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She was getting a little giddy with so much floating in the air,

and was rather glad

to find herself walking again in the natural way. 1

1Through the looking glass, L. Carroll.



Light-seeking navigation in zebrafish larvae: from
behavior to neural circuits

Sophia Karpenko

2020



Contents

Résumé en langue française ii
Chapitre 1 : Introduction générale . . . . . . . . . . . . . . . . . . . . . . . ii
Chapitre 2 : La larve de poisson-zèbre comme organisme modèle en neuro-

sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Chapitre 3 : Réorientation vers la lumière, en nage libre . . . . . . . . . . . iv
Chapitre 4 : Réorientation virtuelle vers la lumière . . . . . . . . . . . . . . v
Chapitre 5 : Circuits neuronaux responsables de la réorientation vers la lumière vi
Chapitre 6 : Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 2
1.1 Navigating the environment . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 A navigational toolbox . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Describing sensory-guided navigation . . . . . . . . . . . . . . . 5

1.2 From single-cell to systems neuroscience . . . . . . . . . . . . . . . . . 7
1.2.1 The Neuron Doctrine . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Emergent properties from neural networks . . . . . . . . . . . . 8
1.2.3 Tackling the complexity of an information-processing system . . 9

1.3 Virtual reality systems to understand behavior . . . . . . . . . . . . . . 10
1.3.1 Human cognitive neurosciences explored by VR . . . . . . . . . 10
1.3.2 In model animals . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The zebrafish larva: a model in systems neurosciences 16
2.1 A model animal in systems neuroscience . . . . . . . . . . . . . . . . . 16
2.2 Locomotor repertoire description . . . . . . . . . . . . . . . . . . . . . 17
2.3 Visually guided behaviors . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Visual ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Eye movements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Diversity of visually guided behaviors . . . . . . . . . . . . . . . 21

2.4 Functional anatomy of the visual system of larval zebrafish . . . . . . . 22
2.4.1 Eyes structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Downstream: ganglion cell projections . . . . . . . . . . . . . . 26

1



3 Freely swimming light-seeking reorientation 28
3.1 Light-seeking behavior in zebrafish: state of the art . . . . . . . . . . . 28

3.1.1 Light adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Tropo-phototaxis . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Temporal phototaxis or klino-phototaxis . . . . . . . . . . . . . 31

3.2 Navigation dynamics of zebrafish larva under a light gradient . . . . . . 33
3.2.1 Spontaneous navigation . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Orientational light-seeking behavior . . . . . . . . . . . . . . . . 35

3.3 Article: From behavior to circuit modeling of light-seeking navigation
in zebrafish larvae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Interlude: Head-fixed virtual orientation of zebrafish larva to a light
source 40
4.1 Spontaneous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Methods: monitoring of head-fixed dynamics . . . . . . . . . . . 40
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Virtual orientation towards light . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Gaze orientation bias . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Methods: closed-loop with feedback on tail-bouts . . . . . . . . 46
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Neural circuit underlying orientational phototaxis 52
5.1 Light-sheet imaging with visual stimulation . . . . . . . . . . . . . . . 52

5.1.1 Fluorescence Calcium imaging . . . . . . . . . . . . . . . . . . . 52
5.1.2 2P Light-sheet imaging . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 2P Light-sheet imaging in zebrafish . . . . . . . . . . . . . . . . 57

5.2 Neuronal correlates of zebrafish larva phototaxis . . . . . . . . . . . . . 59
5.2.1 The saccadic circuit . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Global responses to stereovisual contrast . . . . . . . . . . . . . 61
5.2.3 Responses of the ARTR to illumination changes . . . . . . . . . 65

5.3 Virtual phototaxis under a microscope . . . . . . . . . . . . . . . . . . 68
5.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusions and perspectives 79
6.1 Zebrafish and light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Structures implicated in zebrafish light-seeking behavior . . . . . . . . 81
6.3 Outlooks in neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

i



Résumé en langue française

Pour leur survie et leur développement, les organismes motiles (les animaux, entre
autres) échantillonnent les signaux sensoriels présents dans leur milieu pour naviguer
vers des environnements plus favorables, c’est-à-dire où ils sont susceptibles d’éviter
les prédateurs, trouver de la nourriture ou rencontrer des partenaires. Comprendre la
relation entre un comportement à l’échelle de l’organisme - en l’occurence la navigation
- et la dynamique sous-jacente des circuits de neurones à l’échelle du cerveau chez les
vertébrés est un défi central dans les neurosciences, auquel ce travail vise à contribuer.

Chapitre 1 : Introduction générale
Dans un premier chapitre introductif je développe quelques questions qui se posent
dans les neurosciences actuelles et l’approche que nous prenons, dans notre équipe,
pour y répondre.

La navigation exige, en effet, que perception sensorielle et action motrice soient co-
ordonnées au sein d’une même boucle de rétroaction, appelée boucle sensorimotrice.
Cette boucle sensorimotrice est formalisée comme étant le méchanisme de base de
la navigation, présent chez un grand nombre d’organismes (des unicellulaires aux
vertébrés), impliquant des sens comme la vision, l’audition, l’olfaction, la propriocep-
tion, etc. et générant des comportements assez divers, comme l’approche et l’évitement,
l’interaction sociale ou la reproduction.

En particulier, il peut être intéressant d’essayer de comprendre la navigation d’un
organisme par rapport à un stimulus en particulier. Les comportements de taxie et de
kinésie en sont des exemples : la taxie consiste en une orientation directe de l’organisme
vers la source du stimulus qui l’intéresse, alors que la kinésie est un mouvement biaisé
par la concentration du stimulus, mais sans que l’organisme en infère directement
l’orientation. Les deux stratégies résultent en des trajectoires biaisées vers la source
du stimulus.

La question du sujet d’étude étant posée, j’essaye ensuite de mettre en perspective la
façon dont on peut l’aborder. Une approche pertinente me semble être celle proposée
par les neurosciences des systèmes, qui envisagent le cerveau non pas comme une col-
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lection d’activités de neurones individuels, mais comme un système avec des propriétés
émergentes, c’est-à-dire, un système dans lequel “le tout est plus que la somme de ses
parties”. De ce point de vue, il est important d’essayer d’étudier le fonctionnement du
système, ici le cerveau, dans son entièreté de façon la plus naturaliste possible.

Une façon d’étudier une boucle sensorimotrice dans son ensemble, tout en étant capa-
ble de contrôler un maximum les stimuli que reçoit le sujet, est de recourir à la réalité
virtuelle. La réalité virtuelle est une technique de simulation d’un environnement in-
teractif dans lequel le sujet peut être immergé, recréant ainsi virtuellement une boucle
sensorimotrice. Cette technique a permis d’effectuer des recherches autour des ques-
tions de la représentation de l’espace, l’intégration de stimuli multiples ou la gestion
d’interactions sociales chez l’humain, et aussi chez nombre d’organismes modèles (le
rat, la souris, la drosophile, le poisson-zèbre). Un des avantages de la réalité virtuelle,
c’est la possibilité pour le sujet de rester immobile tout en ayant l’illusion de se mouvoir,
grâce à un retour visuel et/ou proprioceptif.

Chapitre 2 : La larve de poisson-zèbre comme or-
ganisme modèle en neurosciences
Dans un second chapitre introductif, je présente l’organisme modèle auquel nous nous
intéressons : la larve de poisson zèbre. Ayant une accessibilité unique pour l’imagerie
fonctionnelle à l’échelle du cerveau entier ainsi qu’une large palette de comportements
innés, c’est un organisme idéal pour étudier une boucle sensorimotrice.

Et en effet, depuis les quelques années que la larve de poisson-zèbre s’est établie comme
un organisme modèle en neurosciences, des mutants et des lignées transgéniques ont
été développés afin de rendre le poisson-zèbre encore plus transparent et d’obtenir une
expression de rapporteurs calciques dans leurs neurones. Ces rapporteurs calciques sont
des molécules qui fluorescent au contact du calcium, dont la concentration augmente
fortement lorsque les cellules sont actives, rendant ainsi possible l’observation in vivo
par imagerie optique de l’activité neuronale à l’échelle du cerveau entier, avec une
résolution au neurone unique.

La boucle sensorimotrice choisie, en l’occurence, est la navigation guidée par la lumière
- aussi appelée phototaxie. Celle-ci permet à la larve de poisson-zèbre de naviguer
vers et de rester dans les zones illuminées - là où se trouvent des algues unicellulaires
photosynthétiques dont elle se nourrit. Ce comportement est permis par le système
visuel de l’animal, développé dès 3 jours après fertilisation, notamment via les cones
sensibles à la lumière bleue.
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Chapitre 3 : Réorientation vers la lumière, en nage
libre
Le troisième chapitre de ce manuscrit est majoritairement consacré aux travaux que
nous avons publiés dans cet article.

Afin de décrire comment un stimulus extérieur (ici la lumière) peut biaiser une boucle
sensorimotrice qui a sa dynamique propre, nous nous sommes d’abord attachés à décrire
la dynamique de nage spontanée de la larve de poisson-zèbre, en l’absence d’une source
de lumière fluctuante. Puis, en considérant la lumière comme un perturbateur qui
aurait tendance à biaiser la nage dans une direction, nous voulions voir quel effet elle
aurait sur la nage spontanée.

Description de la nage spontanée. Sous des conditions d’illuminaton stable et
uniforme, la nage spontanée de la larve de poisson-zèbre est saccadée : elle effectue des
mouvements de queue discrets, à une fréquence d’une fois par seconde, qui la propulsent
soit vers l’avant, soit la font tourner (à droite ou à gauche). A chaque mouvement, elle
a donc le choix soit d’aller vers l’avant, soit de tourner, avec une probabilité de 0.5
pour chacune des options. Ce choix peut être modélisé par une chaîne de Markov à
deux états - “tourner” et “aller tout droit”. Les mouvements de réorientation successifs
ont tendance a être orientés dans la même direction : lorsque le mouvement précédent
était orienté vers la gauche, le mouvement suivant, s’il est réorientationnel, aura une
probabilité de 0.8 d’être dans le même sens. Ce deuxième choix peut donc également
être modélisé par une chaine de Markov, avec un état “gauche” et un état “droite”,
avec une probabilité de transition entre les deux états de 0.2.

Nage en présence d’un gradient lumineux. En condition de variation lumineuse,
on sait que la larve de poisson-zèbre est capable de distinguer la direction d’un gradient
lumineux en comparant l’intensité lumineuse reçue sur chacun de ses deux yeux. En
revanche, il n’était pas certain qu’elle soit capable d’intégrer les changements d’intensité
globaux au cours du temps, et ainsi inférer la direction dans laquelle se trouve la source
lumineuse sans information spatiale instantanée.

Nous voulions donc caractériser la réponse du poisson-zèbre à des changements lu-
mineux soit de contraste soit de lumière globale, avec des variations faibles et lisses
d’intensité lumineuse. Ceci a été réalisé en utilisant une expérience de réalité virtuelle
où le stimulus est uniquement fonction de l’orientation du poisson par rapport à une
source lumineuse virtuelle.

Dans des conditions où un contraste est imposé à l’animal, la probabilité de transition
entre états “gauche” et “droite” est impactée : lorsqu’un contraste est dirigé vers la
gauche (intensité gauche > intensité droite) et que le mouvement précédent était vers
la gauche, cette probabilité de transition est diminuée, au contraire si le mouvement
précédent était vers la droite, elle est réduite, favorisant légèrement le côté le plus
lumineux et permettant à l’animal de se réorienter en moyenne pour rééquilibrer le

iv



contraste sur ses deux yeux.

Dans une situation où l’information spatiale directe est absente, mais que l’intensité
lumineuse globale change au cours du temps, c’est la probabilité d’effectuer un mou-
vement de réorientation (versus un mouvement vers l’avant) qui est impactée : plus
l’animal a subi une grande décroissance lumineuse lors de son mouvement précédent,
plus le mouvement suivant aura de chances d’être un mouvement de réorientation, qui
plus est de large amplitude. Il semblerait donc que l’animal n’intègre pas les variations
lumineuses dans le temps (au-delà du battement précédent), mais que cette stratégie
lui permette tout de même de trouver les zones plus illuminées.

Les informations lumineuses spatiale et temporelle agissent donc de concert sur deux
paramètres différents régissant la nage spontanée de la larve du poisson-zèbre.

Chapitre 4 : Réorientation virtuelle vers la lumière
Dans un quartième chapitre, il s’agit de faire la transition entre la nage libre et la
possibilité d’observer les processus en jeu au niveau neuronal. Il s’agissait de voir
s’il était possible d’observer les mêmes dynamiques comportementales chez un animal
partiellement immobilisé (figé dans une goutte de gel d’agarose, avec les yeux et la
queue libérés).

Nous avons pu montrer, que malgré une grande diminution de la fréquence de bat-
tements de queue (de 1Hz on passe à 0.03Hz), une bonne partie des caractéristiques
de nage peuvent être retrouvées. En effet, la deflection de la queue étant une mesure
indirecte de la réorientation réelle qu’aurait eu le poisson en nage libre, il est possible
de recréer une trajectoire angulaire virtuelle en observant la dynamique des battements
de queue. Leur distribution apparait bimodale (ainsi que l’est la distribution des an-
gles de réorientation en nage libre), et la corrélation entre directions de mouvements de
réorientation sucessifs apparaît également, bien qu’atténuée par la plus faible fréquence
d’événements de nage.

Il nous a également été possible de laisser naviguer la larve avec une source lumineuse
virtuelle, de façon à reproduire les expériences du chapitre 3 mais chez l’animal fixe, en
rétroagissant en boucle fermée sur les mouvements de queue de l’animal pour réajuster
l’orientation de la source virtuelle par rapport à l’animal. Nous avons pu montrer que
l’animal est capable de se réorienter pour faire face à une source lumineuse virtuelle
en comparant le contraste reçu sur son oeil gauche et son oeil droit, et également
augmenter la probabilité d’effectuer un mouvement de nage de réorientation ainsi que
son amplitude, s’il a subi une décroissance lumineuse au mouvement précédent. Les
deux stratégies de recherche de zones illuminées présentées dans le chapitre précédent
sont donc reproductibles - à quelques éléments près - chez un animal maintenu par
l’abdomen.
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Chapitre 5 : Circuits neuronaux responsables de la
réorientation vers la lumière
La dernière partie du projet se concentre sur le circuit neuronal qui sous-tend le com-
portement de phototaxie.

Je me suis spécifiquement penchée sur un circuit nommé ARTR (pour Anterior
Rhombencephalic Turning Region), connu pour être impliqué dans la sélection de
l’orientation à chaque mouvement de nage. Par ailleurs, ce circuit présente des
dynamiques spontanées oscillatoires : les deux paires de noyaux symmétriques ont
une activité anti-phasique (lorsque le côté gauche est actif, le côté droit ne l’est pas
et l’animal aura tendance à faire un mouvement vers la gauche). Cette dynamique
interne peut être biaisée par une source lumineuse: un flash lumineux du côté gauche
(droit), alors que l’animal est passif, entraine une augmentation de l’activité du côté
gauche (droit, respectivement) du réseau.

J’ai utilisé la technique développée dans le chapitre précédent en combinaison avec un
microscope à feuille de lumière 2 photons, pour interroger expérimentalement l’ARTR
en laissant la possibilité à la larve de poisson-zèbre de bouger ses yeux et sa queue.
Pour maximiser la réponse et en simplifier l’interprétation, les stimuli visuels présentés
étaient simples : des grands changements de contraste dans une direction aléatoire,
délivrés au moment d’un mouvement de queue. Les deux résultats principaux observés
ont été que (i) l’activité de l’ARTR est renforcée lors d’un mouvement de queue, et de
façon asymétrique lors d’un mouvement de réorientation (le côté gauche est renforcé
lorsque le mouvement est vers la gauche), ce qui indique un mécanisme de copie effer-
ente. Et (ii) la réponse à un changement de contraste qui a lieu lorsque l’animal est
passif est absente lorsque ce changment a lieu lors d’un mouvement propre de l’animal.
Ceci semble indiquer qu’il y aurait un mécanisme de suppression ou d’inhibition des
entrées visuelles lors d’un mouvement propre. Ce mécanisme peut être expliqué par
un modèle de contrôle moteur, où la copie efferente permet de prédire les conséquences
d’un mouvement moteur volontaire, et si la prédiction correspond au retour sensoriel,
l’effet du mouvement volontaire est annulé.

Chapitre 6 : Discussion
Dans le travail présenté dans ce manuscrit, nous avons pu mettre en évidence une
boucle sensorimotrice simple : la navigation de la larve de poisson-zèbre, qui est au-
tonome en soi, mais qui peut également être biaisée par un stimulus lumineux. Nous
l’avons décrite avec un modèle simple à deux chaînes de Markov, chacune régissant
le basculement entre les états “aller vers l’avant” ou “tourner”, ainsi que “gauche” et
“droite”. Les probabilités de transition au sein des deux chaînes peuvent être modulées
par des variations temporelles ou spatiales de la lumière. Comme ce comportement
s’est avéré observable chez un animal partiellement immobilisé, nous avons pu com-
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mencer à étudier la dynamique des réseaux neuronaux sous-jacents en boucle fermée,
en observant comportement et activité neuronale en même temps. Ceci nous a permis
de mettre en lumière des méchanismes rappelant la copie efferente et la suppression
sensorielle, en accord avec les modèles de contrôle moteur.

Nous avons fait en sorte d’observer des réponses à des changements lumineux faibles, car
les changements abrupts pourraient provoquer des comportements de fuite impliquant
des réseaux neuronaux distincts qui court-circuitent le mode “exploratoire” que l’on
peut observer en nage spontanée et phototactique.

Le circuit sur lequel nous nous sommes penchés semble central dans la boucle sensori-
motrice considérée, car ayant une dynamique spontanée mais répondant également à
la lumière. Mais cette région fait évidemment partie d’un circuit plus large, avec, sans
doute, une région d’intégration multisensorielle en amont, et une région en aval qui
serait un générateur de mouvements de queue.

Je termine ce manuscrit par une ouverture sur l’évolution actuelle du domaine des
neurosciences. La métaphore actuelle utilisée pour décrire le fonctionnement d’un
cerveau est celle de l’ordinateur : la métaphore computationnelle. Mais il se pourrait
que cette métaphore ne soit pas adaptée pour en saisir la complexité : peut-être
ne résout-il pas de problèmes et n’implémente-t-il pas des fonctions, mais a une
toute autre façon de représenter son environnement, générer des prédictions et des
comportements. Toute la problématique me semble aujourd’hui être là : trouver une
métaphore et un cadre théorique adéquats pour la description de ce système, et trouver
les liens entre l’échelle macroscopique (le comportement) et l’échelle microscopique
(l’activité de neurones) du cerveau.
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Chapter 1

Introduction

“Oh my ears and whiskers, how late it’s getting!”

The White Rabbit.1

1.1 Navigating the environment
The ability to navigate their environment is one of the defining features of animals
(with few exceptions). It is through navigation that animals exploit their milieu for
foraging and explore their surroundings to find mates or a new habitat. This ability
to navigate is thus indispensable for their survival.

Navigational tasks are performed by animals in a huge variety of environments over
various spatial and temporal scales. A migrating bird, the homing honeybee, the
transporting dung beetle or the running E. coli travel distances differing by several
orders of magnitude (even relatively to their body size), for different lengths of time,
and various purposes.

How, despite the complexity of the surrounding world, animals manage to find their
way to survive and thrive is an engaging question.

1.1.1 A navigational toolbox
The process an animal implements to solve a navigational problem may be decom-
posed as follows (see figure 1.1): (1) sample available external cues using its sensors,
(2) integrate them with respect to its internal state, and (3) trigger an adequate motor
response. These steps form a sensorimotor loop - as each motor response brings about
potentially new cues and/or updates the internal state. In this conception of a sensori-
motor loop, the agent is embodied and situated within its environment, which puts two

1Alice’s Adventures in Wonderland, L. Carroll.

2



main physical constraints on the system: the non-randomness of perceived information
sequences (information self-structuring) and the continuity of the environment (tele-
portation is not possible). This idea of embodiement has recently been developed in
the field of robotics, in order to build bio-inspired adaptive and autonomous machines
(Lungarella & Sporns, 2005; Pfeifer et al., 2007).

Figure 1.1: The sensorimotor loop from Pfeifer et al. (2007)

In many cases, it is known which cues are relevant for specific tasks animals perform:
some birds sense or even see the earth’s magnetic field to migrate long distances (Heyers
et al., 2007; Mouritsen, 2018; Wiltschko & Wiltschko, 2019), honeybees use landmarks
to return home (Pahl et al., 2011), dung beetles follow the milky way at night to move
away from the dung pile (Dacke et al., 2013), E. coli climb sugar gradients to find food.
As a single cue type does not encompass the whole world, other cues may play a role
to form a complete representation of the surroundings: birds also use olfaction during
their flight, bees perform path integration from visual motion accumulation, dung
beetle also check the moonlight to orient and E. coli is repelled by alcohol. Crucial
or vital stimuli might override less important ones, some might act in synergy, others
cancel themselves out.

Given the variety of environments as well as the diversity of sensory cues used for
navigation, it seems a priori unlikely that animals rely on a unique, universal behavioral
strategy for these navigation tasks. Nevertheless, as noted by Wiener et al. (2010), in
their synthesis on animal navigation,

Some fundamental processes may have been conserved by evolution, and
others may have evolved convergently in different taxa […]. Evidence […]
suggests that the more complex and recent processes are, in many (if not
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all) cases, synthesized from the older and simpler processes.

Wiener et al. (2010)

In that scope, studying “simple” forms of navigation might be key to gain insight
into fundamental processes, not only to understand the mechanism itself - how it is
implemented and hardwired in a given organism - but also to include it within a more
general comparative or even evolutionary approach.

Apart from cue-combination, another layer of complexity may be added to the cognitive
system itself. This has been formalized by the “Navigation toolbox” from Wiener et al.
(2010): behavioural complexity grows with he ability of a cognitive system to represent
maps (figure 1.2).

Figure 1.2: The navigation toolbox from Wiener et al. (2010)

With the hope of breaking down the process to its essential elements, in this work,
the spotlight will be drawn on Level 1 the sensorimotor toolbox, presented as the most
basic level of navigation. Despite its simplicity the sensorimotor loop supports a wide
range of behaviours “such as approach and avoidance(…), mating, predator avoidance,
tool use, or social interaction” (Wiener et al., 2010). Particularly of interest for the
following work are taxes and kineses, which are innate locomotor responses to a given
stimulus (phototaxis for light, chemotaxis for an odour…) resulting in approach or
avoidance responses.
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Chemotaxis has been extensively studied, especially in bacteria (Adler & Tso, 1974;
Berg & Brown, 1972; Celani & Vergassola, 2010; Macnab & Koshland, 1972; Mello &
Tu, 2007; Yuan et al., 2010), more recently in multicellulars like C. elegans or drosophila
larva, but is also displayed by amoeba or single cells of multicellular organisms. An even
broader variety of organisms display phototaxis: archaebacteria, uni- and pluri-cellular
algae, amoebozoa, animals like platynereis, drosophila larva or zebrafish larva. In fact,
this behaviour seems to have such an evolutionary advantage, that phototaxis alone has
evolved independently 8 times in eukaryotes (Jékely, 2009). This evolutionary diversity
implies also a strategic diversity: all organisms do not perform phototaxis in the same
fashion (they have different receptors, different trajectory shapes,..), and makes it all
the more interesting to observe convergences.

1.1.2 Describing sensory-guided navigation
Taxes and kineses differ from one another by the direction of short-term movements
with respect to the source or gradient.

The authors of The Orientation of Animals (Fraenkel & Gunn, 1961), summarised it
as follows:

“The term taxis is today used for directed orientation reactions. (…) We
use the word only for reactions in which the movement is straight
towards or away from the source of stimulation. (…) Undirected
locomotory reactions, in which the speed of movement or the frequency of
turning depend on the intensity of stimulation, we call kineses.” “Thus,
positive and negative phototaxis mean respectively movement straight
towards or straight away from the light.”

The Orientation of Animals, (Fraenkel & Gunn, 1961).

Within taxes, it is possible to distinguish two categories, now based on stimulus sam-
pling: klinotaxis and tropotaxis. These two behaviours can be segregated either by re-
ceptor type, or more accurately by the involved gradient-sensing strategy, summarised
in figure 1.3, borrowed from Gomez-Marin & Louis (2012). Tropotaxis involves a simul-
taneous comparison of stimulus intensity, requiring two spatially segregated receptors;
whereas klinotaxis is a temporal comparison which can be performed using one single
sensor (but not necessarily), but requires some basic form of memory.

In summary, the distinction between taxis and kinesis is based on the gradient climbing
strategy: if the movement is directed towards the stimulus, parallel to the gradient -
it is a taxis; if the movement is undirected but its speed (ortho-) or rate of turning
(klino-), like E. coli, varies with stimulus intensity - it is a kinesis. Within a taxis,
the difference is based on the sampling strategy: an instantaneous spatial comparison
using at least two distinct receptors of the same type is termed tropotaxis, whereas a
comparison of the stimulus intensity at two different time points is called klinotaxis.

5



Figure 1.3: Classification of navigational strategies from Gomez-Marin & Louis (2012)
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Taxis and kinesis strategies are sometimes discussed in terms of efficiency with regards
to the resulting aggregation, or speed of aggregation around a stimlus.

“It has […] been shown that although kineses can result in aggregation,
they do so by means of an inefficient and devious method. Taxes […] can
produce aggregation too, but much more efficiently. They result in the
animal moving directly towards or away from the source of stimulation.
When a single light acts as the stimulus, the animal either moves straight
forward, with its body axis in line with the light rays, or locomotion is along
this line in general, slightly complicated by regular symmetrical deviations.
The kind of reaction in which these regular deviations are a necessary part
of the orientation mechanism is here named klinotaxis.”

The Orientation of Animals, (Fraenkel & Gunn, 1961).

Considering efficiency as a parameter to be optimized implicitly assumes that the
animal pursues one and only one goal, which is finding the stimulus source. This can
be true in some special cases, but in a multi-modal and changing environment, we might
expect a need for trade-off-like responses to different stimuli, where high efficiency is
not necessarily optimal. Indeed, efficiency may get one stuck in a dead-end when facing
novel (or unusual) situations - as exemplified by the moth trapped spiraling around
a street light (Hsiao, 1973) - or trapped in a local maximum, with no oppotunity of
exploring beyond and pursuing a global maximum (trade-off between exploring and
exploiting one’s environment).

In recent studies, however, the question of multisensory integration and its trade-offs
has started to be addressed, taking into account environment complexity. New ap-
proaches focus on the diversity of an animal’s response to a stimulus as a function
of its internal state arguing that the behavioral response to a stimulus is often non-
deterministic (Scholz et al., 2017; Tsai & Chou, 2019). Some consider behavioral
switches within spontaneous behavior, as for example the alternation between explo-
ration and exploitation behaviors of an environment; or the optimality of a searching
or foraging strategy (Sims et al., 2019; Viswanathan et al., 1999).

Many stimuli can indeed be interpreted not as cues that the animal has to robustly and
infallibly follow, but rather as hints pointing towards more favorable environements.

All in all, recent studies have taken on the importance of grasping the whole biological
system embodied within its complex multimodal environment.

1.2 From single-cell to systems neuroscience
“As always in science, the state of knowledge depend[s] on the state of
development of the instruments.”

Foundations of the neuron doctrine, (Shepherd, 2015).
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1.2.1 The Neuron Doctrine
The classical neuroscience approach is deeply grounded on the Neuron doctrine (Shep-
herd, 2015). It emerged in the late 19th century, following the founding anatomical
observations Ramon y Cajàl did using Golgi’s staining (Golgi, who incidentally was
a great objector of this idea). It establishes the neuron as a fundamental unit of the
nervous system: anatomical, physiological, genetic, and metabolic as summarized by
Waldeyer in 1891, who coined the term “neuron” in his review. As the Neuron Doc-
trine spread, advances in imaging and electrophysiology techniques during the 20th
century corroborated it even more (in the 1950s, the electron microscope proved the
discontinuity of synapses, the microelectrode enabled the understanding of a neuron’s
electrical activity, etc.). It was completed with the idea of the neuron as an informa-
tional unit (Warren McCulloch and Walter Pitts, 1943), a paradigm shaping much of
research present and past.

Research through the prism of the Neuron Doctrine has thus been the study of the
activity of individual neurons. This brought about the foundational research on the
neuron as a perceptual unit: for example, stimulus-response of single neurons, like the
study of receptive fields (Spillmann, 2014). With accumulating knowledge, it became
possible to connect the individually studied neurons within a network - for example
the different computational layers of a sensory system (for the visual system: photore-
ceptors, ganglion cells, the visual cortex) - to understand the operations performed by
neuronal assemblies from layer to layer.

Most - if not all - of this grounding work was the investigation of a static response in an
open-loop configuration: the stimulus does not update according to the reaction of the
organism (from in vitro studies to in vivo on paralyzed animals). This means that the
sensorimotor loop mentioned previously is broken: the input from the chosen stimulus
can be measured but the response may be incomplete. This brings up the question
of whether we can understand a sensory system without its closed sensorimotor loop.
Can we properly understand how a cognitive system processes information in isolation
from its natural closed-loop context ?

