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A space-time description of the finite transformations of thermo-mechanical continua is developed : the use of such a four-dimensional approach guarantees the general covariance of the proposed models. The conservation equations are written in this context and a constitutive model is derived for reversible transformations. We use projection operators to obtain the space and time components of the 4D governing equations and to interpret the results. We next propose a weak formulation of the problem along with its finite-element discretization, to be solved for the finite transformations of a solid. The advantage of this description is that the integration on space and time is performed in one step. We discuss why the 4D convective coordinate system is of interest to solve the problem. Finally, we illustrate the approach with analytical examples and solve thermo-mechanical problems numerically with an implementation on FEniCS software.

It is a humbling experience to acknowledge those people who have, mostly out of kindness, helped along the journey of my PhD. I am indebted to so many for encouragement and support

Résumé en français

Une description spatio-temporelle des grandes déformations des milieux continus thermomécaniques est développée : l'utilisation d'une telle approche quadridimensionnelle garantit la covariance générale des modèles proposés. Les équations de conservation sont écrites dans ce contexte et un modèle constitutif est dérivé pour les transformations réversibles. Nous utilisons des opérateurs de projection pour obtenir les composantes spatiales et temporelles des équations régissant 4D et pour interpréter les résultats. Nous proposons ensuite une formulation faible du problème ainsi que sa discrétisation par éléments finis, à résoudre pour les grandes déformations d'un solide. L'avantage de cette description est que l'intégration sur l'espace et le temps se fait en une seule étape. Nous discutons pourquoi le systéme de coordonnées convectives 4D est intéressant pour résoudre le problème. Enfin, nous illustrons la démarche par des exemples analytiques et résolvons numériquement des problèmes thermomécaniques avec une implémentation sur le logiciel FEniCS.
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General introduction

At the University of Technology of Troyes, the Life Assessment of Structures, Materials and Integrated Systems (LASMIS) laboratory develops mechanical engineering tools for designing and manufacturing components critical to safety and operational reliability. As examples of such components, we may cite the aircraft engine blades, medical prostheses gears, nuclear waste containers, etc. Examples of the manufacturing processes are the shot peening, the Surface Mechanical Attrition Treatment (SMAT), cold expansion, etc. Research activities focus on producing engineering methods such as understanding the physics and micromechanics of materials, understanding the physics of manufacturing processes, developing characterization methods and appropriate numerical tools. Fundamental and applied works is in progress in many academic and industrial centers to improve these limits. Simulations are now (too) easily performed in an industrial, academic or research context. Nonetheless, the quality of the simulations has yet to be assessed and depends on two limiting factors: i) The computation time limited by the model complexity, the algorithm and the computer efficiency. ii) The physical content itself, limited on one hand by the diversity of the occurring phenomena and on the other hand by the resolution scales taken into account.

The correct description of the physics is essential to capture the characteristics of these complex material transformations. One of the difficulties comes from the non-linearity of the phenomena.

In current finite element analysis, the general algorithm concerning non-linear integration is decoupled in space and time. The 3D equilibrium equations are solved over the considered volume for each time step. Only then is the time incremented and a new time step considered. These non-linear numerical formulations are in general issued from an update of the existing methods developed for time independent small strain cases. Depending on the exact integration scheme, the constitutive model and the boundary condition problem, the convergence of the method might be problematic (existence, stability, computation time). There are thus research opportunities in reconsidering the space-time integration algorithms to improve convergence of non-linear finite-element analysis.

For this purpose, we propose a fully covariant and geometric four-dimensional formulation of the problem. The equations of continuum mechanics, and in particular the constitutive models, are then necessarily independent of the observer. The objective of this work is thus to 2 propose a covariant 4D finite-element resolution of such a problem. This offers the possibility to develop a fully coupled integration scheme that will solve the balance equations directly on a four-dimensional hyper-volume using a 4D description of the physics. For this purpose it is necessary to develop a 4D weak formulation for the problem, then propose an integration algorithm and define appropriate 4D elements.

The present dissertation is organized as follows:

-In the first chapter, we review the description of classical continuum mechanics. We highlight the difficulties faced in this approach and how the space-time approach could overcome these difficulties.

-The object of the second chapter is to describe the tools useful to construct a spacetime formalism. We start with geometric elements that are useful to propose a covariant space-time description for finite transformations of continuum mechanics. We define projection operators on space and on time to enable the decomposition of the space-time tensors and the comparison with the classical 3D formalism of continuum mechanics.

We also propose a methodology to compare the space-time description with the classical formulation of continuum mechanics. We also investigate the relation between the Lagrangian description and the choice of the 4D coordinate system.

-In the third chapter, we introduce a covariant description for thermo-mechanical problems. We write the governing equations in a space-time formalism. The methodology to formulate a covariant constitutive model is next presented and a 4D constitutive model for an elastic solid is derived. We also propose a covariant space time weak formulation of the problem along with its finite element discretization.

-In the fourth chapter, we first illustrate the approach with analytical examples. We then present finite-element computation using FEniCS project for simple cases and for a space-time thermo-mechanical problem.

A general conclusion and some perspectives are finally presented.

Chapter 1

Background and Literature Review In solid mechanics, realistic constitutive models, besides Hooke's model for linear elasticity, are non-linear. This is of importance to model elastomers and rubbers [Mooney, 1940, Rivlin, 1948, Rivlin and Saunders, 1951, H. and R.W., 1985, Bergström and Boyce, 2000, Vu and Steinmann, 2012a, Hossain and Steinmann, 2013], biomaterials [START_REF] Prost-Domasky | Largedeformation analysis of nonlinear elastic fluids[END_REF] or metal manufacturing [START_REF] Saanouni | 2d adaptive fe simulations in finite thermo-elasto-viscoplasticity with ductile damage: Application to orthogonal metal cutting by chip formation and breaking[END_REF]. Also, in these examples, the deformations undergone by the matter are finite, in the sense that the infinitesimal approximation is not valid for the deformation. The problem is thus non-linear, from a geometrical point of view and a material point of view. The finite transformations of solids are thus under considerations in this work. This chapter thus first presents a rapid review of the hypotheses, definitions, and equations of classical mechanics, an element of comparison for the approach proposed in this thesis.

Open questions remain when finite transformations of solids are considered. We thus next highlight these difficulties to discuss how the space-time formulation could bring several solutions.

We further present different space-time approaches proposed in the literature and applied to continuum mechanics. Existing space-time finite element methods are also reviewed in this chapter. We end this chapter with a section presenting the questions addressed in this work, where we explain how 4D formalism could propose solutions to overcome some of the difficulties remaining in classical mechanics.

3D Continuum mechanics

The objective of this section is to present the mechanical problems as they are classically formulated in continuum mechanics. Classical is thus interpreted here as "standard". This section thus constitutes a rapid introduction of the vocabulary and concepts of continuum mechanics as well as an introduction of some of the notations that will be used in this document.

Important references on this subject are [Eringen, 1962, Truesdell and Noll, 2003, Belytschko et al., 2013, Besson et al., 2010, Rougée, 1997, Gurtin, 1982, Bonet and Wood, 1997, Germain, 1973].

Kinematics of finite transformations

In classical mechanics, a chronology measuring the instants of time t is associated with the 3D space coordinate system x i to parametrize the 3D spatial coordinate system with time.

A material point is defined as an elementary volume containing a representative amount of matter; it occupies a point M of the three-dimensional space referenced by its coordinates

x i . A material continuum is a set of contiguous material points chosen at a given instant of time. Configurations are defined (see Figure 1.1) corresponding to the set of points occupied by this material continuum at a given instant t. The motion of a material continuum is thus described by the set of successive configurations. Let ρ(x i , t) be the mass density field in the material continuum under consideration. The configuration of reference is the configuration that enables to define the material continuum; it is by convenience chosen to correspond to the initial configuration (configuration for which t = 0). The position of the material points in the reference configuration is noted X i , defined in the coordinate system x i . The current configuration is the configuration under consideration at a given time t. It is usual continuum mechanics to use the same notation for the coordinates system and the coordinates of the material points in the current configuration, that is x i . The deformation of the continuum can then be described with the mapping:

x i = x i (X i , t) (1.1)
which gives the coordinates of the material points in the current configuration as a function of these coordinates in the reference configuration and is bijective.

The deformation gradient denoted by F F F is defined as:

F i j = ∂x i ∂X j (1.
2)

The determinant of the deformation gradient J is the Jacobian of F F F . Note that, by definition, the deformation gradient of the reference configuration is equal to the identity noted I I I. Several deformation tensors may be defined, like for example:

-the right Cauchy-Green deformation tensor C C C:

C C C = F T F F T F F T F (1.3) -the Cauchy deformation tensor b b b: b b b = F -1 F -T F -1 F -T F -1 F -T (1.4)
Strain tensors are also defined, such that they are equal to zero for the reference configuration:

-the Green strain tensor E E E:

E E E = 1 2 (C -I C -I C -I) (1.5)
-the Euler-Almansi strain tensor:

e e e = 1 2 (I -b I -b I -b) (1.6)
The set of points x i = x i (X i , t) defines the trajectory of this material point where the material point is identified with its coordinates in the reference configuration X i . The velocity of this material point, tangent vector to the trajectory at a given time t is:

v i = dx i dt (1.7)
for a given material point. The rate of deformation tensor d d d and the spin tensor ω ω ω are also defined as the symmetric and skew-symmetric parts respectively of the velocity gradient:

d d d = 1 2 (∇v v v + ∇v v v T ) (1.8) w w w = 1 2 (∇v v v -∇v v v T ) (1.9)
Where ∇(.) is the gradient operator and ∇v v v T is the transpose of ∇v v v.

Two equivalent descriptions of the motion exist: the Lagrangian description and the Eulerian description:

-In the Lagrangian description, the unknowns of the problem are the trajectories of the material points: the coordinates x i = x i (X i , t). The independent variables are the initial coordinates of the material points X i and time t. This description focuses on the material points and the events undergone by each material point in time. It is also called the material description. It is well suited for the description of rigid body motions. It is also a description of interest for the finite deformations of solids because the reference configuration takes a particular status in elasticity (see Equation 1.24 below and [START_REF] Forest | Mécanique des milieux continus[END_REF]). Also, the geometrical discretization of the problem with the finite-element method is often constructed with the reference configuration of the system as far as solid materials are concerned [Badreddine, 2006].

-In the Eulerian description, the unknown of the problem is the velocity field v i (x i , t).

The independent variables are thus the space coordinates x i and time t. This description is also called the spatial description. It focuses on the points in space and the events undergone at these points in time; the trajectories may be deduced with the knowledge of the velocity field. The Eulerian description is well suited to describe the motion of fluids for which, by definition, there is no need to consider a reference configuration [START_REF] Forest | Mécanique des milieux continus[END_REF]. Finite-volume methods are classically used to solve the problems numerically.

It is classical in solid mechanics to sort the different tensors and associate them, depending on their definition, to the Lagrangian or Eulerian description. It is also classical, following Eringen [Grot and Eringen, 1966a] 

Stress tensors

The stress vector t t t is defined, as a surface density of force acting on an elementary surface da oriented with the normal unitary vector n n n; da is centered on a point M of the current configuration [Irgens, 2008a]. Then, following the postulate of Cauchy, the second order symmetric Cauchy stress tensor σ σ σ is defined such that t t t = σ σ σn n n. The Cauchy stress tensor is an Eulerian quantity.

A similar definition is proposed concerning the reference configuration: define the second Piola-Kirchhoff stress tensor Σ Σ Σ with T T T = Σ Σ ΣN N N ; dA is an elementary surface of the reference configuration, oriented with the normal unitary vector N N N ; T T T is here the stress vector acting on dA.

The second Piola-Kirchhoff stress tensor is a Lagrangian quantity [Smith, 2013].

Convective transports

The transport between the Eulerian and Lagrangian description corresponds to a convective transport by F F F . The transport of several quantities of interest are given below [START_REF] Forest | Mécanique des milieux continus[END_REF], Besson et al., 2010]. The transport of a surface and volume element is respectively:

da = JF F F -T dS (1.10) dv = JdV (1.11)
where dv and dV are the elementary volume element defined on the current and reference configurations respectively. The transport of the density is:

ρ = Jρ 0 (1.12)
where ρ and ρ 0 are the density defined on the current and reference configuration respectively.

It can be also verified that:

e e e = F -T .E.F -1 F -T .E.F -1 F -T .E.F -1 e ij = F a i -1 F b j -1 E ab (1.13)
which corresponds to the transport between the Euler-Almansi strain tensor and the Green strain tensor. Similarly, the transport from the Eulerian rate of deformation tensor to the time derivation of Lagrangian strain tensor is given by:

d dt E E E = F T . d. F F T . d. F F T . d. F (1.14)
The convective transport between the Cauchy stress tensor (Eulerian) σ σ σ and the second Piola Kirschhoff (Lagrangian) stress tensor Σ Σ Σ is:

σ σ σ = JF T . Σ kl . F F T . Σ kl . F F T . Σ kl . F (1.15)
It worth noting that there is no difference between the Eulerian and Lagrangian descriptions when infinitesimal transformations are considered.

Governing equations

The description of the transformations of a material continua may be performed in the framework of classical thermodynamics. The system is the considered total volume of matter. Even if irreversible processes may occur in this system, it is supposed that it is locally in thermodynamic equilibrium and that all thermodynamic state variables and functions of state exist for each particle of the system. The state of the material continua is completely defined by a given number of local variables defined at each material point and depending only on the material point [Zahalak, 1992, Lemaitre and[START_REF] Lemaitre | [END_REF]. Moreover, the functions of state for the non-equilibrium system are the same functions of the local intensive state variables as the corresponding equilibrium thermodynamic quantities.

The equations governing the transformations of the material are:

-the principle of linear momentum, -the principle of angular momentum, -the conservation of mass, -first and second principles of thermodynamics leading to the Clausius-Duhem inequality, -the constitutive model.

Each are detailed in the following paragraphs.

An inertial frame of reference is defined as a frame for which Newton's first law of motion holds. It is postulated that such a frame exists everywhere. An observer is defined at each point of a volume. Inertial observers are represented by a set of base vectors e i associated with the coordinate system z i and the time t. A frame of reference corresponds to a set of observers defined for each point of the volume under consideration. An inertial frame is also called a Galilean frame. Following second Newton's law of motion, the principle of linear momentum requires that in an inertial frame of reference:

div σ σ σ + f f f = a a a (1.16)
where f f f is the resultant body force acting on the system and div is the divergence operator. The principle of angular momentum leads to the fact that the stress tensor is symmetric [Gurtin, 1982, Lemaitre and Chaboche, 1994, Truesdell and Noll, 2003].

The conservation of mass requires:

dρ dt + div(ρv v v) = 0 (1.17)
Similarly, the equation of mass conservation has to be written in a frame for which the velocity is properly defined, it has thus to be an inertial frame.

To write the principles of thermodynamics, the following scalar quantities are defined:

-the temperature θ, -the internal energy e int , -the entropy density η.

The first principle of thermodynamics, also known as the conservation of energy, requires that:

ρ de int dt = σ : d σ : d σ : d -div q q q (1.18)
where q q q is the heat flux vector. The second principle of thermodynamics requires that:

dρη dt + div q q q θ ≥ 0 (1.19)
The first and second laws of thermodynamics may be combined to obtain the Clausius-Duhem inequality:

σ : d σ : d σ : d - 1 θ q q q ∇θ -ρ dη dt + de int dt ≥ 0 (1.20)
Equation 1.20 may be expressed using the specific free energy Ψ = e int -θη:

σ : d σ : d σ : d - 1 θ q q q ∇θ -ρ dΨ dt + η dθ dt ≥ 0 (1.21)
To close the problem, the five equations listed above (Equations 1.16, 1.17, 1.21) have to be completed by a relation between the deformation and the stress called a constitutive model to find the eleven unknowns ( the density, the velocity, the temperature and the components of the stress tensor). Constitutive models are also considered here as one of the governing equations. The study of constitutive relations in continuum mechanics consists in exploring the relation between stress and deformation for a given material [Besson et al., 2010, Lemaitre and[START_REF] Lemaitre | [END_REF] and is necessarily partly empirical. This constitutive model could for example take the form:

σ ij = F ij (e kl ), (1.22) 
where F(.), the constitutive equation, is a functional that depends on a number of material parameters and kinematic variables: the deformation e has been chosen here. It also depends in general on the density and the temperature. Constitutives equations may be advantageously derived using the guidelines proposed by the thermodynamic of irreversible processes and the notion of standard media in the case of small perturbations [START_REF] Lemaitre | Elements of continuum mechanics and thermodynamics[END_REF]].

In the case of finite transformations, derivations similar to what is proposed for standard media, have been proposed. An example of such an approach is presented next for the case of an elastic material [START_REF] Besson | Non-linear mechanics of materials[END_REF]. Consider Clausius-Duhem inequality written with Lagrangian entities:

Σ : Σ : Σ : ∂E E E ∂t - 1 θ q q q ∇θ -ρ dΨ dt + η dθ dt ≥ 0 (1.23)
where Σ Σ Σ is the second Piola-kirchoff tensor.

After writing the conservation equations and the Clausius-Duhem inequality, the methodology of deriving the constitutive model from the free energy is now presented. The free energy potential Ψ for hyperelasticity is given as:

Ψ = Ψ(E E E, θ) (1.24)
where E E E and θ are the state variables, the Green-Lagrange strain and the temperature, respectively; it is further imposed that the free energy is equal to zero for the reference configuration.

We now rewrite the Clausius-Duhem inequality (Equation 1.23) with:

dΨ dt = ∂Ψ ∂E E E : ∂E E E ∂t + ∂Ψ ∂θ . ∂θ ∂t (1.25)
to obtain:

Σ Σ Σ -ρ ∂Ψ ∂E E E : ∂E E E ∂t -ρ η + ∂Ψ ∂θ dθ dt - 1 θ q q q ∇θ ≥ 0 (1.26)
Variables E E E and θ lead to independent evolution, this implies:

Σ Σ Σ = ρ 0 ∂Ψ ∂E E E (1.27) η = - ∂Ψ ∂θ (1.28)
where ρ 0 is the mass density at the initial time. Equation 1.27 enables then to derive a constitutive model for an hyper-elastic material with the knowledge of Ψ, given by Equation 1.24.

Mechanical problem statement

Consider thus a solid S that occupied the volume Ω 0 in its reference configuration with a boundary denoted ∂Ω 0 . At the instant t this solid occupies the volume Ω, the current configuration, with a boundary noted ∂Ω. 

σ σ σ.n n n = f f f S on ∂Ω S (1.30) r r r = r r r d on ∂Ω d (1.31)
where n n n is the outgoing normal of ∂Ω S .

We present next the weak formulation of this problem. It corresponds to the principle of virtual power as defined by Germain [Germain, 1973, Maugin, 1980]: " In a Galilean frame, and for an absolute Newtonian chronology, the virtual power of the inertial forces of a mechanical system S balances the virtual power of all other forces, internal or external, impressed on the system, for any virtual velocity field." A virtual vector v v v * is defined, called a kinematically admissible virtual velocity field. Then, the principle of virtual power states that:

Ω div σ σ σ dΩ - ∂Ω σ σ σ.n n n -f f f S dS .v v v * = 0 ∀ v v v * (1.32)
The equation above has to be solved on the volume Ω for the fields of displacement, stress and strain, knowing that: 

σ σ σ =
σ σ σ.n n n = f f f S on ∂Ω S (1.34) r r r = r r r d on ∂Ω d (1.35)
where n n n is the outgoing normal of ∂Ω S .

Finite element method

To solve the problem, the numerical method classically used for non-linear mechanics of solids is the finite-element method [START_REF] Besson | Non-linear mechanics of materials[END_REF], Badreddine, 2006]. A spatial discretization of the 3D volume Ω is performed with a finite number of elements N e constituted of nodes, edges, and faces. Each element has an elementary volume Ω e of border ∂Ω e such that Ω ≈ Ne e=1 Ω e where Ne designates a union operator.

A point located in the physical space is identified with the spatial coordinates x x x and the coordinates ξ ξ ξ in the reference space. These coordinates are linked by the relation: (1.36) where x x x j are the nodal coordinates of an element, j is the number of nodes (j = 1...n) and N j are the shape functions. The fields of unknowns is also discretized in order to solve the problem. The fields defined at the node are interpolated using the interpolation function of the elements. The displacement vector field r r r is linearly interpolated as follows:

x x x = N j (ξ ξ ξ)x x x j
r r r(ξ ξ ξ) = N j (ξ ξ ξ)r r r j (1.37) where r r r j are the displacement vector at the node j. The time derivation of Equation 1.37 gives the velocity v v v:

v v v = d r r r dt = N j dr j r j r j dt (1.38)
Solving the problem consists in finding the displacement field r r r, discretized by {r} that verifies the principle of virtual power (Equation 1.32). The discretized displacement sought with the finite element method verifies the displacement boundary conditions (kinematically admissible).

One uses Equations 1.37 and 1.38 on an elementary volume Ω e using Voigt notation 1 . Then, the equations of the vector of external force {F ext } and the vector of internal forces {F int } are assembled into a larger system of equations that models the entire problem. The force vectors may be obtained by summing the contribution from all the elements [Hughes, 2012] : where denotes the sum operation and the matrix [B] enables the strain-rate calculation from the nodal displacement. f f f S is the surface force on ∂Ω, there is no body force applied on the structure; {r e } is the vector formed by the nodal displacement of the element.

{F int } = e e=1 {F e int } with {F e int } = Ω e [B]
The problem to solve with respect to {r} is then:

{F int ({r})} = {F ext } (1.41)
where the internal force vector is: and [K] is the global stiffness matrix given by: .42) where [K e ] is the elementary stiffness matrix.

{F int ({r})} = [K].{r},
[K] = ∂{F int ({r})} ∂{r} = e e=1 ∂{F e int ({r e })} ∂{r e } ≡ e e=1 [K e ] ( 1 
The objective is to solve Equation 1.41. Due to the strong non-linearities of the problem when finite transformations are considered, an incrementally increasing load is applied to enable a better convergence. The solution {r} t is known at time t. An increment ∆t is applied, then the corresponding increment of the solution ∆{r} is searched. A general algorithm is presented in 

{R} i+1 = {F int } -{F ext } Converge ? Yes, t → t + ∆t No, δ{r} i+1 = -[K] -1 .{R} i+1 next increment itertation i + 1 Figure 1.3:
Iterative search of increment ∆{r} for a time step ∆t [START_REF] Besson | Non-linear mechanics of materials[END_REF].

Material objectivity

It is classical in continuum mechanics to consider that a constitutive model, to be valid, has to verify the so called "principle of material objectivity" also called "principle of material frame indifference". This requirement comes from the two following physical notions:

-The observed fact that the rigid body motion of a material does not result in the production of stress in the material. This has led to the axiom of virtual power of internal forces stating "that the virtual power of forces internal to a system vanishes for all rigidifying virtual motions of the system at any time" [Maugin, 1980]. For a rigid body motion, the principle of virtual power (Equation 1.32) hence reduces to the classical laws of dynamics. This is also referred as an invariance under superposed rigid body motions.

-The physical principle stating that a physical phenomena does not depend on its observation; thus, its mathematical description should not depend on the choice of the observer. This is also referred to as an independence with respect to change of observers. For instance, when an observer moves around an unstrained material, no stress is generated in the material. This is a fundamental principle of classical physics.

In their work, Hooke and Poisson [Truesdell and Noll, 2003] already emphasized the necessity to define properly the observer, and Cauchy (1882) discussed the necessity to use variables measured identically by all observers. Zaremba [Zaremba, 1937] and Noll [Noll, 1955] gave the first detailed mathematical statements of the notion of objectivity. A historical review and a detailed description can be found, for example, in [Eringen, 1962, Nemat-Nasser, 2004, Marsden and Hughes, 1994, Truesdell and Noll, 2003]. Truesdell and Noll define the principle of objectivity as [Truesdell and Noll, 2003]: "it is a fundamental principle of classical physics that material properties are indifferent, i.e., independent of the frame of reference or observer". Also

Liu states [Liu, 2004]: "...the principle of material frame indifference plays an important role in the development of continuum mechanics by delivering restrictions on the formulation of the constitutive functions of material bodies. It is embedded in the idea that material properties should be independent of observations made by different observers..... ".

The statement of the principle of material objectivity as it is classically proposed in continuum mechanics [START_REF] Besson | Non-linear mechanics of materials[END_REF] is based on the definition of Euclidean observers. In classical mechanics, a chronology measuring the instants of time t is associated with the 3D space coordinates to define observers. Let the orthonormal base vector e i associated to the coordinate system z i and the time t represents an inertial observer. An Euclidean observer is defined as a set of three base vectors undergoing a rigid body motion with respect to an inertial observer.

An Euclidean observer noted ẽi is then such that: ẽi = Q i j (t)e j (1.43) and

z i = Q i j (t)z i + r i (t) (1.44)
is an Euclidean transformation where Q i j is an orthogonal matrix, Q i j is the transpose of Q i j and r i is a vector; both depend only on time. It is further supposed, without much loss of generality, that time is equally measured by all observers such that t = t.

Consider now two Euclidean observers (e i , z i , t) and ( e i , z i , t). A second-rank tensor α α α is said to be objective if:

α ij = Q i m (t)Q j n (t)α mn (1.45)
where α ij and α ij are the components of the tensor α α α as observed by these two observers, respectively. Equivalent relations could be written for vectors or higher rank tensors. Objectivity thus corresponds to an invariance under Euclidean transformations [START_REF] Besson | Non-linear mechanics of materials[END_REF].

The strain (Equations 1.4, deformation (Equations 1.6) and rate of deformation (Equation 1.8) tensors are objective when the deformation gradient (Equation 1.2) and spin tensor (Equation 1.9) are not objective. The stress tensor is postulated to be objective [START_REF] Besson | Non-linear mechanics of materials[END_REF].

Clearly, the velocity and acceleration are not objective quantities.

In classical continuum mechanics, it is stated that a constitutive model should be objective, in other words, verify the so called principle of material objectivity and should thus be written with objective quantities.

An important issue concerns the definition of material frame-indifferent time transports to represent, objectively, the variations of a tensor with respect to time. The difficulty resides in the fact that the time derivative of an objective tensor is in general not objective. To work out this problem, 3D objective transport operators are defined; they are also referred to as "objective rates". They are applied in particular to the Cauchy stress tensor. The result of each of these transports is proven to be invariant with respect to the superposition of rigid body motions [Nemat-Nasser, 2004, Hughes and Marsden, 1983, Truesdell and Noll, 2003].

These objective transports are then used to construct constitutive models for complex solid or fluid materials, such as polymers, plastic and visco-plastic effects in solids and visco-elastic effects in fluids [START_REF] Besson | Non-linear mechanics of materials[END_REF], Eringen, 1962, Nemat-Nasser, 2004, Sidoroff, 1982, Stumpf and Badur, 1990, Truesdell and Noll, 2003, Dafalias and Younis, 2007, Dafalias and Younis, 2009, Triffeault, 2001, Venturi, 2009]. This point has been first discussed by Jaumann (1911), who introduced an objective stress transport to serve as stress rate in constitutive models.

Then the polar rate or Green-Naghdi transport was introduced [START_REF] Green | A general theory of an elastic-plastic continuum[END_REF].

These transports assume the existence of an intermediate rotated configuration. Other types of intermediate configurations or several intermediate configurations could be defined to construct other objective transports [Badreddine, 2006]. Among the many other objective transports there are, for example, the convective transports, sometimes also called "Oldroyd transports" [Hughes andMarsden, 1983, Oldroyd, 1950], among which one can find the Truesdell convective transport [Truesdell, 1955]. All these objective transports are constructed on a similar basis: the material rate of the tensor is corrected with terms that ensure the objectivity of the transport

operator. An infinite number of corrections and combinations of these corrections can be performed [Truesdell and Noll, 2003, Besson et al., 2010, Hughes and Marsden, 1983, Eringen, 1962, Nemat-Nasser, 2004, Stumpf and Badur, 1990].

Difficulties still encountered to model the finite transformations of solids

The objective of this section is to present the existing difficulties still faced in continuum mechanics for the description of the finite deformations of solids.

The concept of frame-indifference (or objectivity) as defined and used in continuum mechanics raises several questions. As reviewed in Section 1.1.7 above, two notions are indeed hidden behind this concept: on the one hand, the independence with respect to the change of observers, on the other hand, the invariance under superposed rigid body motions. Note that the terms independence, invariance, or indifference are used equivalently in the literature. Some citations of important references in the literature illustrate the debate: Truesdell and Noll [Truesdell and Noll, 2003] define the principle of objectivity as: it is a fundamental principle of classical physics that material properties are indifferent, i.e., independent of the frame of reference or observer.

Nemat Nasser [Nemat-Nasser, 2004] proposes another definition: Constitutive relations must remain invariant under any rigid-body rotation of the reference coordinate system. This is called objectivity or the material frame indifference. Also, as stated by Liu [Liu, 2004]: the principle of material frame indifference plays an important role in the development of continuum mechanics by delivering restrictions on the formulation of the constitutive functions of material bodies.

It is embedded in the idea that material properties should be independent of observations made by different observers. Since different observers are related by a time-dependent rigid transformation, known as a Euclidean transformation, material frame-indifference is sometimes interpreted as invariance under superposed rigid body motions.

Consider first, the independence with respect to change of observers. Several authors consider indeed that a constitutive model should be constructed to be independent of the observer.

First, even if the physical notion seems clear, one should note that a precise definition of an observer and a mathematical definition for the invariance is most of the time lacking. Further, in classical continuum mechanics, this necessarily remains limited to the constitutive models because Newton's laws of motion are not invariant with respect to the change of observers. Also, if the independence with respect to change of observers may be verified for kinematic entities, an axiom has to be stated for stress (axiom of virtual power). Finally, it is important to note that the definition of objectivity (Equation 1.45) is restricted to an invariance under Euclidian transformations, that is, rigid body rotations and translations: it does apply to deforming observers. Nevertheless, the deforming material is an observer of interest: it seems important that this deforming material "sees" the same constitutive model as the other observers. Thus, if material frame-indifference is to be stated, it should insure that the constitutive model is indifferent to changes of observers, all observers.

Consider now the independence with respect to the superposition of rigid body motion. The mechanical properties of most known materials are invariant with respect to the superposition of rigid body motions indeed. However, it could be conceived, at least theoretically, that a given material property could depend on superposed rigid body motions [START_REF] Murdoch | On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases[END_REF], Muschik and Restuccia, 2008, Svendsen and Bertram, 1999]. Such considerations have indeed been formulated concerning specific phenomena or extreme conditions, for example, for liquid crystal behavior [START_REF] Muschik | Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example[END_REF] and also for gas behavior and heat conductivity [START_REF] Barbera | Inherent frame dependence of thermodynamic fields in a gas[END_REF], Biscari and Cercignani, 1997, Biscari et al., 2000, De Socio and Marino, 2002, Muschik and Restuccia, 2008, Muschik, 2012, Svendsen and Bertram, 1999]. Physical considerations lead to the conclusion that equations describing these phenomena should nevertheless be independent of the observer.

In any case, within a classical three-dimensional formalism, both frame-indifference and the indifference with respect to the superposition of rigid body motions result in the same condition (given by Equation 1.45). The term "objective" represents, thus ambiguously, both properties [Truesdell and Noll, 2003[START_REF] Murdoch | Objectivity in classical continuum physics: a rationale for discarding theprinciple of invariance under superposed rigid body motions' in favour of purely objective considerations[END_REF][START_REF] Murdoch | On criticism of the nature of objectivity in classical continuum physics[END_REF], Liu, 2005, Muschik and Restuccia, 2008]. It is not possible to make a difference between these two notions, and the validity of such an "objective" approach and its application to the constitutive models are often questioned and reconsidered; see for example [Dienes, 1979[START_REF] Murdoch | On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases[END_REF], Simo and Ortiz, 1985, Kojić and Bathe, 1987, Duszek and Perzyna, 1991, Rougée, 1992, Schieck and Stumpf, 1993, Stumpf and Hoppe, 1997, Svendsen and Bertram, 1999, Meyers et al., 2000[START_REF] Murdoch | Objectivity in classical continuum physics: a rationale for discarding theprinciple of invariance under superposed rigid body motions' in favour of purely objective considerations[END_REF], Valanis, 2003, Fiala, 2004, Garrigues, 2007, Muschik and Restuccia, 2008, Besson et al., 2010, Muschik, 2012]. These difficulties are well illustrated with two specific examples: i)the choice of an objective transport and ii) the choice of the description for the motion (Lagrangian or Eulerian); these two points are detailed in the following paragraphs.

Because time-derivatives are not "objective" by definition, so called objective transports have been defined [Truesdell and Noll, 2003, Besson et al., 2010, Hughes and Marsden, 1983, Eringen, 1962, Nemat-Nasser, 2004, Stumpf and Hoppe, 1997] to replace the time-derivative in the formulation of the principles and constitutive models. The difficulty resides in the fact that there are infinitely many possible objective time fluxes that may be used [Truesdell and Noll, 2003]. Although Truesdell and Noll [Truesdell and Noll, 2003] postulate that the properties of a material are independent of the choice of flux, which, like the choice of a measure of strain, is absolutely immaterial, it is admitted that the transport operator could depend on the material to be modeled [START_REF] Besson | Non-linear mechanics of materials[END_REF], Oswald, 2015, Stumpf and Hoppe, 1997]. Numerical formulations have been proposed and discussed by several authors [Dogui, 1989, Crisfield and Jelenić, 1999, Sidoroff and Dogui, 2001, Nemat-Nasser, 2004, Dafalias and Younis, 2009]. In this case, different mechanical entities are evaluated for so called intermediate rotated configurations corresponding to the specific choice of the objective transport [Ladeveze, 1980, Dogui and[START_REF] Dogui | [END_REF]. The use of such intermediate configurations has provided a convenient and systematic method to transpose constitutive laws developed in the small strain framework to the finite deformation case. It is used in most commercial finite element codes to solve non-linear problems [START_REF] Besson | Non-linear mechanics of materials[END_REF], Manual, 2003, J. O. Hallquist, 2006]. Objective stress transports have been interchangeably used for comparison, in particular in numerical computations [START_REF] Badreddine | On nonassociative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF], Saanouni and Lestriez, 2009, Saanouni and Lestriez, 2009, Besson et al., 2010, Duszek and Perzyna, 1991, Meyers et al., 2000, Prost-Domasky et al., 1997]. The choice of adequate transport is difficult to justify with physical considerations alone:

when constitutive models are formulated with objective transports, the solution may indeed exhibit non-physical behaviors [Dienes, 1979, Kojić and Bathe, 1987, Meyers et al., 2000, Schieck and Stumpf, 1993, Stumpf and Hoppe, 1997, Voyiadjis and Kattan, 1989]. Indeed, the elastic law in such a case is hypoelastic, and the model does not admit a free energy potential [START_REF] Besson | Non-linear mechanics of materials[END_REF]. It is further difficult to propose experimental schemes to evaluate or verify the choice of the transport itself, but is it even possible? The parameters of the constitutive models are thus often established from general and simple considerations (for example, fitted on stress-strain curves), in contrast with the complexity of the considered behavior.

The ambiguous definition of objectivity and the fact that an infinite number of objective transports exist to define a time derivative that should be physically meaningful, immaterial, and independent of the observer offers an opportunity to improve the models and simulations for the finite transformations of materials.

Another difficulty faced in classical continuum mechanics concerns the choice between the Lagrangian and Eulerian descriptions of the transformation. We wish first to stress that both descriptions are equivalent and that there exists a relationship between the tensors expressed with the Lagrangian or Eulerian description given by the convective transports (see Equations 1.10 to 1.15) [Sidoroff, 1982, Garrigues, 2007, Kamrin and Nave, 2009, Eringen, 1962]. It is sometimes asserted that the tensors expressed within the Lagrangian description are necessarily objective [Nemat-Nasser, 2004, Besson et al., 2010]. One difficulty that is often overlooked is that the Lagrangian description is a description that uses a specific set of coordinates and base vectors: the convective system (this has been well treated in [Garrigues, 2007, Eringen, 1962].

This convective system deforms with the material deformation and is thus not an Euclidean transformation. It can thus not be considered that the Lagrangian description is objective since this last notion corresponds to an invariance under Euclidean transformations. Also, note that the base vectors associated with a convective coordinate system depend on time. Nevertheless, in most propositions and textbooks, the total time derivative of tensors is replaced by a partial derivative with respect to time when the Lagrangian description is considered [START_REF] Besson | Non-linear mechanics of materials[END_REF]. We consider that such expressions for the time derivatives have to be questioned and worked through, taking into account the motion of the base vectors in time. A consequence is that it is difficult to write Newton's laws of motion in a Lagrangian description because it does not correspond to an inertial frame. Also, as far as constitutive models are concerned, the choice of the description, whether Eulerian or Lagrangian, is considered as a constitutive choice. Indeed, it is asserted in the literature that the Lagrangian description is unable to account for the simple notion of principal direction of stress or strain, as they vary with the choice of the convective transport [START_REF] Besson | Non-linear mechanics of materials[END_REF] when Eulerian approach is not ideal as it is necessary to work with the objective derivative of stress (...) [START_REF] Besson | Non-linear mechanics of materials[END_REF]. For example, it is considered that Eulerian treatment applies only to isotropic materials [START_REF] Besson | Non-linear mechanics of materials[END_REF]. Beyond the fact that these assertions are in contradiction with the fact that both descriptions are equivalent, the treatment of the notion of objectivity within the choice of the kinematic descriptions seems to need some clarification.

In current finite element analysis, the general algorithm concerning non-linear integration is decoupled in space and time. The 3D equilibrium equations are solved over the considered volume for each time step. Only then is the time incremented and a new time step considered. These non-linear numerical formulations are, in general, issued from an update of the existing methods developed for time independent small strain cases. Depending on the exact integration scheme, the constitutive model, and the boundary condition problem, the convergence of the method might be problematic (existence, stability, computation time) including for elastoplastic problems. The choice of the description is also essential when using the finite element method. When the material undergoes finite transformations and is severely deformed, the quality of the elements deteriorates progressively. It is customary to use remeshing technics in this case. The transport of information from one mesh to the next is in itself a numerical challenge. Also, this can become costly in computing time to simulate finite transformations [Philippe, 2009]. It also causes severe local inaccuracies or aborts the calculation [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], Rout et al., 2017].

1.3 A space-time formalism for continuum mechanics

The interest of a space-time formalism for continuum mechanics

In a book on non-linear continuum mechanics, Eringen writes: Attempts to secure the invariance of the physical relations of motion from the observer have produced one of the great triumphs of twentieth-century physics. Attempts to free the principles of classical mechanics from the motion of an observer were resolved by Einstein in his general theory of relativity [Grot and Eringen, 1966b]. Physical observations lead to the conclusion that the presence, nature, and number of the observers do not change the physical phenomena undergone by the matter. Observers should thus agree on the evaluation of these physical phenomena. This is the principle of general covariance first formulated by A. Einstein [Havas, 1964]. Landau and Lifshitz [Landau and Lifshitz, 1975a] formulate the covariance principle of General Relativity as: the laws of nature must be written in the general theory of relativity in a form which is appropriate to any four-dimensional system of coordinates (or, as one says, in a covariant form).

As suggested by Eringen and Landau, and Lifshitz, the theory of relativity does not seem to be the realm of high speed and gravitation alone. This theory, along with the geometric formalism that has been developed for its formulation, could clarify the definitions and propositions left unclear in continuum mechanics and answer the difficulties mentioned in Section 1.2.

