N
N

N

HAL

open science

Studies on Auction Mechanism and Bid Generation in
the Procurement of Truckload Transportation Services
Ke Lyu

» To cite this version:

Ke Lyu. Studies on Auction Mechanism and Bid Generation in the Procurement of Truckload Trans-

portation Services. Business administration. Université de Technologie de Troyes; Northwestern

Polytechnical University (Chine), 2021. English. NNT: 2021TROY0032 . tel-03810694

HAL Id: tel-03810694
https://theses.hal.science/tel-03810694v1

Submitted on 11 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-03810694v1
https://hal.archives-ouvertes.fr

These

de doctorat
de 'UTT

Ke LYU

Studies on Auction Mechanism
and Bid Generation in the Procurement
of Truckload Transportation Services

Truckload transportation  Tranportation service procurement
with travel duration limited by auctions in electronic market
l Clock auction phase ]-—[ Bid generation proble ]

Two-phase combinatorial auction mechanisms

Champ disciplinaire :
Sciences pour I'Ingénieur

2021TROY0032 Année 2021

Thése en cotutelle avec Northwestern Polytechnical University -
Xi’an Shaanxi - Chine

EEEEEEEEEEEEEEEEEEEEEEE

TROYES




THESE

pour l’obtention du grade de

DOCTEUR
de I’UNIVERSITE DE TECHNOLOGIE DE TROYES

en SCIENCES POUR L’INGENIEUR

Spécialité : OPTIMISATION ET SURETE DES SYSTEMES

présentée et soutenue par

Ke LYU

Le 8 octobre 2021

Studies on Auction Mechanism and Bid Generation
in the Procurement of Truckload Transportation Services

JURY
M. Christian PRINS PROFESSEUR DES UNIVERSITES Président
Mme Marie-Ange MANIER MAITRE DE CONFERENCES - HDR Rapporteure
M. Nengmin WANG PROFESSOR Rapporteur
Mme Xi CHEN PROFESSOR Examinatrice
Mme Jingwen ZHANG PROFESSOR Examinatrice

Personnalités invitées

M. Ada CHE PROFESSOR Directeur de thése
M. Haoxun CHEN PROFESSEUR DES UNIVERSITES Directeur de thése



Acknowledgements

The work of this thesis was carried out in Computer Science and Digital Society
(LIST3N) laboratory, Logistics and Industrial Systems Optimization (LOSI) team at
University of Technology of Troyes (UTT). It is funded by China Scholarship Council
(CSC).

This work was conducted under the supervision of Prof. Haoxun Chen and Prof.
Ada Che. | would like to express my sincere gratitude to them for their valuable
guidance and incessant support. Their rigorous academic spirit and diligent work
attitude deeply inspired me and set an example for me in both my research work and
life.

I also would like to express my special thanks to Ms. Marie-Anger MANIER and
Mr. Nengmin WANG for accepting the review of my PhD thesis, and Mr. Christian
PRINS, Ms. Xi CHEN and Ms. Jingwen ZHANG for agreeing to examine this thesis.

I would like to thank all the researchers, secretaries and colleagues in LOSI, and
the staffs of the doctoral school of UTT for their helps in the past years. | would like
to thank all my friends for their care and encouragement during my stay in France.

Most of all, I would like to thank my parents and my husband for their supports,
encouragements, and love.






Résumé

Résumé

Le transport par camions entiers est un mode courant de transport de
marchandises, qui représente une part importante de I’industrie de transport, ou les
expéditeurs achétent des services de transport auprés des transporteurs. L'achat de
services de transport est souvent réalisé par des enchéres. Par concevoir des
mécanismes d'encheres efficaces et des methodes efficaces pour résoudre les
problemes de génération d'enchéres associés, les expéditeurs et les transporteurs
peuvent réduire leurs codts et augmenter leurs bénéfices respectivement.

Cette thése étudie trois problémes souleves dans I'achat de services de transport
par camions entiers réalisé par une enchére combinatoire. Premierement, deux
mécanismes d'encheres combinatoires a deux phases sont congus avec des paquets
supplémentaires de demandes offerts a I’enchere générés respectivement par le
commissaire-priseur et les transporteurs dans la deuxiéme phase. Deuxiémement, un
algorithme de génération de colonnes est proposé pour résoudre le probleme de
géneration d'encheres apparu dans I'enchére combinatoire. Enfin, le probleme de
génération d’enchéres est étendu a un probleme qui tient compte a la fois plusieurs
périodes et I'incertitude dans I'achat de services de transport par camions entiéres. Ce
probleme d'optimisation stochastique est formulé par I’optimisation de scénario et
I’équivalence déterministe. Pour résoudre ce modele, une approche de décomposition
de Benders est proposée.

Mot clés: transport de marchandises, vente aux enchéres, probléeme de tournée de
véhicules, optimisation combinatoire, programmation (mathématique)
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Abstract

Truckload transportation is a common mode of freight transportation, which
accounts for a substantial portion of transportation industry, where shippers procure
transportation services from carriers. Transportation service procurement is often
realized by auction. Through designing effective auction mechanisms and efficient
methods for solving related bid generation problems, shippers and carriers can save
costs and increase profits respectively.

This thesis studies three problems raised in the procurement of truckload
transportation services realized by combinatorial auctions. Firstly, two two-phase
combinatorial auction mechanisms are designed with supplementary bundles of
requests offered for bid generated by the auctioneer and the carriers respectively in the
second phase. Secondly, a column generation algorithm is proposed to solve the bid
generation problem appeared in the combinatorial auction. Finally, the bid generation
problem is extended to one that considers both multiple periods and uncertainty in
truckload transportation service procurement. This stochastic optimization problem is
formulated through scenario optimization and deterministic equivalence. To solve this
model, a Benders decomposition approach is proposed.

KEYWORDS: freight and freightage, auctions, vehicle routing problem,
combinatorial optimization, programming (mathematics)
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1 Introduction

1 Introduction

1.1 Research background

Freight transportation plays an important role in economic and social life. In
terms of economy, it is a major economic activity since households, businesses, and
the government all consume transportation goods and services. In term of society,
freight transportation connects producers and customers as well as provides many job
opportunities. Due to different means of transportation, freight transportation is
usually sorted as road, rail, air, maritime and inland waterways transportation, among
which road transportation undertakes most of the transportation volume both in
mileage and weight. According to the statistical data from relevant departments, in
2018 and 2019, the proportion of road transportation in total transportation exceeds
70% in American. China and most European countries (ATA, 2019; eurostat, 2018;
MOT, 2019).

For road transportation, in consideration of how the transportation goods or
requests are organized, there are two major categories of transportation, direct
transportation and consolidated transportation (Caplice & Sheffi, 2006). These two
categories are usually known as truckload (TL) transportation and less than truckload
(LTL) transportation. In TL transportation, the goods in each request take up the entire
space or capacity of each vehicle. This mode of freight transportation is commonly
chosen when a shipper has enough goods to fill an entire truck, the goods are
time-sensitive, or the shipper prefers the use of a dedicated truck to transport its goods.
The benefit of truckload transportation is that the goods can be shipped directly from
origin to destination, which guarantees the time efficiency of transportation while
avoiding possible damages caused by repeatedly loading and unloading goods during
a transportation process. LTL transportation is as opposed to truckload transportation.
In less than truckload transportation, a vehicle may serve multiple requests
simultaneously. During the service of one request, the vehicle may visit some other
terminal to upload or download goods. Since truckload transportation takes up about
70% of total road transportation, this thesis focuses on TL transportation.

With the continuous development of market, both products and services pursue
refinement. Manufacturers or distributors usually choose to outsource the
transportation tasks to professional freight companies. That is, the shippers procure

transportation services from the carriers. TL transportation market is fragmented,
1
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competitive and operates on low profit margins, which makes transportation service
procurement significant for both shippers and carriers to seek economic efficiency.
For shippers, they want control costs and provide high level service to their customers.
For carriers, they want to reduce empty vehicle repositions and operate efficiently.
However, trucking consumes amounts of fuels as well as cause air and sound
pollution. So, except for individual economic efficiency, social efficiency must be
taken into consideration. In this context, a reasonable method is needed for the
procurement of truckload transportation service.

The process that shippers procure transportation service for multiple requests
from multiple carriers can be seen as an allocation problem (Lim et al., 2008). In other
words, the shippers assign their transportation requests to a group of carriers. The
allocation of these requests may be realized by a centralized approach or a
decentralized approach. The centralized approach, which is based on a centralized
mathematical programming model, requires the revelation of confidential cost
information of the carriers and is thus not very practical. The decentralized approach,
on the other hand, is a game playing between shippers and carriers and which include
many different mechanisms. Among different decentralized approaches, combinatorial
auction (CA) is strategic in the booming electronic trucking market (Caplice, 2007;
Caplice & Sheffi, 2006).

Combinatorial auction is a representative auction-based mechanism for
transportation service procurement which allows the carriers to bid for several
requests at one time while the single item auction only allows a single request in the
bid. This characteristic increases the efficiency of the auction, and then makes
combinatorial auction more and more popular (Abrache et al., 2007; De Vries &
\ohra, 2003). In combinatorial auctions, the auctioneer is on behalf of the shippers,
and the bidders are the carriers who want to serve the transportation requests of the
shippers. For the carriers, one advantage of combinatorial auction over the centralized
approach is that they do not need to reveal their business data such as the existing
contracts, transportation costs to serve the requests open for bid and the number of
vehicles. Since combinatorial auction plays an important role in the procurement of
transportation services, the mechanism for each combinatorial auction must be well
designed to achieve efficiency.

Base on the number of rounds that processes in CA, the CA mechanisms
designed can be sorted as single-round (one-shot) CA and multi-round (iterative) CA.
A single-round CA only processes the bidding once while an iterative CA iterates the
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process of single-round combinatorial auction until some stopping conditions are
satisfied. The simplified routine of single-round CA in transportation service
procurement can be described as follows.
1) The auctioneer representing the shipper(s) provides a set of transportation
requests with outsourcing prices in the auction pool.
2) The bidders (carriers) submit to the auctioneer their bids for a bundle of
requests based on the request information to maximize their profits.
3) The auctioneer finds an optimal allocation of the requests to the bidders to
minimize its cost, that is, to determine the winners of the bids.
And a general process of multi-round CA is illustrated in Fig. 1-1 (Kwon et al.,
2005).

Auctioneer Carriers Auctioneer Lanes and

L o | generate and | solves Winner o .

ces initial - - =] business |
) submit Determination

ask prices " allocated

package bids Problem

A

Auctioneer
update
individual
lane prices

Stopping™, N
condition
satisfied

Provisional allocation and new ask prices

Figure 1-1 General process of multi-round combinatorial auction

Two major decision problems have to be solved in the auction process. The first
one is usually referred as the bid generation problem (BGP), That is, each carrier
generates its bid by selecting the requests to be included in its bundle (bid). The
second one is the winner determination problem (WDP), in which the auctioneer
determines the winners of the bids submitted by all bidders. Bid generation problem is
usually NP-hard (Park & Rothkopf, 2005) , the same as winner determination problem
(Rothkopf et al., 1998).

1.2 Studied problems and contributions

This thesis is devoted to investigating problems of combinatorial auctions for the
procurement of truckload transportation services, from both the overall and individual
perspective. From the overall perspective, the design of auction mechanism is studied
with the consideration of social efficiency. And from the individual perspective, one
of the major decision problems, the bid generation problem in combinatorial auctions
of different context is studied for the sake of economic efficiency of single carrier.
With these considerations, some issues are noticed in combinatorial auction.

Firstly, due to the decentralized nature of combinatorial auction, it is very

3
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difficult to allocate all requests in the bidding pool at a stroke. In this context,
multi-round combinatorial auction emerges to solve this problem. A multi-round
combinatorial auction is that the auction process iterates multiple rounds to seek better
allocation. However, without information sharing among carriers, the requests in the
bundle of each carrier may be overlapping, i.e., some requests are competed by
several carriers, while some other requests are not bid by any carrier. Such
combinatorial auctions are often stopped with an inefficient allocation, which fail to
procure services for all the requests. Even get an efficient allocation, the auction may
take a large number of rounds.

Secondly, as major transportation service providers, how truckload carriers
operate can influence the efficiency of the whole logistics system. In multi-round
combinatorial auctions, bid generation problem of each carrier is crucial because the
bids they submitted are the base of winner determination problem, and may influence
the adjustment of the outsourcing prices of the requests in next round. Since all
carriers are profit-driven, the requests they chose to bid for must be the ones that can
bring them more profit. One request will be chosen by a carrier either it can fill up the
empty vehicle reposition or the income of serving this request exceeds the cost of
additional route. So, bid generation problem is usually a variant of vehicle routing
problem. This problem is NP-hard and is difficult to get solution in a reasonable time
for large scale problems.

Thirdly, the truckload transportation market is very competitive, which requires
carriers to grasp future opportunities in transportation service. To achieve this goal,
when a carrier plans its transportation operations, it must consider not only its present
transportation requests but also the requests it may acquire in future. As pointed out
by Wang et al. (2014) and Wang and Kopfer (2015), the assumption that only
allowing the carriers to compete for the transportation requests available in the current
period in an auction is rather restrictive. A more efficient auction needs to be
conducted in a rolling horizon way which considers several periods (days) in its
request allocation. In addition, some requests may emerge in future periods but cannot
be foreseen in the current period. Whether or not to consider these future requests in
the bid generation problem will have a significant impact on the efficiency of the
auction over a long term.

This thesis studied three problems that aim at providing an optional solution to
each of the issues mentioned above, as well as some managerial insights to the
stakeholders in truckload transportation market. One of the problems focuses on
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designing CA mechanisms for truckload transportation service procurement, while the
other two devote to solving the bid generation problem in the process of CA.

(1) Design of two-phase multi-round combinatorial auction mechanisms with
supplementary bundles of requests offered to bid generated by the auctioneer
and the carriers respectively in the second phase. Each step in the designed
mechanism is formulated with mixed-integer linear programming (MILP)
model. Computational experiments are conducted with randomly generated
instances of different problem size as well as different proportion of number
of rounds of the clock auction in the total CA rounds. Compared with
single-phase clock auction, the designed two-phase mechanisms have evident
advantages in time efficiency and cost savings for the auctioneer. Meanwhile,
the social efficiency of the auction’s outcome (request allocation) is
improved by the two mechanisms.

(2) Bid generation problem of a single carrier in the designed auction mechanism.
The bid generation problem is extended to a more general case with
pre-existing commitments of the carrier. Since the MILP model of this
problem cannot get an optimal solution of large problem scale in reasonable
time, a column generation algorithm is proposed to solve the problem
appeared in the combinatorial auction. Numerical experiments of randomly
generated instances demonstrate that the proposed algorithm can quickly find
a near-optimal solution of the studied problem.

(3) Bid generation problem considering multi-period and uncertainty in
truckload transportation service procurement. This stochastic optimization
problem is formulated as a MILP model through scenario optimization and
deterministic equivalence. To solve the model, a Benders decomposition
approach is proposed. Computational results with both randomly generated
and realistic instances demonstrate that the Bender decomposition approach
is much more efficient than CPLEX solver in terms of computation time for
solving large instances of the model. The value of considering uncertain
requests and multiple periods in the bid generation is also evaluated by
numerical experiments.

Part of the work in this thesis has been presented in two papers. A paper related

to the third problem is published in an international journal (Lyu et al., 2021) and a
paper related to the first problem is published in the proceedings of an international
conference (Lyu et al., 2020).
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1.3 Organization of the thesis

This thesis is organized as follows. Chapter 1 generally introduced the research
background of the thesis and briefly describe the problems studied in the thesis. The
contribution of this thesis is also expounded. Chapter 2 gives a review on literatures in
related fields of the studied problems from several aspects. Chapter 3 is devoted to the
design of two-phase combinatorial auction mechanisms which are used to realize
truckload transportation service procurement of the auctioneer from multiple carriers.
Chapter 4 investigates a bid generation problem for a single carrier that participate in
combinatorial auctions for truckload transportation service procurement. Chapter 5
considers a bid generation problem in truckload transportation service procurement
considering multiple periods and uncertainty. Chapter 6 concludes the work of this
thesis with the perspectives for future research. The outline of this thesis is illustrated
in Fig. 1-2.

Chapter 1 Introduction

\ 4

Chapter 2 Literature review

Chapter 3 Two-phase combinatorial auction mechanisms
with supplementary bundles of requests

\ 4

Chapter 4 Column generation algorithm for a bid
generation problem

A 4

Chapter 5 Model and Benders decomposition algorithm
for a bid generation problem considering multiple periods
and uncertainty

Y

Chapter 6 Conclusions and perspectives

Figure 1-2 The outline of this thesis
6
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2 Literature review

2.1 Freight transportation service procurement in electronic market

Freight transportation service procurement matches shippers’ transportation
requirements and carriers’ capacities. In recent decades, the development of electronic
commerce facilitates the development of freight transportation, online marketplaces
for freight transportation service procurement emerge in numbers, such as
FreightMatrix, Freight-traders and logistics.com. The electronic market makes the
connection and collaboration easier among the shippers and the carriers.

Nandiraju and Regan (2003) used case studies to depict the freight transportation
electronic market at that time. The classified the market mechanisms and discussed
some of the key research problems for developing methodologies. Figliozzi et al.
(2004a) compared the performance of electronic marketplaces with different
sequential auction settings for the truckload transportation service procurement.
Learning methodologies for finding good bidding strategy were also discussed.
Caplice (2007) studied truckload transportation service procurement in the context of
electronic market, with the consideration of marketplace formats, and how they were
used. Collignon (2016) conducted exploratory and empirical analysis of electronic
marketplaces for truck transportation services procurement which concern about the
features, typology and performance of electronic marketplace. Lafkihi et al. (2017)
also classified the mechanisms for freight transportation. Later, they gave a more
complete overview of freight transportation service procurement with refined
theoretical framework (Lafkihi et al., 2019). In this work, they classified the
literatures of freight transportation service procurement with different criteria such as
procurement mechanisms, market characteristics, procurement mechanism outcomes
and research methodologies. From their literature study, the trends and gaps from the
viewpoints of practitioners were identified and future prospects in freight
transportation markets were also described. A review that focused on truckload
transportation service procurement with statistical data was presented by Jothi Basu et
al. (2015)

These works gave a macroscopical view of transportation service procurement in
electronic market. Although variety of frames or mechanisms are used by different
electronic marketplaces, the literatures commonly classified them into three major

categories: auctions, catalogs and exchanges (negotiations), while the modes of
7
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procurement can be long-term contract and spot market. According to the literatures,
Auction-based mechanism is widely used in transportation service procurement.

2.2 Auction-based  mechanisms  for  transportation  service
procurement

Auction-based mechanism plays an important role in transportation service
procurement, many different auction-based mechanisms can be found in former
research works, for example, single-item auctions, combinatorial auctions, and double
auctions. This thesis focuses on studying combinatorial auctions for truckload
transportation service procurement (TSP). In this section, research works related to
combinatorial auctions for transportation service procurement is reviewed with a
glimpse of other auction-based mechanisms.

2.2.1 Combinatorial auctions for transportation service procurement

Combinatorial auction (CA) is first proposed by Rassenti et al. (1982) for the
allocation of airport landing slots. CA allows the bidders to place bids on
combinations of items rather than individual items. This mechanism expressed the
synergies across bundles of goods or services, which has the potential to lower the
cost and increase efficiency (Lunander & Lundberg, 2013). Many works provided
theoretical and practical knowledge for designing CA (Abrache et al., 2004; Bichler et
al.,, 2009; De Vries & Wohra, 2003; Peke¢ & Rothkopf, 2003). Except for
transportation service procurement, CA is also adopted by many different industry
environments such as robot coordination, pollution permits trade, manufacturing
scheduling, school meals catering and so on (Berhault et al., 2003; Epstein et al., 2004;
Kutanoglu & Wu, 1999; Leyton-Brown et al., 2000).

There are many different CA mechanism (Cramton et al., 2006), some of them
are well adopted by the scholars and practitioners. The Vickrey-Clarke-Groves (VCG)
mechanism (L. Ausubel & Milgrom, 2006) is a CA mechanism in which bidders
report their valuations for all packages. Items are allocated efficiently to maximize the
total value. Each winner pays the opportunity cost of his winnings: the incremental
value is derived by assigning the bidder’s items according to their next best use. The
clock auction (L. Ausubel et al., 2006) is an iterative CA mechanism in which the
auctioneer announces prices of the items, and the bidders indicate the quantities of
each item. Prices for items with excess demand will be adjusted, then each bidder
express quantities at the new prices. Progressive Adaptive User Selection
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Environment (PAUSE) (Kelly & Steinberg, 2000; Land et al.,, 2006) is a
computationally tractable CA mechanism in which the auctioneer does not face the
winner determination problem. The responsibility of evaluating a combinatorial bid is
transferred to the bidder who is making the bid.

The use of CA for transportation service procurement increased dramatically
throughout the 1990s (Caplice & Sheffi, 2003, 2006). Sears Logistics Services seems
to be the first to use CA for the procurement of transportation services. According to
Ledyard et al.(2002), in 1995, Sears Logistics Services conducted a “combined-value
auction” involving 854 lanes with a cost of 190 million dollars per year. Since then,
CA began to be widely used on trucking service procurement. Dozens of companies
adopted CA in their logistics operations to reduce transportation costs and achieve
higher levels of service, such as Colgate-Palmolive Company, Ford Motor Company,
Nestle S. A. and Wal-Mart Stores Inc. (Sheffi, 2004). With the considerations of
incorporating service level and some other nonprice variables into the frame of CA,
Sheffi (2004) drew a conclusion that CA allows both shippers and carriers to exploit
the economies of scope inherent in truckload transportation. Later, Caplice and Sheffi
(2006) explored CA used for truckload transportation from the perspective of shippers
and carriers respectively, where the differences between TSP auctions and other
auctions were examined.

Like conventional CA, the CA mechanisms designed for TSP in the works can be
also sorted as single-round (one-shot) CA and multi-round (iterative) CA. It is
reported that when Sears Logistics Services used combinatorial, it chose an iterative
version of procurement auction with sealed bids. In this iterative auction, the bidding
proceeds in multiple rounds. The iterative combinatorial auction is also referred as
multi-round combinatorial auction nowadays. Compared with single-round CA,
multi-round CA has two advantages. One is that multi-round CA can simplify the bid
generation of bidders by providing price information of each request or each bundle
of requests in each round. The other advantage is that multi-round CA provides a
price-discovery process to bidders, which allows bidders to submit more relevant bids
to maximize the social efficiency of the auction.

Some scholars believe that research for CA mainly focused on multi-round CA,
while single-round CA are commonly used in practice (An et al., 2005). But in
transportation service procurement, it seems that both single-round and multi-round
CA drew the attention of researchers.
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2.2.1.1 Single-round CA mechanisms for TSP

Song and Regan (2003) examined the benefits of CA for transportation service
procurement from the perspective of carriers. Optimal bidding strategy was discussed
with optimal operating cost calculated. Based on a simple simulation model, they
examined the impact of CA with inherent and difficult subproblems. Although they
only studied the case with the number of requests on each lane limited to one, the
results can still demonstrate potential benefits of CA for the procurement of
transportation services.

Based on their teaching case study, EImaghraby and Keskinocak (2000; 2004)
presented an overview of combinatorial auctions and the experience of Home Depot
in using a single-round CA mechanism for outsourcing truckload transportation
capacity. In the case studied, carriers enjoyed much more freedom under the
traditional auction settings of Home Depot. Carriers were allowed to submit bids with
one or multiple lanes. In addition, they were able to specify additional restrictions on
their aggregate bids. They reported that this was a successful implementation of the
CA for transportation service procurement.

Srivastava et al. (2008) investigated CA used in the procurement of global
transportation services. A single-round CA mechanism was designed with bid
generation and evaluation. Although the numerical experiments showed that the
single-round CA mechanism performed well, the authors pointed out that multi-round
auctions for the proposed procurement would have many advantages to be explored in
the future.

Chen et al. (2009) developed models of CA for truckload service procurement in
a single round as well as presented an implicit bidding approach that enables the
complete set of all possible bids are considered. The tractability of the proposed
approach was proved by numerical experiments.

2.2.1.2 Multi-round CA mechanisms for TSP

Kwon et al. (2005) considered an integrated multi-round CA mechanism for
truckload transportation service procurement. In this mechanism, the shippers allowed
bids with a bundle of requests and solve the winner determination problem to assign
the requests to the carriers. The carriers, on the other hand, generate bids by
employing optimization models to discover profitable lanes in each round. Price
information was adjusted according to the result of the winner determination problem
which influence the bidding decision of the carriers for the next round. In the

designed framework of CA, the item prices were constructed to be used as
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coefficients in bidder optimization problems rather than bundle prices. Numerical
results illustrated that the CA mechanism proposed in this work benefited both
shippers and carriers. An elaboration and extension of this work can be found in Ma
(2008), in which a bid generation problem for carrier and a stochastic winner
determination problem with shipment volume uncertainty in CA were also discussed.

Day and Raghavan (2008) described a multi-round combinatorial procurement
auction format which incorporated features from the PAUSE auction of Kelly and
Steinberg (2000) and the clock—proxy auction of Ausubel et al. (2006). Bundle
synergy information was provided for all interactive phases in the CA. The revelation
of price information on individual items was emphasized in order to reduce the
number of bundles. The tractable winner determination problem makes this auction
format well-suited to large combinatorial auctions.

Tian et al. (2011) discussed a practical transportation service procurement
problem originated from an external project. Their work devoted to developing a CA
strategy to help the department of transportation purchasing at Royal Philips to
determine the annual transportation service procurement cost. The problem was
formulated into a linear integer programming model and proved to be NP-hard. So,
iterative rounding heuristic algorithm was proposed which achieved good-quality
solutions.

Wang and Wang (2015) proposed an applicable mechanism of two-round CA
with bundling optimization in freight transportation service procurements. In this
mechanism, after a first-round auction, the auctioneer integrates the requests into
several bundles based on former bidding results obtained from the winner
determination problem. Then, the carriers bid for the bundles proposed by the
auctioneer in the second round of auction. The bundling optimization problem by the
auctioneer was described as a multi-objective model with two criteria on price
complementation and combination consistency. A quantum evolutionary algorithm
was developed as well as compared with a contrast genetic algorithm. Computational
results demonstrated that the algorithm they proposed performed better for small and
middle size problems.

2.2.2 Other common auction-based mechanisms

Varies of auction-based mechanisms were designed and used for transportation
service procurement. Here, some common types of auction-based mechanisms with
representative research works are briefly presented.

11
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1) Double auction mechanisms

For TSP, a double auction is a process of buying and selling transportation
services with multiple shippers and multiple carriers. The double auction mechanism
allows bilateral bidding between the shippers and the carriers, i.e., the carriers submit
their bids and shippers submit their asking prices. The market is then cleared by a
third-party auctioneer with proper prices for the bids. This mechanism is studied by
some researchers to reduce transportation cost, improve allocation efficiency, and
pursue social welfare (Garrido, 2007; Huang & Xu, 2013; Xu & Huang, 2013; Xu et
al., 2017; L. Zhou & Xu, 2017).

2) Sequential auction mechanisms

Generally, a sequential auction is an auction in which several items are sold, one
after the other, to the same group of potential buyers. In TSP, the auction reverses that
the carriers compete for the requests of the shippers. So this framework is usually
chosen to model and study carrier competition in TSP. Representative researches of
TSP using sequential auctions are presented by Figliozzi et al (2004b, 2005, 2006)
Mes (2008) and Budde (2014).

3) Auction-based exchange mechanisms

Auction-based exchange mechanisms are usually used for carrier collaboration to
help them survive in the fiercely competitive transportation market. This kind of
mechanism benefits carrier by reducing empty vehicle repositions and increasing
vehicle fill rates. In this mechanism, the carriers can be either a seller or a buyer of
transportation services. The exchange mechanism is subdivided into four phases:
initialization phase, outsourcing phase, insourcing phase, and final evaluation phase
(Dai & Chen, 2011). With growing interest in carrier collaboration from industrial
practitioners and academic researchers, more and more works spring up that studying
this kind of mechanism, for example, Schiwind et al. (2009), Berger and Bierwirth
(2010), Li et al. (2015) and Chen (2016).

2.3 Bid generation problems in transportation service procurement

Bid generation problem (BGP) is a key decision problem in CA, which is usually
solved by the carriers. This problem focuses on request selecting and bundling to
submit in CA. BGP is also recognize as bid construction problem, bundle generation
problem or request bundling problem. Many research works have contributed to this
problem in CA for the procurement of transportation services. Based on whether there
are stochastic factors when solving the problem, a BGP can be either deterministic or

12
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stochastic.
2.3.1 Deterministic bid generation problems
2.3.1.1 Single period bid generation problems

Song and Regan (2005) examined some computationally tractable approximation
methods for BGP in CA for acquiring transportation contracts which discuss bid
valuation and construction in two contexts: in the absence or presence of pre-existing
commitments. The method they developed provides a way for carriers to discover
their true costs and construct profitable bids.

Wang and Xia (2005) study a carrier’s BGP in the context of truckload TSP. The
problem focused on the bundling method when an OR bidding language (Nisan, 2000)
is used. They defined the optimality criterion for the carriers of combinatorial bids.
Two heuristics are developed and compared based on the fleet assignment model and
the nearest insertion method respectively.

Lee et al. (2007) considered the carrier’s optimal BGP in CA for transportation
procurement in truckload transportation. In this work, the carriers employ vehicle
routing models to identify sets of lanes to bid for based on the actual routes. An
optimization model that integrates the generation of bids and the selection of routes
was proposed to maximize the profit of the carrier. Both column generation and
Lagrangian relaxation-based techniques were employed to solve the model.

Chang (2009) investigated the bidding problem of single-round CA to provide
decision supports for truckload carriers. The bid generation and evaluation problems
in CA were formulated as a synergetic minimum cost flow problem in which the
average synergy values between loads were estimated. A column generation approach
was proposed to solve the specific problem. The author believed that a truckload
carrier can easily determine the desirable bid packages without evaluating all possible
bundles of loads through adopting the proposed advisor.

Buer (2014) proposed an exact and two heuristic strategies for bidding on subsets
of requests to support a carrier in CA. The exact bidding strategy is based on the
concept of elementary request combinations. The author shows that it is sufficient for
a carrier to bid on each elementary request combination in order to guarantee the same
result as bidding on each element of the powerset of the set of tendered requests. The
two heuristic bidding strategies identify promising request combinations, where
pairwise synergies based on saving values as well as the capacitated p-median
problem were used. The proposed heuristic bidding strategies can help a carrier to

increase its chance to win as well as reduce the computational burden to participate in
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a combinatorial auction for TSP. Computational results showed that the heuristics had
great advantage over exact strategy in achieving available sales.

Yan et al. (2018) investigated a BGP for transportation service procurement from
a less-than-truckload perspective in which the carriers generate bids using a bundled
price to maximize their utility. Mixed integer programming models were developed
from both the carriers’ and the shippers’ perspectives to establish a relationship
between the quoted price and the likelihood of winning. This helps assist the carriers
in balancing the potential benefits and the possibility of winning the bid. An
intelligent algorithm based on Particle Swarm Optimization was designed to solve the
proposed model.

Gansterer and Hartl (2018) studied a centralized BGP in carrier collaboration
aiming at providing a reduced set of offered bundles that maximizes the total coalition
profit. But the bundles in this problem were generated to bid by the carriers in the
auction, not submitted as a bid of carrier.

2.3.1.2 Multi-period bid generation problems

Mamaghani et al. (2019a) firstly considered a multi-period BGP of a carrier in
the context of carrier collaboration. In this problem, the carrier needs to determine
which requests to bid and in which period to serve them to maximize its total profit. A
mixed-integer linear programming model was formulated, and a genetic algorithm
combined with simulated annealing was proposed to solve the problem.

Later, they studied a BGP which is the extension of the former problem (E.
Mamaghani et al., 2019b). In this problem, the carrier wants to determine within a
time horizon of multi periods which requests to bid and serve and its multi-period
routing plan to maximize its profit and minimize delivery lead times. An Improved
Tabu Search algorithm was proposed to solve the problem.

The study on multi-period BGP or CA for TSP is rare. But there are some other
works related to multi-period auctions. For example, Brunekreeft (2001) investigated
the multi-period CA in electricity spot market, Arroyo and Conejo (2002) studied
multi-period auction for a pool-based electricity market, and Lau et al. (2007)
proposed a multi-period CA mechanism for distributed resource allocation and
scheduling.