1.2.2 Emergent properties from neural networks
Step by step, from single neurons to subnetworks, recent advances in neuroscience,
genetics, recording (multiple electrodes, EEG) and imaging techniques (fluorescence
imaging, fMRI) have made it possible to investigate the entire nervous system as a
whole, its structure and namely its dynamics in vivo. This is the area of systems
neuroscience. In vivo spontaneous dynamics, their modification by a sustained stimulus
or their bias by an acute stimulation can be observed. They can even be integrated in
a closed sensorimotor loop by updating the stimulus according to the motor response.

With this approach emerged the idea of the nervous system as a complex system, mean-
ing that collective dynamics are fundamentally different from and cannot be explained
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by the sum of single-cell reponses. An eloquent example might be the one of place
cells in the hippocampus. They were initially found to be firing only in a particular
place-field, i.e. a specific region of the environment, thus the firing of a single cell was
thought to provide information on the animal’s location in space, making the hippocam-
pus “a spatial map” (O’Keefe et al., 1971). Further studies have shown phenomena
of place field remapping even within the same environment: the place-cell’s activity
was no longer specific. And it is now known, that place cells are actually multisen-
sory: they convey not only spatial visual information, but also olfactory, vestibular
and information on self-motion (Jeffery, 2007).

One could see emergent properties neurosciences as being a natural development of the
neuron doctrine, but some argue the necessity of a complete paradigm shift. As we
still lack a unified theory of brain function, instead of following Cajal who considers
brain circuits as “impenetrable jungles where many investigators have lost themselves”
(1923), Yuste suggests that “perhaps one reason for our limited success as a field is the
possibility that the neuron doctrine has become an obstacle to further advances and
may need to be superseded as a paradigm in order to create a general theory of brain
function” (Shepherd, 2015, pp. xxxiii–xxxvi).

A final ironical remark of Shepherd’s Neuron Doctrine of 1991 is worth mentioning:

“The present generation of neural networks represents a view of nervous
organization that harkens back to that of Golgi: the view that the com-
plex interconnectedness of networks is more important than the details of
neuronal structure and function.”

1.2.3 Tackling the complexity of an information-processing
system

In the complex system framework of neuroscience, an interesting conceptual contribu-
tion was made by David Marr in 1982 to the description of the visual system.

“Almost never can a complex system of any kind be understood as a simple
extrapolation from the properties of its elementary components (…) If one
hopes to achieve a full understanding of a system as complicated as a
nervous system (…) then one must be prepared to contemplate different
kinds of explanation and different levels of description that are linked, at
least in principle, into a cohesive whole, even if linking the levels in complete
detail is impractical.”

(Marr, 1982, pp. 19–20)

Marr proposed a “three-level” analysis to fully understand a system carrying out an
information-processing task:

• a computational level: what is the problem the system is trying to solve ?
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• an algorithmic level: how it is being solved (“software”)
• an implementational level: the architecture underlying it (“hardware”)

There is a “one-to-many” mapping from the computational level to the algorithmic
level, as well as from the algorithmic level to the implementational level. For one
description of the computation behind a particular information processing task, there
are several algorithms for solving it, and many different ways in which they each can
be physically implemented.

1.3 Virtual reality systems to understand behavior
To try to get some insight into how the brain accomplishes a sensorimotor task at
these different levels, bearing in mind the idea of interacting, even manipulating the
sensorimotor loop without disrupting it, an interesting approach can be virtual reality.

Virtual reality is the simulation of an interactive environment in which the subject can
be embedded, recreating the sensorimotor loop. Virtual navigation is possible by pro-
viding sensory (most of the time visual) and sensible (within the virtual environment)
feedbacks to motor actions in a continuus closed-loop. A cue at time 𝑡 generates a
new updated environment at 𝑡 + 𝑑𝑡, 𝑑𝑡 being preferentially smaller than the subject’s
preception time. The feedback update is parametric: the subject’s movements map to
trajectories in parameter space, and correspond to updates of the virtual world.

In contrast with open-loop systems where conditions are presented independently of
the animal’s response to stimuli, in this paradigm both are locked on one another:
a stimulus might trigger a motor action, which in turn triggers the sampling of an
updated or novel stimulus.

1.3.1 Human cognitive neurosciences explored by VR
First applications of VR were made in industry (automobile, aviation, military sectors).
It spread to acamedic research for use in behavioral studies in the early 90s, and was
very quickly applied to medical training, namely surgery. Today it is used as a tool
for training for example in medicine (Bernardo, 2017; Izard et al., 2018), but also
as possible therapy for mental disorders or phobias (Riva et al., 2019), as a tool for
data visualization (El Beheiry et al., 2019), or entertainment, brain-machine/computer
interfaces and also in research in the fields of neuroscience and psychology (Bohil et
al., 2011). It is on the latter that I will focus on here.

The first steps of VR for humans were imperfect: “immersion” triggered number of
side-effects from visual deficits (Mon-Williams et al., 1993), to dizziness, headaches or
nausea (Regan, 1995). These side-effects have been termed “cybersickness”. It can be
explained by the incongruity between sensory inputs: visual information provides users
with the sense of motion which is not matched by vestibular feedback. Also by the
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lag in the closed-loop, between timing of tracked movements and the generated virtual
environment update, which has been very much improved lately (Harris et al., 2019).

Bohil et al. (2011) detailed the advances made in cognitive neurosciences thanks to
virtual reality experiments. I will explore some of the presented elements here.

Spatial cognition and navigation. The maze experiment in which humans navi-
gate a virtual radial maze reveals evidence for hippocampal activity (as expected from
animal studies), but also evidence of frontal cortex activity, suggesting the additional
contribution of working memory circuits. Some insights were also made as to strategies
for path learning in a virtual environement: ‘spatial’ learners rely on landmarks (pat-
terns on the walls) to build a cognitive map whereas ‘response’ learners remember a
series of turns at each decision point. The second strategy is argued to be a non-spatial
one, as it wouldn’t rely on the necessity of forming a cognitive map. Studies also re-
vealed human place-cell activity specifically related to navigation (invasive recording
from medial temporal lobe and frontal lobe of hippocampus as well as EEG).

Multisensory integration. Experiments involving the body-transfer illusion pro-
vided some eloquent insights into stimulus and timing constraints for multisensory
integration. The body-transfer illusion is the illusion of owning a third person’s body
or body part, which can be induced by concomittant visual and for example tactile
stimulation. It has been shown, that first person visual perspective is key for creating
the illusion, whereas timing of visuo-tactile stimuli is secondary.

Social neuroscience. Combined with imaging, VR unraveled the implications of dif-
ferent brain regions in theory of mind (empathizing with others through their facial
expressions), mentalizing (interpret the intentions of others enabling one to anticipate
another’s behavior); replication of the obedience study of Milgram (with results sug-
gesting that observing a virtual other in distress creates personal discomfort for the
observer, rather than empathy for the virtual character); etc.

1.3.2 In model animals
The first studies to demonstrate locomoting animals interacting with a virtual visual
environment involved insects in the 1980s. In rodents, body tethered rats have been
first put on a trackball for effective maneuvering by Hölscher et al. (2005).
As VR is a very interesting system not only enabling the control of the sensorimotor
loop, but also offering the possibility of partially immobilizing an animal in order to
combine behavioral studies with neural recordings. It has been widely developed for
model systems such as mice, flies, zebrafish and worms.

1.3.2.1 Within the sensorimotor loop

Measuring motor output. A first step towards the generation of an embodied
experience is to effectively and quantitatively measure motor outputs which will be used
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Figure 1.4: Virtual reality systems from Dombeck & Reiser (2012)

to navigate in the virtual world (figure a). In some cases it may be quite challenging.

Take the fly for example (see figure b): its wingbeats were recorded with an electrome-
chanical torque meter in the early experiments (Götz, 1968), and with optical wing
tracking more recently (Currier & Nagel, 2018; Maimon et al., 2010; Shiozaki et al.,
2020). But getting an effective readout of the complete movements wingbeats would
generate has not yet been done. Reorientation, i.e. its torque can be assessed (Currier
& Nagel, 2018; Shiozaki et al., 2020), but navigation in two dimensions, yet alone three
has not yet been achieved.

These challenges explain why many research on the fly has been done with it walking
on a tracking ball (Fisher et al., 2019; Haberkern et al., 2019; Vishniakou et al., 2019),
although this behavior is less often displayed than flying. The tracking ball, or treadmill
is also a widely used option for head-restrained rodents (see figure c). With this method,
navigation in a virtual 2D environment can be easily recorded, for studies spanning
from navigation or spatial learning memory to sensory processing and decision making
(Thurley & Ayaz, 2017).

In head-restrained zebrafish, optical tracking of tail movements may be done, with
different ways of quantifying tail deflection (curvature, displacement) (Bianco et al.,
2011; Jouary et al., 2016; Kist & Portugues, 2019; Wolf et al., 2017). Also ‘fictive
swims’ recordings can be done using electrodes placed on bundle of motor neuron
axons (Vladimirov et al., 2014).
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Shaping the stimulus. VR implementation is obviously highly dependent on the
stimulated sensory system, namely on its perception of space and time. The spatial
resolution and extent of the stimulus should be adapted to the sensor’s acuity and
broadness. Similarly for temporal resolution, the update lag 𝑑𝑡 should be shorter than
the animal’s reaction time, or even perception time. Taking the example of vision,
reaction times are about 100ms in rodents and 80ms in flies. Rodents are very sensitive
to light, have a low visual acuity and a large field of view while flies have an even
lower visual acuity but a larger sampling of the visual space. Thus the developed VR
techniques are different: dim projectors with a panoramic but low-resolution display
for rodents and arrays of LEDs that update faster for flies.

Zebrafish have reaction times spanning from tens (for accoustic or mechanically-illicited
startle responses, (McClenahan et al., 2012) to hundreds of milliseconds or even seconds
(for OMR see Portugues & Engert (2011)), and a wide visual field (~300° horizontally).
Thus for visually-guided behaviors classical projectors (with a 60Hz refreshing rate) -
or sometimes LEDs - are generally sufficient, with a panoramic or spherical screen.

An important issue in shaping the sensory input of a motor output is to consider
the gain of the function transforming one into the other (see figure 1.3.2.1, “motor
disturbance” box): 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 × 𝑔𝑎𝑖𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡. Adjusting the gain can be
done by setting it such that a mean movement in the virtual setup would trigger a
displacement of a mean value close to what the animal would experience in a naturalistic
setting. It has also been shown that some animals - and specifically of interest to me,
zebrafish larvae - are able to adapt their behavior to compensate for a high or a low
gain (Portugues & Engert, 2011).

Engaging in the feedback loop. Another issue worth considering, is whether the
animal is engaged: is it in the loop ? In some cases it might be obvious from the
behavior, as the desert ant which performs path integration in a virtual environment
and reproduces its homing behavior successfully (Dahmen et al., 2017). If not, a
technique for testing it is to apply a disturbance signal, like for example a drift, which
the animal, if it is engaged in the feedback loop, will be able to compensate in order
to maintain a straight trajectory (Heisenberg & Wolf, 1988).

In settings where the animal is partially fixed (head-fixed for example), engaging in the
loop is more challenging than in freely moving conditions. But it has become possible
to compare the recorded neural circuitry in both settings. This has for example been
done for hippocampal place cells in head fixed mice navigating along a virtual linear
track (Dombeck et al., 2010; Harvey et al., 2009). These studies found that several
key features of virtual place cells were highly similar to those measured in place cells
in freely moving rodents.
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1.3.2.2 Discussion on VR systems for neuroscience

Advantages of VR. A great advantage of VR for neurosciences is to simulate an
interactive environment for naturalistic behaviors to take place while brain activity
can be monitored via imaging or direct recording (Gray et al., 2002). Multisensory
inputs are possible to assess inhibition, synergy or linearity with a maximal control
over the presented stimulation and of the perceived sequence of stimuli received by the
animal, as it is recorded. VR also provides an assessment of the role of feedback from
motor events during the simulated experience and how it can shape neuronal dynamics
(Maimon et al., 2010; Saleem et al., 2013).

Moreover unnatural couplings may be established between the animal’s movement and
the virtual world: unrealistic combinations of stimuli (contradictory or decoupled) can
be presented to get insight into how conflicts might be resolved (Heisenberg & Wolf,
1988; Major et al., 2004), or a discontinued parameter space for a virtual teleportation
(Stowers et al., 2017), etc.

VR enables the simulation of an entire natural task environment in order to elicit the
full range of behavioral possibilities. And as emphasized by Krakauer et al. (2017),
“study of the neural implementation of behavior is best investigated” after the detailed
analysis of tasks and of the behavior they elicit: “behavioral work provides understand-
ing, whereas neural interventions test causality”.

Indeed, it has been shown that in general, activity levels, tuning, sensitivity and neural
encoding are modulated by the behavioral state of the animal, and overall general
activity increases with locomotion (Maimon et al., 2010; Niell & Stryker, 2010; Saleem
et al., 2013). So if one really aims at deciphering the neural code - if there is one -
closed-loop paradigms will be informative.

Combining closed-loop paradigms and imaging techniques in zebrafish larva has been
on the rise for the past ten years. It has been used for the investigation of eye position
and velocity control (Brysch et al., 2019), motor adaptation (Ahrens, Huang, et al.,
2013), visually guided and goal-directed navigation (Kist & Portugues, 2019; Robson,
2013), prey-capture (Bianco et al., 2011; Mearns et al., 2020), decision-making or
evidence accumulation (Bahl & Engert, 2019; Dragomir et al., 2019; Mu et al., 2019)
and even social behavior in adult zebrafish (Huang et al., 2020).

The importance of closed-loop paradigms has incidentally recently been demonstrated
even at the level of the brain: glial cells have been shown to accumulate evidence that
an action is futile (abence of feedback), thus eventually suppressing this behavior (Mu
et al., 2019).

Limitations of VR. Needless to say, as in any system, there are still some drawbacks
even in closed-loop VR systems. Some feedback loops are still broken, namely due to
restraint. It may disrupt the control mechanisms of head and eye postion for head-
fixed animals (Zeil et al., 2008). A particular concern is about the lack of vestibular
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input, which can trigger mismatches between visual and (the absence of) vestibular
stimulation (Minderer et al., 2016). Restraint can especially be an issue for studying
motor control and locomotion. Tethered flying flies, walking flies and rodents tend to
change their gait as compared to when freely-moving. Flies pitch down excessively and
mice rotate much more while walking.

Still, these experiments seem to bear some interesting information, with results com-
parable to freely moving systems. These limitations may be overcome through habitu-
ation to head restraint, or training to recover a more natural locomotion gait.

If there are quirks in the closed-loop resulting in an ‘unnatural feedback’, different
responses might be expected from the animal (Heisenberg & Wolf, 1988; Major et al.,
2004), hence, emphasizing the importance of studying the behavior in freely moving
conditions beforehand.
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Chapter 2

The zebrafish larva: a model in
systems neurosciences

An excellent model vertebrate for studying exploratory or goal-directed navigation,
offering the possibility of a “brain-wide” approach is the zebrafish larva. It enables
the combination of behavioral studies with brain-scale functional imaging at cellular
resolution, sometimes even in freely moving animals (Kim et al., 2017). In this second
introductory chapter, I will present the larval zebrafish model, the navigation problems
it has to solve in its environment and the solutions it has developed on the levels of
“software” and “hardware” implementation (algorithms and functional anatomy) to
tackle these problems.

2.1 A model animal in systems neuroscience
After some early developmental studies in the late 1930s (ref. . On the early develop-
ment - bipolar differentiation and cleavage - of the zebra fish, Brachydanio
rerio), the zebrafish Danio rerio was durably introduced into the laboratory by George
Streisinger in the 1970s for the study of genetics and neural system development. It
rapidly grew as a model animal in developmental biology and genetics. Indeed, it
has a rapid and external development, a great genetic malleability, high physiological
and genetic homology to mammals. It has eventually reached the field of systems
neuroscience in the last two decades. (Stewart et al., 2014)

Zebrafish undergo a rapid development: a larva hatches at most 72 hours after its
egg has been fertilized. The larval stage is considered to span the 3 to 30 dpf period,
during which the zebrafish continuously grows and develops. Over this period of time,
its brain grows from 100,000 neurons up to 10,000,000 neurons in the adult.

Adding to its advantages as a model for genetics and developmental biology, zebrafish
larva has gained popularity in neuroscience research thanks to some morphological
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and anatomical traits - they are small, optically transparent and their small brain is
composed of around 100 000 neurons at this stage (about a thousand times less than
mice, still enough to subserve complex behaviors) - which enable the optical recording
of almost their entire brain activity in vivo.

Figure 2.1: Wild-type, mutant and transgenic lines of zebrafish larva. Dorsal views of
(A) wild-type, (B) nacre (from Lister et al. (1999)), (C) pan-neural GCamp5 expressing
larva illuminated by a light-sheet. (D-E) Miscroscopic view of brains of two larvae
expressing GCaMP respectively in the neurons’ cytosol and in the nucleus.

This was possible through the development of a diversity of different zebrafish lines:
mutants that are more transparent than wild types (nacre mutation, see figure 2.1),
or transgenic lines that express Genetically Encoded Calcium Indicators (GECIs), the
most widely used in neuroscience being the GCaMP family (a fusion of green fluorescent
protein GFP, calmodulin, and the peptide sequence M13) (see part on calcium imaging).
Gcamp binds to calcium (𝐶𝑎2+), inducing a conformational change that increases its
quantum fluorescence efficiency. As intra-cellular calcium is released in neurons when
they are electrically active, it enables one to record all active cells expressing the
reporter in the brain. The optimal expression of the GCaMP reporters used today
corresponds to 5 to 8 dpf (most of the studies mentioned in the following use larvae of
this age), when the animal is sufficiently small and transparent for optical accessibility.

Thus, the possibility the larval zebrafish offers is to link whole-brain activity to behavior
- the most complex product of a nervous system - in a vertebrate. This perspective has
motivated numerous behavioral studies on this animal in recent years, starting with
the description of its locomotor repertoire.

2.2 Locomotor repertoire description
Larval zebrafish swim in a “burst and glide” fashion: they propel themselves using
short bursts of tail movement called swim bouts, alternating with inactive “resting”
periods called interbout intervals, during which the fish only moves passively through
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the water. These bouts may vary in amplitude, duration, or reorientation direction,
forming the locomotor repertoire of the zebrafish larva.

First descriptions of this locomotor repertoire were obtained from manually-triggered
recordings (Budick & O’Malley, 2000). Budick et al had then already described two
main navigation patterns in larval zebrafish: forward swims and reorientation turns.

A finer classification of swim types allowed to distinguish forward swims, routine turns,
C-turns, J-turns, O-bends, etc. The different movements were classified based on the
kinematics of the zebraifsh larva when performing these different swim bouts (Kalueff
et al., 2013).

Automated tracking of freely moving animals has enabled their observation for long
time periods and the collection of long swimming sequences (Franco-Restrepo et al.,
2019). Quantitative analyses of these swimming sequences shed light onto more subtle
differences in locomotion patterns either in response to a stimulus (Liu et al., 2015;
Marques et al., 2018), or in spontaneous swimming conditions (Dunn et al., 2016;
Johnson et al., 2020). Classification techniques enabled an astuter differentiation of
locomotory movements: these approaches lead to identify no fewer than 13 different
types of bouts, 7 of which can be considered turning and 6 forward (see figure 2.2).
They are used differentially in different contexts (for example in phototaxis, only 4 of
those subtypes are used: 2 forward and 2 turns) (Marques et al., 2018).

Figure 2.2: Angle of caudal tail segment versus time of one hundred bouts of each
type, from automatic clustering. Cyan lines are the average of all bouts in a cat-
egory. Symmetrical envelopes are forward swims, asymmetrical signals are turning
movements. AS: forward approach swim; Slow 1 & 2: slow type approach swims 1 and
2; Long/Short CS: capture swims (final forward movements in hunting sequences); BS:
burst type forward swims with high tail-beat frequency; J-turns: turns associated with
prey orientation behavior; HAT: high-angle turns; O-bends: large turns; RT: routine
turns; SLC: C-start (turning) escape swims; LLC: long latency C-starts (turns). From
Marques et al. (2018)

While earlier studies were focusing on triggering a specific type of response to a well
controlled stimulus, automation has enabled to loosen some constraints and keep the
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animal under observation for longer periods of time, and thus have access to more
naturalistic behaviors.

2.3 Visually guided behaviors
Many of the aforementioned locomotor patterns can be triggered by visual stimuli, on
which the larval zebrafish heavily relies. A lot of navigation problems thus involve the
visual system through so-called visually-guided behaviors. I will briefly contextualize
the larval zebrafishe’s visual ecology to keep in mind to what environment the animal
has adapted to, and review some of the visually-guided behaviors I will be referring to
in this work.

2.3.1 Visual ecology
“The development, structure and function of the zebrafish visual system
are shaped by its ecology.”

(Neuhauss, 2010)

The Danio rerio belongs to the cyprinid family, endogenous of the Indian sub-continent.
It lives in shallow, shady, vegetated and slow-moving waters. It is diurnal and omnivo-
rous. During the rainy season, adult zebrafish move from brooks to flooded areas (like
rice paddy fields), where spawning occurs. There, larvae can hatch and develop in still,
seasonal waters before reaching the stream (Engeszer et al., 2007).

Living in a visually complex enviroment with large variations of luminance levels re-
quires a well-developed visual system, with colour perception and UV-sensitive vision
for tracking otherwise translucent prey. The larva’s rapid development also translates
into a rapid maturation of the visual system, quickly supporting visually-guided behav-
iors like predator avoidance, prey capture and countercurrent swimming. This swift
maturation can be interpreted as an ecological adaptation to escape predators, forage
and orient itself as early as possible.

2.3.2 Eye movements
The zebrafish eye position is controlled by 6 extraocular muscles. They enable move-
ments in the vertical (like the vestibulo-occular reflex) as well as in the horizontal axes.
As they are part of reorientation behaviors of the larva in the horizontal plane, we will
consider only the latter ones. Among horizontal eye movements, controlled by 2 mus-
cles (the medial and the lateral rectus), two main ones can be displayed spontaneously:
vergence movements and saccadic eye movements.

Vergence movements occur during hunting. The larva being a prey, its eyes are located
on either side of its body to increase its visual field. But as it is also a predator of
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Figure 2.3: Image a zebrafish could see in its environment. From group of T. Baden,
Sussex University.

small unicellular organisms (paramecia), the larva can transiently converge its eyes
(total forward rotation of 35.5° instead of 18.5° of a single eye at rest, relative to the
rostro-caudal axis) in order to increase the binocular overlap in front of it, probably to
better evaluate the distance to the prey (Bianco et al., 2011).

Figure 2.4: Eye vergence movement in larval zebrafish when hunting a prey. From
Bianco et al. (2011)

Saccadic eye movements are a fast coordinated shift of eye position. They are robustly
displayed at 4dpf. Periods of spontaneous saccades occur, depending on the behavioral
state of the larva. In animals with a fovea (a central zone in the retina which has most
visual acuity), saccades are the transitions between fixation times (when one looks at
an object). But zebrafish lack a fovea and and thus do not need to redirect their gaze
from one point of interest to another. So the functional purpose of saccades is assumed
to be the widening of the animal’s visual field (Easter & Nicola, 1997 ; Martinez-Conde
& Macknik, 2008).
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Horizontal eye movements can be induced by the optokinetic response (OKR), triggered
by a rotational stimulus in the horizontal plane (figure 2.5 A). It translates into slow
tracking eye movements linearly following the stimulus, reset by fast high-amplitude
saccades (Orger, 2016; Rinner et al., 2005).

2.3.3 Diversity of visually guided behaviors
Most visually guided behaviors are fully displayed at 96hpf (hours post-fertilization)
or 4 dpf (days post-fertilization). This corresponds to the moment when the eye’s
lens starts forming a sharp image on the retina and when the extraocular muscles are
completely formed (Easter Jr & Nicola, 1996). Visual performance is regulated by a
circadian clock and is best during day time (Fleisch & Neuhauss, 2006).

Figure 2.5: Illustration of optokinetic and optomotor responses in larval zebrafish.
From Roeser & Baier (2003).

In order not to be swept away with the current, zebrafish larvae exhibit an optomo-
tor response to whole-field visual motion: if they are carried away, larvae follow the
direction of the perceived motion, in order to stabilize the surrounding visual scene.
The psychophysics of this response have been well studied: motion perception is mainly
driven by first-order (Fourier) signals (Orger et al., 2000) and is mediated by green and
red cones in the zebrafish retina (Orger et al., 2000). The study of this response has
then been completed and linked to underlying neural activity (Ahrens, Orger, et al.,
2013a; Kist & Portugues, 2019; Naumann et al., 2016 ; Orger et al., 2008; Orger, 2016;
Wang et al., 2019). The robustness of the response directly depends on the robustness
of the visual input. Recent studies have allowed to reveal the bases of decision-making
processes at a neuronal level, by describing neuronal assemblies that are able to accu-
mulate motion-direction evidence in the context of incomplete or conflicting motion
signals (Bahl & Engert, 2019; Dragomir et al., 2019).

Zebrafish larvae also display less deterministic visually-driven behaviors such as photo-

21



taxis, which drives the animal towards illuminated regions. It is color-specific: positive
phototaxis in larval zebrafish is mediated through blue wavelengths (Orger & Baier,
2005), UV is typically avoided (Guggiana-Nilo & Engert, 2016), as well as infrared
wavelengths (Hartmann et al., 2018). Situations of positive and negative phototaxis
exist: the animal has to undergo a period of habituation at a high intensity to display
light-seeking behavior to a slightly lower target intensity (Burgess et al., 2010). This
has been termed flexible phototaxis in a recent preprint by Chen et al. (2020). In-
deed, the animal, rather than seeking the highest luminance possible, rather tries to
maintain environmental luminance at a set-point which depends on luminance history.
Another aspect of phototaxis, is that its preference is reversed during development:
larval zebrafish tend to display positive phototaxis (about 80% of individuals), while
adult zebrafish seem to avoid light (Gerlai et al., 2000; Maximino et al., 2010; Oliveira
et al., 2015; Serra et al., 1999), and display what is sometimes called scototaxis (at-
traction towards the dark). This change of behavior could be interpreted through their
change of habitat from shallow waters to more deep and shady regions.

While most above desribed behaviors are often approximated and constrained to the
horizontal plane in 2D, some do contain robust 3D components, as witnessed by the
diving component of the escape response (to a looming, i.e. visual or auditory stimulus),
which probably is an a useful adaptation to escape predators from above like dragonfly
larvae (Bishop et al., 2016).

2.4 Functional anatomy of the visual system of lar-
val zebrafish

Zebrafish develop quickly: they hatch at 3 dpf and most of their organs are functional
around 5 dpf to quickly support their innate behaviors (fins and tail are formed, the
mouth as well as the digestive tract are open for feeding, eyes form an image on the
retina,..). I will briefly review some of the developmental stages of their visual system,
the hardware of their visually-guided behaviors, and namely phototaxis.

2.4.1 Eyes structure
Anterior segment

At 3 dpf the anterior segment of the eye (composed ,among others, of the lens and the
cornea) is able to form a sharp image on the retina: the larval zebrafish’s eye is em-
metropic. Based on the “Helmholtz hypothesis”, which states that two bright objects
can be resolved by the cone mosaic only if their images illuminate separate cones that
are separated by at least one unilluminated one, their visual acuity (resolution) calcu-
lated from cone density is of 2.9°. This value roughly corresponds to the behaviorally
determined threshold of 3–4.5° in 4 dpf zebrafish using near-threshold stripe sizes for
triggering OKR. (Easter Jr & Nicola, 1996; Haug et al., 2010)

22



The horizontal visual field of each eye captures 163° of its surroundings at 4 dpf (Easter
Jr & Nicola, 1996). At rest they are rotated forward by about 18.5°, the total extent
of its horizontal field of view is around 300° with a small binocular overlap (Bianco et
al., 2011). The vertical field of view represents at least ~130° (symmetric relatively to
the coronal plane of the zebrafish body) (Zimmermann et al., 2018).

Retina

The zebrafish possesses a canonical vertebrate retina, composed of cone and rod pho-
toreceptors. All have specific spectral sensitivities, but rods are responsible for what
is called scotopic vision (under low luminance levels) and cones are known to mediate
color vision: the zebrafish is tetrachromat with four types of cone cells. The peak
sensitivities of the different opsins are the following:

• rods: 501–503 nm
• cones:

– UV 360–361 nm
– SWS (short wavelength-sensitive) cone (blue) 407–417 nm;
– MWS (medium-) cone (green) 473–480 nm;
– LWS (long-) cone (red) 556–564 nm.

UV-cones are the first to develop on the retina (4dpf), followed by S, M and finally
L cones. Rods are the last to appear on the retina and though they appear to be
functional at 5dpf, their patterning on the retina seems to constantly evolve through
the larval stage (Raymond et al., 1995; Saszik & Bilotta, 1999; Venkatraman et al.,
2020).