We thus propose to describe the finite transformations of materials with a space-time geometric covariant approach. Newtonian mechanics is embedded in General Relativity, as a limiting theory concerning phenomena for which the absolute speed of each material point is negligible compared to the speed of light [Lévy-Leblond, 1976] [Havas, 1964, Weinberg, 1972, Boratav and Kerner, 1991]. The first interest of the proposition is to benefit from the general covariant principle. This leads to physically sound definitions for time derivative operators and kinematic tensors. These definitions are by construction independent of the observer and possibly invariant with respect to superposition of rigid body motions. Using a thermodynamically consistent context, this enables to formulate new constitutive models and to redefine the existing incrementally formulated models. The discrepancies observed between the different objective quantities should be explained and the choice of the transport is going to be justified on geometric and physical considerations.

The second difficulty concerns the choice between the Eulerian and Lagrangian descriptions in solid mechanics. The transition from the Lagrangian to the Eulerian description can be viewed as a time-dependent coordinate-transformation [Van Saarloos, 1981]. A space-time formalism offers thus a geometric context to define and develop these descriptions.

The space-time finite element methods found in the literature 1.3.4 are promising. They are applied to the 3D classical variational formulation where the integration is applied on a space-time domain using the 3D classical weak formulation of the conservation equations. The integration scheme is not constructed with a geometric space-time description of physics. We propose to pursue the development of such an approach, using a description of physics in a space-time context to explore the possible benefits that it could bring.

Historical background

As strange as it may appear, the four-dimensional formalism serving as the essential ingredient of Special Relativity was already at hand in the middle of the nineteenth century. What was lacking was its physical interpretation.

Let us start with the d'Alembert equation for wave propagation in Cartesian coordinates:

which is invariant under Lorentz-type transformations if c = Const. (We wrote "Lorentz-type transformations" instead of just "Lorentz transformations" because the transformations leave the form invariant no matter what is the actual value of c. .46) where is the d'Alembert operator. The plane wave solution is easily found to be an arbitrary function of one real variable, f (u), provided the substitution: .47) with the circular frequency ω and the wave vector k satisfying the dispersion relation: .48) This condition can be written in a manifestly relativistic form if one introduces the fourdimensional notation:

f (x, y, z, t) = 1 c 2 ∂ 2 f ∂t 2 - ∂ 2 f ∂x 2 - ∂ 2 f ∂y 2 - ∂ 2 f ∂z 2 = 0. ( 1 
u = ωt -k • r = ωt -k x x -k y y -k z z, ( 1 
ω 2 c 2 = k 2 . ( 1 
ct = x 0 , ω c = k 0 , (1.49)
Then rewriting (1.48) as: .50) one can interpret it as a product of two four-vectors with respect to the indefinite fourdimensional metric g µν = diag(+, -, -, -):

ω 2 c 2 -k 2 = 0, ( 1 
ω 2 c 2 -k 2 = 0 = k 0 x 0 -k 1 x 1 -k 2 x 2 -k 3 x 3 = k µ , (1.51)
Note that in the derivation above, c may be the speed of light or speed of sound -the essential thing is to check whether it is constant or not, independently of the observer. If c is the speed of propagating sound waves, it may appear to have the same value for moving observers (e.g., traveling in an airplane) if their vehicle drags the surrounding medium. This hypothesis was first set forth when the experimental facts (the Michelson and Morley experiments in 1888)

proved that c = constant for light. The effect was supposed to be the result of "dragging along of the aether." The hypothetical medium carrying the electromagnetic waves.

Another, no less important expression displaying a similar four-dimensional character is the energy-momentum four-vector, which appears in the classical Hamiltonian formulation of a point-mass mechanical variational principle. Let L = T -V be the Lagrangian of a point mass;

in Cartesian coordinates, it will be equal to: .52) and in generalized coordinates q i and velocities qk

L = m 2 ẋ2 + ẏ2 + ż2 -V (x, y, z), ( 1 
L = a ik (q m ) qi qk -V (q k ) (1.53)
The least action variational principle δ L(q i , qj )dt = 0 (1.54) .56) one can express generalized velocities qi as functions of p j (and eventually q k ).

p i = ∂L ∂ qi , ( 1 
Then the following Hamiltonian function can be introduced:

H(p j , q k ) = 3 i=1
qi ∂L ∂ qi -L(q j , qk (q j , p m )).

(1.57)

The variational principle (Equation 1.54) can be recast now in the new, Hamiltonian form:

δ 3 i=1 qi p i -H(p j , q k ) dt = 0 (1.58)
Reminding that qi dt = dq i we may write

δ 3 i=1 p i dq i -H(p j , q k )dt = 0 (1.59)
In Cartesian coordinates the integrand (taken with minus sign, and with Einstein's summation convention) is equal to:

Hdt -p i dx i . (1.60)
It suffices to introduce a constant c having dimension of speed to represent this entity as a product of two four-vectors with respect to the Minkowskian metric:

H c cdt -p x dx -p y dy -p z dz = p 0 dx 0 -p • dx = p µ dx µ , (1.61)
where we have identified H/c with E/c = p 0 .

Hamilton and Jacobi were interested in general transformations involving generalized coordinates and momenta and did not investigate the particularities of Cartesian coordinates and momenta. But the relativistic-invariant expression was already at hand, provided that c be a universal constant, which was not obvious at that time.

What should be stressed here is that the four-dimensional space-time endowed with Minkowskian indefinite metric appears quite naturally in classical optics and mechanics, and it takes only an extra hypothesis about the constant of light velocity to introduce the Lorentz invariance.

The four-dimensional formulation remains thus valid even in the non-relativistic limit, when c takes on just any value, not necessarily the speed of light. All relevant quantities can be given a four-dimensional interpretation that might prove useful each time it simplifies mechanical functions appearing in continuous media, deformation theory, and alike.

The 4D description of continuum mechanics

This section presents a review of the existing work on the subject that offers definitions and constitutes a basis for the present proposition.

The description of a deformable continuum within a four-dimensional and relativistic context has been proposed by many authors; see for example [Grot and Eringen, 1966a, Bressan, 1963, Capurro, 1983, Edelen, 1967, Epstein et al., 2006, Ferrarese and Bini, 2008, Kienzler and Herrmann, 2003, Kijowski and Magli, 1997, Lamoureux-Brousse, 1989, Maugin, 1971b, Maugin, 1971a, Valanis, 2003, Williams, 1989, Frewer, 2009, Matolcsi and Ván, 2007]. Their work has been essentially developed to describe relativistic phenomena and is devoted to conservation relations. Some of this work is restricted to special relativity [Williams, 1989, Kienzler and Herrmann, 2003, Grot and Eringen, 1966a]. [Matolcsi andVán, 2006, Matolcsi andVán, 2007] have demonstrated the interest of the 4D time derivative for continuum mechanics.

Four-dimensional formulations of constitutive models have been developed for for macroscopic bodies [START_REF] Landau | The Classical Theory of Fields[END_REF], elastic materials [Lamoureux-Brousse, 1989, Herrmann and Kienzler, 1999, Kienzler and Herrmann, 2003], for non-viscous fluids [Landau and[START_REF] Landau | et quelques propositions pour la dissipation visqueuse ont également été proposés[END_REF]Herrmann, 2003] and some propositions for viscous dissipation have also been proposed [Landau and Lifshitz, 1987[START_REF] Öttinger | Relativistic and nonrelativistic description of fluids with anisotropic heat conduction[END_REF], Öttinger, 1998a]. Avis [Avis, 1976] has proposed a space-time formulation for continuum mechanics in general curvilinear moving and deforming coordinate systems. This work is devoted to numerical simulation for atmosphere and ocean dynamics.

From the early work of Eckart [Eckart, 1940] and Landau and Lifshitz [Landau and Lifshitz, 1987], has been the subject of extension into space-time formalism. Significant propositions come from Tolman [Tolman, 1930], Möller [Møller, 1972], Lichnerowicz [Lichnerowicz, 2013] and Tsallis [Tsallis et al., 1995] see also [Stewart, 1977[START_REF] Israel | Transient relativistic thermodynamics and kinetic theory[END_REF], Hiscock and Lindblom, 1983, Hiscock and Lindblom, 1985, Hiscock and Lindblom, 1987, Jou et al., 1999, Andersson and Comer, 2007, Hayward, 2013]. Grot and Eringen [Grot and Eringen, 1966a] and Vallée [Vallee, 1981] develop a space-time thermodynamic for continuum mechanics in the context of special relativity. Güèmez [Gü mez, 2011] proposes a formulation for isothermal compression of an ideal gas. Jezierski [START_REF] Jezierski | Thermo-hydrodynamics as a field theory[END_REF] proposes a description of the thermo-hydrodynamics in the space-time domain. [Souriau, 1978] Souriau contents to show how it is possible, by accepting a certain geometric status for temperature and entropy, to construct a relativistic module.

Most of the proposition concerning continuum mechanics cited above are developed in the context of special relativity; it therefore excludes the use of non inertial frames and 4D curvilinear coordinates that could be interesting for a convective description of the problem. Also, a method to derive material constitutive models from thermodynamic considerations, equivalent to the generalized standard material concept, does not exist in a covariant form. Further, space-time numerical methods based on a covariant formulation of physics have not been used in the context of the finite transformations of solids.

Space-time finite elements

Starting with the work of Karaoglan [START_REF] Karaoglan | Space-time finite element methods for the sensitivity analysis of contact/impact response of axisymmetric composite structures[END_REF], several space-time finite element methods have been proposed in the literature. It consists in treating space and time variables similarly [Fried, 1969, Argyris and Scharpf, 1969, Argyris and Chan, 1972, Belytschko et al., 2013, Antonietti et al., 2020, Oden, 1969a, Oden, 1969b[START_REF]Méthodes des éléments finis espace-temps et remaillage[END_REF]. Several approaches exist:

-The large time increment method (LATIN) [START_REF] Boisse | A new approach in nonlinear mechanics: The large time increment method[END_REF], Jourdan and Bussy, 2000, Abdali et al., 1996] is based on an iterative algorithm, that gives an approximation of the solution over the whole time interval under consideration [Jourdan and Bussy, 2000].

-Time-discontinuous Galerkin method [START_REF] Hughes | Space-time finite element methods for elastodynamics: formulations and error estimates[END_REF], Karaoglan and Noor, 1997, Li and Wiberg, 1996, Hulbert and Hughes, 1990] allows to reduce the oscillations and ensures the convergence for arbitrary space-time discretization and higher order element interpolation [START_REF] Karaoglan | Space-time finite element methods for the sensitivity analysis of contact/impact response of axisymmetric composite structures[END_REF]].

-The semi-discontinuous method [Adelaide et al., 2003a[START_REF]Méthodes des éléments finis espace-temps et remaillage[END_REF][START_REF] Adelaide | Methode des elements finis espace-temps : adaptation du maillage en cours[END_REF] is developed for mechanical problems and especially for friction contact forces.

This method takes into account discontinuities at the initial and final times [START_REF]Méthodes des éléments finis espace-temps et remaillage[END_REF].

For example, in Adelaide et Al [START_REF] Adelaide | Methode des elements finis espace-temps : adaptation du maillage en cours[END_REF] the displacement is discretized with the spacetime interpolation functions φ e i using Lagrange polynomial:

u u u(x, t) = N i=1 φ e i (x, t)u e i (1.62)
where N is the number of nodes of element e and u e i are the nodal displacement. The space-time discretization of the weak formulation (Equation 1.32) leads to a linear system:

[M M M u ] + [K K K u ] {U } = {F u } + {Λ} (1.63)
where [M M M u ] is the matrix of the inertial force, [K K K u ] is the matrix of the internal forces, {F u } is the nodal vector of the external forces, {U } is the nodal vector of displacement and {Λ} is the nodal vector of the boundary conditions. A method to construct space-time meshes is proposed, built by successive layers of elements over time [START_REF]Méthodes des éléments finis espace-temps et remaillage[END_REF]. This type of mesh allows to use the sub-matrix and reduce the size of the system [START_REF]A space-time finite element method for elastodynamics problems: elementary examples of 4d remeshing using simplex elements[END_REF], Dumont et al., 2018].

The space-time finite element methods have been used in various fields, as in elastodynamics [START_REF] Argyris | Finite elements in time and space[END_REF], Hughes and Hulbert, 1988, Hulbert and Hughes, 1990[START_REF]A space-time finite element method for elastodynamics problems : elementary examples of 4d remeshing using simplex elements[END_REF], Baptista, 2011, BAJER and Podhorecki, 1989], solving wave equation [French, 1993, Anderson and Kimn, 2007, Li and Wiberg, 1998, Antonietti et al., 2020], solving hyperbolic equations [START_REF] Hulbert | Space-time finite element methods for second-order hyperbolic equations[END_REF], modeling fluids mechanics problem [START_REF] Sathe | Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques[END_REF], Tezduyar et al., 2006a, Zilian and Legay, 2008[START_REF] Tezduyar | Space-time finite element techniques for computation of fluid-structure interactions[END_REF], Hübner et al., 2004]. A space-time adaptive discontinuous Galerkin finite element scheme has been applied to a nonlinear hyperelastic model [START_REF] Tavelli | Space-time adaptive ader discontinuous galerkin schemes for nonlinear hyperelasticity with material failure[END_REF]. A recent article presents a space-time discontinuous Galerkin method for the elastic wave equation [START_REF] Antonietti | A spacetime discontinuous galerkin method for the elastic wave equation[END_REF]. In general, these methods seem interesting because they improve the solution and reduce the computation time.

Space-time finite element methods have proven their interest. In the existing work, space-time covariant descriptions of physics have not been used. It seems thus interesting to explore the idea and verify if this could improve the method and the results.

Conclusion

Clearly a geometric space-time approach is an opportunity to solve the difficulties still existing in continuum mechanics for the finite transformations of solids.

Using existing propositions reviewed in Section 1.3.3 and the work previously done in Troyes [Rouhaud, 2013, Rouhaud et al., 2015, Panicaud and Rouhaud, 2014, Wang et al., 2016, Wang et al., 2014, Wang, 2016, Panicaud et al., 2016, Rouhaud et al., 2013, Al Nahas, 2021], a geometric space-time framework is proposed for continuum mechanics in Chapter 2. The originality of the proposition resides in the fact that we consider a general covariant approach, which allows to interpret the Lagrangian description and its equivalence with the Eulerian description in a satisfactory manner. Then, we formulate the thermo-mechanical problem (Chapter 3) and in particular write the four-dimensional conservation equations. We use projection operators to interpret these equations physically. We next propose a covariant space-time formulation for Clausius-Duhem inequality and an original method to construct covariant constitutive models to describe the behavior of the material under finite transformations. A space-time weak formulation of the equations is finally proposed along with its finite-element discretization. In the last chapter, the approach is first illustrated with several analytical kinematic derivations for simple motions. An originality of the present work is to construct a finite element method within the proposed space-time description to solve several problems (Chapter 4). In this chapter, the elements of 4D tensor formalism and the necessary tools for the construction the space-time formalism are presented. The theoretical bases for the present work are developed. We propose a covariant description for the finite transformation, where the 4D observers, the motion in the space-time formalism and the 4D kinematics are detailed. It is possible to decompose the 4D tensors by projection on time and space these entities. The projection operators enable the interpretation of these entities and the comparison with the classical 3D formulation. Finally, in the space-time formalism, the choice of a specific coordinate system can be considered as the Lagrangian description. This latter is detailed in this chapter.

At the beginning of this chapter, the elements of geometry used to describe a covariant spacetime description are reviewed. Then, the space-time description for deformable bodies is presented. The projection operators are next introduced. These operators are used to interpret and compare the 4D entities with the 3D corresponding entities as proposed in the following section. The relation between the Lagrangian description and the choice of the coordinate system in the 4D formalism is finally discussed.

Elements of geometry

The elements of geometry that are necessary to propose a covariant space-time description for the finite transformations of continua are reviewed in this Section [START_REF] Kobayashi | Foundations of differential geometry[END_REF], Marsden et al., 1992, Abraham et al., 2012, Souriau, 1982] .

Differentiation

We should start by defining the commutative algebra of C ∞ -class functions over a smooth manifold M; let us denote it by F(M). The basic algebraic properties, i.e. linear combination with real coefficients and multiplication are defined in an obvious manner: let f (x) and g(x)

be two smooth functions on M, and α and β two real numbers . Then we have:

(α • f + β • g)(x) = α • f (x) + β • g(x), (f g)(x) = f (x) • g(x). (2.1)
With this in mind, we can proceed to the definition of differentiation of F(M) :

A differentiation of the algebra of functions F defined on a differential manifold M is a linear mapping:

X : F → F (2.2)
satisfying the following properties:

1. Linearity:

f 1 , f 2 ∈ F, λ, µ ∈ R 1 , X(λf 1 + µf 2 ) = λX(f 1 ) + µX(f 2 ), 2. The Leibniz rule: X(f 1 f 2 ) = (Xf 1 )f 2 + f 1 (Xf 2 ).
Note that the superposition of two differentiations is not a differentiation, because it does not satisfy the the Leibniz rule; indeed, one has:

Y X(f 1 f 2 ) = Y (X(f 1 f 2 )) = Y (f 1 Xf 2 + (Xf 1 )f 2 ) = (Y f 1 )(Xf 2 ) + f 1 (Y Xf 2 ) + (Y Xf 1 )f 2 + (Xf 1 )(Y f 2 ) = (Y Xf 1 )f 2 + f 1 (Y Xf 2 ).
In what follows we shall write Xf instead of X(f ). The infinite-dimensional space of all differentiations of F will be denoted by Υ.

Tangent and cotangent spaces

A differentiation at a point involves the notion of a one-parameter transformation group on a manifold M, or a curve in M. Let γ : R 1 → M be a set of points in M parametrized by

t ∈ [a, b]; let us choose the parametrization in such a way that γ(0) = p ∈ M. In a chart of local coordinates γ(t) = {x 1 (t), x 2 (t), ..., x n (t)} any function f ∈ F can be expressed as function of n local coordinates: f (p t ) = χ x 1 (t), x 2 (t), ..., x n (t) = f • γ(t) (2.3)
A vector X p tangent to the curve γ(t) at p = γ(0) acts on a function f (p t ) = f • γ(t) as follows:

X p f = (Xf ) p = d dt f • γ(t)| t=0 = n k=1 ∂ χ ∂x k {x}=p dx k dt t=0 (2.4)
In a neighborhood U endowed with the coordinate system {x k }, any vector field can be expressed as:

X = i X i (x) ∂ ∂x i = X k ∂ k (2.5)
Under a change of coordinates, x i → y j (x k ), the composition law yields:

X = X k (x) ∂ ∂x i = X k (x(y)) ∂y j ∂x i ∂ ∂y j = Xj (y) ∂ ∂y j , (2.6) where Xj (y) = X k (x(y)) ∂y j ∂x k .
This is the well-known transformation law for the components of a vector field.

The N differentiations ∂ ∂x i p define N tangent vectors at each point; the linear space spanned by these vectors is called the tangent space T M (M ) at point M ∈ M, or T M M.

One is free to choose another basis at T M M: any linear frame 1 {e i } can be defined by a non-singular matrix e k i , det(e k i ) = 0, so that the vectors are:

e i = e k i ∂ ∂x k
. Now, as at each point we have defined the linear vector space spanned by ∂ ∂x i or e i , we can define its dual space at each point, i.e. the space of linear mappings from T M M into R 1 ; the basis dual to {e i } in this space, called the cotangent space at M , T * M M, is defined by

e * k (e i ) = δ k i . The basis dual to ∂ ∂x j = ∂ j is traditionally denoted by dx k : dx k (∂ j ) = δ k j . Any linear combination of dx k or of e * l = e * l k dx k is called a 1-form.
The result of action of a given 1-form on a given vector is independent of the choice of the frame:

e * (x) = ẽ * ( X).
(2.7)

If X = X i ∂ i and θ = θ k e * k then: θ(X) = θ k e * k (X i e i ) = θ k X i e * k (∂ i ) = θ k X i δ k i = θ k X k . (2.8)
Then, reminding that under a change of local frame: if ẽi = U l i e l , then ẽ ẽ ẽ * k = (U k m ) -1 e * m so that the result of θ(X) remains unchanged.

The dual space to a vector space E is the space of all continuous linear mappings from E to R 1 . We shall denote it by L(E, R 1 ), or, more often, E * .

We remember that at each point of the manifold M we had a tangent space, T M M. Define now, for every M ∈ M, its dual space: L(T M M, R 1 ) ≡ T * M M. It will be called the cotangent space at M , and its element will be called a 1-form. The space defined as:

T * M = M ∈M T * M M (2.9)
is called the cotangent bundle. It should be noted that T * M is by no means a dual space to T M: remember that both are not linear spaces.

The set of C ∞ fields of 1-forms, defined as C ∞ linear mappings from Υ to F, will be denoted by Υ * : Υ → F. Υ * has a natural structure of an infinite-dimensional vector space.

In a local coordinate system, if e i is a basis of T M M, then the dual basis in T * M M is defined by e * k such that e * k (e i ) = δ k i . Sometimes other notations are used; instead of e * k (e i ) we write e * k e i or e * k , e i ; all three mean "the value which e * k takes on element e i ". The tangent vectors can be interpreted as linear mappings from T * M M → R 1 .

Tensors

A k-times covariant tensor is a linear mapping from

T M M × T M M × ... × T M M → R 1 .
The set of all k-times covariant tensors has a natural structure of a linear space and is called the

1.
The term basis and the term frame have the exact same meaning in English.

tensor product of k cotangent spaces:

T * M M ⊗ T * M M ⊗ ... ⊗ T * M M k-times ∼ L(T M M × T M M × ... × T M M, R 1 ) (2.10)
The choice of a basis in T * M M induces in a natural way the choice of basis in

T * M M ⊗ T * M M ⊗ ... ⊗ T *
M M: it is given by e * j 1 ⊗ e * j 2 ⊗ ... ⊗ e * j k where e * j ⊗ e * l is a mapping which on the pair (e k, e p ) ∈ T M M × T M M gives the value δ j k δ l p , etc. Any k-times covariant tensor can be decomposed into a symmetric and an anti-symmetric parts.

In a similar way, a p-times contravariant tensor at M is a linear mapping of

T * M M × T * M M × ... × T * M M into R 1 .
This new linear space will be denoted by:

T M M ⊗ T M M ⊗ ... ⊗ T M M p-times ∼ L(T * M M × T * M M × ... × T * M M, R 1 ) (2.11)
Finally, we can define the mixed k-times covariant and p-times contravariant tensors for any k, p; we shall denote the corresponding space by:

T * M M ⊗ T * M M ⊗ ... ⊗ T * M M k-times ⊗ T M M ⊗ T M M ⊗ ... ⊗ T M M p-times (2.
12)

The tensor product of linear spaces is not commutative, i.e. if V is a linear space and V * is its dual, the spaces V ⊗ V * and V * ⊗ V are obviously isomorphic to each other, but are not identical. In local coordinates, if e i ⊗ e * k is a basis of V ⊗ V * , and e * l ⊗ e j is a basis in

V * ⊗ V , then Z ∈ V ⊗ V * , Z = Z i k e i ⊗ e * k , whereas for Y ∈ V * ⊗ V, Y = Y j l e * l ⊗ e j .
Finally, we define the tensor fields. A k-times covariant tensor field is an element of

L(Υ × Υ × ... × Υ k-times
, F). The corresponding linear space will be denoted by

Υ * ⊗ Υ * ⊗ ... ⊗ Υ * k-times .
Tensor density fields of weight W can be defined over the points of the manifold. For the sake of generality, they are noted α to represent any given tensor density. Tensors densities are indifferent to an arbitrary change of coordinate systems. The components of a second rank tensor density α always transform through a change of coordinates from x µ to x µ as [Levi-Civita, 2005, Wikipedia contributors, 2020]:

α µ = ∂x α ∂ x β W ∂ x µ ∂x ν α ν (2.13) α µν = ∂x α ∂ x β W ∂ x µ ∂x λ ∂ x ν ∂x κ α λκ (2.14) α µν = ∂x α ∂ x β W ∂x λ ∂ x µ ∂x κ ∂ x ν α λκ (2.15)
It is possible to write similar equations for the components of tensor densities of any rank.

Lie algebra

A Lie algebra A is a linear space over real numbers endowed with an antisymmetric composition law [Jacobson, 1979] (2.16) satisfying the Jacobi identity:

X, Y ∈ A → XY = -Y X ∈ A,
(XY )Z + (Y Z)X + (ZX)Y = 0.
Note the brackets in the last formula, which underline the fact that a Lie algebra multiplication is usually non-associative, so that (XY )Z = X(Y Z). It can be checked that a commutator satisfies the Jacobi identity.

The non-associativity becomes obvious when the abstract anti-symmetric product is realized as a commutator in an associative algebra with multiplication X

• Y , [X, Y ] = X • Y -Y • X. A
important theorem by Ado [Ado, 1947] states that for any finite dimensional Lie algebra, their exists an associated Lie algebra, called an enveloping algebra, such that the skew symmetric product of the original Lie algebra can represented by the commutator in the enveloping algebra.

Of course, the dimension of the enveloping algebra is usually much bigger than the dimension of the original algebra.

Lie derivative

Historically, the derivation of a vector field with respect to another vector field was introduced by S. Lie in a direct way, considering the result of infinitesimal transformations of all geometrical objects induced by an infinitesimal motion along the vector field X:

ξ k → ξk = ξ k + X k (ξ).
Comparing the values of a function f (ξ) before and after the infinitesimal translation by X k (ξ), we get:

f (ξ k + X k (ξ) ) -f (ξ k ) ∂f ∂ξ k X k + O(( 2 ) (2.17)
Using a more compact notation, we can write the linear part of the above formula as the directional derivative of f with respect to the vector field X = X i e i defined as folows:

L X f = X i (ξ) ∂f ∂ξ i = X i ∂ i f (2.18)
Suppose now that there is another vector field Y present besides the field X. One can imagine a dense swarm of insects or birds, whose velocities are given by the field Y , subjected to the wind whose velocity distribution is represented by the vector field X. Our aim is to compare the velocity field Y at a given time t with the same field "displaced" by the wind, after an infinitesimal time ∆t, i.e. at the time t + ∆t. More explicitly, we want to compare at any point

ξ i of the manifold the two vectors, Y (ξ k , t) and Y (ξ k + X k (ξ)∆t, t + ∆t).
In what follows, we shall discard the explicit dependence of our fields on time t (we neglect the time dependence of both fields, supposing that during the observation both fields do not vary significantly). The extra problem appearing here comes from the necessity to compare the components of a given vector field defined with respect to two different local frames. Therefore, one has to take into account all the differences resulting from the infinitesimal variation under the action of the displacement field X:

Y i (ξ k + X k (ξ) ) e i (ξ j + X j (ξ) ) -Y i (ξ k , t) e i (ξ j ), (2.19) 
where we use the infinitesimal parameter instead of the time lapse ∆t. The Expression 2.19 has a part linear in the small parameter , which we would like to identify as the derivative of field Y along the field X. The difficulty comes from the fact that the components of the displaced field are given with respect to the displaced local frame, too, whereas in order to define an intrinsic geometric quantity one has to express it with respect to the same given frame. Therefore, we should express the basis vectors at the point ξ k + X k (ξ) as they appear in the former basis given at the point ξ k . We know how the basis vectors transform under a local coordinate change; so, it suffices to treat the coordinates of the "displaced" point ξ k + X k as any set of new coordinates. Let us put then:

η i = ξ i + X i (ξ k ) (2.20)
where we have used "primed" indices in order to better distinguish between the "new" coordinates η i from the "old" coordinates ξ k . The transformation matrix is easily found to be in this case as follows:

∂η i ∂ξ k = ∂(ξ i + X i (ξ k )) ∂ξ k = δ i k + ∂X i ∂ξ k (2.21)
But in order to transform the basis vectors with covariant indices, we need the inverse matrix of Equation 2.21, because we want to express the displaced basis vectors e k by means of the original basis vectors e k :

e i = ∂ξ k ∂η i e k
It is not at all easy to calculate the inverse of a 3 × 3 matrix containing partial derivatives of the components X k added to the unit matrix. But what we are really interested in in this case is only the part of the answer which is linear in small parameter , which later on we shall divide by in order to recover the limit, like what is usually done in differential calculus.

If a linear approximation is sufficient, then it is very easy to define the inverse matrix. As a matter of fact, if a matrix is given under the form P = 1 + U , i.e. the unit matrix plus an infinitesimally small matrix U (because we suppose that 1), then up to the terms of the order 2 the inverse matrix is given by P -1 1 -U. Therefore, keeping only terms linear in small parameter , we get:

e i (η k ) = ∂ξ k ∂η i e k δ k i - ∂X k ∂ξ i e k (2.22)
In what follows, we should postpone using the primed indices when there is no risk of confusion.

We also remind that the explicit time dependence is supposed to be negligible during the infinitesimal shift, so that we do not take it into account. Developing inside the formula (2.19) the components Y k into a Taylor series and taking into account the transformation of the basis vectors given by (2.22), we obtain what follows:

Y i (ξ k + X k (ξ)) e i (ξ j + X j (ξ)) -Y i (ξ k ) e i (ξ j ) Y i (ξ k ) + ∂Y i ∂ξ k X k δ j i - ∂X j ∂ξ i e j -Y i (ξ k ) e i (2.23)
Keeping only the terms linear in and changing the summation index j into k in the last term, we find the following expression:

Y(ξ k + X k (ξ)) -Y(ξ k ) X i ∂ i Y k -Y i ∂ i X k e i .
(2.24)

The so obtained expression (2.24), after being divided by , is defines the Lie derivative of the vector field Y with respect to the vector field X.

Let us now introduce a rigorous definition of Lie derivatives: the Lie derivative of Y with respect to X, noted L Y (X) is a differentiation, the mapping from Υ × Υ into Υ defined as:

(X, Y ) → X • Y -Y • X = L X (Y ) = -L Y (X). (2.25)
Indeed, this operator verifies the linearity and the Leibniz rule; the latter may be verified because the combinations (Y f 1 )(Xf 2) and (Xf 1 )(Y f 2 ) cancel mutually by virtue of the skew symmetry in X, Y in the definition. The Lie derivative of Y with respect to X will be also denoted by a bracket:

L X Y = -L Y X = [X, Y ] = -[Y, X] (2.26)
This composition law satisfies the Jacobi identity:

[[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 (2.27)
The space of vector fields interpreted as differentiations Υ endowed with the antisymmetric composition law [, ] and the natural linear structure (αX

+ βY )f = α(Xf ) + β(Y f ) becomes an infinite-dimensional Lie algebra.
The notion of Lie derivative can be extended to the forms and their tensor products. The expressions of the Lie derivative of a scalar density f , vector density V V V and second-rank tensor density T T T are then:

L X f = X λ ∂ λ f + W f ∂ λ X λ (2.28) L X V µ = X λ ∂ λ V µ -V λ ∂ λ X µ + W V µ ∂ λ X λ (2.29) L X T µν = X λ ∂ λ T µν -T λν ∂ λ X µ -T µλ ∂ λ u ν + W T µν ∂ λ X λ (2.30) L X T µν = X λ ∂ λ T µν + T λν ∂ µ X λ + T µλ ∂ ν X λ + W T µν ∂ λ X λ (2.31)
where W is the weight of the tensor density.

In order to do this, we postulate the following properties:

a) For a function (0-form) f , L X f = Xf .
b) The Lie derivative of any object is an object of the same kind.

c) The Leibniz rule holds for any bilinear combination of objects, for example we should have:

L (θX) = XL (θ) + θL (X).
Note that the property a) above enables to relate the Lie derivative of a function to its covariant rate: see Section 2.1.7 following. Also, we have the relation:

L X (f (Y, Z, ...)) = ∂f ∂Y L X (Y ) + ∂f ∂Z L X (Z) + ... (2.32)

Covariant derivative

Connection

It is possible to introduce the notion of connection in a practical manner considering the derivative of a vector in a curvilinear coordinate system x k chosen to parametrize the points of a Euclidian space. Let OM be a vector [START_REF] Rouvière | Initiation à la géométrie de Riemann, chapter IV[END_REF]. In the cartesian frame (O, e i ) of coordinates z k , OM is decomposed as:

OM = z i (x m )e i (2.33)
because the coordinates z k are themselves function of x k . A mobile frame is introduced such that:

g i = ∂OM ∂x i = ∂z j ∂x i e j .
(2.34)

A vector field X may be projected locally using this local frame:

X = X m (x i ) g m (x i ), (2.35) 
where X m are the curvilinear components of X. It should be noted that, in this case, the components and the base vectors are functions of the local coordinates x i (this is not the case in the cartesian frame). The components of the metric tensor g are given by:

g ij (x m ) = g i • g j . (2.36)
The differential of the vector X is then:

dX = ∂X i ∂x k dx k g i + X i ∂g i ∂x k dx k . (2.37)
In Equation ( 2.37) the partial derivatives ∂ k g i of the basis vectors of the mobile frame appear, that should be decomposed as vectors in the local basis g m . The notation:

∂g i ∂x k = Γ m ki g m . (2.38)
is used. The coefficients Γ i jk corresponding to the decomposition of the partial derivatives of the basis vectors g i in the mobile frame, are called the coefficients of the connection. They are symmetric for the ki indices by definition because: (2.39) hence:

∂g i ∂x k = ∂ ∂x k ∂OM ∂x i = ∂ 2 OM ∂x k ∂x i = ∂ ∂x i ∂OM ∂x k = ∂g k ∂x i ,
∂e i ∂x k = Γ m ki e m = ∂e k ∂x i = Γ m ik e m .
(2.40)

The coefficient of the connection Γ i jk do not transform as a two times covariant one time contravariant when local coordinates are changed. This is the consequence of the dependence of the basis vector on the local coordinates. Indeed for a coordinate change

x i → x k (x i ) (conversely, x k = x k (x i ))
, a new local frame may be defined following the Leibnitz rule:

g k = ∂OM ∂x k = ∂x i ∂x k ∂OM ∂x i = ∂x i ∂x k g i .
(2.41)

The basis vectors thus transform like a 1-form.

Compare now the definitions of the coefficients of the connections for the two mobile frames defined by the coordinates x i et x k :

∂g m ∂x l = Γ i lm g i , ∂g j ∂x k = Γ l kj g l = Γ l kj ∂x i ∂x k g i . (2.42) With: ∂g k ∂x j = ∂ ∂x k ∂x m ∂x j g m (2.43)
it can be established that:

∂g k ∂x j = ∂ 2 x m ∂x j ∂x k g m + ∂x m ∂x j ∂g m ∂x j .
(2.44)

We have further:

∂g m ∂x j = ∂x l ∂x j ∂g m ∂x l = ∂x l ∂x j Γ i lm g i
that can be used in (2.42), to obtain:

Γ l jk ∂x i ∂x l g i = ∂ 2 x i ∂x j x k + ∂x l ∂x j ∂x m ∂x k Γ i lm g i .
(2.45)

The jacobian matrix ∂x k ∂x i being the inverse of ∂x i ∂x k , one has finally: .46) This transformation rule contains a term (the last term in Equation 2.46) identical to the one corresponding to the coordinate transformation of a two times covariant one time contravariant tensor. It also contains a term (the first term of Equation 2.46) with second derivatives.

Γ l jk = ∂x l ∂x i ∂ 2 x i ∂x j x k + ∂x l ∂x i ∂x l ∂x j ∂x m ∂x k Γ i lm . ( 2 
More generally, a connection may be defined without any reference to a metric tensor. It is, in this case, called an affine connection. The only condition to be verified by the coefficient of the connection Γ i jk is the transformation rule with respect to a change of local coordinates given by Equation 2.46 above. It should be noted that, if two different connections noted Γ i jk and Γi jk are defined on the same differentiable manifold, their difference T i jk = Γ i jk -Γi jk transforms like a tensor:

T i jk = ∂x i ∂x i ∂x j ∂x j ∂x k ∂x k T i jk .
(2.47)

Suppose now that a non symmetric connection Γ i jk is given on a manifold independently of a metric tensor g ij defined on the same manifold. The connection Γ i jk has a torsion, defined with its anti symmetric part:

S i jk = 1 2 Γ i jk -Γ i kj .
(2.48)

In the presence of a metric structure defined by the metric tensor g ij , the Christoffelien connection is defined as follows:

Γ i jk = 1 2 g im (∂ j g mk + ∂ k g im -∂ m g jk ) = { i jk } (2.49)
This connection is also referred as a metric connection. The coefficients of the connection are often called the Christoffel symbols in this case. The notation { i jk } is often used in the literature to refer to these coefficients. In this work we will use the notation Γ i jk for the coefficients of a metric connection.

Definition of the covariant derivative

The covariant derivative is defined using the coefficients of a connection Γ i jk , with a scheme similar to the one used to define the Lie derivative. For a vector Y, the covariant derivative along the vector field X noted ∇ X is given by the components:

(∇ X Y ) k = X i ∂ i Y k + Γ k jl X j Y l . (2.50)
It may then be verified that the covariant derivative defined with the metric connection of the metric tensor is equal to zero. A connection is not a metric connection if the covariant derivative of the metric tensor is not equal to zero. It can further be proven that: if a metric tensor g ij is defined on a manifold, if a affine connection given by its coefficients

Γ i jk is symmetric (that is such that Γ i jk = Γ i kj )
, and if the connection is such that ∇ i g jk = 0, then this connection is the unique metric connection on the manifold. In this work, we only use a covariant derivative defined with a metric connection that will be referred as the covariant derivative.