2.3.2 Stochastic bid generation problems

Triki et al. (2014) dealt with the generation of bundles of requests in the context
of long-haul truckload transportation services, where a probabilistic optimization
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model, which considers together the BGP, the pricing problem and the routing
problem of a carrier, was proposed. Two heuristics were developed to solve the
model.

Kyuzu et al. (2015) studied simultaneous transportation procurement auctions
from a truckload carrier’s perspective. A stochastic bid price optimization problem
was formulated to maximize a carrier’s expected profit. The formulation took
consideration of the synergies among the lanes and the bidding patterns of the carriers.
An iterative coordinate search algorithm was developed for solving the problem.

Hammami et al. (2020; 2021) considered BGP with stochastic clearing prices to
maximize the expected net profit of the carriers. The problem took uncertainty on
other competing carriers’ offers into account. Selection and pricing decisions were
integrated to generate multiple combinatorial bids. An exact non-enumerative method
and a hybrid heuristic were proposed to solve the problem.

2.4 Route planning for truckload transportation

In combinatorial auctions for TSP, a carrier’s bid generation problem usually
needs to consider the synergies among the new acquired requests and the pre-existing
requests to decrease empty vehicle repositioning and to increase profits. So, the bid
generation problems for TSP are usually considered with route planning.

The freight transportation mode studied in this thesis is truckload (TL)
transportation. Truckload transportation is nonstop, i.e., when a vehicle serves a
truckload request, it travels directly from its origin to destination without visiting any
other terminal. The basic unit of a truckload request is usually called a lane. Many
researchers have devoted to the study of route planning for TL transportation.

2.4.1 Vehicle routing problem with full truckload

The vehicle routing problem (VRP) with full truckload is a variant of classical
VRP in which the vehicles serve directed arcs (lanes) not nodes in the graph. It can
also be recognized as an arc routing problem or a one-to-one pickup and delivery
problem.

VRP with truckload was firstly tackled by Ball et al. (1983). The problem
determined an optimal fleet size and the resulting vehicle routes while satisfying
maximum route-time restrictions. The problem was formulated, some approximate
solution strategies were also described for solving the problem. Desrosiers et al. (1988)
considered a VRP with full loads and time limit constraints. They formulated the

problem as an asymmetrical travelling salesman problem with two types of
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restrictions, which are distance and time restrictions. Arunapuram et al. (2003)
developed a branch-and-bound algorithm for solving an integer-programming
formulation of VRP with full truckloads which took into consideration the
time-window constraints and waiting costs. Gronalt et al. (2003) dealt with the pickup
and delivery of full truckloads under time window constraints with the objective to
minimize empty vehicle movements. An exact formulation of the problem is provided
for the problem, different saving-based heuristics were also proposed. Li and Lu
(2014) studied a full truckload VRP with profits. In this problem, more than one
delivery points are corresponded to the same pickup point, and there may be multi
tasks on the same lane. A hybrid genetic algorithm is proposed for the problem.
Bouyahyiouy and Bellabdaoui (2017) proposed an ant colony optimization to solve a
full-truckload selective multi-depot vehicle routing problem under time windows
constraints to maximize the total profit. Faiz et al. (2019) considered a variant of a
truckload open vehicle routing problem with time windows and presented two integer
linear programming models to formulate the problem, the second one was solved by
designing a column generation framework. Xue et al. (2021) studied a multi-shift full
truckload vehicle routing problem and proposed a hybrid pricing and cutting approach
for it.

2.4.2 Lane covering problem

With the development of collaborative transportation, lane covering problem
(LCP) arises and are draws the attention of many scholars. The lane covering problem
aims at finding a set of tours that cover all lanes representing TL transportation
requests with minimum transportation cost. This is problem is usually formulated with
the consideration of flow equilibrium of the vehicles.

LCP for shipper collaboration was formulated by Ergun et al. (2003; 2007a;
2007b) and several algorithms were proposed to solve the problem, for example,
linear-time algorithm and greedy algorithm. They also proved that both the cardinality
constrained lane covering problem and the length constrained lane covering problem
are NP-hard. LCP with time windows was considered by Ghiani et al. (2008). A
heuristic approach based on Lagrangian relaxation was proposed for the solution of
the problem. A multicarrier LCP under carrier collaboration was introduced and
analyzed by Ozener et al (2011), where lane exchange mechanisms were also
investigated. Xu et al. (2017) studied a simplified LCP appeared in carrier
collaboration realized by a bundle double auction. LCP with partner bounds in
truckload transportation was investigated by Kuyzu et al. (2017). A set partitioning
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type integer program was formulated. Column generation and branch-and-price
approaches were developed for the problem. All of these works adopted LCP or its
variants as a mathematical formulation.

2.4.3 Rolling horizon planning

Rolling horizon planning is virtually not a routing problem but a planning
mechanism that considers multi-period. When considering the bid generation and
routing problem in a rolling horizon, the carrier acquires requests during the entire
time horizon rather than in the current decision period. Each request in the
transportation market may have a service window composed of several consecutive
periods, and the request can be served in any period within its window. In each period,
plans for next few periods are made, which will be adjusted according to the dynamic
information in the market.

Zhou et al. (2006a; 2006b) studied a generic real-time truckload pickup and
delivery problems. A mixed integer programming formulation for the problem, three
rolling horizon strategies for the problem were also considered. A dynamic truckload
pickup and delivery problem with time windows was investigated by Zhou (2013)
with a rolling horizon framework for the dynamic assignment and sequencing of
trucks. Rolling horizon planning for a dynamic collaborative routing problem with
full-truckload pickup and delivery requests were considered by Wang and Kopfer.
(2013; 2015). And Wang et al. (2014) studied an auction with rolling horizon for
urban consolidation center, which addressed the challenge that shippers/carriers plan
their deliveries many periods ahead.

2.5 Summary of the literature review

This thesis studies action mechanism and bid generation in the procurement of
truckload transportation services. In this chapter, works related to market of
transportation service procurement, the auction-base mechanism for the procurement
of transportation services, the bid generation and routing problems are reviewed. For
the reviews of market of transportation service procurement, the corresponding
research works are sorted by methods to solve the problem. For the auction-base
mechanism for the procurement of transportation services, the different mechanisms
are studied and evaluated. Both single round and multi-round auction mechanisms are
considered. For the bid generation problem, multiple methods are developed for
solving it. Both deterministic and stochastic variants of this problem are studied.

There are some findings from the literature review.
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Firstly, freight transportation electronic marketplaces flourish with the prosperity
of electronic commers. Auction-based mechanism are mostly used for transportation
service procurement. Among different mechanisms, combinatorial auction is well
adopted by both academic scholars and industrial practitioners. Different
combinatorial auction mechanisms were designed with specific context and
constraints. The major challenge in CA mechanism design is to ensure both the time
and solution efficiency, which will be concerned by researchers for a long time in the
future.

Secondly, bid generation problem as a major decision problem in CA for TSP
have drawn many researchers’ attention, different bundling and pricing strategies were
designed. However, most studies focused on deterministic BGP while the studies of
stochastic BGP only involved stochastic prices for the requests. Thirdly, generally,
vehicle routing problems are considered in BGP for bundling the requests/lanes. The
BGP intractable for large scale problems due to its computational complexity.
Efficient algorithms need to be designed for large scale problems.

Finally, a planning strategy with rolling horizons came into public view since it
is closer to practical application and provides more choices for the carriers to achieve
better operations, but BGP with both stochastic and dynamic factor has not been
considered yet. The work of this thesis is carried out based on these findings.

18



3 Two-phase combinatorial auction mechanisms with supplementary bundles of requests

3 Two-phase combinatorial auction mechanisms with

supplementary bundles of requests

3.1 Introduction

In logistics business, shippers who may be manufacturers or distributors procure
transportation services from carriers. The competitive market with fragmented
shippers and carriers makes a perfect circumstance to use combinatorial auction (CA)
in transportation service procurement (TSP). CA can help shippers reduce their
logistics costs for procuring the transportation services.

For the procurement of transportation services, an ideal situation is that all the
transportation requests of a shipper that need to be served are allocated to the carriers,
and each request is allocated to a single carrier. This allocation can be realized by a
centralized approach which is based on a centralized mathematical programming
model, or a decentralized approach, such as a combinatorial auction. The centralized
approach can solve the allocation problem at one stroke. However, confidential
information of the carriers such as pre-existing contracts and request serving costs
need to be revealed, which is not practically appealing. CA on the other hand, does
not need to reveal any confidential information of the carriers and thus becomes very
popular now. The mechanism of CA can have a direct influence on its efficiency, both
in time and request allocation.

This chapter studies a problem raised in truckload transportation service
procurement which involves one or multiple shippers and multiple carriers. Both
centralized and decentralized approaches are investigated in this chapter. On the one
hand, a mixed-integer linear programming model is formulated for the TSP problem
solved by using a centralized approach. On the other hand, motivated by the
clock-proxy auction proposed by Ausubel et al. (2006), two two-phase multi-round
CA mechanisms are proposed to solve the same problem.

The clock-proxy auction combines the simple and transparent price discovery of
the clock auction with the efficiency of the proxy auction. As in the clock-proxy
auction, the second phase in the proposed CA mechanisms is also used to improve the
efficiency of request allocation. The objective is to find an effective bundling strategy
for the second phase of CA, which can accelerate the process of the CA with
improved results. In the proposed two-phase CA mechanisms, the first phase is clock
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auction, in which the auctioneer increases the price of a request (lane) if no carrier
bids for this request. Each carrier generates its bid based on the prices of all requests
open for bid in each round. The second phase mainly aims at selling the leftover
requests (lanes) after the first phase by generating supplementary bundles of requests
open for bid. The two CA mechanisms generate supplementary bundles by the
auctioneer and the carriers respectively. In case the auctioneer generates the
supplementary bundles, each carrier decides if it bids for one or multiple
supplementary bundles. In case the carriers generate supplementary bids, each carrier
generates and bids for bundles of requests based on the results of the last round of the
CA. The prices for serving the supplementary bundles may also be adjusted during the
second phase. To our best knowledge, this is a new variant of CA for TL
transportation service procurement.

The rest of this chapter is organized as follows: In Section 3.2, the studied
problem is described and formulated with a centralized mathematical programming
model. Section 3.3 presents in detail the proposed two two-phase CA mechanisms
respectively. The results of computational experiments evaluating the mechanisms are
reported in Section 3.4. Section 3.5 concludes this chapter with perspectives for future
research.

3.2 Problem description and centralized mathematical programming
model

In the considered TSP problem, one or multiple shippers have a set of truckload
transportation requests to outsource to a set of carriers. Each truckload request is
represented by a lane with an origin and a destination in a transportation network.
Each carrier involved in the TSP has a fleet of vehicles initially located at its own
vehicle depot. Each vehicle must leave and return to its own depot before and after
serving the lanes that are assigned to it. The travel duration of each vehicle is limited,
and a fixed cost is incurred if a vehicle serves a tour. The revenue for serving each
lane is given, which is independent of the profit/cost allocation between the shippers
and the carriers involved.

The problem is considered from the perspective of social efficiency. The
objective is to minimize the total travel distance/cost of vehicles/carriers for serving
all requests (lanes), which refers to the consumption of fuel or the air pollution of all
routes to serve the requests. That is to say, the maximization of the social efficiency is

equivalent to the minimization of the total transportation cost for serving all lanes.
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When formulating the problem, the for-bid lanes contain all lanes that the
shippers want to outsource to the carriers. If a carrier wants to acquire one or more
for-bid lanes, except for selecting the lanes to bid, it must also construct its vehicle
routes to serve these lanes. Each vehicle of a carrier serves a single tour with requests.
The problem is a multi-depot (multi-carrier) truckload vehicle routing problem with
fixed costs and maximum duration constraint.

For the convenience of the formulation, the following notations are firstly
introduced:

Indices and sets

N: set of all nodes in the transportation network considered
A: set of all possible lanes

K: set of carriers

d, (dy;): depot of carrier k, k eK
Hy: set of vehicles of carrier k, k e K

L, : set of for-bid lanes, L, < A

Parameters:

¢, : travel cost of lane (i, j) of carrier k, (i,j)e A, keK

t; : travel time of lane (i, j) of carrierk, (i,j)e A, keK

B: maximum travel duration of each vehicle
fk: the fixed cost of each vehicle of carrierk, k e K

Decision variables:

«n _ |1, if for-bid lane (i, j) is served by carrier k with its vehicle h,
1710, otherwise (i,j)eL, heH,, keK

kh {1, if vehicle h of carrier k travels through arc (i, j)

i =)0, otherwise (i.J)e A keK, heH,

S/": the time at which vehicle h of carrier k leaves node i, ie N,ke K, heH,

Note that to simplify the formulation, here adopted an assumption that for any
for-bid lane with a pair of origin and destination, there is at most one request. For
example, if there is a for-bid lane (i, j), there is no other for-bid lane with the same
origin and destination in the bidding pool. The model and mechanisms proposed for
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this problem can be easily extended to the case without such an assumption. This can
be done by transforming the underlying transportation network in the following way:
for each pair of origin node and destination node, if there are multiple lanes (say m >1
lanes) of the same type from the origin node to the destination node, one can create m
copies of the two nodes (including original ones) with zero distance between any two
copies of the origin node or the destination node such that only a single lane of this
type exists from the i-th copy of the origin node to the i-th copy of the destination
node (1 <i<m).

Then the centralized model can be formulated as:

Model CP
Mind > | 20 axy + 20 fuxy
keK heH (lJEA ieN
s.t.
ZX ZX,.,iEN\dk,d} keK, heH, (3-1)
jeN jeN
ZX,thﬁl ieN, keK, heH, (3-2)
jeN
> " =1 keK, heH, (3-3)
ieN\d,
> x4 =L keK, heH, (3-4)
jeN\d;
Xik,'jh> .k’Jh, (I J)EA keK, heH, (3-5)
2 2 v =L (ij)eb, (3-6)
keK heHy '
ZAX,tht,] <B,keK, heH, (3-7)
(i,))e
Sgkvh:O, keK, heH, (3-8)
SIM 28K+ x 't —B(1-X"), i,jeN,keK, heH, (3-9)
vii'=0, (i,j)e A\, heH,, keK (3-10)

The objective function in this model is to minimize the total cost of all carriers,
which is composed of two types of costs, the travel costs and the fixed costs.
Constraint (3-1) ensures the vehicle flow equilibrium at each node except the depots
of the carriers because each depot node is duplicated as two nodes, which are the
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origin node and the destination node of the depot respectively. Constraint (3-2)
indicates that for any vehicle, if it leaves a node, the next node it can visit is unique.
Constraints (3-3) and (3-4) guarantee that each vehicle leaves its corresponding depot
to start its service and return to the same depot after completing the service.
Constraint (3-5) ensures that all lanes with a transportation task will be served.
Constraint (3-6) guarantees that each for-bid lane is served at most once by a vehicle
of some carrier. Constraint (3-7) ensures a maximum travel duration for each vehicle.
The departure time of each vehicle from its depot is set to 0 in constraint (3-8).
Constraint (3-9) ensures that if a vehicle travels through lane (i, j), the time difference
between the departure time at node j and that at node i is at least the travel time. In
real life, there may be a loading time at a pickup node and an unloading time at a
delivery node, if necessary, it is easy to add the two service times to the model.
Constraint (3-9) can help to eliminate all subtours in each route. Constraint (3-10)

defines the value of each binary variable vi'f'j“ according to whether it is related to a

for-bid lane. If it is not related, the value of this binary variable is set to 0.

Except for the minimization of the total cost of all carriers, an optimal solution of
the model also provides an efficient allocation of the for-bid lanes among carriers, as
well as the vehicle routes for each carrier.

3.3 Combinatorial clock auction

Combinatorial auction is an auction mechanism which allows bidders to bid for
several items each time. As introduced in Chapter 1 and 2, based on whether the
auction process iterations, combinatorial auction mechanisms can be classified into
single-round combinatorial auction and multi-round combinatorial auction. The
general process of multi-round combinatorial auction has been well presented in
Chapter 1, Fig. 1-1.

Combinatorial clock auction (CCA) is a representative auction mechanism for
multi-round combinatorial auction. It is an iterative auction procedure in which the
auctioneer announces the price for each item to be sold. Then each bidder indicates
the quantity of each item it wants to buy at the current price. The price of each item
with excess demand will increase in the next iteration (round), and then the bidders
express their buying quantities at the new prices. This process is repeated until there is
no item with excess demand. It provides a simple and effective way to discover the
values (prices) of the items.

When applying combinatorial clock auction to transportation service
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procurement, without information sharing among carriers, the requests bid by carriers
in the clock auction may be overlapping even if the prices of the requests have been
raised sufficiently high. We often observe the situation where some requests are
competed by several carriers, while some other requests are not bid by any carrier. In
this case, the combinatorial clock auction is often stopped without an efficient
allocation of requests, which prevents the auctioneer (shipper) from procuring
transportation services for some requests. Even the combinatorial clock auction can
obtain an efficient allocation finally, it may take a large number of rounds to achieve it.
To avoid such situations, more effective auctions mechanisms need to be designed for
finding an efficient allocation with higher efficiency.

Combinatorial clock-proxy auction is proposed by Ausubel et al. (2006), This
auction with two phases combines a clock phase, during which prices rise and bidders
state their demands in response to the current prices, with a final round in which
bidders submit sealed package bids. The final round is seen as the second phase and
supplementary to the clock rounds. It pushes the outcome of the auction toward an
efficient allocation with competitive payoffs for the bidders and a competitive revenue
for the seller. In the clock-proxy auction, all bids are kept live throughout the auction
process. There are no bid withdrawals. To learn more about this auction, one can refer
to Levin and Skrzypacz (2016), Ausubel and Baranov (2017a, 2017b) , and Janssen
and Kasberger (2019).

Although previous studies on combinatorial clock-proxy auction show that
adding another phase after the clock auction can improve the social efficiency of its
outcome, no problem-specific method has been proposed to help the bidders generate
supplementary bids in the second phase. Motivated by this, in this chapter, two-phase
auction mechanisms with clock auction and supplementary bidding phase are
examined, and two methods for generating supplementary bids in the second phase
are proposed.

3.4 Two-phase auction mechanisms with supplementary bids

In this section, two-phase CA mechanisms for truckload transportation service
procurement are proposed. The first phase is a clock auction, hereafter named the
clock auction phase. It is an iterative procedure. In each iteration (round), the
auctioneer updates the prices of the lanes open for bid and each carrier generates a bid
based on the prices and submits it to the auctioneer. The second phase aims at
improving the efficiency of the final allocation of the for-bid lanes to the carriers by
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providing some supplementary bids, hereafter named the supplementary bidding
phase. In this phase, some supplementary bundles of requests open for bid are
provided based on the tentative winning bids. The two mechanisms are proposed from
the perspective of the auctioneer and the carriers respectively. That is, one mechanism
provides supplementary bids generated by the auctioneer, and another mechanism
generates supplementary bids by the carriers. During the whole process of the CA, all
submitted bids will be kept alive, and a winning bid can come from any conducted
round. In the following, the two-phase mechanisms are presented in detail.

3.4.1 The clock auction phase

In the clock auction phase, the auctioneer announces all lanes open for bid and the
initial prices of the for-bid lanes before the auction begins. The information about each
for-bid lane includes its pick-up (origin) point and delivery (destination) point. There
are two steps in each round of the clock auction phase. The first step is that each carrier
solves a bid generation problem (BGP) and submits the generated bid to the auctioneer.
In this BGP, the carrier considers the lanes selected to serve and the vehicle routes to
serve them. The second step is that the auctioneer solves a winner determination
problem (WDP) and announces tentative winning bids in this round.

In each round of this phase, after the first step, the auctioneer collects the bids
submitted by all carriers and solves a WDP considering all submitted bids to
determine tentative winning bids in the second step. The auctioneer then adjusts the
prices of the lanes. For those lanes which are overlapped, the prices will be decreased
according to the number of competitors, and for those lanes which are not contained
in any of the bids in the current round, the prices will be increased. The rule used to
update these prices is to decrease or increase them with a fixed value or a given
percentage. In the next round, the carriers repeat the first step based on the new prices
and the auctioneer repeats the second step considering newly collected bids in this
round. This iterative process will be terminated when a stopping condition is satisfied.
The BGP and WDP in the two steps are presented below.

Step 1: BGP of each carrier

In each round of the clock auction phase, each carrier has to solve a bid
generation problem to select the for-bid lanes it wants to serve and the vehicle routes
to serve them. The selected lanes will then be packed as a bundle, which is the bid to
submit to the auctioneer in this round. In each round, the BGP is solved based on the
latest prices of all for-bid lanes. The BGP can be formulated as follows where P;j
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denotes the serving price of the for-bid lanes:

Model BGP
MaxZ[ PIRULIEDY Ci,jxiﬁj_ZfX;iJ
heH \ (i, j)ely (i,j)eA ieN
s.t.
Dox=> %, ieN\{d,d’}, heH (3-11)
jeN jeN
> x' <1, ieN, heH (3-12)
jeN
> ;=1 heH (3-13)
ieN\d ’
> xly=1heH (3-14)
jeN\d’ '
X', =v, (i,j)e A heH (3-15)
dvli<1 (ij)el, (3-16)
heH Y
> X't <B, heH (3-17)
(i.j)eA
S)=0,heH (3-18)
S/ =8+t ;—B(1-x;),i,jeN,heH (3-19)
v, =0, (i,j)e A\L,,heH (3-20)

The objective function is to maximize the net profit of the carrier since they
participate in the CA for TSP for profit. The constraints in this model are almost the
same as in model CP except for the index k which represents a carrier is removed
from all constraints because this model is for a single carrier. Note that in model CP,
constraint (3-6) is an equality, but in this model, constraint (3-16) is an inequality
constraint. This is because model CP aims at allocating all for-bid lanes among the
carriers, but this BGP helps the carrier determine whether to bid for a for-bid lane or
not.

Step 2: WDP of the auctioneer

In each round of the clock auction phase, after collecting all bids in this round,
the auctioneer has to solve a winner determination problem to determine tentative
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winning bids. To formulate the WDP, the following notations are introduced first:

Indices and sets:
M: the number of rounds so far in the clock auction

R/": the bid generated by carrierkinround m, ke K, meM

Parameters:
Pr: the out-sourcing price of bid r, re [ J | JRY

meM keK
Q:: the revenue of carrying out request (lane) I, | e L,

+ |1, if lane | is in bid r m
& = {0, otherwise ek re mLEJM kLEJ( Ry

Decision variables:

r

_ |1, if bid r wins
|0, otherwise
1, if lane I is not contained by a winning bid el
= ; le
' 0, otherwise "

Here, the parameter Py is determined by the prices of the for-bid lanes announced

by the auctioneer in the corresponding round of the clock auction. The out-sourcing

price of a bid r is the sum of the out-sourcing prices of all the for-bid lane included.

The parameter Qr is given in advance which is independent of the auction. It can be

viewed as the revenue that a shipper can obtain by serving request (lane) r by any

carrier. If no carrier serves this lane, the shipper will not obtain this revenue, this loss

can be considered a cost for the shipper. Then the WDP can be formulated as:

Model WDP

Min) Pw, +> Qz,

reR lel,

S.t.

>aw+z=1lel (3-21)

reR

> w, <L keK (3-22)
I‘eU ka
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This model is to minimize the total cost of the shippers represented by the
auctioneer. The cost is composed by two parts. One is the out-sourcing cost paid to the
carriers by the shipper(s). Another is the loss of the requests unserved. This objective
encourages the auctioneer to procure truckload services as many as possible with a
minimum cost. Constraint (3-21) ensures that there is no overlapping of requests
(lanes) among the winning bids, that is, any for-bid lane can only be served by a
unique carrier. Constraint (3-22) guarantees that for each carrier, at most one bid it
submits can win. That is because during the iterative process of the clock auction, the
requests in the bids submitted by a carrier in different rounds may overlap since they
are all kept alive in the auction.

Note that if the clock auction phase ends up with an efficient allocation before
satisfying the stopping condition, then the CA ends without the second phase.
Otherwise, the auction proceeds to the next phase, the supplementary bidding phase.
Here, an efficient allocation means that all for-bid lane in the bidding pool are
successfully allocated, and each for-bid lane is allocated to a unique carrier.

3.4.2 The supplementary bidding phase

In the clock-proxy auction proposed by Ausubel et al. (2006), each bidder reports
his values and budget constrains to a proxy who will later submits the bids to the
auctioneer on behalf of the carrier, and to maximize the carrier’s profit in the proxy
phase. Although both clock auction and proxy auction are based on bundle bids, the
clock auction phase mainly focuses on the process of price discovery while the
supplementary bidding phase focus on efficient allocation. Inspired by this auction
mechanism, the supplementary bidding phase of the proposed mechanisms are also
focused on improving the allocation efficiency. In other words, the advantage of
adding the supplementary bidding phase is that it can push the outcome of the CA
towards an efficient allocation.

One way to obtain an efficient allocation is to generate as many as the bundles of
requests so that one or more of them can constitute an efficient allocation. But with
the limited rounds of the auction, generating too many bundles may not be practical.
Therefore, reducing the overlapping and increasing the diversity of the bundles in
limited rounds are important. The proposed two-phase CA mechanisms are devoted to
this by generating supplementary bundles of requests in the second phase, the
supplementary bidding phase.

The supplementary bundles of requests in this phase are generated following a
principle, which is to involve the leftover for-bid lanes of the last round of the auction.
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The two proposed mechanisms generate supplementary bundles of requests by the
auctioneer and the carriers respectively. They are presented respectively in the
following subsections.

3.4.2.1 Supplementary bidding phase with auctioneer-generated supplementary
bundles

There are three steps in this phase with auctioneer-generated supplementary
bundles. The first step is that the auctioneer generates some supplementary bundles of
requests open for bid. Although different rules can be used to generate the
supplementary bundles, here by considering social efficiency, the auctioneer generates
supplementary bundles that minimize the cost for serving the leftover lanes (the lanes
that are not allocated to any carrier) after the last round of an auction. The second step
Is that each carrier, no matter it wins or loses in the last round of the auction, decides
which supplementary bundle(s) to serve and generates a supplementary bid according
to this decision. The third step is to solve a WDP by the auctioneer after collecting all
supplementary bids. Note that since all the bids are kept alive during the whole
process of CA, the bids in the clock auction phase and supplementary bids are all
involved in this WDP.

This phase is designed based on the assumption that the information of the depot
location and the number of available vehicles of each carrier is disclosed to the
auctioneer. The phase will be conducted like this: when the clock phase ends, if there
are some leftover lanes that are not contained in the winning bids, then the auctioneer
goes to the first step and announces the supplementary bundles of lanes open for bid.
The carriers then bid for the supplementary bundles in the second step. If a carrier
bids for a supplementary bundle, it must serve all for-bid lanes in the bundle. Note
that the tentative winning bids are also considered in this step. If a carrier decides to
bid for one or multiple bundles, it then combines the bundle(s) with its tentative
winning bid to form a new bid to submit. After that, the auctioneer conducts the third
step and announces the winner(s) of supplementary bids (bundles).

The supplementary bidding phase may have multiple rounds. In each round of
this phase, if a supplementary bundle is not bid by any carrier, the auctioneer will
update the price of that bundle before proceeding to the next round. If there are some
supplementary bundles bid by the carriers, then the auctioneer goes to the third step to
determine the winner(s) of supplementary bids. If the solution of the winner
determination problem in the third step is an efficient allocation, then the auction
stops. Otherwise, proceeds to the next round by going back to the first step to generate
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new supplementary bundles, and this process iterates until a prespecified stopping
condition is met.

To help formulate the three steps in this phase, the following notations are
introduced in advance:

Indices and sets:

L, : set of leftover lanes excluded by the tentative winning bids of last round, L, c L,

Lw: set of for-bid lanes contained in the tentative winning bid of this carrier, L, c L,
Rs: set of all supplementary bundles proposed by the auctioneer

Parameters:

PSy: the price of supplementary bundler, reR

S

, (i,j)e L, reR,

. |1, iflane (i, j) is in supplementary bundle r
110, otherwise

Decision variables:

X , re

_ |1, if supplementary bundle r is chosen to bid for
|0, otherwise

,heH, lelL

S

W=

" 1, if a leftover lane (i, j) is served by vehicle h
0, otherwise

Step 1: Supplementary bundle generation by the auctioneer

In the clock phase, the carriers have already expressed their willing for serving
some lanes at the prices announced by the auctioneer. In the supplementary bidding
phase, a price will be given to each bundle of lanes rather than each lane in the bundle
in order to improve the efficiency of the auction.

The model for generating supplementary bundles of lanes by the auctioneer can
be formulated as follows:

Model SBGP-A

Min}. Z( D CX D kaSQI?iJ
(

keK heH, \ (i,j)eA ieN
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S.t.

D> v =1, (i, j)el, (3-23)

keK heH,

v =0, (i,j)e A\L, heH (3-24)

and constraint (3-1) - (3-5), (3-7) - (3-9)

In model SBGP-A, the auctioneer only considers the for-bid lanes that are left
over according to the tentative winning bids. It is actually a BGP to minimize the total
serving cost. With the information of vehicle depots of all carriers, the auctioneer
generates some routes with the leftover for-bid lanes and pack the lanes in each route
as a bundle, which is announced as a supplementary bundle open for bid by the
carriers.

Step 2: Supplementary bid generation of each carrier

In this step, each carrier decides which supplementary bundle(s) of lanes
provided by the auctioneer to bid for based on the tentative winning bids at the last
round. If a carrier chooses some supplementary bundle(s) to bid for, the new bid it
submits will be a combination of the lanes in its tentative winning bid (if any) and the
lanes in the supplementary bundle.

The problem of generating a supplementary bid by a carrier can be formulated as

follows:
Model RBGP
MaxZ{ VR, - D ¢ X fod,]+2b PS,
heH (i,j)eLb (i,j)e ieN reR
s.t.
X' =v +w', (i,j)e A heH (3-25)
Y=L (i j)el, (3-26)
heH
dw=>ab, (i,j)eL (3-27)
heH reRg
w'; =0, (i,j)e A\L,, heH (3-28)

and constraint (3-11) - (3-14), (3-17) - (3-20)

Constraint (3-25) ensures the lane with requests are served. Constraint (3-26)
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guarantees that the tentative winning bid is considered when resolve the BGP to
decide whether or not to bid for the supplementary bundle(s) provided by the
auctioneer. Constraint (3-27) ensures that if the carrier choose to bid a bundle, it must
serve all the for-bid lanes in that bundle. Constraint (3-28) defines the value of binary

variable w/'; according to whether it is a leftover lane. If it is not, its value should be
0.
Step 3: Winner determination of the supplementary bidding phase

In this step, the auctioneer solves a WDP which is exactly the same as that in the
clock auction phase except that supplementary bids are added.

After the three steps of a round in the supplementary bidding phase, if the
winning bids covers all for-bid lanes, the auction ends. Otherwise, since whether a
carrier decides to bid for a supplementary bundle depends on its price, the prices of
the bundles will be adjusted. If a supplementary bundle is not bid by any carrier in
step 2, the auctioneer will increase the price of this bundle in the next round. The
upper bound of the price of the supplementary bundle is the sum of the revenue of all
requests contained in this bundle. The above three steps iterate until Ls = &, which
implies that each for-bid lane is allocated to and served by a unique carrier, or a
pre-set number of rounds is reached.

3.4.2.2 Supplementary bidding phase with carrier-generated supplementary bids

Different from the above supplementary bidding phase that the auctioneer
generates supplementary bundles for the carrier to choose, in this mechanism, the
carriers directly generate supplementary bids themselves. The supplementary bids are
also generated based on the results of the clock auction phase.

There are two steps in each round of this phase with carrier-generated
supplementary bids. The first step is that each carrier generates a supplementary bid
based on the results of the last round to minimize its net profit for serving the chosen
lanes. The difference between the supplementary bids generated in this supplementary
phase and the bids generated in the clock auction phase is that, in this phase, the
new-generated supplementary bid must contain both the tentative winning lanes (if
any) and at least one leftover for-bid lane which is not in any tentative winning bid.
The second step is that the auctioneer solves a WDP after collecting new
supplementary bids. This is the same as the supplementary bidding phase with
auctioneer-generated supplementary bundles, where the bids in the clock auction
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phase are also involved in this WDP.

The phase will be conducted like this: when the clock phase ends, if there are
some leftover lanes that are not contained in the winning bids, and a carrier has no
supplementary bid in the bidding pool, then this carrier goes to the first step and
generate a supplementary bid and submits it to the auctioneer. Then, the auctioneer
conducts the second step after collecting the supplementary bids from all carriers and
announces the winner(s) of supplementary bids.

