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Abstract

In today’s digital age, the trustworthiness of image content is of great concern due to the dissem-
ination of easy-to-use and low-cost image editing tools. Forged images can be used to manipulate
public opinion during elections, commit fraud, discredit or blackmail people. Faced with such a seri-
ous situation, we develop in this doctoral project three versatile techniques based on (i) demosaicing
traces (ii) JPEG-compression traces, and (iii) resampling traces for detecting forged digital images and
localizing various types of tampering therein. Although these techniques are different, they work
under the common assumption that manipulations may alter some underlying statistical properties
of natural images. A two-steps detection process has been adopted for every detection technique: (i)
analyze and model statistical features of both the authentic and forged images associated with specific
in-camera and/or post-camera traces, then (ii) design a statistical detector to differentiate between the
authentic and forged images by estimating statistical changes in their models. Various numerical ex-
periments on several well-known benchmark datasets highlight the performances and robustness of
the proposed detection techniques.

Résumé

À l’ère du numérique, la crédibilité du contenu des images est une préoccupationmajeure en raison
de la popularité des outils d’édition faciles à utiliser et peu coûteux. Les images falsifiées peuvent être
utilisées pour manipuler l’opinion publique lors des élections, commettre des fraudes et discréditer ou
faire chanter des personnes. Face à cette situation préoccupante, nous développons dans cette thèse
trois techniques efficaces basées sur (i) les traces de dématriçage (ii) les traces de compression JPEG, et
(iii) les traces de rééchantillonnage pour détecter les images falsifiées et localiser les différents types de
falsification. Bien que ces techniques soient différentes, elles fonctionnent sous l’hypothèse commune
que les manipulations peuvent altérer certaines propriétés statistiques sous-jacentes des images na-
turelles. Un processus de détection en deux étapes a été adopté pour chaque technique de détection :
(i) analyser et modéliser les caractéristiques statistiques des images authentiques et falsifiées, puis (ii)
concevoir un détecteur statistique pour différencier les images falsifiées des images authentiques en
estimant les changements dans leurs modèles. Diverses expérimentations numériques sur plusieurs
ensembles de données de référence bien connus mettent en évidence la qualité des performances et la
robustesse des techniques de détection proposées.



Contents

Contents v

1 General Introduction 1
1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview on Digital Image Processing Pipeline and Passive Forgery Detection 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Image Processing Pipeline in Digital Still Cameras . . . . . . . . . . . . . . . . . . . . 7

2.2.1 From Image Scene to RAW Image . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 From RAW Image to TIFF Image . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 From TIFF Image to JPEG Image . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Techniques of Digital Image Forgery . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Passive Detection of Digital Image Forgery . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 In-Camera-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Post-Camera-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Digital Image Authentication and Forgery Localization Using Demosaicing Artifacts 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Statistical Analysis of Demosaicing Traces . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Demosaicing Traces at Pixel Level . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Demosaicing Artifacts in TIFF Images . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Demosaicing Artifacts in JPEG Images . . . . . . . . . . . . . . . . . . . . . . 45



vi Contents

3.3 Feature Statistics for Demosaiced Images . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 CFA Pattern and Interpolation Kernel . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Local Weighted Variance of Residues . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Definition and Efficiency of Feature Statistics . . . . . . . . . . . . . . . . . . 48

3.4 Image Authentication and Forgery Localization . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Statistical Model of Feature Statistic . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Estimation of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3 Image Authentication and Forgery Localization . . . . . . . . . . . . . . . . . 54

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.1 Evaluation Criteria and Benchmark Algorithms . . . . . . . . . . . . . . . . . 57
3.5.2 Authentication Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Localization Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Framework of JPEG DCT Coefficients Modeling and Forgery Localization 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Recurrent Modeling Framework For JPEG DCT Coefficients . . . . . . . . . . . . . . 68
4.2.1 Authentic JPEG Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Tampered JPEG Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Framework Validation and Accuracy Assessment . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Dataset Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Framework Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Accuracy Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Forgery Localization in Tampered JPEG Images . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Forgery Localization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Statistical Detectors For Resampled TIFF Images 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Statistical Modeling of Resampled TIFF Images . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Mathematical Analysis of Resampled Signals . . . . . . . . . . . . . . . . . . 88
5.2.2 Statistical Model for Resampled TIFF Pixels . . . . . . . . . . . . . . . . . . . 92

5.3 Ideal Detector for Resampled TIFF Images . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Analysis of TIFF Pixels Models . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 IID Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 LRT-Based Detector and Statistical Performance . . . . . . . . . . . . . . . . 99

5.4 Practical Detector for Resampled TIFF Images . . . . . . . . . . . . . . . . . . . . . . 103



Contents vii

5.4.1 Estimation of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.2 GLRT-Based Detector and Performance . . . . . . . . . . . . . . . . . . . . . 107

5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.1 Validation and Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.2 Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Conclusions and Perspectives 117
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Appendix of Chapter 3 119

B Appendix of Chapter 4 123

C French Summary 127
C.1 Cadre de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.2 Plan de le thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
C.3 Processus de traitement des images nuémriques . . . . . . . . . . . . . . . . . . . . . 131

C.3.1 De la scène à l’image brute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.3.2 De l’image brute à l’image TIFF . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.3.3 De l’image TIFF à l’image JPEG . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.4 Localisation des falsifications à partir du dématriçage . . . . . . . . . . . . . . . . . . 136
C.5 Modélisation des coefficients DCT d’images JPEG et localisation des contrefaçons . . 140
C.6 Détecteurs statistiques pour les images TIFF rééchantillonnées . . . . . . . . . . . . . 142
C.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

References 145



Chapter 1

General Introduction

1.1 General Context

“One picture is worth more than ten thousand words”. The forcefulness of this old adage has been kept
itself over the centuries until today. At the beginning, the painting was used to describe real-world
happenings instead of thousand words. This role was assumed by the photography since the invention
of still image cameras in the 19-th century. In this epoch, “seeing is believing” because images are
captured by analog acquisition devices and stored on photograph films. The manipulation of images
over such physical supports is extremely hard, time-consuming, costly and requires special skills of
professionals through dark room tricks. Therefore, an image printed in a newspaper was commonly
accepted as a certification of the truthfulness of the news. At the beginning of the 21-st century, the
digital revolution has radically changed not only the way how an image is acquired, through digital
devices such as digital cameras, smartphones, and tablets, etc., but also the way in which image con-
tents are stored and transmitted. Laptops, USB keys, memory cards, compact discs are few examples
of personal devices capable of storing digital images, while social networks (e.g., Facebook, Instagram,
Twitter), cloud (e.g., Google Drive, Microsoft OneDrive, iCloud), websites (e.g., Flickr, Photobucket,
Google Photos), are powerful services to store and share digital contents everywhere and anytime,
through digital devices connected to the Internet. Thanks to such daily tools, almost everybody in
our modern life is able to record, store and share a large number of digital images. Additionally, the
dissemination of low-cost and powerful image editing software (e.g., Adobe Photoshop, GIMP, Krita,
Pixlr) have made the digital image alteration easier than ever before. This implies that images are not
anymore something unchangeable, but rather like a living organism that evolves over time by means
of various operations such as color modification, geometrical transformation, detail cancellation, con-
tent composition, etc. As a consequence, we have socially come to understand events in a far more
visual way: “there is more to an image than meets the eye” [192], so that apparently “seeing is no longer
believing”.

It does not matter if the image manipulation is merely for upright aims such as medical diagnosis,
satire, beautifying, etc. Unfortunately, manipulated images have been abused for various malicious
purposes related to all aspects of human life such as politics, ecology, race, gender, etc. [60]. In 1997,

https://www.facebook.com/
https://www.instagram.com/
https://twitter.com/
https://drive.google.com/
https://www.microsoft.com/microsoft-365/onedrive
https://www.icloud.com/
https://www.flickr.com/
https://app.photobucket.com/explore
https://photos.google.com/
https://www.adobe.com/products/photoshop.html
https://www.gimp.org/
https://krita.org/
https://pixlr.com/
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58 innocent tourists were killed in a terrorist attack at the temple of Hatshepsut in Luxor Egypt (see
Figure 1.1a). The Swiss tabloid Blick reported this event by modifying the color of the flooding water

(a) Original image (b) Forged image

Figure 1.1: Event of terrorist attack at the temple of Hatshepsut in Luxor Egypt extracted from [39]

to appear as blood flowing from the temple (see Figure 1.1b), so that the public could understand the
brutality of the attack. On July 09, 2008, numerous American news outlets, including the Los Angeles
Times, the Palm Beach Post, and the Chicago Tribune, published a photo describing the Iranian missile
test on their front-pages (see Figure 1.2a). After the publication, it was revealed that the secondmissile

(a) Photo appeared on newspapers (b) Forged photo with duplication (c) Genuine photo

Figure 1.2: Event of Iranian missile test

from the right was cloned in order to conceal a missile on the ground that did not fire (see Figure 1.2b).
The genuine photo (see Figure 1.2c) appeared a day later further confirmed that the published picture
was actually synthetic. In June 2010, the cover of The Economist showed President Barack Obama
alone on a Louisiana beach examining the aftermath of the BP oil spill in the Gulf of Mexico (see
Figure 1.3a). Under the headline “Obama v BP”, the president appears to be contemplating how to
handle the political and ecological disaster. However, in July 2010, the New York Times Media Decoder
blog revealed that the president was not alone (see Figure 1.3b). Some aforementioned events, among
others1, imply that forged images have became a big issue for society. In fact, they are appearing
more and more frequently and sophisticatedly along with the growing advancement of new classes
of artificial intelligence techniques (e.g., deepfakes [209, 212]) for which no specific technical know-
how is required from the users. Such a serious situation leads to the need of efficient strategies and
methods that allow to automatically verify the authenticity of digital images.

1See e.g., http://www.alteredimagesbdc.org/

http://www.alteredimagesbdc.org/
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(a) Forged image (b) Original image

Figure 1.3: Event of President Barack Obama alone on a Louisiana beach

1.2 Research Framework

Digital image forensics have emerged as an indispensable research field to restore some trust to digital
images. Generally, it is dedicated to seek answers for two major questions [171]:

1. where does the digital image come from?

2. is the digital image still depicting the captured original scene?

The first question is closely related to the problem of image origin identification with the specification
of camera model or branch information and the determination of imaging mechanism as main aims
[168]. The second question involves the problem of image content integrity where determining if
an image is forged, which manipulation has been performed on the image, or which region of the
image has been altered are fundamental tasks [114]. Despite their different interests, both the image
origin identification and content integrity havemutual effects. Indeed, the knowledge about the device
model or brand information can help forensic analysts know more about characteristics of acquisition
devices, which leads to a potential improvement of detecting the underlying forgeries that could be
performed in the inspected image. On the contrary, removing tampered area from a forged image
allows to significantly narrow down the search range for the image origin. In their recent review [168],
Pasquini et al. showed that the prevalence of existing ditigal image forensicworks aremostly dedicated
to the analysis of the acquisition source, either targeting the identification of the specific device or the
camera mode. The contributions to forged image detection are however somewhat limited in contrast
to their high spread on social media platforms. To meet this practical need, the present thesis focuses
more especially on the development of methods for the image forgery detection and localization.

Actually, the literature of the forgery detection and localization has been addressed following two
approaches [65]: (i) active, and (ii) passive. By active approach, some preset authentic information
such as signature [70] and watermark [172] embedded in digital images is required to examine their
truthfulness. However, such an embedded information is also the limitation of the approach, because
it makes the production cost of digital cameras higher while its credibility remains questionable [208].
To remedy this drawback, the passive approach proposes to exploit intrinsic traces in the image acqui-
sition or some specific traces left by forgeries to distinguish between tampered and natural images.
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This approach is obviously suitable for most practical situations where only the suspect image is
available in hand of forensic analysts and no authentic information is priorly known. So, it is not sur-
prising that the passive approach has been increasingly developed in the past decade [20, 136]. More
precisely, we can further classify the passive approach for forgery detection and localization into two
main streams [212]: (i) data-driven, and (ii) statistical model-based. The first stream recommends to
extract characteristic features from suspect images, and apply machine learning techniques to auto-
matically learn discriminant features [12]. By taking account of various features in the learning, this
approach allows to design universal tools which can deal with different kinds of malicious attacks
[44]. Evidently, its performance and robustness depend heavily on the quality and the quantity of
the considered data due to the data-driven nature. In the current state-of-the-art, this obstacle can
be solved in part thanks to the deep learning, especially for the problems of cover source mismatch
[170] and of dataset mismatch [161]. As an alternative, the second stream exploits incoherences in the
statistical modeling of digital images to detect malicious attacks (see e.g., [63, 77]). It does not require
a large amount of data as the first approach, but a deeper knowledge about the processing pipeline of
digital cameras and malicious attacks. Very often, each developed model serves a specific goal, and
hence is more adapted to dedicated forensic tools. The statistical modeling is also the main approach
used in this doctoral project, however we target at versatile detectors which are applicable to different
kinds of forgery techniques rather than to a certain specific manipulation.

1.3 Thesis Outline

The overall structure of the thesis is organized as follows.

• Chapter 1 introduces the general context of the research, the problem to be dealt with, as well as
the employed methodology. The thesis outline and the author’s publications are also presented
in detail.

• Chapter 2 gives an overview on passive forgery detection based on the modeling of digital image
processing pipeline. We start with an description of main image processing steps in a typical
digital camera from image scene to Joint Photographic Experts Group (JPEG) image. Next, we
introduce and illustrate common techniques of digital image forgery. Finally, we classify meth-
ods for image forgery detection following traces left by in-camera and post-camera processing
steps.

• Chapter 3 focuses on the digital image authentication and forgery localization using demo-
saicing artifacts. The aim is to build an algorithm allowing a bridge between the color filter
array pattern and demosaicing algorithm estimation, and the statistical analysis of demosaicing
artifacts in spatial domain to improve the authentication and localization performance. After
analyzing the evolution of demosaicing traces in camera acquisition pipeline, a robust feature
statistic characterizing demosaiced digital images is first developed on the basis of the noise
residue of green channel. Such a feature statistic is less sensitive to the edges problem because
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only the smooth region of green channel is used in the development. Next, a single normal
mixture model is proposed to describe the probability distribution of feature statistics for both
original and tampered images. Therefore, normality tests can be used to authenticate auto-
matically digital images. The authentication performance can be further improved by human
interpretation of supported graphic tools. Finally, a penalized expectation-maximization (EM)
algorithm is used to localize forged areas in tampered images. Many comparative studies on
four well-known datasets show that the developed algorithm yields better performance and
robustness than existing forensics algorithms of the same kind.

• Chapter 4 deals with the statistical modeling for discrete cosine transform (DCT) coefficients of
both the authentic and tampered JPEG images and their application in forgery localization. In
fact, various manipulations on JPEG images introduce single and multiple compression artifacts
for forged and unmodified areas respectively. Based on the statistical analysis of compression
cycle for authentic JPEG images and on the finite mixture paradigm, we propose a modeling
framework for DCT coefficients of such tampered JPEG images. Its accuracy is numerically
assessed using the Kullback-Leibler divergence on the basis of a dataset built from six well-
known image databases. To illustrate the framework utility, an application in image forgery
localization is proposed. By formulating the localization as a clustering problem, we use the
plug-in Bayes rule combined with a simple EM algorithm to distinguish between forged and
unmodified areas. Various experiments show that the proposed modeling framework yields
high localization performances in terms of F1-score.

• Chapter 5 develops an efficient detector to distinguish between a resampled Tagged Image File
Format (TIFF) image from an original TIFF image. To this end, we first propose a statistical
model for resampled TIFF images by analyzing the complete processing process from a RAW
image to a resampled TIFF image. Next, we formulate the detection problem as a likelihood
ratio test between the models of original and re- sampled TIFF images. The test power is analyt-
ically evaluated in the context that all model parameters of original TIFF images are unknown.
Numerous numerical experiments justify the performances of the detector.

• Chapter 6 concludes the major research finding and presents some perspectives of future works
opened in the field of digital image forensics.

• Appendix A gives the formalization of the penalized EM algorithm used in Chapter 3. Appendix
B represents the generalized Gamma distribution and the compound normal distribution used
in Chapter 4, as well as their parameters estimation. A short French summary of this thesis is
also provided in Appendix C.

1.4 Publications

Most of the material presented in this thesis appears in the following publications that represent
original work, of which the author has been the main contributor.
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• Le Nhan, and Florent Retraint. An improved algorithm for digital image authentication and
forgery localization using demosaicing artifacts. IEEE Access 7: 125038-125053, 2019.

Journal Articles Under Review

• Le Nhan, and Florent Retraint. A Recurrent Framework for Statistical Modeling of JPEG AC
DCT Coefficients. Submitted to IEEE Access, 2021.

• Le Nhan, and Florent Retraint. Statistical Modeling Framework For AC DCT Coefficients of
Tampered JPEG Images and Application in Forgery Localization. Submitted to IEEE Transactions
on Information Forensics and Security, 2021.

Conference Paper

• Le Nhan, and Florent Retraint. Statistical Detector of Resampled TIFF Images. In 2018 IEEE
International Symposium on Signal Processing and Information Technology, pages 398-401, 2018.



Chapter 2

Overview on Digital Image Processing
Pipeline and Passive Forgery Detection

2.1 Introduction

As stated in Chapter 1, this thesis reliesmainly on the statistical model-based approach to detect forged
digital images and to localize their tampered regions. Such an approach requires a good knowledge
about the image processing pipeline of a digital camera, as well as about the forgery techniques. This
is why this chapter starts with an introduction of digital camera image formation in Section 2.2. For an
easier comprehension, we divide the image formation pipeline into three parts according to possible
image storage formats generated by the camera. For each part, we analyze the main processing steps
therein, and present the key statistical models of the output image. Next, we describe and illustrate
four commonly used techniques of digital image forgery in Section 2.3: (i) cloning, (ii) splicing, (iii) in-
painting, and (iv) resampling. Subsequently, we provide in Section 2.4 an overview of various passive
methods for image forgery detection exploiting inconsistencies existing in the digital image processing
pipeline. We category these methods following the traces left by in-camera and post-camera process-
ing steps. Finally, Section 2.5 concludes the chapter and specifies more concretely the problems to be
dealt with in this thesis.

2.2 Image Processing Pipeline in Digital Still Cameras

Forgery analysis of digital images requires a knowledge about the creation of those images. This sec-
tion provides increased insight into digital camera image formation. Although several devices can be
used for digital imaging such as scanner, graphic tablet, etc., we just limit our study to digital still cam-
eras1 because they have gained significant popularity in recent years. The whole processing pipeline
of such a camera from light capturing to image storage is illustrated by Figure 2.1. In the following
review, we divide this processing pipeline into three parts according to possible image storage formats

1In the following, expect explicitly stated to avoid any misunderstanding, digital still camera is simply called camera
or digital camera for short.
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Figure 2.1: Illustration of a typical acquisition pipeline in a digital still camera

generated by the camera: (i) from image scene to RAW image, (ii) from RAW image to TIFF image,
and (iii) from TIFF image to JPEG image. For each part, we analyze the main processing steps therein,
and introduce the key statistical models of the output image.

2.2.1 From Image Scene to RAW Image

Digital still cameras imitate the human visual system. They consists of a lens module, sampling filters,
color filter array (CFA), imaging sensor, and a digital image processor [1]. The lens module is essen-
tially composed of a lens and the mechanisms to control exposure, focusing, and image stabilization
to collect and pilot the light coming from the real scene. After the light enters the camera via the lens,
it goes through a combination of filters that includes at least the infra-red and anti-aliasing filters to
ensure maximum visible quality. The light is next focused onto imaging sensor, an array of rows and
columns of light-sensing elements called pixels. Two common types of an image sensor are charge-
coupled device (CCD) and complimentary metal-oxide semiconductor (CMOS). Each light sensing
element of sensor array integrates the incident light over the whole spectrum and obtains an electric
signal representation of the scenery. Since each imaging sensor element is essentially monochromatic,
an easy way to capture color images is to separate sensor chips for each color component. However,
such a low-tech and costly solution does not allow a competitive advantage for enterprises. This is
why most digital camera devices in the market only use a single CCD or CMOS sensor chip coupled
with a CFA instead [142]. The CFA arranges pixels in a pattern so that each element has a different
spectral filter. Hence, each element only senses one band of wavelength, and the RAW image collected
from the imaging sensor is a mosaic of different colors and varying intensity values.

Among many CFA patterns with different primary colors (see e.g., [8]), the one designed by Bayer
[14] is most used in commercial digital cameras. It measures the green component on a quincunx grid,
the red and blue components on rectangular grids. The higher sampling rate for the green channel
allows a better capture of the light luminance, and therefore provides better image quality [84]. The
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Bayer pattern has itself four possible configurations as depicted in Figure 2.2. We seek now a math-
ematical representation V of a RAW image captured along with a configuration B of Bayer pattern.
As illustrated in Figure 2.3, the RAW image V is of single-channel because the Bayer configuration
B allows each pixel to record only one color channel c among the red (r ), the green (д) or the blue
(b). Therefore, we can express V as a two-dimensional matrix of size M × N whose pixel value at the
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location (m,n) of the color component Vc is given by

vcm,n =


vm,n if Bm,n = c,

0 otherwise,
(2.1)

where 1 ≤ m ≤ M , 1 ≤ n ≤ N , and Bm,n denotes the location (m,n) of the Bayer configuration.
The RAW image acquisition process is disturbed by several unavoidable noise sources whose shot

noise, dark current noise, read-out noise and photo-response non-uniformity (PRNU) noise are dom-
inant ones (see Figure 2.1). The shot noise, also known as Poisson-distributed noise, has its origin in
the quantum nature of light. The dark current noise, also referred as fixed pattern noise, is generated
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by the thermal energy in the light absence. The read-out noise encompasses all electronic noises in-
volved in the acquisition chain. Finally, the PRNU noise accounts for differences of pixels response to
the incident light due to the imperfections during the sensor manufacturing process (e.g., the hetero-
geneity of silicon wafers). Considering these noise sources, we can further express the pixel vm,n in
(2.1) as

vm,n = µvm,n + ϵvm,n , (2.2)

where µvm,n denotes the expectation of vm,n in the absence of noise, and ϵvm,n stands for all interfered
noise sources. While the expectation µvm,n is merely seen as deterministic signal and not be modeled2,
the noise ϵvm,n should be carefully studied. Indeed, the noise models for RAW images can categorized
into two classes in the literature: (i) signal-independent, and (ii) signal-dependent. If the former assumes
the stationarity of noise in the whole image, the latter takes into account the proportional dependence
of noise variance on the original pixel intensity. The well-known additive white Gaussian noise model
(see e.g., [22]) is a typical example of the signal-independent noise class. Meanwhile, signal-dependent
noise class includes Poisson or film-grain noise model [119], Poisson-Gaussian noise model [141, 149],
heteroscedastic noise model [67, 205], non-linear noise model [58], etc. Compared to the first class,
the second one is more accurate, and obviously more difficult to be dealt with.

2.2.2 From RAW Image to TIFF Image

To render a full-color uncompressed TIFF image from the RAW image, several post-processing opera-
tions are carried out (see e.g., [53]), where demosaicing, white balancing and gamma correction are the
significant ones.

The demosaicing, also known as CFA interpolation, allows to fill up the missing pixels due to the
CFA sampling by using their neighborhoods [185]. Generally, we can classify algorithms for demo-
saicing into two classes: (i) non-adaptive, and (ii) adaptive. Non-adaptive algorithms use the same
interpolation technique for all pixels, so that in most cases, they can be simply defined by a single in-
terpolation kernel Kc for each color channel c (see also Table 2.1). Consequently, the color component
Xc
D of the demosaiced image XD can be computed from the RAW component Vc as

Xc
D = Kc ∗ Vc, (2.3)

where ∗ denotes the two-dimensional convolution operation. The non-adaptive demosaicing algo-
rithms provide satisfactory results in smooth regions, but usually fail in textured regions and edges.
Adaptive algorithms can solve this problem. They take into account edge information, as well as inter-
channel correlation to find an appropriate set of coefficients which permits to minimize the overall
interpolation error (see e.g., [42, 210]). This make the adaptive algorithms more accurate than the
non-adaptive ones at a higher price of computationally intensive.

After the demosaicing, we need the white balancing to remove unrealistic color casts [186]. In
fact, due to the color temperature difference of light sources, a shift of the reflection spectrum of the

2The expectations differ from each other due to heterogeneity in a natural RAW image.
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name red and blue channels green channel

bi-linear Kr = Kb = 1
4


1 2 1
2 4 2
1 2 1

 Kд = 1
4


0 1 0
1 4 1
0 1 0



bi-cubic Kr = Kb = 1
256



1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 144 81 0 −9
−16 0 144 256 144 0 −16
−6 0 81 144 81 0 −6
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1


Kд = 1

256



0 0 0 1 0 0 0
0 0 −9 0 −9 0 0
0 −9 0 81 0 −9 0
1 0 81 256 81 0 1
0 −9 0 81 0 −9 0
0 0 −9 0 −9 0 0
0 0 0 1 0 0 0


Table 2.1: Examples of interpolation kernel used in non-adaptive demosaicing algorithms

object from its true color may occur. This shift makes the object appear different in color when it is
illuminated under different light sources. The white balance adjustment is therefore implemented in
digital cameras to compensate this illumination imbalance. Basically, it is performed by multiplying
pixels in each color channel Xc

D by a different gain factor дcW to render a white-balanced image XW

Xc
W = д

c
W · X

c
D, (2.4)

where Xc
W denotes the component of XW associated with the color channel c . The prior knowledge of

light sources is critical to select appropriate gain factors дcW . In the absence of this knowledge, дcW can
be estimated by several algorithms described in [121]. For an example, we just introduce hereinafter s
simple algorithm based on the gray world assumption: the average reflectance of a scene is achromatic.
This implies that the average values of three color channels in a given scene are roughly equal, so that

xrW = x
д
W = xbW , (2.5)

where xcW , with c ∈ {r ,д,b}, denotes the average intensity of Xc
W computed by

xcW =
1

M · N
·

M∑
m=1

N∑
n=1

xcW ,m,n . (2.6)

Using (2.4) and (2.5), it follows that

дrW · x
r
D = д

д
W · x

д
D = д

b
W · x

b
D, (2.7)

where xcD denotes the average intensity of Xc
D computed in the same way as (2.6). Since the human

eye is more sensitive to the green color, the algorithm proposes to keep the green channel as it is,
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hence
дbW = 1. (2.8)

Therefore, the gain factors of the other color channels are derived from (2.7) as

дrW =
x
д
D

xrD
and дbW =

x
д
D

xbD
. (2.9)

Introducing (2.8) and (2.9) into (2.4), we finally obtain the white-balanced image XW .
At this stage, the pixel intensity only appears the linear characteristic with respect to the RAW

image intensity [53]. This linearity does not fit in with most display devices whose transfer function
represents a power relationship between the luminance L and the voltageU

L = V γ , (2.10)

where γ is a constant specific for each device. Especially, γ = 2.2 for the cathode ray tube monitor.
The gamma correction is thus necessary to compensate this effect and render the luminance into a
perceptually uniform domain. It is simply the inverse of (2.10) applying to each pixel value of XW

such that
xcm,n =

(
xcW ,m,n

) 1
γ
, (2.11)

where xcm,n denotes the pixel at location (m,n) of the component Xc of the TIFF image.
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Figure 2.4: Formulation process of the TIFF image

At the output of the post-processing process, we obtain an uncompressed full-color TIFF image X
characterized by a three-dimensional matrix of sizeM ×N ×3 (see Figure 2.4). To statistically describe
the TIFF image in the spatial domain, both the black-box and white-box approaches can be resorted to.
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By the black-box approach, we attempt to establish a so-called camera response function fCRF (·) that
maps image irradiance3 to TIFF image intensity

xm,n = fCRF
(
µvm,n + ϵvm,n

)
, (2.12)

where µvm,n denotes the image irradiance and ϵvm,n accounts for all noise sources. Gamma curve [59],
polynomial curve [82] and generalized Gamma curve [159] are some parametric models for fCRF (·).
The main drawback of such an approach is that the study of noise statistics is relatively hard. A
potential solution is to linearize fCRF (·) using the first order of Taylor’s series expansion [58]

xm,n = fCRF
(
µvm,n + ϵvm,n

)
≃ fCRF

(
µvm,n

)
+ f

′

CRF

(
µvm,n

)
· ϵvm,n , (2.13)

where f
′

CRF (·) is the first derivative of fCRF (·). Therefore, the noise ϵxm,n of xm,n can be expressed in
function of ϵvm,n as follows

ϵxm,n = f
′

CRF

(
µvm,n

)
· ϵvm,n . (2.14)

Unlike the black-box approach, the white-box approach requires a deeper understanding of the post-
processing process for the step-by-stepmodeling. A typical example is theway to develop the so-called
generalized signal-dependent noisemodel in [207]. Indeed, starting from the heteroscedastic noisemodel
of RAW pixels proposed in [67], Thai et al. have followed the effects of demosaicing, white-balancing
and gamma correction to build their noise model for TIFF images. Even not all steps in the post-
processing process are taken into account, numerical results therein show clearly that a better insight
of the in-camera post-processing provides more accurate models than the black-box approach. Some
extensions and applications of the generalized signal-dependent noise model can be found in [179,
208]. Besides the modeling in spatial domain, we can also exploit the discrete cosine transformation
(DCT) domain to characterize the TIFF image. In fact, all statistical models of primary unquantized
DCT coefficients can be employed for this goal. Subsection 4.1.1 of Chapter 4 gives a review of these
models.

2.2.3 From TIFF Image to JPEG Image

Due to its high quality, the TIFF image is not really adapted for the storage or transmission, especially
in large numbers. This is why most digital cameras employ a lossy compression algorithm to reduce
the image data size. Such an algorithm attempts to eliminate the image information that is not visually
significant, hence it is irreversible in the sense that the image reconstructed from the compressed data
is no longer identical to the original TIFF image. Among many lossy compression algorithms (see e.g.,
[92] for a recent survey), the Joint Photographic Experts Group (JPEG) standard [213] is most popular
thanks to the good compromise between image visual quality and size. This motivates us to focus our
study on the JPEG compression. As depicted in Figure 2.5, a typical JPEG compression chain consists
of four fundamental steps: (i) color transformation, (ii) discrete cosine transformation (iii), quantization,

3Light energy incident on image sensors
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and (iv) entropy coding.
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Figure 2.5: Key steps in JPEG compression chain

Since the JPEG compression works better under YCbCr color space [53], a transformation of TIFF
image from the RGB color space to the YCbCr color space is first carried out

X̃y

X̃cb

X̃cr

 =


0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 0.081

 ·

Xr

Xд

Xb

 +


0
128
128

 , (2.15)

where Xr , Xд and Xb are the three components of the TIFF image X in the RGB color space, and X̃y ,
X̃cb and X̃cr are the three components of the transformed TIFF image X̃ in the YCbCr color space.
Since this transformation is simply a linear operation, it is surely lossless.

Next, for each component X̃y , X̃cb or X̃cr , we separately apply the DCT to their 8 × 8 blocks to
convert pixel values from spatial domain into transform coefficients

Ch,k =
1
4 ·Th ·Tk ·

7∑
m=0

7∑
n=0

x̃m,n · cos
(
(2m + 1)hπ

16

)
· cos

(
(2n + 1)kπ

16

)
, (2.16)

where x̃m,n, 0 ≤ m,n ≤ 7, denotes a pixel in a 8 × 8 block of X̃4, Th and Tk are the normalized weight
given by

Th =


1√
2 if h = 0,

1 if h > 0.
(2.17)

Consequently, we obtain 64 two-dimensional DCT coefficients Ch,k , 0 ≤ h,k ≤ 7, for each 8 × 8 pixel
block. These coefficients are arranged in a 8×8 block such that the low-frequency elements are located
at the upper left corner, while the high-frequency elements distribute in the lower right corner (see
Figure 2.6). The coefficient C0,0, representing the mean value of pixels in the 8 × 8 block, is referred
as direct current (DC) because it is analogous to a zero frequency, and 63 others are called alternative
current (AC). Conveniently, for natural images, the majority of energy concentrate in the DC and low
AC frequency bands, while very detail information is associated with high AC frequencies. Therefore,
we can discard the higher AC frequency bands to reduce the data size without much impact on the

4To simplify, the indices y, cb and cr are omitted here as each component of the transformed TIFF image is processed
separately.
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Figure 2.6: The DCT basis in 2D for 8 × 8 pixels block

visual quality. Moreover, the DCT is especially good at compacting most of the information into a
small number of coefficients when neighboring pixel values are highly correlated. This makes it an
especially good transform to use for compressing images of interest to human beings. Mathematically,
the DCT is merely a change of basis, so it is a lossless operation.