The components of the covariant derivative of different geometric objects of interest (a scalar f , a vector V V V and a second order tensor density α α α of weight W ) are given by:

∇ λ f = ∂f ∂x λ -W Γ κ κλ f (2.51) ∇ λ V µ = ∂V µ ∂x λ + Γ µ κλ V κ -W Γ κ κλ V µ (2.52) ∇ λ α µν = ∂α µν ∂x λ + Γ µ κλ α κν + Γ ν κλ α µκ -W Γ κ κλ α µν (2.53)
The divergence of a vector density may then be written as:

∇ µ V µ = ∇ λ V µ g λ µ = ∂V µ ∂x µ + Γ µ κµ V κ -W Γ κ κµ V µ (2.54)
With the symmetry of the Christoffel symbols one has:

∇ µ V µ = ∂V µ ∂x µ + Γ µ κµ (V µ -W V µ ) (2.55)
and if the vector density has a weight W = 1, then:

∇ µ V µ = ∂V µ ∂x µ (2.56)
A covariant rate operator is also defined with the operator: u µ ∇ µ (.). For a scalar f , vector V V V and second-rank tensor α α α the covariant rates are equal to:

u λ ∇ λ f = df ds = u λ ∂f ∂x λ -u λ W Γ κ κµ (2.57) u λ ∇ λ V µ = dV µ ds = u λ ∂α µ ∂x λ + u λ Γ µ κλ V κ -W u λ Γ κ κλ V µ (2.58) u λ ∇ λ α µν = dα µν ds = u λ ∂α µν ∂x λ + u λ Γ µ κλ α κν + u λ Γ ν κλ α µκ -W u λ Γ κ κλ α µν (2.59)

Relationships between the Lie derivative and the covariant derivative

First consider the Lie derivative of a function f and the covariant derivative of this same function. The definitions of the two derivative leads to the fact that (Equations 2.18 and 2.51):

L X f = X i ∂f ∂x i (2.60)
We wish next to verify if it is possible to replace the partial derivatives in the expression of the Lie derivative by the corresponding covariant derivatives, and this for all the geometric objects (tensors, p-forms, tensorial densities...). The covariant derivative is defined by its connection coefficients. We start this verification with the Lie derivative of a vector substituting in Equation 2.24 the partial derivatives ∂ k with the corresponding covariant derivatives ∇ k , to obtained a modified derivative noted L :

L X Y k = X i ∇ i Y k -Y i ∇ i X k = X i ∂ i Y k + X i Γ k ij Y j -Y i ∂ i X k -Y i Γ k ij X j = X i ∂ i Y k -Y i ∂ i X k + X i Y j Γ k ij -Γ k ji .
This leads to the definition of the Lie derivative:

L X Y k = X i ∂ i Y k -Y i ∂ i X k
only if the coefficients of the connection are symmetric:

Γ k ij = Γ k ji .
This result may be generalized for the Lie derivatives of the other geometric objects and the Lie derivative of a scalar density f , vector density V V V and second-rank tensor density T T T may be written:

L X f = X λ ∇ λ f + W f ∇ λ X λ (2.61) L X V µ = X λ ∇ λ V µ -V λ ∇ λ X µ + W V µ ∇ λ X λ (2.62) L X T µν = X λ ∇ λ T µν -T λν ∇ λ X µ -T µλ ∇ λ X ν + W T µν ∇ λ X λ (2.63)
An important property of the Lie derivative consists in the fact that the Lie derivative of a given geometric object is an object of the same nature; that is to say an object that follows the same rules with respect to coordinate transformations (the Lie derivative of a scalar is a scalar, the Lie derivative of a vector field is a vector field...). This property is here illustrated with the Lie derivative of the coefficients of a connection. We thus wish to demonstrate that for any vector field X and a connection Γ i jk , the object defined as the Lie derivative of the connection (L X Γ) i jk transforms following the same rule as the coefficients of the connection themselves (Equation 2.49). We first evaluate the covariant derivative of the Lie derivative of a 1-form θ:

∇ j (L X θ k ) = ∇ j X i ∇ i θ k + θ i ∇ k X i = ∇ j X i ∇ i θ k + X i ∇ j ∇ i θ k + ∇ j θ i ∇ k X i + ∇ i θ k ∇ j X i . (2.64)
Parallelly, we evaluate the Lie derivative of the covariant derivative of the same 1-form θ:

L X (∇ j θ k ) = X i ∇ i ∇ j θ k + ∇ j θ i ∇ k X i + ∇ i θ k ∇ j X i (2.65)
Taking the difference Equation 2.64 -Equation 2.65 of the Equations above we get:

∇ j (L X θ k ) -L X (∇ j θ k ) = θ i ∇ j ∇ k X i + X i (∇ j ∇ i θ k -∇ i ∇ j θ k ) . (2.66) Taking into account that [ ∇ j ∇ i -∇ i ∇ j ] θ k = -R m ji k θ m ,
we can write in an even more compact manner: (2.67) so that the tensorial character of this expression becomes more evident. 2

∇ j (L X θ k ) -L X (∇ j θ k ) = ∇ j ∇ k X i -X m R i mj k θ i ,
Let us now write down the same expressions using the explicit form of covariant derivatives, with apparent connection coefficients:

∇ j (L X θ k ) = ∂ j (L X θ k ) -Γ m jk L X θ m , (2.68) 
and then the same in the opposite order, using the formal definition of the Lie derivative of a twice-covariant tensor:

L X (∇ j θ k ) = L X ∂ j θ k -Γ m jk θ m = L X (∂ j θ k ) -Γ m jk L X (θ m ) -θ m L X Γ m jk .
(2.69)

Forming the difference, we find:

∇ j (L X θ k ) -L X (∇ j θ k ) = ∂ j (L X θ k )) -L X (∂ j θ k ) + θ i L X Γ i kj .
(2.70)

Let us write down explicitly the expressions appearing in (2.70) 3

After a few more calculations making use of the Leibniz rule, we find that the difference between partial derivative of a Lie derivative of a 1-form and the Lie derivative of partial derivative of a 1-form θ k can be reduced to a relatively simple expression:

∂ j (L X θ k ) -L X (∂ j θ k ) = θ i ∂ 2 jk X i . (2.71)
Comparing it with Equation 2.70, we find:

∇ j (L X θ k ) -L X (∇ j θ k ) = θ i ∂ 2 kj X i + L X Γ i kj (2.72) 2.
As a matter of fact, we suppose that the connexion is a symmetric one. If this is the case, then for an arbitrary function (a 0-form) f (x) the following formula holds:

[∇i∇j -∇j∇i]f = 0. Taking into account that θ(X) = θmX m is a scalar, and that [∇i∇j -∇j∇i]X k = R k ij m X m
, substituting θmX m in the first formula and using the Leibniz rule, we arrive at the desired formula:

[∇i∇j -∇j∇i]θm = -R k ij m θ k 3.
We should note that the set of all the partial derivatives of the components of a 1-form, ∂iθ k , does not define a tensor. We can apply nevertheless the Lie derivaton to this object, treating the lower indices as covariant ones. The result LX (∂iθ k ) is therefore well defined, and is not a tensor either. But its transformation properties will remain the same as those of the original object ∂iθ k .

But according to the formula (2.67), we also have

∇ j (L X θ k ) -L X (∇ j θ k ) = ∇ j ∇ k X i -X m R i mj k θ i .
The 1-form θ i being chosen arbitrarily, the above equality must hold for the expressions with which theta i is contracted, which leads to the following final identity:

∂ 2 kj X i + L X Γ i kj = ∇ j ∇ k X i -X m R i mj k (2.73)
The right hand side of the identity is manifestly a tensor; so must be the left hand side, too.

The final formula for the Lie derivative of a connection can be therefore written as follows:

L X Γ i kj = ∇ j ∇ k X i -∂ 2 kj X i -X m R i mj k . (2.74)
It can be checked directly that it has the same transformation properties under a coordinate change as the connection Γ i kj itself.

Fiber bundles

In the present work, we propose to write a covariant space-time formulation for the governing equations of continuum mechanics; in other words, we want to construct a formulation that is independent of the observers. The most appropriate geometrical framework describing the situation is the so-called fiber bundle structure [Bishop, 1964, Kobayashi andNomizu, 1963].

Roughly speaking, given a manifold of dimension n in which our physical and mechanical phenomena are supposed to take place, we attach to each of its points a space of internal degrees of freedom, displaying some definite symmetry properties.

Let M be a differential manifold of dimension n, and G a Lie group of dimension N . A principal fiber bundle P (M, G) with a structural group G and basis space M is a manifold P of dimension N P = n + N , which satisfies the following properties: a) G acts on P on the right, i.e. the following mapping:

(p, g) ∈ P × G -→ pg ∈ P (2.75)
is a diffeomorphism of P × G onto P. Often we shall use the notation pg = R g p. The action of G on P is supposed to be effective (i.e., whatever g ∈ G we take, the points p ∈ P move; the only element leaving p unchanged is the unit element of G).

b) M is isomorphic with the quotient space of P by the equivalence relation induced by the action of G on P ; the canonical projection so obtained,

π : P -→ M (2.76)
is differentiable. The equivalence relation in P is defined by:

p 1 ∼ p 2 if there exists g ∈ G such that p 1 = p 2 g (2.77)
c) P is locally trivial, i.e. each point x ∈ M has a neighborhood U x such that the set of all points in P that project on U , π -1 (U ), is diffeomorphic with U × G. The set π -1 (x) is called a fiber over x. The notion of fiber bundle can be extended to similar structures whose fibers are not isomorphic with the structural group G, but rather with some manifold V on which an action of G is defined via some (linear on non-linear) representation. These manifolds are called associated fiber bundles.

Let P (M, G) be a principal fiber bundle over M with the structural group G; let V be a differentiable manifold on which G acts on the left. (In most cases V is a linear space of some representation of G). We have:

v ∈ V, g ∈ G, g : V -→ V, v -→ gv ∈ V. (2.78)
Now we can define a right action of G on the product manifold P (M, G) × V as follows: E(M, G; P, V

Rg : P (M, G) × V -→ P (M, G) × V (2.79) for (p, v) ∈ P (M, G)×V we define Rg (p, v) = R g p, g -1 v .
) = P (M, G) × V R G . (2.80) Obviously, dim E = dim M + dim V .
One of the most important principal bundles is the bundle of frames. This bundle can be defined given any differentiable manifold M. Let M ∈ M, and let x i , i = 1, 2, ..., d = dim M, be a local coordinate system in a open neighborhood containing M . A natural basis in the tangent space at M , T M (M), is given by the set of d derivations ∂/∂x i . Under a local change of the coordinate system, x i → y j x i , the basis transforms as

∂ ∂x i → ∂x k ∂y j ∂ ∂x k = ∂ ∂y j . Consider now all possible local frames defined as e i = X k i (x) ∂ ∂x k . These frames can be non-integrable (non-holonomic), if ∂ j X k i = ∂ i X k j .
The matrix X k i has to be non-singular; therefore it belongs to the group GL(d, R). There are as many local frames as there are elements of GL(d, R); moreover, the group GL(d, R) acts naturally on the right by the group multiplication of the matrices. Therefore, the set M × GL(d, R) has the natural structure of a principal fiber bundle over M, named the principle bundle of frames. Its dimension is equal to d + d 2 = dim M + dim (GL(d, R)). In the same way, one can define the principal bundle of orthonormal frames, if one restricts the matrices X i k to orthonormal matrices only; then the group is O(d, R), and the dimension of the bundle is d

+ d(d-1) 2 = d(d+1) 2 .
It has to be underlined that a fiber bundle is not always globally isomorphic with the Cartesian product of the basis space and the typical fiber. To visualize a non-trivial case, it is enough to consider a simple discrete group, say Z 2 , containing just two elements, identity and an element whose square is equal to identity. If one takes a circle S 1 as a basis space, then a fiber bundle P (S 1 , Z 2 ) can be either a Cartesian product of S 1 with a two-point set (Figure 2.2) or a connected set (Figure 2) Consider now the action of Z 2 on the manifold isomorphic with S 1 = e iλ . The non-trivial element of Z 2 acts as an inversion: Z 2 a 1 : e iλ → e (2πi-iλ) = e -iλ . Taking this S 1 as a typical fiber, one can construct an associated fiber bundle in two different ways, with the principal fiber bundle chosen from the previous example:

E 1 = S 1 × Z 2 × S 1 Z 2 or E 2 = P S 1 , Z 2 × S 1 Z 2 .
(2.81)

In the first case the resulting manifold is a torus, while in the second case it is the so-called Klein bottle (Figure 2.3) The construction of the so-called bundle of frames can be generalized by introducing a fiber bundle with fibers isomorphic to an arbitrary Lie groups G. The action of the group on the fiber bundle manifold produces motions along the fibers, and transforms sections into sections.

Space-time covariant description for deformable bodies

Consider a four-dimensional differentiable manifold M with a metric tensor g g g of signature

(1, -1, -1, -1). Each point M of this manifold is called an event of coordinates x µ . Let γ : R 1 → M be a set of points, named a world-line in M parametrized by s. The vector field u u u tangent to γ is:

u µ = dx µ ds (2.82)
with:

ds 2 = g µν dx µ dx ν (2.83)
The tangent vector u u u at each event is the four-velocity. By construction the norm of the four-velocity is equal to one.

Observers

An observer is defined for each event in M as a set of four basis vectors {g µ g µ g µ }. Thus, choosing a coordinate system in M is equivalent to choosing an observer for a given event M . This definition implies that a change of observer is equivalent to a 4D coordinate transformation on M.

Consider an observer {g µ g µ g µ } associated to the coordinate system x µ and another observer { g µ g µ g µ } associated to the coordinate system x µ , then the transformation between these two observers is the transformation rule for vectors (see Equation 2.34):

g ν g ν g ν = ∂x µ ∂ x ν g µ g µ g µ (2.84)
It should be stressed here that the matrix acting on the basis vector in Equation 2.84 is a 4 × 4 non-singular real matrix belonging to the general linear group in four real dimensions,

GL(4, R).

We next define two specific types of observers: the inertial observers and the proper observers that will turn out to be useful i) for a physical interpretation of the equations, ii) for the comparison of the proposed formalism with the 3D classical Newtonian continuum mechanics and iii) for the discretization and numerical simulation of the problem.

Inertial observers

Inertial observers correspond to the orthonormal basis vectors e µ e µ e µ associated to the inertial coordinate system z µ for which the components of the metric tensor g g g are (see Section 2.1.6.1):

η µν =        1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1        (2.85)
Note that η µν is not a tensor but the set of components for the metric tensor in the inertial coordinate system. It is postulated that such inertial observers exist for all events in M. In this coordinate system, z 0 = ct where t is called the absolute time (c is the constant speed of light in vacuum). The interval ds may then be written:

ds 2 = η µν dz µ dz ν = (cdt) 2 -(dz 1 ) 2 -(dz 2 ) 2 -(dz 3 ) 2 = (cdt) 2   1 - dz 1 cdt 2 - dz 2 cdt 2 - dz 3 cdt 2   = (cdt) 2 1 - v c 2 (2.86) Define v i dz 1 dt , dz 2 dt , dz 3
dt to be the 3D velocity; its norm v is given by:

v 2 = dz 1 dt 2 + dz 2 dt 2 + dz 3 cdt 2 (2.87)
Define the Lorentz factor γ:

γ = 1 1 -v 2 c 2
(2.88)

Then one has:

γds = cdt (2.89)
The components of the four-velocity in an inertial coordinate system are then u µ γ, γ c v i .

Proper observers

The proper observers are associated to the base vectors noted ĝµ ĝµ ĝµ and the corresponding coordinate system is noted xµ . These observers are defined implicitly such that the components of the four-velocity be ûµ (1, 0, 0, 0) for all events in M. The components of the metric tensor are noted ĝµν in this system. More generally a hat on a quantity indicates that it has been expressed using the proper coordinate system. The interval ds takes the value ds = dx 0 = cdτ where τ is the proper time. With the definition of γ given by Equation 2.89 above it comes:

dt = γdτ (2.90)

Motion of a deformable body

We define a world-tube as a congruence of world-lines in M. A world-tube Ω in M is the model chosen to represent the motion, including a deformation, of a material body: a world-tube is thus called a motion. The events of the motion under consideration are noted x µ .

We define an inertial motion as a motion for which the proper observer is an inertial observer for all points in the world-tube. The events of this motion are noted Z µ . A material body B is a section of an inertial world-tube; B is a 3D open domain of Ω.

The congruence of the world-lines issued from a material body thus forms a world-tube that describes a motion of the material body B under consideration, the inertial motion being one of the possible motions of B. We define the transformation φ between the inertial motion of a body B and the motion under consideration of this body:

x µ = φ µ (Z λ ) (2.91)
where φ is bijective with existing and continuous derivatives; φ is a diffeomorphism. The tangent application of φ is given by:

dx µ = ∂φ µ (Z λ ) ∂Z ν dZ ν = ∂x µ ∂Z ν dZ ν (2.92)
We define F µ ν such that:

F µ ν = ∂x µ ∂Z ν (2.93)
and its inverse:

(F µ ν ) -1 = ∂Z µ ∂x ν (2.94)

Covariance and deformable bodies

In mechanics of deformable bodies local deformations can be described by matrices acting on local frames, like in the Equation 2.84. Considering a fiber bundle (see Section 2.1.8), this suggests that the fibers are naturally the local reference frames, undergoing linear transformations when the continuous solid is subject to deformation. Now, what is the dimension of the space containing all possible local frames? Well, any local frame (not necessarily orthonormal) can be obtained from a given one by the action of the full linear group in n = 4 dimensions, GL(4, R), whose dimension is 16 (all non-singular 4 × 4 matrices).

One can imagine a new manifold, locally isomorphic with M×GL(4, R), whose total dimension is n+n 2 = 20. A point in this manifold is an element of the cartesian product of the manifold M and the set of all local frames, which is isomorphic with the GL(4, R) group. This corresponds to an observer located at M (that is a chosen basis at M ). Therefore a deformable piece of matter endowed with local frames can be considered as a subset of the bundle of frames. After deformation, the original motion Ω underwent a motion and deformation in the basis manifold M, causing the deformation of local frames, too. This can be regarded upon as a motion of the lifted image of Ω, with two deformations combined: the real deformation in M, and the resulting modification of local frames, described as a motion along each fiber, producing a new lift Ω .

Four dimensional kinematics

To define covariant deformation tensors we evaluate the interval dS for an inertial observer:

dS 2 = η µν dZ µ dZ ν (2.95)
Using Equation 2.94, it comes:

dS 2 = η αβ ∂Z α ∂x µ ∂Z β ∂x ν dx µ dx ν (2.96)
The four-dimensional Cauchy deformation tensor b b b is defined on the basis of Equation 2.96, above as:

b µν = η αβ ∂Z α ∂x µ ∂Z β ∂x ν = (F α µ ) -1 (F β ν ) -1 η αβ (2.97)
This Cauchy deformation tensor corresponds to the transformation of the ambiant metric due to the deformation and is called the induced metric in differential geometry. Define the 4D

Eulerian strain tensor e e e as:

e µν = 1 2 (g µν -b µν ) (2.98)
Now, we will look at the derivations of the velocity, its covariant rate and the covariant derivative, and the Lie derivative, where the four-acceleration is defined as the covariant rate (Equation 2.58) of the four-velocity:

a µ = u λ ∇ λ u µ (2.99)
With this definition, the four-acceleration is covariant, it is independent of the observer [START_REF] Boratav | [END_REF]Kerner, 1991, Landau andLifshitz, 1975b]. In the inertial coordinate system, using Equation 2.58, Equation 2.99 becomes:

a µ = u ν ∇ ν u µ = du µ ds = γ du µ cdt (2.100)
The rate of deformation d d d is defined as the half of the Lie derivative of the metric tensor:

d µν = 1 2 L u (g µν ) (2.101)
The rate of deformation tensor can also be defined as the symmetric part of the covariant derivative of the velocity gradient (∇ ν u µ ):

1 2 (∇ ν u µ + (∇ ν u µ ) T ) = d µ ν (2.102)
The spin tensor ω ω ω is the skew-symmetric part of the covariant derivative of the velocity:

ω µ ν (u α ) = 1 2 (∇ ν u µ -(∇ ν u µ ) T ) (2.103)
These definitions are useful to construct the space-time formalism describing the finite transformations for solids.

Projections on time and space

In this section, we define projections on time and space that enable to decompose the space-time tensors. This decomposition is useful to interpret the various quantities, for the construction of constitutive models and for the comparison with the classical 3D formulation of continuum mechanics.

Definition of the projection operators

The four-velocity u is a unitary vector. For each point in the manifold, there exists a coordinate system, the proper coordinate system, for which the components of the velocity are ûµ (1, 0, 0, 0) (see Section 2.2). In this system, the first coordinate, is related to the proper time τ with ds = dx 0 = cdτ and dx 1 = dx 2 = dx 3 = 0. The velocity is thus the basis vector in the proper coordinate system that pointing toward the direction of the proper time. More generally, the four-velocity is a normal vector in the direction of time; note that this should be referred as "the direction of the proper time" but the term "proper" is often omitted.

It is then possible to define the projection on time of a vector w as:

w = w κ u κ (2.104)
The projection of a vector on space is then:

w µ = w µ -(w κ u κ )u µ = w κ g κµ -(w κ u κ )u µ = w κ (g κµ -u κ u µ ) (2.105)
It can be deduced from equation 2.105 above that the tensor g -u ⊗ u acts as an operator to project a vector on space. Note that we use an underlined quantity to refer to a quantity projected on space. The vector w may then be decomposed into the sum of a vector corresponding to a projection on time (w κ u κ u µ ) and a vector corresponding to the projection on space (w µ ):

w µ = (w κ u κ )u µ + w µ (2.106)
Similarly, for a tensor A of rank two, its projection on time is:

Â00 = A κλ u κ u λ (2.107)
its projection on space and time is:

A µ = (g µκ -u µ u κ )A κλ u λ u ν (2.108)
and its projection on space is:

A µν = (g µα -u µ u α )(g νβ -u ν u β )A αβ (2.

109)

The tensor A may then be decomposed into the sum of three tensors of rank two:

A µν = Â00 u µ u ν + (A µ u ν + A ν u µ ) + A µν (2.110)
Consider now the projection of the metric tensor on space:

g µν = (g µα -u µ u α )(g νβ -u ν u β )g αβ = (g µα -u µ u α )(δ ν α -u ν u α ) = g µν -u µ u ν (2.111)
Thus, g µν = g µν -u µ u ν acts as an operator that projects a vector on space.

Projections on space and time and proper observers

The components of the projected tensors are evaluated here in the proper coordinate system.

For a vector, one has (with Equation 2.106):

ŵµ = ŵ0 ûµ + ŵµ (2.112) with ŵ0 ûµ =        ŵ0 0 0 0       
and ŵµ

       0 ŵ1 ŵ2 ŵ3        (2.113)
For a second rank tensor A A A, one has (with Equation 2.110):

µν = Â00 u µ u ν + ( µ u ν + Âν u µ ) + µν (2.114) with: Â00 u µ u ν        Â00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        (2.115) ( µ u ν + Âν u µ )        0 Â1 Â2 Â3 Â1 0 0 0 Â2 0 0 0 Â3 0 0 0        (2.116) µν        0 0 0 0 0 Â11 Â12 Â13 0 Â21 Â22 Â23 0 Â31 Â32 Â33        (2.117)
Clearly, there is a direct relation between the components of a tensor in the proper coordinate system and its projection on space and time due to the fact that the velocity is a basis vector for the proper coordinate system.

Properties and application of the projection operators

In this section, we present some properties of the space and time projection operators that will be useful in the construction of covariant constitutive models.

1. The spatial projection operator of a symmetric tensor A A A is symmetric:

A µν = A νµ (2.118)
To demonstrate this property, we will use the definition of the space projection operator (Equation 2.111). We have:

A µν = A αβ (g µα -u µ u α )(g βν -u β u ν ) = A βα (g µα -u µ u α )(g βν -u β u ν ) = A νµ (2.119)
knowing that the metric tensor is symmetric.

2. The space projection operator can be passed from one tensor A µν to another tensor B µν if there exists double contraction between these tensors:

A µν B µν = A µν B µν (2.120)
To demonstrate Equation 2.120, the previous equation is developed using Equation 2.109, we obtain:

A µν B µν = (A αβ g µα g νβ )B µν = A αβ (g µα g νβ B µν ) = A µν B µν = A µν B µν (2.121)
3. We have:

g µν u µ u ν = 0 (2.122)
To demonstrate this property, we develop the space projection operator using Equation 2.111, we get:

g µν u µ u ν = (g µν -u µ u ν )u µ u ν = (u ν -u µ u µ u ν )u ν = 0 (2.123) 4.
The space projection of a space projected entity (vector, tensor...) is the projected tensor itself. The definition of the projection of a projected tensor is the projection itself, then we can write. Writing the equation for a vector:

A κ = A κ (2.124)
where the double underline denotes the two times space projection operator on the vector A A A. To demonstrate Equation 2.124, we use the definition of the space projection operator (Equation 2.105):

( ( ( ( ( ( ( ( ( ( (

A κ = A µ (g µκ -u µ u κ ) (2.125)
Then, using the previous property (property 3), we get:

A κ = A κ (2.126)
We have finished working on the properties of the projection operators, now we apply these properties and projectors on 4D specific tensors to derive relations useful for the rest of the proposition.

It looks interesting to calculate the projection of the velocity gradient on time. We will start by writing the following equation, where the norm of the four-velocity vector equals to one (Section 2.2):

∇ µ (u ν u ν ) = ∇ µ 1 = 0 (2.127)
We also can write:

∇ µ (u ν u ν ) = u ν ∇ µ u ν + u ν ∇ µ u ν = u ν g αν ∇ µ u α + u ν ∇ µ u ν = u α ∇ µ u α + u ν ∇ µ u ν (2.128)
and

u α ∇ µ u α = 0 (2.129)
Thus the projection on time of the velocity gradient is equal to zero. We deduce that the velocity gradient tensor is a space projected tensor ( third property). Using the fourth property, we can write:

L µν = L µν (2.130)
The velocity gradient tensor is a space projected tensor. Concerning the rate of deformation tensor, it is also a space projected tensor. Using the definition of this tensor (Equation 2.102) and the previous Equation 2.128, we can write:

d µν u µ u ν = 1 2 (u µ u ν L µν + u µ u ν L νµ ) = 0 (2.131)
Then, using the third property, we can write:

d µν = d µν (2.132)
Now, we interpret the covariant derivative operator u µ ∇ µ (.). Remember that the quadri-vector u u u is the time projection operator. Thus, the covariant derivative along u u u is interpreted as an application of the projection on time of the covariant derivative. It results that the fouracceleration vector is interpreted as the projection on time of the covariant derivative of the four-velocity vector u µ ∇ µ u ν .

It looks interesting to investigate the relation between the Lie derivative of the space projected

Eulerian strain tensor and the space projection of the Lie derivative of the Eulerian strain tensor. First, we have (2.134) using the value of the Lie derivative of Eulerian strain tensor (Equation 2.101) and L u (b µν ) = 0 (it will be detailed later in Section 2.5.3, Equation 2.196). Then, the above Equation 2.134 becomes:

L u (e µν ) = L u e αβ g αµ g βν (2.133) = L u (e αβ ) g αµ g νβ + L u g αµ e αβ g νβ + L u g νβ e αβ g αµ
L u (e µν ) = d µν (2.135)
The projection on space of the Lie derivative of the Eulerian strain tensor equals to:

L u (e µν ) = d µν (2.136)
Both equations 2.135 and 2.136 are equal, we can then write:

L u (e µν ) = L u (e µν ) (2.137) Equation 2.137 is true because the projection of metric tensor is the projection itself and the rate of deformation tensor is a space projected tensor (Equation 2.132). This property will be used later in the construction of a covariant constitutive model (see Chapter 3). Note that this is not true for other second-rank tensors A A A in general:

L u (A µν ) = L u (A µν ) (2.138)

Comparison between the space-time and the classical formalisms

This section aims to detail the methodology of comparing the four-dimensional formalism with the classical 3D formulation of continuum mechanics.

Methodology

In order to compare the 4D tensors with their equivalent in the 3D classical formalism, first, we project the 4D tensors on space or on time. Then, we express the components of the 4D entity in the inertial or the proper coordinate system. Finally, we write the equation in the "non-relativistic limit": when the speed v is small with respect to the speed of light. Finally, we compare the corresponding components (space or time components).

The Lorentz factor is written in the non-relativistic limit:

γ = 1 1 -v 2 c 2 ≈ 1 (2.139)
The relation between the absolute and proper time in the non-relativistic limits becomes (Equation 2.90):

dt = γdτ ≈ dτ (2.140)
Next, we calculate the derivative of γ with respect to x µ :

∂γ ∂x µ = 1 (1 -v 2 c 2 ) 3/2 v c 2 ∂v ∂x µ (2.141)
We apply Taylor theorem on the above equation. Considering the non-relativistic limit (γ → 1, and v/c → 0), we get:

∂γ ∂x µ ≈ (1 + 3v 2 2c 2 ) v c 2 ∂v ∂x µ (2.142)
When the variation of the velocity with respect to x µ is small, than the derivative of the Lorentz factor with respect to x µ is small.

The norm of the four velocity u u u is dimensionless (Section 2.2). Thus, to obtain the same dimension as in classical mechanics, we multiply the four-velocity by c. We get:

cu µ = γ dx µ dt (2.143)
This step is applied to all 4D tensors having the dimension of time, they are multiplied by c to obtain the corresponding 3D units. Equation 2.143 corresponds to the time derivative of the coordinates of an event. Considering the non-relativistic limit (γ → 1, and v/c → 0), the non-relativistic four-velocity vector is written as:

v µ = dx µ dt = c, dx i dt = c, v i ≈ cu µ (2.144)
From the above Equation 2.144, the spatial components v i = dx i dt correspond to the components of the 3D velocity vector. Now, we express the components of the space projection operator in the inertial coordinate system. It is equal to:

g µν = η µν -u µ u ν =       1 -γ 2 v i v j c 2 v i v j c 2 -1 - v i c 2       (2.145)
Considering the non-relativistic limit (γ → 1, and v/c → 0), then the above Equation 2.145 becomes:

       0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1        (2.146)
From the above Equation, only the spatial parts remain when projecting on space in the proper coordinate system.

We apply the methodology of comparison on a second-rank tensor A A A. First projecting on space domain and then writing its components in the inertial coordinate system give:

A µν = A αβ (η αµ -u α u µ )(η βν -u β u ν ) (2.147)
We use the components of the four-velocity vector in the inertial coordinate system (Equation 2.143), and we separate the spatial and temporal components, we then obtain:

A 00 = A 00 (1 -γ 2 ) 2
(2.148)

A 0k = A 00 (1 -γ 2 ) (-γ 2 v k c ) + A ij (-γ 2 v i c ) (η kj -γ 2 v k v i c 2 ) (2.149) A kl = A 00 (γ 4 v k v l c 2 ) + 2A 0i (-γ 2 v k c ) (η li -γ 2 v l v i c 2 ) + A ij (η ki -γ 2 v k v i c 2 ) (η lj -γ 2 v l v j c 2 ) (2.150)
Considering the non-relativistic limit (γ → 1, and v/c → 0), the above equations becomes:

A 00 = 0 A 0k = 0 A kl = A ij η ki η lj = A kl (2.151)
In this section, we developed the method to compare the 4D entities with the corresponding in the classical mechanics. In the following section, this method is applied to kinematic tensors.

Application

First consider the covariant rate u λ ∇ λ (.). In an inertial coordinate system, we can write:

u λ ∇ λ (.) = u λ ∂(.) ∂x λ = γ ∂(.) c∂t + γ v i c ∂(.) ∂x i (2.152)
where the covariant derivative is reduced to the partial derivative since Christofell symbols vanish in the inertial coordinate system. To compare this equation with the classical 3D material derivative, we first have to multiply the above equation by c (time dimension). We get:

cu λ ∇ λ (.) ≈ v λ ∇ λ (.) = γ ∂(.) ∂t + γv i ∂(.) ∂x i (2.153)
Considering the non-relativistic limit (γ → 1, and v/c → 0), the above equation becomes:

∂(.) ∂t + v i ∂(.) ∂x i (2.154)
The 4D covariant derivative along u u u corresponds to the 3D material derivative. The fouracceleration vector in the inertial coordinate system (Equation 2.155) is multiplied by c, then it is written in the non-relativistic limit (γ → 1, and v/c → 0 ), and using Equation 2.144, the non-relativistic four-acceleration vector becomes:

a µ = dv µ dt (2.155)
The above equation corresponds to the time derivative of the non-relativistic four-velocity vector. The spatial part of this four-vector a i = dv i dt corresponds to the 3D acceleration. Now, we want to compare the components of the 4D rate of deformation tensor with its corresponding tensor in the classical mechanics. Remember that this tensor is a space entity Equation 2.132). Then, we write the 4D rate of deformation tensor (Equation 2.101) in the inertial coordinate system, where the components of the metric tensor corresponds to η µν (Equation 2.85). The 4D rate of deformation tensor in this case becomes:

d µν = ∂ γ v ν c ∂x µ + ∂ γ v µ c ∂x ν (2.156)
We multiply the above equation by c to have the same dimension as in the 3D rate of deformation tensor. Finally, considering the non-relativistic limit (γ → 1 and v/c → 0) of the above Equation and knowing that the derivative of γ vanishes (Equation 2.141), Equation 2.156 becomes:

cd µν ≈ ∂v ν ∂x µ + ∂v µ ∂x ν (2.157)
The spatial components of the above Equation 2.157 cd ij corresponds to the definition of the rate of deformation tensor in the 3D formalism (Equation 1.8).

To compare the gradient of deformation with its equivalence in the 3D classical mechanics, we project this tensor on the space domain, then we write its components in the inertial coordinate system. Finally, considering the non-relativistic limits (Equation 2.151), we get:

F µ ν = F α β (δ µ α -u µ u α )(δ β ν -u β u ν ) (2.158)
We get:

F 0 0 = 0 F 0 i = 0 F i 0 = 0 F i j = F i j = ∂x i ∂X j (2.159)
The spatial part of the 4D gradient of deformation tensor F i j corresponds to the 3D classical gradient of deformation. The same interpretation and steps are applied for its inverse, where the spatial part of the inverse of the gradient of deformation corresponds to the 3D inverse of the gradient of deformation.

The left Cauchy-Green deformation tensor b b b is projected on space and then it is written in the inertial coordinate system as in Equation 2.151. Considering non-relativistic limit (γ → 1, and v/c → 0), then, the components of the 4D left-Cauchy deformation tensor become:

b 00 = 0 b 0k = 0 b kl = b ij η ki η lj = b kl (2.160)
It worth noting that the above equation corresponds to the opposite of the 3D the Cauchy deformation tensor. The negative sign appears because the definition of the Cauchy deformation tensor in the 4D formalism (Equation 2.97). Now, we want to compare the components of the 4D Eulerian strain tensor with the 3D Eulerian strain tensor. This 4D tensors is projected on space and then, it is written in the inertial coordinate system . Finally, considering the non-relativistic limit (γ → 1, and v/c → 0) as in Equation 2.151, we get:

e 00 = 0 e 0k = 0 e kl = e ij η ki η lj = e kl (2.161)
The spatial components of the non-relativistic space projected Eulerian strain tensor corresponds to the components of the 3D classical tensor (Equation 1.6).

This methodology allows us to compare the 4D formalism with the 3D classical mechanics.

The Lagrangian description as a choice of coordinate system

The Lagrangian description is used in solid mechanics to formulate constitutive models (see Section 1.1.4). This formulation is also useful for numerical computations and finite-elements constructed for the finite transformations of solids are often based on a Lagrangian description (see Section 1.1.6). It is interesting to explore the possibilities offered by the space-time approach with regard to the choice of the kinematic description: Eulerian vs Lagrangian.

When one compares the transformations between the Eulerian and Lagrangian descriptions, the so called convective transports (see Section 1. -The relation between the Lagrangian density ρ and Eulerian density ρ:

ρ = ∂x i ∂X j ρ (2.162)
-The relations between e e e, the Euler-Almansi (Eulerian) and E E E the Green-Lagrange (Lagrangian) strain tensors:

e ij = ∂X k ∂x i ∂X l ∂x j E kl E ij = ∂x k ∂X i ∂x l ∂X j e kl (2.163)
-The relations between σ σ σ, the Cauchy stress tensor (Eulerian) and Σ Σ Σ, the second Piola Kirschhoff (Lagrangian) stress tensor (see Section 1.1.3):

σ ij = ∂X a ∂x b ∂x i ∂X k ∂x j ∂X l Σ kl Σ ij = ∂x a ∂X b ∂X i ∂x k ∂X j ∂x l σ kl (2.164)
These relations are indeed very similar to the expressions for coordinate transformations from

x µ to x µ (see Section 2.1.3):

α = ∂x α ∂ x β α (2.165) α µν = ∂x λ ∂ x µ ∂x κ ∂ x ν α λκ (2.166) α µν = ∂x α ∂ x β ∂ x µ ∂x λ ∂ x ν ∂x κ α λκ (2.167)
for respectively, a scalar density of weight equal to one, a second order covariant tensor of weight equal to zero and a second order contravariant tensor density of weight equal to one.

It is thus tempting to consider the convective transports as a change of coordinates for which the transformation gradient F i j = ∂x i ∂X j (Equation 2.93) would be the Jacobian matrix and ∂x a ∂X b its Jacobian. Of course, this is not possible in a classical 3D formalism because the deformation gradient is a function of space and time. This is no more an obstacle with a space-time approach. The objective of this Section is thus to investigate the possibility offered by a space-time formalism and consider the Lagrangian description as a specific choice of 4D coordinates.

The transformation in the proper and convective coordinate systems

We have defined in Section 2.2.2 the transformation between the inertial motion of a body B and the motion under consideration of this body; The tangent application of this transformation has been defined as well (see Equation 2.92). We now specifically express these entities in an inertial coordinate system noted z µ and in the proper coordinate system noted xµ (see Section 2.2.1). In the inertial coordinate system, we have the transformation:

z µ = φ µ (Z λ ) (2.168)
and

F µ ν = ∂z µ ∂Z ν (2.169)
is the tangent application of this transformation. Note that to avoid the multiplication of symbols we use in this section the same notation for the transformation and its tangent application in the inertial coordinate system as the one used for the generic definition in Section 2.2.1.

In the proper coordinate system the transformation is:

   x0 = cτ xi = Z i (2.170)
where τ is the proper time (see Equation 2.90) because the proper coordinate system is such that the velocity is ûµ (1, 0, 0, 0) for all events (see Section 2.2.1). The tangent application F µ ν 56 in the proper coordinate system is:

F µ ν = ∂ xµ ∂ Z ν =         1 γ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1         (2.171) because dx 0 = cdτ = c γ dt = 1 γ dZ 0 .
The Jacobian matrix for the change of coordinates between the inertial and the proper coordinate systems is then:

∂z µ ∂ xν = ∂z µ ∂ Z α ∂Z α ∂ xν = F µ α ( F α ν ) -1 (2.172)
with the use of Equation 2.169 and where:

( F µ ν ) -1 = ∂Z µ ∂ xν =        γ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1       
(2.173)

Thus :

∂z µ ∂ xν = ∂z µ ∂ Z µ        γ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1        (2.174)
Therefore, we can write the Jacobian matrix as:

∂z µ ∂ xν = ∂z µ ∂ Z µ (2.175)
We also define a convective coordinate system noted xµ such that:

xµ = Z µ (2.176)
The four-velocity is equal to: ûµ = (γ, 0, 0, 0) (2.177)

The tangent application F µ ν in the convective coordinate system is then the identity:

F µ ν = ∂ x µ ∂ Z ν = δ µ ν (2.178)
The Jacobian matrix for the change of coordinates between the inertial and the convective coordinate systems is then:

∂z µ ∂ xν = ∂z µ ∂ Z α ∂Z α ∂ xν = F µ α δ α ν = F µ ν (2.179)
with the use of Equation 2.169 and 2.178.

In both of these specific coordinate systems (proper and convective), the coordinates of the events are defined such that the transformation between the reference motion and the motion under consideration becomes:

-identity for the convective coordinate system;

-close to identity for the proper coordinate system if v << c and thus γ ≈ 1.

It is the coordinate system that is transformed and deformed following the motion. The Jacobian matrix of these coordinate transformation is:

-the tangent application F µ ν of the transformation for the convective coordinate system; -a matrix F µ α ( F α ν ) -1 ≈ F µ ν for the proper coordinate system if v << c. It should be noticed that the proper and convective coordinate systems are equivalent if v << c. This is summarized in Table 2.1.

Proper coordinate

Convective coordinate system system Jacobian matrix

∂z µ ∂ xν = F µ α ( F α ν ) -1 ≈ F µ ν ∂z µ ∂ xν = F µ α δ α ν = F µ ν Deformation gradient      γ 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1           1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      Table 2.1:
The Jacobian matrix and the deformation gradient in the proper and convective coordinate systems.

The 3D Lagrangian description and the proper coordinate system

The application of Equations 2.165, 2.166 and 2.167 for the transformation between the inertial and proper coordinate system leads to:

α = ∂z µ ∂ xν α (2.180) αµν = ∂z λ ∂ xµ ∂z κ ∂ xν α λκ (2.181) α µν = ∂z α ∂ xβ -1 ∂z µ ∂ xλ ∂z ν ∂ xκ αλκ (2.182)
for respectively, a scalar density of weight equal to one, a second order covariant tensor of weight equal to zero and a second order contravariant tensor density of weight equal to one.

Further, if v << c, the Jacobian matrix is, with Equation 2.175:

∂z µ ∂ xν ≈ F µ ν (2.183)
Equations 2.180, 2.181 and 2.182 above are thus be interpreted as the space-time equivalent of the convective transport (see Equations 1.12, 1.13 and 1.15) for the density, a strain tensor and the stress tensor (see Equations 2.162,2.163 and 2.164). The expressions of the tensors in the proper coordinate system thus define as a space-time Lagrangian description.

Also, when a tensor is expressed in the proper coordinate system, the components of this tensor may be directly related to the space and time projections of this tensor (see Section 2.3.2).

Thus, the 3D expressions of tensors and equations in the Lagrangian description may be obtained from the space-time description when the components of the 4D tensors are expressed in the proper coordinate system and for v << c. The Lagrangian description may be regarded as a choice of coordinate system in a space-time formalism. This constitutes an interest of the space-time approach and an original contribution of this work. No specific considerations have to be made regarding a Lagrangian description that can be derived with a projection of the equations on a specific 4D coordinate system : the proper coordinate system. In the following section, we evaluate the components of tensors in the proper coordinate system.

