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Resumè

Les problèmes d'optimisation sous contraintes non linéaires non convexes multi-objectifs en variables mixtes (discrètes et continues) apparaissent dans de nombreux domaines de l'ingénierie et notamment dans les applications de conception en mécaniques. Cette thèse vise à développer une nouvelle méthode pour résoudre ces problèmes d'optimisation. Notre proposition est une hybridation de l'algorithme multicritère ≪ Branch-and-Bound ≫ (MCBB) avec l'algorithme évolutionnaire de type NSGAII. L'approche proposée est en outre renforcée par de nouvelles stratégies de branchement conçues pour l'algorithme MCBB. Les contraintes du problème d'optimisation sont gérées à l'aide d'une nouvelle technique dédiées aux algorithmes évolutionnaires. Les performances de cette nouvelle approche sont évaluées et comparées à l'existant par une étude statistique sur un ensemble de problèmes tests. Les résultats montrent que les performances de notre algorithme sont compétitives face à l'algorithme NSGAII seul. Nous proposons deux applications de notre algorithme : les applications "Recherche de solutions faisables" et "Recherche de solutions optimales". Celles-ci sont appliquées sur un problème industriel réel d'un réducteur à engrenages à 3 étages formulé comme un problème bi-objectif. Dans ce problème des contraintes sont incluses pour satisfaire aux exigences de normes ISO sur le calcul de la capacité de charge des engrenages.
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Introduction

Optimization problems arising from the mechanical and materials engineering field are often difficult to solve. This is due to the characteristics these optimization problems have. For instance, mechanical optimization problems are usually nonlinear and sometimes non-convex.

They are characterized generally by several conflicting objectives, and by a set of constraints that take the attention of an optimization algorithm away from optimization into focusing instead on feasibility.

Another feature that set these problems apart from other optimization problems, is the presence of both continuous and discrete optimization variables. The optimization problem is then called a mixed variables problem. Mixed variable may make the solution space disjoint, and thus the optimization problem more difficult to solve. A common way to simplify such problems is to relax the integer constraint, meaning that to consider the discrete variables as continuous ones. Then, the problem is solved as a continuous problem with the hope that the solution obtained may be easily repaired to become a good solution to the original problem. The relaxation is particularly easy if the discrete variables are numerical. The situation is different in the case of categorical discrete variables. An example of such problem is the choice of material to be used for manufacturing certain parts. Hence, relaxing the mixed variable problem cannot be always applicable. Several methods are proposed in literature to solve such problems, i.e. multi-objective mixed variables non-linear problems. These methods could be classified into exact, approximate or even hybrid methods. Exact methods guarantee to find the real optimum of the problem, however, the computation cost increases prohibitively when the combinatorial space is large. Mechanical engineering optimization problems are usually mid-sized problems, they are hand-formulated which may contain tens of variables (usually not more) and few objective functions. Figures 1.2 and 1.1 show a 3 stages reducer problem as an example of mechanical design optimization 1.1 Introduction problem. In this example, the design problem consists in minimizing the volume and the gear ratio tolerance of the gear reducer instantaneously. The problem is formulated with 2 objective functions, 41 constraints, 3 categorical variables (gears modules) which are indexed as integers that cannot be relaxed, 6 integer variables (number of teeth), and 11 continuous variables. Gears modules have 41 possibilities, pinion number of teeth ranges from 14 to 30 and wheel number of teeth ranges from 14 to 150. Hence, the combinatorial space of this problem consists in 41 3 * (30 -13) 3 * (150 -13) 3 ≃ 8.7 × 10 14 . Thus, although the problem is considered a mid-sized problem concerning the number of variables and constraints, it consists in a huge combinatorial space. For this reason, exact methods are not commonly used to solve such problems. Approximate methods are stochastic in nature, they can solve complex optimization problems resulting in -without any guarantee -a good quality solution(s) in a relatively short time.

Approximate methods, in particular metaheuristics, are popular in the field of mechanical optimization. However, the literature -as will be shown in the literature review in the next chapter -does not provide a clear conclusion of which metaheuristic algorithm is the best for such problems. It will be shown that although metaheuristics are a form of optimization that is proven to be suitable and robust in many industrial applications from robotics to engineering design optimization, there is no guarantee that these algorithms will fair any better in real life problems.

GENERAL INTRODUCTION

In fact, a benchmark is needed to measure the performance of the metaheuristic since there is no theoretical proof about the convergence speed nor about the global convergence (i.e a proof of the property of on algorithm to converge toward a solution that satisfy an optimality condition for any initial solution). Thus, no single metaheuristics is the ultimate best for all kind of optimization problems. Instead, an algorithm can be considered more efficient only for a set of test problems. Therefore, the only way of testing and evaluating the efficiency and the performance of an algorithm is based on the numerical experiment on a given benchmark problem.

Hence, the results are "benchmark" dependent, accordingly, when applying this algorithm on a "real-world" problem, the algorithm is assumed to have the same performance since the "real world" problem is in the same class of -or very near to -the benchmark problem. In this context, El Samrout [2019] has studied the performance of various popular metaheuristics on different multi-objective mixed-integer non-linear real-world mechanical engineering problems. The author concluded that the results obtained by these metaheuristics on these problems were unsatisfying.

The author reads into "the need to propose new and adequate optimization algorithms to these problems seems more pressing than ever". Hence, the author recommends to hybridize the metaheuristics with other algorithms to enhance their performance on this kind of problems.

In fact, hybrid metaheuristics has become a very active field, where researchers are more focused nowadays on finding the most adequate hybrid algorithm to the problem at hand. Hybrid metaheuristics are a combination of a metaheuristic with another (or several others) optimization algorithm(s). These optimization algorithms can be stochastic (like metaheuristics) or exact methods. Hybrids are designed based on whether the goal is to obtain faster algorithms or more accurate ones. In any case, hybrids -ideally -will always try to make the most of its components while minimizing their disadvantages. [START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF] said that "the main motivation behind the hybridization of different algorithms is to exploit the complementary character of different optimization strategies". El Samrout [2019] said that "the huge number of efficient hybrids proves that they are actually the most efficient algorithms for many classical and real-life difficult problems".

Despite their great practicality in real-world mono-objective optimization problems, our literature review will show that only few works has been done on hybrids to solve Multi-Objective Mixed-Integer Non-linear Programming (MO-MINLP) problems that appears in several fields especially in mechanical applications. This thesis aims to develop a new method to solve such problems. Our proposal is a hybridization of the Multi-Criteria Branch-and-Bound (MCBB) algorithm with the Non-dominated Sorting Genetic Algorithm 2 (NSGAII), we called BnB-NSGAII. The proposed approach is furthermore enhanced by new branching strategies designed for MCBB. The constraints are handled using a new proposed constraint handling technique 1.2 Thesis Organization for evolutionary algorithms that is based on the Non-dominated Sorting of Constraints Violation (NSCV). Numerical experiments based on statistical assessment are done in this thesis to examine the performance of the new proposed approach.

Thesis Organization

This thesis is organized as shown in Figure 1.3. The literature review on the state of art methods to solve mix variable problems is presented in Chapter 2. In this chapter, our main goal is to provide enough descriptive information for the newcomers in this area about the research that has been done and that is currently under way. The methods are classified in three groups: exact, approximate and hybrid methods. For each group, the state of art methods are addressed showing the advantages and disadvantages for each type of methods. In Chapter 3, our proposed algorithm is introduced explaining each portion of it. First, BnB-NSGAII -the general framework of our algorithm -is explained. Then, the legacy feature is demonstrated as an enhancement feature for BnB-NSGAII. After that, our proposed branching strategies are presented. Finally, CHTs are reviewed then our proposed CHT is introduced.

GENERAL INTRODUCTION

Each proposed feature is tested independently in Chapter 4 showing the impact of each feature on the solution. For each feature, an independent experiment is designed having its own evaluation metrics and benchmark scenario.

In Chapter 5, the 3 stages reducer (3SR) problem is introduced showing its complexity. Then, BnB-NSGAII is used to search for feasible individuals to initialize NSGAII with them. This application of BnB-NSGAII is called "Search Feasibility" application. After that, BnB-NSGAII with the proposed branching strategy and NSCV as CHT is tested on the 3SR problem to examine the overall performance of it. This application is called "Seek Optimality" application.

Finally, an overall conclusion is drawn in Chapter 6 summarizing the key ideas in this thesis and showing the conclusions and perspectives for future work.

Chapter 2 

State of Art

Overview

Applications of optimization are countless. Every process has a potential to be optimized. In fact, [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF] said that "there is no company that is not involved in solving optimization problems". [START_REF] Breitkopf | Multidisciplinary Design Optimization in Computational Mechanics[END_REF] said that "any system design is an optimization process". Indeed, many challenging applications in science and industry can be formulated as optimization problems. Optimization occurs in the minimization of time, cost, and risk or the maximization of profit, quality, and efficiency.

Taxonomy

Optimization methods could be classified based on the type of the problems that they attend to solve, or they could be classified based on the type of the algorithm. In this section, we present a taxonomy that addresses the classifications of optimization problems based on their characteristics, the classification of optimization methods and the classification of transformation techniques of the optimization problems.

Exact Methods (E)

Exact methods are deterministic algorithms that converge towards a solution which satisfy some optimality conditions. These algorithms have been successfully applied to many engineering design problems [START_REF] Rao | Mechanical Design Optimization Using Advanced Optimization Techniques[END_REF]. Exact methods are either enumerative or iterative methods (Figure 2.1). Iterative methods are sequence of solution displacements or mathematical procedures that use an initial value to generate a sequence of improving solutions for a class of problems, in which the n-th solution is derived from the previous ones. The cutting-plane method iteratively refines a feasible set by means of linear inequalities, termed cuts. It is commonly used to solve mixed-integer linear programming (MILP) problems, as well as to solve general, not necessarily differentiable, optimization problems. The use of cutting planes to solve MILP was introduced by [START_REF] Gomory | Solving linear programming problems in integers[END_REF].

Enumerative methods consists in enumerating the domain space explicitly (all the solutions in the domain) or implicitly as in the branch and bound algorithm. Figure 2.2 shows an example of how the branch and bound implicitly enumerates the domain space. Branch and bound is a well-known generic method for computing an optimal solution of a single objective optimization problem. Based on the "divide to conquer" idea, it consists in an implicit enumeration principle, viewed as a tree search. The feasible set of the problem is iteratively partitioned to form subproblems of the original one. Generally in branch and bound, the main problem is divided to subproblems (nodes). Each subproblem is evaluated to obtain a lower bound on the subproblem objective value. The lower bounds on subproblem objective values are used to construct a proof of optimality without exhaustive search. Uninteresting and infeasible subproblems are Branch and bound is considered exact method as long as (1) the branching condition -the union of the subsets remains equal to the complete set -( 2) the bounding condition -the lower bound is proved to be lower than the global optimal solution -are attained. Otherwise, branch and bound cannot guarantee to provide the optimal solution(s). If the branching condition is not verified, then there might be a part of the feasible domain, that may contain the global optimum solution(s), is discarded. Consequently, the solver will converge to a solution that cannot be verified as a global optimum or even a local one, since the true global optimum is lost. On the bounding side, any fathoming rule depends on the obtained lower bound of the node. If the obtained lower bound cannot be proven that it is lower than the global minimum, the node that contains the optimal solution(s) can be mistakenly fathomed.

Generally, exact methods guarantee to find the real optimum of the problem, however, the computation cost increases prohibitively when the combinatorial space is large.

STATE OF ART

Approximate Methods (A)

On the other hand, approximate methods are stochastic in nature with a probabilistic transition rules, these techniques were basically developed to overcome the shortcomings of exact methods, as they can solve complex optimization problems resulting a good quality solutions in a relatively short time. However, they cannot guarantee to find an optimum solution nor a local optimal one. Approximate methods could be generally heuristics or metaheuristics as shown in Figure 2.3. Metaheuristics represent a family of approximate optimization techniques that gained a lot of popularity in the past two decades. They are among the most promising and successful techniques. Metaheuristics provide "acceptable" solutions in a reasonable time for solving hard and complex problems in science and engineering. This explains the significant growth of interest in metaheuristic domain. Unlike exact optimization algorithms, metaheuristics do not guarantee the optimality of the obtained solutions. They do not define how close are the obtained solutions from the optimal ones. Metaheuristics could be classified into: (A2.1) single-solution based algorithms (e.g., local search, simulated annealing) manipulate and transform a single solution during the search; (A2.2) population-based algorithms (e.g., particle swarm, evolutionary algorithms) a whole population of solutions is evolved. Population-based metaheuristics are exploration oriented; they allow a better diversification in the whole search space, moreover, they are more suited to multi-objective applications [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF].

Problems Characteristics (P)

In another manner, optimization methods are classified based on the problem type, mainly combinatorial or continuous problems, constrained or unconstrained, linear or non-linear and mono
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or multi-objective. Figure 2.4 shows the taxonomy of optimization problems based on their characteristics. Optimization problems could be classified into two categories: mono-objective having one objective function and multi-objective that have more than one contradictive objective function simultaneously that have a set of solutions called Pareto Front. Many practically important problems can be described by a multi-criteria optimization problem [Ehrgott et al., 2002]. Optimization problems could be subjected to some constraints. A problem is said to be non-linear (or non-convex) if one of the objective(s) or constraints functions is non-linear (non-convex). Combinatorial optimization is a field extensively studied by many researchers [START_REF] Ehrgott | A survey and annotated bibliography of multiobjective combinatorial optimization[END_REF] which consists in solving optimization problems with only discrete variables.

Due to its potential for application in real world problems, it has prospered over the last few decades. Combinatorial optimization problems (P3.2) are characterized by a finite set of possible solutions. Such problems occur in almost all fields of management as well as in many engineering

STATE OF ART

disciplines [START_REF] Socha | Ant Colony Optimisation for Continuous and Mixed-Variable Domains[END_REF]. The combinatorial optimization model's adaptability arises from the fact that many practical problems include indivisible activity and resources, such as machinery, airplanes, and people. Furthermore, many problems have a finite number of possible options and, as a result, can be stated as combinatorial optimization problems. It can be challenging to solve combinatorial optimization problems. The difficulty derives from the fact that, unlike linear programming, which has a convex feasible region, combinatorial problems require the search of a lattice of feasible solutions. Unlike linear programming, where we can take advantage of the fact that any locally optimal solution is a global optimum due to the problem's convexity, combinatorial optimization problems have many local optima, and finding a global optimum to the problem necessitates enumerating all feasible solutions. The only way to solve this kind of problems exactly is by enumerating all possible solutions (E2) which is among the bounds of possibility for large combinatorial space problems. Hence, here is the mean of interest in approximate methods (A).

The main difference between the combinatorial and continuous optimization problems (P3.1), is the fact that the search space is not finite. Each of the continuous decision variables may assume an infinite number of values. Of course, solving such problems using computers imposes certain limitations, as computers-being digital in nature-can only represent a finite number of values.

One could think that this reduces the problem to a combinatorial optimization one. This is however not really the case. In the case of combinatorial optimization, the set of available values is predefined before starting the optimization. The size of this set has a significant influence on the difficulty of finding an optimal or near-optimal solution. The area of applications for continuous optimization is very wide. Many real-world problems and processes may be presented in the form of a continuous optimization problem. If the optimality can not be proved by calculusbased derivative approaches, exact methods solve this type of problems iteratively using an iterative step in the search space. The quality of the solution is highly influenced by the size of this step which is a major concern in such methods.

Discrete decisions and non-linear system dynamics affect the quality of the final design or plan in many optimal decision problems in scientific, engineering, and public sector applications.

Mixed-integer difficulties arise as a result of these decision problems. (P3.3) that are hence a combination of combinatorial and continuous optimization problems. They are particularly difficult to tackle, as they pose both type of difficulties-those of combinatorial problems (e.g., the necessity to check essentially all the solutions to be certain that the optimal one has been found), and those of continuous problems (e.g., the fact that the search space is infinite and may be unbounded). For this reason, there are not many dedicated algorithms to tackle mixedvariable problems directly.

Applications of mixed-variable optimization problems concern mostly mechanical applications. Many industrial process and design problems contain parameters of which some are dis-
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crete and some continuous. Popular examples include the truss design problem, the coil spring design problem, designing a pressure vessel, welded beam design, or design of thermal insulation systems [START_REF] Socha | Ant Colony Optimisation for Continuous and Mixed-Variable Domains[END_REF]. 2.1.1.4.1 Scalarization Scalarization of a given multi-objective problem (P1.2) means converting that problem into an optimization problem (or a family of problems) with a monoobjective function (P1.1) to be minimized. This fact is reflected in the usual mathematical modeling of an optimization problem as a scalar optimization problem, that is, a minimization of a function over a set specified by some constraints, where the function and/or part of the constraints are derived from the conflicting goals (see Section 2.2.1.1).

Relaxation

Most of the approaches that are in use to solve mixed variables problems relax some of the constraints of the problem and then try to solve the transformed problem with the hope that the solution obtained may be easily repaired to become a good solution to the original problem. The most popular approach is to relax the requirement for the discrete 2. STATE OF ART variables. They are replaced by continuous variables and the problem is solved as a continuous optimization problem, but taking into account during the objective function evaluation only the allowed values for the discrete variables. This type of approach is often called continuous relaxation approach. The relaxation is particularly easy if the discrete variables are numerical, or at least if a certain order among them may be established.

Scope

In the context of optimization in mechanical engineering and more precisely in the context of the design of mechanical systems, possibly including the problems of optimization of mechanical processes, it should be noted that:

• The design problem contains integer variables (P3.3) that can refer either to a number of components or to an input number in a data table, allowing manipulation of "catalogs" of mechanical components. So it is sometimes impossible to "relax" the integer variables by considering them as continuous.

• These problems generally involve multi optimization criteria (P1.2) (often 2 or 3 and rarely more), because these criteria -that decision maker seeks to minimize -are related to the performance of the system as, for example, the mass, the rigidity, the cost (when it can be realistically estimated) or etc. Physical models for expressing, mechanical strength, durability, reliability, etc. are normally used to express the constrained functions of the optimization problem (hence P2.2). In this context, the objectives and constraints functions are usually non-linear (P4.2) and not necessary convex (sometimes P4.2.2). Hence, the resulting problem is a Multi-Objective Mixed-Integer Non-Linear Programming (MO-MINLP) problem. For some examples and an explanation of how to formulate an optimization problem from an optimization problem, see [START_REF] Pomrehn | Discrete Optimal Design Formulations With Application to Gear Train Design[END_REF] and [START_REF] Simpson | Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop[END_REF]. For more examples about these problems, see [START_REF] Messac | Optimization in practice with MATLAB for engineering students and professionals[END_REF] or [START_REF] Deb | Multi-Objective Optimization using Evolutionary Algorithms[END_REF].

• Another particularity to this type of optimization problems is that they have at least a midsized combinatorial space (couple of integer variables accepting less than a hundred values).

Therefore, the exact solution can not be computed using a simple explicit enumeration procedure.

Mixed variables problems require choosing values for discrete and continuous variables. Some of them may be easily transformed into continuous optimization problems (this is often the approach used to solve them). Some may not be easily transformed in such a way. This is due to the fact that there is no obvious ordering that may be imposed on the categorical variables.

Exact Methods for MO-MINLPs

Certainly, relaxation of the mixed-variable problem to a continuous problem is not the only possible approach, and there exist also methods performing full mixed-variable optimization. Such methods are referred to as Mixed-Integer Non-Linear Programming (MINLP) native methods.

To demonstrate the need to have a native MINLP optimization method for solving engineering design problems, let us consider a simple cantilever beam design problem. A cantilever beam is a beam that is rigidly supported at one end and carries a certain load on the other end. In trying to design such a beam designers face a number of possibilities. For simplicity the beam can be assumed to have a circular cross-section or a square cross-section. Thus the shape of the beam constitute a binary zero/one design variable. Once the shape is determined the next choice is the size of the shape. If the chosen shape is circular the diameter of the cross-section is a variable. However, if the chosen shape is a square the side of the square cross-section is a design variable. Since circular or square cross-sections are not available in any arbitrary sizes this variable is a discrete variable taking a few permissible values. The length of the beam could be another design variable. Since the beam can be cut to a large precision, we may consider this variable as a continuous variable taking any positive real value. These three design variables fix the size and shape of the beam to their permissible values. Another variable which is very difficult to include in any traditional optimization method is the material of the beam. This variable is again a discrete variable taking only a few chosen materials. One distinct difference between this variable and the second discrete variable representing the size of the cross-section is that no value other than the permissible values of this variable is strictly allowed during the optimization process. For example, if the material variable is represented as steel or cast iron, then no other intermediate value is allowed. Ideally a designer is interested in an optimization algorithm which has the flexibility to handle such a mixed type of variables.

In this chapter we intend to give an overview over the literature in the field of MO-MINLP optimization methods. First, the exact methods are reviewed showing how the exact multiobjective methods converts MO-MINLP to a mono-objective MINLP. Hence, we extend the survey of the literature to cover the mono-objective methods for the newcomers to this area showing the general concepts for solving such problems. Then, the approximate methods are generally reviewed focusing on multi-objective evolutionary algorithms. Finally, different approaches of hybrid methods are presented.

Exact Methods for MO-MINLPs

The main concept of a multi-objective exact method is to convert the multi-objective problem to a mono-objective one. Each method has its own mechanism to make this conversion. In this section, we show the different types of these mechanisms. Since the problem is converted to a 2. STATE OF ART mono-objective one, we generally address the mono-objective methods from literature showing how these problems are solved.

Multi-Objective

The main methodologies for the exact solution of multi-objective (P1.2) non-linear (P4.2) problems with mixed-integer variables (P3.3) are the scalarization methods (T1) and multi-criteria branch and bound (E2.1) [START_REF] Przybylski | Multi-objective branch and bound[END_REF].

Scalarization Methods (T1)

The most commonly used technique to find efficient solutions -employed in most exact methods and many heuristic techniques -is scalarization [Ehrgott et al., 2002]. Scalarization methods are not dedicated to MO-MINLPs only, in fact they are general techniques that transform the multi-objective problem to a single objective one. [START_REF] Burachik | Algorithms for Generating Pareto Fronts of Multi-objective Integer and Mixed-Integer Programming Problems[END_REF] have mentioned five scalarization methods that are namely used to solve MO-MINLP problems. In particular, they transform MO-MINLP into a scalarized MINLP. The scalarized problem is a single objective problem related to MO-MINLP with additional variables and/or parameters, that is usually solved repeatedly in order to find some subset of efficient solutions of MO-MINLP. In this section we summarize some of the common scalarization techniques that have been proposed in the literature.

The weighted sum method

The scalarization of the weighted sum method is a convex combination of the p objectives of MO-MINLP, where the feasible set is unchanged:

min x∈X p ∑︂ k=1 w k f k (x), (2.1)
where w k is the weight of each objective function f k (x). The most important positive property of the weighted sum method is that it has the same computational complexity and needs the same computational effort to solve as the single objective version of MO-MINLP [START_REF] Ehrgott | A discussion of scalarization techniques for multiple objective integer programming[END_REF].

2.2.1.1.2

The ϵ-constraint method The contender for most popular method to find all efficient solutions is the ϵ-constraint method. In the ϵ-constraint method, one of the p objectives (say the j -th) is retained for minimization and the other p -1 are turned into constraints:

minimize x ∈ X f j (x) subject to f k ≤ ϵ k , k ̸ = j.
(2.2)

All efficient solutions can be found by appropriately specifying the right hand side values. However, the computational effort is strongly problem dependent [START_REF] Ehrgott | A discussion of scalarization techniques for multiple objective integer programming[END_REF]. Serafini [1984] and is also referred to as the goal-attainment method. Given a fixed w ∈ W , the Pascoletti-Serafini (PS) scalarization is posed as the following problem.

minimize (α, x) ∈ R × X α subject to w i (f i (x) -u i ) ≤ α,∀i = 1, . . . , l, i (2.3) 
where α ∈ R is a new variable and u = (u 1 , . . . , u l ) is a utopia vector. By varying the parameters of the scalar problem, it is possible to find all vector optima from the scalar ones.

2.2.1.2 Multi-Criteria Branch and Bound (E2.1)

Although the branch and bound was first suggested in (1960) [START_REF] Land | An Automatic Method of Solving Discrete Programming Problems[END_REF], the first complete algorithm introduced as a multi-objective branch and bound, that was identified in [START_REF] Przybylski | Multi-objective branch and bound[END_REF], was proposed in (1983) [START_REF] Kiziltan | An Algorithm for Multiobjective Zero-One Linear Programming[END_REF]]. The first branch-and-bound algorithm for multi-objective mixed binary linear problems MO-MILP was proposed later in (1998) [START_REF] Mavrotas | A branch and bound algorithm for mixed zeroone multiple objective linear programming[END_REF]]. Multi-Criteria Branch and Bound (MCBB) proposed in [START_REF] Mavrotas | A branch and bound algorithm for mixed zeroone multiple objective linear programming[END_REF]] is a vector optimization approach capable of producing all the efficient extreme solutions of Mixed 0-1 multi-objective linear problems. For this purpose, the conventional branch and bound algorithm was properly modified, to find all the non-dominated solutions of multiple objective problems, after the exhaustive examination of all possible combinations of the binary variables.

MCBB was successfully implemented to solve mixed integer linear problems in Engineering,

Operational Research [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF] and Chemical [START_REF] Boix | Multiobjective optimization of industrial water networks with contaminants[END_REF] fields.

Moreover, MCBB was used to develop a heuristic method to solve convex MO-MINLP (E2.1 + A1 to solve P1.2+P3.3+P4.2.1) in [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF]. Later in [START_REF] De Santis | Solving Multiobjective Mixed Integer Convex Optimization Problems[END_REF], the authors proposed the first deterministic MCBB based method to solve convex MINLPs.

Branching

Branching is a separation procedure that splits a problem domain into subsets while ensuring that the union of the subsets remains equal to the complete set. Any branching strategy acts on the integer variables bounds, thus, two types of sub-spaces of combinations might result:

• Those for which all integer variables are fixed, thus a leaf is obtained, so it is associated with a problem of the type multi-objective continuous problems.

• Those for which contain free integer variables are associated with a problem of the type mono-objective mixed-integer problems to obtain their bounds.

2. STATE OF ART 2.2.1.2.2 Bounding and fathoming Bounding (solving) a node means to evaluate its the upper and lower bounds. For a single-objective optimization problem, there is at most one optimal value and the definition of upper and lower bound on this value is therefore natural. For a multi-objective optimization problem, upper bounds are considered on the set of non-dominated points. A well-known lower bound is the ideal point of the Pareto front. Integer relaxation is also popular technique to obtain the lower bound. In MCBB, the node is repeatedly solved for each objective function independently. Hence, a mono-objective solver is called repeatedly to obtain an optimal solution for each objective function.

Fathoming is extended in MCBB to deal with multiple objectives: a node can be fathomed if its lower bound vector is dominated by (at least) one of the non-dominated points of the current incumbent set, or if the node is infeasible.

Discussion

In MCBB, there are several components which are left unspecified, but which can have significant impacts on the performance of the algorithm [START_REF] Morrison | Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[END_REF]. These components are illustrated in Figure 2.6: the separation order (i.e., the order of integer variables to be branched in which subproblems in the tree are explored), the branching strategy (i.e., how the solution space is partitioned to produce new subproblems in the tree), active node selection strategy such as "deep first" or "breadth first" methods, and fathoming rules (i.e., rules that prevent exploration of suboptimal regions of the tree). [START_REF] Belotti | Branching and bounds tighteningtechniques for non-convex MINLP[END_REF]; [START_REF] Przybylski | Multi-objective branch and bound[END_REF] discuss the impact of "separation order" and "choosing the active node" on the performance of MCBB. Moreover, the authors review the existing strategies and differences between them. [START_REF] Przybylski | Multi-objective branch and bound[END_REF] and [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF] review distinct pruning rules used in MCBB. [START_REF] Morrison | Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[END_REF] mention two general frameworks of "branching strategies", however, these frameworks are dedicated for the single objective branch and bound. To the best of our knowledge, there is a lack in the literature concerning the branching strategies for MCBB. 

Mono-Objective MINLP

Convex Problems (P4.2.1)

Convex MINLP is often considered as a "difficult" class of optimization problems. However, tremendous progress has been made in the field over the last two decades, and there are now numerous good MINLP solvers available [START_REF] Kronqvist | A review and comparison of solvers for convex MINLP[END_REF]. This section aims to provide an overview of the most widely used deterministic solvers for convex MINLP problems. This summary is not meant to be a comprehensive examination of the algorithms, but rather to highlight the distinctions between the solvers.

2.2.2.1.1 Extended Cutting Plane (E1.1 + T3 + T4) MILP cutting plane methods solve a non-integer linear problem, which is the linear relaxation of the given integer program.

Under modest assumptions (assuming the linear program has an optimal solution and the feasible region does not contain a line), the theory of Linear Programming (LP) states that an optimal extreme point or corner point can always be found. The optimum is checked to see if it is an integer solution. If it isn't, there will always be a linear inequality separating the optimum from the true feasible set's convex hull. The separation problem is finding such an inequality, and such an inequality is a cut. To the relaxed linear program, a cut can be added. The relaxation is then no longer possible with the current non-integer answer. This procedure is done until the best integer solution is discovered. The extended cutting plane (ECP) algorithm was first presented by [START_REF] Westerlund | An extended cutting plane method for solving convex MINLP problems[END_REF]. In its original form the ECP method is intended for convex MINLP problems by linearizing the nonlinear constraints to construct an iteratively improving polyhedral approximation constructed by the first-order Taylor series expansions.
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2.2.2.1.2 Extended supporting hyperplane (E1.1 + T3 + T4) The extended supporting hyperplane (ESH) algorithm was presented by [START_REF] Kronqvist | The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming[END_REF] as an algorithm for solving convex MINLP problems. The ESH method obtains trial solutions using the same technique as the ECP algorithm, but generates the polyhedral approximation using a different technique. ESH obtains supporting hyperplanes by using a one dimensional root search (see [START_REF] Kronqvist | A review and comparison of solvers for convex MINLP[END_REF]) with LP relaxation as a preprocessing step.

2.2.2.1.3

Outer approximation (E1.1 + E2.1 + T3 + T4) The outer approximation (OA) method was first presented by [START_REF] Duran | An outer-approximation algorithm for a class of mixed-integer nonlinear programs[END_REF], with additional properties for convex MINLP problems described in [START_REF] Fletcher | Solving mixed integer nonlinear programs by outer approximation[END_REF]. To handle non-convex problems more efficiently, some changes to the OA approach have been presented. OA is a decomposition approach that solves a series of mixed-integer linear programming (MOLP) and nonlinear programming (NLP) subproblems to find the optimal solution to the original problem.