The elimination of high-frequency AC DCT coefficients is done through the quantization step. It
proposes to divide each DCT coefficientCh,k by the corresponding element qh,k of a quantization table
T, then round up the result to the nearest integer to obtain the quantized DCT coefficient

Dh,k =

⌊
Ch,k

qh,k

⌉
, 0 ≤ h,k ≤ 7, (2.18)

where ⌊·⌉ denotes the nearest integer rounding. The quantization tableT is designedwith regard to the
human visual system. Since the sensitivity of human eyes to luminance and chrominance information
is different, it is recommended to use one quantization table for the luminance component, and another
quantization table for the chrominance components. Such tables, indexed by a quality factor QF ∈
{1, 2, . . . , 100}, are computed as follows

TQF =


max

{
1,

⌊
2 · T50 ·

(
1 − QF

100

)⌉}
if QF > 50,

min
{
255 · 1,

⌊
T50 ·

50
QF

⌉}
if QF ≤ 50,

(2.19)

where 1 denotes the 8 × 8 matrix of ones, T50 is given in Table 2.2. Larger values in the quantization
table correspond to coarser quantization, and hence greater compression. Figure 2.7 illustrates the
JPEG compression process of an 8 × 8 luminance block up to the quantization step with T50. Clearly,
the quantization is a lossy operation.
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luminance channel chrominance channels

T50 =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


T50 =



17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


Table 2.2: 50% quality standard JPEG quantization tables

luminance block luminance pixels

−→



139 144 149 153 155 155 155 155
144 151 153 159 156 156 156 156
150 155 160 160 160 159 159 159
159 161 162 160 160 159 159 159
159 160 161 162 162 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158


↓

quantized DCT coefficients unquantized DCT coefficients



79 0 −1 0 0 0 0 0
−2 −1 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


←−



1260 −1 −12 −5 2 −2 −3 1
−23 −17 −6 −3 −3 0 0 −1
−11 −9 −2 2 0 −1 −1 0
−7 −2 0 1 1 0 0 0
−1 −1 1 2 0 −1 1 1
2 0 2 0 −1 1 1 −1
−1 0 0 −1 0 2 1 −1
−3 2 −4 −2 2 1 −1 0


Figure 2.7: An 8 × 8 luminance block, its unquantized and quantized DCT coefficients with T50

Finally, the quantized DCT coefficients are fed to a lossless entropy coder whose mechanism is
a combination of Huffman coding and run-length encoding principles. Due to the high correlation
between adjacent blocks in natural images, the JPEG standard recommends to encoder the difference
of inter-block DC coefficients by a Huffman code instead of their value directly. Meanwhile, a run-
length encoding algorithm is applied for intra-block AC coefficients in zig-zag order (see Figure 2.6)
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to take advantage of long sequences of zero-values inherent in quantized DCT blocks. The output of
the entropy coder is an encoded JPEG image Y in bitstream (see Figure 2.5).

Because of bitstream form, JPEG images cannot be displayed on a monitor device directly, but
through a decompression chain (see Figure 2.8). Basically, it is the converse process of the JPEG

reconstructed image Z
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Figure 2.8: Key steps in JPEG decompression chain

compression chain: (i) entropy decoding, (ii) dequantization, (iii) inverse discrete cosine transformation,
and (iv) color inverse transformation. A summary of this process is briefly introduced here. Firstly,
a lossless entropy decoding is applied to JPEG bitstream Y to perfectly return the two-dimensional
quantized DCT coefficients Dh,k . Subsequently, Dh,k is multiplied by the same quantization step qh,k

as in the compression chain to generate two-dimensional dequantized DCT coefficients Ĉh,k

Ĉh,k = qh,k · Dh,k . (2.20)

Next, the inverse DCT is applied to Ĉh,k to render image in YCbCr color space

x̂m,n =
7∑

h=0

7∑
k=0

1
4 ·Th ·Tk · Ĉh,k · cos

(
(2m + 1)hπ

16

)
· cos

(
(2n + 1)kπ

16

)
, (2.21)

where Th and Tk are the normalized weight given by (2.17). Finally, a color transformation of x̂m,n is
performed to obtain the corresponding pixel value ẑm,n in the RGB color space. Since this value is
possibly not integers or beyond a finite dynamic range (e.g., [0, 255] for 8-bits images), the nearest
integer rounding5 and and truncation operation is required to finalize the decompression process

zm,n = trunc
(⌈
ẑm,n

⌋ )
, (2.22)

where trunc (·) denotes the truncation operation. In general, the reconstructed image Z differs from its
original TIFF image X because of the quantization, rounding and truncation errors. For an illustration,
we present in Figure 2.9 the inverse process of the chain in Figure 2.7.

Now, we show how to characterize JPEG images. Basically, all approaches used to model TIFF
images can serve this purpose: black-box approach in the spatial domain (see e.g., [90, 137, 214]),
white-box approach in the spatial domain (see e.g., [179, 189]), and DCT coefficients-based approach

5Although the nearest integer rounding is represented here, other kinds of rounding like floor or ceiling are possible.
In fact, the different choices of rounding operation lead to JPEG dimple artifacts mentioned later in Subsection 2.4.1.4.
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(see e.g., [132, 167, 206]). We are interested more specially in models developed by the last approach
because the DCT is the basis of JPEG compression. We can classify them into two categories: (i) first-
order statistics, and (ii) higher-order statistics. The models in the first category consider that the DCT
coefficients at the same frequency are independent identically distributed (IID) realizations of a ran-
dom variable. Therefore, many statistical distributions can be used to fit in with the DCT coefficients.
Most of them are empirical models conducted by goodness-of-fit tests on a set of images (see e.g.,
[29, 157, 188]). The first mathematical analysis for DCT coefficients is given by Lam and Goodman
in [122]. However, such an analysis had not yet been finalized until Thai et al. successfully studied
the block variance model of DCT coefficients and approximated it by an Gamma distribution in [206].
Notwithstanding, the IID assumption made by the first-order models is not always true because of the
correlation inherent in the DCT coefficients of natural images. The higher-order models can solve this
problem by considering two fundamental kinds of correlation [211]: (i) intra-block, and (ii) inter-block.
The intra-block correlation reflects the dependence between adjacent DCT coefficients within a same
8 × 8 block, while the inter-block correlation take into account the dependence of DCT coefficients
at the same frequency between neighboring 8 × 8 blocks. Both the correlations can be expressed and
measured by co-occurrence matrices and probability transfer matrices in the direction of horizontal,
vertical, main and secondary diagonals (see e.g., [85, 113, 133]).

2.3 Techniques of Digital Image Forgery

We provide in this section an overview of forgery techniques for digital images. Although many
forgeries can be introduced throughout the digital image processing pipeline (see e.g., [11, 61, 201]),
we just limit our study to very common post-camera techniques including: (i) cloning, (ii) splicing, (iii)
inpainting, and (iv) resampling. For each of techniques, we state the definition and its role in digital
image forgery.

2.3.1 Cloning

Cloning, also known as copy-move forgery, is perhaps one of the easiest, yet powerful, techniques to
create forged images. It consists of copying areas of an image, then pasting them elsewhere within
the same image. The objective is to hide (see Figure 2.10) or duplicate (see Figure 2.11) some areas

(a) Original image (b) Forged image (c) Ground truth

Figure 2.10: Cloning with covering attack taken from the Image Manipulation Dataset [41]
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(a) Original image (b) Forged image (c) Ground truth

Figure 2.11: Cloning with duplication attack given from the Image Manipulation Dataset [41]

of the image. Since both the source and target areas stem from the same image, properties like the
color temperature, illumination conditions and noise are expected to be well-matched between the
tampered areas and the image. This is why the cloning detection is relatively challenging, especially
when the manipulation only involves small or smooth regions, or when the forged areas have been
additionally processed by some severe attacks, such as large-scale resizing and heavy noise addition.

2.3.2 Splicing

Splicing, also referred as cut-paste forgery, is another common technique of digital image forgeries. It
attempts to alter the content and meaning of an original image by replacing some areas in the image
by those from others using cutting and pasting operations (see Figure 2.12 for an example). Com-

(a) Original image (b) Forged image (c) Ground truth

Figure 2.12: Splicing attack taken from the Realistic Tampering Dataset [115]

pared to the cloning, the splicing is far more flexible thanks to different image sources, and therefore
allows forged images with a very different content than the original. However, the multiple image
sources also induce more inconsistencies in image statistical properties, especially at the borderlines.
Of course, when performed carefully, the border between the spliced regions can be still visually im-
perceptible. If necessary, the splicing may be accompanied with other operation such as rotation,
resizing, compression, noise addition, filtering, and contrast and brightness adjustments to make the
final forgeries more convincing.

2.3.3 Inpainting

Inpainting is originally proposed to repair old photos from the early days (see Figure 2.13). In image
tampering, it is also called erase-fill forgery [232] because the main attacks is to erase some undesired
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(a) Original image (b) Repared image (c) Repaired traces

Figure 2.13: Inpainting for restoration purpose taken from [17]

object in an image and fill the resulted hole with neighboring texture (see Figure 2.14 for an example).
Traditionally, we can classify inpainting methods into two categories [83]: (i) diffusion-based, and (ii)

(a) Original image (b) Forged image (c) Ground truth

Figure 2.14: Inpainting for covering attack taken from [17]

exemplar-based. The methods of the first category exploit smoothness priors and partial differential
equation to propagate local image texture from the exterior to the interior of the hole. A typical
example of diffusion-based methods is the algorithm proposed by Bertalmio et al. in [17]. Meanwhile,
the exemplar-based methods rely on image statistics and similarity priors to synthesize the patches in
the unknown region. The works [46, 215] are some examples of this second category. Nowadays, these
two methods are usually combined with deep learning (see e.g., [95, 184] for some recent reviews) to
further improve the visual quality. Although sharing the same tampering attack as the cloning and
splicing, the inpainting is obviously more sophisticated, and hence much harder to be detected.

2.3.4 Resampling

In image forgery, resampling is a technique that utilizes interpolation algorithm to maliciously geo-
metrically transform a digital image or a portion of an image. It involves affine transformations like
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resizing (see Figure 2.15) and rotation (see Figure 2.16). Such a forgery technique can be summarized

(a) Original image (b) Forged image (c) Ground truth

Figure 2.15: Resampling with resizing attack taken from the Image Manipulation Dataset [41]

(a) Original image (b) Forged image (c) Ground truth

Figure 2.16: Resampling with rotation attack taken from the Image Manipulation Dataset [41]

by two basis operations [169]: (i) spatial transformation of coordinates to move some parts or the whole
original image onto a new sampling lattice, and (ii) interpolation to introduce specific correlations be-
tween neighboring pixels. Very often, the resampling happens together with other forgery techniques
such as cloning or splicing to create a convincing forged images. This explains why many researchers
have considered the resampling as an useful auxiliary trace to detect other forgeries (see e.g., [35, 156])
.

2.4 Passive Detection of Digital Image Forgery

Passive forgery detection is the family of forensic techniques that only utilize the received image to
verify its authenticity or integrity [20]. Since no prior information possibly embedded in the orig-
inal image, such as authentication watermarks or digital signatures, is available in hand, the passive
techniques attempt to exploit inconsistencies existing in the digital image processing pipeline to de-
tect forgeries. Such an approach is proved feasible and efficient [136, 171], because any manipulation
likely disturbs the underlying statistics property or image consistency of a natural scene, and leaves
traces in different stages of the processing pipeline [114]. Our review in this section focuses on the
detection methods using in-camera and post-camera traces represented in Figure 2.17. The aim is to
answer two questions: (i) where these traces come from?, and (ii) what are the relevant methods for their
detection? Note that we will not cover all the state-of-the-art, but rather provide an essential summary
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Figure 2.17: Overview of operation traces along with a typical digital image processing pipeline

of the research field. Existing works related to more specific problems studied in this thesis will be
further introduced and analyzed at the beginning of Chapters 3, 4 and 5.

2.4.1 In-Camera-Based Detection

We have seen in Section 2.2 that each component and processing step in a digital camera acquisition
process alters the input and leaves intrinsic traces in the image output. Moreover, since the optical
module, image sensor and software of each camera device are customized by manufacturers, these
traces vary across different camera brands and/or models. Their use as evidence for tampering detec-
tion is thus possible, independently of forgery types (see Section 2.3).

2.4.1.1 Lens and Shutter Traces

The integrity of image content can be exposed by inconsistencies in the lens and shutter parameters
of the employed camera device. They include lateral chromatic aberration [150], radial lens distortion
[219], and motion blur [187]. Since all of these techniques look for local deviations from a general
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expected model, they are capable of localizing the forgery automatically.
Lateral chromatic aberration (LCA) arises due to the lens inability to focus all wavelengths of a

single light ray to a single location on a sensor (see Figure 2.18a). Consequently, the focal locations

(a) Lateral chromatic aberration (b) Purple fringing artifacts (c) Patterns inconsistency

Figure 2.18: Illustration of chromatic aberration, fringing artifacts, and patterns inconsistency

of different wavelengths are displaced from each other in the image, and hence lead to the so-called
purple fringing artifacts [105] as illustrated in Figure 2.18b. Johnson and Farid are perhaps the pioneers
who used LCA to detect image forgeries in [98]. The authors proposed an algorithm to find a global
estimate of the expansion/contraction pattern over the whole image by considering different pairs of
color channels. The same algorithm is next applied to non-overlapped blocks to estimate the local
patterns. The inconsistency between the global and local estimates are the evidence of forgeries (see
Figure 2.18c for an example). Later, Yerushalmy and Hel-Or have shown in [225] that purple fringing
artifacts can also be exploited for the image forgery detection. Although having a much more complex
origin, this artifact is stronger and more visible than LCA. Again, inconsistency in the direction of
these artifacts is used for tampering detection. More recently, Mayer and Stamm have proposed in
[150] a statistical model to capture the inconsistency between global and local estimates of LCA. Based
on this statistical model and hypothesis testing, the authors successfully derived an accurate statistic
for forgery detection.

As depicted in Figure 2.19a, the differences in magnification level across a lens surface and the
misalignment between lens and the detector plane cause a subtle radial shift in magnification towards
the center of the lens. It results in the so-called radial lens distortion thatmakes straight edges in a scene

(a) Reasons of radial distortions (b) Pincushion distortion (c) Barrel distortion

Figure 2.19: Illustration of radial lens distortions

appear curved edges in an image (see Figures 2.19c and 2.19b). Such an artifact is almost inevitable
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and specific for different camera lenses [87]. This is why Choi et al. proposed to analyze this artifact
as a fingerprint to identify the source camera in [40]. Using the Devernay’s line extraction method
[54], the authors estimate the distortion parameters of a camera, and then measure the error between
the distorted line segment and the corresponding straight lines. The estimated parameters are next
used to train a classifier to distinguish among images captured by different cameras. Chennamma and
Rangarajan further applied the radial distortion to detect splicing forgery in [36]. The inconsistency in
the radial distortion parameters across an image is the cue for the detection. Lately, in [71], Fu and Cao
combined the radial distortion artifacts with a fake salience map to improve the forgery localization.
Figure 2.20 illustrates some results.

(a) Original images (b) Forged images (c) Forgery line detection (d) Fake saliency maps

Figure 2.20: Forgery detection results extracted from [71]

If the two above traces are generated by the lens imperfection, the motion blur is mainly caused
by the slow speed of the camera shutter relative to the object being imaged [171]. Especially, it is a
very common phenomenon in images taken by hand-held cameras, and can thus serve as a fingerprint
of natural images. In [101], Kakar et al. have relied on gradient analysis to estimate the motion blur
direction (see Figure 2.21a). Meanwhile, Bahrami et al. have focused on the estimation of blur kernels
in [10] (see Figure 2.21b). The differences in the blur direction or in the blur kernel between the whole

(a) Blur direction map given from [101] (b) Blur kernel map given from [9]

Figure 2.21: Illustration of local motion blur estimates

image and non-overlapping blocks therein allows to identify forged areas of the image.
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Generally, we can find that the lens and shutter traces are not significantly applicable to the liter-
ature of forgery detection, because they are easily removed by a photo editing software or directly by
the camera itself. For instance, the free software RawTherapee (GPLv3) allows to efficiently erase all
the traces of lateral chromatic aberration, radial lens distortion and motion blur in an image.

2.4.1.2 Sensor Traces

As a dominant component of sensor pattern noise, the PRNU noise mainly arises from the heterogene-
ity of silicon wafers introduced during the sensor manufacturing process, and manifests itself as the
pixel-to-pixel variation in light sensitivity. It is present in every natural image and practically unique
to each sensor. These properties make the PRNU noise well adapt for the forgery localization. Its
fundamental idea is to analyze the local correlation of PRNU signatures to identify specific areas with
potential mismatch [34]. Figure 2.22 shows an example of tampering localization results for different
variants of local signature analysis: (i) standard correlation field, (ii) segmentation-guided correlation
field, (iii) adaptive-window correlation field, and (iv) peak-to-correlation energy field. We can remark

(a) Original image (b) Forged image (c) standard correlation

(d) segmentation-guided correlation (e) adaptive-window correlation (f) peak-to-correlation energy

Figure 2.22: Example of tampering localization results using PRNU noise adapted from [115] and [114]

that the localization works poorly for small forgeries in highly-textured dark areas because of the very
weak energy of PRNU noise. A way to remedy this flaw is to adopt better techniques for sensor noise
estimation. A recent empirical evaluation of various techniques is reported in [4]. Another way is to
improve localization capabilities for small forgeries. Indeed, recasting the PRNU-based localization
problem in a Bayesian framework, modeling the decision variables as a Markov random field, and
thus accounting for their spatial dependencies, Chierchia et al. [37] provide more accurate localiza-
tion results than the approach developed by Chen et al. in [34]. More recently, Korus and Huang have
conducted multi-scale analysis in [115] to further enhance the localization performance.

In addition to PRNU noise, noise level, which is a joint effect of the sensor characteristics, the
current ISO setting, and prospective post-processing, is a potential cue for splicing detection, because
it is usually different from an image to another (see e.g., Figure 2.23a). In [148], Mahdian and Saic

https://www.rawtherapee.com/
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(a) Spliced image (b) Noise level map (c) Ground truth

Figure 2.23: Example of spliced image, noise level map and ground truth extracted from [94]

estimated the local noise variance of image blocks based on the median absolute deviation in the
high-pass Haar wavelet subband, and then used their inconsistencies to locate the splicing regions. A
different method was introduced by Lyu et al. in [144], where block-wise noise estimation is based on
the observation that the kurtosis values across different band-passed filter channels are constant. The
method concludes by segmenting the image into regions with significantly different noise variances
using k-means clustering. If the above works assumed the additive white Gaussian noise model which
is independent of image content, the recent work of Yao et al. [223] have taken into account intensity-
dependent noise. The authors first propose a noise level function that fit noise characteristics with
possible variations of standard deviation with image intensity. Next, the noise level function is applied
for both edge and non-edge regions of an image. By comparing the function values with a predefined
threshold, tampered and original regions of an forged image can be divided. Nomatter what intensity-
independent or dependent noise used, the splicing detection-based on the noise level is very sensitive
to variations in the local noise variance. So, if the splicing is carefully prepared to keep the similar
noise level in the whole forged image, forgeries will not be detected.

2.4.1.3 Demosaicing Traces

As mentioned in Subsections 2.2.1 and 2.2.2, most camera devices use a CFA together with a CCD or
CMOS sensor chip to record image scene mosaically, and then interpolate missing colors by a demo-
saicing algorithm to achieve a full color image. The periodic pattern of CFA and unified demosaicing
algorithms applied throughout color channels lead to periodic interpolation artifacts inherent in a nat-
ural image. Any local perturbation of this periodicity will put image integrity in doubt. Assuming a
linear interpolation kernel, Popescu and Farid used in [174] an expectation-maximization algorithm to
build a so-called p-map representing the correlation probability between a pixel and their neighbors.
Such a p-map exhibits a periodic behavior which is clearly visible in Fourier domain. By applying this
analysis to different areas of an image, forgeries can be detected. Figure 2.24 illustrates a detection
result returned by this method. Gallagher and Chen proposed in [74] another way for detecting the
periodic interpolation artifacts. Observing that the variance of the second derivative of an interpo-
lated signal is periodic [73], the authors successively applied the high-pass filtering and the Fourier
analysis to capture the presence of periodicity in the variance of interpolated/acquired coefficients.
Compared to the method developed by Popescu and Farid, this method does not require the estimation
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(a) Original image (b) Forged image (c) p-map and local periodic patterns

Figure 2.24: Illustration of p-map and local periodic patterns in Fourier domain adapted from [174]

of the CFA interpolation kernel, and hence is with lower computational complexity.
Along with the periodic interpolation, the difference in the distribution of acquired and interpolated

pixels is also a fingerprint of natural images. In fact, since themissing pixels are interpolated from their
acquired neighbors following an interpolation algorithm, the variance of interpolated pixels would be
smaller than the acquired ones. Especially, Gallagher et Chen proved in [74] that this variance ratio
equals 1

4 , when the bilinear interpolation is applied for the green channel (see Figure 2.25). Based

GG

G G

G G G

G

G

GG

G G

G G G

G

G

(a) Acquired green channel

Kд = 1
4


0 1 0
1 4 1
0 1 0


(b) Bilinear interpolation kernel (c) Full green channel

Figure 2.25: Variance of pixels in the green channel interpolated by bilinear kernel

on this phenomenon, Dirik and Memon [55] partitioned the considered image into non-overlapping
blocks, and computed the associated ratio between variances of prediction residues in interpolated
and acquired pixels. Since malicious operations likely erase this variance difference, the blocks whose
variance ratio is close to 1 are the tampered ones. A similar method was proposed by Ferrara et al. in
[63], but a Gaussian mixture model was employed to fit the distribution of prediction residues features
rather than merely considering their variances. A naive Bayesian rule was next used to compute the
tampering probability.

Besides, we can also use the CFA pattern and the demosaicing algorithm as proofs for the forgery
detection, because they are specific for each class/branch/model of camera devices. In [55], Dirik and
Memon have relied on an estimation of CFA pattern number to detect the presence of global or local
tampering in an image. Swaminathan et al. exploited in [200] the inconsistencies among the estimated
demosaicing coefficients to check if an image has undergone any form of subsequent processing.

Despite very precise localization ability, demosaicing artifacts constitute a relatively simple fea-
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ture which lacks both robustness and security. For instance, traces of periodic interpolation are easily
destroyed by JPEG compression, even with the highest quality levels. Hence, this trace is applicable
almost exclusively for uncompressed images. Moreover, since existing methods assume that the cam-
era uses the standard Bayer CFA and a non-adaptive demosaicing algorithm, false positive errors or
unreliable localization maps may appear when these conditions are violated.

2.4.1.4 JPEG Compression Traces

JPEG is no doubt the most popular format of digital images today. This makes JPEG compression
traces one of the most important tools for image forgery detection. In the following analysis, we will
distinguish traces in spatial domain from traces in DCT domain.

Generated by the block-wise processing, blocking artifact is a well-known fingerprint in spatial
domain of JPEG compressed images. It corresponds to the discontinuities that regularly occur along
the boundaries of every 8×8 pixel block (see Figure 2.26 for an illustration). In the presence of forgery

(a) Quality factor QF = 95 (b) Quality factor QF = 30

Figure 2.26: Illustration of JPEG images and associated maps of block artifacts given from [160]

operations such as cloning or splicing, this regular structure is locally disturbed by the block grid
of inserted objects, and some misalignments likely appear in the forged image. Fan and de Queiroz
proposed in [57] a lightweight algorithm to checkwhether an image is JPEG compressed and to further
locate the whole position of block artifacts. The algorithm is based on the idea that if the image has
not been compressed, the pixel differences across 8 × 8 block boundaries should be similar to those
within blocks. Therefore, it is possible to evaluate the difference between of inter-block and intra-block
pixels, and then define a threshold to detect the presence of prior JPEG compression. The algorithm
performance is recently improved in [93] thank to the content-aware detection of grid inconsistencies.
In [135], Li et al. developed another algorithm to blindly extract the blocking artifact grid in JPEG
images. The algorithm automatically generates a tampering map indicating where the local blocking
grid diverges from the global one.

Beside block artifact, JPEG dimple is another trace of JPEG compression in spatial domain. It is
issued from the different rounding operations (e.g., round, floor, or ceiling) possibly used to convert
DCT coefficients from floating-point to integer values [2]. In fact, the use of floor and ceiling can lead
to a periodic artifact in the form of a single darker and brighter pixel in the top-left corner of 8×8 pixel
blocks (see Figure 2.27). The local absence of such dimples in a JPEG image would be the evidence
of forgeries. Agarwal and Farid have proved in [3] that JPEG dimples allow to detect a wide range of
manipulations such as cloning, splicing, median filtering, resampling, as well as content-aware fill.
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(a) Round (b) Floor (c) Ceiling

Figure 2.27: Illustration of JPEG dimple artifacts taken from [2]

Very often, the tampering process of digital image finishes by resaving forged images under JPEG
format. This implies that the multiple JPEG compression is a potential fingerprint of forged images,
and can thus serve forgery detection. In spatial domain, tampered areas in an image manifests as the
JPEG ghosts appeared after recompressing the forged JPEG image following various lower quality fac-
tors. As displayed in Figure 2.28, the nearer the quality factor of recompression to the original factor
of tampered areas, the more the JPEG ghost is clearer. Such a forgery detection was first introduced

(a) Forged image (b) QF = 55 (c) QF = 60 (d) QF = 65

(e) QF = 70 (f) QF = 75 (g) QF = 80 (h) QF = 85

Figure 2.28: Difference between tampered image and its re-saved versions adapted from [62]
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by Farid in [62], and afterward improved by Zach in [227] and by Zhang and Wang in [231]. In DCT
domain, the multiple JPEG compression usually leaves traces in the histogram of some selected DCT
coefficients [18] or of their first digit [155]. We can remark from Figure 2.29a that peaks or valleys in

(a) 6-th AC coefficients (b) First digit statistics for 1-st AC coefficients

Figure 2.29: Histograms of DCT coefficients statistics in the luminance channel adapted from [114]

the histogram of AC DCT coefficients characterize JPEG compression times differently. This conducts
various features for forgery detection. In [138], Lin et al. exploited the periodic peaks and valley in
the histogram of DCT coefficients for double compression detection, and then used this feature to
automatically locate tampered regions. This work was subsequently improved by Bianchi et al. who
recognized that the empirical distribution is essentially a mixture of an authentic and altered compo-
nents [19]. The approach was further extended in [18] by separately considering cases of aligned and
misaligned JPEG blocking grid. Another efficient tampering localization approach is to based on the
first digit distribution of DCT coefficients. As depicted in Figure 2.29b, this distribution is well fitted by
the Benford’s law [100] when the image is single JPEG compressed, and becomes much worse when
the image is double compressed. This observation leads to global first digit features in [71], andmode-
based first digit features in [130]. These features was next combined with a multi-class classification to
detect double compressed JPEG images. Lately, Milani et al. extended this approach to the detection
of higher compression on JPEG images in [155].

Generally, existing JPEG-based methods for tampering localization work well if the second quality
level is greater than for the original image. If the quality level difference is sufficient, reliable local-
ization can be performed even for 8 × 8 pixel blocks. However, this performance drops significantly
when the second quality factor is equal or lower than the original one, and much larger windows are
required for adequate results [116].

2.4.2 Post-Camera-Based Detection

Various post-camera manipulation applied to the digital image, even if not visually detectable, mod-
ify the image properties and leave peculiar traces accordingly to the processing itself. This section
discusses how such specific traces can be exploited to detect the cloning and the resampling.
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2.4.2.1 Cloning Traces

In accordance with the feasibility and popularity of the malicious cloning, its detection is one of the
most active research topics (see e.g., [203] for a thorough review). Here, we briefly discuss two generic
classes of cloning detection referred as patch-based algorithms6 and keypoint-based algorithms.

From the mechanism of the cloning attack, the idea of patch-based detection algorithms is to con-
sider a suspicious image as small patches, and try to match each patch to the others based on some
compact content representation. A cluster of neighboring patches matched to the same source re-
gion indicates a potential cloning. A common workflow of such algorithms is depicted in Figure 2.30.
Fridrich et al. are the pioneers in applying this workflow for cloning detection in [69]. They suggested
looking for matches among DCT coefficients of overlapping image blocks. To reduce the computa-

Figure 2.30: Workflow of patch-based algorithms for cloning detection extracted from [64]

tion cost and the comparison complexity, the matrix of DCT coefficients is lexicographically sorted,
and two adjacent identical lines are considered as cloned regions. Since then, various improvements
have been proposed, where the main difference resides in features used to match the blocks. In-
deed, instead of DCT matching, we can also use principal component analysis [173], discrete wavelet
transform [229], singular value decomposition [102], Fourier-Mellin transform [16], Zernike moments
[191], etc. Albeit these efforts, existing patch-based algorithms are always faced with considerable
computational complexity.

To remedy the computational drawback of patch-based algorithms, keypoint-based algorithms at-
tempt to use some characteristic points in patches to estimate their similarities rather than the whole
image path (see Figure 2.31 for an example). In the literature, such keypoints are essentially built
from the scale-invariant feature transform (SIFT) [140] and the speeded-up robust features (SURF)
[13]. Given these features, the variety of keypoint-based algorithms comes from different choices
of matching policies. For instance, the authors of [91, 163] used similarity search of SIFT keypoints

6Also known as block-based algorithms.
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Figure 2.31: Illustration of keypoint-based algorithms for cloning detection extracted from [64]

descriptors. Amerini et al. analyzed SIFT correspondences by means of hierarchical clustering proce-
dure in [6]. Shivakumar and Baboo combined SURF with a KD tree to enable a cloning detection of
high resolution images with a minimum number of false matches. Regardless of chosen algorithms,
keypoint-based detectors work poorly for small and homogeneous cloned areas, because keypoints
therein usually are not enough to give a robust detection.

In principle, detectors based on cloning traces is incapable of distinguishing between either natu-
rally occurring self-similarity or even the original and the cloned objects.

2.4.2.2 Resampling Traces

As mentioned in Subsection 2.3.4, the image resampling always introduces specific correlations be-
tween neighboring pixels. Moreover, if the image is resampled with respect to a single ratio factor,
these correlations will be periodic in nature. Based on such traces, various demosaicing detection
algorithms can be reused to detect the resampling.

Using the same expectation-maximization algorithm as in [174], Popescu and Farid successfully
estimate the linear interpolation kernel employed for the resampling, as well as the p-map represent-
ing the correlations among pixels. Periodicities in the p-map can be identified by observing distinct
isolated peaks inherent in its Fourier transform (see Figure 2.32 for some examples).