In a recent paper, Zimmermann et al. (2018) explore how the visual system of the
zebrafish larva has effectively adapted to the visual naturalistic scenery of its environ-
ment. Indeed, photoreceptors are not uniformly distributed throughout the retina (first
shown by Raymond et al. (1995), not cited in Zimmermann et al. (2018) or Dehmelt
et al. (2019))

It is argued, that in a naturalistic environment there is little color above the animal,
thus the retinal structure collecting light from above is mainly achromatic (rods and
terminals of achromatic bipolar cells). The lower visual field and the horizon being
color-rich, cones are more dense and sensitive in the upper and medial part of the
retina. And finally, a “high-gain UV system” collects information from above the
frontal horizon, a zone they called the “strike zone”, likely supporting prey capture of
UV-scattering prey.

Phototaxis is performed through blue cones (Orger & Baier, 2005). We can note that
those are more densely located around the horizontal plane of the retina which probably
enables an accurate appreciation of the surrounding illumination.

The retina also contains non-visual opsins which could play a role in circadian rhyth-
micity, light adaptation or body color adaptation. To be able to function over 10 log
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Figure 2.6: Chromatic and achromatic naturalistic vision in zebrafish larvae. (B)
Photoreceptor density distribution throughout the retina, for red (R), green (G), blue
(B), UV (U) cones and rods. (C-D) Distribution of cone and rod densities as a function
of azimuth. (E) Model of zebrafish visual field. From Zimmermann et al. (2018)
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units of light intensity and protect its photoreceptors, the entire retina morphologically
adapts to light or dark. These changes operate through the migration of melanosomes
and positional changes of photoreceptor cells: rods are shaded, whereas cone tips ex-
posed. (Neuhauss, 2010; Nilsson, 2009)

Inner retina

Figure 2.7: Diagram of the vertebrate retina and the retinal cells. Inset highlights
the synapse between cones and horizontal and bipolar cells, where the cone synaptic
terminal contains synaptic vesicles attached to the synaptic ribbon (black). In close
apposition to the ribbon, the dendrites on On-bipolar cells (On-BCs) invaginate into
the synaptic terminal and are flanked by two horizontal cell (HC) processes. Off-
bipolar cells make more basal contacts in close proximity but not apposed to the
synaptic ribbon. Different cellular layers: outer nuclear layer (ONL); outer plexiform
layer (OPL); inner nuclear layer (INL); inner plexiform layer (IPL); ganglion cell layer
(GCL);. From Angueyra & Kindt (2018)

In the inner retina, bipolar cells transmit visual information from the photoreceptors to
ganglion cells, which in their turn project mainly to the optic tectum in a contralateral
manner (forming a complete optic chiasm). Horizontal cells integrate inputs from
multiple photoreceptors and increase contrast sensitivity through lateral inhibition by
projecting on neighboring photoreceptors. Amacrine cells functionally structure the
inner retina horizontally by being the post-synaptic connection of bipolar cells and
projecting onto bipolar and ganglion cells.

The flow of information thus follows photoreceptors -> bipolar cells -> ganglion cells
where horizontal and amacrine cells are regulators.

Bipolar cells. Zebrafish bipolar cells can be functionally subdivided into ON-type,
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OFF-type and ON/OFF-type (Emran et al., 2007). The ON-type are active with light
onset, whereas OFF-type are activated upon light decrement. Some bipolar cells are
wavelength-selective, others are not, forming the achromatic visual pathway (Zimmer-
mann et al., 2018)

Ganglion cells. The retinal OFF-pathway plays a reorientation role in stereo-visual
phototaxis: it drives turns away from the eye experiencing the greater reduction in
light intensity - if the OFF pathway is disrupted in only one eye of the animal, turns
are performed in the correct direction (towards the light spot) if it is located in the
“blind” visual field. But if the light spot is in the intact visual field, turns are not biased
towards the light. The retinal ON pathway, on the other hand, mediates the approach
response, and is involved in increasing scoot frequency when the larva faces the light
source. (Burgess et al., 2010)

It has recently been shown by Zhou et al. (2020), that retinal ganglion cells’ function
is highly variable with their position within the retina, with the interesting finding,
that blue-off ganglion cells (activated when blue light gets extinguished) are highly
overrepresented. They speculate, that this feature could be used by a non image-
forming visual pathway, and could rather serve as a blue-background estimation system
(Zhou et al., 2020). Those ganglion cells are very likely to be involved in the phototactic
circuit, as this behavior is mediated by blue light, through blue cones and through the
ganglion OFF-pathway.

2.4.2 Downstream: ganglion cell projections
The terminal arborization of ganglion cells in the optic tectum is topographic (neighbor
ganglion cells terminate neighboring in the tectum) with an inverted projection pattern
(nasal axons terminate posterior in the tectum and vice-versa).

The zebrafish optic tectum is a homolog of the mammalian superior colliculus, located
in the midbrain. Although it seems to process visual motion information with direction
selectivity (Wang et al., 2019), upon laser ablation of the larval tectum, visual acuity,
OMR and OKR responses remain unaffected. Only the frequency of resetting saccades
during OKR decreased (Roeser & Baier, 2003). The optic tectum is thus probably not
directly involved in motion detection, but mediates eye movements as does the superior
colliculus. The optic tectum is also involved in binocular integration (Gebhardt et al.,
2019), is required for prey capture and collision avoidance (Orger, 2016).

As brought to light in this introduction, zebrafish larva has the advantage to display
a broad range of innate behaviors - many of them visually-guided - forming a rich
locomotor repertoire. Also, its accessibility for anatomical studies led to a thorough
description and understanding of its visual system. Thus this model animal enables
the study of naturalistic goal-directed navigational processes, exploratory locomotion,
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hunting behaviors, sleep, decision-making processes, etc. It is also the only vertebrate
organism in which behavioral studies combined with neuronal imaging on the scale
of the whole nervous system are feasible, which can provide insight into how these
processes are generated within the brain.

In the following chapters I will focus on larval zebrafish’s light-seeking behavior. In
order to keep the stimulus continuously updated relatively to the animals motor actions,
this work has been done using closed-loop paradigms.

The next chapter will be dealing with the behavioral algorithm of light-seeking behavior
in free-swimming conditions. The following section will focus on the necessary tran-
sition between free-swimming to head-fixed conditions, in which the larval tail move-
ments become a proxy to its reorientation attempts relative to a light source. And
the final chapter, will deal with the neuronal underpinnings of light-seeking behavior
through large-scale functional imaging in head-fixed closed-loop conditions.
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Chapter 3

Freely swimming light-seeking
reorientation

The following effort belongs to this framework of combining behavioral studies with
large-scale neuronal recordings. It aims at contributing to it through the study of
light-seeking behavior, also called phototaxis.

In this chapter I will first present the state of the art regarding light adaptation and
light-seeking behavior in larval zebrafish. Starting from the hypothesis that sponta-
neous dynamics are only slightly biased by a smooth gradient, I will then describe the
spontaneous swimming of larval zebrafish using a minimal set of parameters. I will
then show how these stochastic parameters are impacted during light-seeking behavior
through the identification of visual cues that are used by the animal to orient towards
a light source, by disentangling the effect of contrast and global intensity changes.

3.1 Light-seeking behavior in zebrafish: state of the
art

Extensive research has been devoted to the study of the response of zebrafish larvae to
a luminous stimulus (Brockerhoff et al., 1995; Emran et al., 2009; Burgess2007; Hor-
stick et al., 2017). Some specifically focused on its lightseeking behavior: in laboratory
conditions, after a prior habituation phase under a uniform and constant illumina-
tion, zebrafish larvae tend to navigate towards regions of higher intensities (a behavior
generically termed positive phototaxis). It has been shown that zebrafish larvae per-
form all three “level 1” navigational strategies with respect to light (kinesis, klino- and
tropo-taxis, defined in the section about sensory-guided navigation), though the terms
used may sometimes be unspecific. Where some studies have been unspecific regarding
a certain strategy (Burgess et al., 2010; Hartmann et al., 2018; Zhang et al., 2017),
tropophototaxis has been described by X. Chen & Engert (2014), Guggiana-Nilo &
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Engert (2016), Wolf et al. (2017), klinophototaxis by X. Chen & Engert (2014), pho-
tokinesis by Fernandes et al. (2012). The larval behavioral response to light is for the
most part visually mediated for the exception of photokinesis described by Fernandes
et al. (2012), which may be executed with deep brain photoreceptors.

Even though all agree on the existence of a preference in zebrafish larva for dim visible
light, still the complete equation of how the animal reacts and/or durably adapts its
behavior with respect to light is not completely clear.

Negative phototaxis is also displayed in larval zebrafish when the presented intensity is
higher than the habituation intensity (Burgess et al., 2010). More subtly, a recent study
suggests that larval zebrafish use phototaxis to maintain environmental luminance at
a set point that depends on luminance history, seeking an optimum rather than a
maximum (Chen et al., 2020).

3.1.1 Light adaptation
Response to high-amplitude short luminance changes. In their study Burgess
& Granato (2007), start by an examination of the spontaneous kinematics of larval
zebrafish. They notice a bimodality in the distribution of bend amplitudes and thus
head reorientations, and conclude that the spontaneous locomotion essentially com-
prises scoots (low amplitude reorientations) and turns (higher amplitude). The basal
frequency of these locomotory movements are modulated by different luminous stimuli,
a modulation that would always depend on prior adaptation (light intensity).

A short (500 ms) light flash or dark flash transiently increases turn frequencies, but not
frequencies of forward swims. This increase is proportional to the difference of stimulus
intensity (tested intensity - adapted intensity). Turns evoked by increases in illumina-
tion are indistinguishable from routine turns, whereas turns evoked by reductions in
illumination are different from routine turns.

Non-visually mediated responses to prolonged decreases in luminance. Fer-
nandes et al. (2012) focused on the non-visually mediated light-seeking behavior,
termed dark photokinesis. They showed that enucleated fish (eyes removed) still have
behavioral responses to light stimuli.

The first response is the visuo-motor response (VMR), i.e the heightening of basal
locomotor activity in response to an abrupt decrease in illumination (lasting ~ 5min-
utes followed by adaptation over 30 minutes, as activity drops back to basal rhythm
(Burgess & Granato, 2007)). Larvae lacking eyes also displayed a transient period
of hyperactivity upon loss of illumination, before settling into a state of low baseline
activity (figure 3.1 C). Enucleated larvae show a reduced but significant tendency to
swim towards a weak light stimulus, without direct orientation towards the light source
(figure 3.1 A, B).

They explain this behavior as being photokinesis: a heightened locomotor activity in
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Figure 3.1: Percent of larvae observed on the illuminated side of the testing arena over
time. Enucleated larvae exhibit a gradual shift to the illuminated side of the arena. (B)
Larval body orientation during exposure to a phototaxis stimulus. Enucleated larvae
show no bias in body orientation, where intact larvae do. (C) Locomotor activity during
dark-induced VMR. Inset: enucleated larvae significantly increase activity following
light extinction. From Fernandes et al. (2012)

dark areas, which drives individuals “in a non-directional, stochastic fashion” towards
brighter zones, with an increase of routine turns and longer swim bouts. They also point
towards a diving component in the VMR: lights extinction triggers rapid downward
swims.

Another study by Horstick et al. (2017) elucidated that these deep brain photorecep-
tors interact with the retina to mediate two different search strategies: loss of light
detected via the retina drives an initial strong local search. Then, deep brain pho-
toreceptor signaling drives outward locomotor patterns for remote light sources. Local
search activity initially masks extended search locomotor features. Local search is me-
diated via an increase in the frequency of turn/turn maneuver pairs and an increase
in correlation of turning direction. During outward swimming, although larvae main-
tained an elevated rate of turns, the correlation of successive turns declined to baseline
levels.

3.1.2 Tropo-phototaxis
Since zebrafish possesses two spatially separated receptors for sensing light - its eyes
- it would seem straightforward that for phototaxis it uses both of them and uses the
tropotaxis strategy. This has indeed been brought to light by Burgess et al. (2010)
who investigated the visual pathways involved in this process.

In the study of Burgess et al. the experiment consisted in shining a light spot in the
periphery of a petri dish and recording the response of all larvae in the petri dish
during 5 seconds. They analyzed the proportion of either forward swims (scoots) or
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turns when larvae were presented a novel light source. They observed a global increase
in levels of turns and scoots during phototaxis compared to uniform illumination, with
a slight increase in turn frequencies with distance to target and with angular distance to
target. Turn magnitude also increases with angular distance to target and its direction
is preferentially towards the light source. Scoot frequency increases when angular
distance to target decreases

Note that the way a frequency is defined here is the mean percentage of larvae initiating
a scoot or a turn during a 400 ms recording window. The inactive larvae are termed
to be in “stationary phase”. The analysis is “instantaneous”: whole trajectories of
individuals are dismissed, only movement type and orientation in a certain time window
are analyzed. And this particular experiment might involve both tropo- and klino-
phototaxis strategies, as perceived contrast as well as global illumination vary hand in
hand with distance and orientation to the light spot.

A few years later, X. Chen & Engert (2014) worked at disentangling both possibly
contribution strategies by exploring two experimental paradigms. In a first setting,
involving spatial or stereovisual phototaxis, a larva was tested for 15-30min in a petri
dish illuminated from below by a disk of light. The result was - as expected - that the
larvae stayed within the illuminated region, by assessing the spatial contrast it would
perceive by approaching the border of the illuminated circle (see figure 3.2 A).

3.1.3 Temporal phototaxis or klino-phototaxis
The main aim of X. Chen & Engert (2014) was to describe the algorithm of the tem-
poral component of larval zebrafish phototaxis. To do so, they performed a second
experiment, using a “virtual circle”. When the larva crossed a virtual circular border
(of shape and size similar as in the previous spatial experiment), instead of a constant
and uniform illumination in the petri dish, the lights would go off (see figure 3.2 B).

This second experiment led to the description of a set of behavioral algorithms, or
rules, a larva could follow to solve the particular problem of staying within a spatially
delimited temporally varying illumination profile.

First, rule number I [Angle] determines the turn amplitude of a bout: a first turn after
the light-to-dark transition is a large angle turn, the subsequent ones’ (at least 3) are
still large but their amplitude gradually decreases.

A second rule II [Lock/Flip] sets the direction of a turn relatively to the previous
one: in steady (light or dark conditions), the direction of successive turns shows a
slight correlation, they are “locked”. But when crossing the border, the two turns
immediately preceding and following a transition (would it be light-to-dark or dark-to
light) are generally “flipped”, which means they are anti-correlated in direction (if the
preceding bout was to the left, chances are the following one will be to the right).
So when the larva crosses the border, the bout following the crossing is flipped with
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Figure 3.2: Larval zebrafish prefer light over darkness in the spatial comparison assay.
(B) Temporal comparison assay: the Virtual Circle. The uniform illumination is turned
off when the fish exits the virtual circle (dashed red circle, invisible to fish), and turned
on again when the fish returns. From X. Chen & Engert (2014)

respect to the previous one. The second in darkness is strongly “locked” with the first
one (and of high-amplitude due to rule number I) which makes the larva quikly escape
the darkness. But then comes the border again, in the opposite direction this time:
dark-to-light. The bout direction flips again and locks in the light. Thus this rule
contributes to the fish staying close to the virtual border (as observed in experimental
conditions).

Still these two rules weren’t enough to account for a very high probability of presence
of the animal next to the virtual border. Thus the third rule III [Bounce] states
that the cumulative angle turned over a given light interval is “flipped” in relation
to the cumulative angle turned over the preceding dark interval. And a final rule IV
[Efficiency] decides that the strong tendency of the fish to “flip” between the last turn
in light and the first turn in dark is relaxed depending on the number of bouts executed
before this transition into dark.

With this series of algorithms of turn modulation and time integration, Chen et al. were
able to reproduce numerically - to some extent - their experimental data.

These rules actually require non-trivial forms of memory, as stated in their discussion.
First there must be a memory of the direction of previous turn, on which locks and flips
are based. They also stress that their rule III requires a memory of cumulative angle
made in similar conditions (light or dark), which I would argue would not be essential
if you have a lateralized circuit that is reinforced for example through efferent copy
of a movement made to the same side. Then, there has to be a memory of the time
since a light transition, supposed to last for several bouts (up to 10, corresponding to
10 seconds).
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And finally, even though Chen et al. speculate on higher order spatial processing pos-
sibilities, since the efficiency of the fish to return to the virtual circle cannot be fully
explained by the implementation of aforementioned algorithms, they note it is unlikely:
“[it is] not required for the animal to form a spatial representation of the virtual circle.”

3.2 Navigation dynamics of zebrafish larva under a
light gradient

This part is a rapid summary of the first section of the article From behavior to circuit
modeling of light-seeking navigation in zebrafish larvae.

3.2.1 Spontaneous navigation
For the sake of simplicity, we decided to come down to the description of a minimal
set of parameters necessary and sufficient for an accurate account of larval locomotion.
As mentioned before, larval zebrafish locomotory pattern consists of series of discrete
bout movements, each lasting for ~ 200ms. Those bouts can be simply categorized as
either forward (scouts) or reorienting (turns) (Budick & O’Malley, 2000; Burgess &
Granato, 2007), which shows on the bimodal distribution of reorientations 𝛿𝛼 (figure
3.3 B).

At each bout, the larva has the choice between performing a forward scoot (F) or a
turning bout (T), and, if it triggers a turn, the latter can be oriented either leftward
(L) or rightward (R). We modeled this set of choices using a Markov model with 2
chains: a bout type chain and a side chain. The “side state” affects the fish only when
it is in the “turn state” (figure 3.3 C)

While the choice between scoot and turn appears to be almost random, successive
reorientations bouts on the other hand, are preferentially executed in the same direction.
A change in direction occurs every 5 to 6 swim bouts (X. Chen & Engert, 2014; Dunn
et al., 2016). This shows when computing the correlation 𝐶𝑞 between reorientations
of bout 𝑛 and bout 𝑛 + 𝑞: instead of dropping to 0 at the first bout, as expected if
the choice of direction were random, the autocorrelation function slowly decays until
bouts 7 to 8 (figure 3.3 D). This directional correlation is time-dependent, dropping to
0 for an inter-bout 𝜏 > 10𝑠𝑒𝑐𝑠 (figure 3.3 E).

The distribution of inter-bout intervals 𝜏 being quite narrow around the mean (1 sec)
and the median (<1 sec), we neglected this time-dependancy in the following analyses
and were able to fit a mean probability of turning at each bout: 𝑝𝑇 = 0.41 = 1 − 𝑝𝐹
and a mean probability of flipping directional states at each bout 𝑝𝑓𝑙𝑖𝑝 = 0.19 (figure
3.3 C).
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Figure 3.3: (A) Experimental setup: real-time monitoring of the larva’s position and
orientation using IR illumination, enables closed-loop visual stimulation using a video
projector. (B) Experimental (dark) and analytical (blue) distributions (pdf: probabil-
ity density function) of reorientations 𝛿𝛼𝑛. (C) Two independent Markov chains model
for spontaneous navigation: the bout type chain controls the forward scoot (F) versus
turning (T) state. The side chain controls the transitions between left (L) and right
(R) headings when the animal is in the turning state, with transition rates which can
be converted to the probability 𝑝𝑓𝑙𝑖𝑝. (D) Correlation in reorientation angles 𝐶𝑞 as a
function of the number of bouts (grey) and associated fit. (E) Orientation correlation
of turning bouts as a function of the time elapsed between those bouts. The blue line
is the exponential fit.
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3.2.2 Orientational light-seeking behavior
The previously mentioned studies set the groundwork for our approach: we wanted
to understand the sequence of sensory percepts and motor actions that lead to an
effective reorientation towards either a spatially or temporally defined light gradient,
hypothesizing, that intrinsic spontaneous dynamics (in the absence of a cue) would be
biased by the stimulus.

In order to get a better understanding of the sequence of sensorimotor events that
enables a zebrafish larva to reorient with regards to a light stimulus, we decided to
make two important simplifications to the problem:

• first regarding the stimulus: instead of being a light source in three-dimensional
space, with gradients in all three directions, we locked the stimulus exclusively
on the animals orientation (also called heading or yaw) in a closed-loop fashion.
Thus the light intensity changes only when the animal reorients - reorientation
being a crucial step in light-seeking behavior - but it stays unchanged upon linear
displacement.

• then regarding the trajectories: instead of performing a temporal analysis, we
discretized the trajectories into sequences of bouts (as we did for the description
of spontaneous swimming). At each bout we know both the exact stimulus the
animal experienced and its motor action with regards to the stimulus.

It is known, that in generic phototactic conditions, larvae first orient, then swim to-
wards the light source Burgess et al. (2010). Thus they are able to perceive a spatial
gradient instantaneously and align themselves to it. In such case, contrast and whole-
field intensity act in synergy: aligning to and climbing the gradient implies an equaliza-
tion of intensity received on left and right eye and also an increase in global perceived
intensity. To be able to analyze separately the two phototaxis strategies described in
the literature, we separated the contributions of contrast and whole field illumination.
When investigating contrast contribution defined by 𝑐 = 𝐼𝐿 − 𝐼𝑅, where 𝐼𝐿 and 𝐼𝑅 are
the intensities received respectively by left and right eye, the total intensity 𝐼𝐿 + 𝐼𝑅
remains constant. And when examining the contribution of whole field intensity 𝐼 , the
animal’s eyes receive the same amount of illumination at a time 𝑡, the gradient being
solely temporal.

We also decided to avoid very abrupt light increments and decrements and thus focus
on moderate gradients. This is to avoid very high amplitude responses like escape
responses or VMR, which arguably are not part of phototactic behavior, even though
they might participate to a light-seeking strategy in some contexts (Burgess & Granato,
2007; Fernandes et al., 2012).
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3.2.2.1 In a spatial gradient

In our first experimental paradigm, we investigated how the larva reorients with respect
to a visual contrast (figure 3.4 A). Note that this case presents what could be a trade-
off, since equalizing the intensities of both eyes implies the reduction of the intensity
received by one of the two eyes. The contrast is set to be null (𝐼𝐿 = 𝐼𝑅) at an angular
distance to the light source 𝜃 = 0 (figure 3.4 B).

We found that after a few bouts, the distribution of fish’s orientations was statistically
biased towards 𝜃 = 0 (figure 3.4 C). This bias was mediated by a quasi-linear depen-
dence of the mean reorientation < 𝛿𝜃 > with contrast 𝑐. This dependence is only the
result of a bias in the selection of the turning bouts orientation (left vs right): the
mean orientation of the turning bouts varies linearly with the imposed contrast (figure
3.4 D). The ratio of turning bouts and the variance of the two distributions do not
vary with contrast (figure 3.4 E). These results indicate that stereo-visual contrast has
no impact neither on bout type selection nor on bout amplitude.

With a stereo-visual gradient, the selection of the turning orientation is in competition
between two distinct mechanisms: motor persistence, which favors the previous bout
orientation, and stereo-visual bias, which favors the brighter side. We were able to shed
some light on this interference by sorting out bouts with a ‘reinforcing stimulus’ where
the bright side is in the direction of the previous bout, and a ’conflicting’ stimulus,
in which the contrast tends to evoke a turning bout in a direction opposite to the
previous one. We showed that the stereo-visual contrast continuously modulates the
innate motor program by increasing or decreasing the probability of flipping bout
orientation 𝑝𝑓𝑙𝑖𝑝 (figure 3.4 F).

3.2.2.2 In a temporal gradient

In our second paradigm, we looked at how the larva reorients - and whether it can
reorient - with respect to a temporal gradient, when direct spatial information is absent
(three tested temporal gradients figure 3.5 A).

Despite the absence of any direct orientational cue, a large majority of the larvae
displayed positive phototactic behavior: their orientational distribution showed a sig-
nificant bias towards the virtual light source, that is the direction of maximum intensity
(figure 3.5 B-D).

In this case there was no systematic bias of the reorientation bouts towards the brighter
direction. Instead, the phototactic process originates from a visually driven modulation
of the orientational diffusivity, as measured by the variance of 𝛿𝜃: it increases in
response to a decrease in relative illumination 𝛿𝐼/𝐼 . Both the probability of turning
𝑝𝑇 and their amplitude 𝜎𝑇 act in concert to produce this effect (figure 3.5 F-G).
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Figure 3.4: Stimulus pattern delivered to the larva. The orientation relative to the
virtual source is noted 𝜃. (B) Left and right intensities (top panel) and contrast 𝑐 =
𝐼𝐿−𝐼𝑅
𝐼𝐿+𝐼𝑅

(bottom panel) as a function of 𝜃. The virtual light source is defined by a null
contrast (𝑐 = 0) and corresponds to a stable point (𝑑𝑐

𝑑𝜃 < 0). (C) Probability density
function (pdf) of orientations for all tested fish (N = 47). (D) Mean and (E) relative
weight of the turning distribution as a function of the contrast. For each value of the
contrast, these quantities were extracted by double-Gaussian fitting of the bout angles.
(F) Probability of switching direction 𝑝𝑓𝑙𝑖𝑝 as a function of the contrast, in situations
of conflict or reinforcement.
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Figure 3.5: (Orientational phototaxis driven by modulation of the global illumination.
Top panel : Angle-dependent intensity profiles delivered to the larva. The virtual light
source is located at 𝜃 = 0, defined as the point of maximum intensity. The profiles are
sinusoidal (uniform 1, purple) or exponentially shaped (uniform 2 and 3 orange and
yellow, respectively). (B–D) PDF of the fish orientations for the three profiles. (E)
Mean reorientation per bout < 𝛿𝜃 > of all fish as a function of 𝜃 for the three profiles.
No significant bias towards the source (𝜃 = 0) is observed. (F) Standard deviation
𝜎𝑡𝑢𝑟𝑛 of turning bouts as a function of 𝛿𝐼/𝐼 . The standard deviation of forward 𝜎𝑓𝑤𝑑
was fixed, and 𝜎𝑡𝑢𝑟𝑛 was then estimated using a double-Gaussian fitting of the bout
angles. (G) Probability of triggering a turning bout as a function of 𝛿𝐼/𝐼 .
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3.3 Article: From behavior to circuit modeling of
light-seeking navigation in zebrafish larvae
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Abstract Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge

in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit

models that can quantitatively capture basic sensorimotor operations. Here, we focus on light-

seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor

and visual stimulation sequences govern the selection of discrete swim-bout events that subserve

the fish navigation in the presence of a distant light source. These mechanisms are combined into a

comprehensive Markov-chain model of navigation that quantitatively predict the stationary

distribution of the fish’s body orientation under any given illumination profile. We then map this

behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the

orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making

circuit can similarly capture the statistics of both spontaneous and contrast-driven navigation.

Introduction
Animal behaviors are both stereotyped and variable: they are constrained at short time scale to a

finite motor repertoire while the long-term sequence of successive motor actions displays apparent

stochasticity. This dual characteristic is immediately visible in the locomotion of small animals such as

Nematodes (Stephens et al., 2008), Zebrafish (Girdhar et al., 2015) or Drosophila larvae (Gomez-

Marin and Louis, 2012), which consists of just a few stereotyped maneuvers executed in a sequen-

tial way. In this case, behavior is best described as a set of statistical rules that defines how these ele-

mental motor actions are chained. In the presence of sensory cues, two types of behavioral

responses can be distinguished. If they signal an immediate threat or reward (e.g. the presence of a

predator or a prey), they may elicit a discrete behavioral switch as the animal engages in a special-

ized motor program (e.g. escape or hunt, Budick and O’Malley, 2000; Fiser et al., 2004;

Bianco et al., 2011; McClenahan et al., 2012; Bianco and Engert, 2015). However, most of the

time, sensory cues merely reflect changes in external factors as the animal navigates through a com-

plex environment. These weak motor-related cues interfere with the innate motor program to cumu-

latively promote the exploration of regions that are more favorable for the animal (Tsodyks et al.,

1999; Fiser et al., 2004).

A quantification of sensory-biased locomotion thus requires to first categorize the possible move-

ments, and then to evaluate the statistical rules that relate the selection of these different actions to

the sensory and motor history. Although the probabilistic nature of these rules generally precludes a
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deterministic prediction of the animal’s trajectory, they may still provide a quantification of the prob-

ability distribution of presence within a given environment after a given exploration time.