Evaluation of the operators and tensors in the proper and convective coordinate systems

The components of four-velocity vector are γ, γ c v i in the inertial coordinate system and

(1, 0, 0, 0) in the proper coordinate system (see Section 2.2.1). It is interesting to present the transformation between these coordinate systems for the four-velocity vector since it is a nonobjective vector in classical mechanics (see section 1.1.7): The components of the four-velocity vector in the inertial coordinate system by using the coordinate transport between inertial and the proper coordinate system (Equation 2.13):

u µ = ∂z µ ∂ xν ûν = dz µ ∂ xν dx ν ds = dz µ ds = γ 1, v i c (2.184)
The components of the four-acceleration vector in the proper coordinate system are equal:

âµ = u λ ∇ λ ûµ = Γ µ 00 (2.185)
It is possible to define the components of the velocity gradient in a proper coordinate systems as the following:

Lµ ν = ∇ ν ûµ = ∂ ûµ ∂ xν + Γµ κν ûκ = Γµ 0ν (2.186)
Consequently, the rate of deformation and spin tensors in the proper coordinate systems are equal:

dµ ν = 1 2 ( Lµ ν + L µ ν ) = 1 2 ( Γµ 0ν + Γν 0µ ) ŵµ ν = 1 2 ( Lµ ν -L µ ν ) = 1 2 ( Γµ 0ν -Γν 0µ ) (2.187)
Now, we write the covariant and contravariant components of the metric tensor. By applying the coordinate transport from the inertial coordinate system to the proper coordinate system (Equations 2.15 and 2.14), we get:

ĝµν = ∂z α ∂ xµ ∂z β ∂ xν η αβ ; ĝµν = ∂ xµ ∂z α ∂ xν ∂z β η αβ (2.188)
Next, we look at the components of the gradient of deformation tensor F F F the proper coordinate system (Equation 2.173). The first column in this tensor ∂ xµ ∂ x0 corresponds to the derivative with respect the first component wherein the inertial coordinate system, it corresponds to the time component x0 = cτ (see Section 2.5.1). Thus, this column represents the four-velocity vector in the proper coordinate system. In the inertial coordinate system, the first column of this tensor represents the four-velocity divided by the Lorentz factor. The division by Lorentz factor is justified by relation between the proper and absolute time (Equation 2.90).

The components of right Cauchy deformation tensor Ĉ

C C are expressed in the proper coordinate system: Ĉµν = ĝµν (2.189)

The components of space projected Cauchy deformation tensor in the proper coordinate system (using Equation 2.117) are: 2.190) In classical mechanics the components of the Cauchy deformation tensor in the convective coordinate system are equal to the identity matrix. Now, we write the Eulerian strain tensor in the proper coordinate system. Using the transport between the proper and the inertial coordinate system (Equation 2.15), we can write:

bµν =        0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1        ( 
êµν = ∂z α ∂ xµ ∂z β ∂ xν e αβ = E µν (2.191)
The components of the Lagrangian strain tensor in the proper coordinate system are equal:

ʵν = 1 2 ( Ĉµν -η µν ) (2.192)
From Equations 2.191 and 2.192, we have:

êµν = E µν = ʵν (2.193)
Indeed, in this particular system of coordinates (whether 3D or 4D), the covariant components of the strain tensor êµν are equal to the material strain tensor ʵν [Sidoroff, 1982, Malvern, 1969].

The Lie derivative in the proper coordinate system is equal to:

L û(.) = ûµ ∂(.) ∂ xµ = ∂(.) c∂τ (2.194)
It corresponds to the proper time derivative.

Then, it can ben proven that, with Equation 2.190, the Lie derivative of the space projected Cauchy deformation tensor in the proper coordinate system vanishes (using Equations 2.190,2.194):

L û ( bµν ) = 0 (2.195) Thus L u (b µν ) = 0 (2.196)

Conclusion

This chapter presented the 4D tools that are useful to construct space-time formalism in the following chapters. These tools are used to describe the finite transformation for solids. Within the 4D formalism, the change of observers is described by a change of the 4D coordinate system. The 4D formalism also offers the possibility to construct covariant tensors. The covariant derivative and the Lie derivative have been defined in this chapter, where these derivatives results covariant tensors. The use of these derivatives in the description of the finite transformation guaranty the covariance of these descriptions and the constitutive models (constructed in the following chapter).

The projection operators are defined in this chapter. The projection on time and space enable to decompose the 4D tensors. These tensors can be interpreted and compared with the classical 3D continuum mechanics.

In this chapter, we also studied the relation between the Lagrangian description and the choice of the 4D coordinate system. Where the choice between the Lagrangian and the Eulerian description is no longer an issue in space-time formalism. We conclude that the relation between these two descriptions corresponds to the convective transports in the 4D formalism. Thus, writing the equations in the 4D proper coordinate system equivalent to writing these equations in the Lagrangian description of classical mechanics.

In the following chapter, we use these tools to propose the space-time continuum thermomechanics.

Chapter 3

Space-time continuum thermo-mechanics The main goal of this chapter is to introduce a covariant description of thermo-mechanical problems along with a proposition for their discretization. The principles and hypotheses that are used in the construction of such a formulation are listed first. Then, the most important quantities are defined and a space-time formulation for the equations governing them is proposed. The conservation equations and the thermodynamic inequalities are written according to this covariant formalism. Each of these equations is then derived in the proper and inertial coordinate systems. It is possible to compare the formulation in the inertial coordinate system with the classical 3D constitutive and dynamic equations in the non-relativistic case, too [Truesdell, 2012, Malvern, 1969, Hughes and Marsden, 1983]. Covariant constitutive models are also derived, thus completing the set of governing equations. It is then possible to formulate a problem to be solved for the finite transformations of a solid, a version that can be written with a weak form. Finally, this enables us to propose a finite element discretization of some continuum thermo-mechanical problems.

Principles and hypotheses

In this section we present the principles and hypotheses serving as a basis for construction of a space-time formulation of continuum mechanics. Following Eringen, Zahalak and Chrysochoos [Grot and Eringen, 1966a, Zahalak, 1992, Chrysochoos, 2018] we begin by exposing the general principles that must be satisfied by any such formulation:

-Principle of causality. The quantities characterizing a given event are determined only by the events lying in the past light cone of this event.

-Principle of local state. Consider a system which is not uniform and in which irreversible processes may be occurring. It is postulated that there exist both state variables and state functions that represent the thermodynamic state of the system at a given event;

all the variables and functions that are defined for a given system exist for each event.

Furthermore, these variables and functions depend strongly on the properties of the system in the neighborhood of the event.

-Principle of covariance. The quantities and equations of mechanical problem are covariant. This corresponds to the invariance of the state variables and the form of physical laws under arbitrary differentiable space-time coordinate transformations. As stated in [Wikipedia contributors, 2021] The essential idea is that coordinates do not exist a priory in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws. The covariance group is the group of 4x4 real invertible matrices GL(4, R).

-Principle of conservation of the rest mass, subject of Section 3.2.

-Principle of conservation of the energy and momentum, subject of Section 3.3.

-Principle of thermodynamics, subject of Section 3.4.

Several hypotheses are further considered to limit the complexity of the problem:

-Continuum hypothesis.The system under consideration is a volume filled with matter evolving in time considered as a continuum. In other words, both the matter and the state variables and functions are continuously distributed over space-time: no internal discontinuities (no fracture, no strong damage...) are present. An event, i.e. a point of the 4D manifold, corresponds to a representative elementary hypervolume inside the system [START_REF] Irgens ; Irgens | Continuum mechanics[END_REF]. It leads to create the link between the material and the 4D manifold.

-Thermodynamic of irreversible processes. On the basis of the principle of locality along with the hypothesis of the existence of material continuum, it is further hypothesized that a thermodynamical processes of equilibrium or irreversible nature may be constructed. These hypotheses consist in considering that the entire system is not necessarily in thermodynamic equilibrium, but constituted of events (representative elementary hypervolumes) themselves considered as a thermodynamical subsystem in thermodynamic equilibrium [Demirel, 2007].

-We do not consider any electromagnetic phenomena.

-The particles constituting the matter are conserved: there are neither extra mass sources, nor nuclear reactions, chemical reactions, phase transformations, or molecular exchange.

-There is no coupling between the energy-momentum tensor and the metric tensor. The space is thus flat (see Section 1.3.3 for more details).

Mass density and conservation of the rest mass

Mass density

Let ρ c be the rest mass density, a scalar density of weight one. In Einstein's Special Relativity, the relativistic mass contributes to the total energy. The total energy is itself the sum of two contributions: the first one due to the particles of matter, and the second one due to the internal energy e int . The rest mass ρ c corresponding to the first contribution is related to the number of particles of matter. It is the mass density as measured by an observer moving along with the material point when the internal energy vanishes (e int = 0, See Section 3.5.1 for further discussions).

Equation of mass conservation

In the present work, we suppose that all particles are conserved (there is no nuclear effects, no radiation present). Then conservation equation of the rest mass is:

∇ µ ( ρ c u µ ) = 0 ∀x µ ∈ Ω
where Ω is an hypervolume. Using Leibnitz' rule, the equation of mass conservation may be rewritten:

u µ ∇ µ ( ρ c ) + ρ c ∇ µ (u µ ) = 0 (3.1) ⇔ u µ ∂ µ ρ c -u µ Γ λ µλ ρ c + ρ c (∂ µ u µ + Γ λ µλ u µ ) = 0 (3.2)
because ρ c is a density (see Section 3.2.1). This leads to:

⇔ u µ ∂ µ ρ c + ρ c ∂ µ u µ = 0 (3.3)
Note that the last equation holds in any system of coordinates. It corresponds to the Lie derivative of the scalar density ρ c (Equation 2.61) and thus, the equation of conservation of the rest mass may also be written as follows:

L u ( ρ c ) = 0 (3.4)
The above formulation will turn out to be useful for the construction of constitutive models (see Section 3.5).

In a proper coordinate system, with x0 = cτ and ûµ (1, 0, 0, 0), the conservation of the rest mass, with the density noted ˆ ρ c , becomes:

∂ ˆ ρ c ∂τ = 0 (3.5)
leading to the fact that ˆ ρ c is constant in time as seen by a proper observer.

In an inertial coordinate system, with x 0 = ct and u µ γ, γ c v i , (see Section 2.2.1), the conservation of the rest mass (Equation 3.1) becomes:

1 c ∂(γ ρ c ) ∂t + ∂( ρ c v i ) ∂x i = 0 (3.6) or ∂(γ ρ c ) ∂t + ∂( ρ c v i ) ∂x i = 0 (3.7)
When γ tends to 1, the last equation corresponds to the classical 3D equation expressing the conservation of mass:

∂ρ ∂t + ∂(ρv i ) ∂x i = 0 (3.8)
if ρ c is identified with the 3D mass density ρ.

The advantage of the space-time formulation is thus that, the equation of mass conservation may be written for any observer because the density and velocity are covariant tensors.

Energy-momentum tensor and its conservation

The energy-momentum tensor for a continuum is introduced in this section. Following [Eckart, 1940, Carter, 1988, Landau, 1975[START_REF] Israel | Transient relativistic thermodynamics and kinetic theory[END_REF] we propose a decomposition of this tensor using the projectors on time and space defined in Section 1.3.3. It is then possible to interpret each term of this decomposition. Next, the principle of conservation of the energymomentum is written and projected on time and space in order to interpret the equations in classical terms and compare them with the 3D equations of conservation.

Energy-momentum tensor

In relativistic and non-relativistic field theories, energy-momentum tensor is an important entity [Synge, 1960, Weinberg, 1972, Landau and Lifshitz, 1975b, Landau and Lifshitz, 1979, Boratav and Kerner, 1991, Maugin, 1992, Misner et al., 1973]. The energy-momentum tensor, noted T , is a symmetric covariant second-rank tensor, it exists for each event. Each term of this tensor, in an orthonormal coordinate system, has the dimension of energy per unit (3D) volume and represents a flux of energy through a 3D volume.

Following [Eckart, 1940, Grot and Eringen, 1966a, Carter, 1988, Landau, 1975[START_REF] Israel | Transient relativistic thermodynamics and kinetic theory[END_REF] we propose a decomposition of T using the projectors on time and space defined in Section 2.3.1. This tensor is hence decomposed into three tensors in the following manner:

T µν = Uu µ u ν + (q µ u ν + q ν u µ ) + T µν σ (3.9)
where:

-U is a scalar density, the result of the double projection of T on the time axis, such that:

U = T µν u µ u ν (3.10)
q µ is a vector, the result of the projection of T on the space and the time axis, such that:

q µ = (δ µ α -u µ u α )T αβ u β (3.11)
-T µν σ is a second-rank tensor, the result of the double projection of T on the space axis, such that:

T µν σ = (δ µ α -u µ u α )(δ ν β -u ν u β )T αβ (3.12)
Note that the definition of the projectors implies that the three tensors Uu µ u ν , (q µ u ν + q ν u µ ) and T µν σ remain symmetric.

A physical interpretation may be given to each of the three tensors entering the decomposition of T when they are expressed in a proper coordinate system; we note T µν the components of the moment-energy tensor in the proper coordinate system. In this system, the components of the velocity are ûµ = (1, 0, 0, 0) and the decomposition of T following Equation 3.9 leads to:

Û = T 00 ; qµ =        0 T 14 T 24 T 34        ; T µν σ =        0 0 0 0 0 T 11 T 12 T 13 0 T 21 T 22 T 23 0 T 31 T 32 T 33        (3.13)
and thus:

T µν =        Û q1 q2 q3 q1 T 11 σ T 12 σ T 13 σ q2 T 21 σ T 22 σ T 23 σ q3 T 31 σ T 32 σ T 33 σ        (3.14)
With physical considerations in the proper coordinate system, it is possible to identify:

-the energy density at a given point with the scalar density U -the energy flux density with the vector q -a stress tensor with the tensor T σ

The above interpretation is in fact valid in any coordinate system: indeed, each of the entities, U, q and T σ is space-time tensor. Each of these tensors is the subject of further considerations in the following paragraph.

Momentum tensor Uu µ u ν U is the energy density, a scalar density representing the energy per unit 3D volume. Because the Einstein mass-energy formula says that mass is equivalent to energy in relativistic theories [Synge, 1960, Boratav and Kerner, 1991, Landau and Lifshitz, 1979], Uu µ u ν can be interpreted as the massic energy-momentum tensor. We can thus write:

U = ρ c c 2 (3.15)
where ρ c represents the relativistic total mass density (relativistic mass per unit of volume)

and : (3.16) where e int is a scalar quantity representing the internal energy per unit mass; we thus have

U = ρ c c 2 = ρ c c 2 + e int
ρ c = ρ c 1 + e int c 2 .
Note that in the literature [Landau, 1975], another quantity (ρ) is also introduced and the relations between the different densities are :

ρ = γρ c = γ ρ c 1 + e int c 2 (3.17)
By construction, the projection of Uu µ u ν on space is equal to zero:

Uu µ u ν (δ α µ -u α u µ )(δ β ν -u β u ν ) = 0 (3.18)
We do not use the last quantity in this work. Given the above considerations, in a proper coordinate system, with ûµ = (1, 0, 0, 0) the components of the tensor Uu µ u ν are:

Û ûµ ûν =        Û 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        =        ˆ ρ c c 2 + e int 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        (3.19)
In an inertial coordinate system, with u µ γ c v µ where v µ (c, v i ), the tensor Uu µ u ν becomes:

Uu µ u ν = ρ c c 2 u µ u ν = ρ c 1 + e int c 2 c 2 u µ u ν = ρ c 1 + e int c 2 γ 2 v µ v ν (3.20)
This corresponds to the components:

Uu µ u ν =   Uγ 2 U γ 2 c v i U γ 2 c v j U γ c 2 v i v j   =   ρ c c 2 γ 2 ρ c cγ 2 v i ρ c cγ 2 v j ρ c γ 2 v i v j   (3.21) =   ρ c c 2 + e int γ 2 ρ c c 2 + e int γ 2 c v i ρ c c 2 + e int γ 2 c v j ρ c c 2 + e int γ c 2 v i v j   (3.22)
Note that the 3D momentum ρ c v i corresponds to terms in the first line/column of the momentum tensor expressed in the inertial coordinate system; this justifies its name.

Heat flux tensor (q µ u ν + q ν u µ )

The 3D-vector q represents the flux of energy passing through the unit 3D volume normal to the base vector in the time direction(the velocity). If thermomechanical effects alone are considered, this flux corresponds to the heat exchanged by the system with its external environment. We retain this hypothesis in this work and thus interpret q as a heat flux vector. The components of the tensor (q µ u ν + q ν u µ ) in the proper coordinate system are :

qµ ûν + qν ûµ =        0 q1 q2 q3 q1 0 0 0 q2 0 0 0 q3 0 0 0        (3.23)
where the first component of the heat flux vector vanishes:

q0 = T µν ûµ (δ 0 ν -û0 ûν ) = 0 (3.24)
By construction, the projection of (q µ u ν + q ν u µ ) on the time axis is equal to zero; indeed, using Equation 3.11, we have:

q µ u µ = (δ µ α -u µ u α )T αβ u β u µ = 0 (3.25) then: (q µ u ν + q ν u µ )u µ u ν = 0 (3.26)

Stress tensor T σ

The components of T σ correspond to a flux of energy per unit 3D volume itself normal to one of the spatial directions. In the proper coordinate system, the components of T σ have been identified with a stress tensor and in this coordinate sytsem :

Tσ =        0 0 0 0 0 T 11 σ T 12 σ T 13 σ 0 T 21 σ T 22 σ T 23 σ 0 T 31 σ T 32 σ T 33 σ        (3.27)
The proper coordinate system moves with the material point, thus, T σ could be considered as the space-time equivalent of the second Piola Kirschhoff tensor (Section 1.1.2).Also note that, by construction, the projection of T σ on the time axis is equal to zero (with Equation 2.122):

T µν σ u µ u ν = (δ µ α -u µ u α )(δ ν β -u ν u β )T αβ u µ u ν = 0 (3.28)

Conservation of energy-momentum

Principle of conservation of energy-momentum

The principle of conservation of the energy-momentum tensor states that (Section 1.3.3):

∇ ν T µν = 0 (3.29)
First we write the equation above using the decomposition of T given by Equations 3.9 and 3.16 to obtain:

∇ ν ρ c u ν (c 2 + e int )u µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.30)
Developing the first term of the above equation leads to:

(c 2 + e int )u µ ∇ ν ρ c u ν + ρ c u ν ∇ ν (c 2 + e int )u µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.31)
Using the equation of conservation of rest mass (Equation 3.1), we get:

ρ c u ν ∇ ν (c 2 + e int )u µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.32)
Developing the first term of the above equation leads to:

ρ c u µ u ν ∇ ν e int + ρ c (c 2 + e int )u ν ∇ ν u µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.33)
The above equation may be rewritten, using the definitions of the covariant rate (see 2.3.1) of e int and the acceleration (Section 2.2.4):

ρ c u µ de int ds + ρ c (c 2 + e int )a µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.34)
It could also be rewritten, using the Lie derivative of the scalar e int :

ρ c u µ L u (e int ) + ρ c (c 2 + e int )a µ + ∇ ν (q µ u ν + q ν u µ ) + ∇ ν T µν σ = 0 (3.35)
The above Equations 3.30,3.33,3.34 and 3.35 are different forms of the conservation of the energy-momentum. The projection of these different forms on the time, the space axis or in an inertial coordinate system enables to further interpret the conservation of energy-momentum;

this is proposed in the following sections.

Projection of the equation of conservation of the energy-momentum on time, balance of internal energy

We wish to obtain the equation of conservation of energy-momentum along the direction of time; we thus project Equation 3.29 using the four-velocity (see Section 2.3.1):

u µ ∇ ν T µν = 0 (3.36)
With the use of equation 3.34, we get:

u µ ρ c u µ de int ds + u µ (c 2 + e int ) ρ c a µ + u µ ∇ ν (q µ u ν + q ν u µ ) + u µ ∇ ν T µν σ = 0 (3.37)
Using the facts that the velocity is a unitary vector and that the projection of the acceleration on time vanishes (see 2.3.3), the above Equation 3.37 becomes:

ρ c de int ds + u µ ∇ ν (q µ u ν + q ν u µ ) + u µ ∇ ν T µν σ = 0 (3.38)
Let us focus first on the term u µ ∇ ν (q µ u ν + q ν u µ ). One has:

u µ ∇ ν (q µ u ν + q ν u µ ) = u µ ∇ ν (q µ u ν ) + u µ ∇ ν (q ν u µ ) (3.39) = ∇ ν q ν + u µ ∇ ν (q µ u ν ) (3.40)
Indeed, the velocity being a unitary vector, it comes u µ ∇ ν u µ = 0. Further noting that ∇ ν (u µ q µ u ν ) = u µ ∇ ν (q µ u ν ) + q µ u ν ∇ ν u µ and that u µ q µ = 0 (see Equation 3.25) we finally get:

u µ ∇ ν (q µ u ν + q ν u µ ) = ∇ ν q ν -q µ u ν ∇ ν u µ (3.41)
or, with the components of the acceleration:

u µ ∇ ν (q µ u ν + q ν u µ ) = ∇ ν q ν -q µ a µ (3.42)
Focus now on the term u µ ∇ ν T µν σ of Equation 3.38. Using the fact that u µ T µν σ = 0 (see Equation 3.28), we have :

u µ ∇ ν T µν σ + T µν σ ∇ ν u µ = 0 (3.43) or u µ ∇ ν T µν σ = -T µν σ ∇ ν u µ (3.44)
Second, T µν σ is symmetric (see Section 3.3.1), Equation 3.43 can then be rewritten using the rate of deformation d µν , the symmetric part of the velocity gradient (see Section 2.2.4), such that:

u µ ∇ ν (T µν σ ) = -T µν σ d µν (3.45)
Because u µ u ν d µν = 0, meaning that d µν = d µν (see Section 2.3.3), it comes:

u µ ∇ ν T µν σ = -T µν σ d µν (3.46)
As a summary, gathering Equations 3.38, 3.42 and 3.46, the conservation of energy-momentum projected on time leads to:

u µ ∇ ν T µν = 0 ⇔ ρ c de int ds + ∇ ν q ν -q µ a µ -T µν σ d µν = 0 (3.47)
This could be equivalently written (see Equation 3.35): 

u µ ∇ ν T µν = 0 ⇔ ρ c L u (e int ) + ∇ ν q ν -q µ a µ -T µν σ d µν = 0 (3.
ρ c de int ds + ∇ ν q ν -T µν d µν = q µ a µ (3.49) or ρ c L u (e int ) + ∇ ν q ν -T µν d µν = q µ a µ (3.50)
We want to compare the Equation 3.47 with the corresponding 3D equation. We thus, follow the steps presented in Section 2.4. In the inertial coordinate system, and using ds = cdt/γ (Equation 2.89) Equation 3.47 becomes:

ρ c γ de int cdt + ∇ ν q ν -T µν σ d µν = q µ a µ (3.51)
Multiplied the above equation with c, we get:

ρ c γ de int dt + c∇ ν q ν -cT µν σ d µν = cq µ a µ (3.52)
We want to interpret the above equation, thus, we start by studying the second term of the above equation c∇ ν q ν , where q ν corresponds to the components of the relativistic heat flux vector. It is equal to:

q µ = φ µ c (3.53)
where the vector φ µ is the energy flux density, presenting the amount of field energy passing through a unit area of the surface in a unit time. Then, cq i = φ i corresponds to the classical heat flux vector.

Then, we look at the third term of Equation 3.52 cT µν σ d µν . The projection of the rate of deformation tensor is passed to the stress tensor (second property in Section 2.3.3) and Equation 2.132 we get: T µν σ d µν = T µν σ d µν . Following the steps detailed in Section 2.4, the components of the stress tensor in the non-relativistic limit equal:

T 00 σ = 0 T 0i σ = 0 T ij σ = T ij σ (3.54)
where the spatial part T ij σ corresponds to the components of the Cauchy stress tensor in the 3D continuum mechanics.

We now look on the RHS of Equation 3.52: cq µ a µ . In the inertial coordinate system, using Equations 3.53, 2.99, ds = cdt/γ and u µ γ, γ c v i , we obtain:

cq µ a µ = φ µ du µ ds = φ 0 γ dγ cdt + φ i γ 2 dv i c 2 dt (3.55)
The derivative of γ with respect to x µ tends to zero when v/c → 0 (Equation 2.141). The above equation becomes:

cq µ a µ = φ i dv i c 2 dt = φ i a i c 2 (3.56)
where a i is the 3D acceleration. This term is too small with respect to the other terms in Equation 3.52. Then, when γ tends to 1, the equation of conservation of energy-momentum projected on time (Equation 3.47) becomes:

ρ c de int dt + ∇ ν φ ν -σ ij d ij ≈ 0 (3.57)
The above equation corresponds to the 3D equation of conservation of internal energy (Equation 1.18).

Projection of the equation of conservation of the energy-momentum on space, balance of momentum

Projecting the equation of conservation of energy-momentum on the space axis, we get:

(δ α µ -u α u µ )∇ ν T µν = 0 (3.58)
which is equivalent to :

∇ ν T µν -u µ (u α ∇ ν T αν ) = 0 (3.59)
Using the form of ∇ ν T µν given by Eq 3.34, and the form of u α ∇ ν T αν computed in Section 3.3.2.2 above, and given by Equation 3.47 we have :

ρ c u µ de int ds + ρ c (c 2 + e int )a µ -u µ ρ c de int ds + ∇ ν (q µ u ν + q ν u µ ) -u µ (∇ ν q ν -q ν a ν ) + ∇ ν T µν σ + u µ T αν σ d αν = 0 (3.60)
This leads to:

ρ c (c 2 + e int )a µ + ∇ ν (q µ u ν + q ν u µ ) -u µ (∇ ν q ν -q ν a ν ) + ∇ ν T µν σ + u µ T αν σ d αν = 0 (3.61)
To pursue the interpretation, we first consider that there is no heat flux (q = 0) leading to:

ρ c (c 2 + e int )a µ + ∇ ν T µν σ + u µ T αν σ d αν = 0 (3.62)
We want compare the above Equations 3.62 with the corresponding 3D classical equations. We thus, follow the steps presented in Section 2.4. In an inertial coordinate system with u µ (γ, γ c v i ),

a µ = γ du µ cdt
, the above equation becomes after separating the spatial and the temporal parts:

ρ c (c 2 + e int )γ dγ cdt + ∇ ν T 0ν σ + γT αν σ d αν = 0 (3.63) ρ c (c 2 + e int )γ d(γv i ) c 2 dt + ∇ ν T iν σ + γ v i c T αν σ d αν = 0 (3.64)
The last term of the above Equations T αν σ d αν is interpreted as the contraction between Cauchy stress tensor and the 3D rate of deformation (see Section 3.3.2.2, Equation 3.54), then, the spatial part (Equation 3.64) is written as:

ρ c d(γv i ) dt + e int d(γv i ) c 2 dt + ∇ ν T iν σ + γ v i c σ kl d kl = 0 (3.65)
To go further in the interpretation, some assumptions have to be made on e int , v and T σ . This is addressed in details in Chapter 1. In particular, it is important to determine the order of magnitude of these quantities and there variations with respect to c. Considering the nonrelativistic limit (γ → 1, and the v/c → 0), with some reasonable assumptions on e int , v and T σ , and some reasonable assumptions on the regularity of the variations of these quantities through space-time, we obtain for Equation 3.59:

ρ dv i dt + ∇ j T ij σ = 0 (3.66) Equation 3
.66 above is equivalent to the equation of balance of momentum in classical mechanics with no external body force (Equation 1.16).

In this section we presented several derivation leading to different forms of the equation of the conservation of energy-momentum. Our contribution corresponds to a systematic and coherent use of the projectors on space and time axis both for the decomposition of the energy-momentum tensor and the equation of conservation. These projections enable physical interpretations and comparison with the corresponding 3D equations. Indeed, when the conservation of the energymomentum is projected on the time axis, we obtain an equation for the conservation of internal energy. When the conservation of the energy-momentum equation is projected on the space axis, we obtain the equation for the balance of momentum. Thus, when a thermo-mechanical problem is going to be solved using a space-time formalism, the conservation of energy and the balance of momentum are going to be solved simultaneously.

Space-time thermodynamics

In this section, we study the thermodynamics principle in a four-dimensional formalism. First, we introduce an entropy current, then a generalization of the second principle of thermodynamics to derive a space-time equivalent of the Clausius-Duhem Inequality.

Entropy

We postulate the existence of an entropy current represented by the vector S. The components of S in an inertial coordinate system have dimension of energy per unit temperature. The decomposition of this vector on time and space:

S µ = ρ c ηu µ + S µ (3.67)
leads to the definition of ρ c η, the entropy per unit volume, a scalar density; η is the specific entropy, a scalar; S µ is the space projection of the entropy current:

S µ = S µ -ρ c ηu µ (3.68)
and we have by construction S µ u µ = 0 (see Equation 2.122). The quantity S µ is referred as the entropy flux.

Space-time second principle of thermodynamics

The generalization of the second principle of thermodynamics states that [Eckart, 1940, Muschik andBorzeszkowski, 2015] :

∇ µ S µ ≥ 0 (3.69)
Using the decomposition of S given by Equation 3.67 leads to:

∇ µ ( ρ c ηu µ + S µ ) ≥ 0 (3.70)
Then, using the conservation of rest mass (Equation 3.1), we have:

ρ c u µ ∇ µ (η) + ∇ µ S µ ≥ 0 (3.71)
With the use of the covariant rate (Equation2.57), we obtain:

ρ c dη ds + ∇ µ S µ ≥ 0 (3.72)
With the use of the Lie derivative of the scalar η (Equation 2.61), we obtain:

ρ c L u (η) + ∇ µ S µ ≥ 0 (3.73)
When a process is reversible, the above inequalities become:

ρ c dη ds + ∇ µ S µ = 0 (3.74) ρ c L u (η) + ∇ µ S µ = 0 (3.75)

Heat and entropy fluxes

It is further supposed that the transfer of energy to the 3D volume is only due to heat [A Prost-Domaski et al., 1997] and we make the hypothesis that:

S µ = q µ θ (3.76)
where θ is the absolute temperature, a strictly positive scalar. Remember that q µ is the heat flux and that by construction we have q µ u µ = 0 as detailed in Section 3.3.1 Both fluxes, (S and q), are space vectors. This hypothesis is equivalent to consider that the projection of the energy-momentum tensor on the space and the time axis is equal to the entropy flux (using Equation 3.11):

S µ = q µ θ = 1 θ (δ µ α -u µ u α )T αβ u β = 1 θ (T µβ u β -Uu µ ) (3.77)
Eringen [Grot and Eringen, 1966a] calls the processes for which S µ = q µ θ simple thermodynamics processes. With these hypotheses, note that the entropy vector defined in this work is equivalent to the definition proposed by Vallée [Vallee, 1981] in the context of special relativity. Indeed, it is possible to rewrite Equation 3.67 as:

S µ = ρ c ηu µ + S µ = ( ρ c η - U θ )u µ + T µβ u β θ (3.78)
The generalized second principle of thermodynamics (Equation 3.69) then becomes:

∇ µ ρ c ηu µ + q µ θ ≥ 0 (3.79) or ρ c dη ds + ∇ µ q µ θ ≥ 0 (3.80) ρ c L u (η) + ∇ µ q µ θ ≥ 0 (3.81)
with the use of Equation 3.82 and 3.83. Multiplying the above equations by the temperature (θ > 0) and using the fact that ∇ µ q µ θ = 1 θ ∇ µ q µq µ θ 2 ∇ µ θ, we further obtain:

θ ρ c dη ds + ∇ µ q µ - q µ θ ∇ µ θ ≥ 0 (3.82) θ ρ c L u (η) + ∇ µ q µ - q µ θ ∇ µ θ ≥ 0 (3.83)
When the process is reversible, Equation 3.83 becomes:

θ ρ c L u (η) + ∇ µ q µ - q µ θ ∇ µ θ = 0 (3.84)
Equations 3.69, 3.82 and 3.83 all correspond to covariant space-time forms of the second law of thermodynamics, a generalization of the classical second principle of thermodynamics.

To compare the generalized second principle of thermodynamics (Equation 3.82, all form of this equation lead to the same comparison) with the 3D equation (see Section 1.1.4), we follow the steps presented in section 2.4. We write the equation in the inertial coordinate system, and then, considering the non-relativistic limits (γ → 1), we get:

ρ c dη cdt + ∇ µ q µ θ ≥ 0 (3.85)
Using the relation between the relativistic and non-relativistic heat flux vector (Equation 3.53),

we can write:

ρ c dη dt + ∇ µ φ µ θ ≥ 0 (3.86)
The spatial components of the above equation correspond to the second principle of thermodynamics in classical mechanics (Equation 1.19).

Space-time Clausius-Duhem inequality

In this section, we propose to construct a covariant space-time form for Clausius-Duhem inequality. Consider the generalized form of the second principle of thermodynamics (equation 3.69) multiplied by the temperature (θ > 0):

θ∇ µ S µ ≥ 0 (3.87)
Also consider the equation of conservation of internal energy (Equation 3.36), corresponding to the conservation of energy-momentum projected on time:

u µ ∇ ν T µν = 0 (3.88)
Note that the terms of these equations have the same dimension: energy per unit 3D volume.

To construct a covariant Clausius-Duhem inequality we subtract one to the other leading to:

-    θ∇ µ S µ ≥ 0 u µ ∇ ν T µν = 0 → θ∇ µ S µ -u µ ∇ ν T µν ≥ 0 (3.89)
Using the conservation of internal energy with the decomposition of the energy-momentum tensor (Equations 3.47 or 3.48) and the generalized second principle of thermodynamics with the decomposition of the entropy current (Equations 3.82 or 3.83), we obtain, respectively:

θ ρ c dη ds + ∇ µ q µ - q µ θ ∇ µ θ - ρ c de int ds + ∇ ν q ν -q µ a µ -T µν σ d µν ≥ 0 (3.90) or θ ρ c L u (η) + ∇ µ q µ - q µ θ ∇ µ θ - ρ c L u (e int ) + ∇ ν q ν -q µ a µ -T µν σ d µν ≥ 0 (3.91)
Because the heat flux appears in both terms, the equations become:

ρ c θ dη ds - de int ds + T µν σ d µν + q µ a µ - ∇ µ θ θ ≥ 0 (3.92) or ρ c θL u (η) -L u (e int ) + T µν σ d µν + q µ a µ - ∇ µ θ θ ≥ 0 (3.93)
The equations above correspond to a generalization of the inequality of Clausius-Duhem, a covariant form in a space-time formalism. This inequality is expressed with the covariant rate of the energy and the entropy or with the Lie derivative of these quantities, which is equivalent.

Remember also that T µν σ d µν = T µν σ d µν = T µν d µν = T µν d µν (see Section 2.3.3).

We next introduce the free energy Ψ defined as:

Ψ = e int -θη (3.94) Using this definition into the Clausius-Duhem inequality (Equations 3.92 or 3.93), we obtain:

T µν σ d µν -ρ c dΨ ds + η dθ ds + q µ a µ - ∇ µ θ θ ≥ 0 (3.95) or T µν σ d µν -ρ c L u (Ψ) + ηL u (θ) + q µ a µ - ∇ µ θ θ ≥ 0 (3.96)
The equations above correspond to the covariant Clausius-Duhem inequality for a space-time formalism in term of the free energy.

To compare the inequality of Clausius-Duhem in term of the internal energy and in term of the free energy (Equations 3.92 and 3.95) with the 3D corresponding inequalities, we follow the steps presented in section 2.4. We write these inequalities in the inertial coordinate system.

We get:

ρ c θ dη dt - de int dt + cT µν σ d µν + cq µ a µ - ∇ µ θ θ ≥ 0 (3.97) -ρ c dΨ dt + η dθ dt + cT µν σ d µν + cq µ a µ - ∇ µ θ θ ≥ 0 (3.98)
When γ tends to 1, the term cT µν σ d µν corresponds to the double contraction between components of the Cauchy stress tensor and the 3D rate of deformation tensor σ σ σ : d d d (detailed in Section 3.3.2.2). The term cq µ a µ is negligible compared to the other terms (see interpretation in Section 3.3.2.2, Equation 3.56). We also use the relation between the relativistic heat flux and the energy flux vector φ µ (Equation 3.53). We finally get:

σ ij d ij - φ µ θ ∇ µ θ + ρ c θ dη dt - de int dt ≥ 0 (3.99) σ ij d ij - φ µ θ ∇ µ θ -ρ c dΨ dt + η dθ dt ≥ 0 (3.100)
The above inequalities correspond to the 3D Clausius-Duhem inequality in term of the internal energy and free energy (Equations 1.20 and 1.21).

The subject of this section was initiated by Mingchuan [Wang, 2016]. Our contribution is to use properly the projection operators on the space and on time axis. We use the projectors operators on the space and time axis to decompose the entropy current vector into spatial and temporal parts, where the entropy flux corresponds to the space projected term. Then we wrote the space-time covariant second principle of thermodynamics. We use the methodology presented in Section 2.4 to compare the generalized second principle of thermodynamics with the classical 3D form. Finally, we derive the space-time covariant inequality of the Clausius-Duhem in terms of internal and free energy, respectively. The Lie and the covariant derivative are used in the latter.

The idea of using the Lie derivative for finite transformation is essential and innovative; it allows us to model covariant rate-form constitutive equations for finite transformations. Furthermore, the models constructed with a Lie derivative are also invariant to the superposition of rigid body motion [START_REF] Wang | Incremental constitutive models for elastoplastic materials undergoing finite deformations by using a four-dimensional formalism[END_REF]. Then a comparison with the 3D is performed, where we obtain the 3D form of the inequality.

Space-time constitutive models for thermo-elastic solids

An equation that describes the properties of the continuum media is in general necessary to solve a problem for finite transformations. A constitutive model has thus to be written, describing the behavior of a material. This model closes the system of equations when added to the principles of physics (see Section 3.6 below for the construction of the problem). It corresponds to a set of governing equations, the constitutive equations, that relates the energy-momentum tensor to the other variables of the problem. This constitutive model must in particular be consistent [Eringen, 1962], in other word verify the principles listed and detailed in Section 3.1.

The object of this Section is to derive such a model for thermo-elastic transformations using as a constraint Clausius-Duhem equation.

Thermoelastic transformations

In this work, we limit the scope to thermo-elastic transformations corresponding to mechanical transformations that are reversible. We further limit the scope to transformations for which the free energy Ψ depends on the density, the temperature and a strain tensor:

Ψ = Ψ( ρ c , θ, e; C i , K j ) (3.101)
where the tensor e is the projection on space of the Eulerian strain tensor that is: e = 1 2 (gb)

(see Section 2.3). The quantities C i and K j represent material-dependent quantities with i = 1, ..., n and j = 1, ..., m; C i represent tensor densities and the K j are scalar constants.

To define thermo-elastic transformations, it is further postulated that a neutral motion exists defined by the following characteristics that have to be true for each event of the hypervolume:

-the temperature is constant : θ = θ 0 -the strain tensor projected on space is equal to zero: e = 0 -the energy-momentum tensor projected on space T σ and on space and time q are equal to zero -the entropy is constant: η = η 0 Further, we have θ = θ 0 and e = 0 if and only if η = η 0 and T σ = 0 and q = 0. We define Ψ 0 the free energy of the neutral motion such that:

Ψ 0 = e int0 -θ 0 η 0 (3.102)
where the internal energy is e int = e int0 for all events in the neutral motion. This constitutes a constraint on the expression of the free energy.

The set of hypotheses listed above for thermoelastic transformations is added to the one listed in Section 3.1. The following sections propose an analysis of the consequences of these hypotheses associated to derivations leading to constitutive models for thermo-elastic transformations.