OA, like ECP and ESH, builds a polyhedral outer approximation of the nonlinear feasible region that improves iteratively. OA, on the other hand, simply uses the polyhedral approximation to choose integer combinations, while the continuous variables are chosen by solving a convex NLP subproblem. The polyhedral outer approximation is utilized to construct the problem in each iteration, resulting in a new integer combination. After obtaining the integer combination, the problem is solved as NLP. If the problem (NLP-fixed) is feasible, the solution yields a valid upper bound, which is then used to improve the polyhedral approximation. The polyhedral outer approximation is updated by either linearizing all constraints or only the active constraints.

Solver enhancement techniques

Most solvers don't use a single approach to increase their performance; instead, they mix various techniques. In this section, we briefly describe several pre-processing approaches and fundamental heuristics that can be used in conjunction with the other methods to increase practical performance. Pre-processing entails a variety of strategies for transforming the problem into a format that is more suitable to the solver. The pre-processing procedures can result in tighter relaxations or reduce the problem size. [START_REF] Belotti | Mixed-integer nonlinear optimization[END_REF] classified MINLP pre-solving techniques into two major categories: housekeeping and reformulations.Reformulations can include strategies such as improving coefficients in constraints and disaggregation of constraints, while housekeeping can include approaches such as bound tightening and removal of unnecessary constraints. Primal heuristics, on the other hand, is a general term for algorithms and techniques that aim to find good feasible solutions with minimal computational work when compared to solving the original problem. Primal heuristics were first used in the field of MILP, with [START_REF] Fischetti | Heuristics in Mixed Integer Programming[END_REF] claiming that primal heuristics were one of the most significant improvements in MILP solvers in the recent decade. In recent years, there has been a surge of interest in primal heuristics for MINLP problems, with several 2.2 Exact Methods for MO-MINLPs algorithms suggested. Such algorithms can be found in [START_REF] Kronqvist | A review and comparison of solvers for convex MINLP[END_REF], e.g. undercover [START_REF] Berthold | Undercover: a primal MINLP heuristic exploring a largest sub-MIP[END_REF], feasibility pumps [START_REF] Bonami | A Feasibility Pump for mixed integer nonlinear programs[END_REF], rounding heuristics [START_REF] Berthold | RENS[END_REF], and etc.

2.2.2.2 Non-Convex Problems (P4.2.2)
Several simple non-convex MINLP examples are known to be not just NP-hard, but also undecidable, such as the situation where all functions are quadratic, all variables are integer bound, and the number of variables is fixed. [START_REF] Burer | Non-convex mixed-integer nonlinear programming: A survey[END_REF]. All of the proofs that non-convex MINLPs can be undecidable, it turns out, involve cases with an unbounded feasible domain.

Fortunately, the feasible domain is typically bounded, either explicitly or implicitly, in practice.

Nonetheless, some relatively small non-convex MINLPs, with only a few tens of variables, can lead present approaches to run into serious difficulties. Many important practical problems are naturally modeled as non-convex MINLPs. Several methods were reviewed in [START_REF] Burer | Non-convex mixed-integer nonlinear programming: A survey[END_REF] among them are the following.

2.2.2.2.1 Spatial branch-and-bound (E2.1 + T3) Whether standard or spatial branching, it is commonly implemented recursively, resulting in a hierarchy of subproblems. These subproblems can be considered as being organized in a tree structure that can be searched in many ways, as the branch-and-bound method. A subproblem can be fathomed or pruned (removed from further consideration) if the associated lower bound is no better than the best upper bound found so far, (ii) it is infeasible, or (iii) it is feasible for the original problem and its cost under the relaxed objective equals its true cost (to within a specified tolerance). The fundamental difference between this strategy and the traditional branch and bound is the third condition. This general technique was first introduced in the context of global optimization issues by Mc-Cormick [1976]. Later, other authors realized that the method might be used to solve problems with integer variables as well..

Branch-and-reduce (E2.1 + T3)

The development of the branch-and-reduce technique by [START_REF] Ryoo | A branch-and-reduce approach to global optimization[END_REF] was a major step forward in the exact solution of nonconvex MINLPs. This is an upgraded variant of spatial branch-and-bound in which the domains of the variables are reduced in addition to the reductions that occur naturally as a result of branching. To be more explicit, the following two operations are added: (i) before solving a subproblem, its constraints are examined to see if the domain of any variables can be reduced without losing any feasible solutions; (ii) after solving the subproblem, sensitivity information is examined to see if the domain of any variables can be reduced without losing any optimal solutions. After performing domain reduction, better convex under-estimators can be generated.

As a result, the constraints can be tightened, resulting in better lower bounds. The overall result 2. STATE OF ART is typically a significant reduction in the size of the enumeration tree. Because of two crucial features, branch-and-reduce is commonly conducted using Linear Programming (LP) relaxations (continuous relaxation) rather than more complex convex programming relaxations. First, LPs can be solved more efficiently and with more numerical stability. Second, in the case of LPs, sensitivity information is more readily available (and easier to interpret).

2.2.2.2.3 α-branch-and-bound (E2.1 + T3) [START_REF] Androulakis | αBB: A global optimization method for general constrained nonconvex problems[END_REF] proposed an exact spatial branch-and-bound algorithm for global optimization of non-convex NLPs in which all functions involved are twice differentiable. This method, termed alpha-BB, is based on their generic under-estimator construction technique. In comparison to the more conventional spatial branch-and-bound technique, or even branch-and-reduce, one advantage of alpha-BB is that it usually requires no new variables. In other words, it's often possible to work with the original objective and constraint functions without resorting to factorization. This is due to the fact that the under-estimators utilized do not factor functions. However, rather of an LP solver, a generic convex programming solver is required to solve the relaxations.

Conversion to an MILP (T4)

Another technique is to factorize the problem, then approximate the resulting separable MINLP with a MILP and solve the resultant MILP with any available MILP solver. The conversion to a MILP results in sets of binary variables with a certain structure. These sets are referred to as special ordered sets of type 2 by [START_REF] Beale | Special facilities in a general mathematical progr[END_REF], and they suggest a specific branching algorithm. This branching rule is now used by the majority of commercial and academic MILP solvers.

Drawbacks and Conclusions

As a summary, mixed-variable optimization problems are particularly difficult to tackle, because they combine two type of difficulties. The first is that of combinatorial problems, where it is necessary to check all the solutions to be certain that the optimal one has been found. While the second difficulty is that of continuous problems where the search space is infinite and may be unbounded. Figure 2.7 shows the summary of this section. Exact methods can be categorized into mono-objective or multi-objective methods. Multi-objective methods are enumerative methods that convert the MO-MINLP problem to a single objective one. A method is said to be better when it guarantees to find the optimal solution avoiding enumeration of all the combinatorial space. Then, depending on the type of the problem, i.e. convex or non-convex, the monoobjective methods are classified and called to solve the revealed mono-objective problem(s).

The main drawback of MINLP exact methods is first that the computation cost increases prohibitively when the combinatorial space is large. Another aspect related to exact methods that solve MINLPs is that most of them relay on the concept of integer relaxation, which may be not desired in some cases. If the problem cannot be relaxed, the only way to solve it is by enumerating all possible combinations of the integer variables which may lead to the "combinatorial explosion" with the increase of the problem size, only the small combinatorial spaces could be solved by such an approach. Hence, although there exist exact methods for solving mixed-integer optimization problems, they have their disadvantages. They may not be always used either due to the problem
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formulation, or to the fact that they would need excessive time to solve the problems. This is why metaheuristics and other approximate methods are enjoying increasing attention.

Approximate Methods

Unlike exact methods, approximate methods allow to tackle large-size problem instances by delivering satisfactory solutions in a reasonable time. There is no guarantee to find global optimal solutions or even bounded solutions. Due to the computational complexity of hard combinatorial problems, especially in the presence of large scale problem instances, in the last decades there has been an extensive research effort devoted to the development of heuristic algorithms. There is no general framework behind the design of a good heuristic method that for any problem is guaranteed able to find good quality solution. The efficacy of a heuristic method is determined by its capacity to adapt to a specific realization, avoid entrapment at local optima, and exploit the problem's core structure. On the basis of these principles, numerous heuristic search approaches have been created, which have demonstrably enhanced the potential to obtain good solutions to challenging combinatorial optimization problems [START_REF] Festa | A brief introduction to exact, approximation, and heuristic algorithms for solving hard combinatorial optimization problems[END_REF].

Metaheuristics are a type of methods that are widely used to solve computationally hard combinatorial optimization problems. The phrase meta-heuristic is derived from two Greek words: meta and heuriskein. The suffix "meta" signifies "beyond," "on a higher level," and "heuriskein" means "to discover." Indeed, metaheuristics are a class of algorithms that attempt to combine basic heuristic methods in higher-level frameworks with the goal of rapidly investigating the set of feasible solutions to a given combinatorial problem. Metaheuristics have received more and more popularity in the past decades. Their use in many applications shows their efficiency and effectiveness to solve large and complex problems. Application of metaheuristics falls into a large number of areas [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF]. Metaheuristics are classified into population-based and singlesolution based algorithms in Figure 2.3, however, in fact, several classifications are proposed in literature as shown in Figure 2.8 by [START_REF] Dréo | Different classifications of metaheuristics[END_REF].

In designing a population-based metaheuristic (A2.2), two contradictory behavior must be taken into account: exploration of the search space (diversification) and exploitation of the best solutions found (intensification). Promising regions are determined by the obtained "good" solutions. In exploitation, the promising regions are explored more thoroughly in the hope to find better solutions. In exploration, non-explored regions must be visited to be sure that all regions of the search space are evenly explored and that the search is not confined to only a reduced number of regions. In this design space, the extreme search algorithms in terms of the exploration are random search. While, the exploitation is an iterative improvement local search.

In random search, at each iteration, one generates a random solution in the search space. No search memory is used. In the basic steepest local search algorithm, at each iteration one selects the best neighbor solution that improves the current solution [ Črepinšek et al., 2013].

Approximate Methods

Multi-Objective Metaheuristics

In addition to the common concepts of mono-objective metaheuristics, a multi-objective metaheuristic contains three main search components:

• Fitness assignment: The main role of this procedure is to guide the search algorithm toward Pareto optimal solutions for a better convergence. It assigns a scalar-valued fitness to a vector objective function.

• Diversity preserving: The emphasis here is to generate a diverse set of Pareto solutions in the objective and/or the decision space.

• Elitism: The preservation and use of elite solutions (e.g., Pareto optimal solutions) allows a robust, fast, and a monotonically improving performance of a metaheuristic.
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Fitness Assignment

For a given solution, a fitness assignment procedure maps a fitness vector to a single value. The fitness scalar value measures the quality of the solution. According to the fitness assignment strategy, multi-objective metaheuristics can be classified into four main categories:

• Scalar approaches: These approaches are similar to the exact scalarization methods discussed in Section 2.2.1.1, however, after transforming the multi-objective problem to a mono-objective one, the problem is solved using a metaheuristic method.

• Criterion-based approaches: In criterion-based approaches, the search is performed by treating the various non-commensurable objectives separately.

• Dominance-based approaches: The dominance-based approaches use the concept of dominance and Pareto optimality to guide the search process.

• Indicator-based approaches: In indicator-based approaches, the metaheuristics use performance quality indicators to drive the search toward the Pareto front.

Diversity

Diversity preserving is to generate a diverse set of Pareto solutions in the objective and/or the decision space. Population-based metaheuristics are reputed to be very sensitive to the choice of the initial population and the biased sampling during the search. Diversity loss is then observable in many of them. This phenomenon is called genetic drift in evolutionary algorithms. To face this drawback related to the stagnation of a population, diversity must be maintained in the population. Thus, diversity preservation strategies must be incorporated into multi-objective metaheuristics. In general, diversification methods deteriorate solutions that have a high density in their neighborhoods.

Elitism

In general terms, elitism consists in archiving the "best" solutions generated during the search (e.g., Pareto optimal solutions). A secondary population, named archive, is used to store these high-quality solutions. First, elitism has been used to prevent the loss of the obtained Pareto optimal solutions. In this passive elitism strategy, the archive is considered as a separate secondary population that has no impact on the search process. Elitism will only guarantee that an algorithm has a monotonically non-degrading performance in terms of the approximated Pareto front. Then, elitism has been used in the search process of multi-objective metaheuristics (active elitism), that is, the archived solutions are used to generate new solutions. Active elitism allows to achieve faster and robust convergence toward the Pareto front for a better approximation of
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the Pareto front [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF]. However, a care should be taken to be trapped by a premature convergence if a high-elitist pressure is applied to the generation of new solutions.

Evolutionary Algorithms

In the nineteenth century, J. Mendelwas the first to state the baselines of heredity from parents to off-springs. Then in 1859, C. Darwin presented the theory of evolution in his famous book On the Origin of Species [START_REF] Darwin | On the Origin of Species by Means of Natural Selection. Murray, London, or the Preservation of Favored Races in the Struggle for Life[END_REF]. In the 1980s, these theories of creation of new species and their evolution have inspired computer scientists in designing evolutionary algorithms. Different main schools of evolutionary algorithms have evolved independently during the past decades:

genetic algorithms (GA), mainly developed by Holland [START_REF] Holland | Genetic algorithms[END_REF]; evolution strategies; evolutionary programming; and genetic programming.

Evolutionary Algorithms (EAs) are stochastic population-based metaheuristics that have been successfully applied to many real and complex problems (epistatic, multi-modal, multiobjective, and highly constrained problems). They are the most studied population-based algorithms. Their success in solving difficult optimization problems in various domains (continuous or combinatorial optimization, system modeling and identification, planning and control, engineering design, data mining and machine learning, artificial life) has promoted the field known as evolutionary computation [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF].

EAs are based on the evolution of a population of individuals. Initially, this population is usually generated randomly. Every individual in the population is the encoded version of a tentative solution. An objective function associates a fitness value with every individual indicating its suitability to the problem. At each step, individuals are selected to form the parents, following the selection paradigm in which individuals with better fitness are selected with a higher probability.

Then, selected individuals are reproduced using variation operators (e.g., crossover, mutation) to generate new offsprings. Finally, a replacement scheme is applied to determine which individuals of the population will survive from the off-springs and the parents. This iteration represents a generation. This process is iterated until a stopping criteria hold.

Genetic Algorithm

The genetic algorithm -presented in Algorithm 1 -is the most popular evolutionary algorithm.

In this section we briefly describe the main mechanism of the genetic algorithm. Initially, an initial population is generated according to a heuristic rule or randomly. The population size typically depends on the nature of the optimization problem. Often, the initial population is generated in such a way as to allow a larger range of possible solutions inside the given search space. If the population size is too small, there is not enough evolution going on and consequently there is a risk of premature convergence towards a local optimum and ultimately extinction of 2. STATE OF ART the population. However, a larger population will require more computational time and fitness evaluations.

At each successive generation, a percentage of the existing population is 'selected' to breed a new generation, thus ensuring the continuity of the population. Hence, a selection function chooses 'parents' based on a fitness-based selection process, where 'fitter' solutions are more likely to be selected. An individual can be selected more than once, in which case it transfers its genes to more than one offspring.

At each generation, the GA uses the current generation to create the new offspring that will define the next generation. The Non-dominated Sorting Genetic Algorithm 2 (NSGAII) is criterion-based multi-objective genetic algorithm. [START_REF] Srinivas | Muiltiobjective optimization using nondominated sorting in genetic algorithms[END_REF] proposed NSGA in 1994 for multi-objective optimization.

NSGA is different from a single-objective GA in the way the fitness is assigned to individuals.
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In order to assign fitness, first the population is sorted according to their non-domination level.

Thereafter, all solutions of the better non-dominated fronts are assigned better fitness. In order to preserve diversity among solutions of any front, a niche-preservation technique (sharing function method) is used to degrade raw fitness of solutions which are crowded by other solutions of the same front. NSGA is shown to find a number of non-dominated solutions to a variety of test problems and engineering design problems. The population is sorted in NSGAII based on non-domination. To lower the computing complexity, a particular bookkeeping procedure is used. Each solution is given a fitness rating based on its non-dominance level. To generate a child population, binary tournament selection, recombination, and mutation operators are used.

The parent population is joined with the children population for each generation. This ensures elitism by allowing parent solutions to be compared to the child population. The population is then sorted according to non-domination. Following that, the solutions of the last accepted front are ranked using a crowded comparison criterion, and a fixed number of points is chosen.

Because the diversity of the solutions is crucial, the greater crowded distance is used to compare two solutions belonging to the same Pareto front (distance from a solution to the nearest neighbor). In this way, less dense portions of the search space are given more weight when determining which solutions to choose.

Drawbacks and Conclusions

In the context of mechanical engineering optimization, the literature does not provide clear conclusion on which metaheuristic has the best performance. [START_REF] Yildiz | A Comparative Study of Recent Nontraditional Methods for Mechanical Design Optimization[END_REF] concluded that the best metaheuristic is the moth-flame optimization (MFO) on a benchmark of 6 monoobjective mixed-integer engineering design problems. [START_REF] Abderazek | techniques GCR et NSCV respectivement avec une densité de ≈ 0.5. La technique NSCV démontre une fois de plus ses performances compétitives parmi les 5 techniques CHT basées sur le classement de l'état de l'art en termes de précision et de robustesse. 5 Applications : réducteur à engrenages à 3 étages 5.1 Introduction Dans Fauroux[END_REF] found that the best metaheuristic is the mixed differential evolution (NAMDE) on a benchmark of 13 mono-objective mixed-integer engineering design problems. [START_REF] Dhiman | EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization[END_REF] observed that EMoSOA -a new evolutionary multi-objective seagull optimization algorithm for global optimization -is the best performing algorithm on a benchmark of 4 multi-objective mixed-integer engineering design problems. [START_REF] Assiri | On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection[END_REF] concluded that the butter fly metaheuristic is the best on a benchmark of 4 mono-objective engineering design problems. [START_REF] Kaur | MOEPO: A novel Multi-objective Emperor Penguin Optimizer for global optimization: Special application in ranking of cloud service providers[END_REF] developed Emperor Penguin Optimizer (EPO) in terms of multi-objective problems solving capability, which is entitled as Multi-objective Emperor Penguin Optimizer (MOEPO). The authors observed that the outcomes from the empirical analyzes depict that the proposed algorithm is better than other existing algorithms on 7 multi-objective mixed-integer engineering problems. Therefore, it is not clear which is the metaheuristic that has the best performance on the mono-objective/multi-objective mixed-integer engineering problems.

As a matter of fact, [START_REF] Giagkiozis | An overview of population-based algorithms for multi-objective optimisation[END_REF] reviewed in their recent work, the ability of seven metaheuristics to handle mixed variables problems. A scale ranging from 1 to 5 was given to to
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measure the relative strengths and weaknesses of algorithm families for multi-objective problems with mixed variables. A value of 5 translates that this particular family of algorithms is very well suited for this type of problem, while a value of 1 means that the algorithm is poorly suited for this type of problems. The comparison showed that while six algorithms out of seven were able to handle mixed variables optimization, all of these six algorithms scored 1 in their suitability test. [START_REF] Socha | Ant Colony Optimisation for Continuous and Mixed-Variable Domains[END_REF] (4) Bat algorithm; and (5) firefly algorithm on three MO-MINLP engineering design problems.

By comparing the obtained solution from the five metaheuristics to the true Pareto front of each problem, the author concluded that "one can safely assume that the traditional metaheuristics were unable to solve the three optimization problem". Even in the case of best metaheuristic, which is NSGAII in this case, not all Pareto solutions were found by the metaheuristic. Even with the use of the best metaheuristic for the three optimization problems, the calculated Pareto front is still far from being a good solution. The low percentage of intersection of solutions between the true front and the calculated one for the three problems verifies this conclusion. Moreover, "traditional" metaheuristics are not able, by nature, to handle mixed variables constrained problems. Only some of them can be considered native methods as mentioned previously. Thus, the need for a better approach to solve this kind of problems is now a point of interest of many researchers. Recently a new line of research has been arising which is hybridization of distinct algorithms. In the next section, an overview of those hybrids is presented.

Hybrid Methods

In recent years, a large number of algorithms that do not strictly fit the paradigm of a single classic metaheuristic have been published. They, on the other hand, integrate a variety of algorithmic components, many of which are derived from algorithms developed in other fields of optimization research. Hybrid metaheuristics are a term used to describe these approaches [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF].

Hybrid Methods

Nowadays, the hybridization of metaheuristics has become a common strategy to solve optimization problems. The huge number of efficient hybrid metaheuristics proves that hybrid metaheuristics represent actually the most efficient algorithms for many classical and real-life difficult problems [START_REF] El Samrout | Hybridization of multicriteria metaheuristic optimization methods for mechanical problems[END_REF]. The major rationale for combining multiple algorithms is to take advantage of the complementary nature of diverse optimization strategies; hybrids are thought to gain from synergy. In fact, selecting the right mix of complementary algorithmic approaches can be the key to attaining top performance in various of difficult optimization problems. [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF]. [START_REF] Ehrgott | Hybrid Metaheuristics for Multi-objective Combinatorial Optimization[END_REF] review the literature concerning the hybrid methods for multi-objective optimization. [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF] review the single objective hybrids and their classifications. [START_REF] Puchinger | Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification[END_REF] discuss different approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems.

Hybrids Classifications

The first approach for hybridization was to consider the cooperation between metaheuristics and other metaheuristics. At first, it seemed like the only straightforward approach, and others ways to hybridize metaheuristics were neglected. It was not until researchers realized the complementary aspect between some exact methods and metaheuristics that this type of hybridization emerged [START_REF] El Samrout | Hybridization of multicriteria metaheuristic optimization methods for mechanical problems[END_REF]. In fact, exact methods are often used for combinatorial optimization problems with small instances. They are known for their capability to solve these small instances problems and asses their optimality. However, they are not used to solve large NP-hard problems because they are computationally expensive. Hence, in this section, hybrids are classified into two groups: hybridization of metaheuristics with metaheuristics and hybridization of approximate methods with exact methods. A special concern is considered for the multi-objective hybrids and their classifications.

Metaheuristics with Metaheuristics (A2+A2)

Most researchers started looking at possible combinations with heuristics or other metaheuristics when they first examined hybridizing their favored metaheuristic with another technique for optimization. In fact, hybridization of various metaheuristics is fairly common nowadays, particularly when it comes to the use of local search methods within population-based methods.

Nature-inspired methods, for example, are effective when it comes to exploring the search space and identifying areas with high-quality solutions. They usually try to acquire a global view of the search space during initialization. Then, as the search progresses, they narrow the search to more promising areas of the search space. However, they are usually not so effective concerning the exploitation of the accumulated search experience, that is, finding the best solutions in these high quality areas. The strength of local search, on the other hand, is its capacity to
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rapidly locate better solutions in the neighborhood of certain starting solutions. In conclusion, population-based methods are effective in identifying promising parts of the search space, from which local search methods can quickly select the best solutions. This is why hybridization of this type is usually quite effective. This type of hybridization is relatively common. Several classifications and groups can be found in literature. Interested readers can refer to [START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF][START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF][START_REF] Ehrgott | A survey and annotated bibliography of multiobjective combinatorial optimization[END_REF][START_REF] El Samrout | Hybridization of multicriteria metaheuristic optimization methods for mechanical problems[END_REF] 2.4.1.2 Exact with Approximate (E+A) [START_REF] Puchinger | Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification[END_REF] present a general classification of existing approaches combining exact and metaheuristic algorithms for combinatorial optimization. The authors distinguish the following two main categories:

• Collaborative Combinations: The algorithms share information but are not one and the same. Exact and heuristic algorithms can be run sequentially, in parallel, or in combination.

• Integrative Combinations: A subordinate embedded component of one technique is a subordinate embedded component of another approach. As a result, there is an unique master algorithm and at least one integrated slave, which can be either an exact or a metaheuristic algorithm.

Collaborative Combinations

They are top-level hybrids of metaheuristics and exact approaches in which the algorithms share information but are not part of each other. They are distinguished by the manner in which they are executed out, i.e. sequential or parallel.

In sequential methods, either the exact method is executed as a kind of pre-processing before the metaheuristic, or vice-versa. Instead of a strictly sequential batch approach, exact and heuristic algorithms may also be executed in a parallel. This type of hybrids is less frequent. An illustrative example on this type of hybrids is the asynchronous teams (A-Teams) introduced by [START_REF] Talukdar | Asynchronous Teams: Cooperation Schemes for Autonomous Agents[END_REF]]. An A-Team is a problem solving architecture in which the optimization algorithms are connected into a cyclic directed network. The basic idea of A-Teams is having these algorithms work asynchronously on shared memories that contain the trial solutions of the problem. Hence, each algorithm can add, delete or alter a solution in the memory.

Integrative Combinations They integrate exact algorithms and metaheuristics

in such a way that one technique is a subordinate embedded component of another. Exact algorithms could be integrated with metaheuristics in ways such as using exact algorithms to search neighborhoods in local search-based metaheuristics, or enhancing metaheuristics with information gained from the exact solution of the relaxed problem, or even using exact algorithms as 2.4 Hybrid Methods metaheuristic decoders (as GA). On the other side, metaheuristics/heuristics could be incorporated with exact algorithm. The most popular approach is combining approximate methods with tree search algorithms (as branch and bound) in which the tree search technique explores the domain while heuristics and metaheuristics are used to determine the bounds and the optimal solutions.

Multi-objective Hybrids

While the previous sections may contain some mono-objective optimization hybrids, this section is dedicated to focus on the hybridization in multi-objective optimization. An "obvious" preliminary observation is that a lot of hybrid metaheuristics in this field were based on the cooperation between trajectory-based (or single solution based) metaheuristics and population based metaheuristics. The cooperation between these two different approaches for multi-objective optimization is justified by the fact that these two approaches are complementary to each other.

Trajectory-based metaheuristics are well known for their capacity to intensify the search; they are able to converge aggressively towards good solutions, but they need to be guided along the non-dominated frontier. On the other hand, population-based approaches are good explorers of the search space; they are very well suited to maintain a diversified population of solutions along the non-dominated frontier, but often converge too slowly to the non-dominated frontier.

Naturally, methods that try to take advantage of these features by combining components from both approaches, represent often a good trade. [START_REF] Ehrgott | Hybrid Metaheuristics for Multi-objective Combinatorial Optimization[END_REF] classify the multi-objective metaheuristics-metaheuristics hybrids based on the aim of hybridization, as follows:

• Hybridization to make a method more aggressive: the aim is to enhance the search aggressiveness of the approximation procedure. A clear example is to use multi-objective EA that drives the search procedure, and then activates a neighbor search algorithm, with the aim to improve as far as possible the promising solutions resulting from the evolutionary operators.

• Hybridization to drive a method: the aim is to provide guiding mechanism along the nondominated frontier. Where global information about the current approximation is deduced from population-based metaheuristics (such as multi-objective GA) and then drives the local search processes in order to "guarantee" a good coverage of the non-dominated frontier.

• Hybridization for exploring complementary strengths: the idea is to use the complementary forces of the metaheuristics. The aim to take the advantage of, for example, a GA algorithm for building a set of good solutions in a first step followed by an aggressive search method (e.g., Tabu-search) in a second step.
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El Samrout [2019] classifies the multi-objective metaheuristics-exact hybrids based on the concept of the algorithm, as follows:

• Metaheuristic to generate an upper bound: At first the multi objective metaheuristic is executed to get a Pareto set approximation. This approximation is used to initialize the multi-objective exact algorithm. Hence, many nodes of the search tree can be pruned by the branch and bound algorithm.

• Exact algorithm to solve subproblems: In this hybrid approach, the exact multi-objective algorithm solve subproblems that are generated by the multi-objective metaheuristic.

In this context, several trials of combination between metaheuristics and machine learning are proposed, however, these approaches are out of the thesis scope. Interested readers can refer to [START_REF] El Samrout | Hybridization of multicriteria metaheuristic optimization methods for mechanical problems[END_REF]].

Combining Approximate Methods with Tree Search (A + E2.1)

The hybridization of metaheuristics/heuristics with tree search techniques is probably one of the most popular lines of combining different algorithms for optimization. One of the basic ingredients of an optimization technique is a mechanism for exploring the search space, that is, the space of valid solutions to the considered optimization problem. The hybridization of metaheuristics with branch and bound concepts is rather recent [START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF]. On one side, it is possible to use branch and bound concepts within metaheuristics in order to increase the efficiency of the metaheuristics search process. On the other side, metaheuristics can be used within branch and bound in order to reduce the space and time consumption of branch and bound. Ideally, such hybrids are expected to obtain higher quality solution(s) than that obtained by metaheuristics with less effort than that consumed by branch and bound as illustrated in Figure 2.9.

Combining mono-objective branch and bound with metaheuristics (A2+E2.1)

In [START_REF] Nagar | A combined branch-and-bound and genetic algorithm based approach for a flowshop scheduling problem[END_REF], one of the first works on the combination of branch and bound with an evolutionary algorithm. The first stage of the algorithm, branch and bound is executed up to a fixed tree level k. Lower bounds evaluated using a heuristic method. The second stage consists in the execution of the evolutionary algorithm on the active nodes. In [START_REF] Cotta | Embedding Branch and Bound within Evolutionary Algorithms[END_REF], a framework which is based on using branch and bound as an operator embedded in the evolutionary algorithm. The resulting hybrid operator will explore the possible children of the solutions being recombined, providing the best combination of them that can be constructed without introducing implicit mutation. In [START_REF] Woodruff | A Chunking Based Selection Strategy for Integrating Meta-Heuristics with Branch and Bound[END_REF], a chunking based strategy to decide at each node of the branch and bound tree whether or not a metaheuristic is called in order to eventually find a better incumbent solution. In [START_REF] Jozefowiez | The bi-objective covering tour problem[END_REF], NSGAII generates potentially Pareto optimal solutions, which are used to build subproblems; these subproblems are then solved using the branch-and-cut algorithm. In [START_REF] Puchinger | Solving a Real-World Glass Cutting Problem[END_REF] the evolutionary algorithm is based on an order representation, specific recombination and mutation operators, and a decoding heuristic. In one variant, branch-and-bound is occasionally applied to locally optimize parts of a solution during decoding. In [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF], only the remaining ("free") variables are optimized by the MIP-solver, with an appropriate part of the decision variables set to their values in an incumbent solution. If the MIP-solver discovers a better solution, it replaces the incumbent. Then, a new neighborhood is defined around it, and the process is repeated. In [START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF], The branch and bound concepts are used to improve the efficiency of the ant colony optimization solution development process. In [START_REF] Backer | Solving Vehicle Routing Problems Using Constraint Programming and Metaheuristics[END_REF], The authors only utilize the constraint programming system to assess the validity of solutions and identify the values of constrained variables, not to search for solutions, as it employs the depth-first branch and bound technique. Extensive literature reviews on this topic is available in [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF][START_REF] Ehrgott | Hybrid Metaheuristics for Multi-objective Combinatorial Optimization[END_REF][START_REF] Puchinger | Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification[END_REF].

