parle dŠune dérivée objective [Rouhaud et al.,2013].

Les expressions explicites de la dérivée de Lie par rapport à la vitesse spatio-temporelle u (déĄnie à la
section 2.2.2) dŠune densité scalaire 𝒮 et des composantes covariantes respectivement contravariantes dŠune
densité de second ordre T ayant un poids de densité tensorielle 𝑊 [Schouten,1954] sont:

ℒ𝑢(𝒮) = 𝑢Ú
𝜕𝒮
𝜕𝑥Ú

+𝑊𝒮 𝜕𝑢
Ú

𝜕𝑥Ú
(7.76a)

ℒ𝑢(𝒯ÛÜ) = 𝑢Ú
𝜕𝒯ÛÜ
𝜕𝑥Ú

+ 𝒯ÚÜ
𝜕𝑢Ú

𝜕𝑥Û
+ 𝒯ÛÚ

𝜕𝑢Ú

𝜕𝑥Ü
+𝑊𝒯ÛÜ

𝜕𝑢Ú

𝜕𝑥Ú
(7.76b)

ℒ𝑢(𝒯 ÛÜ) = 𝑢Ú
𝜕𝒯 ÛÜ

𝜕𝑥Ú
⊗ 𝒯 ÚÜ 𝜕𝑢

Û

𝜕𝑥Ú
⊗ 𝒯 ÛÚ 𝜕𝑢

Ü

𝜕𝑥Ú
+𝑊𝒯 ÛÜ 𝜕𝑢

Ú

𝜕𝑥Ú
. (7.76c)

La dérivée de Lie est intrinsèque car la dérivée du champ tensoriel est prise le long dŠun champ vectoriel
physique: la vitesse. Cet opérateur pourrait être interprété comme une entité lagrangienne (car il est déĄni
pour une particule de matière), et il est calculé dans un formalisme eulérien (puisquŠil est déĄni à un
événement donné de lŠespace-temps). De plus, la dérivée de Lie obéit à la règle de Leibnitz [Protter,1985] et
à la règle de la chaîne [Rodriguez and Lopez Fernandez,2010].

Notons quŠen particulier la dérivée de Lie du tenseur métrique g nŠest pas nulle, sauf si le mouvement est
isométrique. CŠest la raison pour laquelle les formules sont différentes pour les composantes contravariants
et covariants.

7.4.5 Les formes variationnelles du problème thermomécanique

LŠexpression du modèle thermo-hyperélastique spatio-temporel dans le cadre approprié est utilisée pour
écrire les formes variationnelles qui ont permis leur implémentation pour simuler ensuite numériquement le
modèle (section 5.6).

Eq. 7.15 représente lŠéquation dŠéquilibre local du tenseur impulsion-énergie spatio-temporel. La forme
variationnelle faible du problème thermomécanique est obtenue en multipliant cette équation par une
fonction de test 𝑟*

Û combinant le champ de température virtuel 𝜃* et le champ de déplacement virtuel 𝑑𝑒𝑝*
Û

tel que:

𝑟*

Û =

⎤
𝜃*

𝑑𝑒𝑝*
Û

⎣
(7.77)

Ensuite, lŠéquation résultante est intégrée sur lŠhypervolume spatio-temporel d𝐻Ω.

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑟*

Û∇Ü𝑇
ÛÜ 𝑑𝐻Ω = 0,∀𝑟*

Û (7.78)

𝑟Û étant la fonction dŠessai déĄnie par:

𝑟Û =

⎤
𝜃

𝑑𝑒𝑝Û

⎣
(7.79)

LŠEq. 5.83 est ensuite développée:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
∇Ü(𝑇ÛÜ 𝑟*

Û) ⊗ 𝑇ÛÜ∇Ü𝑟
*

Û

)︀
𝑑𝐻Ω = 0,∀𝑟*

Û (7.80)
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En utilisant le théorème de Green-Ostrogradski, Eq. 7.80 peut être écrite:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑇ÛÜ ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

𝑇ÛÜ 𝑟*

Û𝑛Ü d𝑆Ω = 0,∀𝑟*

Û (7.81)

𝑛Ü étant le vecteur normal à la hypersurface dŠintégration d𝑆Ω.
Les conditions aux limites du problème sont résumées dans le tableau 19.

Type de conditions Variable Limite Condition Fonctions représentant

aux limites les conditions aux limites

Conditions aux 𝑑𝑒𝑝µ 𝜕Ωdepµ 𝜕Ωdepµ ∪ 𝜕ΩTM
= 𝜕Ω 𝑓SC(𝑥µ ∈ 𝜕Ωdepµ ) = 𝑑𝑒𝑝µ(𝑥µ ∈ 𝜕Ωdepµ )

limites de Dirichlet
𝜕Ωdepµ ∩ 𝜕ΩTM

= ∅ 𝑓TC(𝑥µ ∈ 𝜕Ωdepµ ) = 𝑑𝑒𝑝µ(𝑥µ ∈ 𝜕Ωdepµ )

𝜃 𝜕Ωθ - 𝑓SC(𝑥µ ∈ 𝜕Ωθ) = 𝜃(𝑥µ ∈ 𝜕Ωθ)

𝑓TC(𝑥µ ∈ 𝜕Ωθ) = 𝜃(𝑥µ ∈ 𝜕Ωθ)

Conditions aux 𝑇M 𝜕ΩTM
𝜕Ωdepµ ∪ 𝜕ΩTM

= 𝜕Ω 𝑓SC(𝑥µ ∈ 𝜕ΩTM
) = 𝑇M (𝑥µ ∈ 𝜕ΩTM

)

limites de Neumann 𝜕Ωdepµ ∩ 𝜕ΩTM
= ∅ 𝑓TC(𝑥µ ∈ 𝜕ΩTM

) = 𝑇M (𝑥µ ∈ 𝜕ΩTM
)

Tab. 19: Conditions aux limites pour un modèle thermomécanique spatio-temporel.

Développements spécifiques pour la résolution numérique:

AĄn de procéder à la simulation numérique du modèle thermo-hyperélastique à lŠaide du logiciel FEniCS
project, nous devons déterminer les formes intégrales faibles correspondants aux comportements simulés et
les conditions aux limites correspondantes.

Pour implémenter la forme intégrale faible obtenue dans la section 5.6, Eq. 7.78 est développée:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

𝑟*

Û∇Ü(𝑇ÛÜ
𝒰

+ 𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑑𝐻Ω = 0,∀𝑟*

Û (7.82)

Le premier terme de lŠEq. 7.82 peut être exprimé par:

∫︁

Ω

𝑟*

Û∇Ü𝑇
ÛÜ
𝒰

𝑑𝐻Ω =
∫︁

Ω

𝑟*

Û∇Ü(𝜌𝑐(𝑐2 + 𝑒𝑖𝑛𝑡)𝑢Û𝑢Ü) 𝑑𝐻Ω

=
∫︁

Ω

𝑟*

Û∇Ü(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑑𝐻Ω

=
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑟*

Û𝑛Ü d𝑆Ω (7.83)

En utilisant le théorème de Green-Ostrogradski, Eq. 7.82 sŠécrit:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡𝑢Û𝑢Ü) 𝑟*

Û𝑛Ü d𝑆Ω

+
∫︁

Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑟*

Û𝑛Ü d𝑆Ω

= 0,∀𝑟*

Û (7.84)
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Puis le problème thermomécanique est écrit pour un référentiel propre convenant à lŠétude des com-
portements des matériaux (voir section 1.3.3) et dans lequel 𝑢̂Û = (0, 0, 0, 1). Dans un référentiel propre, Eq.
7.84 sŠécrit:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(𝜌𝑐𝑒𝑖𝑛𝑡) ∇4𝑟
*

4 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝜌𝑐𝑒𝑖𝑛𝑡) 𝑟*

4 𝑛̂4 d𝑆Ω

+
∫︁

Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) ∇Ü𝑟
*

Û 𝑑𝐻Ω ⊗
∫︁

𝜕Ω

(𝑇ÛÜ𝑞 + 𝑇ÛÜà ) 𝑟*

Û𝑛̂Ü d𝑆Ω

= 0,∀𝑟*

Û (7.85)