This supplementary bidding phase may also have multiple rounds. In each round
of this phase, if a supplementary bid of a carrier is not a winning bid in the WDP, then
this carrier updates the price of that bid before proceeding to the next round. A more
detailed introduction of the two steps and their related mathematical models is given
in the following.

Step 1: Supplementary bid generation by each carrier

In this step, each carrier generates a supplementary bid based on the results of the
last round of an auction. If a carrier wins a bid in the last round, then it generates a
supplementary bid containing both the for-bid lanes in its winning bid and at least one
leftover lane. If a carrier loses in the last round, its generated supplementary bid only
needs to contain one or more lanes selected from the leftover lanes.

The model for generating a supplementary bid of a carrier can be formulated as

follows:
Model SBGP-C
MaxZ[ D VPt 2 Wik - > Ci,jxi“,;—ZfXQ,i]
heH \ (i, ))eL, (i,j)eLs (i,j)eA ieN
s.t.
d>ow <t (i, j)el, (3-29)
heH
> > w >0 (3-30)
(i,j)eLS heH

and constraint (3-11) — (3-14), (3-17) - (3-20), (3-25) - (3-26), (3-28)
Constraint (3-29) indicates that for each leftover lane, it can be served by the

carrier at most once. And constraint (3-30) ensures that the carrier will choose at least
a leftover lane in its supplementary bid.
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Step 2: Winner determination of the supplementary bidding phase

In this step, the auctioneer solves a WDP which is exactly the same as that in the
supplementary bidding phase with auctioneer-generated supplementary bundles.

After the two steps of a round in the supplementary bidding phase, if the winning
bids covers all for-bid lanes, the auction ends. Otherwise, the prices of the
supplementary bids will be adjusted. If a supplementary bid is not a winning bid in the
WDRP in step 2, the carrier will decrease the price of this bid in the next round. The
lower bound of the price of the supplementary bid is the travelling cost of the route(s)
that contains all requests in this bid. The above two steps iterate until Ls = @, which
implies that each for-bid lane is allocated to and served by a unique carrier or pre-set
number of rounds is reached.

To well understand the two-phase mechanisms, a visualized description of the
clock auction phase and the two types of supplementary bidding phase are provided.
Fig. 3-1 illustrates the process of the clock auction phase, Fig 3-2 shows how the
supplementary bidding phase with auctioneer-generated supplementary bundles works,
and Fig. 3-3 demonstrates the process of the supplementary bidding phase with
supplementary bids generated by the carriers. The combination of the processes in
Fig.3-1 and Fig. 3-2 generates the whole process of the two-phase CA mechanism
with auctioneer-generated supplementary bundles, whereas the combination of the
processes in Fig. 3-1 and Fig. 3-3 generates the whole process of the two-phase CA
mechanism with supplementary bids generated by the carriers.

Auctioneer .
Each carrier solves .
announces the - Auctioneer solves
initial prices of > @ BGP and submit > a WDP (Step 2)
P a bid (Step 1) P
requests

A

et an efficien
allocation?

Auctioneer adjusts
and re-announces
the prices of
leftover requests

Go to the
supplementary >
bidding phase

Stopping
condition
satisfied?

Figure 3-1 Clock auction phase
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Figure 3-2 Supplementary bidding phase with auctioneer-generated supplementary bundles
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3.5 Mechanism evaluation by computational experiments

In this section the efficiency of the proposed two-phase CA mechanisms and
related models is evaluated by numerical experiments on randomly generated
instances. All the models are coded in C++ and solved by CPLEX. The solution and
objective value of the centralized mathematical programming model solved by
CPLEX solver are used as a benchmark for evaluating the efficiency of the proposed
mechanisms. The advantage of the two-phase CA mechanisms over the clock auction
is also discussed through comparison. All the tests are conducted on a PC with Intel®
Core™ 7-8750H CPU and 16 GB RAM. The version of CPLEX is 12.10.0.0 for
64-bit Windows.

3.5.1 Parameter setting

For the convenience of presentation, hereafter, the two-phase CA mechanisms
will be referred respectively to TPCAMA which is the two-phase CA mechanism with
auctioneer-generated supplementary bundles and to TPCAMC which is the two-phase
CA mechanism with the supplementary bid generated by the carriers.

The parameters used in the experiments are listed in Table 3-1. In the parameter
setting, there are some points need to be noted.

(1) For simplicity, both the travel time between the origin and the destination of
lane (i, j) and the cost of travelling through the lane (i, j) are set to its Euclidean
distance.

(2) The revenue of each request is set as in the table to avoid the situation that
some lanes are outsourced at a loss to carriers by the auctioneer since the centralized
model will outsource all the for-bid lanes compulsively. With this setting, in the worst
case, each lane can be allocated to the carrier whose cost of serving only this lane by a
single vehicle is no higher than its revenue in the CA mechanisms.

(3) A in the table is the minimum increment of the price of a lane or a bundle of
lanes in each round of an auction. For real instances, A needs to be set as small as
possible to seek for an efficient or a nearly efficient allocation. However, for small
size instances tested, the proposed two-phase CA can obtain an optimal or nearly
optimal allocation with a relatively big A. Note that due to the high computational
complexity of the centralized planning model, only small size instances are tested to
evaluate the efficiency of our two two-phase CA mechanisms.

(4) In reality, the cost/travel time, the fixed cost and the maximum duration of a
route may vary with different vehicles/routes of different carriers, which is reflected
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K ¢k is retained to

in the above models. In Table 3-1, the vehicle superscript k in t';, ¢,

indicate this dependence. However, in our numerical experiments, they are set as
identical among the vehicles for the sake of simplicity.

Table 3-1 Parameter values for the generation of the instances

Parameter Value

Number of for-bid lanes 20~30% N?2

Initial price P; j of lane (i, J) 0

Coordinates (x«, y«) of the depot of each carrier k e K U[0, 100]x[0, 100]
Coordinates (xi, yi) of each node ieN U[0, 100]x[0, 100]
G Ci \/(Xj =)+ (Y, -y’

Z(c('j,i +cf; +c;d,)/ K+ f +1

keK

Revenue of a request (lane) (i, j)

A: the minimum increment of the price of a lane (i, j) in

each round 10
A: the minimum increment of the price of a bundle of lanes 10

in each round

Fixed cost fk 30
Maximum duration B of each route 1410
Maximum number of rounds for CA 50

In the following parts, the proposed two-phase mechanisms will be evaluated by
comparing their outcomes with the solution of the centralized mathematical
programming model and the outcome of the clock auction. The performance indexes
used in this evaluation include the social efficiency of the allocation obtained by each
approach, the CPU time to obtain an optimal or near-optimal allocation, the number of
rounds required for obtaining an efficient allocation, and the total
procurement/outsourcing cost of the shippers (the auctioneer). To facilitate the
presentation of the computational results, these performance indexes and their
descriptions are given in Table 3-2.

Table 3-2 Description of the performance indexes

Index Description

Capproach The total cost obtained from the corresponding approach
Rapproach The number of rounds needed for getting an efficient allocation
Aapproach The total outsourcing cost of the auctioneer

GCapproach2/approachl Gap of the objective value, (Capproach2- Capproacht) / Capproach1
GAapproachZ/approachl Gap Of the OUtSOUI’CIng COS'[ Of the aUCtloneer, (Aapproath' Aapproachl) /Aapproaohl

In Table 3-2, “approach” means the approach used, which can be CP, CL, TPA
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and TPC. CP denotes the centralized planning approach, CL denotes the clock auction,
TPA and TPC denote the two-phase CA mechanisms TPCAMA and TPCAMC
respectively.

3.5.2 Comparison with the centralized planning approach

The first group of tests are used to evaluate the proposed two-phase mechanisms
by comparing their solutions with that obtained by solving the centralized planning
model.

In this group of tests, 3 sets of instances with the number of nodes N =5, 6 and 7
are tested respectively. The number of carriers is set as K = 3, and the number of
vehicles each carrier has for the CA is set as H = 3. For this group of tests, each
instance is identified by its number of nodes, vehicles and carriers, and its serial
number. For example, instance 533-1 represents the first instance with 5 nodes, 3
carriers and 3 vehicles for each carrier. Note that repetitive lanes are discarded when
randomly generating for-bid lanes, the real number of for-bid lanes may be less than
the number calculated directly. In this group of tests, the number of rounds for the
clock auction phase is set as 20. That is, if the clock auction phase cannot find an
efficient allocation of the for-bid lanes, then the CA will go into the supplementary
bidding phase.

Table 3-3 presents the results of the 3 sets of instances with the total cost of the
carriers including the cost to serve all lanes for-bid lanes and the cost for empty
vehicle repositioning. The relative gap of the total cost between each proposed
mechanism and the centralized planning approach is also presented.

Table 3-3 Results of the proposed mechanisms versus the centralized planning approach

Instance Ccp Crpa GCrparcp Crrc GCrrcicr
533-1 461.706 461.706 0.00% 461.706 0.00%
533-2 623.227 628.907 0.91% 628.907 0.91%
533-3 765.338 781.825 2.15% 781.825 2.15%
533-4 615.196 620.116 0.80% 620.116 0.80%
533-5 426.256 426.256 0.00% 426.256 0.00%
533-6 623.525 623.525 0.00% 623.525 0.00%
533-7 579.813 579.813 0.00% 579.813 0.00%
533-8 557.571 557.571 0.00% 557.571 0.00%
533-9 600.513 604.716 0.70% 604.716 0.70%
533-10 754.097 754.097 0.00% 754.097 0.00%

Average 0.46% 0.46%
633-1 694.277 694.277 0.00% 694.277 0.00%
633-2 822.448 850.064 3.36% 850.064 3.36%
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Instance Cep Crpa GCrparcp Crpc GCrrcicp
633-3 884.439 884.439 0.00% 884.439 0.00%
633-4 716.263 718.570 0.32% 718.570 0.32%
633-5 570.229 570.229 0.00% 570.229 0.00%
633-6 833.738 877.688 5.27% 874.482 4.89%
633-7 721.396 738.992 2.44% 738.992 2.44%
633-8 806.865 814.482 0.94% 814.482 0.94%
633-9 803.133 842.053 4.85% 850.587 5.91%
633-10 912.282 975.824 6.97% 975.824 6.97%

Average 2.41% 2.48%
733-1 744.369 744.369 0.00% 744.369 0.00%
733-2 898.418 898.418 0.00% 898.418 0.00%
733-3 713.332 713.820 0.07% 713.820 0.07%
733-4 617.767 659.136 6.70% 659.136 6.70%
733-5 606.683 612.750 1.00% 612.75 1.00%
733-6 691.814 691.814 0.00% 696.928 0.74%
733-7 778.853 800.160 2.74% 800.160 2.74%
733-8 820.654 836.672 1.95% 836.672 1.95%
733-9 734.554 744.903 1.41% 744.903 1.41%
733-10 858.936 869.019 1.17% 869.019 1.17%

Average 1.50% 1.58%

The results in Table 3-3 show that both the proposed two-phase CA mechanisms
can obtain an optimal or nearly optimal allocation for all the instances. The relative
gap for the total cost is smaller than 3%. Since the centralized planning approach is in
fact unpractical, this performance is good enough for practical application.

3.5.3 Comparison with clock auction

The purpose of introducing the supplementary bidding phase after the clock
auction phase is to improve the social efficiency of allocation since the price
discovery process of clock auction can be very slow sometimes. This part evaluated
the proposed two-phase mechanisms by comparing their performances with clock
auction only. The time to go to the supplementary bidding phase is also discussed.

To compare the proposed CA mechanisms with only the clock auction, the results
of the tests using the clock auction are firstly presented in Table 3-4. The instances
here are the same as the instances in subsection 3.4.2. The maximum number of
rounds of the clock auction is set to 50.

It can be observed from Table 3-4 that the clock auction needs many rounds to
get an optimal or near optimal solution with a gap to the centralized model less than
2%. Among the instances tested, 3 instances, whose RcL are marked with two hyphens,
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cannot get an efficient allocation within 50 rounds.

Table 3-4 Results of the clock auction

Instance CcL AcL RcL GCcLicp
533-1 461.706 490 14 0.00%
533-2 623.277 660 31 0.01%
533-3 765.338 800 29 0.00%
533-4 617.503 640 24 0.38%
533-5 426.256 460 18 0.00%
533-6 623.525 640 28 0.00%
533-7 581.247 590 29 0.25%
533-8 557.571 580 19 0.00%
533-9 604.716 620 29 0.70%

533-10 754.097 767.859 33 0.00%

Average 0.13%
633-1 719.493 770 24 3.63%
633-2 870.909 886.777 - 5.89%
633-3 884.439 930 18 0.00%
633-4 718.570 740 22 0.32%
633-5 570.229 620 16 0.00%
633-6 878.720 887.286 - 5.40%
633-7 725.200 740 27 0.53%
633-8 807.495 840 46 0.08%
633-9 803.133 850 23 0.00%
633-10 925.488 960 41 1.45%

Average 1.73%
733-1 757.400 800 32 1.75%
733-2 902.749 940 39 0.48%
733-3 713.332 730 29 0.00%
733-4 617.767 640 22 0.00%
733-5 612.750 650 19 1.00%
733-6 696.928 709.699 47 0.74%
733-7 799.651 810 39 2.67%
733-8 829.685 850 40 1.10%
733-9 743.310 770 40 1.19%
733-10 878.610 885.025 - 2.29%

Average 1.12%

From the results in Table 3-4, it can be observed that the clock auction can get an
efficient allocation for most of the tested instances within 50 rounds. But in reality,
even one single round of auction can take a very long time, let alone tens of round.
The maximum number of rounds may be limit to a relatively small number. Therefore,
the two-phase mechanisms can be significant in getting an efficient allocation within
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less rounds of CA. In the following, the experiments with different number of rounds
of the clock auction phase are conducted to reveal the advantages of the proposed
two-phase CA mechanisms.

In this group of tests, 4 sets of instances with the number of N =6 and 7, H = 3,
K = 3 are conducted. The maximum number of rounds of the CA is set to 50, which
include rounds in the clock auction phase and the rounds in the supplementary bidding
phase. To evaluate the effectiveness of the two-phase CA mechanisms in obtaining an
optimal or near-optimal allocation in a fixed number of rounds 50, different maximum
numbers of rounds are set for the clock auction phase, which are 10, 20, 30 and 40,
respectively. This means that the clock auction phase of the two-phase CA mechanism
will stop if a pre-set maximum number of rounds 10, 20, 30 or 40 is reached. After the
clock auction, the remaining rounds (50 — the number of rounds spent on the clock
auction) are dedicated to supplementary biding rounds in the second phase of our
two-phase CA mechanisms. The instances in this group are identified by its number of
nodes, vehicles and carriers, the number of rounds that the clock auction stops, and its
serial number. For example, instance 633-10-1 represents the first instance with 6
nodes, 3 carriers and 3 vehicles for each carrier, and the clock auction phase stops
after 10 rounds no matter whether the allocation of the for-bid lanes is efficient or not.

Table 3-5 and Table 3-6 present the results of this group of instances. The total
cost, the number of rounds required to obtain an efficient allocation, the
procurement/outsourcing cost of the auctioneer for the clock auction only and for the
two-phase CA mechanisms are presented as well as the corresponding relative gap of
total cost. Note the performance indexes of the clock auction here is those obtained
when the clock auction phase of a two-phase CA mechanism stops.

The results in Table 3-5 and Table 3-6 can be interpreted from several aspects.

Firstly, from the number of rounds to obtain an efficient allocation, it can be
observed that no matter when the clock auction stops, both the two-phase CA
mechanisms can obtain an efficient allocation in a few rounds after going into the
supplementary bidding phase. Compared with TPCAMA, TPCAMC can obtain an
efficient allocation with less rounds. In fact, no matter how many rounds the clock
auction phase is conducted, TPCAMC can obtain an efficient allocation within 3
rounds. This may because the sizes of the instances are not large, but it can prove the
efficiency of TPCAMC in time. In addition, for TPCAMA, the more rounds the clock
auction phase is conducted, the quicker the supplementary bidding phase can find an
efficient allocation.
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Secondly, from the relative gap of total cost with respect to the centralized
planning approach, which reflects the social efficiency of an allocation obtained, it
can be observed from Table 3-5 and Table 3-6 that the relative cost gap between the
allocation obtained by the clock auction phase and that obtained by TPCAMA or
TPCAMC is relatively large. The earlier the clock auction phase stops, the larger the
gap is. That is because if the clock auction phase stops without an efficient allocation,
the leftover for-bid lanes are treated as if each of them is served by a single vehicle
with the service cost equal to the revenue of the lane. Hence, with the introduction of
the supplementary bidding phase, the total cost can quickly get close to its optimal
value. Comparing GCrpa/cL and GCrpcicL as well as GCrpaice and GCrpc/cp in Table
3-5 and Table 3-6, TPCAMA slightly outperforms TPCAMC in obtaining a better
allocation. However, for both TPCAMA and TPCAMC, the earlier the clock auction
phase stops, the more advantage the two-phase CA mechanisms have.

Finally, from the procurement/outsourcing cost of the auctioneer, it can be
observed that by introducing the supplementary bidding phase, both TPCAMA and
TPCAMC can save the outsourcing cost of the auctioneer. TPCAMC performs better
than TPCAMA in terms of this cost since its supplementary bidding phase is a process
with the decreasing of bid prices in each round, while the supplementary bidding
phase of TPCAMA is a process with the increasing of supplementary bundle price in
each round.

From this group of tests, it can also be observed that with the increase of the
number of rounds of the clock auction, the total cost of the allocation obtained by
each of the two two-phase CA mechanisms usually gets closer to its optimal value, but
this is not always the case. The CA with 40 rounds of clock auction phase may not
perform better than that with 30 rounds of clock auction phase for some instances.
This is because the price discovery process of the clock auction may not converge
with the prices of some lanes alternatively increasing and decreasing in consecutive
rounds.

To sum up, both TPCAMA and TPCAMC perform well in obtaining efficient
allocations compared to the centralized planning approach. Compared with the clock
auction, the two-phase CA mechanisms can accelerate the CA process and perform
better in finding an efficient allocation within a limited number of rounds. They can
also save the procurement outsourcing cost for the auctioneer. Relatively, TPCAMA
can obtain an efficient allocation closer to the optimal allocation than TPCAMC, but
TPCAMC is more timesaving and cost-saving for the auctioneer. Note that the lower
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bound for the bid of each supplementary bundle of requests in TPCAMC is set by
considering the worst case that each carrier has no profit to bid for this bundle with its
bidding price given by the lower bound. If this lower bound is increased, the
advantage of cost-saving of TPCAMC over TPCAMA may be weaken. In conclusion,
the proposed two-phase CA mechanisms are efficient both in time and allocation.

Table 3-5 Two-phase CA mechanism TPCAMA and the clock auction

Instance CeL Crea GCrpacL GCrpace  AcL Atea GAtpaicL RcL Rtea
633-10-1 909.220 694.277 -23.64%  0.00% 941599 730 -22.47% - 14
633-10-2 1119.94 861.431 -23.08% 4.74% 112451 870 -22.63% - 17
633-10-3 1406.72 888.137 -36.86%  0.42% 1442.75 940 -34.85% -- 19
633-10-4 874.688 718.570 -17.85%  0.32% 893.867 740 -17.21% - 16
633-10-5 858.918 579.968 -32.48% 1.71% 910.815 640 -29.73% -- 18
633-10-6 1233.22 861.912 -30.11%  3.38% 1244.83 890 -2850% -- 16
633-10-7 906.509 812.079 -10.42% 12.57% 926.969 840 -938% - 17
633-10-8 1309.84 806.865 -38.40%  0.00% 1344.55 860 -36.04% -- 17
633-10-9 1202.67 842.053 -29.98%  4.85% 1222.87 880 -28.04% -- 15
633-10-10 1350.28 912.818 -32.40%  0.06% 1359.56 940 -30.86% -- 17
Average -27.52%  2.80% -25.97%

633-20-1 798.484 694.277 -13.05%  0.00% 856.548 760 -11.27% - 22
633-20-2 861.976 850.064 -1.38% 3.36% 896.777 890 -0.76% - 25
633-20-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-20-4 874.688 718.570 -17.85%  0.32% 893.867 760 -1498% - 21
633-20-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16
633-20-6 881.722 877.688 -0.46% 5.27% 907.286 907.286 0.00% - 29
633-20-7 802.661 738.992 -7.93% 2.44% 838.538 780 -6.98% - 27
633-20-8 867.934 814.482 -6.16% 0.94% 906.128 860 -5.09% - 23
633-20-9 872.634 842.053 -3.50% 4.85% 916.314 890 281 - 27
633-20-10 997.253 975.824 -2.15% 6.97% 1020.84 1000 -2.04% - 28
Average -5.25%  241% -4.40%  --
633-30-1 719.493 719.493 0.00% 3.63% 770 770 0.00% 24 24
633-30-2 853.473 827.971 -2.99% 0.67% 886.777 870 -1.89% - 34

633-30-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-30-4 718.570 718.570 0.00% 0.32% 740 740 0.00% 22 22
633-30-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16

633-30-6 878.720 877.485 -0.14% 5.25% 887.286 887.286 0.00% -- 37
633-30-7 725.200 725.200 0.00% 0.53% 740 740 0.00% 27 27
633-30-8 860.947 807.495 -6.21% 0.08% 886.128 840 -5.21% - 32
633-30-9 803.133 803.133 0.00% 0.00% 850 850 0.00% 23 23
633-30-10 990.601 912.818 -7.85% 0.06% 1020.84 950 -6.94% -- 33
Average -1.72%  1.05% -1.40% -

633-40-1 719.493 719.493 0.00% 3.63% 770 770 0.00% 24 24
633-40-2 870.909 858.997 -1.37%  4.44% 886.777 880 -0.76% - 44
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Instance CcL Ctpa  GCrpacc GCrpacce  AcL Atea  GAtpacL RcL Rrpa

633-40-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-40-4 718.570 718.570 0.00% 0.32% 740 740 0.00% 22 22
633-40-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16

633-40-6 878.720 877.485 -0.14% 5.25% 887.286 887.286 0.00% -- 46
633-40-7 725.200 725.200 0.00% 0.53% 740 740 0.00% 27 27
633-40-8 860.947 807.495 -6.21% 0.08% 886.128 840 -5.21% - 42
633-40-9 803.133 803.133  0.00% 0.00% 850 850 0.00% 23 23
633-40-10 990.601 912.818 -7.85% 0.06% 1020.84 950 -6.94% -- 42
Average -1.56%  1.43% -1.29%

733-10-1 948.648 744369 -21.53%  0.00% 950.155 760 -20.01% -- 17
733-10-2 112257 898.418 -19.97%  0.00% 1158.31 940  -1885% -- 25
733-10-3 969.964 713.332 -26.46%  0.00% 971.902 720 -25.92% -- 17
733-10-4 952.489 659.136 -30.80%  6.70% 969.851 680  -29.89% -- 15
733-10-5 704.786 627.179 -11.01%  3.38% 729.351 660 -951% -- 13
733-10-6 835.178 709.205 -15.08% 2.51% 837.162 719.699 -14.03% -- 18
733-10-7 1187.60 867.522 -26.95% 11.38%  1199.6 770 -3581% - 26
733-10-8 965.581 829.685 -14.07%  1.10% 972451 850  -1259% -- 23
733-10-9 925974 762.815 -17.62%  3.85% 934.657 780  -16.55% -- 16
733-10-10 990.954 868.483 -12.36%  1.11% 998.845 890  -10.90% -- 25
Average -19.95%  3.00% -19.41%

733-20-1 774.833 744.369 -3.93% 0.00% 826.185 800 3.17% - 24
733-20-2 918.051 898.418 -2.14% 0.00% 947.452 930 -1.84% -- 28
733-20-3 727.102 713.820 -1.83% 0.07% 734.495 730 -0.61% -- 25
733-20-4 715739 659.136 -7.91% 6.70% 739.503 690 -6.69% -- 25
733-20-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19
733-20-6 697.678 691.814 -0.84% 0.00% 729.699 729.699 0.00% -- 24
733-20-7 814.108 800.160 -1.71% 2.74% 830.735 820 -1.29% - 27
733-20-8 859.035 836.672 -2.60% 1.95% 867.379 850 -2.00% -- 28
733-20-9 760.872 744.903 -2.10% 1.41% 772575 760 -1.63% -- 26
733-20-10 878.610 869.019 -1.09% 1.17% 885.025 890 056% - 26
Average -2.42% 1.50% -1.67%

733-30-1 774.833 744.369 -3.93% 0.00% 826.185 800 -3.17% - 32
733-30-2 918.051 898.418 -2.14% 0.00% 947.452 930 -1.84% -- 35

733-30-3 713.332 713.332 0.00% 0.00% 730 730 0.00% 29 29
733-30-4 617.767 617.767 0.00% 0.00% 640 640 0.00% 22 22
733-30-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19

733-30-6 697.678 691.814 -0.84% 0.00% 709.699 709.699 0.00% -- 32
733-30-7 814.108 800.160 -1.71% 2.74% 820.735 810 -1.31% - 34
733-30-8 859.035 836.672 -2.60% 1.95% 867.379 850 -2.00% -- 33
733-30-9 760.872 744.903 -2.10% 1.41% 772575 760 -1.63% - 32
733-30-10 878.610 869.019 -1.09% 1.17% 885.025 880 -057% -- 35
Average -1.44%  0.83% -1.05%  --

733-40-1 757.400 757.400 0.00% 1.75% 800 800 0.00% 32 32
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Instance CcL Ctpa  GCrpacc GCrpacce  AcL Atea  GAtpacL RcL Rrpa

733-40-2 902.749 902.749  0.00% 0.48% 940 940 0.00% 39 39
733-40-3 713.332 713.332  0.00% 0.00% 730 730 0.00% 29 29
733-40-4 617.767 617.767 0.00% 0.00% 640 640 0.00% 22 22
733-40-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19
733-40-6 696.928 696.928 0.00% 0.74%  709.699 709.699 0.00% 39 39
733-40-7 799.651 799.651  0.00% 2.67% 810 810 0.00% 39 39
733-40-8 829.685 829.685 0.00% 1.10% 850 850 0.00% 40 40
733-40-9 741.310 741.310 0.00% 0.92% 770 770 0.00% 40 40
733-40-10 878.074 869.019 -1.03% 1.17% 885.025 880 -0.57% -- 43
Average -0.10%  0.98% -0.06%

Table 3-6 Two-phase CA mechanism TPCAMC and the clock auction

Instance CeL Crrc  GCrpcic GCrpcicr AcL Atec GAtecic Rel Rrec
633-10-1 909.220 784.252 -13.74% 12.96% 941599 816.63 -13.27% -- 11
633-10-2 1119.94 895.876 -20.01% 8.93% 112451 896.646 -20.26% -- 12
633-10-3 1406.72 888.137 -36.86% 0.42% 144275 888.137 -38.44% -- 12
633-10-4 874.688 718.570 -17.85% 0.32% 893.867 723.164 -19.10% -- 11
633-10-5 858.918 619.720 -27.85% 8.68% 910.815 619.72 -31.96% -- 11
633-10-6 1233.22 868.223 -29.60%  4.14% 1244.83 868.223 -30.25% -- 12
633-10-7 906.509 812.079 -10.42% 12.57% 926.969 826.185 -10.87% -- 12
633-10-8 1309.84 806.865 -38.40% 0.00% 134455 806.865 -39.99% -- 13
633-10-9 1202.67 842.053 -29.98%  4.85% 1222.87 842.053 -31.14% -- 12
633-10-10 1350.28 1034.46 -23.39% 13.39% 1359.56 1034.46 -23.91% -- 13
Average -24.81%  6.63% -25.92%

633-20-1 798.484 694.277 -13.05% 0.00% 856.548 740 -13.61% -- 21
633-20-2 861.976 850.064 -1.38% 3.36% 896.777 862.192 -3.86% -- 21
633-20-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-20-4 874.688 718.570 -17.85% 0.32% 893.867 740 -17.21% - 21
633-20-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16
633-20-6 881.722 874.482 -0.82% 489% 907.286 891433 -1.75% -- 21
633-20-7 802.661 738.992 -7.93% 2.44% 838.538 738.992 -11.87% -- 21
633-20-8 867.934 814.482 -6.16% 0.94% 906.128 830 -840% -- 21
633-20-9 872.634 850.587 -2.53% 591% 916.314 858.817 -6.27% -- 21
633-20-10 997.253 975.824 -2.15% 6.97% 1020.84 983.161 -3.69% -- 21
Average -5.19%  2.48% -6.67%  --
633-30-1 719.493 719.493 0.00% 3.63% 770 770 0.00% 24 24
633-30-2 853.473 827.971 -2.99% 0.67% 886.777 827971 -6.63% -- 31

633-30-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-30-4 718.570 718.570 0.00% 0.32% 740 740 0.00% 22 22
633-30-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16
633-30-6 878.720 874.685 -0.46% 491% 887.286 8763 -1.24% - 31
633-30-7 725.200 725.200 0.00% 0.53% 740 740 0.00% 27 27
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Instance CeL Crrc  GCrpcic GCrpcicr AcL Atec GAtpcicL Rel Rrec
633-30-8 860.947 807.495 -6.21% 0.08% 886.128 812.819 -827% -- 31
633-30-9 803.133 803.133 0.00% 0.00% 850 850 0.00% 23 23
633-30-10 990.601 912.818 -7.85% 0.06% 1020.84 912.818 -10.58% -- 31
Average -1.75% 1.02% -2.67% -
633-40-1 719.493 719.493 0.00% 3.63% 770 770 0.00% 24 24
633-40-2 870.909 871.381 0.05% 5.95% 886.777 873.509 -150% -- 41

633-40-3 884.439 884.439 0.00% 0.00% 930 930 0.00% 18 18
633-40-4 718.570 718.570 0.00% 0.32% 740 740 0.00% 22 22
633-40-5 570.229 570.229 0.00% 0.00% 620 620 0.00% 16 16

633-40-6 878.720 874.685 -0.46% 491% 887.286 8763 -124% -- 41
633-40-7 725.200 725.200 0.00% 0.53% 740 740 0.00% 27 27
633-40-8 860.947 807.495 -6.21% 0.08% 886.128 820 -7146% - 41
633-40-9 803.133 803.133 0.00% 0.00% 850 850 0.00% 23 23
633-40-10 990.601 912.818 -7.85% 0.06% 1020.84 912.818 -10.58% -- 41
Average -1.45% 1.55% -2.08%

733-10-1 948.648 744.369 -21.53%  0.00% 950.155 744.369 -21.66% -- 13
733-10-2 112257 898.418 -19.97%  0.00% 1158.31 898.418 -22.44% -- 12
733-10-3 969.964 713.332 -26.46%  0.00% 971902 713.332 -26.60% -- 12
733-10-4 952.489 659.136 -30.80%  6.70% 969.851 676.499 -30.25% -- 12
733-10-5 704.786 645.425 -8.42% 6.39% 729.351 656.261 -10.02% -- 11
733-10-6 835.178 709.205 -15.08%  2.51% 837.162 711.189 -1505% -- 12
733-10-7 1187.60 798.351 -32.78%  2.50%  1199.6 809.26 -32.54% -- 12
733-10-8 965.581 836.672 -13.35%  1.95% 972.451 843542 -13.26% -- 12
733-10-9 925.974 770.627 -16.78%  4.91% 934.657 770.627 -1755% -- 12
733-10-10 990.954 868.483 -12.36%  1.11% 998.845 876.373 -12.26% -- 12
Average -19.75%  2.61% -20.16%

733-20-1 774.833 744.369 -3.93% 0.00% 826.185 770 -6.80% - 21
733-20-2 918.051 898.418 -2.14% 0.00% 947.452 898.418 -518% - 21
733-20-3 727.102 713.820 -1.83% 0.07% 734495 721.213 -181% - 21
733-20-4 715.739 659.136 -7.91% 6.70% 739.503 676.499 -852% -- 21
733-20-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19
733-20-6 697.678 696.928 -0.11% 0.74% 729.699 702.122 -3.78% - 21
733-20-7 814.108 800.160 -1.71% 2.74% 830.735 81053 -243% - 21
733-20-8 859.035 836.672 -2.60% 1.95% 867.379 843542 -275% - 21
733-20-9 760.872 744.903 -2.10% 1.41% 772575 744903 -358% - 21
733-20-10 878.610 869.019 -1.09% 1.17% 885.025 880.379 -0.52% - 21
Average -2.34% 1.58% -3.54%

733-30-1 774.833 744.369 -3.93% 0.00% 826.185 790 -438% -- 31
733-30-2 918.051 898.418 -2.14% 0.00% 947.452 898.418 -518% -- 31

733-30-3 713.332 713.332 0.00% 0.00% 730 730 0.00% 29 29
733-30-4 617.767 617.767 0.00% 0.00% 640 640 0.00% 22 22
733-30-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19
733-30-6 697.678 691.814 -0.84% 0.00% 709.699 693.92 -222% -- 31

46



3 Two-phase combinatorial auction mechanisms with supplementary bundles of requests

Instance CeL Crrc  GCrpcic GCrpcicr AcL Atec GAtpcicL Rel Rrec
733-30-7 814.108 800.160 -1.71% 2.74% 820.735 800.53 -246% -- 31
733-30-8 859.035 836.672 -2.60% 1.95% 867.379 843542 -2.75% -- 31
733-30-9 760.872 744.903 -2.10% 141% 772575 744903 -358% -- 31
733-30-10 878.610 869.019 -1.09% 1.17% 885.025 870.379 -1.65% -- 31
Average -1.44%  0.83% -2.22%

733-40-1 757.400 757.400 0.00% 1.75% 800 800 0.00% 32 32
733-40-2 902.749 902.749 0.00% 0.48% 940 940 0.00% 39 39
733-40-3 713.332 713.332 0.00% 0.00% 730 730 0.00% 29 29
733-40-4 617.767 617.767 0.00% 0.00% 640 640 0.00% 22 22
733-40-5 612.750 612.750 0.00% 1.00% 650 650 0.00% 19 19
733-40-6 696.928 696.928 0.00% 0.74% 709.699 709.699 0.00% 39 39
733-40-7 799.651 799.651 0.00% 2.67% 810 810 0.00% 39 39
733-40-8 829.685 829.685 0.00% 1.10% 850 850 0.00% 40 40
733-40-9 741.310 741.310 0.00% 0.92% 770 770 0.00% 40 40
733-40-10 878.074 868.483 -1.09% 1.11% 885.025 870.379 -1.65% -- 41
Average -0.11% 0.98% -0.17%

3.6 Chapter summary

This chapter studies a combinatorial auction for truckload transportation service
procurement. Two two-phase multi-round combinatorial auction mechanisms with
supplementary bundles of lanes generated by the auctioneer and supplementary bids
generated by the carriers respectively in the second phase are proposed. The
computational results show that the proposed mechanisms can obtain an optimal or a
near-optimal allocation with a gap less than 3% for the instances tested. Moreover, the
two-phase CA mechanisms can help the auctioneer save procurement costs while
improving the social efficiency.