Combining multi-objective branch and bound with heuristics (A1 + E2.1)

In the other hand researchers had done several trials of implementation of MCBB based on heuristic methods. In [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF] the author propose a heuristic based on a branch-and-bound algorithm. It starts with a set of feasible points, obtained, at the root node of the enumeration tree, by iteratively solving, with an ϵ-constraint method, a single objective model that incorporates the other objective functions as constraints. Lower bounds are derived by optimally solving Non-Linear Programming problems (NLPs). Each leaf node of the enumeration tree corresponds to a convex multi-objective NLP, which is solved heuristically by varying the
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weights in a weighted sum approach. In [START_REF] Florios | Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms[END_REF], the authors use exact as well as approximate algorithms. The exact algorithm is a properly modified version of the multi-criteria branch and bound (MCBB) algorithm, which is further customized by suitable heuristics. Three branching heuristics and a more general purpose composite branching and construction heuristic are devised. In [START_REF] Wang | A heuristic method for two-stage hybrid flow shop with dedicated machines[END_REF], the authors developed a heuristic method based on a branch and bound structure. Several lower bounds, upper bounds and dominance rules are combined in to the proposed heuristic method.

Discussion and Conclusion

The performance of metaheuristics on MINLP problems has been discussed in Section 2.3 concluding that the current performance is not sufficient for this type of problems. On the other hand, exact method are too expensive when they are applied to a large scale problems. Many researchers proposed to use hybrids of metaheuristics with mono-objective branch and bound to enhance the performance of metaheuristics. Others suggested using heuristics with multi criteria branch-and-bound. However, to the best of our knowledge, the lack of hybridization of multi-criteria branch and bound with metaheuristics in literature is noticed, in contrary to the mono-objective branch and bound as illustrated in Figure 2.10. This lack in literature may be due to the apprehension of high computational effort. Hence, any design of such hybrids must consider the "investment" in computational effort. In which, hybrids that combine MCBB with metaheuristic are expected to consume more effort than the metaheuristic it self. However, what if this investment in the computational effort is added to the metaheuristic itself (as increasing the maximum generations or population size in GA)? In fact, this is an open research question that should be considered when examining the performance of such hybrids. Moreover, [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF] have observed that the literature shows that a certain hybrid might work well for specific problems, but it might perform poorly for others. Nevertheless, there are hybridization types that have shown to be successful for many applications. They may serve as a guidance for new developments.

Conclusion and Propositions

Solving Multi-Objective Mixed Integer Non-Linear Programming (MO-MINLP) problems is a point of interest for many researchers as they appear in several real-world applications, especially in the mechanical engineering field. Many researchers have proposed using hybrids of metaheuristics with mono-objective branch and bound. Others have suggested using heuristics with Multi-Criteria Branch and Bound (MCBB). This thesis aims to enhance the solution of MO-MINLP problems by proposing a general hybrid approach. The proposed approach is based on (1) the exact enumeration of the combinatorial domain using the Multi-Criteria Branch and Bound

Conclusion and Propositions

Heuristics

Metaheuristics MCBB B & B * Lack in Literature
Research Gap * Single objective branch and bound [START_REF] Nagar | A combined branch-and-bound and genetic algorithm based approach for a flowshop scheduling problem[END_REF][START_REF] Woodruff | A Chunking Based Selection Strategy for Integrating Meta-Heuristics with Branch and Bound[END_REF][START_REF] Backer | Solving Vehicle Routing Problems Using Constraint Programming and Metaheuristics[END_REF][START_REF] Cotta | Embedding Branch and Bound within Evolutionary Algorithms[END_REF][START_REF] Puchinger | Solving a Real-World Glass Cutting Problem[END_REF][START_REF] Jozefowiez | The bi-objective covering tour problem[END_REF][START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF][START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF][START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF][START_REF] Florios | Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms[END_REF][START_REF] Wang | A heuristic method for two-stage hybrid flow shop with dedicated machines[END_REF] (MCBB) algorithm (E2.1); ( 2) seeking a good approximated optimality using -(A2.2) -the Nondominated Sorting Genetic Algorithm 2 (NSGAII). Our approach is referred to as BnB-NSGAII. Furthermore, a new feature is also proposed to enhance the performance of BnB-NSGAII, called the legacy feature. The legacy feature permits the inheritance of the elite individuals between the parents and their children nodes in the branch and bound tree.

A main component of any branch and bound algorithm is the branching strategy. Branching strategy is a crucial task that affects the performance of MCBB. This thesis intends to enhance 

Introduction

The general Multi-Objective MINLP problem ( P MO-MINLP ) is written as minimize

x, y F (x, y) = f 1 (x, y), . . . , f p (x, y) subject to

g l (x, y) ≤ 0, l = 1, ..., m x ∈ [x ¯, x], x ∈ R nc y ∈ {y ¯, ȳ}, y ∈ N ni (3.1)
where f and g are the objective and constraint real functions respectively that are not necessarily convex or differentiable, p and m are the number of objectives and constraints respectively. x and y denote the variables of the problem where n c and n i are the number of continuous and integer variables respectively.

The optimal solution of a multi-objective problem is a set of non-dominated solutions called Pareto front F * . Each non-dominated solution is called Pareto element. For a given F 1 = F (x 1 , y 1 ) and F 2 = F (x 2 , y 2 ) vector values of objective function for two given "points" solution in the feasible set, the dominance relation between them is defined by:

Definition 1 F 1 dominates F 2 , (F 1 ≺ F 2 )
, when no value of F 2 is less than F 1 and at least one value value of F 2 is strictly greater than F 1 [START_REF] Srinivas | Muiltiobjective optimization using nondominated sorting in genetic algorithms[END_REF].

∀ k ∈ {1, . . . , p} f 1 k ≤ f 2 k ; ∃ k * ∈ {1, . . . , p} : f 1 k * < f 2 k * . (3.2) 
Definition 2 An anchor point corresponds to the optimal value of one objective function in the feasible domain. Thus, p objective functions provide up to p anchor points.

Definition 3

The ideal point is a specific point in the objective space that corresponds to to the optimal value of all objectives simultaneously. 

P I i ∆ = min f k (x i , y i ); ∀ k = 1, . . . , p. (3.3 

MCBB

MCBB

The main concept of MCBB is to convert P MO-MINLP into several mono-objective Mixed-Integer Non-Linear Problems P MINLP and Multi-Objective continuous Non-Linear Problems P MO-NLP . This is achieved by constructing a combinatorial tree (Figure 3.1) that aim to partition the root node problem -P MO-MINLP -into a finite number of subproblems (nodes)

N 1 , . . . , N i , . . . , N n , i ∈ {1, . . . , n}, where n is the total number of nodes. The partitioning (branching) is done by modifying the upper (ȳ) and lower (y ¯) bounds of the integer variables y. Then each node is solved repeatedly for each objective function independently as P MINLP . Solving a node is to determine its lower and upper bounds. The upper bound of a node F * i is its Pareto front, which is then stored in an incumbent list F * that contains all the candidate solutions. Whilst the lower bound is the ideal point P I i of the current node. By solving N i , one of the following is revealed:

• N i is infeasible, means that the solver didn't find any solution that satisfies all constraints, i.e. the feasible domain is empty due to the modification of the upper and lower bounds of integer variables. Hence, N i is pruned (fathomed ) by infeasibility.

• N i is feasible, but, the current lower bound P I i is dominated by a previously found upper bound F * . Therefore, N i is fathomed by optimality.

• N i is feasible, and, P I i is not dominated by F * , P I i ≺ F * . F * is then updated by adding 

F * i to it. Hence, F * = ⋃︁ i F * i , ∀ F * i ≺ F * . P MO-MINLP y ∈ {y ¯, ȳ} P MINLP ((y ¯)1 , (ȳ) 1 ) P MINLP ((y ¯)2 , (ȳ) 2 ) P MINLP ((y ¯)5 , (ȳ) 5 ) P MINLP ((y ¯)6 , (ȳ) 6 ) P MO-NLP (ȳ 1 ) P MO-NLP (ȳ 2 ) P MO-NLP (ȳ 3 ) P MO-NLP (ȳ 4 ) P MINLP ((y ¯)3 , (ȳ) 3 ) P MINLP ((y ¯)4 , (ȳ) 4 )
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If the node is not fathomed, the combinatorial tree is farther branched by dividing N i into farther subproblems, called children nodes. If a node cannot be divided anymore, it is called a leaf node.

Leaves are solved as P MO-NLP , since all integer variables are fixed such that y i = ȳi = y ¯i, where ȳi and y ¯i are the upper and lower bounds of the integer variables for the current node i. Hence, P MO-NLP can be written as: minimize

x, ȳi

F (x, ȳi ) = f 1 (x, ȳi ), . . . , f p (x, ȳi ) subject to c l (x, ȳi ) ≥ 0, l = 1, ..., m x ∈ [x ¯, x], x ∈ R nc .
(3.4)

F * i of each leaf is then added to F * .
MCBB is converged when all the nodes are leaves or fathomed. The overall Pareto front is obtained by removing the dominated elements from F * . 

BnB-NSGAII

To determine a good approximated Pareto fronts, we propose a general hybrid approach based on an MCBB and NSGAII, in which to the best of our knowledge, this is the first attempt to combine MCBB with metaheuristics. The success of using metaheuristics with mono-objective branch and bound is the main motive to propose using them with the multi-criteria branch and bound. As mentioned in Chapter 2, NSGAII consists in exploration force and exploitation one. In our proposed algorithm, MCBB is used to enhance the exploration force of NSGAII by

BnB-NSGAII

investigating the mixed-integer domain space through branching it to subdomains, then NSGAII bounds each one. In this way, MCBB guides the search using the lower bounds obtained by NSGAII. We call this approach BnB-NSGAII.

P MO-MINLP is complex and expensive to solve. The general idea is thus to solve several simpler problems instead. A trivial approach is to enumerate all possible configurations of integer variables. Then for each combination, P MO-MINLP is converted into P MO-NLP . This technique is applicable when the number of configurations is relatively small, i.e the combinatorial space of the integer variables is small. The computation time increases prohibitively when the combinatorial space is large. The growth is exponential with respect to the number of integer variables. Instead, MCBB is used to divide P MO-MINLP by constructing a combinatorial tree that aim to partition the root node problem, P MO-MINLP , into a finite number of subproblems.

The main concept of MCBB is to solve each objective function in each node N i independently, i.e. MCBB converts P MO-MINLP to p mono-objective MINLP problem at each node N i . In contrary, BnB-NSGAII divides the domain of P MO-MINLP into smaller subdomains by constructing an exploratory tree shown in Figure 3.3 that aims to direct the exploitation force in NSGAII to potential elements of the solution that were out of its sight. Therefore, the main difference between MCBB and BnB-NSGAII is the aim of partitioning of the problem, although, both use the same partitioning principle. In fact the idea of BnB-NSGAII is inspired by El Samrout

[2019] who recommends to use a mono-objective metaheuristic to bound the nodes in MCBB and

Cacchiani & D'Ambrosio [2017] who proposes to use a multi-objective -weighted sum-method to bound the nodes of MCBB.

Parameters Tuning

In NSGAII, population size, number of generations, cross-over and mutation probabilities,...etc affect its performance. Tuning these parameters may result in a more desirable solution. In BnB-NSGAII, we propose three different tuning levels: root, node and leaf levels. This provides three levels of parameters tuning of NSGAII aiming for more adaptability to distinct problems.

Despite, similar to NSGAII, these parameters are highly problem dependent. Hence, a good parameter tuning depends on the expertise of the designer and his pre-knowledge about the problem being optimized.

Generally, in BnB-NSGAII, three different instances of NSGAII are called at different levels:

root, node and leaf levels. At the root level, NSAGII root is called to initially solve the problem P MO-MINLP obtaining the initial upper bound F * 0 . This is done in the initialization level illustrated in Figure 3.3. The quality of F * 0 has a huge effect on the convergence of the explanatory tree. Here, the term quality is defined by (1) the number of solutions obtained; (2) the distance between the obtained solution(s) and the global optimum one(s). In fact, these two quality indicators directly affects the fathoming potential of BnB-NSGAII in the following ways. As the number of solutions in F * 0 increases as the probability of fathoming the upcoming children nodes increases, especially the first generations. Since the ideal points of the children are compared to current upper bound. On the other side, the low distance between the solution(s) in F * 0 and the true Pareto aids BnB-NSGAII to eliminate the upcoming children nodes with low quality solutions resulting in reducing the size of the combinatorial tree. Therefore, it is important to obtain as best as possible F * 0 from NSGAII root . And since NSGAII root is called once during BnB-NSGAII process, it is recommended to invest as much as reasonable computational effort (i.e. population size and number of generations) at this level. Increasing the mutation rate -which affects the exploration force of NSGAII-might be beneficial here, since NSGAII is exploring the entire space. In fact, the best tuning parameters of NSGAII root are the ones that the decision maker could set if he attends to solve the problem by NSGAII itself.
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At the node level, BnB-NSGAII aims to explore the domain space, as shown in Figure 3.3, by solving the same P MO-MINLP but with smaller subspaces. Hence, in principle, NSGAII node may have the same parameters as NSGAII root except the computational effort parameters (i.e. population size and number of generations). These parameters may be tuned based on how much the decision maker intends to explore the space, regarding that NSGAII node is called frequently during BnB-NSGAII process. The exploration force of BnB-NSGAII is directly affected by the selected parameters at this level. At the leaf level, BnB-NSGAII ideally tries to capture the best Pareto solutions, hence, this is the exploitation level of BnB-NSGAII as shown in Figure 3.3.

At this level, NSGAII leaf is called to solve a different type of problem, in particular P MO-NLP.

BnB-NSGAII

Hence, the decision maker might choose entirely different parameters such as cross-over and mutations functions, variable-coding technique, constraint handling technique,.. etc. Moreover, the decision maker may consider to reduce the mutation rate, since the subproblem is relatively small which does not necessarily require considerable exploration effort. Instead, the exploitation force is more advantageous here. Hence, the decision maker may choose to increase the crossover rate or to invest more in the computational effort parameters depending on how much the accuracy is desirable.

BnB-NSGAII Algorithm

Algorithm 2 demonstrates the main loop of BnB-NSGAII showing the three tuning levels of BnB-NSGAII. At the root node, the incumbent list F * is initialized by adding the initial Pareto front F * 0 obtained via NSGAII root by solving the main P MO-MINLP problem. F * is then updated as NSGAII enumerates the combinatorial tree by adding the non-dominated solutions found in each children and leaf nodes. The node is said to be a leaf by examining its lower and upper bounds of its integer variables y i , if y ¯i = y ¯i, then it is a leaf, otherwise it is a node. Hence, by identification of the node type, the suitable NSGAII solver is called to obtain the upper bound

F * i of the node N i .
Then, the lower bound of the node P I i is deduced from F * i by applying Definition 3. If F * dominates (Definition 1) P I i or the node is infeasible, then N i is fathomed. Fathoming a subset consists in not exploring it because this one and therefore all the subsets included in it will not contain optimal Pareto front elements. A node can be fathomed if its lower bound vector is dominated by at least one of the non-dominated points of the incumbent set F * , i.e. P I i ≥ F * , or if the node is infeasible meaning that NSGAII fails to find at least one solution that satisfies all the constraints. If the node is not fathomed, then the incumbent list F * is updated by adding the obtained Pareto elements in F * i of the node N i . It should be noted here that the conventional MCBB updates the incumbent list by adding the anchor points of non-fathomed nodes. While BnB-NSGAII returns a set of Pareto solutions from each non-fathomed node. This increases the number of non-dominated solutions in F * that the lower bound of any child node will be compared with. Hence, BnB-NSGAII provides a higher fathoming potential which directly affects the convergence of MCBB. This is noticed in the results obtained from the work of [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF].

To this end, F * may contain some solutions that are dominated by F * i and vice-versa as shown in the illustrative example in Figure 3.4a. In this example, two different scenarios are illustrated. A is not dominated by any of the solutions in F * , F * 1 contains some Pareto elements that are clearly dominated by F * . Moreover, F * also contains some elements that are dominated by F * 1 . Hence, each time F * is updated, a Pareto filtering is done on it to ensure that all dominated elements are discarded from the incumbent list as shown in Figure 3.4.

* ← ∅ N ← ∅ i ← 0 // Node ID 2 create root node N 0 : N ← N 0 3 while N ̸ = ∅ do 4 if y ¯i = y ¯i then 5 F * i ← Solve N i as P MO-NLP (x, y i ¯) by NSGAII leaf // N i → leaf 6 else 7 if i=0 then 8 F * i ← Solve N i as P MO-MINLP (x,
If the non-dominated feasible node is not a leaf, then the node N i is branched (divided to further subproblems). The nodes list N is updated by adding the obtained set of children nodes N i ′ of the node N i . To this end, N i is fully explored, meaning that the node is solved, is checked for optimality and feasibility and is branched. Therefore, the node is then removed from the nodes list N i to avoid exploring it again and a new node is selected to explore it. It should be noted here that several techniques are proposed in the literature concerning the choice of active node, interested readers can refer to the references indicated in Figure 2.6. The process is then iterated until all the nodes are explored meaning that the node list N is an empty set.

BnB-NSGAII is said to be converged if and only if the latter condition is verified. Hence, for a large combinatorial space problems, it is recommended to add a time limit for BnB-NSGAII as a stopping criteria in line 3 in Algorithm 2. Moreover, the decision maker should note that if NSGAII root fails to find a feasible solution(s), BnB-NSGAII will converge immediately after the line 14 in Algorithm 2 returning an empty Pareto set.

BnB-NSGAII Legacy Feature

In BnB-NSGAII, each node is solved independently. The output of each node is the captured Pareto front only. However, in NSGAII, the best population is that found in the last generation, since it contains the elite individuals among all the previous generations. This last population in each node is thus discarded during the BnB-NSGAII process, although it might be valuable to other nodes. Hence, we propose to permit the legacy between nodes. Where each child node inherits the last population from its parent node. The child node then initializes NSGAII by this population.

The children nodes are subproblems of their parent node. Thus, the boundary of parent node is different than that for the children nodes, i.e. y i ̸ = y i ′ where i and i ′ are the node IDs for the parent and child nodes respectively. Hence, the population is rebounded -using Equation 3.5 on each individual I nd in the population -before initializing NSGAII.

y I nd = max{min{y I nd , ȳi ′ }, y ¯i′ } (3.5)
Rebounding the population may change the solution(s) leading to the loss of the elite individuals, though some of the elite genes may still conserved. This feature allows the child node to start exploring the domain from where its parent finishes. Hence, this feature aims to guide the exploration force in BnB-NSGAII. Figure 3.5 illustrates the concept of the legacy feature. 

Branching Strategy

One of the main components of MCBB is the branching strategy that is called at line 18 in Algorithm 2. The branching strategy divides each node into several children nodes while ensuring that the union of the subdomains of the children nodes is equal to domain of the parent node.

Although, all strategies works on the modification of the lower and upper bounds of the integer variables, each has its way of constructing the combinatorial tree. Ideally, the best strategy is that can converge MCBB with minimum exploration effort (i.e. examine minimum number of nodes).

The most commonly-used strategy in MCBB algorithms (e.g. [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF]; [START_REF] Mavrotas | Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming[END_REF]) is to consecutively fix the integer variables in a specific order called "separation order". We call this approach "branching by integer" (BI) strategy. Where the combinatorial tree is constructed by fixing all the values of each integer variable as follows.

For each level j, an integer variable is selected -according to the separation order -to be branched.

The j th selected integer variable is then fixed such as y j = a, ∀ a ∈ {y ¯j, y ¯j}. Meaning that for j = 0 -at the root node -all integer variables are free. While at the 1st level, the problem is divided to i ′ subproblems, where i ′ is the number of integer values in {y 1 ¯, y ¯1} -y 1 is the 1st selected integer variable -and so on for further levels. This partitioning procedure is adopted from the single objective branch and bound. However, the strategies used in the single-objective case are not transposed so easily to the multi-objective case. Difficulties appear even with the most basic strategies, more details are available in Przybylski & Gandibleux [2017].
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Other branching strategies exist in literature but they are not popular as BI such as interval branching strategies. Interval branching is commonly used in single-objective branch and bound to solve nonlinear optimization problems [START_REF] Araya | Nonlinear biobjective optimization: improvements to interval branch & bound algorithms[END_REF]. This strategy starts with an initial node (root node) and then builds the search tree by splitting it into several sub-intervals. This is done by dividing the domain of one integer variable and generating the child nodes in the search tree. The procedure iterates until a termination criteria is reached. Generally, nodes are no longer branched when their sizes reach a given precision. In [START_REF] Araya | Nonlinear biobjective optimization: improvements to interval branch & bound algorithms[END_REF], interval branching strategy is proposed for MCBB that aim to obtain a good envelope for the nondominated vectors by splitting each domain in the middle into two sub-domains. Although, this branching strategy was designed for multi-objective case, the static splitting point (mid-point)

remains the main issue in this approach.

In this thesis, we propose two multi-objective interval branching strategies that split the domain dynamically based on the obtained solution for each node in MCBB. We call them "Branching by Anchor Points" and "Branching by Pareto Elements".

Branching by Anchor Points

MCBB solves the current node N i resulting in p anchor points, where p is the number of objectives in P MO-MINLP . In Branching by Anchor points (BA) strategy, p + 1 intervals are then created by splitting one of the integer variables domain according to the defined separation order. The j th selected integer variable domain in node i, y i j is divided as following:

y i j = {y ¯1 j , (y 1 j ) 1 } ∪ {(y 2 j ) 1 , (y 2 j ) 2 } • • • ∪ {(y i ′ j ) k , (y i ′ j ) k+1 } • • • ∪ {(y s j ) p , y ¯s j }, (3.6) 
where k is the solution of the k th objective function k ∈ {1, 2, . . . , p}. Each interval y i ′ j ∀ i ′ ∈ {1, . . . , s} represents a child node with a total of s children nodes, where s ≤ p + 1. Then, the intervals are properly shifted to avoid intersection, i.e. redundant solutions. For example, assume that y i j = {0, 1} ∪ {1, 2} ∪ {2, 3}, interval lower limits then shifted up by 1 starting from the second interval resulting in y i j = {0, 1} ∪ {2, 2} ∪ {3, 3}. Figure 3.7 shows an example of BA strategy for a bi-objective problem, where the integer variable vectors of the anchor points of the root node are (y 0 0
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Root Node

Children Nodes 

Branching Algorithm

Algorithm 3 demonstrates BA strategy. The algorithm is designed assuming that for the i th node, the integer domain {y ¯i, y ¯i} and the node Pareto set F * i are stored in the node data structure

Branching Strategy

N i . The branching function returns the list of children nodes N i ′ as an output for each input N i . After initializing the function, the anchor points of node N i are obtained from the node upper bound F * i . Then an integer variable y i j is selected. If y ¯i j = y ¯i j , i.e. the selected integer is singleton, another integer variable is selected. This is iterated until a non-singleton integer is selected. It should be noted that BnB-NSGAII (Algorithm 2) -or MCBB in general -does not call the branching function if all the integer variables are singletons since the node is thus a leaf. Equation 3.6 is then applied on the selected integer splitting it to s intervals. After adjusting the intervals limits, a child node The combinatorial tree (search tree) is constructed as illustrated in the flow chart in Figure 3.8.

N ′ i is created for each interval y i ′ j in y i j , ∀ i ′ ∈ {1,
Starting from the root node, the node is solved using a MO-MINLP solver. Initially, the first integer is selected to be branched, i.e. j = 1. The process of selecting the integer variable (Step A node is then selected and removed from the list. Node selection process (Step 23 in Algorithm 2) is a crucial task that define the order of exploration of unexplored subproblems.

The selected node is then checked if all of its integer variables are fixed, i.e y ¯i = y ¯i, then the node is a leaf. Only nodes are farther explored -if they verify the feasibility and optimality condition -while increasing the branching level j progressively. When the branching level j exceeds the index of the last integer variable j > n i , then the first integer is re-selected j = 1.

The incumbent list F * is updated by the Pareto fronts resulted from leaf and optimal nodes and then filtered. The process is iterated until exploring all the unexplored nodes in N, i.e. N is empty. 

Branching by Pareto Elements

Two types of solvers can be used to bound a node in MCBB, a mono-objective solver or a multiobjective one. The mono-objective solver solves the problem for each objective independently, which results in deducing the anchor points of the node only. While the multi-objective solver returns the Pareto front of the node as in the case of BnB-NSGAII.

Branching by Pareto elements (BP) is more general than BA strategy. Though, it can be implemented in MCBB with multi-objective solver only. BP is similar to BA, yet, it separates the domain based on Pareto elements (Definition 1) instead of anchor points as shown in Figure 3.9, where P E is the number of elements in F * i . Therefore, the number of nodes s ′ resulted from BP in each level is always greater than or equal to that from BA, i.e. s ≤ s ′ . Since the anchor points are subset of the Pareto set. Thus, BP provides higher exploration potential at each level. This exploration potential is mostly desirable when MCBB is used with heuristic or metaheuristic solvers (e.g. BnB-NSGAII, [START_REF] Adiche | A hybrid method to solve the multi-objective combinatorial auctions chahrazad adiche and meziane aider[END_REF]; [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF]). However, this does not mean that the total number of nodes of BP is higher, since all the intervals (children nodes) in both strategies are then divided to be singletons. Hence, it can not be predicted which strategy can converge with lower number of total nodes. 

Literature Review

A mono-objective Constrained Optimization Problem (COP) can be written as following:

minimize x f (x)
subject to g j (x) ≤ 0, j = 1, ..., q h j (x) = 0, j = q + 1, ..., m

x ∈ X,

(3.7)
where m is the total number of the constraints in the problem, X denotes the set of feasible solutions of the problem. f (x), g(x) and h(x) are the objective function, the inequality and equality constraints respectively. They may be linear or non-linear functions and not necessary differentiable. Equality constraints are usually handled by converting them into inequality constraints with tolerance ϵ as follows,

g j (x) = |h j (x)| -ϵ ≤ 0 j = q + 1, . . . , m. (3.8)
In the previous reviews [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] the population, it may become necessary to repair only a portion of the infeasible individuals (a partial repair) to avoid standard deviation becoming too small, or to impose a lower limit on the components of the standard deviation vector in order to preserve diversity (especially for elitist algorithms) [START_REF] Simionescu | Constrained optimization problem solving using estimation of distribution algorithms[END_REF].

The main drawback of repairing methods is that they require that at least one feasible individual exists in the current population, which may be quite difficult and/or computationally expensive when dealing with highly constrained optimization problems.

Penalty Methods

Penalty function methods are among the most common methods for solving COPs [START_REF] Cai | A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization[END_REF]. The principal idea of this kind of methods is to reformulate a constrained optimization problem as an unconstrained one by introducing a penalty term into the original objective function to penalize constraint violations [START_REF] Runarsson | Stochastic Ranking for Constrained Evolutionary Optimization[END_REF]. The introduction of the penalty term r enables the transformation of a constrained optimization problem into an unconstrained one [START_REF] Deb | An efficient constraint handling method for genetic algorithms[END_REF]:

F (x) = f (x) + r m ∑︂ j=1 max(0, g j (x)), (3.9) 
where F (x) is the new fitness function to be optimized. This method is called the penalty method.

A crucial consideration is determining the magnitude of the penalty term. The penalty term cannot be too high, or the algorithm will become trapped inside the feasible domain, unable to proceed towards the infeasible region's boundary. If the term is set too low, it will be irrelevant to the objective function, and the search will remain in the infeasible range. It's still uncertain and difficult to know how to leverage the search area in order to lead the search in the most desired direction. [START_REF] Chehouri | A Constraint-Handling Technique for Genetic Algorithms using a Violation Factor[END_REF].

3. HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM 3.5.1.3.1 Static Penalty In this group, the penalty factors remain constant during the evolution process and do not vary during each generation. An interesting static penalty method is proposed in [START_REF] Homaifar | Constrained Optimization Via Genetic Algorithms[END_REF], where several levels of violation penalties are defined and then attributed to each higher level k a greater penalty coefficient r k . However, the main downside in this approach is the necessity of a high number of parameters. They are difficult to describe and may not always be easy to obtain for real-world applications.

Dynamic Penalty

The penalty function depends on the generation number and usually the penalty term will increase over each generation. A common dynamic penalty method is proposed in [START_REF] Joines | On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's[END_REF] based on the notion of simulated annealing. The authors propose a dynamic penalty function that is defined as follows:

F (x) = f (x) + r × g α m ∑︂ j=1 max(0, g j (x)) β , (3.10) 
where g is the number of the current generation, α and β are user defined cooling parameters.

Hence, the solution is extremely sensitive to the cooling parameters. An incorrect choice of the cooling parameters may lead to a local feasible solution or an infeasible solution Chehouri et al.

[2016]. The difficulties of choosing an appropriate cooling parameters is a typical drawback of simulated annealing method Coello Coello [2000]. Another popular dynamic penalty method is the adaptive penalty method Ben Hadj-Alouane & Bean [1997]. This method decreases the penalty term if the best individuals in the last generations were feasible, and increases the penalty term, if the best individuals in the last generations were infeasible. The method introduces three additional parameters [START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF], hence, similarly to simulated annealing method, tuning these parameters is the major drawback of this method.

3.5.1. 3.3 Co-Evolution In Coello Coello [2000], the authors propose to evaluate the fitness of the individual as follows:

F (x) = f (x) + r 1 × m ∑︂ j=1 max(0, g j (x)) + r 2 × N V, (3.11) 
where N V is the number of violated constraints. According to this approach, the penalty is actually split into two values, so that the EA has enough information not only about how many constraints were violated, but also about the amounts in which such constraints were violated.

However, this technique still requires the definition of two parameters and according to the authors, they must be empirically determined. A major drawback of this penalty method is that it is very subtle to variations in the parameters in addition to its rigorous definition and high computational cost [START_REF] Chehouri | A Constraint-Handling Technique for Genetic Algorithms using a Violation Factor[END_REF]. 3.5.1.3.4 Death Penalty The "death penalty" strategy is a common and simple way to handle constraints. It simply ignores any solution that violates any of the assigned constraints

Constraint

Coello [START_REF] Coello Coello | A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques[END_REF]. This strategy is simple to implement, but in most real-world problems, finding a feasible solution is a major problem. In some cases, it is difficult to find even one feasible solution [START_REF] Long | A constraint handling technique for constrained multi-objective genetic algorithm[END_REF].

Ranking-Based Methods

A common major drawback of penalty methods is the difficulty of determination of penalty terms. Apart of being an arduous procedure to define and control this terms, in Chehouri et al.

[2016], the authors argue that "such methods deviate from the essence of the philosophy of the evolutionary algorithms". This argument is based on the preservation of the objective function during the evolution process -i.e. without adding penalty function to it -which is analogous to the theory of biological evolution mimicking the principle of the survival of the fittest. On the other hand, one important line of research is recently arising which consists in studying ranking-based CHTs [START_REF] Garcia | A rankbased constraint handling technique for engineering design optimization problems solved by genetic algorithms[END_REF]. These methods sort and rank the population based on their objective and constraints violation values independently. Then each method has its own mechanism to combine these ranks. 