Dans le cas dŠun référentiel propre et inertiel, en supposant une relation linéaire entre lŠénergie spéciĄque
𝑒𝑖𝑛𝑡 dŠune part et la température 𝜃 avec le coefficient 𝒞𝑚æ (𝐽.𝑘𝑔⊗1.𝐾⊗1) dŠautre part, et en lŠabsence de
𝑇ÛÜà et du couplage thermomécanique (la fonction 𝑟 𝑚𝑢 sera réduite à 𝑟4 = 𝜃), Eq. 7.85 peut sŠécrire:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
(𝜌𝑐𝒞𝑚æ𝜃) ∇4𝑟

*

4 + 𝑇 4Ü
𝑞 ∇Ü𝑟

*

4

)︀
𝑑𝐻Ω

⊗
∫︁

𝜕Ω

(︀
𝑇 4Ü
𝑞 𝑟*

4 𝑛̂Ü + 𝜌𝑐𝒞𝑚æ𝜃 𝑟*

4 𝑛̂4

)︀
d𝑆Ω = 0,∀𝑟*

Û

En plus, dans ce référentiel particulier, 𝑞4 = 0. DŠoù Eq. 7.86 sŠécrit:

𝒲(𝑟Û, 𝑟*

Û) =
∫︁

Ω

(︀
(𝜌𝑐𝒞𝑚æ𝜃) ∇4𝑟

*

4 + 𝑞𝑖𝑢4 ∇𝑖𝑟
*

4

)︀
𝑑𝐻Ω

⊗
∫︁

𝜕Ω

(︀
𝑞𝑖𝑢4 𝑟*

4 𝑛̂𝑖 + 𝜌𝑐𝒞𝑚æ𝜃 𝑟*

4 𝑛̂4

)︀
d𝑆Ω = 0,∀𝑟*

Û

En divisant Eq. 7.86 par
𝜌𝑐𝒞𝑚æ
𝑐

et en remplaçant 𝑞𝑖 =
Ú

𝑐
𝐼𝑖𝑗∇𝑗𝜃, on obtient:

𝒲(𝜃, 𝜃*) =
∫︁

Ω

⎤
𝜃
𝜕𝜃*

𝜕𝑡
+ 𝑎𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
𝜕𝜃*

𝜕𝑥𝑖

⎣
𝑑𝐻Ω ⊗

∫︁

𝜕Ω

⎤
𝜃*

𝑐 𝑞𝑖

̃︀𝜌𝑐𝒞𝑚æ
𝑛𝑖 + 𝑐𝜃 𝜃*𝑛̂4

⎣
d𝑆Ω = 0,∀𝑟*

Û

De plus, ⊗
∫︀
𝜕Ω

𝑐𝜃 𝜃*𝑛̂4 d𝑆Ω = ⊗
∫︀

Ω
𝑐
𝜕(𝜃 𝜃*)
𝑐𝜕𝑡

𝑑𝐻Ω = ⊗
∫︁

𝜕Ω

𝜃*
𝜃

𝜕𝑡
𝑑𝐻Ω ⊗

∫︁

𝜕Ω

𝜃
𝜃*

𝜕𝑡
𝑑𝐻Ω. Eq. 7.86 peut alors

sŠécrire:

𝒲(𝜃, 𝜃*) =
∫︁

Ω

⎤
𝜃*
𝜕𝜃

𝜕𝑡
+ 𝑎𝐼𝑖𝑗

𝜕𝜃

𝜕𝑥𝑗
𝜕𝜃*

𝜕𝑥𝑖

⎣
𝑑𝐻Ω ⊗

∫︁

𝜕Ωq

𝜃*
𝑐 𝑞𝑖

̃︀𝜌𝑐𝒞𝑚æ
𝑛𝑖 d𝑆Ω = 0,∀𝑟*

Û

Par conséquence, la forme intégrale faible spatio-temporelle du problème de conduction thermique pour
un modèle de Fourier est de nouveau obtenue (section 2.6.3.2). Eq. 7.86 est réduite à Eq. 2.53 avec 𝑓𝑟 = 0
et 𝑞𝑖𝑒𝑥𝑡 = 𝑞𝑖.

Nous avons choisi de valider dans ce manuscrit le modèle de lŠespace-temps obtenu sous les hypothèses
de petites déformations et de faibles variations de température dans une première étape de vériĄcation.
Les résultats des simulations des modèles 2D et 2D+1D sous de simples charges de traction et de Ćexion,
montrent la compatibilité des résultats Newtoniens et spatio-temporels. De légères erreurs numériques
peuvent apparaître en raison de la différence de construction du maillage entre les deux modèles ce qui
conduit à des effets de bords différents.
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Les modélisations Newtonienne et spatio-temporelle du comportement thermomécanique, pour respec-
tivement les petites et grandes déformations, sont comparées dans la section 5.7. Le tableau 20 résume cette
comparaison.

Modélisation Newtonieene Modélisation en espace-temps

Hypothèse des petites Définition de petite déformation 𝜖ij Définition de petite déformation 𝜖µν

déformations Forme variationnelle en fonction de 𝜖ij Forme variationnelle en fonction de 𝜖µν

Référentiel propre/inertiel Référentiel propre/inertiel
Le tenseur métrique: 𝜂ij Le tenseur métrique: 𝜂µν

Le Jacobien: 𝐽 = 1 Le Jacobien: 𝐽 = 1

𝜎ij d’ordre 1 𝑇µν
σ d’ordre 1

(Sans chaleur/température) • 3 degrés de liberté (𝑑𝑒𝑝i) • degrés de liberté (𝑑𝑒𝑝µ, 𝜃)
(Avec chaleur/température) • 4 degrés de liberté (𝑑𝑒𝑝i, ∆𝜃) • 4 degrés de liberté (𝑑𝑒𝑝µ, 𝜃)

Hypothèse des grandes Définition de grande déformation 𝐸ij/𝑒ij Définition de grande déformation 𝐸µν/𝑒µν

déformations Forme variationnelle en fonction de 𝐸ij/𝑒ij Forme variationnelle en fonction de 𝐸µν/𝑒µν

Référentiel propre/inertiel Référentiel propre (Γµ
κλ

̸= 0)
Le tenseur métrique: 𝜂ij Le tenseur métrique: 𝑔µν

Le Jacobien: 𝐽 ̸= 1 Le Jacobien: 𝐽 ̸= 1

𝜎ij d’ordre 1 𝑇µν
σ d’ordre 2

(Sans chaleur/température) • 3 degrés de liberté (𝑑𝑒𝑝i) • 4 degrés de liberté (𝑑𝑒𝑝µ, 𝜃)
(Avec chaleur/température) • 4 degrés de liberté (𝑑𝑒𝑝i, ∆𝜃) • 4 degrés de liberté (𝑑𝑒𝑝µ, 𝜃)

Tab. 20: Résumé des différences/similitudes entre la modélisation Newtonienne et la modélisation en espace-temps sous les
hypothèses des petites et des grandes déformations sans/avec apport extérieur de chaleur/température.

Un résultat important de la modélisation est quŠun modèle thermomécanique spatio-temporel a 4
degrés de liberté (y compris le déplacement et la température) même si la source externe de chaleur et de
température est nulle. De plus, pour les petites déformations, les modèles Newtoniens et spatio-temporels
sont indiscernables, notamment dans les référentiels propres ou inertiels. Cependant, pour de grandes
déformations, ils présentent des différences signiĄcatives. La modélisation de lŠespace-temps nous permet
dŠécrire des modèles covariants. Ces modèles présentent des termes supplémentaires par rapport aux modèles
Newtoniens. Puisque cette approche proposée est capable de modéliser le comportement des matériaux pour
des petites et grandes déformations, elle pourra être appliquée à des applications industrielles telles que
les procédés de mise en forme. Dans ce manuscrit, le modèle thermo-hyperélastique spatio-temporel a été
utilisé pour étudier le comportement dŠun élément bimétallique (section 5.9). La comparaison des résultats
de contraintes obtenues par les simulations spatio-temporelles sont superposées à celles obtenues par les
simulations Newtoniennes puisque les déformations sont petites.

De plus, nous avons proposé une approche pour modéliser le comportement dŠun système de Ćexion
de tube avec les conditions aux limites correspondantes comme moyen dŠaméliorer ce processus (section
5.10). En annexe C, nous proposons la modélisation dŠun tel comportement dans lŠespace-temps. Cependant,
la résolution numérique était limitée à lŠhypothèse des petites déformations en raison de la complexité
dŠune simulation numérique pour les grandes déformations qui nŠa pas été complètement testée et validée.
Les résultats des simulations numériques Newtoniennes et spatio-temporelles sont compatibles en petites
déformations.
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Fig. 58: Evolution de la contrainte de Von Mises stress tout au mong du tube fléchi pour des modèles de comportement
hyperélastiques Newtonien et spatio-temporel en petites déformations.