Note that the supplementary bundle generation methods presented in this chapter
may not be the only ways to generate supplementary bids. Whether there are other
methods to generate supplementary bids and how efficient they are still open
questions required to be answered with further investigation. In addition, the problem
studied in this chapter can be extended with more complex situations, such as the
situation where the carriers participating in CA have to serve their reserved requests,
which are defined by pre-existing commitments or contracts with other carriers.
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4 Column generation algorithm for a bid generation

problem

4.1 Introduction

In truckload transportation, the carriers are the main force in serving
transportation requests. Optimizing daily truckload transportation operations of the
carriers can help them improve their efficiency facing an ever-increasing competition
pressure. For these carriers, they can improve their operation efficiency by acquiring
transportation requests which are complementary to their existing ones (Song &
Regan, 2003). So, when a shipper procures transportation services from carriers by a
combinatorial auction (CA), each carrier must decide which transportation requests to
bid to maximize its profit. This problem is known as the bid generation problem.

The bid generation problem (BGP), also referred as bid construction problem or
bundle generation problem, is one of the most important decision problems that needs
to be solved by each bidder in a combinatorial auction. When participate in a CA for
transportation service procurement (TSP), each carrier may bid for multiple
combinations of transportation requests provided by the shipper.

In chapter 3, two CA mechanisms for TSP are studied. This chapter is focused on
one of the main decision problems of a CA, the bid generation problem, from a
carrier’s perspective. The BGP considered in Chapter 3 only involves the requests
(lanes) provided by the shipper. However, in a general case, before participating in a
CA, each carrier may have some pre-exist commitments of serving requests. These
commitments may come from long-term contracts between other shippers and the
carrier or from former auctions. Therefore, when participating in a new CA, the
carrier must consider both pre-exist commitments and the requests that may acquire
from this CA. Hereafter, the requests (lanes) to serve defined by the pre-exist
commitments of a carrier and the requests offered by a shipper in the considered CA
are referred to as reserved lanes and for-bid lanes respectively. The difference between
the two types of lanes for a carrier is that it must serve all its reserved lanes whereas it
can select some of the for-bid lanes to bid for and to serve. In fact, each carrier takes
part in a CA to acquire for-bid lanes that are complementary to its reserved lanes in
order to reduce its empty vehicle repositions or to seek more profit. In any case, a
carrier will need to reconstruct its vehicle routes to serve both its reserved requests
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and the requests it wants to bid for, which makes its BGP and its vehicle routing
problem interdependent.

The literatures that study the vehicle routing problem (VRP) of truckload
transportation has been reviewed in Chapter 2, section 2.4.1. However, these reviewed
studies are focused on the routing and scheduling of truckload vehicles for given
requests, request (lane) selection is not considered in their problems. Moreover, the
selective vehicle routing problem studied in this chapter involves both reserved lanes
that a carrier must serve and for-bid lanes that the carrier chooses to bid for and serve.
So, the problem studied in this chapter is different from the ones reviewed.

In the family of VRP, a problem related to the problem studied in this chapter is
the team orienteering problem (TOP), which is NP-hard (Chao et al., 1996). In this
problem, a fleet of identical vehicles is available to serve a set of customers. The
duration of each route is limited/bounded. The objective of the problem is to design a
set of routes such that the total profit collected is maximized subject to the maximum
duration constraint of each route. For a TOP, due to the duration limit of each route,
not all customers can be visited/served, so decisions must be made to select which
customers to visit/serve. This selection characteristic also exists in the problem
studied in this chapter. TOP attracts attention of scholars in recent years and various
algorithms have been developed to solve the problem. For example, Archetti et al.
(2009) investigated a capacitated team orienteering and profitable tour problems in a
complete undirected graph and proposed exact and heuristic procedures for solving
the problem. Poggi et al. (2010) devised an extended formulation for the problem
where edges of each route are indexed by the time they are added to the route. A
robust Branch-Cut-and-Price algorithm was proposed to solve the problem.
Keshtkaran et al. (2016) also proposed a Branch-and-Price approach to find optimal
solutions to TOP. El-Hajj et al. (2015) studied a TOP with time windows to maximize
the total amount of profit collected from the visited customers. They proposed a
column generation-based algorithm to solve the linear relaxation of the problem and
used a dynamic programming algorithm to solve the subproblems in order to generate
additional columns. Since TOP only has selective customers, it is different from the
BGP studied in this chapter.

The team orienteering arc routing problem (TOARP) as an extension of TOP is
closer to the studied BGP. In TOARP, there are a set of regular customers and a set of
potential customers, which correspond to the reserved lanes and the for-bid lanes in
the BGP. Archetti et al. (2013) proposed a formulation for TOARP and presented
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some families of valid and facet-inducing inequalities used in the implementation of a
branch-and-cut algorithm for the problem. Riera-Ledesma and Salazar-Gonzélez
(2017) proposed a set-partitioning formulation and two column generation algorithms
for the problem. However, the studied TOARP only considers the profit collected for
serving the selected customers, it does not consider the traveling costs of the routes
for serving these customers.

Motivated by Riera-Ledesma and Salazar-Gonzalez (2017), a column generation
algorithm is proposed for solving the BGP studied. The subproblem in the column
generation algorithm, which is an elementary shortest path problem, is solved by a
dynamic programming based labeling algorithm and by local search respectively.

The rest of the chapter is organized as follows. The description and mathematical
formulation of the problem are provided in Section 4.2. In Section 4.3, a column
generation algorithm is proposed to solve the linear relaxation of the problem. The
procedure of the column generation algorithm, a heuristic to construct an initial
solution of the original problem and two methods to solve the subproblem in the
column generation algorithm are presented in this section. In Section 4.4, the
proposed algorithm is evaluated by comparing it with CPLEX solver that solves a
MILP model of the problem on randomly generated instances. Section 4.5 concludes
this chapter.

4.2 Problem description and formulations

In the studied bid generation problem, a carrier who participates in a CA for TSP
held by a shipper wants to generate a bid to acquire one or multiple truckload requests
offered by the shipper. Each truckload request is represented by a lane with an origin
and a destination in a transportation network. Before participating in the CA, the
carrier has a set of reserved lanes that must be served. In the CA, if the carrier wants
to acquire some for-bid lanes, except for selecting the lanes to bid for, it must also
reconstruct its vehicle routes to serve its selected for-bid lances in addition to its
reserved lanes.

It is assumed that the carrier has a fleet of vehicles initially located at its vehicle
depot with the number of vehicles limited. Each vehicle must leave from and return to
its depot before and after serving the lanes assigned to it respectively. Each vehicle
can only perform a single route/tour. The service time of each vehicle or equivalently
the duration of each route is limited.
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4.2.1 Mixed-integer linear programming model

The studied BGP, which also considers reserved lanes, is an extension of the
BGP involved in Chapter 3. So, this problem can also be formulated as a MILP model.
For the convenience to formulate the problem, the following notations are introduced
in advance:

Indices and sets
N: set of all nodes in the transportation network considered
A: set of all possible lanes

d(d"): depot of the carrier

H: set of vehicles of the carrier
L,: set of reserved lanes
Ly: set of for-bid lanes

L, L, cA

Parameters:

ci,j: travel cost of lane (i, j) of the carrier, (i, j)e A

ti.j: travel time of lane (i, j) of the carrier, (i, j)e A

B: maximum travel duration of each vehicle

Ri, j: the revenue of serving reserved lane (i, j) of the carrier, (i, j) el,

Pi, j; the outsourcing/procurement price of for-bid lane (i, j) given by the
auctioneer/shipper, (i, j)eL,

Decision variables:

U = ;(i,j)eLr,heH

. |1, if reserved lane (i, j) is served by vehicle h
0, otherwise

1, if for-bid lane (i, j) is chosen and served by vehicleh . .
) { i i (i,j) i ved by vehi (i i)el,heH

0, otherwise

X ,(i,j)eA,heH

. |1, if vehicle h travel through arc (i, j)
0, otherwise

Sih, the time at which vehicle h leaves node i; ie N,he H ;
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Then the studied BGP can be formulated as:

Model BGP
MaxZ( 2 UlR; Z ViR~ Z Ci,jxih,jJ
heH \ (i, j)eL, (i,j)eky (i,j)eA
s.t.
> x'=>'x}, ieN\{d,d'}, heH (4-1)
jeN jeN
> x' <1, ieN, heH (4-2)
jeN
> ;=1 heH (4-3)
ieN\d ’
> Xjg=LheH (4-4)
jeN\d’
X'=ul v, (l j)eAheH (4-5)
dYul =1 (i,j)eL, (4-6)
heH
i<l (ij)el, (4-7)
heH
> X't <B, heH (4-8)
IJEA
S!=0,heH (4-9)
S/ 28+t ;—B(1-x;),i,jeN,heH (4-10)
u';=0; (i,j)e A\L,,heH (4-11)
v, =0, (i,j)e A\L,,heH (4-12)

The objective function is to maximize the net profit of the carrier, which is the
difference between the total revenue to serve all reserved lanes and selected for-bid
lanes and the total travel cost. Constraint (4-1) guarantees the vehicle flow
equilibrium at each node except for the depot node of the carrier since the depot node
is duplicated as origin node and destination node for all routes respectively. Constraint
(4-2) indicates that for any vehicle, if it leaves a node, the next node it can visit is
unique. Constraints (4-3) and (4-4) ensure that all vehicles leave from and return to its
depot after completing the service. Constraint (4-5) ensures that each lane with a
transportation request will be served, no matter it is a reserved lane or a for-bid lane.
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Constraint (4-6) indicates that for the carrier, each of its reserved lanes is served
exactly once by a unique vehicle. Constraint (4-7) guarantees that each for-bid lane is
served at most once by a vehicle of the carrier. Constraint (4-8) limits the travel
duration of each vehicle. Constraint (4-9) sets the departure time of each vehicle from
its depot as 0. Constraint (4-10) ensures that if a vehicle travels through lane (i, j), the
time difference between the departure time at node j and that at node i is at least the
travel time of the lane. This constraint eliminates all sub-tours. Constraint (4-11) and

constraint (4-12) define the value of binary variable ui*jj and vi*fj respectively

according to whether its corresponding lane is a reserved lane or a for-bid lane. On the

one hand, if (i, j) is not a reserved lane, ui*fj = 0. On the other hand, if (i, j) is not a
for-bid lane, v/, =0.

4.2.2 Set partition model

The linear relaxation of the MILP model for the studied BGP is very weak/loose
because of constraints (4-8) and (4-10). The conventional branch-and-bound approach
can only solve the MILP model with very small size, which is not practical in reality.
Through the Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1960), a set partition
formulation of the considered BGP can be obtained with a much tighter linear
relaxation. The new model can be formulated with the following notations defined:

Sets and indices:

R, set of all possible routes

A, set of all lanes

Ar, set of lanes included in route r, r eR

Paraments:
1,iflanel isin route r
= ] leAreR
’ 0, otherwise

C,, the cost of serving/passing through lane |l; | € A

P, the revenue of serving lane |; | € A

Decision variables:

1, if route r is included in the optimal solution ;
;re

' {0, otherwise
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Then the studied BGP can be formulated with the following set partition model:

Model BGP-SP
Max> > (R -C,)a, X,
reR leA
S.t.
>a,x =Llel, (4-13)
reR
2ax <Llel, (4-14)
reR
> x, <H (4-15)
reR
X, € {O, 1}, rekR (4-16)

The objective function is still to maximize the net profit of the carrier. The net
profit is the difference between the total revenue and the total cost of serving all the
lanes by the routes. Constraint (4-13) corresponds to constraint (4-6) and ensures that
each reserved lane is served only once, whereas constraint (4-14) corresponds to
constraint (4-7) and ensures that any for-bid lane can be served at most once by the
carrier. Constraint (4-15) guarantees that the number of vehicles used does not exceed
its available number. Constraint (4-16) defines the value range of each binary variable

Xr.
4.3 Column generation algorithm

In the set partition model, the set R contains all possible routes respecting the
maximum travel duration constraint. However, considering all possible routes in
solving the model is computationally unaffordable for a practical instance of the
model. To overcome this difficulty, a column generation algorithm can be applied to
solve the model, which is an iterative procedure considering the routes in the model
implicitly and progressively.

4.3.1 Procedure of the column generation algorithm

Column generation is an efficient algorithm for solving linear programs with a
large number of columns/variables. The main advantage of column generation is that
not all columns/variables need to be enumerated/considered in solving a linear
programming model. To implement a column generation algorithm, a restricted master

problem and a subproblem must be formulated. The restricted master problem (RMP)
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is the original problem with only a subset of variables considered. The solution of the
RMP is a feasible solution to the original problem. The subproblem (SP) is a problem
used to identify a column to be added into the RMP in each iteration of the column
generation algorithm. The new column is found by solving the subproblem to find a
column with positive reduced cost (if the original problem is a maximization problem)
with respect to the optimal values of the dual variables of the RMP (or the optimal
solution of the dual model of the RMP). Generally, the column that maximizes the
reduced cost is added to the restricted master problem (for a maximization original
problem). This means adding this column can improve the current solution of the
original problem to the greatest extent.

The column generation algorithm deals with the linear relaxation model of the
set partition model BGP-SP of the studied problem, in which all binary variables xr
are relaxed to real variables.

4.3.1.1 Restricted master problem and its dual model

Let Ro denote a subset of R considered initially in solving the set partition model
by column generation, then the restricted master problem of the model can be
formulated as:

Model RMP
Max > > (R -C )a X
reR, leA Y
s.t.
>a,x =Llel, (4-17)
reRy
da,x<Llel (4-18)
reRy
D x <H (4-19)
reRy
0<x <1 reR, (4-20)

Constraint (4-17) - (4-20) play the same roles as constraint (4-13) - (4-16). Note
that in constraint (4-20) the value range of variable xr is changed after linear
relaxation compared to constraint (4-16).

The dual model of the restricted master problem can be formulated as follows:
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Model D-RMP
Min) 4 +Hpu
leA
s.t.
YaA4+uz) (R-Cla,;rer (4-21)
leA ’ leA ’
ALeR;lel, (4-22)
420 lel, (4-23)
#z0 (4-24)

In the dual model, variable A is the dual variable associated with constraint (4-17)

and (4-18). When lane | is a reserved lane, i.e., | €L,, then the dual variable 4 can

take any value as indicated by constraint (4-22). On the other hand, when lane | is a
for-bid lane, i.e., lel,, the dual variable A4 must take a nonnegative value as
indicated by constraint (4-23). Variable x is the dual variable associated with
constraint (4-19), with its value range indicated by constraint (4-24).

As introduced at the beginning of this section, the subproblem of the column
generation algorithm aims at finding a column with the largest reduced cost (for a
maximization original problem). The reduced cost coefficient of each column can be

obtained with the optimal values of the dual variables of the restricted master problem.
In specific, let ¢j denotes the coefficient of the j-th column in the objective function of

the set participation model, T; denotes the reduced cost coefficient of this column in

the model, then

= _ T

C,=C;—4 g (4-25)
where a is the j-th column in the constraint matrix of the model and

A=(4,lel, ulLy) isthe vector of the optimal values of the dual variables of model

D-RMP. Therefore, the dual model of the restricted master problem must be solved
before solving the subproblem.

With the given values of the dual variables, the reduced cost coefficient €, can

be calculated as
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.EZ;\:(P -Ca, - [éa,rﬂﬁy]

4.3.1.2 Subproblem

Since our considered BGP is a maximization problem, the subproblem of the
column generation algorithm is to find a new route with a positive reduced cost, that
is, to find a new route such that:

> (R-C) alr—[zfalrﬂH +y)>0 (4-26)

leA leA

In order to conform to the usual expression of column generation whose
subproblem is to find a column with negative reduced cost, here multiply both sides of
the inequality (4-26) by -1 to obtain the inequality (4-27). Then, the subproblem

becomes a problem to find a route x, € R\ R, with negative reduced cost such that

za|,r/11 "'/J_Z(Pl -C )al,r <0 (4-27)

leA leA

Generally, the column to be added in the restricted master problem is the one that
can best improve the objective value of the original problem. Then the subproblem to
find a new column, which corresponds to a new route in our considered BGP, can be
viewed as an elementary shortest path problem with resource constraint (ESPPRC)
which can be formulated as:

Model ESPPRC

S.t.
constraint (4-1) — (4-12) without index h

where the distance matrix € ; is defined as

’11_(Ri,j u) (ij)eL
C,j= ’11_(P'J IJ) (Liel,
¢, (i.j)e AV{L UL}
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The procedure of the column generation algorithm for solving the studied BGP
can be summarized as follows.
(1) Generate an initial solution of the BGP with a set Ro of routes (initial

columns for the RMP), R, cR.

(2) Solve the dual model of the restricted master problem, i.e., Model D-RMP,
and obtain the optimal values of all dual variables.

(3) For the given values of the dual variables, solve the subproblem to find the
route with the smallest reduced cost.

(4) Check if the route found has a negative reduced cost, if it has, add the column
corresponding to the route to the restricted master problem and go to step (2).
Otherwise, the algorithm stops with the solution of the final restricted master
problem with variable range constraints (4-20) replaced by (4-16), which is
an optimal or near-optimal solution of the original problem.

4.3.2 Construction of an initial solution of the original problem

The BGP studied considers two types of lanes with transportation requests, the
reserved lanes and the for-bid lanes. Since the reserved lanes must be served, the
simplest way to obtain an initial solution of the problem is to solve a simplified
problem which only considers the reserved lanes. The solution to this problem must
be a feasible solution of the original problem. However, construct an initial solution in
this way may not be very efficient if the proportion of for-bid lanes in all lanes is
large.

In our proposed column generation algorithm, a greedy insertion heuristic is
designed to generate the initial solution. This heuristic constructs routes one by one, it
first tries to insert/serve all reserved lanes and then tries to insert profitable for-bid
lanes as many as possible until the number of vehicles used reaches its maximum
number, i.e., the number of available vehicles. When constructing a route, the
heuristic first selects a seed lane to insert into an empty route containing only the
vehicle depot node. This seed lane is the farthest lane among all possible lanes in
terms of the duration of the route that only serves the lane. For the current route to
construct with the seed lane already inserted, the heuristic tries to insert the lane with
maximal net profit increase among all possible lanes to the route while respecting its
maximum duration constraint in each insertion. Let Qr and Qy be the sets of reserved
and for-bid lanes to be inserted respectively, Dr be the travel duration of route r, R be
the set of routes constructed, |R| is the number of routes in R, then the procedure of the
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heuristic is presented as follows:

Greedy insertion heuristic

0o N o o

10
11

12
13

14
15

16
17

18

19
20

21

22

{Initialization}
Q =L, Q=L
R=0
{Create routes and insert the reserved lanes}
while Q. =& and |R|<H do
select a seed reserved lane I°=(i, j)eQ, with maximum value of
ty;+t; +t; 4 among all remaining reserved lanes, insert it to an empty
new route r and update Dr
R=RU{r}
Q =0\l
while D, <B do
insert a reserved lanel, € Q, with maximum net profit increase among all

remaining reserved lanes to route r such that the travel duration of the
route after this insertion respects the constraint D, <B

Q =0\
{Insert for-bid lanes into the existing routes}
while Q, #& do
insert a for-bid lane I, €Q, into an existing route reR with
D, < B such that this insertion maximizes the net profit increase among all
possible insertions of this type, and update D, of the corresponding route
Q, =0\l
until no remaining for-bid lane can be inserted into an existing route
{Create routes and insert the remaining for-bid lanes}
while @, #& and |R|<H do
select a seed for-bid lane I =(i,j)eQ, with maximum value of
ty; +t;+t, 4 among all remaining for-bid lanes, insert it to an empty new

route r and update Dy
if the net profit of the new route r is positive

R=RU{r}
Q =\
while D, <B do

insert a for-bid lanel, € Q, with maximum net profit increase among all
remaining for-bid lanes to route r such that the travel duration of the
route after this insertion respects the constraint D, < B
Q =\

{Output the initial solution}

output each route constructed
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4.3.3 Methods for solving the subproblem

Efficiently solving the subproblem is important for the column generation
algorithm because most of its computation time is spent on the resolution of the
subproblem. The most straightforward way to solve the subproblem is to solve its
MILP model by a commercial solver like CPLEX solver. However, this method may
not be the most efficient one. In this section, two methods to solve the subproblem are
proposed and investigated, one is a dynamic programming based labeling algorithm
and the other is a local search algorithm.

4.3.3.1 Dynamic programming based labeling algorithm

Dynamic programming is a mathematical optimization method first proposed by
Richard Bellman in the 1950s, this method is often used for multi-stage decision
problems, it is widely applied in many fields such as engineering, production and
economics. The labeling algorithm, as one type of dynamic programming algorithm,
is typically used to solve elementary shortest path problems with resource constraints
(ESPPRC) arising in using column generation to solve various vehicle routing
problems (Feillet et al., 2004; Gschwind et al., 2018; Ropke & Cordeau, 2009; Vitale
& Dondo, 2020). Irnich and Desaulniers (2005) provides an overview of methods for
solving the ESPPRCs.

In the ESPPRC of the column generation proposed for the studied BGP, a route
with lowest cost and respecting the maximum duration constraint needs to be found.
This route must start and end at the vehicle depot of the carrier and serve some of
reserved requests (lanes) and for-bid requests (lanes).

In this labeling algorithm to solve the ESPPRC, a label L; = {Si, di, ci, Ui, ni} is
defined with the ordered list S; of visited requests, the departure time d; after serving
the current request i, the accumulated cost ci, the set of unreachable requests U; and
the number of unreachable requests ni. Here, a request is considered unreachable if it
has been already served in the partial route defined by the label or serving the request
will cause the violation of the maximum duration constraint. The label will be
extended from L; = {S;, di, ci, Ui, ni} to Lj = {Sj, dj, cj, Uj, nj} if request j is served next
in the route. Before adding request j, it is firstly checked if it is an unreachable request.
If it can be added to the route, let i* be the origin node and i- be the destination node
of request i, then

S, =S «j (4-28)
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d; =d +ti,’j+ +tj+’j, (4-29)

C;=C+C. . +C, (4-30)

i

Note if request j is the first request considered after leaving the vehicle depot,

then in the new label Lj, d; and c;aresetto d; =t AT and ¢; =c, FHCL

respectively. Finally, if the partial route ends at the depot node, i.e., the partial route
becomes a complete route, then in the new label defining the route, the list of visited

requests, the duration and the cost of the route are setto S;, d;+t_,and ¢, +c__,,

respectively, where request i is the last request served in the route.

After updating S;, d; and c; for the new label, its Uj and n; will also be

updated after checking the origin node of each remaining request and the maximum
duration constraint.
To limit the number of new labels generated in the labeling algorithm, a

dominance rule is applied to eliminate all dominated labels. For two labels Llj and
2 - - - - - - - 1
L associated with request j (i.e., their last request served is request j), label L;

dominates label LZj if
d;<d?, ¢;<cf, UjcU?, ni<n} (4-31)

Let A, denote the list of labels associated with request i, E denote the requests

that need to be examined, the procedure of the labeling algorithm can be described as
follows:

Labeling algorithm for ESPPRC

{Initialization}

1 Ap ={D, 0, 0, &, 0}
2 forall iel UL,
3 A =0
4 E= LUL
{Main loop}
5 while ExOJ do
6 forall jeE\U,
7 extend label Lito L,
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8 check the dominance of the extended label
9 if Lj is not dominated by any existing label
10 Aj=A U{Lj}

11 E=E \{i}

12 if A, ischanged

13 E=EU{j}
{Output the results}
14 output the route with minimum reduced cost

4.3.3.2 Local search algorithm

The labeling algorithm presented in the last subsection is time consuming when
the number of requests is large and the maximum duration of each route is large, so it
Is not suitable for large instances of the BGP considered. Heuristic methods are
usually proposed to approximately solve the ESPPRCs appeared in column generation
algorithms for various vehicle routing problems. One heuristic method is, instead of
solving an elementary shortest path problem, a shortest path problem that allows some
nodes visited by more than one time in a partial path (route) is considered, but the
relaxation of the constraint that each node is visited by a partial path (route) at most
once will degrade the lower bound of the corresponding set partition model found by
column generation. For this reason, a local search algorithm is proposed to solve the
subproblem.

In the column generation algorithm, after solving the dual problem of the
restricted master problem, the reduced cost of each route in the route (column) pool
can be calculated. The local search algorithm tries to improve some routes with zero
reduced cost in the route pool such that routes with negative reduced cost can be
found and enter the column pool. This algorithm applies the following three local
search operators:

(1) Remove a request (lane). For a given route, this operator removes a request
whose removal will maximally reduce the reduced cost of the route among
all removable requests.

(2) Insert a request (lane). For a given route, this operator inserts a request whose
insertion will maximally reduce the reduced cost of the route among all
insert-able requests and reconstructs the route by inserting the request into its
best position that minimizes the reduced cost. Note that in the ESPPRC
considered, some lanes are associated with a negative cost (distance), so the
insertion of a request (lane) may reduce the reduced cost of the route.

(3) Remove and insert a request (lane). For a given route, this operator first
62



4 Column generation algorithm for a bid generation problem

removes a request from the route and then reinsert this request (in another
position) or insert another request into the route. The combination of the
request to remove and the request to insert is chosen such that the reduced
cost of the route is reduced at maximum after this request removal/insertion
operation.

There may be many routes with zero reduced cost to be improved in an iteration

of the column generation algorithm, so in contrast to the labeling algorithm who

identifies and adds a single route (column) with negative reduced cost to the restricted

master problem in each iteration of the algorithm, the local search algorithm tries to

improve and add multiple routes to the restricted master problem in each iteration. For

each route selected to improve, the local search improving process iterates until the

reduced cost of the route cannot be further reduced.

Let R be the set of routes in the route pool of the restricted master problem, R*

be the set of routes to be improved, Vi be the set of requests served by route r for any

r € R. The procedure of the local search algorithm can be described as follows:

Local search algorithm

1

N

10

11
12

13

{Find the routes to be improved}
forall reR
calculate the reduced cost T, of each route r based on the dual variables of

the restricted master problem
R"={r|reR andt, =0}
{Main loop}

forall reR’
do
V. = the set of requests served by route r
(Operator 1)
Find the best | eV, whose removal from route r will reduce the reduced

cost of the route at maximum with reduced cost reduction AT,
if AT,>0
remove lane | fromroute r, V, =V, \I

(Operator 2)
Find the best request | ¢V, whose insertion into route r will reduce the

reduced cost of the route at maximum with reduced cost reduction AT,
if AT, >0
insert lane l into route r, V, =V, U{l}

(Operator 3)
Find the best combination of I eV, and |,V \{l} such that

removing lane I from route r and then inserting lane I, into route r will
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reduce the reduced cost of the route at maximum with reduced cost
reduction AT,

14 if AT, >0

15 remove lane I; from route r and then insert l> into the route,
V, =V, U{l,}\I,

16 until the reduced cost of route r cannot be reduced anymore

{Output the results}
17  output the improved routes and their reduced costs

Note that there may be a large number of routes with zero reduced cost that can
be improved in the route pool, so in implementation, the number of routes improved
by the local search algorithm in each iteration of column generation is limited to a
reasonable number.

After the iterative procedure of the column generation algorithm is terminated,
no matter which method is used to solve the subproblem, the final restricted master
problem with all the routes added and the variable range constraints (4-20) replaced
by (4-16) is solved. The solution of the problem provides an optimal or near-optimal
solution of the original bid generation problem.

4.4 Computational experiments

In this section, the efficiency of the proposed column generation algorithm is
evaluated by numerical experiments on randomly generated instances. All the
algorithms involved are coded in C++ and all mixed-integer linear programs and
linear programs involved are solved by CPLEX solver. The objective value of the
MILP model BGP (the next profit of the carrier) obtained by CPLEX solver are used
as a benchmark for evaluating the efficiency of the proposed algorithm. All the tests
are conducted on a PC with Intel® Core™ i7-8750H CPU and 16 GB RAM. The
version of CPLEX is 12.10.0.0 for 64-bit Windows.

4.4.1 Parameter setting

The parameters used to generate the instances in the experiments are given in
Table 4-1. For simplicity, both the travel time between the origin and the destination
of each lane (i, j) and the cost of travelling through the lane (i, j) are set to its
Euclidean distance.

Table 4-1 Parameter values for the generation of the instances

Parameter Value
Proportion of reserved lanes in all lanes with request 50%
Proportion of for-bid lanes in all lanes with request 50%
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Parameter Value

Coordinates (xo, yo) of the vehicle depot of the carrier U[0, 100]x[0, 100]
Coordinates (xi, yi) of each node iEN U[0, 100]x[0, 100]
L G JO5 =%+ (y; -y,
Revenue of a request (lane) (i, j) with request 2 * Cij

Maximum duration B of each route 480

4.4.2 Experiments with subproblem solved by labeling algorithm

Firstly, tests on the column generation algorithm with the subproblem solved by
the labeling algorithm are conducted. In this group of tests, 2 sets of instances with the
number of nodes N = 10 and 20 are tested respectively. The total number of requests is
also set as 10 and 20 respectively. The number of vehicles is respectively set as H = 2
and 4. For this group of tests, each instance is identified by its number of nodes, total
number of requests, number of vehicles, and its serial number. For example, instance
10-10-2-1 represents the first instance with 10 nodes in the transportation network, 10
lanes with request, including 5 reserved lanes and 5 for-bid lanes, and the number of
vehicles available for serving these requests is 2.

To evaluate the efficiency of the labeling algorithm for solving the subproblem,
the results obtained by the column generation algorithm with the results obtained by
directly solving the model BGP using CPLEX solver are compared. In addition, these
results are also compared with the results obtained by the algorithm with the
subproblem formulated as the MILP model ESPPRC and solved by CPLEX solver.
The comparison results are showed in Table 4-2, where P denotes the net profit of the
carrier obtained by each method, and T denotes the CPU time for obtaining a solution
by each method. The subscript in P and T indicates the method used to solve the bid
generation problem or the method used to solve the subproblem of the column
generation algorithm, where “espprc” indicates that the subproblem is formulated as
the MILP model ESPPRC and solved by CPLEX solver, “dyla” indicates that the
subproblem is solved by using the dynamic programming based labeling algorithm.
The Gap for each instance in the table is calculated by (Pdpia - Pcpiex) / Peplex. The time
limit of CPLEX solver for solving each instance is set as 3600 seconds, Pcpiex IS the
objective value of the MILP model BGP obtained by CPLEX solver when the time
limit is reached. If CPLEX solver cannot obtain a feasible solution within the time
limit, then there is no objective value of model BGP given in the table, this case is
marked by two hyphens.