Consequence of Clausius-Duhem equation for thermo-elastic transformations

We know consider Clausius-Duhem inequality (Equation 3.96):

ρ c (L u (Ψ) + ηL u (θ)) + q µ ∇ µ θ θ -a µ -T µν σ d µν ≤ 0 (3.103)
with a free energy that takes the general form discussed in Section 3.5.1 above:

Ψ = Ψ( ρ c , θ, e; C i , K j )
The chain rule implies:

ρ c ∂Ψ ∂θ L u (θ) + ηL u (θ) + ρ c ∂Ψ ∂ ρ c L u ( ρ c ) + ∂Ψ ∂e µν L u (e µν ) + ∂Ψ ∂C i L u (C i ) + ∂Ψ ∂K i L u (K i ) + q µ ∇ µ θ θ -a µ -T µν σ d µν ≤ 0 (3.104)
Remember that the mass conservation leads to L u ( ρ c ) = 0 as detailed in Section 3.2. Further, while L u (K j ) = 0 because the K j are constant scalars, the quantities L u (C i ) are not equal to zero because the C i are tensor densities. It is further possible to relate the Lie derivative of the strain tensor to the rate of deformation (see Section 2.2.4):

L u (e µν ) = d µν (3.105)
This relation is indeed verified in any 4D coordinate system; Then, Clausius-Duhem inequality becomes:

ρ c ∂Ψ ∂θ + η L u (θ) + q µ ∇ µ θ θ -a µ + ρ c ∂Ψ ∂C i L u (C i ) + ρ c ∂Ψ ∂e µν -T µν σ d µν ≤ 0 (3.106)
The fact that we consider reversible mechanical transformations implies:

ρ c ∂Ψ ∂θ + η L u (θ) + ρ c ∂Ψ ∂C i L u (C i ) + ρ c ∂Ψ ∂e µν -T µν σ d µν = 0 (3.107)
The temperature θ is independent of the rate of deformation d, thus, for reversible mechanical transformations, equation 3.106 implies:

q µ ∇ µ θ θ -a µ ≤ 0 η = - ∂Ψ ∂θ ρ c ∂Ψ ∂C i L u (C i ) + ρ c ∂Ψ ∂e µν -T µν σ d µν = 0 (3.108)
Because the temperature is positive and with the definition of the free energy (Equation 3.101), the equations above may be rewritten:

q µ (∇ µ θ -θa µ ) ≤ 0 e int = Ψ -θ ∂Ψ ∂θ ρ c ∂Ψ ∂C i L u (C i ) + ρ c ∂Ψ ∂e µν -T µν σ d µν = 0 (3.109)
This constitutes a set of general restrictions imposed by thermodynamic on the form of the energy-momentum tensor (that is here on e int , q and T σ ) for thermo-elastic transformations.

Note that the solution depends on the form of the free energy and on the nature of the quantities describing the material (the quantities C i ). Next, we consider that the material is isotropic to, among other things, specify these quantities more precisely.

Constitutive models for isotropic thermo-elastic transformations

Consider now the case of isotropic thermo-elastic transformations. The equations corresponding to this case are derived below to obtain a constitutive model in two steps: a general case followed by a derivation for a specific form of the free energy.

In the case of isotropic transformations, the free energy does not depend on the direction of space, in other words, it does not depend on the principal axes of the strain tensor projected on space. We thus consider a free energy of the form:

Ψ = Ψ(θ, I i ; C i , K j ) (3.110)
where the quantities I i represent one of the three invariants of the space-time Eulerian strain tensor e. Note that the free energy could depend on more than one of these invariants. The quantities C i represent material characteristics and a quantity C i is associated to each invariant used in the expression of the free energy. The quantities C i are scalar densities. Then, Clausius-Duhem inequality (Equation 3.96) becomes:

ρ c ∂Ψ ∂θ + η L u (θ) + q µ ∇ µ θ θ -a µ + ρ c ∂Ψ ∂I i L u (I i ) + ρ c ∂Ψ ∂C i L u (C i ) -T µν σ d µν ≤ 0 (3.111)
Because the quantities C i are scalar densities, one has:

L u (C i ) = C i d µν g µν (3.112)
For reversible mechanical transformations one has then:

ρ c ∂Ψ ∂θ + η L u (θ) + ρ c ∂Ψ ∂I i L u (I i ) + ρ c ∂Ψ ∂C i g µν -T µν σ d µν = 0 (3.113)
The temperature θ does not depend on the rate of deformation d and on L u (I i ), thus, for reversible mechanical transformations, Clausius-Duhem equation given by Equation 3.111 implies:

q µ (∇ µ θ -θa µ ) ≤ 0 η = - ∂Ψ ∂θ ρ c ∂Ψ ∂I i L u (I i ) + ρ c ∂Ψ ∂C i g µν -T µν σ d µν = 0 (3.114)
The constitutive model for isotropic thermo-elastic transformations should verify the equations above. Note that the term containing ∂Ψ ∂C i in the equation above, comes from the fact that the quantities C i are scalar densities. This term should not be omitted in the derivation.

Isotropic thermo-elastic transformations: specific choice for the free energy

To establish a more specific form for a constitutive model, we now propose a particular choice for the free energy Ψ: we adopt a quadratic free energy function similar to the one proposed by Chrysocoos [Chrysochoos, 2018]:

ρ c Ψ(θ, I I , I II ; κα, λ, µ) = -ρ c C 2θ 0 (θ -θ 0 ) 2 -3κα(θ -θ 0 )I I + λ 2 I 2 I + µI II (3.115) 80 or Ψ(θ, I i ; C i , K j ) = - C 2θ 0 (θ -θ 0 ) 2 -3 κα ρ c (θ -θ 0 )I I + λ 2 ρ c (I I ) 2 + µ ρ c I II (3.116)
where θ 0 is the temperature of the neutral motion, C is a constant scalar equivalent to the specific heat and where the coefficients (κα), λ and µ are scalar densities. The quantities I I and I II are two of the invariants of the strain tensor e such that:

I I = e µν g µν
and

I II = e µν e µν
The state variables of the problem are thus the temperature θ and the strain tensor e. Note that for the neutral motion, such that θ = θ 0 and I I = I II = 0, the free energy becomes:

Ψ(θ 0 , 0) = Ψ 0 = 0 (3.117)
Many other choices could have been made for the specific form of the free energy, in particular for the form of the thermic term or for the choice of the invariants. We have chosen the specific form (given by Equation 3.116) to be able to compare the resulting constitutive model with existing work [Chrysochoos, 2018]. The other possibilities have to be explored in future work.

To establish the form of the constitutive model, using the expression of Clausius-Duhem equation given by Equation 3. Note that this is an important step in the derivation. Indeed, with the space-time description of the problem, it is possible to relate the derivatives of the invariants of the deformation tensor to the rate of deformation, this being verified for any observers. The partial derivatives appearing in Equation 3.114 are then, using the chosen form for the free energy and given by Equation 3.116, equal to:

∂Ψ ∂θ = - C θ 0 (θ -θ 0 ) -3 κα ρ c e µν g µν (3.120) ∂Ψ ∂I I = -3 κα ρ c (θ -θ 0 ) + λ ρ c e µν g µν ; ∂Ψ ∂I II = µ ρ c (3.121)
and also:

∂Ψ ∂(κα) = - 3 ρ c (θ -θ 0 )e µν g µν ∂Ψ ∂λ = I 2 I 2 ρ c = e µν g µν 2 2 ρ c ∂Ψ ∂µ = I II ρ c = e µν e µν ρ c (3.122)
Then, the Clausius-Duhem Inequality 3.111 becomes: The equation above must be verified for any path corresponding to a reversible transformation (any θ and d taken independently) with T σ being a symmetric tensor. This implies that:

ρ c - C θ 0 (θ -θ 0 ) -3 κα ρ c e µν g µν + η L u (θ) + q µ 1 θ ∇ µ θ -a µ + λe γβ g γβ -3κα(θ -θ 0 ) g µν -
q µ (∇ µ θ -θa µ ) ≤ 0 (3.124) η = 3 κα ρ c e µν g µν + C θ 0 (θ -θ 0 ) (3.125) T µν σ = λe γβ g γβ -3κα(θ -θ 0 ) g µν -2e µν + 2µ e µν -e µ β e βν -e ν β e µβ sym +   -3κα(θ -θ 0 )e γβ g γβ + λ e γβ g γβ 2 2 + µe γβ e γβ    g µν (3.126)
where the subscript sym corresponds to the symmetric part of the expression. The terms in green come from the presence of the first invariant of the strain in the expression of the free energy; the terms in blue come for the presence of the second invariant of the strain in the expression of the free energy; the terms in red come from the fact that the material constants are scalar densities. The last equation above could be rearranged such as:

T µν σ = -3κα(θ -θ 0 ) g µν -2e µν + e γβ g γβ g µν + λ   e γβ g γβ g µν -2e µν + e γβ g γβ 2 2 g µν   
+ 2µ e µν -2 e µ β e βν sym + e γβ e γβ g µν (3.127) or with the non-linear terms appearing in gray in the following Equation:

T µν σ = -3κα(θ -θ 0 )g µν + λe γβ g γβ g µν + 2µe µν -3κα(θ -θ 0 ) e γβ g γβ g µν -2e µν + λ   -2e γβ g γβ e µν + e γβ g γβ 2 2 g µν   
+ 2µ e γβ e γβ g µν -2 e µ β e βν sym (3.128) With the definition of the free energy given by Equation 3.94, and using Equation 3.125, the free energy becomes:

e int = Ψ + θη (3.129) = - C 2θ 0 (θ -θ 0 ) 2 -3 κα ρ c (θ -θ 0 )I I + λ 2 ρ c I 2 I + µ ρ c I II + 3θ κα ρ c I I + C θ 0 θ(θ -θ 0 ) = C 2θ 0 (θ 2 -θ 2 0 ) + 3θ 0 κα ρ c I I + λ 2 ρ c I 2 I + µ ρ c I II (3.130)
Following Eringen [Grot and Eringen, 1966a] and the work of El Nahas [Al Nahas, 2021] we choose for the heat flux:

q µ = Kg µν (∇ ν θ -θa ν ) (3.131)
which verifies Equation 3.124. K is a material parameter, a constant scalar equivalent to the thermal conductivity. Note that other choices are possible and should be investigated in future work.

Finally, the energy-momentum tensor for isotropic thermo-elastic transformations with the specific form of the free energy given by Equation 3.116 is such that (with Equations 3.9 and 3.16):

T µν = ρ c (c 2 + e int )u µ u ν + (q µ u ν + q ν u µ ) + T µν σ (3.132)
where:

e int = C 2θ 0 (θ 2 -θ 2 0 ) + 3θ 0 κα ρ c I I + λ 2 ρ c I 2 I + µ ρ c I II (3.133) q µ = Kg µν (∇ ν θ -θa ν ) (3.134) T µν σ = -3κα(θ -θ 0 ) g µν -2e µν + e γβ g γβ g µν + λ   e γβ g γβ g µν -2e µν + e γβ g γβ 2 2 g µν   
+ 2µ e µν -2 e µ β e βν sym + e γβ e γβ g µν (3.135) The equations above correspond to an example of non-linear covariant constitutive model for isotropic thermo-elastic solids. We have derived a form for the energy-momentum tensor for this case.

To compare the 4D constitutive model with the 3D model, we follow the steps detailed in Section 2.4. The stress tensor (Equation 3.135) is constructed to be a space projected tensor, next we write it in the inertial coordinate system. Using the non-relativistic form of the components of e e e in the inertial coordinate system, the spatial part of Equation 3.135 becomes:

T ij σ = -3κα(θ -θ 0 ) η ij -2e ij + e kl η kl η ij + λ   e kl η kl η ij -2e ij + e kl η kl 2 2 η ij   
+ 2µ e ij -2 e i k e kj sym + e kl e kl η ij (3.136) For an infinitesimal deformation (e µν 1), we take the linear terms of the above Equation 3.136, we get:

T ij σ = λe kl η kl η ij + 2µe ij -3κα(θ -θ 0 )η ij -3κα(θ -θ 0 )(-2e ij + e kl η kl η ij ) (3.137)
The above Equation 3.137 is the equivalence of the 3D constitutive model, where the first two terms correspond to Hooke's linear model, the third term is the thermal effect, and the last term corresponds to the coupling between the mechanical and thermal behavior.

The treatment of the equation of Clausius-Duhem in a covariant form has been presented in this section. The form of the constitutive model that has been derived in this section closely depends on the form of the free energy that has been chosen. Nevertheless, the covariant methodology is general, and it could be applied to other choices for the free energy. The interest of this space-time treatment resides in the fact that there is a relation between the strain tensors and the rate of deformation (Equation 2.135). The derivation to obtain the constitutive model is thus possible in any coordinate system: it is not necessary to perform this derivation using the material configuration like it is performed in classical continuum mechanics (see Section 1.2). This derivation enables to establish the form of the energy-momentum tensor for the case of isotropic thermo-elastic transformations. This is a contribution of this work. There is an important consequence of this description on the constitutive model that is obtained for isotropic thermoelastic transformations. Indeed non-linear terms appear (in purple in Equation 3.128) due to the fact that the material parameters are scalar densities.

Formulation of the space-time problem for isotropic thermoelastic transformations

In this section, we gather the equations to construct a problem for a material continuum subjected to finite deformations using a space-time formalism. The set of hypotheses is listed in Section 3.1. We further limit the scope to isotropic thermo-elastic transformations discussed in Section 3.5.3. We first list do different quantities and equations that are relevant for the problem. We then propose a local and a weak formulation for the problem along with its discretized version.

Description of an isotropic thermo-elastic problem

Consider a 4D manifold of hypervolume Ω the boundary of this hypervolume is ∂Ω (a 3D volume). The points of the manifold are events of coordinate x µ (Figure 3.1). We define The independent quantities chosen to describe an isotropic thermo-elastic transformation in a space-time formulation, are listed in Table 3.1. These quantities are defined for all event x µ of the manifold. The quantities of interest, appearing in the equations of conservation, useful for the description of the transformation or the understanding of the physical phenomena undergone by the system are listed in Table 3.2. Several parameters have been defined to describe the transformation: they are listed in Table 3.3. Finally, Table 3.4 recalls the equations to obtain the solution of the problem. Note that five unknowns for each event x µ have been chosen and five equations have to be solved. 

∂Ω

Local form of the problem for isotropic thermo-elastic transformations

Given the description of the problem proposed in the precedent section, we formulate here the local form. We need to establish the values of ρ c (x µ ), θ(x µ ) and u(x µ ) for each event x µ of Ω such that:

L u ( ρ c ) = 0 (3.138) ∇ ν T µν = 0 (3.139)
Each of these quantities are defined for each event x µ even if this information has been omitted

in the equations to ease the reading. The five equations above have to be solved knowing that:

u µ = dx µ ds (3.140) L u (e µν ) = 1 2 L u (g µν ) (3.141) T µν = ρ c (c 2 + e int )u µ u ν + (q µ u ν + q ν u µ ) + T µν σ (3.142)
with:

ds 2 = g µν dx µ dx ν (3.143) e int = C 2θ 0 (θ 2 -θ 2 0 ) + 3θ 0 κα ρ c (e µν g µν ) + λ 2 ρ c (e µν g µν ) 2 + µ ρ c (e µν e µν ) (3.144) q µ = Kg µν (∇ ν θ -θa ν ) (3.145) T µν σ = -3κα(θ -θ 0 ) g µν -2e µν + e γβ g γβ g µν + λ   e γβ g γβ g µν -2e µν + e γβ g γβ 2 2 g µν   
+ 2µ e µν -2 e µ β e βν sym + e γβ e γβ g µν (3.146)

a µ = u λ ∇ λ u µ (3.147)
and with the knowledge of the boundary conditions:

-

ρ c (x µ D ) = ρ D c , θ(x µ D ) and u(x µ D ) on ∂Ω D , the Dirichlet boundary conditions. -T µν (x µ N )n ν (x µ N ) = T µ
N on ∂Ω N , the Neumann boundary conditions. It worth noting that in a space-time formulation, what corresponds to the initial conditions in a classical 3D formulation is included in the set of boundary conditions specified on the hypervolume Ω. Consider, for example, that an inertial coordinate system has been chosen; the volume such that x 0 = 0 (corresponding to the initial time) and of normal n µ = (-1, 0, 0, 0) is part of ∂Ω the boundary of Ω; this boundary condition corresponds to the initial condition of the 3D formulation.

Space-time weak formulation

We now propose a four-dimensional formulation for the weak form of the problem. Consider only the conservation of the energy momentum tensor :

∇ ν T µν = 0 (3.148)
Define V the set of solutions of the problem. Then, we need to find θ(x µ ) and u(x µ ) such that:

r * ν ∇ µ T µν = 0 (3.149)
for all r * in the set of solutions V. If we consider the hypervolume Ω, this is equivalent to:

∀r * ∈ V Ω r * ν ∇ µ T µν dΩ = 0 (3.150)
Transforming the equation above we obtain:

∀r * ∈ V Ω ∇ µ (r * ν T µν )dΩ - Ω T µν ∇ µ r * ν dΩ = 0 (3.151)
Applying Gauss Theorem leads to:

∀r * ∈ V ∂Ω T µν n µ r * ν dV - Ω T µν ∇ µ r * ν dΩ = 0 (3.152)
The equation above has to be solved knowing that:

u µ = dx µ ds (3.153) L u (e µν ) = 1 2 L u (g µν ) (3.154) T µν = ρ c (c 2 + e int )u µ u ν + (q µ u ν + q ν u µ ) + T µν σ (3.155)
with:

ds 2 = g µν dx µ dx ν (3.156) e int = C 2θ 0 (θ 2 -θ 2 0 ) + 3θ 0 κα ρ c (e µν g µν ) + λ 2 ρ c (e µν g µν ) 2 + µ ρ c (e µν e µν ) (3.157) q µ = Kg µν (∇ ν θ -θa ν ) (3.158) T µν σ = -3κα(θ -θ 0 ) g µν -2e µν + e γβ g γβ g µν + λ   e γβ g γβ g µν -2e µν + e γβ g γβ 2 2 g µν   
+ 2µ e µν -2 e µ β e βν sym + e γβ e γβ g µν (3.159)

a µ = u λ ∇ λ u µ (3.160)
The boundary conditions are:

θ(x µ D ) and u(x µ D ) on ∂Ω D , the Dirichlet boundary conditions. -T µν (x µ N )n ν (x µ N ) = T µ N on ∂Ω N , the Neumann boundary conditions. To solve the system above, two coordinate systems could be chosen: the inertial coordinate system or the proper coordinate system. We derive now the equations in the proper coordinate system. The weak form is expressed with the problem unknown rµ in this coordinate system, where the components are constituted of the temperature as one component and the displacements of the proper coordinate system as for the other component (see Section 3.3.2).

In addition, in this special coordinate system, the equations are interpreted as if these equations are written in the 3D Lagrangian description (see Section 2.5.2). Then, the system in the proper coordinate system becomes: with: The boundary conditions are:

ûµ = (1, 0, 0, 0) (3.161) L u (ê µν ) = 1 2 L u (ĝ µν ) (3.162) T µν =        ρ c (c 2 + e int ) q1 q2 
ds = cdτ (3.164) êint = C 2θ 0 (θ 2 -θ 2 0 ) + 3θ 0 κα ρ c (ê µν ĝµν ) + λ 2 ρ c (ê µν ĝµν ) 2 + µ ρ c (ê µν êµν ) (3.165) qi = Kg iν ∇ν θ -θâ ν ( 3 
θ(x µ D ) on ∂Ω D , the Dirichlet boundary conditions. -T µν (x µ N )n ν (x µ N ) = T µ N on ∂Ω N , the Neumann boundary conditions. There is no analytical solution for the problem. We use the discretization by the space-time finite elements method to obtain the solution of the problem (developed in the following Section 3.6.4).

Space-time finite-element discretization

We aim to solve the weak formulation (see Section 3.6.3) by discretization using the space-time finite element method. The space-time finite element method involves dividing the hypervolume Ω of the problem into a finite number of elements N e , each element having an elementary hypervolume Ω e of border ∂Ω e so that Ω = Ne e=1 Ω e , where the index e refers to the element and designates the union operator on all the elements. Each element has a finite number of nodes I, depending on the geometry of the element (triangular, rectangular, tetrahedral, prism ...).Each element is represented by the set of element equations to the original problem ).

In the following, Voigt's notation is used 1 .

The coordinate of an event {x µ } is discretized as the following:

{x µ } = [N I (x µ )]{x µ I } (3.169)
where {x µ I } are the coordinate of an event at node I and [N I (x µ )] is the matrix of interpolation functions (Lagrange polynomials). It worth noting that the interpolation functions depend also on the time. The unknown vector {r µ } and the virtual vector {r µ * } are discretized as:

{r µ } = [N I (x µ )].{r µ I }; {r µ * } = [N I (x µ )].{r µ * I } (3.170)
where {r µ I } and {r µ * I } are the components of the unknown vector and virtual vector at the node I. We choose to write the discretization of the weak formulation (Equation 3.152) in the proper coordinate system, it is equivalent to the solving the problem in the Lagrangian description (detailed in Section 2.5.2), We get: 1. The second-rank tensor is written as vector

∀r e * ∈ V e e ∂Ω e
Our contribution corresponds to construct the mechanical problem for finite transformations of solids using space-time formalism. We choose isotropic thermo-elastic transformations. We consider five principal unknowns are: the temperature, the rest mass density, and the components of the four-velocity vector. The five equations to be solved are the conservation of rest mass and the conservation of energy-momentum. We wrote the local form of the problem in Section 3.6.2. The four-dimensional weak formulation is then proposed (see Section 3.6.3). We choose the proper coordinate system to solve the system of equations. This choice is justified by the equivalence of this coordinate system with the 3D Lagrangian description. We do not have an analytical solution to the problem; thus, we seek to solve it numerically. Hence, in the last Section 3.6.4, we presented the space-time finite element method to solve the covariant weak formulation. We discretize the hypervolume into finite elements; then, we write the equation of the weak formulation of each element. The integration is applied to the hypervolume, which means that the time domain is included in the integration. The space-time finite element method is developed in the proper coordinate system. The resolution is performed in space and time simultaneously, and there is no need for a finite discretization in time.

Conclusion

In this chapter, we introduced a covariant description of thermo-mechanical problems. Several principles and hypotheses are adopted to construct the problem, as the principle of causality, the principle of local state, the principle of covariance, the principle of conservation of the rest mass, the principle of conservation of the energy and momentum, and the principle of thermodynamics. We considered the continuum hypothesis, the thermodynamic of irreversible processes, we do not consider any electromagnetic phenomena, the particles are conserved, and there is no coupling between the energy-momentum and the metric tensor. After exposing the principles and hypotheses that must be satisfied, a definition of the mass density, the energy-momentum tensor, entropy, the heat and entropy flux are defined in the space-time formalism. We use the projection operators defined in the previous chapter ( Chapter We proposed a space-time covariant weak formulation. We choose the proper coordinate system to solve the problem. Finally, we solved the problem numerically by introducing the spacetime finite element method. We discretize the problem on the space and the time domain simultaneously.

Chapter 4 This chapter consists of two main sections. The first section presents 4D analytical calculation.

Application Contents

Three simple finite deformations are considered: the kinematic variables are derived in this case and then compared their corresponding values in 3D classical mechanics. The second section of this chapter presents space-time finite element resolution. We use the space-time finite element method for the resolution of a thermo-mechanical problem. We study simple deformations and compare the 4D and 3D results. After the validation, a thermo-mechanical case is considered.

Analytical derivations

Methodology

We illustrate the four-dimensional approach with three simple finite transformations cases: the rigid body motion and the traction and sliding. These deformations are illustrated in Figures 4.1, 4.2 and 4.3. In a relativistic case, the equations of motion for the rigid body motion, the traction and the sliding are respectively, following the definitions of Chapter 2:

                     x 0 = γX 0 + aγ X 0 X 1 2c 2 x 1 = γX 1 + aγ (X 0 ) 2 2c 2 x 2 = X 2 x 3 = X 3                      x 0 = γX 0 + γ Λ c (X 1 ) 2 x 1 = γX 1 + γ Λ c X 1 X 0 x 2 = X 2 x 3 = X 3                      x 0 = γX 0 + k c γX 2 X 1 x 1 = γX 1 + k c γX 2 X 0 x 2 = X 2 x 3 = X 3 (4.1)
where a is the acceleration, Λ is the traction coefficient, k is the sliding coefficient γ is Lorentz factor; γ depends on x 0 and x 1 for the traction and on x 2 for the sliding.

Concerning the rigid body motion and the traction, for simplicity purpose, we suppose that γ tends to 1 when writing the equations of motion (Equation 4.1), thus these equations are reduced to the approximate equations of motion (the first row, third column in Tables 4.1, 4.2 and 4.3). Then, the analytical calculus is performed based on the approximate equations of motion for these two deformations. However, for the sliding, the analytical equations are calculated in both cases, in the general case and the in the approximate case, the results are gathered in Tables 4.4 and 4.5.

We use the symbolic computation software MATHEMATICA Wolfram to derive the velocity vector, the gradient of deformation tensor, the metric tensor, the left-Cauchy-Green deformation tensor and the Eulerian strain tensor in the 4D and 3D approaches for these motions.

The components of these tensors have been computed in the inertial and convective coordinate systems and the components of the 3D entities have been computed in the inertial coordinate system and using the Lagrangian description. The derived entities are gathered in Tables 4.1, 4.2, 4.3, and 4.5 for each motion to facilitate the reading and the analysis of the results. It is then possible to compare the components of the 4D tensors written in the inertial coordinate system, (looking at the third column in Tables 4. 1, 4.2, 4.3 and 4.5), with their equivalent in classical mechanics (see Section 2.4). Finally we compare the spatial components of the 4D tensors with the 3D corresponding entities in the inertial coordinate system ( second column in Tables 4.1,4.2,4.3 and 4.5). Each motion is the subject of a subsection below, followed by an analysis of the results. 3D inertial coordinate system 4D inertial coordinate system 4D convective coordinate system Equations of motion

4D rigid body motion

         x 1 = X 1 + a t 2 2 x 2 = X 2 x 3 = X 3              x 0 = X 0 x 1 = X 1 + a (X 0 ) 2 2c 2 x 2 = X 2 x 3 = X 3          x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 Velocity u µ = du µ ds ; v i = dx i dt    at 0 0          γ γ ax 0 c 2 0 0            γ 0 0 0      Deformation gradient F µ ν = ∂x µ ∂X ν    1 0 0 0 1 0 0 0 1          1 0 0 0 aX 0 c 2 1 0 0 0 0 1 0 0 0 0 1            1 0 0 0 0 0 0 1 0 0 0 1      Metric g µν    1 0 0 0 1 0 0 0 1         1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1               1 - (ax 0 ) 2 c 4 ax 0 c 2 0 0 ax 0 c 2 -1 0 0 0 0 -1 0 0 0 0 -1          Cauchy deformation tensor b µν = F α µ -1 F β ν -1 g αβ    1 0 0 0 1 0 0 0 1             1 - a 2 (x 0 ) 2 c 4 ax 0 c 2 0 0 ax 0 c 2 -1 0 0 0 0 -1 0 0 0 0 -1               1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1     
Euler strain tensor

e µν = 1 2 (g µν -b µν )    0 0 0 0 0 0 0 0 0    1 2          a 2 (x 0 ) 2 c 4 ax 0 c 2 0 0 ax 0 c 2 0 0 0 0 0 0 0 0 0 0 0          1 2          (ax 0 ) 2 c 4 -ax 0 c 2 0 0 -ax 0 c 2 0 0 0 0 0 0 0 0 0 0 0          Table 4
.1: Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor and Euler strain tensor for an accelerated rigid body motion, for the 3D and 4D approach; a is the constant acceleration 3D inertial coordinate system 4D inertial coordinate system 4D convective coordinate system Equation of motion

       x 1 = X 1 + vt x 2 = X 2 x 3 = X 3              x 0 = X 0 x 1 = X 1 + v X 0 c x 2 = X 2 x 3 = X 3          x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 Velocity u µ = du µ ds ; v i = dx i dt    v 0 0          γ γ v c 0 0            γ 0 0 0      Deformation gradient F µ ν = ∂x µ ∂X ν    1 0 0 0 1 0 0 0 1           1 0 0 0 v c 1 0 0 0 0 1 0 0 0 0 1              0 0 0 1 0 0 0 1 0 0 0 1       Metric g µν    1 0 0 0 1 0 0 0 1         1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1             1 - v c v c 0 0 v c -1 0 0 0 0 -1 0 0 0 0 -1        Cauchy deformation tensor b µν = F α µ -1 F β ν -1 g αβ    1 0 0 0 1 0 0 0 1           1 - v 2 c 2 v c 0 0 v c -1 0 0 0 0 -1 0 0 0 0 -1             1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1     
Euler strain tensor where 

e µν = 1 2 (g µν -b µν )    0 0 0 0 0 0 0 0 0    1 2         v 2 c 2 - v c 0 0 - v c 0 0 0 0 0 0 0 0 0 0 0                v 2 c - v c 0 0 - v c 0 0 0 0 0 0 0 0 0       
     x 1 = (1 + Λt)X 1 x 2 = X 2 x 3 = X 3            x 0 = X 0 x 1 = (1 + Λ c X 0 )X 1 x 2 = X 2 x 3 = X 3          x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 Velocity u µ = du µ ds ; v i = dx i dt     Λ x 1 Λt + 1 0 0            γ γ Λx 1 1 + Λx 0 0 0           0 0 0         γ 0 0 0      Deformation gradient F µ ν = ∂x µ ∂X ν    Λ t + 1 0 0 0 1 0 0 0 1          1 0 0 0 ΛX 1 c (1 + ΛX 0 c ) 0 0 0 0 1 0 0 0 0 1          1 0 0 0 1 0 0 0 1         1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      Metric gµν = ∂ x µ ∂x α ∂ x ν ∂x β η αβ    1 0 0 0 1 0 0 0 1         1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1         (Λt + 1) 2 0 0 0 1 0 0 0 1             1 - c 2 (Λx 1 ) 2 (Λx 0 + c) 4 c 2 Λx 1 (Λx 0 + c) 3 0 0 c 2 Λx 1 (Λx 0 + c) 3 - c 2 (Λx 0 + c) 2 0 0 0 0 -1 0 0 0 0 -1          Cauchy deformation tensor bµν = F α µ -1 F β ν -1 gαβ     1 (1 + Λ t) 2 0 0 0 1 0 0 0 1              1 - c 2 (Λx 1 ) 2 (Λx 0 + c) 4 c 2 Λx 1 (Λx 0 + c) 3 0 0 c 2 Λx 1 (Λx 0 + c) 3 - c 2 (Λx 0 + c) 2 0 0 0 0 -1 0 0 0 0 -1          C ij =    1 0 0 0 1 0 0 0 1         1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1      Euler strain tensor eµν = 1 2 (gµν -bµν) 1 2     1 - 1 (Λ t + 1) 2 0 0 0 0 0 0 0 0     1 2           - c 2 (Λx 1 ) 2 (Λx 0 + c) 4 c 2 Λx 1 (Λx 0 + c) 3 0 0 c 2 Λx 1 (Λx 0 + c) 3 1 - c 2 (Λx 0 + c) 2 0 0 0 0 0 0 0 0 0 0               1 2 1 -(Λt + 1) 2 0 0 0 0 0 0 0 0     1 2         (Λ x 1 ) 2 c 2 Λ x 1 (c + x 0 Λ) c 2 0 0 Λ x 1 (c + x 0 Λ) c 2 x 0 Λ(2c + x 0 Λ) c 2 0 0 0 0 0 0 0 0 0 0         Rate of deformation dµν = 1 2 Lu(gµν)     Λ 1 + Λ t 0 0 0 0 0 0 0 0               -γ 3 Λ 3 x 12 c 2 (Λx 0 +1) 3 γ 3 Λ 2 x 1 c 2 (Λx 0 +1) 3 +cΛ 2 x 12 -Λ 2 x 12 (Λx0+1)(c+Λx0)2 +1 2(Λx 0 c+c) 2 0 0 γ 3 Λ 2 x 1 c 2 (Λx 0 +1) 3 +cΛ 2 x 12 -Λ 2 x 12 (Λx0+1)(c+Λx0)2 +1 2(Λx 0 c+c) 2 -γ 3 Λ c+Λx 0 0 0 0 0 0 0 0 0 0 0               - Λ Λt + 1 0 0 0 0 0 0 0 0          d11 d12 0 0 d12 d22 0 0 0 0 0 0 0 0 0 0     
d 11 = ( x 1 ) 2 Λ 3 2c 2 + 3 x 0 Λc + ( x 0 ) 2 -( x 1 ) 2 Λ 2 c 4 (c + x 0 Λ) d 12 = 1 2 x 1 Λ 2 2c 2 + 3 x 0 Λc + ( x 0 ) 2 -( x 1 ) 2 Λ 2 c 4 - x 1 Λ 2 c 2 + x 0 Λc -( x 1 ) 2 Λ 2 c 3 (c + x 0 Λ) d 22 = - Λ c 2 + x 0 Λc -( x 1 ) 2 Λ 2 c 3

4D sliding

4D inertial coordinate system

Velocity

u µ = du µ ds       γ γ kx 2 c 0 0       Deformation gradient F µ ν = ∂x µ ∂X ν         γ γX 2 k c γ 3 k c (X 1 + k c X 0 X 2 ) γ k c X 2 γ γ 3 k c (X 0 + k c X 1 X 2 ) 0 0 1 0 0 0         Metric η µν      1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1      Cauchy deformation tensor b µν = F α µ -1 F β ν -1 g αβ            1 0 -γ 2 k c x 1 0 0 -1 γ 2 k c x 0 0 -γ 2 k c x 0 x 1 γ 2 k c x 0 -γ 4 1 + k 2 c 2 (x 0 ) 2 -(x 1 ) 2 -2(x 2 ) 2 + ( k c x 2 ) 4 0 0 0 0 -1           
Euler strain tensor 

e µν = 1 2 (g µν -b µν ) 1 2            0 0 -γ 2 k c x 1 0 0 0 -γ 2 k c x 0 0 -γ 2 k c x 1 -γ 2 k c x 0 γ 4 k 2 c 2 (x 0 ) 2 -(x 1 ) 2 0 0 0 0 0           
       x 1 = X 1 + ktX 2 x 2 = X 2 x 3 = X 3                x 0 = X 0 x 1 = X 1 + k c X 2 X 0 x 2 = X 2 x 3 = X 3          x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 Velocity u µ = du µ ds ; v i = dx i dt    kx 2 0 0          γ γ kx 2 c 0 0          0 0 0         γ 0 0 0      Deformation gradient F µ ν = ∂x µ ∂X ν    1 kt 0 0 1 0 0 0 1          1 0 0 0 X 2 k c 1 kX 0 c 0 0 0 1 0 0 0 0 1          1 0 0 0 1 0 0 0 1          1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1       Metric gµν = ∂ x µ ∂x α ∂ x ν ∂x β η αβ    1 0 0 0 1 0 0 0 1         1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1           1 kt 0 kt 1 + k 2 t 2 0 0 0 1                  1 - (kx 2 ) 2 c 2 kx 2 c - k 2 x 0 x 2 c 2 0 kx 2 c -1 kx 0 c 0 - k 2 x 0 x 2 c 2 kx 0 c -1 - (kx 0 ) 2 c 2 0 0 0 0 -1             Cauchy deformation bµν = F α µ -1 F β ν -1 g αβ    1 -kt 0 -kt k 2 t 2 + 1 0 0 0 1                1 - (kx 2 ) 2 c 2 kx 2 c - k 2 x 0 x 2 c 2 0 kx 2 c -1 kx 0 c 0 - k 2 x 0 x 2 c 2 kx 0 c -1 - (kx 0 ) 2 c 2 0 0 0 0 -1             C ij =    1 0 0 0 1 0 0 0 1            1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1         Euler strain tensor eµν = 1 2 (gµν -bµν) 1 2      0 kt 0 kt -k 2 t 2 0 0 0 0      1 2             - (kx 2 ) 2 c 2 kx 2 c - k 2 x 0 x 2 c 2 0 kx 2 c 0 kx 0 c 0 - k 2 x 0 x 2 c 2 kx 0 c - (kx 0 ) 2 c 2 0 0 0 0 0             Eij = 1 2    0 kt 0 kt k 2 t 2 0 0 0 0    1 2             - k 2 (x 2 ) 2 c 2 kx 2 c - k 2 c x 0 x 2 0 kx 2 c 0 kx 0 0 - k 2 c tx 2 kx 0 -k 2 (x 0 ) 2 0 0 0 0 0             Rate of deformation dµν = 1 2 Lu(gµν) 1 2     0 k 0 k 0 0 0 0 0     1 2       0 0 γ 3 k 2 x 2 c 4 0 0 0 -γ 3 x 22 k 3 c 5 -γk c 0 γ 3 k 2 x 2 c 4 -γ 3 x 22 k 3 c 5 -γk c 0 0 0 0 0 0       1 2    -k 2 t k -k 3 t 2 2 0 k -k 3 t 2 2 k 2 t 0 0 0 0         d11 d12 d13 0 d12 d22 d23 0 d13 d23 d33 0 0 0 0 0      Table 4
.5: Equations of motion, velocity vector, deformation gradient, metric tensor, Cauchy deformation tensor, Euler strain tensor and the rate of deformation tensor for the 4D traction for the sliding. We choose that the sliding coefficient k is constant, it does not depend on time. We propose to divide the sliding coefficient by the speed of light c to assure the dimension of x 1 , since it evolves in x 0 direction.
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where

d 11 = - x 0 ( x 2 ) 2 k 2 (2k -9) c 4 d 12 = 1 2 x 0 x 2 k(2k -9) c 3 + x 0 x 2 k (3k -8)c 2 + k 2 (2k -1)( x 0 ) 2 + ( x 2 ) 2 (17 -2k) c 5 d 13 = 1 2 x 2 (k -8)c 2 + k 2 (2k -1)( x 0 ) 2 + 8( x 2 ) 2 c 4 - x 2 (2k -9) c 2 + ( x 0 ) 2 k 2 c 4 d 22 = x 0 k -3c 2 + ( x 0 ) 2 (1 -2k)k + ( x 2 ) 2 k(2k -17) c 4 d 23 = 1 2 -c 2 -8( x 2 ) 2 k + x 0 k( x 0 -2 x 0 k) c 3 + 2c 4 + k (5k -1)( x 0 ) 2 + ( x 2 ) 2 (9 -2k) c 2 + ( x 0 ) 2 k 3 (2k -1)( x 0 ) 2 + ( x 2 ) 2 (17 -2k) c 5 d 33 = x 0 (3k -1)c 2 + k 2 (2k -1)( x 0 ) 2 + 8( x 2 ) 2 c 4

Analysis

First, we look at the transport between 4D inertial and the convective coordinate systems , i.e the application of the covariance principle. We choose to look at the velocity vector and the rate of deformation because these entities are not objective in classical mechanics. We illustrate the fact that the components of the four-velocity vector are covariant in the four-dimensional formalism ( components are in the second line of Tables 4.1,4.3 and 4.5). Next, we apply the transport between the convective and inertial coordinate systems to obtain the components of the four-velocity vector in the inertial coordinate system from its components in the convective coordinate (Equation 2.184) for the rigid body motion, the uni-axial traction and the sliding, we have:

-The four-velocity vector for the rigid body motion:

         γ γ ax 0 c 2 0 0          = ∂x µ ∂ x ν u ν =          1 0 0 0 γ aX 0 c 2 1 0 0 0 0 1 0 0 0 0 1          .        1 0 0 0        (4.2) 
-The four-velocity vector for the uni-axial traction:

         γ γ Λx 1 1 + Λx 0 0 0          = ∂x µ ∂ x ν u ν =          1 0 0 0 γ ΛX 1 c γ(1 + ΛX 0 c ) 0 0 0 0 1 0 0 0 0 1          .        1 0 0 0        (4.3) 
-The four-velocity vector for the sliding:

         γ γ kx 2 c 0 0          = ∂x µ ∂ x ν u ν =          γ 0 0 0 γ X 2 k c 1 kX 0 0 0 0 1 0 0 0 0 1          .        1 0 0 0        (4.4)
The fact that the first component is not zero guarantees a nonzero vector in the convective coordinate system, and thus guarantees the transport between the coordinate systems. Wherein the classical mechanics, the velocity vector not objective.