7.5 Conclusions et perspectives

Le comportement thermomécanique des matériaux en grandes déformations est étudié dans cette thèse dans
le but de surmonter les difficultés rencontrées lors des développements des procédés de fabrication. Ces
développements sont principalement faits pour minimiser le prix et le temps de fabrication des procédés.
Nous proposons dans ce manuscrit une méthodologie permettant de construire des modèles thermomécanique
respectant à la fois les lois de la thermodynamique, le principe de causalité et le principe de covariance. DŠaprès
une analyse quantitative et qualitative, nous pouvons conclure que lŠapproche thermodynamique spatio-
temporel (en espace-temps) proposée permet dŠobtenir des modèles thermomécaniques spatio-temporels qui
couvrent le spectre des grandes déformations et en même temps convergent vers les modèles de comportement
classiques à la limite Newtonienne. Malgré le fait que les modèles spatio-temporels sont obtenus par une
méthode complexe, leur utilisation reste importante vu les avantages quŠils offrent dans la résolution
des problèmes envisagés en mécanique Newtonienne: lŠabsence de causalité des signaux thermiques, la
dépendance des modèles obtenus des référentiels dans lesquels ils sont conçus, la difficulté de modéliser les
comportements mécaniques à caractère dissipatif... Pour obtenir les modèles spatio-temporels, les opérateurs
et les variables utilisés dans lŠespace-temps sont introduits et discutés. Les dérivées covariantes dans ce
domaine garantissent lŠobtention de modèles thermomécaniques spatio-temporels covariants.

Dans la première partie du manuscrit, le but était dŠobtenir des modèles covariants du comportement
thermique des matériaux en conduction. La forme covariante des lois de thermodynamiques sont premièrement
formulées par relativisation des lois de thermodynamique sans prendre en compte lŠeffet du comportement
mécanique.

Les modèles spatio-temporels de conduction thermique sont ensuite recherchés. Le modèle spatio-
temporel de Fourier est obtenu par deux méthodes: la relativisation directe du modèle Newtonien de
Fourier et une approche thermodynamique relativiste. Les modèles spatio-temporels obtenus sont covariants
et compatibles avec les lois de la thermodynamique irréversible classique. Par contre, ces modèles ne
respectent pas le pricipe de causalité ce qui conduit à développer le modèle spatio-temporel de Cattaneo
dans lequel le temps de relaxation thermique est pris en compte. Ce modèle est obtenu par deux méthodes:
la relativisation directe du modèle Newtonien de Cattaneo et la complexiĄcation du modèle de Fourier.
Les modèles spatio-temporels obtenus sont covariants (en différence du modèle Newtonien de Cattaneo),
compatibles avec les lois de la thermodynamique irreversible étendue et respectent le pricipe de causalité.

Les formes variationnelles des modèles spatio-temporels de conduction thermique sont ensuite formulées
dans un référentiel inertiel propre dans le but dŠeffectuer des simulations numériques via le logiciel FEniCS
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project. Des tests de validation sont faits pour les modèles 2D+1D de Fourier et de Cattaneo respectivement.
Les réultats montrent que les modèles spatio-temporels ont un comportement cohérent vis-à-vis du raffinement
du maillage et du changement des paramètres du matériau. Le comportement des modèles spatio-temporels
est aussi comparé au comportement des modèles Newtoniens correspondants. Les résultats montrent une
compatibilité entre les deux modes de résolution. Cependant, la méthode des éléments Ąnis de lŠespace-temps
est plus coûteuse en termes de temps de calcul que celle de lŠapproche Newtonienne classique.

Nous montrons également dans cette première partie que le modèle spatio-temporel de Fourier peut être
utilisé pour prédire le phénomène de conduction thermique se produisant dans une ailette de refroidissement,
ce qui peut être utile dans le dimensionnement mécanique.

Le modèle spatio-temporel de Fourier a ensuite été utilisé pour modéliser lŠauto-échauffement survenant
lors des essais de fatigue. Une méthodologie innovante est développée: elle consiste à utiliser des données
expérimentales pour calculer le temps de relaxation dŠauto-échauffement á𝑁𝐷 et la source volumique de
chaleur 𝑓𝑟 via un modèle thermique Newtonien et de les injecter dans le modèle spatio-temporel.

Son utilisation montre que les modèles relativistes sont capables de prédire la variation de température
résultant de lŠauto-échauffement lors du test de fatigue. Différentes méthodes peuvent être utilisées pour
lŠétape dŠidentiĄcation des paramètres (á𝑁𝐷, 𝑓𝑟): la méthode 0D peut être utilisée par soit le calcul
analytique de á0𝐷 et lŠoptimisation globale de 𝑓𝑟 ( méthode A), soit avec lŠoptimisation globale simultanée
de á0𝐷 et 𝑓𝑟 (méthode B), soit avec lŠoptimisation globale de á0𝐷 et calcul local de 𝑓𝑟 (méthode C). De plus,
la méthode 1D peut être utilisée avec lŠidentiĄcation des paramètres par optimisation globale simultanée
de á0𝐷 et calcul local de 𝑓𝑟 (méthode D). Une étude quantitative entre les résultats de la simulation en
lŠespace-temps et les données expérimentales montre leur compatibilité et que lŠutilisation de la méthode
D augmente la précision sur les résultats, compte tenu de lŠimpact considérable de la diffusivité dans le
phénomène dŠauto-échauffement. Les résultats de cette partie du manuscrit montrent que la modélisation et
la résolution en lŠespace-temps garantissent la covariance des modèles thermiques qui est importante pour
le couplage avec les comportements mécaniques. Cependant, la précision sur la variation de température en
espace-temps nŠest pas améliorée dans le cas où le temps est à lŠéchelle macroscopique (⊙ 1Û𝑠).

Dans la seconde partie du manuscrit, lŠobjectif était dŠobtenir des modèles covariants du comportement
thermomécanique des matériaux. Des modèles Newtoniens des comportements élastiques, thermoélastiques,
hyperélastiques et élastoplastiques ont été revus pour les petites et grandes déformations aĄn dŠavoir des
comportements de référence à comparer avec les modèles thermomécaniques spatio-temporels proposés
ultérieurement.

LŠapproche thermodynamique prenant en compte la contribution des contraintes et les couplages
thermomécaniques est utilisée pour construire les modèles dans le domaine dŠespace-temps. Les lois
covariantes de la thermodynamique ont dŠabord été formulées. Les petites et grandes déformations obéissent
à ces lois quel que soit le référentiel. Ces lois sont ensuite utilisées pour modéliser le comportement
thermomécanique. Les modèles résultants sont covariants. LŠutilisation de dérivées covariantes et du
projecteur spatial dans la modélisation, permet dŠobtenir des termes supplémentaires par rapport aux
modèles équivalents Newtoniens. Certaines hypothèses ont été prises en compte: le couplage fort entre les
comportements thermiques et mécaniques, le comportement isotrope des matériaux et le respect des lois
dŠéquilibre thermodynamique. Le modèle thermo-hyperélastique spatio-temporel a été formulé sous ces
hypothèses. La forme variationnelle correspondante a été formulée et mise en œuvre pour la simulation
numérique dans le projet FEniCS.

Des tests de validation ont été menés. Les résultats montrent quŠà la limite non relativiste les modèles
spatio-temporels et Newtoniens ont le même comportement pour les petites déformations. Cela signiĄe
que les résultats de lŠutilisation de modèles dŠespace-temps convergent vers les résultats de lŠutilisation de
modèles de comportement classiques. Le modèle thermo-hyperélastique spatio-temporel a ensuite été utilisé
pour simuler le comportement dŠun élément bimétallique.

