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In today's digital age, the trustworthiness of image content is of great concern due to the dissemination of easy-to-use and low-cost image editing tools. Forged images can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Faced with such a serious situation, we develop in this doctoral project three versatile techniques based on (i) demosaicing traces (ii) JPEG-compression traces, and (iii) resampling traces for detecting forged digital images and localizing various types of tampering therein. Although these techniques are different, they work under the common assumption that manipulations may alter some underlying statistical properties of natural images. A two-steps detection process has been adopted for every detection technique: (i) analyze and model statistical features of both the authentic and forged images associated with specific in-camera and/or post-camera traces, then (ii) design a statistical detector to differentiate between the authentic and forged images by estimating statistical changes in their models. Various numerical experiments on several well-known benchmark datasets highlight the performances and robustness of the proposed detection techniques.

Résumé

À l'ère du numérique, la crédibilité du contenu des images est une préoccupation majeure en raison de la popularité des outils d'édition faciles à utiliser et peu coûteux. Les images falsifiées peuvent être utilisées pour manipuler l'opinion publique lors des élections, commettre des fraudes et discréditer ou faire chanter des personnes. Face à cette situation préoccupante, nous développons dans cette thèse trois techniques efficaces basées sur (i) les traces de dématriçage (ii) les traces de compression JPEG, et (iii) les traces de rééchantillonnage pour détecter les images falsifiées et localiser les différents types de falsification. Bien que ces techniques soient différentes, elles fonctionnent sous l'hypothèse commune que les manipulations peuvent altérer certaines propriétés statistiques sous-jacentes des images naturelles. Un processus de détection en deux étapes a été adopté pour chaque technique de détection : (i) analyser et modéliser les caractéristiques statistiques des images authentiques et falsifiées, puis (ii) concevoir un détecteur statistique pour différencier les images falsifiées des images authentiques en estimant les changements dans leurs modèles. Diverses expérimentations numériques sur plusieurs ensembles de données de référence bien connus mettent en évidence la qualité des performances et la robustesse des techniques de détection proposées.

Chapter 1

General Introduction 1.1 General Context

"One picture is worth more than ten thousand words". The forcefulness of this old adage has been kept itself over the centuries until today. At the beginning, the painting was used to describe real-world happenings instead of thousand words. This role was assumed by the photography since the invention of still image cameras in the 19-th century. In this epoch, "seeing is believing" because images are captured by analog acquisition devices and stored on photograph films. The manipulation of images over such physical supports is extremely hard, time-consuming, costly and requires special skills of professionals through dark room tricks. Therefore, an image printed in a newspaper was commonly accepted as a certification of the truthfulness of the news. At the beginning of the 21-st century, the digital revolution has radically changed not only the way how an image is acquired, through digital devices such as digital cameras, smartphones, and tablets, etc., but also the way in which image contents are stored and transmitted. Laptops, USB keys, memory cards, compact discs are few examples of personal devices capable of storing digital images, while social networks (e.g., Facebook, Instagram, Twitter), cloud (e.g., Google Drive, Microsoft OneDrive, iCloud), websites (e.g., Flickr, Photobucket, Google Photos), are powerful services to store and share digital contents everywhere and anytime, through digital devices connected to the Internet. Thanks to such daily tools, almost everybody in our modern life is able to record, store and share a large number of digital images. Additionally, the dissemination of low-cost and powerful image editing software (e.g., Adobe Photoshop, GIMP, Krita, Pixlr) have made the digital image alteration easier than ever before. This implies that images are not anymore something unchangeable, but rather like a living organism that evolves over time by means of various operations such as color modification, geometrical transformation, detail cancellation, content composition, etc. As a consequence, we have socially come to understand events in a far more visual way: "there is more to an image than meets the eye" [START_REF] Taha | Digital Image Forensics: There is More to a Picture than Meets the Eye[END_REF], so that apparently "seeing is no longer believing".

It does not matter if the image manipulation is merely for upright aims such as medical diagnosis, satire, beautifying, etc. Unfortunately, manipulated images have been abused for various malicious purposes related to all aspects of human life such as politics, ecology, race, gender, etc. [START_REF] Farid | Digital doctoring: how to tell the real from the fake[END_REF]. In 1997, 58 innocent tourists were killed in a terrorist attack at the temple of Hatshepsut in Luxor Egypt (see Figure 1.1a). The Swiss tabloid Blick reported this event by modifying the color of the flooding water [START_REF] Choi | Estimation of color modification in digital images by cfa pattern change[END_REF] to appear as blood flowing from the temple (see Figure 1.1b), so that the public could understand the brutality of the attack. On July 09, 2008, numerous American news outlets, including the Los Angeles Times, the Palm Beach Post, and the Chicago Tribune, published a photo describing the Iranian missile test on their front-pages (see Figure 1.2a). After the publication, it was revealed that the second missile The genuine photo (see Figure 1.2c) appeared a day later further confirmed that the published picture was actually synthetic. In June 2010, the cover of The Economist showed President Barack Obama alone on a Louisiana beach examining the aftermath of the BP oil spill in the Gulf of Mexico (see Figure 1.3a). Under the headline "Obama v BP", the president appears to be contemplating how to handle the political and ecological disaster. However, in July 2010, the New York Times Media Decoder blog revealed that the president was not alone (see Figure 1.3b). Some aforementioned events, among others 1 , imply that forged images have became a big issue for society. In fact, they are appearing more and more frequently and sophisticatedly along with the growing advancement of new classes of artificial intelligence techniques (e.g., deepfakes [START_REF] Tolosana | Deepfakes and beyond: A survey of face manipulation and fake detection[END_REF][START_REF] Verdoliva | Media forensics and deepfakes: an overview[END_REF]) for which no specific technical knowhow is required from the users. Such a serious situation leads to the need of efficient strategies and methods that allow to automatically verify the authenticity of digital images. 

Research Framework

Digital image forensics have emerged as an indispensable research field to restore some trust to digital images. Generally, it is dedicated to seek answers for two major questions [START_REF] Piva | An overview on image forensics[END_REF]:

1. where does the digital image come from?

2. is the digital image still depicting the captured original scene?

The first question is closely related to the problem of image origin identification with the specification of camera model or branch information and the determination of imaging mechanism as main aims [START_REF] Pasquini | Media forensics on social media platforms: a survey[END_REF]. The second question involves the problem of image content integrity where determining if an image is forged, which manipulation has been performed on the image, or which region of the image has been altered are fundamental tasks [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF]. Despite their different interests, both the image origin identification and content integrity have mutual effects. Indeed, the knowledge about the device model or brand information can help forensic analysts know more about characteristics of acquisition devices, which leads to a potential improvement of detecting the underlying forgeries that could be performed in the inspected image. On the contrary, removing tampered area from a forged image allows to significantly narrow down the search range for the image origin. In their recent review [START_REF] Pasquini | Media forensics on social media platforms: a survey[END_REF], Pasquini et al. showed that the prevalence of existing ditigal image forensic works are mostly dedicated to the analysis of the acquisition source, either targeting the identification of the specific device or the camera mode. The contributions to forged image detection are however somewhat limited in contrast to their high spread on social media platforms. To meet this practical need, the present thesis focuses more especially on the development of methods for the image forgery detection and localization. Actually, the literature of the forgery detection and localization has been addressed following two approaches [START_REF] William D Ferreira | A review of digital image forensics[END_REF]: (i) active, and (ii) passive. By active approach, some preset authentic information such as signature [START_REF] Gary L Friedman | The trustworthy digital camera: Restoring credibility to the photographic image[END_REF] and watermark [START_REF] Podilchuk | Digital watermarking: algorithms and applications[END_REF] embedded in digital images is required to examine their truthfulness. However, such an embedded information is also the limitation of the approach, because it makes the production cost of digital cameras higher while its credibility remains questionable [START_REF] Hai Thai | Camera model identification based on the generalized noise model in natural images[END_REF]. To remedy this drawback, the passive approach proposes to exploit intrinsic traces in the image acquisition or some specific traces left by forgeries to distinguish between tampered and natural images.

General Introduction

This approach is obviously suitable for most practical situations where only the suspect image is available in hand of forensic analysts and no authentic information is priorly known. So, it is not surprising that the passive approach has been increasingly developed in the past decade [START_REF] Gajanan | Digital image forgery detection using passive techniques: A survey[END_REF][START_REF] Lin | Recent advances in passive digital image security forensics: A brief review[END_REF]. More precisely, we can further classify the passive approach for forgery detection and localization into two main streams [START_REF] Verdoliva | Media forensics and deepfakes: an overview[END_REF]: (i) data-driven, and (ii) statistical model-based. The first stream recommends to extract characteristic features from suspect images, and apply machine learning techniques to automatically learn discriminant features [START_REF] Barni | Aligned and non-aligned double jpeg detection using convolutional neural networks[END_REF]. By taking account of various features in the learning, this approach allows to design universal tools which can deal with different kinds of malicious attacks [START_REF] Cohen | Maljpeg: Machine learning based solution for the detection of malicious jpeg images[END_REF]. Evidently, its performance and robustness depend heavily on the quality and the quantity of the considered data due to the data-driven nature. In the current state-of-the-art, this obstacle can be solved in part thanks to the deep learning, especially for the problems of cover source mismatch [START_REF] Pibre | Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch[END_REF] and of dataset mismatch [START_REF] Niu | Primary quantization matrix estimation of double compressed jpeg images via cnn[END_REF]. As an alternative, the second stream exploits incoherences in the statistical modeling of digital images to detect malicious attacks (see e.g., [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Giboulot | Detectability-based jpeg steganography modeling the processing pipeline: the noise-content trade-off[END_REF]). It does not require a large amount of data as the first approach, but a deeper knowledge about the processing pipeline of digital cameras and malicious attacks. Very often, each developed model serves a specific goal, and hence is more adapted to dedicated forensic tools. The statistical modeling is also the main approach used in this doctoral project, however we target at versatile detectors which are applicable to different kinds of forgery techniques rather than to a certain specific manipulation.

Thesis Outline

The overall structure of the thesis is organized as follows.

• Chapter 1 introduces the general context of the research, the problem to be dealt with, as well as the employed methodology. The thesis outline and the author's publications are also presented in detail.

• Chapter 2 gives an overview on passive forgery detection based on the modeling of digital image processing pipeline. We start with an description of main image processing steps in a typical digital camera from image scene to Joint Photographic Experts Group (JPEG) image. Next, we introduce and illustrate common techniques of digital image forgery. Finally, we classify methods for image forgery detection following traces left by in-camera and post-camera processing steps.

• Chapter 3 focuses on the digital image authentication and forgery localization using demosaicing artifacts. The aim is to build an algorithm allowing a bridge between the color filter array pattern and demosaicing algorithm estimation, and the statistical analysis of demosaicing artifacts in spatial domain to improve the authentication and localization performance. After analyzing the evolution of demosaicing traces in camera acquisition pipeline, a robust feature statistic characterizing demosaiced digital images is first developed on the basis of the noise residue of green channel. Such a feature statistic is less sensitive to the edges problem because 1.4 Publications only the smooth region of green channel is used in the development. Next, a single normal mixture model is proposed to describe the probability distribution of feature statistics for both original and tampered images. Therefore, normality tests can be used to authenticate automatically digital images. The authentication performance can be further improved by human interpretation of supported graphic tools. Finally, a penalized expectation-maximization (EM) algorithm is used to localize forged areas in tampered images. Many comparative studies on four well-known datasets show that the developed algorithm yields better performance and robustness than existing forensics algorithms of the same kind.

• Chapter 4 deals with the statistical modeling for discrete cosine transform (DCT) coefficients of both the authentic and tampered JPEG images and their application in forgery localization. In fact, various manipulations on JPEG images introduce single and multiple compression artifacts for forged and unmodified areas respectively. Based on the statistical analysis of compression cycle for authentic JPEG images and on the finite mixture paradigm, we propose a modeling framework for DCT coefficients of such tampered JPEG images. Its accuracy is numerically assessed using the Kullback-Leibler divergence on the basis of a dataset built from six wellknown image databases. To illustrate the framework utility, an application in image forgery localization is proposed. By formulating the localization as a clustering problem, we use the plug-in Bayes rule combined with a simple EM algorithm to distinguish between forged and unmodified areas. Various experiments show that the proposed modeling framework yields high localization performances in terms of F 1 -score.

• Chapter 5 develops an efficient detector to distinguish between a resampled Tagged Image File Format (TIFF) image from an original TIFF image. To this end, we first propose a statistical model for resampled TIFF images by analyzing the complete processing process from a RAW image to a resampled TIFF image. Next, we formulate the detection problem as a likelihood ratio test between the models of original and re-sampled TIFF images. The test power is analytically evaluated in the context that all model parameters of original TIFF images are unknown.

Numerous numerical experiments justify the performances of the detector.

• Chapter 6 concludes the major research finding and presents some perspectives of future works opened in the field of digital image forensics.

• Appendix A gives the formalization of the penalized EM algorithm used in Chapter 3. Appendix B represents the generalized Gamma distribution and the compound normal distribution used in Chapter 4, as well as their parameters estimation. A short French summary of this thesis is also provided in Appendix C.

Publications

Most of the material presented in this thesis appears in the following publications that represent original work, of which the author has been the main contributor.

Chapter 2

Overview on Digital Image Processing Pipeline and Passive Forgery Detection

Introduction

As stated in Chapter 1, this thesis relies mainly on the statistical model-based approach to detect forged digital images and to localize their tampered regions. Such an approach requires a good knowledge about the image processing pipeline of a digital camera, as well as about the forgery techniques. This is why this chapter starts with an introduction of digital camera image formation in Section 2.2. For an easier comprehension, we divide the image formation pipeline into three parts according to possible image storage formats generated by the camera. For each part, we analyze the main processing steps therein, and present the key statistical models of the output image. Next, we describe and illustrate four commonly used techniques of digital image forgery in Section 2.3: (i) cloning, (ii) splicing, (iii) inpainting, and (iv) resampling. Subsequently, we provide in Section 2.4 an overview of various passive methods for image forgery detection exploiting inconsistencies existing in the digital image processing pipeline. We category these methods following the traces left by in-camera and post-camera processing steps. Finally, Section 2.5 concludes the chapter and specifies more concretely the problems to be dealt with in this thesis.

Image Processing Pipeline in Digital Still Cameras

Forgery analysis of digital images requires a knowledge about the creation of those images. This section provides increased insight into digital camera image formation. Although several devices can be used for digital imaging such as scanner, graphic tablet, etc., we just limit our study to digital still cameras 1 because they have gained significant popularity in recent years. The whole processing pipeline of such a camera from light capturing to image storage is illustrated by Figure 2.1. In the following review, we divide this processing pipeline into three parts according to possible image storage formats For each part, we analyze the main processing steps therein, and introduce the key statistical models of the output image.

From Image Scene to RAW Image

Digital still cameras imitate the human visual system. They consists of a lens module, sampling filters, color filter array (CFA), imaging sensor, and a digital image processor [START_REF] Adams | Color processing in digital cameras[END_REF]. The lens module is essentially composed of a lens and the mechanisms to control exposure, focusing, and image stabilization to collect and pilot the light coming from the real scene. After the light enters the camera via the lens, it goes through a combination of filters that includes at least the infra-red and anti-aliasing filters to ensure maximum visible quality. The light is next focused onto imaging sensor, an array of rows and columns of light-sensing elements called pixels. Two common types of an image sensor are chargecoupled device (CCD) and complimentary metal-oxide semiconductor (CMOS). Each light sensing element of sensor array integrates the incident light over the whole spectrum and obtains an electric signal representation of the scenery. Since each imaging sensor element is essentially monochromatic, an easy way to capture color images is to separate sensor chips for each color component. However, such a low-tech and costly solution does not allow a competitive advantage for enterprises. This is why most digital camera devices in the market only use a single CCD or CMOS sensor chip coupled with a CFA instead [START_REF] Lukac | Single-Sensor Imaging: Methods and Applications for Digital Cameras[END_REF]. The CFA arranges pixels in a pattern so that each element has a different spectral filter. Hence, each element only senses one band of wavelength, and the RAW image collected from the imaging sensor is a mosaic of different colors and varying intensity values. Among many CFA patterns with different primary colors (see e.g., [START_REF] Wuk | Image-quality metric system for color filter array evaluation[END_REF]), the one designed by Bayer [START_REF] Bayer | Color imaging array[END_REF] is most used in commercial digital cameras. It measures the green component on a quincunx grid, the red and blue components on rectangular grids. The higher sampling rate for the green channel allows a better capture of the light luminance, and therefore provides better image quality [START_REF] Bahadir K Gunturk | Demosaicking: color filter array interpolation[END_REF]. The Bayer pattern has itself four possible configurations as depicted in Figure 2.2. We seek now a mathematical representation V of a RAW image captured along with a configuration B of Bayer pattern. As illustrated in Figure 2.3, the RAW image V is of single-channel because the Bayer configuration B allows each pixel to record only one color channel c among the red (r ), the green (д) or the blue (b). Therefore, we can express V as a two-dimensional matrix of size M × N whose pixel value at the The RAW image acquisition process is disturbed by several unavoidable noise sources whose shot noise, dark current noise, read-out noise and photo-response non-uniformity (PRNU) noise are dominant ones (see Figure 2.1). The shot noise, also known as Poisson-distributed noise, has its origin in the quantum nature of light. The dark current noise, also referred as fixed pattern noise, is generated Overview on Digital Image Processing Pipeline and Passive Forgery Detection by the thermal energy in the light absence. The read-out noise encompasses all electronic noises involved in the acquisition chain. Finally, the PRNU noise accounts for differences of pixels response to the incident light due to the imperfections during the sensor manufacturing process (e.g., the heterogeneity of silicon wafers). Considering these noise sources, we can further express the pixel v m,n in (2.1) as
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v m,n = µ v m,n + ϵ v m,n , (2.2) 
where µ v m,n denotes the expectation of v m,n in the absence of noise, and ϵ v m,n stands for all interfered noise sources. While the expectation µ v m,n is merely seen as deterministic signal and not be modeled 2 , the noise ϵ v m,n should be carefully studied. Indeed, the noise models for RAW images can categorized into two classes in the literature: (i) signal-independent, and (ii) signal-dependent. If the former assumes the stationarity of noise in the whole image, the latter takes into account the proportional dependence of noise variance on the original pixel intensity. The well-known additive white Gaussian noise model (see e.g., [START_REF] Bosco | Fast method for noise level estimation and integrated noise reduction[END_REF]) is a typical example of the signal-independent noise class. Meanwhile, signal-dependent noise class includes Poisson or film-grain noise model [START_REF] Darwin T Kuan | Adaptive noise smoothing filter for images with signal-dependent noise[END_REF], Poisson-Gaussian noise model [START_REF] Luisier | Image denoising in mixed poisson-gaussian noise[END_REF][START_REF] Makitalo | Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise[END_REF], heteroscedastic noise model [START_REF] Foi | Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[END_REF][START_REF] Hai Thai | Camera model identification based on the heteroscedastic noise model[END_REF], non-linear noise model [START_REF] Faraji | Ccd noise removal in digital images[END_REF], etc. Compared to the first class, the second one is more accurate, and obviously more difficult to be dealt with.

From RAW Image to TIFF Image

To render a full-color uncompressed TIFF image from the RAW image, several post-processing operations are carried out (see e.g., [START_REF] Deever | Digital camera image formation: Processing and storage[END_REF]), where demosaicing, white balancing and gamma correction are the significant ones.

The demosaicing, also known as CFA interpolation, allows to fill up the missing pixels due to the CFA sampling by using their neighborhoods [START_REF] Ramanath | Demosaicking methods for bayer color arrays[END_REF]. Generally, we can classify algorithms for demosaicing into two classes: (i) non-adaptive, and (ii) adaptive. Non-adaptive algorithms use the same interpolation technique for all pixels, so that in most cases, they can be simply defined by a single interpolation kernel K c for each color channel c (see also Table 2.1). Consequently, the color component X c D of the demosaiced image X D can be computed from the RAW component V c as

X c D = K c * V c , (2.3) 
where * denotes the two-dimensional convolution operation. The non-adaptive demosaicing algorithms provide satisfactory results in smooth regions, but usually fail in textured regions and edges.

Adaptive algorithms can solve this problem. They take into account edge information, as well as interchannel correlation to find an appropriate set of coefficients which permits to minimize the overall interpolation error (see e.g., [START_REF] Chung | Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneityprojection[END_REF][START_REF] Tsai | A new edge-adaptive demosaicing algorithm for color filter arrays[END_REF]). This make the adaptive algorithms more accurate than the non-adaptive ones at a higher price of computationally intensive.

After the demosaicing, we need the white balancing to remove unrealistic color casts [START_REF] Ramanath | Color image processing pipeline[END_REF]. In fact, due to the color temperature difference of light sources, a shift of the reflection spectrum of the name red and blue channels green channel bi-linear
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X c W = д c W • X c D , (2.4) 
where X c W denotes the component of X W associated with the color channel c. The prior knowledge of light sources is critical to select appropriate gain factors д c W . In the absence of this knowledge, д c W can be estimated by several algorithms described in [START_REF] Edmund | Automatic white balancing in digital photography[END_REF]. For an example, we just introduce hereinafter s simple algorithm based on the gray world assumption: the average reflectance of a scene is achromatic. This implies that the average values of three color channels in a given scene are roughly equal, so that

x r W = x д W = x b W , (2.5) 
where x c W , with c ∈ {r, д, b}, denotes the average intensity of X c W computed by

x c W = 1 M • N • M m=1 N n=1 x c W ,m,n . (2.6) 
Using (2.4) and (2.5), it follows that

д r W • x r D = д д W • x д D = д b W • x b D , (2.7) 
where x c D denotes the average intensity of X c D computed in the same way as (2.6). Since the human eye is more sensitive to the green color, the algorithm proposes to keep the green channel as it is, (2.9)

Introducing (2.8) and (2.9) into (2.4), we finally obtain the white-balanced image X W . At this stage, the pixel intensity only appears the linear characteristic with respect to the RAW image intensity [START_REF] Deever | Digital camera image formation: Processing and storage[END_REF]. This linearity does not fit in with most display devices whose transfer function represents a power relationship between the luminance L and the voltage U

L = V γ , (2.10) 
where γ is a constant specific for each device. Especially, γ = 2.2 for the cathode ray tube monitor. The gamma correction is thus necessary to compensate this effect and render the luminance into a perceptually uniform domain. It is simply the inverse of (2.10) applying to each pixel value of X W such that

x c m,n = x c W ,m,n 1 γ , (2.11) 
where x c m,n denotes the pixel at location (m, n) of the component X c of the TIFF image.
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Demosaicing

White Balancing Gamma Correction post-processing At the output of the post-processing process, we obtain an uncompressed full-color TIFF image X characterized by a three-dimensional matrix of size M × N × 3 (see Figure 2.4). To statistically describe the TIFF image in the spatial domain, both the black-box and white-box approaches can be resorted to.

By the black-box approach, we attempt to establish a so-called camera response function f CRF (•) that maps image irradiance 3 to TIFF image intensity

x m,n = f CRF µ v m,n + ϵ v m,n , (2.12) 
where µ v m,n denotes the image irradiance and ϵ v m,n accounts for all noise sources. Gamma curve [START_REF] Farid | Blind inverse gamma correction[END_REF], polynomial curve [START_REF] Michael | What can be known about the radiometric response from images?[END_REF] and generalized Gamma curve [START_REF] Ng | Using geometry invariants for camera response function estimation[END_REF] are some parametric models for f CRF (•).

The main drawback of such an approach is that the study of noise statistics is relatively hard. A potential solution is to linearize f CRF (•) using the first order of Taylor's series expansion [START_REF] Faraji | Ccd noise removal in digital images[END_REF] x

m,n = f CRF µ v m,n + ϵ v m,n ≃ f CRF µ v m,n + f ′ CRF µ v m,n • ϵ v m,n , (2.13) 
where

f ′ CRF (•) is the first derivative of f CRF (•). Therefore, the noise ϵ x m,n of x m,n can be expressed in function of ϵ v m,n as follows ϵ x m,n = f ′ CRF µ v m,n • ϵ v m,n . (2.14) 
Unlike the black-box approach, the white-box approach requires a deeper understanding of the postprocessing process for the step-by-step modeling. A typical example is the way to develop the so-called generalized signal-dependent noise model in [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF]. Indeed, starting from the heteroscedastic noise model of RAW pixels proposed in [START_REF] Foi | Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[END_REF], Thai et al. have followed the effects of demosaicing, white-balancing and gamma correction to build their noise model for TIFF images. Even not all steps in the postprocessing process are taken into account, numerical results therein show clearly that a better insight of the in-camera post-processing provides more accurate models than the black-box approach. Some extensions and applications of the generalized signal-dependent noise model can be found in [START_REF] Qiao | Individual camera device identification from jpeg images[END_REF][START_REF] Hai Thai | Camera model identification based on the generalized noise model in natural images[END_REF]. Besides the modeling in spatial domain, we can also exploit the discrete cosine transformation (DCT) domain to characterize the TIFF image. In fact, all statistical models of primary unquantized DCT coefficients can be employed for this goal. Subsection 4.1.1 of Chapter 4 gives a review of these models.

From TIFF Image to JPEG Image

Due to its high quality, the TIFF image is not really adapted for the storage or transmission, especially in large numbers. This is why most digital cameras employ a lossy compression algorithm to reduce the image data size. Such an algorithm attempts to eliminate the image information that is not visually significant, hence it is irreversible in the sense that the image reconstructed from the compressed data is no longer identical to the original TIFF image. Among many lossy compression algorithms (see e.g., [START_REF] Hussain | Image compression techniques: A survey in lossless and lossy algorithms[END_REF] for a recent survey), the Joint Photographic Experts Group (JPEG) standard [START_REF] Gregory | The jpeg still picture compression standard[END_REF] is most popular thanks to the good compromise between image visual quality and size. This motivates us to focus our study on the JPEG compression. As depicted in Figure 2.5, a typical JPEG compression chain consists of four fundamental steps: (i) color transformation, (ii) discrete cosine transformation (iii), quantization, 3 Light energy incident on image sensors Overview on Digital Image Processing Pipeline and Passive Forgery Detection and (iv) entropy coding. Since the JPEG compression works better under YCbCr color space [START_REF] Deever | Digital camera image formation: Processing and storage[END_REF], a transformation of TIFF image from the RGB color space to the YCbCr color space is first carried out
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where X r , X д and X b are the three components of the TIFF image X in the RGB color space, and X y , X cb and X cr are the three components of the transformed TIFF image X in the YCbCr color space. Since this transformation is simply a linear operation, it is surely lossless. Next, for each component X y , X cb or X cr , we separately apply the DCT to their 8 × 8 blocks to convert pixel values from spatial domain into transform coefficients

C h,k = 1 4 • T h • T k • 7 m=0 7 n=0 x m,n • cos (2m + 1) hπ 16 • cos (2n + 1) kπ 16 , (2.16) 
where x m,n , 0 ≤ m, n ≤ 7, denotes a pixel in a 8 × 8 block of X4 , T h and T k are the normalized weight given by

T h =        1 √ 2 if h = 0, 1 if h > 0.
(2.17)

Consequently, we obtain 64 two-dimensional DCT coefficients C h,k , 0 ≤ h, k ≤ 7, for each 8 × 8 pixel block. These coefficients are arranged in a 8×8 block such that the low-frequency elements are located at the upper left corner, while the high-frequency elements distribute in the lower right corner (see Figure 2.6). The coefficient C 0,0 , representing the mean value of pixels in the 8 × 8 block, is referred as direct current (DC) because it is analogous to a zero frequency, and 63 others are called alternative current (AC). Conveniently, for natural images, the majority of energy concentrate in the DC and low AC frequency bands, while very detail information is associated with high AC frequencies. Therefore, we can discard the higher AC frequency bands to reduce the data size without much impact on the The elimination of high-frequency AC DCT coefficients is done through the quantization step. It proposes to divide each DCT coefficient C h,k by the corresponding element q h,k of a quantization table T, then round up the result to the nearest integer to obtain the quantized DCT coefficient

D h,k = C h,k q h,k , 0 ≤ h, k ≤ 7, (2.18) 
where ⌊•⌉ denotes the nearest integer rounding. The quantization table T is designed with regard to the human visual system. Since the sensitivity of human eyes to luminance and chrominance information is different, it is recommended to use one quantization table for the luminance component, and another quantization table for the chrominance components. Such tables, indexed by a quality factor QF ∈ {1, 2, . . . , 100}, are computed as follows 

T QF =        max 1, 2 • T 50 • 1 -QF 100 if QF > 50, min 255 • 1, T
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-→                 139 
                ↓ quantized DCT coefficients unquantized DCT coefficients                
79 0 -1 0 0 0 0 0 -2 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Finally, the quantized DCT coefficients are fed to a lossless entropy coder whose mechanism is a combination of Huffman coding and run-length encoding principles. Due to the high correlation between adjacent blocks in natural images, the JPEG standard recommends to encoder the difference of inter-block DC coefficients by a Huffman code instead of their value directly. Meanwhile, a runlength encoding algorithm is applied for intra-block AC coefficients in zig-zag order (see Figure 2 Because of bitstream form, JPEG images cannot be displayed on a monitor device directly, but through a decompression chain (see Figure 2.8). Basically, it is the converse process of the JPEG compression chain: (i) entropy decoding, (ii) dequantization, (iii) inverse discrete cosine transformation, and (iv) color inverse transformation. A summary of this process is briefly introduced here. Firstly, a lossless entropy decoding is applied to JPEG bitstream Y to perfectly return the two-dimensional quantized DCT coefficients D h,k . Subsequently, D h,k is multiplied by the same quantization step q h,k as in the compression chain to generate two-dimensional dequantized DCT coefficients
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Next, the inverse DCT is applied to C h,k to render image in YCbCr color space xm,n =

7 h=0 7 k=0 1 4 • T h • T k • C h,k • cos (2m + 1) hπ 16 • cos (2n + 1) kπ 16 , (2.21) 
where T h and T k are the normalized weight given by (2.17). Finally, a color transformation of xm,n is performed to obtain the corresponding pixel value ẑm,n in the RGB color space. Since this value is possibly not integers or beyond a finite dynamic range (e.g., [0, 255] for 8-bits images), the nearest integer rounding 5 and and truncation operation is required to finalize the decompression process

z m,n = trunc ẑm,n , (2.22) 
where trunc (•) denotes the truncation operation. In general, the reconstructed image Z differs from its original TIFF image X because of the quantization, rounding and truncation errors. For an illustration, we present in Figure 2.9 the inverse process of the chain in Figure 2.7. Now, we show how to characterize JPEG images. Basically, all approaches used to model TIFF images can serve this purpose: black-box approach in the spatial domain (see e.g., [START_REF] Hsu | Camera response functions for image forensics: an automatic algorithm for splicing detection[END_REF][START_REF] Lin | Detecting doctored images using camera response normality and consistency[END_REF][START_REF] Wang | Precision-based regularization comparametric calibration method for imaging system response functions[END_REF]), white-box approach in the spatial domain (see e.g., [START_REF] Qiao | Individual camera device identification from jpeg images[END_REF][START_REF] Retraint | Quality factor estimation of jpeg images using a statistical model[END_REF]), and DCT coefficients-based approach Overview on Digital Image Processing Pipeline and Passive Forgery Detection quantized DCT coefficients dequantized DCT coefficients luminance pixels
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                -→                
1264 0 -10 0 0 0 0 0 -24 -12 0 0 0 0 0 0 -14 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (see e.g., [START_REF] Li | Statistical model of jpeg noises and its application in quantization step estimation[END_REF][START_REF] Pasquini | Statistical detection of jpeg traces in digital images in uncompressed formats[END_REF][START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF]). We are interested more specially in models developed by the last approach because the DCT is the basis of JPEG compression. We can classify them into two categories: (i) firstorder statistics, and (ii) higher-order statistics. The models in the first category consider that the DCT coefficients at the same frequency are independent identically distributed (IID) realizations of a random variable. Therefore, many statistical distributions can be used to fit in with the DCT coefficients. Most of them are empirical models conducted by goodness-of-fit tests on a set of images (see e.g., [START_REF] Chang | Image probability distribution based on generalized gamma function[END_REF][START_REF] Müller | Distribution shape of two-dimensional dct coefficients of natural images[END_REF][START_REF] Reininger | Distributions of the two-dimensional dct coefficients for images[END_REF]). The first mathematical analysis for DCT coefficients is given by Lam and Goodman in [START_REF] Edmund | A mathematical analysis of the dct coefficient distributions for images[END_REF]. However, such an analysis had not yet been finalized until Thai et al. successfully studied the block variance model of DCT coefficients and approximated it by an Gamma distribution in [START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF]. Notwithstanding, the IID assumption made by the first-order models is not always true because of the correlation inherent in the DCT coefficients of natural images. The higher-order models can solve this problem by considering two fundamental kinds of correlation [START_REF] Tu | Context-based entropy coding of block transform coefficients for image compression[END_REF]: (i) intra-block, and (ii) inter-block. The intra-block correlation reflects the dependence between adjacent DCT coefficients within a same 8 × 8 block, while the inter-block correlation take into account the dependence of DCT coefficients at the same frequency between neighboring 8 × 8 blocks. Both the correlations can be expressed and measured by co-occurrence matrices and probability transfer matrices in the direction of horizontal, vertical, main and secondary diagonals (see e.g., [START_REF] He | Digital image splicing detection based on markov features in dct and dwt domain[END_REF][START_REF] Kodovskỳ | Quantitative structural steganalysis of jsteg[END_REF][START_REF] Li | Double jpeg compression detection based on block statistics[END_REF]).
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Techniques of Digital Image Forgery

We provide in this section an overview of forgery techniques for digital images. Although many forgeries can be introduced throughout the digital image processing pipeline (see e.g., [START_REF] Baracchi | Camera obscura: Exploiting in-camera processing for image counter forensics[END_REF][START_REF] Farid | Image forgery detection[END_REF][START_REF] Taburet | Natural steganography in jpeg domain with a linear development pipeline[END_REF]), we just limit our study to very common post-camera techniques including: (i) cloning, (ii) splicing, (iii) inpainting, and (iv) resampling. For each of techniques, we state the definition and its role in digital image forgery.