F (x) = {︄ f (x) if feasible, ∑︁ m j=1 max(0, g j (x)) if infeasible. (3.12)
Each set of two individuals are then compared according to the following criteria: (1) a feasible solution is always preferred over an infeasible one; (2) between two feasible solutions, the one having the best objective function value is preferred; and (3) between two infeasible solutions, the one having the lowest constraint violation value is preferred. with not the only adjacent neighborhood but also all other members of the population. Another difference between SR and GCR is that fitness evolution is made according to both objective function and constraint violation at the rate of P f in GCR. The fitness level of each individual in the GCR method can be evaluated as follows:

F (x) = P f rank(f (x)) -1 N -1 + (1 -P f ) rank( ∑︁ m j=1 max(0, g j (x))) -1 N -1 , (3.13)
where N is the number of individuals in the population, and P f ∈ [0, 0.5]. The population is then sorted based on F (x). The major drawback of GCR is that, like SR, its performance is sensitive to the parameter P f .

3.5.1.4. 4 Ho and Shimizu Ranking Ho & Shimizu [2007] In this method, the population is sorted using three ranks. The first rank R f compares the value of the objective function f (x); the second rank R CV compares the squared sum of constraint violations g j (x); and the third rank R N V compares the number of violated constraints. If the population contains only infeasible individuals, then the population is sorted based on R CV and R N V only, since the aim is to seek for the first feasible solution. Hence, the overall fitness function is defined as follows:

F = {︄ R f + R CV + R N V if N f > 0, R CV + R N V if N f = 0, (3.14)
where N f is number of feasible solutions in the population. The ranks R f , R CV and R N V start form 1, then, for any feasible individual F = R f + 2. 

CVF = m ∑︂ j=1 max(0, G j (x)), (3.16) 
G j (x) being the normalized constraint g j (x) ∀ j ∈ {1, . . . , m}. VCH eliminates the drawback of Ho and Shimizu method, i.e. the probable omission of feasible individuals. Moreover, it handles the difference of orders of magnitude of constraints by normalizing them. However, there are many real-world engineering applications for which the ranges of violation values are not available and cannot be estimated in advance [START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF], therefore these cases cannot be easily dealt with by usual normalization procedures.

NSCV

The global-optimal solution is located at the boundary of the feasible region of a COP, if at least one of the constraints is active. In fact, this is the case in which the optimization problem is correctly formulated, i.e the formulation make sense from a engineering point of view. Moreover, the optimal solution may exist at the boundary of more than one constraint, i.e. more than one constraint are active. Thus, the number of constraints violated rank R N V used in Ho and Shimizu, MCR and VCH methods is not theoretically an indicator for the best individual.

Although, the distance between the individual and the feasible boundary is a more sensible indicator, in the case of multiple constraints which may have different orders of magnitudes, merging all violations into a single sum is not numerically stable. Since the influence of constraints

HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM

with lower magnitude may become insignificant [START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF]. Normalizing these values is a good approach, yet it is not always applicable (see Section 3.5.1).

The need for parameter-free CHT (unlike penalty, SR and GCR methods) in addition to the previously mentioned concerns are the main key motives to propose a new ranking-based CHT based on the non-dominated sorting of the constraint violations (NSCV). The non-dominated sorting concept is presented in this section before demonstrating the NSCV technique.

Non-Dominated Sorting

Non-Dominated sorting is a well known sorting method in multi-objective optimization field introduced firstly in Srinivas & Deb [1994]. Unlike mono-objective problems, in multi-objective problems there may not exist a one global best solution with respect to all objectives. In a typical multi-objective problem, there exist a set of solution that are better than the rest.

The main concept of non-dominated sorting is to rank the population based on an individual's non-domination described in Definition 1. The non-dominated individuals are first identified by pair-wise comparison between the current population and ranked 1 (first non-dominated front). In order to find the next non-dominated front, the first non-dominated front is temporary discounted and the above procedure is repeated. The resultant ranking is illustrated in Figure 3.11 on the projected objective domain.

Population Rank The idea of using multi-objective techniques to handle constraints in EAs is not entirely new. The most common approach is to redefine the single-objective optimization problem as a multi-objective optimization problem in which we will have m + 1 objectives Coello Coello & Mezura Montes [2002], where m is the number of constraints. Then, any multi-objective optimization technique could be applied to the new vector F (x) = f (x), g 1 (x), g 2 (x), . . . , g m (x).

Surry et al. [START_REF] Surry | A multi-objective approach to constrained optimisation of gas supply networks: The COMOGA method[END_REF] propose the use of non-dominated sorting to handle constraints. In their approach, called COMOGA, the population is ranked based on constraint violations. Then, This vector-wise comparison between constraint violations eliminates the need of normalization where different orders of magnitudes of constraint violations exist. An illustrative example is shown in Figure 3.12 plotted on the projected constraint domain. Assuming that the problem consists in 2 constraints, the first g 1 ∈ [0, 1] and the second g 2 (x) having an order of magnitude of 10 7 . In this example, a direct sum of constraint violation will neglect the effect of the first constraint, since, any change in g 1 (x) is relatively too small to g 2 (x). Hence, points A(0, 8.9999×10 To this end, NSCV promotes no solution over another in the same front (same non-dominated set). However, to increase the pressure towards a better optimal solution, we propose to sort the solutions that have the same R C rank based on their fitness rank R f . Therefore, NSCV algorithm can be summarized as follows. For any two solutions:

• If both solutions are feasible, the solution with better fitness rank is the winner.

• If only one of them is feasible, the feasible solution is the winner.

• If both are infeasible, the one with lower non-dominated constraint violation rank is the winner.

• If both are infeasible and in the same non-dominated front, the one with better fitness rank is the winner.

Algorithm 4 describes the pseudo-code for a fast implementation of NSCV algorithm. Where, the input is the current population and the output is the sorted population. This implementation reduces the high computational effort needed for pair-wise comparison. In step 4, the algorithm calls a fast non-dominated sorting algorithm proposed in [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] that preserves the same concept of conventional non-dominated sorting but with less computational effort.

Conclusion

Algorithm 4: NSCV Algorithm

1 N ← Current Population 2 G ← Equation 3.17 3 G ← max(0, G) // G = 0 ⇐⇒ Feasible Solution 4 R C ← Non-Dominated Ranking of G for each individual in N // Feasible Solutions =⇒ R C = 1 5 R f ← Rank each individual in N by f (x) 6 N ← Sort N by R C 7 Q ← ∅ 8 foreach r ∈ R C do 9 T ← Sort N(R C = r) by R f 10 Q ← Q ∪ T 11 end 12 N ← Q

Conclusion

To this end, we have proposed a hybrid algorithm -BnB-NSGAII -that is based on the multicriteria branch and bound -that explores the combinatorial space of the MO-MINLP problem -and NSGAII that provides the upper and lower bounds for each node in the explanatory tree. In the aim of guiding the exploration force of BnB-NSGAII, we proposed a dependencyrelated solving between the parent and children nodes by the legacy feature. The latter allows the children nodes to inherent the last population of the parent node then use it as an initial population. BnB-NSGAII is a general framework that is based on both MCBB and NSGAII, therefore, we have intended to enhance both algorithms which consequently enhance the performance of BnB-NSGAII. We have proposed new branching strategies to improve the performance of MCBB. Additionally, we have proposed a new constraint handling technique -NSCV -to enhance the performance of NSGAII on constrained problems. Although NSCV is proposed to be implemented in a mono-objective evolutionary algorithm, in fact, NSCV affects the infeasible individuals only. Hence, NSCV could be implemented in a mono or multi-objective EA.

In the next chapters, a numerical experiment is done for each proposed feature independently (i.e. (1) BnB-NSGAII; (2) Branching strategies; (3) NSCV) to examine its impact on the solution. First, The performance of BnB-NSGAII (only) is compared to that of NSGAII using well-known metrics from the literature. To evaluate the computational efficiency, a new metric -the Investment Ratio (IR) -is proposed that relates the quality of solution to the consumed effort. Numerical experiments are carried out on five mechanical engineering problems and two mathematical ones. These benchmark problems are in the same class (same type) of the real-world mechanical problems that are in the thesis scope. Second, another numerical experiment is designed to examine the performance of the proposed branching strategies with respect to the traditional branching strategy on the same (with some modifications) 5 mechanical engineering and 2 mathematical optimization problems. The experiment also studies the effect of integer variable branching order on the performance of each strategy.
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Next, extensive studies are performed to assess NSCV's accuracy and robustness, compared to five other up-to-date CHTs, all implemented into the same mono-objective genetic algorithm to allow a neutral and unbiased evaluation.

Then, a computational experiment based on statistical assessment is presented to examine the overall performance of the proposed algorithms by embedding all the features [i.e. ( 1 In this work, two applications are proposed for BnB-NSGAII. The first application is to solve mid-sized non-convex MO-MINLP problems seeking for optimal solution(s). The second application is to use BnB-NSGAII as an initializer for another metaheuristic method (as NS-GAII) to search for feasible individuals in the initial population. Figure 3.13 shows the different benchmarks done on the BnB-NSGAII approach and its applications.

Introduction

In terms of global optimality, metaheuristic optimization methods are frequently used as a compromise between optimization effort and accuracy. Despite the fact that a wide range of optimization algorithms have been invented, finding efficient algorithms for a new instance of technologically relevant black-box optimization problem remains remarkably challenging [START_REF] Sala | Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges[END_REF]. Identifying which algorithms work effectively on specific problem instances or types is hence the remaining open challenge. The "per instance" or "per set" algorithm selection problem is another name for it. Empirical algorithm performance performance analysis appears to be the last resort in the lack of theoretical methodologies to determine heuristic optimization algorithm performance on specific non-trivial problems [START_REF] Borenstein | Fitness Distributions and GA Hardness[END_REF].

The No Free Lunch (NFL) theorems and the Law for Generalization Performance for search, optimization, and learning [START_REF] Schaffer | A Conservation Law for Generalization Performance[END_REF]; [START_REF] Wolpert | No free lunch theorems for optimization[END_REF] imply that if an algorithm performs well on one set of problems it must perform correspondingly poor on all other problems. Alternatively, for the setting of optimization: the average performance of all nonresampling algorithms is identical when averaged over all possible problems. The theorems and their implications emphasize the limitations of generalizing optimization benchmark results to other problems. Although it has sometimes been argued that the assumptions of the NFL theorems are irrelevant for practical applications, because real-world problems are likely to possess some exploitable structure, the theorems also imply that if the knowledge of the exploitable problem structure is not incorporated into a particular algorithm, no formal assurances exist that the algorithm will be effective [START_REF] Sala | Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges[END_REF]. The remaining challenge for metaheuristic optimization, from a practical standpoint, is to match certain optimization algorithms with specific problems or sets of problems for which they are well suited and perform reasonably well. Theoretical algorithm performance analysis approaches for non-convex multi-modal optimization issues are severely limited. As a result, "empirical" comparison assessments must be used, such as numerical experiments on test problems or benchmark functions [?]. The statistical measurement of expected algorithm performance on a certain range of problems is thus required to explore generalization.

In this chapter, each proposed feature (i.e. BnB-NSGAII, branching strategies and NSCV) is examined independently to monitor its impact on the solution solely. Each experiment is done a on set of problems to provide a statistical assessment for comprehensive results analysis.

The evaluation criteria vary from experiment to another depending on how the feature impacts the solution. Hence, in each of the following sections, the utilized set of test problems and evaluation metrics are defined in addition to the benchmarking scenario. Results are illustrated and analysed in each section independently. The overall performance of all features is examined in Chapter 5 on a real-world problem.

BnB-NSGAII

BnB-NSGAII

To evaluate the performance of BnB-NSGAII algorithm, we present a benchmark experiment based on a statistical assessment to compare its performance to that of NSGAII. Both are tested on seven MO-MINLP problems from the literature. The true Pareto solutions of these problems are known, so the Pareto fronts resulting from both algorithms can be compared to the true ones.

We present evaluation criteria from literature for quantitative comparison of the performances.

Test Problems

To demonstrate the generality of the algorithm, the presented test problems are mixed integer/binary/discrete constrained/unconstrained problems having different Pareto shapes, discrete, continuous or discontinuous. In particular, five of the selected problems are mechanical optimization problems and two of them are mathematical ones. The formulations of these problems are declared in the Appendix A. Although the proposed algorithm makes no assumptions on the number of objective functions, we select bi-objective problems for more comprehensive results, i.e. the Pareto front can be illustrated on a 2-dimensional objective domain. For each problem, the overall domain projection on the objective space is illustrated in grey, while the feasible one in red. The true Pareto for each problem is plotted in blue. The method used to obtain the true Pareto solution is provided in Appendix A. Table 4.1 summarizes various properties of the presented problems.

The gear train problem proposed in [START_REF] Deb | Mechanical Component Design for Multiple Ojectives Using Elitist Non-dominated Sorting GA[END_REF], represents a compound gear train which is to be designed to achieve a specific gear ratio between the driver and driven shafts.

The objective of the gear train design is to find the number of teeth in each of the four gears to minimize (i) the error between the obtained gear ratio and a required gear ratio of and (ii) the maximum size of any of the four gears. The solution of this unconstrained pure integer problem is illustrated in Figure 4.1a showing that its Pareto front is discrete.

The ball bearing pivot link was initially proposed in [START_REF] Giraud | Optimal Design of Mechanical Components with Genetic Algorithm[END_REF] as a monoobjective problem, then reconstructed in El Samrout [2019] to a bi-objective one. In this problem, the aim is to minimize the relative mass of the system composed of a shaft and two ball bearings, and relative cost of bearings. Figure 4.1b shows the complexity of the domain. It also shows that the Pareto front of this problem is discrete.

The coupling with bolted rim proposed in [START_REF] Fortin | Comparison of evolutionary algorithms for mechanical design components[END_REF] for torque transmission was reconstructed in El Samrout [2019] to a bi-objective problem for which goal is to dimension the mechanism in a way that minimizes its cost and weight. Figure 4.1c shows a part of the bounded domain to focus on the feasible domain that is represented as patches of solutions.

The Pareto solution of this problem is a discrete one. In the disk brake design problem, reported 4.1f shows that even a mildly nonlinear problem can have a very complicated attainable set, there are many locally minimal points. The set of minimal points is not connected, but consists of subsets of minimal points of seven components.

The analytical problem, which is adapted from [START_REF] Dimkou | A parametric optimization approach for multiobjective engineering problems involving discrete decisions[END_REF]; Tong et al.

[2016], is referred to as Tong problem. In this problem, the continuous variables are unbounded.

However their bound can be deduced analytically from the constraints. To examine the exploration force of the optimization method, the bounds are set to generate a large-scale domain as

shown in figure 4.1g. 

NUMERICAL EXPERIMENT

Evaluation Criteria

The evaluation of the optimization method is a necessary task that should be conducted properly.

In this section, we present three ways to evaluate a multi-objective solver; namely accuracy metrics, computational effort and robustness.

Accuracy metrics are a sort of performance indicators that try to assess the quality of solutions in terms of precision. Several classifications of metrics can be found in the literature including convergence-based metrics, diversity-based indicators [START_REF] Audet | Performance indicators in multiobjective optimization[END_REF] and others. In this section, true Pareto front based metric will be used, since the true Pareto solutions of the proposed benchmark problems are known.

Cardinality Indicators

These metrics focus on the number of non-dominated points generated by a given algorithm. The modified purity metric is then given by:

Purity(S) = | S | ∩ | F | | S | (4.2)
4.2 BnB-NSGAII Therefore, this value represents the ratio of non-dominated points over the solution set. This metric is thus represented by a number between zero and one. Higher values indicate a better Pareto front in terms of the percentage of non-dominated points.

Convergence Metrics

Generational Distance (GD) [START_REF] Van Veldhuizen | On measuring multiobjective evolutionary algorithm performance[END_REF] and Inverted Generational Distance (IGD) [START_REF] Li | Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II[END_REF] are well-known metrics with regard to convergence metrics. They compute the average distance from the approximated Pareto to the true one. For bi-objective problem, GD is defined as follows:

GD = √︂ ∑︁ |S| i=1 d 2 i | S | (4.3)
Where d i is the euclidean distance in objective function space between each approximated solution to the nearest true solution. A value of GD = 0 indicates that all the approximated solutions are on the true Pareto front. IGD substitute | S | by | P |.

In the case of discrete Pareto, IGD indicator is used, while for continuous/discontinuous Pareto, GD indicator is used. Effect of the method used to obtain the true Pareto on this metric is discussed in Appendix A.

Distribution and spread indicators

The spread (∆) is another accuracy metric criteria introduced in [START_REF] Deb | Multi-Objective Optimization using Evolutionary Algorithms[END_REF]. It includes information about both uniformity and spread. The formulation of this metric for a bi-objective problem is: 

∆ = d f + d l + ∑︁ n-1 n=1 |d i -d ¯| d f + d l + (n -1)d ¯(4.

Computational Effort

The quantification of computational effort used by the algorithm to produce the optimal Pareto front is a good way to assess its effectiveness. In [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF], the author considers the number of objective function evaluations is a good representation of the computational effort .

Robustness

The robustness of the algorithm should also be measured. This is done by running it several times to compensate for the impact of random parameters, which may cause the fluctuation of solution results. The lower the variability of the obtained solutions the better the robustness [START_REF] Montgomery | Design and Analysis of Experiments[END_REF].

Investment Ratio

The necessity of more accurate solutions with the toleration of more computational effort, a new metric that measures the potential improvement of the solution concerning computational cost is defined. In our case, the quality is the accuracy of the solution, while the cost is the computational effort. In the purpose of relating the quality and the cost in a single indicator that can represent how much the quality increased with respect to the cost, we propose the investment ratio indicator. Let Q 1 and Q 2 be the quality indicators resulting from 2 solvers being compared, and C 1 , C 2 be their cost. Let q = Q 2 /Q 1 be quality ratio and c = C 2 /C 1 be the computational cost ratio. The proposed Investment Ratio indicator (IR) is designed to regard various cases and is defined in equation 4.7.

IR(q, c) =

{︃ q c if q ≥ 1 -c q if q < 1 (4.7)
The positive value of IR indicates that the quality is enhanced regardless of the cost ratio and vice versa. IR ≥ 1 indicates a good investment, as Q 2 > Q 1 by improvement ratio higher than the cost one. For IR ∈]0, 1[, this means that although the cost ratio is higher than the quality ratio, still the quality is enhanced. Here, the investment cannot be assessed obviously since it depends on the weights of the desire of the investor for a certain problem. IR = -1 indicates that the quality is reduced by the same cost reduction ratio, which is also an acceptable investment.

Next, IR ∈] -1, 0[ means that solver 2 obtained lower quality with lower computational effort, yet the cost is reduced by a higher ratio than the quality degradation ratio, this value also might be acceptable depends on the investor desire. Finally, IR < -1 indicates a bad investment in the absence of profitable improvement in either cost or quality.

In this experiment, GD and ∆ are used as quality indicators, but since equation 4.7 assumes that the higher values of q mean higher quality, q is defined as the geometric mean between the 

Branching Strategies

The performances of the BI, BA and BP 1 strategies are tested on the same benchmark problems.

The mixed binary problems are not desirable in this experiment, since the performances of all the strategies are obviously the same on this type of problems. Thus, the mixed-binary problems (Mela and Tong problems) are converted to mixed-integer problems by setting y = {0, 1, 2, 3} for all the integer variables of both problems .

Ideally, best branching strategy is the one that can converge MCBB with minimum explo- experiment is to evaluate the performance of MCBB with different branching strategies only.

Separation order (integer selection order) significantly affects the exploration effort of MCBB Ghasemi Saghand et al. [2019]. In light of this observation, several well-known methods are proposed in literature, e.g. "random branching", "most infeasible branching", "pseudo-costs branching" and "reliability branching" [START_REF] Bonami | More branch-and-bound experiments in convex nonlinear integer programming[END_REF]. The aim of these methods is to find the best separation order that helps MCBB to explore minimum number of nodes. Therefore, the numerical experiment that tests the effectiveness of branching strategy must consider the effect of the separation order. Hence, for impartial comparison in this experiment, each problem 4. NUMERICAL EXPERIMENT is solved repeatedly for each possible separation order by each strategy. Then, for each problem, a strategy is said to be better when its performance is better on more separation orders. As a result, the performance is monitored by a normalized metric called Winning Ratio (WR), which is the number of times each strategy wins (has the best performance) over the number of all possible separation orders O for each problem.

For more sensible results, the number of nodes is normalized by the size of the combinatorial space M (total number of combinations of integer variables) in each problem. In BI, the theoretical maximum nodes of the exploration tree is equal to M. While the number of nodes in interval branching methods like BA and BP theoretically can exceeds M. Practically, a strategy is said to be ineffective when the number of nodes exceeds M. M is defined as El Samrout [2019]:

M = 1 + ni ∑︂ i=1 ⎛ ⎝ i ∏︂ j=1 n j ⎞ ⎠ , (4.9)
where n i is the number of integers in the problem and n j is the range of the integer variable y j .

The combinatorial space of each problem and the total number of separation orders are presented in Table 4.6. The normalized number of nodes is referred to as the exploration ratio, since, it indicates the ratio of the explored portion of the combinatorial domain space.

In this experiment, the problems are solved by MCBB with "depth-first" [START_REF] Przybylski | Multi-objective branch and bound[END_REF] node selection strategy. At each node, the continuous variables are properly discretized, then a brute-force1 solver is called to solve the problem. Brute force solver is selected for (1) its ability to provide exact solution even for non-convex MINLPs as it is the type for some of the benchmark problems in this experiment; (2) to eliminate the influence of the solver on the performance (e.g. failure of the solver to find a solution in a specific node for example). Results are obtained on Matlab ver. 2017b. Figure 4.10 shows the distribution of the total 93 4. NUMERICAL EXPERIMENT nodes exploration ratio obtained by each strategy along all the possible combinations of separation orders. The narrow boxes of BA indicates that BA comparatively is less dependent on the separation order. BA outperforms BI in 4 out of 7 problems, contrariwise, it is outperformed by BI in the rest. Hence, it cannot be clearly observed which strategy is better in terms of exploration effort. Therefore, for each separation order of each problem, there is a specific probability for each strategy to performs better than others. total nodes exploration ratio. WR is the ratio of separation orders where a strategy is considered a winner (minimum nodes exploration ratio) on each problem. Assuming that the designer randomly selects arbitrary separation order, WR can be interpreted as the probability of each strategy to have the best performance with respect to the selected separation order. In the Gear problem for example, BA is the best strategy for 80% of the separation orders, hence for a randomly selected separation order, BA and BI each has probability of 0.8 and 0.2 respectively to performs better than others. In the Bearing problem for example, BP is the best strategy for all separation orders. Although, the results show that no strategy can be said to be the best, the probabilities illustrated in Figure 4.11 show the competitive performance of both BA and BP to BI. 

NSCV

NSCV is tested on two sets of mono-objectives problems. The first set consists of 13 well-known benchmark problems [START_REF] Runarsson | Constrained Evolutionary Optimization[END_REF] which have been widely adopted to validate the constraint handling techniques in EAs [START_REF] Cai | A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization[END_REF]; [START_REF] Ho | Runarsson & Yao[END_REF]; [START_REF] Runarsson | Constrained Evolutionary Optimization[END_REF]. This set is referred to as G-Problems in this section. The second set consists of 19 real-world mechanical engineering problems (RW-Problems) introduced in [START_REF] Kumar | A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[END_REF]. 
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Hence, δ(r P,S , τ ) = 1 can be interpreted as "solver S solved problem P at a tolerance level τ ".

Finally, the performance profile ρ S of a given solver S is defined as:

ρ S (τ ) = 1 n p np ∑︂ P =1
δ(r P,S , τ ), (4.12) where, n p is the number of problems in P, ρ S (τ ) ∈ [0, 1] is the ratio of problems that solver S solved at a tolerance level τ . Therefore, if τ = 1.01, this means that an optimal solution for problem P is acceptable up to 1% worse than the best solution obtained for P . Thus, ρ S (1.01) = 0.7, for example, means that solver S solved 70% of the problems within 1% tolerance.

Two particular values of ρ S (τ ) have interesting interpretations:

• ρ S (1) represents the ratio of problems in which solver S provides the best solution. P f (for SR and GCR) 0.35

NSCV

• ρ S (∞) represents the fraction of problems solver S is able to eventually solve.

PPs are then illustrated by several curves [ρ S (τ ), τ ], one for each solver. An illustrative example is presented in Figure 4.14. Solver S 1 outperforms the other solvers for 60% of the problems; this is reflected in its value ρ S1 (1) = 0.6. Solvers S 1 and S 3 provide solutions for all problems, so their curves both reach the maximum value ρ S = 1. However, S 1 is the most robust since it reaches ρ S1 = 1 at lower τ . In the other hand, the curve of S 2 stops at ρ S2 = 0.8, which means that S 2 fails to solve 20% of the problems. Therefore, in this example it is clear that S 1 is the best Solver. The PPs are thus an interesting tool for the easy visualization and interpretation of results from computational experiments. If one is interested only in the number of wins, it is enough to compare the values of ρ S (1) for all methods. While, if one is interested in methods with a high probability of success, then the final section of the curves should be investigated.

Overall, the highest the ρ S (τ ) values, the better the method is, so a quick visual assessment of the performance of all methods may be performed simply by observing which one has the curves above all others.

Results and Discussion

The results are obtained using Matlab v 2017b. CHTs that depend on feasible separation (NSCV, SF and VCH) are noticed to have generally better performance than other CHTs (GCR, MCR and SR). This observation may lead to a conclusion that feasible separation enhances both the robustness and the accuracy of a CHT.

Conclusion

In this chapter, we have examined the performance of ( 1 Second, the performances of the branching by integer (BI), anchor points (BA) and pareto elements (BP) strategies are tested on the same benchmark problems. Ideally, best branching strategy is the one that can converge MCBB with minimum exploration effort, i.e. minimum number of total explored nodes. Moreover, the separation order (integer selection order) significantly affects the exploration effort of MCBB. Therefore, the numerical experiment that tests the effectiveness of branching strategy must consider the effect of the separation order. Hence, for impartial comparison in this experiment, each problem is solved repeatedly for each possible separation order by each strategy. The results show that for each separation order of each problem, there is a specific probability for each strategy to performs better than others in terms of total explored nodes. However, the results indicate that branching by anchor points and branching by Pareto elements has the highest fathoming force respectively among the branching by integer strategy. As a result, BA and BP outperform BI in terms of number of leaf nodes.

Conclusion

Next, NSCV is tested on two sets of mono-objectives problems. The performance of NSCV on these problems is compared to 5 ranking-based CHTs by implementing all of them in the same mono-objective genetic algorithm. Since we are instantaneously interested in both accuracy and robustness of the CHT, the performance of NSCV is considered the best comparatively to the other compared CHTs on the two sets of problems.

Finally, the results in this chapter show that investing the computational effort on a hybrid approach as BnB-NSGAII is more beneficial than investing in the metaheuristic itself as NSGAII in our case. Moreover, the results show that the new branching strategies enhance the performance of MCBB. On the other hand, NSCV enhances the performance of the genetic algorithm.

In the next chapter, BnB-NSGAII, NSCV and the new branching strategies are implemented in one solver to be examined on a real-world complex mechanical design optimization problem. 

3 stages Reducer Problem

3 stages Reducer Problem

In [START_REF] Fauroux | Conception optimale de structures cinématiques tridimensionnelles[END_REF], the design of the 3 stages Reducer (3SR) optimization problem has been introduced to illustrate the optimal design framework of the power transmission mechanism.

This problem has been a point of interest for many researchers in different domains. Engineering researchers enhance the problem for mechanical engineering applications. In [START_REF] Fauroux | Optimization of a Multi-Stage Transmission Mechanism[END_REF], the problem is extended to a mixed variables optimization problem. And recently a similar problem is stated in [START_REF] Han | Dimensional and Layout Optimization Design of Multistage Gear Drives Using Genetic Algorithms[END_REF] to illustrate the optimization of the volume and layout design of 3SR. Due to the problem complexity, optimization researchers are interested to test optimization methods on it. In [START_REF] Yvars | System Sizing with a Model-Based Approach: Application to the Optimization of a Power Transmission System[END_REF], the authors use the 3SR problem to examine the performance of the constraint propagation method.

In this thesis, the 3SR problem is reformulated to a bi-objective problem with additional constraints to meet the ISO mechanical standards. Those additional constraints increase the complexity of the problem, such that NSGAII performance is not sufficient.

The design problem consists in finding dimensions of main components (pinions, wheels and shafts) of the 3 stages reducer (Figure 5.2) to minimize the following bi-objective problem :

1. The volume of all the components of the reducer :

f 1 (x) = π (︄ s=3 ∑︂ s=0 l as r a,s 2 + s=3 ∑︂ s=1 [︃ b s m 2 ns 2 (Z 2 s,1 + Z 2 s,2 )
]︃ )︄ (5.1)
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2. The gap between the required reduction ratio u ¯and the ratio of the reducer (tolerance):

f 2 (x) = 1 u ¯⃓ ⃓ ⃓ ⃓ ⃓ u ¯-s=3 ∏︂ s=1 Z s,2 Z s,1 ⃓ ⃓ ⃓ ⃓ ⃓ , u ¯> 1 (5.2)
The problem is designed assuming the following are known:

• The power to be transmitted, P t and the speed rotation of input shaft N e .

• The total speed rotation reduction ratio u ¯, the position of the output shaft from the input shaft position (Figure 5.3).

• The dimension of the casing box. 

Closure condition

Interference and fitting constraints are adopted from [START_REF] Han | Dimensional and Layout Optimization Design of Multistage Gear Drives Using Genetic Algorithms[END_REF]. In [START_REF] Fauroux | Optimization of a Multi-Stage Transmission Mechanism[END_REF], the closure condition was expressed with the distance between the terminal point O 3

shown in Figure 5.3 and required position of the center of the output shaft. The coordinate of O 3 can be easily computed with the center distance of each stage and the angle ξ 1 , ξ 2 and ξ 3 .

But, if the center distance of each stage allow this closure condition, the value of ξ 2 and ξ 3 can be computed. By this way the number of variables in the optimization problem can be reduced.

For a given value of ξ 1 and r 1,1 , r 1,2 , the center distance of each stage allows a closure if:

∥O 1 O 3 ⃗ ∥ ≤ ∥O 1 O 2 ⃗ ∥ + ∥O 2 O 3 ⃗ ∥
Assuming the previous condition is true, the two intersections of the circle of center

O 1 of ∥O 1 O 2 ⃗ ∥
radius and the circle of center O 3 of ∥O 2 O 3 ⃗ ∥ radius (Figure 5.4) can be computed.