Almost in parallel with the work of Popescu and Farid, Gallagher observed in [73] that the variance
of the second derivative of an interpolated signal is periodic. The periodicity in the second derivative of
the overall image is found by analyzing its Fourier transform. Although derived from different bases,
Kirchner et al. proved in [106, 110] that the Popescu’s method and Gallagher’s method are closely
related. In these papers, it is demonstrated how the variance of prediction residuals of a re-sampled
signal can be used to described periodic artifacts in the corresponding p-map. It is also proposed a
simplified detector, much faster than the one in [175], while achieving similar performance. Further
studies by the same authors are reported in [107, 108]. Based on Gallagher’s ideas, the periodicity of
the second derivative (or other order) is further analyzed by Pradad and Ramakrishnan in [176], by
Mahdian and Saic in [146], by Dalgaard et al. in [49] and by Song et al. in [197].
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(a) Original image (b) 20% magnified image (c) Affine transformed image

Figure 2.32: Images and the Fourier transform of their p-map adapted from [175]

Another approach to resampling detection has been developed by Mahdian and Saic [147] on the
basis of the periodic properties of the covariance structure of interpolated signals and their derivatives.
The core of the proposed scheme is a Radon transform applied to the derivative of the investigated
signal, followed by a search for periodicity. Always exploiting the covariance structure of interpolated
signals, Pasquini and Böhme quantified in [176] the statistical distance between an original signal and
its downsampled version by means of the Kullback-Leibler divergence in case of a wide-sense station-
ary first-order autoregressive signal model. In [25], the authors employed an artificial neural network
with two hidden layers to perform a binary classifier characterizing resampling. More recently, Qiao
et al. investigated in [181] the problem of image re-sampling detection based on the linear parametric
model. The authors proposed to estimate the probability of pixels noise, and thence to design a practi-
cal likelihood ratio test (LRT) to detect re-sampled images. They argued that the designed LRT-based
detector is the first test based on hypothesis testing theory for image resampling detection, which can
achieve the maximal detection power at the prescribed false alarm rate. Besides, the detector can deal
with the problem of authenticating the resampled images from mixed compressed and uncompressed
images.

2.5 Conclusion

We have reviewed and analyzed in this chapter the image formation process inherent in a typical dig-
ital camera, four well-known techniques for image forgery, and various passive methods for image
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forgery detection based on traces left by in-camera and post-camera processing steps. Such a review
and analysis allows to specify better the problems to be dealt with in this doctoral project. Indeed,
aiming at versatile tools, we are interested more especially in exploiting traces returned by the de-
mosaicing, the JPEG compression and the resampling post-processing operation to develop forgery
detectors. This choice can be explain by upstream operations of the demosaicing and the JPEG com-
pression and by the necessity of the resampling after any other forgery technique, so that the devel-
oped methods can detect various forgery types. The detail development of these forgery detectors are
further represented in Chapter 3, 4 and 5 respectively.





Chapter 3

Digital Image Authentication and Forgery
Localization Using Demosaicing Artifacts

3.1 Introduction

In a digital camera acquisition pipeline, demosaicing (also known as color filter array (CFA) interpo-
lation) serves to reconstruct a full color image from the sampled data overlaid with a CFA (see Figure
2.1). Although most of commercial camera devices share a common acquisition pipeline process, each
step therein is personalized according to manufacturer choices. Traces left by demosaicing are thus
different but specific for different camera brands and/or models. When these traces are totally missing
in an image, or when there exists any inconsistency in traces for different image regions, the photo-
graphic image is likely to be tampered. Moreover, since the demosaicing is an upstream operation in
the acquisition pipeline of digital cameras, its traces are resistant to post-camera manipulations such
as cloning, splicing, inpainting, resizing, etc. Therefore, the demosaicing traces could be a robust and
powerful evidence to assess the credibility of digital images. This versatility motivates us to develop in
this chapter a demosaicing traces-based algorithm for image authentication and forgery localization.

3.1.1 Prior Art

Although an overview has been briefly done in Section 2.4.1.3 of Chapter 2, its specific focus on the
demosaicing traces used for forgery detection seems not enough to highlight the originality of the
algorithm proposed in this chapter. A more detail literature analysis with new categorization is thus
proposed here. Indeed, we can further categorize forensics works considering demosaicing traces
into two main classes. The first one consists of algorithms aiming at estimating from a digital im-
age the CFA pattern and/or the demosaicing algorithm inherent in camera devices. The second one
characterizes algorithms used to evaluate the presence/absence of artifacts generated by demosaicing
operations.
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3.1.1.1 First Class

As to the first stream in the class, the works [38, 96, 108, 193, 202] represent key methods for CFA pat-
tern identification. In [108], the Bayer CFA pattern is identified by minimizing the difference between
the raw sensor signal and the inverse demosaiced signal. In [38], the identification is performed via an
intermediate value counting algorithm developed from the observation that the value of interpolated
color samples is always between the minimum andmaximum values of their neighbors. Other method
is to compute the ratio between the average noise variance of interpolated pixels and of acquired pix-
els for all possible candidate CFA patterns of a digital image; the pattern providing the largest ratio is
considered as the true one [202]. More recently, color difference blocks are proposed as a means for
estimating the CFA configuration in [96, 193].

Beyond the CFA pattern identification, works within the second stream focus more especially on
estimating demosaicing algorithms. In [174], an expectation-maximization (EM) algorithm is em-
ployed to estimate the coefficients of linear interpolation kernels. An improvement is made in [15] by
combining the EM algorithm with average second-order derivative spectrum [73] to obtain interpola-
tion coefficients from smooth and non-smooth regions of images separately. Also partition an image
into smooth, horizontal and vertical non-smooth regions, a two-step estimation process is proposed
in [199]: (i) linear interpolation coefficients associated with each of candidate CFA patterns are first
derived using the singular value decomposition, (ii) a minimum interpolation error criterion is next
used to jointly identify the correct CFA pattern and demosaicing algorithm for separate image regions.
In [27], an accurate method based on the partial second-order image derivative correlation models is
proposed to recover demosaicing formulas. The method allows to take into account the correlation
between three color channels of the image.

Since the CFA pattern and/or the demosaicing algorithm are specific for each class/branch/model
of camera devices, they can be used as proofs for image forgery detection and localization. For in-
stance, in [28, 200], the inconsistencies among the estimated demosaicing coefficients are exploited
to check if an image has undergone any form of subsequent processing. By remarking that the CFA
pattern is changed if the image color is modified, the authors of [39] have designed an advanced inter-
mediate value counting algorithm for measuring the change in the CFA pattern, and hence localizing
the extent of color modification in digital images. We also note that estimated CFA pattern and/or
demosaicing algorithm are used not only for assessing the credibility of digital images content, but
also for camera source identification (see e.g., [75]). However, the latter is out of our scope.

3.1.1.2 Second Class

The first stream in the second class relies on periodic artifacts caused by the demosaicing. In fact, the
image sensors in a CFA are usually organized periodically [153]. Besides, many demosaicing algo-
rithms behave as a filtering process where missing signals are interpolated by periodically applying
an interpolation kernel to acquired signals (see e.g., [174]). Therefore, periodicity in demosaicing ar-
tifacts is intrinsic to digital photographs, and may help to authenticate images. Inspired by this idea,
Popescu and Farid build in [174] a probability map to expose the periodic pattern of correlated pix-
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els. When interpolated pixels are present, the periodicity of the map is clearly visible in the Fourier
domain. Such an analysis can be applied to different areas of the tested image to detect the presence
of local tampering, however the area size should not be smaller than 256 × 256 to assure the accuracy
of the results. Observing that the variance of the second derivative of interpolated images is periodic
[73], Gallagher and Chen use in [74] high pass filtering and Fourier analysis to compute periodic fre-
quency locally. Forged regions of an image will have a different periodicity than the rest. This method
is applicable for image blocks with size 64×64 or more. Another method based on periodicity analysis
of prediction errors variance is recently proposed by Li et al. in [134]. Assuming that interpolation
errors are Gaussian distributed, a posterior probability map is derived according to Bayes’ rule. Such
a map shows the periodic interpolation of the tested image in an intuitive way. An analysis with two
dimensional discrete Fourier transform allows to capture the periodicity. By experiments, Li et al.
show that this method can be applied for local tampering detection with blocks size up to 32 × 32.

For the second stream, methods for digital image forgery detection are based on the differences
in the distribution of acquired and interpolated pixels. In [55], Dirik and Memon recognize that the
low pass nature of CFA demosaicing make the variance of the sensor noise in interpolated pixels
significantly lower than acquired pixels. As a result, demosaicing artifacts can be measured by a ratio
of noise variances between interpolated and acquired pixels. If this ratio is close to 1, tampering
has been performed on the image. The method presents a good performance for image blocks with
size greater than 96 × 96. Sharing the same idea, Ferrara et al. [63] carry out fine-grained analysis
of CFA artifacts and propose a feature to measure the presence of demosaicing even at the smallest
2 × 2 block level. However, numerical experiments show that the tampering localization yields the
best performance at 8 × 8 block size. While the above works consider spatial features of demosaicing
artifacts, González-Fernández et al. [79] are rather interested in their spectrum. Indeed, by computing
the probability of each interpolated pixel and then applying the discrete cosine transform (DCT) on
small blocks of the probability map, the presence/absence of the demosaicing artifacts within a block
could be verified via the DCT coefficient at the highest frequency. Experiments show that the method
is reliable for blocks of size 16 × 16.

Compared to the first stream, methods within the second stream brings out better localization
resolution and higher fidelity. However, their performance seems more sensitive to JPEG compression
than the first stream, especially when the compression quality is significantly low.

3.1.1.3 Common Remarks

Since the demosaicing is an upstream operation in the acquisition pipeline of digital cameras, its traces
are independent of forgeries such as cloning, splicing, inpainting, resizing, etc. Therefore, methods
based on demosaicing traces do not target any specific forgery operation, but are rather applicable to
a variety of operations. Despite this advantage, demosaicing traces are easily destroyed by JPEG com-
pression, even with very high quality levels. This is why these methods is suitable to uncompressed
or less-compressed photographs. This is a common and almost unavoidable limitation of demosaicing
traces-based methods. Moreover, very often a comparison threshold is required to detect or localize
forgeries (see e.g., [55, 63, 134]). In practice, the choice of such a threshold is not easy and may be
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very influential in the robustness of the methods. Besides, employed demosaicing traces (i.e., CFA
pattern, demosaicing algorithm, periodicity of demosaicing artifacts, differences in the distribution of
acquired and interpolated pixels) are closely correlated. However, the above classification of related
works implies that they are treated separately in most existing algorithms. Jointly use these traces
could improve the performance of image forgery detection and localization.

3.1.2 Contributions and Organization

The two classes of forensic algorithms using demosaicing traces have been separately studied in the
literature. Here, we aim at combining both of them into an unified algorithm in order to improve the
image authentication and forgery localization performances. As a result, a hybrid algorithm consisting
of CFA pattern identification, demosaicing algorithm estimation, and artifacts analysis is developed.
Aiming at fine-grained detection, we have adopted the identification scheme proposed in [199] to
reveal the CFA pattern and interpolation kernel, and a local analysis similar to [63] to expose demo-
saicing artifacts from prediction residues. Despite these similarities, several improvements have been
made in the algorithm.

1. We theoretically analyze how the mean and variance of prediction residues in interpolated and
acquired signals evolve in a digital camera acquisition pipeline from the RAW format to the
JPEG format. This is the basis to build feature statistics of interest. Besides, the analysis also
helps to explain in part why the demosaicing traces-based approach is less effective with JPEG
compressed images.

2. In most demosaicing traces-based algorithms (see e.g., [63, 134, 174, 194]), prediction residues
are given from entire pixels. Here, by further partitioning a pixel into content and noise parts,
we realize that the demosaicing behaves in the same manner for content, noise, as well as entire
pixel. However, due to the weak energy of noise, demosaicing traces are most visible in noise
part. This is why feature statistics used in the algorithm are extracted from noise residues rather
than the residues of content or entire pixels.

3. As mentioned in [63], the presence of sharp edges in images reduces the quality of feature
statistics, because it may disrupt the correlation between interpolated and acquired residues. To
overcome this obstacle, we build our feature statistics from smooth region of the green channel
instead of the entire channel. As such, the edges problem is no longer a great concern.

4. Regarding the authentication, after verifying the standard normal distribution of feature statis-
tics in natural images, we adopt normality tests (i.e., Anderson-Darling test, one-sample Kolmogorov-
Smirnov test, Jarque-Bera test, and Lilliefors test) to authenticate them automatically. Such an
automatic detection is somewhat scattered in demosaicing traces-based works. Besides, we also
provide other tools (i.e., Q-Q plot diagram, probability distribution curves, and localization map)
which can help to improve authentication performance by human interpretation.
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5. By modeling the distribution of feature statistics in tampered images as a normal mixture, we
applied a penalized Expectation-Maximization (EM) algorithm to localize forged regions. Since
the algorithm does not require a comparison threshold, it provides robuster localization results
than traditional threshold-based methods [55, 63].

Numerous numerical experiments also confirm that the proposed algorithm yields better performance
than existing algorithms of the same kind.

The remainder of the chapter is structured as follows. Section 3.2 focuses on analyzing statistical
properties of demosaicing traces when they evolve in a digital camera acquisition pipeline. The analy-
sis is next extended to develop feature statistics measuring the unbalance between the local variances
of prediction residues for the green channel of demosaiced images in Section 3.3. A robust feature
statistic is eventually identified. Section 3.4 develops a single statistical model for the proposed fea-
ture statistic. Such a model is next used to authenticate digital images and to localize the tampered
regions. Numerous numerical experiments are provided in Section 3.5. Some conclusions are dis-
cussed in Section 3.6. Finally, an appendix on the formalization of penalized EM algorithm for model
parameters estimation is provided in Appendix A.

3.2 Statistical Analysis of Demosaicing Traces

Analyzing statistical properties of demosaicing traces is a key step to define a relevant feature statistic
for tampering detection and localization. In this section, we define a signal as either the pixel, its
content part or its noise part, andwe are interest more especially in themean and variance of prediction
residues in both interpolated and acquired signals of TIFF or JPEG images. In ideal cases, we prove
that the residues variance in acquired signals is greater than in interpolated signals, while their mean
values are always 0. However, such a difference weakens under the impact of JPEG compression.
Hereinafter, for an easier representation, the analysis is just done for one dimensional signals (i.e., a
row in the green channel of digital image). The results for two dimensional signals can be interpreted
in the same way.

3.2.1 Demosaicing Traces at Pixel Level

Let consider a rowwith size N in the green color channel of an digital image obtained by using a Bayer
filter and a linear demosaicing algorithm. Without loss of generality, we assume that the Bayer CFA
pattern is arranged in the manner that acquired pixels correspond to even positions of the row (old
positions corresponds to pixels to be interpolated from acquired pixels). Each acquired pixel consists
of two parts: real scene content and noise. The real scene content is the true image information that
we take and expect, while noise is generated everywhere during camera imaging. Mathematically, an
acquired pixel pA (x) at position x on the row can be expressed as

pA (x) =


cA (x) + nA (x) if x even,

0 if x odd,
(3.1)
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where cA (x) and nA (x) are respectively the content and noise of pA (x). Applying a linear demosaicing
algorithm with interpolation kernel hu to the acquired pixel, we obtain the resulting pixel

pR (x) =


pA (x) = cA (x) + nA (x) if x even,

pI (x) =
∑

u,0 hupA (x + u) if x odd,
(3.2)

where
∑

u,0 hu = 1. The resulting pixel pR (x) is either an acquired pixel pA (x) or an interpolated
pixel pI (x). Since only acquired pixels at even positions have values and contribute to the sum of
interpolated pixels, x + u in pA (x + u) is even, or equivalently u is odd. By substituting the first line
of (3.1) in the second line of (3.2), we obtain

pR (x) =


pA (x) = cA (x) + nA (x) if x even,

pI (x) = cI (x) + nI (x) if x odd,
(3.3)

where cI (x) and nI (x) denote respectively the content part and noise part of pI (x)

cI (x) =
∑
u,0

hucA (x + u) , (3.4)

and
nI (x) =

∑
u,0

hunA (x + u) . (3.5)

The similar expressions of pI (x), cI (x) and nI (x) imply that the demosaicing alter the content part
and noise part in the same way as the entire pixel. In other words, we can find traces left by the
demosaicing in the content, in the noise and in the entire pixel at odd positions of the considered row.

Hereinafter, we use s to represent a signal whichmay be either the pixel, its content part or its noise
part. Accordingly, sA, sI and sR stand for the acquired, interpolated and resulting signals respectively,
and they are linked by the following relation

sR (x) =


sA (x) if x even,

sI (x) =
∑

u,0 husA (x + u) if x odd,
(3.6)

We will analyze the mean and variance of signal residue to find out some useful demosaicing artifacts
when the digital image is in TIFF format and in JPEG format.

3.2.2 Demosaicing Artifacts in TIFF Images

As illustrated by Figure 2.1, the RAW image, after demosaicing, white balancing and gamma correc-
tion, becomes an uncompressed high-quality image in TIFF format. Since, the white balancing and
the gamma correction are lossless operation in terms of information [207], we expect that the char-
acteristics of demosaicing artifacts do not much changed. Let ku , with

∑
u,0 ku = 1, is an estimate of

the interpolation kernel hu when the considered image is in TIFF format, then the predicted signal is
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computed as
s tiffP (x) =

∑
u,0

kus
tiff
R (x + u) . (3.7)

When u is odd, then x + u is odd if x even, and is even otherwise. Using (3.6), sP (x) can be rewritten
by

s tiffP (x) =
∑
u,0

kus
tiff
R (x + u) =


∑

u,0 ku
∑
v,0 hvs

tiff
A (x + u +v) if x even,∑

u,0 kus
tiff
A (x + u) if x odd.

(3.8)

The signal residue, which is the difference between resulting and predictive signals, is thus expressed
as

e tiff (x) = s tiffR (x) − s
tiff
P (x) =


e tiffA (x) if x even,

e tiffI (x) if x odd,
(3.9)

where
e tiffA (x) = s

tiff
A (x) −

∑
u,0

ku
∑
v,0

hvs
tiff
A (x + u +v) , for x even, (3.10)

and

e tiffI (x) =
∑
u,0

hus
tiff
A (x + u) −

∑
u,0

kus
tiff
A (x + u) =

∑
u,0
(hu − ku) s

tiff
A (x + u) , for x old. (3.11)

Since the size of kernel window is usually small, acquired signals in such a window can be assumed
identical independent distributed (i.i.d.) with mean µ and variance σ 2. Consequently, the mean
E

[
e tiff (x)

]
and variance var

[
e tiff (x)

]
of the residue of TIFF image are obtained by Theorem 3.1.

Theorem 3.1. If acquired signals of TIFF images are identically independently Gaussian distributed such
that s tiffA (x) ∼ N

(
µ,σ 2) , then the mean and variance of the residues e tiffA and e tiffI are expressed by

• if x is even, then

E
[
e
tiff
A (x)

]
= 0 and var

[
e
tiff
A (x)

]
= σ 2 ·

(
1 +

∑
u,0

k2
u

∑
v,0

h2
v

)
, (3.12)

• if x is odd, then

E
[
e
tiff
I (x)

]
= 0 and var

[
e
tiff
I (x)

]
= σ 2 ·

∑
u,0
(hu − ku)

2 , (3.13)

where ku is an estimate of the interpolation kernel hu .

Proof. We can derive the results in Theorem 3.1 from (3.10) and (3.11) as follows.
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• If x is even, then using (3.10), we obtain

E
[
e tiffA (x)

]
= µ −

∑
u,0

ku
∑
v,0

hvµ = µ ·

©­­­­­­«
1 −

∑
u,0

ku

1︷︸︸︷∑
v,0

hv︸         ︷︷         ︸
1

ª®®®®®®¬
= 0, (3.14)

and

var
[
e tiffA (x)

]
= var

[
s tiffA (x) −

∑
u,0

ku
∑
v,0

hvs
tiff
A (x + u +v)

]
= var

[
s tiffA (x)

]︸         ︷︷         ︸
σ 2

+

var
[∑
u,0

ku
∑
v,0

hvs
tiff
A (x + u +v)

]
− 2 cov

[
s tiffA (x) ,

∑
u,0

ku
∑
v,0

hvs
tiff
A (x + u +v)

]
︸                                                 ︷︷                                                 ︸

0

, (3.15)

where all terms of cov [·, ·] equal to 0 due to the independence of s tiffA (x + u +v). Since

var
[∑
u,0

ku
∑
v,0

hvs
tiff
A (x + u +v)

]
=

∑
u,0

k2
u

(
var

[∑
v,0

hvs
tiff
A (x + u +v)

])
=∑

u,0
k2
u

∑
v,0

h2
vvar

[
s tiffA (x + u +v)

]
=

∑
u,0

k2
u

∑
v,0

h2
vσ

2 = σ 2 ·
∑
u,0

k2
u

∑
v,0

h2
v, (3.16)

we can further express var
[
e tiffA (x)

]
as

var
[
e tiffA (x)

]
= σ 2 ·

(
1 +

∑
u,0

k2
u

∑
v,0

h2
v

)
. (3.17)

• If x is odd, then we obtain from (3.11) that

E
[
e tiffI (x)

]
=

∑
u,0

huµ −
∑
u,0

kuµ = µ ·

©­­­­­­«
∑
u,0

hu︸︷︷︸
1

−
∑
u,0

ku︸︷︷︸
1

ª®®®®®®¬
= 0, (3.18)

and

var
[
e tiffI (x)

]
= var

[∑
u,0
(hu − ku) s

tiff
A (x + u)

]
=

∑
u,0
(hu − ku)

2 var
[
s tiffA (x + u)

]
= σ 2 ·

∑
u,0
(hu − ku)

2 . (3.19)



3.2 Statistical Analysis of Demosaicing Traces 45

The expressions (3.14), (3.17), (3.18) and (3.19) constitute the results of Theorem 3.1. �

We find that E
[
e tiff (x)

]
is always equal to 0 for whatever position of x . Meanwhile, when the

estimate of the interpolation kernel ku is close to the original one hu , var
[
e tiff (x)

]
is close to 0 at the

positions of interpolated signal (i.e., var
[
e tiffI (x)

]
→ 0), while it is greater than σ 2 at the positions of

acquired signal as
∑

u,0 k
2
u

∑
v,0 h

2
v ∈ (0, 1] (i.e., σ 2 < var

[
e tiffA (x)

]
≤ 2σ 2). Therefore, the difference

between variances of residues in acquired and interpolated signals can be seen as a useful demosaicing
artifact for TIFF images.

3.2.3 Demosaicing Artifacts in JPEG Images

For storage, the high-quality TIFF image is compressed into JPEG format (see e.g., [196] for the detail
of compression process). If a lossy JPEG compression is applied, the high-frequency components of
8×8 blocks in DCT domain are weakened by quantization which cannot be restored. This results in the
local homogenization of 8×8 blocks in spatial domain. As in [134], we can model such a phenomenon
by mixing the features of the acquired and interpolated signal residues of TIFF image. Let e tiffA and e tiffI
be the representatives of acquired and interpolated signal residues in a certain row of 8 × 8 blocks of
the TIFF image, the associated signal residues in 8 × 8 blocks of the JPEG image can be expressed by

e
jpeg
A = α · e tiffA + (1 − α) · e

tiff
I ,

e
jpeg
I = α · e tiffI + (1 − α) · e

tiff
A ,

(3.20)

where α ∈ [0.5, 1] is a weighting factor related to the compression quality Q . When α = 0.5, e jpegA =

e
jpeg
I = 1

2
(
e tiffA + e

tiff
I

)
; when α = 1, e jpegA = e tiffA and e jpegI = e tiffI . These two configurations correspond

respectively to a very small value (Q < 10) and a very high value (Q = 100) of compression quality.
Let consider now the mean and variance of e jpegA and e jpegI . From (3.20), we derive, by using (3.12)

and (3.13), that
E

[
e
jpeg
A

]
= E

[
e
jpeg
I

]
= 0, (3.21)

and that
var

[
e
jpeg
A

]
= α2 · var

[
e tiffA

]
+ (1 − α)2 · var

[
e tiffI

]
+ 2α (1 − α) · cov

[
e tiffA , e

tiff
I

]
,

var
[
e
jpeg
I

]
= α2 · var

[
e tiffI

]
+ (1 − α)2 · var

[
e tiffA

]
+ 2α (1 − α) · cov

[
e tiffA , e

tiff
I

]
.

(3.22)

Taking the difference between var
[
e
jpeg
A

]
and var

[
e
jpeg
I

]
, we obtain

var
[
e
jpeg
A

]
− var

[
e
jpeg
I

]
= (2α − 1) ·

(
var

[
e tiffA

]
− var

[
e tiffI

] )
. (3.23)

Since var
[
e tiffA

]
≥ var

[
e tiffI

]
and α ∈ [0.5, 1], we find that

0 ≤ var
[
e
jpeg
A

]
− var

[
e
jpeg
I

]
≤ var

[
e tiffA

]
− var

[
e tiffI

]
. (3.24)
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As such, for the image in JPEG format, the difference between residues variances in acquired and
interpolated signals is still a potential demosaicing artifact (i.e., var

[
e
jpeg
A

]
≥ var

[
e
jpeg
I

]
). However, as

α decreases with respect to Q , we can easily derive from (3.22) that this difference becomes weaker
when Q decreases, and is even disappeared when Q < 10 (for which α = 0.5). This phenomenon has
been numerically validated by Li et al. in [134] (see e.g., Figure 3 therein).

From the above analyses, we can conclude that, except some special configurations, the unbal-
ance between the variances of signal residues at acquired and interpolated positions is an inherent
property of digital images in TIFF and JPEG formats with high compression quality. When the im-
age is strongly compressed, the unbalance is less clear. This explains in part why the demosaicing
traces-based approach does not work well with JPEG compressed images.

3.3 Feature Statistics for Demosaiced Images

This section aims at extending the analysis in Section 3.2 to build feature statistics characterizing de-
mosaiced images. To this end, we develop a complete process consisting of the identification of Bayer
CFA pattern, the estimation of interpolation kernel, and the construction of feature statistics mea-
suring the unbalance between the local variances of prediction residues. Especially, only the smooth
region of green channel is considered to avoid perturbations due to edges. The main steps of the pro-

Horizontal gradient regions (1)

Vertical gradient regions (2)

Smooth regions (3)

Pixels classification

Candidate CFA patterns For each

pixel class

Etablish linear 

equation

Solve for interpolation

coefficients

Reinterpolate green

channel using      

to obtain       

Green

channel

Compute error
Find    and                  

that minimizes error

Compute 

prediction residue 

      using

Map on smooth

regions to obtain

Compute weighted

local variance of          
Compute geometric

means of                at lattices

and

Compute 

feature statistic 1
Apply log-transformation

to obtain feature statistic 2

Standardize to obtain

feature statistic 3

CFA 

pattern 

and

interpolation

kernel

identification

Feature 

statistics

construction

Figure 3.1: CFA pattern identification, interpolation kernel estimation, feature statistics construction

cess is schematically illustrated Figure 3.1. In the following, we provide the detailed developments for
the process.
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3.3.1 CFA Pattern and Interpolation Kernel

To avoid the edges effects, we adapt the identification scheme proposed by Swaminathan et al. in [199]
to reveal the CFA pattern and interpolation kernel for the green channel of the considered image. With
a given Bayer’s CFA pattern p ∈ P (see Figure 3.1), we divide the green channel G into three kinds of
regions Ri , i ∈ {1, 2, 3}, based on the gradient features in a local neighborhood such that


R1 = {(x,y) | H (x,y) −V (x,y) ≥ T } : significant horizontal,

R2 = {(x,y) | V (x,y) − H (x,y) ≥ T } : significant vertical,

R3 = {(x,y) | |V (x,y) − H (x,y)| < T } : mostly smooth,

(3.25)

where T is a predetermined threshold, H (x,y) and V (x,y) are respectively the local gradient profile
along the horizontal and vertical directions defined by

H (x,y) = |sR (x,y − 2) + sR (x,y + 2) − 2sR (x,y)| horizontal direction.

V (x,y) = |sR (x − 2,y) + sR (x + 2,y) − 2sR (x,y)| vertical direction,
(3.26)

with sR (x,y) the resulting signal value at location (x,y). For each region Ri , we approximate interpo-
lated signals with a set of linear equations of acquired signals, such that

Aiki = Ii, (3.27)

where Ai , Ii and ki , i ∈ {1, 2, 3}, are the matrix of acquired signals, the vector of interpolated signals,
and the linear interpolation kernel of the region Ri respectively. Solving (3.27) by the well-known
least-squares method gives the following kernel ki

ki =
(
AT
i Ai

)−1
AT
i Ii, (3.28)

where AT
i and A−1

i denote respectively the transpose and inverse of matrix Ai . Next, the obtained
interpolation kernels are then used to reconstruct an estimation Ĝ(p) of the green channelG. We repeat
the above process to derive the reconstruction error for each CFA pattern. The optimal CFA pattern
and interpolation kernel are jointly selected as the combination that yields the lowest reconstruction
error.

3.3.2 Local Weighted Variance of Residues

The analysis in Section 3.2 is done under the assumption of i.i.d. acquired signals. To adapt its results to
the two dimensional green channel of the digital image, we should evaluate the variance of prediction
residues over small (2K + 1)×(2K + 1)windows, in which signal values are expected stationary. When
sharp edges are present in the tested image, they may disturb this stationary property even for small
windows. To overcome this obstacle, we propose using only the smooth region R3 in the computation



48 Digital Image Authentication and Forgery Localization Using Demosaicing Artifacts

of the local variance of residues. By this way, the condition of i.i.d. acquired signals is guaranteed.
More precisely, we first compute the residue of the two dimensional green channel using the in-

terpolated kernel k3 of the region R3

e (x,y) = sR (x,y) −
∑
u,v,0

k3,u,vsA (x + u,y +v) , (3.29)

where sR (x,y) and sA (x,y) denote respectively the resulting and acquired signals at the location (x,y)
of the green channel, and k3,u,v is an element in k3. Then, mapping the residue e (x,y) onto the smooth
region R3, we obtain

e3 (x,y) =


e (x,y) if (x,y) ∈ R3,

0 otherwise.
(3.30)

Following [26], the local weighted mean and local weighted variance of e3 (x,y) within (2K + 1) ×
(2K + 1) windows can be respectively computed as

µe3 (x,y) =
K∑

i,j=−K

αi,je3 (x + i,y + j) , (3.31)

σ 2
e3 (x,y) =

1
c

(
K∑

i,j=−K

αi,je
2
3 (x + i,y + j) − µ

2
e3 (x,y)

)
, (3.32)

where αij are suitable weights given by

αij =
α ′ij∑
i,j α
′
ij

, (3.33)

in which

α ′ij =


W (i, j) if e3 (x + i,y + j) belong to the same class of e3 (x,y) ,

0 otherwise.
(3.34)

W (i, j) is a (2K + 1) × (2K + 1) Gaussian windows centered at (i, j), and c = 1 −
∑K

ij=−K α
2
ij is a scale

factor making the estimator unbiased such that E
[
σ 2
e3 (x,y)

]
= var

[
σe3 (x,y)

]
.

3.3.3 Definition and Efficiency of Feature Statistics

As shown in Section 3.2, the unbalance between residues variances of acquired and interpolated signals
is inherent in demosaiced images. Here, the aim is to develop some feature statistics to expose this
unbalance on the green channel locally. To this end, we first divide the variance map of residues with
size N × N into B × B non-overlapping blocks, where B is a multiple of the length of Bayer’s filter.
Each B × B block is composed of B2

/2 acquired positions at quincunx lattices A, and B2
/2 interpolated

position at complementary quincunx lattices I. Accordingly, we distinguish in a given (m,n) block
Bm,n,m,n = 0, . . . , NB −1, two sets: acquired variances BAm,n and interpolated variances BIm,n. As in [63],



3.3 Feature Statistics for Demosaiced Images 49

each of these sets can be characterized by the geometric mean of their elements

GMBAm,n
=

©­«
∏

m,n∈BAm,n

σ 2
e3 (m,n)

ª®¬
1

B2
/2

and GMBIm,n
=

©­«
∏

m,n∈BIm,n

σ 2
e3 (m,n)

ª®¬
1

B2
/2

. (3.35)

Note that the geometric mean is used instead of the well-known arithmetic mean because it is less
sensitive to extreme values. We can therefore define the unbalance between the local variance of
signal residues at lattices A and I in the block Bm,n by the fraction

Fm,n =
GMBAm,n

GMBIm,n

. (3.36)

By numerical experiments (see e.g., Figure 3.2b, 3.3b and 3.4b), we find that the probability density
function (pdf) of Fm,n,m,n = 0, . . . , NB −1, is positively skewed with long tail on the right. Such a form
does not allows feasible pdf fitting. This is why we apply the log-transformation to Fm,n to favor the
normality

Lm,n = logGMBAm,n
− logGMBIm,n

=
1

B2
/2

∑
m,n∈BAm,n

log
(
σ 2
e3 (m,n)

)
−

1
B2
/2

∑
m,n∈BIm,n

log
(
σ 2
e3 (m,n)

)
. (3.37)

Clearly, the feature Lm,n represents the difference between the arithmetic mean of the logarithm of
variances in the set BAm,n and BIm,n. The mean and variance of Lm,n vary from image to image. To have
a feature statistic independent of image content, Lm,n is standardized

Nm,n =
Lm,n − E

[
Lm,n

]√
var

[
Lm,n

] , (3.38)

so that the mean and variance of Nm,n are fixed to 0 and 1 respectively.
Since all kind of signals (i.e., the entire pixel, its content part, or its noise part) could be used to

compute the feature statistics Fm,n, Lm,n and Nm,n, two questions arise naturally.