Cloning

Cloning, also known as copy-move forgery, is perhaps one of the easiest, yet powerful, techniques to create forged images. It consists of copying areas of an image, then pasting them elsewhere within the same image. The objective is to hide (see Figure 2 of the image. Since both the source and target areas stem from the same image, properties like the color temperature, illumination conditions and noise are expected to be well-matched between the tampered areas and the image. This is why the cloning detection is relatively challenging, especially when the manipulation only involves small or smooth regions, or when the forged areas have been additionally processed by some severe attacks, such as large-scale resizing and heavy noise addition.

Splicing

Splicing, also referred as cut-paste forgery, is another common technique of digital image forgeries. It attempts to alter the content and meaning of an original image by replacing some areas in the image by those from others using cutting and pasting operations (see Figure 2.12 for an example). Com- 12: Splicing attack taken from the Realistic Tampering Dataset [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF] pared to the cloning, the splicing is far more flexible thanks to different image sources, and therefore allows forged images with a very different content than the original. However, the multiple image sources also induce more inconsistencies in image statistical properties, especially at the borderlines. Of course, when performed carefully, the border between the spliced regions can be still visually imperceptible. If necessary, the splicing may be accompanied with other operation such as rotation, resizing, compression, noise addition, filtering, and contrast and brightness adjustments to make the final forgeries more convincing.

Inpainting

Inpainting is originally proposed to repair old photos from the early days (see Figure 2.13). In image tampering, it is also called erase-fill forgery [START_REF] Zheng | A survey on image tampering and its detection in real-world photos[END_REF] because the main attacks is to erase some undesired [START_REF] Bertalmio | Image inpainting[END_REF]. Meanwhile, the exemplar-based methods rely on image statistics and similarity priors to synthesize the patches in the unknown region. The works [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF][START_REF] Wang | Exemplar-based image inpainting using structure consistent patch matching[END_REF] are some examples of this second category. Nowadays, these two methods are usually combined with deep learning (see e.g., [START_REF] Jam | A comprehensive review of past and present image inpainting methods[END_REF][START_REF] Qin | Image inpainting based on deep learning: A review[END_REF] for some recent reviews) to further improve the visual quality. Although sharing the same tampering attack as the cloning and splicing, the inpainting is obviously more sophisticated, and hence much harder to be detected.

Resampling

In image forgery, resampling is a technique that utilizes interpolation algorithm to maliciously geometrically transform a digital image or a portion of an image. It involves affine transformations like by two basis operations [START_REF] Peng | Revealing traces of image resampling and resampling antiforensics[END_REF]: (i) spatial transformation of coordinates to move some parts or the whole original image onto a new sampling lattice, and (ii) interpolation to introduce specific correlations between neighboring pixels. Very often, the resampling happens together with other forgery techniques such as cloning or splicing to create a convincing forged images. This explains why many researchers have considered the resampling as an useful auxiliary trace to detect other forgeries (see e.g., [START_REF] Chen | Detection of operation chain: Jpeg-resamplingjpeg[END_REF][START_REF] Manhar | Boosting image forgery detection using resampling features and copy-move analysis[END_REF]) .

Passive Detection of Digital Image Forgery

Passive forgery detection is the family of forensic techniques that only utilize the received image to verify its authenticity or integrity [START_REF] Gajanan | Digital image forgery detection using passive techniques: A survey[END_REF]. Since no prior information possibly embedded in the original image, such as authentication watermarks or digital signatures, is available in hand, the passive techniques attempt to exploit inconsistencies existing in the digital image processing pipeline to detect forgeries. Such an approach is proved feasible and efficient [START_REF] Lin | Recent advances in passive digital image security forensics: A brief review[END_REF][START_REF] Piva | An overview on image forensics[END_REF], because any manipulation likely disturbs the underlying statistics property or image consistency of a natural scene, and leaves traces in different stages of the processing pipeline [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF]. Our review in this section focuses on the detection methods using in-camera and post-camera traces represented in Figure 2.17. The aim is to answer two questions: (i) where these traces come from?, and (ii) what are the relevant methods for their detection? Note that we will not cover all the state-of-the-art, but rather provide an essential summary 

.17: Overview of operation traces along with a typical digital image processing pipeline of the research field. Existing works related to more specific problems studied in this thesis will be further introduced and analyzed at the beginning of Chapters 3, 4 and 5.

In-Camera-Based Detection

We have seen in Section 2.2 that each component and processing step in a digital camera acquisition process alters the input and leaves intrinsic traces in the image output. Moreover, since the optical module, image sensor and software of each camera device are customized by manufacturers, these traces vary across different camera brands and/or models. Their use as evidence for tampering detection is thus possible, independently of forgery types (see Section 2.3).

Lens and Shutter Traces

The integrity of image content can be exposed by inconsistencies in the lens and shutter parameters of the employed camera device. They include lateral chromatic aberration [START_REF] Mayer | Accurate and efficient image forgery detection using lateral chromatic aberration[END_REF], radial lens distortion [START_REF] Wu | Lens distortion correction based on one chessboard pattern image[END_REF], and motion blur [START_REF] Makkena | Harnessing motion blur to unveil splicing[END_REF]. Since all of these techniques look for local deviations from a general expected model, they are capable of localizing the forgery automatically.

Lateral chromatic aberration (LCA) arises due to the lens inability to focus all wavelengths of a single light ray to a single location on a sensor (see Figure 2.18a). Consequently, the focal locations Later, Yerushalmy and Hel-Or have shown in [START_REF] Yerushalmy | Digital image forgery detection based on lens and sensor aberration[END_REF] that purple fringing artifacts can also be exploited for the image forgery detection. Although having a much more complex origin, this artifact is stronger and more visible than LCA. Again, inconsistency in the direction of these artifacts is used for tampering detection. More recently, Mayer and Stamm have proposed in [START_REF] Mayer | Accurate and efficient image forgery detection using lateral chromatic aberration[END_REF] a statistical model to capture the inconsistency between global and local estimates of LCA. Based on this statistical model and hypothesis testing, the authors successfully derived an accurate statistic for forgery detection. As depicted in Figure 2.19a, the differences in magnification level across a lens surface and the misalignment between lens and the detector plane cause a subtle radial shift in magnification towards the center of the lens. It results in the so-called radial lens distortion that makes straight edges in a scene and specific for different camera lenses [START_REF] Hel | Camera-based image forgery detection[END_REF]. This is why Choi et al. proposed to analyze this artifact as a fingerprint to identify the source camera in [START_REF] Choi | Source camera identification using footprints from lens aberration[END_REF]. Using the Devernay's line extraction method [START_REF] Devernay | Automatic calibration and removal of distortion from scenes of structured environments[END_REF], the authors estimate the distortion parameters of a camera, and then measure the error between the distorted line segment and the corresponding straight lines. The estimated parameters are next used to train a classifier to distinguish among images captured by different cameras. Chennamma and Rangarajan further applied the radial distortion to detect splicing forgery in [START_REF] Hr Chennamma | Image splicing detection using inherent lens radial distortion[END_REF]. The inconsistency in the radial distortion parameters across an image is the cue for the detection. Lately, in [START_REF] Fu | Forgery authentication in extreme wide-angle lens using distortion cue and fake saliency map[END_REF], Fu and Cao combined the radial distortion artifacts with a fake salience map to improve the forgery localization. Figure 2.20 illustrates some results. If the two above traces are generated by the lens imperfection, the motion blur is mainly caused by the slow speed of the camera shutter relative to the object being imaged [START_REF] Piva | An overview on image forensics[END_REF]. Especially, it is a very common phenomenon in images taken by hand-held cameras, and can thus serve as a fingerprint of natural images. In [START_REF] Kakar | Exposing digital image forgeries by detecting discrepancies in motion blur[END_REF], Kakar et al. have relied on gradient analysis to estimate the motion blur direction (see Figure 2.21a). Meanwhile, Bahrami et al. have focused on the estimation of blur kernels in [START_REF] Bahrami | Blurred image splicing localization by exposing blur type inconsistency[END_REF] (see Figure 2.21b). The differences in the blur direction or in the blur kernel between the whole (a) Blur direction map given from [START_REF] Kakar | Exposing digital image forgeries by detecting discrepancies in motion blur[END_REF] (b) Blur kernel map given from [START_REF] Bahrami | A novel approach for partial blur detection and segmentation[END_REF] Overview on Digital Image Processing Pipeline and Passive Forgery Detection Generally, we can find that the lens and shutter traces are not significantly applicable to the literature of forgery detection, because they are easily removed by a photo editing software or directly by the camera itself. For instance, the free software RawTherapee (GPLv3) allows to efficiently erase all the traces of lateral chromatic aberration, radial lens distortion and motion blur in an image.

Sensor Traces

As a dominant component of sensor pattern noise, the PRNU noise mainly arises from the heterogeneity of silicon wafers introduced during the sensor manufacturing process, and manifests itself as the pixel-to-pixel variation in light sensitivity. It is present in every natural image and practically unique to each sensor. These properties make the PRNU noise well adapt for the forgery localization. Its fundamental idea is to analyze the local correlation of PRNU signatures to identify specific areas with potential mismatch [START_REF] Mo Chen | Determining image origin and integrity using sensor noise[END_REF]. Example of tampering localization results using PRNU noise adapted from [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF] and [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF] that the localization works poorly for small forgeries in highly-textured dark areas because of the very weak energy of PRNU noise. A way to remedy this flaw is to adopt better techniques for sensor noise estimation. A recent empirical evaluation of various techniques is reported in [4]. Another way is to improve localization capabilities for small forgeries. Indeed, recasting the PRNU-based localization problem in a Bayesian framework, modeling the decision variables as a Markov random field, and thus accounting for their spatial dependencies, Chierchia et al. [START_REF] Chierchia | A bayesian-mrf approach for prnu-based image forgery detection[END_REF] provide more accurate localization results than the approach developed by Chen et al. in [START_REF] Mo Chen | Determining image origin and integrity using sensor noise[END_REF]. More recently, Korus and Huang have conducted multi-scale analysis in [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF] to further enhance the localization performance.

In addition to PRNU noise, noise level, which is a joint effect of the sensor characteristics, the current ISO setting, and prospective post-processing, is a potential cue for splicing detection, because it is usually different from an image to another (see e.g., Figure 2.23a). In [START_REF] Mahdian | Using noise inconsistencies for blind image forensics[END_REF], Mahdian and Saic No matter what intensityindependent or dependent noise used, the splicing detection-based on the noise level is very sensitive to variations in the local noise variance. So, if the splicing is carefully prepared to keep the similar noise level in the whole forged image, forgeries will not be detected.

Demosaicing Traces

As mentioned in Subsections 2.2.1 and 2.2.2, most camera devices use a CFA together with a CCD or CMOS sensor chip to record image scene mosaically, and then interpolate missing colors by a demosaicing algorithm to achieve a full color image. The periodic pattern of CFA and unified demosaicing algorithms applied throughout color channels lead to periodic interpolation artifacts inherent in a natural image. Any local perturbation of this periodicity will put image integrity in doubt. Assuming a linear interpolation kernel, Popescu and Farid used in [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF] an expectation-maximization algorithm to build a so-called p-map representing the correlation probability between a pixel and their neighbors. Such a p-map exhibits a periodic behavior which is clearly visible in Fourier domain. By applying this analysis to different areas of an image, forgeries can be detected. Figure 2.24 illustrates a detection result returned by this method. Gallagher and Chen proposed in [START_REF] Andrew | Image authentication by detecting traces of demosaicing[END_REF] another way for detecting the periodic interpolation artifacts. Observing that the variance of the second derivative of an interpolated signal is periodic [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF], the authors successively applied the high-pass filtering and the Fourier analysis to capture the presence of periodicity in the variance of interpolated/acquired coefficients. Compared to the method developed by Popescu and Farid, this method does not require the estimation Overview on Digital Image Processing Pipeline and Passive Forgery Detection of the CFA interpolation kernel, and hence is with lower computational complexity.

Along with the periodic interpolation, the difference in the distribution of acquired and interpolated pixels is also a fingerprint of natural images. In fact, since the missing pixels are interpolated from their acquired neighbors following an interpolation algorithm, the variance of interpolated pixels would be smaller than the acquired ones. Especially, Gallagher et Chen proved in [START_REF] Andrew | Image authentication by detecting traces of demosaicing[END_REF] that this variance ratio equals 1 4 , when the bilinear interpolation is applied for the green channel (see Figure 2
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.25: Variance of pixels in the green channel interpolated by bilinear kernel on this phenomenon, Dirik and Memon [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF] partitioned the considered image into non-overlapping blocks, and computed the associated ratio between variances of prediction residues in interpolated and acquired pixels. Since malicious operations likely erase this variance difference, the blocks whose variance ratio is close to 1 are the tampered ones. A similar method was proposed by Ferrara et al. in [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF], but a Gaussian mixture model was employed to fit the distribution of prediction residues features rather than merely considering their variances. A naive Bayesian rule was next used to compute the tampering probability. Besides, we can also use the CFA pattern and the demosaicing algorithm as proofs for the forgery detection, because they are specific for each class/branch/model of camera devices. In [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF], Dirik and Memon have relied on an estimation of CFA pattern number to detect the presence of global or local tampering in an image. Swaminathan et al. exploited in [START_REF] Swaminathan | Digital image forensics via intrinsic fingerprints[END_REF] the inconsistencies among the estimated demosaicing coefficients to check if an image has undergone any form of subsequent processing.

Despite very precise localization ability, demosaicing artifacts constitute a relatively simple fea-ture which lacks both robustness and security. For instance, traces of periodic interpolation are easily destroyed by JPEG compression, even with the highest quality levels. Hence, this trace is applicable almost exclusively for uncompressed images. Moreover, since existing methods assume that the camera uses the standard Bayer CFA and a non-adaptive demosaicing algorithm, false positive errors or unreliable localization maps may appear when these conditions are violated.

JPEG Compression Traces

JPEG is no doubt the most popular format of digital images today. This makes JPEG compression traces one of the most important tools for image forgery detection. In the following analysis, we will distinguish traces in spatial domain from traces in DCT domain.

Generated by the block-wise processing, blocking artifact is a well-known fingerprint in spatial domain of JPEG compressed images. It corresponds to the discontinuities that regularly occur along the boundaries of every 8 × 8 pixel block (see Figure 2.26 for an illustration). In the presence of forgery operations such as cloning or splicing, this regular structure is locally disturbed by the block grid of inserted objects, and some misalignments likely appear in the forged image. Fan and de Queiroz proposed in [START_REF] Fan | Identification of bitmap compression history: Jpeg detection and quantizer estimation[END_REF] a lightweight algorithm to check whether an image is JPEG compressed and to further locate the whole position of block artifacts. The algorithm is based on the idea that if the image has not been compressed, the pixel differences across 8 × 8 block boundaries should be similar to those within blocks. Therefore, it is possible to evaluate the difference between of inter-block and intra-block pixels, and then define a threshold to detect the presence of prior JPEG compression. The algorithm performance is recently improved in [START_REF] Iakovidou | Content-aware detection of jpeg grid inconsistencies for intuitive image forensics[END_REF] thank to the content-aware detection of grid inconsistencies.

In [START_REF] Li | Passive detection of doctored jpeg image via block artifact grid extraction[END_REF], Li et al. developed another algorithm to blindly extract the blocking artifact grid in JPEG images. The algorithm automatically generates a tampering map indicating where the local blocking grid diverges from the global one. Beside block artifact, JPEG dimple is another trace of JPEG compression in spatial domain. It is issued from the different rounding operations (e.g., round, floor, or ceiling) possibly used to convert DCT coefficients from floating-point to integer values [START_REF] Agarwal | Photo forensics from jpeg dimples[END_REF]. In fact, the use of floor and ceiling can lead to a periodic artifact in the form of a single darker and brighter pixel in the top-left corner of 8×8 pixel blocks (see Figure 2.27). The local absence of such dimples in a JPEG image would be the evidence of forgeries. Agarwal and Farid have proved in [START_REF] Agarwal | Photo forensics from rounding artifacts[END_REF] that JPEG dimples allow to detect a wide range of manipulations such as cloning, splicing, median filtering, resampling, as well as content-aware fill.

Overview on Digital Image Processing Pipeline and Passive Forgery Detection Very often, the tampering process of digital image finishes by resaving forged images under JPEG format. This implies that the multiple JPEG compression is a potential fingerprint of forged images, and can thus serve forgery detection. In spatial domain, tampered areas in an image manifests as the JPEG ghosts appeared after recompressing the forged JPEG image following various lower quality factors. As displayed in Figure 2.28, the nearer the quality factor of recompression to the original factor of tampered areas, the more the JPEG ghost is clearer. Such a forgery detection was first introduced by Farid in [START_REF] Farid | Exposing digital forgeries from jpeg ghosts[END_REF], and afterward improved by Zach in [START_REF] Zach | Automated image forgery detection through classification of jpeg ghosts[END_REF] and by Zhang and Wang in [START_REF] Zhang | In-camera jpeg compression detection for doubly compressed images[END_REF]. In DCT domain, the multiple JPEG compression usually leaves traces in the histogram of some selected DCT coefficients [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF] or of their first digit [START_REF] Milani | Discriminating multiple jpeg compressions using first digit features[END_REF]. We can remark from Figure 2.29a that peaks or valleys in the histogram of AC DCT coefficients characterize JPEG compression times differently. This conducts various features for forgery detection. In [START_REF] Lin | Fast, automatic and fine-grained tampered jpeg image detection via dct coefficient analysis[END_REF], Lin et al. exploited the periodic peaks and valley in the histogram of DCT coefficients for double compression detection, and then used this feature to automatically locate tampered regions. This work was subsequently improved by Bianchi et al. who recognized that the empirical distribution is essentially a mixture of an authentic and altered components [START_REF] Bianchi | Improved dct coefficient analysis for forgery localization in jpeg images[END_REF]. The approach was further extended in [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF] by separately considering cases of aligned and misaligned JPEG blocking grid. Another efficient tampering localization approach is to based on the first digit distribution of DCT coefficients. As depicted in Figure 2.29b, this distribution is well fitted by the Benford's law [START_REF] Jolion | Images and benford's law[END_REF] when the image is single JPEG compressed, and becomes much worse when the image is double compressed. This observation leads to global first digit features in [START_REF] Fu | Forgery authentication in extreme wide-angle lens using distortion cue and fake saliency map[END_REF], and modebased first digit features in [START_REF] Li | Detecting doubly compressed jpeg images by using mode based first digit features[END_REF]. These features was next combined with a multi-class classification to detect double compressed JPEG images. Lately, Milani et al. extended this approach to the detection of higher compression on JPEG images in [START_REF] Milani | Discriminating multiple jpeg compressions using first digit features[END_REF].

Generally, existing JPEG-based methods for tampering localization work well if the second quality level is greater than for the original image. If the quality level difference is sufficient, reliable localization can be performed even for 8 × 8 pixel blocks. However, this performance drops significantly when the second quality factor is equal or lower than the original one, and much larger windows are required for adequate results [START_REF] Korus | Multi-scale fusion for improved localization of malicious tampering in digital images[END_REF].

Post-Camera-Based Detection

Various post-camera manipulation applied to the digital image, even if not visually detectable, modify the image properties and leave peculiar traces accordingly to the processing itself. This section discusses how such specific traces can be exploited to detect the cloning and the resampling.

Overview on Digital Image Processing Pipeline and Passive Forgery Detection

Cloning Traces

In accordance with the feasibility and popularity of the malicious cloning, its detection is one of the most active research topics (see e.g., [START_REF] Teerakanok | Copy-move forgery detection: A state-of-the-art technical review and analysis[END_REF] for a thorough review). Here, we briefly discuss two generic classes of cloning detection referred as patch-based algorithms6 and keypoint-based algorithms.

From the mechanism of the cloning attack, the idea of patch-based detection algorithms is to consider a suspicious image as small patches, and try to match each patch to the others based on some compact content representation. A cluster of neighboring patches matched to the same source region indicates a potential cloning. A common workflow of such algorithms is depicted in Figure 2.30. Fridrich et al. are the pioneers in applying this workflow for cloning detection in [START_REF] Fridrich | Detection of copy-move forgery in digital images[END_REF]. They suggested looking for matches among DCT coefficients of overlapping image blocks. To reduce the computa-Figure 2.30: Workflow of patch-based algorithms for cloning detection extracted from [START_REF] Ferreira | Behavior knowledge space-based fusion for copy-move forgery detection[END_REF] tion cost and the comparison complexity, the matrix of DCT coefficients is lexicographically sorted, and two adjacent identical lines are considered as cloned regions. Since then, various improvements have been proposed, where the main difference resides in features used to match the blocks. Indeed, instead of DCT matching, we can also use principal component analysis [START_REF] Alin | Exposing digital forgeries by detecting duplicated image regions[END_REF], discrete wavelet transform [START_REF] Zhang | A new approach for detecting copy-move forgery in digital images[END_REF], singular value decomposition [START_REF] Kang | Identifying tampered regions using singular value decomposition in digital image forensics[END_REF], Fourier-Mellin transform [START_REF] Bayram | An efficient and robust method for detecting copy-move forgery[END_REF], Zernike moments [START_REF] Ryu | Detection of copy-rotate-move forgery using zernike moments[END_REF], etc. Albeit these efforts, existing patch-based algorithms are always faced with considerable computational complexity.

To remedy the computational drawback of patch-based algorithms, keypoint-based algorithms attempt to use some characteristic points in patches to estimate their similarities rather than the whole image path (see Figure 2.31 for an example). In the literature, such keypoints are essentially built from the scale-invariant feature transform (SIFT) [START_REF] David G Lowe | Object recognition from local scale-invariant features. int[END_REF] and the speeded-up robust features (SURF) [START_REF] Bay | Speeded-up robust features (surf)[END_REF]. Given these features, the variety of keypoint-based algorithms comes from different choices of matching policies. For instance, the authors of [START_REF] Huang | Detection of copy-move forgery in digital images using sift algorithm[END_REF][START_REF] Pan | Region duplication detection using image feature matching[END_REF] used similarity search of SIFT keypoints descriptors. Amerini et al. analyzed SIFT correspondences by means of hierarchical clustering procedure in [START_REF] Amerini | A sift-based forensic method for copy-move attack detection and transformation recovery[END_REF]. Shivakumar and Baboo combined SURF with a KD tree to enable a cloning detection of high resolution images with a minimum number of false matches. Regardless of chosen algorithms, keypoint-based detectors work poorly for small and homogeneous cloned areas, because keypoints therein usually are not enough to give a robust detection.

In principle, detectors based on cloning traces is incapable of distinguishing between either naturally occurring self-similarity or even the original and the cloned objects.

Resampling Traces

As mentioned in Subsection 2.3.4, the image resampling always introduces specific correlations between neighboring pixels. Moreover, if the image is resampled with respect to a single ratio factor, these correlations will be periodic in nature. Based on such traces, various demosaicing detection algorithms can be reused to detect the resampling.

Using the same expectation-maximization algorithm as in [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF], Popescu and Farid successfully estimate the linear interpolation kernel employed for the resampling, as well as the p-map representing the correlations among pixels. Periodicities in the p-map can be identified by observing distinct isolated peaks inherent in its Fourier transform (see Figure 2.32 for some examples).

Almost in parallel with the work of Popescu and Farid, Gallagher observed in [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF] that the variance of the second derivative of an interpolated signal is periodic. The periodicity in the second derivative of the overall image is found by analyzing its Fourier transform. Although derived from different bases, Kirchner et al. proved in [START_REF] Kirchner | Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue[END_REF][START_REF] Kirchner | On resampling detection in re-compressed images[END_REF] that the Popescu's method and Gallagher's method are closely related. In these papers, it is demonstrated how the variance of prediction residuals of a re-sampled signal can be used to described periodic artifacts in the corresponding p-map. It is also proposed a simplified detector, much faster than the one in [START_REF] Alin | Exposing digital forgeries by detecting traces of resampling[END_REF], while achieving similar performance. Further studies by the same authors are reported in [START_REF] Kirchner | On the detectability of local resampling in digital images[END_REF][START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF]. Based on Gallagher's ideas, the periodicity of the second derivative (or other order) is further analyzed by Pradad and Ramakrishnan in [START_REF] Prasad | On resampling detection and its application to detect image tampering[END_REF], by Mahdian and Saic in [START_REF] Mahdian | On periodic properties of interpolation and their application to image authentication[END_REF], by Dalgaard et al. in [START_REF] Dalgaard | On the role of differentiation for resampling detection[END_REF] and by Song et al. in [START_REF] Song | A new estimation approach of resampling factors using threshold-based peak detection[END_REF]. Another approach to resampling detection has been developed by Mahdian and Saic [START_REF] Mahdian | Blind authentication using periodic properties of interpolation[END_REF] on the basis of the periodic properties of the covariance structure of interpolated signals and their derivatives. The core of the proposed scheme is a Radon transform applied to the derivative of the investigated signal, followed by a search for periodicity. Always exploiting the covariance structure of interpolated signals, Pasquini and Böhme quantified in [START_REF] Prasad | On resampling detection and its application to detect image tampering[END_REF] the statistical distance between an original signal and its downsampled version by means of the Kullback-Leibler divergence in case of a wide-sense stationary first-order autoregressive signal model. In [START_REF] Bunk | Detection and localization of image forgeries using resampling features and deep learning[END_REF], the authors employed an artificial neural network with two hidden layers to perform a binary classifier characterizing resampling. More recently, Qiao et al. investigated in [START_REF] Qiao | Exposing image resampling forgery by using linear parametric model[END_REF] the problem of image re-sampling detection based on the linear parametric model. The authors proposed to estimate the probability of pixels noise, and thence to design a practical likelihood ratio test (LRT) to detect re-sampled images. They argued that the designed LRT-based detector is the first test based on hypothesis testing theory for image resampling detection, which can achieve the maximal detection power at the prescribed false alarm rate. Besides, the detector can deal with the problem of authenticating the resampled images from mixed compressed and uncompressed images.

Conclusion

We have reviewed and analyzed in this chapter the image formation process inherent in a typical digital camera, four well-known techniques for image forgery, and various passive methods for image
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forgery detection based on traces left by in-camera and post-camera processing steps. Such a review and analysis allows to specify better the problems to be dealt with in this doctoral project. Indeed, aiming at versatile tools, we are interested more especially in exploiting traces returned by the demosaicing, the JPEG compression and the resampling post-processing operation to develop forgery detectors. This choice can be explain by upstream operations of the demosaicing and the JPEG compression and by the necessity of the resampling after any other forgery technique, so that the developed methods can detect various forgery types. The detail development of these forgery detectors are further represented in Chapter 3, 4 and 5 respectively.

Chapter 3

Digital Image Authentication and Forgery Localization Using Demosaicing Artifacts

Introduction

In a digital camera acquisition pipeline, demosaicing (also known as color filter array (CFA) interpolation) serves to reconstruct a full color image from the sampled data overlaid with a CFA (see Figure 2.1). Although most of commercial camera devices share a common acquisition pipeline process, each step therein is personalized according to manufacturer choices. Traces left by demosaicing are thus different but specific for different camera brands and/or models. When these traces are totally missing in an image, or when there exists any inconsistency in traces for different image regions, the photographic image is likely to be tampered. Moreover, since the demosaicing is an upstream operation in the acquisition pipeline of digital cameras, its traces are resistant to post-camera manipulations such as cloning, splicing, inpainting, resizing, etc. Therefore, the demosaicing traces could be a robust and powerful evidence to assess the credibility of digital images. This versatility motivates us to develop in this chapter a demosaicing traces-based algorithm for image authentication and forgery localization.

Prior Art

Although an overview has been briefly done in Section 2.4.1.3 of Chapter 2, its specific focus on the demosaicing traces used for forgery detection seems not enough to highlight the originality of the algorithm proposed in this chapter. A more detail literature analysis with new categorization is thus proposed here. Indeed, we can further categorize forensics works considering demosaicing traces into two main classes. The first one consists of algorithms aiming at estimating from a digital image the CFA pattern and/or the demosaicing algorithm inherent in camera devices. The second one characterizes algorithms used to evaluate the presence/absence of artifacts generated by demosaicing operations.

Digital Image Authentication and Forgery Localization Using Demosaicing Artifacts

First Class

As to the first stream in the class, the works [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF][START_REF] Ju | Estimation of bayer cfa pattern configuration based on singular value decomposition[END_REF][START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF][START_REF] Takamatsu | Estimating demosaicing algorithms using image noise variance[END_REF] represent key methods for CFA pattern identification. In [START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF], the Bayer CFA pattern is identified by minimizing the difference between the raw sensor signal and the inverse demosaiced signal. In [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF], the identification is performed via an intermediate value counting algorithm developed from the observation that the value of interpolated color samples is always between the minimum and maximum values of their neighbors. Other method is to compute the ratio between the average noise variance of interpolated pixels and of acquired pixels for all possible candidate CFA patterns of a digital image; the pattern providing the largest ratio is considered as the true one [START_REF] Takamatsu | Estimating demosaicing algorithms using image noise variance[END_REF]. More recently, color difference blocks are proposed as a means for estimating the CFA configuration in [START_REF] Ju | Estimation of bayer cfa pattern configuration based on singular value decomposition[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF].

Beyond the CFA pattern identification, works within the second stream focus more especially on estimating demosaicing algorithms. In [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF], an expectation-maximization (EM) algorithm is employed to estimate the coefficients of linear interpolation kernels. An improvement is made in [START_REF] Bayram | Classification of digital camera-models based on demosaicing artifacts[END_REF] by combining the EM algorithm with average second-order derivative spectrum [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF] to obtain interpolation coefficients from smooth and non-smooth regions of images separately. Also partition an image into smooth, horizontal and vertical non-smooth regions, a two-step estimation process is proposed in [START_REF] Swaminathan | Nonintrusive component forensics of visual sensors using output images[END_REF]: (i) linear interpolation coefficients associated with each of candidate CFA patterns are first derived using the singular value decomposition, (ii) a minimum interpolation error criterion is next used to jointly identify the correct CFA pattern and demosaicing algorithm for separate image regions. In [START_REF] Cao | Accurate detection of demosaicing regularity for digital image forensics[END_REF], an accurate method based on the partial second-order image derivative correlation models is proposed to recover demosaicing formulas. The method allows to take into account the correlation between three color channels of the image.

Since the CFA pattern and/or the demosaicing algorithm are specific for each class/branch/model of camera devices, they can be used as proofs for image forgery detection and localization. For instance, in [START_REF] Cao | Manipulation detection on image patches using fusionboost[END_REF][START_REF] Swaminathan | Digital image forensics via intrinsic fingerprints[END_REF], the inconsistencies among the estimated demosaicing coefficients are exploited to check if an image has undergone any form of subsequent processing. By remarking that the CFA pattern is changed if the image color is modified, the authors of [START_REF] Choi | Estimation of color modification in digital images by cfa pattern change[END_REF] have designed an advanced intermediate value counting algorithm for measuring the change in the CFA pattern, and hence localizing the extent of color modification in digital images. We also note that estimated CFA pattern and/or demosaicing algorithm are used not only for assessing the credibility of digital images content, but also for camera source identification (see e.g., [START_REF] Gao | Camera model identification based on the characteristic of cfa and interpolation[END_REF]). However, the latter is out of our scope.

Second Class

The first stream in the second class relies on periodic artifacts caused by the demosaicing. In fact, the image sensors in a CFA are usually organized periodically [START_REF] Menon | Color image demosaicking: An overview[END_REF]. Besides, many demosaicing algorithms behave as a filtering process where missing signals are interpolated by periodically applying an interpolation kernel to acquired signals (see e.g., [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF]). Therefore, periodicity in demosaicing artifacts is intrinsic to digital photographs, and may help to authenticate images. Inspired by this idea, Popescu and Farid build in [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF] a probability map to expose the periodic pattern of correlated pix-els. When interpolated pixels are present, the periodicity of the map is clearly visible in the Fourier domain. Such an analysis can be applied to different areas of the tested image to detect the presence of local tampering, however the area size should not be smaller than 256 × 256 to assure the accuracy of the results. Observing that the variance of the second derivative of interpolated images is periodic [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF], Gallagher and Chen use in [START_REF] Andrew | Image authentication by detecting traces of demosaicing[END_REF] high pass filtering and Fourier analysis to compute periodic frequency locally. Forged regions of an image will have a different periodicity than the rest. This method is applicable for image blocks with size 64 × 64 or more. Another method based on periodicity analysis of prediction errors variance is recently proposed by Li et al. in [START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF]. Assuming that interpolation errors are Gaussian distributed, a posterior probability map is derived according to Bayes' rule. Such a map shows the periodic interpolation of the tested image in an intuitive way. An analysis with two dimensional discrete Fourier transform allows to capture the periodicity. By experiments, Li et al.

show that this method can be applied for local tampering detection with blocks size up to 32 × 32.