En résumé, la méthodologie décrite dans ce manuscrit permet dŠécrire des modèles thermomé-
caniques covariants respectant le principe de causalité et les lois de la thermodynamique. Nous pro-
posons, via cette approche, la possibilité de résoudre les problèmes rencontrés lors de la modélisation
des problèmes thermiques [Straugham,2011, Auriault,2017, Cattaneo,1958, Christov,2009, Osborne,1950,
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Vernotte,1961, Tavernier,1962, Chapman and Cowling,1970] et mécaniques [Valanis,1970, Lubliner,1984,
Prasolov,1997, Wiechert,1893, Zener,1948, Oldroyd,1950, Wineman,2009, Mooney,1940, Rivlin,1948,
Rivlin and Saunders,1951, Ogden,1984, Boyce and Arruda,2000, Steinmann et al.,2012].

Cela fait de la modélisation spatio-temporelle un sujet important à explorer et à développer. Par ailleurs,
cette étude illustre bien la modélisation du comportement thermomécanique des matériaux pour de grandes
déformations dans un domaine spatio-temporel, mais elle pose également la question de lŠexhaustivité
des hypothèses prises en compte et de leur mise en œuvre pour les simulations spatio-temporelles. CŠest
pourquoi les cas simulés dans cette étude sont limités à de petites déformations dans lŠespace-temps.

Pour mieux comprendre les implications de ces résultats, de futures études pourraient aborder la
simulation spatio-temporelle des applications pour les grandes déformations et estimer la valeur ajoutée de
ce formalisme dans les cas critiques.

Nous avons également proposé dans le chapitre 5, la modélisation du processus de Ćexion des tubes qui
inclut la modélisation des grandes déformations mais aussi du comportement dissipatif et de nombreux
phénomènes critiques (ovalisation, retour élastique...). Dans ce manuscrit (Annexe C), le modèle élasto-
plastique Newtonien a été étudié pour reproduire la réalité du processus. Pour la modélisation spatio-
temporelle, sur une première estimation, uniquement le comportement hyperélastique a été pris en compte.
Les modèles hyperélastiques Newtoniens et spatio-temporels représentant ce processus ont été écrits sous
une forme variationnelle puis implémentés dans un script pour la résolution à lŠaide de FEniCS project.
Pour la simulation, ces deux modèles ont été comparés dans une résolution ne prenant en compte que les
petites déformations. La simulation numérique prenant en compte les grandes déformations reste à étudier
dans les prochaines recherches, ainsi que la modélisation générale et la simulation de la plasticité dans
lŠespace-temps.
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A Application of Newtonian elastic models for bending

As follows, we list the parameters and results of the numerical simulation of the Newtonian elastic behavior
using a Hooke-like model for a beam under bending load.

A.1 Description of the problem

Let us consider a beam geometry Ąxed at its left boundary and subjected to a bending load applied in the
form of imposed displacement varying with time and space at the upper boundary 𝑦 = 𝑊 (see Fig. 59).
The expression of the displacement imposed in the 𝑦-direction is:

𝑑𝑒𝑝𝑦(𝑡) =
⊗𝑇𝑀𝑥2

24𝐸𝐼𝐿
(𝑥2 ⊗ 4𝑥𝐿+ 6𝐿2)

𝑡

𝑡𝑚𝑎𝑥
(A.1)

where:
∙ 𝑇𝑀 is the equivalent linear load that has to be applied on the upper boundary of dimension 𝐿 to obtain

an equivalent displacement constraint 𝑑𝑒𝑝𝑦(𝑡), 𝑇𝑀 = 1.67 × 10⊗5 𝑘𝑁.𝑚⊗1 for this example
∙ 𝐸, 𝐼 are respectively the YoungŠs modulus and second moment of area
∙ 𝑡 is the time varying between 0 and 𝑡𝑚𝑎𝑥. 𝑡𝑚𝑎𝑥 is the time at which the maximum loading is applied.

Fig. 59: Beam subjected to bending load.

Let us consider that the beam has the behavior of a Hooke-like model. We will investigate this model in
case of elastacity (the weak integral form is given in Eq. 4.22), consequently we assume that the yield stress
of the material is not reached. We will simulate a bending problem using small strain tensor (Eq. 4.2).

The model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦) = (0, 0) represents the clamped end.

∙ ∀𝑥 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥, 𝑦 = 𝑊 ) = (0,
⊗𝑇𝑀𝑥2

24𝐸𝐼𝐿
(𝑥2 ⊗ 4𝑥𝐿+ 6𝐿2)

𝑡

𝑡𝑚𝑎𝑥
) represents the displacement

imposed on the upper boundary of the beam.

A.2 Parameters for the numerical simulation

As follows are the input parameters of the numerical simulation of the Hooke-like model subjected to
bending:
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Parameter Value

Geometry (beam) Length 𝐿 = 1 (𝑚)
Width 𝑊 = 0.01 (𝑚)

Thickness 𝐻 = 0.01 (𝑚)

Material Young’s modulus 𝐸 = 250000 (𝑀𝑃𝑎)
Poisson coefficient 𝜈 = 0. (adim)

Density ̃︀𝜌c = 7850 (𝑘𝑔/𝑚3)
Thermal expansion 𝛼 = 0 (𝐾−1)

Thermal conductivity 𝜆 = 500000 (𝑤.𝑚−1.𝐾−1)
Specific heat capacity at 3D volume 𝒞mω = 520 (𝐽.𝑘𝑔−1.𝐾−1)

Mesh and time stepping Number of nodes through the 𝑥-direction of space 𝑁x = 210 (adim)
Number of nodes through the 𝑦-direction of space 𝑁y = 10 (adim)

Number of loading steps 𝑁step = 6 (adim)

Loading Time at which the maximum loading is applied 𝑡max = 1 (𝑠)
Volume force vector 𝑓M = (0, 0) (𝑁)
Surface force vector 𝑇M = (0, 0) (𝑁)

Tab. 21: Parameters of the numerical simulation for the beam subjected to bending

A.3 Results of the simulation

The evolution of à11
𝑐 along the 𝑥-direction at 𝑦 = 𝑊 and 𝑡 = 𝑡𝑚𝑎𝑥 is illustrated in Fig. 60. For veriĄcation,

results are compared to the analytical solution deriving from the classical beam theory [Timoshenko,1953]:

à11
𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙) =

⧹︃⧹︃⧹︃⧹︃
𝑊

2𝐼
(⊗𝑇𝑀𝐿𝑥+ 0.5𝑇𝑀𝐿𝑥2 + 0.5𝑇𝑀𝐿2)

𝑡

𝑡𝑚𝑎𝑥

⧹︃⧹︃⧹︃⧹︃
𝑦=𝑊, 𝑡=𝑡max

. (A.2)

Fig. 60: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution (𝜎11

c = 𝐸𝜒(𝑡max) and Newtonian simulation as function
of the space in the 𝑥-direction at 𝑦 = 𝑊 and 𝑡 = 𝑡max.

The evolution of à11
𝑐 along the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡𝑚𝑎𝑥 is illustrated in Fig. 61. Results

are compared to the analytical solution deriving from the classical beam theory [Timoshenko,1953]:

à11
𝑐 (𝑥, 𝑦, 𝑡)(𝑠𝑜𝑙) =

⧹︃⧹︃⧹︃⧹︃
𝑊

2𝐼
(⊗𝑇𝑀𝐿𝑥+ 0.5𝑇𝑀𝐿𝑥2 + 0.5𝑇𝑀𝐿2) (𝑦 ⊗𝑊/2)

𝑡

𝑡𝑚𝑎𝑥

⧹︃⧹︃⧹︃⧹︃
𝑥=𝐿/2, 𝑡=𝑡max

(A.3)
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where 0 ⊘ 𝑦 ⊘ 𝑊 .

Fig. 61: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution (𝜎11

c = 𝐸𝜒(𝑡max) and Newtonian simulation as function
of the space in the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.

The linear character of variation of à11
𝑐 along the 𝑦-direction is guaranteed in the numerical simulation.

Graphs obtained from analytical solutions and Newtonian simulations superimpose.
The evolution of à11

𝑐 in function of the loading time at 𝑥 = 𝐿/2 and 𝑦 = 𝑊 is illustrated in Fig. 62.
à11
𝑐 vary linearly with time at this space position. This corresponds to the linear variation of the applied

displacement in time through the stretch that varies linearly with time.

Fig. 62: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from Newtonian simulation as function of the time at 𝑥 = 𝐿/2 and 𝑦 = 𝑊 .