In physics terms, the animal can thus be described as a random walker, whose transition probabil-

ities are a function of the sensory inputs. This statistical approach was originally introduced to ana-

lyze bacteria chemotaxis (Lovely and Dahlquist, 1975). Motile bacteria navigate by alternating

straight swimming and turning phases, so-called runs and tumbles, resulting in trajectories akin to

random walks (Berg and Brown, 1972). Chemotaxis originates from a chemical-driven modulation

of the transition probability from run to tumble: the transition rate is governed by the time-history of

chemical sensing. How this dependency is optimized to enhance gradient-climbing has been the

subject of extensive literature (Macnab and Koshland, 1972; Adler and Tso, 1974; Mello and Tu,

2007; Yuan et al., 2010; Celani and Vergassola, 2010). More recently, similar descriptions have

been successfully used to quantify chemotaxis and phototaxis in multicellular organisms such as Cae-

norhabditis elegans (Ward, 1973; Miller et al., 2005; Ward et al., 2008), Drosophila larva

(Sawin et al., 1994; Kane et al., 2013; Gomez-Marin et al., 2011; Tastekin et al., 2018) or differ-

ent types of slugs (Matsuo et al., 2014; Marée et al., 1999). Although the sensorimotor apparatus

of these animals are very different, the taxis strategies at play appear to be convergent and can be

classified based on the gradient-sensing methods (Fraenkel and Gunn, 1961; Gomez-Marin and

Louis, 2012). Tropotaxis refers to strategies in which the organism directly and instantaneously infers

the stimulus direction by comparison between two spatially distinct sensory receptors. In contrast,

during klinotaxis, the sensory gradient is inferred from successive samplings at different spatial posi-

tions. This second strategy is particularly adapted when the organism has only one receptor, or if the

sensory gradient across the animal’s body is too small to be detected (Humberg et al., 2018). It

requires at least a basic form of memory, since the sensory information needs to be retained for

some finite period of time.

In the present work, we implement such a framework to produce a comprehensive statistical

model of phototaxis in zebrafish larvae. Zebrafish larva is currently the only vertebrate system that

allows in vivo whole-brain functional imaging at cellular resolution (Panier et al., 2013;

Ahrens et al., 2013). It thus provides a unique opportunity to study how sensorimotor tasks, such as

sensory-driven locomotion, are implemented at the brain-scale level.

eLife digest All animals with the ability to move use sensory signals to help them navigate

towards areas that seem better than their current location. Such areas might contain desirable

things like food and mates, or they might allow an animal to escape from threats such as predators.

But how the brain gives rise to this navigation behavior is unclear.

Karpenko et al. have now obtained insights into the underlying mechanism by studying a

behavior in zebrafish larvae called phototaxis. Phototaxis is the tendency to move in response to

light. The advantage of using zebrafish larvae to study this behavior is that their brains are small and

semi-transparent. This makes it possible to record the activity of almost every neuron. As a result, an

individual’s brain activity can be mapped on to their behavior more precisely than in most other

species.

To probe how visual cues influence fish behavior, Karpenko et al. exposed individual fish to a

carefully controlled virtual light source and then tracked their movements with a camera. The fish

used two strategies to move towards the light. They selected their next movement based partly on

the difference in the amount of light reaching each of their eyes, and partly on the change in overall

brightness with each swim movement. Karpenko et al. used this information to build a numerical

model of fish phototaxis, and to show how a simple brain circuit could generate this behavior.

Species whose brains differ in size and structure may nevertheless develop similar strategies to

perform similar tasks. By quantifying a generic behavior in a simple animal model, this study could

provide insights into comparable behaviors in other species. In addition, the study suggests a simple

mechanism for how animals select actions on the basis of sensory signals, which may also be relevant

to other species and other tasks.
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Although adult zebrafish are generally photophobic (or scototactic, Serra et al., 1999;

Maximino et al., 2007), they display positive phototaxis at the larval stage, from 5 days post-fertili-

zation (dpf) on Orger and Baier (2005). At this early stage, their locomotion consists of a series of

discrete swimming events interspersed by ~1 s long periods of inactivity (Girdhar et al., 2015). Pre-

vious studies have shown that, when exposed to a distant light source, the first bouts executed by

the fish tend to be orientated in the direction of the source (tropotaxis) (Burgess et al., 2010). Fur-

thermore, Chen and Engert (2014) have shown, using a virtual reality assay, that zebrafish are able

to confine their navigation within a bright region in an otherwise dark environment even when

deprived from stereovisual contrast information. This latter study thus established that their photo-

tactic behavior also involves a spatio-temporal integration mechanism (klinotaxis).

From a neuronal viewpoint, recent calcium imaging experiments identified a small circuit in the

rostral hindbrain that plays a key role in phototaxis (Ahrens et al., 2013; Dunn et al., 2016;

Wolf et al., 2017). This region, called ARTR (anterior rhombencephalic turning region) or HBO (hind-

brain oscillator), displays pseudo-periodic antiphasic oscillations, such that the activity of the left and

right subpopulations alternate with a ~20 s period. This alternation was shown to set the coordinated

direction of the gaze and tail bout orientation, thus effectively organizing the temporal sequence of

the successive reorientations. It was further shown that this circuit oscillation could be driven by

whole-field illumination of the ipsilateral eye, such as to favor the animal’s orientation towards a light

source (Wolf et al., 2017).

In the present study, we aim at quantifying the statistical rules that control the larva’s reorienta-

tion dynamics in the presence of a continuous angular gradient of illumination (orientational photo-

taxis). Using a virtual-reality closed-loop assay, we quantify how swim bouts selection is statistically

controlled by the light intensity received on both eyes prior to the bout initiation, or the change in

illumination elicited by the previous swim bout. Our experimental configuration allows us to disen-

tangle the contribution of the two aforementioned strategies: tropotaxis and klinotaxis. From the

analysis of this short-term behavior, we built a minimal Markov model of phototaxis, from which we

compute the long-term distribution of orientations for any angular profile of illumination. This model

offers explicit predictions of the statistics of the fish orientation that quantitatively compare with the

experimental observations. We further expand on a recent rate model of the ARTR circuit to pro-

pose a functional neuronal model of spontaneous navigation and contrast-biased orientation selec-

tion. We demonstrate that the statistics of turn orientation can be fully understood by assuming that

this self-oscillating circuitry, that selects the orientation of turning bouts, integrates stereovisual con-

trast in the form of incoming currents proportional to the visual stimulus.

Results

Kinematics of spontaneous navigation as a first-order autoregressive
process
Zebrafish larvae aged 5–7 dpf were placed one at a time in a Petri dish (14 cm in diameter). Their

center-mass position and body axis orientation were tracked in real time at 35 frames/s (Figure 1A–

B). This information was used to deliver a body-centered visual stimulus using a video-projector

directed onto a screen supporting the Petri dish.

Prior to each phototactic assay, the larva was allowed an » 8 min-long period of spontaneous

exploration under uniform and constant illumination at maximum intensity Imax ¼ 450�W :cm�2. Such

pre-conditioning phases were used to promote light-seeking behavior (Burgess and Granato,

2007), while enabling the quantification of the basal exploratory kinematics for each fish.

Larval zebrafish navigation is comprised of discrete swim bouts lasting » 100ms and interspersed

with 1 to 2s-long inter-bout intervals (tn) during which the fish remains still (Dunn et al., 2016). Each

bout results in a translational motion of the animal and/or a change in its body axis orientation, and

can thus be automatically detected from kinematic parameters. As we are mostly interested in the

orientational dynamics, we extracted a discrete sequence of orientations an measured just before

each swimming event n (Figure 1B–C) from which we computed the bout-induced reorientation

angles dan ¼ anþ1 � an.

Although the complete swim bouts repertoire of zebrafish larvae is rich and complex

(Johnson et al., 2019), the statistical distribution of the reorientation angles PðdanÞ in such unbiased
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conditions can be correctly captured by the weighted sum of two zero-mean normal distributions,

PðdanÞ ¼ pturnNð0;s2

turnÞ þ pfwdNð0;s2

fwdÞ, reflecting the predominance of only two distinct bouts

types: turning bouts (standard deviation sturn ¼ 0:6) and forward scoots (sfwd ¼ 0:1) (Figure 1D). This

bimodal distribution is consistent with the locomotor repertoire of larvae described by

Marques et al. (2018) during spontaneous swimming and phototactic tasks. In the absence of a

visual bias, the turning bouts and forward scoots were found to be nearly equiprobable,

pturn ¼ 1� pfwd ¼ 0:41.

Successive bouts were found to exhibit a slightly positive correlation in amplitude (Figure 1F).

This process can be captured by a two-state Markov-chain model that controls the alternation

between forward and turning bouts, while the amplitude within each population is randomly sam-

pled from the corresponding distribution (Figure 1E). Within this scheme, we analytically derived the

dependence in the amplitude of successive bouts and thus estimated the forward-to-turn and turn-

to-forward transition rates, noted kf!t and kt!f (all analytical derivations are detailed in Appendix
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Figure 1. Kinematics of spontaneous navigation. N ¼ 75 fish, n ¼ 16; 147 bouts, mean of 7 trajectories per fish. (A) Experimental setup: real-time

monitoring of the larva’s position and orientation using IR illumination, enables closed-loop visual stimulation using a video projector. (B) Typical

trajectory of a 6 days old larva in the region of interest (ROI) of the arena under constant, uniform illumination. Each point indicates the fish position at

the onset of a swim bout. Dots’ size and color encode the bout distance and bout reorientation angle, respectively. Insets: blow-up of an example

frame (left) and definition of the reorientation angle dan at bout index n (right). b.len: body length. (C) Time-sequence of the fish body orientation a

(top). Swim bouts elicit rapid re-orientations. The angular dynamics can thus be represented as a series of discrete reorientation events of various

amplitudes dan (color code as in (B)). (D) Experimental (dark) and analytical (blue) distributions (pdf: probability density function) of reorientations dan.

The two normal distributions used in the fit with Equation A1, weighted by pturn and 1� pturn, are also displayed in dashed blue lines. (E) Two

independent Markov chains model for spontaneous navigation: the bout type chain controls the forward scoot (F) versus turning (T ) state, with

transitions rates kT!F and kF!T . The side chain controls the transitions between left (L) and right (R) headings when the animal is in the turning state,

with transition rate kflip. (F) Mean squared reorientation amplitude of bout nþ 1 as a function of the squared amplitude of bout n (grey), and its

associated analytical fit (blue, Appendix From behavior to circuit modeling of light-seeking navigation in zebrafish larvae Equation A5). (G) Average

reorientation of bout nþ 1 as a function of the reorientation at bout n (grey), and its associated analytical fit (blue, Equation A11). (H) Correlation in

reorientation angles Cq as a function of the number of bouts (grey) and associated fit (blue, Equation A14). (I) Mean square reorientation (MSR) Mq as a

function of the number of bouts, and associated fit (blue, Equation A17). The dotted line is the linear extrapolation of the first two data points and

corresponds to the diffusive process expected for a memory-less random walk (no correlation in bout orientation). (J) Orientation correlation of turning

bouts (thresholded at 0.22rad) as a function of the time elapsed between those bouts. The blue line is the exponential fit. Data from this and the

following figures are available at Karpenko (2019a) (copy archived at https://github.com/elifesciences-publications/programs_closed-loop_phototaxis).
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From behavior to circuit modeling of light-seeking navigation in zebrafish larvae). We found that

kf!t=pturn ¼ kt!f =pfwd » 0:8. This indicates that the probability to trigger a turn (resp. forward) bout is

decreased by only 20% if the previous bout is a forward (resp. turn) bout. For the sake of simplicity,

we ignore in the following this modest bias in bout selection and assume that the chaining of for-

ward and turning bout is memory-less by setting kf!t ¼ pturn and kt!f ¼ pfwd. We checked, using

numerical simulations, that this simplifying assumption has no significant impact on the long-term

navigational dynamics: the results presented in the following, notably the diffusion coefficient,

remain essentially unchanged when this small correlation in bout type selection is taken into

account.

In line with previous observations (Chen and Engert, 2014; Dunn et al., 2016), we also noticed

that successive turning bouts tended to be oriented in the same (left or right) direction (Figure 1G).

This orientational motor persistence was accounted for by a second Markov chain that set the orien-

tation of turning bouts, and was controlled by the rate of flipping direction noted kflip (Figure 1E

bottom). Notice that, in contrast with the model proposed by Dunn et al. (2016), although the ori-

entational state is updated at each bout, it only governs the direction of turning bouts. When a for-

ward bout is triggered, its orientation is thus unbiased.

This model provides an analytical prediction for the mean reorientation angle danh ijdan�1
at bout n

following a reorientation angle dan�1 at bout n� 1. This expression was used to fit the experimental

data (Figure 1G) and allowed us to estimate the flipping rate pflip ¼ 0:19 (99% confidence bounds

±0.017). We further computed the autocorrelation function of the reorientation angles and the Mean

Square Reorientation (MSR) accumulated after n bouts (Figure 1H–I). Both were consistent with their

experimental counterparts. In particular, this model quantitatively captures the ballistic-to-diffusive

transition that stems from the directional persistence of successive bouts (Figure 1I). As a conse-

quence, the effective rotational diffusivity at long time Deff ¼ 0:3rad2 is about twice as large than the

value expected for a memory-less random walk (i.e. with pflip ¼ 0:5, see dashed line in Figure 1I).

In this discrete Markov-chain model, time is not measured in seconds but corresponds to the

number of swim bouts. It thus implicitly ignores any dependence of the transition rates with the

interbout interval. We examined this hypothesis by evaluating the correlation in bouts orientations

as a function of the time elapsed between them. To do so, we first sorted the turning bouts by

selecting the large amplitude events (jdaj<0:22rad). We then binarized their values, based on their

leftward or rightward orientation, yielding a discrete binary signal sðtnÞ ¼ �1. We finally computed

the mean product hsðtnÞsðtpÞi for various time intervals Dt ¼ tp � tn. The resulting graph, shown in

Figure 1J, demonstrates that the correlation in orientation of successive bouts decays quasi-expo-

nentially with the inter-bout period. This mechanism can be captured by assuming that the orienta-

tion selection at each bout is governed by a hidden two-state continuous-time process. The simplest

one compatible with our observations is the telegraph process, whose transition probability over a

small interval dt reads kflipdt, and whose autocorrelation decays as expð�2kfliptÞ. Setting

kflip ¼ pflip=medianðtnÞ ¼ 0:2s�1, this model correctly captures the tn-dependence of the orientational

correlation of bouts.

In the two following sections, we use the discrete version of the Markov-chain model to represent

the fish navigation, and investigate how the model parameters are modulated in the presence of a

virtual distant light source. We then go back to the underlying continuous-time process when intro-

ducing a neuronal rate model for the orientation selection process.

Contrast-driven phototaxis can be described as a biased random walk
We first examined the situation in which the perceived stereo-visual contrast is the only cue accessi-

ble to the animal to infer the direction of the light source (tropotaxis regime). The visual stimulus

consisted of two uniformly lit half-disks, each covering one visual hemifield. The intensity delivered

to the left and right eyes, noted IL and IR respectively, were locked onto the fish’s orientation � rela-

tive to the virtual light source (Figure 2A): the total intensity (IL þ IR) was maintained constant while

the contrast c ¼ IL � IR was varied linearly with �, with a mirror symmetry at p=2 (Figure 2B). This

dependence was chosen to mimic the presence of a distant source located at � ¼ 0 for which the

contrast is null.

The orientation of the virtual source in the laboratory frame of reference was randomly selected

at initiation of each assay. After only a few bouts, the animal orientation was found to be statistically
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biased towards � ¼ 0, as shown in Figure 2C–D. This bias was quantified by computing the popula-

tion resultant v defined as the vectorial mean of all orientations (Figure 2E).

Trajectories that are strongly biased towards the source tend to exit the ROI earlier than unbiased

trajectories, which are more tortuous and thus more spatially confined. This generates a progressive

selection bias as the number of bouts considered is increased, as revealed by the slow decay of the

resultant vector length (Figure 2—figure supplement 1). In order to mitigate this selection bias, all

analyses of stationary distributions were restricted to bout indices lower than the median number of

bouts per trial (N � 17), and excluding the first bout. Under this condition, we found that ~77% of

zebrafish larvae display a significant phototactic behavior (Figure 2D–F, test of significance based

on a combination of two circular statistic tests, see Materials and methods), a fraction consistent

with values reported by Burgess et al. (2010) in actual phototactic assays .

From these recordings, we could characterize how the contrast experienced during the inter-bout

interval impacts the statistics of the forthcoming bout. Figure 2G displays the mean reorientation
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relative to the virtual source is noted �. (B) Left and right intensities (top panel) and contrast c ¼ IL�IR
ILþIR

(bottom panel) as a function of �. The virtual light

source is defined by a null contrast (c ¼ 0) and corresponds to a stable point (dc
d�<0). (C) Probability density function (pdf) of orientations relative to the

virtual light source for one fish during 20 trials, bouts 2 to 17 (n = 320 bouts). (D) Probability density function (pdf) of orientations for all tested fish

(N ¼ 47). Significantly biased toward the virtual source (V-test for non-uniformity with specified mean 0, pval<10
�11) (E) Definition of the mean resultant

vector v for one fish. The points represent the angular positions �n of the fish relative to the source. The vector v is defined as v ¼ 1

N

P

exp i�n
�
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�

�. The

mean angle to the source is f ¼ argðvÞ (F) Resultant vectors v for individual fish. (G) Mean reorientation <d�n> per bout as a function of contrast c for all

fish. Error bars represent the standard error of the mean. Red line is the linear fit with slope 0.2 rad. (H) Illustration of the shift in turning distribution

(�t<0) induced by a negative contrast. (I) Means, (J) standard deviations and (K) relative weight of the turning distribution as a function of the contrast.

For each value of the contrast, these quantities were extracted by double-Gaussian fitting of the bout angles. The error bars represent the 99%

confidence interval from the fit. (L) Average reorientation at bout nþ 1 as a function of the reorientation at bout n in reinforcing (contrast and previous

bout orientation are consistent) or conflicting (contrast and previous bout orientation are in conflict) situations. The dashed line is the analytical

prediction in the absence of stimulation. (M) Probability of switching direction pflip as a function of the contrast, in situations of conflict or reinforcement.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Evolution of the mean resultant vector projected on the direction of the virtual light source with the bout index.

Figure supplement 2. Evolution of contrast-driven bias slope with the bout index.
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<d�> as a function of the instantaneous contrast c. This graph reveals a quasi-linear dependence of

the mean reorientation with c, directed toward the brighter side. Notice that the associated slope

shows a significant decrease in the few first bouts, before reaching a quasi-constant value (Figure 2—

figure supplement 2). This effect likely reflects a short term habituation mechanism as the overall

intensity drops by a factor of 2 at the initiation of the assay.

For a more thorough analysis of the bout selection mechanisms leading to the orientational bias,

we examined, for all values of the contrast, the mean and variance of the two distributions associ-

ated with turning bouts and forward scoots, as well as the fraction of turning bouts pturn (Figure 2H–

K). We found that the orientational drift solely results from a probabilistic bias in the selection of the

turning bouts (left vs right) orientation: the mean orientation of the turning bouts varies linearly with

the imposed contrast (Figure 2I). Reversely, the ratio of turning bouts and the variance of the two

distributions are insensitive to the contrast Figure 2J–K). These results indicate that the stereo-visual

contrast has no impact neither on bout type selection nor on bout amplitude.

As discussed in the preceding section, in the absence of visual cue, successive bouts tend to be

oriented in the same direction. During phototaxis, the selection of the turning orientation is thus

expected to reflect a competition between two distinct mechanisms: motor persistence, which favors

the previous bout orientation, and stereo-visual bias, which favors the brighter side. To investigate

how these two processes interfere, we sorted the bouts into two categories. In the first one, called

’reinforcement’, the bright side is in the direction of the previous bout, such that both the motor

and sensory cues act in concert. In the second one, called ’conflicting’, the contrast tends to evoke a

turning bout in a direction opposite to the previous one. For each category, we plotted the mean

reorientation angle at bout n as a function of the reorientation angle at bout n� 1 (Figure 2L). We

further estimated, for each condition and each value of the contrast, the probability of flipping orien-

tation pflip (Figure 2M and Appendix 2). These two graphs show that the stereo-visual contrast con-

tinuously modulates the innate motor program by increasing or decreasing the probability of

flipping bout orientation from left to right and vice versa. Noticeably, in the conflicting situation at

maximum contrast, the visual cue and motor persistence almost cancel each other out such that the

mean orientation is close to (pflip ~ 0:4).

Phototaxis under uniform stimulation is driven by a modulation of the
orientational diffusivity
We now turn to the second paradigm, in which the stereo-visual contrast is null (both eyes receive

the same illumination at any time), but the total perceived illumination is orientation-dependent (kli-

notaxis regime). We thus imposed a uniform illumination to the fish whose intensity I was locked

onto the fish orientation � relative to a virtual light source. We tested three different illumination pro-

files Ið�Þ as shown in Figure 3A: a sinusoidal and two exponential profiles with different maxima.

Despite the absence of any direct orientational cue, a large majority of the larvae (78%) displayed

positive phototactic behavior: their orientational distribution showed a significant bias towards the

virtual light source, that is the direction of maximum intensity (Figure 3B–E).

Although the efficiency of the phototactic behavior is comparable to the tropotaxis case previ-

ously examined, here we did not observe any systematic bias of the reorientation bouts towards the

brighter direction (Figure 3F). This indicates that the larvae do not use the change in intensity at a

given bout to infer the orientation of the source in order to bias the orientation of the forthcoming

turn. Instead, the phototactic process originates from a visually driven modulation of the orienta-

tional diffusivity, as measured by the variance of the bout angle distributions (Figure 3G). The use of

different profiles allowed us to identify which particular feature of the visual stimulus drives this mod-

ulation. Although the bout amplitude variance was dependent on the intensity I and intensity change

dI experienced before the bout, these relationships were found to be inconsistent across the differ-

ent imposed intensity profiles. In contrast, when plotted as a function of dI=I, all curves collapse (Fig-

ure 3—figure supplement 1). This observation is in line with the Weber-Fechner law

(Fechner, 1860), which states that the perceived change scales with the relative change in the physi-

cal stimulus. One noticeable feature of this process is that the modulation of the turning amplitude

is limited to illumination decrement (i.e. negative values of dI=I). In the terminology of bacterial che-

motaxis (Oliveira et al., 2016), the zebrafish larva can thus be considered as a ’pessimistic’ photo-

tactic animal: the orientational diffusivity increases in response to a decrease in illumination
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(corresponding to a negative subjective value), whereas its exploratory kinematics remain unchanged

upon an increase of illumination (positive subjective value).

Two kinematic parameters can possibly impact the orientational diffusivity: the fraction of turning

bouts pturn and their characteristic amplitude sturn. We thus extracted these two quantities and plot-

ted them as a function of dI=I (Figure 3H–I). They appear to equally contribute to the observed

modulation.

To test whether this uniform phototactic process has a retinal origin, or whether it might be medi-

ated by non-visual deep-brain phototreceptors (Fernandes et al., 2012), we ran similar assays on bi-

enucleated fish. In this condition, no orientational bias was observed, which indicates that the retinal

pathway is involved in orientational klinotaxis Figure 3—figure supplement 2, all p-values > 0.14,

pairwise T-tests).

A biased random walk model for phototaxis provides a quantitative
prediction of light-driven orientational bias
In the preceding sections, we quantified how visual stimuli stochastically modulate specific kinematic

parameters of the subsequent bout. We used these relationships to build a biased random walk

model of phototaxis. We then tested how such a model could reproduce the statistical orientational

biases toward the directions of minimal contrast and maximal illumination. The phototactic model

thus incorporates a visually-driven bias to the discrete Markov-chain model introduced to represent

the spontaneous navigation (Figure 4A). In line with the observation of Figure 2M, the rate of flip-

ping orientational state (left-to-right or right-to-left) was a linear function of the imposed contrast:

kR!L ¼ kflip þ ac and kl!r ¼ kflip � ac. The value of a was set so as to capture the contrast-dependent

orientational drift (Figure 2G) and was made dependent on bout index in order to account for the

observed short-term habituation process (Figure 2—figure supplement 2).

The selection of bout type was in turn linearly modulated by the relative change in intensity after

negative rectification, dI=I½ ��¼ minðdI=I; 0Þ. Hence, the turn-to-forward and forward-to-turn transition
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Figure 3. Orientational phototaxis driven by modulation of the global illumination. N ¼ 37 fish, n ¼ 26; 443 bouts, mean of 23 trajectories per fish. (A)

Top panel : Angle-dependent intensity profiles delivered to the larva. The virtual light source is located at � ¼ 0, defined as the point of maximum

intensity. The profiles are sinusoidal (uniform 1, purple) or exponentially shaped (uniform 2 and 3 orange and yellow, respectively). All statistics were

computed using bout index two to the median number of bouts per sequence (resp. 27, 17 and 15 for the three profiles). (B–D) PDF of the fish

orientations for the three profiles. All three distributions are significantly biased towards the virtual source (V-test for non-uniformity of circular data with

specified mean , pvals respectively 9:10
�3, 2:10�7 and 3:10�5).(E) Resultant vector v for all individual fish. (F) Mean reorientation per bout <d�> of all fish

as a function of � for the three profiles. No significant bias towards the source (� ¼ 0) is observed. (G) Variance of the reorientation angles <d�2> as a

function of the relative change in intensity experienced at the previous bout dI=I. Error bars are standard error of the mean. (H) Standard deviation sturn

of turning bouts as a function of dI=I. The standard deviation of forward scouts was set at sfwd , and sturn was then estimated using a double-Gaussian

fitting of the bout angles. Error bars are the 99% confidence interval from fit. (I) Probability of triggering a turning bout as a function of dI=I. Error bars

are the 99% confidence interval from the fit.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Variance of d� as a function of three different illumination parameters.

Figure supplement 2. Control for retinal origin of klinotaxis.
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rates read kt!f ¼ kturn þ b dI=I½ �� and kf!t ¼ kturn � b dI=I½ ��, respectively. We also imposed a linear

modulation of the turn amplitude variance sturn ¼ s
spont
turn � g dI=I½ ��. The values of b and g were

adjusted to reproduce the observed dependence of the turn-vs-forward ratio and bout amplitude

with dI=I (Figure 3H–I).

This stochastic model was tested under two conditions, tropo- and klino-phototaxis, similar to

those probed in the experiments (Figure 4B). In order to account for the sampling bias associated

with the finite size of the experimental ROI, the particles in the simulations also progressed in a 2D

arena. At each time step, a forward displacement was drawn from a gamma distribution adjusted on

the experimental data (Figure 5—figure supplement 1). Statistical analysis was restricted to bouts

executed within a circular ROI as in the experimental assay.

The comparison of the data and numerical simulation is shown in Figure 4C for the tropotaxis

protocol and in Figure 4D–F for the klinotaxis protocols. This minimal stochastic model quantita-

tively captures the distribution of orientations. It also reproduces the evolution of the orientational

bias with the bout index as measured by the length of the resultant vector (Figure 4G–J).

A
decision tree for simulation

B

2
0
m

m

e
x
p

e
ri
m

e
n

ts
s
im

u
la

ti
o

n
s

uniform stim. 1stereovisual stim.no source

start

density

excess

0

5

-5

C

G

D

H

E

I

F

J

0.3
π

2
π

2
-

π

0

0

θ
exp.
s.e.m.
simu.
analytical

stereovisual stimulation

0.3
π

2
π

2
-

π

0

0

θ

uniform stimulation 1

exp.
s.e.m.
simu.

0.3
π

2
π

2
-

π

0

0

θ

uniform stimulation 2

exp.
s.e.m.
simu.

0.3
π

2
π

2
-

π

0

0

θ

uniform stimulation 3

exp.
s.e.m.
simu.

bout number

0.2

10

v
.c
o
s
(φ
)

0.3

0.1

0
0 20 30

m.
.

bout number

0.2

10

v
.c
o
s
(φ
)

0.3

0.1

0
0 20 30

exp.
s.e.m.
simu.

bout number

0.2

10

v
.c
o
s
(φ
)

0.3

0.1

0
0 20 30

bout number

0.2

10

v
.c
o
s
(φ
)

0.3

0.1

0
0 20 30

exp
m.
.

Figure 4. A Markov-chain model of phototaxis captures the observed orientational distribution. (A) Decision tree for simulation: selection of forward

scoots vs turning bouts are governed by the relative intensity change at the previous bout. If a turning bout is triggered, the selection of left-right

orientation is biased by the stereovisual contrast. (B) 2D density profiles computed from all experimental and simulated trajectories for the three

different paradigms (no stimulation, lateralized illumination and uniform illumination). The color encodes the excess or deficit of density with respect to

the radially-averaged density without any stimulation. (C–F) Experimental (color) and simulation (solid line) probability density distributions of

orientations for the four phototactic configurations (stereo-visual stimulation, uniform stimulation with angular profiles 1 to 3). (G–J) Evolution of the

projection of the resultant vector onto the direction of the light source as a function of the bout number for the experiment (color) and simulation (solid

line). Error bar : standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Inter-bout distance distribution.
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A neuronal model of the ARTR captures spontaneous and contrast-
driven navigation
The behavioral description proposed above indicates that larvae navigation can be correctly

accounted for by two independent stochastic processes: one that organizes the sequence of succes-

sive bouts amplitude and in particular the selection of forward vs turning events, while a second one

selects the left vs right orientation of the turning bouts. These two processes are independently

modulated by two distinct features of the visual stimulus, namely the global intensity changes and

the stereo-visual contrast, leading to the two phototactic strategies.