1. Which one among the three feature statistics Fm,n, Lm,n and Nm,n is more relevant to characterize
demosaiced images?

2. Which kinds of signals allows the robustest feature statistic?

The following numerical experiments allow to answer to these questions. Let consider the uncom-
pressed color image Berries.png taken from the Image Manipulation Dataset [41], its green channel,
the content part and the noise part are respectively displayed in Figures 3.2a, 3.3a and 3.4a. For each
kind of signals, we compute the local weighted variance map of prediction residues (with K = 3),
and derive the three feature statistics of interest Fm,n, Lm,n and Nm,n (with B = 8). Next, we show
in Figures 3.2b, 3.3b and 3.4b the pdf of Fm,n, Lm,n and Nm,n returned by the kernel density estimation
(KDE) method [23]. Clearly, the pdf forms of Fm,n are uncontrollable for all kinds of signals. For the
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Figure 3.2: Green channel and pdf of feature statistics
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Figure 3.3: Content part and pdf of feature statistics
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Figure 3.4: Noise part and pdf of feature statistics
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pdf forms of Lm,n and Nm,n, the ones obtained from the green channel or its noise part have a nice
bell shape as expected, while the ones computed from the content part have not. The reason is that
the weak demosaicing traces in the content part is easily covered and/or strongly affected by the real
scene data. Meanwhile, for the noise part, although the demosaicing traces is still weak, the energy
of noise is relatively small. So that the portion of demosaicing traces in noise is remarkable. The
energy of pixels in green channel is high, but demosaicing traces therein are also much stronger. Con-
sequently, the demosaicing artifacts given from the green channel are still significant. Compared to
Lm,n, the advantage of Nm,n is that its pdf is independent of image content, and hence more suitable
for detection goal. To find out which one between the green channel and its noise part can provide
robuster Nm,n, we vary the size of B × B blocks and sketch the associated pdf of Nm,n in Figure 3.5.
Clearly, the pdf of Nm,n given from the noise part is less sensitive to the value of B (especially since
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(c) Noise part

Figure 3.5: pdf of Nm,n with respect to B

B = 8). Similar results given by repeating this experiment for various images allow us to confirm that
the feature statistic Nm,n computed from the noise part is robustest.
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Hereafter, except clearly stated, we use Nm,n computed from the noise part as the default feature
statistic. Besides, to simplify the notation, we use a single index instead of double of indices to indicate
the feature statistic (i.e., using Ni to denote the feature statistic associated with the i-th B × B block).

3.4 Image Authentication and Forgery Localization

This section aims to develop a single statistical model based on the feature statistic Ni for both natural
and tampered digital images. Such a model is next used to authenticate digital images and to localize
the tampered regions if any.

3.4.1 Statistical Model of Feature Statistic

As mentioned in Subsection 3.3.3, when the tested image is authentic, Ni is consistent and distributed
following a standard normal distribution N (0, 1). When some regions in the image have been ma-
nipulated by a new content coming either from other regions of the same image (e.g., copy-move
forgery, inpainting forgery), or from another images (e.g., splicing forgery), the demosaicing traces in
these regions are normally different than the remainder of the image. The feature statistic Ni of such
a tampered image is no longer consistent. In this case, we expect that values of Ni come from two
different populations P1 and P2 corresponding to the untampered and tampered regions respectively.
Each region is part of demosaiced images, so Pk , k ∈ {1, 2}, is a normal distribution with mean µk

and variance σk . For simplicity, we also set σ1 = σ2 = σ , because the mean parameters contribute to
the separation between P1 and P2 in most situations. As a result, the population of Ni for an entire
tampered image can be modeled as a normal mixture distribution NM (γ , µ1, µ2,σ ) with pdf

f (Ni ;γ , µ1, µ2,σ ) = (1 − γ ) · f (Ni ; µ1,σ ) + γ · f (Ni ; µ2,σ ) , (3.39)

where γ , 0 ≤ γ ≤ 1, denotes the proportion of the population 2, and f (x ; µk,σ ) standards for the
normal p.d.f N (µk,σ )

f (Ni ; µk,σ ) =
1

σ
√

2π
e−

1
2σ 2 (Ni−µk )

2
. (3.40)

As in [183], to avoid the nonidentifiability of (3.39), we set 0 ≤ γ ≤ 0.5. This implies that the popula-
tion 2 of the model (3.39) is the tampered population P2 under the assumption that tampered regions
are smaller than the remainder of the image. When µ1 = µ2 or γ = 0, the model (3.39) degenerates
into a single normal distribution. By this way, we can also use (3.39) as a model for both authentic
and tampered images.

3.4.2 Estimation of Model Parameters

Given the model (3.39), the next issue is to estimate the parameters γ , µ1, µ2 and σ from the set of
feature statisticsNi . A penalized EMalgorithmhas been developed for this issue. LetN =

{
N1, . . . ,Nq

}
be a set ofq feature statistics sampled from a normalmixture populationNM (γ , µ1, µ2,σ ), its ordinary
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log-likelihood function is given by

lq (γ , µ1, µ2,σ ) =

q∑
i=1

log ((1 − γ ) · f (Ni ; µ1,σ ) + γ · f (Ni ; µ2,σ )) . (3.41)

As proved in [31], lq (γ , µ1, µ2,σ ) → ∞ if µk → Ni and σ → 0 with the other parameters fixed.
This implies that ordinary maximum-likelihood estimator of (γ , µ1, µ2,σ ) is not well-defined [50, 104].
To remedy, Chen et al. [31] propose adding penalty term to the ordinary log-likelihood function.
Such an approach has been proved efficient because of the strong consistency of maximum likelihood
estimators for various penalties on σ [31, 43]. Therefore, we can define a penalized log-likelihood
function as

plq (γ , µ1, µ2,σ ) = lq (γ , µ1, µ2,σ ) + pq (σ ) , (3.42)

where pq (σ ) is the penalty function on σ . To compensate the aforementioned undesirable configura-
tion, we should select pq (σ ) such that it is bounded when σ is large, but goes to −∞ as σ → 0. Chen
et al. [32] have recommended

pq (σ ) = −aq ·

(
s2
q

σ 2 + log
(
σ 2

s2
q

))
, (3.43)

where s2
q =

1
q

∑q
i=1 N

2
i denotes the sample variance (the sample mean N̄ = 1

q

∑q
i=1 Ni is always 0), and

aq is a positive tuning parameter. A large value of aq implies a strong conviction in the prior estimate
of σ [31]. As in the works [33, 97], we choose aq = 1

q .

Until now, the estimation problem returns to find the tuple (γ̂ , µ̂1, µ̂2, σ̂ ) that maximizes penalized
log-likelihood function (3.42). Moreover, we would like to perform a population clustering for the
set of feature statistics N. This is why we try to introduce a vector of binary latent variables Z ={
Z1, . . . ,Zq

}
with Zi = (Zi1,Zi2) indicating the cluster of a sample Ni in N. The variable Zik , k ∈ {1, 2},

is defined as follows

Zik =


1 if Ni is from the population k

0 otherwise
, (3.44)

and
∑2

k=1 Zik = 1. The maximizing the likelihood estimation is now done on the complete data {N,Z}
rather than on the incomplete data only N. As pointed out in [21, page 431], the joint pdfs of Zi and
Ni | Zi are respectively

f (Zi) =

2∏
k=1

γZik
k
, (3.45)

and

f (Ni | Zi) =

2∏
i=1

f Zik (Ni ; µk,σ ) , (3.46)

where γ1 = 1−γ , γ2 = γ , and f (Ni ; µk,σ ) is given from (3.40). Therefore, the complete data likelihood
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function takes the form

f (N,Z) =
q∏
i=1

f (Ni,Zi) =

q∏
i=1

f (Ni | Zi) f (Zi) =

q∏
i=1

2∏
k=1

γZik
k

f Zik (Ni ; µk,σ ) . (3.47)

Taking the logarithm, we obtain the complete data log-likelihood function

lc (γ , µ1, µ2,σ ) =

q∑
i=1

2∑
k=1

Zik ·

(
logγk − logσ − 1

2σ 2 (x − µk)
2 −

1
2 log 2π

)
. (3.48)

Adding pq (σ ), we obtain the complete data penalized log-likelihood function

plc (γ , µ1, µ2,σ ) = lc (γ , µ1, µ2,σ ) + pq (σ ) . (3.49)

We find that plc (γ , µ1, µ2,σ ) can be trivially maximized in closed form. Unfortunately, we do not have
values for the latent variables Z, thus we cannot use directly plc (γ , µ1, µ2,σ ). Instead, we consider
firstly its expected value under the posterior distribution of the latent variables (i.e., E-step of the
EM algorithm). Next, we maximize this expectation (i.e., M-step of the EM algorithm). Such a proce-
dure can be summarized by Algorithm 3.1 (see also Appendix A for the detailed formalization of the
penalized EM algorithm).

3.4.3 Image Authentication and Forgery Localization

The above analyses allow to model the image authentication as a decision problem between two hy-
potheses 

H0 : Ni ∼ N (0, 1) authentic image,

H1 : Ni � N (0, 1) no conclusion.
(3.57)

In reality, dazzling areas or missing color ranges existing on digital images may distort the distribution
ofNi . Therefore, the distribution ofNi does not always have a perfect Gaussian form even for authentic
images. To partially weaken the distortion impacts, we propose regenerating random samples N̂i from
the model (3.39) using the estimated parameters obtained by Algorithm 3.1 (see e.g., [118, page 53] for
a simulation algorithm). Then, we work with N̂i instead of Ni . As such, the problem (3.57) becomes

H0 : N̂i ∼ N (0, 1) authentic image,

H1 : N̂i � N (0, 1) no conclusion.
(3.58)

Normality tests are next carried out to decide if the tested image is authentic or not. In this chapter,
well-known normality tests [224] (i.e., Anderson-Darling test, one-sample Kolmogorov-Smirnov test,
Jarque-Bera test and Lilliefors test) are jointly used to achieve a reliable decision. If all these tests
returnH0, the image is decided to be authentic automatically. Additionally, the authentication can be
done by human interpretation thanks to graphical tools such Q-Q plot, probability distribution curves,
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Algorithm 3.1 Penalized EM algorithm for parameters estimation and clustering

1. I-step: For k = 1, 2, get γ (0) from the k-means algorithm [21, chapter 9], then cluster N, and
compute µ(0)

k
and σ (0)

k
as the maximum likelihood estimates of N (µk,σk)

µ(0)
k
= N̄k =

1
qk

qk∑
i=1

Ni, and σ (0)
k
= sn =

√√
1
qk

qk∑
i=1

(
Ni − N̄k

)2
, (3.50)

where qk is the number of elements of the population k . Set σ (0) = σ (0)
k

if k is the larger popu-
lation.

2. E-step: Given N and the vector of parameters Θ(t) =
(
γ (t), µ(t)1 , µ

(t)
2 ,σ

(t)
)
at the t-th current

iteration, compute

γ (t+1)
i1 =

(
1 − γ (t)

)
f

(
Ni ; µ(t)1 ,σ

(t)
)

(
1 − γ (t)

)
f

(
Ni ; µ(t)1 ,σ

(t)
)
+ γ (t) f

(
Ni ; µ(t)2 ,σ

(t)
) , (3.51)

and

γ (t+1)
i2 =

γ (t) f
(
Ni ; µ(t)2 ,σ

(t)
)

(
1 − γ (t)

)
f

(
Ni ; µ(t)1 ,σ

(t)
)
+ γ (t) f

(
Ni ; µ(t)2 ,σ

(t)
) . (3.52)

3. M-step: Update the set of parameter Θ(t) as follows.

(a) Update γ (t) by

γ (t+1) =

∑q
i=1 γ

(t+1)
i2

q
. (3.53)

(b) Update µ(t)
k
, k ∈ {1, 2} by

µ(t+1)
k
=

∑q
i=1 γ

(t+1)
ik

Ni∑q
i=1 γ

(t+1)
ik

. (3.54)

(c) Update σ (t) by

σ (t+1) =

√
S (t+1) + 2aqs2

q

q + 2aq
. (3.55)

where

S (t+1) =

q∑
i=1

2∑
k=1

γ (t+1)
ik

(
Ni − µ

(t+1)
k

)2
. (3.56)

4. S-step: Stop the EM algorithm whenever the iteration number t exceeds a limited number, or
when the norm



Θ(t+1) − Θ(t)


 is smaller a threshold. Set (γ̂ , µ̂1, µ̂2, σ̂ ) as the final Θ(t+1), and

stock the final γ (t+1)
i1 and γ (t+1)

i2 for feature statistics clustering.
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and localization map.
Regarding the forgery localization, we can decide the belonging of Ni to P1 and P2 from the set

{γi1}i=1,...,q and {γi2}i=1,...,q (see the output of Algorithm 3.1) as follow

Ni ∈


P1 : authentic portion if γi1 > γi2
P2 : tampered portion if γi1 ≤ γi2

, i = 1, . . . ,q. (3.59)

Since each Ni correspond to the i-th B × B block of the tested image, we can therefore derive a binary
map indicating tampered region of the image.

(a) Authentic image (b) Tampered image

Figure 3.6: Authentication and localization results for Berries.png images

For an illustration, we show in Figures 3.6a and 3.6b the authentication and localization results
for an authentic image and a tampered image respectively. For the authentic image, the distribution
of feature statistics is standard normal. Accordingly, with a type 1 error α = 0.05, all the considered
normality tests returnH0, while the points in Q-Q plot diagram follow a linear pattern. This confirms
the authenticity of the image. Looking at the localization map, black and white blocks are equally
mixed overall the image because γ = 0.5, and no concrete form is appeared. For the tampered image,
the distribution of feature statistics is no longer standard normal. All the normality tests return then
H1, and the points in Q-Q plot diagram follow a strongly nonlinear pattern. The outliers of dash
orange line in Q-Q plot diagram correspond to the smaller population in the mixture pdf of feature
statistics. The location map now shows clearly the tampered regions in white and authentic region in
black.

3.5 Numerical Experiments

Image Manipulation Dataset [41], MICC-F600 Dataset [7], Realistic Tampering Dataset [115], and
Columbia Uncompressed Image Splicing Detection Evaluation Dataset [89] are used for numerical
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experiments. Their detailed description can be found in [114]. Through these datasets, we aim at
evaluating the images authentication and forgeries localization ability of the proposed algorithm.

3.5.1 Evaluation Criteria and Benchmark Algorithms

Due to highly imbalanced datasets1, Precision (P ), Recall (R) and F1-Score (F1) are chosen as criteria
for performance evaluation [5]. Precision and Recall are computed from the confusion matrix of True
Positive (TP ), False Positive (FP ), True Negative (TN ) and False Negative (FN ) as

P =
TP

TP + FP
and R =

TP

TP + FN
. (3.60)

A high value of P implies a high probability that detected results are relevant, while a high value
of R means a high probability that relevant results are detected. Obviously, using separately either
Precision or Recall is not enough to evaluate the performance of an algorithm. The harmonic mean of
Precision and Recall, called F1-Score, might be a better measure as it takes a high value when Precision
and Recall are both important

F1 = 2 · P · R
P + R

=
2 ·TP

2 ·TP + FN + FP . (3.61)

The higher F1-Score, the more the algorithm is efficient. Moreover, depending on the authentication
or localization goals, the above measures has their own meanings which are detailed in Table 3.1.

Images authentication (image level) Forgery localization (pixel level)
TP number of authentic images correctly detected number of tampered pixels correctly localized
FN number of undetected authentic images number of unlocalized tampered pixels
FP number of tampered images wrongly detected number of authentic pixels wrongly localized
TN number of undetected tampered images number of unlocalized authentic pixels
P probability that detected images are authentic probability that localized pixels are tampered
R probability that authentic images are detected probability that tampered pixels are localized

Table 3.1: Meaning of performances measures

The performance and robustness of the developed algorithm are assessed through comparative
studies with algorithms proposed by Dirik and Menon in [55], and by Ferrara et al. in [63]. These two
benchmarks are threshold-based algorithms, so their performance depend closely on a threshold τ
used to distinguish between tampered and authentic regions in an image. Meanwhile, the performance
of the developed algorithm is dependent on the threshold T used to determine the smooth region R3.
Besides, the blocks size B is influential in the performance of all the algorithms. So, sensitivity studies
to these factors are necessary. We also note that the two benchmark algorithms focuses on images
forgery localization rather than on images authentication.

1Datasets here refer to authentic and tampered images in the case of image authentication, and to untampered and
tampered pixels in the case of forgery localization
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3.5.2 Authentication Performance

To assess the authentication performance of the proposed algorithm, we first randomly choose a set
of 150 authentic images and 200 tampered images from the 4 above datasets. Next, we apply the
algorithm to obtain TP , FN , FP and TN , and thence compute the measures P , R and F1 according to
(3.60) and (3.61). Such a process is applied to the 2 following sensitivity studies.

• Sensitivity study 1: B takes respectively the value 2, 4, 8, 16 and 32, while T is fixed at 20.

• Sensitivity study 2: B is fixed at 16, and T varies from 10 to 30 with step 5.

Table 3.2 presents the results when the authentication is done automatically by the proposed method.
Clearly, the performance of the automatic authentication is relatively weak. Indeed, despite working

Case study 1 (T = 20)
B 2 4 8 16 32

P (%) 46.02 42.59 37.50 45.59 57.63
R (%) 34.67 30.67 22.00 20.67 22.67
F1 (%) 39.54 35.66 27.73 28.44 32.54

Case study 2 (B = 16)
T 10 15 20 25 30

P (%) 45.33 43.94 45.59 43.42 39.39
R (%) 22.67 19.33 20.67 22.00 17.33
F1 (%) 30.22 26.85 28.44 29.20 24.07

Table 3.2: Results of automatic authentication

on the smooth region R3 instead of on the entire green channel G, and using N̂i rather than Ni , shape
edges and/or strong dazzling areas existing on realistically authentic digital images still distort the
standard Gaussian form of N̂i pdf. As a results, the automatic authentication via normality tests is
less efficient. However, as shown in Table 3.3, the performance is much more improved thanks to
human interpretation of graphic tools (i.e., pdf curves, Q-Q plot, and localization map). To better

Case study 1 (T = 20)
B 2 4 8 16 32

P (%) 59.82 59.45 64.67 61.59 63.64
R (%) 87.33 86.00 79.33 62.00 46.67
F1 (%) 71.00 70.30 71.26 61.79 53.85

Case study 2 (B = 16)
T 10 15 20 25 30

P (%) 63.80 64.15 61.59 62.58 59.73
R (%) 69.33 68.00 62.00 64.67 59.33
F1 (%) 66.45 66.02 61.79 63.61 59.53

Table 3.3: Authentication results given by human interpretation

see how the human interpretation can help, let us introduce an example as in Figure 3.7. The tested
images in Figures 3.7a and 3.7b are respectively authentic and tampered. If only the results returned by
normality tests are taken into account (i.e., automatic authentication), “no conclusion” is decided for the
first image, while “authentic image” is decided for the second one. They are obviously wrong decisions.
Nevertheless, if we look more at the pdf curves, the Q-Q plot, and mostly at the localization map, it
is not hard to decide that the first and second tested images are authentic and tampered respectively,
which is actually true. As such, the human interpretation can help to improve the performance of
image authentication.

Looking at the values of F1-Score in Tables 3.2 and 3.3, we also find the importance of B and T .
The increasing of blocks size B leads to smaller samples set in constructing pdf of N̂i . Meanwhile, by
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(a) Authentic image (b) Tampered image

Figure 3.7: Authentication and localization results for digital images

settingT at a high value, more edges are allowed in the computation of Ni . So, it is not surprising that
the authentication performance decreases in these configurations of T and B.

3.5.3 Localization Performance

Regarding the localization, the aim is to find out (i) which kinds of forgeries could be localized by the
proposed algorithm, and (ii) how good is the proposed algorithm compared to algorithms of the same
kind. Tampered images in Image Manipulation Dataset [41] and Realistic Tampering Dataset [115]
are used in numerical experiments because of various kinds of forgeries therein. Moreover, binary
ground truths are also provided.

To reply to the first issue, we use the proposed algorithm (with T = 20 and blocks size B = 8)
to derive location maps, and thence compare them with the associated ground truths. We also apply
the algorithms proposed by Dirik and Menon [55], and by Ferrara et al. [63] to obtain benchmark
location maps. As illustrated in Figure 3.8, various kinds of forgeries are successfully localized by our
algorithm. Clearly, localization maps returned by our algorithm and Ferrara et al.’s algorithm are
closer to ground truths, and more confident than Dirik and Menon’s algorithm. When zooming in
the localized areas, our algorithm allows better resolution and higher fidelity than the Ferrara et al.’s
algorithm. We will understand more deeply the reason through a quantitative study for the second
issue in the following. Moreover, the use of Ferrara et al.’s algorithm is more complicated in practice
because a subjective threshold is required to distinguish tampered and authentic region. Figure 3.9
shows some configurations that forgeries are not successfully localized. For cloning forgery (first line
of Figure 3.9), a part of tampered region is missing because it have the same alignment of CFA pattern
as the original image. Especially, the localization is completely failed (see second line and third line of
Figure 3.9), if tampered images undergo additional post-processing (e.g., JPEG compression with low
quality, down-sampling, etc.).

To reply to the second issue, we first apply the 3 considered algorithms to compute localization
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Figure 3.8: Examples of successful forgery localization by the proposed algorithm

Figure 3.9: Examples of unsuccessful forgery localization by the proposed algorithm

maps for two image sets associated with the Image Manipulation Dataset [41] and the Realistic Tam-
pering Dataset [115] respectively. Each set consists of 20 random tampered images. From the localiza-
tion maps and corresponding ground truths, we can derive TP , FN , FP , TN , and therefore compute
P , R and F1. A comparative study on F1-Scores allows to evaluate the performance of the proposed
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Figure 3.10: Image Manipulation Dataset [41]

algorithm, as well as of the two benchmarks. Similarly to Section 3.5.2, two sensitivity studies are
considered.
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Figure 3.11: Realistic Tampering Dataset [115]

• Sensitivity study 1: B is fixed at 16, the values of τ and T vary. The threshold T in our algo-
rithm takes value in the interval [2, 52], while the threshold τ in the benchmark algorithms
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takes value from the minimum to the maximum of variance maps. Note that, different variance
maps of different images yield different ranges of values for τ . For comparison purpose, the
thresholds value is further translated into percentage of associated intervals. Note that 0% and
100% correspond respectively to the minimum and maximum of each interval.

• Sensitivity study 2: The thresholds τ and T are fixed at 60% of ranges of values, and B varies
from 2 to 40 with step 2.

Figures 3.10 and 3.11 show the results of these two studies when tested images are given from the
Image Manipulation Dataset and Realistic Tampering Dataset respectively. In each figure, the sub-
figures on the left and on the right display the evolution of P , R and F1 with respect to % of decision
threshold and to B. In all cases, we find that the F1-Score of the proposed algorithm is more stable
at higher value than the benchmarks. This implies that our algorithm is more efficient and robuster.
Looking at the diagrams of P and R, we find that the high F1-Score of our algorithm mostly comes
from the high value of P , because the values of R are more or less similar in the three algorithms. This
results also mean that our algorithm allows a high probability that localized pixels are tampered, while
the benchmark algorithms do not. This is totally consistent with the nature of non-threshold-based
and threshold-based localization algorithms.

3.6 Conclusion

We develop in this chapter an improved algorithm for digital image authentication and forgery local-
ization by jointly use the color filter array pattern identification, demosaicing algorithm estimation,
and the local statistical analysis of demosaicing artifacts in spatial domain. A new feature statistic
less sensitive to the edges problem is thus built to characterize demosaiced images. By modeling
such feature statistics by a single normal mixture model for both tampered and untampered images,
four well-known normality tests (i.e., Anderson-Darling test, one-sample Kolmogorov-Smirnov test,
Jarque-Bera test and Lilliefors test) are employed to automatically authenticate digital images. Numer-
ical experiments on the four well-known datasets shows that the performance of automatic authenti-
cation is relatively low, but can be much more improved thanks to human interpretation of supported
graphic tools (i.e., Q-Q plot diagram, probability distribution curves, and localization map). Regarding
the forgery localization, we propose a penalized EM algorithm to automatically distinguish between
authentic and forged regions of a tampered image without any requirement on comparison thresholds
as in most existing localization algorithm. Such a method is proved to be more effective and robuster
by numerical examples.





Chapter 4

Framework of JPEG DCT Coefficients
Modeling and Forgery Localization

4.1 Introduction

Joint Photographic Experts Group (JPEG) is a lossy compression standard allowing a trade-off between
memory size and visual quality for digital still images [213]. It is nowadays adopted by default in
most digital cameras and Web services (e.g., social networks, photo galleries, etc.). However, this
popularity also makes JPEG images to be the target of malicious attacks. This motivates us to develop
in this chapter a reliable forensic tool to restore some trust to JPEG images. More especially, we
are interested in the statistical modeling of discrete cosine transform (DCT) coefficients as the DCT
is the basis of JPEG. Furthermore, our choice is to study these coefficients in their raw form rather
than in modified forms as in some existing works (e.g., first and second significant digits of AC DCT
coefficients [109], Benford-Fourier coefficients [166], etc.). To figure out better the problems to be
dealt with, let us begin with an analysis of existing statistical models of AC DCT coefficients for JPEG
images.

4.1.1 Prior Art

A great deal of effort has been put in building statistical models for primary unquantized AC DCT
coefficients of original JPEG natural images. The pioneer is perhaps Pratt who fitted the statistical
properties of primary unquantized AC DCT coefficients with a normal distribution (ND) four decades
ago [177, chapter 10]. The choice of ND is conducted by the well-known central limit theorem. After-
wards, various empirical models have been proposed and verified by goodness-of-fit tests on standard
images. For instance, Reininger and Gibson [188] relied on Kolmogorov-Smirnov (KS) tests to con-
firm that the Laplace distribution (LD) is more suitable than the ND for most images. Based on χ 2

tests, Müller [157] claimed that the generalized normal distribution (GND) approximates the statistics
of unquantized AC DCT coefficients better than the LD. Using the same goodness-of-fit tests, Chang
et al. recently reported in [30] that the generalized Gamma distribution (GGD) outperforms the LD
and the GND. Cauchy distribution [56], α-stable distribution [24] and transparent composite model
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[222] are other options. The main drawback of the above empirical models is the lack of mathematical
foundation which makes their accuracy and robustness in question when applying to a wide range of
images. To remedy this obstacle, Lam and Goodman analytically analyzed in [122] the statistical prop-
erties of unquantized AC DCT coefficients with respect to the variation of their block variance. They
proved that these coefficients are reasonably modeled by a zero-mean ND when the block variance
is fixed. However, as this variance is actually random for a JPEG natural image, a compound normal
distribution1 (CND) should be rather used. Such a distribution has been further extended in [158] by
taking into account different flexible distributions for block variance. Yet, mathematical justifications
for the block variance model were still missing till the appearance of the paper of Thai et al. [206].
They showed that the block variance of a JPEG natural image can be asymptotically approximated
by a two-parameter Gamma distribution. This model is further applied in [207] and [189] to identify
cameras model and estimate the quality factor of JPEG images respectively.

Statistical models of quantized AC DCT coefficients can be developed from the ones of primary
unquantized coefficients by analyzing the JPEG compression chain. They can be classified according to
the compression history of JPEG images. For single-compressed JPEG images, Qiao et al. characterized
the quantized AC DCT coefficients by a LD in [178], and applied it to detect hidden information
embedded by JSteg algorithm. A similar model was also adopted by Stamm and Liu in [198] to remove
traces left by JPEG compression. Othermodels based onGND, GGD andCND can be found in [45, 206].
Compared to first quantized AC DCT coefficients, statistical models for the second ones are much
scattered. In [220] and [204], those models are developed based on LD and CND respectively. Both
of them are applied to estimate the first quantization steps in double-compressed JPEG images. For
higher compression cycles, we found the works of Li et al. who developed statistical models for JPEG
noises to retrieve the JPEG compression history in [132] and to distinguish between uncompressed
and decompressed images in [131].

Besides original JPEG images, there exit tampered JPEG images whose original content has been
modified by some localized forgery techniques such as splicing, cloning, cropping, etc. [114]. In such
images, the forged and unmodified areas usually exhibit the properties of single and double JPEG com-
pression respectively [171]. This is why mixture models are appropriate to statistically describe their
AC DCT coefficients. In [18], Bianchi et al. used a two-components mixture model to approximate
the histogram of quantized AC DCT coefficients of a tampered JPEG image. The mixing parameters
was estimated by a simple Expectation-Maximization (EM) algorithm. The parameter estimation was
further improved in [226] by exploiting the smoothness of the model likelihood function. Another im-
provement was proposed in [233] where quantization noise is eliminated before solving the mixture
histogram model. More recently, Xue et al. developed in [221] a mixture model based on normal-
ized gray level co-occurrence matrix to localize tampering in JPEG images. Such a model can take
advantage of not only the double quantization effect inherent in tampered JPEG image but also the
correlation among adjacent DCT blocks. If the aforementioned models are a mixture of the histograms
of quantized AC DCT coefficients, Wang et al. developed in [217] an associated parametric mixture
model whose components are derived from the LD of the primary unquantized coefficients.

1Also called doubly stochastic model in [122].
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4.1.2 Contributions and Organization

Through the above literature analysis, we find that statistical models developed for DCT coefficients of
tampered JPEG images are still scattered and mostly limited to double quantization effect. Meanwhile,
in many practical scenarios, images might be JPEG compressed several times (e.g., photos uploaded
on blogs, online photo galleries, etc. [155]) before manipulated and saved again in JPEG format. Ob-
viously, such images cannot be accurately characterized by aforementioned models. Therefore, our
goal is to extend them to better deal with tampered JPEG images subject to multiple quantization ef-
fect. Furthermore, our choice is to study the DCT coefficients in their raw form directly rather than
in modified forms as in some related works (e.g., first and second significant digits of DCT coeffi-
cients [109], Benford-Fourier coefficients [166], etc.). Consequently, we follow the JPEG compression
process and the effects of manipulation operations on the DCT coefficients to develop a parametric
statistical modeling framework for tampered JPEG images, and subsequently apply it to forgery local-
ization. Although the modeling approach and forgery localization technique are relatively similar to
some works in the literature (see e.g., [18, 217]), several significant improvements and contributions
have been made.

1. We proposed a generalized modeling framework rather than a concrete model for DCT coef-
ficients of tampered JPEG images. The framework allows to recursively derive any statistical
model from a known distribution of primary unquantized DCT coefficients. By this way, the
rich literature of primary unquantized DCT coefficients models is inherited to build a relevant
statistical model that best fits with the histogram of quantized DCT coefficients of tampered
JPEG images.

2. To describe the distribution of DCT coefficients of tampered JPEG images, most existing works
relied on the family of mixture models. Nevertheless, no clear explanation has been given yet.
For instance, how many components should be taken into account in the model is still an open
issue. In this chapter, starting with a mixture of multiple components, we proved analytically
that the histograms of quantized DCT coefficients of tampered JPEG images can be properly
approximated by a two-components mixture model regardless of the number of forged areas in
the images. The accuracy of such a simplified model is numerically assessed by the Kullback-
Leibler divergence on various image databases.