For the second stream, methods for digital image forgery detection are based on the differences in the distribution of acquired and interpolated pixels. In [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF], Dirik and Memon recognize that the low pass nature of CFA demosaicing make the variance of the sensor noise in interpolated pixels significantly lower than acquired pixels. As a result, demosaicing artifacts can be measured by a ratio of noise variances between interpolated and acquired pixels. If this ratio is close to 1, tampering has been performed on the image. The method presents a good performance for image blocks with size greater than 96 × 96. Sharing the same idea, Ferrara et al. [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF] carry out fine-grained analysis of CFA artifacts and propose a feature to measure the presence of demosaicing even at the smallest 2 × 2 block level. However, numerical experiments show that the tampering localization yields the best performance at 8 × 8 block size. While the above works consider spatial features of demosaicing artifacts, González-Fernández et al. [START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF] are rather interested in their spectrum. Indeed, by computing the probability of each interpolated pixel and then applying the discrete cosine transform (DCT) on small blocks of the probability map, the presence/absence of the demosaicing artifacts within a block could be verified via the DCT coefficient at the highest frequency. Experiments show that the method is reliable for blocks of size 16 × 16.

Compared to the first stream, methods within the second stream brings out better localization resolution and higher fidelity. However, their performance seems more sensitive to JPEG compression than the first stream, especially when the compression quality is significantly low.

Common Remarks

Since the demosaicing is an upstream operation in the acquisition pipeline of digital cameras, its traces are independent of forgeries such as cloning, splicing, inpainting, resizing, etc. Therefore, methods based on demosaicing traces do not target any specific forgery operation, but are rather applicable to a variety of operations. Despite this advantage, demosaicing traces are easily destroyed by JPEG compression, even with very high quality levels. This is why these methods is suitable to uncompressed or less-compressed photographs. This is a common and almost unavoidable limitation of demosaicing traces-based methods. Moreover, very often a comparison threshold is required to detect or localize forgeries (see e.g., [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF][START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF]). In practice, the choice of such a threshold is not easy and may be Digital Image Authentication and Forgery Localization Using Demosaicing Artifacts very influential in the robustness of the methods. Besides, employed demosaicing traces (i.e., CFA pattern, demosaicing algorithm, periodicity of demosaicing artifacts, differences in the distribution of acquired and interpolated pixels) are closely correlated. However, the above classification of related works implies that they are treated separately in most existing algorithms. Jointly use these traces could improve the performance of image forgery detection and localization.

Contributions and Organization

The two classes of forensic algorithms using demosaicing traces have been separately studied in the literature. Here, we aim at combining both of them into an unified algorithm in order to improve the image authentication and forgery localization performances. As a result, a hybrid algorithm consisting of CFA pattern identification, demosaicing algorithm estimation, and artifacts analysis is developed. Aiming at fine-grained detection, we have adopted the identification scheme proposed in [START_REF] Swaminathan | Nonintrusive component forensics of visual sensors using output images[END_REF] to reveal the CFA pattern and interpolation kernel, and a local analysis similar to [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF] to expose demosaicing artifacts from prediction residues. Despite these similarities, several improvements have been made in the algorithm.

1. We theoretically analyze how the mean and variance of prediction residues in interpolated and acquired signals evolve in a digital camera acquisition pipeline from the RAW format to the JPEG format. This is the basis to build feature statistics of interest. Besides, the analysis also helps to explain in part why the demosaicing traces-based approach is less effective with JPEG compressed images.

2. In most demosaicing traces-based algorithms (see e.g., [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF][START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF][START_REF] Singh | A markov based image forgery detection approach by analyzing cfa artifacts[END_REF]), prediction residues are given from entire pixels. Here, by further partitioning a pixel into content and noise parts, we realize that the demosaicing behaves in the same manner for content, noise, as well as entire pixel. However, due to the weak energy of noise, demosaicing traces are most visible in noise part. This is why feature statistics used in the algorithm are extracted from noise residues rather than the residues of content or entire pixels.

3. As mentioned in [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF], the presence of sharp edges in images reduces the quality of feature statistics, because it may disrupt the correlation between interpolated and acquired residues. To overcome this obstacle, we build our feature statistics from smooth region of the green channel instead of the entire channel. As such, the edges problem is no longer a great concern.

4. Regarding the authentication, after verifying the standard normal distribution of feature statistics in natural images, we adopt normality tests (i.e., Anderson-Darling test, one-sample Kolmogorov-Smirnov test, Jarque-Bera test, and Lilliefors test) to authenticate them automatically. Such an automatic detection is somewhat scattered in demosaicing traces-based works. Besides, we also provide other tools (i.e., Q-Q plot diagram, probability distribution curves, and localization map) which can help to improve authentication performance by human interpretation.

5. By modeling the distribution of feature statistics in tampered images as a normal mixture, we applied a penalized Expectation-Maximization (EM) algorithm to localize forged regions. Since the algorithm does not require a comparison threshold, it provides robuster localization results than traditional threshold-based methods [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF][START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF].

Numerous numerical experiments also confirm that the proposed algorithm yields better performance than existing algorithms of the same kind. The remainder of the chapter is structured as follows. Section 3.2 focuses on analyzing statistical properties of demosaicing traces when they evolve in a digital camera acquisition pipeline. The analysis is next extended to develop feature statistics measuring the unbalance between the local variances of prediction residues for the green channel of demosaiced images in Section 3.3. A robust feature statistic is eventually identified. Section 3.4 develops a single statistical model for the proposed feature statistic. Such a model is next used to authenticate digital images and to localize the tampered regions. Numerous numerical experiments are provided in Section 3.5. Some conclusions are discussed in Section 3.6. Finally, an appendix on the formalization of penalized EM algorithm for model parameters estimation is provided in Appendix A.

Statistical Analysis of Demosaicing Traces

Analyzing statistical properties of demosaicing traces is a key step to define a relevant feature statistic for tampering detection and localization. In this section, we define a signal as either the pixel, its content part or its noise part, and we are interest more especially in the mean and variance of prediction residues in both interpolated and acquired signals of TIFF or JPEG images. In ideal cases, we prove that the residues variance in acquired signals is greater than in interpolated signals, while their mean values are always 0. However, such a difference weakens under the impact of JPEG compression. Hereinafter, for an easier representation, the analysis is just done for one dimensional signals (i.e., a row in the green channel of digital image). The results for two dimensional signals can be interpreted in the same way.

Demosaicing Traces at Pixel Level

Let consider a row with size N in the green color channel of an digital image obtained by using a Bayer filter and a linear demosaicing algorithm. Without loss of generality, we assume that the Bayer CFA pattern is arranged in the manner that acquired pixels correspond to even positions of the row (old positions corresponds to pixels to be interpolated from acquired pixels). Each acquired pixel consists of two parts: real scene content and noise. The real scene content is the true image information that we take and expect, while noise is generated everywhere during camera imaging. Mathematically, an acquired pixel p A (x) at position x on the row can be expressed as

p A (x) =        c A (x) + n A (x) if x even, 0 if x odd, (3.1) 
where c A (x) and n A (x) are respectively the content and noise of p A (x). Applying a linear demosaicing algorithm with interpolation kernel h u to the acquired pixel, we obtain the resulting pixel

p R (x) =        p A (x) = c A (x) + n A (x) if x even, p I (x) = u 0 h u p A (x + u) if x odd, (3.2) 
where u 0 h u = 1. The resulting pixel p R (x) is either an acquired pixel p A (x) or an interpolated pixel p I (x). Since only acquired pixels at even positions have values and contribute to the sum of interpolated pixels, x + u in p A (x + u) is even, or equivalently u is odd. By substituting the first line of (3.1) in the second line of (3.2), we obtain

p R (x) =        p A (x) = c A (x) + n A (x) if x even, p I (x) = c I (x) + n I (x) if x odd, (3.3) 
where c I (x) and n I (x) denote respectively the content part and noise part of p I (x)

c I (x) = u 0 h u c A (x + u) , (3.4) 
and

n I (x) = u 0 h u n A (x + u) . (3.5) 
The similar expressions of p I (x), c I (x) and n I (x) imply that the demosaicing alter the content part and noise part in the same way as the entire pixel. In other words, we can find traces left by the demosaicing in the content, in the noise and in the entire pixel at odd positions of the considered row.

Hereinafter, we use s to represent a signal which may be either the pixel, its content part or its noise part. Accordingly, s A , s I and s R stand for the acquired, interpolated and resulting signals respectively, and they are linked by the following relation

s R (x) =        s A (x) if x even, s I (x) = u 0 h u s A (x + u) if x odd, (3.6) 
We will analyze the mean and variance of signal residue to find out some useful demosaicing artifacts when the digital image is in TIFF format and in JPEG format.

Demosaicing Artifacts in TIFF Images

As illustrated by Figure 2.1, the RAW image, after demosaicing, white balancing and gamma correction, becomes an uncompressed high-quality image in TIFF format. Since, the white balancing and the gamma correction are lossless operation in terms of information [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF], we expect that the characteristics of demosaicing artifacts do not much changed. Let k u , with u 0 k u = 1, is an estimate of the interpolation kernel h u when the considered image is in TIFF format, then the predicted signal is computed as

s tiff P (x) = u 0 k u s tiff R (x + u) . (3.7)
When u is odd, then x + u is odd if x even, and is even otherwise. Using (3.6), s P (x) can be rewritten by

s tiff P (x) = u 0 k u s tiff R (x + u) =        u 0 k u v 0 h v s tiff A (x + u + v) if x even, u 0 k u s tiff A (x + u) if x odd. (3.8)
The signal residue, which is the difference between resulting and predictive signals, is thus expressed as

e tiff (x) = s tiff R (x) -s tiff P (x) =        e tiff A (x) if x even, e tiff I (x) if x odd, (3.9) 
where

e tiff A (x) = s tiff A (x) - u 0 k u v 0 h v s tiff A (x + u + v) , for x even, (3.10) 
and

e tiff I (x) = u 0 h u s tiff A (x + u) - u 0 k u s tiff A (x + u) = u 0 (h u -k u ) s tiff A (x + u) , for x old. (3.11)
Since the size of kernel window is usually small, acquired signals in such a window can be assumed identical independent distributed (i.i.d.) with mean µ and variance σ 2 . Consequently, the mean E e tiff (x) and variance var e tiff (x) of the residue of TIFF image are obtained by Theorem 3.1. 

• if x is even, then E e tiff A (x) = 0 and var e tiff A (x) = σ 2 • 1 + u 0 k 2 u v 0 h 2 v , (3.12 
)

• if x is odd, then E e tiff I (x) = 0 and var e tiff I (x) = σ 2 • u 0 (h u -k u ) 2 , (3.13)
where k u is an estimate of the interpolation kernel h u .

Proof. We can derive the results in Theorem 3.1 from (3.10) and (3.11) as follows.
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• If x is even, then using (3.10), we obtain

E e tiff A (x) = µ - u 0 k u v 0 h v µ = µ • 1 - u 0 k u 1 v 0 h v 1 = 0, (3.14) 
and

var e tiff A (x) = var s tiff A (x) - u 0 k u v 0 h v s tiff A (x + u + v) = var s tiff A (x) σ 2 + var u 0 k u v 0 h v s tiff A (x + u + v) -2 cov s tiff A (x) , u 0 k u v 0 h v s tiff A (x + u + v) 0 , (3.15) 
where all terms of cov [•, •] equal to 0 due to the independence of

s tiff A (x + u + v). Since var u 0 k u v 0 h v s tiff A (x + u + v) = u 0 k 2 u var v 0 h v s tiff A (x + u + v) = u 0 k 2 u v 0 h 2 v var s tiff A (x + u + v) = u 0 k 2 u v 0 h 2 v σ 2 = σ 2 • u 0 k 2 u v 0 h 2 v , (3.16) 
we can further express var e tiff A (x) as

var e tiff A (x) = σ 2 • 1 + u 0 k 2 u v 0 h 2 v . (3.17) 
• If x is odd, then we obtain from (3.11) that

E e tiff I (x) = u 0 h u µ - u 0 k u µ = µ • u 0 h u 1 - u 0 k u 1 = 0, (3.18) 
and var e tiff

I (x) = var u 0 (h u -k u ) s tiff A (x + u) = u 0 (h u -k u ) 2 var s tiff A (x + u) = σ 2 • u 0 (h u -k u ) 2 . (3.19)
The expressions (3.14), (3.17), (3.18) and (3.19) constitute the results of Theorem 3.1.

We find that E e tiff (x) is always equal to 0 for whatever position of x. Meanwhile, when the estimate of the interpolation kernel k u is close to the original one h u , var e tiff (x) is close to 0 at the positions of interpolated signal (i.e., var e tiff I (x) → 0), while it is greater than σ 2 at the positions of acquired signal as u 0 k 2 u v 0 h 2 v ∈ (0, 1] (i.e., σ 2 < var e tiff A (x) ≤ 2σ 2 ). Therefore, the difference between variances of residues in acquired and interpolated signals can be seen as a useful demosaicing artifact for TIFF images.

Demosaicing Artifacts in JPEG Images

For storage, the high-quality TIFF image is compressed into JPEG format (see e.g., [START_REF] Brian | Algorithms for manipulating compressed images[END_REF] for the detail of compression process). If a lossy JPEG compression is applied, the high-frequency components of 8×8 blocks in DCT domain are weakened by quantization which cannot be restored. This results in the local homogenization of 8 × 8 blocks in spatial domain. As in [START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF], we can model such a phenomenon by mixing the features of the acquired and interpolated signal residues of TIFF image. Let e tiff

A and e tiff I be the representatives of acquired and interpolated signal residues in a certain row of 8 × 8 blocks of the TIFF image, the associated signal residues in 8 × 8 blocks of the JPEG image can be expressed by

       e jpeg A = α • e tiff A + (1 -α) • e tiff I , e jpeg I = α • e tiff I + (1 -α) • e tiff A , (3.20) 
where α ∈ [0.5, 1] is a weighting factor related to the compression quality Q. When α = 0.5, e . From (3.20), we derive, by using (3.12) and (3.13), that E e

jpeg A = E e jpeg I = 0, (3.21) 
and that ). However, as α decreases with respect to Q, we can easily derive from (3.22) that this difference becomes weaker when Q decreases, and is even disappeared when Q < 10 (for which α = 0.5). This phenomenon has been numerically validated by Li et al. in [START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF] (see e.g., Figure 3 

       var e jpeg A = α 2 • var e tiff A + (1 -α) 2 • var e tiff I + 2α (1 -α) • cov e tiff A , e tiff I , var e jpeg I = α 2 • var e tiff I + (1 -α) 2 • var e tiff A + 2α (1 -α) • cov e tiff A ,

therein).

From the above analyses, we can conclude that, except some special configurations, the unbalance between the variances of signal residues at acquired and interpolated positions is an inherent property of digital images in TIFF and JPEG formats with high compression quality. When the image is strongly compressed, the unbalance is less clear. This explains in part why the demosaicing traces-based approach does not work well with JPEG compressed images.

Feature Statistics for Demosaiced Images

This section aims at extending the analysis in Section 3.2 to build feature statistics characterizing demosaiced images. To this end, we develop a complete process consisting of the identification of Bayer CFA pattern, the estimation of interpolation kernel, and the construction of feature statistics measuring the unbalance between the local variances of prediction residues. Especially, only the smooth region of green channel is considered to avoid perturbations due to edges. The main steps of the pro- 

CFA Pattern and Interpolation Kernel

To avoid the edges effects, we adapt the identification scheme proposed by Swaminathan et al. in [START_REF] Swaminathan | Nonintrusive component forensics of visual sensors using output images[END_REF] to reveal the CFA pattern and interpolation kernel for the green channel of the considered image. With a given Bayer's CFA pattern p ∈ P (see Figure 3.1), we divide the green channel G into three kinds of regions R i , i ∈ {1, 2, 3}, based on the gradient features in a local neighborhood such that

           R 1 = {(x, y) | H (x, y) -V (x, y) ≥ T } : significant horizontal, R 2 = {(x, y) | V (x, y) -H (x, y) ≥ T } : significant vertical, R 3 = {(x, y) | |V (x, y) -H (x, y)| < T } : mostly smooth, (3.25) 
where T is a predetermined threshold, H (x, y) and V (x, y) are respectively the local gradient profile along the horizontal and vertical directions defined by

       H (x, y) = |s R (x, y -2) + s R (x, y + 2) -2s R (x, y)| horizontal direction. V (x, y) = |s R (x -2, y) + s R (x + 2, y) -2s R (x, y)| vertical direction, (3.26) 
with s R (x, y) the resulting signal value at location (x, y). For each region R i , we approximate interpolated signals with a set of linear equations of acquired signals, such that

A i k i = I i , (3.27) 
where A i , I i and k i , i ∈ {1, 2, 3}, are the matrix of acquired signals, the vector of interpolated signals, and the linear interpolation kernel of the region R i respectively. Solving (3.27) by the well-known least-squares method gives the following kernel k i

k i = A T i A i -1 A T i I i , (3.28) 
where A T i and A -1 i denote respectively the transpose and inverse of matrix A i . Next, the obtained interpolation kernels are then used to reconstruct an estimation Ĝ(p) of the green channel G. We repeat the above process to derive the reconstruction error for each CFA pattern. The optimal CFA pattern and interpolation kernel are jointly selected as the combination that yields the lowest reconstruction error.

Local Weighted Variance of Residues

The analysis in Section 3.2 is done under the assumption of i.i.d. acquired signals. To adapt its results to the two dimensional green channel of the digital image, we should evaluate the variance of prediction residues over small (2K + 1)×(2K + 1) windows, in which signal values are expected stationary. When sharp edges are present in the tested image, they may disturb this stationary property even for small windows. To overcome this obstacle, we propose using only the smooth region R 3 in the computation of the local variance of residues. By this way, the condition of i.i.d. acquired signals is guaranteed.

More precisely, we first compute the residue of the two dimensional green channel using the interpolated kernel k 3 of the region R 3 e (x, y) = s R (x, y) -

u,v 0 k 3,u,v s A (x + u, y + v) , (3.29) 
where s R (x, y) and s A (x, y) denote respectively the resulting and acquired signals at the location (x, y) of the green channel, and k 3,u,v is an element in k 3 . Then, mapping the residue e (x, y) onto the smooth region R 3 , we obtain

e 3 (x, y) =        e (x, y) if (x, y) ∈ R 3 , 0 otherwise. (3.30)
Following [START_REF] Peter | Fast algorithms for estimating local image properties[END_REF], the local weighted mean and local weighted variance of e 3 (x, y) within (2K + 1) × (2K + 1) windows can be respectively computed as

µ e 3 (x, y) = K i,j=-K α i,j e 3 (x + i, y + j) , (3.31) 
σ 2 e 3 (x, y) = 1 c K i,j=-K α i,j e 2 3 (x + i, y + j) -µ 2 e 3 (x, y) , (3.32) 
where α ij are suitable weights given by

α ij = α ′ ij i,j α ′ ij , (3.33) 
in which 

α ′ ij =        W (i, j) if e 3 (x + i, y + j) belong
W (i, j) is a (2K + 1) × (2K + 1)
Gaussian windows centered at (i, j), and c = 1 -K ij=-K α 2 ij is a scale factor making the estimator unbiased such that E σ 2 e 3 (x, y) = var σ e 3 (x, y) .

Definition and Efficiency of Feature Statistics

As shown in Section 3.2, the unbalance between residues variances of acquired and interpolated signals is inherent in demosaiced images. Here, the aim is to develop some feature statistics to expose this unbalance on the green channel locally. To this end, we first divide the variance map of residues with size N × N into B × B non-overlapping blocks, where B is a multiple of the length of Bayer's filter. Each B × B block is composed of B 2 /2 acquired positions at quincunx lattices A, and B 2 /2 interpolated position at complementary quincunx lattices I. Accordingly, we distinguish in a given (m, n) block B m,n , m, n = 0, . . . , N B -1, two sets: acquired variances B A m,n and interpolated variances B I m,n . As in [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF],

each of these sets can be characterized by the geometric mean of their elements

GM B A m,n = m,n∈B A m,n σ 2 e 3 (m, n) 1 B 2 /2
and

GM B I m,n = m,n∈B I m,n σ 2 e 3 (m, n) 1 B 2 /2 . (3.35)
Note that the geometric mean is used instead of the well-known arithmetic mean because it is less sensitive to extreme values. We can therefore define the unbalance between the local variance of signal residues at lattices A and I in the block B m,n by the fraction

F m,n = GM B A m,n GM B I m,n . (3.36) 
By numerical experiments (see e.g., Figure 3.2b, 3.3b and 3.4b), we find that the probability density function (pdf) of F m,n , m, n = 0, . . . , N B -1, is positively skewed with long tail on the right. Such a form does not allows feasible pdf fitting. This is why we apply the log-transformation to F m,n to favor the normality

L m,n = log GM B A m,n -log GM B I m,n = 1 B 2 /2 m,n∈B A m,n log σ 2 e 3 (m, n) - 1 B 2 /2 m,n∈B I m,n log σ 2 e 3 (m, n) . (3.37)
Clearly, the feature L m,n represents the difference between the arithmetic mean of the logarithm of variances in the set B A m,n and B I m,n . The mean and variance of L m,n vary from image to image. To have a feature statistic independent of image content, L m,n is standardized

N m,n = L m,n -E L m,n var L m,n , (3.38) 
so that the mean and variance of N m,n are fixed to 0 and 1 respectively. Since all kind of signals (i.e., the entire pixel, its content part, or its noise part) could be used to compute the feature statistics F m,n , L m,n and N m,n , two questions arise naturally. pdf forms of L m,n and N m,n , the ones obtained from the green channel or its noise part have a nice bell shape as expected, while the ones computed from the content part have not. The reason is that the weak demosaicing traces in the content part is easily covered and/or strongly affected by the real scene data. Meanwhile, for the noise part, although the demosaicing traces is still weak, the energy of noise is relatively small. So that the portion of demosaicing traces in noise is remarkable. The energy of pixels in green channel is high, but demosaicing traces therein are also much stronger. Consequently, the demosaicing artifacts given from the green channel are still significant. Compared to L m,n , the advantage of N m,n is that its pdf is independent of image content, and hence more suitable for detection goal. To find out which one between the green channel and its noise part can provide robuster N m,n , we vary the size of B × B blocks and sketch the associated pdf of N m,n in Figure 3.5.

Clearly, the pdf of N m,n given from the noise part is less sensitive to the value of B (especially since Hereafter, except clearly stated, we use N m,n computed from the noise part as the default feature statistic. Besides, to simplify the notation, we use a single index instead of double of indices to indicate the feature statistic (i.e., using N i to denote the feature statistic associated with the i-th B × B block).

Image Authentication and Forgery Localization

This section aims to develop a single statistical model based on the feature statistic N i for both natural and tampered digital images. Such a model is next used to authenticate digital images and to localize the tampered regions if any.

Statistical Model of Feature Statistic

As mentioned in Subsection 3.3.3, when the tested image is authentic, N i is consistent and distributed following a standard normal distribution N (0, 1). When some regions in the image have been manipulated by a new content coming either from other regions of the same image (e.g., copy-move forgery, inpainting forgery), or from another images (e.g., splicing forgery), the demosaicing traces in these regions are normally different than the remainder of the image. The feature statistic N i of such a tampered image is no longer consistent. In this case, we expect that values of N i come from two different populations P 1 and P 2 corresponding to the untampered and tampered regions respectively. Each region is part of demosaiced images, so P k , k ∈ {1, 2}, is a normal distribution with mean µ k and variance σ k . For simplicity, we also set σ 1 = σ 2 = σ , because the mean parameters contribute to the separation between P 1 and P 2 in most situations. As a result, the population of N i for an entire tampered image can be modeled as a normal mixture distribution N M (γ , µ 1 , µ 2 , σ ) with pdf

f (N i ; γ , µ 1 , µ 2 , σ ) = (1 -γ ) • f (N i ; µ 1 , σ ) + γ • f (N i ; µ 2 , σ ) , (3.39) 
where γ , 0 ≤ γ ≤ 1, denotes the proportion of the population 2, and f (x; µ k , σ ) standards for the normal p.d.f N (µ k , σ )

f (N i ; µ k , σ ) = 1 σ √ 2π e -1 2σ 2 (N i -µ k ) 2 . (3.40)
As in [START_REF] Song | Likelihood ratio test for homogeneity in normal mixtures in the presence of a structural parameter[END_REF], to avoid the nonidentifiability of (3.39), we set 0 ≤ γ ≤ 0.5. This implies that the population 2 of the model (3.39) is the tampered population P 2 under the assumption that tampered regions are smaller than the remainder of the image. When µ 1 = µ 2 or γ = 0, the model (3.39) degenerates into a single normal distribution. By this way, we can also use (3.39) as a model for both authentic and tampered images.

Estimation of Model Parameters

Given the model (3.39), the next issue is to estimate the parameters γ , µ 1 , µ 2 and σ from the set of feature statistics N i . A penalized EM algorithm has been developed for this issue. Let N = N 1 , . . . , N q be a set of q feature statistics sampled from a normal mixture population N M (γ , µ 1 , µ 2 , σ ), its ordinary 

l q (γ , µ 1 , µ 2 , σ ) = q i=1 log ((1 -γ ) • f (N i ; µ 1 , σ ) + γ • f (N i ; µ 2 , σ )) . (3.41)
As proved in [START_REF] Chen | Inference for normal mixtures in mean and variance[END_REF], l q (γ , µ 1 , µ 2 , σ ) → ∞ if µ k → N i and σ → 0 with the other parameters fixed. This implies that ordinary maximum-likelihood estimator of (γ , µ 1 , µ 2 , σ ) is not well-defined [START_REF] Neil | Estimating the components of a mixture of normal distributions[END_REF][START_REF] Kiefer | Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters[END_REF].

To remedy, Chen et al. [START_REF] Chen | Inference for normal mixtures in mean and variance[END_REF] propose adding penalty term to the ordinary log-likelihood function.

Such an approach has been proved efficient because of the strong consistency of maximum likelihood estimators for various penalties on σ [START_REF] Chen | Inference for normal mixtures in mean and variance[END_REF][START_REF] Ciuperca | Penalized maximum likelihood estimator for normal mixtures[END_REF]. Therefore, we can define a penalized log-likelihood function as

pl q (γ , µ 1 , µ 2 , σ ) = l q (γ , µ 1 , µ 2 , σ ) + p q (σ ) , (3.42) 
where p q (σ ) is the penalty function on σ . To compensate the aforementioned undesirable configuration, we should select p q (σ ) such that it is bounded when σ is large, but goes to -∞ as σ → 0. Chen et al. [START_REF] Chen | Inference on the order of a normal mixture[END_REF] have recommended

p q (σ ) = -a q • s 2 q σ 2 + log σ 2 s 2 q , (3.43) 
where s 2 q = 1 q q i=1 N 2 i denotes the sample variance (the sample mean N = 1 q q i=1 N i is always 0), and a q is a positive tuning parameter. A large value of a q implies a strong conviction in the prior estimate of σ [START_REF] Chen | Inference for normal mixtures in mean and variance[END_REF]. As in the works [START_REF] Chen | Consistency of the mle under mixture models[END_REF][START_REF] Jin | Penalized maximum likelihood estimator for skew normal mixtures[END_REF], we choose a q = 1 q .

Until now, the estimation problem returns to find the tuple ( γ , μ1 , μ2 , σ ) that maximizes penalized log-likelihood function (3.42). Moreover, we would like to perform a population clustering for the set of feature statistics N. This is why we try to introduce a vector of binary latent variables Z = Z 1 , . . . , Z q with Z i = (Z i1 , Z i2 ) indicating the cluster of a sample N i in N. The variable Z ik , k ∈ {1, 2}, is defined as follows

Z ik =        1 if N i is from the population k 0 otherwise , (3.44) 
and 2 k=1 Z ik = 1. The maximizing the likelihood estimation is now done on the complete data {N, Z} rather than on the incomplete data only N. As pointed out in [21, page 431], the joint pdfs of Z i and

N i | Z i are respectively f (Z i ) = 2 k=1 γ Z ik k , (3.45) 
and

f (N i | Z i ) = 2 i=1 f Z ik (N i ; µ k , σ ) , (3.46) 
where γ 1 = 1 -γ , γ 2 = γ , and f (N i ; µ k , σ ) is given from (3.40). Therefore, the complete data likelihood
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f (N, Z) = q i=1 f (N i , Z i ) = q i=1 f (N i | Z i ) f (Z i ) = q i=1 2 k=1 γ Z ik k f Z ik (N i ; µ k , σ ) . (3.47)
Taking the logarithm, we obtain the complete data log-likelihood function

l c (γ , µ 1 , µ 2 , σ ) = q i=1 2 k=1 Z ik • log γ k -log σ - 1 2σ 2 (x -µ k ) 2 - 1 2 log 2π . (3.48) 
Adding p q (σ ), we obtain the complete data penalized log-likelihood function

pl c (γ , µ 1 , µ 2 , σ ) = l c (γ , µ 1 , µ 2 , σ ) + p q (σ ) . (3.49) 
We find that pl c (γ , µ 1 , µ 2 , σ ) can be trivially maximized in closed form. Unfortunately, we do not have values for the latent variables Z, thus we cannot use directly pl c (γ , µ 1 , µ 2 , σ ). Instead, we consider firstly its expected value under the posterior distribution of the latent variables (i.e., E-step of the EM algorithm). Next, we maximize this expectation (i.e., M-step of the EM algorithm). Such a procedure can be summarized by Algorithm 3.1 (see also Appendix A for the detailed formalization of the penalized EM algorithm).

Image Authentication and Forgery Localization

The above analyses allow to model the image authentication as a decision problem between two hypotheses

       H 0 : N i ∼ N (0, 1) authentic image, H 1 : N i N (0, 1) no conclusion. (3.57) 
In reality, dazzling areas or missing color ranges existing on digital images may distort the distribution of N i . Therefore, the distribution of N i does not always have a perfect Gaussian form even for authentic images. To partially weaken the distortion impacts, we propose regenerating random samples Ni from the model (3.39) using the estimated parameters obtained by Algorithm 3. 

µ (0) k = Nk = 1 q k q k i=1 N i , and 
σ (0) k = s n = 1 q k q k i=1 N i -Nk 2 , (3.50) 
where q k is the number of elements of the population k. Set σ (0) = σ (0) k if k is the larger population.

2. E-step: Given N and the vector of parameters

Θ (t) = γ (t) , µ (t)
1 , µ (t) 2 , σ (t) at the t-th current iteration, compute

γ (t+1) i1 = 1 -γ (t) f N i ; µ (t) 1 , σ (t) 1 -γ (t) f N i ; µ (t) 1 , σ (t) + γ (t) f N i ; µ (t) 2 , σ (t) , (3.51) 
and

γ (t+1) i2 = γ (t) f N i ; µ (t) 2 , σ (t) 1 -γ (t) f N i ; µ (t) 1 , σ (t) + γ (t) f N i ; µ (t) 2 , σ (t) 
.

(3.52)

3. M-step: Update the set of parameter Θ (t) as follows.

(a) Update γ (t) by

γ (t+1) = q i=1 γ (t+1) i2 q . (3.53) (b) Update µ (t) k , k ∈ {1, 2} by µ (t+1) k = q i=1 γ (t+1) ik N i q i=1 γ (t+1) ik . (3.54) (c) Update σ (t) by σ (t+1) = S (t+1) + 2a q s 2 q q + 2a q . ( 3.55) 
where Regarding the forgery localization, we can decide the belonging of N i to P 1 and P 2 from the set {γ i1 } i=1,...,q and {γ i2 } i=1,...,q (see the output of Algorithm 3.1) as follow 

S (t+1) = q i=1 2 k=1 γ (t+1) ik N i -µ (t+1) k 2 . ( 3 
N i ∈        P 1 : authentic portion if γ i1 > γ i2

Numerical Experiments

Image Manipulation Dataset [START_REF] Vincent Christlein | An evaluation of popular copy-move forgery detection approaches[END_REF], MICC-F600 Dataset [START_REF] Amerini | Copy-move forgery detection and localization by means of robust clustering with j-linkage[END_REF], Realistic Tampering Dataset [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF], and Columbia Uncompressed Image Splicing Detection Evaluation Dataset [START_REF] Hsu | Detecting image splicing using geometry invariants and camera characteristics consistency[END_REF] are used for numerical 3.5 Numerical Experiments 57 experiments. Their detailed description can be found in [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF]. Through these datasets, we aim at evaluating the images authentication and forgeries localization ability of the proposed algorithm.

Evaluation Criteria and Benchmark Algorithms

Due to highly imbalanced datasets 1 , Precision (P), Recall (R) and F 1 -Score (F 1 ) are chosen as criteria for performance evaluation [5]. Precision and Recall are computed from the confusion matrix of True Positive (T P), False Positive (F P), True Negative (T N ) and False Negative (F N ) as

P = T P T P + F P and R = T P T P + F N . ( 3.60) 
A high value of P implies a high probability that detected results are relevant, while a high value of R means a high probability that relevant results are detected. Obviously, using separately either Precision or Recall is not enough to evaluate the performance of an algorithm. The harmonic mean of Precision and Recall, called F 1 -Score, might be a better measure as it takes a high value when Precision and Recall are both important

F 1 = 2 • P • R P + R = 2 • T P 2 • T P + F N + F P . (3.61) 
The higher F 1 -Score, the more the algorithm is efficient. Moreover, depending on the authentication or localization goals, the above measures has their own meanings which are detailed in Table 3.1.