With which give : [2019b], International Organization for Standardization (Ginebra) [2019c] and knowing the geometry of gear pair, the material, the working conditions, the contact and σ H the bending stress σ F in the gear pair can be calculated. These stresses must be less of equal to the respective permissible value σ HP and σ FP , depending on the material and the working conditions.

a 2 = ∥O 1 O 2 ⃗ ∥ and a 3 = ∥O 2 O 3 ⃗ ∥: {︃ a 2 sin α 1 -a 3 sin α 3 = 0 a 2 cos α 1 + a 3 cos α 3 = ∥O 1 O 3 ⃗ ∥ 108 
cos α 1 = O 1 H O 1 O 2 = a 2 2 -a 2 3 + (O 1 O 3 ) 2 2a 2 O 1 O 3
From International Organization for Standardization (Ginebra) [2019c] the bending stress σ F is given by (1 for the pinion and 2 for the wheel): 2) , the nominal tooth stress :

σ F(1,2) = σ F0 (K A K V K Fα K Fβ ) , with σ F0(1,
σ F0(1,2) = F t bm n (Y F Y S Y β Y B Y DT ) ,
where :

• F t : is the tangential load from International Organization for Standardization (Ginebra)

[2019a].

• b: is the facewidth.

• m n : is the normal module.

Factors K A , K V , K Fα , K Fβ are related to dynamic and loading conditions in the gear. Factors

Y F , Y S , Y β , Y B , Y
DT are related to the geometry effect on stress.

From International Organization for Standardization (Ginebra) [2019c], the permissible bending stress σ FP is given by: From International Organization for Standardization (Ginebra) [2019b] the contact stress is given by (1 for the pinion and 2 for the wheel):

σ FP = σ FLim S Fmin (Y ST Y NT Y δrelT Y RrelT Y X ) ,
σ H(1,2) = Z (B,D) σ H0 √︁ K A K V K Hα K Hβ ,

3 stages Reducer Problem

with σ H0 is the nominal contact stress :

σ H0 = (Z H Z E Z ε Z β ) √︃ F t bd 1 u + 1 u .
Factors Z H , Z E ,Z ε , Z β are related to the Hertzian theory of contact. Geometry and material in the gear pair are considered in these factors.

From International Organization for Standardization (Ginebra) [2019b] the permissible contact stress σ HP is :

σ HP = σ HLim S Hmin (Z NT Z L Z V Z R Z W Z X ) ,
where σ HLim is the allowable contact stress number and S Hmin is the minimum required safety factor for surface durability. Factors Z NT , Z L , Z V , Z R ,Z W , Z X are related to lubrication conditions, surface roughness and hardened conditions and size of the tooth.

So to respect the requirement specification of a given power to be transmitted, the gear pair must respect:

σ F(1,2) ≤ σ FP σ H(1,2) ≤ σ HP .
Considering that σ F is proportional to F t and σ H is proportional to √ F t for a given gear pair, we can rewrite these 2 conditions with P t the power to be transmitted :

σ FP σ F(1,2) P t ≥ P t (︃ σ HP σ H(1,2) )︃ 2 P t ≥ P t
Usually, some factors are slightly different for the pinion and the wheel. So the transmitted power by the pinion (1) is different than by the wheel (2). Hence, the minimal value is considered.

Finally, for the stage number s on the reducer, the following conditions must be fulfilled: min

(︃ σ FPs σ F(1,2)s )︃ P t ≥ P t (5.3) min (︃ σ HPs σ H(1,2)s )︃ 2 P t ≥ P t . (5.4) 
Additionally, the following conditions must be respected :

• For the transverse contact ratio : ε α ≥ 1.3.

• For the minimal face width : b ≥ 0.1d 2 .

• For the maximal face width : b ≤ d 1 .

In order to use pinion with at least Z min = 14 teeth, the value of the profile shift coefficient must be adjusted to avoid gear meshing with the following relation:

Z min ≥ 2(1 -x 1 ) sin α 2 n ⇒ x 1 ≥ 1 -Z min sin α 2 n 2 ⇒ x 1 ≥ 0.1812.
5. APPLICATIONS

Constraint related to shaft's reducer

In each of the 4 shafts of the mechanism, the transmitted torque produce shear stress. This stress must not exceed the allowable shear of the material of shafts τ max . We assume here that all the shaft are using the same steel and that all the shafts can be consider as beams. So, with r a,0 , the radius of input shaft, and r a,s , s = 1 . . . 3 the radius of output shaft of the three stages, we have :

τ s = 2C s πr a,s 3 ≤ τ max for s = 1 . . . 3, (5.5) 
where C s is the output torque of each stage, C e the torque on the input shaft, Z i,1 and Z i,2 are the number of teeth for pinion ( 1 ) and wheel ( 2) of stage i:

C s = C e i=s ∏︂ i=1 Z i,2 Z i,1 .
For the input shaft:

τ 0 = 2C e πr a,0 3 ≤ τ max . (5.6) 
The total rotation angle between the initial section of the input shaft and the final section of the output shaft is:

θ = 2C e l a,0 Gπr a,0 3 + s=3 ∑︂ s=1 2C s l a,s Gπr a,s 3 .
For better the dynamic behavior of the reducer, the total rotation angle should be limited by a maximal value θ max .

θ ≤ θ max .

(5.7)

3SR Complexity

The 3SR problem is formulated with 2 objective functions, 41 constraints, 3 categorical variables (gears modules) which are indexed as non-relaxed integers, 6 integer variables (number of teeth), and 11 continuous variables. Gears modules have 41 possibilities, pinion number of teeth ranges from 14 to 30 and wheel number of teeth ranges from 14 to 150. Hence, the combinatorial space of the 3SR problem consists in 41 3 * (30 -13) 3 * (150 -13) 3 ≃ 8.7 × 10 14 . Thus, the problem is considered a mid-sized problem concerning the number of variables and constraints, but, huge combinatorial space. Appendix B provides the data used in 3SR problem.

The additional constraints increase the complexity of the problem. This is noticed by solving the problem using NSGAII with different initial conditions as follows. In the first hand, NSGAII is initialized with 1 feasible individual. On the other hand, NSGAII is randomly initialized.

Each was run 10 times with the same parameters shown in Table 5.1. Figure 5.5a shows how many run each method converged to a feasible solution out of 10. Figures 5.5a 

An Application of BnB-NSGAII: Search Feasibility

BnB-NSGAII is characterized by high exploration potential. Thus, in this section, BnB-NSGAII is used to search for at least one feasible solution for the 3SR problem. For this aim, BnB-NSGAII is properly modified to 1) continue enumeration of the combinatorial tree even if the root node is infeasible. 2) stop whenever a feasible solution(s) is found. Then, NSGAII is called to solve the 3SR problem by initializing it with the feasible solution(s) found as shown in Figure 5.7.

Numerical Experiment

NSGAII and BnB-NSGAII with and without the legacy feature were tested on the 3SR problem.

Each method was run 10 times. The test was done using the same parameters for the 3 solvers.

Table 5.1 shows the parameters used in this experiment.

Results and Discussion

In this experiment, the evaluation of the performance of each method is limited to how many times the method finds at least 1 feasible solution over the 10 runs. Figure 5.8 shows the number of times each method succeeded the test. It can be obviously concluded that BnB-NSGAII legacy method overcomes the performances of NSGAII and BnB-NSGAII. It should be noted that the computational effort is not regarded since all the runs converge within 30 minutes. Which is considered an acceptable time for such a problem. 

An Application of

NSCV Case Study

In this section, the competitive performance of NSCV on benchmark problems is assessed on 3SR problem in the purpose of identification of the impact of NSCV on the solution of the 3SR problem. To preserve the same benchmark presented in Section 3.5.2, 3SR problem is solved as a mono-objective problem taking the volume objective only. The performance of NSCV is evaluated comparatively to other CHTs by solving the 3SR problem 30 times by each CHT starting from the same initial population using the same parameters defined in Table 5.1. Figure 5.10 shows the number of successful runs of each CHT, i.e the solver finds at least one feasible solution. NSCV records the highest number of successful runs with 29 out of 30 runs, which

indicates that NSCV has the best robustness among other compared CHTs. Figure 5.11a shows

NSCV Case Study

the distribution of the optimal solution found by each CHT along the 30 runs. The optimal solution is considered ∞ when the solver fails to find a feasible solution, this explains why some boxplots are not continuous. It is clearly observed that NSCV finds the best optimal solution among other CHTs. Figure 5.11b shows the density of feasible solution in the last generation of each CHT. NSCV has the highest density after VCH. Figure 5.11c shows the number of generations evolved before finding the first feasible solution. It is clearly shown that MCR is the fastest CHT to find the first feasible solution. Nevertheless, NSCV still has relatively quick performance, where its median is less than 100 of 500 generations. As a result, NSCV confirms its competitive performance on a real-world state-of-art COP regarding both accuracy and robustness. It is interesting to note that the results obtained on the 3SR problem match those obtained on the benchmark problems. In particular, VCH records significantly the highest feasibility density in the last generation. Moreover, CHTs based on feasible separation have generally better performance than other CHTs. 

APPLICATIONS

An Application of BnB-NSGAII: Seek Optimality

The performances of BnB-NSGAII, BA, BP and NSCV have been examined independently in Chapter 3. The impact of the Legacy feature on the solution is also examined in Section 5.3.

In this section, the overall performance of all features implemented in one solver is examined on 3SR problem. Using the same parameters as in Table 5.1, BnB-NSGAII with NSCV as CHT and Pareto Branching (BP) as branching strategy with the legacy feature is run 10 times. The overall performance is compared to the performance of NSGAII with feasible initial population (see Section 5.3). Each run is limited to 24 hours which is considered an acceptable solving duration for such problem.

Starting from infeasible initial population, BnB-NSGAII converges to a feasible Pareto front for all runs. Hence, NSCV additionally enhances the performance of BnB-NSGAII with legacy feature in terms of (1) guiding the exploitation force of BnB-NSGAII; (2) increasing the robustness of BnB-NSGAII which lead to 100% successful runs. This enhancement is strictly due to the presence of NSCV, since, first it is proved in section 5.4 that NSCV enhances the performance of the genetic algorithm on the 3 SR problem; second, the branching strategy affects the number of nodes in MCBB search tree only. Hence, the additional 10% -the difference between successful runs in this experiment and the one in section 5.3 -are due to the presence of NSCV. The accuracy metrics defined in Section 4.2 are utilized in this experiment to quantitatively compare the performances of the solvers. However, those metrics require the true Pareto front which is not known for 3SR problem. Hence, the true Pareto front is considered the set which consists in the union of all Pareto elements obtained by both solvers during the 10 runs after
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removing the non-dominated elements. Figure 5.12 shows the distribution of GD1 , relative spread d∆2 and Purity indicator with respect to the 10 runs. The overall performance of the proposed features significantly overcomes the performance of NSGAII regarding the three accuracy metrics robustly. It should be noted that the value of the purity indicator of NSGAII is 0 in all the runs.

Recall that the purity indicator represents the ratio of the number of the non-dominated solutions obtained by NSGAII with respect to the total number of solutions in the true Pareto set. This means that NSGAII failed to capture any solution that dominates the solutions obtained by the proposed algorithm for all runs. This verifies the high exploration potential of BnB-NSGAII.

The computational effort is excluded from this experiment since, to this end, it is well-known that BnB-NSGAII consumes more effort than NSGAII. However, in Section 4.2 we proved that the additional computation effort consumed by BnB-NSGAII is a good investment. As a result, the proposed algorithm, i.e. BnB-NSGAII with legacy feature and NSCV as CHT and the proposed branching strategies, shows significant enhancement of the solution of the real-world state-of-art 3SR problem compared to NSGAII that failed to capture part of the solution that might be important for the decision maker. Hence, BnB-NSGAII is competitive method to

Conclusion

solve complex real-world non-convex MO-MINLP problems with huge combinatorial space with a certain predefined time limit. 

Conclusion

In this chapter, we have presented a state-of-art 3 stages reducer problem (3SR). In this thesis, the 3SR problem has been formulated to a bi-objective problem. We have added additional constraints on the 3SR problem to meet the requirement of ISO standards on calculation of load capacity of gears [ISO63361-ISO63366]. BnB-NSGAII has been tested on the 3SR problem with and without the legacy feature to examine the impact of this feature on the performance of BnB-NSGAII. The results show that the legacy feature guides the exploration force of BnB-NSGAII resulting in more efficient searching of the domain space.

Our proposed constraint handling technique -NSCV -is tested on a mono-objective version of the 3SR problem as a case study to examine the performance of NSCV on such complex problem.

In this chapter, we have proposed two applications of BnB-NSGAII. The first application -Search Feasibility -aims to reduce the computational effort needed for BnB-NSGAII by using it as an initializer for another metaheuristic (NSGAII in our case). The role of BnB-NSGAII in this application is to search for feasible individuals only. Whenever a feasible individual is found, BnB-NSGAII stops and injects this individual(s) into the initial population of NSGAII.

The second application -Seek Optimality -aims to solve the problem by BnB-NSGAII itself.

In this application, NSCV is implemented in BnB-NSGAII as the constraint handling technique.

And the branching by Pareto elements strategy is utilized in BnB-NSGAII. The results show that the performance of BnB-NSGAII on finding feasible individuals is furthermore enhanced, this is due to the existence of NSCV. Therefore, the competitive performance of NSCV is verified on a multi-objective problem. Moreover, the performance of BnB-NSGAII is compared to that of NSGAII. BnB-NSGAII significantly overcomes NSGAII in terms of the quality of the solution.

Chapter 6

Conclusion

The lack in literature of hybridization of multi-criteria branch and bound (MCBB) with metaheuristics has been noticed, in contrary to the mono-objective branch and bound. We have proposed a general-purpose multi-criteria branch-and-bound based on genetic algorithm (NS-GAII) for solving non-convex multi-objective Mixed Integer Non-Linear Programming problems (MINLPs), in particular mechanical design problems. The proposed algorithm and NSGAII were tested on 7 MO-MINLP problems from literature. Results show that the proposed algorithm obtain better solutions for all the problems, although in some cases the computational effort was higher than those for NSGAII. In this aspect, we have designed a new metric that relates the quality of the solution to the cost, which referred to as the investment ratio. The results show that the solution(s) has been enhanced by a higher ratio than the computational cost ratio for 6 out of 7 problems, which prove the effectiveness of the proposed hybrid.

BnB-NSGAII has been enhanced by adding the legacy feature. The legacy feature is a generic feature that can be implemented in any branch and bound algorithm. Any parameter that is tuned during the node solving process could be the legacy. In this work, the legacy was the last population in the father node in BnB-NSGAII. The latter was then used to initialize the child node.

We have proposed new branching strategies "Branching by Anchor points" (BA) and "Branch- 

Perspectives

BnB-NSGAII is hybrid approach that is based on MCBB and multi-objective genetic algorithm NSGAII. The work of [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF] has been the main motive of BnB-NSGAII.

In this thesis, we have utilized the same fathoming rules as [START_REF] Cacchiani | A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs[END_REF]. However, these fathoming rules have been proposed by [START_REF] Mavrotas | A branch and bound algorithm for mixed zeroone multiple objective linear programming[END_REF] who proposed to solve the node repeatedly for each objective independently. Consequently, the upper bound is a set of anchor points in contrary to BnB-NSGAII and Cacchiani & D'Ambrosio [2017] where the upper bound is the resulted Pareto front itself. In [START_REF] Mavrotas | A branch and bound algorithm for mixed zeroone multiple objective linear programming[END_REF]], the ideal point is the best known lower bound in contrast to the case of BnB-NSGAII. Therefore, future work is devoted to propose new fathoming rule(s) to tighten the lower bound. Figure 6.1 shows an example of a Pareto front obtained for a specific node (red) and the current incumbent list (black). In this example, all the Pareto elements obtained for this node are dominated by the incumbent list, nevertheless, the node is not fathomed because the ideal point of this front is not 6.2 Publications dominated. Thus, a new fathoming rule can consider this scenario and tighten the lower bound to fathom this node and to accordingly reduce the exploration effort of BnB-NSGAII. In this thesis, new interval branching strategies has been proposed for MCBB. Although these strategies enhance the performance of MCBB, they branch the integer domain iteratively until all the remaining nodes have single value for each integer variable. This exhaustive branching may considerably consume high effort. Therefore, future work is devoted to find a new fathoming rule that depends on (1) the node bounds and ( 2) the size of the intervals created by the proposed branching strategies. Hence, a node could be considered "fully explored" before it becomes a singleton node (leaf).

NSCV is proposed in this work as an "uncoupled" approach which could be implemented in any evolutionary algorithm (mono or multi-objective EA). In fact, in this thesis, we have implemented NSCV in both mono-objective and multi-objective genetic algorithms. However, the majority of the results have been obtained on a mono-objective benchmark. Moreover, NSCV is compared to 5 mono-objective CHTs in this experiment. Therefore, future work is devoted to compare the performance of NSCV to wider set of CHTs that not necessarily fall in "rankingbased methods" category. Moreover, future studies include the implementation of NSCV in multi-objective EAs comparing it with other multi-objective CHTs proposed in literature. • Une autre particularité de ce type de problèmes d'optimisation est qu'ils ont au moins un espace combinatoire de taille moyenne (couple de variables entières acceptant moins d'une centaine de valeurs). Par conséquent, la solution exacte ne peut pas être calculée en utilisant une simple procédure de dénombrement explicite.

Publications

2.1 Techniques de manipulation des variables mixtes [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF].

En plus des concepts communs des méta-heuristiques mono-objectifs, une méta-heuristique multi-objectifs contient trois composants de recherche principaux :

• L'attribution d'aptitude : Le rôle principal de cette procédure est de guider l'algorithme qui recherche des solutions optimales de Pareto pour une meilleure convergence. Elle attribue une aptitude à valeur scalaire à une fonction objectif vectorielle.

• Préservation de la diversité : l'accent est mis ici sur la génération d'un ensemble diversifié de solutions Pareto dans l'objectif et/ou l'espace de décision.

• Élitisme : La préservation et l'utilisation de solutions élites (par exemple, les solutions optimales de Pareto) permettent une amélioration robuste, rapide, monotone de la performance d'un méta-heuristique.

Les algorithmes évolutionnaires (EA) sont des méta-heuristiques stochastiques qui ont été appliquées à de nombreux problèmes réels et complexes . • Si les deux solutions sont faisables, la solution avec un meilleur rang R f d'aptitude est conservée.

y i j = {y ¯1 j , (y 1 j ) 1 } ∪ {(y 2 j ) 1 , (y 2 j ) 2 } • • • ∪ {(y i ′ j ) k , (y i ′ j ) k+1 } • • • ∪ {(y s j ) p , y ¯s j }, ( 
• Si un seul d'entre elles est faisables, la solution faisable est sélectionnée.

• Si les deux sont infaisables, celle avec le rang de violation de contrainte non dominé le plus bas est sélectionnée.

• Si les deux sont infaisables et dans le même front non dominé, celle qui a le meilleur rang R f est sélectionnée. )︃ 1 3 -ϕ 1 (i r1 ) ≤ 0

Expériences numériques

C 2 =F r2 (x 1 , x 2 ) (︃ 60L v ω 10 6
)︃ 1 3 -ϕ 1 (i r2 ) ≤ 0

C 3 = (︃ x 1Min + ϕ 5 (i r1 ) 2 )︃ -x 1 ≤ 0 C 4 =x 1 - (︃ x 1Max - ϕ 5 (i r1 ) 2 
)︃ ≤ 0 x 1,2Min : Minimum limit of bearings positions (R1) and (R2) [mm].

C 5 = (︃ x 2Min + ϕ 5 (i r2 ) 2 )︃ -x 2 ≤ 0 C 6 =x 2 - (︃ x 2Max - ϕ 5 (i r2 ) 2 
)︃ ≤ 0 C 7 =d 1Min -ϕ 3 (i r1 ) ≤ 0 C 8 =d 2Min -ϕ 3 (i r2 ) ≤ 0 C 9 =
x 1,2Max : Maximum limit of bearing positions (R1) and (R2) [mm]. minimize

f 1 (x) = π 2 e p [︁ ρ J (︁ 16R b ϕ 3 (i d ) -N ϕ 4 (i d ) 2 )︁ + ρ b N ϕ 1 (i d ) 2 ]︁ f 2 (x) = ϕ 1 (i d ) d Maxi + N N Maxi + M M Maxi 168 
1 Problems Formulation subject to (A.3)

c 1 (x) = α S M N R b K(i d ) -1 ≤ 0 c 2 (x) = ϕ 3 (i d )N k s πR b -1 ≤ 0 c 3 (x) = (R Mini + ϕ 3 (i d )) -R b ≤ 0 c 4 (x) =R b -(R Maxi -ϕ 3 (i d )) ≤ 0
where:

x = {i d , N, R b , M } T i d ∈ {1 . . . 15} N ∈ [N Mini , N Maxi ] × N R b ∈ [R Mini , R Maxi ] M ∈ [M T , M Maxi ]
given: In the disk brake design problem, there are five inequality constraints that relate to the surface area, length of the brake, pressure, torque, and temperature. The aim of this problem is to minimize the mass of the brake and the stopping time. Four design variables are considered, namely the inner radius of the discs (x 1 ), the outer radius of the discs (x 2 ), the engaging force (x 3 ), and the number of friction surfaces (y 1 ), where the latter is an integer variable. This problem is formulated as following: minimize f 1 = 4.9 × 10 -5 (x 2 1 -y 2 1 )(x 3 -1) where, G, c 1 and c 2 are given by:

K(i d ) = 0.9R e f m π(ϕ 1 (i d ) -0.93815ϕ 2 (i d )) 2
G = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
1 -1 2 0 0 0 0 0 0 0 -1 2 0 0 2 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 2 0 0 4 0 2 0 2 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 10 Ecole Doctorale "Sciences pour l'Ingénieur"

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ c 1 = [︁ -1 -1 1 -10 0 1 -2 0 3 0 ]︁ ⊤ c 2 = [︁ 1 
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  Many transformation techniques have been proposed to transform the optimization problem to an easier one. The taxonomy of the transformation techniques is illustrated in Figure 2.5. In this section, scalarization and relaxation techniques -T1 and T3 respectively -are highlighted. Some of the linearization techniques (T4) are addressed in Section 2.2. While penalization techniques (T2) are reviewed in Chapter 3 with other constraints handling techniques. (T1): Scalarization Mutli (P1.2) → Mono-objective (P1.1) Problem (T2): Penalization Constrained (P2.1) → Unconstrained (P2.2
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  In this chapter, we propose a hybrid method based on MCBB and NSGAII to tackle this type of optimization problems called BnB-NSGAII. Additionally, we propose the legacy feature to enhance the performance of BnB-NSGAII. To furthermore enhance the performance of BnB-NSGAII, we propose to enhance the performance of MCBB and NSGAII independently. Hence, we propose new interval branching strategies to enhance the performance of MCBB. And since we are dealing with constrained problems, we propose a new CHT called NSCV to enhance the performance of NSGAII. This chapter is organized as follows. First, MCBB is presented in Section 3.2. Then, BnB-NSGAII is introduced in Section 3.3. Next, the new branching strategies are demonstrated in Section 3.4. Finally, in Section 3.5, a general overview of distinct CHTs is addressed then NSCV technique is introduced.
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 332 Figure 3.2 shows the flowchart of MCBB approach.
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 1 (blue) and F * 2 (red) are the Pareto fronts (upper bounds) obtained from two distinct nodes, say N 1 and N 2 . Assume that the current incumbent list F * is the one illustrated in black. The lower bounds of N 1 and N 2 are designated as A and B respectively. It is clearly observed that the point B is dominated by F * . Thus, N 2 is obviously fathomed. In contrary, although point 3. HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM Algorithm 2: Main loop of BnB-NSGAII 1 Initialization F
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 3 HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM3.5 Constraint Handling TechniqueEvolutionary Algorithms (EAs) have been significantly used to solve a wide variety of real-world problems, including in science, economics and engineering[START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF]. Although EAs were originally designed to deal with unconstrained search spaces[START_REF] Garcia | A rankbased constraint handling technique for engineering design optimization problems solved by genetic algorithms[END_REF]; Peng et al.[2020], they have been successfully complemented by constraint-handling techniques (CHTs) to solve constrained problems. CHTs guide the search process to the feasible regions and ideally provide solutions that do not violate any constraint.Several methods were proposed for handling constraints by EAs to solve constrained optimization problems. Penalty function methods are among the most common methods for solvingCOPs Cai & Wang [2006]. However, due to the well-known difficulties associated with them Coello Coello & Mezura Montes[2002], several researchers have developed a considerable amount of alternative approaches to handle constraints. These approaches were classified in[START_REF] Michalewicz | Evolutionary Algorithms for Constrained Parameter Optimization Problems[END_REF] as methods that are based on a search of feasible solutions and methods that are based on preserving feasibility of solutions.Recently, an important line of research has been arising which consists in studying rankingbased CHTS[START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF]. Ranking-based CHTs sort and rank the population based on combination of both objective function value and constraints violations. Each method has a distinct mechanism for combination of these functions. However, the main issue might be how to combine into one term all values involved in the evaluation and comparison of the individuals from a given population, i.e. the objective and violation functions that may have different orders of magnitude and/or different units.In this thesis, we propose a new ranking-based CHT based on the non-dominated sorting of the constraint violation (NSCV). NSCV is designed to handle constraints with different orders of magnitude and/or different units, without additional computational associated to the estimation of the range of violation values, and without user intervention. Moreover, NSCV is an "uncoupled" approach where the CHT is not embedded into the optimization algorithm. This allows the implementation of NSCV along with different evolutionary algorithms. NSCV affects the infeasible population only, hence, it can be implemented in mono-objective or multi-

57 3Figure 3 . 10 :

 57310 Figure 3.10: Graphical view of a general decoder [Mezura-Montes & Coello Coello, 2011].
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 5 .1.4.1 Superiority of Feasible (SF) Deb [2000] SF ranks separately the solutions according to their objective function values or constraint violation values. It comprises a binary tournament selection, i.e. a pairwise comparison that basically prefers a feasible solutions over any infeasible one. The fitness value of each individual is calculated as follows:

3. 5

 5 .1.4.2 Stochastic Ranking (SR) Runarsson & Yao [2000] SR intends to balance the dominance of the objective and constraint functions by evaluating each individual through a stochastic ranking procedure similar to the bubble sort, where each two consecutive individuals are compared. The comparison criterion may be based either on the objective function or the sum of constraint violations depending on a randomly determined user-defined probability parameter P f . In other words, feasible individuals are always preferred and are sorted based on their objective values. However, if both compared individuals are infeasible, (1) a probability of P f the 3. HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM individuals are compared based on objective values; (2) a probability of (1 -P f ) the individuals are compared based on the summation of the constraint values. Despite the improvement in search performance, this approach is sensitive to the parameter P f Peng et al. [2020].3.5.1.4.3 Global Competitive Ranking (GCR)[START_REF] Runarsson | Constrained Evolutionary Optimization[END_REF] Later, the same authors of the SR method proposed another ranking-based CHT, called GCR. GCR is an advanced version of SR, however unlike SR, a solution candidate is sorted by analogizing it
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 5 .1.4.5 Multiple Constraint Ranking (MCR)[START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF] MCR is based on HO and Shimizu method. However, due to the different orders of magnitude and/or different units of constraints, the MCR sets a distinct rank R j c for each constraint g j (x) ∀ j ∈ {1, . . . , m}. Then the same mechanism of Ho and Shimizu method is applied where: MCR and Ho and Shimizu methods were designed to prefer feasible individual over infeasible ones, in some cases the mechanism may prefer the infeasible solution. For example, if the rank R f of a feasible individual is 10, then its fitness F = 10 + 2 = 12. Assume that the best objective value belongs to an infeasible individual which violates only one constraint, so for this individual R N V = 2 and R f = 1. Suppose that for the same individual, the constraint violation rank R CV is 5. Hence, the fitness of the infeasible individual F = 1 + 2 + 5 = 8 < 12, so the infeasible individual is the winner. This may lead to the omission of the feasible solutions from the population. 3.5.1.4.6 Violation Constraint-Handling (VCH) Chehouri et al. [2016] VCH combines the advantages of both SF and Ho and Shimizu methods. Where in SF, the feasible individual is always preferred. In VCH, the population is split into feasible set and infeasible set. The feasible set is sorted based on R f . While the infeasible set is sorted based on R N V . Then, the overall population is sorted by pair-wise comparison, where the feasible individual is preferred over the infeasible one. If two individuals have the same R N V rank, the individual with lower Constraint Violation Factor (CVF) is the winner, where:

Figure 3 .

 3 Figure 3.11: Non-dominated sorting of the population of a bi-objective problem
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 5 Constraint Handling Technique one section of the population is chosen based on constraint ranking, and the rest based on the individuals' objective values. COMOGA performed comparably to a penalty-based strategy in a pipe-sizing problem, however the outcomes obtained were not superior to those obtained with a penalty function.[START_REF] Surry | A multi-objective approach to constrained optimisation of gas supply networks: The COMOGA method[END_REF]. Furthermore, COMOGA necessitates the use of numerous additional parameters, albeit the authors suggest that the technique is not overly sensitive to the values of these parameters.In Coello[START_REF] Coello Coello | Constraint-handling in genetic algorithms through the use of dominance-based tournament selection[END_REF], the authors present a proposal based on tournament selection decided through non-dominance. The fundamental idea is to use a sample individuals to identify which of two candidate solutions to choose from is the winner, and then to choose one of them based on non-dominance with respect to the samples collected. The tournament that is held is not totally deterministic. The method employs a parameter known as the selection ratio Sr, which specifies the minimal number of individuals who will not be chosen through tournament selection. A probabilistic procedure will be used to choose these individuals. This indicates that the population's (1 -Sr) individuals are probabilistically chosen. Because it governs the population's diversity, the parameter Sr is critical in this strategy[?]. However, the authors claim that with a value closer to 1 for Sr, 0.7leqSrleq1, the algorithm does not require detailed adjustment of this parameter.3.5.2.2 NSCV ConceptIn NSCV, the population is split into feasible and infeasible sets. The individuals in the feasible set are sorted and ranked based on their objective values. Then, each feasible individual takes a rank R f . On the other hand, the infeasible set is treated as a multi-objective optimization problem where the constraints are considered as the objective functions. Then, the infeasible population is sorted and ranked based on the individuals' non-domination of vector G, where, G = g j (x) j = 1, . . . , m.(3.17)Hence, by pair-wise comparison, each individual in the infeasible set takes a rank R C based on its G.

  10 7 ) are considered the same, and point B(0.7, 0.) is considered the best. While in NSCV, without any user-intervention and/or normalization, point A is considered better than point C, since C is dominated by A. Without any additional information, points A and B are 3. HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM considered in the same rank. The latter consideration is more realistic, since none of them is absolutely better than the other. The choice of one solution over the other requires problem knowledge.