3. About the forgery localization technique, we also relied on the Expectation-Maximization (EM)
algorithm as in most related works. However, instead of estimating all the parameters of the
model in the same time, we proposed to estimate the parameters of component’s distribution,
and the set of quantization steps and mixing coefficients separately. The former is estimated
from recovered unquantized DCT coefficients of tampered JPEG images [68] by maximum likeli-
hood (ML) estimation method, while the latter is obtained by applying the EM algorithm to the
associated quantized DCT coefficients. This allows to speed up the forgery localization process.

Numerous numerical experiments under various configurations also confirms that our generalized
modeling framework yields very promising performances when dealing with tampered JPEG images
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subject to multiple quantization effect.
The remainder of this chapter is organized as follows. Section 4.2 focuses on developing a gener-

alized statistical modeling framework for DCT coefficients of both the authentic and tampered JPEG
images. The framework validation and accuracy assessment are performed in Section 4.3. In Section
4.4, we apply the developed framework in forgery localization for tampered JPEG images and evalu-
ate its performance following the F1-score. Section 4.5 concludes the chapter. The models for primary
unquantized DCT coefficients used in this chapter is also provided in Appendix B.

4.2 RecurrentModeling Framework For JPEGDCTCoefficients

Let consider the tampering scenario where an authentic JPEG image which has undergone i − 1 com-
pression times, i ≥ 2, after some localized manipulation, is saved again without resizing in JPEG
format with quality factorQFi to generate a tampered JPEG image. The manipulation may be a splic-
ing, a cloning or some post-processings (e.g., resize, rotation, etc.), that disrupt quantization structure
of forged areas. So, after the last JPEG compression, the associated DCT coefficients likely present
properties of a single compression with quality factor QFi . Meanwhile, the DCT coefficients of the
unmodified area exhibit properties of i compression times. Therefore, we first analyze the JPEG com-
pression chain to find the statistical distributions of DCT coefficients at any compression cycle of
authentic JPEG images. These distributions are next combined in a finite mixture paradigm to ap-
proximate the histogram of DCT coefficients of tampered JPEG images. A simplified version of this
model is also proposed for practical uses.

4.2.1 Authentic JPEG Images

Generally, the main processing steps in a JPEG compression chain can be classified into two phases:
encoding and decoding [213].

• In encoding phase, the uncompressed integer image I is first converted to a real floating-point
representation W. Subdividing W into blocks 8 × 8 pixels and applying DCT operations to
each of blocks separately, we obtain the unquantized DCT representation X of image with real
coefficients. X is next quantized with a quantization table Q to yield the quantized DCT rep-
resentation Y with integer coefficients. Finally, a lossless entropy encoding is applied on Y to
generate the associated compressed image in JPEG format.

• The decoding phase is the reverse of the encoding phase. An entropy decoding is first applied
on the compression image JPEG to return the quantized DCT representation Ỹ with integer
coefficients. Ỹ is next dequantized using the same quantization table Q as in the encoding phase
to yield the dequantized DCT representation X̃ with integer coefficients. Applying inverse DCT
on X̃, we get a new real floating-point representation W̃ in spatial domain. The decoding phase
ends with rounding and truncating operations on W̃ to obtain a decompressed image Ĩ.
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From the above description, we can define the i-th JPEG compression cycle as the process between
two unquantized DCT representations X(i) and X(i+1), and schematize its processing diagram as in
Figure 4.1a. Since this diagram is not convenient for statistical modeling, we propose to further sim-
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Figure 4.1: Main steps of the i-th JPEG compression cycle

plify this diagram by ignoring meaningless operations such as the entropy coding and decoding, the
truncation effect, etc. It results in logical diagram as in Figure 4.1b. In this diagram, the capital letters
X (i), Y (i) and X̃ (i) stand for the random unquantized, quantized and dequantized DCT coefficients at a
given frequency, while the smaller letters x (i), y(i) and x̃ (i) are the associated realizations. The random
rounding error R(i) in spatial domain correspond to the random error E(i) in DCT domain with real-
ization e(i). Finally, the notation q(i) denotes the quantization step associated with the compression
quality factorQF (i). Note that the considered frequency is ignored from the above notations to further
simplify. Based on the logical diagram in Figure 4.1b, we would like to statistically characterize the
DCT coefficients Y (i), X̃ (i) and X (i+1) from the distribution of X (i).

Passing through the quantization operation with stepq(i), the continuous random variableX (i) ∈ R
becomes the integer random variable Y (i) ∈ Z, such that

Y (i) =

⌊
X (i)

q(i)

⌉
, (4.1)

where ⌊·⌉ denotes the nearest integer rounding. This leads to the following equivalence{
Y (i) = y(i)

}
⇔

{
X (i) ∈

[
q(i)y(i) −

q(i)

2 ,q
(i)y(i) +

q(i)

2

)}
. (4.2)

We can therefore compute the probability mass function (pmf) of Y (i) at y(i) as

pY (i)
(
y(i);θ , q(i)

)
= FX (i)

(
q(i)y(i) +

q(i)

2 ;θ , q(i−1)
)
− FX (i)

(
q(i)y(i) −

q(i)

2 ;θ , q(i−1)
)
, (4.3)

where FX (i)(x
(i);θ , q(i−1)) denotes the cumulative distribution function (cdf) of the unquantized DCT

coefficient X (i) at x (i) ∈ R with the model parameter θ and the set of quantization steps q(i−1) =
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q(1), . . . ,q(i−1)

)
of i − 1 previous JPEG compression cycles.

Dequantizing Y (i) with the same step q(i), we obtain the integer random variable X̃ (i) such that

X̃ (i) = q(i) · Y (i), (4.4)

where X̃ (i) ∈ Zq(i) , q(i) × Z =
{
0,±q(i),±2q(i),±3q(i), . . .

}
. Using (4.3), the pmf of X̃ (i) at x̃ (i) is given

by

pX̃ (i)
(
x̃ (i);θ , q(i)

)
= FX (i)

(
x̃ (i) +

q(i)

2 ;θ , q(i−1)
)
− FX (i)

(
x̃ (i) −

q(i)

2 ;θ , q(i−1)
)
, (4.5)

where x̃ (i) ∈ Zq(i) .
Now, passing through the successive {IDCT, Rouding, DCT} operations, X̃ (i) ∈ Zq(i) becomes

X (i+1) ∈ R. We can therefore express the continuous random variable X (i+1) as

X (i+1) = DCT
( ⌊
IDCT

(
X̃ (i)

)⌉)
= DCT

(
IDCT

(
X̃ (i)

)
+ R(i)

)
= X̃ (i) + E(i), (4.6)

where R(i) denotes the error introduced by rounding the output values to 8 bit integers in the spatial
domain, and E(i) = DCT

(
R(i)

)
∈ R is the associated rounding error in DCT domain. It is widely

admitted in the literature (see e.g., [143]) that E(i) follows a zero-mean normal distribution (ND) with
variance 1

12 (i.e., E(i) ∼ N
(
0, 1

12
)
). So, the cdf and pdf of E(i) at e(i) are respectively by

FE(i)
(
e(i)

)
= Φ

(
e(i)
√

12
)

and fE(i)
(
e(i)

)
=
√

12φ
(
e(i)
√

12
)
, (4.7)

where Φ (z) and φ (z) stand for the cdf and pdf of standard ND such that

Φ (z) =
1
√

2π

∫ z

−∞

e−
u2
2 du and φ (z) =

1
√

2π
e−

1
2z

2
. (4.8)

We can now compute the cdf of X (i+1) at x (i+1) from (4.6) by

FX (i+1)

(
x (i+1);θ , q(i)

)
=

∑
x̃ (i)∈Zq(i)

Φ
((
x (i+1) − x̃ (i)

) √
12

)
×

(
FX (i)

(
x̃ (i) +

q(i)

2 ;θ , q(i−1)
)
− FX (i)

(
x̃ (i) −

q(i)

2 ;θ , q(i−1)
))
, (4.9)

where Φ (·) is given by (4.8). Differentiating FX (i+1)

(
x (i+1);θ , q(i)

)
with respect to x (i+1), we obtain the

pdf of X (i+1) at x (i+1) as

fX (i+1)

(
x (i+1);θ , q(i)

)
=
√

12
∑

x̃ (i)∈Zq(i)

φ
((
x (i+1) − x̃ (i)

) √
12

)
×

(
FX (i)

(
x̃ (i) +

q(i)

2 ;θ , q(i−1)
)
− FX (i)

(
x̃ (i) −

q(i)

2 ;θ , q(i−1)
))
, (4.10)
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with φ (z) given from (4.8).
Equations (4.3), (4.5), (4.9) and (4.10) constitutes the recurrent framework to derive statistical mod-

els for all kinds of DCT coefficients of an authentic JPEG image. In other words, we can recursively
obtain the statistical law of any coefficient if the cdf FX (1)

(
x (1);θ

)
(or the pdf fX (1)

(
x (1);θ

)
) of primary

unquantized DCT coefficients X (1) is known. Also, some well-known statistical models of X (1) can be
found in Appendix B.

4.2.2 Tampered JPEG Images

Consider now a tampered JPEG image with K forged areas, the pmf of its quantized DCT coefficients
Y at y is naturally described by the mixture model

pY
(
y;ΘK ,ΛK , q(i)

)
= λ0 · pY (i)

(
y;θ 0, q(i)

)
+

K∑
k=1

λk · pY (1)
(
y;θk,q(i)

)
, (4.11)

whereΘK = (θ 0,θ 1, . . . ,θK ) stands for the set of parameters of unmodified andK forged areas respec-
tively, ΛK = (λ0, λ1, . . . , λK ), with λk > 0 and

∑K
k=0 λk = 1, denotes the set of corresponding mixing

coefficients. The pmf pY (i)
(
y;θ 0, q(i)

)
implies that the unmodified area characterized by the parame-

ter θ 0 has been undergone i JPEG compression times with quantization steps q(i) =
(
q(1), . . . ,q(i)

)
.

Meanwhile, pY (1)
(
x ;θk,q(i)

)
, k = 1, . . . ,K , means that K forged areas characterized by the parameters

λk have been likely compressed once with quantization step q(i) regardless of the compression history
of their source [138]. Both pY (i)

(
y;θ 0, q(i)

)
and pY (1)

(
y;θk,q(i)

)
can be obtained by the recurrent mod-

eling framework in Subsection 4.2.1. Despite its natural interpretation, the model (4.11) faces with
two main drawbacks. Firstly, the number of forged areas K is unknown in practice. Although some
unsupervised learning techniques of finite mixture models (see e.g., [66] and references therein) can
help, they are usually inefficient in the case of DCT coefficients because of very similar distributions
of components. Therefore, how to identify K is still an open issue. Secondly, even if K is already
known, a large number of model parameters (i.e., ΘK , ΛK and q(i)) are obviously not easy to deal with.
To overcome these obstacles, a simplification of model (4.11) is proposed hereinafter.

To start with, we characterize the statistical properties of primary unquantized DCT coefficients
associated with the considered tampered JPEG image. Similarly to (4.11), their pdf is given by

fX (1) (x ;ΘK ,ΛK ) = λ0 · fX (1) (x ;θ 0) +
K∑
k=1

λk · fX (1) (x ;θk) , (4.12)

where fX (1) (x ;θ 0) and fX (1) (x ;θk), k = 0, . . . ,K , represent the same pdf form of primary unquan-
tized AC DCT coefficients for the unmodified area and K forged areas respectively. As fX (1) (x ;θ 0)

and fX (1) (x ;θk) are unknown in practice, we should find another way to express fX (1) (x ;ΘK ,ΛK ). In-
spired by the work of Fridrich et al. [68], we follow the recovery process of primary unquantized AC
DCT coefficients in Figure 4.2. Firstly, we decode the tampered JPEG image, then crop r rows and c
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Figure 4.2: Recovery process of primary unquantized AC DCT coefficients

columns, 1 ≤ r , c ≤ 7, in the spatial domain to break the quantized structure, and finally convert the
cropped image again in DCT domain to recover unquantized DCT coefficients. From such recovered
coefficients of the considered tampered JPEG image, we can get an approximation of fX (1) (x ;ΘK ,ΛK ).
We also note that similar results are obtained when the cropping in the above method is replaced by a
slight amount of rotation or resizing. Besides, the wavelet denoising method proposed in [88] could be
used for the same purpose. Although no analytical proof is given for this method, numerous numeri-
cal experiments show that its performance is well adequate [112]. In other words, fX (1) (x ;ΘK ,ΛK ) can
be properly approximated by a single parametric distribution as

fX (1) (x ;ΘK ,ΛK ) ≃ fX (1)
(
x ; θ̂

)
, (4.13)

where θ̂ is estimated from recovered unquantized DCT coefficients by a classical estimation method
(e.g., the ML method described in Appendix B). Intuitively, we can explain in part this phenomenon
by the similarity in the pdf forms of unquantized AC DCT coefficients and by small portion of forged
areas (see also Figure 4.5). Besides, the image cropping has almost no effect on the portions λ0, . . . , λK

of unmodified and forged areas. Of course, the approximation quality depends closely on the flexibility
of the considered probability law. Mimicking (4.12), we rewrite (4.13) in the form

fX (1) (x ;ΘK ,ΛK ) ≃ λ0 · fX (1)
(
x ; θ̂

)
+

K∑
k=1

λk · fX (1)
(
x ; θ̂

)
= λ0 · fX (1)

(
x ; θ̂

)
+ (1 − λ0) · fX (1)

(
x ; θ̂

)
, (4.14)

as
∑K

k=0 λk = 1. Therefore, an approximation of (4.11) is given by

pY
(
y;ΘK ,ΛK , q(i)

)
≃ λ0 · pY (i)

(
y; θ̂ , q(i)

)
+ (1 − λ0) · pY (1)

(
y; θ̂ ,q(i)

)
, pY

(
y; θ̂ , λ0, q(i)

)
. (4.15)

We can remark that the simplified model (4.15) allows to bypass difficulties inherent in the models
(4.11): the model is now invariant irrespective of the number of source images causing forged areas K ,
and the parameters is now limited and can be estimated easily. The price paid for this simplicity is
that we can no longer rely on the component’s parameters (i.e., θ 0, . . . ,θK ) to distinguish between
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unmodified and forged areas, and the difference in their quantization effects is the only measure for
their distinction (see also Subsection 4.4.2).

4.3 Framework Validation and Accuracy Assessment

The goals of this section are two-fold: (i) numerical validation of the modeling framework when pri-
mary unquantized AC DCT coefficients are respectively modeled by the Laplace distribution (LD),
the generalized normal distribution (GND), the generalized gamma distribution (GGD), and the com-
pound normal distribution2 (CND) (see also Appendix B for more details), and (ii) accuracy assessment
of the simplified model (4.15) under different configurations of tampered JPEG images. In all cases,
the evaluation is performed via the Kullback-Leibler (K-L) divergence.

4.3.1 Dataset Building

For numerical experiments, we built a tampered image dataset from 6 well-known uncompressed
color image databases with different image sizes: McMaster [230] (500 × 500), Standard and CSIQ
[123] (512 × 512), Kodak3 (768 × 512), McGill [162] (768 × 576) and Realistic [115] (1920 × 1080). For
each database, images are randomly JPEG compressed one or multiple times (by e.g., using imwrite
function in Matlab). These images are next combined together following the portions λ0, . . . , λK such
that

∑K
k=0 λk = 1, and saved again in JPEG format to generate tampered JPEG images. The combination

technique is either cloning or splicing so that the DCT grid of forged areas is misaligned with the one
of the host image. Figures 4.3a and 4.3b illustrate respectively two typical examples of tampered JPEG
images when the quality factor of the last JPEG compression isQF3 = 70 andQF3 = 90 respectively. In

Double {80, 70}

Single {70}

Triple {70, 80, 70}Triple {70,80,70}

Double {80,70}

Single {70}

(a) QF3 = 70

Triple {70,80,90}

Double {80,90}

Single {90}

(b) QF3 = 90

Figure 4.3: Two typical examples of tampered JPEG images

both cases, the same source images are given from the Standard database: a double JPEG image (given
by successively compressing Baboon.png with quality factors 70 and 80), a single JPEG image (given

2Also called doubly stochastic model in [122].
3http://r0k.us/graphics/kodak/

https://fr.mathworks.com/help/matlab/ref/imwrite.html
http://r0k.us/graphics/kodak/
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by compressing Peppers.pngwith quality factor 80), and an uncompressed image (Airplane.png). After
pasting a square area of Peppers and Airplane with ratios λ1 = 0.16 and λ2 = 0.09 to Baboon, and
next compressing with quality factor 70 and 90 respectively, we obtain the tampered images. These
two tampered images will be used hereafter for other numerical illustrations.

The compression number i of unmodified area, the associated quality factors (QF1, . . . ,QFi), the
number of forged areas K and their portions λ1, . . . , λK define a configuration of tampered JPEG im-
ages. In our numerical experiments, each concrete configuration is experimented on 720 images (i.e.,
120 images for each of 6 aforementioned databases). Since 36 configurations are studied in Subsections
4.3.2 and 4.4.2, we built in total 25920 tampered JPEG images. Some of them are displayed in Figure
4.4.

Figure 4.4: Examples of tampered JPEG images extracted from the built dataset (from left to right:
McMaster, Stand, CSIQ, Kodak, McGill, Realistic)

4.3.2 Framework Validation

The approach to validate the modeling framework is to compare the empirical pmf of quantized AC
DCT coefficients p̂Y (y) with their true and simplified models pY

(
y;ΘK ,ΛK , q(i)

)
and pY

(
y; θ̂ , λ0, q(i)

)
.

The parameters ΘK and θ̂ in these models are respectively estimated from uncompressed source im-
ages and tampered image using the ML method described in Appendix B. Meanwhile, for simplifica-
tion, ΛK and q(i) are merely assumed known (an EM algorithm will be introduced in Section 4.4 to find
their estimates).

Let continue with the two tampered JPEG images in Figures 4.3a and 4.3b, we would like to study
the pmf of their quantized DCT coefficients at the 2nd AC frequency4 under the assumption that the
associated primary unquantized DCT coefficients follow a GGD such that X (1) ∼ GGD (α, β,γ ). To
this end, we specify the model parameters as in Table 4.1, and sketch in Figures 4.5a and 4.5b the
pdf of primary unquantized coefficients X (1) when QF3 = 70 and QF3 = 90 respectively. In each
figure, the pdf associated with source images fX (1) (x ;θk), k = 0, 1, 2, are represented on top, while
the ones related to tampered image fX (1) (x ;Θ2,Λ2) and fX (1)

(
x ; θ̂

)
are represented at the bottom.

Table 4.1 shows clearly that for whatever QF3, the values of θ̂ estimated from tampered JPEG images
are closed. Moreover, as displayed in Figures 4.5a and 4.5b, the mixture fX (1) (x ;Θ2,Λ2) can be well
approximated by a single pdf fX (1)

(
x ; θ̂

)
. This confirms our conjecture in (4.13). Now, we sketched

in Figures 4.6a and 4.6b the pmf of the associated quantized coefficients. In each figure, the true pmf
pY

(
y;Θ2,Λ2, q(3)

)
on top, and the simplified pmf pY

(
y; θ̂ , λ0, q(3)

)
are displayed at the bottom. Both of

them well match the empirical pmf p̂Y (y). Such a similarity justifies the correctness of the developed
4The position (2, 1) of 8 × 8 DCT blocks
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uncompressed source image tampered JPEG image
parameters Baboon Peppers Airplane QF3 = 70 QF3 = 90

α̂ 1.0709 8.8860 4.5465 1.5142 1.6037
β̂ 44.4930 0.0014 0.1002 21.8281 19.2895
γ̂ 0.9230 0.2296 0.2834 0.6886 0.6657
q(3) − − − 7 2

others λ0 = 0.75, λ1 = 0.16, λ2 = 0.09, q(1) = 7, q(2) = 5

Table 4.1: Θ2 = (θ 0,θ 1,θ 2), θ̂ =
(
α̂, β̂, γ̂

)
, Λ2 = (λ0, λ1, λ2) and q(3) =

(
q(1),q(2),q(3)

)
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Figure 4.5: Shapes of fX (1) (x ;Θ2,Λ2) and fX (1)
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Figure 4.6: Shapes of p̂Y (y), pY
(
y;Θ2,Λ2, q(3)

)
and pY

(
y; θ̂ , λ0, q(3)

)
modeling framework for tampered JPEG images. We note that various numerical experiments on other
JPEG tampered images give the same conclusions.
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The developed framework requires a suitable pdf for primary unquantized DCT coefficients. We
would like to find out which one among the well-known LD, GND, GGD and CND allows the most
accurate model for tampered JPEG images. We use therefore the K-L divergence to evaluate the dif-
ferences in the empirical pmf p̂Y (y) and its models pY (y;Θ)

DKL (p̂Y (y) ∥ pY (y;Θ)) =
∑
y∈Z

p̂Y (y) · ln
(

p̂Y (y)

pY (y;Θ)

)
, (4.16)

where pY (y;Θ) is given from either the true model (4.11) or the simplified model (4.15). This choice
is motivated by a good compromise between the fitness of the main portion and the fitness of the
tail part returned by the K-L divergence [222]. More precisely, the evaluation is performed on 720
tampered JPEG images with 2 forged areas: one from an uncompressed image with portion λ1 = 0.09
and another from a single JPEG image with quality factor 80 and portion λ2 = 0.16. The host image
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Figure 4.7: Average K-L divergence for different pdf of primary unquantized AC DCT coefficients

is double compressed with quality factors 70 and 80, and the JPEG compression after manipulation
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is with quality factor QF3 = 90. By varying the AC frequency of quantized AC DCT coefficients
from 1 to 63 in zig-zag order and considering respectively LD, GND, GGD and CND as model for
primary unquantized coefficients, we sketch in Figures 4.7a, 4.7b and 4.7c the average K-L divergences
D̄KL

(
p̂Y (y) ∥ pY

(
y;Θ2,Λ2, q(3)

))
, D̄KL

(
p̂Y (y) ∥ pY

(
y; θ̂ , λ0, q(3)

))
, and their absolute difference ∆D̄KL

respectively. In these figures, a lower curve correspond to a higher accuracy. As such, the GGD-
based models and LD-based models are respectively the best and the worse. The models based on
GND and CND are also good alternatives because their average K-L divergences are close to the one
of the GGD-based model. In all models, the accuracy is better at high AC frequency. However, as
we shall see in Section 4.4, this high accuracy is not really useful for forgery localization, because
the DCT coefficients of both unmodified and forged areas are quantized mostly at 0. We also find in
Figure 4.7c that the simplified model (4.15) is well comparable to the true model (4.11) in the case of
GND, GGD and CND, because the associated absolute differences are very close to 0. But, it loses the
accuracy when the LD is used as primary distribution. All these results confirm that both the true
and simplified models characterize correctly a tampered JPEG image if the distribution of primary AC
DCT coefficients is properly chosen.

Now, we study the impact of JPEG compression times on the modeling framework. Three config-
urations of tampered JPEG images associated with the (i) double compression (QF1 = 75, QF2 = 80),
(ii) triple compression (QF1 = 75, QF2 = 80, QF3 = 85), and (iii) quadruple compression (QF1 = 75,
QF2 = 80, QF3 = 85, QF4 = 90) of unmodified area are thus considered. We experiment each con-
figuration on 720 tampered JPEG images with unmodified portion λ0 = 0.75 and 3 forged areas (i.e.,
K = 3). To simplify, all forged areas are of the same size (i.e., λ1 = λ2 = λ3 ≃ 0.0833) and given from
single JPEG images with quality factor 75. Moreover, we only compute the K-L divergence for the case
of GND as it gives the best compromise between the model accuracy and the computation time. As a
result, we obtain in Figure 4.8 the curves of average K-L divergence with respect to 63 AC frequencies
in zig-zag order. Their meanings are just similar to the ones in Figure 4.7. We can remark that both
the true and simplified models always give a higher K-L divergence when the compression number i
increases. This is mainly due to the truncated error is ignored from the modeling of JPEG compression
cycle. Still, these differences are very small and do not much influence the modeling accuracy.

4.3.3 Accuracy Assessment

To see how good the simplified model (4.15) approximates the true model (4.11), we consider the GND
as the model of primary unquantized AC DCT coefficients, and evaluate the mean µ63

KL and variance
ν63
KL over 63 AC frequencies of the K-L divergences

µ63
KL = E

[
DKL

(
pY

(
y; ΘK ,ΛK , q(i)

)
∥ pY

(
y; θ̂ , λ0, q(i)

))]
, (4.17)

and
ν63
KL = var

[
DKL

(
pY

(
y; ΘK ,ΛK , q(i)

)
∥ pY

(
y; θ̂, λ0, q(i)

))]
, (4.18)
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Figure 4.8: Average K-L divergence for different JPEG compression numbers

where

DKL

(
pY

(
y; ΘK ,ΛK , q(i)

)
∥ pY

(
y; θ̂, λ0, q(i)

))
=

∑
y∈Z

pY
(
y; ΘK ,ΛK , q(i)

)
·ln

©­­«
pY

(
y; ΘK ,ΛK , q(i)

)
pY

(
y; θ̂, λ0, q(i)

) ª®®¬ (4.19)

under various configurations of tampered JPEG images. In all configurations, the unmodified area
of tampered images is triple-compressed with (QF1,QF2,QF3), while the forged areas are randomly
given from uncompressed, single-compressed or multiple-compressed JPEG images with quality fac-
tors taken from the set [75, 80, . . . , 95]. To further simplify, all forged areas inside a tampered image
are set at the same size.

To understand the impact of λ0, we fix K = 2 and (QF1,QF2,QF3) = (70, 80, 90) (i.e., i = 3), vary
λ0 from 0.7 to 0.9 with step 0.05, and sketch µ63

KL and ν
63
KL in Figure 4.9a. A higher λ0 implies a smaller

portion for all forged areas. Since a single pdf fX (1)
(
x ; θ̂

)
approximates themixture pdf fX (1) (x ;ΘK ,ΛK )
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better in this case, it is not surprising that pY
(
y; θ̂, λ0, q(i)

)
moves closer to pY

(
y; ΘK ,ΛK , q(i)

)
. This

explains why both the µ63
KL and ν

63
KL decrease when λ0 increases. In other words, the simplified model

(4.15) is more accurate for higher portion of unmodified area, that is actually logical.
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Figure 4.9: Evolution of µ63
KL and ν

63
KL

Similarly, we obtain in Figure 4.9b the evolution of µ63
KL and ν63

KL when fixing λ0 = 0.75 and
(QF1,QF2,QF3) = (70, 80, 90) (i.e., i = 3), and varyingK from 2 to 6 with step 1. This experiment allows
to see the impact ofK . Indeed, since the total portion of forged areas is always fixed at 1−λ0 = 0.25, the
higher value of K , the more the size of each forged area become smaller compared to the unmodified
area. Therefore, the impact of forged areas on the statistical characteristics of AC DCT coefficients of
tampered images is weaker, even they have the same portion in total (i.e., 1−λ0). This allows to better
approximate the mixture pdf fX (1) (x ;ΘK ,ΛK ) by a single pdf fX (1)

(
x ; θ̂

)
, and hence a more accurate

simplified model. As a result, µ63
KL and ν

63
KL slightly decrease in function of K as shown in Figure 4.9b.

Fixing now K = 2 and λ0 = 0.75, we obtain in Table 4.2 the values of µ63
KL and ν

63
KL for all possible

permutations of (QF1,QF2,QF3) taken from the set [70, 80, 90]. Clearly, µ63
KL and ν

63
KL do not present a

QF1 QF2 QF3 µ63
KL ν63

KL

70 90 80 0.005154 0.000212
90 70 80 0.006001 0.000156
80 90 70 0.006663 0.000219
70 80 90 0.009829 0.000117
80 70 90 0.013272 0.000159
90 80 70 0.015604 0.000231

Table 4.2: µ63
KL and ν

63
KL with respect to (QF1,QF2,QF3)

tendency as in the two above case studies, however their small values still retain. This means that the
simplified model (4.15) is robust to the quality factors.
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4.4 Forgery Localization in Tampered JPEG Images

To show the utility of the proposed modeling framework, we apply the simplified model (4.15) to the
forgery localization. Its performance is assessed by F1-score under divers configurations of tampered
JPEG images.

4.4.1 Forgery Localization Method

From (4.15), the forgery localization returns to divide quantized AC DCT coefficients y = {y1, . . . ,yN }

of a tampered JPEG image into two clusters associated with the unmodified and forged areas. As
recommended by McLachlan and Peel, the division can rely on the plug-in Bayes rule defined by [152,
Section 1.15.2]

rB
(
yn; θ̂ , λ̂0, q̂(i)

)
=


1, if yn belongs to forged area,

0, otherwise,
(4.20)

where
(
λ̂0, q̂(i)

)
is the estimate of the parameter vector

(
λ0, q(i)

)
, and the condition “yn belongs to forged

area” means
(
1 − λ̂0

)
· pY (1)

(
yn; θ̂ , q̂(i)

)
≥ λ̂0 · pY (i)

(
yn; θ̂ , q̂(i)

)
with n = 1, . . . ,N . In practice, we can

read the last quantization step q(i) from the JPEG header of the tampered image (by using e.g., Phil
Sallee’s JPEG toolbox5), while the other parameters should be estimated from y by maximizing the
following log-likelihood function(

λ̂0, q̂(i−1)
)
= arg max

(λ0,q(i−1))
L

(
λ0, q(i−1)

)
, (4.21)

where

L

(
λ0, q(i−1)

)
=

N∑
n=1

ln
(
λ0 · pY (i)

(
yn; θ̂ , q(i)

)
+ (1 − λ0) · pY (1)

(
yn; θ̂ ,q(i)

))
. (4.22)

Moreover, since q(1), . . . ,q(i−1) take discrete values within limited sets Q(1), . . . ,Q(i−1), our estimation
strategy is to fix, for each time, q(i−1) =

(
q(1), . . . ,q(i−1)

)
at given values q̃(i−1) =

(
q̃(1), . . . , q̃(i−1)

)
of

Q(1), . . . ,Q(i−1), then to find λ̃0 = arg maxλ0 L

(
λ0, q̃(i−1)

)
. The accepted estimates

(
λ̂0, q̂(i−1)

)
is the

vector
(
λ̃0, q̃(i−1)

)
giving the highest log-likelihood L

(
λ̃0, q̃(i−1)

)
. This parameter estimation process

can be done thanks to a simple EM algorithm. As this algorithm had been clearly presented in many
textbooks (see e.g., [21] and [151]), we do not repeat its theoretical development here, but provide
the pseudo-code in Algorithm 4.1 instead. We can assign λ̃(0)0 to a value in (0.5, 1), and the stopping
threshold δL to a very small value (e.g. 10−6).

For an illustration, we consider the tampered JPEG image in Figure 4.3b and take the GGD as
the model of primary AC DCT coefficients. The associated binary localization maps with respect to
63 AC frequencies are shown in Figure 4.10. The white pixels correspond to forged area, while the
black pixels associate with unmodified area. Of course, the localization performance can be improved

5The Phil Sallee’s JPEG toolbox can be downloaded from http://dde.binghamton.edu/download/jpeg_toolbox.zip

http://dde.binghamton.edu/download/jpeg_toolbox.zip
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Algorithm 4.1 Pseudo-code of EM algorithm to estimate
(
λ0, q(i−1)

)
Inputs: y, δL , λ̃(0)0 , Q(1), . . . ,Q(i−1) (q̃(k )jk ∈ Q(k ), jk = 1, . . . , Jk , k = 1, . . . , i − 1)

Outputs: λ̂0, q̃(i−1)

01. Lmax ← −∞

02. for j1 = 1 to J1 do

03. ...