Images authentication (image level)

Forgery localization (pixel level) T P number of authentic images correctly detected number of tampered pixels correctly localized F N number of undetected authentic images number of unlocalized tampered pixels F P number of tampered images wrongly detected number of authentic pixels wrongly localized T N number of undetected tampered images number of unlocalized authentic pixels P probability that detected images are authentic probability that localized pixels are tampered R probability that authentic images are detected probability that tampered pixels are localized

Table 3.1: Meaning of performances measures

The performance and robustness of the developed algorithm are assessed through comparative studies with algorithms proposed by Dirik and Menon in [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF], and by Ferrara et al. in [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF]. These two benchmarks are threshold-based algorithms, so their performance depend closely on a threshold τ used to distinguish between tampered and authentic regions in an image. Meanwhile, the performance of the developed algorithm is dependent on the threshold T used to determine the smooth region R 3 . Besides, the blocks size B is influential in the performance of all the algorithms. So, sensitivity studies to these factors are necessary. We also note that the two benchmark algorithms focuses on images forgery localization rather than on images authentication.

Authentication Performance

To assess the authentication performance of the proposed algorithm, we first randomly choose a set of 150 authentic images and 200 tampered images from the 4 above datasets. Next, we apply the algorithm to obtain T P, F N , F P and T N , and thence compute the measures P, R and F 1 according to (3.60) and (3.61). Such a process is applied to the 2 following sensitivity studies.

• Sensitivity study 1: B takes respectively the value 2, 4, 8, 16 and 32, while T is fixed at 20.

• Sensitivity study 2: B is fixed at 16, and T varies from 10 to 30 with step 5. on the smooth region R 3 instead of on the entire green channel G, and using Ni rather than N i , shape edges and/or strong dazzling areas existing on realistically authentic digital images still distort the standard Gaussian form of Ni pdf. As a results, the automatic authentication via normality tests is less efficient. However, as shown in Table 3.3, the performance is much more improved thanks to human interpretation of graphic tools (i.e., pdf curves, Q-Q plot, and localization map). 3.7. The tested images in Figures 3.7a and 3.7b are respectively authentic and tampered. If only the results returned by normality tests are taken into account (i.e., automatic authentication), "no conclusion" is decided for the first image, while "authentic image" is decided for the second one. They are obviously wrong decisions. Nevertheless, if we look more at the pdf curves, the Q-Q plot, and mostly at the localization map, it is not hard to decide that the first and second tested images are authentic and tampered respectively, which is actually true. As such, the human interpretation can help to improve the performance of image authentication.

Looking at the values of F 1 -Score in Tables 3.2 and 3.3, we also find the importance of B and T . The increasing of blocks size B leads to smaller samples set in constructing pdf of Ni . Meanwhile, by 

Localization Performance

Regarding the localization, the aim is to find out (i) which kinds of forgeries could be localized by the proposed algorithm, and (ii) how good is the proposed algorithm compared to algorithms of the same kind. Tampered images in Image Manipulation Dataset [START_REF] Vincent Christlein | An evaluation of popular copy-move forgery detection approaches[END_REF] and Realistic Tampering Dataset [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF] are used in numerical experiments because of various kinds of forgeries therein. Moreover, binary ground truths are also provided.

To reply to the first issue, we use the proposed algorithm (with T = 20 and blocks size B = 8) to derive location maps, and thence compare them with the associated ground truths. We also apply the algorithms proposed by Dirik and Menon [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF], and by Ferrara et al. [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF] to obtain benchmark location maps. As illustrated in Figure 3.8, various kinds of forgeries are successfully localized by our algorithm. Clearly, localization maps returned by our algorithm and Ferrara et al.'s algorithm are closer to ground truths, and more confident than Dirik and Menon's algorithm. When zooming in the localized areas, our algorithm allows better resolution and higher fidelity than the Ferrara et al.'s algorithm. We will understand more deeply the reason through a quantitative study for the second issue in the following. Moreover, the use of Ferrara et al.'s algorithm is more complicated in practice because a subjective threshold is required to distinguish tampered and authentic region. Figure 3.9 shows some configurations that forgeries are not successfully localized. For cloning forgery (first line of Figure 3.9), a part of tampered region is missing because it have the same alignment of CFA pattern as the original image. Especially, the localization is completely failed (see second line and third line of Figure 3.9), if tampered images undergo additional post-processing (e.g., JPEG compression with low quality, down-sampling, etc.).

To reply to the second issue, we first apply the 3 considered algorithms to compute localization In all cases, we find that the F 1 -Score of the proposed algorithm is more stable at higher value than the benchmarks. This implies that our algorithm is more efficient and robuster.

Looking at the diagrams of P and R, we find that the high F 1 -Score of our algorithm mostly comes from the high value of P, because the values of R are more or less similar in the three algorithms. This results also mean that our algorithm allows a high probability that localized pixels are tampered, while the benchmark algorithms do not. This is totally consistent with the nature of non-threshold-based and threshold-based localization algorithms.

Conclusion

We Joint Photographic Experts Group (JPEG) is a lossy compression standard allowing a trade-off between memory size and visual quality for digital still images [START_REF] Gregory | The jpeg still picture compression standard[END_REF]. It is nowadays adopted by default in most digital cameras and Web services (e.g., social networks, photo galleries, etc.). However, this popularity also makes JPEG images to be the target of malicious attacks. This motivates us to develop in this chapter a reliable forensic tool to restore some trust to JPEG images. More especially, we are interested in the statistical modeling of discrete cosine transform (DCT) coefficients as the DCT is the basis of JPEG. Furthermore, our choice is to study these coefficients in their raw form rather than in modified forms as in some existing works (e.g., first and second significant digits of AC DCT coefficients [START_REF] Kirchner | A second look at first significant digit histogram restoration[END_REF], Benford-Fourier coefficients [START_REF] Pasquini | Multiple jpeg compression detection by means of benford-fourier coefficients[END_REF], etc.). To figure out better the problems to be dealt with, let us begin with an analysis of existing statistical models of AC DCT coefficients for JPEG images.

Prior Art

A great deal of effort has been put in building statistical models for primary unquantized AC DCT coefficients of original JPEG natural images. The pioneer is perhaps Pratt who fitted the statistical properties of primary unquantized AC DCT coefficients with a normal distribution (ND) four decades ago [177, chapter 10]. The choice of ND is conducted by the well-known central limit theorem. Afterwards, various empirical models have been proposed and verified by goodness-of-fit tests on standard images. For instance, Reininger and Gibson [START_REF] Reininger | Distributions of the two-dimensional dct coefficients for images[END_REF] relied on Kolmogorov-Smirnov (KS) tests to confirm that the Laplace distribution (LD) is more suitable than the ND for most images. Based on χ 2 tests, Müller [START_REF] Müller | Distribution shape of two-dimensional dct coefficients of natural images[END_REF] claimed that the generalized normal distribution (GND) approximates the statistics of unquantized AC DCT coefficients better than the LD. Using the same goodness-of-fit tests, Chang et al. recently reported in [START_REF] Chang | Image probability distribution based on generalized gamma function[END_REF] that the generalized Gamma distribution (GGD) outperforms the LD and the GND. Cauchy distribution [START_REF] Eggerton | Statistical distributions of image dct coefficients[END_REF], α-stable distribution [START_REF] Briassouli | Hidden messages in heavytails: Dct-domain watermark detection using alpha-stable models[END_REF] and transparent composite model

Framework of JPEG DCT Coefficients Modeling and Forgery Localization [START_REF] Yang | Transparent composite model for dct coefficients: Design and analysis[END_REF] are other options. The main drawback of the above empirical models is the lack of mathematical foundation which makes their accuracy and robustness in question when applying to a wide range of images. To remedy this obstacle, Lam and Goodman analytically analyzed in [START_REF] Edmund | A mathematical analysis of the dct coefficient distributions for images[END_REF] the statistical properties of unquantized AC DCT coefficients with respect to the variation of their block variance. They proved that these coefficients are reasonably modeled by a zero-mean ND when the block variance is fixed. However, as this variance is actually random for a JPEG natural image, a compound normal distribution 1 (CND) should be rather used. Such a distribution has been further extended in [START_REF] Nadarajah | Gaussian dct coefficient models[END_REF] by taking into account different flexible distributions for block variance. Yet, mathematical justifications for the block variance model were still missing till the appearance of the paper of Thai et al. [START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF].

They showed that the block variance of a JPEG natural image can be asymptotically approximated by a two-parameter Gamma distribution. This model is further applied in [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF] and [START_REF] Retraint | Quality factor estimation of jpeg images using a statistical model[END_REF] to identify cameras model and estimate the quality factor of JPEG images respectively. Statistical models of quantized AC DCT coefficients can be developed from the ones of primary unquantized coefficients by analyzing the JPEG compression chain. They can be classified according to the compression history of JPEG images. For single-compressed JPEG images, Qiao et al. characterized the quantized AC DCT coefficients by a LD in [START_REF] Qiao | Steganalysis of jsteg algorithm using hypothesis testing theory[END_REF], and applied it to detect hidden information embedded by JSteg algorithm. A similar model was also adopted by Stamm and Liu in [START_REF] Matthew | Anti-forensics of digital image compression[END_REF] to remove traces left by JPEG compression. Other models based on GND, GGD and CND can be found in [START_REF] Conotter | Forensic detection of processing operator chains: Recovering the history of filtered jpeg images[END_REF][START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF]. Compared to first quantized AC DCT coefficients, statistical models for the second ones are much scattered. In [START_REF] Xue | Mse period based estimation of first quantization step in double compressed jpeg images[END_REF] and [START_REF] Hai | Estimation of primary quantization steps in doublecompressed jpeg images using a statistical model of discrete cosine transform[END_REF], those models are developed based on LD and CND respectively. Both of them are applied to estimate the first quantization steps in double-compressed JPEG images. For higher compression cycles, we found the works of Li et al. who developed statistical models for JPEG noises to retrieve the JPEG compression history in [START_REF] Li | Statistical model of jpeg noises and its application in quantization step estimation[END_REF] and to distinguish between uncompressed and decompressed images in [START_REF] Li | Revealing the trace of highquality jpeg compression through quantization noise analysis[END_REF].

Besides original JPEG images, there exit tampered JPEG images whose original content has been modified by some localized forgery techniques such as splicing, cloning, cropping, etc. [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF]. In such images, the forged and unmodified areas usually exhibit the properties of single and double JPEG compression respectively [START_REF] Piva | An overview on image forensics[END_REF]. This is why mixture models are appropriate to statistically describe their AC DCT coefficients. In [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF], Bianchi et al. used a two-components mixture model to approximate the histogram of quantized AC DCT coefficients of a tampered JPEG image. The mixing parameters was estimated by a simple Expectation-Maximization (EM) algorithm. The parameter estimation was further improved in [START_REF] Yu | An improved parameter estimation scheme for image modification detection based on dct coefficient analysis[END_REF] by exploiting the smoothness of the model likelihood function. Another improvement was proposed in [START_REF] Zhu | Double jpeg compression detection based on noisefree dct coefficients mixture histogram model[END_REF] where quantization noise is eliminated before solving the mixture histogram model. More recently, Xue et al. developed in [START_REF] Xue | Jpeg image tampering localization based on normalized gray level co-occurrence matrix[END_REF] a mixture model based on normalized gray level co-occurrence matrix to localize tampering in JPEG images. Such a model can take advantage of not only the double quantization effect inherent in tampered JPEG image but also the correlation among adjacent DCT blocks. If the aforementioned models are a mixture of the histograms of quantized AC DCT coefficients, Wang et al. developed in [START_REF] Wang | Exploring dct coefficient quantization effects for local tampering detection[END_REF] an associated parametric mixture model whose components are derived from the LD of the primary unquantized coefficients. 

Contributions and Organization

Through the above literature analysis, we find that statistical models developed for DCT coefficients of tampered JPEG images are still scattered and mostly limited to double quantization effect. Meanwhile, in many practical scenarios, images might be JPEG compressed several times (e.g., photos uploaded on blogs, online photo galleries, etc. [START_REF] Milani | Discriminating multiple jpeg compressions using first digit features[END_REF]) before manipulated and saved again in JPEG format. Obviously, such images cannot be accurately characterized by aforementioned models. Therefore, our goal is to extend them to better deal with tampered JPEG images subject to multiple quantization effect. Furthermore, our choice is to study the DCT coefficients in their raw form directly rather than in modified forms as in some related works (e.g., first and second significant digits of DCT coefficients [START_REF] Kirchner | A second look at first significant digit histogram restoration[END_REF], Benford-Fourier coefficients [START_REF] Pasquini | Multiple jpeg compression detection by means of benford-fourier coefficients[END_REF], etc.). Consequently, we follow the JPEG compression process and the effects of manipulation operations on the DCT coefficients to develop a parametric statistical modeling framework for tampered JPEG images, and subsequently apply it to forgery localization. Although the modeling approach and forgery localization technique are relatively similar to some works in the literature (see e.g., [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF][START_REF] Wang | Exploring dct coefficient quantization effects for local tampering detection[END_REF]), several significant improvements and contributions have been made.

1. We proposed a generalized modeling framework rather than a concrete model for DCT coefficients of tampered JPEG images. The framework allows to recursively derive any statistical model from a known distribution of primary unquantized DCT coefficients. By this way, the rich literature of primary unquantized DCT coefficients models is inherited to build a relevant statistical model that best fits with the histogram of quantized DCT coefficients of tampered JPEG images.

2. To describe the distribution of DCT coefficients of tampered JPEG images, most existing works relied on the family of mixture models. Nevertheless, no clear explanation has been given yet.

For instance, how many components should be taken into account in the model is still an open issue. In this chapter, starting with a mixture of multiple components, we proved analytically that the histograms of quantized DCT coefficients of tampered JPEG images can be properly approximated by a two-components mixture model regardless of the number of forged areas in the images. The accuracy of such a simplified model is numerically assessed by the Kullback-Leibler divergence on various image databases.

3. About the forgery localization technique, we also relied on the Expectation-Maximization (EM) algorithm as in most related works. However, instead of estimating all the parameters of the model in the same time, we proposed to estimate the parameters of component's distribution, and the set of quantization steps and mixing coefficients separately. The former is estimated from recovered unquantized DCT coefficients of tampered JPEG images [START_REF] Fridrich | Quantitative steganalysis of digital images: estimating the secret message length[END_REF] by maximum likelihood (ML) estimation method, while the latter is obtained by applying the EM algorithm to the associated quantized DCT coefficients. This allows to speed up the forgery localization process.

Numerous numerical experiments under various configurations also confirms that our generalized modeling framework yields very promising performances when dealing with tampered JPEG images Framework of JPEG DCT Coefficients Modeling and Forgery Localization subject to multiple quantization effect.

The remainder of this chapter is organized as follows. Section 4.2 focuses on developing a generalized statistical modeling framework for DCT coefficients of both the authentic and tampered JPEG images. The framework validation and accuracy assessment are performed in Section 4.3. In Section 4.4, we apply the developed framework in forgery localization for tampered JPEG images and evaluate its performance following the F 1 -score. Section 4.5 concludes the chapter. The models for primary unquantized DCT coefficients used in this chapter is also provided in Appendix B.

Recurrent Modeling Framework For JPEG DCT Coefficients

Let consider the tampering scenario where an authentic JPEG image which has undergone i -1 compression times, i ≥ 2, after some localized manipulation, is saved again without resizing in JPEG format with quality factor QF i to generate a tampered JPEG image. The manipulation may be a splicing, a cloning or some post-processings (e.g., resize, rotation, etc.), that disrupt quantization structure of forged areas. So, after the last JPEG compression, the associated DCT coefficients likely present properties of a single compression with quality factor QF i . Meanwhile, the DCT coefficients of the unmodified area exhibit properties of i compression times. Therefore, we first analyze the JPEG compression chain to find the statistical distributions of DCT coefficients at any compression cycle of authentic JPEG images. These distributions are next combined in a finite mixture paradigm to approximate the histogram of DCT coefficients of tampered JPEG images. A simplified version of this model is also proposed for practical uses.

Authentic JPEG Images

Generally, the main processing steps in a JPEG compression chain can be classified into two phases: encoding and decoding [START_REF] Gregory | The jpeg still picture compression standard[END_REF].

• In encoding phase, the uncompressed integer image I is first converted to a real floating-point representation W. Subdividing W into blocks 8 × 8 pixels and applying DCT operations to each of blocks separately, we obtain the unquantized DCT representation X of image with real coefficients. X is next quantized with a quantization table Q to yield the quantized DCT representation Y with integer coefficients. Finally, a lossless entropy encoding is applied on Y to generate the associated compressed image in JPEG format.

• The decoding phase is the reverse of the encoding phase. An entropy decoding is first applied on the compression image JPEG to return the quantized DCT representation Y with integer coefficients. Y is next dequantized using the same quantization table Q as in the encoding phase to yield the dequantized DCT representation X with integer coefficients. Applying inverse DCT on X, we get a new real floating-point representation W in spatial domain. The decoding phase ends with rounding and truncating operations on W to obtain a decompressed image I.

From the above description, we can define the i-th JPEG compression cycle as the process between two unquantized DCT representations X (i) and X (i+1) , and schematize its processing diagram as in Figure 4.1a. Since this diagram is not convenient for statistical modeling, we propose to further sim- In this diagram, the capital letters X (i) , Y (i) and X (i) stand for the random unquantized, quantized and dequantized DCT coefficients at a given frequency, while the smaller letters x (i) , y (i) and x (i) are the associated realizations. The random rounding error R (i) in spatial domain correspond to the random error E (i) in DCT domain with realization e (i) . Finally, the notation q (i) denotes the quantization step associated with the compression quality factor QF (i) . Note that the considered frequency is ignored from the above notations to further simplify. Based on the logical diagram in Figure 4.1b, we would like to statistically characterize the DCT coefficients Y (i) , X (i) and X (i+1) from the distribution of X (i) .

Passing through the quantization operation with step q (i) , the continuous random variable X (i) ∈ R becomes the integer random variable Y (i) ∈ Z, such that

Y (i) = X (i) q (i) , (4.1) 
where ⌊•⌉ denotes the nearest integer rounding. This leads to the following equivalence

Y (i) = y (i) ⇔ X (i) ∈ q (i) y (i) - q (i) 2 , q (i) y (i) + q (i) 2 . (4.2)
We can therefore compute the probability mass function (pmf) of Y (i) at y (i) as p Y (i) y (i) ; θ, q (i) = F X (i) q (i) y (i) + q (i) 2 ; θ, q (i-1) -F X (i) q (i) y (i) -q (i) 2 ; θ, q (i-1) , (

where F X (i) (x (i) ; θ, q (i-1) ) denotes the cumulative distribution function (cdf) of the unquantized DCT coefficient X (i) at x (i) ∈ R with the model parameter θ and the set of quantization steps q (i-1) =
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Dequantizing Y (i) with the same step q (i) , we obtain the integer random variable X (i) such that

X (i) = q (i) • Y (i) , (4.4) 
where X (i) ∈ Z q (i) q (i) × Z = 0, ±q (i) , ±2q (i) , ±3q (i) , . . . . Using (4.3), the pmf of X (i) at x (i) is given by p X (i) x (i) ; θ, q (i) = F X (i) x (i) + q (i) 2 ; θ, q (i-1) -F X (i) x (i) -q (i) 2 ; θ, q (i-1) , (

where

x (i) ∈ Z q (i) .
Now, passing through the successive {IDCT, Rouding, DCT} operations, X (i) ∈ Z q (i) becomes X (i+1) ∈ R. We can therefore express the continuous random variable X (i+1) as

X (i+1) = DCT IDCT X (i) = DCT IDCT X (i) + R (i) = X (i) + E (i) , (4.6) 
where R (i) denotes the error introduced by rounding the output values to 8 bit integers in the spatial domain, and E (i) = DCT R (i) ∈ R is the associated rounding error in DCT domain. It is widely admitted in the literature (see e.g., [START_REF] Luo | Jpeg error analysis and its applications to digital image forensics[END_REF]) that E (i) follows a zero-mean normal distribution (ND) with variance 1 12 (i.e., E (i) ∼ N 0, 1 12 ). So, the cdf and pdf of E (i) at e (i) are respectively by

F E (i) e (i) = Φ e (i) √ 12 and f E (i) e (i) = √ 12φ e (i) √ 12 , (4.7) 
where Φ (z) and φ (z) stand for the cdf and pdf of standard ND such that

Φ (z) = 1 √ 2π ∫ z -∞ e -u 2 2 du and φ (z) = 1 √ 2π e -1 2 z 2 . ( 4.8) 
We can now compute the cdf of X (i+1) at x (i+1) from (4.6) by

F X (i+1) x (i+1) ; θ, q (i) = x (i) ∈Z q (i) Φ x (i+1) -x (i) √ 12 × F X (i) x (i) + q (i) 2 ; θ, q (i-1) -F X (i) x (i) - q (i) 2 ; θ, q (i-1) , (4.9) 
where Φ (•) is given by (4.8). Differentiating F X (i+1) x (i+1) ; θ, q (i) with respect to x (i+1) , we obtain the pdf of X (i+1) at x (i+1) as f X (i+1) x (i+1) ; θ, q (i) = √ 12

x (i) ∈Z q (i) φ x (i+1) -x (i) √ 12 ×
F X (i) x (i) + q (i) 2 ; θ, q (i-1) -F X (i) x (i) -q (i) 2 ; θ, q (i-1) , (4.10) with φ (z) given from (4.8).

Equations (4.3), (4.5), (4.9) and (4.10) constitutes the recurrent framework to derive statistical models for all kinds of DCT coefficients of an authentic JPEG image. In other words, we can recursively obtain the statistical law of any coefficient if the cdf F X (1) x (1) ; θ (or the pdf f X (1) x (1) ; θ ) of primary unquantized DCT coefficients X (1) is known. Also, some well-known statistical models of X (1) can be found in Appendix B.

Tampered JPEG Images

Consider now a tampered JPEG image with K forged areas, the pmf of its quantized DCT coefficients Y at y is naturally described by the mixture model

p Y y; Θ K , Λ K , q (i) = λ 0 • p Y (i) y; θ 0 , q (i) + K k=1 λ k • p Y (1) y; θ k , q (i) , (4.11) 
where Θ K = (θ 0 , θ 1 , . . . , θ K ) stands for the set of parameters of unmodified and K forged areas respectively, Λ K = (λ 0 , λ 1 , . . . , λ K ), with λ k > 0 and K k=0 λ k = 1, denotes the set of corresponding mixing coefficients. The pmf p Y (i) y; θ 0 , q (i) implies that the unmodified area characterized by the parameter θ 0 has been undergone i JPEG compression times with quantization steps q (i) = q (1) , . . . , q (i) .

Meanwhile, p Y [START_REF] Adams | Color processing in digital cameras[END_REF] x; θ k , q (i) , k = 1, . . . , K, means that K forged areas characterized by the parameters λ k have been likely compressed once with quantization step q (i) regardless of the compression history of their source [START_REF] Lin | Fast, automatic and fine-grained tampered jpeg image detection via dct coefficient analysis[END_REF]. Both p Y (i) y; θ 0 , q (i) and p Y (1) y; θ k , q (i) can be obtained by the recurrent modeling framework in Subsection 4.2.1. Despite its natural interpretation, the model (4.11) faces with two main drawbacks. Firstly, the number of forged areas K is unknown in practice. Although some unsupervised learning techniques of finite mixture models (see e.g., [START_REF] Mario | Unsupervised learning of finite mixture models[END_REF] and references therein) can help, they are usually inefficient in the case of DCT coefficients because of very similar distributions of components. Therefore, how to identify K is still an open issue. Secondly, even if K is already known, a large number of model parameters (i.e., Θ K , Λ K and q (i) ) are obviously not easy to deal with. To overcome these obstacles, a simplification of model (4.11) is proposed hereinafter.

To start with, we characterize the statistical properties of primary unquantized DCT coefficients associated with the considered tampered JPEG image. Similarly to (4.11), their pdf is given by

f X (1) (x; Θ K , Λ K ) = λ 0 • f X (1) (x; θ 0 ) + K k=1 λ k • f X (1) (x; θ k ) , (4.12) 
where f X (1) (x; θ 0 ) and f X (1) (x; θ k ), k = 0, . . . , K, represent the same pdf form of primary unquantized AC DCT coefficients for the unmodified area and K forged areas respectively. As f X (1) (x; θ 0 ) and f X (1) (x; θ k ) are unknown in practice, we should find another way to express f X (1) (x; Θ K , Λ K ). Inspired by the work of Fridrich et al. [START_REF] Fridrich | Quantitative steganalysis of digital images: estimating the secret message length[END_REF], we follow the recovery process of primary unquantized AC DCT coefficients in We also note that similar results are obtained when the cropping in the above method is replaced by a slight amount of rotation or resizing. Besides, the wavelet denoising method proposed in [START_REF] Holotyak | Stochastic approach to secret message length estimation in ±k embedding steganography[END_REF] could be used for the same purpose. Although no analytical proof is given for this method, numerous numerical experiments show that its performance is well adequate [START_REF] Kodovskỳ | Calibration revisited[END_REF]. In other words, f X (1) (x; Θ K , Λ K ) can be properly approximated by a single parametric distribution as

f X (1) (x; Θ K , Λ K ) ≃ f X (1) x; θ , (4.13) 
where θ is estimated from recovered unquantized DCT coefficients by a classical estimation method (e.g., the ML method described in Appendix B). Intuitively, we can explain in part this phenomenon by the similarity in the pdf forms of unquantized AC DCT coefficients and by small portion of forged areas (see also Figure 4.5). Besides, the image cropping has almost no effect on the portions λ 0 , . . . , λ K of unmodified and forged areas. Of course, the approximation quality depends closely on the flexibility of the considered probability law. Mimicking (4.12), we rewrite (4.13) in the form

f X (1) (x; Θ K , Λ K ) ≃ λ 0 • f X (1) x; θ + K k=1 λ k • f X (1) x; θ = λ 0 • f X (1) x; θ + (1 -λ 0 ) • f X (1) x; θ , (4.14) 
as K k=0 λ k = 1. Therefore, an approximation of (4.11) is given by

p Y y; Θ K , Λ K , q (i) ≃ λ 0 • p Y (i) y; θ, q (i) + (1 -λ 0 ) • p Y (1) y; θ, q (i) p Y y; θ, λ 0 , q (i) . (4.15)
We can remark that the simplified model (4.15) allows to bypass difficulties inherent in the models (4.11): the model is now invariant irrespective of the number of source images causing forged areas K, and the parameters is now limited and can be estimated easily. The price paid for this simplicity is that we can no longer rely on the component's parameters (i.e., θ 0 , . . . , θ K ) to distinguish between unmodified and forged areas, and the difference in their quantization effects is the only measure for their distinction (see also Subsection 4.4.2).

Framework Validation and Accuracy Assessment

The goals of this section are two-fold: (i) numerical validation of the modeling framework when primary unquantized AC DCT coefficients are respectively modeled by the Laplace distribution (LD), the generalized normal distribution (GND), the generalized gamma distribution (GGD), and the compound normal distribution2 (CND) (see also Appendix B for more details), and (ii) accuracy assessment of the simplified model (4.15) under different configurations of tampered JPEG images. In all cases, the evaluation is performed via the Kullback-Leibler (K-L) divergence.

Dataset Building

For numerical experiments, we built a tampered image dataset from 6 well-known uncompressed color image databases with different image sizes: McMaster [START_REF] Zhang | Color demosaicking by local directional interpolation and nonlocal adaptive thresholding[END_REF] (500 × 500), Standard and CSIQ [START_REF] Cooper | Most apparent distortion: full-reference image quality assessment and the role of strategy[END_REF] (512 × 512), Kodak3 (768 × 512), McGill [START_REF] Olmos | A biologically inspired algorithm for the recovery of shading and reflectance images[END_REF] (768 × 576) and Realistic [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF] (1920 × 1080). For each database, images are randomly JPEG compressed one or multiple times (by e.g., using imwrite function in Matlab). These images are next combined together following the portions λ 0 , . . . , λ K such that K k=0 λ k = 1, and saved again in JPEG format to generate tampered JPEG images. The combination technique is either cloning or splicing so that the DCT grid of forged areas is misaligned with the one of the host image. 

Framework Validation

The approach to validate the modeling framework is to compare the empirical pmf of quantized AC DCT coefficients pY (y) with their true and simplified models p Y y; Θ K , Λ K , q (i) and p Y y; θ, λ 0 , q (i) .

The parameters Θ K and θ in these models are respectively estimated from uncompressed source images and tampered image using the ML method described in Appendix B. Meanwhile, for simplification, Λ K and q (i) are merely assumed known (an EM algorithm will be introduced in Section 4.4 to find their estimates).

Let continue with the two tampered JPEG images in Figures 4.3a and 4.3b, we would like to study the pmf of their quantized DCT coefficients at the 2nd AC frequency 4 under the assumption that the associated primary unquantized DCT coefficients follow a GGD such that X (1) ∼ GGD (α, β, γ ). To this end, we specify the model parameters as in Table 4.1, and sketch in Figures 4.5a and 4.5b the pdf of primary unquantized coefficients X (1) when QF 3 = 70 and QF 3 = 90 respectively. In each figure, the pdf associated with source images f X (1) (x; θ k ), k = 0, 1, 2, are represented on top, while the ones related to tampered image f X (1) (x; Θ 2 , Λ 2 ) and f X [START_REF] Adams | Color processing in digital cameras[END_REF] x; θ are represented at the bottom. Table 4.1 shows clearly that for whatever QF 3 , the values of θ estimated from tampered JPEG images are closed. Moreover, as displayed in Figures 4.5a and 4.5b, the mixture f X (1) (x; Θ 2 , Λ 2 ) can be well approximated by a single pdf f X [START_REF] Adams | Color processing in digital cameras[END_REF] x; θ . This confirms our conjecture in (4.13). Now, we sketched in Figures 4.6a and 4.6b the pmf of the associated quantized coefficients. In each figure, the true pmf p Y y; Θ 2 , Λ 2 , q (3) on top, and the simplified pmf p Y y; θ, λ 0 , q (3) λ 0 = 0.75, λ 1 = 0.16, λ 2 = 0.09, q (1) = 7, q (2) = 5 Table 4.1: Θ 2 = (θ 0 , θ 1 , θ 2 ), θ = α, β, γ , Λ 2 = (λ 0 , λ 1 , λ 2 ) and q (3) = q (1) , q (2) , q (3)

f X k (1) (x) x -200 -100 0 100 200 0 0.005 0.01 f X 0 (1) (x; θ 0 ) f X 1 (1) (x; θ 1 ) f X 2 (1) (x; θ 2 ) f X (1) (x) 
x -200 -100 0 100 200 0 0.01 0.02 f X (1) 

(x; θ) f X (1) (x; Θ 2 , Λ 2 ) ^(a) QF 3 = 70 f X k (1) (x) x -200 -100 0 100 200 0 0.005 0.01 f X 0 (1) (x; θ 0 ) f X 1 (1) (x; θ 1 ) f X 2 (1) (x; θ 2 ) f X (1) (x) x -200 -100 0 100 200 0 0.01 0.02 f X (1) (x; θ) f X (1) (x; Θ 2 , Λ 2 )
^(b) QF 3 = 90 3) and p Y y; θ, λ 0 , q (3) modeling framework for tampered JPEG images. We note that various numerical experiments on other JPEG tampered images give the same conclusions.

Framework of JPEG DCT Coefficients Modeling and Forgery Localization

The developed framework requires a suitable pdf for primary unquantized DCT coefficients. We would like to find out which one among the well-known LD, GND, GGD and CND allows the most accurate model for tampered JPEG images. We use therefore the K-L divergence to evaluate the differences in the empirical pmf pY (y) and its models p Y (y; Θ)

D KL ( pY (y) ∥ p Y (y; Θ)) = y∈Z pY (y) • ln pY (y) p Y (y; Θ) , (4.16) 
where p Y (y; Θ) is given from either the true model (4.11) or the simplified model (4.15). This choice is motivated by a good compromise between the fitness of the main portion and the fitness of the tail part returned by the K-L divergence [START_REF] Yang | Transparent composite model for dct coefficients: Design and analysis[END_REF]. More precisely, the evaluation is performed on 720 tampered JPEG images with 2 forged areas: one from an uncompressed image with portion λ 1 = 0.09 and another from a single JPEG image with quality factor 80 and portion λ 2 = 0. 
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) Simplified model 3) , DKL pY (y) ∥ p Y y; θ, λ 0 , q (3) , and their absolute difference ∆ DKL respectively. In these figures, a lower curve correspond to a higher accuracy. As such, the GGDbased models and LD-based models are respectively the best and the worse. The models based on GND and CND are also good alternatives because their average K-L divergences are close to the one of the GGD-based model. In all models, the accuracy is better at high AC frequency. However, as we shall see in Section 4.4, this high accuracy is not really useful for forgery localization, because the DCT coefficients of both unmodified and forged areas are quantized mostly at 0. We also find in Figure 4.7c that the simplified model (4.15) is well comparable to the true model (4.11) in the case of GND, GGD and CND, because the associated absolute differences are very close to 0. But, it loses the accuracy when the LD is used as primary distribution. All these results confirm that both the true and simplified models characterize correctly a tampered JPEG image if the distribution of primary AC DCT coefficients is properly chosen. Now, we study the impact of JPEG compression times on the modeling framework. Three configurations of tampered JPEG images associated with the (i) double compression (QF 1 = 75, QF 2 = 80), (ii) triple compression (QF 1 = 75, QF 2 = 80, QF 3 = 85), and (iii) quadruple compression (QF 1 = 75, QF 2 = 80, QF 3 = 85, QF 4 = 90) of unmodified area are thus considered. We experiment each configuration on 720 tampered JPEG images with unmodified portion λ 0 = 0.75 and 3 forged areas (i.e., K = 3). To simplify, all forged areas are of the same size (i.e., λ 1 = λ 2 = λ 3 ≃ 0.0833) and given from single JPEG images with quality factor 75. Moreover, we only compute the K-L divergence for the case of GND as it gives the best compromise between the model accuracy and the computation time. As a result, we obtain in Figure 4.8 the curves of average K-L divergence with respect to 63 AC frequencies in zig-zag order. Their meanings are just similar to the ones in Figure 4.7. We can remark that both the true and simplified models always give a higher K-L divergence when the compression number i increases. This is mainly due to the truncated error is ignored from the modeling of JPEG compression cycle. Still, these differences are very small and do not much influence the modeling accuracy.