Figure 3 .

 3 Figure 3.12: Illustrative example plotted on the projected constraint domain

Figure 3 .

 3 Figure 3.13: Benchmarking and applications of the proposed approach.

  ) BnB-NSGAII; (2) Legacy feature; (3) Branching strategies; (4) NSCV (hence NSCV is implemented in a multi-objective EA, particularly NSGAII)] into one solver (BnB-NSGAII). NSGAII and BnB-NSGAII (overall) are tested on a 3 stage reducer problem (3SR). The 3SR problem is a state-of-art problem which is a point of interest for many optimization researchers due to its complexity. In this thesis, 3SR is reformulated to a bi-objective problem with additional 3.6 Conclusion constraints to meet the ISO mechanical standards. Those additional constraints increase the complexity of the problem.

Figure 4 .

 4 Figure 4.1 illustrates the exact representation of the seven problems presented in this section.
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 41 Figure 4.1: The attainable set of solutions of the test problems.
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 41 Figure 4.1: The attainable set of solutions of the test problems.

  Cardinality indicators were reviewed in[START_REF] Audet | Performance indicators in multiobjective optimization[END_REF], among them is the overall nondominated vector generation (ONVG). ONVG is the number of the Pareto front approximation generated by the algorithm: ONVG(S) =| S | (4.1) Where | S | is the number of points of the approximation Pareto set. Another indicator called the purity metric is found in Custódio et al. [2011]. It is used when comparing two or more approximate methods in the absence of the knowledge of the true Pareto. This indicator is slightly modified to involve the known true Pareto front. Let | P | be the number of elements in the true Pareto set and | F |=| S | ∪ | P |, and then removing from | F | any dominated points.

4 )

 4 where d f and d l are the euclidean distances between the extreme solutions in the non dominated set obtained using the algorithm and the real Pareto front, n is the number of approximated solutions n =| S |, d i is the euclidean distance between two consecutive solutions and d ¯is the average of all distances d i , i ∈ [1, n-1]. The lower the spread indicator is, the better the solution is. Nevertheless, this indicator will never be zero, unless the spread of the true Pareto ∆ True is equal to zero and the solver succeeded to find it. Thus, for more comprehensible evaluation, relative spread formulated in equation 4.5 is used,d∆ =| ∆ True -∆ Approximate | . (4.5) To calculate ∆ True , d f and d l are considered 0 by their definition. And the true Pareto is discretized uniformly (see Appendix A). Therefore, ∆ True (Equation 4.6) is not necessarily to
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 42 Figure 4.2: Distribution of metrics for gear problem.

Figure 4 . 3 :

 43 Figure 4.3: Distribution of metrics for bearing problem.
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 44 Figure 4.4: Distribution of metrics for coupling problem.
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 46 Figure 4.6: Distribution of metrics for truss problem.
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 47 Figure 4.7: Distribution of metrics for Mela problem.
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 48 Figure 4.8: Distribution of metrics for Tong problem.

  Figure 4.9 shows the best solution obtained by both methods compared to the true Pareto front for each problem. As shown, BnB-NSGAII is able to approximately converge to the true Pareto front for all the problems. While NSGAII failed to catch all the Pareto elements for gear and bearing problems as shown in Figures 4.9a and 4.9b respectively. On a detailed examination of the Pareto front of Tong problem Figure 4.9g, it is found that NSGAII does not capture the section of the Pareto front close to the anchor points. Finally, the results generally verify the competitive performance of BnB-NSGAII with respect to NSGAII in terms of the quality of the solution.
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 49 Figure 4.9: Pareto front obtained by BnB-NSGAII and NSGAII vs the true Pareto for each problem.
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 49 Figure 4.9: Pareto front obtained by BnB-NSGAII and NSGAII vs the true Pareto for each problem.
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 410 Figure 4.10: Distribution of total nodes exploration with respect to the separation orders on each problem.
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 411 Figure 4.11: Winning ratio of each strategy on each problem based on total nodes exploration ratio.
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 4 Figure 4.11 shows the winning ratio (WR) of each strategy on each problem based on the

Figure 4 .Figure 4 . 12 :

 4412 Figure 4.12 shows the distribution of the leaf nodes exploration ratio obtained by each strategy along all the possible combinations of separation orders. BA has lowest exploration ratio on all the problems except on Mela-v2 problem. This indicates that BA has the highest fathoming force among the compared strategies. Moreover, in BA, number of leaf nodes is slightly affected by the separation order on all the problems comparatively to BI. BP overcomes BI on 5 out 7

Figure 4 .

 4 Figure 4.13: Winning ratio of each strategy on each problem based on leaf nodes exploration ratio.
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 4 7 and 4.8 show distinct properties of G-Problems and RW-Problems sets respectively.The performance of NSCV on these problems is compared to 5 ranking-based CHTs (mentioned in Section 3.5.1) by implementing all of them in the same mono-objective genetic algorithm. All CHTs are initialized by the same random initial population. Table4.9 shows the characteristics of the genetic algorithm used in this experiment. To tackle the robustness of CHTs, each solver is executed 10 times on each problem. The performances of CHTs are then evaluated based on (1) best optimal solution obtained by each CHT; (2) density of feasible solutions in the last generation (mean of the 10 runs); (3) failure ratio which is the number of failures of a CHT over the number of overall runs of each CHT on each set.
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 4414 Figure 4.14: Example of profile performance
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 415 Figure 4.15: Profile performance of CHTs on G-Problems set
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 44416417418 Figure 4.18 shows the profile performance of each CHT on the RW-Problems set. The best accuracy (ρ(1)) is achieved by NSCV. Where, NSCV provides the best solution of 30% of RW-Problems. At τ = 1.01, NSCV performance curve increases to reach ρ = 0.83 which is the best
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 419 Figure 4.19: Ratio of failure of each CHT on RW-Problems set

Figure 4 . 20 :

 420 Figure 4.20: Overall mean feasible density on RW-Problems set

Figure 4 .

 4 20 shows that VCH has again the maximum mean feasible density (0.7) in the last generation among all CHTs tested on RW-Problems set. While the next bests are GCR and NSCV respectively with density ≈ 0.5. NSCV 4. NUMERICAL EXPERIMENT again proves its competitive performance among 5 state-of-art ranking based CHTs in terms of both accuracy and robustness.

  ) BnB-NSGAII in terms of quality and cost; (2) the proposed branching strategies in terms of MCBB convergence; (3) NSCV in terms of enhancing the performance of the genetic algorithm. First, we have presented a benchmark experiment based on a statistical assessment to evaluate the performance of BnB-NSGAII algorithm comparatively to NSGAII. Both are tested on seven MO-MINLP problems from the literature. The true Pareto solutions of these problems are known, so the Pareto fronts resulting from both algorithms can be compared to the true ones. Metaheuristic optimization methods are often used as a compromise between optimization effort and accuracy (w.r.t. global optimality). The necessity of more accurate solutions with the toleration of more computational effort, a new metric that measures the potential improvement of the solution concerning computational cost -Investment Ratio (IR) -is defined. Both NSGAII and BnB-NSGAII performances (quality and cost) are affected by selecting different values of tuning parameters. In the purpose of impartial comparison between them, different tuning parameters are applied to each method on each of the 7 problems independently. The results generally verify the competitive performance of BnB-NSGAII with respect to NSGAII in terms of the quality of the solution.
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 51 Figure 5.1: Benchmarking of BnB-NSGAII on the 3 stages reducer problem.
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 52 Figure 5.2: Front and back view of a 3 stages reducer with closure.

Figure 5 . 3 :

 53 Figure 5.3: Detailed view of the 3 stages reducer.
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 542 Figure 5.4: Gear mesh for each stage.

with σ

  FLim is the nominal stress number (bending) from reference test gears International Organization for Standardization (Ginebra) [2019d] and S Fmin the minimal required safety factor. Factors Y ST , Y NT , Y δrelT , Y RrelT , Y X are related to the reference test gears and the geometry and material conditions of the gear pair.

  and 5.5b show that if the initial population contains at least 1 feasible individual, NSGAII converges to a good 5.2 3 stages Reducer Problem approximated Pareto front every time. Whilst, if NSGAII is initialized with a random population, NSGAII either fails to converge to a feasible solution, or it converges to a low-quality Pareto front.

( a )

 a Number of converged runs. (b) Best Pareto front.
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 55 Figure 5.5: Results of 3SR problem solved by NSGAII with (blue) and without (red) initial feasible seed.
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 556 Figure 5.6 shows part of the domain of the 3SR problem explored by NSGAII with feasible initial population. The explored domain shows the complexity of the problem, where both feasible and infeasible solutions share the same domain on the projected objective domain. Moreover, all the feasible solutions are too near to the infeasible ones.
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 57 Figure 5.7: Flowchart of BnB-NSGAII "Search Feasibility" application.
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 585 Figure 5.8: Number of converged runs
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 559 Figure 5.9c shows that the legacy feature guides the exploration force of BnB-NSGAII towards the feasible solutions.
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 510 Figure 5.10: Number of successful runs of each CHT on 3SR problem
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 511 Figure 5.11: Results of the 6 CHTs on the mono-objective version of the 3SR problem.
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 512 Figure 5.12: Distribution of the quality metric over the 10 runs.

Figure 5 . 13 :

 513 Figure 5.13: Best to Best comparison between the Pareto fronts obtained by BnB-NSGAII (red) and NSGAII (blue).

Figure 5 .

 5 Figure 5.13 compares the best solution obtained by NSGAII to the best solution obtained by BnB-NSGAII. Table 5.2 shows the anchor points of the Pareto front obtained by each solver. The Pareto front obtained by BnB-NSGAII obviously dominates the Pareto front resulted by NSGAII. Moreover, BnB-NSGAII explores part of the Pareto that NSGAII failed to capture it.

  ing by Pareto elements" (BP) to be implemented in the Multi-criteria Branch and Bound algorithm (MCBB). The proposed strategies are based on interval branching concept that benefit from the solution of the parent node to create the children nodes. A numerical experiment has been designed to examine the performance of the proposed strategy with respect to the traditional strategy "Branching by Integer" (BI) on 5 mechanical engineering and 2 mathematical optimization problems. The experiment has also studied the effect of integer variable separation order on the performance of each strategy. Additionally, a new metric -Winning Ratio WR -is defined that measure the probability of each strategy to performs better than others for a 123 6. CONCLUSION randomly selected separation order. Results have shown the positive impact of the proposed strategy on MCBB convergence. Moreover, it has been noticed that the proposed strategy are relatively less affected by the separation order than BI. This work has proposed also a new ranking-based constraint handling technique based on the non-dominated sorting of constraint violation -NSCV. The technique has been specifically designed to handle engineering optimization problems with different orders of magnitude of constraints. NSCV is an uncoupled approach, hence, it can be implemented in any EA. NSCV is simple to implement and does not require any user intervention. NSCV was tested on two sets of benchmark problems. The results showed the competitive performance of NSCV against 5 state-of-art ranking-based CHTs. The 3 stage reducer problem is a point of interest of many researchers, either to use/ enhance it for engineering applications, or to examine the performance of optimization methods. The 3SR problem is desirable for such experiments for its complexity. In this work, the 3SR problem was reformulated to a bi-objective problem with additional constraints to meet the ISO standards to demonstrate two applications of BnB-NSGAII. The first application is to use BnB-NSGAII as an initiator of NSGAII, where BnB-NSGAII initially seeks feasible individuals before injecting them into the initial population of NSGAII. The second application is to solve the 3SR problem using BnB-NSGAII. The performances of NSGAII and BnB-NSGAII with and without the legacy feature were tested on the bi-objective version of the 3SR problem. Results show that the legacy feature guides the exploration force of BnB-NSGAII leading it to a better solution than that obtained by NSGAII and BnB-NSGAII.
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 61 Figure 6.1: Example that show the need for new fathoming rule.

  6.1) où k est la solution de la k th fonction objectif k ∈ {1, 2, . . . , p}. Chaque intervalle y i ′ j ∀ i ′ ∈ {1, . . . , s} représente un noeud enfant avec un total de s noeuds enfants, où s ≤ p + 1. Ensuite, les intervalles sont correctement décalés pour éviter les intersections, c'est-à-dire les solutions redondantes. Par exemple, supposons que y i j = {0, 1} ∪ {1, 2} ∪ {2, 3}, limites inférieures de l'intervalle seront décalées de 1 à partir du deuxième intervalle pour obtenir y i j = {0, 1} ∪ {2, 2} ∪ {3, 3}. La figure3.7 montre un exemple de stratégie BA (BA strategy) pour un problème biobjectif, où les vecteurs variables entiers des points d'ancrage du noeud racine sont (y solveurs peuvent être utilisés pour évaluer (borner) un noeud dans MCBB, un solveur mono-objectif ou un solveur multi-objectif. Le solveur mono-objectif résout le problème pour chaque fonction objectif indépendamment, ce qui donne uniquement les points d'ancrage du front de Pareto du noeud. Alors que dans le cas de BnB-NSGAII, le solveur multi-objectifs renvoie le front de Pareto du noeud. Le branchement par éléments de Pareto (Branching by Pareto elements -BP) est plus général que la stratégie BA. Cependant, il ne peut être implémenté dans MCBB qu'avec un solveur multiobjectifs. BP est similaire à BA, mais il sépare le domaine en fonction des solutions de Pareto du front de Parto (Définition 1) au lieu des points d'ancrage comme indiqué dans la figure 3.9, où P E est le nombre d'éléments dans F * i . Par conséquent, le nombre de noeuds s ′ issu de BP dans chaque niveau est toujours supérieur ou égal à celui de BA, c'est-à-dire s ≤ s ′ puisque les points d'ancrage sont un sous-ensemble de l'ensemble de Pareto. Ainsi, BP offre un potentiel d'exploration plus élevé à chaque niveau. Ce potentiel d'exploration est intéressant lorsque MCBB est utilisé avec des solveurs heuristiques ou méta-heuristiques (e.g. BnB-NSGAII, Adiche & Aider [2019]; Cacchiani & D'Ambrosio [2017]). Cependant, cela ne signifie pas que le nombre total de noeuds de BP est plus élevé, puisque tous les intervalles (noeuds enfants) dans les deux stratégies sont ensuite divisés en singletons. Par conséquent, il ne peut pas être prédit quelle stratégie permet d'obtenir une convergence avec un nombre total de noeuds inférieur.

3. 3 NSCV

 3 La nécessité d'une nouvelle technique de gestion des contraintes (CHT) a été discutée précédemment. Dans cette thèse nous proposons une nouvelle CHT basée sur le classement en se basant sur le tri non dominé des violations de contraintes (NSCV). Dans NSCV, la population est divisée en ensembles faisables (qui respectent donc les contraintes du problème d'optimisation) et infaisables (qui ne respectent toutes ou partie de ces contraintes). Les individus de l'ensemble faisables sont triés et classés en fonction des valeurs des fonctions objectifs. Ensuite, chaque individu faisable prend un rang R f . D'autre part, l'ensemble des individus infaisables est traité comme un problème d'optimisation multi-objectifs où les contraintes sont considérées comme les fonctions objectifs. Ensuite, la population infaisables est triée et classée en fonction de la non-domination des individus du vecteur G, où, G = g j (x) j = 1, . . . , m. (6.2) Par conséquent, par comparaison par paire (pair-wise comparison), chaque individu de l'ensemble infaisables prend un rang R C basé sur son G. Cette comparaison vectorielle entre les violations de contraintes élimine le besoin de normalisation lorsque différents ordres de grandeurs de violations de contraintes existent. A cette fin, NSCV ne favorise aucune solution sur une autre dans le même front (c'est à dire le même ensemble d'individus non dominé entre eux). Cependant, pour augmenter la pression vers une meilleure solution optimale, nous proposons de trier les solutions qui ont le même rang R C en fonction de leur rang calculé avec les valeur des fonctions objectifs R f . Par conséquent, l'algorithme NSCV peut être résumé comme suit. Pour n'importe quelle paires de solutions :

L

  'ordre de séparation (ordre de sélection des variables entières) affecte de manière significative l'effort d'explorationde MCBB Ghasemi Saghand et al. [2019]. Par conséquent, l'expérience numérique qui teste l'efficacité de la stratégie de branchement doit prendre en considération l'effet de l'ordre de séparation. Ainsi, pour une comparaison impartiale dans cette expérience, chaque problème est résolu à plusieurs reprises pour chaque ordre de séparation possible par chaque stratégie. Ensuite, pour chaque problème, une stratégie est considérée comme meilleure lorsque ses performances sont élevées sur un plus grand nombre d'ordres de séparation. Les performances seront évaluées par une métrique normalisée appelée Winning Ratio (WR), qui est le nombre de fois où chaque stratégie gagne (ayant les meilleures performances) sur le nombre total d'ordres de séparation possibles O pour chaque problème. Pour des résultats plus tangibles, 5 Applications : réducteur à engrenages à 3 étages Les algorithmes NSGAII et BnB-NSGAII, avec et sans la fonctionnalité héritée, ont été testés sur le problème 3SR. Chaque algorithme a été exécutée 10 fois. Le test a été fait en utilisant les mêmes paramètres pour les 3 solveurs (NSGAII, Bnb-NSGAII et BnB-NSGAII hérité). Le tableau 5.1 montre les paramètres utilisés dans cette expérience. Dans cette dernière, l'évaluation des performances de chaque méthode est limitée au nombre de fois que la méthode trouve au moins une solution faisable sur les 10 exécutions. La figure 5.8 montre le nombre de fois où chaque méthode a réussi le test. On peut évidemment conclure que la méthode héritée BnB-NSGAII surpasse les performances de NSGAII et BnB-NSGAII. Il convient de noter que l'effort de calcul n'est pas pris en compte puisque toutes les exécutions convergent dans les 30 minutes. Ce qui est considéré comme un délai acceptable pour un tel problème. La figure 5.9a montre que NSGAII a exploré un espace relativement restreint du domaine en fonction de la population initiale. Tandis que la figure 5.9b montre que BnB-NSGAII a exploré une partie plus large du domaine. La figure 5.9c montre que la fonctionnalité héritée guide la force d'exploration de BnB-NSGAII vers les solutions réalisables.5.3 Recherche de solutions optimalesLes performances de BnB-NSGAII, BA, BP et de la technique NSCV ont été examinées indépendamment dans le chapitre 3. L'impact de la fonctionnalité "héritage" sur la solution a également été examiné dans la section 5.3 où les performances globales de toutes les fonctionnalités implémentées dans un solveur ont été évaluées sur le problème 3SR. En utilisant les mêmes paramètres indiqués dans le tableau 5.1, BnB-NSGAII avec NSCV comme technique de CHT et BP comme stratégie de branchement ajouté à la fonctionnalité héritée est exécuté 10 fois. La performance globale est comparée avec celle de NSGAII avec une population initiale réalisable (voir Section 5.3). Chaque exécution est limitée à 24 heures, ce que nous considérons comme une durée de résolution acceptable pour un tel problème. En partant d'une population initiale infaisable, BnB-NSGAII converge vers un front de Pareto réalisable pour toutes les analyses. Par conséquent, la technique NSCV améliore en outre les performances de BnB-NSGAII avec une fonctionnalité héritée en termes de (1) guidage de la force d'exploitation de BnB-NSGAII ; (2) augmentation de la robustesse de BnB-NSGAII ce qui conduit à des exécutions réussies de 100 %. La figure 5.12 montre la distribution de GD, l'écart relatif d∆ et l'indicateur de pureté par rapport aux 10 exécutions. Les performances globales des fonctionnalités proposées surpassent de manière significative les performances de NSGAII en ce qui concerne les trois métriques de mesure. Il est à noter que la valeur de l'indicateur de pureté de NSGAII est de 0 dans toutes les séries. Rappelons que cet indicateur de pureté représente le rapport du nombre de solutions non dominées obtenues par NSGAII par rapport au nombre total de solutions dans le véritable ensemble de Pareto. Cela signifie que NSGAII n'a réussi à capturer aucune solution qui domine les solutions obtenues par l'algorithme que nous proposons pour toutes les exécutions. La figure 5.13 compare la meilleure solution obtenue par NSGAII à celle obtenue par BnB-NSGAII. Le front de Pareto obtenu par BnB-NSGAII domine clairement le front de Pareto résultant de NSGAII. De plus, BnB-NSGAII explore une partie du Pareto que NSGAII n'a pas réussi à capturer. Ceci vérifie le fort potentiel d'exploration de BnB-NSGAII. 5.4 Technique de gestion de contraintes NSCV La performance compétitive de la technique NSCV sur les problèmes de référence est évaluée sur le problème 3SR dans le but d'identifier l'impact de celle-ci sur la solution du problème 3SR. Pour conserver le même cas test présenté dans la section 3.5.2, le problème 3SR est résolu comme un problème mono-objectif ne prenant que l'objectif de volume. La performance de la technique NSCV est évaluée comparativement à d'autres techniques CHT en résolvant le problème 3SR 30 fois par chaque technique CHT à partir de la même population initiale en utilisant les mêmes paramètres définis dans le tableau 4.2. La figure 5.10 montre le nombre d'exécutions réussies de chaque CHT, c'est-à-dire que le solveur trouve au moins une solution réalisable. La technique NSCV enregistre le plus grand nombre d'analyses réussies avec 29 analyses sur 30, ce qui indique que cette technique possède la meilleure robustesse parmi les autres techniques CHT de la comparaison. Il est clairement observé sur la figure 5.11a que la technique NSCV trouve la meilleure solution optimale parmi les autres techniques CHT. La figure 5.11b montre la densité de solution faisable dans la dernière génération de chaque technique CHT : NSCV a la densité la plus élevée après VCH. La figure 5.11c montre le nombre de générations nécessaires avant de trouver la première solution faisable. Il est clairement démontré que la technique MCR est la technique CHT la plus rapide pour en trouver une. Néanmoins, la technique NSCV présente toujours des performances relativement bonnes, où sa médiane est inférieure à 100 de générations sur 500.6 ConclusionIl a été remarqué dans la littérature le manque de propositions d'hybridation de méthode de séparation/évaluation multi-critères (MCBB) avec des algorithmes méta-heuristiques, contrairement aux méthodes de séparation/évaluation mono-objectif. Nous avons proposé une méthode de séparation/évaluation multi-critères à usage général basée sur un algorithme génétique (NS-GAII) pour résoudre des problèmes de programmation non-linéaire en variables mixtes non convexes multi-objectifs (MO-MINLP), en particulier des problèmes de conception mécanique.L'algorithme proposé et NSGAII ont été testés sur 7 problèmes MO-MINLP de la littérature.Les résultats montrent que l'algorithme proposé obtient de meilleures solutions pour tous les 150 6 Conclusion problèmes, bien que dans certains cas, l'effort de calcul a été supérieur à celui de NSGAII. Dans ce travail, nous avons également conçu une nouvelle métrique qui relie la qualité de la solution à son coût d'obtention, que nous avons appelée ratio d'investissement. Il a été observé que les résultats sont améliorés ce qu'atteste un ratio plus élevé que le ratio de coût de calcul pour 6 problèmes sur 7, ce qui prouve l'efficacité de la méthode proposée. L'algorithme BnB-NSGAII a été amélioré en ajoutant la fonctionnalité "héritage". Cette dernière est une fonctionnalité générique qui peut être implémentée dans n'importe quel algorithme de séparation/évaluation. Toute information générée au cours du processus de résolution d'un noeud pourrait représenter l'héritage. Dans ce travail, l'héritage était la dernière population du noeud père dans BnB-NSGAII. Ce dernier a été ensuite utilisé pour initialiser le noeud fils. Nous avons proposé de nouvelles stratégies de branchement (séparation) "Branching by Anchor points" (BA) et "Branching by Pareto elements" (BP) qui ont été testées et implémentées dans l'algorithme Multi-criteria Branch and Bound (MCBB). Les stratégies proposées sont basées sur le concept de branchement par intervalles qui utilise de la solution du noeud parent pour créer les noeuds enfants. Une expérience numérique a été conçue pour examiner les performances de la stratégie proposée par rapport à la stratégie traditionnelle "Branching by Integer" (BI) sur 5 problèmes d'ingénierie mécanique et 2 problèmes d'optimisation mathématique. Nous avons également étudié l'effet de l'ordre de séparation des variables entières sur les performances de chaque stratégie. De plus, une nouvelle métrique -Winning Ratio WR -est définie pour mesurer la probabilité que chaque stratégie soit plus performante que les autres pour un ordre de séparation sélectionné au hasard. Les résultats ont montré l'impact positif de la stratégie proposée sur la convergence de l'algorithme BnB-NSGAII. De plus, il a été remarqué que la stratégie proposée est relativement moins affectée par l'ordre de séparation que BI. Des travaux futurs sont consacrés à la recherche d'un nouvelle règle d'exploration qui dépend (1) des limites des noeuds et (2) de la taille des intervalles créés par les stratégies de branchement proposées. Ce travail a également proposé une nouvelle technique de gestion des contraintes reposant sur le classement par le tri non dominé des violations de contraintes ; la technique NSCV. La technique a été spécialement conçue pour traiter des problèmes d'optimisation d'ingénierie avec des fonctions contraintes de différents ordres de grandeur numérique. La technique NSCV est une approche non couplée, elle peut donc être mise en oeuvre dans n'importe quelle stratégie évolutionnaire (EA) puisqu' elle ne nécessite aucune intervention de l'utilisateur. La technique NSCV a été testée sur deux ensembles de problèmes de référence. Les résultats ont montré la performance compétitive de la technique NSCV contre 5 techniques CHT conventionnelles basées sur un classement. Les travaux futurs seront consacrés à comparer les performances de la technique NSCV à un ensemble plus large de techniques CHT qui ne relèvent pas nécessairement de la catégorie des ≪ méthodes basées sur le classement ≫. De plus, les études futures incluront la mise en oeuvre de la technique NSCV dans des EA multi-objectifs. Le problème du réducteur à 3 étages est représentatif des problèmes de conception optimale. Ce type de problème peut être utilisé pour de nombreux objectifs soit pour l'utiliser/l'améliorer les meilleures solutions connues pour des applications d'ingénierie, soit pour examiner les performances des méthodes d'optimisation. Le problème 3SR est intéressant pour de telles expériences de part sa complexité. Dans ce travail, le problème 3SR a été reformulé en un problème bi-objectif avec des contraintes supplémentaires pour intégrer les normes ISO de calcul sur les capacités de charge des engrenages, afin d'illustrer deux applications de notre algorithme BnB-NSGAII. La première application consiste à utiliser BnB-NSGAII comme initiateur de NSGAII, où BnB-NSGAII recherche initialement des individus faisables avant de les injecter dans la population initiale de NSGAII. La deuxième application consiste à résoudre le problème 3SR en utilisant BnB-NSGAII. Les performances de NSGAII et BnB-NSGAII, avec et sans la fonctionnalité "héritage", ont été testées sur la version bi-objectif du problème 3SR. Les résultats montrent que la fonctionnalité "héritage" guide la force d'exploration de BnB-NSGAII en la conduisant vers de meilleures solutions que celles obtenues par NSGAII et BnB-NSGAII sans cette fonction "héritage". 1 Problems Formulation C 1 = (XF r1 (x 1 , x 2 ) + Y F a1 )

L 10 :

 10 max {ϕ 4 (i r1 ), ϕ 4 (i r2 )} -D Max ≤ 0 C 10 =ϕ 4 (i r1 ) -ϕ 4 (i r2 ) ≤0Where:i r1 , i r2 ∈ {1, . . . , 61} × {1, . . . ,61}Given :{x 1,2Min , x 1,2Max , d 1,2Min , D Max , . . . . . . ρ a , ω, L v , X O , Y O , Z O , M O , N O } With : i r1 , i r2 : Index of61 references in bearing catalog for bearing parameters values [El Samrout, 2019]. Lifespan expressed in millions of turns []. C : Dynamic load bearing capacity, intrinsic to rolling bearing [N]. P eq : Radial equivalent load [N].

F a :

 a Axial load in [N].

F r :C 0 :B 1 , 2 :D 1 , 2 :

 r01212 Radial load in [N]. X,Y : A dimensionless coefficient that depends on the bearing type and on the ratio Fa C0 . Static load bearing capacity, intrinsic to the rolling bearing in [N]. Bearing width (R1) and (R2) [mm]. Outside diameter of bearings (R1) and (R2) [mm]. d 1,2 : Bearing inner diameter (R1) and (R2) [mm].

D

  Max : Maximum bearing mounting diameter [mm]. m 1,2 : Mass of bearings (R1) and (R2) [g]. d a1,2 : Diameter of the necessary shoulders on the shaft for bearings (R1) and (R2) [mm].

  ρ a : Shaft density [g/mm 3 ].
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 2 Figure A.2: Illustration of bearing problem

{N

  16ϕ2(i d )+0.583(ϕ1(i d )-0.6495ϕ2(i d ))f1) ϕ1(i d )-0.93815ϕ2(i d ) Mini , N Maxi , k s , R Mini , R Maxi , e p , M T , . . . . . . M Maxi , α S , f 1 , f m , R e ,ρ J , ρ b } With: i d : Index of 15 references in bolts catalog for bolts parameters values [El Samrout, 2019]. C 1 : Torsion torque in the bolt body due to tightening [N mm].

F 0 :

 0 Tension force in the bolt body [N]. d : Nominal thread diameter [mm]. p : bolt thread pitch [mm].

d 2 :

 2 Average diameter at the thread end of the thread [mm].

f 1 :

 1 Coefficient of friction thread [ul].

F 0Maxi :

 0Maxi Maximum tension in the bolt body [N].

F 0Mini :

 0Mini Minimum tension in the bolt body [N]. α S : Uncertainty coefficient of the clamping tool > 1 [ul]. d s : Diameter of the "resistant" section of the thread [mm].

d 3 :

 3 Diameter of the thread kernel [mm]. C 1 : Torsion torque calculated for F 0 = F 0Maxi . R e : Elastic limit of the bolt depending on its quality class [MPa]. M : Torque transmitted by coupling [N m]. N : Number of bolts [ul]. R b : Position radius of N bolts [mm].

f m :

 m Coefficient of friction between the plates of the coupling [ul]. s : Deviation on the circumference between two bolts [mm]. b m : Radial size of the clamping tool, depending on the nominal diameter of the bolt d [mm]. s m : Circumference of the clamping tool, depending on b m and the installation radius of the N bolt[mm]. s m : Diameter of the holes in the rims, depending on the nominal diameter of the bolt d [mm]. e p : Thickness of the coupling rims [mm]. ρ J : Density of the rim material [kg/mm 3 ]. ρ b : Density of the bolt material [kg/mm 3 ]. d Maxi : Diameter of the largest bolts [mm]. N Maxi : Maximum number of bolts [ul]. M Maxi : Maximum torque that can be transmitted by adhesion [N m].