04. for ji−1 = 1 to Ji−1 do

05. t ← 0, q̃(i−1) ←
(
q̃(1)j1 , . . . , q̃

(i−1)
ji−1

)
06. L

(
λ̃(t )0 , q̃

(i−1)
)
←

∑N
n=1 ln

(
λ̃(t )0 · pY (i )

(
yn ; θ̂ , q̃(i−1),q(i)

)
+

(
1 − λ̃(t )0

)
· pY (1)

(
yn ; θ̂ ,q(i)

))
07. repeat

08. t ← t + 1

09. // E-step //

10. for n = 1 to N do

11. ω(n) ← λ̃(t )0 ·pY (i )
(
yn ; θ̂ , q̃(i−1),q(i)

)
/

(
λ̃(t )0 · pY (i )

(
yn ; θ̂ , q̃(i−1),q(i)

)
+

(
1 − λ̃(t )0

)
· pY (1)

(
yn ; θ̂ ,q(i)

))
12. end for

13. // M-step //

14. λ̃(t )0 ←
1
N

∑N
n=1ω

(n)

15. L

(
λ̃(t )0 , q̃

(i−1)
)
←

∑N
n=1 ln

(
λ̃(t )0 · pY (i )

(
yn ; θ̂ , q̃(i−1),q(i)

)
+

(
1 − λ̃(t )0

)
· pY (1)

(
yn ; θ̂ ,q(i)

))
16. until

���L (
λ̃(t+1)

0 , q̃(i−1)
)
− L

(
λ̃(t )0 , q̃

(i−1)
)��� < δL · ���L (

λ̃(t+1)
0 , q̃(i−1)

)���
17. if L

(
λ̃(t )0 , q̃

(i−1)
)
> Lmax then

18. Lmax ← L
(
λ̃(t )0 , q̃

(i−1)
)
, λ̂0 ← λ̃(t )0 , q̂(i−1) ← q̃(i−1)

19. end if

20. end for

21. ...

22. end for

by applying one or more post-processings to these raw maps (see e.g., [217]). Still, to see better the
intrinsic performance of the developed modeling framework for forgery localization, we decide not
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Figure 4.10: Binary localization maps with respect to 63 AC frequencies

to use the post-processing here. Visually, the localization performance is good at low or medium AC
frequency, and becomes worse at higher frequency. This performance will be quantitatively studied
in the next section.

4.4.2 Performance Assessment

We use F1-score to assess the forgery localization performance of the proposed modeling framework
as in most related works (see e.g., [5]). Mathematically, it is computed by

F (i)1 =
2 ·TP (i)

2 ·TP (i) + FN (i) + FP (i)
, (4.23)
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where i corresponds to the compression number of unmodified area, TP (i) denotes the number of
tampered pixels correctly localized, FN (i) represents the number of unlocalized tampered pixels, and
FP (i) stands for the number of authentic pixels wrongly localized. The higher the value of F (i)1 , the
more the forgery localization derived from pY

(
y; θ̂, λ0, q(i)

)
is efficient. Using the GND as the model

of primary unquantized AC DCT coefficients, we evaluate F (i)1 , with i = 2 and 3, on tampered JPEG
images subject to triple quantization effect. As such, i = 2 and i = 3 correspond respectively to
the wrong choice and right choice of model. Therefore, the comparison between F (2)1 and F (3)1 under
various configurations of tampered JPEG images allows to quantify the gain returned by the right
model, hence the advantage of the proposed framework. Besides, since the forgery localization is
really effective in the range of low and medium AC frequencies (see Figure 4.10), we just evaluate the
F1-scores at 10 frequencies therein.

Table 4.3 shows the values of F (2)1 and F (3)1 when fixing K = 2 and (QF1,QF2,QF3) = (70, 80, 90),
and varying λ0 from 0.7 to 0.9 with step 0.05. They decrease when λ0 increases, because the size of
forged areas becomes smaller, and hence harder to be localized. Similarly, we compute F (2)1 and F (3)1
when λ0 = 0.75, (QF1,QF2,QF3) = (70, 80, 90), and K varies from 2 to 6 with step 1. Since we fix the
portion of all forged areas at 1 − λ0 = 0.25, each of them becomes smaller for higher value of K , and
therefore more difficult to be localized. This explains why both the F (2)1 and F (3)1 in Table 4.4 have a
decreasing tendency when K increases. Now, we fix λ0 = 0.75, K = 2, (QF1,QF2) = (70, 80), vary QF3

from 70 to 100 with step 5, and compute the associated F (2)1 and F (3)1 . As shown in Table 4.5, for most
considered AC frequencies, the F1-scores tend to increase with higher QF3. Especially, both the F (2)1
and F (3)1 are very small when QF3 ≤ QF2. This is the inherent weakness of quantization effects-based
methods [114], because the single and multiple compression artifacts in the histogram of AC DCT
coefficients are no longer clearly distinguishable in such configurations.

In all the sensitivity studies of λ0, K and QF3, F (3)1 is greater than or at least equal to F (2)1 . This
confirms the usefulness of multiple JPEG compression modeling in the forgery localization. Indeed,
considering the evolution of the difference ∆F1 = F (3)1 − F (2)1 in Tables 4.3, 4.4 and 4.5, we obtain the
highest gain at a small λ0, a small K and a not too high QF3.

4.5 Conclusion

We develop in this chapter a statistical modeling framework for DCT coefficients of tampered JPEG
images where manipulations introduce single and multiple compression artifacts for forged and un-
modified areas respectively. It allows to recursively derive a statistical model of DCT coefficients at
any JPEG compression cycle from a known distribution of primary unquantized DCT coefficients.
Through various numerical experiment and the K-L divergence, the framework is proved to be ac-
curate if the distribution of primary unquantized AC DCT coefficients is either GND, GGD or CND.
Especially, it exhibits its usefulness for forgery localization of tampered JPEG images subject to mul-
tiple quantization effect.
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Chapter 5

Statistical Detectors For Resampled TIFF
Images

5.1 Introduction

In Chapter 3 and Chapter 4, we dealt with the tampering situations where one or multiple parts of
an image have been manipulated. In this chapter, we consider that the entire image is falsified with
malicious intent. For this kind of forgery, resampling (including resizing, rotation and other linear
transformations) is a common technique [61]. It is usually used together with other tampering tech-
niques such as cloning or splicing in order to create a visually perfect match for a forged image.
However, no matter how sophisticated the resampling is, it always leaves two main traces similar to
the ones left by the demosaicing (see Chapter 3): (i) the periodicity of resampled signal, and (ii) the in-
coherence in the variance between original and interpolated signals. As reviewed in Subsection 2.4.2.2
of Chapter 2, most authors have focused on the periodic artifacts to develop their resampling detec-
tors. Additionally, statistical detectors based on the hypothesis testing theory are still very scattered
irrespective of their both theoretical and practical interests. In front of this situation, we would like to
take advantage of both the above traces to design in this chapter an optimal (generalized) likelihood
ratio test (LRT)-based detector for resampled TIFF images. Compared to the current state-of-the-art
(e.g., [139, 165, 181, 182]), the main innovations and contributions of our work are threefold.

1. Instead of using arbitrary probability distribution, we analyze the complete processing process
from a RAW image to a resampled TIFF image to find out an appropriate statistical model for
resampled TIFF images. This promisesmore accuratemodels for both the original and resampled
TIFF images.

2. Based on the models developed for the original and resampled TIFF images, we exploit the pe-
riodic artifacts inherent in resampled pixels to simplify the models and extract independent
identically distributed (IID) residual noises data for the LRT. The incoherence in the noises vari-
ance is next used as the main measure to distinguish a resampled TIFF image from an original
one. This is the fundamental difference between our work andmost related works whose resam-
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pling detectors are based on the periodic artifacts. It results in two new (generalized) LRT-based
detectors for the resampling detection.

3. Finally, as one of advantages of the hypothesis testing framework, we are able to provide closed-
form expressions for the power function of the proposed detectors, and analytically analyze its
properties.

We organize the remainder of this chapter as follows. Section 5.2 focuses on the mathematical analysis
of resampled signals and on the statistical modeling of resampled TIFF images. In Section 5.3, we
develop an ideal LRT-based detector for resampled TIFF images under the assumption that all the
model parameters are known. The mathematical analysis of the LRT-based detector and its statistical
performances is performed in detail here. Section 5.4 is dedicated to a more practical situation where
all the model parameters, except the magnification rate, are assumed unknown. An estimation process
is thus proposed to specify the unknown parameters before dealing with a generalized LRT (GLRT)-
based detector. In Section 5.5, we carry out various numerical experiments on well-known image
databases to validate the GLRT-based detector and to numerically assess its performances. Finally,
some conclusions on the proposed (G)LRT-based detectors are discussed in Section 5.6.

5.2 Statistical Modeling of Resampled TIFF Images

To develop a model for resampled TIFF images, we propose to begin with a mathematical formulation
of resampled signals and an analysis of their periodicity property. Next, we derive a statistical model
for pixels of resampled TIFF images from by analyzing the complete processing process from a RAW
image to a resampled TIFF image. For the sake of simplicity, we will restrict the study to single
directional resampling.

5.2.1 Mathematical Analysis of Resampled Signals

Let x (d) : R→ R, denote an one-dimensional continuous real-valued signal1 of interest in the spatial
domain. We assume, without loss of generality, that x (d) is uniformly sampled at positions d = n · ∆,
with ∆ = 1, to produce the discrete real-valued signal xs [n] : Z → R, such that xs [n] = x (n · ∆) =

x (n). Following [124, chapter 4], the resampling of xs [n] with factor ξ = p
q > 0 using interpolation

kernel h [·] can be proceeded by three basic steps as in Figure 5.1.

Magnification Minification
Interpolation

Figure 5.1: Block flow diagram of the resampling process

1Continuous real-valued signal is one that has real intensity at every point in the real axis. The terms continuous should
be understood as everywhere defined rather than in the mathematical sense.
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1. Magnification: The sampled signal xs [n] is first expanded by ratep to create an upsampled signal

xu [k] =


xs [n] if k = p · n

0 if k , p · n
, (5.1)

with k ∈ Z.

2. Interpolation: The upsampled signal xu [k] is next convolved with the interpolation kernel h [k]
to generate an interpolated signal xi [k] at the same integer grid Z such that

xi [k] = xu [k] ∗ h [k] =
∑
j∈Z

h [k − j] · xu [j] =
∑

j∈Z,j=p·n

h [k − j] · xu [j]︸︷︷︸
xs [n]

+
∑

j∈Z,j,p·n

h [k − j] · xu [j]︸︷︷︸
0

=
∑
n∈Z

h [k − p · n] · xs [n] . (5.2)

3. Minification. Finally, the interpolated signal xi [k] is compressed by rate q to obtain the resam-
pled signal xr [m]

xr [m] = xi [q ·m] =
∑
n∈Z

h [q ·m − p · n] · xs [n] , (5.3)

withm ∈ Z.

The magnification rate p and the minification rate q are constrained to integer [47]. Moreover, they
are usually co-prime in practice (i.e., the greatest common divisor is 1). The resampling is called
upsampling (by a fractional factor) if ξ > 1, and downsampling, otherwise.

Example 5.1. Figure 5.2 illustrates the resampling process with factor ξ = p
q =

4
3 using linear inter-

polation kernel (see also Table 5.3 and Figure 5.9 for other kernels). As displayed in Figure 5.2b, the
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(b) Upsampled signal xu [k] and interpolated signal xi [k]

Figure 5.2: Illustration of resampling process with factor ξ = 4
3 and linear interpolation kernel
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interpolation operation allows to fill the missing positions due to the magnification by interpolated
samples (▽) generated from the original ones (H). After the minification, the resampled signal xr [m]
consists of both the original samples (�) at a lattice with period p = 4 since the first (original) sample
and the interpolated samples (�) at other positions (see Figure 5.2a). The length of xr [m] is equal to
ξ =

p
q =

4
3 times of the one of xs [n].

Although the expression (5.3) favors the digitalization, it is not appropriate for the mathematical
analysis owing to the different definition intervals of xr [m] and xs [n]. To overcome this obstacle, a
rescaling ofm with factor ω = ξ−1 =

q
p is proposed to obtain the same definition interval. As such,

the above resampling process can be seen as a map from the integer grid Z to a new discrete grid
Zω = ω · Z through a continuous-time real-valued kernel h (δ ) : R → R. Therefore, the values of the
rescaled resampled signal xr (ω ·m) are computed from the original signal x (n) by [165]

xr (ω ·m) =
∑
n∈Z

h (ω ·m − n) · x (n) , (5.4)

with m ∈ Z. The interpolation coefficient h (ω ·m − n) plays the role of weights in the linear com-
bination (5.4). It has to verify the so-called interpolation constraint to not alter the value of original
samples after the resampling

h (ω ·m − n) =


1 if ω ·m − n = 0,

0 if ω ·m − n ∈ Z∗.
(5.5)

It is also required that the interpolation reproduces constants, which is equivalent to [76]∑
n∈Z

h (ω ·m − n) = 1 and |h (ω ·m − n)| ≤ 1, ∀ω ·m ∈ R (5.6)

Moreover, as specified by Gotchev et al. in [80], a good interpolation kernel is desired to be symmetric
around 0 (i.e., h (−δ ) = h (δ )) to avoid introducing phase distortions, and its support [−S, S] (i.e.,
h (δ ) = 0, ∀δ < [−S, S]) should be as short as possible to ensure the desired interpolation accuracy. The
above constraints on h (ω ·m − n) lead us to rewrite (5.4) as

xr (ω ·m) =
∑

n∈Sh (m;ω)
h (ω ·m − n) · x (n) , (5.7)

where Sh (m;ω) denotes the set of indices n actually used in the interpolation

Sh (m;ω) = {n ∈ Z | ω ·m − n ∈ [−S, S]}
= {⌈ω ·m − S⌉ , ⌈ω ·m − S⌉ + 1, . . . , ⌊ω ·m + S⌋ − 1, ⌊ω ·m + S⌋} , (5.8)

where the notations ⌈·⌉ and ⌊·⌋ standard for rounds towards positive infinity and negative infinity
respectively. We remark that
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Sh (m + p;ω) = Sh (m;ω) + q, (5.9)

so the resampled samples xr (ω · (m + p)) can be obtained by combining original samples shifted by q
positions with respect to the ones used to generate xr (ω ·m).

Example 5.2. To illustrate the above rescaling process and the generation of the rescaled resampling
signal using (5.7), let us continue with Example 5.1. The signal xr (ω ·m) in Figure 5.3a is a scaled
version of xr [m] in Figure 5.2a with scaling factor ω = q

p =
3
4 . The interpolation coefficients h (·) are
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(b) Some first samples of x (n) and xr (ω ·m)

Figure 5.3: Illustration of original signal at discrete times x (n) and rescaled resampled signal xr (ω ·m)

symbolized by (✚) in Figure 5.3b. We obtain the resampled sample xr (ω · 4) by combining the original
samples {x (2) , x (3) , x (4)} following the interpolation coefficients {0, 1, 0}. This actually returns an
original sample (i.e., xr (ω · 4) ≡ x (3)). Similarly, xr (ω · 2) and xr (ω · 6) are interpolated from the sets
{x (1) , x (2)} and {x (4) , x (5)} respectively. Clearly, their indices satisfy (5.9).

Hereinafter, we analyze some useful properties of the rescaled resampled signal in the spatial
domain.

Theorem 5.1. If the sample xr (ω ·m) of the rescaled resampled signal with scaling factor ω = ξ−1 =
q
p

is an original sample, then the samples xr (ω · (m + j · p)), ∀j ∈ Z, are also original samples.

Proof. From the interpolation constraint (5.5), a sample of the rescaled resampled signal is an original
sample if and only if it is at integer grid Z. So, it is enough to verify that ω · (m + j · p) ∈ Z when
ω ·m ∈ Z. Indeed, since q and j ∈ Z, it is evident that ω · (m + j · p) = ω ·m + j · q ∈ Z. �

Theorem 5.1 means that the original samples of a rescaled resampled signal with scaling factor
ω = ξ−1 =

q
p are at lattice of period p. For instance, the original samples of a rescaled resampled signal

in Figure 5.3b are at positions 0, ω · 4, ω · 8, ... as p = 4.

Theorem 5.2. All samples xr (ω · (m + j · p)),∀j ∈ Z, of the rescaled resampled signal with scaling factor
ω = ξ−1 =

q
p share the same set of interpolation coefficients.
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Proof. The above statement implies that the interpolation coefficients used in (5.7) are repeated with
period p. Let Hh (m;ω) = {h (ω ·m − n) | n ∈ Sh (m;ω)} be set of interpolation coefficients used to
generate xr (ω ·m), we will show that

Hh (m + p;ω) = Hh (m;ω) . (5.10)

Indeed, from the definition ofHh (m;ω), we obtain

Hh (m + p;ω) = {h (ω · (m + p) − n) | n ∈ Sh (m + p;ω)}
ω=

q
p
= {h (ω ·m + q − n) | n ∈ Sh (m + p;ω)} .

(5.11)
Using (5.9), we rewrite (5.11) as

Hh (m + p;ω) = {h (ω ·m + q − n) | n ∈ Sh (m;ω) + q}
= {h (ω ·m − (n − q)) | n − q ∈ Sh (m;ω)} = Hh (m;ω) . (5.12)

Another proof of the periodicity ofHh (m;ω) can be found in [108]. �

In Figure 5.3b, the sets of interpolation coefficients to computexr (ω · 2) andxr (ω · 6) = xr (ω · (2 + 4))
are the same.

Now, assuming thatx (n) is independently Gaussian distributedwith expectation µx(n) and variance
σ 2
x(n)

(i.e., x (n) ∼ N
(
µx(n),σ

2
x(n)

)
), then from (5.7), xr (ω ·m) is also Gaussian distributed

xr (ω ·m) ∼ N
(
µxr (ω·m),σ

2
xr (ω·m)

)
, (5.13)

with expectation
µxr (ω·m) =

∑
n∈Sh (m,ω)

h (ω ·m − n) · µx(n), (5.14)

and variance
σ 2
xr (ω·m)

=
∑

n∈Sh (m,ω)

h2 (ω ·m − n) · σ 2
x(n). (5.15)

The statistical distribution (5.13) is the basis to build the statistical model for pixels of resampled TIFF
images.

5.2.2 Statistical Model for Resampled TIFF Pixels

A typical process to create a resampled TIFF image from a real scene is depicted in Figure 5.4. Firstly,
light intensity measured at each pixel generates an electrical signal that is read out as a RAW image.
Next, the RAW image goes through several in-camera post-acquisition processes, such as demosaicing,
white balancing and gamma correction, to issue a full resolution, colored and uncompressed image
called original TIFF image. Finally, for malicious purposes, resampling is applied to the original TIFF
image to create resampled TIFF image. Our goal is to develop a statistical model for resampled TIFF
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pixels by step-by-step analyzing processing stages from the RAW image to the resampled TIFF image.

Demosaicing
White

Balancing
Gamma

Correction

PNRU

Dark

Current

Short

Noise

Read-out

Noise

Resampling

Image Scene
Lens

Filters
CFA Sensor RAW Image

In-Camera Post-ProcessingPost-Camera TIFF Image
Resampled

TIFF Image

Figure 5.4: Illustration of process to create resampled TIFF images

Let denote vn the pixel located at position n of a RAW image2. Due to the stochastic nature of
photon noise and other disturbances (see Figure 5.4), vn can be expressed as

vn = µvn + ϵvn , (5.16)

where µvn denotes the expectation ofvn in the absence of noise, and ϵvn stands for all noise sources that
interfere with the original signal. A typical representation of ϵvn is a Poissonian-Gaussian noise model
[141], where the Poissonian part characterizes signal-dependent component including dark current
and shot noise, while the Gaussian part describes signal-independent component such as read-out
noise. For practical applications, Foi et al. [67] propose to simplify the Poissonian-Gaussian noise
model by treating the Poisson noise as a special heteroscedastic Gaussian. This leads to the so-called
heteroscedastic noise model [205] of RAW pixels

vn ∼ N
(
µvn , ã · µvn + b̃

)
. (5.17)

This model describes the pixel noise variance as an affine function of the pixel expectation, param-
eterized by the couple

(
ã, b̃

)
. Since the noise corrupting each RAW pixel is independent of those of

neighbor pixels [86], RAW pixels are also mutually independent.
To establish a model for original TIFF pixels from the heteroscedastic noise model (5.17), the de-

mosaicing and white balancing are assumed to be linear [186]. This allows to retain the Gaussian

2For the sake of simplicity, we use single index rather than the couple of row and column indices to specify the location
of a pixel in an image.
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distribution for independent pixels3 after these operations, but with different parameters (a,b)

wn ∼ N
(
µwn ,a · µwn + b

)
, (5.18)

where wn denotes a white-balanced pixel at position n, and µwn is its expectation. The gamma cor-
rection is, on the contrary, a non-linear operation defined by the following pixel-wise power-law [59]

xn = w
1
γ
n , (5.19)

where γ is the correction factor, and xn denotes the pixel at position n of the original TIFF image.
The non-linear expression (5.19) of xn does not allow a simple statistical distribution, thus we seek its
linear approximation. To this end, we first rewrite (5.18) as

wn = µwn + ϵwn , with ϵwn ∼ N
(
0,a · µwn + b

)
, (5.20)

where ϵwn accounts for zero-mean signal-dependent Gaussian noise after the white balancing. This
leads to

xn =
(
µwn + ϵwn

) 1
γ = µ

1
γ
wn ·

(
1 +

ϵwn

µwn

) 1
γ

. (5.21)

Using now the first order of Taylor series expansion of (1 + t)
1
γ at t = 0, we finally arrive at

xn = µ
1
γ
wn ·

(
1 + 1

γ
·
ϵwn

µwn

+ o

(
ϵwn

µwn

))
≃ µ

1
γ
wn +

1
γ
· µ

1
γ −1
wn · ϵwn . (5.22)

Since ϵwn ∼ N
(
0,a · µwn + b

)
, it follows that

xn ∼ N

(
µ

1
γ
wn ,

1
γ 2 · µ

2
γ −2
wn ·

(
a · µwn + b

) )
. (5.23)

Let denote µxn = µ
1
γ
wn the expectation of xn, then from (5.23), its variance σ 2

xn be expressed as

σ 2
xn =

1
γ 2 · µ

2−2γ
xn ·

(
a · µ

γ
xn + b

)
, f

(
µxn ;a,b,γ

)
, (5.24)

and original TIFF pixels are independently Gaussian distributed such that

xn ∼ N
(
µxn ,σ

2
xn

)
. (5.25)

The expression (5.24) is known as generalized signal-dependent noise model in [207]. Given an original
TIFF image, the triple of parameters (a,b,γ ) can be estimated using the classical maximum likelihood
(ML) method (see also Subsection 5.4.1). In [208], Thai et al. observe through numerical experiments

3Although the image pixels are actually no longer independent after the demosaicing (see Chapter 3), we still assume
their statistical independence to facilitate the modeling.
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that the ML estimates
(
â, b̂

)
of (a,b) are invariant to image scenes and camera settings, but discrim-

inative for different camera models, while the ML estimate γ̂ of γ is almost the same irrespective to
the diversity of camera models.

We seek now a statistical model of the resampled TIFF pixels. A resampling operation with factor
ξ =

p
q and interpolation kernel h (·) is considered. To further simplify, we assume that the resampling

has been performed in one direction (either horizontal or vertical) overall the original TIFF image.
Given the independent Gaussian distribution (5.25) of original TIFF pixels xn, with n ∈ Sh (m,ω) and
ω = ξ−1 =

q
p , we can apply (5.13) to characterize the statistics of resampled TIFF pixel ym at position

m as
ym ∼ N

(
µym ,σ

2
ym

)
, (5.26)

where the expectation µym and variance σ 2
ym are given by

µym , e
(
µxn ,m,n;h,ω

)
=

∑
n∈Sh (m,ω)

h (ω ·m − n) · µxn , (5.27)

and
σ 2
ym , ϑ

(
µxn ,m,n;h,ω,a,b,γ

)
=

∑
n∈Sh (m,ω)

h2 (ω ·m − n) · f
(
µxn ;a,b,γ

)
. (5.28)

Obviously, µym and σ 2
ym depend not only on the expectation of original TIFF pixels µxn , but also on the

interpolation coefficients h (ω ·m − n) defined by the relative distances between the considered pixel
and their neighbors ω ·m − n. Applying the constraints (5.6) to (5.27) and (5.28), we find that

µym ≤ µxn and σ 2
ym ≤ σ

2
xn , (5.29)

which make sense because the interpolation step in the resampling process smooths the image, hence
the expectation and variance of resampled TIFF pixels are smaller than the ones of original TIFF pixels.

5.3 Ideal Detector for Resampled TIFF Images

Our goal is to develop in this section an efficient detector within statistical hypothesis testing frame-
work to distinguish an original TIFF image from a resampled one. Naturally, the statistical models
(5.25) and (5.26) of original and resampled TIFF pixels could be used. However, these models may
lead to difficulties in mathematical formulation because they are not suitable to independent identi-
cally distributed (IID) pixels. To bypass this obstacle, we propose a preprocessing stage to obtain IID
datasets associated with a simplified version of (5.25) and (5.26). Subsequently, we develop an optimal
likelihood ratio test (LRT)-based detector under the assumption that all model parameters are known.
Its statistical performance is also analytically evaluated.
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5.3.1 Analysis of TIFF Pixels Models

Let consider the model (5.25) of original TIFF pixels xn, we find that xn ∼ N
(
µxn ,σ

2
xn

)
are independent

but not identically distributed because of their scene-dependent expectation µxn . As the variance
σ 2
xn = f

(
µxn ;a,b,γ

)
is a function of µxn , with f (·) given from (5.24), it enough to set µxn as a constant

to make these pixels identically distributed. This idea leads to the homogeneous block detection and
level-set segmentation process described in Subsection 5.3.2. Indeed, this process allows to partition
the considered original TIFF image into I ∈ N non-overlapping segments of Ji ∈ N pixels for the
segment Si , i ∈ {1, . . . , I }. In each segment Si , all the pixels expectations µxi , j , j ∈ {1, . . . , Ji}, are
almost the same and near to the local expectation µxi , j u µi , and hence almost the same variance
σ 2
i = f (µi ;a,b,γ ). As a result, all the pixels xi,j of Si are IID as

xi,j ∼ N (µi, f (µi ;a,b,γ )) , (5.30)

where i ∈ {1, . . . , I } and j ∈ {1, . . . , Ji} denote respectively the index of the segment Si and of the j-th
pixel therein.

If the same homogeneous block detection and level-set segmentation process as above is applied
to the considered resampled TIFF image, we obtain from (5.27), (5.28) and (5.6) the expectation and
variance of pixels yi,j , i ∈ {1, . . . , I } and j ∈ {1, . . . , Ji}, in a non-overlapping homogeneous segment
Si as

e (µi,m,n;h,ω) =
∑

n∈Sh (m,ω)

h (ω ·m − n) · µi = µi ·
∑

n∈Sh (m,ω)

h (ω ·m − n) = µi (5.31)

and

ϑ (µi,m,n;h,ω,a,b,γ ) =
∑

n∈Sh (m,ω)

h2 (ω ·m − n) · f (µi ;a,b,γ )

= f (µi ;a,b,γ ) ·
∑

n∈Sh (m,ω)

h2 (ω ·m − n) =
1
γ 2 · µ

2−2γ
i ·

(
a · µ

γ
i + b

)
·

∑
n∈Sh (m,ω)

h2 (ω ·m − n)

= f (µi ;A (m,n;a,h,ω) ,B (m,n;b,h,ω) ,γ ) , (5.32)

where

A (m,n;a,h,ω) = a ·
∑

n∈Sh (m,ω)

h2 (ω ·m − n) and B (m,n;b,h,ω) = b ·
∑

n∈Sh (m,ω)

h2 (ω ·m − n) . (5.33)

Since there are different sets of interpolation coefficients on a resampled TIFF image, we can derive
from (5.32) that their pixels yi,j remain non-identical. Luckily, as stated in Theorem 5.2, the interpo-
lation coefficients are repeated with period p such thatHh (m;ω) = Hh (m + p;ω). So, we can extract
sub-images at lattice of period p from the resampled TIFF image in order that the sets of interpolation
coefficients on each sub-image become identical and

∑
n∈Sh (m,ω) h

2 (ω ·m − n) = ςu for the u-th sub-
image. By this way, after applying the homogeneous segmentation technique to a given sub-image u,
we obtain
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e (µi,m,n;h,ω) = µi and ϑ (µi,m,n;h,ω,a,b,γ ) = f (µi ;a · ςu,b · ςu,γ ) , (5.34)

and the resampled TIFF pixels yi,j over a segment Si , i ∈ {1, . . . , I } and j ∈ {1, . . . , Ji}, become IID as

yi,j ∼ N (µi, f (µi ;a · ςu,b · ςu,γ )) . (5.35)

Clearly, by limiting TIFF images to a lattice of period p and to non-overlapping homogeneous seg-
ments, pixels of the original and resampled sub-images have the same mean but not the same vari-
ance. Actually, their variances share the same form, but since ςu =

∑
n∈Sh (m,ω) h

2 (ω ·m − n) ≤ 1, the
one of resampled TIFF pixels is smaller. This remark implies that the pixels variance could be a good
measure to differentiate between original and resampled TIFF images.

5.3.2 IID Data Extraction

The above analyses on pixels models allow us to build IID datasets of noisy pixels, denoised pixels
and residual noises from an unknown (i.e., either original or resampled) TIFF image as in Figure 5.5.
It consists of three main consecutive steps: (i) sub-images extraction, (ii) homogeneous block detection,

Sub-images

extraction

with lattice of

period p
Unknown

TIFF Image

Homogeneous

block detection

Level-set

segmentation

IID Data

Homogeneous

block detection

Level-set

segmentation

IID Data

(G)LRT

Original

Resampled
(G)LRT

MLE

MLE
Original

Sub-Image

Unknown

Sub-Image

1

Figure 5.5: Illustration of process for IID data extraction from an unknown TIFF image

and (iii) level-set segmentation.
Let denote U a two-dimensional matrix representing a color channel (i.e., red, green or blue) of

an unknown TIFF image, we decompose U following lattices with period p to obtain p sub-images
Zu = U (u : p : end)4, with u ∈ {1, . . . ,p}. If the unknown TIFF image is the original one, all the
sub-images Zu , ∀u ∈ {1, . . . ,p}, are also original; otherwise, only the first sub-image Z1 is original
following Theorem 5.1, and the others Zu , ∀u ∈ {2, . . . ,p} are interpolated5. The original sub-image
Z1 will be used to estimate the parameters of image and camera model. Meanwhile, the other sub-
images will be exploited to estimate the sum of squared interpolation coefficients, and to be used as
input of the (generalized) LRT-based detectors. These points will be treated more detail in Section 5.4.

4This notation is borrowed from the MathWorks’ Matlab language.
5For the sake of simplification, we assume that the first line or the first row of the unknown TIFF image is the original

one.
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Edge or discontinuity are the main factors that cause the high fluctuation from pixel to pixel in a
sub-image Zu , u ∈ {1, . . . ,p}. To reduce this variation, we only consider the parts of Zu at which no
local edge and discontinuity exit. To identify them, we first apply a denoising filter D to decompose
the sub-image Zu into an approximate image structure (i.e., denoised sub-image) Tu = D (Zu) and the
associated residue Ru = Zu − Tu . Although several denoising filters such as Gaussian, Wiener, BM3D
[48] could be applied, we just use the wavelet-based filter introduced in [154] because it gives the best
compromise between the accuracy and computational efficiency. Considering the sub-image Zu as Nb

image blocks of size 8 × 86, we next divide Zu into 64 vectors of pixels zu,l =
(
zu,l,1, . . . , zu,l,Nb

)
, where

l ∈ {1, . . . , 64} denotes the location index in the 8 × 8 grid of image blocks. All the pixels in the same
8 × 8 block L ∈ {1, . . . ,Nb} is represented by the vector zLu =

(
zu,1,L, . . . , zu,64,L

)
. The same process is

applied onTu andRu to respectively obtain the vector tLu =
(
tu,1,L, . . . , tu,64,L

)
and rLu =

(
tu,1,L, . . . , tu,64,L

)
for each 8 × 8 block L ∈ {1, . . . ,Nb}. A block L is seen as homogeneous if the associated standard
deviation σL

u computed from tLu is smaller than a threshold τu . In [207], Thai et al. propose to compute
the standard deviation σL

u in the DCT domain as

σL
u = 1.4826 ·MAD

(
DCT

(
tu,1,L, . . . , tu,64,L

) )
, (5.36)

and take the threshold τu as the median of absolute deviations of all pixels in the residual sub-image
Ru

τu = 1.4826 ·MAD (Ru) , (5.37)

where DCT (·) stands for the discrete cosine transform and MAD (·) denotes the median of absolute
deviations [190]. Consequently, the set of homogeneous blocks of the sub-image Zu is defined by

Bu =
{
L ∈ {1, . . . ,Nb} : σL

u ≤ τu
}
, (5.38)

where σL
u and τu are given from (5.36) and (5.37) respectively.