The error and percentage of error on à11
𝑐 obtained of the numerical solution compared to the analytical

solution are respectively around 0.0014𝑀𝑃𝑎 and 0.001 %.
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B Applications of spacetime thermo-hyperelastic models

B.1 Numerical simulation of the spacetime thermo-hyperelastic behavior using
a Hooke-like model: beam under bending load

The problem is the same as the one described in section A.1 except that here the numerical resolution is in
the spacetime domain. The thermal expansion is also considered to be null in order to test the decoupled
mechanical problem.

Let us consider that the beam has the behavior of a Hooke-like model. We will investigate this model
in case of hyperelasticity (the weak integral form is given in Eq. 5.86), consequently we assume that the
yield stress of the material is not reached (besides the deformations are considered small). We will simulate
a bending problem using small strain (Eq. 4.2).

The model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦, 𝑡) = (0, 0) represents the clamped end.

∙ ∀𝑥 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥, 𝑦 = 𝑊, 𝑡) = (0,
⊗𝑇𝑀𝑥2

24𝐸𝐼𝐿
(𝑥2 ⊗ 4𝑥𝐿+ 6𝐿2)

𝑡

𝑡𝑚𝑎𝑥
) represents the displace-

ment imposed on the upper boundary of the beam.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition on the displacement.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶2 = 𝜃(𝑥, 𝑦, 𝑡 = 0) = 𝜃0 = 0 °𝐶 represents the initial condition on the temperature (𝜃0 is the

initial temperature considered as reference temperature).

The parameters for the numerical simulation are the same as in section A.2.

B.2 Results of the simulation

The evolution of à11
𝑐 along the 𝑥-direction at 𝑦 = 𝑊 and 𝑡 = 𝑡𝑚𝑎𝑥 is illustrated in Fig. 63. For veriĄca-

tion, results are compared to the analytical solution (Eq. A.2) deriving from the classical beam theory
[Timoshenko,1953].

Fig. 63: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution and spacetime simulation as function of the space in the

𝑥-direction at 𝑦 = 𝑊 and 𝑡 = 𝑡max.

The error and percentage of error on à11
𝑐 obtained of the numerical solution compared to the analytical

solution are respectively around 0.309𝑀𝑃𝑎 and 0.416 %, which are acceptable differences mainly deriving
form border effects. This can be observed by comparing the evolution of à11

𝑐 along the 𝑥-direction at 𝑦 = 𝑊
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for different time values 𝑡 = 𝑡𝑚𝑎𝑥/6, 𝑡𝑚𝑎𝑥/2, 5 * 𝑡𝑚𝑎𝑥/6, 𝑡𝑚𝑎𝑥 (Fig. 64). Borders effects are limited at small
positions 𝑥 for small times 𝑡.

Fig. 64: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution and spacetime simulation as function of the space in the
𝑥-direction at 𝑦 = 𝑊 and respectively 𝑡 = 𝑡max/6, 𝑡max/2, 5 * 𝑡max/6, 𝑡max.

The evolution of à11
𝑐 along the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡𝑚𝑎𝑥 is illustrated in Fig. 65. Results are

compared to the analytical solution (Eq. A.3) deriving from the classical beam theory [Timoshenko,1953].

Fig. 65: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from analytical solution and spacetime simulation as function of the space in the

𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.Note that the origin in the 𝑦-direction is the lower boundary of the beam.

The linear character of variation of à11
𝑐 along the 𝑦-direction is guaranteed in the numerical simulation.

However, a slight difference between results is observed: this can be related to the choice of meshing along
this direction and the border effects earlier discussed (Fig. 64).

The evolution of à11
𝑐 and Δ𝜃 along the 𝑡-direction at 𝑥 = 𝐿/2 and 𝑦 = 𝑊 are illustrated in Figs. 66 a)

and b). à11
𝑐 vary linearly with time at this space position except at the upper boundary (loss of linearity on

the boundary). This corresponds to the linear variation of the applied displacement in time. Δ𝜃 is constant
and null since the load applied to the beam is purely mechanical (Ð = 0) and the deformations are small.
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Fig. 66: On the left: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and

𝑦 = 𝑊 . On the right: Evolution of ∆𝜃(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊 .

B.3 Testing of the spacetime thermo-hyperelastic model under pure thermal
constraints

B.3.1 Case when thermal expansion is null

The parameters of the numerical simulation are the same as in table 21. No mechanical displacement is
applied to the beam but a thermal variation is applied to the right boundary.

Then the model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦, 𝑡) = (0, 0) represents the clamped end.
∙ ∀𝑥 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝜃(𝑥, 𝑦 = 𝑊, 𝑡) = 100 𝑡 + 𝜃0, where 𝜃0 is the initial temperature (considered as

reference temperature). 𝑓𝑆𝐶2 represents the applied temperature on the upper boundary of the beam.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition on the displacement.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶2 = 𝜃(𝑥, 𝑦, 𝑡 = 0) = 𝜃0 = 0 °𝐶 represents the initial condition on the temperature.

Fig. 67: On the left: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the space in the 𝑥-direction

at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. On the right: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the

space in the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.
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Fig. 68: On the left: Evolution of 𝜎11
c (𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and

𝑦 = 𝑊/2. On the right: Evolution of ∆𝜃(𝑥, 𝑦, 𝑡) obtained from spacetime simulation of the purely thermal model (Eq. 2.52)
and spacetime simulation as function of the time at 𝑥 = 𝐿/2 and 𝑦 = 𝑊/2.

Fig. 69: On the left: Evolution of 𝑑𝑒𝑝x(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2. On the right: Evolution of 𝑑𝑒𝑝y(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2

and 𝑦 = 𝑊/2.

As expected, the components of stress and displacement are null since the thermal expansion is null. The
problem is purely thermal.

B.3.2 Case when thermal expansion is not null

The parameters of the numerical simulation are the same as in table 21 except that the thermal expansion is
not null (Ð = 13 × 10⊗6 𝐾⊗1) . No mechanical displacement is applied to the beam but a thermal variation
is applied to the right boundary. Then the model is constrained by the same boundary conditions mentioned
in section B.3.1.
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Fig. 70: Evolution of the thermal strain 𝜖xx obtained from analytical solution (𝜖xx = 𝛼∆𝜃), Newtonian simulation (using Eq.
4.28)and spacetime simulation (using Eq. 5.86) as function of the space in the 𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. bote
that the exponential variation of thermal strain is a result of the exponential variation of temperature as function of the time.

The Ąrst component of stress due to thermal expansion is investigated:

à11
𝑇𝐻(𝑥, 𝑦, 𝑡) = ⊗ÙΔ𝜃𝑔11 (B.1)

Fig. 71: On the left: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as function of the space

in the 𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. On the right: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from Newtonian and

spacetime simulations as function of the space in the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.
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Fig. 72: On the left: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as function of the time at

𝑥 = 𝐿/2 and 𝑦 = 𝑊/2. On the right: Evolution of ∆𝜃(𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as
function of the time at 𝑥 = 𝐿/2 and 𝑦 = 𝑊/2. Note that the analytical result is closer to the spacetime solution

(𝜎11
TH(𝑥 = 0.5, 𝑦, 𝑡 = 𝑡max) = −𝜅∆𝜃𝑔11 = −3.25 * 14.95 = −48.58𝑀𝑃𝑎)). The error on 𝜎11

TH(𝑥, 𝑦, 𝑡) between the
Newtonian and spacetime approaches is 7.22%

Fig. 73: On the left: Evolution of 𝑑𝑒𝑝x(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2. On the right: Evolution of 𝑑𝑒𝑝y(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2

and 𝑦 = 𝑊/2.

B.4 Testing of the spacetime thermo-hyperelastic model under pure mechanical
constraints (sinusoidal load)

The parameters of the numerical simulation are the same as in table 21 except that the thermal expansion
is not null (Ð = 13 × 10⊗6 𝐾⊗1) . No thermal load is applied to the beam but a displacement (sinusoidal in
time) is applied to the right boundary.

Then the model is constrained by:
∙ ∀𝑦 ∈ 𝜕æ1,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑥 = 0, 𝑦, 𝑡) = (0, 0) represents the clamped end.
∙ ∀𝑦 ∈ 𝜕æ2,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑥 = 𝐿, 𝑦, 𝑡) = (𝑠𝑖𝑛(Þ4 𝑡), 0).
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑥, 𝑦, 𝑡 = 0) = (0, 0) represents the initial condition on the displacement.
∙ ∀𝑥,∀𝑦, 𝑓𝑇𝐶2 = 𝜃(𝑥, 𝑦, 𝑡 = 0) = 𝜃0 = 293 °𝐶 represents the initial condition on the temperature (𝜃0 is

the initial temperature considered as reference temperature).
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Fig. 74: Evolution of the total strain 𝜖xx obtained Newtonian simulation and spacetime simulation as function of the space in
the 𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. We note the presence of oscillations of the value of deformation near the borders

which can be related to border effects.