In regards to the components of the rate of deformation tensor, looking at the last row in Tables 4.3 and4.5 we cannot ensured the transport from the convective coordinate system to the inertial coordinate system. The reason behind this is the assumptions we took in writing the equations of motion, where γ tends to 1, thus the components of the four-velocity vector cannot be deduced from the equations of motion.

Another important point that this chapter concerns is the components of the Cauchy deformation tensor b µν . As mention earlier in the chapter 2, the components of the Cauchy deformation tensor in an inertial coordinate system are equal to the components of the metric in the convective coordinate system, we illustrate this point by looking at the components of these two tensors in Tables 4. 1, 4.2, 4.3 and 4.5, we look at the fourth row last column to find the components of the metric tensor in the convective coordinate system and sixth row third column to look at the components of the Cauchy deformation tensor. We find the equality between these two tensors for the three types of deformation.

The second point we illustrate is the comparison between the components of the 4D tensors with the corresponding 3D components. Starting with the components of the velocity vector, by looking at the components of the four-velocity vector in an inertial coordinate system for the rigid body motion, the traction and the sliding (Tables 4.1, 4.3 and4.5, third row third column). Considering the non-relativistic limits (when γ tends to 1), the components of the four-velocity in the inertial coordinate system becomes:

        1 at c 0 0         ;          1 Λx 1 1 + cΛt 0 0          ;          1 kx 2 c 0 0          (4.5)
The spatial components of these quadri-vectors multiplied by the speed of light c correspond to the components of the 3D classical velocity vector (Tables 4.1, 4.3 and4.5, third row, second column) in the inertial coordinate system x 0 = ct. The second tensor we look at is the 4D gradient of deformation tensor; in the 4D inertial coordinate system for the rigid body motion, the traction, the sliding (Tables 4.1, 4.3 and 4.5, fourth row, third column), in the inertial coordinate system x 0 = ct, we can write:

        1 0 0 0 at c 1 0 0 0 0 1 0 0 0 0 1         ;          1 0 0 0 ΛX 1 c (1 + Λt) 0 0 0 0 1 0 0 0 0 1          ;          1 0 0 0 X 2 k c 1 kt 0 0 0 1 0 0 0 0 1          (4.6)
by looking the spatial components of this tensor, we find the components of the 3D gradient of deformation expressed in an inertial coordinate system F i j (Tables 4.1,4.3 and 4.3, fourth row and second column). Moreover, the first column of the 4D gradient of deformation tensor represents the components of the four-velocity vector divided by the Lorentz factor because the hypotheses we took in the beginning (γ tends to 1). The spatial components of the deformation gradient for the rigid body motion ( first tensor in Equation 4.6) correspond to the components of the identity matrix in 3D, it means that there is no deformation in the 3D ( as expected). In the inertial coordinate system, the 4D Cauchy deformation tensor for the rigid body motion, the traction and the sliding (Tables 4.1, 4.3 and4.5 sixth row, third column), can be written as :

         1 - a 2 t 2 c 2 at c 0 0 at c -1 0 0 0 0 -1 0 0 0 0 -1          (4.7)           1 - (Λx 1 ) 2 c 2 (Λt + 1) 4 Λx 1 c(Λt + 1) 3 0 0 Λx 1 c(Λt + 1) 3 - 1 (Λt + 1) 2 0 0 0 0 -1 0 0 0 0 -1           (4.8)            1 - (kx 2 ) 2 c 2 kx 2 c - k 2 tx 2 c 0 kx 2 c -1 kt 0 - k 2 tx 2 c kt -1 -(kt) 2 0 0 0 0 -1            (4.9)
The spatial components of the above tensors correspond to the opposite components of the 3D tensor. The negative sign in the 4D Cauchy deformation tensor is due to the definition of this tensor in the space-time formalism (Chapter 2). In the convective coordinate system, the components of the Cauchy deformation tensor corresponds to the components of Minkowski's metric. The Lagrangian description of this deformation tensor corresponds to the identity matrix because the coordinate system deforms within the material (Tables 4.1, 4.3 and 4.5 sixth row fourth column). The four-dimensional Euler strain tensor in the inertial coordinate system (Tables 4.1, 4.3 and 4.3, seventh row, second column) can be written as:

1 2          a 2 t 2 c 2 at c 0 0 at c 0 0 0 0 0 0 0 0 0 0 0          (4.10) 1 2           - (Λx 1 ) 2 c 2 (Λt + 1) 4 Λx 1 c(Λt + 1) 3 0 0 Λx 1 c(Λt + 1) 3 1 - 1 (Λt + 1) 2 0 0 0 0 0 0 0 0 0 0           (4.11) 1 2            - (kx 2 ) 2 c 2 kx 2 c - k 2 tx 2 c 0 kx 2 c 0 kt 0 - k 2 tx 2 c kt -(kt) 2 0 0 0 0 0            (4.
12)

The spatial components are equivalent to the 3D Cauchy deformation tensor (Tables 4.1, 4.3 and4.5 seventh row, second column). Finally, the rate of deformation tensor in the inertial coordinate system (Tables 4.3 and4.5, eighth row, third column ) can be written as:

           -γ 3 Λ 3 x 1 2 c 2 (Λx 0 +1) 3 γ 3 Λ 2 x 1 c 2 (Λx 0 +1) 3 +cΛ 2 x 1 2 -Λ 2 x 1 2 (Λx 0 +1)(c+Λx 0 ) 2 +1 2(Λx 0 c+c) 2 0 0 γ 3 Λ 2 x 1 c 2 (Λx 0 +1) 3 +cΛ 2 x 1 2 -Λ 2 x 1 2 (Λx 0 +1)(c+Λx 0 ) 2 +1 2(Λx 0 c+c) 2 -γ 3 Λ c+Λx 0 0 0 0 0 0 0 0 0 0 0            (4.13) 1 2         0 0 γ 3 k 2 x 2 c 4 0 0 0 -γ 3 x 2 2 k 3 c 5 -γk c 0 γ 3 k 2 x 2 c 4 -γ 3 x 2 2 k 3 c 5 -γk c 0 0 0 0 0 0         (4.14)
when γ tends to 1, the spatial components of the above tenors correspond to the opposite of the 3D rate of deformation tensor, the negative sign difference is because the signature of the metric (+, -, -, -).

Numerical computation

In this section, we propose a space-time finite-element resolution of several problems. In order to validate the 4D finite element computation, we first consider basic motions (uni-axial traction and sliding) for which the analytical solution is known. Then we solve a thermo-mechanical problem for a more complexe geometry.

FEniCS project

We used the FEniCS project [START_REF] Alnaes | The fenics project version 1.5[END_REF], a Python library, to solve the 4D weak formulation presented in Section 3.6.3. FEniCS project is an open-source software that enables to solve partial differential equations with the finite element method. FEniCS project has been designed towards the three major goals generality, efficiency, and simplicity in resolving the partial differential equations [START_REF] Langtangen | Solving PDEs in Python: The FEniCS Tutorial I[END_REF]. This software was designed to consider problems with a maximum of three spatial variables (the meshes are 3D to the most).

For this reason, we chose to solve 2D plane stress problems and assigned the first dimension to time in the code (see Figure 4.6 for an illstration). The PYTHON code that was implemented can be found in Appendix B. We visualized the results using ParaView software [START_REF] Ahrens | Paraview: An end-user tool for large data visualization[END_REF].

Uni-axial traction and sliding

Context

We first consider two simple deformations: uni-axial traction and sliding. The hypotheses retained for these motions are:

-Non relativistic motion (γ tends to 1) -Adiabatic -Quasi-static process -Small perturbation hypothesis -Isotropic thermo-elastic linear behavior -2D plane stress problem For these two examples (the uni-axial and the sliding), we apply only mechanical solicitations, there is no heat flux applied on the surfaces, thus the weak formulation (Equation 3.152) becomes:

∀r * Ω T µν ∇ µ r * ν dΩ - ∂Ω T 00 θ * dV = 0 (4.15)
The boundary conditions are:

θ(x µ D ) on ∂Ω D , the Dirichlet boundary conditions. -T µν n ν (x µ N ) = T µ N on ∂Ω N , the Neumann boundary conditions. A Neumann boundary conditions for the traction and the sliding is applied on the surface of normal (1, 0, 0), it corresponds to the final (in time) state of the plate.

The components of the strain tensor ε are:

ε i j = 1 2 (∇ i r j + ∇ j r i ) (4.16)
where r i are the components of the displacement in the i th direction (i = 1, 2). The components of the four-velocity vector in this case are u µ (1, 0, 0, 0), then energy-momentum tensor components can be written as (see Section 3.3.1):

T µν =       e int q1 q2 q1 T 11 σ T 12 σ q2 T 21 σ T 22 σ       (4.17)
with:

ρ c e int = C v (θ -θ 0 ) -κ * (θ -θ 0 )tr(ε) + 1 2 λtr(ε) 2 + µε ij ε ij (4.18)
where λ and µ are the parameters of Lamé, C v is the specific heat at constant strain, and κ = α(3λ + 2µ) and α is the thermal expansion coefficient. As listed above, in these cases of study, we choose to have no variation in the temperature, thus the heat flux vector vanishes:

qi = Kη ij ∇i θ = 0 (4.19)
The linear thermo-mechanical constitutive model is:

T ij σ = -3κα(θ -θ 0 )η ij + λε kl η kl η ij + 2µε ij (4.20)
The material considered is Aluminum; its material parameters are listed in In the following, we calculate the 2D analytical solution for the traction and sliding.

J10 -4 s -1 m -1 K -1 Specific heat capacity C v 9.1 × 10 2 ρ JKg -1 K -1

Uni-axial traction

The boundary conditions for the uniaxial traction are presented in Figure 4.4. The imposed displacement in x 1 direction equals to 0.001t

The analytical solution is now calculated. The component of the strain tensor ε 11 is equal to:

ε 11 = 0.001 t (4.21)
The stress tensor takes the form:

  σ 11 0 0 0   (4.22)
By applying Hooke's law, the components of the strain tensor are equal to: Using Equation 4.21, the stress component σ 11 and the strain component ε 11 are equal to:

ε ε ε =    σ 11 E 0 0 - ν E σ 11    (4.23)
σ 11 = E ε 11 = 7 × 10 7 t (4.24) ε 22 = -νε 11 = -3 × 10 -4 t (4.25)
Calculating the internal energy for the uni-axial traction conditions. Equation 4.18 becomes:

ρ c e int = C v (θ -θ 0 ) -κ * (θ -θ 0 )tr(ε ε ε) + 1 2 λtr(ε ε ε) 2 + µ(ε ε ε) 2 (4.26) = 3.5 × 10 4 t 2 (4.27) 
The above equation presents that the internal energy evolution is parabolic in the time direction.

Sliding

The boundary conditions for the sliding are presented in Figure 4.5. The imposed displacement in the direction of x 1 is equal to 0.001t. The analytical solution is calculated. The component of the strain tensor ε 12 is equal to:

ε 12 = 0.0005 t (4.28)
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The stress tensor takes the form:

  0 σ 12 σ 12 0   (4.29)
By applying Hooke's law we obtain the components of the strain tensor:

ε ε ε = 1 + ν E σ σ σ - ν E tr(σ σ σ)g g g =    0 1 + ν E σ 12 1 + ν E σ 12 0    (4.30)
Using Equation 4.28, the stress component σ 12 is equal to:

σ 12 = E 1 + ν ε 12 = 2.69 × 10 7 t (4.31)
The internal energy corresponds to the elastic energy (no thermal energy), it is equal to:

ρ c e int = C v (θ -θ 0 ) -κ * (θ -θ 0 )tr(ε) + 1 2 λtr(ε) 2 + µε ij ε ij (4.32) = 1.34645 × 10 4 t 2 (4.33)
The above equation presents that the internal energy evolution is parabolic in the time direction.

Mesh and boundary conditions for uni-axial traction and sliding

We consider a plate in Aluminum submitted to uni-axial traction and sliding. The space-time domain is meshed, where the time boundary conditions is placed on the initial and the final times. Figure 4.6 presents the mesh in the space-time domain used to solve these problems.

The geometry is a space unit square extruded in x 0 that represents the time direction; x 1 , x 2

are the spatial direction. The displacement vector imposed on the edges of the plate is noted δ δ δ. For small perturbation problem, the velocity of convergence is not calculated. It is a unit space square. The domain is divided into tetrahedron-shaped finite elements. Each side is divided into 10 divisions, the total number of tetrahedral is 6000, and the total number of vertices is 1331; the final time is 10 000 s.

For uniaxial traction, the imposed boundary conditions are: for x 0 = 0, there is no displacement in both directions x 1 and x 2 and the temperature is set to be equal 293 • K. Note that x 0 = 0 corresponds to the initial time in a classical 3D formulation, and the boundary conditions for

x 0 = 0 are thus equivalent to the initial conditions in a classical 3D problem. We impose a displacement δ 1 in the x 1 direction on x 1 = 1 and x 1 = -1, it increases linearly in x 0 direction (Figure 4.4), thus, the boundary conditions applied on the quarter of the plate are written as:

                         θ = 293 on x 0 = 0 δ 1 = 0 on x 0 = 0 δ 2 = 0 on x 0 = 0 δ 1 = 0 on x 1 = 0 δ 1 = 0.001x 0 on x 1 = 1 δ 2 = 0 on x 2 = 0 (4.34)
For sliding, the imposed boundary conditions are: for x 0 = 0, there is no displacement in both directions x 1 and x 2 , the temperature is equal 293 • K. We impose displacement δ 1 in the x 1 direction on x 2 = 1, it increases linearly (Figure 4.5), thus:

                               δ 1 = 0 on x 0 = 0 δ 2 = 0 on x 0 = 0 θ = 293 on x 0 = 0 δ 1 = 0.001x 0 on x 2 = 1 δ 2 = 0 on x 2 = 1 δ 1 = 0 on x 2 = 0 δ 2 = 0 on x 2 = 0 (4.35)

Finite element results for the uni-axial traction

The 2D+1 numerical results for the uni-axial traction are now presented. Figure 4.7 presents the temperature field; it remains constant in the plate at θ = θ 0 = 293K since there is no thermal solicitation, neither heat generation in this case study. Figures 4.8 and 4.9 present the displacements field in the x 1 and x 2 directions. It presents the linear evolution of the displacement in time (x 0 direction). The displacement field in the x 1 direction increases linearly to reach a maximum value of 0.001m at the end of the deformation (x 0 = 1), it matches the imposed boundary condition applied on the edge. The displacement field in the x 2 direction reaches the value -3 × 10 -4 m on the surface x 2 = 1 at the end of the deformation.

Figure 4.10 presents the stress field T 11 σ of the energy momentum tensor. It increases linearly to reach a maximum of 7 × 10 7 P a at the end of the deformation (x 0 = 1, final time); it is uniform on the plate for a given time. The components σ 22 and σ 12 are negligible (Figure 4.15). The internal energy is presented in Figure 4.11. The energy component reaches the maximum at the end of the deformation (x 0 = 1, final time) for a value of 3.5 × 10 4 J. It corresponds to the elastic energy since there is no temperature variation. The components of the heat flux vector q 1 and q 2 are negligible (Figure 4.12 and 4.13).

It is interesting to compare the 2D+1 numerical results with the analytical results (Section 4.2.2)). We first compare the components of the strain tensor. We plot Figure 4.14 to present the comparison between the 2D+1 numerical results and 2D analytical results for the components of the strain tensor ε 11 , ε 22 and ε 12 . We compare the 2D+1 numerical calculus with the 2D analytical results (Equations 4.21 and 4.25) function of time. The numerical and analytical results for the strain tensor components superpose. The temperature is in degree Kelvin. 

Finite element results for the sliding

The 2D+1 numerical results for the sliding are now presented. The temperature field is presented in Figure 4.17. It remains constant at ≈ 293 • K (Figure 4.17) since there is thermal solicitation or heat generation in this study case. Figure 4.18 presents the displacement filed in x 1 direction. It reaches a maximum of 0.001 on the edge x 2 = 1 at the end of the deformation, for x 0 = 1 (final time). The displacement field in the x 2 direction is zero (Figure 4.19).

Figure 4.20 presents the component T 12 σ of the energy momentum tensor. The sliding stress field increases linearly to reach a maximum of 2.69 × 10 7 P a at the end of the deformation (x 0 = 1, final time), where it is uniform on all the surface. The stress components σ 11 , σ 22 are negligible (Figure 4.25). The internal energy is presented in Figure 4.21. It reaches the maximum value of 1.34 × 10 4 J at the end of the deformation (x 0 = 1). The heat flux vector components q 1 and q 2 are negligible (Figures 4.22 and 4.23).

It is interesting to compare the 2D+1 numerical results with the analytical results (calculated previously). We first compare the components of the strain tensor. We plot Figure 4.24 to present the comparison between the numerical results and analytical results for the components of the strain tensor ε 11 , ε 22 and ε 12 . We compare the 2D+1 numerical calculus with the analytical results (Equation 4 We finished the simple case examples ( the traction and the sliding). We verified the 2D+1 numerical values by comparing the results with the 2D analytical solution. It worth noting that adding the temperature field as an unknown did not change the mechanical results. Next, we solve a thermo-mechanical problem for an Aluminum plate with a hole.

Thermo-mechanical computations

We now consider a rectangular Aluminum plate with a circular hole in its center; see Figure it is refined where the gradients are expected to be important (both in time and space) and coarse where the solution is expected to be smooth; the final time is 10 000 s.

Mechanical solicitation

A displacement is first imposed on one of the edges of the plate, that increases linearly with time (Figure 4.28). The boundary conditions applied on the quarter of the rectangular plate 120 are:

                         δ 1 = 0 on x 0 = 0 δ 2 = 0 on x 0 = 0 θ = 293 on x 0 = 0 δ 1 = 0.001x 0 on x 1 = 1 δ 1 = 0 on x 1 = 0 δ 2 = 0 on x 2 = 0 (4.36)
where each δ i corresponds to the value of the local displacement imposed on the boundary. An analytical solution exists for the case of an infinitely large, thin plate with a circular hole submitted to a traction loading. The solution for the stress is:

σ 11 =        σ 1 + R 2 2(x 2 ) 2 + 3R 4 2(x 2 ) 4 for |x 2 | ≥ R 0 for |x 2 | < R (4.37)
The results obtained for the space-time simulation are compared with this solution.

The 2D+1 numerical results are now presented. The first field to look at is the space-time temperature field. It remains constants at θ = θ 0 = 293 • K in the plate (Figure 4.29). The displacement in the x 1 direction is presented in Figure 4.30. It increases linearly on the surface

x 1 = 1 (see Figure 4.30) to reach the maximum displacement of 0.001m at the end of the deformation for x 0 = 1. The displacement in the x 2 direction is zero for the edge x 2 = 0 as imposed, it reaches the value of -4.6 × 10 -4 m on the edge x 2 = 1.5 due the Poisson's effect (Figure 4.31).

We look at the components of the energy-momentum tensor. The evolution of the stress components T 11 σ , T 12 σ and T 22 σ (Figures 4.32,4.33 and 4.34,respectively) show that the stresses are concentrated around the hole. The maximum values are reached at the end of the deformation, for x 0 = 1, of values 2.2 × 10 8 P a, 9.9 × 10 6 P a and 3.9 × 10 7 P a, respectively. The components of the heat flux vector density are negligible (Figures 4.35 

Thermal solicitation

The thermodynamics problem in space-time domain is the main subject of [Al Nahas, 2021].

In this paragraph, we refer to her work to present the thermodynamic evolution of the plate with a hole in the plate. An increase in temperature, varying linearly with time is applied on the edges of the hole. The boundary conditions are written below as (see Figure 4.39): value of θ = 302.9 • K at the end of the deformation around the hole (for x 0 = 1). Figure 4.47 shows the values of the displacement in the x 1 direction in the plate. The displacement in the x 1 direction increase linearly in time (x 0 direction) (Figure 4.47) to reach a maximum of 10 -3 m on x 1 = 1 at the end of the deformation (x 0 = 1). This value matches the applied displacement. The displacement in the x 2 direction shows a value of -5.1 × 10 -4 on the edge

   θ = θ 0 = 293 on x 0 = 0 θ = 293 + 10x 0 on (x 1 ) 2 + (x 2 ) 2 = R 2 (4.38)
                               δ 1 = 0 on x 0 = 0 δ 2 = 0 on x 0 = 0 θ = 293 • K on x 0 = 0 δ 1 = 0.001x 0 on x 1 = 1 δ 1 = 0 on x 1 = 0 δ 2 = 0 on x 2 = 0 θ = 293 + 10x 0 on (x 1 ) 2 + (x 2 ) 2 = R 2
x 2 = 1 at the end of the deformation ( x 0 = 1) (Figure 4.48) since the poisson's ratio is not zero.

Now looking at the components of the energy-momentum tensor. The stress components T 11 σ , T 22 σ and T 12 σ are concentrated around the hole (see Figures 4.49,4.50 and 4.50). The maximum values are equal to 2 × 10 8 P a 1.3 × 10 7 P a and 3.8 × 10 7 at the end of the deformation (for x 0 = 1). The components of the heat flux vector q 1 and q 2 reach a value of ≈ 3.1 × 10 -1 Kg/s 3 (Figures 4.52 

Conclusion

In this chapter, we propose several illustrations of the approach with analytical and finiteelement computations. The 4D analytical solution are calculated for a rigid body motion, uniaxial traction, and sliding. We obtained the velocity components, the deformation gradient, the metric, the left Cauchy-Green, the Euler strain, and the rate of deformation tensor in the 4D inertial and convective coordinate system and in the 3D inertial coordinate system and the Lagrangian description. We compared the 4D tensors and the corresponding entities in the 3D classical mechanics ( as discussed in Chapter 2).

In the second part of this chapter, we proposed a space-time finite-element resolution of a thermo-mechanical problem. The space-time hyper-volume is constructed with a 2D plate, where the third direction represents time. We used FEniCS for the resolution. We first verified the model by taking the basic mechanical test ( uni-axial traction and sliding) and comparing the 2D+1 numerical results with the 2D analytical results. The numerical values of the components of the strain tensor and the stress tensor superposed the 2D analytical results as well as the numerical result of the value of the internal energy. After the validation of the test with the traction and the sliding applied on a 2D Aluminum plate, we applied the 2D +1 thermo-mechanical model on a 2D rectangular plate with a hole in its center. We obtained the space-time of the solution field in the plate, the temperature, the displacement in the x 1 and

x 2 directions. We also obtained the components of the energy-momentum tensor in the plate (the internal energy, the stress components, and the heat flux vector). Finally, we compared the 2D+1 numerical results of the mechanical test with the 2D numerical results. The results converge.

Conclusion & Perspectives

Conclusion

This thesis aimed to apply physical principles in space-time formalism, mainly using this formalism into the equations of the continuum mechanics to describe finite transformations of solids.

These principles and equations are applicable and valid for all observers and any deformation i.e.; all 4D equations are naturally covariant.

In order to solve the thermo-mechanical problem in the space-time framework, we choose to write the governing equations as written in the space-time approach in [Wang, 2016]. The conservation of mass, the conservation of the energy-momentum tensor, the first and second principle of thermodynamics (inequality of entropy and 4D inequality of Clausius-Duhem) are developed in this formalism. In our work, we systematically projected these equations on the space and the time domain. The projection operators enable to decompose the space-time tensors and equations. It is useful for the interpretation of these equations and the comparison with the 3D formalism. In Wang's work [Wang, 2016], he has compared the 4D governing equations in the non-relativistic limits (γ → 1 and v/c → 0) with the classical 3D formulation of continuum mechanics. Where the 4D equations are the general form of these equations. Furthermore, to have a complete system for solving the thermo-mechanics problem, we completed these 4D conservation equations with the constitutive model in space-time formalism; this work was initiated by Wang [Wang, 2016]. In our work, we considered the thermo-mechanical coupling between the temperature and the stress fields when constructing the constitutive models.

We also choose that the specific free energy is an additive decomposition of the thermal and the stress components. The invariants of the deformation tensors I I and I II are space projected entities. The elastic constitutive model is derived from the 4D inequality of Clausius-Dehum by using the Lie derivative operator, where the lie derivative of the specific free energy is calculated. The use of the Lie derivative guarantees the covariance of the model; there is no need to resort to objective transport as in 3D constitutive models in classical mechanics.

A significant advantage of space-time formalism is that the Lagrangian description may be regarded as a choice of a 4D coordinate system. The 3D expression of tensors and equations in the Lagrangian description may be obtained from the space-time description when expressed in the proper coordinate system with space or time projection and v << c.
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In this research, we introduced a covariant description of the thermo-mechanical problem, we stated and solved the 4D thermo-mechanical problem. We proposed a variational space-time formulation of the problem. The unknown of the problems consists of temperature unknown as one component and displacements as the remaining components. We then discretize the variational formulation in space and time domain using the space-time finite element method.

The resolution is performed in one step, for space and time: there is no need for a finite discretization in time.

Finally, we illustrated space-time formalism by studying analytically and numerically the finite transformation of a solid. We obtained the 4D tensors in the inertial and the convective coordinate system for the chosen deformation type. We also compared the 4D tensors with their equivalence in the 3D classical formalism. The results indicate that the equations are equivalents. On the other hand, we solved numerically thermo-mechanical problems. We wrote the variational formulation of the thermo-mechanical problem in the inertial coordinate system, then we implemented the code in FEniCS software. It worth noting that FEniCS software build 3D meshes, thus, the space-time volume is constructed with the 2D plate and the third direction represents time. The problem becomes 2D+1. One of the advantages of the space-time finite element method is that the meshes are updated on the space and time domain. Validation tests were applied on a 2D+1 aluminum square plate (traction and sliding deformations). These space-time models are compared with 2D analytical calculus. Results

show that the solution obtained from the space-time numerical resolution and the 2D analytical resolution are compatible. The solution of the 2D numerical problem gives the evolution of the temperature and the displacements in space and time. We also obtained the components of the energy-momentum tensor. We finally apply thermo-mechanical solicitation on a rectangular aluminum plate with a hole. Where we obtained the evolution of the temperature and the displacements in space and time. We also obtained the components of the energy-momentum tensor. A comparison is proposed with a solution obtained without thermal loading. The results converge. The 4D covariant constitutive models are validated in this thesis.

Briefly, we studied the thermo-mechanical behavior of materials for the finite transformation of solids in a space-time domain. We proposed covariant construction of constitutive models to study the behavior of the materials. Moreover, in this thesis, we illustrated the modeling of thermo-mechanical behavior of materials for finite transformations in the space-time domain.

Perspectives

In this manuscript, we developed the space-time theory to describe finite transformations of solids; however, the numerical results of the space-time simulation for small perturbation hypotheses are given, we further look to implement the code to solve the finite transformations in the space-time finite element software. 140 Lx2 = 1. mesh = BoxMesh ( Point (0 , 0 , 0) , Point ( Lx0 , Lx1 , Lx2 ) , 10 , 10 , 10) 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # GEOMETRY OF THE STRUCTURE # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Lx0 = 1. Lx1 = 1. Lx2 = 1.
mesh = BoxMesh ( Point (0 , 0 , 0) , Point ( Lx0 , Lx1 , Lx2 ) ,10 ,10 ,10)

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DEFINITION OF THE FUNCTION SPACES . # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
scalarFS = FunctionSpace ( mesh , CG , 2) # Function space to save the scalar data vectorFS = V ectorFunctionSpace ( mesh , CG , 2) # function space to construct the problem tensorFS = T ensorFunctionSpace ( mesh , DG , 1) # Function space to save the tensorial data DG is discontinuous Lagrange tensor2DFS = TensorFunctionSpace ( mesh , DG , 1 , shape =(2 , 2) ) # Function space to save the 2 D tensorial data ( space tensors ) DG is discontinuous 2) ] ,

Lagrange # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # DEFINITION OF THE BOUNDARY CONDITION # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Application of the Dirichlet BCs on each of the surfaces # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # constant
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # RESOLUTION OF THE PROBLEM # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
[ Dx ( virtualVector [1] , 0) / c , Dx ( virtualVector [1] , 1) , Dx ( virtualVector [1] ,

2) ] ,

[ Dx ( virtualVector [2] , 0) / c , Dx ( virtualVector [2] , 1) , Dx ( virtualVector [2] ,

2 # Resolution of the system solve ( form == 0 , unknown , BoundaryConditions , solver_parameters ={ " newton_solver " : { " re lative_tolerance " : 3. e -8}}) ney, 1940, Rivlin, 1948, Rivlin and Saunders, 1951, Ogden, 1997, Bergström and Boyce, 2000[START_REF] Vu | On the spatial and material motion problems in nonlinear electro-elastostatics with consideration of free space[END_REF] [Sidoroff, 1982, Garrigues, 2007, Kamrin and Nave, 2009, Eringen, 1962]. On affirme parfois que les tenseurs exprimés dans la description lagrangienne sont nécessairement objectifs [Nemat-Nasser, 2004, Besson et al., 2010]. Une difficulté souvent négligée est que la description lagrangienne est une description qui utilise un ensemble spécifique de coordonnées et de vecteurs de base : le système convectif cela a été bien traité dans [Garrigues, 2007, Eringen, 1962] [START_REF] Besson | Non-linear mechanics of materials[END_REF], lorsque l'approche eulérienne n'est pas idéale car il faut travailler avec la dérivée objective de la contrainte [START_REF] Besson | Non-linear mechanics of materials[END_REF].

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # POST TREATMENT # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Post
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SAVE THE DATA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Post
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # SAVE THE DATA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Creation
Par exemple, on considère que le traitement eulérien ne s'applique qu'aux matériaux isotropes [START_REF] Besson | Non-linear mechanics of materials[END_REF] [Philippe, 2009]. Il provoque également de graves inexactitudes locales ou interrompt le calcul [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], Rout et al., 2017].

L'intérêt d'un formalisme espace-temps

La mécanique newtonienne est intégrée dans la Relativité Générale, en tant que théorie limitative concernant les phénomènes pour lesquels la vitesse absolue de chaque point matériel est négligeable par rapport à la vitesse de la lumière [Havas, 1964, Weinberg, 1972, Boratav and Kerner, 1991] 

Éléments finis espace-temps

Les méthodes des éléments finis espace-temps ont été utilisées dans divers domaines, comme en élastodynamique [START_REF] Argyris | Finite elements in time and space[END_REF], Hughes and Hulbert, 1988, Hulbert and Hughes, 1990[START_REF]A space-time finite element method for elastodynamics problems : elementary examples of 4d remeshing using simplex elements[END_REF], Baptista, 2011, BAJER and Podhorecki, 1989], en résolvant l'équation d'onde [French, 1993, Anderson and Kimn, 2007, Li and Wiberg, 1998, Antonietti et al., 2020], résolution d'équations hyperboliques [START_REF] Hulbert | Space-time finite element methods for second-order hyperbolic equations[END_REF], modélisation problème de mécanique des fluides [START_REF] Sathe | Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques[END_REF], Tezduyar et al., 2006a, Zilian and Legay, 2008[START_REF] Tezduyar | Space-time finite element techniques for computation of fluid-structure interactions[END_REF], Hübner et al., 2004]. Un schéma d'éléments finis de Galerkin discontinu adaptatif espace-temps a été appliqué à un modèle hyperélastique non linéaire [START_REF] Tavelli | Space-time adaptive ader discontinuous galerkin schemes for nonlinear hyperelasticity with material failure[END_REF]. Un article récent présente une méthode de Galerkin discontinue spatio-temporelle pour l'équation d'onde élastique [START_REF] Antonietti | A spacetime discontinuous galerkin method for the elastic wave equation[END_REF]. En général, ces méthodes semblent intéressantes car elles améliorent la solution et réduisent le temps de calcul.

Les méthodes des éléments finis spatio-temporels ont prouvé leur intérêt. Dans les travaux existants, les descriptions covariantes spatio-temporelles de la physique n'ont pas été utilisées.

Il semble donc intéressant d'explorer l'idée et de vérifier si cela peut améliorer la méthode et les résultats.

Conclusion

Il est clair qu'une approche espace-temps géométrique est une opportunité pour résoudre les difficultés existant encore en mécanique des milieux continus pour les transformations finies des solides.

En utilisant les propositions existantes et les travaux précédemment réalisés à Troyes [Rouhaud, 2013, Rouhaud et al., 2015, Panicaud and Rouhaud, 2014, Wang et al., 2016, Wang et al., 2014, Wang, 2016, Panicaud et al., 2016, Rouhaud et al., 2013, Al Nahas, 2021] 

Description covariante des grandes déformation d'un matériau

L'objectif de cette section est de décrire les outils utiles pour construire un formalisme spatiotemporel et leurs conséquences.

Description des covariantes spatio-temporelles pour les corps déformables

Considérons un domaine spatio-temporel Ω d'une variété différenciable 4D M avec un tenseur métrique ambiant g g g de signature (1, -1, - Un mouvement est défini par des lignes du monde dans Ω, le flux associé au champ à quadrivitesses u u u, le vecteur tangent à la ligne du monde à chaque événement :

u µ = dx µ ds with ds 2 = g µν dx µ dx ν . ( 1 
)
Le principe de covariance stipule que la formulation des lois de la physique doit être indépendante des observateurs. Le cadre géométrique le plus approprié pour décrire cette situation est ce que l'on appelle la structure de fibré.

Une base naturelle dans l'espace tangent à M , T M (M), est donnée par l'ensemble des 4 dérivations (∂/∂x µ ). Sous un changement local du système de coordonnées, x µ → y ν (x µ ), une base 4D, définissant un observateur, se transforme en

∂ ∂x µ → ∂x κ ∂y ν ∂ ∂x κ = ∂ ∂y ν (2)
Considérons maintenant toutes les bases locales possibles définies comme suit :

e µ = X ν µ (x) ∂ ∂x ν (3)
La matrice X ν µ doit être non singulière et appartient donc au groupe GL(4, R). Ce groupe agit naturellement à droite par la multiplication de groupe des matrices. Par conséquent, l'ensemble M×GL(4, R) a la structure naturelle d'un faisceau principal de fibres sur M, nommé le faisceau principal de trames. Sa dimension est égale à dim M + dim (GL(4, R)) = 20.

On définit alors deux observateurs spécifiques : l'observateur inertiel, une base orthonormée pour laquelle les composantes du tenseur métrique g g g sont égale :

η µν =        1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1        (4) 
Il est postulé que de tels observateurs inertiels existent pour tous les événements de M. Dans ce système de coordonnées, z 0 = ct où t est appelé le temps absolu (c est la vitesse constante de la lumière dans le vide). L'intervalle ds peut alors s'écrire comme suit : On définit la transformation φ bijective avec des dérivés existants et continus entre le mouvement inertiel d'un corps B et le mouvement considéré de ce corps pour avoir :

ds 2 = η µν dz µ dz ν = (cdt) 2 1 - v c 2 = (cdt) 2 /γ 2 ( 
α µ = ∂x α ∂ x β W ∂ x µ ∂x ν α ν (7) α µν = ∂x α ∂ x β W ∂ x µ ∂x λ ∂ x ν ∂x κ α λκ (8) α µν = ∂x α ∂ x β W ∂x λ ∂ x µ ∂x κ ∂ x ν α λκ (9)

Mouvement d'un corps déformable

x µ = φ µ (Z λ ) (10) 
L'application tangente de φ est donnée par dx µ = ∂x µ ∂Z ν dZ ν . On définit F µ ν et son inverse (F µ ν )

-1

tel que :

F µ ν = ∂x µ ∂Z ν ; (F µ ν ) -1 = ∂Z µ ∂x ν (11)
On définit le tenseur de déformation de Cauchy 4D b b b comme :

b µν = g αβ ∂Z α ∂x µ ∂Z β ∂x ν (12)
Définir le tenseur de déformation eulérienne 4D e e e est définit comme étant :

e µν = 1 2 (g µν -b µν ) (13) 
et le taux de déformation d d d comme :

d µν = 1 2 L u (g µν ) (14) 
Il est possible de vérifier que le taux de déformation représente la variation de la déformation au sens de la dérivée de Lie, telle que :

L u (e µν ) = d µν (15)
où L u (b µν ) = 0. On note que la partie symétrique de la dérivée covariante de la vitesse (∇ ν u µ ) est égale au tenseur taux de déformation :

1 2 (∇ ν u µ + (∇ ν u µ ) T ) = d µ ν (16)

Projections sur le temps et l'espace

Nous définissons des projections sur le temps et l'espace qui permettent de décomposer les tenseurs spatio-temporels. Cette décomposition est utile pour interpréter les différentes grandeurs, pour la construction de modèles de comportements ainsi que pour la comparaison avec la formulation 3D classique de la mécanique des milieux continus.

Pour chaque point de la variété, il existe un système de coordonnées, le système de coordonnées propre, pour lequel la vitesse a la composante ûµ (1, 0, 0, 0). La vitesse est donc le vecteur de base dans le système de coordonnées propre pour la direction du temps propre.

Il est alors possible de définir la projection sur le temps d'un vecteur w comme :

ŵ0 = w κ u κ (17)
La projection d'un vecteur sur l'espace est alors :

w µ = w µ -(w κ u κ )u µ = w κ g κµ -(w κ u κ )u µ = w κ (g κµ -u κ u µ ) (18) 
On peut vérifier que la projection sur l'espace de la dérivée de Lie du tenseur de déformation d'Euler est égale à la dérivée de Lie de la projection sur l'espace de ce même tenseur : 

L u (e µν ) = L u (e µν ) ( 
A µν = A αβ (η αµ -u α u µ )(η βν -u β u ν ) (20) 
Ensuite, considérons la limite non relativiste (γ → 1, et v/c → 0), on obtient : [Truesdell, 2012, Malvern, 1969, Hughes and Marsden, 1983].

A 00 = 0 A 0k = 0 A kl = A ij η ki η lj = A kl (21)
Des modèles de comportements covariants sont également dérivés, complétant ainsi l'ensemble des équations gouvernantes. Il est alors possible de formuler un problème à résoudre pour les grandes déformations d'un solide, une version qui peut s'écrire sous une forme variationnelle.

Enfin, cela nous permet de proposer une discrétisation par éléments finis de certains problèmes thermomécaniques du continuum.

Principes et hypothèses

Dans cette section, nous présentons les principes et les hypothèses servant de base à la construction d'une formulation spatio-temporelle de la mécanique du continu. Après Eringen, Zahalak

et Chrysochoos [Grot and Eringen, 1966a, Zahalak, 1992, CHRYSOCHOOS, 2018] nous commençons par exposer les principes généraux qui doivent être satisfaits par une telle formulation :

-Principe de causalité -Principe de l'état local -Principe de covariance -Principe de conservation de la masse -Principe de conservation de l'énergie et de la quantité de mouvement -Principe de thermodynamique Plusieurs hypothèses sont en outre envisagées pour limiter la complexité du problème :

-Hypothèse du continu -Thermodynamique des processus irréversibles -Nous ne considérons aucun phénomène électromagnétique.