Accuracy Assessment

To see how good the simplified model (4.15) approximates the true model (4.11), we consider the GND as the model of primary unquantized AC DCT coefficients, and evaluate the mean µ 63 KL and variance ν 63 KL over 63 AC frequencies of the K-L divergences

µ 63 KL = E D KL p Y y; Θ K , Λ K , q (i) ∥ p Y y; θ, λ 0 , q (i) , (4.17) 
and 

ν 63 KL = var D KL p Y y; Θ K , Λ K , q (i) ∥ p Y y; θ, λ 0 , q (i) , ( 4 
D KL p Y y; Θ K , Λ K , q (i) ∥ p Y y; θ, λ 0 , q (i) = y∈Z p Y y; Θ K , Λ K , q (i) •ln p Y y; Θ K , Λ K , q (i) p Y y; θ, λ 0 , q (i) (4.19)
under various configurations of tampered JPEG images. In all configurations, the unmodified area of tampered images is triple-compressed with (QF 1 , QF 2 , QF 3 ), while the forged areas are randomly given from uncompressed, single-compressed or multiple-compressed JPEG images with quality factors taken from the set [75, 80, . . . , 95]. To further simplify, all forged areas inside a tampered image are set at the same size.

To understand the impact of λ 0 , we fix K = 2 and (QF 1 , QF 2 , QF 3 ) = (70, 80, 90) (i.e., i = 3), vary λ 0 from 0.7 to 0.9 with step 0.05, and sketch µ 63 KL and ν 63 KL in Figure 4.9a. A higher λ 0 implies a smaller portion for all forged areas. Since a single pdf f X [START_REF] Adams | Color processing in digital cameras[END_REF] x; θ approximates the mixture pdf f X (1) (x; Θ K , Λ K ) better in this case, it is not surprising that p Y y; θ, λ 0 , q (i) moves closer to p Y y; Θ K , Λ K , q (i) . This explains why both the µ 63 KL and ν 63 KL decrease when λ 0 increases. In other words, the simplified model (4.15) is more accurate for higher portion of unmodified area, that is actually logical. 

KL

Similarly, we obtain in Figure 4.9b the evolution of µ 63 KL and ν 63 KL when fixing λ 0 = 0.75 and (QF 1 , QF 2 , QF 3 ) = (70, 80, 90) (i.e., i = 3), and varying K from 2 to 6 with step 1. This experiment allows to see the impact of K. Indeed, since the total portion of forged areas is always fixed at 1-λ 0 = 0.25, the higher value of K, the more the size of each forged area become smaller compared to the unmodified area. Therefore, the impact of forged areas on the statistical characteristics of AC DCT coefficients of tampered images is weaker, even they have the same portion in total (i.e., 1 -λ 0 ). This allows to better approximate the mixture pdf f X (1) (x; Θ K , Λ K ) by a single pdf f X [START_REF] Adams | Color processing in digital cameras[END_REF] x; θ , and hence a more accurate simplified model. As a result, µ 63 KL and ν 63 KL slightly decrease in function of K as shown in Figure 4.9b. Fixing now K = 2 and λ 0 = 0.75, we obtain in Table 4.2 the values of µ 63 KL and ν 63 KL for all possible permutations of (QF 1 , QF 2 , QF 3 ) taken from the set [START_REF] Gary L Friedman | The trustworthy digital camera: Restoring credibility to the photographic image[END_REF][START_REF] Gotchev | Image interpolation by optimized spline-based kernels[END_REF][START_REF] Hsu | Camera response functions for image forensics: an automatic algorithm for splicing detection[END_REF] 

Forgery Localization in Tampered JPEG Images

To show the utility of the proposed modeling framework, we apply the simplified model (4.15) to the forgery localization. Its performance is assessed by F 1 -score under divers configurations of tampered JPEG images. 

Forgery Localization Method

r B y n ; θ, λ0 , q(i) =       
1, if y n belongs to forged area, 0, otherwise, (4.20) where λ0 , q(i) is the estimate of the parameter vector λ 0 , q (i) , and the condition "y n belongs to forged area" means 1 -λ0 • p Y (1) y n ; θ, q(i) ≥ λ0 • p Y (i) y n ; θ, q(i) with n = 1, . . . , N . In practice, we can read the last quantization step q (i) from the JPEG header of the tampered image (by using e.g., Phil Sallee's JPEG toolbox 5 ), while the other parameters should be estimated from y by maximizing the following log-likelihood function λ0 , q(i-1) = arg max (λ0,q (i-1) ) L λ 0 , q (i-1) , (4.21)

where

L λ 0 , q (i-1) = N n=1 ln λ 0 • p Y (i) y n ; θ, q (i) + (1 -λ 0 ) • p Y (1) y n ; θ, q (i) . (4.22)
Moreover, since q (1) , . . . , q (i-1) take discrete values within limited sets Q (1) , . . . , Q (i-1) , our estimation strategy is to fix, for each time, q (i-1) = q (1) , . . . , q (i-1) at given values q (i-1) = q (1) , . . . , q (i-1) of Q (1) , . . . , Q (i-1) , then to find λ 0 = arg max λ 0 L λ 0 , q (i-1) . The accepted estimates λ0 , q(i-1) is the vector λ 0 , q (i-1) giving the highest log-likelihood L λ 0 , q (i-1) . This parameter estimation process can be done thanks to a simple EM algorithm. As this algorithm had been clearly presented in many textbooks (see e.g., [START_REF] Christopher | Pattern Recognition and Machine Learning[END_REF] and [START_REF] Geoffrey | The EM algorithm and extensions[END_REF]), we do not repeat its theoretical development here, but provide the pseudo-code in Algorithm 4.1 instead. We can assign λ(0) 0 to a value in (0.5, 1), and the stopping threshold δ L to a very small value (e.g. 10 -6 ).

For an illustration, we consider the tampered JPEG image in Figure 4.3b and take the GGD as the model of primary AC DCT coefficients. The associated binary localization maps with respect to 63 AC frequencies are shown in Figure 4.10. The white pixels correspond to forged area, while the black pixels associate with unmodified area. Of course, the localization performance can be improved 4.4 Forgery Localization in Tampered JPEG Images 81 Algorithm 4.1 Pseudo-code of EM algorithm to estimate λ 0 , q (i-1) Inputs: y, δ L , λ(0) 0 , Q (1) , . . . ,

Q (i-1) ( q (k) j k ∈ Q (k) , j k = 1, . . . , J k , k = 1, . . . , i -1) Outputs: λ 0 , q (i-1)
01. L max ← -∞ 02. for j 1 = 1 to J 1 do 03.

. . .

04.

for j i-1 = 1 to J i-1 do 05.

t ← 0, q (i-1) ← q (1) j 1 , . . . , q (i-1)

j i -1 06. L λ (t ) 0 , q (i-1) ← N n=1 ln λ (t ) 0 • p Y (i ) y n ; θ, q (i-1) , q (i) + 1 -λ (t ) 0 • p Y (1) y n ; θ, q (i)
07.

repeat 08.

t ← t + 1
09.

// E-step // 10.

for n = 1 to N do 11.

ω (n) ← λ (t ) 0 •p Y (i ) y n ; θ, q (i-1) , q (i) / λ (t ) 0 • p Y (i ) y n ; θ, q (i-1) , q (i) + 1 -λ (t ) 0 • p Y (1) y n ; θ, q (i)
12.

end for

13.

// M-step // 14.

λ (t ) 0 ← 1 N N n=1 ω (n) 15. L λ (t ) 0 , q (i-1) ← N n=1 ln λ (t ) 0 • p Y (i ) y n ; θ, q (i-1) , q (i) + 1 -λ (t ) 0 • p Y (1) y n ; θ, q (i) 16. until L λ (t +1) 0 , q (i-1) -L λ (t ) 0 , q (i-1) < δ L • L λ (t +1) 0 , q (i-1)
17.

if L λ (t ) 0 , q (i-1) > L max then 18.

L max ← L λ (t ) 0 , q (i-1) , λ 0 ← λ (t ) 0 , q(i-1) ← q (i-1)
19.

end if

20.

end for 21.

. . .

end for

by applying one or more post-processings to these raw maps (see e.g., [START_REF] Wang | Exploring dct coefficient quantization effects for local tampering detection[END_REF]). Still, to see better the intrinsic performance of the developed modeling framework for forgery localization, we decide not to use the post-processing here. Visually, the localization performance is good at low or medium AC frequency, and becomes worse at higher frequency. This performance will be quantitatively studied in the next section.

Performance Assessment

We use F 1 -score to assess the forgery localization performance of the proposed modeling framework as in most related works (see e.g., [5]). Mathematically, it is computed by

F (i) 1 = 2 • T P (i) 2 • T P (i) + F N (i) + F P (i) , (4.23) 
where i corresponds to the compression number of unmodified area, T P (i) denotes the number of tampered pixels correctly localized, F N (i) represents the number of unlocalized tampered pixels, and F P (i) stands for the number of authentic pixels wrongly localized. The higher the value of F (i) 1 , the more the forgery localization derived from p Y y; θ, λ 0 , q (i) is efficient. Using the GND as the model of primary unquantized AC DCT coefficients, we evaluate

F (i)
1 , with i = 2 and 3, on tampered JPEG images subject to triple quantization effect. As such, i = 2 and i = 3 correspond respectively to the wrong choice and right choice of model. Therefore, the comparison between F (2) 1 and F (3) 1 under various configurations of tampered JPEG images allows to quantify the gain returned by the right model, hence the advantage of the proposed framework. Besides, since the forgery localization is really effective in the range of low and medium AC frequencies (see Figure 4.10), we just evaluate the F 1 -scores at 10 frequencies therein.

Table 4.3 shows the values of F (2) 1 and F (3) 1 when fixing K = 2 and (QF 1 , QF 2 , QF 3 ) = (70, 80, 90), and varying λ 0 from 0.7 to 0.9 with step 0.05. They decrease when λ 0 increases, because the size of forged areas becomes smaller, and hence harder to be localized. Similarly, we compute F (2) 1 and

F (3)
1 when λ 0 = 0.75, (QF 1 , QF 2 , QF 3 ) = (70, 80, 90), and K varies from 2 to 6 with step 1. Since we fix the portion of all forged areas at 1 -λ 0 = 0.25, each of them becomes smaller for higher value of K, and therefore more difficult to be localized. This explains why both the F (2) 1 and F (3) 1 in Table 4.4 have a decreasing tendency when K increases. Now, we fix λ 0 = 0.75, K = 2, (QF 1 , QF 2 ) = (70, 80), vary QF 3 from 70 to 100 with step 5, and compute the associated F (2) 1 and

F (3) 1 .
As shown in Table 4.5, for most considered AC frequencies, the F 1 -scores tend to increase with higher QF 3 . Especially, both the F (2) 1 and F (3) 1 are very small when QF 3 ≤ QF 2 . This is the inherent weakness of quantization effects-based methods [START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF], because the single and multiple compression artifacts in the histogram of AC DCT coefficients are no longer clearly distinguishable in such configurations.

In all the sensitivity studies of λ 0 , K and QF 3 , F (3) 1 is greater than or at least equal to F (2) 1 . This confirms the usefulness of multiple JPEG compression modeling in the forgery localization. Indeed, considering the evolution of the difference ∆F 1 = F (3) 1 -F (2) 1 in Tables 4.3, 4.4 and 4.5, we obtain the highest gain at a small λ 0 , a small K and a not too high QF 3 .

Conclusion

We develop in this chapter a statistical modeling framework for DCT coefficients of tampered JPEG images where manipulations introduce single and multiple compression artifacts for forged and unmodified areas respectively. It allows to recursively derive a statistical model of DCT coefficients at any JPEG compression cycle from a known distribution of primary unquantized DCT coefficients. Through various numerical experiment and the K-L divergence, the framework is proved to be accurate if the distribution of primary unquantized AC DCT coefficients is either GND, GGD or CND. Especially, it exhibits its usefulness for forgery localization of tampered JPEG images subject to multiple quantization effect. 

F (3)
1 0.727700 0.694000 0.628916 0.689300 0.693600 0.665500 0.661100 0.501800 0.622600 0.617200 In Chapter 3 and Chapter 4, we dealt with the tampering situations where one or multiple parts of an image have been manipulated. In this chapter, we consider that the entire image is falsified with malicious intent. For this kind of forgery, resampling (including resizing, rotation and other linear transformations) is a common technique [START_REF] Farid | Image forgery detection[END_REF]. It is usually used together with other tampering techniques such as cloning or splicing in order to create a visually perfect match for a forged image. However, no matter how sophisticated the resampling is, it always leaves two main traces similar to the ones left by the demosaicing (see Chapter 3): (i) the periodicity of resampled signal, and (ii) the incoherence in the variance between original and interpolated signals. As reviewed in Subsection 2.4.2.2 of Chapter 2, most authors have focused on the periodic artifacts to develop their resampling detectors. Additionally, statistical detectors based on the hypothesis testing theory are still very scattered irrespective of their both theoretical and practical interests. In front of this situation, we would like to take advantage of both the above traces to design in this chapter an optimal (generalized) likelihood ratio test (LRT)-based detector for resampled TIFF images. Compared to the current state-of-the-art (e.g., [START_REF] Liu | Downscaling factor estimation on pre-jpeg compressed images[END_REF][START_REF] Pasquini | Information-theoretic bounds for the forensic detection of downscaled signals[END_REF][START_REF] Qiao | Exposing image resampling forgery by using linear parametric model[END_REF][START_REF] Qiao | Statistical modelbased detector via texture weight map: Application in re-sampling authentication[END_REF]), the main innovations and contributions of our work are threefold.

F (
1. Instead of using arbitrary probability distribution, we analyze the complete processing process from a RAW image to a resampled TIFF image to find out an appropriate statistical model for resampled TIFF images. This promises more accurate models for both the original and resampled TIFF images.

2. Based on the models developed for the original and resampled TIFF images, we exploit the periodic artifacts inherent in resampled pixels to simplify the models and extract independent identically distributed (IID) residual noises data for the LRT. The incoherence in the noises variance is next used as the main measure to distinguish a resampled TIFF image from an original one. This is the fundamental difference between our work and most related works whose resam-Statistical Detectors For Resampled TIFF Images pling detectors are based on the periodic artifacts. It results in two new (generalized) LRT-based detectors for the resampling detection.

3. Finally, as one of advantages of the hypothesis testing framework, we are able to provide closedform expressions for the power function of the proposed detectors, and analytically analyze its properties.

We organize the remainder of this chapter as follows. Section 5.2 focuses on the mathematical analysis of resampled signals and on the statistical modeling of resampled TIFF images. In Section 5.3, we develop an ideal LRT-based detector for resampled TIFF images under the assumption that all the model parameters are known. The mathematical analysis of the LRT-based detector and its statistical performances is performed in detail here. Section 5.4 is dedicated to a more practical situation where all the model parameters, except the magnification rate, are assumed unknown. An estimation process is thus proposed to specify the unknown parameters before dealing with a generalized LRT (GLRT)based detector. In Section 5.5, we carry out various numerical experiments on well-known image databases to validate the GLRT-based detector and to numerically assess its performances. Finally, some conclusions on the proposed (G)LRT-based detectors are discussed in Section 5.6.

Statistical Modeling of Resampled TIFF Images

To develop a model for resampled TIFF images, we propose to begin with a mathematical formulation of resampled signals and an analysis of their periodicity property. Next, we derive a statistical model for pixels of resampled TIFF images from by analyzing the complete processing process from a RAW image to a resampled TIFF image. For the sake of simplicity, we will restrict the study to single directional resampling.

Mathematical Analysis of Resampled Signals

Let x (d) : R → R, denote an one-dimensional continuous real-valued signal1 of interest in the spatial domain. We assume, without loss of generality, that x (d) is uniformly sampled at positions

d = n • ∆, with ∆ = 1, to produce the discrete real-valued signal x s [n] : Z → R, such that x s [n] = x (n • ∆) = x (n).
Following [124, chapter 4], the resampling of x s [n] with factor ξ = p q > 0 using interpolation kernel h [•] can be proceeded by three basic steps as in Figure 5.1. 

Magnification Minification Interpolation

x u [k] =        x s [n] if k = p • n 0 if k p • n , (5.1) 
with k ∈ Z.

Interpolation:

The upsampled signal x u [k] is next convolved with the interpolation kernel h [k] to generate an interpolated signal x i [k] at the same integer grid Z such that

x i [k] = x u [k] * h [k] = j∈Z h [k -j] • x u [j] = j∈Z,j=p•n h [k -j] • x u [j] x s [n] + j∈Z,j p•n h [k -j] • x u [j] 0 = n∈Z h [k -p • n] • x s [n] . (5.2) 
3. Minification. Finally, the interpolated signal x i [k] is compressed by rate q to obtain the resam-

pled signal x r [m] x r [m] = x i [q • m] = n∈Z h [q • m -p • n] • x s [n] , (5.3) 
with m ∈ Z.

The magnification rate p and the minification rate q are constrained to integer [START_REF] Ronald | Multirate digital signal processing[END_REF]. Moreover, they are usually co-prime in practice (i.e., the greatest common divisor is 1). The resampling is called upsampling (by a fractional factor) if ξ > 1, and downsampling, otherwise.

Example 5.1. Figure 5.2 illustrates the resampling process with factor ξ = p q = 4 3 using linear interpolation kernel (see also Table 5.3 and Figure 5.9 for other kernels). As displayed in Figure 5.2b, the Although the expression (5.3) favors the digitalization, it is not appropriate for the mathematical analysis owing to the different definition intervals of x r [m] and x s [n]. To overcome this obstacle, a rescaling of m with factor ω = ξ -1 = q p is proposed to obtain the same definition interval. As such, the above resampling process can be seen as a map from the integer grid Z to a new discrete grid

Z ω = ω • Z through a continuous-time real-valued kernel h (δ ) : R → R.
Therefore, the values of the rescaled resampled signal x r (ω • m) are computed from the original signal x (n) by [START_REF] Pasquini | Information-theoretic bounds for the forensic detection of downscaled signals[END_REF] x r (ω

• m) = n∈Z h (ω • m -n) • x (n) , (5.4) 
with m ∈ Z. The interpolation coefficient h (ω • mn) plays the role of weights in the linear combination (5.4). It has to verify the so-called interpolation constraint to not alter the value of original samples after the resampling

h (ω • m -n) =        1 if ω • m -n = 0, 0 if ω • m -n ∈ Z * . (5.5) 
It is also required that the interpolation reproduces constants, which is equivalent to [START_REF] Getreuer | Linear methods for image interpolation[END_REF] n∈Z

h (ω • m -n) = 1 and |h (ω • m -n)| ≤ 1, ∀ω • m ∈ R (5.6) 
Moreover, as specified by Gotchev et al. in [START_REF] Gotchev | Image interpolation by optimized spline-based kernels[END_REF], a good interpolation kernel is desired to be symmetric around 0 (i.e., h (-δ ) = h (δ )) to avoid introducing phase distortions, and its support [-S, S] (i.e., h (δ ) = 0, ∀δ [-S, S]) should be as short as possible to ensure the desired interpolation accuracy. The above constraints on h (ω • mn) lead us to rewrite (5.4) as

x r (ω • m) = n∈S h (m;ω) h (ω • m -n) • x (n) , (5.7) 
where S h (m; ω) denotes the set of indices n actually used in the interpolation

S h (m; ω) = {n ∈ Z | ω • m -n ∈ [-S, S]} = {⌈ω • m -S⌉ , ⌈ω • m -S⌉ + 1, . . . , ⌊ω • m + S⌋ -1, ⌊ω • m + S⌋} , (5.8) 
where the notations ⌈•⌉ and ⌊•⌋ standard for rounds towards positive infinity and negative infinity respectively. We remark that S h (m + p; ω) = S h (m; ω) + q, (5.9) so the resampled samples x r (ω • (m + p)) can be obtained by combining original samples shifted by q positions with respect to the ones used to generate x r (ω • m).

Example 5.2. To illustrate the above rescaling process and the generation of the rescaled resampling signal using (5. 

x(n), x r (ω⋅m) n 0 1 2 3 4 5 6 -3 -1 1 3 x(n) 
x r (ω⋅m)

+ + + + + + + h(⋅) ω⋅1 ω⋅7 ω⋅6 ω⋅5 ω⋅4 ω⋅3 ω⋅2 ω⋅8
(b) Some first samples of x (n) and x r (ω • m) symbolized by (✚) in Figure 5.3b. We obtain the resampled sample x r (ω • 4) by combining the original samples {x (2) , x (3) , x (4)} following the interpolation coefficients {0, 1, 0}. This actually returns an original sample (i.e., x r (ω • 4) ≡ x (3)). Similarly, x r (ω • 2) and x r (ω • 6) are interpolated from the sets {x (1) , x (2)} and {x (4) , x (5)} respectively. Clearly, their indices satisfy (5.9).

Hereinafter, we analyze some useful properties of the rescaled resampled signal in the spatial domain.

Theorem 5.1. If the sample x r (ω • m) of the rescaled resampled signal with scaling factor ω = ξ -1 = q p is an original sample, then the samples x r (ω • (m + j • p)), ∀j ∈ Z, are also original samples.

Proof. From the interpolation constraint (5.5), a sample of the rescaled resampled signal is an original sample if and only if it is at integer grid Z. So, it is enough to verify that ω • (m

+ j • p) ∈ Z when ω • m ∈ Z. Indeed, since q and j ∈ Z, it is evident that ω • (m + j • p) = ω • m + j • q ∈ Z.
Theorem 5.1 means that the original samples of a rescaled resampled signal with scaling factor ω = ξ -1 = q p are at lattice of period p. For instance, the original samples of a rescaled resampled signal in Figure 5.3b are at positions 0, ω • 4, ω • 8, ... as p = 4. Theorem 5.2. All samples x r (ω • (m + j • p)), ∀j ∈ Z, of the rescaled resampled signal with scaling factor ω = ξ -1 = q p share the same set of interpolation coefficients.
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Proof. The above statement implies that the interpolation coefficients used in (5.7) are repeated with period p. Let H h (m; ω) = {h (ω • mn) | n ∈ S h (m; ω)} be set of interpolation coefficients used to generate x r (ω • m), we will show that

H h (m + p; ω) = H h (m; ω) .
(5.10) Indeed, from the definition of H h (m; ω), we obtain

H h (m + p; ω) = {h (ω • (m + p) -n) | n ∈ S h (m + p; ω)} ω= q p = {h (ω • m + q -n) | n ∈ S h (m + p; ω)} .
(5.11) Using (5.9), we rewrite (5.11) as

H h (m + p; ω) = {h (ω • m + q -n) | n ∈ S h (m; ω) + q} = {h (ω • m -(n -q)) | n -q ∈ S h (m; ω)} = H h (m; ω) . (5.12)
Another proof of the periodicity of H h (m; ω) can be found in [START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF].

In Figure 5.3b, the sets of interpolation coefficients to compute x r (ω • 2) and x r (ω • 6) = x r (ω • (2 + 4)) are the same. Now, assuming that x (n) is independently Gaussian distributed with expectation µ x(n) and variance

σ 2 x(n) (i.e., x (n) ∼ N µ x(n) , σ 2 x(n) ), then from (5.7), x r (ω • m) is also Gaussian distributed x r (ω • m) ∼ N µ x r (ω•m) , σ 2 x r (ω•m) , (5.13) 
with expectation

µ x r (ω•m) = n∈S h (m,ω) h (ω • m -n) • µ x(n) , (5.14) 
and variance

σ 2 x r (ω•m) = n∈S h (m,ω) h 2 (ω • m -n) • σ 2 x(n) . (5.15) 
The statistical distribution (5.13) is the basis to build the statistical model for pixels of resampled TIFF images.

Statistical Model for Resampled TIFF Pixels

A typical process to create a resampled TIFF image from a real scene is depicted in Figure 5.4. Firstly, light intensity measured at each pixel generates an electrical signal that is read out as a RAW image.

Next, the RAW image goes through several in-camera post-acquisition processes, such as demosaicing, white balancing and gamma correction, to issue a full resolution, colored and uncompressed image called original TIFF image. Finally, for malicious purposes, resampling is applied to the original TIFF image to create resampled TIFF image. Our goal is to develop a statistical model for resampled TIFF 

v n = µ v n + ϵ v n , (5.16) 
where µ v n denotes the expectation of v n in the absence of noise, and ϵ v n stands for all noise sources that interfere with the original signal. A typical representation of ϵ v n is a Poissonian-Gaussian noise model [START_REF] Luisier | Image denoising in mixed poisson-gaussian noise[END_REF], where the Poissonian part characterizes signal-dependent component including dark current and shot noise, while the Gaussian part describes signal-independent component such as read-out noise. For practical applications, Foi et al. [START_REF] Foi | Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[END_REF] propose to simplify the Poissonian-Gaussian noise model by treating the Poisson noise as a special heteroscedastic Gaussian. This leads to the so-called heteroscedastic noise model [START_REF] Hai Thai | Camera model identification based on the heteroscedastic noise model[END_REF] of RAW pixels

v n ∼ N µ v n , ã • µ v n + b . (5.17) 
This model describes the pixel noise variance as an affine function of the pixel expectation, parameterized by the couple ã, b . Since the noise corrupting each RAW pixel is independent of those of neighbor pixels [START_REF] Glenn | Radiometric ccd camera calibration and noise estimation[END_REF], RAW pixels are also mutually independent.

To establish a model for original TIFF pixels from the heteroscedastic noise model (5.17), the demosaicing and white balancing are assumed to be linear [START_REF] Ramanath | Color image processing pipeline[END_REF]. This allows to retain the Gaussian Statistical Detectors For Resampled TIFF Images distribution for independent pixels3 after these operations, but with different parameters (a, b)

w n ∼ N µ w n , a • µ w n + b , (5.18) 
where w n denotes a white-balanced pixel at position n, and µ w n is its expectation. The gamma correction is, on the contrary, a non-linear operation defined by the following pixel-wise power-law [START_REF] Farid | Blind inverse gamma correction[END_REF] x n = w

1 γ n , (5.19) 
where γ is the correction factor, and x n denotes the pixel at position n of the original TIFF image.

The non-linear expression (5.19) of x n does not allow a simple statistical distribution, thus we seek its linear approximation. To this end, we first rewrite (5.18) as

w n = µ w n + ϵ w n , with ϵ w n ∼ N 0, a • µ w n + b , (5.20) 
where ϵ w n accounts for zero-mean signal-dependent Gaussian noise after the white balancing. This leads to

x n = µ w n + ϵ w n 1 γ = µ 1 γ w n • 1 + ϵ w n µ w n 1 γ . (5.21) 
Using now the first order of Taylor series expansion of (1 + t)

1
γ at t = 0, we finally arrive at

x n = µ 1 γ w n • 1 + 1 γ • ϵ w n µ w n + o ϵ w n µ w n ≃ µ 1 γ w n + 1 γ • µ 1 γ -1 w n • ϵ w n . (5.22) 
Since ϵ w n ∼ N 0, a • µ w n + b , it follows that

x n ∼ N µ 1 γ w n , 1 γ 2 • µ 2 γ -2 w n • a • µ w n + b . (5.23) Let denote µ x n = µ 1 γ
w n the expectation of x n , then from (5.23), its variance σ 2

x n be expressed as

σ 2 x n = 1 γ 2 • µ 2-2γ x n • a • µ γ x n + b f µ x n ; a, b, γ , (5.24) 
and original TIFF pixels are independently Gaussian distributed such that

x n ∼ N µ x n , σ 2 x n . (5.25) 
The expression (5.24) is known as generalized signal-dependent noise model in [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF]. Given an original TIFF image, the triple of parameters (a, b, γ ) can be estimated using the classical maximum likelihood (ML) method (see also Subsection 5.4.1). In [START_REF] Hai Thai | Camera model identification based on the generalized noise model in natural images[END_REF], Thai et al. observe through numerical experiments that the ML estimates â, b of (a, b) are invariant to image scenes and camera settings, but discriminative for different camera models, while the ML estimate γ of γ is almost the same irrespective to the diversity of camera models.

We seek now a statistical model of the resampled TIFF pixels. A resampling operation with factor ξ = p q and interpolation kernel h (•) is considered. To further simplify, we assume that the resampling has been performed in one direction (either horizontal or vertical) overall the original TIFF image. Given the independent Gaussian distribution (5.25) of original TIFF pixels x n , with n ∈ S h (m, ω) and ω = ξ -1 = q p , we can apply (5.13) to characterize the statistics of resampled TIFF pixel y m at position m as

y m ∼ N µ y m , σ 2 y m , (5.26) 
where the expectation µ y m and variance σ 2 y m are given by

µ y m e µ x n , m, n; h, ω = n∈S h (m,ω) h (ω • m -n) • µ x n , (5.27) 
and

σ 2 y m ϑ µ x n , m, n; h, ω, a, b, γ = n∈S h (m,ω) 
h 2 (ω • m -n) • f µ x n ; a, b, γ . (5.28) 
Obviously, µ y m and σ 2 y m depend not only on the expectation of original TIFF pixels µ x n , but also on the interpolation coefficients h (ω • mn) defined by the relative distances between the considered pixel and their neighbors ω • mn. Applying the constraints (5.6) to (5.27) and (5.28), we find that

µ y m ≤ µ x n and σ 2 y m ≤ σ 2 x n , (5.29) 
which make sense because the interpolation step in the resampling process smooths the image, hence the expectation and variance of resampled TIFF pixels are smaller than the ones of original TIFF pixels.

Ideal Detector for Resampled TIFF Images

Our goal is to develop in this section an efficient detector within statistical hypothesis testing framework to distinguish an original TIFF image from a resampled one. Naturally, the statistical models (5.25) and (5.26) of original and resampled TIFF pixels could be used. However, these models may lead to difficulties in mathematical formulation because they are not suitable to independent identically distributed (IID) pixels. To bypass this obstacle, we propose a preprocessing stage to obtain IID datasets associated with a simplified version of (5.25) and (5.26). Subsequently, we develop an optimal likelihood ratio test (LRT)-based detector under the assumption that all model parameters are known. Its statistical performance is also analytically evaluated.

Analysis of TIFF Pixels Models

Let consider the model (5.25) of original TIFF pixels x n , we find that x n ∼ N µ x n , σ 2

x n are independent but not identically distributed because of their scene-dependent expectation µ x n . As the variance σ 2

x n = f µ x n ; a, b, γ is a function of µ x n , with f (•) given from (5.24), it enough to set µ x n as a constant to make these pixels identically distributed. This idea leads to the homogeneous block detection and level-set segmentation process described in Subsection 5.3.2. Indeed, this process allows to partition the considered original TIFF image into I ∈ N non-overlapping segments of J i ∈ N pixels for the segment S i , i ∈ {1, . . . , I }. In each segment S i , all the pixels expectations µ x i,j , j ∈ {1, . . . , J i }, are almost the same and near to the local expectation µ x i,j µ i , and hence almost the same variance

σ 2 i = f (µ i ; a, b, γ ).
As a result, all the pixels x i,j of S i are IID as

x i,j ∼ N (µ i , f (µ i ; a, b, γ )) , (5.30) 
where i ∈ {1, . . . , I } and j ∈ {1, . . . , J i } denote respectively the index of the segment S i and of the j-th pixel therein.