Since the column generation algorithm solves the dual model D-RMP of the
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linear relaxation of the restricted master problem in each iteration, the optimal
objective value of D-RMP provides an upper bound for the optimal objective value of
the original bid generation problem which is a maximization problem. On the other
hand, the feasible solution of the original problem finally obtained by the algorithm
provides a lower bound for the optimal objective value. In Table 4-2, the upper bound
Dapia OF each instance is also given, as well as its relative gap Gappr with the lower
bound Pgpia. This gap is calculated by (Ddpia - Pdpia) / Ddpla.

The results of this group given in Table 4-2 show that both solving the model
ESPPRC of the subproblem by CPLEX solver and using the labeling algorithm can
obtain an optimal or near optimal solution for the instances of small size with N = 10
in very short time. The upper bound obtained by the column generation algorithm is
actually very close to the objective value obtained by solving the MILP model of the
original problem for each instance. When the problem size increases, using CPLEX to
directly solve the MILP model BGP becomes very time-consuming, so does using
CPLEX to solve the model ESPPRC. The column generation algorithm with the
subproblem solved by the labeling algorithm can still obtain a solution in a reasonable
time for the instances with N = 20, but compared with the solutions obtained by
directly solving the model BGP using CPLEX, the gap becomes bigger.

Note that this chapter implement a column generation algorithm rather than
branch and price in the experiments. If branch and price is implemented, optimal
solution can be obtained for each instance if the computation time is not limited.

Table 4-2 Results with exact algorithm to solve the subproblem

Instance  Pcplex  Tepiex(S)  Pesppre Tesppre(S)  Padpia Ddpia  Tdpla(S) Gapdplaicplex  Gapor
10-10-2-1 234.028 0.642 210506 6.293 210.506 240.275 2.022 10.05%  12.39%
10-10-2-2 419.820 0.821 419.820 3.015 419.192 426.241 0.386  0.15% 1.65%
10-10-2-3 371.336 0.494 371.336 6.560 371.336 371.336 0.365  0.00% 0.00%
10-10-2-4 347.757 0.273 347.757  3.494 347.757 347.757 0.618 0.00% 0.00%
10-10-2-5 278.723 3.539 278.723  33.48 278.723 284.224 1.412  0.00% 1.94%
10-10-2-6 302.975 3.047 227.327 5157 227.327 327.124 3.963 24.97%  30.51%
10-10-2-7 160.698 2.662 160.698 10.40 160.698 161.508 9.228  0.00% 0.50%
10-10-2-8 154.716 0.553 141.845 3.865 141.845 158.035 3.605 8.32% 10.24%
10-10-2-9 361.474 0.572 325912 4.986 325.912 361.613 0.677  9.84% 9.87%
10-10-2-10 336.244 1.327 330.531 9.843 330.531 340.160 0.297  1.70% 2.83%

Average 1.393 8.709 2.257 5.50% 6.99%
20-20-4-1 874.862 3600 - 719.981 897.37 20.70 17.70% 19.77%
20-20-4-2 508.519 3600 - 504.7 514.846 21.04  0.75% 1.97%
20-20-4-3 679.000 3600 - 665.967 684.351 60.12 1.92% 2.69%
20-20-4-4 614.324 3600 - 544,942 624.002 93.62 11.29% 12.67%
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Instance Pcplex Tcplex(S) Pespprc Tespprc(S) Pdpla Ddpla pola(S) Gapdpla/cplex GapD/P

20-20-4-5 578.069 3600 - 577.207 584.296 293.6 0.15% 1.21%
20-20-4-6 772.232 3600 - 600.718 775.209 684.3 22.21% 22.51%
20-20-4-7 593.113 3600 - 571.725 593.113 398.2 3.61% 3.61%
20-20-4-8 656.931 3600 - 526.171 673.49 88.45 19.90% 21.87%
20-20-4-9 663.387 3600 - 626.954 676.796 77.08 5.49% 7.36%
20-20-4-10 367.789 3600 - 372.659 404.303 1084  -1.32% 7.83%
Average 3600 184.6 8.17%  10.15%

4.4.3 Experiments with subproblem solved by local search algorithm

Secondly, tests to evaluate the efficiency of the column generation algorithm
with the subproblem solved by the proposed local search algorithm are conducted. In
this group of tests, five sets of instances with the number of nodes N = 10, 20, 30, 40
and 50 respectively are tested. The total number of requests is set accordingly as the
number of nodes for the five sets while the number of vehicles are setas H = 2, 4, 6, 8
and 10, respectively.

For this group of tests, to enlarge the search space of the local search algorithm,
the condition for improving a route by local search is changed/relaxed from ¢ = 0 to
cr < 1, so more routes can be improved. In addition, the number of routes to be
improved in each iteration of the column generation algorithm is limited by 100.

Table 4-3 shows the net profit Pis of the carrier obtained by the column generation
algorithm with local search and its CPU time for each instance as well as the relative
gap between Pys and the net profit Pcpiex Of the carrier obtained by solving the MILP
model BGP using CPLEX. It can be observed that the average gap is ranged from 2 to
5%. In addition, the upper bound Dis of each instance obtained by the column
generation algorithm with subproblem solved by local search and its relative gap with
the lower bound Pys are also presented in this table.

Using the column generation algorithm with local search to solve the studied bid
generation problem can greatly reduce computation time compared with CPLEX
solver, its advantage over CPLEX solver in computation time is very evident. The
CPLEX solver cannot obtain a feasible solution for some instances with 30 nodes and
30 requests after an hour of running. When the number of nodes and requests exceeds
40, no feasible solution is obtained by CPLEX solver after an hour of running for any
instance. In contrast, the column generation algorithm with local search can solve all
the instances tested within 30 seconds. Therefore, this algorithm can solve large
instances of the considered BGP within a reasonable time.

By comparing the results of all instances obtained by the column generation
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algorithm with labeling algorithm and that with local search for the subproblem in
Table 4-2 and Table 4-3, we find that if the subproblem is solved optimally by the
labeling algorithm, the column generation algorithm can obtain an upper bound better
than or the same as the upper bound obtained by the same column generation
algorithm with the subproblem solved near-optimally by local search. However, the
net profit of the carrier (a lower bound for the maximization bid generation problem
considered) obtained by the column generation algorithm with local search is better
than the net profit obtained by the column generation algorithm with labeling
algorithm for some instances, this may be because more columns are added to the
restricted master problem by the local search algorithm than by the labeling algorithm.
As a result, when solving the final restricted master problem with all columns (routes)
added after the termination of the column generation algorithm, that with more
columns added may obtain a better solution for the original problem. This is one
advantage of our local search based column generation algorithm.

Table 4-3 Results with local search algorithm to solve the subproblem

Instance Peplex Teptex(S) Pis Dis Tis(s) Gapiacplex  Gaporp
10-10-2-1  234.028 0.642 233.318 239.579 2.505 0.30% 2.61%
10-10-2-2  419.820 0.821 419.820 426.241 0.616 0.00% 1.51%
10-10-2-3  371.336 0.494 371.336 371.336 0.271 0.00% 0.00%
10-10-2-4 347.757 0.273 347.757 347.757 2.578 0.00% 0.00%
10-10-2-5  278.723 3.539 278.723 282.781 0.253 0.00% 1.44%
10-10-2-6  302.975 3.047 227.327 326.936 0.576 24.97%  30.47%
10-10-2-7  160.698 2.662 160.698 160.698 0.165 0.00% 0.00%

10-10-2-8  154.716 0.553 141.845 157.708 6.729 8.32%  10.06%
10-10-2-9  361.474 0.572 351.320 351.32 0.638 2.81% 0.00%
10-10-2-10  336.244 1.327 336.244 340.16 0.176 0.00% 1.15%

Average 1.393 1.451 3.64% 4.72%
20-20-4-1  874.862 3600 833.543 869.972 8.547 4.72% 4.19%
20-20-4-2  508.519 3600 493.011 514.088 1.285 3.05% 4.10%
20-20-4-3  679.000 3600 679.000 681.342 5.858 0.00% 0.34%

20-20-4-4  614.324 3600 580.729 618.129 4.173 5.47% 6.05%
20-20-4-5 578.069 3600 577.647 582.034 0.715 0.07% 0.75%
20-20-4-6 772.232 3600 657.137 774.538 4.097 1490%  15.16%

20-20-4-7 593.113 3600 593.113 593.113 15.32 0.00% 0.00%
20-20-4-8 656.931 3600 649.399 671.055 6.798 1.15% 3.23%
20-20-4-9 663.387 3600 645.844 671.388 1.158 2.64% 3.80%
20-20-4-10  367.789 3600 393.445 398.014 1.035 -6.98% 1.15%
Average 3600 4.899 2.50% 3.88%
30-30-6-1 886.728 3600 863.675 901.12 6.315 2.60% 4.16%
30-30-6-2 -- 3600 1001.41 1001.41 2.200 -- 0.00%

68



4 Column generation algorithm for a bid generation problem

Instance Peplex Teptex(S) Pis Dis Tis(s) Gapiacplex  Gaporp
30-30-6-3 -- 3600 1280.25 1306.24 1.703 -- 1.99%
30-30-6-4  1039.02 3600 1037.65 1098.36 17.74 0.13% 5.53%
30-30-6-5 -- 3600 896.985 898.917 18.78 -- 0.21%

30-30-6-6 1115.25 3600 1057.88 1130.36 16.41 5.14% 6.41%
30-30-6-7  889.337 3600 797.229 896.479 15.20 10.36%  11.07%
30-30-6-8  949.812 3600 933.327 989.136 9.743 1.74% 5.64%

30-30-6-9 -- 3600 1156.60 1163.22 11.93 -- 0.57%
30-30-6-10  770.3095 3600 695.076 790.088 13.50 9.77% 12.03%
Average 3600 11.35 4.95%*  4.76%
40-40-8-1 - 1212.13 1310.97 69.22 - 7.54%
40-40-8-2 - 1499.40 1529.37 16.46 - 1.96%
40-40-8-3 - 1669.68 1777.11 1.940 - 6.05%
40-40-8-4 - 1515.21 1580.43 13.15 - 4.13%
40-40-8-5 - 1678.63 1703.8 11.94 - 1.48%
40-40-8-6 - 1072.70 1092.96 20.34 - 1.85%
40-40-8-7 - 1589.70 1613.96 16.53 - 1.50%
40-40-8-8 - 1328.15 1422.1 16.35 - 6.61%
40-40-8-9 - 1253.78 1279.89 16.22 - 2.04%
40-40-8-10 - 1082.64 1246.27 4.715 - 13.13%
Average 18.69 4.63%
50-50-10-1 - 1527.55 1596.22 78.15 - 4.30%
50-50-10-2 - 1580.45 1729.47 7.627 - 8.62%
50-50-10-3 - 1958.56 2113.67 21.45 - 7.34%
50-50-10-4 - 1958.78 2055.94 15.74 - 4.73%
50-50-10-5 - 2338.44 2431.58 12.14 - 3.83%
50-50-10-6 - 1550.52 1557.59 18.63 - 0.45%
50-50-10-7 - 1777.85 1819.31 19.60 - 2.28%
50-50-10-8 - 1803.20 1958.09 13.50 - 7.91%
50-50-10-9 - 1518.19 1625.11 22.65 - 6.58%
50-50-10-10 - 1725.61 1848.76 4.885 - 6.66%
Average 21.44 5.27%

*: the average value of the instances with a gap.

4.5 Chapter summary

This chapter studies a bid generation problem for a single carrier considering
both requests required to serve in pre-exist commitments and requests to acquire in a
combinatorial auction in which the carrier will participate. The problem is formulated
as a mixed-integer linear programming model and a set partition model. A column
generation algorithm is proposed to solve the problem whose subproblem is solved by
a dynamic programming based labeling algorithm or a local search algorithm.
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Computational results show that the column generation algorithm with local search
can obtain a near-optimal solution for large instances of the problem quickly.
However, this algorithm needs to be improved further because the results of
some test instances are not satisfactory. One way may be to construct better initial
solution and use more effective local search operators. The other way is to combine
column generation with branch and bound to devise a branch-and-price that can

optimally solve the problem.
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5 Model and Benders decomposition algorithm for a bid
generation problem considering multiple periods and

uncertainty

5.1 Introduction

As stated in Chapter 1, transportation service procurement (TSP) is often realized
by combinatorial auction (CA). But the transportation service market is fiercely
competed. To survive in this competition among the carriers and seek for more profits,
the carriers need to have foresight when participating in a CA and making operation
plans. That is to say, when a carrier plans its transportation operations, it must
consider not only its present transportation requests but also the transportation
requests it may acquire in future. In recent years, with the rolling horizon planning
concept adopted in logistics, carriers usually plan their transportation operations of
several periods (days) in advance. This implies that carriers must consider multiple
periods when participating in a CA organized by shippers. Since transportation
requests in future cannot be foreseen, carriers must consider request uncertainty in
such auctions.

For each carrier, to adapt itself to the new trend in the industry, it needs to
consider multiple periods (days) in its bid generation problem (BGP). When
considering the BGP in a rolling horizon, a request open for bid in the transportation
market may have a service window composed of several consecutive periods (days),
and the request can be served in any period (day) within the window. In such a
situation, the carrier needs to determine not only the requests to serve (bid) but also
the period (day) to serve each of the requests in order to maximize its profit.

In a conventional single-period TSP auction, the requests open for bid are
released before the auction, and a carrier may have requests acquired from shippers in
former auctions or included in service contracts signed with shippers before. The
carrier must consider the two types of requests, referred to as for-bid requests and
reserved requests respectively hereafter, in solving its BGP. In addition, when the
rolling horizon planning approach is adopted by a carrier, it must also consider
transportation requests probably to appear in future in its BGP when it participates in
an auction. The uncertainty of future requests in the trucking market makes the BGP
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hard to solve, because some information about the future requests cannot be obtained
in advance. Historical data can be used to develop routing strategies that improve
service productivity (Seongmoon et al., 2005). To handle the uncertainty, carriers
usually use the statistics of historical request data to predict future requests. With a
long-time market experience, a carrier usually can estimate the probability of
emergence of each future request. By considering the uncertainty of future requests in
a probabilistic way, the bid generation problem studied in this chapter can better
reflect the reality of truckload transportation market.

This chapter addresses a carrier’s BGP in a TSP auction considering multiple
periods and uncertainty, which is an extension of the BGP in Chapter 4. The decisions
of the problem include the transportation requests to bid, the period to serve each
request, and the routes to serve all requests including the carrier’s reserved requests.
This chapter contribute to this challenging problem in the following two aspects.

Firstly, by adopting the scenario approach of stochastic optimization, a mixed
integer linear programming (MILP) model is formulated for the problem. The
objective of the model is to maximize the total expected net profit of the carrier in a
planning horizon of multiple periods. Inspired by Ergun et al. (O. Ergun et al., 2007a;
O. Ergun et al., 2007b), the model adopts a formulation of lane covering problem
(LCP), although our problem is a maximization problem. This model takes three types
of requests into consideration: for-bid requests, i.e., requests open for bid, reserved
requests that must be served by the carrier, and probabilistic requests whose
emergence is uncertain. The routes to serve all requests are determined by solving a
new variant of LCP with additional multi-period and probabilistic features. The reason
for adopting the scenario approach to solve the problem approximately is its high
complexity due to its stochastic nature. In this approach, each scenario corresponds to
a possible realization of the random parameters (future requests) of the problem. For a
given number of scenarios, the stochastic programming model of the problem can be
transformed into a deterministic equivalence model, which can be solved optimally by
an exact algorithm. According to the law of large numbers in probability theory, when
the number of scenarios is taken sufficiently large, the solution of the deterministic
equivalence model can well approximate the solution of the stochastic optimization
problem.

Secondly, a Benders decomposition (BD) approach is proposed to solve the
MILP model. In the approach, the original problem (model) is divided into many
subproblems, one for each scenario. Based on the solutions of the subproblems, a
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restricted master problem is solved with additional constraints (benders cuts) added in
each iteration of the BD. To accelerate this iterative process, a technique of generating
Pareto-optimal cuts (Magnanti & Wong, 1981) is applied in the BD. The performance
of the proposed approach is evaluated by numerical experiments on multiple sets of
randomly generated instances. A comparison with CPLEX solver on the instances
demonstrates the BD approach is much more efficient than CPLEX solver in solving
large instances. In addition, the value of considering probabilistic requests and
multi-period in the BGP of CA is also evaluated.

The rest of the chapter is organized as follows. The description and mathematical
formulation of the problem are provided in Section 5.2. In Section 5.3, the BD
approach proposed to solve the problem is presented. Section 5.4 is devoted to the
performance evaluation of the BD approach by comparing it with CPLEX solver and
the evaluation of the value of considering probabilistic requests as well as
multi-period in the BGP of CA on randomly generated instances. Section 5.5
concludes this chapter with perspectives for future research.

5.2 Problem description and deterministic equivalence model

As introduced in Section 5.1, in this chapter, the multi-period BGP of a carrier
takes three types of transportation requests into consideration: reserved requests,
for-bid requests and probabilistic requests. The reserved requests are the ones that the
carrier acquired in former contracts or past CA. Each request of this type must be
served in a given period (day) as a commitment to its offering shipper. The for-bid
requests are those open for bid in the imminent CA for TSP in which the carrier will
participate. Each for-bid request can be served in any period within its time window
composed of one or multiple consecutive periods. The carrier selects some for-bid
requests to form its bid (a bundle of requests) in the CA. The probabilistic requests
appear with a probability. Requests of this type may be given by long-term
collaborating suppliers. Once such requests appear, the carrier need to add them into
its transportation service plan. Probabilistic requests may also be used to model
requests possibly acquired from spot transportation market in future auctions. Each
request is associated with a revenue, which is the income that the carrier can generate
by serving the request without taking into account any transportation cost incurred.
For each for-bid request, its revenue corresponds to its asking price announced by the
auctioneer in a multi-round CA described in the last section.

When a carrier makes a multi-period transportation planning, it usually adopts a
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rolling horizon approach. Take five periods (working days) planning as an example.
At the beginning of the first period, the carrier determines which requests to bid and
makes route planning for the current period and the next four periods, i.e., periods 1 to
5, and the decisions for period 1 are implemented. After that, in period 2, the carrier
will make bidding and routing decisions for periods 2 to 6 with information updated,
and the decisions for period 2 will be implemented. This rolling horizon planning
process will repeat. The multi-period BGP considered involves the decisions of a
whole horizon.

There are two types of decisions that need to be made in the BGP. Firstly, the
carrier must determine which request(s) to bid (choose), and in which periods each
request will be served. Secondly, for each period, the carrier must determine the tours
(routes) to serve all its requests. Since each request of truckload transportation can be
represented by a lane with one origin and one destination, the studied bid generation
problem can be formulated as a stochastic multi-period LCP with three types of lanes.
Since probabilistic lanes may appear in future periods and which lanes to serve are
decision variables, the BGP considered in this chapter is a new variant of LCP.

This BGP can be formulated on a complete directed graph G = (N, A) which
represents a transportation network, where N is the set of nodes and A is the set of arcs

in the graph. Each request or lane (i, j) € A is characterized by an origin node ie N
and a destination node je N .

Before formulating the multi-period LCP, the following notations are firstly
introduced:

Sets:

N: the set of all nodes

A: the set of all possible lanes
T: the set of all periods

L; : the set of reserved lanes in period t, teT

L°: the set of for-bid lanes, each lane (i, j)e L° is associated with a time window
[lj G ] cT

L7 : the set of probabilistic lanes in periodt, teT

L. LA
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Parameters:

C, ;: the cost of traversing lane(i, j), (i,j)e A

R', . : the revenue of serving reserved lane (i, j) inperiod t, (i, j)el;, teT

R’;, : the revenue (asking price) of serving for-bid lane(i, j), (i, j)eL’

RP. . the revenue of serving probabilistic lane (i,j) in period tif it appears,

it

(i, j)e LP, teT

Lit =)0, otherwise

(i,j)eA,teT

_ {1, if there is a reserved lane (i, j) in periodt,

p..;. - the probability of occurrence of probabilistic lane (i, j) in period t

Random variables:

_ |1, if probabilistic lane (i, j) appears in period t,
|0, otherwise

(i, j)e L, teT

it

Wit

takes the value 1 with probability p, ;, and 0 with probability 1-p, ;.

Here, it is assumed that each probabilistic lane (i, j) occurs at most once in each
period t. With this assumption, wi is a random variable with a Bernoulli distribution.

Decision variables:

3 {1, if for-bid lane (i, j) is chosen and served in period t,
it :

10, otherwise :
(i, j)e AteT

Xijt: the number of times that lane (i, j) is traversed by vehicles in period t,

(i,j)eA,teT.

To simplify the formulation, it is assumed that in each period, for any pair of
origin and destination, there is at most one lane for each type, but different types of
lanes can share the same origin and destination in each period. For example, if there is
a reserved lane (i, j) in period t, there is no other reserved lane in this period with the

same origin and destination, i.e., uijt < 1, for any (i,j)e L;, teT. However, a
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for-bid lane (i, j) and/or probabilistic lane (i, j) can also exist in this period. The model
and solution method proposed in this chapter can be easily extended to the case
without such an assumption. This can be done by transforming the underlying
transportation network in the following way: for each pair of origin node and
destination node, if there are multiple lanes (say m >1 lanes) of the same type from
the origin node to the destination node, one can create m copies of the two nodes
(including original ones) with zero distance between any two copies of the origin node
or the destination node such that only a single lane of this type exists from the i-th
copy of the origin node to the i-th copy of the destination node (1 <i<m).

This transformation will increase the size and the computational complexity of
the BGP. However, our BGP can be considered a variant of the lane covering problem.
A lane covering problem can be transformed into a min-cost flow problem, which can
be solved by an algorithm of complexity O(nlogn(e+nlogn)) (Orlin, 1993), where n is
the number of nodes and e is the number of edges (arcs). So, the influence of this
transformation on the size of the BGP is linear (the size of the transformed model is m
times of that of the original model) and that on the complexity of the problem should
be quadratic (the complexity of the transformed model is m? times of that of the
original model) in the worst case, where m is the maximum number of copies created
for relevant nodes.

With the above notations and assumption, the problem studied can be formulated
as the following model.

Po:
ox €15 5 R8T T S W %0
W | et (1]l teT (i,])el® teT (i,j)el? teT (in])<A
s.t.
DX =D X ieN, teT (5-1)
jeN jeN
t—uljt |Jt+ Ijt; (I J)EAvtET (5_2)
DV <L (ivj)el, te[_tH, ] (5-3)
teT
Vi =0 (i,j)e A\, teT (5-4)
Vi =0 (i, j)el’ teT\[ 1T, ] (5-5)
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The objective function is to maximize the total expected net profit in a planning
horizon of multiple periods, which is the difference between the total revenue of all
requests and the total cost for serving these requests including empty vehicle
reposition costs. An empty vehicle reposition is a travel of an empty vehicle from one
node to another node in the transportation network involved. Constraint (5-1)
describes the vehicle flow equilibrium. That is, in each period, the number of vehicles
arrive at each node equals to the number of vehicles leaving the node, which ensures
the formation of a tour. Constraint (5-2) guarantees that all requests on lane (i, j), if
exist, are served. Constraint (5-3) indicates that if a for-bid lane is selected, it must be
served in a period within its time (period) window. Constraint (5-4) ensures that the
carrier will not serve any for-bid lane that does not exist. A for-bid lane will never be
served in a period out of its time window, which is ensured by constraint (5-5).

Model Py is a stochastic programming model, because there are random variables
wijt in the model. This model cannot be solved easily by using an exact method
because it contains both random variables and binary decision variables. For this
reason, the popular scenario approach is adopted to solve the model approximately. In
this approach, the stochastic programming model is transformed into a deterministic
equivalence model for a give number of scenarios, where each scenario corresponds
to a possible realization of all random variables in the former model. For an instance
of model Py with n probabilistic lanes, there are 2" possible scenarios in total. If n is
large, it is difficult to consider all scenarios, so only part of the scenarios is considered.
Let K be the set of all scenarios considered. Each individual scenario k e K
represents a particular realization (occurrence) of probabilistic lanes. In the
deterministic equivalence model, the variables need to be reconsidered. For the
random variable, the value of the variable wi;t in each scenario k is given. Here a
subscript k is added to wit that represents its realization in scenario k, which makes
it wijtk. Then turn to the decision variables. On one hand, the decision variables vi
do not depend on any scenario because the BGP that determines which for-bid lanes
to select is solved before the values of random variables wij; are observed. On the
other hand, each decision variable xij: must be associated with all scenarios because
the routing plan of the carrier in each period can only be made after the observation of
the values of wijt in this period. Thus, decision variable vi;: keeps intact and decision
variable xijt becomes Xtk After considering scenarios, the deterministic equivalence
model can now be formulated as
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P:
Maxzz Ritj,t+z Z i,jt Ijt+z z Z i,j.tk I]'[ zlejtk i,j pk
teT (i,j)elf teT (i,j)e keK \ teT (i, j)eLf teT (i,])eA
s.t.
in,j,t,kzz Xjio 1€N, teT, keK (5-6)
jeN jeN
Xk Ui Vi W00 (b ])eAteT, keK (5-7)

and constraint (5-3) - (5-5)

In the objective function of model P, the parameter px represents the probability
at which scenario k would happen. If all possible scenarios are taken into
consideration, the value of pkx can be calculated from all pijt Let Lax be the set of
probabilistic lanes that will appear in scenario k and Lypk be the set of probabilistic
lanes that will not appear in scenario k. Then pkx can be calculated by the formula

H H [ (1— pi,'j,]tyk,). Constraint (5-6) and (5-7) play the same role as
(i D)ebar (1 00ekni

constraint (5-1) and (5-2) respectively. The only difference is that the scenario
subscript k is added to all scenario-dependent variables.

5.3 Benders decomposition approach for the deterministic
equivalence model

As the stochastic programming problem considered is solved by using the
scenario approach, its deterministic equivalence model has a special block structure.
The scenarios can be taken as subproblems with exactly same structure. Due to this
characteristic, a Benders decomposition approach is developed to solve this model.
Benders decomposition is a technique that is often used to solve difficult mixed
integer linear programming (MILP) problems and stochastic programming problems.
It is an approach that exploits the structure of a MILP with complicated variables
(Geoffrion, 1972). The basic idea of this approach is “divide and solve”. It partitions
the variables of the original problem into two subsets, a set of integer variables and a
set of continuous variables. It alternatively solves a subproblem (SP) and a restricted
master problem (RMP) in each iteration. The SP is obtained by temporarily fixing the
values of all integer variables to their values obtained by solving the RMP in the last
iteration. Fixing the integer values makes the original problem tractable, because the

SP is a linear programming problem. The RMP is a pure integer programming
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problem except for one continuous variable. Compared with the master problem (the
original MILP problem), RMP only contains part of the constraints of MILP and the
constraints of the master problem will be added to RMP gradually in each iteration of
Benders decomposition. In each iteration, one Benders cut (an inequality), either an
optimality cut or a feasibility cut, is added to the RMP based on the solution of the SP.
For a minimization original problem, the resolution of the SP and the RMP provides
respectively an upper bound and a lower bound to the objective value of the original
problem. The iterative process of Benders decomposition stops when a pre-specified
stopping criterion is satisfied. One stopping criterion often used is the relative gap
between the upper bound and the lower bound smaller than a given percentage, for
example 1%.

To facilitate the formulation of the SP and RMP for the maximization MILP
model P, firstly it needed to be transformed into a minimization model by rewriting its
objective function as follows:

0S| % % 5100, F, T s p-F T 0-E R

keK \ teT (i,j)EA teT (i,j)eL1p
In the model, there are scenario-independent variables vij: and
scenario-dependent variables xijtx. The Benders’ SP of the model is constructed by

fixing the values of all vij: to v, for all t, i, and j in P. The SP then can be

decomposed into |K| submodels SPx, k € K, one for each scenario as

SPx:
Mind_ >0 %= 2 Rij—20 20 ViRl 20 WaiuRY
teT (i,j)eA teT (i, j)elf teT (i, j)el® teT (i, j)el?
S.t.
D X=X 1eN, teT (5-8)
jeN jeN
Xk 2 Ui FVigeH W (i1 J) eAteT (5-9)
In the first iteration of the Benders decomposition algorithm, the initial values of
V.. aresetto V;, =0 with which a feasible solution of the original model P exists.

In any other iteration, the values of V;, are set to those in the solution of RMP
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found in the last iteration. With the fixed values of V. .. and known values of wijtk in

|Jt

each SR, > > Vv, R’ and > > w R, in its objective function are

teT (i.)el® o
constants. Note that SPx is a min-cost network flow problem whose optimal linear
relaxation solution is always integral, so all its integer variables x;;tk can be relaxed to
continuous (real) variables, i.e., each SPx can be considered as a linear programming
problem.
The dual problem of SPx can be formulated as:

DSPx:
Max 3% 3 (Vo Ut W) A gm0 R D W R,
(i,i)eA teT teT (i,j)elt teT (i,j)el®
_z Z ijtk ljt
teT
s.t.
ai’t]k—aj’t]k+ﬂ,,“kSC”, I,jeA teT (5-10)
o €R;ieN, teT (5-11)
A 200, jeN, teT (5-12)
where o;,, and 4 ;,, are the dual variables associated with constraint (5-8)

forie N, teT and constraint (5-9) for (i, j)e A teT, respectively.

The dual problem DSPx can be either bounded or unbounded. If DSPx is bounded,
an extreme point which corresponds to its optimal solution can be obtained. Otherwise,
an extreme ray of the linear programming model can be obtained.

Let DSP denote the dual problem of subproblem SP in our BD approach. Since

SP is composed of |K| independent submodels SPx, k € K, DSP is composed of

|K| independent submodels DSPx, k € K. SP is infeasible if any SPx is infeasible,

and DSP is unbounded if any DSPx is unbounded. According to the duality theory of
linear programming, SP has an optimal solution if DSP has an optimal solution. This
happens when all DSPy are bounded. In this case, an optimality constraint determined
by the optimal solution (an extreme point) of DSP is added to the Benders’ RMP. The
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extreme point of the DSP is denoted by {,uk, ke K} in which g, is the extreme

point of DSPx. In the case that there is an unbounded DSPx, SP is infeasible, then a
feasibility constraint determined by an extreme ray of DSP is added to the RMP. This
extreme ray can be obtained by combining an extreme ray of DSPx and extreme rays

or extreme points of the other DSP,., k’=k. The extreme ray of DSP is denoted by

{7, ke K} inwhich y, can be either an extreme point or an extreme ray of DSPx.

The Benders decomposition algorithm is an iterative procedure. In each iteration,
the SP and the RMP are solved alternately, and an optimality constraint (cut) or a
feasibility constraint (cut) is added to the RMP according to whether the DSP is

bounded or unbounded. Let x* = {uf, keK} denote the p-th extreme point of

DSP, and y* = {75, ke K} denote g-th extreme ray of DSP, where peP, qeQ,
P and Q are the index set of all extreme points and the index set of all extreme rays of
the DSP. Let PcP and QcQ respectively denote the index set of the extreme

points and the index set of the extreme rays of DSP found till the last iteration in this
procedure.

By introducing real auxiliary variables z, k € K, the RMP of the BD approach
can be formulated as

RMP:
Mind z.p =3 > ViRl =2 D Ri=20, 2 iRl
keK teT (i, j)el® teT (i, j)elf keK teT (i,j)elf
S.t.
> Zz(uljt |jt+W|th)1uk1k€K pEP (5_13)
(I j)eAteT
(ljt |Jt |th)7/k<0 qEQ (5_14)

keK (i,j)eA teT

and constraint (5-3) - (5-5)

For each iteration of BD, if the SP has an optimal solution, a constraint in form
of (5-13) is added to the current RMP, if the subproblem is unbounded, a constraint in
form of (5-14) is then added. As the number of iterations increases, the constraints
accumulate with it.