-Les particules constituant la matière sont conservées -Il n'y a pas de couplage entre le tenseur énergie-impulsion et le tenseur métrique

Equation de conservation de la masse

Soit ρ c la densité de masse au repos, une densité scalaire de poids 1. L'équation de conservation de la masse au repos s'écrit : 

∇ µ ( ρ c u µ ) = 0 ∀x µ ∈ Ω ( 

Equation de conservation du tenseur énergie-impulsion

Le tenseur impulsion-énergie est un tenseur de second rang covariant symétrique, défini pour chaque événement [START_REF] Misner | Gravitation[END_REF]. La projection sur l'espace et le temps de ce tenseur conduit à la décomposition :

T µν = Uu µ u ν + (q µ u ν + q ν u µ ) + T µν σ (31) avec U est une densité scalaire, résultat de la double projection de T sur l'axe des temps : U = T µν u µ u ν Le vecteur q µ , résultat de la projection de T sur l'espace et l'axe du temps :

q µ = (δ µ α -u µ u α )T αβ u β . Le tenseur T µν σ est un tenseur de second rang, résultat de la double projection de T sur l'axe de l'espace : T µν σ = (δ µ α -u µ u α )(δ ν β -u ν u β )T αβ . Parce que la masse équivaut à l'énergie dans les théories relativistes [Synge, 1960]. Le tenseur Uu µ u ν peut être interpreté comme le tenseur masse énergie-impulsion et nous avons : U = ρ c (c 2 + e int ) avec ρ c est la densité de masse au repos, une densité scalaire de poids un et eint est une quantité scalaire, l'énergie interne spécifique. Le principe de conservation du tenseur énergie-impulsion stipule que :

∇ ν T µν = 0 (32) 
La projection sur le temps de l'équation ci-dessus correspond à la conservation de l'énergie tandis que la projection sur l'espace correspond au principe de la dynamique [Grot and Eringen, 1966a].

Thermodynamique spatio-temporelle

Nous proposons de construire une thermodynamique spatio-temporelle dans le cadre de la théorie des processus irréversibles. On introduit donc le courant d'entropie comme un champ sur l'espace-temps, représenté par le vecteur S S S. La décomposition de ce vecteur sur le temps et l'espace, S µ = ρ c ηu µ + S µ , conduit à la définition de la quantité ρ c η, l'entropie par unité de volume, un scalaire densité où η est l'entropie spécifique ; S µ est la projection sur l'espace du vecteur d'entropie. La généralisation du deuxième principe de la thermodynamique est :

∇ µ S µ ≥ 0 (33)
On suppose en outre que le transfert d'entropie vers un volume 3D est uniquement dû à la chaleur et on fait l'hypothèse que S µ = (δ µ α -u µ u α )T αβ u β = q µ θ , avec θ est la temperature, un scalaire strictement positif. Après une certaine dérivation, le deuxième principe généralisé de la thermodynamique peut être écrit, avec l'utilisation de la conservation de la masse de repos (équation 26) (∇ µ ( ρ c u µ ) = 0) :

θ ρ c L u (η) + ∇ µ q µ - q µ θ ∇ µ θ ≥ 0. ( 34 
)
Pour construire une inégalité de Clausius-Duhem covariante, nous soustrayons équation 34 de l'équation de conservation de l'énergie-impulsion projetée sur le temps ( u µ ∇ ν T µν = 0) pour obtenir : T µν = ρ c (c 2 + e int )u µ u ν + (q µ u ν + q ν u µ ) + T µν σ (41) where : et nous choisissons pour le flux de chaleur q µ = Kg µν (∇ ν θ -θa ν ) où K est un scalaire constant, la conductivité thermique [Grot and Eringen, 1966a]. Les conditions aux limites de Dirichlet 

e int = C 2θ 

Calcul analytique

Nous choisissons d'étudier la finie simple des solides pour comparer les résultats avec la mécanique classique. Nous illustrons la formulation 4D avec des exemples analytiques.

Ces illustrations se focalisent sur le formalisme quadridimensionnel en prenant l'exemple des cas de transformations finies basiques, comme le mouvement du corps rigide, la traction et les déformations de glissement. Les équations de mouvements de corps rigide dans un système de coordonnée inertiel et convectif respectivement :

                 x 0 = X 0 x 1 = X 1 + a (X 0 ) 2 2c 2 x 2 = X 2 x 3 = X 3              x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 (53) 
Les équations de mouvements pour la traction dans un système de coordonnée inertiel et convectif respectivement :

               x 0 = X 0 x 1 = (1 + Λ c X 0 )X 1 x 2 = X 2 x 3 = X 3              x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 (54) 
Les équations de mouvements pour le glissement dans un système de coordonnée inertiel et convectif respectivement :

                   x 0 = X 0 x 1 = X 1 + k c X 2 X 0 x 2 = X 2 x 3 = X 3              x 0 = x 0 x 1 = X 1 x 2 = X 2 x 3 = X 3 (55) 
Nous utilisons MATHEMATICA Wolfram pour calculer le vecteur vitesse, le tenseur de gradient de déformation, le tenseur métrique, le tenseur de déformation Cauchy et le tenseur de déformation d'Euler dans l'approche 4D et 3D (Chapitre 2). Ensuite on va analyse les resultats.

A partir de ces calculs analytiques, on peut illustrer le fait que le quadri vecteur vitesse est covariantes bien qu'il n'est pas objective dans la formalisme de la mécanique classique. De plus, on comparer les tenseur 4D et 3D dans la limite non-relativiste. On a trouvé que les tenseurs 4D sont la généralisations des tenseurs 3D.

Calcul des éléments finis spatio-temporels

Pour illustrer l'approche 4D, nous proposons ici une résolution spatio-temporelle par éléments finis d'un problème thermomécanique. La résolution s'effectue en une seule étape, pour l'espace et le temps : il n'y a pas besoin d'une discrétisation finie dans le temps. Nous utilisons Fenics [START_REF] Alnaes | The fenics project version 1.5[END_REF] pour la résolution. Nous commençons le calcul numérique par des exemples de bases, un essai de traction et un essai de cisaillement. Pour ces deux types des déformations, les résultats analytiques sont connus afin de faire la comparaison avec le calcul numérique espace-temps. On prend une plaque 2D carré en aluminium. Le matériau est thermo-élastique.

On impose un déplacement dans la direction x 1 sur les bords x 1 pour obtenir la traction et sur

x 2 pour le cisaillement respectivement (figure 2). Pour résoudre un problème thermo-mécanique, nous avons choisis d'écrire les équations gouvernantes telles qu'écrites dans l'approche 4D dans [Wang, 2016]. L'utilisation de la dérivée covariante dans ces équations garantit la covariance de ces dernières. Ensuite, nous avons systématiquement projeté ces équations sur l'espace et le domaine temporel. Les opérateurs de projection nous ont permis d'obtenir une interprétation physique de ces équations. De plus, nous avons complété ces équations de conservation 4D par la construction du modèle de comportement 4D en se basant sur le travail qui a été initié par Wang [Wang, 2016]. Lors de la construction des modèles de comportements, nous avons pris en compte le couplage ther- The advantage of this description is that the integration on space and time is performed in one step. We discuss why the 4D convective coordinate system is of interest to solve the problem. Finally, we illustrate the approach with analytical examples and solve thermo-mechanical problems numerically with an implementation on FEniCS software.

2. 3 4 . 2

 342 Torus and Klein bottle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 The action of group elements on local sections. A point p(x) in the fiber bundle whose projection is π(p) = x is transformed into a point gp(x) belonging to the same fiber π -1 (x). Under the left action of a group element g the original section transforms into a new one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Examples of motions of a body in space-time. For illustration purposes, a 2D body B is considered, represented by the gray surface in (x 1 , x 2 ); it is evolving in time t with x 0 = ct. The dash-lines represent the world lines. The set of dashlines on each figure represents the contour of the world-tube. Three motions of B are presented: an inertial motion (left), a rotation of B (center) and a general transformation (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Left: Schematic representation of the frame bundle. A fiber is either a frame, or an element of the GL(n, R) group. E is here the set of bases on which the structural group acts. Right: The change of local material frames under deformation of a piece of matter Ω into Ω . . . . . . . . . . . . . . . . . . . . . 3.1 The geometric description of the problem, the hypervolumes Ω ref and Ω correspond to the reference and the actual cofiguration. Dirichlet and Neumann boundary conditions are applied on ∂Ω D and ∂Ω N , respectively. . . . . . . . . 4.1 Illustration of a 4D rigid body motion. The Figure on the left illustrates the reference motion, and the Figure on the right illustrates the actual motion for the 4D rigid body motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Illustration of a 4D traction. The Figure on the left illustrates the reference motion, and the Figure on the right illustrates the actual motion for the 4D traction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Illustration of a 4D sliding. The Figure on the left illustrates the reference motion, and the Figure on the right illustrates the actual motion for the 4D sliding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Geometry of the Aluminum plate. The traction boundary conditions are applied on the plate. Two symmetry planes can be identified for this geometry and the solution domain need only cover a quarter of the geometry shown by the shaded area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Geometry of the Aluminum plate. The applied sliding boundary conditions on the plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Visualization using Paraview of the structured mesh used for uni-axial traction and sliding. The 2D plate is extruded in the time direction x 0 to construct a space-time volume. It is a unit space square. The domain is divided into tetrahedron-shaped finite elements. Each side is divided into 10 divisions, the total number of tetrahedral is 6000, and the total number of vertices is 1331; the final time is 10 000 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Temperature θ, space time solution field in the plate for the uni-axial traction. The temperature is in degree Kelvin. . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Displacement field in the x 1 direction, space time solution field in the plate for the uni-axial traction. The displacement is in meter. . . . . . . . . . . . . . . . 4.9 Displacement field in the x 2 direction, space time solution field in the plate for the uni-axial traction. The displacement is in meter. . . . . . . . . . . . . . . . 4.10 The stress component T 11 σ in the plate for the uni-axial traction. The unit is Pascal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 The internal energy e int in the plate for the uni-axial traction. The energy is in Joule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 The heat flux component q 1 in the plate for the uni-axial traction. It is negligeble. The unit of the heat flux component is kg/s 3 . . . . . . . . . . . . . . . . . . . . 4.13 The heat flux component q 2 in the plate for the uni-axial traction. It is negligeble. The unit of the heat flux component is kg/s 3 . . . . . . . . . . . . . . . . . . . . 4.14 Comparison between the 2D+1 numerical and 2D analytical results of the ε 11 , ε 12 and ε 22 at each node function of time. The values are for the uni-axial deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15 Comparison between the 2D+1 numerical T 11 σ and 2D analytical results for the stress component σ 11 at each node function of time. The unit of the stress components is Pascal. The values are for the uni-axial deformation. . . . . . . . 4.16 Comparison between the 2D+1 numerical and 2D analytical results for the internal energy e int at each node function of time. The unit of the internal energy e int is Joule. The values are for the uni-axial deformation. . . . . . . . . . . . . 4.17 The temperature θ, space time solution field in the plate for the sliding. The unit is degree kelvin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.18 Displacement field in the x 1 direction, space time solution field in the plate for the sliding. The displacement is in meter. . . . . . . . . . . . . . . . . . . . . . 4.19 Displacement field in the x 2 direction, space time solution field in the plate for the sliding. The displacement is in meter. . . . . . . . . . . . . . . . . . . . . . 4.20 The stress component σ 12 in the time direction is linear. The unit is Pascal. . . 4.21 The internal energy e int in the plate for the sliding. The unit is Joule. . . . . . 4.22 The heat flux component q 1 in the plate for the sliding, it negligible. The unit is kg/s 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.23 The heat flux component q 2 in the plate for the sliding, it is negligible. The unit is kg/s 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.24 Comparison between 2D+1 numerical and 2D analytical value of strain components ε 11 , ε 22 and ε 12 on each node function of time. The values are for the sliding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.25 Comparison between 2D+1 numerical and 2D analytical value of stress components σ 11 , σ 22 and σ 12 on each node function of time. The unit of the stress components is Pascal. The values are for the sliding. . . . . . . . . . . . . . . . 4.26 Comparison between 2D+1 numerical and 2D analytical results for internal energy on each node function of time for the sliding. The unit of the energy is Joule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.27 Left: Geometry of the Aluminum plate with a hole. The plate dimensions are: width 2m, length 3m and radius of the hole 0.1m. Right: Non-structured mesh in time-space: it is refined where the gradients are expected to be important (both in time and space) and coarse where the solution is expected to be smooth; the final time is 10 000 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.28 Boundary conditions applied on the Aluminum plate for the mechanical solicitation. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model. . . . . . . . . . . . . . . . . . . 4.29 The temperature θ, the space-time solution field in the plate, for the mechanical solicitation. The unit is Kelvin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.30 The displacement in the x 1 direction, the space-time solution field for the mechanical solicitation in the plate. The unit is meter. . . . . . . . . . . . . . . . 4.31 The displacement in the x 2 direction, the space-time solution field for the mechanical solicitation in the plate.. The unit is meter. . . . . . . . . . . . . . . . 4.32 The stress component T 11 σ evolution in the plate for the mechanical solicitation. The unit is Pascal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.33 The the stress component T 12 σ evolution in the plate for the mechanical solicitation. The unit is Pascal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.34 The stress component T 22 σ evolution in the plate for the mechanical solicitation. The unit is Pascal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.35 The values of the heat flux component q 1 are negligble for the mechanical solicitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.36 The values of the heat flux component q 2 are negligble for the mechanical solicitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.37 The evolution of the internal energy in the plate for the mechanical solicitation. The unit is Joule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.38 Comparison between the 2D+1 numerical of the stress component T 11 σ and the 2D analytical results σ 11 at each node at the end of the mechanical solicitation ( for x 0 = 1) function of x 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.39 Boundary condition applied on the Aluminum plate for the thermal problem. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model. . . . . . . . . . . . . . . . . . . . . . . 4.40 The temperature θ, the space-time solution field in the plate for the thermal solicitation. The unit is • K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.41 The evolution of the heat flux component q 1 in the plate for the thermal solicitation. The unit is kg/s 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.42 The evolution of the heat flux component q 2 in the plate for the thermal solicitation. The unit is kg/s 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.43 The evolution of the internal energy e int in the plate for the thermal solicitation. The unit is J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.44 The evolution of the derivative of the temperature with respect to time in the plate. The unit is • K/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.45 Geometry of the Aluminum plate. The traction and temperature boundary conditions applied on the plate, for the thermo-mechanical solicitation. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model. . . . . . . . . . . . . . . . . . . . . . . . . . 4.46 The temperature θ, the space-time solution field in the plate. The unit is degree Kelvin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.47 The displacement in the x 1 direction, the space-time solution field in the plate. The unit is meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.48 The displacement in the x 2 direction, the space-time solution field in the plate. The unit is meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.49 The evolution of the stress component σ 11 in the plate. The unit is Pascal. . . 4.50 The evolution of the stress component σ 22 in the plate. The unit is Pascal. . . 4.51 The evolution of the stress component σ 12 in the plate. The unit is Pascal. . .

4. 54

 54 The evolution of the internal energy e int in the plate. The unit is Joule. . . . . 4.55 The evolution of the derivation of the temperature function of time in the plate. The unit is K/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Exemples de mouvements d'un corps dans l'espace-temps. À des fins d'illustration, un corps 2D B est considéré, représenté par la surface grise dans (x 1 , x 2 ) ; il évolue dans le temps t avec x 0 = ct. Les lignes de tirets représentent les lignes du monde. L'ensemble des lignes de tirets sur chaque figure représente le contour du tube-monde. Trois mouvements de B sont présentés : un mouvement inertiel (gauche), une rotation de B (centre) et une transformation générale (droite). . 2 Géométrie de la plaque d'aluminium. Gauche : Les conditions aux limites de traction sont appliquées sur la plaque. Droite : Les conditions aux limites de glissement appliquées sur la plaque. . . . . . . . . . . . . . . . . . . . . . . . . 3 Comparaison entre les résultats 2D + 1 numériques T 11 σ et 2D analytique pour la composante de contrainte σ 11 à chaque noeud fonction du temps. L'unité des composantes de contrainte est Pascal. Les valeurs sont pour la déformation uniaxiale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Comparaison entre les résultats 2D + 1 numériques et 2D analytique pour l'énergie interne e int à chaque noeud fonction du temps. L'unité de l'énergie interne e int est Joule. Les valeurs sont pour la déformation uni-axiale . . . . . . 5 Comparaison entre les résultats 2D + 1 numériques T 11 σ et 2D analytique pour la composante de contrainte σ 11 à chaque noeud fonction du temps. L'unité des composantes de contrainte est Pascal. Les valeurs sont pour le cisailemment . . 6 Comparaison entre les résultats 2D + 1 numériques et 2D analytique pour l'énergie interne e int à chaque noeud fonction du temps. L'unité de l'énergie interne e int est Joule. Les valeurs sont pour le cisaillement . . . . . . . . . . . . 7 Gauche : La géométrie de la plaque (2 mètres de longueur et 4 mètres de large), le trou a un rayon de 10 cm. Droite : Maillage du système ; seul un quart de la plaque est discrétisé à l'aide des symétries du problème ; la plaque 2D est extrudée dans le sens du temps (x 0 ) pour construire un volume spatio-temporel ; le temps final est de 10 000 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Champs de solution spatio-temporelle, de gauche à droite, la température et les déplacements (direction x 1 et x 2 ) dans la plaque. . . . . . . . . . . . . . . . . . 9 Champs de solution espace-temps pour les composants du tenseur énergie-impulsion dans la plaque ; figure à gauche : l'énergie interne figure à droite : la composante x 1 x 1 de la contrainte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 10 Comparaison entre la composante x 1 x 1 du tenseur énergie-impulsion obtenue par calcul 2D+1 numérique et les valeurs analytique 2D . . . . . . . . . . . . . 11 L'evolution de la température dans la plaque. . . . . . . . . . . . . . . . . . . . 12 Champs de solution espace-temps Gauche : l'energie interne. Droite : la composante q 1 du flux de chaleur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Champs de solution espace-temps, de gauche à droite, la température et les déplacements (direction x 1 et x 2 ) dans la plaque pour une solicitation thermomécanique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. 1

 1 The Jacobian matrix and the deformation gradient in the proper and convective coordinate systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Local state variables chosen to describe the finite isotropic thermo-elastic transformations; these quantities are defined for each event x µ . Remember that the four velocity is a unitary vector and thus corresponds to three unknowns for the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Quantities of interest for the description of finite isotropic thermo-elastic transformations; these quantities are function of the independent variables and are defined for each event x µ . They are second order tensors. Remember that the rate of deformation and the Eulerian strain are space tensors and thus correspond to only six unknowns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Parameters introduced to describe the transformation; these quantities are defined for each event x µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Equations of conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor and Euler strain tensor for an accelerated rigid body motion, for the 3D and 4D approach; a is the constant acceleration . . . . . . . 4.2 Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor and Euler strain tensor for a non-accelerated rigid body motion, for the 3D and 4D approach. v is the constant velocity . . . . . 4.3 Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor, Euler strain tensor and the rate of deformation tensor for a 4D traction. Λ is the traction coefficient . . . . . . . . . . . . . . . 4.4 Velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor, Euler strain tensor and the rate of deformation tensor for a 4D sliding. General case study Equation of motion 4.1 . . . . . . . . . . . . . . . . . . . .
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4. 6

 6 Mechanical and thermal properties of an Aluminum plate reference . . . . . . B.1 Variables d'état local choisies pour décrire les grandes déformations thermoélastiques isotropes ; ces quantités sont définies pour chaque événement x µ . Rappelez-vous que les quatre vitesses sont un vecteur unitaire et correspondent donc à trois inconnues pour le problème. . . . . . . . . . . . . . . . . . . . . . . B.2 Grandeurs d'intérêt pour la description des transformations thermo-élastiques isotropes finies ; ces quantités sont fonction des variables indépendantes et sont définies pour chaque événement x µ . Ce sont des tenseurs du second ordre. Rappelons que le taux de déformation et la déformation eulérienne sont des tenseurs d'espace et ne correspondent donc qu'à six inconnues. . . . . . . . . . . . . . . B.3 Paramètres introduits pour décrire la transformation ; ces quantités sont définies pour chaque événement x µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.4 Équations de conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 11 Figure 1.1: The same material point represented in the initial configuration and a deformed configuration.

  to use capital letters for Lagrangian entities and lower case letters for Eulerian entities. Hence the deformation tensor C C C defined by Equation 1.3 and E E E defined by Equation 1.5 are Lagrangian whereas b b b, e e e, d d d and w w w defined by Equations 1.4, 1.6, 1.8 and 1.9 respectively are Eulerian. In many formulations in solid mechanics, particularly numerical, the unknowns are the coordinates x i of the current configuration, to be established from the knowledge of a reference configuration where the boundary conditions are prescribed; these are thus essentially Lagrangian problems.
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 12 Figure 1.2: Diagram of the mechanical problem 3D

  λtr(e e e) I I I + 2µ e e e (1.33) associated to the kinematic definitions relating e e e to the displacement field (see Section 1.1.1). The Neumann and Dirichlet boundary conditions are respectively:
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 1 Figure 1.3.
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 21 Figure 2.1: A schematic representation of principal fiber bundle P (M, G). The base manifold is M , the structural group is G.

  The action Rg defines an equivalence relation in P (M, G) × V . An associated fiber bundle E(M, G; P, V ) is defined as the quotient of P (M, G) × G by the equivalence relation induced by the action R g of G;
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 22 Figure 2.2: Fiber bundles
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 23 Figure 2.3: Torus and Klein bottle
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 24 Figure 2.4: The action of group elements on local sections. A point p(x) in the fiber bundle whose projection is π(p) = x is transformed into a point gp(x) belonging to the same fiber π -1 (x). Under the left action of a group element g the original section transforms into a new one.
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 2 5 proposes a graphical illustration for several motions represented as world-tubes in a space time-domain.
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 25 Figure 2.5: Examples of motions of a body in space-time. For illustration purposes, a 2D body B is considered, represented by the gray surface in (x 1 , x 2 ); it is evolving in time t with x 0 = ct. The dash-lines represent the world lines. The set of dash-lines on each figure represents the contour of the world-tube. Three motions of B are presented: an inertial motion (left), a rotation of B (center) and a general transformation (right).
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 26 Figure 2.6: Left: Schematic representation of the frame bundle. A fiber is either a frame, or an element of the GL(n, R) group. E is here the set of bases on which the structural group acts. Right: The change of local material frames under deformation of a piece of matter Ω into Ω .

  1.3), to the general formulation of coordinates transformations (see Section 2.1.3), the similarity catches the eye. Consider in particular, the relations between typical 3D Lagrangian tensors and their Eulerian counterparts (see Section 1.1.3 for more details):
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  48) It is also possible to write the above equation as a function of the energy-momentum tensor T using d µν = d µν and thus T µν σ d µν = T µν σ d µν = T µν d µν = T µν d µν (see Section 3.3.1):

  114, we need to derive the expressions for L u (I I ) (note that L u (C) = 0 because C is a constant scalar). The Lie derivative of the invariants of e as a function of the rate of deformation tensor d d d (see Section 2.3.3) are: L u (I I ) = g µν -2e µν d µν (3.118) L u (I II ) = L u (e µν e µν ) = 2(e µν -e µ β e βν -e ν β e µβ )d µν (3.119)

2 2

 2 2e µν d µν +2µ e µν -e µ β e βν -(θ -θ 0 )e γβ g γβ + λ e γβ g γβ

  D as the boundary of the domain where the Dirichlet boundary conditions are applied, and we define ∂Ω N as the boundary of the domain where the Neumann boundary conditions are applied (see Figure 3.1).
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 31 Figure 3.1: The geometric description of the problem, the hypervolumes Ω ref and Ω correspond to the reference and the actual cofiguration. Dirichlet and Neumann boundary conditions are applied on ∂Ω D and ∂Ω N , respectively.

  .166) where q0 = 0, and the covariant components of the four-acceleration vector are equal to Christoffel symbol by the metric tensor âν = Γ κ 00 ĝκν (Equation2.185). T µν σ = -3κα(θ -θ 0 ) ĝµν -2ê µν +

[

  N ].{r e * }.{ TN ({r e })}dVe Ω e { T e ({r e })}.{r e * }.∇ µ [N ] dΩ = 0 (3.171)

  2) on the space and the time axis to write the decomposition of the energy-momentum tensor and the entropy flux. Then, we proposed to write the 4D governing equations, as the equation of mass conservation, the equation of conservation of energy-momentum. and the conservation equation. The projection on the time axis of the equation of conservation of the energymomentum results in the equation of conservation of internal energy. When the projection on the space axis of the equation of conservation of the energy-momentum results in the equation of balance of momentum. Therefore, in space-time formalism, the conservation of energy and the balance of momentum will be solved simultaneously when resolving the thermo-mechanical problem. By projecting on space and time the equation of conservation of energy-momentum tensor, and considering the non-relativistic limits, it resulted equation of the conservation of the momentum and the conservation of energy in the classical mechanics. Furthermore, we wrote the space-time second principle of thermodynamics. Following the methodology proposed in the previous chapter (Chapter 2), we compared the generalized second principle of thermodynamics with the classical 3D form. Furthermore, we derived the space-time covariant inequality of the Clausius-Duhem in terms of internal and free energy. We next proposed the general methodology to construct the constitutive model. We derived the form of the constitutive models for isotropic thermo-elastic transformations to complete the set of the governing equations. The non-linearity of the model occurs due to the type of the material parameters, scalar densities. The derivation to obtain the constitutive model is possible in any coordinate system. It is unnecessary to perform this derivation using the Lagrangian description like it is performed in classical continuum mechanics. Then, we established the form of the energy-momentum tensor for the case of isotropic thermo-elastic transformations. For this type of transformation, we constructed the mechanical problem using space-time formalism.
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 4 Figure 4.1 illustrates a 2D+1 rigid body motion. Tables 4.1 and 4.2 present the results of a rigid body accelerated motion and constant velocity motion.
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 41 Figure 4.1: Illustration of a 4D rigid body motion. The Figure on the left illustrates the reference motion, and the Figure on the right illustrates the actual motion for the 4D rigid body motion.

Figure 4 .

 4 Figure 4.3 illustrates a 2D+1 sliding. Tables 4.4 and 4.5 presents the results for the sliding deformation.
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 43 Figure 4.3: Illustration of a 4D sliding. The Figure on the left illustrates the reference motion, and the Figure on the right illustrates the actual motion for the 4D sliding.
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 44 Figure 4.4: Geometry of the Aluminum plate. The traction boundary conditions are applied on the plate. Two symmetry planes can be identified for this geometry and the solution domain need only cover a quarter of the geometry shown by the shaded area.
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 45 Figure 4.5: Geometry of the Aluminum plate. The applied sliding boundary conditions on the plate.
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 46 Figure 4.6: Visualization using Paraview of the structured mesh used for uni-axial traction and sliding. The 2D plate is extruded in the time direction x 0 to construct a space-time volume.It is a unit space square. The domain is divided into tetrahedron-shaped finite elements. Each side is divided into 10 divisions, the total number of tetrahedral is 6000, and the total number of vertices is 1331; the final time is 10 000 s.

  The comparison between the analytical values and the 2D+1 numerical value for the stress components are presented in Figure 4.15. The results superpose. The 2D+1 numerical values of the internal energy component are compared with the analytical value (Equation 4.27). The two results are plotted in Figure 4.16. The Figure presents that the numerical and analytical results are superposed.

Figure 4 . 7 :

 47 Figure 4.7: Temperature θ, space time solution field in the plate for the uni-axial traction.The temperature is in degree Kelvin.
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 48 Figure 4.8: Displacement field in the x 1 direction, space time solution field in the plate for the uni-axial traction. The displacement is in meter.
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 49 Figure 4.9: Displacement field in the x 2 direction, space time solution field in the plate for the uni-axial traction. The displacement is in meter.

Figure 4 .

 4 Figure 4.10: The stress component T 11 σ in the plate for the uni-axial traction. The unit is Pascal.

Figure 4 .

 4 Figure 4.11: The internal energy e int in the plate for the uni-axial traction. The energy is in Joule.

Figure 4 .

 4 Figure 4.12: The heat flux component q 1 in the plate for the uni-axial traction. It is negligeble. The unit of the heat flux component is kg/s 3 .

Figure 4 .

 4 Figure 4.13: The heat flux component q 2 in the plate for the uni-axial traction. It is negligeble. The unit of the heat flux component is kg/s 3 .

Figure 4 .

 4 Figure 4.14: Comparison between the 2D+1 numerical and 2D analytical results of the ε 11 , ε 12 and ε 22 at each node function of time. The values are for the uni-axial deformation.

Figure 4 .

 4 Figure 4.15: Comparison between the 2D+1 numerical T 11 σ and 2D analytical results for the stress component σ 11 at each node function of time. The unit of the stress components is Pascal. The values are for the uni-axial deformation.

Figure 4 .

 4 Figure 4.16: Comparison between the 2D+1 numerical and 2D analytical results for the internal energy e int at each node function of time. The unit of the internal energy e int is Joule.The values are for the uni-axial deformation.

  .28) function of time (x 0 ). The comparison between the 2D analytical values and the 2D+1 numerical values for the stress components are presented in Figure 4.25. The results superpose. We also compare the value of the internal energy component. The numerical values are compared with the analytical value (Equation 4.33). The two results are plotted in Figure 4.26. The Figure presents that the numerical and analytical results are superposed.

Figure 4 .

 4 Figure 4.17: The temperature θ, space time solution field in the plate for the sliding. The unit is degree kelvin.

Figure 4 .

 4 Figure 4.18: Displacement field in the x 1 direction, space time solution field in the plate for the sliding. The displacement is in meter.

Figure 4 .

 4 Figure 4.19: Displacement field in the x 2 direction, space time solution field in the plate for the sliding. The displacement is in meter.

Figure 4 .

 4 Figure 4.20: The stress component σ 12 in the time direction is linear. The unit is Pascal.

Figure 4 .

 4 Figure 4.21: The internal energy e int in the plate for the sliding. The unit is Joule.

Figure 4 .

 4 Figure 4.22: The heat flux component q 1 in the plate for the sliding, it negligible.The unit is kg/s 3 .

Figure 4 .

 4 Figure 4.23: The heat flux component q 2 in the plate for the sliding, it is negligible.The unit is kg/s 3 .

Figure 4 .

 4 Figure 4.24: Comparison between 2D+1 numerical and 2D analytical value of strain components ε 11 , ε 22 and ε 12 on each node function of time. The values are for the sliding.

Figure 4 .

 4 Figure 4.25: Comparison between 2D+1 numerical and 2D analytical value of stress components σ 11 , σ 22 and σ 12 on each node function of time. The unit of the stress components is Pascal. The values are for the sliding.

Figure 4 .

 4 Figure 4.26: Comparison between 2D+1 numerical and 2D analytical results for internal energy on each node function of time for the sliding. The unit of the energy is Joule.

4 .

 4 27 for details on the geometry. The numerical computations have been performed for three types of loading: i) a mechanical sollicitation alone: a traction, ii) a thermal solicitation on the surface of the hole, and iii) both traction and thermal solicitation simultaneously. Only a quarter of the plate has been modeled due to the symmetries of the problem. The 2D plate is extruded in the time direction to construct a space-time volume and we chose a non-structured space-time mesh to discretize the domain (Figure4.27).

Figure 4 .

 4 Figure 4.27: Left: Geometry of the Aluminum plate with a hole. The plate dimensions are: width 2m, length 3m and radius of the hole 0.1m. Right: Non-structured mesh in time-space:it is refined where the gradients are expected to be important (both in time and space) and coarse where the solution is expected to be smooth; the final time is 10 000 s.

Figure 4 .

 4 Figure 4.28: Boundary conditions applied on the Aluminum plate for the mechanical solicitation. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model.

  and 4.36) since we apply only mechanical solicitation. The internal energy reaches a maximum of 3.2 × 10 5 J ( Figure 4.37).

Figure 4 .

 4 38 presents the comparison between the 2D analytical solution and the 2D+1 numerical values of the stress component T 11 σ . The value of the stress fields are plotted function of x 2 . The two results converge.

Figure 4 .

 4 Figure 4.29: The temperature θ, the space-time solution field in the plate, for the mechanical solicitation. The unit is Kelvin.

Figure 4 .

 4 Figure 4.30: The displacement in the x 1 direction, the space-time solution field for the mechanical solicitation in the plate.The unit is meter.

Figure 4 .

 4 Figure 4.31: The displacement in the x 2 direction, the space-time solution field for the mechanical solicitation in the plate.. The unit is meter.

Figure 4 .

 4 Figure 4.32: The stress component T 11 σ evolution in the plate for the mechanical solicitation. The unit is Pascal.

Figure 4 .

 4 Figure 4.33: The the stress component T 12 σ evolution in the plate for the mechanical solicitation. The unit is Pascal.

Figure 4 .

 4 Figure 4.34: The stress component T 22 σ evolution in the plate for the mechanical solicitation. The unit is Pascal.

Figure 4 .

 4 Figure 4.35: The values of the heat flux component q 1 are negligble for the mechanical solicitation.

Figure 4 .

 4 Figure 4.36: The values of the heat flux component q 2 are negligble for the mechanical solicitation.

Figure 4 .

 4 Figure 4.37: The evolution of the internal energy in the plate for the mechanical solicitation.The unit is Joule.

Figure 4 .

 4 Figure 4.38: Comparison between the 2D+1 numerical of the stress component T 11 σ and the 2D analytical results σ 11 at each node at the end of the mechanical solicitation ( for x 0 = 1) function of x 2 .

Figure 4 .

 4 Figure 4.39: Boundary condition applied on the Aluminum plate for the thermal problem. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model.

Figure 4 .

 4 Figure 4.40: The temperature θ, the space-time solution field in the plate for the thermal solicitation. The unit is • K.

Figure 4 .

 4 Figure 4.41: The evolution of the heat flux component q 1 in the plate for the thermal solicitation. The unit is kg/s 2

Figure 4 .

 4 Figure 4.42: The evolution of the heat flux component q 2 in the plate for the thermal solicitation. The unit is kg/s 2 .

Figure 4 .

 4 Figure 4.43: The evolution of the internal energy e int in the plate for the thermal solicitation. The unit is J

Figure 4 .

 4 Figure 4.45: Geometry of the Aluminum plate. The traction and temperature boundary conditions applied on the plate, for the thermo-mechanical solicitation. Two symmetry planes can be identified for this geometry, thus, only the shaded area has been considered in the model.

  and 4.53). The internal energy e int values are presented in Figure 4.54. It is concentrated around the hole. The internal energy equals to the sum of the elastic and thermal energy. It reaches a maximum of 2.45 × 10 7 J around the hole (Figure 4.54). The derivative of the temperature with respect to time is presented in Figure 4.55. The variation of the temperature in the plate is constant. It equals 10 • K.

Figure 4 .

 4 Figure 4.46: The temperature θ, the space-time solution field in the plate. The unit is degree Kelvin.

Figure 4 .

 4 Figure 4.47: The displacement in the x 1 direction, the space-time solution field in the plate. The unit is meter

Figure 4 .

 4 Figure 4.48: The displacement in the x 2 direction, the space-time solution field in the plate. The unit is meter

Figure 4 .

 4 Figure 4.49: The evolution of the stress component σ 11 in the plate. The unit is Pascal.

Figure 4 .

 4 Figure 4.50: The evolution of the stress component σ 22 in the plate. The unit is Pascal.

Figure 4 .

 4 Figure 4.51: The evolution of the stress component σ 12 in the plate. The unit is Pascal.

Figure 4 .

 4 Figure 4.52: The evolution of the heat flux component q 1 in the plate. The unit is Kg/s 3

Figure 4 .

 4 Figure 4.53: The evolution of the heat flux component q 2 in the plate. The unit is Kg/s 3 .

Figure 4 .

 4 Figure 4.54: The evolution of the internal energy e int in the plate. The unit is Joule.

Figure 4 .