Once the homogeneous block detection done, it is proposed to use one or multiple of 64 vectors
of pixels zu,l , with l ∈ {1, . . . , 64}, for partitioning into I non-overlapping segments Su,i , i ∈ {1, . . . , I }
with width ∆i . Each homogeneous segment Su,i is defined by

Su,i =

{
zu,l,L | tu,l,L ∈

[
ni −

∆i

2 ,ni +
∆i

2

]
, L ∈ Bu

}
. (5.39)

The smaller the value of ∆i , the more the IID property of pixels in homogeneous segments is ensured,
but the less the number of pixels is gathered. In practice, the choice of I = 28 for 8-bits images and
∆i = 1 usually gives the best compromise between the quality and the quantity of IID pixels.

As a result, for an unknown TIFF image, we get a set of Ju,i IID pixels denoted by zu,i =
{
zu,i,j

} Ju ,i
j=1

in each segment Su,i , with i ∈ {1, . . . , I }, satisfying

6Other size of image blocks is possible. The choice of 8×8 image blocks is inspired from the fact that JPEG compression
works separately on 8 × 8 image blocks.
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zu,i,j ∼ N
(
µu,i,σ

2
u,i

)
, (5.40)

where µu,i and σ 2
u,i = f

(
µu,i ;au,bu,γ

)
are respectively the local expectation and local variance of pixels

over Su,i . The parameters au and bu are expressed by

au = ςu · a and bu = ςu · b, (5.41)

with ςu the sum of squared interpolation coefficients for the sub-image Zu defined by

ςu =


1 if Zu is an original sub-image,∑

n∈Sh (m,ω) h
2 (ω ·m − n) if Zu is an interpolated sub-image.

(5.42)

Associated with zu,i , we can also obtain the IID sets of denoised pixels tu,i =
{
tu,i,j

} Ju ,i
j=1 and resid-

ual noises ru,i =
{
ru,i,j

} Ju ,i
j=1. It is easy to derive from (5.39) that tu,i,j , j ∈

{
1, . . . , Ju,i

}
, are uniformly

distributed
tu,i,j ∼ U

(
ni −

∆i

2 ,ni +
∆i

2

)
. (5.43)

Meanwhile, since ru,i,j = zu,i,j − tu,i,j , j ∈
{
1, . . . , Ju,i

}
, the probability density function (pdf) of ru,i,j can

be obtained by

fru ,i , j (r ) =
1
∆i
·

(
Φ

(
ni +

∆i
2 + r − µu,i

σu,i

)
− Φ

(
ni −

∆i
2 + r − µu,i

σu,i

))
, (5.44)

where Φ (·) stands for the standard normal cumulative distribution function (cdf). Moreover, as we are
able to choose ∆i small enough in order that the local expectation µu,i almost equals ni , the pdf fru ,i , j (r )
becomes

fru ,i , j (r )
∆i→0
−→

1
σu,i
· φ

(
r

σu,i

)
, (5.45)

where φ (·) denotes the standard normal pdf. In other words, with an appropriate choice of ∆i , the
population of residual noises can be well approximated by a zero-mean Gaussian distribution with
variance σ 2

u,i

ru,i,j ∼ N
(
0,σ 2

u,i

)
. (5.46)

Although three kinds of IID datasets and the associated models are available, we decide to use only
tu and ru hereafter, because of the incoherence between the discrete integer value of pixels zu,i,j and
their continuous Gaussian distribution N

(
µu,i,σ

2
u,i

)
with µu,i and σ 2

u,i ∈ R.

5.3.3 LRT-Based Detector and Statistical Performance

Given the IID residual noise data ru ,
{
ru,i,j

}
, ∀i ∈ {1, . . . , I } and j ∈

{
1, . . . , Ju,i

}
from an unknown

TIFF sub-image Zu , our aim is to design an optimal detector to check if the considered TIFF image is
original or resampled in an ideal context where all model parameters are known. We first formulate
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such a detection problem as a binary hypothesis testing, then we rely on the LRT for two simple
hypotheses to propose an optimal detector and evaluate its statistical performance.

From ru and the model (5.46), we can formulate the detection problem as the decision between two
following hypotheses
H0 =

{
ru,i,j ∼ N

(
0,σ 2

0,u,i

)
,∀i ∈ {1, . . . , I } ,∀j ∈

{
1, . . . , Ju,i

}}
: original TIFF image,

H1 =
{
ru,i,j ∼ N

(
0,σ 2

1,u,i

)
,∀i ∈ {1, . . . , I } ,∀j ∈

{
1, . . . , Ju,i

}}
: resampled TIFF image,

(5.47)

where u ∈ {2, . . . ,p} is the index of the tested sub-image Zu , σ 2
0,u,i and σ 2

1,u,i are the pixels variances
with respect to µu,i under the hypothesesH0 andH1

σ 2
0,u,i = f

(
µu,i ;a,b,γ

)
, (5.48)

and
σ 2

1,u,i = f
(
µu,i ;au,bu,γ

)
, (5.49)

with f (·), au andbu given from (5.24) and (5.41). We are interested in a test δ that guarantees a prefixed
false-alarm rate α0 such that

Kα0 =
{
δ : PH0 (δ (ru) = H1) ≤ α0

}
. (5.50)

Among all the tests in the class Kα0 , we look for the most powerful test δ ∗ satisfying

δ ∗ = arg max
δ∈Kα0

β (δ ) , (5.51)

where β (δ ) is power function defined by

β (δ ) = PH1 (δ (ru) = H1) . (5.52)

We assume that themagnification ratep, the vector of image parameters µu =
(
µu,1, . . . , µu,i, . . . , µu,I

)
,

the triplet of camera parameters (a,b,γ ), and the sum of squared interpolation coefficients ςu are
known in advance. Under such an ideal context, the Neyman-Pearson fundamental lemma [129, the-
orem 3.2.1] specifies that the most powerful test δ ∗ for the problem (5.47) under the LRT defined by
the decision rule

δ ∗ (ru) =

H0 if Λ (ru) =

∑I
i=1

∑Ju ,i
j=1 Λ

(
ru,i,j

)
< θu

H1 if Λ (ru) =
∑I

i=1
∑Ju ,i

j=1 Λ
(
ru,i,j

)
≥ θu

, (5.53)

where Λ (ru) is log-likelihood ratio (LLR) of ru under the ideal context, θu denotes the decision thresh-
old which is the solution of the equation

PH0 (Λ (ru) ≥ θu) = α0, (5.54)
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and Λ
(
ru,i,j

)
denotes the LLR of one sample ru,i,j computed by

Λ
(
ru,i,j

)
=

1
2 ·

(
σ 2

1,u,i

σ 2
0,u,i
− 1

)
·
r 2
u,i,j

σ 2
1,u,i
−

1
2 · log

(
σ 2

1,u,i

σ 2
0,u,i

)
. (5.55)

Since σ 2
1,u ,i
σ 2

0,u ,i
= ςu , we can further express Λ

(
ru,i,j

)
as

Λ
(
zu,i,j

)
=

1
2 ·

(
1 − 1

ςu

)
·
r 2
u,i,j

σ 2
0,u,i
−

1
2 · log ςu . (5.56)

To determine the decision threshold θu from (5.54), as well as the performance of LRT-based detector,
the survival function F̄Λ(ru ),Hk (θu) ofΛ (ru) under the hypothesisHk ,k ∈ {0, 1} is required. Proposition
5.1 provides the closed-form expression of F̄Λ(ru ),Hk (θu).

Proposition 5.1. Under the hypothesisHk , k ∈ {0, 1}, the survival function of Λ (ru) is computed by

F̄Λ(ru ),Hk (θu) =


G

(
ρu · log 1

ςu
− θu ; ρu, 1

ςu
− 1

)
if k = 0,

G
(
ρu · log 1

ςu
− θu ; ρu, 1 − ςu

)
if k = 1,

(5.57)

where G (·) stands for the Gamma cdf defined by the following regularized incomplete gamma function

G (x ;η, λ) =
Γ

(
η, xλ

)
Γ (η)

, (5.58)

with Γ (η) =
∫ ∞

0 sη−1e−sds and Γ (η, x) =
∫ x

0 sη−1e−sds the gamma function and the lower incomplete
gamma function respectively, and ρu denotes the half of total residual noises considered for the sub-image
Zu

ρu =
1
2 ·

I∑
i=1

Ju,i . (5.59)

Proof. Using (5.56), we rewrite the LLR Λ (ru) as follow

Λ (ru) =
I∑

i=1

Ju ,i∑
j=1

Λ
(
ru,i,j

)
= −Ru + cu, (5.60)

where the random variable Ru and the constant c are respectively defined by

Ru =
1
2 ·

(
1
ςu
− 1

)
·

I∑
i=1

(
1

σ 2
0,u,i
·

Ju ,i∑
j=1

r 2
u,i,j

)
, (5.61)

and
cu = ρu · log 1

ςu
. (5.62)

To derive F̄Λ(ru ),Hk (θu) from (5.60), we should determine the distribution of Ru under the hypothesis
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Hk first. Indeed, under the hypothesis Hk , k ∈ {0, 1}, ru,i,j ∼ N
(
0,σ 2

k,u,i

)
, hence ru ,i , j

σk ,u ,i
∼ N (0, 1). It

follows that [99, Chapter 18] (
ru,i,j

σk,u,i

)2
∼ χ 2

1 , (5.63)

where χ 2
1 stands for the chi-square probability distribution with one degree of freedom. Therefore

r 2
u,i,j ∼ G

(
1
2, 2 · σ

2
k,u,i

)
, (5.64)

where G (η, λ) denotes the Gamma probability distribution with pdf

д (x ;η, λ) = 1
λη · Γ (η)

· xη−1 · e−
x
λ . (5.65)

Using (5.61) and (5.64), we arrive at
Ru ∼ G

(
ρu, ξu,k

)
, (5.66)

where

ξu,k =


1
ςu
− 1 if k = 0: underH0,

1 − ςu if k = 1: underH1.
(5.67)

We can therefore compute F̄Λ(ru ),Hk (θu) by

F̄Λ(ru ),Hk (θu) = PHk (Λ (ru) ≥ θu) = PHk (Ru ≤ cu − θu) = G
(
cu − θu ; ρu, ξu,k

)
, (5.68)

with G
(
cu − θu ; ρu, ξu,k

)
derived from (5.58). Substituting (5.62) and (5.67) into (5.68), the result in

Proposition 5.1 follows immediately. �

We can therefore summary the LRT-based detector δ ∗ (ru) under the ideal context by the following
corollary.

Corollary 5.1. When all the model parameters are known, the optimal detector to distinguish an original
TIFF image from a resampled TIFF image is as follows

δ ∗ (ru) =

H0 : original TIFF image if Λ (ru) < θu,

H1 : resampled TIFF image if Λ (ru) ≥ θu,
(5.69)

where u ∈ {2, . . . ,p}, Λ (ru) is given by

Λ (ru) = −
1
2 ·

(
1
ςu
− 1

)
·

I∑
i=1

(
1

σ 2
0,u,i
·

Ju ,i∑
j=1

r 2
u,i,j

)
+ ρu · log 1

ςu
(5.70)

and θu is computed as
θu = F̄−1

Λ(ru ),H0
(α0) , (5.71)
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in which F̄−1
Λ(ru ),H0

(·) is inverse function of F̄Λ(ru ),H0 (·) in (5.57)

F̄Λ(ru ),H0 (θu) = G

(
ρu · log 1

ςu
− θu ; ρu,

1
ςu
− 1

)
, (5.72)

with G (·) and ρu given from (5.58) and (5.59) respectively.

From (5.52) and (5.69), we can express the power function of δ ∗ (ru) as

β (δ ∗ (ru)) = PH1 (δ
∗ (ru) = H1) = PH1 (Λ (ru) ≥ θu) . (5.73)

Using (5.57), we arrive at

β (δ ∗ (ru)) = G
(
ρu · log 1

ςu
− θu ; ρu, 1 − ςu

)
, (5.74)

where θu is computed following (5.71),G (·) is given by (5.58), and ρu is obtained by (5.59). We remark
from (5.74) that β (δ ∗ (ru)) depends only on ςu and ρu of the tested sub-image Zu , u = 2, . . . ,p.

Proposition 5.2. The power function defined by (5.74) is non-decreasing in ρu and non-increasing in ςu .

Proof. Using (5.58), we express (5.74) in the form

β (δ ∗ (ru)) =
Γ

(
ρu,
−ρu ·log ςu−θ

1−ςu

)
Γ (ρu)

, Q (ςu, ρu) . (5.75)

Applying the Corollary 3.1 in [72] to Q (ςu, ρu), we find directly that β (δ ∗ (ru)) is non-decreasing in
ρu . Taking now the derivative of Q (ςu, ρu) with respect to ςu , we obtain

∂Q (ςu, ρu)

∂ςu
= −

1
Γ (ρu)

· e
ρu ·log ςu+θ

1−ςu ·

(
−ρu · log ςu − θ

1 − ςu

)ρu−1
·

ρu
ςu
· (1 − ςu) + ρu · log ςu + θ

(1 − ςu)2
. (5.76)

Since ∂Q(ςu ,ρu )∂ςu
≤ 0, ∀ςu ∈ [0, 1], the power function β (δ ∗ (ru)) is non-increasing in ςu . �

5.4 Practical Detector for Resampled TIFF Images

Despite its theoretical interest, the ideal LRT-based detector designed in the previous section is very
constrained in practical applications because the model parameters are usually unknown. This section
aims to relax these constraints to facilitate the applications in practice by considering that the magnifi-
cation ratep is the only known parameter7. This leads to the decision between two composite hypothe-
ses (5.47) which is commonly treated by an optimal test under large conditions, namely generalized
likelihood ratio test (GLRT) [228]. The concept of GLRT is very similar to one of LRT, but the unknown
parameters in the expression (5.70) of Λ (ru) are replaced by their ML estimates. Therefore, we have to

7The magnification rate p can be estimated with high precision by using the Qiao et al.’s method [181].
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propose an estimation process to specify the vector of image parameters µu =
(
µu,1, . . . , µu,i, . . . , µu,I

)
,

the triplet of camera parameters (a,b,γ ), as well as the sum of squared interpolation coefficients ςu
before theoretically dealing with the GLRT and its performance.

5.4.1 Estimation of Model Parameters

We start with the estimation of the local expectation µu,i of each homogeneous segment Su,i . From the
homogeneous block detection and level-set segmentation process described in Subsection 5.3.2, it is
easy to see that the sample mean of denoised pixels tu,i,j is a good estimate of µu,i

µ̂u,i =
1
Ju,i
·

Ju ,i∑
j=1

tu,i,j . (5.77)

Indeed, since the variance of the denoised pixels tu,i,j is almost negligible [207] (see also Subsection 5.5),
µ̂u,i is very near to the true value µu,i . This explains why µ̂u,i is treated as a constant in the following
developments.

We propose to use the data extracted from the original sub-image Z1 to estimate (a,b,γ ), because
the relationship between the local variance σ 2

1,i and the local expectation µ1,i of pixels over a segment
S1,i , i ∈ {1, . . . , I } is invariant for whatever the real nature (i.e., original or resampled) of the considered
TIFF image U

σ 2
1,i = f

(
µ1,i ;a,b,γ

)
, (5.78)

where f (·) is given from (5.24). An estimate
(
â, b̂, γ̂

)
of (a,b,γ ) can be therefore obtained by fitting

f
(
µ1,i ;a,b,γ

)
to the scatter-plot of couples

{
µ1,i,σ

2
1,i

}I
i=1

. However, since µ1,i and σ 2
1,i are unknown in

practice, we could use their estimate µ̂1,i and σ̂ 2
1,i instead, where µ̂1,i is the sample mean given from

(5.77), and σ̂ 2
1,i is the unbiased sample variance of residues r1,i,j , j ∈

{
1, . . . , J1,i

}
,

σ̂ 2
1,i =

1
J1,i − 1 ·

J1,i∑
j=1

(
r1,i,j − r̄1,i,j

)
, with r̄1,i,j =

1
J1,i

J1,i∑
j=1

r1,i,j . (5.79)

While µ̂1,i can be merely treated as a constant (i.e., µ̂1,i u µ1,i ), σ̂ 2
1,i is more crucial and should be

carefully studied. Indeed, since r1,i,j ∼ N
(
0,σ 2

1,i

)
, it follows from (5.79) that [111, Proposition 2.11]

J1,i − 1
σ 2

1,i
· σ̂ 2

1,i ∼ χ
2
J1,i−1 (5.80)

where χ 2
J1,i−1 denotes chi-square distribution with J1,i − 1 degrees of freedom. Hence,

σ̂ 2
1,i ∼ G

(
J1,i − 1

2 ,
2

J1,i − 1 · σ
2
1,i

)
= G

(
J1,i − 1

2 ,
2

J1,i − 1 · f
(
µ̂1,i ;a,b,γ

) )
, (5.81)

where G (η, λ) is the Gamma statistical distribution. Fitting now f
(
µ̂1,i ;a,b,γ

)
to the scatter-plot
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{
µ̂1,i, σ̂

2
1,i

}I
i=1

by the ML approach, we obtain an estimate of (a,b,γ ) as follows(
â, b̂, γ̂

)
= arg max

(a,b,γ )
L (a,b,γ ) , (5.82)

where L (a,b,γ ) is the log-likelihood function of σ̂ 2
1,i over I segments S1,i given by

L (a,b,γ ) =
I∑

i=1
logд

(
σ̂ 2

1,i ;
J1,i − 1

2 ,
2

J1,i − 1 · f
(
µ̂1,i ;a,b,γ

) )
=

I∑
i=1

(
J1,i − 3

2 · log σ̂ 2
1,i − log Γ

(
J1,i − 1

2

)
−
J1,i − 1

2 · log 2
J1,i − 1 −

J1,i − 1
2 · log f

(
µ̂1,i ;a,b,γ

)
−
J1,i − 1

2 ·
1

f
(
µ̂1,i ;a,b,γ

) σ̂ 2
1,i

)
. (5.83)

The complexity ofL (a,b,γ ) does not allow an analytical solution of (5.82), we should therefore resort
to numerical optimization methods for this goal. More precisely, removing constant parts with respect
to a, b and γ from (5.83), we obtain

(
â, b̂, γ̂

)
= arg min

(a,b,γ )

I∑
i=1

((
J1,i − 1

)
·

(
log f

(
µ̂1,i ;a,b,γ

)
+

σ̂ 2
1,i

f
(
µ̂1,i ;a,b,γ

) )) . (5.84)

We next apply the Nelder-Mead simplex algorithm [120] (i.e., the fminsearch function in Matlab) to
(5.84) to search

(
â, b̂, γ̂

)
. According to [111, Theorem 5.4], the ML estimates â, b̂ and γ̂ are asymptoti-

cally consistent, i.e., they asymptotically converge in probability to their true value(
â, b̂, γ̂

) p
−→ (a,b,γ ) . (5.85)

Although the number of considered IID pixels for a sub-image Zu , u ∈ {1, . . . ,p}, is actually finite,
it is usually large enough to ensure a high accuracy of the ML estimates. This observation has been
confirmed by various numerical experiments synthetic images in [207, Table 1]. In the following
developments, we will treat â, b̂, γ̂ as constants to further simplify, even though they intrinsically
exhibit a certain variability.

We seek now the estimate of the sum of square interpolation coefficients ςu associated with a sub-
imageZu ,u ∈ {2, . . . ,p}. From (5.32), the local variance σ 2

u,i of pixels over a segment Su,i , i ∈ {1, . . . , I },
of Zu is expressed as

σ 2
u,i = f

(
µu,i ; ςu · a, ςu · b,γ

)
= ςu · f

(
µu,i ;a,b,γ

)
, (5.86)

with ςu ≤ 1. An estimate of ςu can be found by fitting f
(
µu,i ; ςu · a, ςu · b,γ

)
= ςu · f

(
µu,i ;a,b,γ

)
to

the scatter-plot of
{
µ̂u,i, σ̂

2
u,i

}I
i=1

, where µ̂u,i is an estimate of µu,i given from (5.77) and σ̂ 2
u,i an estimate

https://fr.mathworks.com/help/matlab/ref/fminsearch.html
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of σ 2
u,i defined by

σ̂ 2
u,i =

1
Ju,i − 1 ·

Ju ,i∑
j=1

(
ru,i,j − r̄u,i,j

)
, with r̄u,i,j =

1
Ju,i

Ju ,i∑
j=1

ru,i,j . (5.87)

Since σ̂ 2
u,i is Gamma distributed

σ̂ 2
u,i ∼ G

(
Ju,i − 1

2 ,
2

Ju,i − 1 · ςu · f
(
µ̂u,i ;a,b,γ

) )
, (5.88)

the ML estimate ς̂u of ςu is given by

ς̂u = arg max
ςu
L (ςu) , (5.89)

with L (ςu) the log-likelihood function obtained in a similar way to (5.83) as

L (ςu) =
I∑

i=1

(
Ju,i − 3

2 · log σ̂ 2
u,i − log Γ

(
Ju,i − 1

2

)
−
Ju,i − 1

2 · log 2
Ju,i − 1

−
Ju,i − 1

2 · log f
(
µ̂u,i ;a,b,γ

)
−
Ju,i − 1

2 · log ςu −
Ju,i − 1

2 ·
1

ςu · f
(
µ̂u,i ;a,b,γ

) σ̂ 2
u,i

)
. (5.90)

Proposition 5.3. The closed-form expression of the ML estimate of ςu is given by

ς̂u =

∑I
i=1

( (
Ju,i − 1

)
·

σ̂ 2
u ,i

f (µ̂u ,i ;a,b,γ)

)
∑I

i=1
(
Ju,i − 1

) , (5.91)

where µ̂u,i and σ̂ 2
u,i are obtained from (5.77) and (5.87).

Proof. It is easy to derive from (5.89) and (5.90) that the ML estimate ς̂u verifies

dL

dςu
(ς̂u) = −

1
2ς̂u
·

I∑
i=1

((
Ju,i − 1

)
−

(
Ju,i − 1

)
·

σ̂ 2
u,i

f
(
µ̂u,i ;a,b,γ

) · 1
ς̂u

)
= 0. (5.92)

We arrive at
I∑

i=1

(
Ju,i − 1

)
−

1
ς̂u
·

I∑
i=1

((
Ju,i − 1

)
·

σ̂ 2
u,i

f
(
µ̂u,i ;a,b,γ

) ) = 0, (5.93)

hence the expression of ς̂u as in (5.91). �

Since σ̂ 2
u,i is Gamma distributed as in (5.88), we can further derive from (5.91) the distribution of ς̂u

as

ς̂u ∼ G

(
1
2 ·

I∑
i=1

(
Ju,i − 1

)
,

2 · ςu∑I
i=1

(
Ju,i − 1

) ) , (5.94)
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where G (η, λ) denotes the Gamma distribution with pdf (5.65). As such, the expectation and variance
of ς̂u are expressed by

E [ς̂u] = ςu and var [ς̂u] =
2 · ς2

u∑I
i=1

(
Ju,i − 1

) . (5.95)

These expressions imply that (5.91) is an unbiased estimator of ςu , and that the variance is very small
because of the large enough number of considered IID pixels

∑I
i=1

(
Ju,i − 1

)
and ςu ≤ 1. In other words,

the proposed ML estimate is of high accuracy, and can be treated as constant. Yet, since a, b and γ
are still unknown, we cannot applied directly (5.91) to find ς̂u in practice. This is why we propose to
replace (a,b,γ ) by

(
â, b̂, γ̂

)
, and eventually obtain the ML estimate of ςu as

ς̂u =

∑I
i=1

((
Ju,i − 1

)
·

σ̂ 2
u ,i

f
(
µ̂u ,i ;â,b̂,γ̂

) )∑I
i=1

(
Ju,i − 1

) , (5.96)

where the triplet
(
â, b̂, γ̂

)
is given from (5.84).

5.4.2 GLRT-Based Detector and Performance

Given the constant ML estimates µ̂u =
(
µ̂u,1, . . . , µ̂u,i, . . . , µ̂u,I

)
,
(
â, b̂, γ̂

)
and ς̂u , we would like to pro-

pose in this subsection a more practical GLRT-based detector and to evaluate its statistical perfor-
mance. Indeed, substituting

(
µu,i,a,b,γ , ςu

)
by

(
µ̂u,i, â, b̂, γ̂ , ς̂u

)
, the Corollary 5.1 leads to the following

GLRT-based detector.

Corollary 5.2. Under the practical context where all the model parameters are unknown except the
magnification factor p, the optimal detector to distinguish an original TIFF image from a resampled TIFF
image is as follows

δ̂ ∗ (ru) =

H0 : original TIFF image if Λ̂ (ru) < θ̂u,

H1 : resampled TIFF image if Λ̂ (ru) ≥ θ̂u,
(5.97)

where u ∈ {2, . . . ,p}, Λ̂ (ru) denotes the generalized LLR of ru given by

Λ̂ (ru) = −
1
2 ·

(
1
ς̂u
− 1

)
·

I∑
i=1

©­­«
1

f
(
µ̂u,i ; â, b̂, γ̂

) · Ju ,i∑
j=1

r 2
u,i,j

ª®®¬ + ρu · log 1
ς̂u
, (5.98)

and θ̂u is computed as
θ̂u = F̄−1

Λ̂(ru ),H0
(α0) , (5.99)
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with F̄−1
Λ̂(ru ),H0

(·) the inverse function of F̄Λ̂(ru ),H0
(·) defined by

F̄Λ̂(ru ),H0

(
θ̂u

)
= G

(
ρu · log 1

ς̂u
− θ̂u ; ρu,

1
ς̂u
− 1

)
, (5.100)

in which G (·) is the Gamma cdf (5.58), and ρu is given from (5.59).

Similar to the LRT-based detector, the power function of the GLRT-based detector δ̂ ∗ (ru) is ex-
pressed by

β
(
δ̂ ∗ (ru)

)
= G

(
ρu · log 1

ς̂u
− θ̂u ; ρu, 1 − ς̂u

)
, (5.101)

where θ̂u is computed following (5.99),G (·) is the Gamma cdf (5.58), and ρu is obtained by (5.59). The
power (5.101) is a non-decreasing function of ρu and a non-increasing function of ς̂u .

5.5 Numerical Experiments

The aim of this section is twofold: (i) numerical validation and illustration of the proposed GLRT-
based detector, and (ii) numerical assessment of the detector performance under various scenarios of
interpolation kernels and sizes of resampled TIFF images.

5.5.1 Validation and Illustration

The validation and illustration rely on the Dresden images dataset [78]. Firstly, we convert the RAW
images of the dataset to 8-bits TIFF color images using https://image.online-convert.com/convert-to-
tiff. Such images are considered as original. Next, we resample them following the horizontal direction
with resampling factor ξ = p

q using some well-known interpolation methods (e.g., linear, cubic con-
volution, nearest-neighbor, spline, etc.), and save again in TIFF format to obtain the resampled TIFF
images. Among the three color channels of TIFF images, we only consider the green one because the
correlation among pixels generated by the demosaicing is smaller than in the red and blue channels.
Consequently, the denoised pixels and residual noises in sub-images of the green channel are used
as input of our experiments. As an illustration, an original TIFF image with size 3892 × 2608 issued
by Nikon D200 camera is considered and horizontally resampled at rate ξ = p

q =
4
3 using the cubic

convolution interpolation [103] (see also Table 5.3 and Figure 5.9 for the expression and the shape of
the cubic convolution kernel). Figure 5.6 shows four sub-images horizontally extracted from the green
channel of the original and resampled TIFF images. These sub-images result in the illustrations in the
sequel of this subsection.

We would like to verify the uniform distribution (5.43) of tu,i,j and the Gaussian distribution (5.46)
of ru,i,j . The process described in Subsection 5.3.2 with I = 28 = 256 and ∆i = 1 is first used to
extract tu,i,j and ru,i,j from the above sub-images. Next, on the one hand, we apply the kernel density
estimation (KDE) method [23] to find the empirical pdf of tu,i,j and ru,i,j . On the other hand, we use the
ML method to estimate the pdfs under the assumption that tu,i,j and ru,i,j are uniformly and Gaussian

https://image.online-convert.com/convert-to-tiff
https://image.online-convert.com/convert-to-tiff
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u = 1

u = 3

u = 2

u = 4

(a) Original image

u = 1 u = 2

u = 3 u = 4

(b) Resampled image (cubic convolution kernel)

Figure 5.6: Sub-images Zu , u = 1, . . . , 4, of green channel given from TIFF images issued by Nikon
D200 camera

distributed respectively. Such a process is applied for all sub-images of both the original and resampled
TIFF images. The comparison between the empirical and estimated pdfs of tu,i,j and ru,i,j allow us to
confirm the relevance of conjecture. As an example, we consider the denoised pixels tu,i,j and the
residues ru,i,j associated with the homogeneous segment i = 80 of the sub-images in Figure 5.6, and
display in Figures 5.7a and 5.7b their pdfs. Clearly, the pdf curves returned by both the KDE and ML
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(b) Resampled image (cubic convolution kernel)

Figure 5.7: Probability density function of residues ru,i,j and denoised pixels tu,i,j in the segment i = 80

methods are almost identical. The figures on top show that tu,i,j are uniformly distributed between 79.5
and 80.5 with expectation E

[
tu,i,j

]
= 80 and with very small variance var

[
tu,i,j

]
= 1

12 , ∀u ∈ {1, . . . , 4}.
This is why the sample mean µ̂u,i in (5.77) can be seen as the true expectation µu,i . Observing the
figures at the bottom, we find that ru,i,j are zero-mean Gaussian distributed with variance σ 2

u,i . The
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variances are the same for all sub-images σ 2
1,i = σ 2

2,i = σ 2
3,i = σ 2

4,i when the TIFF image is original
(see Figure 5.7a). Meanwhile, they are well distinct for the resampled TIFF image (see Figure 5.7b):
the one of interpolated sub-images is actually smaller than the one of original sub-image σ 2

u,i < σ 2
1,i ,

∀u = 2, 3, 4. All the observations confirm the pertinence of our conjecture on tu,i,j and ru,i,j .
Now, we deal with the relevance of the choice of sub-images for model parameters estimation

and for the hypothesis testing. In fact, we have chosen the original sub-image Z1 as input of the
estimation for image parameters µ1 and camera parameters (a,b,γ ), and the interpolated sub-images
Zu ,u ∈ {2, . . .p} to estimate the image parameters µu , the sum of squared interpolation coefficients ςu
and to serve the (G)LRT. The logic of this choice for a certain homogeneous segment can be justified by
Figure 5.7. Indeed, the same pdf curves of ru,i,j in Figure 5.7a imply that the camera parameters (a,b,γ )
are unchanged for all sub-images of a given TIFF image. So, a simplest way to find their estimates(
â, b̂, γ̂

)
is to use Z1 as it is independent of interpolation coefficients. Once obtained, we can use them

as parameters of models of interpolated sub-images Zu , u ∈ {2, 3, 4}. Similarly, the distinction among
the pdf curves of ru,i,j when u = 1 and u , 1 in Figure 5.7b confirms why Zu , u ∈ {2, . . .p}, are served
to estimate ςu and to design the (G)LRT-based detector. Especially, we find that the pdf curves for
u = 2 and u = 4 almost coincide because they share the same value of ςu = 0.8088 (see also Table 5.1).
The above logic remains true when we extend to the overall sub-images (i.e., for all homogeneous
segments). In fact, looking at the scatter-plot of

{
µ̂u,i, σ̂

2
u,i

}I
i=1

for each sub-images Zu , u ∈ {1, . . . 4}
of both the considered original and resampled TIFF images in Figure 5.6, we exactly find the same
phenomena as above. This strengthens the relevance in the choice of sub-images.