For large-scale instances, the BD approach may iterate numerous times to obtain
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an optimal solution. To accelerate the approach, pareto-optimal cuts can be generated

and added to the RMP when some DSP, have multiple optimal solutions by

applying a technique proposed in the work of Magnanti and Wong (1981). A
pareto-optimal cut is a cut that no other cut can dominate it. Each pareto-optimal cut
Is generated by solving a linear programming problem based on the optimal objective

value of DSR . Let O, denote the optimal objective value of DSP and V,, a
point contained in the relative interior set of the polyhedron defined by constraints

(5-3) - (5-5), the linear programming problem to generate the pareto-optimal cut for
our problem can be formulated as

POCx:
Max z Z(Vlj I]t |jtk)ﬁ"|,j,t,k_z Z Rir,j,t_z Z vi,j,tRil?j,t
(i,j)eA teT teT (i, j)ell teT (i,j)el®
_Z z ijtk |jt
teT (i,j)elf
s.t.

2 (Vg U Wi A 2 2 R

(i,j)eA teT

Z z VIJIRIth z Z Vvi,j,t,kRi',)j,t:Ok

teT (i,j)e teT (i,j)elf

and constraint (5-10) - (5-12)

(5-15)

e

According to Magnanti and Wong (1981), the value of V. .. is setto 0.5 for all t,

i,j,t
I and j. By solving POCx, a new extreme point {z,,k € K}of DSP is obtained and a

pareto-optimal cut in the same form as constraint (5-13) is then added to the RMP.
The technique of adding pareto-optimal cuts can significantly accelerate the
convergence of the BD approach. Numerical results in the literature have well proved
the efficiency of this technique.

To sum up, the general procedure of the proposed BD approach for solving the
deterministic equivalence model P can be described as follows, where ¢ is a
pre-specified maximum relative error that is admissible between the upper bound (UB)
and lower bound (LB) of the objective value of P found by the approach.
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Benders decomposition approach

{Initialization}
1 V;,:=thevalueof v;; inaninitial feasible solutionof P, ieN,jeN,teT
LB: =—o0, UB: =+x
{Main loop}
3 while(UB-LB)/LB> & do
{solve the subproblem (SP)}

4 forall ke K, solve DSP,
5 if any DSPR, is unbounded then
6 get an extreme ray 4 for some peP
7 else
8 solve POC,
o get an extreme point y' for some qeQ with ' =
(Yi]jyt'k,ie N,jeN,teT)
10 generate a pareto-optimal cut (constraint) in the form of (5-13)
11 end if
12 end for
13 if all DSP, , k € K have an optimal solution
14 add |K| constraints in the form of (5-13) to RMP
15 update UB: = min{UB, > O,}
keK
16 else one or more DSP, are unbounded
17 add a constraint in the form of (5-14) to RMP
18 end if

{solve the restricted master problem (RMP)}
19 solve RMP with newly added constraints
20 update LB: = Og,,, Which is the optimal objective value of the RMP
21 update (Vifj) of DSP, with the optimal solution of RMP
{Output the results}
22 output the final solution (Vifj , X ;.0 ) and the corresponding objective value of P

5.4 Computational experiments

In this section, the efficiency of the proposed model and approach is evaluated as
well as the value of considering probabilistic requests and multi-period in the BGP of
CA by numerical experiments on randomly generated instances. The model is coded
in C++ and solved by CPLEX. CPLEX solver is used as a benchmark for evaluating
the efficiency of our BD method. The scenario-based BD algorithm is also coded in
C++. All the tests are conducted on a PC with Intel® Core™ i7-8750H CPU and 16
GB RAM. The version of CPLEX is 12.10.0.0 for 64-bit Windows.
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5.4.1 Experiment design

The values of the parameters used to generate the instances in the experiments
are listed in Table 5-1. Among them, the number of reserved lanes, for-bid lanes and
probabilistic lanes in the planning horizon are set to 10%, 10% and 5% of N2T
respectively, where N is the number of nodes in the transportation network and T is
the number of periods. The coordinates of each node are integers randomly generated
from 0 to 100. The origin node and destination node of each lane with request (i.e.,
reserved, for-bid or probabilistic lane) are randomly generated from the N nodes. The
cost of each lane is given by the distance between its origin and destination. The
revenue of serving each lane is set to its cost multiplied by a factor randomly
generated from 1.0 to 2.0 with one decimal. For each instance, the emergence

t

probability p, ;. of probabilistic lane (i, j)e L, in each period teT is randomly

generated between 0.1 and 0.9. To determine whether a probabilistic lane (i, j)
emerges in period t in each scenario k, a value rijtx is generated randomly and
uniformly from the interval [0, 1], if rijtk < pijt then wijtk = 1, otherwise wijtk = O.
Wijtk generated in this way has a Bernoulli distribution with P{wijtx = 1} = pijt and
P{wijtk = 0} = 1—pijt, because rijtk is uniformly distributed random variable defined
on [0,1], so P{wijtk = 1} = P{rijtk < pijt} = pijt and P{wijtk = 0} = P{rijek > pijip =1
—pijt In this way, for each instance, the total number of the three types of lanes
generated account for about 25% of all lanes in the transportation network, and only
some of for-bid lanes are chosen by the carrier.

As mentioned before, in the scenario approach for stochastic optimization, each
possible realization of all random variables/parameters of a stochastic programming
problem is considered a scenario. Although the total number of scenarios may be very
large, according to the theory of Monte-Carlo sampling, not all scenarios are needed
to enumerate to obtain a solution close to the true optimal solution at a high
probability. That is, if the number of scenarios is taken sufficiently large, it can be
ensured that the solution found by our scenario approach is within an interval
including the true optimal solution at a given probability (in terms of net profit). The
interval and probability are referred to as confidence interval and confidence level,
respectively. The required scenario size can be determined by numerical experiments.

According to Geweke and Singleton (1980), and You et al. (2009) on
Monte-Carlo sampling, here first generates several instances randomly with the
number of nodes N = 10, 20, 30, 40, 50 and set the number of scenarios to Ko = 30,

and then for each instance the standard deviation S(Ko) of the net profit of model P
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obtained under each scenario is calculated. For a given confidence interval with length
H and a given confidence level a with 0 <« < 1, the required scenario size K can be
calculated by the formula:

K = maX(|: Za/ZSH( KO):| , KO)

where z,, isthe z-value of the standard normal distribution defined as P(x<z,,,) =

1-a/2, x~ N(0,1). Here chooses confidence level « = 95% and confidence interval

with relative error £1% with respect to the true optimal solution in terms of profit. The
statistical results show that 100 scenarios are adequate for all instances with 50 nodes

or less.
Table 5-1 Parameters for the generation of instances
Item Value

Number of reserved lanes N2T * 0.1

Number of for-bid lanes N2T * 0.1

Number of probabilistic lanes N2T * 0.05
Coordinates (xi, yi) of each node iEN U[0, 100]x[0, 100]

Cost of a lane (i, j) \/(Xj %)+ (y; - )’

Revenue of serving a lane (1.0 ~ 2.0) * Cost

Emergence probability of a probabilistic lane 0.1~0.9

5.4.2 Evaluation of the proposed model and solution approach

Firstly, three groups of experiments are conducted to evaluate the performance of
our proposed model and BD approach. The first group with different numbers of
nodes is used to evaluate the efficiency of the proposed BD approach with respect to
CPLEX solver. The second group with different sizes of scenarios is used to evaluate
the impact of scenario size on the computational efficiency of the BD approach and
CPLEX solver. The third group with different number of probabilistic lanes is used to
evaluate the impact of the request uncertainty on the computational efficiency of the
BD approach and CPLEX solver. In all tests, the maximum relative error & for
stopping BD is set as 0.1%. Accordingly, the relative tolerance of gap of CPLEX
solver is also as 0.1%.

For the first group of experiments, 5 sets of instances are tested with the number

of nodes N = 10, 20, 30, 40 and 50, respectively. For each set, 10 instances are
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randomly generated. As discussed above, the scenario number is set to 100 for all
instances to maintain the consistency among all instance sets. The number of periods
is set as T = 5 corresponding to five working days each week. Each instance is
represented by its number of nodes, number of scenarios, and a serial number in its
instance set. For example, instance 20-100-3 represents the third instance in the
instance set with 20 nodes and 100 scenarios. The performance of CPLEX solver and
the BD approach for solving the model is given in Table 5-2, where OPTc and OPTg
denote the optimal objective value of the model found by CPLEX and the BD
approach respectively, and Tc and Tg denote their corresponding CPU times to obtain
a solution with the relative optimality gap 0.1%. Note that OPTc and OPTg may be
slightly different for some instances because CPLEX and the BD approach may stop
at different gaps although they are both less than or equal to 0.1%.

Table 5-2 Results for CPLEX and BD approach with different problem scales

Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTs Ts (S) Tc/Ts

10-100-1 1749.99 0.731 1749.99 1.165 0.63

10-100-2 1145.78 0.724 1145.78 1.102 0.66

10-100-3 1755.34 0.741 1755.34 1.068 0.69

10-100-4 1528.89 0.762 1528.89 1.088 0.70

10-100-5 973.932 0.730 973.932 1.077 0.68

10-100-6 1064.23 0.710 1064.23 1.147 0.62 069

10-100-7 963.605 0.753 963.605 0.978 0.77

10-100-8 1200.01 0.727 1200.01 1.022 0.71

10-100-9 1138.44 0.699 1138.44 0.999 0.70

10-100-10 2167.84 0.697 2167.84 0.982 0.71

20-100-1 8322.54 11.317 8322.54 7.997 142

20-100-2 8452.54 11.853 8452.54 7.181 1.65

20-100-3 10017.3 10.499 10017.3 8.571 1.22

20-100-4 9238.67 12.358 9238.67 6.239 1.98

20-100-5 6706.70 9.310 6706.70 7.875 1.18

20-100-6 7254.12 11.677 7254.12 20.645 0.57 1.4

20-100-7 8101.11 14.077 8101.11 8.490 1.66

20-100-8 6974.10 19.587 6974.32 9.922 1.97

20-100-9 7731.40 9.494 7731.40 6.458 147

20-100-10 8031.64 13.927 8031.64 6.171 2.26

30-100-1 18546.7 157.215 18531.8 31.756 4.95

30-100-2 21669.3 93.592 21676.2 30.799 3.04

30-100-3 21551.7 164.819 21548.4 31.182 5.29 4.79

30-100-4 19648.9 161.813 19648.9 30.827 5.25

30-100-5 19396.0 226.043 19382.3 33.835 6.68
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Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTs Ts (S) Tc/Ts

30-100-6 18508.8 196.205 18506.4 32.613 6.02

30-100-7 20361.3 131.856 20361.3 41.619 3.17

30-100-8 20796.5 139.974 20799.7 31.495 4.44

30-100-9 20451.3 173.782 20448.5 30.213 5.75

30-100-10 20766.5 117.977 20799.2 36.121 3.27

40-100-1 37074.9 895.901 37064.5 76.154 11.76

40-100-2 41636.2 682.359 41627.1 67.073 10.17

40-100-3 42051.1 1212.01 42044.1 76.074 15.93

40-100-4 377915 1018.58 37777.0 100.635 10.12

40-100-5 35992.8 592.980 36004.2 76.879 7.71 11.20

40-100-6 33198.5 791.103 33185.5 71.315 11.09

40-100-7 37323.7 972.670 37316.3 77.509 12.55

40-100-8 39032.1 1249.30 39015.7 120.028 10.41

40-100-9 36544.0 1067.63 36543.5 73.274 14.57

40-100-10 35338.3 747.630 35363.6 97.133 7.70

50-100-1 56176.3 2894.46 56159.2 260.497 11.11

50-100-2 66720.7 3871.80 66679.2 360.398 10.74

50-100-3 62338.4 3840.76 62314.5 765.759 5.02

50-100-4 60315.6 2438.29 60328.7 177.981 13.70

50-100-5 58057.6 3597.14 58032.5 126.407 28.46

50-100-6 52973.7 2624.68 52964.0 203.314 12.91 1415

50-100-7 59561.2 2352.05 59561.9 115.337 20.39

50-100-8 59023.3 3713.28 59032.3 256.462 14.48

50-100-9 58731.9 2261.17 58764.7 165.876 13.63

50-100-10 60469.0 2139.34 60499.3 192.718 11.10

From Table 5-2, it can be observed that both CPLEX solver and the BD approach
can obtain a solution with the allowable relative optimality gap in a reasonable time.
However, the difference between Tc and Tg becomes very significant when the
number of nodes exceeds 20. For small instances with N = 10, CPLEX solver can
solve them in less time, but when the number of nodes increases, the superiority of the
BD approach over CPLEX solver in computational efficiency becomes more and
more evident. For the set of instances with 50 nodes and 100 scenarios, the BD
approach can solve most instances within 300 seconds, whereas CPLEX solver
requires more than 14 times of the BD’s computation time for these instances on
average.

For the second group of experiments, only instances with N = 30 and 40 are
considered, which evidently show the computation time difference between CPLEX
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solver and the BD approach in solving the BGP. The number of scenarios is set as K
=100, 125 and 150. The number of periods is kept at T = 5.

The results of this group given in Table 5-3 show that as the number of scenarios
increases, Tc / Tg increases. Take instances with 30 nodes as an example, when the
number of scenarios increases from 100 to 150, the average of Tc / Tg increases from
4.79 to 7.33, which implies that the computational efficiency of the BD approach
becomes more notable with respect to CPLEX solver when the scenario size increases.
This is because the BD approach can take advantage of the decomposition of SP into

submodels SP,, k e K when the number of scenarios is large.

Note that there is an attempt to conduct more experiments on instances with
larger number of nodes and larger number of scenarios, but CPLEX solver went out of
memory for those instances. The results mentioned above are sufficient to
demonstrate that the BD approach is more efficient than CPLEX solver in terms of
computation time.

Table 5-3 Results for CPLEX and BD approach with different number of scenarios

Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTs Ts (S) Tc/Ts
30-100-1 18546.7 157.215 18531.8 31.756 4.95
30-100-2 21669.3 93.592 21676.2 30.799 3.04
30-100-3 21551.7 164.819 21548.4 31.182 5.29
30-100-4 19648.9 161.813 19648.9 30.827 5.25
30-100-5 19396.0 226.043 19382.3 33.835 6.68
30-100-6 18508.8 196.205 18506.4 32.613 6.02 479
30-100-7 20361.3 131.856 20361.3 41.619 3.17
30-100-8 20796.5 139.974 20799.7 31.495 4.44
30-100-9 20451.3 173.782 20448.5 30.213 5.75
30-100-10 20766.5 117.977 20779.2 36.121 3.27
30-125-1 18543.3 266.222 18546.2 51.378 5.18
30-125-2 21651.6 184.311 21650.4 38.790 4.75
30-125-3 21578.8 229.609 21572.8 38.627 5.94
30-125-4 19667.3 268.123 19655.1 41.751 6.42
30-125-5 19399.2 278.740 19399.1 43.768 6.37
30-125-6 18518.0 372.295 18514.0 43.374 8.58 >17
30-125-7 20348.6 245.183 20349.4 59.211 4.14
30-125-8 20804.6 229.479 20799.7 38.054 6.03
30-125-9 20442.4 209.630 20435.2 39.466 5.31
30-125-10 20791.3 212.715 20791.0 43.259 4.92

30-150-1 18550.7 410.425 18545.5 52.910 7.76 7.33
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Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTs Ts (S) Tc/Ts

30-150-2 21640.2 279.926 21622.6 49.509 5.65

30-150-3 21583.1 417.433 21578.8 51.247 8.15

30-150-4 19651.7 333.241 19663.1 53.575 6.22

30-150-5 19379.3 638.319 19380.9 55.896 11.42

30-150-6 18515.1 505.737 18514.5 54.766 9.23

30-150-7 20339.7 443.483 20340.8 81.959 541

30-150-8 20803.7 401.041 20801.8 60.762 6.60

30-150-9 20419.5 315.244 20417.0 50.550 6.24

30-150-10 20784.2 326.429 20784.2 49.220 6.63

40-100-1 37074.9 895.901 37064.5 76.154 11.76

40-100-2 41636.2 682.359 41627.1 67.073 10.17

40-100-3 42051.1 1212.01 42044.1 76.074 15.93

40-100-4 377915 1018.58 37777.0 100.635 10.12

40-100-5 35992.8 592.980 36004.2 76.879 7.71

40-100-6 33198.5 791.103 33185.5 71.315 11.09 11.20

40-100-7 37323.7 972.670 37316.3 77.509 12.55

40-100-8 39032.1 1249.30 39015.7 120.028 10.41

40-100-9 36544.0 1067.63 36543.5 73.274 14.57

40-100-10 35338.3 747.630 35363.6 97.133 7.70

40-125-1 37073.7 1210.84 37047.4 94.450 12.82

40-125-2 41623.4 1117.10 41631.0 81.147 13.77

40-125-3 42038.4 1803.15 42014.3 198.125 9.10

40-125-4 37793.9 1630.55 37762.5 139.134 11.72

40-125-5 36024.2 1147.71 35994.6 84.384 13.60

40-125-6 33199.3 1222.69 33173.8 82.374 14.84 11.25

40-125-7 37300.8 933.134 37324.6 121.866 7.66

40-125-8 38990.9 2005.20 38994.7 368.005 5.45

40-125-9 36575.2 1562.64 36553.6 99.861 15.65

40-125-10 35341.0 1031.78 35347.4 130.590 7.90

40-150-1 37042.8 1591.11 37036.1 128.612 12.37

40-150-2 41627.1 1659.65 41631.3 102.147 16.25

40-150-3 42038.8 2294.24 42020.9 214.105 10.72

40-150-4 37802.4 2158.02 37778.1 196.492 10.98

40-150-5 35981.8 1536.61 35982.9 103.718 14.82

40-150-6 33183.7 3138.96 33166.2 139.891 22.44 14.09

40-150-7 37296.6 1346.26 37321.9 152.748 8.81

40-150-8 39002.9 2595.49 38994.0 383.306 6.77

40-150-9 36578.8 2970.42 36561.6 117.011 25.39

40-150-10 35358.1 1876.66 35346.3 151.754 12.37

For the third group of experiments, instances with N = 30 and 40 are still
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considered, but with different number of probabilistic lanes, which is 5%, 10% and
15% of N2T respectively. The number of reserved lanes and for-bid lanes remains as
set in Table 5-1. The results of this group are given in Table 5-4, where each instance
is represented by its node number, number of probabilistic lanes in percentage of N°T,
and a serial number. For example, instance 30-5%-2 is the second instance with 30
nodes and the number of probabilistic lanes set as 5% of N2T.

From Table 5-4, it can be seen that as the number of probabilistic lanes increase,
the advantage of the BD approach over CPLEX solver in computation time seems
slightly reduced, but the computation time of BD is still much less than CPLEX.

Table 5-4 Results with different number of probabilistic lanes

Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTg Ts (S) Tc/Ts
30-5%-1 18546.7 157.215 18531.8 31.756 4.95
30-5%-2 21669.3 93.592 21676.2 30.799 3.04
30-5%-3 21551.7 164.819 21548.4 31.182 5.29
30-5%-4 19648.9 161.813 19648.9 30.827 5.25
30-5%-5 19396.0 226.043 19382.3 33.835 6.68 479
30-5%-6 18508.8 196.205 18506.4 32.613 6.02
30-5%-7 20361.3 131.856 20361.3 41.619 3.17
30-5%-8 20796.5 139.974 20799.7 31.495 4.44
30-5%-9 20451.3 173.782 20448.5 30.213 5.75
30-5%-10 20766.5 117.977 20779.2 36.121 3.27
30-10%-1 20414.9 186.714 20403.9 33.487 5.58
30-10%-2 24510.4 120.934 24526.5 29.099 4.16
30-10%-3 23870.6 89.188 23870.7 49,142 1.81
30-10%-4 215335 155.328 21516.5 31.188 4.98
30-10%-5 21268.9 143.944 21268.9 29.833 4.82 431
30-10%-6 20274.1 125.098 20274.0 39.326 3.18
30-10%-7 22571.9 212.810 22567.3 52.888 4.02
30-10%-8 23164.7 191.116 23155.6 30.662 6.23
30-10%-9 22463.3 103.639 22457.1 23.434 4.42
30-10%-10 23349.1 147.982 23359.8 38.551 3.84
30-15%-1 223235 139.682 223235 32.163 4.34
30-15%-2 26934.8 68.649 26934.8 26.666 2.57
30-15%-3 26262.6 85.574 26247.9 49.543 1.73
30-15%-4 24164.3 115.938 24164.9 29.022 3.99 411
30-15%-5 231219 210.288 23112.2 31.805 6.61
30-15%-6 22316.2 129.313 223235 35.892 3.60
30-15%-7 25087.7 177.070 25086.6 51.764 3.42

30-15%-8 24992.8 124.499 24997.5 21.784 5.72
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Instance CPLEX 8D Tc/Te AVG
OPT¢ Tc (S) OPTg Ts (S) Tc/Ts
30-15%-9 24806.8 119.501 24801.0 23.041 5.19
30-15%-10 25803.0 143.322 25805.3 36.911 3.88
40-5%-1 37074.9 895.901 37064.5 76.154 11.76
40-5%-2 41636.2 682.359 41627.1 67.073 10.17
40-5%-3 42051.1 1212.01 42044.1 76.074 15.93
40-5%-4 377915 1018.58 37777.0 100.635 10.12
40-5%-5 35992.8 592.980 36004.2 76.879 7.71 11.20
40-5%-6 33198.5 791.103 33185.5 71.315 11.09
40-5%-7 37323.7 972.670 37316.3 77.509 12.55
40-5%-8 39032.1 1249.30 39015.7 120.028 10.41
40-5%-9 36544.0 1067.63 36543.5 73.274 14.57
40-5%-10 35338.3 747.630 35363.6 97.133 7.70
40-10%-1 41065.2 598.409 41072.2 69.041 8.67
40-10%-2 45638.9 964.150 45639.9 65.376 14.75
40-10%-3 46573.3 839.832 46534.3 64.864 12.95
40-10%-4 41868.6 876.652 41847.8 70.147 12.50
40-10%-5 40085.1 545.284 40107.6 104.569 5.21 9.69
40-10%-6 37208.9 539.183 37197.5 77.100 6.99
40-10%-7 40993.7 663.420 40984.0 56.702 11.70
40-10%-8 43033.7 758.435 43041.6 70.310 10.79
40-10%-9 41201.7 720.490 41203.0 85.144 8.46
40-10%-10 39510.6 477.038 39518.3 97.758 4.88
40-15%-1 45021.7 780.784 44998.5 62.680 12.46
40-15%-2 50224.8 627.817 50189.9 60.560 10.37
40-15%-3 50763.7 936.781 50726.4 72.570 12.91
40-15%-4 46230.4 594.639 46219.6 59.472 10.00
40-15%-5 43917.2 632.864 43949.8 78.993 8.01 10.52
40-15%-6 40603.8 924.588 40570.0 59.484 15.54
40-15%-7 45023.0 409.014 45019.2 86.173 4.75
40-15%-8 47619.4 994.470 47586.9 64.828 15.34
40-15%-9 45711.1 663.272 45715.4 59.723 11.11
40-15%-10 44312.0 539.861 44307.4 113.843 4.74

To make comparison results more convincing, some more realistic instances with
datasets taken from the website of Heidelberg University are also tested. To fit the
characteristics of our problem, two datasets for travelling salesman problem (TSP) on
the site are chosen, one is “berlin52” with 52 locations in Berlin, another is “bays29”
with 29 locations in Bavaria. The results given in Table 5-5 shows that for these
instances, the BD approach still outperforms CPLEX in solving the BGP, and the time

ratio Tc / Tg has a similar trend as that for randomly generated instances when the
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number of nodes increases.

Table 5-5 Results for Datasets “bays29” and “berlin52” with 5% Probabilistic Lanes

Instance CPLEX BD Tc/Ts AVG
OPTc Tc (s) OPTs Te (S) Tc/Ts
bays29-1 71195.2 102.993 71195.2 27.442 3.75
bays29-2 74116.7 60.897 74115.1 21.371 2.85
bays29-3 73687.0 72.007 73673.6 26.108 2.76
bays29-4 70179.9 84.512 70137.6 28.425 297
bays29-5 71357.7 175.242 71306.6 33.146 5.29 354
bays29-6 71972.8 105.006 71985.5 26.814 3.92 '
bays29-7 69335.7 99.999 69335.7 24.041 4.16
bays29-8 75128.4 65.584 75128.4 27.069 242
bays29-9 75658.6 105.111 75658.6 31.704 3.32
bays29-10 73831.7 118.839 73791.9 29.845 3.98
berlin52-1 706536 4785.19 706101 281.017 17.03
berlin52-2 713858 3952.09 713818 265.104 14.91
berlin52-3 719234 3272.39 719259 134.582 24.32
berlin52-4 739907 3462.91 739693 140.687 24.61
berlin52-5 722906 3455.18 723071 151.124 22.86
berlin52-6 717613 4637.84 717550 148.408 31.25 22.11
berlin52-7 713145 3109.39 712940 122.846 25.31
berlin52-8 710285 3063.88 710476 149.851 20.45
berlin52-9 716058 3131.58 716229 151.035 20.73
berlin52-10 718642 3669.49 718361 139.734 26.26

5.4.3 Value of considering probabilistic requests in bid generation

Secondly, the value of considering probabilistic requests in the BGP is evaluated
by comparing its expected net profits obtained with and without considering the
probabilistic requests, respectively.

The BGP that considers probabilistic requests has been addressed above as well
as its expected net profit. The corresponding BGP without considering probabilistic
requests is the one that ignores all probabilistic requests when it generates a bid, and
the carrier will reconstruct its vehicle routes when the probabilistic requests appear
later. The expected net profit of the carrier obtained by the second BGP can be
obtained by calculating the expected net profit of the first BGP at the solution (bid) of
the second BGP as the value of a stochastic solution in stochastic programming is
evaluated. It is assumed that in both cases, the carrier wins the bid generated by its
BGP.

Here sets N = 30, T =5, and K = 100 for all instances randomly generated for this
evaluation. The numbers of three types of lanes are set the same as those in the

corresponding instances in the third group of experiments. The expected net profit of
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the carrier in both cases is estimated by its average net profit obtained in 100
scenarios. The results of comparison of the two BGPs are presented in Table 5-6,
where NPuwith and NPwithout denote the average net profits of the carrier obtained by its
BGP with and without considering probabilistic requests respectively, and Gap is
calculated as (NPwith — NPwithout)/NPuwithout.

From Table 5-6, it can be found that considering probabilistic requests in the
BGP can increase the expected net profit of the carrier compared with that without
considering probabilistic requests. The results in this table also show that the higher
the request uncertainty the carrier faces when it makes its bidding decision, the more
expected profit increase it can obtain by considering probabilistic requests in its BGP.
Since the profit margins of most carriers are quite small in the current competitive
transportation market, even 2~4% increase of net profit is valuable for a carrier to
improve its competitive advantage over other carriers, the results demonstrate the
necessity of considering request uncertainty in the bid generation of a carrier when it
participates in a CA for transportation service procurement.

Table 5-6 Results for Evaluation of the Value of Considering Probabilistic Requests

Instance NPuwith NPuwithout Gap AVG Gap
30-5%-1 18546.7 18271.6 1.51%
30-5%-2 21669.3 20834 4.01%
30-5%-3 21511.7 21114.6 1.88%
30-5%-4 19648.9 19097 2.89%
30-5%-5 19396.0 18882.3 2.72%
2.63%
30-5%-6 18508.8 18064.9 2.46%
30-5%-7 20361.3 19770.8 2.99%
30-5%-8 20796.5 20229.4 2.80%
30-5%-9 20451.3 19956.4 2.48%
30-5%-10 20766.5 20252.5 2.54%
30-10%-1 20414.9 19758.8 3.32%
30-10%-2 24510.4 23642.2 3.67%
30-10%-3 23870.6 23304.2 2.43%
30-10%-4 215335 20793.3 3.56%
30-10%-5 21268.9 20484.5 3.83% 3.37%
30-10%-6 20274.1 19548.6 3.71%
30-10%-7 22571.9 21850.5 3.30%
30-10%-8 23164.7 22554.2 2.71%
30-10%-9 22463.3 21686 3.58%
30-10%-10 23349.1 22549.3 3.55%
30-15%-1 223235 21499.9 3.83%
4.01%
30-15%-2 26934.8 25779.1 4.48%
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Instance NPuwith NPuwithout Gap AVG Gap
30-15%-3 26262.6 25514.7 2.93%
30-15%-4 24164.3 23141 4.42%
30-15%-5 231219 21971.1 5.24%
30-15%-6 22316.2 21486.3 3.86%
30-15%-7 25087.7 24138.5 3.93%
30-15%-8 24992.8 23991.1 4.18%
30-15%-9 24806.8 23808.5 4.19%
30-15%-10 25803 25043.2 3.03%

5.4.4 Value of considering multi-period in bid generation

Thirdly, the value of considering multi-period in the bid generation of a carrier is
evaluated. In order to do so, multi-period BGP with single-period BGP for a carrier
participating in a multi-round CA of truckload transportation service procurement are
compared with three carriers. The auction mechanism used in the CA is combinatorial
clock auction which was often used in auctions for collaborative logistics and for
allocating radio spectrum licenses. The outcomes of the CA are compared in two
scenarios: all carriers adopt single-period BGP for their bidding decisions in the first
scenario and one carrier adopts multi-period BGP and the others adopt single-period
BGP for their bidding decisions in the second one. The planning horizon of the carrier
in its multi-period BGP is set to 5 periods, i.e., T = 5, and the CA for 20 periods is
simulated. Other parameters of the instances tested in this evaluation are set as: N =
20, K =100, and the number of reserved lanes, for-bid lanes, and probabilistic lanes
set as 10%, 10% and 5% of all possible lanes respectively on average for each carrier
in each period. For the CA conducted in each period, the earliest possible service
period of each for-bid lane is set as the current period and the latest possible service
period is randomly generated within the 5 periods starting from the current period.
The CA in each period is stopped when all for-bid lanes are sold out or the number of
rounds reaches 50. To eliminate the influence of the initial conditions especially
reserved requests on the outcome of the CA in each period and the corresponding net
profit of each carrier, only the results of the auctions of 15 periods are recorded, that is,
the first 5 periods are taken as warm-up periods.

In addition, in this simulation, if a carrier adopts single-period BGP, its selected
for-bid lanes (lanes to bid) must be served in the current period. Otherwise, if a carrier
adopts multi-period BGP, its selected for-bid lanes can be served in any period within
their time windows.

Five instances are randomly generated in this evaluation. Table 5-7 compares the
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net profits gained and the percentages of for-bid lanes (with respect to all for-bid lanes)
won by the considered carrier when it adopts single-period BGP and multi-period
BGP respectively, while all other carriers adopt single-period BGP, where NPs and
NPm denote the net profit of the carrier obtained by adopting single-period BGP and
multi-period BGP respectively, and Ps and Pm denote the percentage of for-bid lanes
won by the carrier by adopting single-period BGP and multi-period BGP respectively.
From Table 5-7, it can be observed that if the carrier adopts multi-period BGP in
the CA, its net profit can significantly increase compared with the case when it adopts
single-period BGP. The increase of the average net profit per period of the carrier is
between 14% to 25%. This increase indicates by considering multiple periods, the
carrier can win more for-bid lanes which are complementary with its reserved lances
not only in the current period but also in the other periods in its planning horizon so
that these for-bid lances can be served with lower costs compared with its competitors

(the other carriers).