If the same homogeneous block detection and level-set segmentation process as above is applied to the considered resampled TIFF image, we obtain from (5.27), (5.28) and (5.6) the expectation and variance of pixels y i,j , i ∈ {1, . . . , I } and j ∈ {1, . . . , J i }, in a non-overlapping homogeneous segment

S i as e (µ i , m, n; h, ω) = n∈S h (m,ω) h (ω • m -n) • µ i = µ i • n∈S h (m,ω) h (ω • m -n) = µ i (5.31) 
and

ϑ (µ i , m, n; h, ω, a, b, γ ) = n∈S h (m,ω) h 2 (ω • m -n) • f (µ i ; a, b, γ ) = f (µ i ; a, b, γ ) • n∈S h (m,ω) h 2 (ω • m -n) = 1 γ 2 • µ 2-2γ i • a • µ γ i + b • n∈S h (m,ω) h 2 (ω • m -n) = f (µ i ; A (m, n; a, h, ω) , B (m, n; b, h, ω) , γ ) , (5.32) 
where

A (m, n; a, h, ω) = a • n∈S h (m,ω) h 2 (ω • m -n) and B (m, n; b, h, ω) = b • n∈S h (m,ω) h 2 (ω • m -n) . (5.33)
Since there are different sets of interpolation coefficients on a resampled TIFF image, we can derive from (5.32) that their pixels y i,j remain non-identical. Luckily, as stated in Theorem 5.2, the interpolation coefficients are repeated with period p such that H h (m; ω) = H h (m + p; ω). So, we can extract sub-images at lattice of period p from the resampled TIFF image in order that the sets of interpolation coefficients on each sub-image become identical and n∈S h (m,ω) h 2 (ω • mn) = ς u for the u-th subimage. By this way, after applying the homogeneous segmentation technique to a given sub-image u, we obtain

e (µ i , m, n; h, ω) = µ i and ϑ (µ i , m, n; h, ω, a, b, γ ) = f (µ i ; a • ς u , b • ς u , γ ) , (5.34) 
and the resampled TIFF pixels y i,j over a segment S i , i ∈ {1, . . . , I } and j ∈ {1, . . . , J i }, become IID as

y i,j ∼ N (µ i , f (µ i ; a • ς u , b • ς u , γ )) . (5.35) 
Clearly, by limiting TIFF images to a lattice of period p and to non-overlapping homogeneous segments, pixels of the original and resampled sub-images have the same mean but not the same variance. Actually, their variances share the same form, but since

ς u = n∈S h (m,ω) h 2 (ω • m -n) ≤ 1
, the one of resampled TIFF pixels is smaller. This remark implies that the pixels variance could be a good measure to differentiate between original and resampled TIFF images.

IID Data Extraction

The above analyses on pixels models allow us to build IID datasets of noisy pixels, denoised pixels and residual noises from an unknown (i.e., either original or resampled) TIFF image as in Figure 5. Let denote U a two-dimensional matrix representing a color channel (i.e., red, green or blue) of an unknown TIFF image, we decompose U following lattices with period p to obtain p sub-images Z u = U (u : p : end) 4 , with u ∈ {1, . . . , p}. If the unknown TIFF image is the original one, all the sub-images Z u , ∀u ∈ {1, . . . , p}, are also original; otherwise, only the first sub-image Z 1 is original following Theorem 5.1, and the others Z u , ∀u ∈ {2, . . . , p} are interpolated 5 . The original sub-image Z 1 will be used to estimate the parameters of image and camera model. Meanwhile, the other subimages will be exploited to estimate the sum of squared interpolation coefficients, and to be used as input of the (generalized) LRT-based detectors. These points will be treated more detail in Section 5.4.

Statistical Detectors For Resampled TIFF Images such a detection problem as a binary hypothesis testing, then we rely on the LRT for two simple hypotheses to propose an optimal detector and evaluate its statistical performance.

From r u and the model (5.46), we can formulate the detection problem as the decision between two following hypotheses

      
H 0 = r u,i,j ∼ N 0, σ 2 0,u,i , ∀i ∈ {1, . . . , I } , ∀j ∈ 1, . . . , J u,i : original TIFF image, H 1 = r u,i,j ∼ N 0, σ 2 1,u,i , ∀i ∈ {1, . . . , I } , ∀j ∈ 1, . . . , J u,i : resampled TIFF image, (5.47) where u ∈ {2, . . . , p} is the index of the tested sub-image Z u , σ 2 0,u,i and σ 2 1,u,i are the pixels variances with respect to µ u,i under the hypotheses H 0 and H 1

σ 2 0,u,i = f µ u,i ; a, b, γ , (5.48) 
and

σ 2 1,u,i = f µ u,i ; a u , b u , γ , (5.49) 
with f (•), a u and b u given from (5.24) and (5.41). We are interested in a test δ that guarantees a prefixed false-alarm rate α 0 such that

K α 0 = δ : P H 0 (δ (r u ) = H 1 ) ≤ α 0 . (5.50) 
Among all the tests in the class K α 0 , we look for the most powerful test δ * satisfying

δ * = arg max δ ∈K α 0 β (δ ) , (5.51) 
where β (δ ) is power function defined by

β (δ ) = P H 1 (δ (r u ) = H 1 ) . (5.52) 
We assume that the magnification rate p, the vector of image parameters µ u = µ u,1 , . . . , µ u,i , . . . , µ u,I , the triplet of camera parameters (a, b, γ ), and the sum of squared interpolation coefficients ς u are known in advance. Under such an ideal context, the Neyman-Pearson fundamental lemma [129, theorem 3.2.1] specifies that the most powerful test δ * for the problem (5.47) under the LRT defined by the decision rule

δ * (r u ) =        H 0 if Λ (r u ) = I i=1 J u,i j=1 Λ r u,i,j < θ u H 1 if Λ (r u ) = I i=1 J u,i j=1 Λ r u,i,j ≥ θ u , (5.53) 
where Λ (r u ) is log-likelihood ratio (LLR) of r u under the ideal context, θ u denotes the decision threshold which is the solution of the equation

P H 0 (Λ (r u ) ≥ θ u ) = α 0 , (5.54) 
and Λ r u,i,j denotes the LLR of one sample r u,i,j computed by

Λ r u,i,j = 1 2 • σ 2 1,u,i σ 2 0,u,i -1 • r 2 u,i,j σ 2 1,u,i - 1 2 • log σ 2 1,u,i σ 2 0,u,i . (5.55) Since σ 2 1,u,i σ 2 0,u,i
= ς u , we can further express Λ r u,i,j as

Λ z u,i,j = 1 2 • 1 - 1 ς u • r 2 u,i,j σ 2 0,u,i - 1 2
• log ς u .

(5.56)

To determine the decision threshold θ u from (5.54), as well as the performance of LRT-based detector, the survival function FΛ(r u ),H k (θ u ) of Λ (r u ) under the hypothesis H k , k ∈ {0, 1} is required. Proposition 5.1 provides the closed-form expression of FΛ(r u ),H k (θ u ).

Proposition 5.1. Under the hypothesis H k , k ∈ {0, 1}, the survival function of Λ (r u ) is computed by

FΛ(r u ),H k (θ u ) =        G ρ u • log 1 ς u -θ u ; ρ u , 1 ς u -1 if k = 0, G ρ u • log 1 ς u -θ u ; ρ u , 1 -ς u if k = 1, (5.57) 
where G (•) stands for the Gamma cdf defined by the following regularized incomplete gamma function

G (x; η, λ) = Γ η, x λ Γ (η) , (5.58) 
with Γ (η) = ∫ ∞ 0 s η-1 e -s ds and Γ (η, x) = ∫ x 0 s η-1 e -s ds the gamma function and the lower incomplete gamma function respectively, and ρ u denotes the half of total residual noises considered for the sub-image

Z u ρ u = 1 2 • I i=1 J u,i . (5.59) 
Proof. Using (5.56), we rewrite the LLR Λ (r u ) as follow

Λ (r u ) = I i=1 J u,i j=1 Λ r u,i,j = -R u + c u , (5.60) 
where the random variable R u and the constant c are respectively defined by propose an estimation process to specify the vector of image parameters µ u = µ u,1 , . . . , µ u,i , . . . , µ u,I , the triplet of camera parameters (a, b, γ ), as well as the sum of squared interpolation coefficients ς u before theoretically dealing with the GLRT and its performance.

R u = 1 2 • 1 ς u -1 • I i=1 1 σ 2 0,u,i • J u,i j=1 r 2 u,i,j , (5.61 

Estimation of Model Parameters

We start with the estimation of the local expectation µ u,i of each homogeneous segment S u,i . From the homogeneous block detection and level-set segmentation process described in Subsection 5.3.2, it is easy to see that the sample mean of denoised pixels t u,i,j is a good estimate of µ u,i

μu,i = 1 J u,i • J u,i j=1 t u,i,j . (5.77) 
Indeed, since the variance of the denoised pixels t u,i,j is almost negligible [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF] (see also Subsection 5.5), μu,i is very near to the true value µ u,i . This explains why μu,i is treated as a constant in the following developments.

We propose to use the data extracted from the original sub-image Z 1 to estimate (a, b, γ ), because the relationship between the local variance σ 2 1,i and the local expectation µ 1,i of pixels over a segment S 1,i , i ∈ {1, . . . , I } is invariant for whatever the real nature (i.e., original or resampled) of the considered

TIFF image U σ 2 1,i = f µ 1,i ; a, b, γ , (5.78) 
where f (•) is given from (5.24). An estimate â, b, γ of (a, b, γ ) can be therefore obtained by fitting f µ 1,i ; a, b, γ to the scatter-plot of couples µ 1,i , σ 2 1,i

I i=1
. However, since µ 1,i and σ 2 1,i are unknown in practice, we could use their estimate μ1,i and σ 2 1,i instead, where μ1,i is the sample mean given from (5.77), and σ 2 1,i is the unbiased sample variance of residues r 1,i,j , j ∈ 1, . . . , J 1,i ,

σ 2 1,i = 1 J 1,i -1 • J 1,i j=1 r 1,i,j -r1,i,j , with r1,i,j = 1 J 1,i J 1,i j=1 r 1,i,j . (5.79) 
While μ1,i can be merely treated as a constant (i.e., μ1,i µ 1,i ), σ 2 1,i is more crucial and should be carefully studied. Indeed, since r 1,i,j ∼ N 0, σ 2 1,i , it follows from (5.79) that [START_REF] Knight | Mathematical Statistics[END_REF]Proposition 2.11]

J 1,i -1 σ 2 1,i • σ 2 1,i ∼ χ 2 J 1,i -1
(5.80)

where χ 2 J 1,i -1 denotes chi-square distribution with J 1,i -1 degrees of freedom. Hence,

σ 2 1,i ∼ G J 1,i -1 2 , 2 J 1,i -1 • σ 2 1,i = G J 1,i -1 2 , 2 J 1,i -1 • f μ1,i ; a, b, γ , (5.81) 
where G (η, λ) is the Gamma statistical distribution. Fitting now f μ1,i ; a, b, γ to the scatter-plot 

J 1,i -1 2 , 2 J 1,i -1 • f μ1,i ; a, b, γ = I i=1 J 1,i -3 2 • log σ 2 1,i -log Γ J 1,i -1 2 - J 1,i -1 2 • log 2 J 1,i -1 - J 1,i -1 2 • log f μ1,i ; a, b, γ - J 1,i -1 2 • 1 f μ1,i ; a, b, γ σ 2 1,i . (5.83)
The complexity of L (a, b, γ ) does not allow an analytical solution of (5.82), we should therefore resort to numerical optimization methods for this goal. More precisely, removing constant parts with respect to a, b and γ from (5.83), we obtain â, b, γ = arg min (a,b,γ )

I i=1 J 1,i -1 • log f μ1,i ; a, b, γ + σ 2 1,i f μ1,i ; a, b, γ . (5.84) 
We next apply the Nelder-Mead simplex algorithm [START_REF] Jeffrey C Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF] (i.e., the fminsearch function in Matlab) to Although the number of considered IID pixels for a sub-image Z u , u ∈ {1, . . . , p}, is actually finite, it is usually large enough to ensure a high accuracy of the ML estimates. This observation has been confirmed by various numerical experiments synthetic images in [207, Table 1]. In the following developments, we will treat â, b, γ as constants to further simplify, even though they intrinsically exhibit a certain variability.

We seek now the estimate of the sum of square interpolation coefficients ς u associated with a subimage Z u , u ∈ {2, . . . , p}. From (5.32), the local variance σ 2 u,i of pixels over a segment S u,i , i ∈ {1, . . . , I }, of Z u is expressed as

σ 2 u,i = f µ u,i ; ς u • a, ς u • b, γ = ς u • f µ u,i ; a, b, γ , (5.86) 
with ς u ≤ 1. An estimate of ς u can be found by fitting f µ u,i ; ς u • a, ς u • b, γ = ς u • f µ u,i ; a, b, γ to the scatter-plot of μu,i , σ 2

u,i I i=1
, where μu,i is an estimate of µ u,i given from (5.77) and σ 2 u,i an estimate of σ 2 u,i defined by

σ 2 u,i = 1 J u,i -1 • J u,i j=1
r u,i,j -ru,i,j , with ru,i,j = 1 J u,i J u,i j=1 r u,i,j .

(5.87)

Since σ 2 u,i is Gamma distributed σ 2 u,i ∼ G J u,i -1 2 , 2 J u,i -1 • ς u • f μu,i ; a, b, γ , (5.88) 
the ML estimate ςu of ς u is given by ςu = arg max

ς u L (ς u ) , (5.89) 
with L (ς u ) the log-likelihood function obtained in a similar way to (5.83) as

L (ς u ) = I i=1 J u,i -3 2 • log σ 2 u,i -log Γ J u,i -1 2 - J u,i -1 2 • log 2 J u,i -1 - J u,i -1 2 • log f μu,i ; a, b, γ - J u,i -1 2 • log ς u - J u,i -1 2 • 1 ς u • f μu,i ; a, b, γ σ 2 u,i . (5.90) 
Proposition 5.3. The closed-form expression of the ML estimate of ς u is given by

ςu = I i=1 J u,i -1 • σ 2 u,i f ( μu,i ;a,b,γ ) I i=1 J u,i -1 , (5.91) 
where μu,i and σ 2 u,i are obtained from (5.77) and (5.87).

Proof. It is easy to derive from (5.89) and (5.90) that the ML estimate ςu verifies

dL dς u ( ςu ) = - 1 2 ςu • I i=1 J u,i -1 -J u,i -1 • σ 2 u,i f μu,i ; a, b, γ • 1 ςu = 0. (5.92)
We arrive at

I i=1 J u,i -1 - 1 ςu • I i=1 J u,i -1 • σ 2 u,i f μu,i ; a, b, γ = 0, (5.93) 
hence the expression of ςu as in (5.91).

Since σ 2 u,i is Gamma distributed as in (5.88), we can further derive from (5.91) the distribution of ςu as

ςu ∼ G 1 2 • I i=1 J u,i -1 , 2 • ς u I i=1 J u,i -1 , (5.94) 
where G (η, λ) denotes the Gamma distribution with pdf (5.65). As such, the expectation and variance of ςu are expressed by

E [ ςu ] = ς u and var [ ςu ] = 2 • ς 2 u I i=1 J u,i -1 .
(5.95)

These expressions imply that (5.91) is an unbiased estimator of ς u , and that the variance is very small because of the large enough number of considered IID pixels I i=1 J u,i -1 and ς u ≤ 1. In other words, the proposed ML estimate is of high accuracy, and can be treated as constant. Yet, since a, b and γ are still unknown, we cannot applied directly (5.91) to find ςu in practice. This is why we propose to replace (a, b, γ ) by â, b, γ , and eventually obtain the ML estimate of ς u as

ςu = I i=1 J u,i -1 • σ 2 u,i f μu,i ; â, b, γ I i=1 J u,i -1 , (5.96) 
where the triplet â, b, γ is given from (5.84).

GLRT-Based Detector and Performance

Given the constant ML estimates μu = μu,1 , . . . , μu,i , . . . , μu,I , â, b, γ and ςu , we would like to propose in this subsection a more practical GLRT-based detector and to evaluate its statistical performance. Indeed, substituting µ u,i , a, b, γ , ς u by μu,i , â, b, γ , ςu , the Corollary 5.1 leads to the following GLRT-based detector.

Corollary 5.2. Under the practical context where all the model parameters are unknown except the magnification factor p, the optimal detector to distinguish an original TIFF image from a resampled TIFF image is as follows

δ * (r u ) =        H 0 : original TIFF image if Λ (r u ) < θu , H 1 : resampled TIFF image if Λ (r u ) ≥ θu , (5.97) 
where u ∈ {2, . . . , p}, Λ (r u ) denotes the generalized LLR of r u given by

Λ (r u ) = - 1 2 • 1 ςu -1 • I i=1 1 f μu,i ; â, b, γ • J u,i j=1 r 2 u,i,j + ρ u • log 1 ςu , (5.98) 
and θu is computed as distributed respectively. Such a process is applied for all sub-images of both the original and resampled TIFF images. The comparison between the empirical and estimated pdfs of t u,i,j and r u,i,j allow us to confirm the relevance of conjecture. As an example, we consider the denoised pixels t u,i,j and the residues r u,i,j associated with the homogeneous segment i = 80 of the sub-images in Figure 5.6, and display in Figures 5.7a methods are almost identical. The figures on top show that t u,i,j are uniformly distributed between 79.5 and 80.5 with expectation E t u,i,j = 80 and with very small variance var t u,i,j = 1 12 , ∀u ∈ {1, . . . , 4}. This is why the sample mean μu,i in (5.77) can be seen as the true expectation µ u,i . Observing the figures at the bottom, we find that r u,i,j are zero-mean Gaussian distributed with variance σ 2 u,i . The the original and resampled TIFF images are provided in 5.2: GLRT using sub-images Z u , u ∈ {2, 3, 4} Table 5.2 shows the values of the LLR Λ (r u ) and of the decision threshold θu , as well as the results returned by the GLRT-based detector δ * (r u ) when the false-alarm rate α 0 is 0.05, 0.5 and 0.95 respectively. With a fixed value of Λ (r u ), the decrease of θu is in tune which the increase of α 0 . We find that the detector returns the right results for whatever used sub-images Z u , u ∈ {2, 3, 4}. However, considering the difference between Λ (r u ) and θu , the sub-images Z 3 gives the robustest result. This actually makes sense as Z 3 has the smallest ςu compared to the two others (see Table 5.1). In other words, we should carry out the GLRT on the sub-image which has the smallest sum of square interpolation coefficients to ensure the highest detection performance.

θu = F -1 Λ(r u ),H 0 (α 0 ) , (5.99) 

Performance Assessment

From (5.101), the power function β δ * (r u ) only depends on ςu and ρ u . As such, the interpolation methods and the size of resampled TIFF images are the main factors that influence the statistical performance of the GLRT-based detector, and we would like to understand their impacts through sensitivity studies. We consider therefore 1000 authentic 8-bits color TIFF images of size varied from 1920 × 1080 pixels to 3888 × 2592 pixels. They are gathered from several well-known databases such as the McGill Calibrated Colour Image Database [START_REF] Olmos | A biologically inspired algorithm for the recovery of shading and reflectance images[END_REF], the Dresden Image Database [START_REF] Gloe | The dresden image database for benchmarking digital image forensics[END_REF], the Kodak Lossless True Color Image Suite8 , the Image Manipulation Dataset [START_REF] Vincent Christlein | An evaluation of popular copy-move forgery detection approaches[END_REF], the DSO-1 and DSI-1 Datasets [START_REF] José | Exposing digital image forgeries by illumination color classification[END_REF], and the Realistic Tampering Dataset [START_REF] Korus | Multi-scale analysis strategies in prnu-based tampering localization[END_REF]. These original images are squarely cropped in several sizes, next resampled at rate ξ = p q = 4 3 using some well-known interpolation methods, and are finally saved again in TIFF format to create tested datasets of resampled TIFF images. name expression support

nearest neighbor h (δ ) = 1 if |δ | ≤ 1 2 0 otherwise -1 2 , 1 2 linear h (δ ) = 1 -|δ | if |δ | ≤ 1 0 otherwise [-1, 1] cubic convolution h (δ ) =          3 2 |δ | 3 -5 2 |δ | 2 + 1 if |δ | ≤ 1 -1 2 |δ | 3 + 5 2 |δ | 2 -4 |δ | + 2 if 1 < |δ | ≤ 2 0 otherwise [-2, 2]
Table 5.3: Well-known interpolation kernels Four interpolation methods (i.e., nearest neighbor, linear, cubic convolution and cubic spline) are under consideration [START_REF] Maeland | On the comparison of interpolation methods[END_REF][START_REF] Parker | Comparison of interpolating methods for image resampling[END_REF]. The three first methods can be simply defined by an associated inter- 5.3 and Figure 5.9), meanwhile the definition of the last one is more sophisticated and can be found in [START_REF] De | A Practical Guide to Splines[END_REF]. The size of all tested resampled TIFF images is fixed at 1024 × 1024. (5.101). Both β and β increase from 0 to 1 with respect to α 0 , and β ≤ β for a given interpolation method. Comparing β and β associated with different considered interpolation methods fol all sub-images Z u , u ∈ {2, 3, 4}, we find that the stronger the "smoothing" effect of interpolation, the lower the power of the GLRT-based detector. This implies that the TIFF images resampled using linear interpolation is easier to be detected by the proposed detector than the ones using cubic convolution or cubic spline interpolation. The nearest neighbor interpolation is however a special case where the resampling is hard to be detected even if the "smoothing" effect is weak. All these phenomena are comprehensible when we observe the sample mean E [ ςu ] and sample variance var [ ςu ] of ςu in Now, fixing the interpolation method for resampled TIFF images at cubic convolution, and varying their sizes as 256 × 256, 512 × 512, 768 × 768 and 1024 × 1024, we sketch in Figures 5.11a, 5.11b and 5.11c the power functions β and β computed from the sub-images Z u , u ∈ {2, 3, 4}, respectively. The meanings of β and β are similar to the ones in Figures 5.10a, 5.10b and 5.10c. We can find clearly that the statistical performance of the GLRT-based detector increases with respect to the size of tested images. This is absolutely coherent with Proposition 5.2 as the total number of residual noises under consideration ρ u increases when the image size increases.

Conclusion

By analyzing the processing process from a RAW image to a resampled TIFF image, we develop in this chapter statistical models for the noisy pixels, the denoised pixels, as well as for the residual noises of resampled TIFF images. An estimation process is proposed to specify the parameters of these models. Based on the model of residual noises, we design optimal detectors to distinguish a resampled TIFF image from an original TIFF image using the incoherence in their variance. Consequently, a LRTbased detector and a GLRT-based detector are proposed for the ideal and practical context where the model parameters are respectively known and unknown. The closed-form expressions of their power function are also provided and analyzed. Various numerical experiments show that the detectors performance depends closely on the size and the order of sub-images under the consideration. So, we should take care about them to reach the highest performance of the proposed detectors.

Chapter 6

Conclusions and Perspectives

Conclusions

We have developed in this doctoral project three versatile techniques for detecting forged digital images and localizing various types of tampering therein: (i) demosaicing traces-based [START_REF] Le | An improved algorithm for digital image authentication and forgery localization using demosaicing artifacts[END_REF], (ii) JPEGcompression traces-based [START_REF] Le | A recurrent framework for statistical modeling of jpeg ac dct coefficients[END_REF][START_REF] Le | Statistical modeling framework for ac dct coefficients of tampered jpeg images and application in forgery localization[END_REF], and (iii) resampling traces-based [START_REF] Le | Statistical detector of resampled tiff images[END_REF]. Although these techniques are different, they work under the common assumption that manipulations may alter some underlying statistical properties of natural images. The same two-steps process has been adopted for every detection technique: (i) analyze and model statistical features of both the authentic and forged images associated with specific in-camera and/or post-camera traces, then (ii) design a statistical detector to differentiate between the authentic and forged images by estimating statistical changes in their models.

Chapter 3 exploited the inconsistency in traces left by the demosaicing. The associated feature statistic is the standardized difference between the arithmetic mean of the logarithm of residues variances of acquired and interpolated pixels in square blocks within smoothing regions of a suspect digital image. Such a feature statistic follows the standard normal distribution and a mixture of two normal distributions when the image is authentic and forged respectively. Normality tests are next carried out to decide if the suspect image is authentic or not. If it is forged, a penalized EM algorithm is used to automatically distinguish between original and tampered area within the image.

When JPEG compression traces are considered as in Chapter 4, we defined the value of DCT coefficients as their feature statistic and developed its recurrent modeling framework for both the authentic and forged JPEG images subject to multiple quantization effect. Especially, we have proved that the quantized DCT coefficients of forged JPEG images can be properly approximated by a two-components mixture model regardless of the number of forged areas therein. Based on such a model, the plug-in Bayes rule combined with a simple EM algorithm is exploited to localize tampered areas of the forged image.

Finally, in Chapter 5, the noise part of pixels is chosen as the feature statistic of resampling traces. We have followed the complete processing process from a RAW image to a resampled TIFF image to find out that the noise models of both the resampled and original TIFF images are zero-mean normal 1. d'où vient l'image numérique?

2. est-ce que l'image numérique représentante la scène originale capturée?

La première question est étroitement liée au problème de l'identification de l'origine de l'image avec comme principal objectif la spécification du système d'acquisition. La deuxième question concerne le problème de l'intégrité du contenu de l'image où il s'agit de déterminer si une image est falsifiée, quelle manipulation a été effectuée sur l'image ou quelle région de l'image a été modifiée. Dans cette thèse, nous nous concentrons plus particulièrement sur le développement de méthodes de détection et de localisation de faux dans des images numériques.

La littérature relative à la détection et à la localisation de faux a été abordée selon deux approches : (i) active, et (ii) passive. Par approche active, certaines informations authentiques prédéfinies telles que la signature ou le filigrane intégrés dans les images numériques sont nécessaires pour examiner leur véracité. Cependant, ces informations constituent une limite à cette approche, car elles augmentent le coût de production. Pour remédier à cet inconvénient, l'approche passive propose d'exploiter les traces intrinsèques à l'acquisition de l'image ou certaines traces spécifiques laissées par les contrefaçons pour distinguer les images falsifiées des images naturelles. Cette approche est évidemment adaptée à la plupart des situations pratiques où seule l'image suspecte est disponible. Plus précisément, nous pouvons classer l'approche passive pour la détection et la localisation des falsifications en deux principaux courants. Le premier courant recommande d'extraire des caractéristiques des images suspectes et d'appliquer des techniques d'apprentissage pour apprendre automatiquement des caractéristiques discriminantes [START_REF] Barni | Aligned and non-aligned double jpeg detection using convolutional neural networks[END_REF]. En tenant compte de diverses caractéristiques dans l'apprentissage, cette approche permet de concevoir des outils universels capables de faire face à différents types d'attaques malveillantes [START_REF] Cohen | Maljpeg: Machine learning based solution for the detection of malicious jpeg images[END_REF]. Évidemment, ses performances et sa robustesse dépendent fortement de la qualité et de la quantité des données considérées. Comme alternative, le deuxième courant exploite les incohérences dans la modélisation statistique des images numériques pour détecter les attaques malveillantes (voir [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Giboulot | Detectability-based jpeg steganography modeling the processing pipeline: the noise-content trade-off[END_REF]). Elle ne nécessite pas une grande quantité de données comme pour la première approche, mais une connaissance plus approfondie du processus d'acquisition des images et des attaques.

C.2 Plan de le thèse

Cette thèse se concentre sur la modélisation statistique pour la détection de la falsification des images numériques. Sa structure générale est organisée comme suit :

• Le chapitre 1 présente le contexte général de la recherche, le problème à traiter, ainsi que la méthodologie employée. 

C.3.1 De la scène à l'image brute

Les appareils numériques imitent le système visuel humain. Ils sont constitués d'un objectif, de filtres d'échantillonnage, d'un réseau de filtres colorés (CFA), d'un capteur d'image et d'un processeur d'image numérique [START_REF] Adams | Color processing in digital cameras[END_REF]. Le module optique est essentiellement composé d'un objectif et des mécanismes permettant de contrôler l'exposition, la mise au point et la stabilisation de l'image pour collecter et piloter la lumière provenant de la scène. Une fois que la lumière entre dans la caméra via l'objectif, elle passe à travers une combinaison de filtres qui comprend des filtres infrarouge et des filtres anticrénelage pour garantir une qualité visible maximale. La lumière est ensuite focalisée sur le capteur d'image, un ensemble de rangées et de colonnes d'éléments de détection de la lumière appelés pixels. Chaque élément de détection de la lumière du capteur intègre la lumière incidente sur tout le spectre et obtient un signal électrique représentant la scène. Comme chaque élément de capteur d'image est essentiellement monochromatique, une façon simple de capturer des images en couleur est de séparer chaque composante de couleurs. Le processus d'acquisition des images brutes est perturbé par plusieurs sources de bruit dont le bruit de grenaille, le bruit de courant d'obscurité, le bruit de lecture et le bruit de non-uniformité de la réponse photographique (PRNU). Le dernier bruit est le plus importants (voir la figure C.4). Le bruit de grenaille, également connu sous le nom de bruit de Poisson, trouve son origine dans la nature quantique de la lumière. Le bruit du courant d'obscurité, également appelé bruit à motif fixe, est généré par l'énergie thermique en l'absence de lumière. Le bruit de lecture englobe tous les bruits électroniques intervenant dans la chaîne d'acquisition. Enfin, le bruit PRNU représente les différences de réponse des pixels à la lumière incidente due aux imperfections du processus de fabrication des capteurs (par exemple l'hétérogénéité des plaquettes de silicium). En tenant compte de ces sources de bruit, nous pouvons exprimer le pixel de la manière suivante v m,n dans (C.1) comme suit
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v m,n = µ v m,n + ϵ v m,n , (C.2) 
où µ v m,n représente l'espérance de v m,n en l'absence de bruit et ϵ v m,n représente toutes les sources de bruit. Alors que l'espérance µ v m,n est simplement vue comme un signal déterministe et ne doit pas être modélisée. Les modèles de bruit pour les images RAW peuvent être classés en deux classes dans la littérature : (i) indépendant du signal, et (ii) dépendant du signal. Si la première suppose la stationnarité du bruit dans l'ensemble de l'image, la seconde prend en compte la dépendance proportionnelle de la variance du bruit par rapport au signal. Le modèle bien connu de bruit blanc additif gaussien (voir par exemple [START_REF] Bosco | Fast method for noise level estimation and integrated noise reduction[END_REF]) est un exemple typique de la classe de bruit indépendant du signal. La classe de bruits dépendants du signal comprend le modèle Poissonnien [START_REF] Darwin T Kuan | Adaptive noise smoothing filter for images with signal-dependent noise[END_REF], le modèle de bruit Poisson-Gaussien [START_REF] Luisier | Image denoising in mixed poisson-gaussian noise[END_REF][START_REF] Makitalo | Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise[END_REF] et le modèle de bruit hétéroscédastique [START_REF] Foi | Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[END_REF][START_REF] Hai Thai | Camera model identification based on the heteroscedastic noise model[END_REF]. Par rapport à la première classe, la seconde est plus précise mais plus difficile à traiter.

C.3.2 De l'image brute à l'image TIFF

Pour rendre une image TIFF non compressée en couleur à partir de l'image brute, plusieurs opérations de post-traitement sont effectuées où le dématriçage, l'équilibrage des blancs et la correction gamma sont les plus importantes. Le dématriçage, également connu sous le nom d'interpolation CFA, permet de combler les pixels manquants dus à l'échantillonnage CFA en utilisant leur voisinage [START_REF] Ramanath | Demosaicking methods for bayer color arrays[END_REF]. En général, on peut classer les algorithmes de dématriçage en deux classes : (i) non adaptatif et (ii) adaptatif. Les algorithmes non adaptatifs utilisent la même technique d'interpolation pour tous les pixels, de sorte que, dans la plupart des cas, ils peuvent être simplement définis par un seul schéma pour chaque canal de couleur c (voir le tableau C.1). Par conséquent, la composante de couleur X c D de l'image dématriçée X D peut French Summary name Canaux rouge et bleu Canal vert bi-linear 
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Table C.1: Exemples de noyaux d'interpolation utilisés dans les algorithmes de dématriçage non adaptatifs être calculée à partir de la composante brute V c comme suit:

X c D = K c * V c , (C.3) 
où * désigne l'opération de convolution bidimensionnelle. Les algorithmes de dématriçage non adaptatifs donnent des résultats satisfaisants dans les régions lisses, mais échouent généralement dans les régions texturées et les bords. Les algorithmes adaptatifs peuvent résoudre ce problème. Ils prennent en compte les informations sur les bords, ainsi que la corrélation inter-canaux pour trouver un ensemble approprié de coefficients qui permet de minimiser l'erreur d'interpolation globale ((voir [START_REF] Chung | Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneityprojection[END_REF][START_REF] Tsai | A new edge-adaptive demosaicing algorithm for color filter arrays[END_REF]). Cela rend les algorithmes adaptatifs plus précis que les algorithmes non adaptatifs, au prix d'un calcul plus important.

Après le dématriçage, il faut procéder à l'équilibrage des blancs pour supprimer les teintes irréalistes [START_REF] Ramanath | Color image processing pipeline[END_REF]. En effet, en raison de la différence de température des sources lumineuses, un décalage du spectre de réflexion de l'objet par rapport à sa vraie couleur peut se produire. Ce décalage fait que l'objet apparaît de couleur différente lorsqu'il est éclairé par différentes sources lumineuses. Le réglage de la balance des blancs est donc mis en oeuvre dans les appareils numériques pour compenser ce déséquilibre d'éclairage. Fondamentalement, il est effectué en multipliant les pixels de chaque canal de couleur X c D par un facteur de gain différent д c W pour obtenir une image équilibrée au niveau du blanc X W .