 4 Figure 4.55: The evolution of the derivation of the temperature function of time in the plate. The unit is K/s.

  mesh , CG , 2) # Function space to save the scalar data vectorFS = V ectorFunctionSpace ( mesh , CG , 2) # function space to construct the problem tensorFS = T ensorFunctionSpace ( mesh , DG , 1) # Function space to save the tensorial data DG is discontinuous Lagrange tensor2DFS = TensorFunctionSpace ( mesh , DG , 1 , shape =(2 , 2) ) # Function space to save the 2 D tensorial data ( space tensors ) DG is discontinuous Lagrange

  temperature on all the domain BCbuttom = DirichletBC ( vectorFS , Constant (( theta0 ,0. ,0.) ) , initial ) # Apply constant temperture on the bottom facet BCleft = DirichletBC ( vectorFS . sub (1) , Constant (0.) , left ) # y =0 is a plane of symmetry : No displacement along y ( x1 ) on the left side ( y =0) BCfront = DirichletBC ( vectorFS . sub (2) , Constant (0.) , front ) # z =0 is a plane of symmetry : No displacement along z ( x2 ) on the front side ( z =0) coordMaxy = 0.001 / Lx0 coordBCrighty = Expression (( " coordMaxy * x [0] " ) , coordMaxy = coordMaxy , degree =1) # to apply a linearily varying diplacement in time BCright1 = DirichletBC ( vectorFS . sub (1) , coordBCrighty , right ) B oun da ry Co nd itions = [ BCleft , BCfront , BCbuttom , BCright1 ]

  ( vectorFS ) # definition of the test vector unknown = Function ( vectorFS ) # definition of the unknown function space # Definition of the space projection of the strain def strain of the strain because the pb is plane stress return sym ( graddisp ) # Definition of the space projection of the stress def sigma ( vector ) : strainlocal = strain ( vector ) return ( lmbdaPS * tr ( strainlocal ) -kappa * ( vector [0] -theta0 ) ) * Identity (2) + 2 * mu * strainlocal # 2 D definition of the stress because the pb is plane stress # Computation of the moment energy tensor ( MET ) # Space part of the MET Tsigma = sigma ( unknown ) # Space part of the deformation deformation = strain ( unknown ) # Time x time part of the MET freeEnergy = cV * ( unknown [0] -theta0 ) -kappa * tr ( deformation ) * ( unknown [0] -theta0 ) + lmbdaPS * tr ( deformation ) * tr ( deformation ) / 2 + mu * inner ( deformation , deformation ) MET = as_tensor ([ [ freeEnergy , -k * Dx ( unknown [0] , 1) / c , -k * Dx ( unknown [0] , 2) / c ] , [ -k * Dx ( unknown [0] , 1) / c , Tsigma [0 , 0] , Tsigma [0 , 1]] ,

  the non -linear form form = inner ( MET , G radi entVi rtua lVec tor ) * dx -MET [0 , 0] * virtualVector [0] / c * ds ( currentnormal )

  treatment and projection of stress and strain : projMET = project ( MET , tensorFS ) projDeformation = project ( deformation , tensor2DFS ) projSolution = project ( unknown , vectorFS ) projDthetaDt = project ( Dx ( unknown [0] , 0) , scalarFS )

  of the files vtkfileSolution = File ( " T rac ti on _PS ve cc ou pla ge / sol_tracaveccouplage . pvd " ) vtkfileDthetaDt = File ( " T rac ti on _PS ve cc ou pla ge / d e de t a_ tr a ca v ec co u pl a ge . pvd " ) vtkfileMET = File ( " T rac ti on _PS ve cc ou pla ge / MET_tracaveccouplage . pvd " ) vt kf il eD ef or mation = File ( " T rac ti on _PS ve cc ou pla ge / def o_tr acav eccou plag e . pvd " ) # Save post treatment solutions to a file in VTK format

  thermal expansion coefficient set to zero to decouple the thermoelastic pb alpha = 23.1 e -6 # thermal expansion coefficient per Kelvin cV = 910. * rho # specific heat per unit volume at constant strain J / m3 / K k = 2370000. # thermal conductivity J / 10000 s / m / K change of thermal conductivity to change the time unit # k = Constant () # thermal conductivity to test other values # Derivation of other material constants lmbda = E * nu / ((1. + nu ) * (1. -2. * nu ) ) mu = E / 2. / (1. + nu ) lmbdaPS = 2* mu * lmbda /( lmbda +2* mu ) kappa = alpha * (2 * mu + 3 * lmbda )

  Definitions of the surfaces for the BC def initial (x , on_boundary ) : return near ( x [0] , 0) and on_boundary class Current ( SubDomain ) : def inside ( self , x , on_boundary ) : return near ( x [0] , Lx0 ) and on_boundary def left (x , on_boundary )

  temperature on all the domain BCbuttom = DirichletBC( vectorFS , Constant ((293. ,0. ,0.) ) , initial ) BCfront1 = DirichletBC ( vectorFS . sub (1) , Constant ((0.) ) , front ) BCfront2 = DirichletBC ( vectorFS . sub (2) , Constant ((0.) ) , front ) # Displacement applied on one of the surface of the sheet sliding coordMaxy = 0.001 / Lx0 coordBCrighty = Expression (( " coordMaxy * x [0] " ) , coordMaxy = coordMaxy , degree =1) # to apply a linearily varying diplacement in time BCback1 = DirichletBC ( vectorFS . sub (1) , coordBCrighty , back ) BCback2 = DirichletBC ( vectorFS . sub (2) , Constant ((0.) ) , back ) BCleft2 = DirichletBC ( vectorFS . sub (2) , Constant ((0.) ) , left ) BCright2 = DirichletBC ( vectorFS . sub (2) , Constant ((0.) ) , right ) B oun da ry Co nd itions = [BCbuttom , BCback1 , BCback2 , BCfront1 , BCfront2 , BCright2 , BCleft2 ] 

  ( vectorFS ) # definition of the test vector unknown = Function ( vectorFS ) # definition of the unknown function space # Definition of the space projection of the strain def strain of the strain because the pb is plane stress return sym ( graddisp ) # Definition of the space projection of the stress def sigma ( vector ) : strainlocal = strain ( vector ) return ( lmbdaPS * tr ( strainlocal ) -kappa * ( vector [0] -theta0 ) ) * Identity (2) + 2 * mu * strainlocal # 2 D definition of the stress because the pb is plane stress # Computation of the moment energy tensor ( MET ) # Space part of the MET Tsigma = sigma ( unknown ) # Space part of the deformation deformation = strain ( unknown ) # Time x time part of the MET freeEnergy = cV * ( unknown [0] -theta0 ) -kappa * tr ( deformation ) * ( unknown [0] -theta0 ) + lmbdaPS * tr ( deformation ) * tr ( deformation ) / 2 + mu * inner ( i e n t V i r t ualV ecto r = as_tensor ([ [ Dx ( virtualVector [0] , 0) / c , Dx ( virtualVector [0] , 1) , Dx ( virtualVector [0] ,

  the non -linear form form = inner ( MET , G radi entVi rtua lVec tor ) * dx -MET [0 , 0] * virtualVector [0] / c * ds ( currentnormal )

  treatment and projection of stress and strain : projMET = project ( MET , tensorFS ) projDeformation = project ( deformation , tensor2DFS ) projSolution = project( unknown , vectorFS ) 

  treatment and projection of stress and strain : projMET = project ( MET , tensorFS ) projDeformation = project ( deformation , tensor2DFS ) projSolution = project ( unknown , vectorFS ) projDthetaDt = project ( Dx ( unknown [0] , 0) , scalarFS )

  of the files vtkfileSolution = File ( " S l id in g _P S _a ve c co u pl ag e / s o l u t i o n _ s l i d i n g a v e c c o u p l a g e . pvd " ) vtkfileDthetaDt = File ( " S l id in g _P S _a ve c co u pl ag e / D t h e t a D t s h e a r _ a v e c c o u p l a g e . pvd " ) vtkfileMET = File ( " S l id in g _P S _a ve c co u pl ag e / ME T _ _ sl i d i ng a v e cc o u p la g e . pvd " ) vt kf il eD ef or mation = File ( " S l id in g _P S _a ve c co u pl ag e / Str ain_ _sav eccou plag e . pvd " ) # Save post treatment solutions to a file in VTK format De nos jours, la mécanique du continuum est classiquement utilisée pour modéliser des solides ou des fluides à une échelle macroscopique, à travers un cadre commun comprenant des équations cinématiques, des équations de moment et des modèles constitutifs pour représenter le comportement du matériau. Le choix des modèles de comportement complète la description géométrique et les équations d'impulsion pour former un problème bien posé. En mécanique des solides, les modèles constitutifs réalistes, à côté du modèle de Hooke pour l'élasticité linéaire, sont non linéaires. Ceci est important pour modéliser les élastomères et les caoutchoucs [Moo-

  5) avec γ étant le facteur de Lorentz. Les composantes des quadri-vitesses dans un système de coordonnées inertielles sont alors u µ γ, γ c v i . Un observateur propre lié à l'évolution de la matière pour laquelle le système de coordonnées correspondant est noté xµ et les composantes de la quadri-vitesses sont (1, 0, 0, 0) pour tous les événements. L'intervalle ds prend la valeur ds = dx 0 = cdτ où τ est le temps propre. Avec la définition de γ donnée ci-dessus, s'émerge la formule suivante : dt = γdτ (6) Nous utiliserons la dérivée de Lie par rapport au champ de vitesse noté L u (.) Et la dérivée covariante avec une connexion métrique notée ∇ µ (.). Dans le formalisme de l'espace-temps, le principe de covariance est intrinsèquement vérifié avec l'utilisation de tenseurs et opérateurs 4D qui sont par construction covariante. Dans un formalimse spatio-temporelles, un tenseur α peut toujours transformer par un changement de coordonnées de x µ à x µ comme [Levi-Civita, 2005, Wikipedia contributors, 2020] :

  Nous définissons un mouvement inertiel comme un mouvement pour lequel l'observateur propre est un observateur inertiel pour tous les points du tube d'univers. Les événements de cette motion sont notés Z µ . Nous définissons un corps B comme un domaine 3D de Ω. Considérons la congruence des lignes d'univers qui traversent le domaine B. Cet ensemble de lignes d'univers est appelé un worldtube et définit le mouvement de B. On définit le mouvement inertiel d'un corps B correspondant à un mouvement pour lequel l'observateur propre est inertiel. Les événements de cette motion sont notés X µ . La figure 1 propose une illustration graphique de plusieurs mouvements représentés sous forme de tubes d'univers dans un domaine espace-temps.

Figure 1 :

 1 Figure 1: Exemples de mouvements d'un corps dans l'espace-temps. À des fins d'illustration, un corps 2D B est considéré, représenté par la surface grise dans (x 1 , x 2 ) ; il évolue dans le temps t avec x 0 = ct. Les lignes de tirets représentent les lignes du monde. L'ensemble des lignes de tirets sur chaque figure représente le contour du tube-monde. Trois mouvements de B sont présentés : un mouvement inertiel (gauche), une rotation de B (centre) et une transformation générale (droite).

  26)avec Ω est l'hyper-volume. Dans un système de coordonnées propre, avec x0 = cτ et ûµ (1, 0, 0, 0), la conservation de la masse de repos devient : ρ c est constant dans le temps tel que vu par un observateur propre. Dans un système de coordonnée inertiel, avecx 0 = ct et u µ (γ, γ c v i ) l'équation 26 devient : 1 c ∂(γ ρ c ) ∂t + ∂( ρ c v i ) ∂x i = 0 (28) or ∂(γ ρ c ) ∂t + ∂( ρ c v i ) ∂x i = 0 (29)Quand γ tend vers 1, la dernière équation correspond à l'équation 3D classique exprimant la conservation de la masse :

ρ=

  c θL u (η) -L u (e int ) + T µν σ d µν + q µ a µa µ = u λ ∇ λ (u µ ) est l'accélération. Nous introduisons ensuite l'énergie libre spécifique de Helmholtz Ψ = e int -θη et équation 35 devient :T µν σ d µν -ρ c L u (Ψ) + ηL u (θ) + q µ a µcomportement doitensuite être écrit, décrivant le comportement d'un matériau pour compléter le problème thermomécanique. Dans ce travail, nous limitons la portée aux transformations thermo-élastiques isotropes et considérons une énergie libre spécifique de la forme [Chrysochoos, 2018] :Ψ(θ, I I , I II ) = -C 2θ 0 (θ -θ 0 ) 2 -3 κα ρ c (θ -θ 0 )I I + λ 2 ρ c (I I ) 2 + µ ρ c I II (37) où θ 0 est une température de référence, C est un scalaire constant équivalent à la chaleur spécifique et où les coefficients (κα), λ et µ sont des densités scalaires ; les quantités I I = e µν g µν et I II = e µν e µν sont deux invariants du tenseur de déformation projeté e. Avec le fait que L u (I I ) = g µν -2e µν d µν , L u (I II ) = 2(e µν -e µ β e βν -e ν β e µβ )d µν et L u (C) = 0, L'inégalité Clausius-Duhem (Eq. 36) conduit à :q µ (∇ µ θ -θa µ ) -3κα(θ -θ 0 )g µν + λe γβ g γβ g µν + 2µe µν -3κα(θ -θ 0 ) e γβ g γβ g µν -2e µν + λ   -2e γβ g γβ e µν + e γβ g γβ 2 e γβ e γβ g µν -2 e µ β e βν sym (40) car il est vérifié pour tout chemin correspondant à une transformation réversible. L'équation 40 correspond à un modèle constitutif thermodynamiquement compatible pour les transformations thermo-élastiques isotropes. Le tenseur énergie-impulsion pour les transformations thermoélastiques isotropes avec la forme spécifique de l'énergie libre donnée par l'équation est tel que :

  sont données par θ(x µ D ) et u(x µ D ) sur ∂Ω D ; les conditions aux limites de Neumann sont données parT µν (x µ N )n ν (x µ N ) = T µ N sur ∂Ω N .Les équations ci-dessus correspondent à une formulation faible covariante non linéaire d'un problème pour les grandes déformations d'un solide thermo-élastique isotrope. Une fois résolu, nous obtenons le champ de température et de vitesse qui vérifient à la fois la conservation de l'énergie et le principe de la quantité de mouvement.

3. 8 4 Application

 84 Discrétisation par éléments finis espace-tempsNous visons à résoudre la formulation variationnelle (voir Section 3.7) par discrétisation en utilisant la méthode des éléments finis espace-temps. La méthode des éléments finis espacetemps consiste à diviser l'hypervolume Ω du problème en un nombre fini d'éléments N e , chaque élément ayant un hypervolume élémentaire Ω e de frontière ∂Ω e de sorte que Ω = Ne e=1 Ω e , où l'indice e fait référence à l'élément et désigne l'opérateur d'union sur tous les éléments. Chaque élément possède un nombre fini de noeuds I, selon la géométrie de l'élément (triangulaire, rectangulaire, tétraédrique, prisme...).La coordonnée du noeud {x µe } est discrétisée comme suit :{x µ } = [N I (x µ )]{x µ I }(48)Le vecteur inconnu {r µ } et le vecteur virtuel {r µ * } sont discrétisés comme :{r µ } = [N I (x µ )].{r µ I }; {r µ * } = [N I (x µ )].{r µ * I }(49) où {r µ I } et {r µ * I } sont les composantes du vecteur inconnu et du vecteur virtuel au nud I. Nous choisissons d'écrire la discrétisation de la formulation variationnelle (Equation 46) dans le système de coordonnées propre où le vecteur à quatre vitesses prend la forme ûµ = (1, 0, 0, 0). ∀r e * ∈ V e e ∂Ω e [N ].{r e * }.{ TN ({r e })}dVe Ω e { T e ({r e })}.{r e * }.∇ µ [N ] dΩ = 0 (50) où {r e } est le vecteur formé sur le déplacement nodal de l'élément, et { TN ({r e })} = { T ({r e })}.{n e } est la condition de Neumann appliquée sur l'hyper-surface élémentaire ∂Ω e et {n e } est le vecteur normal extérieur de l'élément (e). L'intégration se fait sur l'hyper-volume Ω comprend l'intégration spatiale et temporelle. Nous pouvons écrire : ∀r e * ∈ V e e ∂Ω e [N ] T .{ TN ({r e })}dV -Ω e [B] T . T ({r e }) dΩ e .{r e * } = 0 (51) où [B] est la matrice de la dérivée covariante de la fonction d'interpolation. Cette matrice est définie comme [B] = [∇ µ N ]. L'équation ci-dessus doit être vérifiée pour tout champ cinématiquement admissible {r e * }. Nous pouvons alors écrire l'équation 51 sous la forme : e ∂Ω e [N ] T .{ TN ({r e })}dV -Ω e [B] T . T ({r e }) dΩ e = 0 (52) Dans cette section, nous résolvons le problème thermomécanique analytiquement et numériquement dans l'approche spatio-temporelle. Cette section s'articule autour de deux parties principales ; la première partie concerne le calcul analytique 4D. Dans cette partie La méthodologie utilisée pour illustrer la transformation finie dans le formalisme 4D est présentée en premier. Trois types de déformations finies sont alors étudiés, où les entités physiques et les tenseurs sont calculés. Ensuite, une comparaison entre les entités 4D et leur correspondant dans la mécanique classique est effectuée. Dans la deuxième partie de ce chapitre on évoque la résolution des éléments finis spatio-temporels. Nous utilisons la méthode des éléments finis spatio-temporels pour la résolution d'un problème thermomécanique.

Figure 2 :

 2 Figure 2: Géométrie de la plaque d'aluminium. Gauche : Les conditions aux limites de traction sont appliquées sur la plaque. Droite : Les conditions aux limites de glissement appliquées sur la plaque.

Figure 3 :Figure 4 :Figure 5 :

 345 Figure 3: Comparaison entre les résultats 2D + 1 numériques T 11 σ et 2D analytique pour la composante de contrainte σ 11 à chaque noeud fonction du temps. L'unité des composantes de contrainte est Pascal. Les valeurs sont pour la déformation uniaxiale

Figure 6 :

 6 Figure 6: Comparaison entre les résultats 2D + 1 numériques et 2D analytique pour l'énergie interne e int à chaque noeud fonction du temps. L'unité de l'énergie interne e int est Joule. Les valeurs sont pour le cisaillement

Figure 7 :

 7 Figure7: Gauche : La géométrie de la plaque (2 mètres de longueur et 4 mètres de large), le trou a un rayon de 10 cm. Droite : Maillage du système ; seul un quart de la plaque est discrétisé à l'aide des symétries du problème ; la plaque 2D est extrudée dans le sens du temps (x 0 ) pour construire un volume spatio-temporel ; le temps final est de 10 000 s.

Figure 8 :

 8 Figure 8: Champs de solution spatio-temporelle, de gauche à droite, la température et les déplacements (direction x 1 et x 2 ) dans la plaque.

Figure 9 :

 9 Figure 9: Champs de solution espace-temps pour les composants du tenseur énergie-impulsion dans la plaque ; figure à gauche : l'énergie interne figure à droite : la composante x 1 x 1 de la contrainte.

Figure 10 :

 10 Figure 10: Comparaison entre la composante x 1 x 1 du tenseur énergie-impulsion obtenue par calcul 2D+1 numérique et les valeurs analytique 2D

Figure 11 :

 11 Figure 11: L'evolution de la température dans la plaque.

Figure 12 :

 12 Figure 12: Champs de solution espace-temps Gauche : l'energie interne. Droite : la composante q 1 du flux de chaleur.

Figure 13 :

 13 Figure 13: Champs de solution espace-temps, de gauche à droite, la température et les déplacements (direction x 1 et x 2 ) dans la plaque pour une solicitation thermomécanique

  momécanique entre la température et les champs de contraintes. Nous choisissons également que l'énergie libre spécifique soit une décomposition additive des composantes thermique et contrainte. Le modèle de comportement est dérivé de l'inégalité 4D de Clausius-Dehum en utilisant l'opérateur dérivé de Lie pour calculer la dérivée de l'énergie libre spécifique. De plus, l'expression 3D des tenseurs et des équations dans la description lagrangienne peut être obtenue à partir de la description spatio-temporelle lorsqu'elle est exprimée dans le système de coordonnées propre avec une projection spatiale ou temporelle et pour v << c. La description lagrangienne peut être considérée comme un choix du système de coordonnées dans un formalisme spatio-temporel. Aucune considération particulière n'est à faire concernant une description lagrangienne qui peut être dérivée avec une projection des équations sur un système de coordonnées 4D spécifique : le système de coordonnées propre. Dans ce travail de recherche nous avons introduit une description covariante du problème thermomécanique. Ensuite, nous avons énoncé et résolu le problème thermomécanique 4D en proposant une formulation variationnelle spatio-temporelle du problème. Enfin, nous avons illustré le formalisme spatio-temporel en étudiant analytiquement la transformation finie d'un solide. Nous avons obtenu les tenseurs 4D dans le système de coordonnées inertiel et convectif pour 3D types de déformation choisi. Nous avons également comparé les tenseurs 4D avec leur équivalence dans le formalisme classique 3D. La méthode des éléments finis est implémentée dans le logiciel FEniCS pour résoudre le problème numériquement. Il convient de noter que le logiciel FEniCS construit des maillages 3D, ainsi, le volume espacetemps est construit avec la plaque 2D et la troisième direction représente le temps. Le problème devient 2D + 1. L'un des avantages de la méthode des éléments finis spatio-temporels est que les maillages sont mis à jour dans le domaine spatial et temporel. Nous choisissons d'abord de résoudre numériquement des problèmes simples comme la déformation de traction et de glissement appliquée sur une plaque d'aluminium carrée, où les solutions analytiques sont connues. Cette étape nous permet de comparer les résultats avec le 2D et de vérifier les modèles 4D. Nous avons pris l'hypothèse d'une petite déformation. La solution donne l'évolution de la température et les déplacements dans l'espace et le temps. Nous avons également obtenu les composants du tenseur énergie-impulsion. En comparant les résultats numériques 2D + 1 avec les résultats analytiques 2D, nous avons constaté que les résultats se superposaient. Nous appliquons enfin la sollicitation thermomécanique sur une plaque d'aluminium rectangulaire percée. Où nous avons obtenu l'évolution de la température et les déplacements dans l'espace et le temps. Nous avons également obtenu les composants du tenseur énergie-impulsion. Une comparaison est proposés. Les équations de conservation sont écrites dans ce contexte et un modèle constitutif est dérivé pour les transformations réversibles. Nous utilisons des opérateurs de projection pour obtenir les composantes spatiales et temporelles des équations régissant 4D et pour interpréter les résultats. Nous proposons ensuite une formulation faible du problème ainsi que sa discrétisation par éléments finis, à résoudre pour les grandes déformations d'un solide. L'avantage de cette description est que l'intégration sur l'espace et le temps se fait en une seule étape. conservation equations are written in this context and a constitutive model is derived for reversible transformations. We use projection operators to obtain the space and time components of the 4D governing equations and to interpret the results. We next propose a weak formulation of the problem along with its finite-element discretization, to be solved for the finite transformations of a solid.
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Table 3 . 1 :

 31 Local state variables chosen to describe the finite isotropic thermo-elastic transformations; these quantities are defined for each event x µ . Remember that the four velocity is a unitary vector and thus corresponds to three unknowns for the problem.

	Quantity	Name	Definition	Number of Section
				unknown	
	d	Rate of	d µν = 1 2 L u (g µν )	6	2.2.4
		deformation			
	e	Eulerian strain	L u (e µν ) = d µν	6	2.3.3
		projected on space			
	T	Energy-momentum	T (θ, ρ c , u, e)	10	3.3.1

Table 3 . 2 :

 32 Quantities of interest for the description of finite isotropic thermo-elastic transformations; these quantities are function of the independent variables and are defined for each event x µ . They are second order tensors. Remember that the rate of deformation and the Eulerian strain are space tensors and thus correspond to only six unknowns.

	Parameter	Name	Type	Definition	Section
	c	Speed of light	Scalar	3 × 10 8	1.3
	θ 0	Temperature of neutral motion	Scalar	-	3.5.1
	C	Specific heat	Scalar	-	3.5.3
	κ	Bulk modulus	Scalar density	λ + 2µ/3	3.5.3
	α	Thermal expansion coefficient Scalar density	-	3.5.3
	λ	Lamé coefficient	Scalar density Eν/((1 + ν)(1 -3ν))	3.5.3
	µ	Lamé coefficient	Scalar density	E/(2(1 + ν))	3.5.3
	K	Thermal conductivity	Scalar	-	3.5.3

Table 3 . 3 :

 33 Parameters introduced to describe the transformation; these quantities are defined for each event x µ

		Number of equations	Reference
	Conservation of rest mass	1	Equation 3.4
	Conservation of energy-momentum tensor	4	Equation 3.29

Table 3 . 4 :

 34 Equations of conservation

Table 4 . 2 :

 42 Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor and Euler strain tensor for a non-accelerated rigid body motion, for the 3D and 4D approach. v is the constant velocity

	3D inertial coordinate system	4D inertial coordinate system	3D Lagrangian	4D convective coordinate system
	Equation of motion			

Table 4 . 3 :

 43 Equations of motion, velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor, Euler strain tensor and the rate of deformation tensor for a 4D traction. Λ is the traction coefficient

Table 4 . 4 :

 44 Velocity vector, deformation gradient tensor, metric tensor, Cauchy deformation tensor, Euler strain tensor and the rate of deformation tensor for a 4D sliding. General case study Equation of motion 4.1

	3D inertial coordinate system	4D inertial coordinate system	3D Lagrangian	4D convective coordinate system
	Equation of motion			

Table 4

 4 

	.6.

Table 4 .

 4 

6: Mechanical and thermal properties of an Aluminum plate reference

2 Difficultés rencontrées pour modéliser les transformations finies des so- lides

  ], biomatériaux[A Prost-Domaski et al., 1997] ou fabrication de métaux[START_REF] Saanouni | 2d adaptive fe simulations in finite thermo-elasto-viscoplasticity with ductile damage: Application to orthogonal metal cutting by chip formation and breaking[END_REF]. Aussi, dans ces exemples, les déformations subies par la matière sont finies, en ce sens que l'approximation infinitésimale n'est pas valable pour la déformation. Le problème est donc non linéaire, d'un point de vue géométrique, et d'un point de vue matériel. les deux descriptions sont équivalentes et qu'il existe une relation entre les tenseurs exprimés avec la description lagrangienne ou eulérienne donnée par les transports convectifs

	vements de corps rigides. Quelques citations de références importantes dans la littérature illus-
	trent le débat : Truesdell et Noll [Truesdell and Noll, 2003] définissent le principe d'objectivité
	comme c'est un principe fondamental de la physique classique. Les propriétés matérielles sont
	indifférentes, c'est-à-dire indépendantes d'observateur. Nemat Nasser [Nemat-Nasser, 2004] pro-
	pose une autre définition, tel que les modèles de comportements doivent rester invariantes sous
	toute rotation de corps rigide. C'est ce qu'on appelle l'objectivité. Aussi, comme l'affirme Liu
	[Liu, 2004] que l'ojectivité joue un rôle important dans le développement de la mécanique des
	milieux continus, en livrant des restrictions sur la formulation des comportements des corps

Les transformations finies des solides sont donc envisagées dans ce travail. Des questions ouvertes demeurent lorsque des transformations finies de solides sont considérées. Nous mettons donc ensuite en évidence ces difficultés pour discuter de la manière dont la formulation spatiotemporelle pourrait apporter plusieurs solutions.

1.

L'objectif de cette section est de présenter les difficultés existantes encore rencontrées en mécanique des milieux continus pour la description des déformations finies des solides.

Le concept d'objectivité tel que défini et utilisé en mécanique des milieux continus, soulève plusieurs questions. Deux notions se cachent en effet derrière ce concept : d'une part, l'indépendance vis-à-vis du changement d'observateurs, d'autre part, indépendant de la superposition de moumatériels. Elle est ancrée dans l'idée que les propriétés des matériaux doivent être indépendantes des observations faites par différents observateurs. Étant donné que différents observateurs sont liés par une transformation rigide dépendante du temps, connue sous le nom de transformation souligner que

  . Ce système convectif se déforme avec la déformation matérielle et n'est donc pas une transformation euclidienne. On ne peut donc pas considérer que la description lagrangienne est objective puisque cette dernière notion correspond à une invariance sous transformations euclidiennes.Néanmoins, dans la plupart des propositions et des manuels, la dérivée temporelle totale des tenseurs est remplacée par une dérivée partielle par rapport au temps lorsque la description lagrangienne est considérée[START_REF] Besson | Non-linear mechanics of materials[END_REF]. Nous considérons que de telles expressions pour les dérivées temporelles doivent être interrogé et travaillé en tenant compte du mouvement des vecteurs de base dans le temps. En conséquence, il est difficile d'écrire les équations du mouvement de Newton dans une description lagrangienne car elle ne correspond pas à un référentiel inertiel. Aussi, en ce qui concerne les modèles de comportements, le choix de la description,

qu'elle soit eulérienne ou lagrangienne est considérée comme un choix constitutif. En effet, il est affirmé dans la littérature que la description lagrangienne est incapable de rendre compte de la simple notion de direction principale de contrainte ou de déformation, car elles varient avec le choix du transport convectif

  ]. Au-delà du fait que ces affirmations sont en contradiction avec le fait que les deux descriptions sont équivalentes, le traitement de la notion d'objectivité au sein du choix des descriptions cinématiques semble nécessiter quelques éclaircissements.

	Pour les études par éléments finis, l'algorithme général concernant l'intégration non linéaire
	est découplé dans l'espace et dans le temps. Les équations d'équilibre 3D sont résolues sur le
	volume considéré pour chaque pas de temps. Ce n'est qu'alors que le temps est incrémenté
	et qu'un nouveau pas de temps est considéré. Ces formulations numériques non linéaires sont
	en général issues d'une mise à jour des méthodes existantes développées pour les cas de pe-
	tites déformations indépendants du temps. Selon le schéma d'intégration exact, le modèle de
	comportement et le problème de conditions aux limites, la convergence de la méthode peut
	être problématique (existence, stabilité, temps de calcul) y compris pour les problèmes élasto-
	plastiques. Le choix de la description est également essentiel lorsqu'on utilise la méthode des
	éléments finis. Lorsque le matériau subit des transformations finies et se déforme fortement,

la qualité des éléments se dégrade progressivement. Il est d'usage d'utiliser des techniques de remaillage dans ce cas. Le transport d'informations d'un maillage à l'autre est en soi un défi numérique. De plus, cela peut devenir coûteux en temps de calcul pour simuler des transformations finies

  . Le premier intérêt de la proposition est de bénéficier de définitions physiques pour les opérateurs de dérivées temporelles et les tenseurs cinématiques. Ces définitions sont par construction indépendantes de l'observateur et éventuellement invariantes par rapport à la superposition de mouvements de corps rigides. En utilisant un contexte thermodynamiquement cohérent, cela permet de formuler de nouveaux modèles de comportements et de redéfinir les modèles existants formulés de manière incrémentale. Les écarts constatés entre les différentes quantités objectives doivent être expliqués et le choix du transport va être justifié par des considérations physiques. Nous prévoyons également d'améliorer la convergence numérique de inertiels et de coordonnées curvilignes 4D qui pourraient être intéressantes pour une description convective du problème. De plus, une méthode pour dériver des modèles de comportements des matériaux à partir de considérations thermodynamiques, équivalente au concept de matériau standard généralisé, n'existe pas sous une forme covariante. De plus, les méthodes numériques spatio-temporelles basées sur une formulation covariante de la physique n'ont pas été utilisées dans le contexte des transformations finies des solides.

	porelle covariante, la cohérence mathématique des incréments variables pour chaque pas de
	temps va s'améliorer. Cela devrait accélérer la convergence. Nous souhaitons en outre formuler
	un schéma d'intégration 4D complet, en utilisant des éléments 4D et une intégration 4D en
	utilisant la formulation 4D qui va être dérivée dans le projet. Parce que le principe variationnel
	est directement intégré dans l'espace et le temps dans ce cas, nous nous attendons à trouver
	une opportunité majeure pour améliorer le temps de calcul. L'approche proposée devrait donc
	améliorer la qualité de la convergence des simulations numériques à la fois en termes de temps
	de calcul et de perspicacité physique.
	Il existe donc des opportunités de recherche pour reconsidérer les algorithmes d'intégration
	spatio-temporelle pour améliorer la convergence des FEA non linéaires. Nous proposons de
	construire une description quadridimensionnelle totalement covariante des transformations fi-
	nies d'un matériau, en considérant les hypothèses classiques de la physique newtonienne et en
	utilisant le cadre mathématique de la géométrie différentielle. La mécanique des continuums
	matériels ainsi décrite, et les modèles de comportements associés, sont alors nécessairement
	indépendants de l'observateur.

la FEA avec l'approche covariante. Il réduira le temps de calcul pour l'intégration du modèle de comportement car il permet de calculer directement une valeur exacte pour le transport sans avoir besoin de configurations tournées intermédiaires (en extrayant analytiquement la formule 3D adaptée). Elle devrait également permettre une meilleure formulation des opérateurs tangents et devrait ainsi accélérer la convergence de l'intégration implicite. Lorsque les transports objectifs utilisés dans le schéma d'intégration non linéaire sont remplacés par une dérivée tem-non

  Duhem et une méthode originale pour construire des modèles de comportements covariants pour décrire le comportement du matériau sous transformations finies. Une formulation faible espace-temps des équations est finalement proposée avec sa discrétisation par éléments finis. Dans le dernier chapitre, l'approche est d'abord illustrée par plusieurs dérivations cinématiques analytiques pour des mouvements simples. Une originalité du présent travail est de construire une méthode des éléments finis au sein de la description spatio-temporelle proposée pour résoudre plusieurs problèmes (Section 4).

	est
	proposé pour la mécanique des milieux continus dans la Section 2. L'originalité de la propo-
	sition réside dans le fait que nous considérons une approche covariante générale, qui permet
	d'interpréter de manière satisfaisante la description lagrangienne et son équivalence avec la
	description eulérienne. Ensuite, nous formulons le problème thermo-mécanique (Section 3) et

en particulier écrivons les équations de conservation à quatre dimensions. Nous utilisons des opérateurs de projection pour interpréter physiquement ces équations. Nous proposons ensuite une formulation spatio-temporelle covariante pour l'inégalité de Clausius-

2.4 La description lagrangienne comme choix de système de coordonnées

  Dans les deux systèmes de coordonnées spécifiques, propre et convectif, les coordonnées des événements sont définies de telle sorte que la transformation entre le mouvement de référence et le mouvement considéré devient l'identité pour le système de coordonnées convectives et proche de l'identité pour le système de coordonnées propre si v < c et ainsi γ ≈ 1. C'est le système de coordonnées qui se transforme et se déforme en suivant le mouvement.

	L'application des équations 7, 8 et 9 pour le changement entre le système de coordonnées
	inertiel et propre conduit à :					
	α =	∂z µ ∂ xν α			(22)
	αµν =	∂z λ ∂ xµ	∂z κ ∂ xν α λκ			(23)
	α µν =	∂z α ∂ xβ	-1 ∂z µ ∂ xλ	∂z ν ∂ xκ	αλκ	(24)
	pour respectivement, une densité scalaire de poids égale à un, un tenseur covariant du second
	ordre de poids égal à zéro et une densité de tenseur contravariant du second ordre de poids
	égale à un. De plus, si v << c, la matrice jacobienne est :	
		∂z µ ∂ xν ≈ F µ ν			(25)
	Les équations 22, 23 et 24 ci-dessus sont donc interprétées comme l'équivalent spatio-temporel
	du transport convectif.					

L'objectif de cette section est d'étudier la possibilité offerte par un formalisme spatio-temporel d'établir la description lagrangienne 3D avec un choix spécifique de système de coordonnées 4D.

Ainsi, l'expression 3D des tenseurs et des équations dans la description lagrangienne peut être obtenue à partir de la description spatio-temporelle lorsqu'elle est exprimée dans le système de coordonnées propre avec une projection spatiale ou temporelle et pour v << c. La description lagrangienne peut être considérée comme un choix du système de coordonnées dans un formalisme spatio-temporel. C'est un avantage majeur. Aucune considération particulière n'est à faire concernant une description lagrangienne qui peut être dérivée avec une projection des équations sur un système de coordonnées 4D spécifique : le système de coordonnées propre.

Nous utiliserons les outils présentés dans cette section pour proposer la thermomécanique des milieux continus espace-temps.

3 La

thermomécanique des milieux continus espace-temps

  Le but principal de cette section est d'introduire une description covariante des problèmes thermomécaniques ainsi qu'une proposition pour leur discrétisation. Les principes et hypothèses utilisés dans la construction d'une telle formulation sont énumérés en premier. Ensuite, les grandeurs les plus importantes sont définies et une formulation spatio-temporelle des équations qui les régit est proposée. Les équations de conservation et les inégalités thermodynamiques sont écrites selon ce formalisme covariant. Chacune de ces équations est ensuite dérivée dans les systèmes de coordonnées propres et inertiels. Il est possible de comparer la formulation dans le système de coordonnées inertielles avec les équations classiques 3D constitutives et dynamiques dans le cas non relativiste, aussi

6 Formulation du problème d'espace-temps pour les transformations thermo- élastiques isotropes

  = -3κα(θ -θ 0 ) g µν -2e µν + e γβ g γβ g µν + λ   e γβ g γβ g µν -2e µν + e γβ g γβ 2 + 2µ e µν -2 e µ β e βν sym + e γβ e γβ g µν (44) Les équations ci-dessus correspondent à un exemple de modèle de comportement covariant non linéaire pour les solides thermo-élastiques isotropes. Nous avons dérivé une forme pour le tenseur énergie-impulsion pour ce cas. Considérons une variété 4D d'hypervolume Ω la limite de cet hypervolume est ∂Ω (un volume 3D). Les points de la variété sont des événements de coordonnée x µ . Les grandeurs indépendantes choisies pour décrire une transformation thermo-élastique isotrope dans une formulation spatio-temporelle, sont listées dans le tableau B.1. Ces quantités sont définies pour tout événement x µ de la variété. Les grandeurs d'intérêt, apparaissant dans les équations de conservation, utiles pour la description de la transformation ou la compréhension des phénomènes physiques subis par le système sont listées dans le tableau B.2. Plusieurs paramètres ont été définis pour décrire la transformation : ils sont répertoriés dans le tableau B.3. Enfin, tableau B.4 rappelle les équations utilisés pour obtenir la solution du problème. On note que cinq inconnues pour chaque événement x µ ont été choisies et cinq équations doivent être résolues.

	Inconnue principale θ ρ c u	0 Temperature (θ 2 -θ 2 0 ) + 3θ 0 nom Masse volumique au repos Densité scalaire κα ρ c I I + λ 2 ρ c I 2 I + µ ρ c σ 2 g µν I II    Type Nombre de d'inconnu scalaire 1 1 q T µν Vitesse Vecteur 3	(42)

µ = Kg µν (∇ ν θ -θa ν ) (43)

3.

Table B . 1 :

 B1 Variables d'état local choisies pour décrire les grandes déformations thermoélastiques isotropes ; ces quantités sont définies pour chaque événement x µ . Rappelez-vous que les quatre vitesses sont un vecteur unitaire et correspondent donc à trois inconnues pour le problème.Nous proposons maintenant une formulation faible quadridimensionnelle du problème. Définir un vecteur virtuel r * . La conservation du tenseur de la quantité d'énergie s'écrit alors :

	Quantité	Nom	Définition	nombre
				d'inconnu
	d	Taux de	d µν = 1 2 L u (g µν )	6
		déformation		
	e	Déformation d'Euler L u (e µν ) = d µν	6
		projeté sur l'espace		
	T	Energie-momentum	T (θ, ρ c , u, e)	10
	3.7 Formulation variationnelle spatio-temporelle	
				(45)

Ω r * ν ∇ µ T µν dΩ = 0 ∀r * .

Table B . 2 :

 B2 Grandeurs d'intérêt pour la description des transformations thermo-élastiques isotropes finies ; ces quantités sont fonction des variables indépendantes et sont définies pour chaque événement x µ . Ce sont des tenseurs du second ordre. Rappelons que le taux de déformation et la déformation eulérienne sont des tenseurs d'espace et ne correspondent donc qu'à six inconnues.

	Paramètre	Nom	Type	Définition
	c	Vitesse de la lumière	Scalaire	3 × 10 8
	θ 0	Température de mouvement neutre	Scalaire	-
	C	Chaleur spécifique	Scalaire	-
	κ	Module d'élasticité	Densité scalaire	λ + 2µ/3
	α	Coefficient de dilatation thermique Densité scalaire	-
	λ	Lamé coefficient	Densité scalaire Eν/((1 + ν)(1 -3ν))
	µ	Lamé coefficient	Densité scalaire	E/(2(1 + ν))
	K	Conductivité thermique	Scalaire	-

Table B . 3 :

 B3 Paramètres introduits pour décrire la transformation ; ces quantités sont définies pour chaque événement x µ T σ T σ est donné par l'équation 40, l'énergie interne est (avec la définition de l'énergie libre dans la section 3.4 et l'équation 39) :

							Nombre d'équations	
	Conservation de la masse au repos			1		
	Conservation du tenseur énergie-impulsion		4		
	e int =	C 2θ 0	(θ 2 -θ 2 0 ) + 3θ 0	κα ρ c	(e µν g µν ) +	λ 2 ρ c	(e µν g µν ) 2 +	µ ρ c	(e µν e µν )	(47)

Table B.4: Équations de conservation

Pour résoudre le problème, nous devons trouver θ(x µ ) et u(x µ ) tels que :

∂Ω T µν n µ r * ν dV -Ω T µν ∇ µ r * ν dΩ = 0 ∀r *

(46)

où T T T est donné par l'équation 31, T σ
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where e is the addition operator over the elements, {r e * } is the virtual vector relative to the corresponding element, and {r e } is the vector formed on the nodal unknown of the element:

and { TN ({r e })} = { T ({r e })}.{n e } is the Neumann boundary condition applied on the elementary hyper-surface ∂Ω e and {n e } is the outward normal vector of the element (e). The integration is over the hyper-volume Ω includes the space and the time integration. We can write:

[N ] T .{ TN ({r e })}dV - The presented method is a space-time finite element method where no additional steps to study the evolution on time since it is included in Ω. Then the problem will be discretized in space and time simultaneously. We used FEniCS as an open source software that solves partial differential equations. This software enables the construction of 3D meshes. It led to the implementation of 2D+1 problems and not 4D problems. Thus, finding another software to build higher-order meshes may be a solution to solve 4D problems numerically, with no need to reduce the space dimension.

4D uni-axial traction

In Chapter 3, we proposed to construct covariant constitutive models to study the isotropic thermo-elastic transformation. As for future work, the proposed method can be used to build and analyze the behavior of any type of material in space-time formalism. It is interesting to develop the models for various types of material behavior, such as visco-elasticity, plasticity, visco-plasticity materials, by considering the dissipation terms of viscosity. And for any materials, isotropic materials, anisotropic materials, composite materials, sandwich materials ...

Eventually, for the validation tests of the thermo-mechanical applications (Chapter 4), we choose to study simple cases of small deformations where the 2D analytical solutions are known to compare with the 2D+1 numerical solutions. We can apply this formalism to study the behavior of materials that undergo more complicated loads and superposed loads for future work.

Comparing the calculus time between the 2D+1 and 2D numerical resolution could be interesting for complicated material behavior, when no analytical solution exist.

Appendix A Notation

This section presents the notation used in the manuscript to clarify and facilitate reading the manuscript.

The index and the compact notation are used to present and introduce the 3D and 4D tensors.

The index notation is used when the physical entity depends on the choice of the coordinate system; it allows differentiating between the contravariant and covariant components and distinguish the specific form of tensors in the coordinate system. Classically, the upper indices on the entities denote the contravariant components of the tensor, while lower indices denote its covariant components. The compact notation is valid for all observers and coordinate systems.

We will adopt Einstein's summation convention over the repeated index. The Greek indices label the four-dimensional entities, µ, ν, κ . . . run from 0 to 3, while the Roman indices i, j, k... run from 1 to 3, label the spatial quantities.

We also choose to write entities in the general coordinate system unless mentioned otherwise (curvilinear coordinate system, inertial coordinate system, for example).

Lower case letters x will denote functions belonging to the Eulerian description, while the upper case letters like X will denote those belonging to the Lagrangian description (see Chapter 2), except for the velocity vector. 

List of operators