Figure A. 3 :

 3 Figure A.3: Illustration of coupling problem

3 ( 0 c 4 = 10 c 5 17 c 9 =x3 -y 3 ≤ 25 -

 3041051725 Mathematical ProblemIn Tong problem, it involves 3 continuous variables, 3 binary ones and 9 constraints. The problem is formulated as following:minimize f 1 = x 2 1 -x 2 + x 3 + 3y 1 + 2y 2 + y 3 f 2 = 2x 2 1 + x 2 -3x 3 -2y 1 + y 2 -2y 1 + x 2 9x 3 + y 1 + 7y 2 ≤ 40 c 3 = -x 1 -2x 2 + 3x 3 + 7y 3 ≤ -x 1 + 12y 1 ≤ =x 1 -2y 1 ≤ 5 c 6 = -x 2 + y 2 ≤ 20 c 7 =x 2 -y 2 ≤ 40 c 8 = -x 3 + y 3 ≤ 100 ≤ x i ≤ 100; i = 1, 2, 3; x i ∈ R y j ∈ {0, 1}; j = 1, 2, 3Appendix B
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  Combining approximate methods with tree search.
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  Illustrative example of the branching tree of BnB-NSGAII on the problem PMO-MINLP .

				P MO-MINLP
	Initialization			y ∈ {y ¯, ȳ}
		P MO-MINLP	P MO-MINLP		P MO-MINLP	P MO-MINLP
		((y ¯)1 , (ȳ) 1 )	((y ¯)2 , (ȳ) 2 )		((y ¯)3 , (ȳ) 3 )	((y ¯)4 , (ȳ) 4 )
	Exploration				
		P MO-MINLP	P MO-MINLP
		((y ¯)5 , (ȳ) 5 )	((y ¯)6 , (ȳ) 6 )
	Exploitation	P MO-NLP (ȳ 1 )	P MO-NLP (ȳ 2 )	P MO-NLP (ȳ 3 )	P MO-NLP (ȳ 4 )
	Figure 3.3:				

  y) by NSGAII root // N i → root node

	11	end	
	12	end	
	13	P I i ← Ideal point of F * i	// By Definition 3

9 else 10 F * i ← Solve N i as P MO-MINLP (x, y i ) by NSGAII node // N i → node 14 if P I i dominates F * And N i is feasible then 15 F * ← F * + F * i // Update Incumbent List 16 F * ← Pareto filtering of F * // By Definition 1, see Figure 3.4 17 if y ¯i ̸ = y ¯i then 18 N i ′ ← Branch( N i ) // Create set of children nodes (Section 3.4) 19 N ← N + N i ′ // Store children nodes in nodes list 20 end 21 end 22 N ← Remove N i from N 23 i ← Select next node // Selection of active node 24 end

  2, . . . , s}. The children nodes are finally stored in the nodes list N i ′ .

	Algorithm 3: Branching by Anchor Points Function	
		Input: N i	// Parent node
		Output: N i ′	// List of children nodes
	7	end	
	8	y i j ← equation 3.6	// Split the domain
	9	foreach y i ′ j ∈ y i j do	
	10 11	if i ′ ̸ = 1 And y ¯i′ j < y ¯i′ j then y ¯i′ j ← y ¯i′ j + 1	// Shift interval limits
	18	end	
	19	return N i ′	
	20 End Function	
	3.4.1.2 Constructing the Combinatorial Tree	

1 Function Branch(N i ):

2 N i ′ ← ∅ //

Initialize children nodes list 3 F * i ← anchor points of node N i 4 j ← select an integer variable 5 while y ¯i j = y ¯i j do // Seek for a non-singleton node 6 j ← j + 1 12 end 13 Create child node N i ′ 14 y i ′ ← y i // Set the integer domain as parent node 15 y i ′ j ← i ′ interval of y i j // Assign limits to the j th integer variable 16 N i ′ ← N i ′ + N i // Update children nodes list 17 i ′ ← i ′ + 1 // Select next interval

  3. HYBRID BRANCH AND BOUND BASED GENETIC ALGORITHM4 in Algorithm 3) is the separation order of integer variables. There is several methods to define this order (seeSection 4.3). Although in this thesis, the integer variable is selected in the order of declaration of variables. Starting from the 1st variable, the root node is branched via Algorithm 3 resulting in list of children nodes N i ′ of branching level j. The children nodes are then stored in the nodes list N i (Step 19 in Algorithm 2).

Table 4

 4 

			.1: Test problems properties	
	Problem	#	# Integer Var	#	Pareto
		Variables	Vars	Type	Constraints Type
	Gear	4	4	Integer	0	Discrete
	Bearing	4	2	Discrete	10	Discrete
	Coupling	4	2	Discrete	4	Discrete
	Brake	4	1	Integer	5	Discontinuous
	Truss	9	6	Discrete	0	Discontinuous
	Mela	10	8	Binary	0	Discontinuous
	Tong	6	3	Binary	9	Continuous

Table 4 . 4 :

 44 Selected parameters for BnB-NSGAII

	Problem ID	Root Pop Gen Stall Pop Gen Stall Pop Gen Stall Node Leaf
	Gear	20 18	100 100	800 800	500 500	50 100	100 50	20 20	50 50	20 20	20 20
	Bearing	19 22	50 50	800 800	800 800	50 50	800 800	300 800	50 100	800 800	300 800
	Coupling	25 24	10 10	100 100	100 100	10 10	150 100	100 100	10 10	800 800	200 800
	Brake	12 6	50 1000 1000 1000 200 200	50 50	200 20	200 20	100 100	200 800	200 500
	Truss	7	1000 1000 1000 100	20	20	100	20	20
	Mela	10 7	200 1000 1000 1000 800 100	50 50	20 20	20 20	50 50	200 200	200 200
	Tong	10 16	200 1000 1000 200 1000 1000 200 1000 1000 200 1000 1000 50 20 20 100 800 500

relative spread d∆, number of solutions in the approximated Pareto front | S |, purity ratio and computational effort after removing the outlier points, in addition to the investment ratio indicator. It is observed that BnB-NSGAII is able to provide a "good investment" (IR > 1) for all problems except for truss problem. Therefore, the effectiveness of BnB-NSGAII is justified for 6 out of 7 problems. IR = ∞ in gear problem (see Table

4

.5) means that BnB-NSGAII is able to find a solution with best quality, i.e. the true solution.

For continuous/discontinuous Pareto problems, the maximum number of Pareto elements could be obtained by NSGAII is limited by the population size. In Table

4.

5, it is shown that more elements are found by BnB-NSGAII (| S | BnB-NSGAII >| S | NSGAII ) since in BnB-NSGAII the number of elements is limited by (population size * number of leaf nodes).

Table 4 . 5 :

 45 Mean values of GD, relative spread (d∆), number of solutions (| S |) and number of evaluations in addition to IR for the selected combinations ID. (Better results are emphasized)

	Problem Method	ID GD	d∆	| S | Purity	#Evals	IR
							%	1×10 5	
		NSGAII	1	5.6 × 10 -2	1.9 × 10 -2	27	97	10	1
	Gear	BnB-NSGAII	20 18	3.6 × 10 -2 0	0 0	28 28	99 100	16 31.2	24.5 ∞
		NSGAII	1	8.8 × 10 -4	6.7 × 10 -2	5	92	10	1
	Bearing	BnB-NSGAII	19 1.6 × 10 -4 22 6.2 × 10 -5	5.0 × 10 -3 2.0 × 10 -3	5 5	100 100	5.4 26.6	1.59 0.82
		NSGAII	1	2.9 × 10 -5	6.0 × 10 -1	47	34	10	1
	Coupling	BnB-NSGAII	25 4.2 × 10 -5 24 1.4 × 10 -5	4.0 × 10 -1 2.8 × 10 -1	40 35	63 71	9.2 30.2	1.11 0.71
		NSGAII	2	5.6 × 10 -4	1.2 × 10 -1	188	20	10	1
	Brake	BnB-NSGAII	12 2.1 × 10 -4 6 1.4 × 10 -4	1.5 × 10 -1 1.8 × 10 -1	399 474	21 24	3.9 22.5	3.68 0.73
		NSGAII	1	3.3 × 10 -5	8.7 × 10 -2	998	41	10	1
	Mela	BnB-NSGAII	10 8.8 × 10 -5 7 2.3 × 10 -5	8.6 × 10 -3 6.7 × 10 -2 1535 835	33 40	3.6 12.1	5.29 1.13
	Truss	NSGAII	1	9.6 × 10 -5	1.7 × 10 -1	915	29	10	1
		BnB-NSGAII	7	6.4 × 10 -5	2.4 × 10 -1 1438	30	53.7	0.19
		NSGAII	6	3.7 × 10 -2	1.5 × 10 -1	141	0	10	1
	Tong	BnB-NSGAII	10 7.0 × 10 -2 16 3.2 × 10 -2	2.7 × 10 -2 2.2 × 10 -2	119 181	0 0	3.6 36	4.85 0.78

1

  BI, BA and BP are Branching by Integer, Anchor and Pareto elements strategy respectively.

	4. NUMERICAL EXPERIMENT									
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Table 4

 4 

		.6: Benchmark problems sizes
	Problem Combinatorial Size O # Separation Orders M
	Gear	24	5.8 × 10 6
	Bearing	2	3.8 × 10 4
	Coupling	2	7.8 × 10 2
	Brake	1	2.0 × 10 1
	Truss	720	4.1 × 10 3
	Mela-v2	40320	3.3 × 10 4
	Tong-v2	6	6.8 × 10 1

Table 4 .

 4 8: Properties of RW-Problems set.

	Name Description	Dimension	Constraints
	RW15 Speed reducer weight	7	
	RW16 Industrial refrigeration system	14	
	RW17 Tension/compression spring	3	
	RW18 Pressure vessel design	4	
	RW19 Welded beam design	4	
	RW20 Three-Bar truss	2	
	RW21 Multiple disk clutch brake	5	
	RW22 Planetary gear train design	9	
	RW23 Step-Cone pulley	5	
	RW24 Robot gripper	7	
	RW25 Hydro-Static thrust bearing	4	
	RW26 Four-stages gear box	22	
	RW27 Ten-Bar truss	10	
	RW28 Rolling element bearing	10	
	RW29 Gas transmission compressor	4	
	RW30 Tension/compression spring	3	
	RW31 Gear train design	4	
	RW32 Himmelblau's function	5	

Table 4 .

 4 9: Parameters used in genetic algorithm.

	Parameters	Value
	Cross over probability	0.9
	Mutation Probability	0.95
	Population size	100
	Maximum generations	500
	Crossover operator	Simulated Binary crossover (SBX) Maruyama & Tatsukawa [2017]
	ETAC	100
	Mutation operator	Partially-mapped crossover (PMX) Maruyama & Tatsukawa [2017]
	ETAM	10
	Selection method	Tournament selection method (TSM) Fang & Li [2010]

Table 5

 5 

		.1: Parameters used for NSGAII algorithm
	Parameters	Value
	Cross over probability 0.8
	Mutation Probability	0.9
	Population size	200
	Allowable generations 500
	Constraint handling	Superiority of Feasible Deb et al. [2002]
	Crossover operator	Simulated Binary crossover (SBX) Maruyama & Tatsukawa [2017]
	ETAC	100
	Mutation operator	Partially-mapped crossover (PMX) Maruyama & Tatsukawa [2017]
	ETAM	10

  BnB-NSGAII: Search Feasibility 

				Start			
				Solve node with			
				NSGAII			
	Initialize NSGAII with feasible seed(s)	Yes	Feasible Solution Found	NO	All integer variables are fixed	NO	Add children nodes to node list
					Yes		
	Solve 3SR problem with NSGAII		BnB-NSGAII fails to find feasible solution	Yes	Node List is empty	NO	Select node from node list
	End						

Table 5 . 2 :

 52 Anchor points of the best Pareto front obtained by each solver for the 3SR problem.

	Anchor Objective	NSGAII BnB-NSGAII
	1	Volume [mm 3 ] Tolerance ratio [ul]	7.32 × 10 6 0.42	5.37 × 10 6 0.66
	2	Volume [mm 3 ] Tolerance ratio [ul]	1.29 × 10 7 0.012	1.19 × 10 7 0

  MINLP en mono-objectif en construisant un arbre combinatoire. Le concept principal de MCBB est de convertir P MO-MINLP en plusieurs problèmes non linéaires en variables mixtes mono-objectifs P MINLP et en problèmes non linéaires continus multi-objectifs P MO-NLP . Ceci est réalisé en construisant un arbre combinatoire qui vise à partitionner le problème du noeud racine, P MO-MINLP , en un nombre fini de sous-problèmes (noeuds) N 1 , . . . , N i , . . . , N n , i ∈ {1, . . . , n}, où n est le nombre total de noeuds. Le partitionnement (branchement) se fait en modifiant les bornes supérieure et inférieure des variables entières y. Ensuite, chaque noeud est résolu à plusieurs reprises pour chaque objectif fonction indépendamment en tant que P MINLP . En résolvant N i , l'un des éléments suivants est révélé :• N i est infaisable, signifie que le solveur n'a trouvé aucune solution qui satisfait toutes les contraintes, c'est-à-dire que le domaine réalisable est vide en raison de la modification des bornes supérieure et inférieure des variables entières. Par conséquent, N i est élagué (fathomed ) par infaisabilité.• N i est faisable, mais, la borne inférieure actuelle P I i est dominée par une borne supérieure précédemment trouvée F * . Par conséquent, N i est compris par optimalité. • N i est faisable, et, P I i n'est pas dominé par F * , P I i ≤ F * . F * est ensuite mis à jour en y ajoutant la borne supérieure actuelle F * i . Si le noeud n'est pas sondé, l'arbre combinatoire est ramifié plus loin en divisant N i en sousproblèmes plus éloignés, appelés noeuds enfants. Si un noeud ne peut plus être divisé, il est appelé noeud feuille. Les feuilles sont résolues comme P MO-NLP , puisque toutes les variables entières sont fixes. L'algorithme 3.2 démontre la boucle principale de MCBB. Dans MCBB, il y a plusieurs composants qui ne sont pas spécifiés, mais qui peuvent avoir des impacts significatifs sur les performances de l'algorithme [Morrison et al., 2016]. Ces composants sont illustrés dans la figure 2.6. A notre connaissance, il existe un manque dans la littérature concernant les stratégies de branchement pour le MCBB. Le principal inconvénient des méthodes exactes MINLP est d'abord que le coût de calcul augmente de façon prohibitive lorsque l'espace combinatoire est grand. Un autre aspect lié aux méthodes exactes qui résolvent les MINLP est que la plupart d'entre elles reposent sur le concept de relaxation entière, ce qui peut être indésirable dans certains cas. Si le problème ne peut pas être relaxé, la seule façon de le résoudre est d'énumérer toutes les combinaisons possibles des variables entières qui peuvent conduire à "l'explosion combinatoire" avec l'augmentation de la taille du problème. Dans ce cas, seuls les petits espaces combinatoires pourraient être résolus par de telles une approche. Par conséquent, bien qu'il existe des méthodes exactes pour résoudre les problèmes d'optimisation en nombres entiers mixtes, ces méthodes ont leurs inconvénients. Elles peuvent ne pas toujours être utilisées en raison de la formulation du problème ou du fait qu'elles auraient besoin d'un temps excessif pour résoudre les problèmes. C'est pourquoi les métaheuristiques et autres méthodes approximatives font l'objet d'une attention croissante.

	2.1.1 Méthodes exactes La méthode la plus populaire pour résoudre exactement un problème MO-MINLP consiste utiliser une technique de scalarisation (T1) pour transformer le problème multi-objectif en un à problème mono-objectif. Ensuite, le problème résultant est résolu itérativement à l'aide d'un solveur mono-objectif. La figure 2.7 montre les solveurs mono-objectifs les plus populaires dans la littérature classés par type de problèmes qu'ils ont l'intention de résoudre. Mavrotas & Diakoulaki [1998] propose un schéma de conversion, autre que la technique de scalarisation, en utilisant le framework branch and bound (E2.1). Intitulé "Multi-Criteria Branch and Bound (MCBB)" [Mavrotas & Diakoulaki, 1998], ce schéma introduit un nouveau paradigme pour convertir MO-2.1.2 Inconvénients
	2.1.3 Méthodes Approximatives
	Contrairement aux méthodes exactes, les méthodes approximatives permettent d'aborder des
	instances de problèmes de grande taille en apportant des solutions satisfaisantes dans un délai
	raisonnable. Il n'y a aucune garantie de trouver des solutions optimales globales ou même des
	solutions bornées. Les métaheuristiques, les méthodes approchées les plus répandues, ont deux
	comportements contradictoires dont il faut tenir compte : l'exploration de l'espace de recherche
	et l'exploitation des meilleures solutions trouvées . En exploration, les régions non explorées
	doivent être visitées pour s'assurer que toutes les régions de l'espace de recherche sont explorées
	uniformément et que la recherche ne se limite pas à un nombre réduit de régions. Tandis que,
	l'exploitation est une recherche locale d'amélioration itérative

  sélectionné ≫ pour élever une nouvelle génération. Par conséquent, une fonction de sélection choisit les ≪ parents ≫ sur la base d'un processus de sélection basé sur la forme physique, où les solutions plus convenables sont plus susceptibles d'être sélectionnées. A chaque génération, l'AG utilise la génération actuelle pour créer la nouvelle progéniture qui définira la prochaine génération. L'algorithme appliquera un ensemble d'opérateurs génétiques (croisement et mutation) sur les parents sélectionnés par la fonction de sélection pour générer les enfants. La re-combinaison (ou croisement) est la combinaison d'une paire de parents, analogue à la reproduction biologique. Les enfants mutés sont créés par un changement aléatoire (ou une mutation) des gènes d'un seul parent. Les deux opérateurs génétiques sont essentiels pour le succès de la recherche d'optimisation. La re-combinaison permet à l'algorithme de préserver les meilleurs gènes de différents individus et les recombiner en enfants éventuellement plus en forme. Cela permet un meilleure ≪ exploitation ≫ de l'espace de recherche. Tandis que la mutation augmente la diversité de la population et permet une ≪ exploration ≫ plus poussée du domaine de recherche.Sur un certain nombre de problèmes de test et sur un certain nombre de problèmes de conception technique, la NSGA aurait trouvé un nombre de solutions non dominées. Cependant, le même auteur améliore l'algorithme pour qu'il soit NSGAII. Bien que la population soit toujours triée sur la base de la non-domination, une procédure de comptabilité spéciale est utilisée afin de réduire la complexité de calcul. De plus, pour chaque génération, la population des parents est combinée avec la population des enfants. Cela permet de comparer les solutions des parents avec la population des enfants, ce qui assure l'élitisme.Dans le contexte de l'optimisation du génie mécanique, la littérature ne fournit pas de conclusion claire sur la métaheuristique ayant les meilleures performances.[START_REF] Yildiz | A Comparative Study of Recent Nontraditional Methods for Mechanical Design Optimization[END_REF] a conclu que la meilleure métaheuristique est l'optimisation de la flamme des mites (MFO) sur un benchmark de 6 problèmes de conception d'ingénierie mono-objectif à nombre entier mixte. Abderazek et al. GeneAS est suffisamment flexible pour gérer de tels problèmes de conception d'ingénierie MINLP car il utilise une combinaison de GA codés en binaire et en code réel en fonction de la nature des variables de conception. Par conséquent, bien que la nature mixte du problème soit un problème grave en métaheuristique, les AG sont des sortes de métaheuristiques capables de gérer de tels problèmes en fonction du type de technique de codage de variable utilisée dans l'AG. Cette flexibilité est l'une des raisons qui ont valu aux GA leur popularité dans le domaine MINLP. En comparant la solution obtenue à partir des cinq métaheuristiques au vrai front de Pareto de chaque problème, l'auteur a conclu que ≪ on peut supposer sans risque que les métaheuristiques traditionnelles étaient incapables de résoudre le problème des trois optimisations ≫. Même dans le cas de la meilleure métaheuristique, qui est NSGAII dans ce cas, toutes les solutions de Pareto n'ont pas été trouvées par la métaheuristique.Même avec l'utilisation de la meilleure métaheuristique pour les trois problèmes d'optimisation, le front de Pareto calculé est encore loin d'être une bonne solution. Le faible pourcentage d'intersection de solutions entre le front vrai et celui calculé pour les trois problèmes vérifie cette conclusion. De plus, les métaheuristiques "traditionnelles" ne sont pas capables, par nature, de traiter des problèmes à variables mixtes contraintes. Seules certaines d'entre elles peuvent être considérées comme des méthodes natives comme mentionné précédemment. Ainsi, la nécessité 'optimisation considéré. L'hybridation de méta-heuristiques avec des concepts branch and bound est assez récente[START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF]. D'un côté, il est possible d'utiliser des concepts de branches et de bornes dans les méta-heuristiques basées sur la construction afin d'augmenter l'efficacité du processus de recherche des méta-heuristiques. D'un autre côté, les méta-heuristiques peuvent être utilisées au sein de branch and bound afin de réduire la consommation d'espace et de temps de branch and bound[START_REF] Blum | Hybridizations of Metaheuristics With Branch & Bound Derivates[END_REF]. -objectif et liée comme illustré sur la figure 2.10. Ce manque de littérature peut être dû à l'appréhension d'un effort de calcul élevé. Par conséquent, toute conception d'un tel hybride doit prendre en compte "l'investissement" dans l'effort de calcul. Dans lequel, les hybrides qui combinent MCBB avec métaheuristique devraient consommer plus d'efforts que la métaheuristique elle-même, cependant, que se passe-t-il si cet investissement dans l'effort de calcul est ajouté à la métaheuristique elle-même (en augmentant les générations maximales ou la taille de la population en GA) ? En fait, il s'agit d'une question de recherche ouverte qui [2020], ils ont été complétés avec succès par des techniques de gestion des contraintes (CHT) pour résoudre des problèmes sous contraintes. Les CHT guident le processus de recherche vers les régions réalisables et fournissent idéalement des solutions qui ne violent aucune contrainte. Ces approches ont été classées dans Michalewicz & Schoenauer [1996] comme des méthodes basées sur une recherche de solutions réalisables et des méthodes basées sur la préservation de la faisabilité des solutions. Récemment, un axe de recherche important a vu le jour consistant à étudier les CHTS par classement Peng et al. [2020]. Les CHT basés sur le classement trient et classent la population en fonction de la combinaison de la valeur de la fonction objectif et des violations de contraintes. Dans ce contexte, Runarsson & Yao [2000] a proposé la technique de classement stochastique (SR) qui équilibre les fonctions de pénalité et celles objectifs par un paramètre P f , produisant un classement en comparant des individus adjacents. Plus tard, les mêmes auteurs ont proposé le classement golbal compétitif (Global Competitive Ranking -GCR) [Runarsson & Yao, 2002] qui équilibre toujours l'objectif et la fonction de violation avec le paramètre P f , et définit une fonction d'aptitude (fitness function) selon deux classements : la fonction objectif et la somme des violations. Ho & Shimizu [2007] a proposé un schéma de classement où les individus sont triés à l'aide d'une fonction définie selon trois classements respectivement: la fonction objectif; les valeurs de violation de contrainte et le nombre de violations contraintes. Plus récemment, Garcia et al. [2017] a proposé le classement à contraintes multiples (Multiple Constraint Ranking La solution optimale peut exister à la frontière de plusieurs contraintes, c'est-à-dire que plusieurs contraintes sont actives. Ainsi, le nombre de contraintes violées de rang R N V utilisé dans les méthodes Ho et Shimizu, MCR et VCH n'est pas théoriquement un indicateur du meilleur individu. La nécessité d'un CHT sans paramètres (contrairement aux méthodes de pénalité, SR et GCR) en plus des préoccupations mentionnées précédemment sont les principales motivations pour proposer un nouveau CHT basé sur le classement. Pour déterminer une bonne solution approchée du front de Pareto d'un problème P MO-MINLP , nous proposons une approche hybride générale basée sur une méthode MCBB et un algorithme génétique de type NSGAII, pour laquelle, à notre connaissance, il s'agit de la première tentative de combinaison. Le succès de l'utilisation des méta-heuristiques avec "branch and bound" en mono-objectif est le principal motif pour les utiliser avec le branch and bound multicritères. Dans notre proposition, MCBB est utilisée pour améliorer la force d'exploration de NSGAII de l'espace du domaine à variables mixtes en le séparant sur des sous-domaines, puis NSGAII sera utilisé pour "évaluer" chacun d'eux. De cette façon, MCBB guide la recherche en utilisant les bornes inférieures obtenues par NSGAII. Nous appelons cette approche BnB-NSGAII. MO-MINLP en p problème MINLP mono-objectif pour chaque noeud. Dans notre proposition, BnB-NSGAII divise le domaine de P MO-MINLP en plus petits sousdomaines en construisant un arbre exploratoire qui vise à augmenter la force d'exploitation de NSGAII. Ici chaque noeud N i répresentant un problème P MO-MINLP "plus petit" est évalué avec l'algorithme NSGAII en résolvant un problème multi-objectif. De manière à conserver la dernière population du noeud précédent, nous proposons de permettre l'héritage entre les noeuds où chaque noeud enfant hérite de la dernière population de son noeud parent. Le noeud fils initialise alors NSGAII par cette population.Les noeuds enfants sont des sous-problèmes de leur noeud parent. Ainsi, les bornes sur les variables entières du noeud parent sont différentes de celles des noeuds enfants, Y parent ̸ = Y child . 'un des principaux composants de MCBB est la stratégie de branchement qui est appelée à la ligne 18 dans l'algorithme 2. La stratégie de branchement sépare chaque noeud en plusieurs noeuds enfants tout en garantissant que l'union des domaines des noeuds enfants est égale au domaine du noeud parent. Bien que toutes les stratégies fonctionnent sur la modification des bornes inférieures et supérieures des variables entières, chacune a sa façon de construire l'arbre combinatoire. Idéalement, la meilleure stratégie consiste à faire converger MCBB avec un effort Cette stratégie commence par un noeud initial (noeud racine) puis construit l'arbre de recherche en le divisant en plusieurs sous-intervalles. Cela se fait en divisant le domaine d'une variable entière et générant les noeuds enfants dans l'arbre de recherche. La procédure se répète jusqu'à ce qu'un critère de terminaison soit atteint. Généralement, les noeuds ne sont plus séparés lorsque leurs tailles atteint une précision donnée. Dans Araya et al. [2019], une stratégie de branchement par intervalles est proposée pour MCBB qui vise à obtenir une bonne enveloppe pour les vecteurs non dominés en divisant chaque domaine du milieu en deux sous-domaines. Bien que cette stratégie de branchement ait été conçue pour des cas multi-objectifs, le point de division statique (point médian) reste le principal problème dans cette approche. Dans cette thèse, nous proposons deux stratégies de branchement par intervalles multiobjectifs qui divisent le domaine en fonction de la solution obtenue pour chaque noeud dans MCBB. Nous les appelons "Branching by Anchor Points" et "Branching by Pareto Elements". MCBB résout le noeud courant N i en déterminant les p points d'ancrage, où p est le nombre d'objectifs dans P MO-MINLP . Dans la stratégie de branchement par points d'ancrage (Branching by Anchor points -BA), p + 1 intervalles sont ensuite créés en divisant l'intervalle d'une des variables entières selon l'ordre de séparation défini. L'intervalle de la variable entière sélectionné j th dans le noeud i, y i j est divisé comme suit :

	2 État de l'art 2 État de l'art 3 Hybridation "Branch and Bound" et algo. génétique
	Ce sont les plus étudiés parmi les algo-rithmes basés sur la population (A2.2). Leur succès dans la résolution de problèmes d'optimisation difficiles dans divers domaines (optimisation continue ou combinatoire) a favorisé le domaine connu sous le nom de calcul évolutif. L'algorithme génétique, présenté dans Algorithm 1, est l'algorithme évolutionnaire le plus populaire. Initialement, une population initiale est générée selon une règle heuristique ou aléatoirement. À chaque génération successive, un pourcentage de la population existante est Une fonction de sélection élitiste appropriée doit être employée pour éviter la perte de bonnes solutions. La sélection, la re-combinaison et la mutation sont appliqués de manière itérative à la population jusqu'à ce qu'une condition d'arrêt soit satisfaite. Dans le cadre de l'algorithme génétique multi-objectif, nous nous concentrons sur l'algorithme Non-dominated Sorting Genetic Algorithm 2 (NSGAII), qui est un algorithme génétique multi-objectifs basé sur des critères. Srinivas & Deb [1994] a proposé la NSGA en 1994 pour l'optimisation multi-objectifs. NSGA est différent d'une AG à objectif unique dans la manière dont l'aptitude "fitness" est attribuée aux individus. Afin d'attribuer l'aptitude, la population est d'abord triée en fonction de son niveau de non-domination. Par la suite, toutes les solutions des meilleurs fronts non dominés seront attribuées une meilleure aptitude. Afin de préserver la diversité parmi les solutions de n'importe quel front, une technique de conservation de niche (niche-preservation tech-nique) est utilisée pour dégrader l'aptitude brute des solutions qui sont encombrés par d'autres solutions du même front. 2.1.4 Inconvénients [2019] a constaté que la meilleure métaheuristique est l'évolution différentielle mixte (NAMDE) sur un benchmark de 13 problèmes de conception d'ingénierie mono-objectifs variables mixtes. Dhiman et al. [2021] a observé qu'EMoSOA -un nouvel algorithme d'optimisation multi-objectifs évolutif de mouette pour l'optimisation globale -est l'algorithme le plus performant sur un bench-mark de 4 problèmes de conception d'ingénierie multi-objectifs et variables mixtes. Assiri [2021] a conclu que la métaheuristique butter fly est la meilleure sur un benchmark de 4 problèmes de conception technique mono-objectif. Kaur et al. [2020] a développé Emperor Penguin Optimizer (EPO) en termes de capacité de résolution de problèmes multi-objectifs, qui s'intitule Multi-objectif Emperor Penguin Optimizer (MOEPO). Les auteurs ont observé que les résultats des analyses empiriques montrent que l'algorithme proposé est meilleur que les autres algorithmes existants sur 7 problèmes d'ingénierie multi-objectifs en nombres entiers. Par conséquent, il n'est pas clair quelle est la métaheuristique qui a les meilleures performances sur les problèmes d'ingénierie en variables mixtes mono-objectif/multi-objectif. En fait, Giagkiozis et al. [2015] ont revu dans leur travaux récents, la capacité de sept métaheuristiques à traiter des problèmes de variables mixtes. Une échelle allant de 1 à 5 a été donnée pour mesurer les forces et faiblesses relatives des familles d'algorithmes pour les problèmes multi-objectifs avec des variables mixtes. Une valeur de 5 traduit que cette famille d'algorithmes particulière est très bien adaptée à ce type de problème, tandis qu'une valeur de 1 signifie que l'algorithme est mal adapté à ce type de problèmes. La comparaison a montré que si six algorithmes sur sept étaient capables de gérer l'optimisation de variables mixtes, tous ces six algorithmes ont obtenu un score de 1 dans leur test d'adéquation. Socha [2009] n'a men-tionné dans sa revue des méthodes MINLP natives que 5 métaheuristiques pouvant gérer les entiers mixtes. L'un d'eux est la recherche génétique adaptative (GeneAS) introduite par Deb ordre d'exécution . L'hybridation de méthodes approximatives avec des techniques de recherche arborescente est probablement l'une des lignes les plus populaires de combinaison de différents algorithmes pour l'optimisation. L'un des ingrédients de base d'une technique d'optimisation est un mécanisme d'exploration de l'espace de recherche, c'est-à-dire l'espace des solutions valides naires pour résoudre des problèmes d'optimisation sous contraintes. Les méthodes de fonction de pénalité sont parmi les méthodes les plus courantes pour résoudre les COPs Cai & Wang [2006]. Cependant, en raison des difficultés bien connues associées à eux Coello Coello & Mezura Montes [2002], plusieurs chercheurs ont développé un nombre considérable d'approches alternatives pour dans le cas de contraintes multiples qui peuvent avoir des ordres de grandeurs différents, la fusion de toutes les violations en une seule somme n'est pas numériquement stable. Puisque l'influence des contraintes de magnitude inférieure peut devenir insignifiante Peng et al. [2020]. Normaliser ces valeurs est une bonne approche, mais ce n'est pas toujours applicable (voir Section 3.5.1). Dans NSGAII, la meilleure population est celle de la dernière génération, car elle contient les meilleurs individus parmi toutes les générations précédentes. Dans BnB-NSGAII, chaque noeud est résolu indépendamment. [1997]. MO-MINLP/MINLP. El Samrout [2019] dans sa thèse a examiné cinq métaheuristiques bien connues (A2.2) de la société scientifique d'optimisation combinatoire qui sont : (1) NSGAII ; (2) MOPSO ; (3) Recherche de coucou ; (4) algorithme de chauve-souris ; et (5) algorithme Firefly sur trois problèmes de conception technique MO-d'une meilleure approche pour résoudre ce genre de problèmes est maintenant un point d'intérêt pour de nombreux chercheurs. Récemment, une nouvelle ligne de recherche a vu le jour, celle de l'hybridation d'algorithmes distincts. Dans la section suivante, un aperçu de ces hybrides est présenté. 2.1.5 Hybridation Au cours des dernières années, un nombre impressionnant d'algorithmes ont été signalés qui ne suivent pas purement le paradigme d'une seule méta-heuristique traditionnelle. Au contraire, ils combinent diverses composantes algorithmiques, souvent issues d'algorithmes d'autres domaines de recherche sur l'optimisation. Ces approches sont communément appelées méta-heuristiques hybrides [Blum et al., 2011]. Plusieurs classifications ont été proposées dans la littérature pour les hybrides en fonction du type d'algorithmes combinés, en fonction du but de l'hybridation ou en fonction de leur au problème dDe nombreux chercheurs ont proposé d'utiliser des hybrides de métaheuristiques avec une "branch and bound" mono-objectif et destinés à améliorer les performances des métaheuristiques. D'autres ont suggéré d'utiliser des heuristiques avec une "branch and bound" multi-objectif. Cependant, à notre connaissance, l'absence d'hybridation de la branche multicritères et liée avec les métaheuristiques dans la littérature est remarquée, contrairement à la "branch and bound" monoPlusieurs méthodes ont été proposées pour gérer les contraintes par les algorithmes évolution-3 Hybridation "Branch and Bound" et algorithme génétique 3.1 Principes de l'algorithme BnB-NSGAII Par conséquent, la population initiale est modifiée pour tenir compte des nouvelles bornes du noeud enfant pour initialiser NSGAII. Cette opération sur la population peut entraîner la perte de certains des meilleurs individus. gérer les contraintes. Bien que la distance entre l'individu et la limite réalisable soit un indicateur plus sensible, 3.2 Stratégies de Branchement

≪

devrait être prise en compte lors de l'examen des performances de ces hybrides. De plus,

[START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF] 

a observé que la littérature montre qu'un certain hybride pourrait bien fonctionner pour des problèmes spécifiques, mais qu'il pourrait mal fonctionner pour d'autres. Néanmoins, il existe des types d'hybridation qui se sont avérés efficaces pour de nombreuses applications. Ils peuvent servir de guide pour de nouveaux développements.