This in turn suggests that, at the neuronal level, two independent circuits may control these char-

acteristics of the executed swim bouts. As mentioned in the introduction, the ARTR is a natural can-

didate for the neuronal selection of bouts orientation. This small bilaterally-distributed circuit

located in the anterior hindbrain displays antiphasic activity oscillation with ~ 20s period

(Ahrens et al., 2013). The currently active region (left or right) constitutes a strong predictor of the

orientation of turning bouts (Dunn et al., 2016). This circuit further integrates visual inputs as each

ARTR subpopulation responds to the stimulation of the ipsilateral eye (Wolf et al., 2017).

Here, we adapted a minimal neuronal model of the ARTR, introduced in Wolf et al. (2017) to

interpret the calcium recordings, and tested whether it could explain the observed statistics of

exploration in both spontaneous and phototactic conditions. The architecture of the model is

depicted in Figure 5A and the equations governing the network dynamics are provided in Appendix

2. The network consists of two modules selective for leftward and rightward turning, respectively.

Recurrent excitation (wE) drives self-sustained persistent activities over finite periods of time. Recip-

rocal inhibition (wI ) between the left and right modules endows the circuit with an antiphasic dynam-

ics. Finally, each ARTR module receives an input current from the visual system proportional to the

illumination of the ipsilateral eye. Such architecture gives rise to a stimulus-selective attractor as

described in Freeman (1995) and Wang (2002).

The various model parameters were adjusted in order to match the behavioral data (see Appen-

dix 2). First, the self-excitatory and cross-inhibitory couplings were chosen such that the circuit dis-

played spontaneous oscillatory dynamics in the absence of sensory input. Figure 5B shows example

traces of the two units’ activity in this particular regime. From these two traces, we extracted a

binary ’orientational state’ signal by assigning to each time point a left or right value (indicated in

red and blue, respectively), based on the identity of the module with the largest activity.

In the present approach, tail bouts are assumed to be triggered independently of the ARTR activ-

ity. The latter thus acts as mere orientational hub by selecting the orientation of the turning events:

incoming bouts are oriented in the direction associated with the currently active module. In the

absence of information regarding the circuit that organizes the swim bouts emission, their timing

and absolute amplitude were drawn from the behavioral recordings of freely swimming larvae. Com-

bined with the ARTR dynamics, this yielded a discrete sequence of simulated bouts (leftward, right-

ward and forward, Figure 5B, inset). With adequate choice of parameters, this model captures the

orientational persistence mechanism as quantified by the slow decay of the turning bout autocorrela-

tion with the interbout interval (Figure 5C and Figure 5—figure supplement 1).

In the presence of a lateralized visual stimulus, the oscillatory dynamics become biased towards

the brighter direction (Figure 5D–E). Hence, illuminating the right eye favors longer periods of acti-

vation of the rightward-selective ARTR unit. The mean reorientation displays a quasi-linear depen-

dence with the imposed contrast (Figure 5D) consistent with the behavioral observations

(Figure 2G). At intermediate contrast values, the orientation of bouts remains stochastic; the effect

of the contrast is to lengthen streaks of turning bouts toward the light (Figure 5E). We also tested

whether this model could capture the competition mechanism between stereovisual bias and motor

persistence, in both conflicting and reinforcement conditions. We thus computed the dependence

of the flipping probability pflip as a function of the contrast in both conditions (Figure 5F). The result-

ing graph is in quantitative agreement with its experimental counterparts (Figure 2M).

We finally used this model to emulate a simulated phototactic task. In order to do so, a virtual

fish was submitted to a contrast whose amplitude varied linearly with the animal orientation, as in

the lateralized assay. When a turning bout was triggered, its orientation was set by the ARTR instan-

taneous activity while its amplitude was drawn from the experimental distributions. After a few

bouts, a stationary distribution of orientation was reached that was biased toward the virtual light
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source (Figure 5G). Its profile was in quantitative agreement with its experimental counterpart

(mean resultant vector length v ¼ 0:23 in simulation for v ¼ 0:24 in experimental data for bouts 2 to

17).

Discussion
Sensorimotor transformation can be viewed as an operation of massive dimensionality reduction, in

which a continuous stream of sensory and motor-related signals is converted into a discrete series of

stereotyped motor actions. The challenge in understanding this process is (i) to correctly categorize

the motor events, that is to reveal the correct parametrization of the motor repertoire, and (ii) to

unveil the statistical rules for action selection. Testing the validity of such description can be done by

building a minimal model based on these rules. If the model is correct, the motor variability unac-

counted for by the model should be entirely random, that is independent of the sensorimotor

history.

Here, we implemented a minimal model approach in order to unveil the basic rules underlying

phototaxis. We showed that zebrafish light-driven orientational navigation can be quantitatively
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orientation of bouts. Persistent and self-alternating dynamics result from the recurrent excitation (wE ) and reciprocal inhibition (wI ) between each unit.
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contrast c. (E) Example traces of the simulated activity for a constant contrast c ¼ 0:5. (F) Probability of flipping orientation as a function of the imposed

contrast c in situations of conflict or reinforcement (neuronal model). (G) Probability distribution function of � for 10 simulated phototactic trajectories

with a linear dependence of average reorientation on contrast. Each trajectory lasted 50,000 s. The dotted line is the orientational distribution in the

absence of visual stimulation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of experimental and simulated trajectories.

Figure supplement 2. Simulated trajectories with different inter-bout intervals tn.
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described by a stochastic model consisting of two independent Markov chains: one that selects for-

ward scoots vs turning bouts and a second one that sets the orientation of the latter. We established

that the stereo-visual contrast and global intensity modulation act separately on each of these selec-

tion processes. The contrast induces a directed bias of turning bouts toward the illuminated side,

but does not impact the prevalence of turning bouts vs forward scoots. Reversely, a global decre-

ment in illumination increases the ratio of turning bouts but does not favor any particular direction.

For the contrast-driven configuration (tropotaxis), the minimal model corresponds to an Ornstein-

Uhlenbeck process (Uhlenbeck and Ornstein, 1930), which describes the dynamics of a diffusive

brownian particle in a quadratic trap. In the klinotaxis configuration (in the absence of stereo-visual

contrast), the orientational bias solely results from a light-dependent modulation of the diffusivity, a

mechanism reminiscent of bacterial chemotaxis.

This stochastic minimal model is built on a simple decision tree (Figure 4A) with a set of binary

choices. However, to fully capture the orientational dynamics, we had to incorporate the continuous

increase in turning bout amplitude with the light decrement in an ad-hoc way. It is currently unclear

whether all turn bouts in our experiments can be assigned to a single class of swim maneuvers that

are modulated in amplitude, or whether these encompass distinct motor programs executed with

varying frequencies. In the latter case, it might be possible to represent this amplitude modulation

through an extension of the decision tree that would select between distinct turn bout categories.

Compared to previous studies on phototaxis, for example (Burgess et al., 2010), our approach

allowed us to clearly disentangle the contributions of spatial (stereovisual contrast) and time-depen-

dent (motion-induced change in global illumination) visual cues. Hence, the contrast-driven assays

were performed under constant overall illumination intensity (the sum of left and right intensities).

This allowed us to establish that, rather surprisingly, the probability of triggering a turn (vs a forward

swim) is insensitive to the imposed contrast. This possibility constitutes an important asset with

respect to standard experimental configurations, such as the one examined by Burgess et al.

(2010), in which the animal is submitted to an actual light source. Although these configurations pro-

vide a more realistic context, the visual stimulus effectively perceived by each eye can not be quanti-

tatively assessed, which precludes the design of predictive models. Conversely, once adjusted on

well-controlled virtual assays, our model could be numerically implemented in realistic environments,

and the trajectories could then be directly confronted with behavioral data. This would require to

first infer how the intensity impinging on each eye depends on the source distance and orientation

relative to the animal body axis.

Another critical and distinct aspect of the present work is its focus on the steady-state dynamics.

Our aim was to mimic the continuous exploration of an environment in which the brightness level

displayed slowly varying angular modulations. The luminosity profiles were thus chosen to ensure

that individual bouts elicited relatively mild changes in illumination. By doing so, we tried to mitigate

visual startle responses that are known to be elicited upon sudden darkening (Easter and Nicola,

1996). Although we could not avoid the initial large drop in illumination at the onset of each trial,

the associated short-term response (i.e. the first bout) was excluded from the analysis. In this

respect, our experiment differs from the study of Chen and Engert (2014) in which a similar closed-

loop setup was used to demonstrate the ability of larvae to confine their navigation within bright

regions. This behavior was entirely controlled by the animal’s response to light-on or light-off stimuli

as it crossed the virtual border between a bright central disk and the dark outer area. These sharp

transitions resulted in clear-cut behavioral changes that lasted for a few bouts. In comparison, our

experiment addresses a different regime in which subtle light-driven biases in the spontaneous

exploration cumulatively drive the animal toward brightest regions.

As we aimed to obtain a simple and tractable kinematic description, we ignored some other

aspects of the navigation characteristics. First, we focused on the orientation of the animal and thus

did not systematically investigate how the forward components of the swim bouts were impacted by

visual stimuli. However, in the context of angle-dependent intensity profiles, this effect should not

impact the observed orientational dynamics. More importantly, we ran most of our analysis using the

bout number as a time-scale, and thus ignored possible light-driven modulations of the inter-bout

intervals (tn). We showed, however, that the orientational correlation is controlled by an actual time-

scale. This result may have significant consequence on the fish exploration. In particular, we expect

that changes in bout frequency, reflecting various levels of motor activity, may significantly affect the

geometry of the trajectories (and not only the speed at which they are explored). We illustrated this
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process by running numerical experiments at similar flipping rate kflip but increasing bout frequen-

cies. The trajectories, shown in Figure 5—figure supplement 2, exhibit increasing complexity as

measured by the fractal dimension. This mechanism may explain the changes in trajectories’ geome-

try observed by Horstick et al. (2017) in response to sudden light dimming.

An important outcome of this study is to show that light-seeking navigation uses visual cues over

relatively short time scales. The bouts statistics could be captured with a first-order autoregressive

process, indicating that the stimulus perceived over one tn is sufficient to predict the forthcoming

bout. However, one should be aware that such observation is only valid provided that the sensory

context remains relatively stable. Hence for instance, a prolonged uniform drop in luminosity is

known to enhance the overall motor activity (generally estimated by the average displacement over

a period of time) for up to several tens of minutes (Prober et al., 2006; Emran et al., 2007;

Emran et al., 2010; Liu et al., 2015). This long-term behavioral change, so-called photokinesis,

might be regulated by deep brain photoreceptors (Fernandes et al., 2012; Horstick et al., 2017)

and thus constitutes a distinct mechanism. One particularly exciting prospect will be to understand

how such behavioral plasticity may not only modulate the spontaneous activity (Johnson et al.,

2019) but also affects the phototactic dynamics.

One of the motivations of minimal behavioral models is to facilitate the functional identification

and modeling of neural circuits that implement the identified sensorimotor operations in the brain.

Here, we used the behavioral results to propose a neuronal model of the ARTR that quantitatively

reproduces non-trivial aspects of the bout selection process. This recurrent neural circuit is a simpli-

fied version of working memory models developed by Brunel and Wang (2001); Wang (2001);

Wang (2002); Wang (2008) and adapted in Wang (2002) for a decision task executed in the parie-

tal cortex (Shadlen and Newsome, 1996; Shadlen and Newsome, 2001). In this class of models,

the binary decision process reflects the competition between two cross-inhibitory neural popula-

tions. The circuit is endowed with two major functional capacities: (1) it can maintain mnemonic per-

sistent activity over long periods of time, thanks to recurrent excitatory inputs; (2) it can integrate

sensory signals in a graded fashion to continuously bias the statistics of the decision. This model

thus naturally recapitulates the major functional features of the sensory-biased Markov side-chain -

motor persistence and contrast-driven continuous bias - that organizes the orientation selection.

It is tempting to generalize about this behavior-to-circuit approach, at least in small animals such

as Zebrafish or Drosophila, by representing any behavior as a coordinated sequence of competing

elemental actions biased by sensory feedback and organized within a hierarchical decision tree. The

identification of such decision trees through quantitative behavioral analysis may provide a blueprint

of the brain functional organization and significantly ease the development of circuit models of

brain-scale sensorimotor computation.

Materials and methods

Zebrafish maintenance and behavioral setup
All experiments were performed on wild-type Zebrafish (Danio Rerio) larvae aged 5 to 8 days post-

fertilization. Larvae were reared in Petri dishes in E3 solution on a 14/10 hr light/dark cycle at 28˚C,

and were fed powdered nursery food every day from 6 dpf.

Experiments were conducted during daytime hours (10 am to 6 pm). The arena consisted of a 14

cm in diameter Petri dish containing E3 medium. It was placed on a screen illuminated from below

by a projector (ASUS S1). Infrared illumination was provided by LEDs to enable video-monitoring

and subsequent tracking of the fish. We used an IR-sensitive Flea3 USB3 camera (FL3-U3-13Y13M-C,

Point Grey Research, Richmond, BC, Canada) with an adjustable macro lens (Zoom 7000, Navitar,

USA) equipped with an IR filter. The experimental setup was enclosed in a light-tight rig, which was

maintained at 26˚C using ’The Cube’ (Life Imaging Services).

For the stereovisual paradigm N = 47 larvae were tested, and N = 37 for the temporal paradigm

[(uniform 1) : 12, (uniform 2) : 11, (uniform 3) : 14]. All fish (N=75) that navigated in the ROI for a sig-

nificant period of time during the habituation period were also used to assess spontaneous naviga-

tion statistics.
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Behavioral assay
Closed-loop tracking and visual stimulation were performed at a mean frequency of 35 Hz, with a

custom-written software (Karpenko, 2019b; copy archived at https://github.com/elifesciences-publi-

cations/Analysis_Behavioral_Phototaxis) in Matlab (The MathWorks), using the PsychToolBox (PTB)

version 3.0.14 add-on. Positions and orientations (heading direction) of the fish, as well as bouts

characteristics, were extracted online and the illumination pattern was updated accordingly, with a

maximum latency of 34 ms. Heading direction was extracted with an accuracy of + /- 0.05 rad ( ~ 3�).

Behavioral monitoring was restricted to a circular central region of interest (ROI) of 8.2 cm diameter.

When outside the ROI, the fish was actively brought back into the ROI through the opto-motor reflex

(OMR), using a concentrically moving circular pattern. One second after the fish re-entered the ROI,

a new recording sequence was started.

Prior to the phototactic assay, all tested fish were subjected to a period of at least 8 min of habit-

uation under whole-field illumination at an intensity of Imax ¼ 450�W :cm�2. For both phototactic para-

digms, the absolute orientation of the virtual source was randomly selected when initiating a new

experimental sequence (each time the animal would re-enter the ROI). The orientation of the fish rel-

ative to the light source �n was calculated online using the absolute orientation of the fish an and the

orientation of the virtual light source asource : �n ¼ an � asource.

Lateralized paradigm. A circle of 6 cm in diameter was projected under and centered on the fish.

The circle was divided into two parts, covering the left and right side of the fish. The separation

between the two parts corresponded to the animal’s midline. A separation band (2 mm thick) and an

angular sector (30�) in front of the animal were darkened to avoid interception of light coming from

the right side of the fish by its left eye and vice-versa. The left and right intensities (IL and IR) were

varied linearly as a function of �, such that IL þ IR ¼ Imax. Since during the habituation period, the

whole arena was lit at maximum intensity Imax, the total intensity received by the fish drops by a fac-

tor of » 2 with the establishment of the circle, at the onset of the assay.

Although our imposed contrast profile displays two angles for which the contrast is null, namely

� ¼ 0 and p, only does the first one correspond to a stable equilibrium point. When � is close to

zero, any excursion away from this particular direction results in a contrast that drives the animal

back to the null angle. Conversely, when �»p, the contrast drives the animal away from p (unstable

equilibrium).

Temporal paradigm. The whole arena was illuminated with an intensity locked onto the fish orien-

tation � relative to a virtual light source. The initial orientation was randomly chosen at the beginning

of a recording sequence. Three different intensity angular profiles were implemented: (uniform 1) a

sinusoidal profile, with a maximum intensity of 60% of Imax, (uniform 2) an exponential profile, with a

maximum intensity of 60% of Imax and finally (uniform 3) an exponential profile with a maximum

intensity of 30% of Imax.

Data analysis
Data analysis was performed using a custom-written code in Matlab. All analysis programs and data

are available at Karpenko (2019a).

When representing the mean of one variable against another, bin edges were chosen such that

each bin would encompass the same number of data points. Circular statistics analyses (mean, vari-

ance, uniformity) and circular statistics tests, namely the circular V-test of non-uniformity of data and

the one-sample test for the mean angle of a circular distribution (tested on the orientation of the

light virtual light source) were performed using CircStat toolbox for Matlab (Berens, 2009).

Individual fish often exhibit a small yet consistent bias toward one direction (either leftward or

rightward). This bias was subtracted before performing the different analyses, in order to guarantee

that <a> ¼ 0 in the absence of a stimulus. The distribution of reorientation angles d�n during sponta-

neous swimming periods was fitted with a constrained double-Gaussian function. We imposed that

both the mean absolute angle and variance of the fitting function be consistent with the experimen-

tal measurements. This yields an expression with only one independent fitting parameter pturn in the

form:
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To evaluate the mean and variance of the forward and turn bouts under various visual contexts,

the distributions in different bins were also fitted with a constrained double-Gaussian model as in

(1). The stereovisual data distributions were fitted with two additional mean terms �turn and �fwd ;

and for the klinotaxis assay, with a constraint on sfwd and �fwd. The bins were constructed either on

the contrast c experienced just before bout n or on the relative difference of intensity experienced

at bout n� 1 : dI=I ¼ 2
In�1�In�2

In�1þIn�2

.

All distributions of �n and analyses of bias were computed using trajectories from bout index two

to the median number of bouts per sequence in each type of experiment. The median number of

bouts in each experiment was medstereo ¼ 17 for the tropotaxis experiment, and 27, 15, 17 for the kli-

notaxis assays for the 3 profiles 1–3, respectively.

Numerical simulations
The Markov-chain model simulations were performed using a custom-written code in MATLAB

(Karpenko, 2019b). Initial orientations and positions within the ROI were randomly sampled from,

respectively, a uniform distribution and a normal distribution centered on a circle of radius 20 mm

from the center of the ROI with a standard deviation of 1.3 mm (mimicking the starting points of

experimental data).

At each step, an angular step-size is drawn from the data: either from the turning distribution

with a probability pturn or from the forward distribution with a probability 1� pturn. Respective means

are �turn and �fwd and standard deviation sturn and sfwd. The left-vs-right orientations of the turns is

set by the probability of flipping sides pflip. For the spatially constrained simulations, the walker also

draws a distance step-size (between two successive positions) from two different gamma distribu-

tions: one for the turning bouts, a second one for the scoots. Under neutral conditions (uniform illu-

mination), all parameters are constant.

For the simulation under stereovisual phototactic conditions, pflip was varied linearly with the con-

trast (based on the data represented in Figure 2M). When simulating temporal phototaxis, the

parameters sturn and pturn were modulated by the relative illumination change dI=I experienced at

the previous steps (as represented in Figure 3H–I).
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H2020 European Research
Council

71598 Volker Bormuth

Agence Nationale de la Re-
cherche

ANR-16-CE16-0017 Raphaël Candelier
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Appendix 1

Modelling spontaneous navigation of zebrafish larvae
We model the discrete trajectories (sequences of bouts) as a stochastic process using two

independent Markov chains, depicted in Figure 1E. The bout type chain (top) controls the

alternation between forward and turning bouts, with possible states Fn and Tn at time n, while

the side chain (bottom) controls the left/right orientations of turning bouts, with possible

states Ln and Rn. All possible states are combinations of the states of the two chains, namely

fFLgn, fFRgn, fTLgn, and fTRng. The transition rates of the bout type chain are kF!T and kT!F,

where kF!T=kT!F ¼ pturn is the overall fraction of turning bouts. For the side chain, under

constant uniform illumination, the right and left states are equiprobable, and the two transition

probabilities are thus equal: kR!L ¼ kL!R ¼ pflip.

The two chains operate synchronously: at every time step transitions on both chains are

triggered simultaneously, and a reorientation value dan is drawn based on the resulting state.

When the fish is in a turning state, fTLgn or fTRgn, the reorientation angle is sampled from the

positive and negative side of a centered normal distribution with standard deviation sturn for

left and right turns, respectively. When the fish is in a forward state, fFLgn or fFRgn, the
reorientation angle is drawn from a normal distribution with standard deviation sfwd.

Therefore, for forward bouts the resulting dan can be positive or negative, irrespective of the

left/right state of the side chain. Altogether, the general statistical distribution of turning

amplitudes dan used in Figure 1F reads

PðdanÞ ¼ftðdanÞþff ðdanÞ (A1)

with

ft ¼ pturnNð0; s2

turnÞ and ff ¼ ð1� pturnÞN ð0; s2

fwdÞ (A2)

Mean amplitude at nþ 1

Within this framework, one can analytically compute the mean square angle at time nþ 1, as

detailed below:

da2

nþ1


 �

¼ PðFnþ1Þs2

fwd þPðTnþ1Þs2

turn (A3)

The two probabilities read:

PðFnþ1Þ ¼ PðFnÞð1� kF!TÞþPðTnÞkT!F

PðTnþ1Þ ¼ PðTnÞð1� kT!FÞþPðFnÞkF!T

such that

da2

nþ1


 �

¼ PðFnÞ s2

fwd þ kF!Tðs2

turn�s2

fwdÞ
h i

þPðTnÞ s2

turn þ kT!Fðs2

fwd �s2

turnÞ
h i

Using the functions defined in Equation A2 we introduce the function f ðdanÞ:

f ðdanÞ ¼ PðTnjdanÞ ¼
ftðdanÞ

ftðdanÞþff ðdanÞ
(A4)

The mean square amplitude at time nþ 1 can thus be written, as a function of dan as:

da2

nþ1


 �

¼ s2

fwd þ kF!Tðs2

turn �s2

fwdÞþ f ð danj jÞðs2

turn �s2

fwdÞð1� kT!F � kF!TÞ (A5)

This expression is used to fit the data in Figure 1F and estimate the two transition rates.

These are found to be close to the ratio of turning and forward bouts,

that is kF!T=pturn ¼ kT!F=ð1� pturnÞ»0:8. In the following, we set kF!T ¼ pturn and
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kT!F ¼ 1� pturn, thus ignoring the weak memory component in the selection of turning vs

forward bouts.

Mean reorientation at nþ 1

Similarly, one can compute the theoretical expression of the mean reorientation angle at time

nþ 1:

danþ1h i ¼ PðfFLgnþ1
Þ�f þPðfFRgnþ1

Þ�f þPðfTLgnþ1
Þ�LþPðfTRgnþ1

Þ�R (A6)

with

�f ¼ 0 and �L ¼��R ¼
ffiffiffiffi

2

p

r

sturn (A7)

Then:

PðfTLgnþ1
Þ ¼ PðTnþ1ÞPðLnþ1Þ ¼ pturn pflipPðRnÞþ ð1� pflipÞPðLnÞ

� �

PðfTRgnþ1
Þ ¼ PðTnþ1ÞPðRnþ1Þ ¼ pturn pflipPðLnÞþ ð1� pflipÞPðRnÞ

� �

and

danþ1h i ¼ pturnð1� 2pflipÞ
ffiffiffiffi

2

p

r

sturn PðLnÞ�PðRnÞ½ � (A8)

Without further assumption, this simply confirms danþ1h i ¼ 0. Given the reorientation at

time n, this expression now writes:

danþ1h idan
¼ pturnð1� 2pflipÞ

ffiffiffiffi

2

p

r

sturn PðLnjdanÞ�PðRnjdanÞ½ � (A9)

Since

PðLnjdanÞ ¼ PðLnjTn;danÞPðTnjdanÞþPðLnjFn;danÞPðFnjdanÞ

PðRnjdanÞ ¼ PðRnjTn;danÞPðTnjdanÞþPðRnjFn;danÞPðFnjdanÞ

and

PðLnjFn;danÞ ¼ PðRnjFn;danÞ ¼ 1=2

we obtain

danþ1h idan
¼ PðLnjTn;danÞ�PðRnjTn;danÞ½ �pturnð1� 2pflipÞ

ffiffiffiffi

2

p

r

sturnf ðdanÞ (A10)

Then, noting that

PðLnjTn;dan>0Þ ¼ 1

PðRnjTn;dan>0Þ ¼ 0

�

and
PðLnjTn;dan<0Þ ¼ 0

PðRnjTn;dan<0Þ ¼ 1

�

we finally obtain the formula used to fit the data in Figure 1G:

danþ1h idan
¼ signðdanÞ

ffiffiffiffi

2

p

r

pturnð1� 2pflipÞsturnf ðdanÞ (A11)

Autocorrelation of the reorientations
One can then compute the correlation of reorientation amplitudes, defined for q 2 N

� as:
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Cq ¼
dandanþq


 �

� danh i danþq


 �

ffiffiffiffiffiffiffiffiffiffiffiffi

da2
n


 �

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

da2
nþq


 �

q ¼ dandanþq


 �

da2
n


 � (A12)

with the normalization coefficient equal to the variance of reorientations

da2

n


 �

¼ pturns
2

turnþð1� pturnÞs2

fwd (A13)

The term dandanþq


 �

can be computed in a similar manner as for Equation A6, but with

more terms corresponding to the 16 possible combinations of states:

fFLgn;fFLgnþq fFLgn;fFRgnþq fFLgn;fTLgnþq fFLgn;fTRgnþq

fFRgn;fFLgnþq fFRgn;fFRgnþq fFRgn;fTLgnþq fFRgn;fTRgnþq

fTLgn;fFLgnþq fTLgn;fFRgnþq fTLgn;fTLgnþq fTLgn;fTRgnþq

fTRgn;fFLgnþq fTRgn;fFRgnþq fTRgn;fTLgnþq fTRgn;fTRgnþq

Only the four states in the bottom-right corner have a finite contribution, since all the

others terms are multiplied by �f ¼ 0. Thus:

dandanþq


 �

¼ PðfTLgn;fTLgnþqÞ�2

L þPðfTLgn;fTRgnþqÞ�L�Rþ
PðfTRgn;fTLgnþqÞ�R�LþPðfTRgn;fTRgnþqÞ�2

R

and, using Equation A7 and

PðfTLgnfTLgnþqÞ ¼ PðTnÞPðTnþqÞPðLnÞPðLnþqjLnÞ ¼
p2turn
2

PðLnþqjLnÞ

PðfTLgnfTRgnþqÞ ¼ PðTnÞPðTnþqÞPðLnÞPðRnþqjLnÞ ¼
p2turn
2

PðRnþqjLnÞ

PðfTRgnfTLgnþqÞ ¼ PðTnÞPðTnþqÞPðRnÞPðLnþqjRnÞ ¼
p2turn
2

PðLnþqjRnÞ

PðfTRgnfTRgnþqÞ ¼ PðTnÞPðTnþqÞPðRnÞPðRnþqjRnÞ ¼
p2turn
2

PðRnþqjRnÞ

and noting that

PðLnþqjLnÞ ¼ PðRnþqjRnÞ ¼
X

qþ1

i¼ 1

i~odd

q

i

� �

pi�1

flip ð1� pflipÞq�iþ1

PðLnþqjRnÞ ¼ PðRnþqjLnÞ ¼
X

qþ1

i¼ 1

i~even

q

i

� �

pi�1

flip ð1� pflipÞq�iþ1

one obtains

dandanþq


 �

¼ p2turn

X

qþ1

i¼1

ð�1Þqþ1
qipi�1

flip ð1� pflipÞq�iþ1

" #

�2

L ¼
2

p
1� 2pflip
� �q

p2turns
2

turn

and finally:

Cq ¼
2

p

p2turns
2

turn

pturns2
turn þð1� pturnÞs2

fwd

ð1� 2pflipÞq (A14)

This is the equation used to fit the data in Figure 1H.