The Ąrst component of stress due to thermal expansion à11
𝑇𝐻(𝑥, 𝑦, 𝑡) is investigated.

Fig. 75: On the left: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulations as function of the space

in the 𝑥-direction at 𝑦 = 𝑊/2 and 𝑡 = 𝑡max. On the right: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as

function of the space in the 𝑦-direction at 𝑥 = 𝐿/2 and 𝑡 = 𝑡max.
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Fig. 76: On the left: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained from Newtonian and spacetime simulation as function of the time at

𝑥 = 𝐿/2 and 𝑦 = 𝑊/2. On the right: Evolution of ∆𝜃(𝑥, 𝑦, 𝑡) obtained from the analytical solution, Newtonian and
spacetime simulation as function of the time at 𝑥 = 𝐿/2 and 𝑦 = 𝑊/2. This result is compatible with the analytical solution:

𝑙𝑛(𝜃) = 𝑙𝑛(𝜃0)−
3α

̃︁ρccm,ω
𝑡𝑟(𝜖). At 𝑡max, the analytical solution gives: ∆𝜃 = 293− 292.999835 = −1.64× 10−4𝐾.

Fig. 77: On the left: Evolution of 𝑑𝑒𝑝x(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2. On the right: Evolution of 𝑑𝑒𝑝y(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2

and 𝑦 = 𝑊/2.

We further observed this modelŠs behavior for a time period 𝑡𝑚𝑎𝑥 = 8𝑠 corresponding to one period of
the sine. We increase the number of loading steps for this purpose to 𝑁𝑠𝑡𝑒𝑝 = 18 in order to have a better
precision on time. The sinusoidal character of the displacement imposed leads to a sinusoidal variation of
à11
𝑇𝐻(𝑥, 𝑦, 𝑡), Δ𝜃(𝑥, 𝑦, 𝑡) and 𝑑𝑒𝑝𝑥(𝑥, 𝑦, 𝑡). We note that the variation of 𝑑𝑒𝑝𝑥(𝑥, 𝑦, 𝑡) and à11

𝑇𝐻(𝑥, 𝑦, 𝑡) are in
phase in time, while Δ𝜃(𝑥, 𝑦, 𝑡) is phase shifted of Þ because of the negative sign of Eq. B.1.
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Fig. 78: On the left: Evolution of 𝜎11
TH(𝑥, 𝑦, 𝑡) obtained spacetime simulation as function of the time at 𝑥 = 𝐿/2 and

𝑦 = 𝑊/2. On the right: Evolution of ∆𝜃(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2.

Fig. 79: On the left: Evolution of 𝑑𝑒𝑝x(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2 and
𝑦 = 𝑊/2. On the right: Evolution of 𝑑𝑒𝑝y(𝑥, 𝑦, 𝑡) obtained from spacetime simulation as function of the time at 𝑥 = 𝐿/2

and 𝑦 = 𝑊/2.
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C On the modeling of the tube bending process

C.1 Components of the bending system

As discussed in section 5.10, the components of the bending system determine the boundary conditions of
the model. This is why in this section the role of the components is described. Among the bending methods,
we choose to describe the rotary draw bending [Tingley,2001]. Five main parts can be differentiated in this
type of machinery. The Ąrst three components are necessary to make the bend: the bend die, the clamp die
and the pressure die (Fig. 80). The bend die is the tool to make a speciĄc radius of bend. The clamp dieŠs
function is to ensure that the tube is clamped on the bend die. It is consequently a helping component to
the bend die. It moves in and out to allow the feeding of the tube. The pressure die also called the support
presses the tube against the bend die through the process of bending. Hence, it moves with the tube as it is
formed.

The other two are used in some cases where there is a probability of wrinkling or section collapse
[Johansson,2011]. These are the mandrel and the wiper (Fig. 80).

When the radius of the bend is relatively small and/or the wall of the tube is relatively thin, the wiper
die is used to prevent wrinkles and a ball mandrel supports the inner radius of bend thus preventing the
Ćattening and the wrinkling of the tube. The mandrel is a Ąxed component. The balls are used to prevent
the collapse of the tube after leaving the mandrel. We note that booster can be also placed: its function is
to apply an assist-pressure to both sides of the tube which helps pushing the tubing material through the
point of bend. Consequently, it helps the bending process. Figure 80 illustrates the different parts of the
rotary bending machine.

Fig. 80: Components of a tube draw bender [Johansson,2011]

C.2 Description of the problem for Newtonian elastic and hyperelastic models

We Ąrst look to model the elastic and hyperelastic behaviors of a beam subjected to rotary bending
consequently we assume that the yield stress of the material is not reached. For this purpose, let us consider
a beam geometry clamped at its left boundary and subjected to bending loads applied to its upper, lower
and right boundaries in the form of imposed displacement.

The imposed displacement is chosen such that the Ąnal geometry of the beam is semi-circular and
clamped to the bend die.

Let us consider that the beam has the behavior of a Hooke-like model. We will investigate this model in
case of elasticity (Eq. 4.21) and hyperelasticity (Eq. 4.34). We assume that in these simulations the material
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yield strength is not reached. Then for each case, we will simulate bending using small strain (Eq. 4.2),
Green-Lagrange strain (Eq. 4.5) and Euler-Almansi strain (4.8).

These models will be compared to spacetime thermo-hyperelastic models.

C.3 Boundary conditions corresponding to the tube bending system

The model corresponds to a 2D beam subjected to four Dirichlet boundary conditions (Figure 81):
∙ The left boundary Γ1 is clamped
∙ The lower boundary Γ2 is subjected to a displacement corresponding to the bent proĄle of the beam Γ′

2.
It represents the contact between the bend die and the lower boundary and it speciĄes the bend radius.

∙ The upper boundary Γ3 is subjected to a displacement corresponding to the bent proĄle of the beam
Γ′

3. It represents the pressure that the pressure die applies on the upper boundary.
∙ The right boundary Γ4 is subjected to a displacement corresponding to the bent proĄle of the beam Γ′

4.
It represents the effect of the clamped die which keeps the beam against the bend die.

∙ At the initial time, the displacement is null for every point of the beam

Fig. 81: Initial and final configurations of the bent beam

In order to Ąnd the values of the increment of displacement Δ𝑑𝑒𝑝(𝑧1, 𝑧2, 𝑡) applied at each boundary, the
following methodology, illustrated in the case of the lower boundary, is used:
1. Let 𝑅 be the frame corresponding to the initial conĄguration and 𝑅′ the frame corresponding to the

Ąnal conĄguration (bent beam). Let [𝑧1, 𝑧2] be the spatial components in (𝑅) at a time 𝑡. And let
[𝑧′1, 𝑧′2] be the spatial components in (𝑅′) at a time 𝑡.

2. In the Ąnal conĄguration, the lower boundary Γ2 describes a semicircle of equation:
(︀
𝑧′1
)︀2

+
(︀
𝑧′2 ⊗ 𝑟

)︀2
=

𝑟2, where 𝑟 is the bend radius equal to
𝐿

Þ
so that the perimeter of the semicircle is equal to the length

of the beam.
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3. Then 𝑧′1, 𝑧′2 are expressed in function of 𝑧1, 𝑧2 respectively. For the lower boundary, 𝑧′1 and 𝑧1 are related

by the equation of an ellipse centered at (𝐿/2, 0) with width 𝐿/2 and height 𝑟:
(𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
+

(︀
𝑧′1
)︀2

𝑟2
= 1.

This leads to: 𝑧′1 = 𝑟

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
. Moreover, for the lower boundary, 𝑧′2 and 𝑧2 are related by a

linear relationship: 𝑧′2 =
⊗2 𝑟
𝐿

𝑧2.

4. Then the imposed displacement can be calculated for each boundary using: ∀𝑡, 𝑑𝑒𝑝(𝑧1, 𝑧2) =(︀
(𝑧′1 ⊗ 𝑧1)𝑡, (𝑧′2 ⊗ 𝑧2)𝑡

)︀
.