2.2 Techniques pour manipuler les contraintes

Les algorithmes évolutionnaires ont été largement utilisés pour résoudre une grande variété de problèmes du monde réel, notamment dans les domaines de la science, de l'économie et de l'ingénierie

[START_REF] Peng | Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance[END_REF]

. Bien que ces algorithmes aient été conçus à l'origine pour traiter des espaces de recherche sans contraintes

[START_REF] Garcia | A rankbased constraint handling technique for engineering design optimization problems solved by genetic algorithms[END_REF]

; Peng et al.

-MCR). Celui-ci étend l'approche basée sur le classement de nombreux CHT, en construisant plusieurs files d'attente séparées basées sur les valeurs de la fonction objectifs et la violation de chaque contrainte.

[START_REF] Chehouri | A Constraint-Handling Technique for Genetic Algorithms using a Violation Factor[END_REF] 

a proposé le Violation Constraint-Handling (VCH).

La population est divisée en un ensemble réalisable et un ensemble non-réalisable. L'ensemble réalisable est trié en fonction de R f . Alors que l'ensemble non-réalisable est trié en fonction de R N V . Ensuite, la population globale est triée par comparaison par paires, où l'individu réalisable est préféré à l'individu non-réalisable. La méthode la plus populaire est la Supériorité du réalisable (Superiority of Feasable -SF) proposée par

[START_REF] Deb | An efficient constraint handling method for genetic algorithms[END_REF]

. SF classe séparément les solutions en fonction de leurs valeurs de fonction objective ou de leurs valeurs de violation de contrainte. Elle comprend une sélection de tournois binaires, c'est-à-dire une comparaison par paires qui préfère fondamentalement une solution réalisable à toute solution non-réalisable. Habituellement, la solution optimale globale est située à la limite de la région réalisable d'un COP, où au moins une des contraintes est active. P MO-MINLP est un problème complexe et coûteux à résoudre. L'idée générale est donc de résoudre plusieurs problèmes plus simples à la place. Une approche triviale consisterait à énumérer toutes les configurations possibles de variables entières. Ainsi pour chaque combinaison, le problème P MO-MINLP est converti en P MO-NLP . Cette technique est applicable lorsque le nombre de configurations est relativement petit, c'est-à-dire lorsque l'espace combinatoire des variables entières est petit. Mais celle-ci est vite limitée, et le temps de calcul augmente de façon prohibitive lorsque l'espace combinatoire est grand. En effet le nombre de combinaisons croît de façon exponentielle en fonction du nombre de variables entières. Pour éviter cela, MCBB est utilisée pour diviser P MO-MINLP en partitionnant le problème du noeud racine, P MO-MINLP , en un nombre fini de sous-problèmes. On peut représenter ce partitionnement par un graphe arborescent où chaque noeud N i représente un problème P MO-MINLP . Le concept principal de MCBB est d'évaluer chaque noeud N i en résolvant chaque fonction objectif du problème P MO-MINLP de N i indépendamment, c'est-à-dire que MCBB convertit P Ld'exploration minimal (c'est-à-dire examiner un nombre minimal de noeuds). La stratégie la plus utilisée dans les algorithmes MCBB (par exemple Cacchiani & D'Ambrosio [2017]; Mavrotas & Diakoulaki [2005]) consiste à fixer consécutivement les variables entières dans un ordre spécifique appelé "ordre de séparation", nous appelons cette approche "branchement par entier" ( Branching by Integer -BI). Cependant, les stratégies utilisées dans le cas monoobjectif ne se transposent pas aussi facilement au cas multi-objectif. Des difficultés apparaissent même avec les stratégies les plus basiques. Plus de détails sont disponibles dans Przybylski & Gandibleux [2017]. D'autres stratégies de branchement existent dans la littérature mais elles ne sont pas aussi populaires que BI. On trouve par exemple des stratégies de branchement par intervalles (Interval branching strategies). Le branchement par intervalles est couramment utilisé dans les branches à objectif unique et est utilisé pour la résolution de problèmes d'optimisation non linéaires Araya et al. [2019].

  Le théorème ≪ No Free Lunch (NFL) ≫ et sa généralisation sur les performances d'une méthode de recherche d'une solution en optimisation et en apprentissage[START_REF] Schaffer | A Conservation Law for Generalization Performance[END_REF];[START_REF] Wolpert | No free lunch theorems for optimization[END_REF] impliquent que si un algorithme fonctionne bien sur un ensemble de problèmes, il doit être moins performants sur tous les autres problèmes.Alternativement, pour le paramétrage de l'optimisation : la performance moyenne de tous les algorithmes de non-rééchantillonnage est identique lorsqu'on calcule la moyenne de leur performance sur tous les problèmes possibles. Ces théorèmes et leurs implications soulignent les limites de la généralisation des résultats obtenus sur des "bancs d'essais" de problèmes à des problèmes différents de ceux du banc d'essai. Par ailleurs, il a parfois été avancé que les hypothèses des théorèmes NFL ne sont pas pertinentes pour les applications pratiques issues de problème "industriels". Ces problèmes "industriels" sont susceptibles de posséder une structure exploitable, les théorèmes impliquent également que si la connaissance de cette structure du problème n'est pas incorporée dans un algorithme particulier, aucune assurance formelle n'existe pour indiquer que l'algorithme sera efficace[START_REF] Sala | Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges[END_REF]. D'un point de vue pratique, le défi pour l'optimisation métaheuristique est de faire correspondre des algorithmes d'optimisation spécifiques avec des problèmes spécifiques ou des classes de problèmes pour lesquels ces algorithmes sont bien adaptés et fonctionnent relativement bien. Pour les problèmes d'optimisation multimodaux non convexes, les méthodes d'analyse des performances des algorithmes théoriques sont très limitées. Par conséquent, des évaluations comparatives ≪ empiriques

≫ -utilisant des expériences numériques sur des problèmes de test ou des fonctions "banc d'essais" -doivent être utilisées

[START_REF] Borenstein | Fitness Distributions and GA Hardness[END_REF]

. Ainsi, une étude de généralisation implique la quantification statistique des performances attendues des algorithmes sur une "classe" spécifique de problèmes.

  Les performances NSGAII et BnB-NSGAII sont affectées par la sélection de différentes valeurs de paramètres de réglage. Dans le but d'une comparaison impartiale entre eux, différents paramètres de réglage sont appliqués à chaque méthode sur chacun des sept problèmes indépendamment. Dans cette expérience, l'effet du réglage des paramètres sur NSGAII et BnB-NSGAII est testé de manière détaillée, en particulier pour la taille de la population et le nombre de générations en raison de leur effet direct sur la qualité de la solution et l'effort de calcul nécessaire. Ce test est réalisé en faisant varier ces paramètres de manière itérative pour des meilleures performances de NSGAII et BnB-NSGAII. Le test considère les trois niveaux de réglage de BnB-NSGAII mentionnés précédemment. Le tableau 4.2 présente les valeurs des paramètres distincts utilisés pour les deux algorithmes. Müller [2020]. L'évaluation de ce compromis (coût de calcul/qualité de la solution ) nécessite une nouvelle métrique qui mesure l'amélioration potentielle de la solution pour un certain supplément de coût de calcul. Dans notre travail, la qualité est définie par la précision de la solution, tandis que le coût est défini par l'effort de calcul. De ce fait, nous proposons un indicateur nommé "ratio d'investissement (IR)" afin d'évaluer l'augmentation de la qualité par rapport à l'augmentation du coût. Cet indicateur est conçu pour considérer divers cas et calculé suivant l'équation 4.7. La figure 4.9 montre la meilleure solution obtenue par les deux méthodes par rapport au vrai front de Pareto pour chaque problème. Nous remarquons que BnB-NSGAII est capable de converger vers le vrai front de Pareto pour tous les problèmes. Par contre, NSGAII n'a pas réussi à capturer toutes les solutions de Pareto pour les problèmes d'engrenages et de roulements, comme indiqué dans les figures 4.9a et 4.9b, respectivement. Un examen plus détaillé du front de Pareto du problème de Tong, Figure 4.9g, nous constatons que NSGAII ne capture pas la section du front de Pareto proche des points d'ancrage. On peut cependant conclure que les résultats vérifient généralement la bonne performance de BnB-NSGAII par rapport à NSGAII en termes de qualité de la solution.Les performances des stratégies BI, BA et BP sont testées sur les mêmes 7 problèmes de référence.Les problèmes en variables mixtes binaires ne sont pas adaptés pour cette expérience car les performances de toutes les stratégies de branchement sont évidemment les mêmes sur ce type de problèmes. De ce fait, les problèmes en variables mixtes binaires (problèmes Mela et Tong) sont convertis en problèmes mixtes entiers suivant y = {0, 1, 2, 3} pour toutes les variables entières des deux problèmes.

	4 Expériences numériques
	Les méthodes d'optimisation méta-heuristiques sont souvent utilisées pour trouver un compro-
	mis entre le coût de l'optimisation (puisque généralement celui-ci est déterminé avant l'optimisation,
	par exemple en fixant le nombre de générations pour un algorithme génétique) et la précision
	(en référence à l'optimalité globale que l'on souhaiterait obtenir). Bien qu'une grande variété
	d'algorithmes d'optimisation ait été développée, il reste difficile d'identifier les algorithmes les
	plus efficaces pour un nouvel exemple de problème d'optimisation de type "boîte noire" Sala &
	4.2 Stratégies de branchement
	4.1 Algorithme BnB-NSGAII
	Par conséquent, pour évaluer les performances de BnB-NSGAII avec l'indicateur IR, les
	meilleures performances de NSGAII en termes de convergence et d'uniformité des solutions sont
	sélectionnées pour chaque problème. Le ratio d'investissement IR sera calculé pour chacune
	des combinaisons donnant les meilleurs performances de NSGAII. Les résultats du tableau 4.5
	montrent que BnB-NSGAII est capable de fournir un "bon investissement" (IR > 1) pour tous
	les problèmes sauf pour le problème de treillis. Par conséquent, l'efficacité de BnB-NSGAII est
	justifiée pour six problèmes contre sept.

Pour évaluer les performances de l'algorithme BnB-NSGAII, nous présentons une expérience basée sur une évaluation statistique pour comparer ses performances avec celles de l'algorithme NSGAII seul. Les deux algorithmes sont testés sur sept problèmes MO-MINLP de la littérature.

Les solutions "théoriques" de Pareto de ces problèmes sont connues, de sorte que les fronts de Pareto résultant des deux algorithmes peuvent être comparés aux solutions "théoriques". Nous présentons des critères d'évaluation issus de la littérature pour une comparaison quantitative des performances.

Une performance de IR≥ 1 indique un bon investissement, c'est à dire un gain en qualité de la solution plus important que le surcoût nécessaire.

La distance générationnelle (GD), l'écart relatif (d∆) et l'indicateur de pureté (voir la section 4.2) sont utilisés comme indicateurs de qualité. Le coût est défini par le nombre d'évaluations de fonctions objectifs. Pour examiner la robustesse des résultats, chaque problème est résolu 20 fois par chaque méthode et pour chaque combinaison. Les figures 4.2 à 4.8 montrent la distribution de GD, l'écart relatif (d∆), l'indicateur de pureté ainsi que le nombre d'évaluations sur les 20 itérations pour chaque combinaison de paramètres, ce dernier étant représenté par le numéro ID. Comme prévu, les résultats montrent que le réglage des paramètres a un effet significatif sur les performances de NSGAII et BnB-NSGAII. En comparaison à NSGAII, BnB-NSGAII offre de meilleures performances en termes d'indicateurs de GD et de propagation pour tous les problèmes, à l'exception du problème de treillis pour lequel BnB-NSGAII donne des solutions plus dispersées. En ce qui concerne l'indicateur de pureté, BnB-NSGAII surpasse NSGAII pour tous les problèmes à l'exception du problème Mela qui a un taux légèrement inférieur.

Idéalement, la meilleure stratégie de branchement est celle qui peut faire converger MCBB avec un effort d'exploration minimum, c'est-à-dire un nombre minimum de noeuds explorés au total

[START_REF] Belotti | Branching and bounds tighteningtechniques for non-convex MINLP[END_REF]

. Par conséquent, dans cette expérience, les stratégies de branchement sont comparées en se basant sur l'effort de calcul de MCBB qui est évalué par (1) le nombre total de noeuds explorés ; (2) le nombre total de noeuds feuilles obtenus. Le nombre de noeuds feuilles obtenus est indicatif de la force de "stérilisation" d'une méthode MCBB, (i.e un noeud qui ne sera plus séparé car son évaluation montre qu'il ne contiendra pas de solution optimale), est un critère essentiel pour tout algorithme de branchement et de séparation. La force de "stérilisation" d'autant plus forte que le nombre de noeuds feuilles obtenus est faible, ce qui signifie que plus de noeuds sont sondés.

Table B . 4 :

 B4 Table B.1: List of the 20 variables of the optimization problem List of the 41 standard values of normal module in [mm], s = {1, 2, 3} 10

	4 Standard Modules									
	index ims	1	2	3	4	5	6	7	8	9	10	11	12
	mn	0.5 0.55 0.6	0.7	0.8 0.9	1	1.125 1.25 1.375 1.5 1.75
	index ims Algorithme hybride pour l'optimisation 13 14 15 16 17	18	19	20	21	22	23	24
	mn index ims multi-	2 25	2.25 2.5 2.75 26 27 28	3 29	3.5 30	4 31	4.5 32	5 33	5.5 34	6 35	7 36
	mn	8	9	10	11	12	14	16	18	20	22	25	28
	index ims	37	38	39	40	41							
	3 Stages Reducer Problem mn 32 36 40 45 50
	1 Variables										
	Variable Signification 1000	800		10		100	Type 50	Initial 10	Lower 400 400	Upper 21
	x 1	10 r a,0 Radius of the input shaft. 1000 800 10 100 100 10 100 100	10 10 10		200 100 100	C/I 200 C 100 100	Design 10 30.5 mm 10 10	Bound 200 200 10 mm 800 200 800 800	22 Bound 23 500 mm 24
	x 2	l a,0 Length of the input shaft. 10 100 100	10		150	C 100	130.0 mm 10 mm 10 800 200	mm 25
	x 3	ξ 1	Angular position of 2nd stage. 10 400 400 10		100	C 100	-17.9 • 10	-90 • 400	200	90 • 26
	x 4 x 5 Z 1,1 Number of teeth of 1st stage pinion. im 1 Index of normal module of 1st stage. 10 500 500 10 100 1000 1000 50 800 800 10 500 500 10 100 200 1200 100 200 1200 100 10 500 500 10 100 200 1200 1200 200 1200 1200	I 100 50 I 100 200 50 200	21 10 800 15 10 1200 10 1200	1 14 1200 200 800 500 100 200	100 14 500 15 100 16	27 41 28 45 29
	x 6 Z 1,2 Number of teeth of 1st stage wheel. 10 800 800 10 100 20 100 100 50 800 800	I 100 20	50 10 10000 10000 17 20 400 400	150 30
	x 7	b 1 20	Facewidth of 1st stage gear pair. 200 5000 5000 50 200 200 20 200	20 200	C 20 100	46.0 mm 100 2000	10 mm 20 2000 18 20	200 mm 4
	x 9 x 9	r a,1 Radius of the output shaft of 1st 200 5000 5000 50 20 200 200 20 200 200 5000 5000 50 20 200 200 20 200 stage. l a,1 Length of output shaft of 1st stage 20 200 20 200 200 5000 5000 50 20 20 400 400 20 400 400 200 5000 5000 50 20 50 1200 1200 50 1200 1200	C 20 200 20 200 C 20 200 20 200	39.0 mm 100 1200 100 2000 12.0 mm 50 1200 50 1200	10 mm 300 300 1200 19 800 500 2000 20 10 mm 200 200 1200 21 20 20 1200 22	5 500 mm 6 7 mm 8
	x 10 im 2 Index of normal module of 2nd stage. 200 5000 5000 50 20 50 400 400 50 400 400	I 20 200	23 50 1200	300 1200	1	300 23	41 9
	x 11 Z 2,1 Number of teeth of 2nd stage pinion. 200 5000 5000 50 20 50 400 400 50 400 400	I 20 300	15 50 1200	14 1200 800	800 24	45 10
	x 12 Z 2,2 Number of teeth of 2nd stage wheel. x 13 b 2 Facewidth of 2nd stage gear pair. 50 200 200 50 200 50 200 200 50 200 Brake 200 5000 5000 50 800 50 800 800 50 800 800	I C 200 200 100 200	54 66.0 mm 50 100 50 2000	20 10 mm 200 200 200 200 800 100 2000 25	150 13 200 mm 12 11
	x 14 r a,2 Radius of the output shaft of 2nd 50 400 200 50	400	C 200	60.0 mm 100	10 mm 400 200	500 mm 14
			stage. 50	800	100		50		100	100	100	200	200	15
	x 15 l a,2 Length of output shaft of 2nd stage 50 800 100 50 20 x 16 im 3 Index of normal module of 3rd stage. 50 800 100 50 20 50 800 100 50 800	C 20 I 20 100	84.0 mm 100 25 100 50	10 mm 200 200 1 50 50 20 20	16 mm 17 41 18
	x 17 Z 3,1 Number of teeth of 3rd stage pinion. 50 800 100 50 800	I 100	18 50	800	14	100	45 19
	x 18 Z 3,2 Number of teeth of 3rd stage wheel. 1000 1000 1000 100 20	I 20	66 100	20	20	20	150 7
	x 19	b 3	Facewidth of 2nd stage gear pair. 20 20 20 20	20	C 20	104.0 mm 10 mm 200 20	20	200 mm 8
	x 20 r a,3 Radius of the output shaft of 3rd stage. 20 20 20 20 20 20 20 20	20 20	C 20 20	83.0 mm 20 20	10 mm 200 200 20 20	9 500 mm 10
	Truss											

objectif non convexe en variables mixtes en conception mécanique Les problèmes d'optimisation sous contraintes non linéaires non convexes multi-objectifs en variables mixtes (discrètes et continues) apparaissent dans de nombreux domaines de l'ingénierie et notamment dans les applications de conception en mécaniques. Cette thèse vise à développer une nouvelle méthode pour résoudre ces problèmes d'optimisation. Notre proposition est une hybridation de l'algorithme mul- ticritère « Branch-and-Bound » (MCBB) avec l'algorithme évolutionnaire de type NSGAII. L'ap- proche proposée est en outre renforcée par de nou- velles stratégies de branchement conçues pour l'algorithme MCBB. Les contraintes du problème d'optimisation sont gérées à l'aide d'une nouvelle technique dédiée aux algorithmes évolutionnaires. Les performances de cette nouvelle approche sont évaluées et comparées à l'existant par une étude statistique sur un ensemble de problèmes tests. Les résultats montrent que les performances de notre algorithme sont compétitives face à l'algorithme NSGAII seul. Nous proposons deux applications de notre algorithme : les applications "Recherche de solutions faisables" et "Recherche de solutions optimales". Celles-ci sont appliquées sur un pro- blème industriel réel d'un réducteur à engrenages à 3 étages formulé comme un problème bi-objectif. Dans ce problème des contraintes sont incluses pour satisfaire aux exigences de normes ISO sur le calcul de la capacité de charge des engrenages. Mots clés : optimisation mathématique -décision multicritère -mécanique -métaheuristiques -pro- grammation évolutionnaire -conception technique. Ahmed JABER Doctorat : Matériaux, Mécanique, Optique, Nanotechnologie Année 2021 Hybrid Algorithm for Multi-objective Mixed-integer Non-convex Mechanical Design Optimization Problems Multi-objective mixed-integer non-convex non-linear constrained optimization problems that appears in several fields especially in mechanical applications. This thesis aims to develop a new method to solve such problems. Our proposal is a hybridization of the Multi-Criteria Branch-and-Bound (MCBB) algorithm with the Non-dominated Sorting Genetic Algorithm 2 (NSGAII). The proposed approach is furthermore enhanced by new branching strategies designed for MCBB. The constraints are handled using a new proposed constraint handling technique for evolu- tionary algorithms. Numerical experiments based on statistical assessment are done in this thesis to examine the performance of the new proposed ap- proach. Results show the competitive performance of our algorithm among NSGAII. We propose two applications of our proposed approach: "Search Feasibility" and "Seek Optimality" applications. Both are applied on a real-world state of art 3 stages reducer problem which is formulated in this thesis to a bi-objective problem to meet the requirement of ISO standards on calculation of load capacity of gears. Keywords: mathematical optimization -multiple criteria decision making -mechanics -metaheuris- tics -evolutionary programming (computer science) -engineering design.

  

The brute force solver is a well-known general problem-solving technique that consists of exhaustively enumerating all possible solutions.

Generational distance measures the distance of the obtained solutions w.r.t. the ideal Pareto front.

Spread measures the diversity of the obtained Pareto front.

NSGAII Parameters Tuning

Acknowledgments

Benchmark Experiment

Both NSGAII and BnB-NSGAII performances are affected by selecting different values of tuning parameters. In the purpose of impartial comparison between them, different tuning parameters are applied to each method on each of the 7 problems independently. To examine the robustness of the results, each problem is solved 20 times by each method for each combination.

In this experiment, the effect of tuning the parameters on NSGAII and BnB-NSGAII are tested considerably, mainly for population size and the number of generations for their direct effect on both quality of the solution and the computational effort consumed. It should be noted that the number of generations is affected by two parameters. First, the maximum allowable generations which terminate NSGAII process even if the optimality condition is not attained.

Second, the process is terminated if the optimality condition didn't change over m g generations, m g being the maximum stall generations value to be tuned. This test is done by varying these parameters iteratively seeking for the best performance of NSGAII and BnB-NSGAII. The test considers the three tuning levels of BnB-NSGAII mentioned previously. Table 4.2 shows the values of distinct parameters used for both algorithms.

Best to best comparison is commonly used to compare the performances of distinct solvers.

However, the best solution may be an outlier. For that, the presented benchmark is based on the distribution of values for each metric over the 20 iterations. that BnB-NSGAII succeeds to find a better solution with lower computational effort for coupling, brake, Mela and Tong problems in Figures 4.4,4.5,4.7,4.8 for ID = 25, 12, 10, 10 respectively.

To specifically explore the computational efficiency of the BnB-NSGAII algorithm, investment ratio is calculated for each of the selected combinations. Table 4.5 shows the mean values of GD, Name Dimension Total Constraints Active Constraints

NSCV

Profile Performance

One of the many difficulties that arise in the empirical evaluation of new computational techniques is the analysis and reporting of experiments involving a large number of test problems and algorithms. The performance profiles are a methodology specifically developed for this purpose which provides a simple means of visualizing and interpreting the results of large-scale benchmark experiments. Performance profiles (PPs) were introduced in [START_REF] Barreto | Probabilistic performance profiles for the experimental evaluation of stochastic algorithms[END_REF] to evaluate and compare the performance of a set of solvers S for a given set of optimization problems P for a specific metric µ. In this experiment, µ P,S is the mean optimal solution obtained by each solver S ∈ S for each problem P ∈ P. The performance ratio r P,S is defined as:

where b P = min(µ P,S ∀ S ∈ S) is the best solution obtained by all solvers for problem P.

Assuming that µ is strictly positive, r P,S thus indicates how many times the optimal solution obtained by S is higher than the best optimal solution obtained by the best performing solver.

Let δ be a function defined as: is referred to as "Search feasibility application". In this application, BnB-NSGAII converges whenever at least one individual having this criteria is found. Therefore, the remaining question is: can BnB-NSGAII converge within a short time (such as 30 minutes)? The second application is the "Seek optimality application" that addresses the real potential of BnB-NSGAII to converge on this kind of problems. In this application, BnB-NSGAII is called to entirely solve the problem.

Hence, the main question is: can BnB-NSGAII converge to a good Pareto within an acceptable computational time (not more than 24 hours)?

In this chapter, the effect of the legacy feature on BnB-NSGAII performance is also studied.

In this aim, in the "search feasibility application", the traditional "branching by integer" strategy and Superiority of Feasible (SF) constraint handling technique (SF is the default CHT for NSGAII as proposed in [START_REF] Deb | Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms[END_REF]) are utilized in BnB-NSGAII to highlight the effect of the legacy feature only on the performance. Then, NSCV is solely examined comparatively to the five previously studied CHTs, as a case study, on the 3 stages reducer problem to study the effect of NSCV on this problem. Finally, in the "seek optimality application", all our proposed features are combined into one solver trying to solve the 3 stages reducer problem. Appendix A

Résumé étendu en Français

Benchmark Problems

The formulations of the benchmark problems used in this article and their solutions are presented here. The true Pareto solution of these problems is obtained in the following manner, first, the problem is solved by discretization the continuous variables, then the combinations of integer variables that gives part of the Pareto are recorded. By fixing those combinations iteratively, the problem is solved exactly using the scalarization method as P MO-NLP . Cubic interpolation is then used to obtain a uniform discretization step for each continuous part of the Pareto front.

Finally, Pareto refining is applied to remove all dominated solutions.

For the convergence metric GD in the case of continuous/discontinuous Pareto, the value of d i is affected by the discretization step used to generate the true Pareto front. Thus although the tested solver might find a solution that lies on the theoretical front, the distance d i might be greater than 0 because of the discretization step. To avoid this, first we chose ϵ = 10 -4 as discretization step, then for each n non-dominated solution d n ≤ ϵ since n must be between ideal and nadir points. Thus we can assume that d n = 0 for a more reasonable approximation of GD. However this assumption might lead to inaccurate GD value, but since we are using this assumption on both compared solvers, we can consider it impartial. For the relative spread metric, to minimize ∆ True , the true Pareto is discretized uniformly, i.e. the euclidean distance between every two consecutive solutions laying on a continuous section of the front is constant.

A. BENCHMARK PROBLEMS 1 Problems Formulation

Gear Problem

The gear train problem is unconstrained. Since the number of teeth must be integers, all 4

variables are strictly integers. The problem is illustrated in figure A.1 and formulated as following: 

Bearing Problem

In the ball bearing pivot link, the ball bearings were chosen from a standardized table of prefabricated sizes. The formulated optimization problem contains 4 variables, 2 continuous/ 2 integer, 12 discrete parameters and 10 inequality constraints. Figure A.2 illustrates the problem that is formulated as following:

Truss Problem

The nine bar truss problem is unconstrained and contains 3 continuous variables and 9 discrete ones. Figure A.4 illustrates the problem that is formulated as following:

minimize

where,

, c 9 = 0 

Mela Mathematical Problem

Mela problem is unconstrained with 8 binary variables and 2 continuous variables that are bounded. This problem is formulated as following:

minimize