Table 5-7 Results for Evaluation of the Value of Considering Multi-period in BGP

Instance NP, NP, (NPm - NPs) P, P PP,

- Period / NPs
1-1 779.435 970.72 24.54% 0.00% 50.62% 50.62%
1-2 1053.71 1077.07 2.22% 48.57% 65.79% 17.22%
1-3 912.606 746.842 -18.16% 44.59% 49.35% 4.76%
1-4 806.38 795.102 -1.40% 46.05% 61.64% 15.59%
1-5 844.972 1022.09 20.96% 39.02% 62.50% 23.48%
1-6 820.558 963.485 17.42% 48.10% 67.11% 19.00%
1-7 689.862 913.29 32.39% 0.00% 59.49% 59.49%
1-8 629.471 873.105 38.70% 0.00% 60.76% 60.76%
1-9 1091.97 986.98 -9.61% 59.74% 65.85% 6.11%
1-10 795.764 894.788 12.44% 48.61% 59.21% 10.60%
1-11 649.201 1010.14 55.60% 0.00% 61.64% 61.64%
1-12 841.298 989.426 17.61% 33.80% 56.76% 22.95%
1-13 1198.7 1289.91 7.61% 54.55% 58.97% 4.43%
1-14 918.599 975.667 6.21% 50.00% 53.16% 3.16%
1-15 1347.34 1406.71 4.41% 48.57% 54.41% 5.84%

Average 14.06% 24.38%
2-1 1463.37 1238.32 -15.38% 55.84% 56.25% 0.41%
2-2 1210.86 1054.66 -12.90% 53.52% 64.10% 10.58%
2-3 715.354 978.258 36.75% 15.79% 54.76% 38.97%
2-4 1041.99 979.997 -5.95% 56.16% 47.37% -8.80%
2-5 849.195 1249.95 47.19% 0.00% 78.57% 78.57%
2-6 1024.98 1222.59 19.28% 50.65% 67.50% 16.85%
2-7 1101.82 1313.46 19.21% 64.38% 66.67% 2.28%
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Instance NP, NP, (NPm - NPs) P, P, PP,
- Period / NPs
2-8 655.333 948.585 44.75% 0.00% 64.10% 64.10%
2-9 816.013 1194.22 46.35% 46.75% 64.38% 17.63%
2-10 873.319 1036.04 18.63% 46.75% 66.67% 19.91%
2-11 1065.13 1132.1 6.29% 47.95% 62.16% 14.22%
2-12 925.867 1279.1 38.15% 52.24% 72.86% 20.62%
2-13 1548.04 1575.19 1.75% 47.30% 56.16% 8.87%
2-14 796.011 1136.43 42.77% 0.00% 61.73% 61.73%
2-15 1363.28 1294.86 -5.02% 47.22% 52.86% 5.63%
Average 18.79% 23.44%
3-1 785.359 1135.58 44.59% 0.00% 53.01% 53.01%
3-2 1007.23 769.459 -23.61% 51.47% 62.67% 11.20%
3-3 888.644 1116.88 25.68% 0.00% 60.53% 60.53%
3-4 845.218 871.332 3.09% 58.33% 64.86% 6.53%
3-5 1074.58 1236.38 15.06% 38.96% 64.20% 25.24%
3-6 1134.24 1146.87 1.11% 46.67% 67.90% 21.23%
3-7 1109.82 1131.25 1.93% 44.59% 67.57% 22.97%
3-8 956.864 1034.33 8.10% 43.48% 62.82% 19.34%
3-9 1015.75 995.748 -1.97% 55.41% 59.46% 4.05%
3-10 630.849 815.731 29.31% 40.43% 72.73% 32.30%
3-11 845.56 1194.12 41.22% 47.62% 58.44% 10.82%
3-12 1066.75 122461 14.80% 26.51% 67.53% 41.03%
3-13 725.252 1031.03 42.16% 0.00% 57.14% 57.14%
3-14 1180.1 915.873 -22.39% 54.05% 57.69% 3.64%
3-15 825.21 1397.39 69.34% 0.00% 61.11% 61.11%
Average 16.56% 28.68%
4-1 1160.95 1044.4 -10.04% 55.41% 65.17% 9.76%
4-2 1125.76 1187.57 5.49% 54.93% 53.85% -1.08%
4-3 836.824 1049.39 25.40% 0.00% 58.54% 58.54%
4-4 825.868 826.539 0.08% 52.70% 67.12% 14.42%
4-5 750.803 729.823 -2.79% 51.28% 60.76% 9.48%
4-6 846.516 1231.73 45.51% 0.00% 64.00% 64.00%
4-7 901.605 992.768 10.11% 47.95% 64.00% 16.05%
4-8 585.481 1080.47 84.54% 0.00% 58.97% 58.97%
4-9 670.556 986.371 47.10% 0.00% 57.32% 57.32%
4-10 638.129 955.241 49.69% 0.00% 62.03% 62.03%
4-11 958.409 1108.02 15.61% 0.00% 58.90% 58.90%
4-12 1060.55 1011.36 -4.64% 41.10% 63.64% 22.54%
4-13 1028.59 1385.67 34.72% 0.00% 48.72% 48.72%
4-14 819.283 1081.07 31.95% 0.00% 62.67% 62.67%
4-15 1325.73 1317.31 -0.64% 58.11% 58.90% 0.80%
Average 22.14% 36.21%
5-1 697.835 1140.63 63.45% 0.00% 59.49% 59.49%
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Instance (NPm - NPs)

_ Period NP; NPm /NP, Ps Pm Pm - Ps
5-2 856.265 962.91 12.45% 49.30% 63.64% 14.34%
5-3 839.98 824.388 -1.86% 40.74% 61.90% 21.16%
5-4 836.957 839.153 0.26% 41.43% 59.72% 18.29%
5-5 903.006 1038.4 14.99% 30.53% 56.58% 26.05%
5-6 875.03 1009.15 15.33% 34.04% 67.11% 33.06%
5-7 935.479 887.617 -5.12% 48.72% 61.25% 12.53%
5-8 531.361 781.901 47.15% 0.00% 53.09% 53.09%
5-9 685.127 928.226 35.48% 0.00% 55.00% 55.00%
5-10 599.299 744.778 24.27% 42.25% 54.67% 12.41%
5-11 607.171 860.834 41.78% 0.00% 60.26% 60.26%
5-12 816.282 1094.51 34.08% 4.00% 66.22% 62.22%
5-13 544.01 907.088 66.74% 0.00% 58.44% 58.44%
5-14 1147.55 1021.22 -11.01% 51.35% 68.00% 16.65%
5-15 830.022 1145.87 38.05% 0.00% 69.86% 69.86%

Average 25.07% 38.19%

5.5 Chapter summary

The blooming e-marketing platforms put combinatorial auctions into use in
transportation service procurement. As rolling horizon planning concept gradually
adopted, carriers need to plan their transportation operations several days in advance,
which makes it necessary to consider multiple periods in a combinatorial auction for
transportation service procurement. This chapter studies an important subproblem of
combinatorial auction, the bid generation problem, in truckload transportation service
procurement, with consideration of multi-period and uncertainty of future
transportation requests. By applying the scenario approach in stochastic programming,
the investigated problem is formulated as a MILP model and solved by a Benders
decomposition approach. The performance of the model and the approach is evaluated
by numerical experiments on multiple sets of randomly generated instances. The
results demonstrate that the Bender decomposition algorithm is much more efficient
than CPLEX solver in solving large instances of the problem. This implies that this
algorithm has a potential to be used by carriers in a combinatorial auction for
transportation service procurement when they adopt a rolling horizon planning
approach and want to consider request uncertainty in their operation planning. Our
numerical evaluation of the value of considering probabilistic lanes and multi-period
in the BGP also shows that it is profitable to take the two features into consideration
when solving the BGP for CA.
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6 Conclusions and perspectives

6.1 Conclusions

Truckload transportation accounts for a substantial portion of transportation
industry, where shippers procure transportation services from carriers. Transportation
service procurement is often realized by combinatorial auctions. The design of
combinatorial auction mechanism, as well as the method to solve one of the main
decision problems, the bid generation problem, affects the efficiency of a
combinatorial auction. Through designing effective auction mechanisms and efficient
methods for solving related bid generation problems, both shippers and carriers can
save costs and increase profits respectively. After introducing the research background
in Chapter 1 and reviewing the related research works in Chapter 2, this thesis studies
three problems raised in the procurement of truckload transportation services realized
by combinatorial auctions.

In chapter 3, a problem of combinatorial auction for truckload transportation
service procurement is studied which involves multiple shippers and carriers to
maximize the social efficiency. This problem is equivalent to the one that minimize
the total cost of serving all the lanes that need to be outsourced by the shippers. Both
centralized approach and decentralized approach to solve this problem are proposed.
For the centralized approach, a mixed-integer linear programming model is
formulated for the problem and solve by the CPLEX solver. For the decentralized
approach, two two-phase combinatorial auction mechanisms are designed, one with
supplementary bundles of requests offered for bid generated by the auctioneer and
another with supplementary bids generated directly by the carriers in the second phase.
The two phases are the clock auction phase and the supplementary bidding phase
respectively. Computational results show that compared with single-phase
combinatorial clock auction, the proposed two-phase mechanisms show evident
advantages in time efficiency and cost savings for the auctioneer. Meanwhile, the
social efficiency of the auction’s outcome (request allocation) is improved by the
mechanisms.

In chapter 4, a bid generation problem of a carrier in a combinatorial auction for
truckload transportation service procurement is studied to maximize the net profit of
the carrier. In this problem, both pre-exist commitments/contracts (reserved lanes) and

the requests (for-bid lanes) that the carrier want to bid for in the auction are
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considered. The carrier needs to decide both which lanes to bid for in the
combinatorial auction and the routes to serve both the reserved lanes and the selected
for-bid lanes. A mixed-inter linear programming model and a set partition model are
formulated for the problem. A column generation algorithm is also proposed for the
problem with the subproblem (elementary shortest path problem) solved by a dynamic
programming based labeling algorithm. Numerical experiments are conducted to
compare the solutions obtained by the MILP model solved by the CPLEX solver and
the column generation algorithm. The results demonstrate that the proposed algorithm
can quickly find a near-optimal solution of the studied problem.

In Chapter 5, the bid generation problem studied in Chapter 4 is extended to one
that considers both multiple periods and the uncertainty of requests in truckload
transportation service procurement. This stochastic optimization problem is
formulated as a mixed integer linear programming model through scenario
optimization and deterministic equivalence. To solve this model, a Benders
decomposition approach is proposed with Pareto-optimal cut to accelerate the solution
process of the approach. Computational results demonstrate that the proposed Benders
decomposition approach is much more efficient than CPLEX solver in terms of
computation time for solving large instances of the problem. The value of considering
uncertain requests and multiple periods in the bid generation is also evaluated by
numerical experiments. The results show that considering uncertain requests in
advance can improve the net profit of the carrier and considering multiple periods can
improve the carrier’s competitiveness.

6.2 Perspectives for future research

Although effective auction mechanisms and bid-generation algorithms are
proposed to the problems raised in combinatorial auctions for truckload transportation
service procurement, there are still many works that can be done to improve these
mechanisms and algorithms and to extend the problems studied to more complex
environments.

Firstly, for the combinatorial auction mechanisms examined in this thesis, the
methods proposed for generating supplementary bundles/bids in the supplementary
bidding phase may not be the only way to generate them and introducing the
supplementary bidding phase may not be the only way to accelerate the auction
process for finding an efficient allocation of requests. Whether there are better
methods to improve the efficiency of a combinatorial auction and to accelerate its
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process can be an interesting research topic in the future.

Secondly, for the truckload bid generation problem studied in Chapter 4, the
proposed column generation algorithm may not obtain a satisfactory solution for some
instances of the problem, our future work will focus on improving this algorithm and
combining it with branch and bound to devise a branch-and-price method that can
optimally solve the problem.

Thirdly, for the bid generation problem considering multi-period and uncertainty
in Chapter 5, other ways to accelerate the Benders decomposition approach need to be
investigated. In addition, it will be worthy to extend this problem to consider the
vehicle depot of the carrier in the bid generation problem, and to find an efficient
heuristic algorithm to solve the problem quickly for large instances.
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A Résumé étendu en Francais

A.1 Introduction

Le transport de marchandises joue un réle important dans la vie économique et
sociale. Pour le transport de marchandises, compte tenu de la fagon dont les
marchandises ou les demandes de transport sont organisées, il existe deux grandes
catégories de transport, le transport direct et le transport groupé (Caplice & Sheffi,
2006). Ces deux catégories sont généralement connues sous le nom de transport par
camions entiers (TL) et de transport de chargement partiel(LTL). Dans le transport par
camions entiers, les marchandises de chaque demande occupent tout l'espace ou la
capacité de chaque véhicule. Ce mode de transport de marchandises est généralement
choisi lorsqu'un expéditeur a suffisamment de marchandises pour remplir un camion
entier, que les marchandises sont urgentes ou que I'expéditeur préfere utiliser un
camion dédié pour transporter ses marchandises. L'avantage du transport par camions
entiers est que les marchandises peuvent étre expédiées directement de I'origine a la
destination, ce qui garantit I'efficacité du transport tout en évitant les dommages
possibles causés par le chargement et le déchargement répétés des marchandises
pendant un processus de transport. Le transport par camions entiers est par opposition
au transport de chargement partiel. Dans le cas du transport de chargement partiel, un
vehicule peut répondre a plusieurs demandes simultanément. Pendant le service d'une
demande, le véhicule peut visiter un autre terminal pour télécharger ou télécharger des
marchandises.

Etant donné que le transport par camions entiers occupe environ 70% du
transport routier total, cette thése se concentre sur le transport par camions entiers

Avec le développement continu du marché, les produits et les services
poursuivent le raffinement. Les fabricants ou les distributeurs choisissent
généralement de sous-traiter les tches de transport & des entreprises professionnelles.
C'est-a-dire que les expéditeurs se procurent des services de transport aupres des
transporteurs. Le marché du transport par camions entiers est fragmenté, concurrentiel
et fonctionne avec de faibles marges bénéficiaires, ce qui rend I'achat de services de
transport important pour les expéditeurs et les transporteurs qui recherchent
I'efficacité économique. Pour les expéditeurs, ils veulent maitriser leurs codts et offrir
un service de haut niveau a leurs clients. Pour les transporteurs, ils souhaitent réduire
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les repositionnements de vehicules vides et fonctionner efficacement. Cependant, le
camionnage consomme des quantités de carburant ainsi qu'une pollution
atmosphérique et sonore. Ainsi, a I'exception de I'efficacité économique individuelle,
I'efficacité sociale doit étre prise en considération. Dans ce contexte, une méthode
raisonnable est nécessaire pour I'achat de services de transport par camions entiers.

Le processus par lequel les expéditeurs achetent des services de transport pour
plusieurs demandes de plusieurs transporteurs peut étre considéré comme un
probléme d'allocation (Lim et al., 2008). En d'autres termes, les expéditeurs attribuent
leurs demandes de transport a un groupe de transporteurs. L'attribution de ces
demandes peut étre réalisée par une approche centralisee ou une approche
décentralisée. L'approche centralisée, qui repose sur un modeéle de programmation
mathématique centralisé, nécessite la revélation d'informations confidentielles sur les
colts des transporteurs et est donc peu pratique. L'approche décentralisée, quant a elle,
est un jeu entre chargeurs et transporteurs et qui comprend de nombreux mécanismes
différents. Parmi les différentes approches décentralisées, I'enchére combinatoire (CA)
est stratégique sur le marché en plein essor du camionnage électronique (Caplice,
2007; Caplice & Sheffi, 2006).

L'enchere combinatoire est un mécanisme représentatif basé sur I'enchére pour
I'achat de services de transport qui permet aux transporteurs de soumissionner pour
plusieurs demandes a la fois, tandis que I'enchere a un seul article n‘autorise qu'une
seule demande dans l'offre. Cette caractéristique augmente I'efficacité de I'enchere,
puis rend I'enchére combinatoire de plus en plus populaire (Abrache et al., 2007; De
Vries & Vohra, 2003). Dans les encheres combinatoires, le commissaire-priseur est au
nom des expéditeurs, et les enchérisseurs sont les transporteurs qui souhaitent servir
les demandes de transport des expéditeurs. Pour les transporteurs, I'un des avantages
des encheres combinatoires par rapport a lI'approche centralisée est qu'ils n‘ont pas
besoin de révéler leurs données commerciales telles que les contrats existants, les
colts de transport pour répondre aux appels d'offres et le nombre de véhicules. Etant
donné que I'enchere combinatoire joue un rdle important dans I'achat de services de
transport, le mécanisme de chaque enchere combinatoire doit étre bien congu pour
atteindre I'efficacité.

Sur la base du nombre de tours traités dans CA, les mécanismes de CA congus
peuvent étre classifiés en CA a un seul tour et CA a plusieurs tours (CA itérative). Une
enchere combinatoire a un tour ne traite l'enchere qu'une seule fois tandis qu'une
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enchere combinatoire itérative itére le processus d'enchére combinatoire a un tour
jusgu'a ce que certaines conditions d'arrét soient satisfaites. La routine simplifiée de
CA a tour unique dans I’achat des services de transport peut étre décrite comme suit.
Le commissaire-priseur représentant le ou les expéditeurs fournit un ensemble de
demandes de transport avec des prix d'externalisation dans le pool d'enchéres.

1) Les enchérisseurs (transporteurs) soumettent au commissaire-priseur leurs
enchéres pour un ensemble de demandes basées sur les informations de la demande
afin de maximiser leurs profits.

2) Le commissaire-priseur trouve une allocation optimale des demandes aux
enchérisseurs pour minimiser son colt, c'est-a-dire déterminer les gagnants des
encheres.

Deux problémes majeurs doivent étre résolus dans le processus d'encheres. Le
premier est géneralement appelé probleme de génération d'enchéres (BGP),
c'est-a-dire que chaque opérateur génére son offre en sélectionnant les demandes a
inclure dans son offre groupée (bid). Le second est le probleme de détermination des
gagnants, dans lequel le commissaire-priseur détermine les gagnants des enchéres
soumises par tous les enchérisseurs.

Cette these est consacrée a I'étude des problemes d'encheres combinatoires pour
I'achat de services de transport par camions entiers, tant du point de vue global
qu'individuel. D'un point de vue global, la conception du mécanisme d'enchéres est
étudiée en tenant compte de I'efficacité sociale. Et du point de vue individuel, I'un des
problemes majeurs, le probleme de génération d'enchéres dans les enchéres
combinatoires de contexte différent est étudié dans un souci d'efficacité économique
du transporteur unique. Avec ces considérations, certains problemes sont remarqués
dans les enchéres combinatoires.

Premiérement, en raison de la nature décentralisée des encheres combinatoires, il
est tres difficile d'attribuer toutes les demandes dans le pool d'enchéres d'un coup.
Dans ce contexte, une enchére combinatoire multi-tours émerge pour résoudre ce
probléme. Une enchere combinatoire a plusieurs tours est que le processus d'enchére
itere plusieurs tours pour rechercher une meilleure allocation. Cependant, sans partage
d'informations entre les transporteurs, les demandes du groupe de chaque transporteur
peuvent se chevaucher, c'est-a-dire que certaines demandes sont mises en concurrence
par plusieurs transporteurs, tandis que d'autres ne font I'objet d'une offre par aucun
transporteur. De telles enchéres combinatoires sont souvent arrétées avec une
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allocation inefficace, qui ne parvient pas a procurer des services pour toutes les
demandes. Méme obtenir une allocation efficace, une telle enchére peut prendre un
grand nombre de tours.

Deuxiemement, en tant que grands fournisseurs de services de transport, le mode
de fonctionnement des transporteurs de lots complets peut influencer I'efficacité de
I'ensemble du systeme logistique. Dans les encheres combinatoires a plusieurs tours,
le probleme de génération d'enchéres de chaque transporteur est crucial car il est a la
base du probléeme de détermination des gagnants et peut influencer I'ajustement des
prix d'externalisation des demandes au tour suivant. Etant donné que tous les
transporteurs sont axés sur le profit, les demandes pour lesquelles ils ont choisi de
soumissionner doivent étre celles qui peuvent leur apporter le plus de profit. Une
demande sera choisie par un transporteur soit qu'il puisse combler le repositionnement
du véhicule vide soit que le revenu de servir cette demande dépasse le colt du trajet
supplémentaire. Ainsi, le probléme de génération d'encheres est généralement une
variante du probleme de tournée de véhicules. Ce probléme est NP-difficile et difficile
a résoudre dans un temps raisonnable pour les problemes a grande échelle.

Troisiemement, le marché du transport par camions entiers est tres concurrentiel,
ce qui oblige les transporteurs a saisir les opportunites futures dans les services de
transport. Pour atteindre cet objectif, lorsqu'un transporteur planifie ses opérations de
transport, il doit considérer non seulement ses demandes de transport actuelles mais
aussi les demandes qu'il pourrait acquérir a I'avenir. Comme I'ont souligné Wang et al.
(2014) and Wang and Kopfer (2015), I'nypothese selon laquelle les transporteurs en
tant qu'enchérisseurs dans une vente aux encheres ne sont autorisés a concourir que
pour les demandes de transport disponibles dans la période actuelle est plutdt
restrictive. Une enchére plus efficace doit étre menée selon un horizon glissant qui
prend en compte plusieurs péeriodes (jours) dans Il'allocation de sa demande. De plus,
certaines demandes peuvent émerger dans les périodes futures mais ne peuvent étre
prévues dans la période en cours. La prise en compte ou non de ces demandes futures
dans le probleme de génération d'enchéres aura un impact significatif sur I'efficacité
de I'enchere sur le long terme.

Cette these a étudie trois problemes qui visent a fournir une solution optionnelle
a chacun des probléemes mentionnés ci-dessus, ainsi que des informations
managériales aux acteurs du marché du transport par camions entiers. L'un des
problémes se concentre sur la conception de mécanismes de CA pour l'achat de
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services de transport par camions entiers, tandis que les deux autres se consacrent a la
résolution d'un probléme principal, le probleme de génération d'enchéres , dans le
processus de CA.

(1) Conception d'un meécanisme d'encheres combinatoires a plusieurs tours en
deux phases avec des faisceaux supplémentaires de demandes de paquet d'enchéres
générées par le commissaire-priseur et les transporteurs respectivement dans la
deuxieme phase. Chaque étape du mecanisme congu est formulée avec un modéle de
programmation linéaire en nombres entiers (MILP). Des expeériences informatiques
sont menées avec des instances générees aléatoirement de différentes tailles de
probléme ainsi qu'une proportion différente du nombre de tours de I'enchére au cadran
dans le total des tours de CA. Par rapport a la vente aux encheres a horloge
monophasée, les mecanismes a deux phases congus présentent des avantages évidents
en termes d'efficacité du temps et d'économies pour le commissaire-priseur.
Parallelement, I'efficacité sociale du résultat de I'enchere (allocation des demandes)
est améliorée par les deux mécanismes.

(2) Probleme de génération d'enchéres d'un seul transporteur dans le mécanisme
d'enchéres congu. Etant donné que le modeéle MILP de ce probléme ne peut pas
obtenir une solution optimale a grande échelle de probléme en un temps raisonnable,
un algorithme de géneration de colonnes est proposé pour résoudre le probleme
apparu dans I'enchére combinatoire. Des experiences numériques d'instances générées
aléatoirement démontrent que l'algorithme proposé peut rapidement trouver une
solution quasi optimale du probléeme étudié.

(3) Probleme de génération d'enchéres compte tenu des périodes multiples et de
I'incertitude dans I’achat des services de transport par camions entiers. Ce probléme
d'optimisation stochastique est formulé comme un modele de programmation linéaire
en nombres entiers mixtes via I'optimisation de scénarios et I'équivalence déterministe.
Pour résoudre le modele, une approche de décomposition de Benders est proposée.
Les résultats de calcul avec des instances génerées aléatoirement et réalistes
démontrent que I'approche de décomposition de Bender est beaucoup plus efficace
que le solveur CPLEX en termes de temps de calcul pour résoudre de grandes
instances du modeéle. La valeur de la prise en compte des demandes incertaines et des
périodes multiples dans la génération des encheres est également évaluée par des

expériences numeériques.
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A.2 Revue de littérature

L'achat en services de transport de marchandises correspond aux besoins de
transport des expéditeurs et aux capacités des transporteurs. Au cours des dernieres
décennies, le développement du commerce électronique facilite le développement du
transport de marchandises, des marchés en ligne pour I'achat de services de transport
de marchandises apparaissent en nombre, tels que FreightMatrix, Freight-traders et
logistics.com. Le marché électronique facilite la connexion et la collaboration entre
les chargeurs et les transporteurs. Une variété de cadres ou de mécanismes sont
utilisés par différentes places de marché électroniques, les littératures les classent
généralement en trois grandes catégories : les encheres, les catalogues et les échanges
(négociations), tandis que les modes d'approvisionnement peuvent étre des contrats a
long terme et des marchés au comptant. Selon la littérature, le mécanisme basé sur les
encheéres est largement utilisé dans I’achat en services de transport.

Le mécanisme d'encheres joue un rdle important dans I'achat en services de
transport, de nombreux mécanismes d'‘enchéres différents peuvent étre trouvés dans
des travaux de recherche antérieurs, par exemple, les enchéres d'un article, les
encheres combinatoires et les enchéres doubles. Cette these porte sur I'étude des
encheres combinatoires pour I'achat en services de transport par camions entiers.

L'enchere combinatoire (CA) est proposée pour la premiére fois par Rassenti et
al. (1982) pour l'attribution des créneaux d'atterrissage aux aéroports. CA permet aux
soumissionnaires de placer des offres sur des combinaisons d'articles plutét que sur
des articles individuels. Ce mécanisme a exprimé les synergies entre les ensembles de
biens ou de services, ce qui a le potentiel de réduire les colts et d'augmenter
I'efficacité (Lunander & Lundberg, 2013). De nombreux travaux ont apporté des
connaissances théoriques et pratiques pour la conception de CA (Abrache et al., 2004;
Bichler et al., 2009; De Vries & Vohra, 2003; Peke& & Rothkopf, 2003). A I'exception
de l'approvisionnement en services de transport, CA est également adoptée par de
nombreux environnements industriels différents tels que la coordination des robots,
I'échange de permis de pollution, la planification de la fabrication, la restauration des
repas scolaires, etc. (Berhault et al., 2003; Epstein et al., 2004; Kutanoglu & Wu, 1999;
Leyton-Brown et al., 2000).

Il existe de nombreux mécanismes de CA différents (Cramton et al., 2006),
certains d'entre eux sont bien adoptés par les chercheurs et les praticiens. Le

mécanisme de Vickrey-Clarke-Groves (VCG) (L. Ausubel & Milgrom, 2006) est un
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mécanisme de CA dans lequel les soumissionnaires déclarent leurs évaluations pour
tous les packages. Les articles sont alloués efficacement pour maximiser la valeur
totale. Chaque gagnant paie le colt d'opportunité de ses gains : la valeur incréementale
est dérivée en attribuant les articles de I'enchérisseur en fonction de leur prochaine
meilleure utilisation. L'enchére au cadran (L. Ausubel et al., 2006) est un mécanisme
de CA itératif dans lequel le commissaire-priseur annonce les prix des articles, et les
enchérisseurs indiquent les quantités de chaque article. Les prix des articles avec une
demande excédentaire seront ajustés, puis chaque enchérisseur exprimera les quantités
aux nouveaux prix. L'environnement de sélection d'utilisateurs adaptatif progressif
(PAUSE) (Kelly & Steinberg, 2000; Land et al., 2006) est un mécanisme de CA
maniable par le calcul dans lequel le commissaire-priseur n'est pas confronté au
probleme de détermination du gagnant. La responsabilité d'évaluer une offre
combinatoire est transférée au soumissionnaire qui fait I'offre.

Comme le CA conventionnelle, les mécanismes de CA congus pour TSP dans les
travaux peuvent également étre triés en CA a un tour (one-shot) et en CA a plusieurs
tours (itérative). 1l est rapporté que lorsque Sears Logistics Services a utilisé la
combinatoire, il a choisi une version itérative de I'enchére d'approvisionnement avec
des offres scellées. Dans cette enchere itérative, les enchéres se déroulent en plusieurs
tours. L'enchere combinatoire itérative est également appelée enchére combinatoire a
plusieurs tours de nos jours. Par rapport a le CA a un tour, CA a plusieurs tours
présente deux avantages. La premiere est que le CA multi-tours peut simplifier la
géneération d'encheres des enchérisseurs en fournissant des informations sur les prix de
chaque demande ou de chaque groupe de demandes a chaque tour. L'autre avantage
est que le CA a tours multiples fournit un processus de découverte des prix aux
enchérisseurs, ce qui permet aux enchérisseurs de soumettre des offres plus
pertinentes pour maximiser I'efficacité sociale de I'enchere. Certains chercheurs ont
étudié le CA a un tour (R. L.-Y. Chen et al., 2009; W. Elmaghraby & Keskinocak,
2000; Wedad Elmaghraby & Keskinocak, 2004; Song & Regan, 2003; Srivastava et
al., 2008), tandis que d'autres ont étudié le CA a plusieurs tours(Day & Raghavan,
2008; Kwon et al., 2005; Tian et al., 2011; D. Wang & Wang, 2015). A I'exception des
enchéres combinatoires, d'autres mécanismes d'encheres courants incluent la double
enchére, I'enchere séquentielle et les mécanismes d'échange bases sur I'enchére.

Le probléeme de génération d'enchéres (BGP) est un probleme de décision clé en
CA, qui est généralement résolu par les transporteurs. Ce probleme se concentre sur la
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sélection et le regroupement des demandes a soumettre dans CA. BGP est également
reconnu comme un probléme de construction d'encheres, un probleme de génération
de paquets ou un probléme de regroupement de demandes. De nombreux travaux de
recherche ont contribué a ce probleme en CA pour l'achat de services de transport.
Selon qu'il existe des facteurs stochastiques lors de la résolution du probléme, un BGP
peut étre déterministe ou stochastique.

Dans les problemes de génération d'enchéres déterministes, selon que le BGP
consideére plusieurs périodes de décision, le probléme peut étre divisé en BGP a
période unique et BGP a plusieurs périodes. Le BGP a période unique est étudie dans
la plupart des cas (Chang, 2009; Gansterer & Hartl, 2018; Lee et al., 2007; Song &
Regan, 2005; Xiubin Wang & Xia, 2005; Yan et al., 2018), tandis que le BGP a
périodes multiples est rarement considéré (E Mamaghani et al., 2019a; E. Mamaghani
et al., 2019b). BGP stochastique peuvent étre trouvés dans (Hammami et al., 2020;
Hammami et al., 2021; Kuyzu et al., 2015; Triki et al., 2014).

Dans les encheres combinatoires pour TSP, le probléme de génération d'encheres
d'un transporteur doit généralement prendre en compte les synergies entre les
nouvelles demandes acquises et les demandes préexistantes pour réduire le
repositionnement des véhicules vides et augmenter les profits. Ainsi, les problemes de
génération d' enchéres pour TSP sont genéralement pris en compte lors de la
planification des itinéraires.

Le mode de transport de marchandises étudié dans cette these est le transport par
camions entiers (TL). Le transport de chargements complets est sans escale,
c'est-a-dire que lorsqu'un véhicule répond a une demande de chargements complets, il
se rend directement de son origine a sa destination sans visiter aucun autre terminal.
L'unité de base d'une demande de chargement de camion est généralement appelée
une voie. De nombreux chercheurs se sont consacrés a I'étude de la planification des
itinéraires pour le transport TL, y compris le probleme de tournée des véhicules, le
probléme de couverture de voie et la planification de I'horizon glissant.

Certains résultats de la revue de la littérature sont présentés ci-dessous.
Premierement, les marchés électroniques du transport de marchandises prosperent
avec la prospérité des commercants électroniques. Les meécanismes basés sur les
encheres sont principalement utilisés pour I'achat de services de transport. Parmi les
différents mécanismes, l'enchére combinatoire est bien adoptée a la fois par les
universitaires et les praticiens industriels. Différents mécanismes d'encheres
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combinatoires ont été congus avec un contexte et des contraintes spécifiques. L'enjeu
majeur dans la conception des mécanismes de CA est d'assurer a la fois I'efficacité du
temps et de la solution, qui sera longtemps la préoccupation des chercheurs.
Deuxiemement, le probleme de génération d'encheres en tant que probléme de
décision majeur dans le CA pour TSP a attiré l'attention de nombreux chercheurs,
différentes stratégies de regroupement et de tarification ont été congues. Cependant, la
plupart des études se sont concentrées sur le BGP déterministe alors que les études sur
le BGP stochastique n'ont porté que sur les prix stochastiques des requétes. De plus,
en raison de sa complexité de calcul, des algorithmes efficaces sont toujours
nécessaires pour les probléemes a grande échelle. Troisiémement, en général, les
problémes de routage ont été pris en compte dans la littérature pour regrouper les
requétes/voies. La couverture de voie soulevée dans le cadre d'une collaboration
logistique est devenue de plus en plus populaire dans l'achat de services de transport
par camion, ce qui peut étre facile a étendre au BGP pour le TSP par camion avec des
caractéristiques différentes. Enfin, une stratégie de planification avec des horizons
mobiles est devenue publique car elle est plus proche de I'application pratique et offre
plus de choix aux transporteurs pour obtenir de meilleures opérations, mais BGP avec
un facteur a la fois stochastique et dynamique n'a pas encore été pris en compte. Le

travail de cette these est réalisé sur la base de ces résultats.