For the lower boundary, ∀𝑡, 𝑑𝑒𝑝(𝑧1, 𝑧2 = 0) =

(︃
(𝑟

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1)𝑡, (

⊗2 𝑟
𝐿

𝑧2)𝑡

)︃

The same methodology is applied to determine the imposed increment of displacement on the upper
boundary Γ3: The equations obtained for the lower boundary remain valid, however in this case 𝑟 is
replaced by (𝑟 +𝑊 ) where 𝑊 is the width of the beam. Concerning the right boundary Γ4: 𝑧′1 = 0 and
𝑧′2 = ⊗2 𝑟 ⊗ 𝑧2. This leads to 𝑑𝑒𝑝(𝑧1 = 𝐿, 𝑧2) = (⊗𝐿,⊗2𝑟 ⊗ 2𝑧2).

The boundary conditions for this problem can be written: 𝑓𝑆𝐶(𝑧𝑖 ∈ 𝜕Ω) = 𝑑𝑒𝑝(𝑧𝑖 ∈ 𝜕Ω, 𝑡), where 𝑓𝑆𝐶
is the function representing the space boundary conditions.

Consequently, all the models are constrained by:
∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑧1 = 0, 𝑧2) = (0, 0) on Γ1.

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑧1, 𝑧2 = 0) =

(︃
(𝑟

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1)𝑡, (

⊗2 𝑟
𝐿

𝑧2)𝑡

)︃
on Γ2.

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶3 = 𝑑𝑒𝑝(𝑧1, 𝑧2 = 𝑊 ) =

(︃
((𝑟 +𝑊 )

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1)𝑡, (

⊗2 (𝑟 +𝑊 )
𝐿

𝑧2)𝑡

)︃
on Γ3.

∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶4 = 𝑑𝑒𝑝(𝑧1 = 𝐿, 𝑧2) =
(︀
⊗𝐿𝑡, (⊗2𝑟 ⊗ 2𝑧2)𝑡

)︀
on Γ4.

C.4 Weak integral form of the problem for Newtonian elastic and hyperelastic
models and parameters of the numerical simulation of the bending behavior

In order to implement this example for simulation using FEniCS project, we need to determine the weak
integral forms related to the behaviors simulated and the corresponding boundary conditions. Eqs. 4.22, 4.23
and 4.24 represent the weak integrals forms of elastic models using respectively small strain, Green-Lagrange
strain and Euler-Almansi strain.

Eq. 4.34 represents the weak integral form together with Eq. 4.35, where the 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor is respectively
replaced with the corresponding type of strain (Eqs. 4.2,4.5 and 4.8) to obtain hyperelastic models using
respectively small strain, Green-Lagrange strain and Euler-Almansi strain.

In this manuscript, we will consider the case of a mild steel beam subjected to bending for numerical
simulations. As follows are the input parameters of the numerical simulation of the Hooke-like model
subjected to bending:
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Parameter Value

Geometry (beam) Length 𝐿 = 188 (𝑚𝑚)
Width 𝑊 = 3 (𝑚𝑚)

Thickness 𝐻 = 3 (𝑚𝑚)

Material (Mild steel) Young’s modulus 𝐸 = 200000 (𝑀𝑃𝑎)
Poisson coefficient 𝜈 = 0.303 (adim)

Density ̃︀𝜌c = 7850𝐸−9 (𝑘𝑔/𝑚𝑚3)

Mesh and time stepping Number of nodes through the 𝑧1-direction of space 𝑁1 = 100 (adim)
Number of nodes through the 𝑧2-direction of space 𝑁2 = 10 (adim)

Number of loading steps 𝑁step = 1 (adim)

Loading Time at which the maximum loading is applied 𝑡max = 1 (𝑠)
Volume force vector 𝑓 = (0, 0) (𝑁)
Surface force vector 𝑇 = (0, 0) (𝑁)

Tab. 22: Parameters of the numerical simulation for the beam subjected to bending

C.5 Numerical simulation of the bending behavior using Newtonian elastic and
hyperelastic models using FEniCS project

Fig. 82 shows the result of evolution of à𝑉𝑀 at the upper boundary of the beam, as a function of space for
Newtonian elastic models (function of small deformation, Green-Lagrange large deformation and Euler-
Almansi large deformation) and the hyperelastic model space for Newtonian elastic models (function of
small deformation and Green-Lagrange large deformation).

Fig. 82: The variation of 𝜎V M as a function of space for a bended beam for different Newtonian elastic and hyperelastic
models examined.

We notice that à𝑉𝑀 is nearly constant along the upper boundary of the beam. This a satisfying result
since the bending moment along the beam is expected to be constant, hence a constant stress is expected
along the beam. We also notice the existence of a border effect near the left and right boundary. This may
be improved by a mesh reĄnement near the borders (see section C.6).
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For Newtonian elastic and hyperelastic models using small deformation à𝑉𝑀 is around 53814𝑀𝑃𝑎. For
Newtonian elastic and hyperelastic models using Euler-Almansi large deformation it is around 78131𝑀𝑃𝑎.
For the Newtonian elastic model using Green-Lagrange large deformation, it is around 12539𝑀𝑃𝑎. For the
Newtonian hyperelastic model using Green-Lagrange large deformation, it is around 12539, 3𝑀𝑃𝑎.

We remind that at this stage, the yield stress is not taken into consideration which explains the large
values of stress obtained. These results will serve to value the use of a spacetime approach comparing to the
use of Newtonian approach.

C.6 Numerical simulation of the bending behavior using the Newtonian
elasto-plastic model: description of the problem, weak integral form and
boundary conditions

Even though the spacetime modeling will be limited to the study of the elastic behavior in small deformations,
we will study the Newtonian elasto-plastic model of the tube bending process to illustrate the reality of
process.

In order to implement this example for simulation using FEniCS project, we need to determine the
weak integral forms related to the behaviors simulated and the corresponding boundary conditions.

Eq. 4.40 represents the weak integral form, where the 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗 tensor is replaced respectively with the
small strain and Euler-Almansi strain (Eqs. 4.2 and 4.8).

The boundary conditions for this problem can be written: 𝑓𝑆𝐶(𝑧𝑖 ∈ 𝜕Ω) = Δ𝑑𝑒𝑝(𝑧𝑖 ∈ 𝜕Ω, 𝑡), where
𝑓𝑆𝐶 is the function representing the space boundary conditions.

Consequently, all the models are constrained by:
∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶1 = Δ𝑑𝑒𝑝(𝑧1 = 0, 𝑧2) = (0, 0) on Γ1.

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶2 = Δ𝑑𝑒𝑝(𝑧1, 𝑧2 = 0) = (𝑟

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1,

⊗2 𝑟
𝐿

𝑧2) on Γ2.

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶3 = Δ𝑑𝑒𝑝(𝑧1, 𝑧2 = 𝑊 ) =

(︃
(𝑟 +𝑊 )

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1,

⊗2 (𝑟 +𝑊 )
𝐿

𝑧2

)︃
on Γ3.

∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶4 = Δ𝑑𝑒𝑝(𝑧1 = 𝐿, 𝑧2) = (⊗𝐿,⊗2𝑟 ⊗ 2𝑧2) on Γ4.

The same parameters of geometry, mesh, time stepping, volume and surface force vectors mentioned in
section C.4 are used for the numerical simulation of the model. However, the material has an elasto-plastic
behavior with linear isotropic hardening characterized by: a yield stress à0 = 370𝑀𝑃𝑎 and a hardening
modulus 𝐻 = 200𝑀𝑃𝑎.

Fig. 83 shows the evolution of the von Mises stress à𝑉𝑀 at the upper boundary of the beam, as a
function of space for Newtonian plastic models (function of small deformation and Euler-Almansi large
deformation) at 𝑡𝑚𝑎𝑥.
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Fig. 83: The variation of 𝜎V M at 𝑡max as a function of space at the upper boundary of a beam subjected to bending for
different Newtonian plastic models examined.

Fig. 84 shows the evolution of equivalent plastic strain 𝑃𝐸𝐸𝑄 =

√︂
4
3
𝑒𝑖𝑗𝑒𝑖𝑗 [Chen and Han,1988], where

𝑒𝑖𝑗 is the deviatoric part of 𝑠𝑡𝑟𝑎𝑖𝑛𝑖𝑗𝑃 at the upper boundary of the beam, as a function of space for Newtonian
plastic models (function of small deformation and Euler-Almansi large deformation) at 𝑡𝑚𝑎𝑥.