X

c W = д c W • X c D , (C.4)
où X c W désigne la composante de X W associée au canal de couleur c. La connaissance préalable des sources lumineuses est essentielle pour sélectionner les gains appropriés д c W . En l'absence de cette connaissance, д c W peut être estimé par plusieurs algorithmes décrits dans [START_REF] Edmund | Automatic white balancing in digital photography[END_REF]. A titre d'exemple, nous présentons ci-après un algorithme simple basé sur l'hypothèse mode gris: la réflectance moyenne d'une scène est achromatique. Cela implique que les valeurs moyennes des trois canaux de couleur dans une scène donnée sont à peu près égales de sorte que 

C.3.3 De l'image TIFF à l'image JPEG

En raison de sa haute qualité, l'image TIFF n'est pas vraiment adaptée pour le stockage ou la transmission, surtout en grand nombre. C'est pourquoi la plupart des appareils photographiques numériques utilisent un algorithme de compression pour réduire la taille des données de l'image. Un tel algorithme tente d'éliminer les informations de l'image qui ne sont pas visuellement significatives. Parmi les nombreux algorithmes de compression avec perte (voir par exemple [START_REF] Hussain | Image compression techniques: A survey in lossless and lossy algorithms[END_REF], la norme JPEG (Joint Photographic Experts Group) [START_REF] Gregory | The jpeg still picture compression standard[END_REF] est la plus populaire grâce à son bon compromis entre la qualité résistantes aux manipulations post-caméra telles que le clonage, l'épissage, le redimensionnement, etc... Par conséquent, les traces du dématriçage pourraient être une preuve robuste et puissante pour évaluer la crédibilité des images numériques.

Analyse bibliographique

Nous pouvons classer les travaux de médecine légale qui considèrent les traces de dématriçage en deux classes principales. La première consiste en des algorithmes visant à estimer, à partir d'une image numérique, le motif CFA et/ou l'algorithme de dématriçage inhérent aux appareils photographiques. La seconde caractérise les algorithmes utilisés pour évaluer la présence/absence d'artefacts générés par les par les opérations de dématriçage. Dans la suite de ce document, nous détaillons ces 2 classes.

Première classe

Les travaux [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF][START_REF] Ju | Estimation of bayer cfa pattern configuration based on singular value decomposition[END_REF][START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF][START_REF] Takamatsu | Estimating demosaicing algorithms using image noise variance[END_REF] présentent des méthodes clés pour l'identification du modèle CFA. Dans [START_REF] Kirchner | Linear row and column predictors for the analysis of resized images[END_REF], le motif CFA de Bayer est identifié en réduisant au minimum la différence entre le signal brut du capteur et le signal inverse dématriçé. Dans [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF], l'identification est effectuée via un algorithme développé à partir de l'observation que la valeur des échantillons de couleur interpolés se situe toujours entre les valeurs minimale et maximale de leurs voisins. Une autre méthode consiste à calculer le rapport entre la variance moyenne du bruit des pixels interpolés et des pixels acquis pour tous les motifs candidats possibles du CFA [START_REF] Takamatsu | Estimating demosaicing algorithms using image noise variance[END_REF]. Plus récemment, des blocs de couleur ont été proposés comme moyen permettant d'estimer la configuration du CFA dans [START_REF] Ju | Estimation of bayer cfa pattern configuration based on singular value decomposition[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF].

Au-delà de l'identification du modèle CFA, des travaux se concentrent plus particulièrement sur l'estimation des algorithmes de dématriçage. Dans [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF], un algorithme de maximisation de l'espérance (EM) est utilisé pour estimer les coefficients des noyaux d'interpolation linéaire. Une amélioration est apportée dans [START_REF] Bayram | Classification of digital camera-models based on demosaicing artifacts[END_REF] en combinant l'algorithme EM avec un spectre dérivé du second ordre [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF] pour obtenir des coefficients d'interpolation es régions lisses et non lisses séparément. Dans [START_REF] Cao | Accurate detection of demosaicing regularity for digital image forensics[END_REF], une méthode précise basée sur un modèle de dérivées partielles du second ordre est proposé pour récupérer les formules de dématriçage. La méthode permet de prendre en compte la corrélation entre les trois canaux de couleur de l'image.

Étant donné que le motif CFA et/ou l'algorithme de démosaïquage sont spécifiques à chaque modèle de caméras, ils peuvent être utilisés comme preuves pour la détection et la localisation des falsifications d'images. Par exemple, dans [START_REF] Cao | Manipulation detection on image patches using fusionboost[END_REF][START_REF] Swaminathan | Digital image forensics via intrinsic fingerprints[END_REF], les incohérences entre les coefficients de dématriçage sont exploitées pour vérifier si le modèle CFA et l'algorithme de dématriçage sont compatibles. En remarquant que le modèle CFA est changé si la couleur de l'image est modifiée, les auteurs de [START_REF] Choi | Estimation of color modification in digital images by cfa pattern change[END_REF] ont conçu un algorithme avancé de comptage de valeurs intermédiaires pour mesurer le changement du motif CFA, et donc de localiser l'étendue de la modification de la couleur dans les images numériques. Nous notons également que le motif CFA estimé et/ou l'algorithme de dématriçage sont utilisés non seulement pour évaluer la crédibilité du contenu des images numériques, mais aussi pour identifier la source de la caméra (voir [START_REF] Gao | Camera model identification based on the characteristic of cfa and interpolation[END_REF]). Cependant, ce dernier point n'entre pas dans le cadre de notre étude.

Deuxième classe

La deuxième classe repose sur des artefacts périodiques causés par le dématriçage. En effet, les capteurs d'images d'un CFA sont généralement organisés périodiquement [START_REF] Menon | Color image demosaicking: An overview[END_REF]. En outre, de nombreux algorithmes de dématriçag se comportent comme un processus de filtrage où les signaux manquants sont sont interpolés en appliquant périodiquement un noyau d'interpolation aux signaux acquis (voir [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF]). Par conséquent, la périodicité des artefacts de dématriçage est intrinsèque aux photographies numériques et peut contribuer à l'authentification des images. Inspirés par cette idée, Popescu et Farid construisent [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF] une carte de probabilité pour exprimer le modèle périodique de pixels corrélés. Lorsque des pixels interpolés sont présents, la périodicité est clairement visible dans le domaine de Fourier. Une telle analyse peut être appliquée à différentes zones de l'image pour détecter la présence de d'une altération locale, mais la taille de la zone ne doit pas être inférieure à 256 × 256 pour garantir la précision des résultats. En observant que la variance de la dérivée seconde des images interpolées est périodique [START_REF] Andrew | Detection of linear and cubic interpolation in jpeg compressed images[END_REF], Gallagher et Chen utilisent dans [START_REF] Andrew | Image authentication by detecting traces of demosaicing[END_REF] un filtrage passe-haut et une analyse de Fourier pour calculer la fréquence périodique. Les régions falsifiées d'une image auront une périodicité différente que le reste. Cette méthode est applicable pour des blocs d'images de taille 64 × 64 ou plus. Une autre méthode basée sur l'analyse de la périodicité de la variance des erreurs de prédiction a été récemment proposée par Li et al. dans [START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF]. En supposant que les erreurs d'interpolation sont distribuées de manière gaussienne, une carte de probabilité est dérivée selon la règle de Bayes. Une analyse avec la transformée de Fourier discrète bidimensionnelle permet de capturer la périodicité. Li et al. montrent que cette méthode peut être appliquée pour la détection de la falsification locale avec des blocs de taille allant jusqu'à 32 × 32.

Les méthodes de détection de la falsification d'images numériques sont également basées sur les différences entrela distribution des pixels acquis et interpolés. Dans [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF], Dirik et Memon reconnaissent que la nature passe-bas du dématriçage rend la variance du bruit du capteur plus importante. En conséquence, les artefacts de dématriçage peuvent être mesurés par un rapport des variances du bruit entre les pixels interpolés et acquis.Si ce rapport est proche de 1, une altération a été réalisée sur l'image. La méthode présente une bonne performance pour les blocs d'images de taille supérieure à 96 × 96. Partageant la même idée, Ferrara et al. [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF] effectuent une analyse fine des artefacts du dématriçage et proposent une fonction permettant de mesurer la présence du dématriçage. Alors que les travaux ci-dessus considèrent les caractéristiques spatiales des artefacts de démosaïquage, González-Fernández et al. [START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF] s'intéressent plutôt à leur spectre. En effet, en calculant la probabilité de chaque pixel d'être interpolé puis en appliquant la transformée en cosinus discrète (DCT) sur de petits blocs de la carte de probabilité, la présence/absence d'artefacts de démztriçage. Les expériences montrent que la méthode est fiable pour des blocs de taille 16 × 16.

Remarques communes

Comme le dématriçage est une opération en amont du processus d'acquisition des caméras numériques, ses traces sont indépendantes des falsifications. Par conséquent, les méthodes basées sur les traces de dématriçage ne ciblent pas une opération de falsification spécifique, mais plutôt une variété d'opérations.

Malgré cet avantage, les traces de dématriçage sont facilement détruites par la compression JPEG, même avec des niveaux de qualité très élevés. C'est pourquoi ces méthodes sont adaptées aux photographies non compressées ou peu compressées. Il s'agit d'une limitation courante et et presque inévitable des méthodes basées sur les traces de dématriçage. De plus, très souvent, un seuil de comparaison est nécessaire pour détecter ou localiser les faux [START_REF] Emir | Image tamper detection based on demosaicing artifacts[END_REF][START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF]. En pratique, le choix d'un tel seuil n'est pas facile et peut avoir une grande influence sur la robustesse des méthodes. En outre, les traces de dématriçage utilisées (c'est-à-dire le modèle CFA, l'algorithme de dématriçage, la périodicité des artefacts de dématriçage, les différences dans la distribution des pixels acquis et interpolés, etc.. ) sont étroitement corrélées. Cependant, la classification ci-dessus des travaux connexes implique qu'ils sont traités séparément dans la plupart des algorithmes existants. L'utilisation conjointe de ces traces pourrait améliorer les performances de la détection et de la localisation de la falsification d'images.

Problématiques et contributions

Les deux classes d'algorithmes utilisant des traces de dématriçages ont été étudiées séparément dans la littérature. Ici, nous cherchons à les combiner dans un algorithme unifié afin d'améliorer les performances d'authentification de l'image et la localisation de la contrefaçon. Le résultat est un algorithme hybride composé de l'identification du motif CFA, de l'estimation de l'algorithme de dématriçages et de l'analyse des artefacts. En visant une détection fine, nous avons adopté le schéma d'identification proposé dans [START_REF] Swaminathan | Nonintrusive component forensics of visual sensors using output images[END_REF] pour révéler le motif CFA et le noyau d'interpolation et une analyse locale similaire à celle de [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF] pour déterminer les artefacts de dématriçages des résidus de prédiction.

1. Nous analysons théoriquement comment la moyenne et la variance des résidus de prédiction dans les signaux interpolés et acquis évoluent dans le processus d'acquisition d'un appareil photographique, du format RAW au format JPEG. Ceci constitue la base pour construire des caractéristiques d'intérêt. En outre, l'analyse permet d'expliquer en partie pourquoi l'approche basée sur les traces de dématriçage est moins efficace avec les images compressées au format JPEG.

2. Dans la plupart des algorithmes de dématriçage basés sur les traces (voir [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF][START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF][START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF][START_REF] Singh | A markov based image forgery detection approach by analyzing cfa artifacts[END_REF]), les résidus de prédiction sont donnés à partir des valerus des pixels. Ici, en partitionnant un pixel en 2 parties comportant le contenu et le bruit, nous réalisons que le dématriçage se comporte de la même manière pour le contenu et le bruit. Cependant, en raison de la faible énergie du bruit, les traces du dématriçage sont plus visibles dans le bruit. C'est pourquoi les caractéristiques utilisées dans l'algorithme sont extraites des résidus de bruit plutôt que des résidus du contenu/ 3. Comme mentionné dans [START_REF] Ferrara | Image forgery localization via fine-grained analysis of cfa artifacts[END_REF], la présence de bords nets dans les images réduit la qualité des caractéristiques, car elle peut perturber par la corrélation entre les résidus interpolés et acquis.Pour surmonter cet obstacle, nous construisons nos caractéristiques statistiques à partir d'une région lisse du canal vert au lieu de la totalité de l'image. Ainsi, le problème des bords n'est plus un problème majeur. [START_REF] Nadarajah | Gaussian dct coefficient models[END_REF] en tenant compte des distributions flexibles pour la variance des blocs. Pourtant, les justifications mathématiques pour le modèle la de variance d'un bloc manquaient toujours jusqu'à l'apparition de l'article du Thaï et al. [START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF]. Ils ont montré que la variance par bloc d'une image naturelle JPEG peut être approximée de manière asymptotique par une distribution Gamma à deux paramètres. Ce modèle est ensuite appliqué respectivement dans [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF] et [START_REF] Retraint | Quality factor estimation of jpeg images using a statistical model[END_REF] pour identifier le modèle des caméras et estimer le facteur de qualité des images JPEG. Les modèles statistiques des coefficients AC quantifiés peuvent être développés à partir des coefficients primaires non quantifiés. Pour les images JPEG à compression unique, Qiao et al. a caractérisé les coefficients AC quantifiés par une distubution de Laplace dans [START_REF] Qiao | Steganalysis of jsteg algorithm using hypothesis testing theory[END_REF], et l'ont appliqué pour détecter des informations cachées incorporées par l'algorithme JSteg. Un modèle similaire a également été adopté par Stamm et Liu dans [START_REF] Matthew | Anti-forensics of digital image compression[END_REF] pour supprimer les traces laissées par la compression JPEG. D'autres modèles basés peuvent être trouvés dans [START_REF] Conotter | Forensic detection of processing operator chains: Recovering the history of filtered jpeg images[END_REF][START_REF] Hai Thai | Statistical model of quantized dct coefficients: Application in the steganalysis of jsteg algorithm[END_REF].

Analyse bibliographique

Problématiques et contributions

Grâce à l'analyse de la littérature, nous constatons que les modèles statistiques développés pour les coefficients DCT des images JPEG falsifiées se limitent pour la plupart à l'effet de la double quantification. En effet, dans de nombreux scénarios pratiques, les images peuvent être compressées plusieurs fois avant d'être manipulées et enregistrées à nouveau au format JPEG. Par conséquent, notre objectif est d'étendre ces modèles afin de mieux traiter les images JPEG falsifiées sujettes soumises à l'effet de quantifications multiples. Notre choix est d'étudier les coefficients DCT dans leur forme brute directement plutôt que dans des formes modifiées comme dans certains travaux connexes ( voir [START_REF] Kirchner | A second look at first significant digit histogram restoration[END_REF], [START_REF] Pasquini | Multiple jpeg compression detection by means of benford-fourier coefficients[END_REF]). Par conséquent, nous suivons le processus de compression JPEG et les effets des opérations de manipulation sur les coefficients DCT afin de développer un cadre de modélisation statistique paramétrique pour la falsification des images. Nous l'appliquons ensuite à la localisation des falsifications. Bien que l'approche de modélisation et la technique de localisation de falsification soient relativement similaires à certains travaux de la littérature (voir, par exemple, [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF][START_REF] Wang | Exploring dct coefficient quantization effects for local tampering detection[END_REF]), plusieurs améliorations et contributions significatives ont été apportées. Ecole Doctorale "Sciences pour l'Ingénieur"
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 231 Figure 2.3: Formulation process of the RAW image
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  .6) to take advantage of long sequences of zero-values inherent in quantized DCT blocks. The output of the entropy coder is an encoded JPEG image Y in bitstream (see Figure 2.5).
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 224 Figure 2.24: Illustration of p-map and local periodic patterns in Fourier domain adapted from[START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF] 
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 226 Figure 2.26: Illustration of JPEG images and associated maps of block artifacts given from[START_REF] Nikoukhah | Local jpeg grid detector via blocking artifacts, a forgery detection tool[END_REF] 
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  (a) Forged image (b) QF = 55 (c) QF = 60 (d) QF = 65 (e) QF = 70 (f) QF = 75 (g) QF = 80 (h) QF = 85

Figure 2 . 28 :

 228 Figure 2.28: Difference between tampered image and its re-saved versions adapted from[START_REF] Farid | Exposing digital forgeries from jpeg ghosts[END_REF] 
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 229 Figure 2.29: Histograms of DCT coefficients statistics in the luminance channel adapted from[START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF] 

Figure 2 . 31 :

 231 Figure 2.31: Illustration of keypoint-based algorithms for cloning detection extracted from[START_REF] Ferreira | Behavior knowledge space-based fusion for copy-move forgery detection[END_REF] 
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 232 Figure 2.32: Images and the Fourier transform of their p-map adapted from[START_REF] Alin | Exposing digital forgeries by detecting traces of resampling[END_REF] 
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 31 If acquired signals of TIFF images are identically independently Gaussian distributed such that s tiff A (x) ∼ N µ, σ 2 , then the mean and variance of the residues e tiff A and e tiff I are expressed by

  A + e tiff I ; when α = 1, e jpeg A = e tiff A and e jpeg I = e tiff I . These two configurations correspond respectively to a very small value (Q < 10) and a very high value (Q = 100) of compression quality. Let consider now the mean and variance of e jpeg A and e jpeg I

=

  (2α -1) • var e tiff A -var e tiff I . (3.23) Since var e tiff A ≥ var e tiff I and α ∈ [0.5, 1], we find that 0 ≤ var e jpeg A -var e jpeg I ≤ var e tiff A -var e tiff I . (3.24)As such, for the image in JPEG format, the difference between residues variances in acquired and interpolated signals is still a potential demosaicing artifact (i.e., var e jpeg A≥ var e jpeg I
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 4 Image Authentication and Forgery Localization 53 log-likelihood function is given by

.56) 4 .

 4 S-step: Stop the EM algorithm whenever the iteration number t exceeds a limited number, or when the norm Θ (t+1) -Θ (t) is smaller a threshold. Set ( γ , μ1 , μ2 , σ ) as the final Θ (t+1) , and stock the final γ (t+1) i1 and γ (t+1) i2 for feature statistics clustering. and localization map.

P 2 :

 2 tampered portion if γ i1 ≤ γ i2 , i = 1, . . . , q. (3.59) Since each N i correspond to the i-th B × B block of the tested image, we can therefore derive a binary map indicating tampered region of the image. (a) Authentic image (b) Tampered imageFor an illustration, we show in Figures 3.6a and 3.6b the authentication and localization results for an authentic image and a tampered image respectively. For the authentic image, the distribution of feature statistics is standard normal. Accordingly, with a type 1 error α = 0.05, all the considered normality tests return H 0 , while the points in Q-Q plot diagram follow a linear pattern. This confirms the authenticity of the image. Looking at the localization map, black and white blocks are equally mixed overall the image because γ = 0.5, and no concrete form is appeared. For the tampered image, the distribution of feature statistics is no longer standard normal. All the normality tests return then H 1 , and the points in Q-Q plot diagram follow a strongly nonlinear pattern. The outliers of dash orange line in Q-Q plot diagram correspond to the smaller population in the mixture pdf of feature statistics. The location map now shows clearly the tampered regions in white and authentic region in black.
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 37 Figure 3.7: Authentication and localization results for digital images
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 383911310113112 Figure 3.8: Examples of successful forgery localization by the proposed algorithm
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 3 Figures 3.10 and 3.11 show the results of these two studies when tested images are given from the Image Manipulation Dataset and Realistic Tampering Dataset respectively. In each figure, the subfigures on the left and on the right display the evolution of P, R and F 1 with respect to % of decision threshold and to B. In all cases, we find that the F 1 -Score of the proposed algorithm is more stable at higher value than the benchmarks. This implies that our algorithm is more efficient and robuster. Looking at the diagrams of P and R, we find that the high F 1 -Score of our algorithm mostly comes from the high value of P, because the values of R are more or less similar in the three algorithms. This results also mean that our algorithm allows a high probability that localized pixels are tampered, while the benchmark algorithms do not. This is totally consistent with the nature of non-threshold-based and threshold-based localization algorithms.
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 4242 Figure 4.2: Recovery process of primary unquantized AC DCT coefficients

  Figures 4.3a 

  and 4.3b illustrate respectively two typical examples of tampered JPEG images when the quality factor of the last JPEG compression is QF 3 = 70 and QF 3 = 90 respectively. In
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 43 Figure 4.3: Two typical examples of tampered JPEG images
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 44 Figure 4.4: Examples of tampered JPEG images extracted from the built dataset (from left to right: McMaster, Stand, CSIQ, Kodak, McGill, Realistic)
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 47 Figure 4.7: Average K-L divergence for different pdf of primary unquantized AC DCT coefficients

Figure 4 . 8 :

 48 Figure 4.8: Average K-L divergence for different JPEG compression numbers
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 4 [START_REF] Bayram | Classification of digital camera-models based on demosaicing artifacts[END_REF], the forgery localization returns to divide quantized AC DCT coefficients y = {y 1 , . . . , y N } of a tampered JPEG image into two clusters associated with the unmodified and forged areas. As recommended by McLachlan and Peel, the division can rely on the plug-in Bayes rule defined by[START_REF] Geoffrey | Finite mixture models[END_REF] Section 1.15.2] 
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 51 Figure 5.1: Block flow diagram of the resampling process

  Sampled signal x s [n] and resampled signal x r [m]

  Upsampled signal x u [k] and interpolated signal x i [k]
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 52 Figure 5.2: Illustration of resampling process with factor ξ = 4 3 and linear interpolation kernel
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 4 7), let us continue with Example 5.1. The signal x r (ω • m) in Figure 5.3a is a scaled version of x r [m] in Figure 5.2a with scaling factor ω = q p The interpolation coefficients h (•) are x (n) and x r (ω • m)
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 53 Figure 5.3: Illustration of original signal at discrete times x (n) and rescaled resampled signal x r (ω • m)
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 254 Figure 5.4: Illustration of process to create resampled TIFF images
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 155 Figure 5.5: Illustration of process for IID data extraction from an unknown TIFF image

  ) and c u = ρ u • log 1 ς u . (5.62) To derive FΛ(r u ),H k (θ u ) from (5.60), we should determine the distribution of R u under the hypothesis 104 Statistical Detectors For Resampled TIFF Images

5. 4 105 μ1

 4105 Practical Detector for Resampled TIFF Images approach, we obtain an estimate of (a, b, γ ) as follows â, b, γ = arg max (a,b,γ ) L (a, b, γ ) , (5.82)where L (a, b, γ ) is the log-likelihood function of σ 2 1,i over I segments S 1,i given by L (a, b, γ ) =

( 5 .

 5 [START_REF] Bahadir K Gunturk | Demosaicking: color filter array interpolation[END_REF] to search â, b, γ . According to[START_REF] Knight | Mathematical Statistics[END_REF] Theorem 5.4], the ML estimates â, b and γ are asymptotically consistent, i.e., they asymptotically converge in probability to their true value â, b, γ p -→ (a, b, γ ) .(5.85)
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 14511 Figure 5.11: Power functions given from sub-images Z u , u ∈ {2, 3, 4} with respect to TIFF image sizes
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 1 Figure C.1: Événement de l'attaque terroriste au temple d'Hatchepsout à Louxor en Égypte
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 4 Figure C.4: Illustration du processus d'acquisition d'un appareil photographique numérique
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 61 Figure C.6: Processus d'obtention d'une image brute
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 8 D représente l'intensité moyenne de X c D . calculée de la même manière que(2.6). Puisque l'oeil humain est plus sensible à la couleur verte, l'algorithme propose de conserver le le canal vert tel qu'il est, donc д b W = 1. (C.7) Par conséquent, les gains des autres canaux de couleur sont dérivés de (C.6) comme suit En introduisant (C.7) et (C.8) dans (C.4), nous obtenons finalement l'image équilibrée en blanc X W .A ce stade, l'intensité du pixel ne présente que la caractéristique linéaire de l'intensité de l'image brute[START_REF] Deever | Digital camera image formation: Processing and storage[END_REF]. Cette linéarité ne correspond pas à la plupart des dispositifs d'affichage dont la fonction de transfert représente une relation entre la luminance L et la tension U L = V γ , (C.9) où γ est une constante spécifique à chaque dispositif. En particulier, γ = 2, 2 pour le moniteur à tube cathodique. La correction gamma est nécessaire pour rendre la luminance dans un domaine perceptiblement uniforme. Il s'agit simplement de l'inverse de (C.9) en appliquant à chaque valeur de pixels de X W une valeur telle que désigne le pixel situé à l'emplacement (m, n). de la composante X c de l'image TIFF. A la sortie du processus précédent, nous obtenons une image TIFF non compressée, en couleur, X, caractérisée par une matrice tridimensionnelle de taille M × N × 3 (voir figure C.7).

Modélisation statistique pour la

  détection de la falsification des images numériques À l'ère du numérique, la crédibilité du contenu des images est une préoccupation majeure en raison de la popularité des outils d'édition faciles à utiliser et peu coûteux. Les images falsifiées peuvent être utilisées pour manipuler l'opinion publique lors des élections, commettre des fraudes et discréditer ou faire chanter des personnes. Face à cette situation préoccupante, nous développons dans cette thèse trois techniques efficaces basées sur (i) les traces de dématriçage (ii) les traces de compression JPEG, et (iii) les traces de rééchantillonnage pour détecter les images falsifiées et localiser les différents types de falsification. Bien que ces techniques soient différentes, elles fonctionnent sous l'hypothèse commune que les manipulations peuvent altérer certaines propriétés statistiques sous-jacentes des images naturelles. Un processus de détection en deux étapes a été adopté pour chaque technique de détection : (i) analyser et modéliser les caractéristiques statistiques des images authentiques et falsifiées, puis (ii) concevoir un détecteur statistique pour différencier les images falsifiées des images authentiques en estimant les changements dans leurs modèles. Diverses expérimentations numériques sur plusieurs ensembles de données de référence bien connus mettent en évidence la qualité des performances et la robustesse des techniques de détection proposées. Mots clés : criminalistique -traitement d'images, techniques numériques -méthodes statistiquesmodèles mathématiques -estimation de paramètres -tests d'hypothèses (statistique) -algorithmes EM. age, the trustworthiness of image content is of great concern due to the dissemination of easy-to-use and low-cost image editing tools. Forged images can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Faced with such a serious situation, we develop in this doctoral project three versatile techniques based on (i) demosaicing traces (ii) JPEG compression traces, and (iii) resampling traces for detecting forged digital images and localizing various types of tampering therein. Although these techniques are different, they work under the common assumption that manipulations may alter some underlying statistical properties of natural images. A two-steps detection process has been adopted for every detection technique: (i) analyze and model statistical features of both the authentic and forged images associated with specific in-camera and/or post-camera traces, then (ii) design a statistical detector to differentiate between the authentic and forged images by estimating statistical changes in their models. Various numerical experiments on several well-known benchmark datasets highlight the performances and robustness of the proposed detection techniques. Keywords: forensic sciences -image processing, digital techniques -statistical methods -mathematical models -parameter estimation -statistical hypothesis testing -expectation-maximization algorithms.
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1: Examples of interpolation kernel used in non-adaptive demosaicing algorithms object from its true color may occur. This shift makes the object appear different in color when it is illuminated under different light sources. The white balance adjustment is therefore implemented in digital cameras to compensate this illumination imbalance. Basically, it is performed by multiplying pixels in each color channel X c D by a different gain factor д c W to render a white-balanced image X W

  [START_REF] Neil | Estimating the components of a mixture of normal distributions[END_REF] 
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: 50% quality standard JPEG quantization tables luminance block luminance pixels

  1 (see e.g.,[118, page 53] for a simulation algorithm). Then, we work with Ni instead of N i . As such, the problem (3.57) becomes Normality tests are next carried out to decide if the tested image is authentic or not. In this chapter, Algorithm 3.1 Penalized EM algorithm for parameters estimation and clustering 1. I-step: For k = 1, 2, get γ (0) from the k-means algorithm [21, chapter 9], then cluster N, and compute µ (0) k and σ (0) k as the maximum likelihood estimates of N (µ k , σ k )

	      	H 0 : Ni ∼ N (0, 1) authentic image, H 1 : Ni N (0, 1) no conclusion.	(3.58)

well-known normality tests

[START_REF] Wah | Comparisons of various types of normality tests[END_REF] 

(i.e., Anderson-Darling test, one-sample Kolmogorov-Smirnov test, Jarque-Bera test and Lilliefors test) are jointly used to achieve a reliable decision. If all these tests return H 0 , the image is decided to be authentic automatically. Additionally, the authentication can be done by human interpretation thanks to graphical tools such Q-Q plot, probability distribution curves,

Table 3 .

 3 2 presents the results when the authentication is done automatically by the proposed method. Clearly, the performance of the automatic authentication is relatively weak. Indeed, despite working ) 46.02 42.[START_REF] Farid | Blind inverse gamma correction[END_REF] 37.50 45.59 57.63 R (%) 34.67 30.67 22.00 20.67 22.67 F 1 (%) 39.54 35.66 27.73 28.44 32.54 ) 45.33 43.94 45.59 43.42 39.39 R (%) 22.67 19.33 20.67 22.00 17.33 F 1 (%) 30.22 26.85 28.44 29.20 24.07

	Case study 1 (T = 20) 4 8 16 P (%Case study 2 (B = 16) B 2 32 T 10 15 20 25 P (%	30
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: Results of automatic authentication

Table 3 .

 3 ) 63.80 64.15 61.59 62.58 59.73 R (%) 69.33 68.00 62.00 64.67 59.33 F 1 (%) 66.45 66.02 61.79 63.61 59.53 3: Authentication results given by human interpretation see how the human interpretation can help, let us introduce an example as in Figure

	To better

  develop in this chapter an improved algorithm for digital image authentication and forgery localization by jointly use the color filter array pattern identification, demosaicing algorithm estimation, and the local statistical analysis of demosaicing artifacts in spatial domain. A new feature statistic less sensitive to the edges problem is thus built to characterize demosaiced images. By modeling such feature statistics by a single normal mixture model for both tampered and untampered images, four well-known normality tests (i.e., Anderson-Darling test, one-sample Kolmogorov-Smirnov test, Jarque-Bera test and Lilliefors test) are employed to automatically authenticate digital images. Numerical experiments on the four well-known datasets shows that the performance of automatic authentication is relatively low, but can be much more improved thanks to human interpretation of supported graphic tools (i.e., Q-Q plot diagram, probability distribution curves, and localization map). Regarding the forgery localization, we propose a penalized EM algorithm to automatically distinguish between authentic and forged regions of a tampered image without any requirement on comparison thresholds as in most existing localization algorithm. Such a method is proved to be more effective and robuster by numerical examples.
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  are displayed at the bottom. Both of them well match the empirical pmf pY (y). Such a similarity justifies the correctness of the developed uncompressed source image tampered JPEG image parameters Baboon Peppers Airplane QF 3 = 70 QF 3

						= 90
	α	1.0709	8.8860	4.5465	1.5142	1.6037
	β	44.4930 0.0014	0.1002	21.8281	19.2895
	γ	0.9230	0.2296	0.2834	0.6886	0.6657
	q (3)	-	-	-	7	2
	others					

  [START_REF] Bayram | An efficient and robust method for detecting copy-move forgery[END_REF]. The host image

			0.21							CGD			0.21							CGD
		) )								GGD										GGD
	2 , Λ 2 , q (3)	0.14							GND LD			0.14							GND LD
	_	D KL ( p Y (y; Θ Y (y) || p	0.07									D KL ( p	0.07							
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	. Clearly, µ 63 KL and ν 63 KL do not present a

2: µ 63 KL and ν

63 

KL with respect to (QF 1 , QF 2 , QF 3 ) tendency as in the two above case studies, however their small values still retain. This means that the simplified model (4.15) is robust to the quality factors.
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 4 3: F 1 -scores with respect to λ 0

	∆F 1 0.065794 0.025772 0.000000 0.029030 0.023463 0.006602 0.027142 0.001835 0.029812 0.012142	0.9 1 F (3) 0.579900 0.592537 0.549542 0.613549 0.597903 0.522930 0.594604 0.444288 0.557106 0.514438 F (2) 1 0.514106 0.566765 0.549542 0.584519 0.574440 0.516328 0.567462 0.442453 0.527294 0.502296	∆F 1 0.085925 0.049005 0.000000 0.049266 0.045489 0.009334 0.040336 0.002519 0.040640 0.037444	0.85 F (3) 1 0.654013 0.654034 0.586285 0.654005 0.652548 0.588893 0.632046 0.429355 0.593777 0.574376 F (2) 1 0.568088 0.605029 0.586285 0.604739 0.607059 0.579559 0.591710 0.426836 0.553137 0.536932	∆F 1 0.092176 0.056518 0.000044 0.055367 0.050734 0.017616 0.040790 0.006871 0.044895 0.050650	0.8 F (3) 1 0.678600 0.664500 0.595700 0.653800 0.666800 0.615300 0.630000 0.424871 0.593100 0.583500 F (2) 1 0.586424 0.607982 0.595656 0.598433 0.616066 0.597684 0.589210 0.418000 0.548205 0.532850	∆F 1 0.100954 0.062473 0.000000 0.061907 0.057650 0.024836 0.046948 0.010162 0.046946 0.058377	0.75 1 F (3) 0.715726 0.686105 0.618046 0.682158 0.681778 0.649118 0.652046 0.478870 0.614791 0.612307 F (2) 1 0.614772 0.623632 0.618046 0.620251 0.624128 0.624282 0.605098 0.468708 0.567845 0.553930	∆F 1 0.104893 0.066991 0.000016 0.065685 0.061291 0.030964 0.048878 0.022119 0.047986 0.063133	2) 0.622807 0.627009 0.628900 0.623615 0.632309 0.634536 0.612222 0.479681 0.574614 0.554067 1
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	.1. We note that their values are not

Table 5 .