A.3 Mécanismes d‘enchéres combinatoires en deux phases avec des
paquets de demandes supplémentaires

Ce chapitre étudie un probléme soulevé dans I'achat en services de transport par
camions entiers impliquant un ou plusieurs expéditeurs et plusieurs transporteurs.
Dans le probléme de I’achat de services de transport (TSP) considéré, un ou plusieurs
expéditeurs ont un ensemble de demandes de transport par camions entiers a
sous-traiter a un ensemble de transporteurs. Chaque demande de chargement complet
est représentée par une voie avec une origine et une destination dans un réseau de
transport. Chaque transporteur impliqué dans le TSP dispose d'une flotte de véhicules
initialement située dans son propre dép6t de vehicules. Chaque véhicule doit quitter et
retourner a son propre dépdt avant et apres avoir desservi les voies qui lui sont
attribuées. Le temps de service de chaque véhicule est limité et un colt fixe est
encouru si un vehicule dessert une tournée. Le revenu pour desservir chagque voie est

donné, qui est indépendant de la répartition des bénéfices/colts entre les expéditeurs
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et les transporteurs impliqués.

Le probleme est considéré du point de vue de I'efficacité sociale. L'objectif est de
minimiser la distance totale de déplacement/le colt des véhicules/transporteurs pour
desservir toutes les demandes (voies), ce qui fait référence a la consommation de
carburant ou a la pollution de I'air de toutes les tournées pour servir les demandes.
C'est-a-dire que la maximisation de I'efficacité sociale équivaut a la minimisation du
co(t total de transport pour desservir toutes les voies.

Lors de la formulation du probléme, les voies réservées aux offres contiennent
toutes les voies que les expéditeurs souhaitent sous-traiter aux transporteurs. Si un
transporteur souhaite acquérir une ou plusieurs voies interdites a I'enchere, sauf pour
sélectionner les voies a enchérir, il doit également construire ses itinéraires de
vehicules pour desservir ces voies. Chaque véhicule d'un transporteur dessert une
seule tournée avec des demandes. Le probléeme est un probléme de tournées de
camions multi-dépots (multi-transporteurs) avec des colts fixes et une contrainte de
durée maximale.

Les approches centralisées et décentralisées sont étudiées dans ce chapitre. D'une
part, un modele de programmation de ligne a nombres entiers mixtes est formulé pour
le probléeme d’achat en services de transport résolu en utilisant une approche
centralisée. En revanche, motivée par I'enchere clock-proxy proposée par Ausubel et
al. (2006), deux mécanismes de CA multi-tours a deux phases sont proposés pour
résoudre le méme probléme. L'enchéere au chronomeétre combine la découverte simple
et transparente des prix de I'enchere au chronometre avec I'efficacité de I'enchére par
procuration.

Comme dans I'enchére par proxy d'horloge, la deuxieme phase de nos
mécanismes CA proposes est egalement utilisée pour améliorer I'efficacite de
I'allocation des demandes. Notre objectif est de trouver une stratégie de regroupement
efficace pour la deuxiéme phase de CA, qui puisse accélérer le processus de CA avec
de meilleurs résultats. Dans les mécanismes de CA en deux phases proposés, la
premiére phase est une enchére au rythme combinatoire, dans laquelle le
commissaire-priseur augmente le prix d'une demande (voie) si aucun operateur
n'enchérit pour cette demande. Chaque transporteur génere son offre sur la base des
prix de toutes les demandes ouvertes aux enchéres a chaque tour. La deuxieme phase
vise principalement a vendre les demandes restantes (voies) aprés la premiére phase
en générant des faisceaux supplémentaires de demandes ouvertes aux encheres. Les
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deux mécanismes de CA generent respectivement des lots supplémentaires par le
commissaire-priseur et les transporteurs. Dans le cas ou le commissaire-priseur génere
les lots supplémentaires, chaque transporteur décide s'il enchérit pour un ou plusieurs
lots supplémentaires. Dans le cas ou les transporteurs générent des lots
supplémentaires, chaque transporteur génére et offre des lots de demandes sur la base
des résultats du dernier tour de CA. Les tarifs de desserte des forfaits supplémentaires
pourront également étre ajustés au cours de la deuxiéme phase. A notre connaissance,
il s'agit d'une nouvelle variante de CA pour l'achat en services de transport de
transport par camions entiers.

Le processus du mécanisme en deux phases est illustre dans les figures suivantes.
Les résultats des calculs sur des instances générées aléatoirement montrent que les
mécanismes proposes peuvent obtenir une allocation optimale ou quasi-optimale avec
un écart inférieur & 3% pour les instances testées. De plus, les mécanismes de CA en
deux phases peuvent aider le commissaire-priseur a réduire les colts d’achat tout en

améliorant I'efficacité sociale.
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announces the Auctioneer solves

R, . a BGP and submits—
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Figure A-1 Phase d'encheres a I'cadran
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A.4 Algorithme de génération de colonnes pour un probleme de
génération d'encheres

Dans le chapitre 3, les mécanismes de CA pour la TSP sont étudiés. Ce chapitre
se concentre ensuite sur I'un des principaux problémes de décision des mécanismes de
CA, le probléme de génération d'enchéres, du point de vue d'un transporteur. Le BGP
considéré au chapitre 3 ne considére que les demandes (voie) a soumissionner par le
transporteur. Cependant, dans un cas général, avant de participer a CA, le transporteur
a généralement des engagements préexistants. Ces engagements peuvent provenir des
contrats a long terme entre les expéditeurs et le transporteur ou des anciennes
encheres. Par conséquent, lorsqu'il participe a une nouvelle CA, le transporteur doit
tenir compte a la fois des engagements préexistants et des demandes qu'il peut obtenir
de cette CA. Ci-apres, les demandes (voie) dans les engagements préexistants et dans
CA sont respectivement appelées voies réservées et voies interdites. La différence
entre les deux types de voies est que les voies réservées doivent étre desservies par le
transporteur tandis que les voies interdites peuvent étre sélectionnées. En effet, le
transporteur participe généralement a CA pour obtenir des voies d'interdit en
complément des voies réservées soit pour réduire le repositionnement de véhicules
vides, soit pour rechercher plus de profit. Dans tous les cas, le transporteur devra
reconstituer ses itinéraires de véhicules, ce qui concatene le BGP avec le probleme de
tournées de véhicules.

Dans le probleme de génération d'enchéres étudié, un transporteur qui participe a
CA pour le TSP détenu par les expéditeurs souhaite générer une offre avec une ou
plusieurs demandes de chargements complets dans le pool d'enchéres. Chaque
demande de chargement complet est représentée par une voie avec une origine et une
destination dans un réseau de transport symétrique. Avant de participer a CA, le
transporteur dispose d'un ensemble de voies réservées qu'il doit desservir. Dans CA, si
le transporteur souhaite se procurer des voies interdites, sauf pour sélectionner les
voies a soumissionner, il doit également reconstituer ses itineraires de véhicules pour
inclure ses voies interdites sélectionnées en plus de ses voies réservees.

Le transporteur dispose d'une flotte de vehicules initialement située dans son
dépdt de véhicules dont le nombre de véhicules est limité. Chaque véhicule du
transporteur doit quitter et retourner a son dépot avant et apres avoir desservi les voies
qui lui sont attribuées. Chaque vehicule du transporteur ne dessert qu'un seul tour avec

des demandes. Le temps d'entretien de chaque véhicule est limite.
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La principale contribution de ce chapitre est sous deux aspects.

Premierement, un modele MILP et un modele de partition d'ensemble sont
proposés pour le BGP. Dans lequel le modele de partition du probleme est formulé
comme suit:

Ensembles et indices:
R, ensemble de tous les route élémentaires possibles

A, ensemble de tous les arcs parcourus par le véhicule en cours de route r

Parametres:
1, si voie | est dans route r
q,= . leAreR
’ 0, sinon

Ci, le co(it de visite de lavoiel, 1 A

Py, le revenu de visite de lavoiel, 1€ A

Variables de decision:

1, si route r est selectionn EFEIQ
) ‘re
0, sinon

Model BGP-SP
Max> > (R -C,)a, X,
reR leA
s.t.
Ya,x =Llel, (A-1)
reR
Ya,x <Llel, (A-2)
reR
> x <H (A-3)
reR
x, €{0,1}, reR (A-4)

La fonction objectif est toujours de maximiser le profit net du transporteur. Le
bénéfice net est la différence entre les recettes et le colt de la desserte des voies des
itinéraires. La contrainte (A-1) garantit que chaque voie réservée n'est desservie
qu'une seule fois, tandis que la contrainte (A-2) indique que toute voie interdite peut
étre desservie a plus une fois par le transporteur. La contrainte (A-3) garantit que les

vehicules utilisés ne dépassent pas le nombre limite de vehicules. La contrainte (A-4)
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limite la plage de valeurs de la variable binaire xr.

Deuxiémement, un algorithme de génération de colonnes est proposé pour
résoudre la relaxation linéaire du probleme basé sur le modele de partition. Dans
I'algorithme de génération de colonnes, une heuristique d'insertion gloutonne est
proposée pour construire la solution initiale du probleme maitre restreint, et deux
approches sont proposées pour résoudre le sous-probléme, qui sont l'algorithme de
programmation dynamique avec étiquetage et I'algorithme de recherche locale.

Dans le modéle de partition, la prise en compte simultanée de tous les éléments
(routes) de cet ensemble peut étre inabordable en termes de calcul dans la pratique.
L'algorithme de génération de colonnes peut ensuite étre appliqué pour fournir un
processus progressif d'introduction des routes dans le modéle.

La genération de colonnes est un algorithme efficace pour résoudre de grands
programmes linéaires. Le principal avantage de la génération de colonnes est qu'il
n'est pas nécessaire d'énumérer toutes les possibilités. L'idée de base de la génération
de colonnes est de d'abord formuler le probléeme comme un probléme maitre restreint
avec peu de variables, puis un sous-probléme est résolu pour ajouter une nouvelle
colonne au probléme maitre restreint. Le probléme maitre restreint est le probléeme
d'origine avec seulement un sous-ensemble de variables considéré. La solution du
probleme maitre restreint est une solution réalisable au probléeme d'origine. Le
sous-probléeme est un probleme pour identifier une colonne a ajouter au probleme
maitre restreint. La nouvelle colonne est trouvée en calculant le codt reduit par rapport
aux variables duales courantes. Généralement, la colonne qui minimise le codt réduit,
ce qui signifie que I'ajout de cette colonne peut améliorer au maximum la solution
actuelle, est ajoutée au probleme maitre restreint.

Dans l'algorithme de génération de colonnes proposé, une heuristique d'insertion
gloutonne est congue pour générer la solution initiale, qui insere d'abord les voies
réservées puis les voies interdites. La regle est d'insérer une voie avec une
augmentation maximale du profit net a I'itinéraire par rapport a la contrainte de durée
maximale.

Dans l'algorithme d'étiquetage, une étiquette L = {Si, di, ci, Ui, ni} est definie
avec la liste de sequences S;j des requétes visitées, I'heure de départ di apres avoir servi
la requéte courante i, le colt cumulé ci, I'ensemble des requétes inaccessibles Ui et le
nombre de requétes inaccessibles n;. Ici, une requéte est reconnue comme inaccessible
si elle a déja été servie dans la route partielle jusqu'a I'étape en cours ou que servir la
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requéte provoquera la violation de la contrainte de durée maximale. L'étiquette
s'étendra Li = {S;, di, ¢i, Ui, ni} a Lj = {S;, dj, ¢j, Uj, nj} si la requéte j est ajoutée a la
route. Mais avant d'ajouter la requéte j, il faut d'abord vérifier s'il s'agit d'une requéte
inaccessible. S'il peut étre ajouté a la route, soit i+ le nceud d'origine et i- le nceud de
destination de la requéte i, alors

S; =S «] (A-5)
d; =d, +ti,1j+ +tm, (A-6)

c.=Cc+C__,+C, _
J ! i it

(A-7)
Uj et n; seront également mis a jour apres verification du nceud d'origine des

requétes restantes et de la contrainte de durée maximale. Notez que si la demande j est

la premiere demande apres avoir quitté le dép6t, alors dj=tDj++t,-+ .

Ci=Co, +Cp ou D désigne le nceud du dépét. Ou si l'indice j est le dépbt ou

I'itinéraire se terminera, alorsd; =d, +t__, ¢;=¢+c__.

Dans le graphique, il peut ne pas y avoir qu'un seul itinéraire du dép6t a la

demande j. Pour les labels L et L) associés a la requéte j, label L, domine label

sz Si

1 2 1 2 1 2 1 2
d; <dj, ¢;<cj, Uy U7, n; <n; (A-8)

L'algorithme d'étiquetage présenté dans la derniére sous-section prend du temps
lorsque le nombre de requétes est important et que la durée maximale de chaque route
est importante, il n'est donc pas adapté aux grandes instances du BGP considéré. Des
méthodes heuristiques sont généralement proposées pour résoudre approximativement
les ESPPRC apparus dans les algorithmes de génération de colonnes pour divers
problémes de tournées de véhicules. Une méthode heuristique est, au lieu de résoudre
un probleme de plus court chemin élémentaire, un probléeme de plus court chemin qui
permet a certains nceuds visités plus d'une fois dans un chemin partiel (route) est
considéré, mais la relaxation de la contrainte selon laquelle chaque nceud est visité par
un chemin partiel (route) au plus une fois dégradera la limite inférieure du modéle de

partition d'ensemble correspondant trouvé par la génération de colonnes. Pour cette

116



Résumé étendu en Francais

raison, nous proposons un algorithme de recherche locale pour résoudre le
sous-probléeme.

Dans l'algorithme de génération de colonnes, aprés avoir résolu le probléme
double du probléme maitre restreint, le colt réduit de chaque route dans le pool de
routes (colonne) peut étre calculé. L'algorithme de recherche locale essaie d'améliorer
certains itinéraires avec un codt réduit nul dans le pool d'itinéraires de sorte que les
itinéraires avec un codt reduit négatif puissent étre trouveés et entrer dans le pool de
colonnes. Cet algorithme applique les trois opérateurs de recherche locale suivants :

(1) Supprimer une demande (voie). Pour une route donnée, cet opérateur
supprime une requéte dont la suppression réduira au maximum le colt réduit de la
route parmi toutes les requétes amovibles.

(2) Insérer une demande (voie). Pour une route donnée, cet opérateur insére une
requéte dont I'insertion réduira au maximum le codt réduit de la route parmi toutes les
requétes insérables et reconstruit la route en insérant la requéte dans sa meilleure
position qui minimise le colt réduit. A noter que dans I'ESPPRC considéré, certaines
voies sont associées a un colt négatif (distance), donc I'insertion d'une demande (voie)
peut réduire le codt réduit de l'itinéraire.

(3) Supprimer et insérer une demande (voie). Pour une route donnée, cet
opérateur retire d'abord une demande de la route puis réinsere cette demande (dans
une autre position) ou insere une autre demande dans la route. La combinaison de la
demande de suppression et de la demande d'insertion est choisie de telle sorte que le
colt réduit de la route soit réduit au maximum aprés cette opeération de
suppression/insertion de demande.

L'algorithme de recherche locale peut trouver de nombreuses routes avec un codt
réduit nul a améliorer en une seule itération. Ainsi, par rapport a l'algorithme
d'étiquetage qui ajoute une seule route au probleme maitre restreint avec un co(t
réduit au minimum a chaque itération de l'algorithme de génération de colonnes,
I'algorithme de recherche locale consiste a améliorer plusieurs routes dans le
probléme maitre restreint. Pour chaque itinéraire, le processus d'amélioration se répéte

jusqu'a ce que le codt réduit de I'itinéraire ne puisse plus étre amélioré.
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A.5 Modéle et algorithme de décomposition de Benders pour un
probléme de génération d'encheres prenant en compte plusieurs
périodes et I’incertitude de demandes

L'achat en services de transport (TSP) est souvent réalisé par encheres
combinatoires (CA). Mais le marché des services de transport est férocement
concurrencé. Pour survivre dans cette concurrence entre les transporteurs et
rechercher plus de profits, les transporteurs doivent faire preuve de prévoyance
lorsqu'ils participent & CA et élaborent des plans d'exploitation. C'est-a-dire que
lorsqu'un transporteur planifie ses opérations de transport, il doit considérer non
seulement ses demandes de transport actuelles mais aussi les demandes de transport
qu'il pourrait acquerir a I'avenir. Ces derniéres années, avec le concept de planification
a horizon glissant adopté en logistique, les transporteurs planifient généralement leurs
opérations de transport plusieurs périodes (jours) a l'avance. Cela implique que les
transporteurs doivent considérer plusieurs périodes lorsqu'ils participent a CA
organisée par les expéditeurs. Etant donné que les demandes de transport & I'avenir ne
peuvent pas étre prévues, les transporteurs doivent tenir compte de l'incertitude des
demandes dans de telles enchéres.

Pour chaque transporteur, pour s'adapter a la nouvelle tendance de I'industrie, il
doit considerer plusieurs périodes (jours) dans son probléme de géneration d'enchéres
(BGP). Lorsque I'on consideére le BGP dans un horizon glissant, une demande ouverte
aux encheres sur le marché des transports peut avoir une fenétre de service composée
de plusieurs périodes consécutives (jours), et la demande peut étre servie dans
n'importe quelle période (jour) a l'intérieur de la fenétre. Dans une telle situation, le
transporteur doit déterminer non seulement les demandes de service (offre) mais
également la période (jour) pour servir chacune des demandes afin de maximiser son
profit.

Dans une enchere TSP classique a période unique, les demandes ouvertes aux
encheres sont libérées avant I'enchére, et un transporteur peut avoir des demandes
acquises aupres d'expeéditeurs lors d'anciennes encheres ou incluses dans des contrats
de service signés avec des expéditeurs auparavant. Le transporteur doit tenir compte
des deux types de demandes, respectivement dénommées demandes d'interdiction et
demandes réservées ci-apres, dans la résolution de son BGP. De plus, lorsque
I'approche de planification a horizon glissant est adoptée par un transporteur, il doit

également considérer les demandes de transport susceptibles d'apparaitre a I'avenir
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dans son BGP lorsqu'il participe a une enchere. L'incertitude des futures demandes sur
le marché du camionnage rend le BGP difficile a résoudre, car certaines informations
sur les futures demandes ne peuvent pas étre obtenues a l'avance. Les données
historiques peuvent étre utilisées pour développer des stratégies de routage qui
améliorent la productivité du service (Seongmoon et al., 2005). Pour gérer
I'incertitude, les transporteurs utilisent généralement les statistiques des données de
demande historiques pour prédire les demandes futures. Avec une longue expérience
du marché, un transporteur peut généralement estimer la probabilité d'‘émergence de
chaque demande future. En considérant I'incertitude des demandes futures de maniere
probabiliste, le probleme de genération d' enchéres étudié dans ce chapitre peut mieux
refléter la réalité du marché du transport par camions entiers.

Le BGP d'un opérateur dans une enchére TSP est traité dans ce chapitre, qui
prend en compte plusieurs périodes et incertitudes. Les décisions du probléme
comprennent les demandes de transport a soumissionner, la période pour servir
chaque demande et les itinéraires pour servir toutes les demandes, y compris les
demandes réservees du transporteur.

Le BGP multi-période d'un transporteur prend en considération trois types de
demandes de transport : les demandes réservées, les demandes offerte aux enchéres et
les demandes probabilistes. Les demandes réservees sont celles que le transporteur a
acquises dans des contrats antérieurs ou passés CA. Chaque demande de ce type doit
étre signifiée dans un délai (jour) donné a titre d'engagement vis-a-vis de son
expediteur offrant. Les demandes offerte aux enchéres sont celles ouvertes aux
encheres dans CA imminente de TSP a laquelle le transporteur participera. Chaque
demande d'interdiction d'enchére peut étre signifiée dans n'importe quelle période de
sa fenétre temporelle composée d'une ou plusieurs périodes consécutives. Le
transporteur sélectionne certaines demandes d'enchéere pour former son offre (un
ensemble de demandes) dans CA. Les requétes probabilistes apparaissent avec une
probabilité. Des demandes de ce type peuvent étre données par des fournisseurs
collaborant de longue date. Une fois que de telles demandes apparaissent, le
transporteur doit les ajouter a son plan de service de transport. Les requétes
probabilistes peuvent également étre utilisees pour modéliser les requétes
éventuellement acquises sur le marché du transport au comptant lors de futures
enchéres. Chaque demande est associée a un revenu, c'est-a-dire le revenu que le
transporteur peut générer en servant la demande sans tenir compte des frais de
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transport encourus. Pour chaque demande d'enchére, son revenu correspond a son prix
de vente annonce par le commissaire-priseur dans CA multi-tours décrit dans la
derniére section.

Il existe deux types de décisions qui doivent étre prises dans le BGP.
Premiérement, le transporteur doit déterminer quelle(s) demande(s) enchérir (choisir)
et dans quelles périodes chaque demande sera servie. Deuxiemement, pour chaque
période, le transporteur doit déterminer les tournées (itinéraires) pour servir toutes ses
demandes. Puisque chaque demande de transport par camion peut étre représentée par
une voie avec une origine et une destination, le probleme de génération d' enchéres
étudié peut étre formulé comme un LCP multi-période stochastique avec trois types de
voies. Etant donné que des voies probabilistes peuvent apparaitre dans les périodes
futures et que les voies a desservir sont des variables de décision, le BGP considéré
dans ce chapitre est une nouvelle variante du LCP.

Ce chapitre contribue a ce probleme difficile dans les deux aspects suivants.

Premiérement, en adoptant I'approche de scénario de I'optimisation stochastique,
un modele de programmation linéaire mixte en nombres entiers (MILP) est formulé
pour le probléme. L'objectif du modéle est de maximiser le bénéfice net total attendu
du transporteur dans un horizon de planification de plusieurs périodes. Inspiré par
Ergun et al. (O. Ergun et al., 2007a; O. Ergun et al., 2007b), le modéle adopte une
formulation du probléme de recouvrement de voies (LCP), bien que notre probleme
soit un probleme de maximisation. Ce modéle prend en considération trois types de
demandes : les demandes d'encheres, c'est-a-dire les demandes ouvertes aux encheres,
les demandes réservées qui doivent étre servies par le transporteur et les demandes
probabilistes dont I'émergence est incertaine. Les routes pour servir toutes les
demandes sont déterminées en résolvant une nouvelle variante de LCP avec des
fonctionnalités multi-périodes et probabilistes supplémentaires. La raison de
I'adoption de I'approche par scénarios pour résoudre le probleme approximativement
est sa grande complexité en raison de sa nature stochastique. Dans cette approche,
chaque scénario correspond a une réalisation possible des parameétres aléatoires
(requétes futures) du probléme. Pour un nombre donné de scénarios, le modéle de
programmation stochastique du probleme peut étre transformé en un modeéle
d'équivalence déterministe, qui peut étre résolu de maniére optimale par un algorithme
exact. Selon la loi des grands nombres en théorie des probabilités, lorsque le nombre
de scénarios est pris suffisamment grand, la solution du modéle d'équivalence
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déterministe peut bien approcher la solution du probléme d'optimisation stochastique.

Deuxiémement, une approche de décomposition de Benders (BD) est proposée
pour résoudre le modele MILP. Dans I'approche, le probleme d'origine (modéle) est
divisé en plusieurs sous-problémes, un pour chaque scénario. Sur la base des solutions
des sous-problémes, un probléme maitre restreint est résolu avec des contraintes
supplémentaires (coupes de pliage) ajoutées a chaque itération du BD. Pour accélérer
ce processus itératif, une technique de génération de coupes Pareto-optimales
(Magnanti & Wong, 1981) est appliquée dans la BD. Les performances de I'approche
proposée sont évaluées par des expériences numériques sur plusieurs ensembles
d'instances générées aleéatoirement. Une comparaison avec le solveur CPLEX sur les
instances démontre que l'approche BD est beaucoup plus efficace que le solveur
CPLEX pour résoudre de grandes instances. De plus, l'intérét de considérer les

requétes probabilistes et multi-périodes dans le BGP de CA est également évalué.
A.6 Conclusions et perspectives

Le transport par camions entiers est une partie importante de I'industrie du
transport, dans laquelle les expéditeurs se procurent des services de transport aupres
des transporteurs. L'achat de services de transport est souvent réalisé par enchéres
combinatoires. La conception du mécanisme d'enchéres combinatoires, ainsi que la
méthode pour résoudre I'un des principaux probléemes de deécision, le probleme de
géneération d'encheres, affectent I'efficacité de I'enchére combinatoire. En concevant
des mécanismes d'encheres efficaces et des méthodes efficaces pour résoudre les
problemes de génération d'encheres, les expediteurs et les transporteurs peuvent
respectivement réduire leurs colts et augmenter leurs bénéfices. Cette these étudie
trois problemes posés dans I'achat de services de transport par camions entiers réalisés
par enchéres combinatoires.

Dans le premier probléme, une enchere combinatoire pour I'achat de services de
transport par camions entiers est étudiée, impliquant plusieurs expéditeurs et
transporteurs afin de maximiser I'efficacité sociale. Ce probleme est équivalent a celui
qui minimise le codt total de la desserte de toutes les voies devant étre externalisées
par les expéditeurs. Une approche centralisee et une approche decentralisée pour
résoudre ce probléeme sont proposées. Pour l'approche centralisée, un modele de
programmation linéaire en nombres mixtes (MILP) est formulé pour le probleme et

résolu par le solveur CPLEX. Pour l'approche décentralisée, deux mécanismes
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d'enchéres combinatoires en deux phases sont congus, I'un avec des paquets des
demandes supplémentaires d'appels d'enchéres générés par le commissaire-priseur et
un autre avec des enchéres supplémentaires générees directement par les transporteurs
dans la deuxieme phase. Les deux phases sont respectivement la phase d'enchere au
cadran et la phase d'enchére supplémentaire. Les mécanismes d'enchéres
combinatoires en deux phases sont également réalisés par des codes. Les résultats des
calculs montrent que par rapport & la vente aux seulement enchere au cadran, les
mécanismes a deux phases congus présentent des avantages évidents en termes
d'efficacité du temps et d'économies pour le commissaire-priseur. Parallelement,
I'efficacité sociale du résultat de I'enchere (allocation des demandes) est amélioree par
les deux mécanismes.

Dans le deuxieme probleme, un probléeme de génération d'enchéres d'un
transporteur dans une enchére combinatoire pour I'achat de services de transport par
camions entiers est étudié afin de maximiser le profit net du transporteur. Dans ce
probléme, a la fois les engagements et les contrats préexistants (voies réservées) et les
nouvelles demandes qui doivent étre sélectionnées dans I'enchere (voies offerte aux
enchére) sont pris en compte. Le transporteur doit décider a la fois pour quelles voies
faire une offre dans le cadre de I'enchere combinatoire et de l'itinéraire pour desservir
a la fois les voies reservees et les voies offerte aux enchere pour I'enchére. Un modeéle
de programmation linéaire inter mixte et un modéle de partition d'ensemble sont
formulés pour le probléeme. Un algorithme de génération de colonnes est également
proposeé pour le probleme avec le sous-probleme (probleme élémentaire du plus court
chemin) résolu par programmation dynamique avec algorithme d'étiquetage et
algorithme de recherche locale. Des expériences numériques sont menées pour
comparer les solutions obtenues par le modéle MILP résolu par le solveur CPLEX et
I'algorithme de genération de colonnes. Les résultats démontrent que l'algorithme
proposé peut rapidement trouver une solution quasi optimale du probleme étudié.

Dans le troisieme probleme, le probléme de genération d'enchéres pour un seul
transporteur en encheres combinatoire pour l'achat en services de transport par
camions entiers est etendu a celui qui prend en compte a la fois les périodes multiples
et I'incertitude dans I'achat des services de transport par camions entiers. Ce probleme
d'optimisation stochastique est formulé comme un modele de programmation linéaire
en nombres entiers mixtes via I'optimisation de scénarios et I'équivalence déterministe.
Pour résoudre ce modele, une approche de décomposition de Benders est proposée
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avec une coupe Pareto-optimale pour accélérer le processus de l'approche. Les
résultats informatiques démontrent que l'approche de décomposition de Benders
proposée est beaucoup plus efficace que le solveur CPLEX en termes de temps de
calcul pour résoudre de grandes instances du modeéle. La valeur de la prise en compte
des demandes incertaines et des périodes multiples dans la génération d'enchéres est
également évaluée par des expériences numériques. Les résultats montrent que
considérer a l'avance les demandes incertaines peut améliorer le bénéfice net du
transporteur et considérer plusieurs périodes peut améliorer la compétitivite du
transporteur.

Bien que des mécanismes et des algorithmes efficaces soient proposés pour
résoudre les problémes soulevés par les encheres combinatoires pour l'achat en
services de transport par camions entiers, de nhombreux travaux peuvent encore étre
effectués pour améliorer les solutions aux problémes et étendre le probléme a un
environnement plus complexe et applicable.

Premiérement, pour les mécanismes des enchéres combinatoires, les méthodes de
la phase d'enchéres supplémentaires proposées dans cette these peuvent ne pas étre le
seul moyen de générer des enchéres supplémentaires, et la phase d'enchéres
supplémentaires peut ne pas étre la seule approche pour accélérer le processus de
I'enchére pour trouver une allocation efficace des voies offerte aux enchére. La
question de savoir s'il existe de meilleures méthodes et approches peut étre un
probléme intéressant a explorer a l'avenir. Deuxiemement, pour le probléme de
géneération d'enchére par camions entiéres étudié au chapitre 4, les travaux futurs
peuvent se concentrer sur l'amélioration des approches actuelles pour obtenir la
solution initiale du probleme maitre restreint et les algorithmes pour résoudre le
sous-probléeme dans l'algorithme de génération de colonnes. Trouver de nouvelles
approches efficaces pour résoudre le sous-probleme est également significatif.
Troisiemement, pour le probléme de génération d'enchére compte tenu des périodes
multiples et de I'incertitude, trouver d'autres moyens d’accéléerer la décomposition de
Benders est significatif. Pendant ce temps, il peut également étre important de trouver

un algorithme heuristique efficace pour résoudre le probléme a grande échelle.
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Ftudes sur le mécanisme d'enchéres et
la génération d'encheres dans I'achat de
services de transport

Le transport par camions entiers est un mode cou-
rant de transport de marchandises, qui représente
une part importante de P’industrie de transport, ol
les expéditeurs achétent des services de transport
auprés des transporteurs. L'achat de services de
transport est souvent réalisé par des enchéres. Par
concevoir des mécanismes d'encheres efficaces et
des méthodes efficaces pour résoudre les problémes
de génération d'enchéres associés, les expéditeurs
et les transporteurs peuvent réduire leurs coiits et
augmenter leurs bénéfices respectivement.

Cette thése étudie trois problémes soulevés dans
I'achat de services de transport par camions entiers
réalisé par une enchére combinatoire. Premiére-
ment, deux mécanismes d'enchéres combinatoires a
deux phases sont concus avec des paquets supplé-
mentaires de demandes offerts a I’enchére générés
respectivement par le commissaire-priseur et les
transporteurs dans la deuxiéme phase. Deuxiéme-
ment, un algorithme de génération de colonnes est
proposé pour résoudre le probleme de génération
d'enchéres apparu dans I'enchére combinatoire.
Enfin, le probléeme de génération d’enchéres est
étendu a un probleme qui tient compte a la fois
plusieurs périodes et l'incertitude dans I'achat de
services de transport par camions entiéres. Ce pro-
bleme d'optimisation stochastique est formulé par
Ioptimisation de scénario et I’équivalence détermi-
niste. Pour résoudre ce modele, une approche de
décomposition de Benders est proposée.

Mots clés : transport de marchandises — vente aux
encheres — probleme de tournées de véhicules -
optimisation combinatoire — programmation (ma-
thématiques).

Studies on Auction Mechanism and Bid
Generation in the Procurement of Truck-
load Transportation Services

Truckload transportation is a common mode of
freight transportation, which accounts for a sub-
stantial portion of transportation industry, where
shippers procure transportation services from carri-
ers. Transportation service procurement is often
realized by auction. Through designing effective
auction mechanisms and efficient methods for solv-
ing related bid generation problems, shippers and
carriers can save costs and increase profits respec-
tively.

This thesis studies three problems raised in the
procurement of truckload transportation services
realized by combinatorial auctions. Firstly, two two-
phase combinatorial auction mechanisms are de-
signed with supplementary bundles of requests
offered for bid generated by the auctioneer and the
carriers respectively in the second phase. Secondly,
a column generation algorithm is proposed to solve
the bid generation problem appeared in the combi-
natorial auction. Finally, the bid generation problem
is extended to one that considers both multiple peri-
ods and uncertainty in truckload transportation
service procurement. This stochastic optimization
problem is formulated through scenario optimization
and deterministic equivalence. To solve this model,
a Benders decomposition approach is proposed.

Keywords: freight and freightage — auctions — vehi-
cle routing problem — combinatorial optimization —
programming (mathematics).
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