Fig. 84: The variation of 𝑃𝐸𝐸𝑄 at 𝑡max as a function of space at the upper boundary of a beam subjected to bending for
different Newtonian plastic models examined.

As deduced in section C.5, à𝑉𝑀 and 𝑃𝐸𝐸𝑄 are nearly constant along the upper boundary of the beam.
They are respectively around 416𝑀𝑃𝑎 and 0.33 for the model using small strain.

The resulting Von Mises stress is inferior to the tensile strength (450𝑀𝑃𝑎) of the considered material.
As mentionned before, constant à𝑉𝑀 and 𝑃𝐸𝐸𝑄 are satisfying results since the bending moment along the
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beam is expected to be constant, hence a constant stress is expected along the beam. We also notice the
existence of a border effect near the left and right boundary. This may be improved by a mesh reĄnement
near the borders. In the following, a mesh reĄnement is applied 5 times on a distance 𝐿/20 near the borders.
Results are as follows.

Fig. 85 shows the evolution of the von Mises stress à𝑉𝑀 after mesh reĄnement at the upper boundary
of the beam, as a function of space for Newtonian plastic models (function of small deformation and
Euler-Almansi large deformation) at 𝑡𝑚𝑎𝑥.

Fig. 85: On the left: The variation of 𝜎V M at 𝑡max as a function of space after mesh refinement at the upper boundary of a
beam subjected to bending for different Newtonian plastic models examined. On the right: The variation of 𝜎V M at 𝑡max as
a function of space after mesh refinement at the upper boundary for 15𝑚𝑚 ≤ 𝑥 ≤ 175𝑚𝑚 of a beam subjected to bending

for different Newtonian plastic models examined.

Fig. 86 shows the evolution of equivalent plastic strain 𝑃𝐸𝐸𝑄 after mesh reĄnement, at the upper
boundary of the beam, as a function of space for Newtonian plastic models (function of small deformation
and Euler-Almansi large deformation) at 𝑡𝑚𝑎𝑥.

Fig. 86: On the left: The variation of 𝑃𝐸𝐸𝑄 at 𝑡max as a function of space after mesh refinement at the upper boundary of
a beam subjected to bending for different Newtonian plastic models examined.. On the right: The variation of 𝑃𝐸𝐸𝑄 at

𝑡max as a function of space after mesh refinement at the upper boundary for 15𝑚𝑚 ≤ 𝑥 ≤ 175𝑚𝑚 of a beam subjected to
bending for different Newtonian plastic models examined.
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Results show that the border effect is reduced and the constant tendency of the variables is more clear
starting an offset of +𝜖 from the borders.

C.7 Numerical simulation of the bending behavior using spacetime
thermo-hyperelastic model using FEniCS project

For the thermo-hyperelastic model, Eq. 5.90 represents the weak integral form using small strain tensor.
The spacetime elastic model is constrained by:

∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶1 = 𝑑𝑒𝑝(𝑧1 = 0, 𝑧2, 𝑡) = (0, 0) which represents the constraint on the space boundary Γ1 of
the beam (Fig. 81).

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶2 = 𝑑𝑒𝑝(𝑧1, 𝑧2 = 0, 𝑡) =

(︃
(𝑟

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1)𝑡, (

⊗2 𝑟
𝐿

𝑧2)𝑡

)︃
which represents the

constraint on the space boundary Γ2 of the beam (Fig. 81).

∙ ∀𝑧1,∀𝑡, 𝑓𝑆𝐶3 = 𝑑𝑒𝑝(𝑧1, 𝑧2 = 𝑊, 𝑡) =

(︃
((𝑟 +𝑊 )

√︃
1 ⊗ (𝑧1 ⊗ 𝐿/2)2

(𝐿/2)2
⊗ 𝑧1)𝑡, (

⊗2 (𝑟 +𝑊 )
𝐿

𝑧2)𝑡

)︃
which

represents the constraint on the space boundary Γ3 of the beam (Fig. 81).
∙ ∀𝑧2,∀𝑡, 𝑓𝑆𝐶4 = 𝑑𝑒𝑝(𝑧1 = 𝐿, 𝑧2, 𝑡) =

(︀
⊗𝐿𝑡, (⊗2𝑟 ⊗ 2𝑧2)𝑡

)︀
which represents the constraint on the space

boundary Γ4 of the beam (Fig. 81).
∙ ∀𝑧1,∀𝑧2, 𝑓𝑇𝐶1 = 𝑑𝑒𝑝(𝑧1, 𝑧2, 𝑡 = 0) = (0, 0) which represents the initial condition of the displacement

on the time boundary Γ𝑡=0 deĄned at 𝑡 = 0.
∙ ∀𝑧1,∀𝑧2, 𝑓𝑇𝐶2 = 𝜃(𝑧1, 𝑧2, 𝑡 = 0) = 0 °𝐶 which represents the initial condition of the temperature on

the time boundary Γ𝑡=0 deĄned at 𝑡 = 0.

Parameters for the simulations of spacetime models are the same as the parameters selected for simulations
of Newtonian models (see table 22).

Results show the compatibility of Newtonian and spacetime models for small deformations. Border
effects are also seen. Finner meshing on borders may improve the precision of the constant value of Von
mises stress investigated along the tube geometry.

Fig. 87: Evolution of the Von Mises stress along the bended beam for the Newtonian and spacetime hyperelastic model using
small deformation.
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Un formalisme espace-temps pour les 
applications thermomécaniques 
 
 
La modélisation du comportement thermomécanique 
des grandes déformations est un sujet de recherche 
de grand intérêt. L'objectivité des modèles est mise 
en question. Cette étude évalue l'approche de modé-
lisation en espace-temps comme un moyen de cons-
truire des modèles thermomécaniques respectant à 
la fois les principes de covariance et de causalité 
ainsi que les lois de la thermodynamique. Plusieurs 
modèles sont proposés dans le cadre de l'espace-
temps et ensuite comparés aux modèles existants : 
la conduction thermique et le comportement ther-
mo-hyperélastique des matériaux sont discutés. Des 
simulations numériques ont ensuite été réalisées. La 
comparaison des modèles relativistes avec les mo-
dèles Newtoniens classiques faite à la limite non 
relativiste montre la compatibilité de leurs résultats. 
Des applications dans le but de la modélisation de la 
conduction thermique dans les ailettes de refroidis-
sement, l'auto-échauffement survenant lors des 
essais de fatigue et le comportement d'un bilame 
montrent que l'utilisation de l'approche relativiste 
permet de prédire les comportements des maté-
riaux. Nous suggérons également l'utilisation de 
cette approche pour modéliser le processus de 
flexion des tubes, des résultats préliminaires sont 
donnés en annexe. Étant donné que cette approche 
s'avère avantageuse pour les applications propo-
sées, il serait intéressant que des recherches sup-
plémentaires couvrent différents comportements 
des matériaux, comme la plasticité à titre 
d'exemple. 
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On the Use of a Spacetime Formalism for 
Thermomechanical Applications 
 
 
In order to optimize the forming processes, modeling 
the thermomecanical behavior for large defor-
mations is particularly interesting. Objectivity of the 
models is questioned. This study investigates the 
spacetime approach as a mean to build thermome-
chanical models respecting the covariance and 
causality principles as well as the laws of thermo-
dynamics. Several models are proposed in the 
spacetime framework and next compared to existing 
models: heat conduction and the thermo-
hyperelastic behavior are discussed. The spacetime 
numerical resolution is also tested: the variational 
forms corresponding to thermal and thermomechan-
ical problems were developed. The study of material 
behavior is possible using these forms written in the 
proper frame. Numerical simulations implementing 
these forms in the software FEniCS project were 
then conducted in order to validate test cases of the 
spacetime models. Comparison of the spacetime 
models with the classical Newtonian models at the 
non-relativistic limit shows the compatibility of their 
results. Applications aiming to model the heat con-
duction in cooling fins, the self-heating occurring 
during fatigue tests and the behavior of a bimetallic 
element show that the use of the spacetime ap-
proach enable predicting material behaviors while 
guaranteeing objectivity of the models. We also 
suggest the use of this approach to model the tube 
bending process, preliminary results requiring more 
investigation are given in the appendix. 
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