 5 1: Parameters estimated from sub-images Z u , u ∈ {1, . . . , 4}, of original and resampled TIFF images necessary identical because the content of the associated sub-images are not the same. In the same table, we find ςu estimated from Z u , u ∈ {2, 3, 4}. Compared to the true value ς u , the estimated ones are almost similar. Moreover, ςu is near to 1 when Z u are original, and is definitely less than 1 when Z u are interpolated. All these elements confirm the accuracy of (5.96).

		image		original			resampled
		sub-image	u = 2	u = 3	u = 4	u = 2	u = 3	u = 4
	α 0 0.05 0.5 0.95	Λ (r u ) θu δ * (r u ) θu δ * (r u ) θu δ * (r u )	-0.0776 0.0156 H 0 -4.2150 • 10 -5 -1.0739 -4.2279 • 10 -5 -3.1213 • 10 3 -1.3407 • 10 4 -3.2738 • 10 3 -5.9999 -0.1578 2.6756 • 10 3 1.1575 • 10 4 2.8096 • 10 3 1.3371 0.0157 -2.9883 • 10 3 -1.3125 • 10 4 -3.1375 • 10 3 H 0 H 0 H 1 H 1 H 1 H 0 H 0 H 0 H 1 H 1 H 1 -0.0157 -3.4876 -0.0158 -3.2544 • 10 3 -1.3690 • 10 4 -3.4102 • 10 3 H 0 H 0 H 0 H 1 H 1 H 1

Table
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 5 4. As the values of var [ ςu ] are very small, E [ ςu ] approximates well ςu . We can therefore apply the

	114
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 5 4: Sample mean E [ ςu ] and sample variance var [ ςu ] of ςu over 1000 tested resampled TIFF images

•

  Le chapitre 2 donne une vue d'ensemble de la détection passive basée sur la modélisation du processus de traitement des images numériques. Nous commençons par une description des principales étapes du traitement de l'image dans un appareil photographique depuis la scène de l'image jusqu'à l'image finale au format JPEG (Joint Photographic Experts Group). Ensuite, nous présentons et illustrons les techniques courantes de falsification d'images numériques. Enfin, nous classons les méthodes de détection de la falsification d'images en fonction des traces laissées par les différentes étapes de traitement.• Le chapitre 3 se concentre sur l'authentification des images numériques et la localisation de faux en utilisant les artefacts du dématriçage. Après avoir analysé l'évolution des traces de dématriçage dans le processus d'acquisition de l'image, une statistique robuste caractérisant les images numériques dématriçées est d'abord développée sur la base du bruit présent dans le canal vert. Ensuite, un modèle de mélange de lois normales est proposé pour décrire la distribution de probabilité des caractéristiques statistiques pour les images originales et trafiquées. Ainsi, un test de normalité peut être utilisé pour authentifier automatiquement les images falsifiées. Enfin, un algorithme pénalisé est utilisé pour localiser les zones falsifiées. Une étude comparative sur quatre ensembles de données bien connus montre que l'algorithme développé offre de meilleures performances et une meilleure robustesse que les algorithmes existants du même type.• Le chapitre 4 traite de la modélisation statistique des coefficients de la transformée en cosinus discrète des images JPEG authentiques et falsifiées et de son application à la localisation des falsifications.• Le chapitre 5 développe un détecteur efficace pour distinguer une image au format TIFF (Tagged Image File Format) rééchantillonnée d'une image TIFF originale. À cette fin, nous proposons un modèle statistique pour les images TIFF rééchantillonnées en analysant le processus de traitement complet d'une image RAW à une image TIFF rééchantillonnée. Ensuite, nous formulons le problème de détection comme un test de rapport de vraisemblance entre les modèles des images originales et rééchantillonnées. La puissance du test est analytiquement évaluée dans le contexte où tous les paramètres du modèle des images TIFF sont inconnus. De nombreuses expériences numériques décrivent les performances du détecteur. Processus de traitement des images nuémriques L'analyse de la falsification des images numériques nécessite une connaissance de la création de ces images. Cette section fournit une meilleure compréhension sur la formation des images des caméras numériques. Bien que plusieurs appareils puissent être utilisés pour l'imagerie numérique tels qu'un scanner, nous limitons notre étude aux appareils photographiques. L'ensemble du processus de traitement d'une image numérique, de la capture de la lumière jusqu'au stockage de l'image est illustré par la figure C.4. Dans ce qui suit, nous divisons ce processus de traitement en trois parties en fonction

	C.3 Processus de traitement des images nuémriques	131
	White Balancing Short Noise C.3 Demosaicing Gamma Correction PNRU Read-out Noise JPEG Compression Dark Current Image Scene Lens Filters CFA Sensor RAW Image
	JPEG Image	TIFF Image	In-Camera Post-Processing

• Le chapitre 6 décrit les principaux résultats et présente quelques perspectives sur les travaux futurs dans le domaine de la criminalistique des images numériques.

  De nombreux efforts ont été déployés pour construire des modèles statistiques pour les coefficients AC non quantifiés des images naturelles JPEG. Le pionnier est peut-être Pratt, qui a adapté les propriétés statistiques des coefficients AC non quantifiés primaires avec une distribution normale[177, chapitre 10]. Par la suite, divers modèles empiriques ont été proposés et vérifiéspar des tests d'adéquation standard. Par exemple, Reininger et Gibson[START_REF] Reininger | Distributions of the two-dimensional dct coefficients for images[END_REF] se sont appuyés sur des tests de Kolmogorov-Smirnov (KS) pour confirmer que la distribution de Laplace (LD) est plus appropriée que la distrinution normale pour la plupart des images. En se basant sur un test du χ 2 , Müller[START_REF] Müller | Distribution shape of two-dimensional dct coefficients of natural images[END_REF] a affirmé que la distribution normale généralisée (DNG) approxime les statistiques des coefficients AC non quantifiés mieux que la loi normale. En utilisant les mêmes tests d'adéquation, Chang et al. a récemment montrée dans[START_REF] Chang | Image probability distribution based on generalized gamma function[END_REF] que la distribution Gamma généralisée est plus performante que la loi normale et et la DNG. Le principal inconvénient de ces modèles empiriques ci-dessus est l'absence de fondement mathématique, ce qui fait que leur précision et leur robustesse sont remises en question lorsqu'ils sont appliqués à un large éventail d'images. Pour remédier à cet obstacle, Lam et Goodman ont analysé analytiquement analysé dans[START_REF] Edmund | A mathematical analysis of the dct coefficient distributions for images[END_REF] les propriétés statistiques des coefficients AC non quantifiés par rapport à la variation de leur variance. Ils ont prouvé que ces coefficients sont modélisés de manière raisonnable par une loi normale lorsque la variance du bloc est fixe. Cependant, comme cette variance est aléatoire pour une image naturelle JPEG, une distribution normale composée devrait plutôt être utilisée. Cette C.5 Modélisation des coefficients DCT d'images JPEG et localisation des contrefaçons 141 distribution a été étendue dans

  1. Nous proposons un cadre de modélisation généralisé plutôt qu'un modèle concret pour les coefficients DCT des images JPEG falsifiées. Ce cadre permet de dériver récursivement n'importe quel modèle statistique à partir d'une distribution connue des coefficients DCT non quantifiés. De cette façon, Un modèle des coefficients DCT primaires non quantifiés est hérité pour construire un modèle statistique pertinent qui s'adapte le mieux à l'histogramme des coefficients DCT quantifiés. 2. Pour décrire la distribution des coefficients DCT des images JPEG falsifiées, la plupart des travaux existants s'appuient sur les modèles de mélange. Néanmoins, aucune explication claire n'a encore été donnée. Par exemple, le nombre de composantes à prendre en compte dans le modèle est encore une question ouverte. Dans ce chapitre, nous avons prouvé de manière analytique que les histogrammes des DCT quantifiés d'images JPEG falsifiées peuvent être correctement approchés par un modèle de mélange à deux composantes, indépendamment du nombre de zones falsifiées dans les images. La précision d'un tel modèle simplifié est évaluée numériquement par la divergence de Kullback-Leibler sur diverses bases de données d'images. 3. En ce qui concerne la technique de localisation de la falsification, nous nous sommes également appuyés sur l'algorithme Expectation-Maximization (EM), comme dans la plupart des travaux connexes. Cependant, au lieu d'estimer tous les paramètres du modèle en même temps, nous avons proposé d'estimer les paramètres de la distribution des composants, l'ensemble des étapes de quantification et les coefficients de mélange séparément. Le premier est estimé à partir des coefficients DCT non quantifiés d'images JPEG altérées [68] par la méthode d'estimation du maximum de vraisemblance (ML), tandis que la seconde est obtenue en appliquant l'algorithme EM aux coefficients DCT quantifiés associés. Cela permet d'accélérer le processus de localisation de la falsification. C.6 Détecteurs statistiques pour les images TIFF rééchantillonnées Dans les chapitres 3 et 4, nous avons traité les situations de falsification dans lesquelles une ou plusieurs parties d'une image ont été manipulées. Dans ce chapitre, nous considérons que l'image entière est falsifiée avec une intention malveillante. Pour ce type de falsification, le rééchantillonnage (y compris le redimensionnement, la rotation et d'autres opérations linéaires) est une technique courante [61]. Elle est généralement utilisée conjointement avec d'autres techniques de falsification telles que le clonage ou l'épissage afin de créer une aspect visuel parfait. Cependant, quel que soit le degré de sophistication du rééchantillonnage, il laisse toujours deux principales traces similaires à celles laissées par le dématriçage (voir le chapitre 3) : (i) la périodicité du signal rééchantillonné et (ii) l'incohérence de la variance entre le signal original et les signaux interpolés). Comme indiqué dans la sous-section 2.4.2.2 du chapitre 2, la plupart des auteurs se sont concentrés sur les artefacts périodiques pour développer leurs détecteurs de rééchantillonnage. Nous désirons profiter des deux traces ci-dessus pour concevoir des détecteurs statistiques basés sur la théorie des tests d'hypothèse et ainsi concevoir dans ce chapitre un test de rapport de vraisemblance généralisé (LRT) génralisé optimal pour les images TIFF rééchantillonnées. Par rapport à l'état de l'art actuel (par exemple [139, 165, 181, 182]), les principales innovations et contributions de notre travail sont de trois ordres: 1. Au lieu d'utiliser une distribution de probabilité arbitraire, nous analysons le processus de traitement complet d'une image brute à une image TIFF rééchantillonnée afin de trouver un modèle statistique approprié pour les images TIFF rééchantillonnées. 2. Sur la base des modèles développés pour les images TIFF originales et rééchantillonnées, nous exploitons les artefacts périodiques inhérents aux pixels rééchantillonnés pour simplifier les modèles. L'incohérence de la variance du bruit est ensuite utilisée comme mesure principale pour distinguer une image TIFF rééchantillonnée d'une image originale. Il s'agit de la différence fondamentale entre notre travail et la plupart des travaux connexes dont les détecteurs C.7 Conclusion 143 de rééchantillonnage sont basés sur les artefacts périodiques. Il en résulte deux nouveaux détecteurs basés sur le LRT pour la détection du rééchantillonnage. 3. Enfin, nous sommes en mesure de fournir des expressions pour la fonction de puissance des détecteurs proposés et d'en analyser les propriétés.

See e.g., http://www.alteredimagesbdc.org/

In the following, expect explicitly stated to avoid any misunderstanding, digital still camera is simply called camera or digital camera for short.

The expectations differ from each other due to heterogeneity in a natural RAW image.

To simplify, the indices y, cb and cr are omitted here as each component of the transformed TIFF image is processed separately.

Although the nearest integer rounding is represented here, other kinds of rounding like floor or ceiling are possible. In fact, the different choices of rounding operation lead to JPEG dimple artifacts mentioned later in Subsection 2.4.1.4. 

Also known as block-based algorithms.

Datasets here refer to authentic and tampered images in the case of image authentication, and to untampered and tampered pixels in the case of forgery localization

Also called doubly stochastic model in[START_REF] Edmund | A mathematical analysis of the dct coefficient distributions for images[END_REF].

Also called doubly stochastic model in[START_REF] Edmund | A mathematical analysis of the dct coefficient distributions for images[END_REF].

http://r0k.us/graphics/kodak/

The position (2, 1) of 8 × 8 DCT blocks

The Phil Sallee's JPEG toolbox can be downloaded from http://dde.binghamton.edu/download/jpeg_toolbox.zip

Continuous real-valued signal is one that has real intensity at every point in the real axis. The terms continuous should be understood as everywhere defined rather than in the mathematical sense.

For the sake of simplicity, we use single index rather than the couple of row and column indices to specify the location of a pixel in an image.

Although the image pixels are actually no longer independent after the demosaicing (see Chapter 3), we still assume their statistical independence to facilitate the modeling.

This notation is borrowed from the MathWorks' Matlab language.

For the sake of simplification, we assume that the first line or the first row of the unknown TIFF image is the original one.

Other size of image blocks is possible. The choice of 8×8 image blocks is inspired from the fact that JPEG compression works separately on 8 × 8 image blocks.

The magnification rate p can be estimated with high precision by using the Qiao et al.'s method[START_REF] Qiao | Exposing image resampling forgery by using linear parametric model[END_REF].

https://www.math.purdue.edu/∼lucier/PHOTO_CD/.TIFF_IMAGES/
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C.7 Conclusion

Nous avons développé, dans ces travaux de thèse, trois techniques polyvalentes pour détecter les images numériques contrefaites et localiser les différents types d'altération : (ii) les traces de dématriçage [126], (ii) les traces de compression JPEG [127,128], et (iii) les traces de rééchantillonnage [125]. Bien que ces techniques soient différentes, elles fonctionnent selon l'hypothèse commune que les manipulations peuvent altérer certaines propriétés statistiques sous-jacentes des images naturelles. Le même processus en deux étapes a été adopté pour chaque technique de détection : (i) analyser et modéliser les caractéristiques statistiques des images authentiques et falsifiées puis (ii) concevoir un détecteur statistique pour différencier les images authentiques et les images falsifiées en estimant les changements statistiques de leurs modèles.

Statistical Detectors For Resampled TIFF Images Edge or discontinuity are the main factors that cause the high fluctuation from pixel to pixel in a sub-image Z u , u ∈ {1, . . . , p}. To reduce this variation, we only consider the parts of Z u at which no local edge and discontinuity exit. To identify them, we first apply a denoising filter D to decompose the sub-image Z u into an approximate image structure (i.e., denoised sub-image) T u = D (Z u ) and the associated residue R u = Z u -T u . Although several denoising filters such as Gaussian, Wiener, BM3D [START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF] could be applied, we just use the wavelet-based filter introduced in [START_REF] Kivanc Mihcak | Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[END_REF] because it gives the best compromise between the accuracy and computational efficiency. Considering the sub-image Z u as N b image blocks of size 8 × 8 6 , we next divide Z u into 64 vectors of pixels z u,l = z u,l,1 , . . . , z u,l,N b , where l ∈ {1, . . . , 64} denotes the location index in the 8 × 8 grid of image blocks. All the pixels in the same 8 × 8 block L ∈ {1, . . . , N b } is represented by the vector z L u = z u,1,L , . . . , z u,64,L . The same process is applied on T u and R u to respectively obtain the vector t L u = t u,1,L , . . . , t u,64,L and r L u = t u,1,L , . . . , t u,64,L for each 8 × 8 block L ∈ {1, . . . , N b }. A block L is seen as homogeneous if the associated standard deviation σ L u computed from t L u is smaller than a threshold τ u . In [START_REF] Hai Thai | Generalized signal-dependent noise model and parameter estimation for natural images[END_REF], Thai et al. propose to compute the standard deviation σ L u in the DCT domain as σ L u = 1.4826 • MAD DCT t u,1,L , . . . , t u,64,L , (5.36) and take the threshold τ u as the median of absolute deviations of all pixels in the residual sub-image

where DCT (•) stands for the discrete cosine transform and MAD (•) denotes the median of absolute deviations [START_REF] Peter | Alternatives to the median absolute deviation[END_REF]. Consequently, the set of homogeneous blocks of the sub-image Z u is defined by

where σ L u and τ u are given from (5.36) and (5.37) respectively. Once the homogeneous block detection done, it is proposed to use one or multiple of 64 vectors of pixels z u,l , with l ∈ {1, . . . , 64}, for partitioning into I non-overlapping segments S u,i , i ∈ {1, . . . , I } with width ∆ i . Each homogeneous segment S u,i is defined by

(5.39)

The smaller the value of ∆ i , the more the IID property of pixels in homogeneous segments is ensured, but the less the number of pixels is gathered. In practice, the choice of I = 2 8 for 8-bits images and ∆ i = 1 usually gives the best compromise between the quality and the quantity of IID pixels.

As a result, for an unknown TIFF image, we get a set of J u,i IID pixels denoted by z u,i = z u,i,j J u,i j=1

in each segment S u,i , with i ∈ {1, . . . , I }, satisfying

where µ u,i and σ 2 u,i = f µ u,i ; a u , b u , γ are respectively the local expectation and local variance of pixels over S u,i . The parameters a u and b u are expressed by

with ς u the sum of squared interpolation coefficients for the sub-image Z u defined by

(5.42) Associated with z u,i , we can also obtain the IID sets of denoised pixels t u,i = t u,i,j J u,i j=1 and residual noises r u,i = r u,i,j J u,i j=1 . It is easy to derive from (5.39) that t u,i,j , j ∈ 1, . . . , J u,i , are uniformly distributed

(5.43)

Meanwhile, since r u,i,j = z u,i,j -t u,i,j , j ∈ 1, . . . , J u,i , the probability density function (pdf) of r u,i,j can be obtained by

where Φ (•) stands for the standard normal cumulative distribution function (cdf). Moreover, as we are able to choose ∆ i small enough in order that the local expectation µ u,i almost equals n i , the pdf f r u,i,j (r ) becomes f r u,i,j (r )

where φ (•) denotes the standard normal pdf. In other words, with an appropriate choice of ∆ i , the population of residual noises can be well approximated by a zero-mean Gaussian distribution with variance σ 2 u,i r u,i,j ∼ N 0, σ 2 u,i .

(5.46)

Although three kinds of IID datasets and the associated models are available, we decide to use only t u and r u hereafter, because of the incoherence between the discrete integer value of pixels z u,i,j and their continuous Gaussian distribution N µ u,i , σ 2 u,i with µ u,i and σ 2 u,i ∈ R.

LRT-Based Detector and Statistical Performance

Given the IID residual noise data r u r u,i,j , ∀i ∈ {1, . . . , I } and j ∈ 1, . . . , J u,i from an unknown TIFF sub-image Z u , our aim is to design an optimal detector to check if the considered TIFF image is original or resampled in an ideal context where all model parameters are known. We first formulate Statistical Detectors For Resampled TIFF Images H k first. Indeed, under the hypothesis H k , k ∈ {0, 1}, r u,i,j ∼ N 0, σ 2 k,u,i , hence r u,i,j σ k ,u,i ∼ N (0, 1). It follows that [START_REF] Norman L Johnson | Continuous Univariate Distributions[END_REF]Chapter 18] r u,i,j σ k,u,i

where χ 2 1 stands for the chi-square probability distribution with one degree of freedom. Therefore

where G (η, λ) denotes the Gamma probability distribution with pdf

(5.65)

Using (5.61) and (5.64), we arrive at

where

We can therefore compute FΛ(r u ),H k (θ u ) by

with G c u -θ u ; ρ u , ξ u,k derived from (5.58). Substituting (5.62) and (5.67) into (5.68), the result in Proposition 5.1 follows immediately.

We can therefore summary the LRT-based detector δ * (r u ) under the ideal context by the following corollary.

Corollary 5.1. When all the model parameters are known, the optimal detector to distinguish an original TIFF image from a resampled TIFF image is as follows

where u ∈ {2, . . . , p}, Λ (r u ) is given by

and θ u is computed as

5.4 Practical Detector for Resampled TIFF Images

with G (•) and ρ u given from (5.58) and (5.59) respectively.

From (5.52) and (5.69), we can express the power function of δ * (r u ) as

(5.73)

Using (5.57), we arrive at

where θ u is computed following (5.71), G (•) is given by (5.58), and ρ u is obtained by (5.59). We remark from (5.74) that β (δ * (r u )) depends only on ς u and ρ u of the tested sub-image Z u , u = 2, . . . , p.

Proposition 5.2. The power function defined by (5.74) is non-decreasing in ρ u and non-increasing in ς u .

Proof. Using (5.58), we express (5.74) in the form

(5.75)

Applying the Corollary 3.1 in [START_REF] Furman | A monotonicity property of the composition of regularized and inverted-regularized gamma functions with applications[END_REF] to Q (ς u , ρ u ), we find directly that β (δ * (r u )) is non-decreasing in ρ u . Taking now the derivative of Q (ς u , ρ u ) with respect to ς u , we obtain

Practical Detector for Resampled TIFF Images

Despite its theoretical interest, the ideal LRT-based detector designed in the previous section is very constrained in practical applications because the model parameters are usually unknown. This section aims to relax these constraints to facilitate the applications in practice by considering that the magnification rate p is the only known parameter 7 . This leads to the decision between two composite hypotheses (5.47) which is commonly treated by an optimal test under large conditions, namely generalized likelihood ratio test (GLRT) [START_REF] Zeitouni | When is the generalized likelihood ratio test optimal[END_REF]. The concept of GLRT is very similar to one of LRT, but the unknown parameters in the expression (5.70) of Λ (r u ) are replaced by their ML estimates. Therefore, we have to Statistical Detectors For Resampled TIFF Images with F -1

in which G (•) is the Gamma cdf (5.58), and ρ u is given from (5.59).

Similar to the LRT-based detector, the power function of the GLRT-based detector δ * (r u ) is expressed by

where θu is computed following (5.99), G (•) is the Gamma cdf (5.58), and ρ u is obtained by (5.59). The power (5.101) is a non-decreasing function of ρ u and a non-increasing function of ςu .

Numerical Experiments

The aim of this section is twofold: (i) numerical validation and illustration of the proposed GLRTbased detector, and (ii) numerical assessment of the detector performance under various scenarios of interpolation kernels and sizes of resampled TIFF images.

Validation and Illustration

The validation and illustration rely on the Dresden images dataset [START_REF] Gloe | The dresden image database for benchmarking digital image forensics[END_REF]. Firstly, we convert the RAW images of the dataset to 8-bits TIFF color images using https://image.online-convert.com/convert-totiff. Such images are considered as original. Next, we resample them following the horizontal direction with resampling factor ξ = p q using some well-known interpolation methods (e.g., linear, cubic convolution, nearest-neighbor, spline, etc.), and save again in TIFF format to obtain the resampled TIFF images. Among the three color channels of TIFF images, we only consider the green one because the correlation among pixels generated by the demosaicing is smaller than in the red and blue channels. Consequently, the denoised pixels and residual noises in sub-images of the green channel are used as input of our experiments. As an illustration, an original TIFF image with size 3892 × 2608 issued by Nikon D200 camera is considered and horizontally resampled at rate ξ = p q = 4 3 using the cubic convolution interpolation [START_REF] Keys | Cubic convolution interpolation for digital image processing[END_REF] (see also Table 5.3 and Figure 5.9 for the expression and the shape of the cubic convolution kernel). Figure 5.6 shows four sub-images horizontally extracted from the green channel of the original and resampled TIFF images. These sub-images result in the illustrations in the sequel of this subsection.

We would like to verify the uniform distribution (5.43) of t u,i,j and the Gaussian distribution (5.46) of r u,i,j . The process described in Subsection 5.3.2 with I = 2 8 = 256 and ∆ i = 1 is first used to extract t u,i,j and r u,i,j from the above sub-images. Next, on the one hand, we apply the kernel density estimation (KDE) method [START_REF] Zdravko I Botev | Kernel density estimation via diffusion[END_REF] to find the empirical pdf of t u,i,j and r u,i,j . On the other hand, we use the ML method to estimate the pdfs under the assumption that t u,i,j and r u,i,j are uniformly and Gaussian Statistical Detectors For Resampled TIFF Images variances are the same for all sub-images σ 2 1,i = σ 2 2,i = σ 2 3,i = σ 2 4,i when the TIFF image is original (see Figure 5.7a). Meanwhile, they are well distinct for the resampled TIFF image (see Figure 5.7b): the one of interpolated sub-images is actually smaller than the one of original sub-image σ 2 u,i < σ 2 1,i , ∀u = 2, 3, 4. All the observations confirm the pertinence of our conjecture on t u,i,j and r u,i,j . Now, we deal with the relevance of the choice of sub-images for model parameters estimation and for the hypothesis testing. In fact, we have chosen the original sub-image Z 1 as input of the estimation for image parameters µ 1 and camera parameters (a, b, γ ), and the interpolated sub-images Z u , u ∈ {2, . . . p} to estimate the image parameters µ u , the sum of squared interpolation coefficients ς u and to serve the (G)LRT. The logic of this choice for a certain homogeneous segment can be justified by Figure 5.7. Indeed, the same pdf curves of r u,i,j in Figure 5.7a imply that the camera parameters (a, b, γ ) are unchanged for all sub-images of a given TIFF image. So, a simplest way to find their estimates â, b, γ is to use Z 1 as it is independent of interpolation coefficients. Once obtained, we can use them as parameters of models of interpolated sub-images Z u , u ∈ {2, 3, 4}. Similarly, the distinction among the pdf curves of r u,i,j when u = 1 and u 1 in Figure 5.7b confirms why Z u , u ∈ {2, . . . p}, are served to estimate ς u and to design the (G)LRT-based detector. Especially, we find that the pdf curves for u = 2 and u = 4 almost coincide because they share the same value of ς u = 0.8088 (see also Table 5.1). The above logic remains true when we extend to the overall sub-images (i.e., for all homogeneous segments). In fact, looking at the scatter-plot of μu,i , σ 2

for each sub-images Z u , u ∈ {1, . . . 4} of both the considered original and resampled TIFF images in Figure 5.6, we exactly find the same phenomena as above. This strengthens the relevance in the choice of sub-images.

To show the efficiency of the proposed ML estimators (5.84), we evaluate how good the fitted Conclusions and Perspectives distributions. For independent identically distributed pixels, the variance of resampled noise is smaller proportionally to the sum of squared interpolation coefficients. These models allows us to design (G)LRT-based detectors for distinguishing between a resampled and an original TIFF images. Their performances are analytically evaluated.

We have carried out various numerical experiments on several well-known benchmark datasets to assess both the performances and robustness of the proposed detection techniques. We believe that this doctoral thesis provides a significant complement to the field of statistical image modeling and digital image forgery detection.

Perspectives

The thesis highlights three potential interests for future researches according to the three developed detection techniques.

Even if the demosaicing traces-based technique developed in Chapter 3 yields very encouraging

results, we find that the automatic authentication of digital images is still at low performance (see Table 3.2), and that the forgery localization is limited to uncompressed or less-compressed images (see Figures 3.8 and 3.9). The focus of our near future work is to further improve these two points. Building a new feature statistic taking into account the periodicity of demosaicing artifacts in DCT domain as in [START_REF] Li | A robust approach to detect digital forgeries by exploring correlation patterns[END_REF] seems to be a key step for this work. Another perspective is to extend the developed methods to the videos forensics. The work of Singh and Aggarwal in [START_REF] Raahat | Detection and localization of copy-paste forgeries in digital videos[END_REF] could be a good orientation.

2. Despite very encouraging results returned by the modeling framework of JPEG DCT coefficients developed in Chapter 4, several improvements can be made. Firstly, the truncation errors should not be ignored from the statistical modeling of JPEG compression cycle even its small probability. Some interesting ideas for the consideration of truncation errors can be found in [START_REF] Wang | Detecting double jpeg compressed color images with the same quantization matrix in spherical coordinates[END_REF]. Secondly, as in [START_REF] Xue | Jpeg image tampering localization based on normalized gray level co-occurrence matrix[END_REF], the correlation among adjacent DCT blocks can be taken into account in modeling the distribution of AC DCT coefficients. For further perspectives, we can think about other consequences of manipulations on JPEG images (e.g., non-aligned recompression [START_REF] Bianchi | Image forgery localization via block-grained analysis of jpeg artifacts[END_REF]). We can also extend the modeling approach used in Chapter 4 to model tampered MPEG videos [START_REF] Wang | Exposing digital forgeries in video by detecting double mpeg compression[END_REF].

3. Chapter 5 has focused on one-dimensional resampling. To deal with more practical digital image forgery, we should extend the proposed detection technique to two-dimensional resampling [START_REF] Qiao | Statistical modelbased detector via texture weight map: Application in re-sampling authentication[END_REF][START_REF] Qiao | Exposing image resampling forgery by using linear parametric model[END_REF]. Besides, the same technique could be applied to regions of images to detect the local resampling [START_REF] Peng | Revealing traces of image resampling and resampling antiforensics[END_REF][START_REF] Alin | Exposing digital forgeries by detecting traces of resampling[END_REF].

Appendix of Chapter 3

This appendix provides the detailed formalization of the penalized EM algorithm used in Chapter 3. Indeed, given the parameters

2 , σ (t) at the t-th iteration, the EM algorithm at the (t + 1)-st iteration behaves at follows.

E-step of the EM algorithm

Using Bayes theorem, the posterior distribution of the latent variables is expressed by

Taking the expectation of Z ik under f (Z | N), we obtain [21, page 443]

γ ik represents the responsibility of the population k for the data point N i . This gives an idea for population clustering. The expectation of pl c (γ , µ 1 , µ 2 , σ ) under the posterior distribution of the latent variables is thus

M-step of the EM algorithm

We look for Θ (t+1) that maximizes Q Θ; Θ (t) . Since that γ , µ 1 , µ 2 and σ being in separate linear terms, they may all be maximized independently.

Appendix of Chapter 3

• Considering only the terms of Q Θ; Θ (t) in associated with γ , we have

Taking the derivation of д (γ ) according to γ and setting

Consequently, γ (t+1) can be updated by

• Considering only the terms of Q Θ; Θ (t) in associated with µ k , k ∈ {1, 2}, we have

Taking the derivation of s (µ k ) according to µ k and setting ds(µ k )

Consequently, µ

, k ∈ {1, 2}, can be updated by

, and considering only the terms of Q Θ; Θ (t) in associated with σ , we have

and taking the derivation of r (σ ) according to σ , we have dr (σ ) dσ = -q + 2a q σ + S (t+1) + 2a q s 2 q σ 3 . (A.12)

Setting dr (σ ) dσ = 0 leads to S (t+1) + 2a q s 2 q σ 2 = q + 2a q . (A.13)

Consequently, σ (t+1) can be updated by

The above developments give the key steps of the Algorithm 3.1.

Appendix of Chapter 4

This appendix recalls the statistical law and parameters estimation of the models for primary unquantized AC DCT coefficients used in Chapter 4. Although four models are considered, we just mention here the GGD and CND, because the LD and GND can be derived from GGD as GND (β, γ ) ≡ GGD 1 γ , β, γ and LD (β) ≡ GGD (1, β, 1).

Generalized Gamma Distribution

Let consider X (1) ∼ GGD (α, β, γ ) with (α, β, γ ) ∈ R 3 * ,+ , then the pdf and cdf of X (1) at x (1) ∈ R are respectively f X (1) x (1) ; α, β, γ = γ 2β Γ (α)

x (1) 

where 1 {•} denotes the indicator function which equals 1 if the argument is true and 0 otherwise,

dt are respectively the complete and upper incomplete

N be the set of unquantized AC DCT coefficients recovered from a JPEG image (see Figure 4.2), the ML estimate of γ is the solution of the equation

where ψ (α) = Γ ′ (α) Γ(α) denotes the digamma function and ϑ (γ ) is defined by

x (1) n γ ln x (1) n - 

Compound Normal Distribution

Let X (1) ∼ CND (η, ρ) with (η, ρ) ∈ R 2 * ,+ , then the pdf of X (1) 

where K µ (•) denotes the modified Bessel function of the second kind with order µ ≥ -1 2 [117, Appendix, page 315]

The cdf of X (1) at x (1) ∈ R is

where G (x) is defined by 

The ML estimates η and ρ are the simultaneous solutions of the following equations

and 

in which the integration path L separates the poles of the factors Γ (b l -s) from those of the factors Γ (1 -a l + s), m and n are integers such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, and none of a k -b j is a positive integer when 0 ≤ k ≤ n and 1 ≤ j ≤ m.

Appendix C

French Summary Il importe peu que la manipulation de l'image ne serve qu'à des objectifs sains comme le diagnostic médical, la satire et l'embellissement. Malheureusement, les images manipulées ont été utilisées à des fins malveillantes liées à tous les aspects de la vie humaine tels que la politique, l'écologie, la race et le sexe. En 1997, 58 touristes innocents ont été tués lors d'un attentat terroriste au temple d'Hatchepsout à Louxor en Égypte (voir la figure C.1a). Le journal suisse Blick a rapporté l'événement en modifiant la couleur de l'eau pour qu'elle ressemble à du sang s'écoulant du temple (voir la figure C.1b), afin que le public puisse comprendre la brutalité de l'attaque. Le 09 juillet 2008, les journaux "Palm Beach French Summary