An estimate of pflip was calculated as follows. If only turns are considered :
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dandanþ1h i ¼ pturnð1� pflipÞ jdanjjdanþ1jh i� pturnpflip jdanjjdanþ1jh i
¼ p2turn½ð1� 2pflipÞ jdanjjdanþ1jh i�

thus :

dandanþ1h i
jdanjjdanþ1jh i ¼ p2turnð1� 2pflipÞ ¼C1

And finally

pflip ¼
1

2
ð1� C1

p2turn
Þ (A15)

Mean square reorientation (MSR)
The mean square reorientation for a lag q 2 N

� is defined by:

Mq ¼ anþq �an

� �2
D E

(A16)

and can be expressed as a sum of correlations as follows:

Mq ¼
X

q

i¼1

danþi�1

 !2* +

¼
X

q

i¼1

X

q

j¼1

danþi�1danþj�1

* +

¼
X

q

i¼1

X

q

j¼1

danþi�1danþj�1


 �

¼ q da2

n


 �

þ
X

q

i¼1

X

q

j¼ 1

j 6¼ i

danþi�1danþj�1


 �

¼ q da2

n
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and using Equation A13 we finally obtain the expression used in Figure 1I:
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Appendix 2

Neuronal model of the ARTR
The architecture of the ARTR neuronal model is shown in Figure 5A. The circuit consists of

two modules selective to lefward or rightward turning. Each module receives recurrent

excitatory, cross-inhibitory and sensory inputs. The firing rates of the left/right ARTR modules,

noted rL;R, are governed by two differential equations:

t_rL ¼�rLþf wErL �wIrRþ I0 þ ILðtÞð Þþ �ðtÞ
t_rR ¼�rRþf wErR �wIrLþ I0 þ IRðtÞð Þþ �ðtÞ

�

(A18)

where wErL;R is the recurrent excitatory current and wIrL;R is the cross-inhibitory current

originating from the contralateral side of the network. I0 is a constant input current and �ðtÞ is
a white noise. The function f is a non-negative spiking constraint such that fðx>0Þ ¼ x and

fðx<0Þ ¼ 0. We fixed t¼ 100ms, a typical slow synaptic time constant, as in Wang (2002). The

constant input current is set to I0 ¼ 20s�1 and the standard deviation of the noise current � is

set at 500s�1 as in Wolf et al. (2017). IR and IL are the visual input currents, proportional to

the intensity impinging the right and left eyes, respectively.

In this dynamical system, wI controls the anticorrelation between left and right module

activities. We fixed wI ¼ 7 such that the anticorrelation of the left and right signals (in the

absence of visual inputs) was comparable to the value �0:4 measured through calcium

imaging of the ARTR as reported in Wolf et al. (2017). The parameter wE controls the ability

for each side of the network to exhibit stable activity across time periods longer than t. The

network exhibits three different dynamic regimes depending on wE. One is characterized by

an absence of stable activity (low wE). For wE ~ 1, one module is constantly active while the

other remains silent. At intermediate values of wE, the network displays stochastic slow

alternations between both states. The fixation time, that is the characteristic decay time of the

autocorrelation of rL;R, is governed by wE. We chose wE ¼ 0:925 such that the auto-correlation

in orientation of turning bouts is similar to its experimental counterpart (Figure 5C and

Figure 1J).

To examine the effect of a stereovisual contrast c on the network dynamics, the sensory

input currents were set such that:

ILðtÞ ¼ Ilightð1� cÞ=2
IRðtÞ ¼ Ilightð1þ cÞ=2

�

(A19)

The value of the maximum current Ilight was set at Ilight ¼ 1000s�1 in order to reproduce the

contrast-dependent orientational bias (Figure 5D and Figure 2G).
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Chapter 4

Interlude: Head-fixed virtual
orientation of zebrafish larva to a
light source

Having reached a thorough understanding of the two complementary strategies at play
during larval zebrafish light-seeking behavior, we now seek to understand the neuronal
processes that subserve this behavior. An intermediate step is then to either build a
moving microscope which is able to follow the larva as it navigates (Kim et al., 2017),
or a less but still sufficiently challenging approach is to elicit a similar behavior under
a fixed microscope, thus in tethered and virtual-reality conditions.

In this Chapter I will describe a setup that enables the emulation of a setting in which
a partially restrained zebrafish larva can reorient with respect to a virtual light source.
The larva is fixed by the abdomen, while eyes and tail, whose orientation and position,
are monitored are free to move. In the first part of the chapter, I will describe the
attempted swim kinematics under constant illumination. In a second part, I will show
how a virtual orientation of the animal was computed and used to update the visual
stimulus such as to mimick a distant virtual light source.

4.1 Spontaneous dynamics
4.1.1 Methods: monitoring of head-fixed dynamics
Setup. Zebrafish larvae were restrained in a drop of gelified agarose (2% low melting
point, UltraPure LMP Agarose, Invitrogen) on a petri dish filled with E3 medium.
The agarose was removed from regions around the eyes and tail, allowing for optical
tracking of the ocular saccades and tail bouts. The larvae were then positioned at the
center of a 5cm in diameter frosted glass disk lit from below with an infra-red LED and
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positioned inside a dark chamber at 28°C. Eye and/or tail movements were recorded
using an infrared sensitive Flea3 USB3 Camera (FL3-U3-13Y3M-C, Point Grey Re-
search, Richmond, BC, Canada) with an adjustable macro lens (Zoom 7000, Navitar,
USA). Controlled stereo-visual stimulation was obtained using two LEDs (LED465E
-Thorlabs) separated by a partition and projected onto the frosted screen, so that each
LED delivered a uniform illumination to one side of the animal’s visual field of view.
The assays were performed using stimuli in the blue domain, as phototaxis is mainly
triggered by this spectrum. Analog outputs of a DAQ device (USB6000 -National
Instrument) were used to control the intensity of the visual stimulation in the range
0<I<Imax, with 𝐼𝑚𝑎𝑥 = 60𝜇𝑊/𝑐𝑚2. Matlab (MathWorks) was used for image analy-
sis and on-line control of the visual stimuli.

Movement recordings.To evaluate swim bout orientation, the image of the tail re-
gion (from the caudal border of the swim bladder to the tip of the tail) was binarized
and we computed at each time the moment of area with respect to the animal rostro-
caudal axis, i.e. the mean distance to this axis computed over the tail pixels. To allow
for across-samples comparison, this quantity was normalized by the tail length yielding
an adimensional parameter 𝑚(𝑡) characterizing the instantaneous lateral excursion of
the tail (figure 4.1, a).

The time derivative of the moment 𝑚(𝑡) signal was used to identify and separate
discrete tail bouts. For each event the onset 𝑡𝑜𝑛 and offset 𝑡𝑜𝑓𝑓 times were extracted,
as well as a turning score defined as 𝑀 = ∫𝑡𝑜𝑓𝑓

𝑡𝑜𝑛
𝑚(𝑡)𝑑𝑡. Large positive (negative) M

values corresponded to ample leftward (rightward) attempted turns.

We assume a linear relationship between 𝑀 and the resulting reorientation angle. Thus,
the reorientation angle in virtual space 𝛿𝛼 of the larva was computed as the turning
score 𝑀 multiplied by a gain 𝑎 : 𝛿𝛼(𝑡) = 𝑎 ∗ 𝑀 . The gain 𝑎 was empirically set such
that the mean 𝑀 of a reorienting bout would correspond to the mean reorientation
angle 𝛿𝛼 in free swimming conditions, would roughly correspond to 𝑎 = 𝜋

6 .

The orientation of each eye was extracted by computing the angle between the
equivalent-ellipse minor axis (i.e. the eye optical axis) and the medial-lateral axis of
the fish (left: 𝛽𝑙, right: 𝛽𝑟), from which the gaze angle was defined as 𝑔 = (𝛽𝑙 − 𝛽𝑟)/2
(figure 4.1, a).

The normalized gaze angle associated with a given tail-bout was defined as its value
evaluated in the middle of the bout, 𝑔(𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓)/2. The onset of each saccade was
extracted using the time-derivative of the gaze signal (figure 4.1, b).
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Figure 4.1: Coordination between gaze tail movements. Definition of the eye and tail
kinematic parameters. The gaze angle is defined as the mean orientation of both eyes.
The parameter 𝑚 characterizes the instantaneous tail deflection. (b–d) Gaze dynamics.
b Example time-traces of the eye and gaze angles. (c) Probability distribution function
(PDF) of the normalized gaze angle, for one fish (solid line) and for N= 29 fish (dashed
line). (d) PDF of the delay between successive reorienting saccades for one fish. (e–i)
Saccade & tail-beat coordination. (e) Gaze angle and tail deflection signals. f Indi-
vidual tail-beats turning score 𝑀 , defined as the integral of m(t) over the swim-bout,
vs. the normalized gaze angle g (N= 11 fish). (g) Histograms of 𝑀 for leftward (red)
and rightward (blue) gaze orientation. The central part of the distribution corresponds
to forward bouts. (h) Conditional probability of the gaze to be orientated to the left
(red) or right (blue) given the tail-beat turning score M (N= 11 fish). The shaded
region corresponds to the s.e.m. (i) Mean peri-saccadic tail deflection signal averaged
over leftward (blue) and rightward (red) saccades. Adapted from Wolf et al. (2017)
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4.1.2 Results
4.1.2.1 Eye and tail direction coordination

This setup is very similar to the one used in Wolf et al. (2017) to monitor saccade
and tail movement dynamics. In these partially-tethered conditions, the zebrafish
larva is fixed by the head/abdomen (figure 4.1 a), both eye positions (gaze) and tail
position (moment) were monitored (figure 4.1 e). Instantaneous tail movements are
quantified using the tail deflection parameter 𝑚, and the direction of an attempted
bout is extracted using the turning score 𝑀 , being the integral of 𝑚 over the time
of the bout event (see methods for details). Gaze g is defined as the mean angle of
left and right eyes. Saccadic eye movements are displayed intermittently, with fixation
times of the order of 12s (figure 4.1 c, d). A coordination between saccade direction
and tail movement is observed, even if both events are not necessarily concomitant, on
average every 1 in 4 saccades happen in less than 0.5 sec before or after a tail-bout
(figure 4.1 f-i).

4.1.2.2 Tail bout kinematics

While in Wolf et al. (2017) we mostly examined eye saccade dynamics, for the closed-
loop phototaxis experiments, I focused on the spontaneous tail movement dynamics,
to evaluate to what extent the virtual navigation compared with the free swimming
kinematics.

The spontaneous dynamics of freely swimming zebrafish locomotion are unfortunately
not exactly reproduced in partially tethered conditions, even with tail and eyes free to
move. The main discrepancy is the tail-bout frequency : from a mean of 1Hz in freely
moving conditions, it drops to 0.03 Hz when the larva is restrained (figure 4.2 A).

Nevertheless, the bimodality of the bout type distribution is conserved: the distribution
of the turning score 𝑀 can be fitted with the sum of two gaussians, in line with the
distribution of reorientation angles 𝛿𝛼 observed in freely swimming assays. 𝑀 can be
considered a reasonable proxy of the bout amplitude, and the value of 𝑀 can be directly
converted into a reorientation : 𝛿𝛼 = 1.2 ∗ 𝑀 (figure 4.2 B). In tethered conditions,
the fraction of turning bouts seems to be slightly increased: 𝑝𝑇 = 0.49 vs 0.41 in free
swimming conditions.

As the inter-bout interval is multiplied by 30 on average, and the correlation of suc-
cessive reorientation bouts is time-dependent, we might expect almost no correlation
in successive 𝑀 values. Still, if we compute the correlation between bouts as a func-
tion of the time interval between them, we can still observe a significant correlation
𝐶𝜏 (figure 4.2 C). On average, though, the correlation of successive bouts 𝐶𝑞 drops
to 0 after the first bout (figure 4.2 D). If we select only the bouts that are separated
by a maximum of 10 seconds in time, the correlation is still visible at moderate bout
amplitudes when computing 𝑀𝑛+1 as a function of 𝑀𝑛 (figure 4.2 E). For high values
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of 𝑀 , correlation seems to vanish, which may be interpreted as resulting from struggle
movements, which bear no correlation in their orientation.

All in all, the difference between attempted-swim and real-swim dynamics might be
encapsulated in a lower event sampling frequency, which masks the orientational motor
persistence observed in freely moving animals.

Nevertheless, some aspects of the navigational kinematics being conserved, we may
have a look at how these are biased by a luminous stimulus.

4.2 Virtual orientation towards light
4.2.1 Gaze orientation bias
Before looking at the dynamics in the closed-loop virtual phototaxis experiment, I
will briefly summarize the results of experiments to which I contributed in Wolf et
al. (2017), which give interesting insights as for the eye movements involved in light-
seeking behavior. As a coordination exists between tail-bout and gaze directions, we
assumed the gaze to be a proxy for the direction of potential tail movements.

In these experiments, larvae were partially embedded with their eyes free and submitted
to two illumination sequences. In a first one (see figure 4.3 A), they were exposed to
periods of leftward or rightward illumination (contrast) in an open-loop fashion. This
induced a bias of the gaze toward the illuminated region, with an increase of fixation
times.

The second illumination pattern was temporal: its intensity was locked on the larva’s
gaze (see figure 4.3 B). If the larva would look to the left, the intensity would rise and
vice versa. Here again the gaze was biased towards the side the larva would find the
highest illumination.

In both conditions, the light gradient induced a statistical bias of the spontaneous sac-
cadic dynamics whose net result was to increase the relative duration of gaze fixations
towards the brightest region, which would suggest that eye movements also participate
in the light-seeking behavior.

Our next question was to understand the tail movement dynamics in a closed-loop
setup for partially embedded larva. This setup has thus been adapted to a closed-loop
setup to retroact by updating the illumination not only on eye movements, but also on
tail movements. In the next section I will detail the methods related to this adapted
setup.
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Figure 4.2: Spontaneous dynamics of partially tethered larvae. Data: 24 fish. Distri-
bution of inter-bout intervals 𝜏 in partially tethered larvae (black) and free swimming
(blue). Median values resp. 0.9 and 1.8 s. Mean values resp. 1.3 and 13 s. (B)
Distribution of 𝑀 , data (black) and custom fit (red), free swimming reorientation dis-
tribution (blue) scaled to show similarity. (C) Correlation in all reorientation angles
(turns and forward swims taken together) Cq as a function of the interval between
bouts 𝜏𝑛, head-fixed (black) compared to free swimming data (blue). (D) Correlation
in reorientation angles Cq as a function of the number of bouts q, head-fixed (black)
compared to free swimming data (blue). (E) Mean reorientation value at bout n 𝑀𝑛+1
as a function of mean reorientation at preceding bout n 𝑀𝑛, head-fixed (black) com-
pared to free swimming data scaled (blue). Only successive bouts with an inter-bout
interval smaller than 10 seconds were taken into account.
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Figure 4.3: (left) Scheme of the experimental assay and the imposed illumination
pattern. (right) PDF of the normalized gaze during periods of unilateral stimulation for
animals displaying positive phototaxis (N= 18 fish). Red and blue curves correspond to
illumination on the left and right eye, respectively. Dashed curve indicates bilaterally
symmetric illumination. (B) Spatio-temporal gaze phototaxis. (left) Scheme of the
virtual-reality assay. The fish is submitted to a uniform illumination whose intensity
is driven in real-time by the animal’s gaze angle. (right) PDF of the normalised gaze
angle for virtual leftward (red) and rightward (blue) illumination (N= 13 fish). The
dashed curve corresponds to the neutral runs (constant illumination). From Wolf et al.
(2017)

4.2.2 Methods: closed-loop with feedback on tail-bouts
Building on the setup described in the previous section, here tail and eye movement are
used to control the orientation of a virtual light source the larva can navigate toward.
The animal is submitted to a controlled visual stimulation using LEDs placed below a
diffusive screen under the larva, on each side of its body (figure 4.4 A). The intensity
targeting each side is updated in realtime (every 5 ms, 200Hz) based on the animal’s
gaze orientation and attempted swim turn. The light intensity emitted by each LED
is calculated based on the angle between the larva’s rostro-caudal axis and the light
source as well as its eyes orientation. At the start of an experiment, a light source
angle relative to the body axis is randomly chosen, and updated each time the larva
executes a tail bout.

The illumination profile imposed on the zebrafish larva was chosen to mimic a distant
light source. Both contrast (𝑐 = 𝐼𝐿 − 𝐼𝑅) and whole-field intensity (𝐼 = 𝐼𝐿 + 𝐼𝑅) are
set to vary with its virtual angle relative to the source 𝜃 = 𝛼 − 𝜃𝑠 and with its gaze
direction 𝑔 (figure 4.4 B, C). When the light source is straight in front of the larva,
𝜃 = 0, and the gaze points towards it, 𝑔 = 0, the intensities received on left and right
eye are equal, but not maximal.

4.2.3 Results
Virtual orientation towards light. The illumination profile used here combines
both variation of global intensity and of left/right intensity (contrast), to mimic a
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Figure 4.4: Closed-loop partially tethered phototaxis setup. The zebrafish larva is
fixed in a drop of agarose in the centre of a petri dish. Its eyes and tail are freed
from the gel, allowing saccades and tail movements to occur. It is monitored from
above, and illuminated from below by two blue LEDs controlled in closed-loop. Eye
and tail movements are are recorded through the values of tail deflection 𝑚 and gaze 𝑔.
Using these values, a virtual orientation 𝜃 relative to a light source is calculated, and
the illumination below the animal updated accordingly. (B) Scheme of the intensity
received by each eye from a distant light source. Both the animal’s body axis angle
to the light source 𝜃𝑠 and its gaze direction determined by the angle of each of it eyes
𝛽𝑅 and 𝛽𝐿 determine the intensity 𝐼𝑅 and 𝐼𝐿. (C) Illumination profile of each eye as
a function of the larva’s body orientation and gaze 𝜃 − 𝑔. When the source is at the
azimuth, 𝜃 = 0.
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distant light source the zebrafish larva can orient towards (figure 4.5 A), which is
located at 𝜃 = 0.

As in free swimming conditions, partially tethered larvae robustly reorient themselves
to find a steady-state where on average they are facing the virtual light source (figure
4.5 B). This steady state is reached after only a few bouts: the “aggregation” around
𝜃 = 0, described as 𝑣𝑐𝑜𝑠 < 𝜃 >, where 𝑣 is the mean resultant vector of the orientations
at each bout, is maximal after about 6-8 bouts following a novel light-source orientation,
as seen on the orientational trajectory with bout number (figure 4.5 C).

To investigate more precisely how this reorientation is enabled, we first analyzed how
the reorientation score 𝑀 at each bout may be driven by the contrast. Here, the
contrast is again defined as 𝑐 = 𝐼𝐿 − 𝐼𝑅 = 𝑓(𝜃𝑠) (note that in this case 𝐼𝐿 + 𝐼𝑅
is also variable). As in the free swimming conditions, there is a linear relationship
between the experienced contrast and triggered tail movement direction at low values
of absolute contrast ( |𝑐| < 0.4, figure 4.5 D). At high values of contrast (|𝑐| > 0.4),
which correspond to high varying values of intensity on only one eye, while the second
eye is in the dark, there is a saturation of the mean turning score < 𝑀 >. The bias
induced by a stereo-visual contrast thus has a maximum, above which increasing the
intensity will have no effect or may even induce negative phototaxis. Stereo-visual
phototaxis is thus clearly displayed in head-fixed conditions.

As global intensity also varies with 𝜃 in our assay, we looked into how a relative change
in intensity 𝛿𝐼/𝐼 might affect the amplitudes of subsequent tail movements. When
the animal experiences a decrease in relative intensity 𝛿𝐼/𝐼 , during a given bout, the
amplitude of the forthcoming bout (as measured by 𝑀2) is increased. A drop in 𝛿𝐼/𝐼
also seems to trigger a faster response: the mean inter-bout interval 𝜏 is decreased by
a factor of two for 𝛿𝐼/𝐼 = −2 compared to a positive 𝛿𝐼/𝐼 (figure 4.5 E).

These results demonstrate that the main features of light-seeking behaviors observed
in freely-swimming conditions, are conserved in the head-restrained configuration, al-
lowing the animal to perform efficient orientational phototaxis.

Virtual diffusion towards light. While the contrast paradigm was known to trigger
direct reorientation also in tethered conditions, what was interesting here was to observe
a consistent response to a decrease in illumination. To check whether this temporal
response alone was sufficient for phototaxis in the head-fixed setup, a small subset of
experiments done on 6 different fish was performed using a kino-phototaxis paradigm.
The whole-field illumination was here varied with 𝜃𝑠 following a normal (gaussian)
profile, with 𝐼 = 𝐼𝐿 = 𝐼𝑅, such that no direct spatial information on the gradient was
available to the animal (figure 4.6 A).

In this case the larvae also tend to aggregate around 𝜃𝑠 = 0, seeking the maximum
intensity (figure 4.6 B, the distribution skewness is due to the small sample size).
The reorientation happens quickly here again: after only about 4 bouts following the
presentation of a new light source orientation, the aggregation is maximal (figure 4.6
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Figure 4.5: Intensity profile used to simulate a distant light source. The value 𝜃 = 0
is a stable point. (B) Probability density function (pdf) of 𝜃 biased towards 0. (C)
Evolution of the absolute mean orientation | < 𝜃 >𝑞 | with bout number 𝑞 (black)
and of the projection of the resultant vector onto the direction of the light source
𝑣.𝑐𝑜𝑠 < 𝜃 > with bout number, showing a non-uniform distribution biased toward
𝜃 = 0 after ~5 bouts. (D) Mean turning score < 𝑀 > as a function of the contrast.
For low absolute values of contrast the bias is linear. For higher values, a saturation is
visible. (E) Variance of the turning score as a function of relative intensity variation
experienced at previous bout. N=24 fish.
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D). Again, this process is mediated by a simple increase in the tail-bout amplitude
evoked by a light intensity decrease (figure 4.6 C).

Thus, in spite of the largely reduced bout frequency, temporal light-seeking strategy
can be observed in partially immobilized zebrafish larva.

Figure 4.6: Intensity profile varying with 𝜃. (B) Probability density function (pdf) of
𝜃, biased toward 0. (C) Variance of the turning score as a function of relative intensity
variation experienced at previous bout. (D) Evolution of the absolute mean orientation
| < 𝜃 >𝑞 | with bout number 𝑞 (black) and of the projection of the resultant vector onto
the direction of the light source 𝑣.𝑐𝑜𝑠 < 𝜃 > with bout number, showing a non-uniform
distribution biased toward 𝜃 = 0 after ~3-5 bouts. N=6 fish

4.3 Discussion
We were able to successfully build and use a closed-loop behavioral assay system for
partially tethered larvae to elicit virtual light-seeking behavior. The free-swimming dy-
namics in the absence of a stimulus were obviously not reproduced, the main difference
being the bout frequency which drastically drops in tethered conditions. Nevertheless,
the key parameters for reorientation towards a light spot are conserved: a direct bias
of attempted reorientations in the presence of a contrast, and an increase of reorienta-
tion amplitude after a drop in relative illumination. Thus the light-seeking behavior
described in the previous part can be replicated in head-fixed conditions.

What enabled us to circumvent the problem of bout frequencies in comparing this
behavior in both freely swimming and fixed conditions, was “getting rid” of time by
discretizing time sequences into sequences of swim bouts. This enables to focus on
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specific moments of a sensorimotor sequence and know what motor action followed
what stimulus.

Here again we limited our analysis to orientation only. But in such a setup, it is very
feasible to add a second dimension and allow the fish navigate in two dimensions, thus
generating virtual trajectories in the horizontal plane.

The low frequency of tail movements points towards the fact that a phototactic stimulus
is not engaging enough to completely mimic a sensorimotor loop in head-fixed virtual
conditions. A recent study investigated the capacity of larval zebrafish to evaluate
the “utility” or ”“futility” of a motor action (an attempted swim): in the absence of
a visual feedback (motion perception) following an action, the attempted swim events
are eventually considered as futile. Thus, the larva gives up and stops triggering
movements that yield no outcome (Mu et al., 2019). In this setup the larva might
indeed lack a visual flow, which makes it fall into a passive state rather than an active
one. One possibility to circumvent this problem would be to add an engaging stimulus
to the phototactic one, as for example whole-field motion, in closed-loop, to trigger
the optomotor response. I tried to implement this option in our setup, but did not
succeed in triggering significantly more tail movements: after a few minutes of closed-
loop OKR the larvae seemed to give up anyway. But this might have been simply an
issue of the gain setting. Still, if implementing such a closed-loop with combined visual
cues, the process would be - if not multisensory, as it would still rely solely on vision
- but multitasking: maintaining a steady image of the surroundings while performing
light-seeking behavior. Such that one might interfere with the other: if for example
not being swept away by the current is more important than finding a luminous spot,
the optomotor reflex would get the upper hand.
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Chapter 5

Neural circuit underlying
orientational phototaxis

As we now have a closed-loop setup for the larva to perform head-fixed virtual photo-
taxis, we can combine it with a functional imaging setup to gain insight into the neural
computations during a sensorimotor loop. This will be the aim of this final chapter.

I will first introduce the single-plane illumination (or light-sheet) microscope setup
after a quick prior on fluorescence imaging techniques. I will then present the known
neural correlates of zebrafish larva light-seeking behavior as well as some results from
functional light-sheet imaging in a closed-loop with phototactic stimuli.

5.1 Light-sheet imaging with visual stimulation
5.1.1 Fluorescence Calcium imaging
5.1.1.1 Fluorescence microscopy

The first recorded observation of fluorescence was mady by Sir Frederik William Her-
schel in 1845: “although itself colorless and transparent, (it) exhibits a “vivid and
beautiful celestial blue color” when illuminated and observed under certain incidences
of sunlight”, referring to a quinine solution. It was later explained that the UV spec-
trum of sunlight excites quinine which then emits blue light.

Fluorescence was discovered when microscopy was already well-established, in the early
XXth century. Ellinger and Hirt generated the first fluorescent samples by treatment
of living organisms with fluorescent substances. They were illuminated by incident
light (generally UV) and the fluorescent signal observed thanks to a set of illumina-
tion/observation filters, akin to contemporary fluorescence microscopy (Renz, 2013).
Since then, the ways of fluorescence labelling evolved tremendously: from fluorescent
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antibody labelling in the 40s to cloning of the Green Fluorescent Protein (GFP) and
its spectral variants (YFP, RFP) in the 90s, after it was extracted from the jellyfish
Aequorea victoria in 1962.

The latter eventually enabled the engineering of genetic encoding of fluorescence: com-
bined with a Calcium sensor molecule, leading to the so-called GECIs (Genetically En-
coded Calcium Indicators) to probe intracellular calcium levels. Along with synthetic
calcium reporters, directly injected into the studied cell, GECIs are today widely used
in various fields of biology to study calcium dynamics either for itself or as a proxy.

In neuroscience, the most widely used GECI is GCaMP, developed by Nakai et al.
(2001) and continuously improved and adapted since. GCaMP is composed of the
calcium sensor calmodulin (calcium-modulated protein) and a fluorescent reporter, a
modified version (circularly permuted & enhanced) of GPF. Upon calcium binding to
the calmodulin region, a conformational change is triggered resulting in an increase in
fluorescence.

Transgenic zebrafish lines expressing GECIs have quickly spread, after the first one
established by Higashijima et al. (2003) (not GCaMP but Cameleon) who monitored
calcium transients in motoneurons and spinal interneurons in behaving fish (Muto et
al., 2011).

5.1.1.2 Calcium imaging

Calcium sensing in neurons is of interest as it is involved in the transmission of depolar-
izing signals and in synaptic activity (Brini et al., 2014) - it is incidentally a universal
signalling molecule in all eukaryotic cells. The electrical activity of a neuron is accom-
panied with transient changes of calcium concentration in the cytosol. At rest, calcium
levels are of the order of 50–100 nM in the cytosol (very low compared to the other ions
involved in the transducing of an electrical signal: K+ 140 mM & Na+ 12 mM), but a
depolarizing signal, and in particular an action potential, triggers a Ca2+ influx from
extracellular and intracellular compartments through voltage-gated calcium channels,
increasing calcium levels 10- or 100-fold (Grienberger & Konnerth, 2012). Thus, in
organisms expressing GCaMP in neurons, neural activity manifests itself as transient
fluorescence increase which can be optically recorded. Absolute values of fluorescence
are highly dependent on many factors (calcium reporter type, expression level, exci-
tation power, detection efficiency, etc), thus the quantity of interest to estimate the
activation of a neuron is the relative variation in its fluorescence intensity

𝐷𝐹𝐹 = Δ𝐹/𝐹 = 𝐹𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝐹𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

.

Other indicators of neural activity, not targetting calcium dynamics also exist: vesic-
ular release indicators, voltage sensors (Yang & St-Pierre, 2016), neurotransmittor
indicators (Deo & Lavis, 2018; Lin & Schnitzer, 2016), but their implementation is
less “mature” than that of calcium indicators. Focusing on calcium dynamics allows
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the functional study of neural ensembles, but also of dendritic processing, or synaptic
function, sometimes in long-term time-lapse imaging settings. Still the DFF is a very
indirect measure of neural activity: calcium dynamics may vary accross neuron types,
and calcium indicators have also their specific kinetics which have to be taken into
account. The 2 main GCaMP lines used in our lab are GCaMP6s, GCaMP6f:

Dynamics in vitro GCaMP6f GCaMP6s
Kd (nM) 380 140
Rise time (ms) 50–75 100–150
Half-decay time in tissue in vitro (ms) 140 550

In vivo values for rise and decay times following a single spike are comparable to in
vitro values cited in the table above (Chen et al., 2013).

GCaMP6 has an excitation spectrum peaking at 488nm (blue) and an emission spec-
trum peaking around 510nm (green) (Wright et al., 2017)

Kd corresponds to the calcium concentration at which half of the indicator molecules
are bound to calcium, inverse of the affinity. GCaMP6s produces larger responses to
single APs, but at the cost of decays that are 93–190% longer than that of GCaMP6f
(Hires et al., 2008).

Nuclear calcium indicators have also been developed. In the one used in the lab, the
GCaMP molecule is bound to a histone protein H2B, a protein involved in chromosome
coiling. The fluorescence signal of such indicators is - additionally to the previously
discussed parameters - modulated by their localization: nuclear Ca2+ elevations are
dependent on diffusion from a cytoplasmic source and lag behind cytoplasmic levels by
approximately 60 ms (Nakazawa & Murphy, 1999).

It is thus important to keep in mind, that calcium imaging is only a proxy for neural
activity. Its main limitation is that kinetics are slow compared to an AP (which lasts
3–5 ms), thus individual spikes in rapid spike trains cannot be distinguished and spike
rate changes might also be difficult to evaluate. Less crucial limitations are that there is
no reporting of neurotransmitter receptor activation, of membrane hyperpolarizations
nor of sub-threshold voltage changes.

5.1.1.3 Inference of neural activity

It is possible - though challenging - to infer action potentials, or spiking activity through
deconvolution or unsupervised learning algorithms. This may be useful for denoising
data and inferring precise spiking times, as imaging techniques have much lower tem-
poral resolution compared to electrophysiological techniques. The challenge resides in
the non-linearities of the spike–calcium reporter fluorescence relationship, low temporal
resolution of the calcium signal compared to the time scale of an action potential as
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well as noise. Two main methods of spike inference from calcium imaging have been
developed:

• one based on non-negative deconvolution (NND) of calcium signal (assuming
fluorescence traces represent an approximate convolution of the underlying spike
train with the cell’s calcium response and based on the hypotheses that spikes are
sparse and non-negative) (Vogelstein et al., 2010 Fast nonnegative deconvolution
for spike train inference from population calcium imaging)

• a second one based on supervised learning techniques using convolutional neural
networks (Theis et al., 2016).

Each new spike inference method from calcium imaging data published these past 10
years claimed to outperform its predecessors. So a community-based benchmarking,
the spikefinder challenge, has been performed to select the better performing algo-
rithms (Berens et al., 2018 Community-based benchmarking improves spike inference
from two-photon calcium imaging data). The conclusion of the benchmark postulated
that algorithms based on supervised learning outperformed unsupervised non-negative
deconvolution methods.

Both methods have their qualities and drawbacks:

• supervised methods might best perform on a particular set of data but are poorly
generalizable to “out-of-sample” data, on which they haven’t been trained

• spike deconvolution methods might be more generalizable, they are often good
enough (Chen et al., 2013), but may fail in more complex situations (some of
which have been addressed by Deneux et al. (2016) Accurate spike estimation
from noisy calcium signals for ultrafast three-dimensional imaging of large neu-
ronal populations in vivo). Also they strongly rely on a sparsity of spikes as well
as rise and decay time parameters.

As the technique evolves quickly, efforts still go into the development or improvement
of generalizable unsupervised deconvolution algorithms. Among them:

• Pachitariu et al. (2018) using NND, with simple parameter settings, which per-
forms better than supervised algorithms when evaluated on out-of-sample data,
and adapted to the performance metric of the spikefinder challenge. In addition,
we find that NND is highly robust to assumptions on the assumed shape of the
calcium kernel response to single spikes.

• Blind Sparse Deconvolution algorithm (Tubiana et al., 2017), addressing the
strong dependance on sparsity and time constants parameters, and estimating
false positive rates.
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5.1.2 2P Light-sheet imaging
5.1.2.1 Point scanning microscopy

Fluorescence microscopy applied to 3D tissue requires optical sectionning, i.e the ability
to produce an image “of a single layer” of cells for example, and to eliminate signals
coming from the out-of-focus surrounding tissue. This is not enabled in bright-field
microscopy for example, where the sample is illuminated by transmitted light.

In point scanning techniques, pixels are imaged one by one (the sample needs to move
relatively to the illumination/observation branches), eventually forming the complete
image. Thus there is a trade-off between the size of the imaged region, composed of N
pixels, and the acquisition frequency 𝑓 = 1

𝑡𝑒𝑥𝑝.𝑁 , where 𝑡𝑒𝑥𝑝 is the exposure time.

In confocal microscopy, optical sectioning is achieved with a pinhole, which selects
fluorescent photons originating from the sole focal point.

Two-photon microscopy

Two-photon excitation microscopy is an alternative to confocal microscopy that pro-
vides advantages for three-dimensional and deep tissue imaging. Optical sectioning is
enabled through the 2-photon effect (Benninger & Piston, 2013).

This effect was theoretically predicted by (Göppert-Mayer, 1931), and experimentally
demonstrated with the invention of lasers thirty years later (Kaiser & Garrett, 1961).
In one-photon excitation, a fluorophore in its ground state can absorb a single photon
that excites it to a higher energy state and then relaxes back to its ground state while
emitting a photon. For best efficiency, the exciting photon should have a wavelength
𝜆1 that corresponds to an energy which matches the energy transition Δ𝐸 between the
ground state and the excited state of the fluorophore Δ𝐸 = ℎ𝑐/𝜆1 (ℎ Plank constant
; 𝑐 speed of light).

In two-photon excitation the fluorophore absorbs two photons of half the energy of
the corresponding 1-photon excitation, in a very short time-window. The first photon
transits the fluorophore to a virtual state, the second one to the excited state. Thus the
time-window of this almost simultaneous excitation must be shorter than the virtual
state lifetime, of the order of 0.5fs. To heighten the probability that 2-photon excitation
occurs, the use of a femtosecond pulsed laser is required (generating femtosecond-long
pulses of light at high frequency typically 80 MHz).

As the energy of a photon is inversely proportional to its wavelength, in two-photon
excitation, the photons should have a wavelength 𝜆2 of approximately twice that of
the photons required to achieve an equivalent transition under one-photon excitation.
Δ𝐸 ≃ 2ℎ𝑐/𝜆2.

For the excitation of GCaMP6, 𝜆1 = 488𝑛𝑚 and 𝜆2 = 920 − 930𝑛𝑚.
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5.1.2.2 Light-sheet imaging

Light-sheet imaging, or selective-plane illumination microscopy, achieves optical sec-
tioning by illumination of a whole plane (instead of a point) of the sample perpendic-
ularly to the observation. Here, acquisition frame-rate and dimensions of the imaged
region are independent: 𝑓 = 1

𝑡𝑒𝑥𝑝
, and only the imaged plane is illuminated thus reduc-

ing photo-bleaching or phototoxicity effects (Hires et al., 2008).

The plane illumination may be done by several methods (digital scanning (Panier et al.,
2013; Wolf et al., 2015), cylindrical-lens (Huisken et al., 2004), lattice light-sheet (B.
C. Chen et al., 2014)), we use the technique of scanning a laser beam in the horizontal
plane at a frequency of at least 1/𝑡𝑒𝑥𝑝, but usually faster (~ 200Hz). Some research has
focused on the improvement of these cited methods, for artifact reduction (reduction
of striping Huisken & Stainier (2007), adaptive optics Liu et al. (2018), increasing
image quality and penetration depth with bessel beams Fahrbach & Rohrbach (2010)
and Planchon et al. (2011))

First uses of light-sheet technique in life sciences were to image myocytes expressing
GFP of a Medaka larva, and to observe the development of drosophila embryo during
several hours (Huisken et al., 2004). The in-plane resolution was 6 µm, for a field of
view of 1.5 × 0.9 mm. A few years later, Keller et al. (2008) observe the development of
genetically modified zebrafish larva expressing GFP. The resolution of 1 µm of images
of size 700 µm × 700 µm, enabled the imaging of the whole embryo at single-cell
resolution during more than 24h.

Zebrafish larva with its small size and transparency thus appeared to be an excellent
candidate for light-sheet imaging, and this technique quickly was adapted for calcium
imaging of larval zebrafish neurons (Ahrens, Orger, et al., 2013b; Chen et al., 2018;
Jiao et al., 2018; Panier et al., 2013; Privat et al., 2019).

5.1.3 2P Light-sheet imaging in zebrafish
As the developed light-sheet setups illuminate larval zebrafish from the side to obtain
a horizontal/transverse section of the brain, its eyes are partly irradiated. The blue
light of the laser may thus interfere with the experiment when one studies zebrafish’s
responses to light. Especially when the laser wavelength 𝜆1 = 488 lies within the most
sensitive region of the fish visible spectrum (Risner et al., 2006) and is responsible for
the fish’s phototactic behavior.

To circumvent this problem, the lab developed a 2-photon light-sheet microscope. It
enables to illuminate the sample with an infrared laser beam and create the 2-photon
effect only in the focal region of the beam (Wolf et al., 2015).
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5.1.3.1 Methods

Here I will describe the adaptation of the 2-photon light-sheet microscope developed
in the lab (Wolf et al., 2015).

It is an almost identical twin of a 1-photon light-sheet microscope, except that the
illumination wavelength is shifted from 488nm - in the blue spetrum, which could
interfere with behaviors mediated by the blue cones, such as phototaxis - to 930nm, in
the infrared domain, invisible to the larva’s eye.

The pulsed illumination is provided by a titanium:sapphire laser (pulses of <100fs and
80MHz repetition rate, figure 5.1 A). The emitted beam passes through two telescopes
(pairs of conjugated lenses 1 & 2, 3 & 4), which magnifies the laser beam by a factor of 6.
These two telescopes also enable to transform a rotational movement of two scanning
mirrors into a translational movement at the focal point of the illumination objective,
where the sample is located: a first 3D scanning mirror (figure 5.1 B) displaces the
beam vertically, thus defining the plane of illumination in the sample; and a second
scanning mirror (figure 5.1 C) oscillates horizontally at ~200Hz to create a sheet of
light (a plane of illumination).

The observation arm consists of a water-immersible objective mounted on a piezo which
is locked onto the first 3D scanning mirror to match the focal point of observation with
the plane of illumination. A green detection band-pass filter keeps out all light but the
sample fluorescence, which is collected by a sCMOS camera (figure 5.1 D) after going
through a tube lens.

The stimulation part simply consists of a projector casting onto a thin white opaque
plastic screen fixed on the observation objective, enabling its illumination over 180°
from the front. The larva is placed in a drop of 2% low melting point agarose on a
holder which enables eyes and/or tail to be freed. Behavior is monitored from below:
a mirror is placed under the tank, reflecting the image of the fish into an infra-red
sensitive Flea3 USB3 Camera (FL3-U3-13Y3M-C, Point Grey Research, Richmond,
BC, Canada) with an adjustable lens (Navitar, USA).

To avoid the laser beam damaging the larva’s eye, a small mask was put on the tra-
jectory of the laser beam, after the fourth lens, in the image plane of the illumination
objective. Its width was chosen to correspond, in the object plane of the illumination
objective, to the width of the larval zebrafish eye. (not represented on the figure)

The recordings were done on larval zebrafish 6-8 dpf. The acquisition rate of the micro-
scope was set at 1 stack per second (10 to 20 brain sections, 8 µm inter-slice separation),
and typical recordings lasted for ~30 min. Closed-loop tracking and visual stimulation
were performed at a mean frequency of 60 Hz, corresponding to the refreshing rate of
the projector, with a custom-written software in Matlab (Mathworks) available on my
gitlab page: https://gitlab.com/Phiasso/trackingandstimulation.

Image pre-processing and calcium transient extraction were performed offline using
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Figure 5.1: Scheme of the 2-photon light-sheet setup with closed-loop stimulation.

MATLAB, according to the workflow previously reported (Panier et al., 2013; Wolf et
al., 2015). Further analysis was made with custom-written software in Matlab.

5.2 Neuronal correlates of zebrafish larva photo-
taxis

The idea one can have in mind when looking for a neuronal circuit responsible for
light-seeking behavior, is a circuit that can control navigation (triggering bout move-
ments and/or selecting their direction), and whose dynamics may be biased by specific
luminous stimuli. Here I will review what is known of a good candidate for such a
circuit, correlated with eye and tail movements, but also modulated by light.

In this part some references will be made to anatomical regions of the zebrafish brain,
most of them being represented in figure 5.2.

5.2.1 The saccadic circuit
The saccadic pathway originates in the eye: ganglion cells transmit an information
(for example motion) to the optic tectum (OT), which in turn (among other areas)
activates the excitatory burst neurons (EBN or saccade generating burst neurons). The
burst neurons provide a direct input to the abducens nucleus (ABD) and oculomotor
nucleus III, which innervates the extraocular muscles; and the velocity-position neural
integrator (VPNI or NI), which provides positional information to the abducens nucleus
(Ma et al., 2020; Schoonheim et al., 2010).

In Wolf et al. (2017), neuronal populations potentially involved in the saccadic circuit
were mapped using regression analysis of functional recordings on a saccadic event.
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Figure 5.2: Anatomical drawing of some known anatomical structures that are involved
or supposed to be involved in zebrafish exploratory or light-seeking navigation. Habe-
nula is located in the Diencephalon, the optic tectum in the Mensencephalon, the most
caudal part being the rhombencephalon, or hindbrain. The hindbrain is composed of
7 rhombomeres. Region contours from ZBrain Atlas (Randlett et al., 2015).
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Figure 5.3: Diagram of the oculomotor circuit for horizontal eye movement from Ma
et al. (2020). The saccadic, vestibular, and integrator pathways are labeled light
brown, dark brown, and blue, respectively. (OT) optic tectum; (PT) pretectum; (VN)
vestibular nucleus; (EBN) excitatory burst neurons; (ABD)abducens nucleus; (NI)
innervate the velocity-position neural integrator

This analysis identified the previously described velocity-tuned saccade generator burst
neurons (Schoonheim et al., 2010), the position-tuned velocity-position neural integra-
tor (Miri et al., 2011), and also enabled the discovery of contraversive position-tuned
clusters at the rostral border of the hindbrain (rhombomere 1) ventral to the cerebel-
lum and of ipsiversive position-tuned clusters forming bilateral stripes in the rostral
hindbrain (rhombomeres 2-3) (figure 5.4, regions numbered 1, 2, 4 and 3 respectively).

It is this latter population that caught the attention of our group, since these clusters
displayed sustained antiphasic dynamics, each side activated alternatively, even in the
absence of saccades. It was termed the hindbrain ocillator (HBO). The period distribu-
tion of this observed oscillation peaked at ~20 s, which is close to the saccadic period.
Furthermore, an optogenetic actuation of the left or right part of this region was found
to trigger ipsiversive saccades quite robustly.

5.2.2 Global responses to stereovisual contrast
5.2.2.1 Stimulus-responses to phototactic stimuli

A global stimulus response map

Chen et al. (2018) recently constructed a phototactic stimulus-response map. The
stimulus being a high-contrast onset (light extinction on one eye) after a period of
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Figure 5.4: Dorso- ventral projection view and sagittal sections along two planes of the
3D functional map showing neuronal populations whose activity is tuned to the gaze
orientation (blue and red) and to the gaze angular velocity (green and yellow). The
voxel colour encodes the Z-score values obtained through multilinear regression. Te,
telencephalon; OT, optic tectum; Cb, cerebellum; Hb, hindbrain; RH, rhombomere.
The grey dotted rectangle indicates the effective recorded volume. From Wolf et al.
(2017)

illumination for both eyes (see figure 5.5 A). The stimulus regressors were constructed
by convolving the stimulus signal with a GCaMP6 response kernel, resulting in the
selection of the shown < 𝐷𝐹𝐹 > on the basis of a high correlation coefficient with the
regressor trace.

The selected neurons, with color corresponding to their regressor are represented in
figure 5.5 B. A lateralized light extinction (which triggers a tropophototactic response
(Burgess et al., 2010) mediated by the OFF-ganglion cell pathway) triggers a contralat-
eral response, illustrating the exclusively contralateral projections of ganglion cells.

A finer map was made, based on clustering of neuron’s responses (color traces in figure
5.5 C) and anatomy, revealing the ramping activity of the superior raphe nucleus and
in the posterior hindbrain (violet clusters, third & fourth arrows), sustained activity
in the midbrain (blue), and sparse activity all over the optic tectum corresponding to
OFF-responses of the contralateral eye.

5.2.2.2 Motor output involved in phototactic reorientation

Chen et al. applied the same regression-based method to construct a map of phototactic-
related motor responses. Fictive swims (swim attempts) were recorded using electrodes
attached to the animal’s tail, close to motoneuron axons (Ahrens et al., 2012; Dunn et
al., 2016). This functional map highlighted the known downstream of the processing,
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Figure 5.5: Regression analysis of phototactic stimulus. (A) Used regressors (onset
of darkness for each eye). (B) Stimulus-response “phototactic” map, sparse mean
activity ipsilateral optic tectum (OTec), a cluster in the cerebellum (Cb) and two
distinct clusters in the anterior hindbrain (aHb). (C) Phototactic clusters: the cells
with the most highly periodic activity for the stimulus were selected and sorted into
clusters. From Chen et al. (2018)

at the motor output level: a population of spinal projection neurons (RoV3, MiV1, and
MiV2) controlling turning behaviors. Their activity increased with the turn amplitude
to the ipsilateral side, and weakly active during forward swims. It seems these neurons
act as modulators of an independently generated symmetric motor output produced
by a close-by population, to generate a turn. (Huang et al., 2013; Orger et al., 2008)

As motor output and sensory input might be correlated, Chen et al. (2018) de-
composed motor outputs into trial average and residual, which revealed an identi-
cal motor pattern posterior to rhombomere 2, regardless of the imposed stimulus
(OMR/looming/phototaxis). They also decomposed the motor output into turning
and forward swims, revealing one bilateral and a second lateralized maps (see fig. 5.6).
The two clusters identified by red arrows, near motoneurons MiD2 (right panel), could
potentially be responsible for generating a generic oscillatory waveform of a swim,
which then is biased by the ARTR (left panel), the anterior rhombencephalic turning
region, also known as the previously described HBO.

Indeed, ARTR seemed like a denomination more representative of its anatomy and
function. As briefly mentioned before, this region was shown to be tightly tuned
with turning movements, and to subserve the persistent exploratory turning dynamics
observable in free swimming zebrafish larvae, i.e the chaining of similarly orientated
turn bouts. The ARTR is necessary for turns to occur and predictive of their direction
(Dunn et al., 2016).

In their study, Chen et al. (2018) noticed that the ARTR is more prominently clustered
in spontaneous conditions rather than under stimulus-driven conditions, interpreting
that the ARTR would be “an internal generator of turning biases for future swims”,
and would be most influential in the absence of stimuli. They hypothesize, that a
sensory convergence population they observed in the anterior hindbrain (aHb, rhom-
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Figure 5.6: Forward swimming (bilateral) regression only (calculated using all stimulus
blocks together). Red arrows point onto MiD2 reticulospinal neurons (according to
ZBrain), highlighting the dense white cluster located nearby. (G) Turning (unilateral)
regressions only. Dotted yellow lines: boundary between rhombomeres 2 and 3. Scale
bars: 50 mm. pTec: pretectum. nMLF: nucleus of the medial longitudinal fasciculus.
aHB: anterior hindbrain. pHB: posterior hindbrain. vSPN: ventral spinal projection
neurons. rh: rhombomere. aHB(1-2): anterior hindbrain rhombomeres 1,2. ARTR:
anterior rhombencephalic turning region. IO: inferior olive. From Chen et al. (2018)
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bomeres 1-2) specifically processes multiple sensory signals (phototactic, but also OMR,
looming, etc.) to generate turn biases, overriding the ARTR in the presence of stimuli.
Not excluding the hypothesis that the sensory convergence cells and ARTR could be
interconnected, based on proximity and (anti-)correlation.

5.2.3 Responses of the ARTR to illumination changes
We ought to take a step back and look at what had been shown regarding specifically
the ARTR’s response to contrast and whole-field illumination changes. This was done
in a study by our lab in Wolf et al. (2017).1

5.2.3.1 Reinforcement and phase-locking

Stereo-visual contrast. In stereo-visual contrast conditions, upon stimulation of
the right (left) eye, the activity in the right (left) ARTR, which is associated with a
rightward (leftward) reorienting bias, increased - consistent with a stereo-visual positive
phototaxis mechanism (figure 5.7 A-C). Also, light-ON and light-OFF (as in Chen et al.
(2018)) stimuli induced a sharp increase in activity of the ipsilateral and contralateral
sub-populations, respectively, which indicates that the ON and OFF pathways both
contribute to driving the ARTR (figure 5.7 D-F).

Bilaterally uniform illumination. The responses of the ARTR were also sampled
upon delivering series of short (100 ms) flashes simultaneously to both eyes, inter-
spaced by 10 s (figure 5.7 D-F). This revealed a phase-dependent response type: each
subpopulation is responsive to the visual stimulus only within a particular phase range
in its cycle, a flash selectively reinforces the cluster that is already active or about to
become active. The oscillation period of the HBO was also found to be entrainable by
stimulation periods close to the intrinsic oscillation period (in the range of 10 to 30s).
(Wolf et al., 2017)

All in all, the ARTR’s self-sustained oscillations drive a quasi-periodic sequence of gaze
shifts that allow the animal to actively explore the light angular gradient. Asymmetric
visual stimuli enhance the activity of the ARTR clusters ipsilateral to the eye that
receives the larger illumination, which in turn biases the fish reorientation towards the
light source.

5.2.3.2 Models of the ARTR

A first rate model. To help the interpretation of these experimental findings, a
stochastic neuronal model of phototaxis was built: it aimed at capturing the oscilla-
tory dynamics of the ARTR and its visually-evoked responses (Wolf et al., 2017). It

1At that time convinced by its oscillatory properties, we still defiantly called it HBO (hindbrain
oscillator).
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Figure 5.7: Response of the HBO to asymmetric and symmetric visual stimuli. Al-
ternated unilateral visual stimulation. (B) Example traces of left and right HBO. (C)
Trial-averaged response of the HBO over 20 stimulation periods. Shaded regions corre-
spond to left (dark grey) and right (pale grey) illumination. (D) Bilaterally symmetric
100 ms-long flashes. (E) Example traces of the right and left HBO. The grey lines
indicate the flashes. (F) Trial-averaged flash-induced responses of each subpopulation.
From Wolf et al. (2017).
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was implemented using a rate-model on two symmetric modules endowed with recur-
rent excitation, reciprocal inhibition and adaptation currents, each receiving intensity
currents from the left/right eye (figure 5.8 a). A step increase in the illumination of
the right eye was associated with a burst of current in the right circuit, followed by a
plateau, whereas a step decrease in the illumination induced a transient current in the
left circuit to account for the OFF pathway contribution (figure 5.8, b).

Figure 5.8: A rate model of the ARTR’s visually entrained dynamics leading to pho-
totaxis. (a-b) Schematic of ARTR network connectivity. Visual stimuli are relayed
to the HBO via the ON and OFF pathways, as detailed in (b). The ARTR activity
controls gaze shifts via ocular saccades and turning bouts. Self-oscillatory dynamics
result from the recurrent excitation (WE), reciprocal inhibition (WI) and adaptation
currents. From Wolf et al. (2017).

The numeric ARTR oscillations were statistically biased towards the subnetwork ipsi-
lateral to the light source, in presence of a contrast. Both the mean activity as well
as the fraction of time during which a subnetwork is more active than the other are
biased.

Adaptation of the rate model to free swimming behavior. We further adapted
this rate model in Karpenko et al. (2020), to our recent behavioral findings. The
afore stated description of the ARTR’s dynamics being in close agreement with the
spontaneous or contrast-driven dynamics of freely swimming larvae, we used it to
explain the observed statistics of exploration in both spontaneous and phototactic
conditions.

We used the behavioral results to propose a neuronal model of the ARTR that quan-
titatively reproduces non-trivial aspects of the bout orientation selection process. Tail
bouts are assumed to be triggered independently of the ARTR activity: they can be
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forward or turning, and if turning, they are biased by the ARTR’s activity. This
last binary decision process (left or right) reflects the competition between two cross-
inhibitory neural populations (figure 5.9 A).

In the presence of a lateralized visual stimulus, the oscillatory dynamics become biased
towards the brighter direction (figure 5.9 B, bottom). Hence, illuminating the right eye
favors longer periods of activation of the rightward-selective ARTR unit. The mean
reorientation displays a quasi-linear dependence with the imposed contrast, consistent
with the behavioral observations. At intermediate contrast values, the orientation of
bouts remains stochastic; the effect of the contrast is to lengthen streaks of turning
bouts toward the light.

We also tested whether this model could capture the competition mechanism between
stereovisual bias and motor persistence, in both conflicting and reinforcement condi-
tions. The computed dependence of the flipping probability 𝑝𝑓𝑙𝑖𝑝 as a function of
the contrast in both conditions shows quantitative agreement with its experimental
counterpart (figure 5.9 C).

It was also successful in emulating a phototactic task, where a virtual fish was sub-
mitted to a linearly varying contrast locked on the animal’s orientation, as in the
lateralized assay. When a turning bout was triggered, its orientation was set by the
ARTR instantaneous activity while its amplitude was drawn from the experimental
distributions. After a few bouts, a stationary distribution of orientation was reached
that was biased toward the virtual light source (figure 5.9 D).

This circuit has thus two main functions: maintaining mnemonic persistent activity
over long periods of time, thanks to recurrent excitatory inputs, and integrating sensory
signals in a graded fashion to continuously bias the statistics of the decision. This is
not in contradiction with the idea of a sensory-convergence cluster upstream of the
ARTR, as proposed by Chen et al. (2018), a cluster that could be a relay to bias the
dynamics of the ARTR for the animal to navigate towards “brighter” environments.

5.3 Virtual phototaxis under a microscope
Results of open-loop experiments might not accurately reflect the functional dynamics
of the nervous system when it performs a sensorimotor task. It is thus useful to try
to disrupt the sensorimotor loop as little as possible, and at the same time be able to
control the parameters of the sensorimotor task.

Here I transposed the behavioral closed-loop setup for immobilized zebrafish larvae
described in the previous chapter under the two-photon light sheet microscope to study
the neural correlates of the light-seeking behavior. I will focus mainly on the dynamics
of the ARTR during this sensorimotor task.
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Figure 5.9: A neuronal model of turning bout selection captures spontaneous and
contrast-driven navigation. Scheme of the Markov-chain model of the orientation se-
lection, and corresponding neuronal model of the ARTR. The latter consists of two
units whose relative activation controls the orientation of bouts. Persistent and self-
alternating dynamics result from the recurrent excitation (𝑤𝐸) and reciprocal inhibi-
tion (𝑤𝐼) between each unit. They further receive input currents proportional to the
illumination of the ipsilateral eye. (B) Top: example traces of the simulated activity
of the left (red) and right (blue) modules in the absence visual stimulation (AU: ar-
bitrary units). These continuous dynamics control the alternation between right and
left orientational states. Bottom: Example traces of the simulated activity for a con-
stant contrast 𝑐 = 0.5. (C) Probability of flipping orientation as a function of the
imposed contrast c in situations of conflict or reinforcement (neuronal model). (G)
Probability distribution function of 𝜃 for 10 simulated phototactic trajectories with a
linear dependence of average reorientation on contrast. Each trajectory lasted 50,000
s. The dotted line is the orientational distribution in the absence of visual stimulation.
(adapted from Karpenko et al. (2020)).
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5.3.1 Methods
The setup used for these experiments is described in Chapter 3.

Protocol. For a robust identification of the ARTR, I used an OKR stimulus, composed
of vertical red and black horizontally moving bars, projected on the screen in front of
the fish. The pattern movement was sinusoidal of a period of 12 seconds (figure 5.10
B). This pattern was projected for about 3 minutes at the start of an experiments.

After this initialization period, the fish was exposed to a ~30 min period during which
the stereovisual contrast was changed whenever the larva performed a tail movement.
The projected contrast could correspond to 3 different patterns: (1) 𝐼𝐿 = 0.5, 𝐼𝑅 = 0.5;
(2) 𝐼𝐿 = 1, 𝐼𝑅 = 0; (3) 𝐼𝐿 = 0, 𝐼𝐿 = 1. A direct transition between state (2) and (3) is
not possible, otherwise any other transition is equiprobable, regardless of the direction
of the tail movement (figure 5.10 C).

Image analysis. The general routine used for functional image analysis is described
in Wolf et al. (2017). Custom functions were written in Matlab available on this gitlab
page: gitlab.com/Phiasso/lightsheetanalysis.

For identification of the ARTR stripes, a Fourier transform was computed from the
DFF signal of each pixel as well as from the OKR stimulus (Migault et al., 2018;
Portugues et al., 2014). Subtracting the two transforms yields the phase-shift of the
activity of each pixel relative to the stimulus phase. This enables to compute a phase-
map, in which the color encodes the phase-shift and the intensity the amplitude of the
response (5.10 A). The region encompassing the ARTR was selected manually, and
the ARTR pixels automatically extracted based on the phase and amplitude of their
response.

The response of the ARTR was computed as follows: for a tail movement to one side,
the DFF of the contralateral side was subtracted from the DFF of the ipsilateral side:
𝐷𝐹𝐹𝐴𝑅𝑇 𝑅 = 𝐷𝐹𝐹𝑖𝑝𝑠𝑖 − 𝐷𝐹𝐹𝑐𝑜𝑛𝑡𝑟𝑎 (see example for a left turn in figure 5.10 D).

Turns were distinguished from forward swim attempts based on their turning score 𝑀 ,
as described in the previous chapter.

5.3.2 Results
The ARTR’s asymmetrical activity is known to be predictive of the direction of a
following turn (Dunn et al., 2016). It is also sensitive to contrast changes (Wolf et
al., 2017). Thus we sought to (i) characterize the activity of the ARTR at the onset
of a tail-bout, hypothesizing its activity would be asymmetrical in the case of turns
and (ii) see whether there is a modulation of the ARTR response by different contrast
transitions following a turn.
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Figure 5.10: Phase map obtained from the difference of the Fourier transforms of sin-
gle pixels and the OKR stimulus. The stimulus is a sinusoidal leftward or rightward
movement of horizontal bars in front on the larva. For leftward movement, the left
(ipsilateral) side mostly responds and vice-versa. For a notable exception of the ARTR
(white arrows), which responds contralaterally, enabling its identification. (B) Stimu-
lation protocol: OKR (~3min) then contrast modulation which occurs only upon a tail
movement. (C) Possible contrast transition combinations following a left bout, with
their corresponding values. The same contrast transitions are possible for a right turn,
then the sign of the contrast value is inverted. (D) ARTR response definition: if a
leftward turn occurs, the response of the ARTR is defined as the DFF of the left side
minus the DFF of the right side, and vice-versa.
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5.3.2.1 Asymmetrical ARTR activity translates turning movements

Following their findings, Dunn et al. (2016) speculated, that when a fish performs
a turn in the direction where the ARTR is active, a motor efferent copy reactivates
the ipsilateral ARTR and inhibits the contralateral side, thus generating the observed
motor persistence in turning events.

First we characterized the response of the ARTR to turning or forward swimming
movements, regardless of the imposed contrast. Swimming events were categorized into
three groups: forward movements, left turns and right turns, based on their turning
score 𝑀 (figure 5.11).

Figure 5.11: Turn or forward bouts selection and ARTR response for N=12 fish. Mean
𝑚 traces of leftward bouts (blue, n=155), rightward bouts (red, n=161), forward bouts
(green, n=99). Vertical grey bar: bout onset. (B) ∫ 𝑚 mean cumulative sums of 𝑚,
equivalent to turning score 𝑀 , from bout onset from leftward (blue), rightward (red)
and forward (green) bouts. Vertical grey bar: bout onset.

The activity of the two ARTR subpopulations - ipsilateral and contralateral to a turn
bout - was then extracted. The post-bout activity of the ipsilateral ARTR to the
direction of the turn was consistently higher than the activity of the contralateral side
(figure 5.12 A, individual traces in E). To quantify this effect, we compare the difference
in activity post-bout (1-3s after the bout) and pre-bout (-3 to -1s) (figure 5.12 B). Note
that the response of the contralateral side is lower than that of the ipsilateral side, but
is still significantly higher than zero.

In the case of a forward tail-bout, the “ipsilateral” (“contralateral”) side of the ARTR
was considered to be the side with highest (lowest) response to the tail movement. Both
sides appear to respond to a forward movement equally (figure 5.12 C), though with a
higher variability (figure 5.12 F). The mean responses are undistinguishable from one
another (figure 5.12 C, D), are lower in amplitude than the response of the ipsilateral
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side to a turn, but similar to the response of the contralateral side to a turn.

Figure 5.12: Mean ARTR DFF traces during (A) turns and (C) forward swims: ipsilat-
eral ARTR side to the turn (solid line) and contralateral ARTR side (dashed line). In
the case of forward swims, the ipsilateral side was taken to be the one with the highest
response. (B, D) Response of ARTR per fish (< 𝐷𝐹𝐹 >𝑝𝑜𝑠𝑡 − < 𝐷𝐹𝐹 >𝑝𝑟𝑒 where
𝑝𝑟𝑒 is the time-window -3 to -1 seconds before a bout and 𝑝𝑜𝑠𝑡 the time window from
1 to 3 seconds after a bout) for the ipsilateral and contralateral sides following a swim
bout. The response of ipsilateral and contralateral sides were found to be significantly
different from 0 (one-sided t-test), the responses of each side are significantly different
from one another (two-sided t-test). (B) Turn movement only. (D) Forward swims
only. (E-F) Average traces of ipsilateral (ipsi) and contralateral (contra) ARTR region
for 12 different fish for (E) turning bouts and (F) forward bouts. The red arrows indi-
cate the bout onset.

These results corroborate the hypothesis formulated by Dunn et al. (2016): the ARTR’s
asymmetrical activity encodes the direction of an ongoing tail-bout if it is a turning
one. It may well be that this response is an efferent copy of the motor event, which
reinforces the activity or the ipsilateral ARTR side, and thus participates in the motor
persistence effect in the direction of successive turns. In the case of forward bouts, the
ARTR also responds, but this time in a symmetrical manner. It looks as if both ARTR
sides would always receive an input following a bout, be it a forward or a turn. But
in the case of a turn, this basal input is intensified on the ipsilateral side, reinforcing a
“memory” of the previous turn.
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5.3.2.2 Response of the ARTR to contrast change

We then assessed the response of the ARTR region to contrast changes. In this section
I will refer to the ipsilateral side of the ARTR as the side of the fish on which the
illumination shift is positive (𝑑𝑐/𝑑𝑡 > 0), and vice-versa for the contralateral side.

Preliminarily, as expected from our previous behavioral experiments, the fish tends to
perform tail movements towards the illuminated side. When the contrast just before the
bout is 1 (-1), i.e. brighter side on the left (right), the mean direction of reorientation
will be to the left (right) (black traces in figure 5.13 A). An interesting effect is the
passage from a null contrast 0 to a contrast of 1. On average, for a null contrast, the
turning score 𝑀 (here approximated with the cumulative sum of 𝑚, figure 5.13 A)
should be 0. This is true on a short timescale of a single bout < 0.5 seconds. What
seems to happen is a correction of the tail-bout direction towards the most illuminated
side of subsequent bouts. And the resulting turning score from the time of contrast
change is effectively higher than in the case where the contrast tips over to the neutral
state.

At the level of the ARTR, very subtle effects are visible: upon a contrast shift towards
one side, the ipsilateral side of the ARTR seems to display slower decay dynamics than
the contralateral side (~1 seconds shift, figure 5.13 B). This results in the ipsilateral
side “winning over”, which might participate in the reinforcement of the ipsilateral side
turning direction (figure 5.13 D). On the other hand, when the contrast shifts from 1
to 0, the contralateral side displays a slightly slower decay time (figure 5.13 C), thus
the contralateral side wins over the activity (figure 5.13 E). In this case, as the final
contrast is evened out, this last effect can be interpreted as a subtle damping of the
turning persistence.

On average, at the onset of a bout, the response of the ARTR to contrast is very
subtle. The described effects might play a role in slightly biasing the temporal dynamics
towards the side opposite of the one with highest loss of illumination. But as the
stimulus is locked on the animal’s movements, the seen response cannot be completely
separated from a motor response.

5.3.2.3 Response to conflicting or reinforcing contrast stimuli

To disentangle the contributions of turning direction and contrast shift direction in
the response of the ARTR following a turn movement, we systematically characterized
the response of ipsilateral and contralateral sides of ARTR, by separating all different
scenarios of possible contrast change.

A turn in one direction may trigger the following contrast transitions (fig 5.10 C) :

• 0 → 1: from null contrast to positive contrast toward the ipsilateral side. Fol-
lowing a turn in one direction, the same side gets lit up. In this case one should
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Figure 5.13: Cumulative sum of the moment signal 𝑆𝑚 following a contrast transition
(red arrow). Top: positive contrast transitions (𝑑𝑐 > 0). An initial equal illumination
from left and right (𝑐𝑝𝑟𝑒 = 0)𝑠ℎ𝑖𝑓𝑡𝑠𝑡𝑜𝑎𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑤𝑖𝑡ℎ𝑙𝑖𝑔ℎ𝑡𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑙𝑒𝑓𝑡(c_{post} = 1,
blue curve). An initial contrast with light from the right shifts to a null contrast
(black curve). Bottom: negative contrast transitions (𝑑𝑐 < 0). The two situations
are symmetrical and thus combined together in the following panels. (B-C) ARTR
responses following a contrast shift triggered by a tail movement. The ipsilateral side
(ipsi) corresponds to the side on which illumination increases. And vice-versa for the
contralateral side. (B) Response when shifting from a null contrast (both eyes equally
illuminated) to an asymmetrical illumination. (C) Response when shifting from an
asymmetrical contrast to an equal illumination of both eyes. (D-E) Responses of the
ARTR represented as 𝐴𝑅𝑇 𝑅𝑖𝑝𝑠𝑖 − 𝐴𝑅𝑇 𝑅𝑐𝑜𝑛𝑡𝑟𝑎, correspondence to panels B and C
respectively.
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expect a positive reinforcement, since the contrast would drive the animal again
in the same direction as the previous bout.

• 0 → −1: from null contrast to positive contrast toward the contralateral side.
Following a turn in one direction, the opposite side gets lit up. In this case one
should expect a negative reinforcement, since the direction of the light gradient
is opposite to the direction of the previous bout.

• 1 → 0: from positive contrast on the ipsilateral side to null contrast. In this
case, following a contrast to one side, a turn in the direction of this same side
triggers evens out the intensity recieved by each eye. Behavioral results show
that this is the situation sought after in stereovisual phototaxis, making this a
coherent stimulus.

• −1 → 0: from positive contrast on the contralateral side to null contrast.
Following a contrast to one side, the animal performs a turn in the opposite
direction, rebalancing the intensity each eye receives. The contrast change occurs
in the opposite direction of the movement, making this an uncoherent stimulus.

The behavioral response is slightly modulated in the four different situations (figure
5.14 A). In the cases where the contrast is evened out (to 0), the mean cumulative
moment ∫ 𝑚 is slightly lower than in the cases of a shift to an asymmetrical contrast
(to 1 or -1). In the case of a transition from 0 to 1, the cumulative moment rises faster
than in the other cases: there seems indeed to be a slight reinforcement of the turning
direction to the ipsilateral side. In a situation of negative reinforcement contrast shift,
𝑆𝑚 rises slower than in the positive reinforcement case, but faster than in the situations
where the contrast is evened out. This indicates that the negative reinforcement does
not happen at this time scale.

The response of the ipsilateral ARTR in a situation where the initial contrast is non-
zero shows a slight tendency to be higher than when the contrast is null (figure 5.14 B,
C). When the contrast shifts from 0 to 1, there seems to be a “rebound” in the activity
of the ipsilateral ARTR 10 to 20 seconds after the onset of the new contrast (figure
5.14, B violet curve), which is also visible in the behavioral traces (figure 5.14). This is
coherent with the idea of a reinforcing stimulus: from a situation with no stereovisual
information, a movement to one side triggers a new contrast biased toward this same
side, thus driving the animal again to the same direction as the previous turn.

A shift of the contrast from 0 to -1, i.e the contralateral side of the turn gets illuminated,
seems to increase very slightly the response of the contralateral ARTR side (figure D).
If this effect were significant, it would indicate a reinforcement of the contralateral side
by the contrast change, and thus a negative reinforcement of the turning direction.

Transitions to a null contrast are quantitatively identical, no matter whether the pre-
viously experienced contrast was negative or positive, the ARTR does not show a
modulation in response amplitude.

The ARTR robustly encodes the direction of a turn. Additionally to be predictive
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Figure 5.14: N = 11 fish, 316 turn events. (A) Cumulative sum of absolute moments 𝑆𝑚
(left and right combined) for different scenarios of contrast transitions. (B-C) Responses
of the side of the ARTR ipsilateral to a turn to the different contrast transitions. (D-
E) Responses of the ARTR (contralateral side subtracted from ipsilateral side) to the
different contrast transitions.

of an upcoming turn direction, as demonstrated by Dunn et al. (2016), the ARTR
seems to receive an efferent copy of the ongoing movement. In the case of a forward
movement, the rise of activity in the two sides of the ARTR is symmetrical. In the
case of a turning movement, the activity is significantly heightened on the ipsilateral
side of the turn.

A change in contrast has a much milder effect on its activity. The observed effects of
slight reinforcement of the turning direction - positive in the case of a contrast changing
in the direction of the turn, negative in the opposite situation - might be the effect
of the contrast, but could also be due to motor activity only. Even when trying to
differentiate all possible scenarios of bout direction and contrast change, the effect of
contrast change appears very mildly.

The response of the ARTR to a contrast is much higher when it occurs independently
from the animal’s movements (Wolf et al., 2017). When locked on the animal’s move-
ment, the response to contrast is sub-linear, the motor event dominating the ARTR’s
activity. We can hypothesize this as being a sensory suppression effect, where the sen-
sory entries are transiently inhibited when the animal performs a volountary movement
(Crevecoeur & Kording, 2017; Foo & Mason, 2005; Wolpert et al., 1995). This could
be tested using a “play-back experiment”: after a period of closed-loop stimulation
like the experiments presented here, the second half of the experiment would consist of
playing back the sequence of contrast transitions, but independently of a motor event.
This way it could be possible to directly compare the response of the ARTR to a con-
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trast change during or in between bouts, and see to what extent this masking effect is
important.

Also it would seem that the dynamics of the ARTR, rather than getting direct infor-
mation from a contrast transition, are more significantly biased on a longer-term, by
a prolonged contrast. At a short time-scale, the predominant effect comes from the
motor copy. As it has been hypothesized by Chen et al. (2018), it seems likely that the
ARTR is a downstream structure in the sensorimotor process, close to the motor out-
put, receiving inputs from upstream integrative structures which more robustly encode
the direction of a stereovisual contrast.
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Chapter 6

Conclusions and perspectives

Be
what you would seem to be – or, if you’d like it put more simply – Never
imagine yourself not to be otherwise than what it might appear to others
that what you were or might have been was not otherwise than what you
had been would have appeared to them to be otherwise.

The Duchess.1

We have seen that (i) the zebrafish larva has intrinsic persistent exploratory naviga-
tional dynamics which are biased in the presence of a smooth spatial or temporal light
gradient. It is able to use two complementary strategies for climbing either of these ori-
entational light gradients. (ii) This light-seeking behavior is reproducible in head-fixed
conditions with a closed-loop virtual reality system which retroacts on the animal’s
tail movements and continuously updates its surrounding illumination according to its
angular distance to a source. The two strategies are used in combination when both
spatial and temporal informations on the direction of the light gradient are available.
(iii) An underlying neural circuit controls the persistent exploratory locomotion in ze-
brafish. During a motor event, its activity predominantly encodes the direction of a
tail-bout. Independently from a motor event, its activity can be modulated by pho-
totactic stimuli, promoting an increased persistence in the presence of an ipsiversive
contrast.

6.1 Zebrafish and light
In the behavioral description of the larval zebrafish’s propensity to swim towards illu-
minated regions that I drew here, in the existing literature to which we contributed,
the terms phototaxis and light-seeking behavior are used interchangeably. Its ability

1Alice’s Adventures in Wonderland, L. Carroll.
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to extract instantaneously the direction of the light gradient from the contrast by com-
paring intensities it receives on left and right eye puts this strategy undoubtedly in the
category of tropo-phototaxis, strategy also termed stereo-visual comparison.

How to term the second temporal strategy, on the other hand, is less clear. In our study,
building on previous ones, this strategy of climbing temporal gradients is sometimes
termed “klino(photo)taxis”. But if we look back at the strict definition of klinotaxis, it
is supposed to be a method of inferring the direction of a gradient by sampling cues in
a temporal fashion, which implies a directional bias of < 𝛿𝜃 > after several sampling
events. Yet, in our assay, unlike the previous results on the behavioral algorithm of
temporal light-seeking behavior (X. Chen & Engert, 2014) we do not observe this
bias. The steady-state orientational bias of 𝜃 we observe is possible through a higher
frequency of turns and their increased amplitude, which makes this strategy closer to
klinokinesis in which the rate of turning varies with the stimulus. This divergence
in results might be explained by the difference of applied stimuli: Chen et al. used
an abrupt light transition from a lit environment to complete darkness and vice-versa,
where we tried to avoid abrupt transitions. We hypothesized that these huge differences
of intensity might trigger escape responses (as it could resemble a very fast looming
stimulus) or responses such as the visuo-motor reflex (VMR) of overall heightened
locomotor activity, both different from a smooth exploratory behavior slightly biased
by light. Behaviors such as VMR do contribute to staying or returning to illuminated
regions, as observed by Fernandes et al. (2012), in which case the speed of movement
participates to it, making it an orthokinesis (see figure 1.3).

So if we were to be completely rigorous in our terminology, “light-seeking behavior”
would be a general term encompassing different strategies including tropophototaxis,
klinophototaxis, klinophotokinesis or orthophotokinesis. But old habits die hard, and
as we still speak of bacterial chemotaxis, phototaxis has probably just become a generic
and common term to describe light-seeking behavior.

For the sake of clarity, we tried to limit ourself to a very limited and narrow aspect of
how light can influence and bias zebrafish behavior. Yet, in a naturalistic environment,
all stimuli would be highly intricate, act in concert and probably provide a much
more complex behavioral response to all parameters at play. We know for example,
that since the zebrafish is a diurnal animal, it is subject to circadian rhythmicity, the
larva displaying diel vertical migration where it swims upward or downward in the
water column, depending on the luminosity conditions (time scale of minutes). This
behavior is not mediated by the visual system and is induced specifically by blue light.
It has been shown to involve melatonin production in the pineal, as well as the thalamo-
habenular pathway (Lin & Jesuthasan, 2017). Though it is impossible to completely
separate contributions of potentially different pathways a stimulus can follow, it is
important to bear it in mind for an accurate view of the observed process.
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6.2 Structures implicated in zebrafish light-seeking
behavior

Though I sing the praises of large-scale functional imaging, by lack of time I only
focused on the description of a small subpart -the HBO or ARTR - of the data I had
access to. Still the dynamics of this small subpart in the presence of a biasing stimulus
are not completely deciphered. In response to a visual contrast, the motor output
is immediately and directionally but stochastically biased by the spatial gradient. In
response to whole-field illumination changes, in a temporal light-seeking strategy where
a directional motor output is not necessary, the role of the ARTR is unclear, if at all it
plays a role. A subsidiary question concerns the adaptations of the ARTR dynamics (its
intrinsic pseudo-oscillation) to long-term environmental changes, namely illumination
changes. It has been speculated, that the pseudo-period of left-right alternations of
the ARTR might be influenced by ambient light levels. If the bout frequency if not
affected in parallel, this might give rise to behaviors with more or less motor persistency
in turning events, generating more localized or on the contrary more exploratory-like
trajectories. This could be seen as a modulation of the 2D diffusion coefficient of the
larva for adaptive navigation of its surroundings.

There are other known regions involved in light responsiveness. For example the habe-
nula: being an anatomically and functionally asymmetrical structure, it is specifically
the left habenula, which receives indirect inputs from ganglion cells, that mediates
light-preference (Dreosti et al., 2014; Zhang et al., 2017). This light-preference does
not seem to be a directional taxis, but participates in confining the animal to illumi-
nated regions in the horizontal plane and in the diel vertical migration mentioned above
(Cheng et al., 2017; Lin & Jesuthasan, 2017). Also receiving indirect inputs from the
pineal, the habenula is thus involved in circadian behaviors. On a more general side
note, the habenula is a highly versatile region - described as a relay-station (Bianco
& Wilson, 2009) with responses to visual and olfactory stimuli (Dreosti et al., 2014),
mediating fear, anxiety or avoidance behaviors (Agetsuma et al., 2010; Amo et al.,
2014; Jesuthasan, 2012), and also involved in behavioral state-transitions (Andalman
et al., 2019; Marques et al., 2020) and decision-making (Cherng et al., 2020).

The example of the habenula as a “multi-modal hub” is not unique. Many regions are
not uni-sensory, tuned to one specific stimulus or encoding only one single behavior.
Thus constructing multi-sensory paradigms can get some important insight into the
way the brain processes information. For example Chen et al. (2018), by testing dif-
ferent stimuli known to evoke specific responses, were able to construct maps of the
intersection of tested stimuli determining regions involved in multi-stimuli convergence.
This can give insight into how information is hierarchized when processed by the ner-
vous system. An interesting region to keep in mind for further work on light-seeking
(and other) behavior is the multi-sensory convergence regions in the anterior hindbrain
described by Chen et al. (2018), which could be key for integrating directional stimuli
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and them transferring them to the ARTR if need be.

6.3 Outlooks in neuroscience
Large-sale functional imaging can bring about some interesting insights into how a cog-
nitive system processes information, but also about functionally characterized global
behavioral states, like sleep (Leung et al., 2019), exploration or exploitation (Marques
et al., 2020) or even consciousness (Goldman et al., 2019). And though this work was
solely focused on neurons, assuming they are, within their network, the most impor-
tant part of the information processing system, evidence points to important regulatory
functions of another matrix surrounding the neurons, and which can drastically influ-
ence their activity: the glia. It has recently been shown, that glia encode the futility of
an attempted movement in zebrafish (Mu et al., 2019) and more generally respond to lo-
comotion and sensory stimuli, regulate learning or state transitions, etc (Jurisch-Yaksi
et al., 2020).

All in all, when looking at brain dynamics “naively”, a huge level of complexity arises
from the neural activity, even when the animal performs “simple”, hard-wired innate
behaviors. Thus some call for the need of thorough descriptions of behavior (a complete
behavioral algorithm) before trying to explain them at a neuronal level (Krakauer et
al., 2017). Indeed, some analysis tools, if used with lack of hypotheses, may give only
partial or even wrong results. This has been illustrated in an interesting parallel drawn
by Jonas & Kording (2017), who tried to understand how a microprocessor works with
the tools of systems neuroscience. And did not exactly succeed. One could argue
the brain is not and does not work as a microprocessor does, but both are considered
information-processing systems, so common tools should be able to describe both at a
certain level.

At least, the brain as a computational system is the current metaphor used for
trying to understand it. Some speculate that, as former metaphors (like the
brain as a hydraulic automata by Descartes, or the brain as a telegraph by von
Helmholtz) we are reaching its limits. Arguing that this comparison has had its
day, as it has not born much conceptual understanding of fundamental questions
in neuroscience these past few decades (Gomez-Marin (2020) commenting on the
last part of the book The Idea of the Brain by Matthew Cobb, available at this
link: https://www.theguardian.com/science/2020/feb/27/why-your-brain-is-not-a-
computer-neuroscience-neural-networks-consciousness). As Cobb highlights it, relying
solely on “emergence” to explain the complexity of brain function may actually
indicate a problem with the theoretical framework. As Richard Gregory stated it
already back in 1981:

“The appearance of ‘emergence’ may well be a sign that a more general
(or at least different) conceptual scheme is needed … It is the role of good
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theories to remove the appearance of emergence. (So explanations in terms
of emergence are bogus.)”

But new possibilities for metaphors emerge, namely around the critical question of a
neural code: does a representation of the external world exist in the brain? György
Buzsáki for example asserts that instead of passively representing external stimuli,
an organism actively searches for external clues and constructs information. Or Ro-
main Brette who points out the limitations of a neural code metaphor, and suggests a
more systemic (the brain within its organism within its environment) and dynamical
approach (studying the sensorimotor loop).

In any case, much of today’s neuroscience research endeavor is at least partially moti-
vated by finding links between what we may call the microscopical scale of the brain (the
neuron) and the macroscopical one (network dynamics, or even behavior), which is the
(big) missing step to explain the emergent properties of the nervous system. Whether
it be through an experimental focus on simple (or less simple) processes, finding new
theoretical or computational approaches or through the building of a completely new
paradigm to explain brain function.
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MOTS CLÉS

processus sensorimoteur, rétroaction, phototaxie, poisson zèbre, microscopie par nappe laser, 2-photon

RÉSUMÉ

Afin de survivre et de se développer, les organismes motiles utilisent les signaux sensoriels de leur environnement pour
naviguer vers les environnements où ils sont les plus susceptibles d’éviter les prédateurs, trouver de la nourriture ou
rencontrer des partenaires. Cette navigation exige que la perception sensorielle et l’action motrice soient coordonnées
au sein d’une même boucle de rétroaction. Celle-ci est mise en œuvre chez nombre d’organismes - des bactéries aux
nématodes, en passant par les insectes, ainsi que chez les vertébrés.
Comprendre la relation entre comportement à l’échelle de l’organisme et dynamique des circuits à l’échelle d’un cerveau
chez les vertébrés est un défi central dans les neurosciences, auquel ce travail vise à contribuer. La larve de poisson-
zèbre, ayant une accessibilité unique pour l’imagerie fonctionnelle à l’échelle du cerveau entier ainsi qu’une large palette
de comportements innés, est un organisme idéal pour aborder ce sujet. Je m’intéresse plus particulièrement à la nav-
igation biaisée par la lumière -aussi appelée phototaxie - chez la larve de poisson-zèbre : j’étudie comment une telle
tâche sensorimotrice est mise en œuvre sur le plan comportemental, et quelle est la dynamique du réseau neuronal
sous-jacent.
La première section (i) de cette thèse vise à caractériser la façon dont les séquences de stimulation motrice et visuelle
régissent la sélection d’événements de nage discrets qui font la navigation du poisson, en présence d’une source lu-
mineuse distante. En utilisant une expérience de réalité virtuelle, deux stratégies différentes de phototaxie sont étudiées
: l’une basée sur le contraste spatial perçu, l’autre sur le changement d’intensité lumineuse totale perçu lors d’un événe-
ment de nage. Les séquences de nage sont décrites à l’aide d’un modèle de chaînes de Markov qui prédit quantitative-
ment la distribution stationnaire de l’orientation du poisson sous un profil d’illumination donné.
Une deuxième partie (ii) se concentre sur la transposition de l’expérience de phototaxie développée dans la section
(i) d’un animal en nage libre à un animal partiellement immobilisé. Le suivi des mouvements de la queue permet de
calculer une orientation virtuelle, utilisée pour mettre à jour l’environnement visuel. Cette approche permet d’émuler une
navigation virtuelle en présence d’une source de lumière distante.
La dernière partie du projet (iii) se concentre sur le circuit neuronal qui sous-tend ce comportement. Spécifiquement
un circuit nommé ARTR, connu pour être impliqué dans la sélection de l’orientation à chaque mouvement de nage. La
technique développée dans la section (ii) est utilisée en combinaison avec un microscope à feuille de lumière 2 photons,
permettant d’interroger expérimentalement les circuits d’intérêt, en utilisant des stimuli visuels simples, soit délivrés lors
d’un mouvement de la queue, soit de manière aléatoire. Cela permet de démêler les contributions du stimulus visuel et
de l’efférence motrice.
Dans son ensemble, cette contribution pourrait permettre de mieux comprendre comment un stimulus peut biaiser la
dynamique neurale interne d’un animal qui navigue, afin de déclencher une réponse appropriée à changement de
l’environnement abrupt.

ABSTRACT

In order to survive and thrive, motile organisms use sensory cues to navigate towards environments where they are most
likely to avoid predators, obtain food or find mates. This sensory-guided navigation requires sensory perception and
motor action to be coordinated in a feedback loop which is implemented by number of organisms - ranging from bacteria
to nematodes or insects, and also by vertebrates.
Bridging brain-scale circuit dynamics and organism-scale behaviour in a model vertebrate is a central challenge in neuro-
science, to which this work aims to contribute. Zebrafish larva, for its unique accessibility to brain-wide functional imaging
and wide display of innate behaviours is an ideal organism to tackle this topic. I specifically focus on light-seeking naviga-
tion of larval zebrafish: I investigate how such a sensorimotor task is behaviourally implemented, and what the underlying
neural dynamics are.
The first section (i) of this thesis is aimed at the characterisation of how motor and visual stimulation sequences govern
the selection of discrete swim-bout events that sub-serve the fish navigation in the presence and absence of a distant
light source. Using a virtual reality assay, two different light-seeking strategies are tested: either based on spatial contrast
or on global intensity modulation according to the fish’s body orientation. The swim bout sequences are described using
a comprehensive Markov-chain model of navigation that quantitatively predicts the stationary distribution of the fish’s
orientation under any given illumination profile.
A second part (ii) focuses on the transposition of the virtual assay developed in section (i) from a freely swimming onto a
partially tethered animal. Recording its eye and tail movements in order to compute a virtual orientation and thus updating
the visual environment enables the emulation of a navigation with respect to a distant light source, using spatial contrast
cues.
And the final part (iii) targets the neural circuit that sub-serves this behaviour. The behavioural description of section (i) is
mapped on a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts, which
can capture the statistics of both spontaneous and contrast-driven navigation. Using the assay developed in section (ii)
added onto a 2-photon light-sheet microscope, this neural circuit is experimentally interrogated using illumination changes
upon an attempted swim bout or uncorrelated from a swim event. This enables to disentangle the contributions of the
visual stimulus and motor efference in biasing global neural dynamics.
All in all, this work might participate to a better understanding of how a stimulus may bias the internal neural dynamics of
a navigating animal in order to trigger an appropriate response to an acute sensible environmental fluctuation.
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sensorimotor process, closed-loop, phototaxis, zebrafish larva, light-sheet microscopy, 2-photon