To show the efficiency of the proposed ML estimators (5.84), we evaluate how good the fitted
curves σ 2

u,i = f
(
µu,i ; ςu · a, ςu · b,γ

)
, with ςu ≤ 1, of the scatter-plot of

{
µ̂u,i, σ̂

2
u,i

}I
i=1

are. As displayed
in Figure 5.8, we can always find a function f (·) that fits in very well with the scatter-plot of a sub-
image. This implies the accuracy of the estimators (5.84). The estimates

(
â, b̂, γ̂

)
given from Z1 of
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Figure 5.8: Scatter-plot and fitted curve of the variances and expectations of pixels given from sub-
images Zu
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the original and resampled TIFF images are provided in Table 5.1. We note that their values are not

TIFF image sub-image â b̂ γ̂ ς̂u ςu

original

1 -0.0051 0.0991 0.5559 - -
2 - - - 1 1
3 - - - 0.9985 1
4 - - - 1 1

resampled

1 -0.0040 0.1371 0.6578 - -
2 - - - 0.8186 0.8088
3 - - - 0.6343 0.6406
4 - - - 0.8191 0.8088

Table 5.1: Parameters estimated from sub-images Zu , u ∈ {1, . . . , 4}, of original and resampled TIFF
images

necessary identical because the content of the associated sub-images are not the same. In the same
table, we find ς̂u estimated from Zu , u ∈ {2, 3, 4}. Compared to the true value ςu , the estimated ones
are almost similar. Moreover, ς̂u is near to 1 when Zu are original, and is definitely less than 1 when
Zu are interpolated. All these elements confirm the accuracy of (5.96).

image original resampled
sub-image u = 2 u = 3 u = 4 u = 2 u = 3 u = 4

α0 Λ̂ (ru) −0.0776 −5.9999 −0.1578 2.6756 · 103 1.1575 · 104 2.8096 · 103

0.05 θ̂u 0.0156 1.3371 0.0157 −2.9883 · 103 −1.3125 · 104 −3.1375 · 103

δ̂ ∗ (ru) H0 H0 H0 H1 H1 H1

0.5 θ̂u −4.2150 · 10−5 −1.0739 −4.2279 · 10−5 −3.1213 · 103 −1.3407 · 104 −3.2738 · 103

δ̂ ∗ (ru) H0 H0 H0 H1 H1 H1

0.95 θ̂u −0.0157 −3.4876 −0.0158 −3.2544 · 103 −1.3690 · 104 −3.4102 · 103

δ̂ ∗ (ru) H0 H0 H0 H1 H1 H1

Table 5.2: GLRT using sub-images Zu , u ∈ {2, 3, 4}

Table 5.2 shows the values of the LLR Λ̂ (ru) and of the decision threshold θ̂u , as well as the results
returned by the GLRT-based detector δ̂ ∗ (ru) when the false-alarm rate α0 is 0.05, 0.5 and 0.95 respec-
tively. With a fixed value of Λ̂ (ru), the decrease of θ̂u is in tune which the increase of α0. We find that
the detector returns the right results for whatever used sub-images Zu , u ∈ {2, 3, 4}. However, consid-
ering the difference between Λ̂ (ru) and θ̂u , the sub-images Z3 gives the robustest result. This actually
makes sense as Z3 has the smallest ς̂u compared to the two others (see Table 5.1). In other words,
we should carry out the GLRT on the sub-image which has the smallest sum of square interpolation
coefficients to ensure the highest detection performance.

5.5.2 Performance Assessment

From (5.101), the power function β
(
δ̂ ∗ (ru)

)
only depends on ς̂u and ρu . As such, the interpolation

methods and the size of resampled TIFF images are the main factors that influence the statistical
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performance of the GLRT-based detector, and we would like to understand their impacts through
sensitivity studies. We consider therefore 1000 authentic 8-bits color TIFF images of size varied from
1920 × 1080 pixels to 3888 × 2592 pixels. They are gathered from several well-known databases such
as the McGill Calibrated Colour Image Database [162], the Dresden Image Database [78], the Kodak
Lossless True Color Image Suite8, the Image Manipulation Dataset [41], the DSO-1 and DSI-1 Datasets
[52], and the Realistic Tampering Dataset [115]. These original images are squarely cropped in several
sizes, next resampled at rate ξ = p

q =
4
3 using some well-known interpolation methods, and are finally

saved again in TIFF format to create tested datasets of resampled TIFF images.

name expression support

nearest neighbor h (δ ) =

{
1 if |δ | ≤ 1

2
0 otherwise

[
−1

2,
1
2
]

linear h (δ ) =

{
1 − |δ | if |δ | ≤ 1
0 otherwise

[−1, 1]

cubic convolution h (δ ) =


3
2 |δ |

3 − 5
2 |δ |

2 + 1 if |δ | ≤ 1
−1

2 |δ |
3 + 5

2 |δ |
2 − 4 |δ | + 2 if 1 < |δ | ≤ 2

0 otherwise
[−2, 2]

Table 5.3: Well-known interpolation kernels

Four interpolation methods (i.e., nearest neighbor, linear, cubic convolution and cubic spline) are
under consideration [145, 164]. The three first methods can be simply defined by an associated inter-

h
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)
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1
cubic

Figure 5.9: Shape of well-known interpolation kernels

polation kernel (see Table 5.3 and Figure 5.9), meanwhile the definition of the last one is more sophis-
ticated and can be found in [51]. The size of all tested resampled TIFF images is fixed at 1024 × 1024.
Figures 5.10a, 5.10b and 5.10c represent the performance of the GLRT-based detector in function of the
false-alarm rate α0 when the three sub-images Zu , u ∈ {2, 3, 4}, are respectively used as input. In each

8https://www.math.purdue.edu/∼lucier/PHOTO_CD/.TIFF_IMAGES/

https://www.math.purdue.edu/~lucier/PHOTO_CD/.TIFF_IMAGES/
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Figure 5.10: Power functions given from sub-images Zu , u ∈ {2, 3, 4} with respect to interpolation
methods

figure, the sub-figure on the right displays the empirical power function β̂ = 1
1000

∑1000
m=1 1{

δ̂ ∗m(ru )=H1
}

where δ̂ ∗m (ru) denotes the decision on them-th image returned by the rule (5.97), while the sub-figure
on the left shows the power average over 1000 images β̄ = 1

1000
∑1000

m=1 β
(
δ̂ ∗m (ru)

)
with β

(
δ̂ ∗m (ru)

)
computed by (5.101). Both β̂ and β̄ increase from 0 to 1 with respect to α0, and β̂ ≤ β̄ for a given inter-
polation method. Comparing β̂ and β̄ associated with different considered interpolation methods fol
all sub-images Zu , u ∈ {2, 3, 4}, we find that the stronger the “smoothing” effect of interpolation, the
lower the power of the GLRT-based detector. This implies that the TIFF images resampled using linear
interpolation is easier to be detected by the proposed detector than the ones using cubic convolution
or cubic spline interpolation. The nearest neighbor interpolation is however a special case where the
resampling is hard to be detected even if the “smoothing” effect is weak. All these phenomena are
comprehensible when we observe the sample mean E [ς̂u] and sample variance var [ς̂u] of ς̂u in Table
5.4. As the values of var [ς̂u] are very small, E [ς̂u] approximates well ς̂u . We can therefore apply the
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sub-image method linear cubic convolution cubic spline nearest neighbor

u = 2 E [ς̂u] 0.8216 0.9434 0.9676 0.9844
var [ς̂u] 6.0547 · 10−4 3.5575 · 10−4 3.2439 · 10−4 3.0216 · 10−4

u = 3 E [ς̂u] 0.7674 0.9075 0.9513 0.9959
var [ς̂u] 1.0687 · 10−3 7.5549 · 10−4 5.5014 · 10−4 5.1991 · 10−5

u = 4 E [ς̂u] 0.8270 0.9508 0.9748 0.9959
var [ς̂u] 6.5531 · 10−4 2.9480 · 10−4 2.4549 · 10−4 5.1991 · 10−5

Table 5.4: Sample mean E [ς̂u] and sample variance var [ς̂u] of ς̂u over 1000 tested resampled TIFF
images
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Figure 5.11: Power functions given from sub-images Zu , u ∈ {2, 3, 4} with respect to TIFF image sizes

Proposition 5.2 to E [ς̂u] and the above results are consequent.
Now, fixing the interpolation method for resampled TIFF images at cubic convolution, and varying

their sizes as 256 × 256, 512 × 512, 768 × 768 and 1024 × 1024, we sketch in Figures 5.11a, 5.11b and
5.11c the power functions β̂ and β̄ computed from the sub-images Zu , u ∈ {2, 3, 4}, respectively. The
meanings of β̂ and β̄ are similar to the ones in Figures 5.10a, 5.10b and 5.10c. We can find clearly
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that the statistical performance of the GLRT-based detector increases with respect to the size of tested
images. This is absolutely coherent with Proposition 5.2 as the total number of residual noises under
consideration ρu increases when the image size increases.

5.6 Conclusion

By analyzing the processing process from a RAW image to a resampled TIFF image, we develop in this
chapter statistical models for the noisy pixels, the denoised pixels, as well as for the residual noises of
resampled TIFF images. An estimation process is proposed to specify the parameters of these models.
Based on the model of residual noises, we design optimal detectors to distinguish a resampled TIFF
image from an original TIFF image using the incoherence in their variance. Consequently, a LRT-
based detector and a GLRT-based detector are proposed for the ideal and practical context where the
model parameters are respectively known and unknown. The closed-form expressions of their power
function are also provided and analyzed. Various numerical experiments show that the detectors
performance depends closely on the size and the order of sub-images under the consideration. So, we
should take care about them to reach the highest performance of the proposed detectors.





Chapter 6

Conclusions and Perspectives

6.1 Conclusions

We have developed in this doctoral project three versatile techniques for detecting forged digital im-
ages and localizing various types of tampering therein: (i) demosaicing traces-based [126], (ii) JPEG-
compression traces-based [127, 128], and (iii) resampling traces-based [125]. Although these techniques
are different, they work under the common assumption that manipulations may alter some underly-
ing statistical properties of natural images. The same two-steps process has been adopted for every
detection technique: (i) analyze and model statistical features of both the authentic and forged images
associated with specific in-camera and/or post-camera traces, then (ii) design a statistical detector
to differentiate between the authentic and forged images by estimating statistical changes in their
models.

Chapter 3 exploited the inconsistency in traces left by the demosaicing. The associated feature
statistic is the standardized difference between the arithmetic mean of the logarithm of residues vari-
ances of acquired and interpolated pixels in square blocks within smoothing regions of a suspect
digital image. Such a feature statistic follows the standard normal distribution and a mixture of two
normal distributions when the image is authentic and forged respectively. Normality tests are next
carried out to decide if the suspect image is authentic or not. If it is forged, a penalized EM algorithm
is used to automatically distinguish between original and tampered area within the image.

When JPEG compression traces are considered as in Chapter 4, we defined the value of DCT coeffi-
cients as their feature statistic and developed its recurrent modeling framework for both the authentic
and forged JPEG images subject to multiple quantization effect. Especially, we have proved that the
quantizedDCT coefficients of forged JPEG images can be properly approximated by a two-components
mixture model regardless of the number of forged areas therein. Based on such a model, the plug-in
Bayes rule combined with a simple EM algorithm is exploited to localize tampered areas of the forged
image.

Finally, in Chapter 5, the noise part of pixels is chosen as the feature statistic of resampling traces.
We have followed the complete processing process from a RAW image to a resampled TIFF image to
find out that the noise models of both the resampled and original TIFF images are zero-mean normal
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distributions. For independent identically distributed pixels, the variance of resampled noise is smaller
proportionally to the sum of squared interpolation coefficients. These models allows us to design
(G)LRT-based detectors for distinguishing between a resampled and an original TIFF images. Their
performances are analytically evaluated.

We have carried out various numerical experiments on several well-known benchmark datasets
to assess both the performances and robustness of the proposed detection techniques. We believe that
this doctoral thesis provides a significant complement to the field of statistical image modeling and
digital image forgery detection.

6.2 Perspectives

The thesis highlights three potential interests for future researches according to the three developed
detection techniques.

1. Even if the demosaicing traces-based technique developed in Chapter 3 yields very encouraging
results, we find that the automatic authentication of digital images is still at low performance
(see Table 3.2), and that the forgery localization is limited to uncompressed or less-compressed
images (see Figures 3.8 and 3.9). The focus of our near future work is to further improve these
two points. Building a new feature statistic taking into account the periodicity of demosaicing
artifacts in DCT domain as in [134] seems to be a key step for this work. Another perspective
is to extend the developed methods to the videos forensics. The work of Singh and Aggarwal in
[195] could be a good orientation.

2. Despite very encouraging results returned by the modeling framework of JPEGDCT coefficients
developed in Chapter 4, several improvements can be made. Firstly, the truncation errors should
not be ignored from the statisticalmodeling of JPEG compression cycle even its small probability.
Some interesting ideas for the consideration of truncation errors can be found in [216]. Secondly,
as in [221], the correlation among adjacent DCT blocks can be taken into account in modeling
the distribution of AC DCT coefficients. For further perspectives, we can think about other
consequences of manipulations on JPEG images (e.g., non-aligned recompression [18]). We can
also extend the modeling approach used in Chapter 4 to model tampered MPEG videos [218].

3. Chapter 5 has focused on one-dimensional resampling. To deal withmore practical digital image
forgery, we should extend the proposed detection technique to two-dimensional resampling
[180, 181]. Besides, the same technique could be applied to regions of images to detect the local
resampling [169, 175].
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Appendix of Chapter 3

This appendix provides the detailed formalization of the penalized EM algorithm used in Chapter 3.
Indeed, given the parameters Θ(t) =

(
γ (t), µ(t)1 , µ

(t)
2 ,σ

(t)
)
at the t-th iteration, the EM algorithm at the

(t + 1)-st iteration behaves at follows.

E-step of the EM algorithm

Using Bayes theorem, the posterior distribution of the latent variables is expressed by

f (Z | N) =
f (N,Z)
f (N)

∝

q∏
i=1

2∏
k=1

(
γ (t)
k

f
(
Ni ; µ(t)k ,σ

(t)
))Zik

. (A.1)

Taking the expectation of Zik under f (Z | N), we obtain [21, page 443]

E
[
Zik | N;Θ(t)

]
=

γ (t)
k

f
(
Ni ; µ(t)k ,σ

(t)
)

∑2
k=1 γ

(t)
k

f
(
Ni ; µ(t)k ,σ (t)

) , γ (t+1)
ik
. (A.2)

γik represents the responsibility of the population k for the data point Ni . This gives an idea for
population clustering. The expectation of plc (γ , µ1, µ2,σ ) under the posterior distribution of the latent
variables is thus

EZ

[
plc (γ , µ1, µ2,σ ) | N;Θ(t)

]
=

q∑
i=1

2∑
k=1

E
[
Zik | N;Θ(t)

]
·

(
logγk − logσ − 1

2σ 2 (Ni − µk)
2 −

1
2 log 2π

)
+

pq (σ ) =

q∑
i=1

2∑
k=1

γ (t+1)
ik
·

(
logγk − logσ − 1

2σ 2 (Ni − µk)
2 −

1
2 log 2π

)
+ pq (σ ) , Q

(
Θ;Θ(t)

)
. (A.3)

M-step of the EM algorithm

We look forΘ(t+1) that maximizesQ
(
Θ;Θ(t)

)
. Since that γ , µ1, µ2 and σ being in separate linear terms,

they may all be maximized independently.
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• Considering only the terms of Q
(
Θ;Θ(t)

)
in associated with γ , we have

д (γ ) =

q∑
i=1

(
γ (t+1)
i1 logγ1 + γ

(t+1)
i2 logγ2

)
= log (1 − γ )

q∑
i=1

γ (t+1)
i1 + logγ

q∑
i=1

γ (t+1)
i2 . (A.4)

Taking the derivation of д (γ ) according to γ and setting dh(γ )
dγ = 0 lead to

dh (γ )

dγ
=

∑q
i=1 γ

(t+1)
i1

γ − 1 +

∑q
i=1 γ

(t+1)
i2

γ
= 0⇔ γ =

∑q
i=1 γ

(t+1)
i2

q
. (A.5)

Consequently, γ (t+1) can be updated by

γ (t+1) =

∑q
i=1 γ

(t+1)
i2

q
. (A.6)

• Considering only the terms of Q
(
Θ;Θ(t)

)
in associated with µk , k ∈ {1, 2}, we have

s (µk) = −
1

2σ 2

q∑
i=1

γ (t+1)
ik
(Ni − µk)

2 . (A.7)

Taking the derivation of s (µk) according to µk and setting ds(µk )
dµk
= 0 lead to

ds (µk)

dµk
=

∑q
i=1 γ

(t+1)
ik
(Ni − µk)

σ 2
k

= 0⇔
q∑
i=1

γ (t+1)
ik

Ni = µk

q∑
i=1

γ (t+1)
ik
. (A.8)

Setting ds(µk )
dµk
= 0 leads to

q∑
i=1

γ (t+1)
ik

Ni = µk

q∑
i=1

γ (t+1)
ik
. (A.9)

Consequently, µ(t+1)
k

, k ∈ {1, 2}, can be updated by

µ(t+1)
k
=

∑q
i=1 γ

(t+1)
ik

Ni∑q
i=1 γ

(t+1)
ik

. (A.10)

• Setting µk = µ(t+1)
k

, and considering only the terms ofQ
(
Θ;Θ(t)

)
in associated with σ , we have

r (σ ) = −q logσ − 1
2σ 2

q∑
i=1

2∑
k=1

γ (t+1)
ik

(
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Denoting S (t+1) =
∑q

i=1
∑2

k=1 γ
(t+1)
ik

(
Ni − µ

(t+1)
k

)2
and taking the derivation of r (σ ) according to
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σ , we have
dr (σ )

dσ
= −

q + 2aq
σ

+
S (t+1) + 2aqs2

q

σ 3 . (A.12)

Setting dr (σ )
dσ = 0 leads to

S (t+1) + 2aqs2
q

σ 2 = q + 2aq . (A.13)

Consequently, σ (t+1) can be updated by

σ (t+1) =

√
S (t+1) + 2aqs2

q

q + 2aq
. (A.14)

The above developments give the key steps of the Algorithm 3.1.
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Appendix of Chapter 4

This appendix recalls the statistical law and parameters estimation of the models for primary un-
quantized AC DCT coefficients used in Chapter 4. Although four models are considered, we just
mention here the GGD and CND, because the LD and GND can be derived from GGD as GND (β,γ ) ≡
GGD

(
1
γ , β,γ

)
and LD (β) ≡ GGD (1, β, 1).

Generalized Gamma Distribution

Let consider X (1) ∼ GGD (α, β,γ ) with (α, β,γ ) ∈ R3
∗,+, then the pdf and cdf of X (1) at x (1) ∈ R are

respectively

fX (1)
(
x (1);α, β,γ

)
=

γ

2βΓ (α)

( ��x (1)��
β

)γα−1

e
−

(
|x (1) |
β

)γ
, (B.1)

FX (1)
(
x (1);α, β,γ
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=

1
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· 1{x (1)<0} +
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2 · 1{x (1)=0} +

©­­«1 − 1
2

Γ
(
α,

(
x (1)

β

)γ )
Γ (α)

ª®®¬ · 1{x (1)>0}, (B.2)

where 1{·} denotes the indicator function which equals 1 if the argument is true and 0 otherwise,
Γ (u) =

∫ ∞
0 tu−1e−tdt and Γ (u, x) =

∫ +∞
x

tu−1e−tdt are respectively the complete and upper incomplete

gamma functions. Let x̂(1) =
{
x̂ (1)1 , . . . , x̂

(1)
N

}
be the set of unquantized AC DCT coefficients recovered

from a JPEG image (see Figure 4.2), the ML estimate of γ is the solution of the equation

ψ
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whereψ (α) = Γ
′
(α)

Γ(α) denotes the digamma function and ϑ (γ ) is defined by

ϑ (γ ) = γ ·
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Once γ̂ is numerically obtained, the ML estimates of α and β are obtained by

α̂ =

1
N
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Compound Normal Distribution

Let X (1) ∼ CND (η, ρ) with (η, ρ) ∈ R2
∗,+, then the pdf of X (1) at x (1) ∈ R is
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where Kµ (·) denotes the modified Bessel function of the second kind with order µ ≥ −1
2 [117, Ap-

pendix, page 315]
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√
πuµ

2µΓ
(
µ + 1

2
) ∫ ∞

1

(
t2 − 1

)µ− 1
2 e−utdt . (B.7)

The cdf of X (1) at x (1) ∈ R is
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where G (x) is defined by
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with д (x) = x
√

2
ρ and Lµ (·) the modified Struve function with order µ [81, 8.550.2, page 942]
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The ML estimates η̂ and ρ̂ are the simultaneous solutions of the following equations
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where Rµ (·) =
Kµ+1(·)
Kµ (·)

, Sµ (·) =
Iµ (·)

Kµ (·)
with Iµ (·) the modified Bessel function of the first kind [81, 8.431.1,

page 916]
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and Gm,n
p,q (· | ·) is the Meijer G-function [81, 9.301, page 1032]
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in which the integration path L separates the poles of the factors Γ (bl − s) from those of the factors
Γ (1 − al + s),m and n are integers such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, and none of ak −bj is a positive
integer when 0 ≤ k ≤ n and 1 ≤ j ≤ m.
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French Summary

"Une image vaut plus que dix mille mots". La force de ce vieil adage s’est conservée au fil des siècles et
jusqu’à aujourd’hui. Au début, le terme peinture était utilisé pour décrire des événements du monde
réel au lieu de mille mots. Ce rôle a été assumé par la photographie depuis l’invention des appareils
photographiques d’images fixes au 19e siècle. À cette époque, "voir c’est croire" car les images sont
capturées par des dispositifs d’acquisition analogiques et stockées sur des films photographiques. La
manipulation des images sur de tels supports physiques est extrêmement difficile et requiert les com-
pétences particulières de professionnels. Par conséquent, une image imprimée dans un journal était
communément acceptée comme une certification de l’information. Au début du 21e siècle, la révo-
lution numérique a radicalement changé la façon dont une image est imprimée. Cela a changé non
seulement la façon dont une image est acquise, mais aussi la manière dont les contenus des images
sont stockés et transmis. Les ordinateurs portables, clés USB, cartes mémoires, disques compacts sont
quelques exemples de dispositifs personnels capables de stocker des images numériques, tandis que
les réseaux sociaux sont des services puissants permettant de stocker et de partager des contenus
numériques partout et à tout moment, grâce à des appareils numériques connectés à Internet. Grâce
à ces outils du quotidien, presque tout le monde dans notre vie moderne est capable d’enregistrer,
de stocker et de partager un grand nombre d’images numériques. En outre, la diffusion de logiciels
d’édition d’images puissants et peu coûteux a rendu la modification des images numériques plus facile.
Cela implique que les images ne sont plus quelque chose d’immuable, mais plutôt comme un organisme
vivant qui évolue au fil du temps au moyen de diverses opérations. En conséquence, nous en sommes
venus socialement à comprendre les événements d’une manière beaucoup plus visuelle : "L’image
n’est plus que ce que l’on voit" de sorte qu’apparemment "voir n’est plus croire".

Il importe peu que la manipulation de l’image ne serve qu’à des objectifs sains comme le diagnostic
médical, la satire et l’embellissement. Malheureusement, les images manipulées ont été utilisées à des
fins malveillantes liées à tous les aspects de la vie humaine tels que la politique, l’écologie, la race et le
sexe. En 1997, 58 touristes innocents ont été tués lors d’un attentat terroriste au temple d’Hatchepsout
à Louxor en Égypte (voir la figure C.1a). Le journal suisse Blick a rapporté l’événement en modifiant
la couleur de l’eau pour qu’elle ressemble à du sang s’écoulant du temple (voir la figure C.1b), afin
que le public puisse comprendre la brutalité de l’attaque. Le 09 juillet 2008, les journaux "Palm Beach
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(a) Image originale (b) Image falsifiée

Figure C.1: Événement de l’attaque terroriste au temple d’Hatchepsout à Louxor en Égypte

Post" et le "Chicago Tribune" ont publié en première page une photo décrivant un test de missile
iranien (voir la figure C.2a). Après la publication, il a été révélé que le deuxième missile à partir de la
droite avait été cloné afin de dissimuler un missile au sol qui n’avait pas n’a pas été tiré (voir la figure
C.2b). La photographie authentique (voir la figure C.2c) est apparue un jour plus tard confirmant
une nouvelle fois que la photographie publiée était en fait falsifiée. En juin 2010, la couverture de

(a) Photo publiée sur les journaux (b) Photo falsifiée avec duplication (c) Photo originale

Figure C.2: Photographie originale

"The Economist" montrait le président Barack Obama seul sur une plage de Louisiane examinant les
conséquences de la marée noire de British Petroleum dans le golfe du Mexique (voir la figure C.3a).
Sous le titre "Obama contre BP", le président semble réfléchir à la manière de gérer cette catastrophe
politique et écologique. Cependant, en juillet 2010, le blog New York Times Media Decoder a révélé que
le président n’était pas seul (voir la figure C.3b). Les événements ci-dessus montrent clairement que
les images falsifiées sont devenues un problème majeur pour la société. En fait, les images falsifiées
apparaissent de plus en plus fréquemment et de manière sophistiquée avec l’avancée croissante de
nouvelles techniques d’intelligence artificielle pour lesquelles aucun savoir-faire technique spécifique
n’est requis de la part des utilisateurs. Cette situation grave conduit à la nécessité de stratégies et de
méthodes qui permettent de vérifier l’authenticité des images numériques.

C.1 Cadre de recherche

La criminalistique des images numériques est apparue comme un domaine de recherche indispens-
able pour restaurer une certaine confiance dans les images numériques. De manière générale, elle se
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(a) Image falsifiée (b) Image originale

Figure C.3: Événement du président Barack Obama seul sur une plage de Louisiane

consacre à chercher des réponses à deux grandes questions :

1. d’où vient l’image numérique?

2. est-ce que l’image numérique représentante la scène originale capturée?

La première question est étroitement liée au problème de l’identification de l’origine de l’image
avec comme principal objectif la spécification du système d’acquisition. La deuxième question con-
cerne le problème de l’intégrité du contenu de l’image où il s’agit de déterminer si une image est falsifiée,
quelle manipulation a été effectuée sur l’image ou quelle région de l’image a été modifiée. Dans cette
thèse, nous nous concentrons plus particulièrement sur le développement de méthodes de détection
et de localisation de faux dans des images numériques.

La littérature relative à la détection et à la localisation de faux a été abordée selon deux approches :
(i) active, et (ii) passive. Par approche active, certaines informations authentiques prédéfinies telles que
la signature ou le filigrane intégrés dans les images numériques sont nécessaires pour examiner leur
véracité. Cependant, ces informations constituent une limite à cette approche, car elles augmentent le
coût de production. Pour remédier à cet inconvénient, l’approche passive propose d’exploiter les traces
intrinsèques à l’acquisition de l’image ou certaines traces spécifiques laissées par les contrefaçons
pour distinguer les images falsifiées des images naturelles. Cette approche est évidemment adaptée
à la plupart des situations pratiques où seule l’image suspecte est disponible. Plus précisément, nous
pouvons classer l’approche passive pour la détection et la localisation des falsifications en deux princi-
paux courants. Le premier courant recommande d’extraire des caractéristiques des images suspectes et
d’appliquer des techniques d’apprentissage pour apprendre automatiquement des caractéristiques dis-
criminantes [12]. En tenant compte de diverses caractéristiques dans l’apprentissage, cette approche
permet de concevoir des outils universels capables de faire face à différents types d’attaques malveil-
lantes [44]. Évidemment, ses performances et sa robustesse dépendent fortement de la qualité et de la
quantité des données considérées. Comme alternative, le deuxième courant exploite les incohérences
dans la modélisation statistique des images numériques pour détecter les attaques malveillantes (voir
[63, 77]). Elle ne nécessite pas une grande quantité de données comme pour la première approche,
mais une connaissance plus approfondie du processus d’acquisition des images et des attaques.
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C.2 Plan de le thèse

Cette thèse se concentre sur la modélisation statistique pour la détection de la falsification des images
numériques. Sa structure générale est organisée comme suit :

• Le chapitre 1 présente le contexte général de la recherche, le problème à traiter, ainsi que la
méthodologie employée.

• Le chapitre 2 donne une vue d’ensemble de la détection passive basée sur la modélisation du
processus de traitement des images numériques. Nous commençons par une description des
principales étapes du traitement de l’image dans un appareil photographique depuis la scène
de l’image jusqu’à l’image finale au format JPEG (Joint Photographic Experts Group). Ensuite,
nous présentons et illustrons les techniques courantes de falsification d’images numériques.
Enfin, nous classons les méthodes de détection de la falsification d’images en fonction des traces
laissées par les différentes étapes de traitement.

• Le chapitre 3 se concentre sur l’authentification des images numériques et la localisation de
faux en utilisant les artefacts du dématriçage. Après avoir analysé l’évolution des traces de
dématriçage dans le processus d’acquisition de l’image, une statistique robuste caractérisant les
images numériques dématriçées est d’abord développée sur la base du bruit présent dans le canal
vert. Ensuite, un modèle de mélange de lois normales est proposé pour décrire la distribution de
probabilité des caractéristiques statistiques pour les images originales et trafiquées. Ainsi, un
test de normalité peut être utilisé pour authentifier automatiquement les images falsifiées. Enfin,
un algorithme pénalisé est utilisé pour localiser les zones falsifiées. Une étude comparative sur
quatre ensembles de données bien connusmontre que l’algorithme développé offre demeilleures
performances et une meilleure robustesse que les algorithmes existants du même type.

• Le chapitre 4 traite de la modélisation statistique des coefficients de la transformée en cosinus
discrète des images JPEG authentiques et falsifiées et de son application à la localisation des
falsifications.

• Le chapitre 5 développe un détecteur efficace pour distinguer une image au format TIFF (Tagged
Image File Format) rééchantillonnée d’une image TIFF originale. À cette fin, nous proposons un
modèle statistique pour les images TIFF rééchantillonnées en analysant le processus de traite-
ment complet d’une image RAW à une image TIFF rééchantillonnée. Ensuite, nous formulons le
problème de détection comme un test de rapport de vraisemblance entre les modèles des images
originales et rééchantillonnées. La puissance du test est analytiquement évaluée dans le contexte
où tous les paramètres du modèle des images TIFF sont inconnus. De nombreuses expériences
numériques décrivent les performances du détecteur.

• Le chapitre 6 décrit les principaux résultats et présente quelques perspectives sur les travaux
futurs dans le domaine de la criminalistique des images numériques.
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C.3 Processus de traitement des images nuémriques

L’analyse de la falsification des images numériques nécessite une connaissance de la création de ces
images. Cette section fournit une meilleure compréhension sur la formation des images des caméras
numériques. Bien que plusieurs appareils puissent être utilisés pour l’imagerie numérique tels qu’un
scanner, nous limitons notre étude aux appareils photographiques. L’ensemble du processus de traite-
ment d’une image numérique, de la capture de la lumière jusqu’au stockage de l’image est illustré par
la figure C.4. Dans ce qui suit, nous divisons ce processus de traitement en trois parties en fonction
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Read-out
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JPEG
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Filters
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Figure C.4: Illustration du processus d’acquisition d’un appareil photographique numérique

des formats de stockage d’une image: (i) de la scène à l’image brute, (ii) de l’image brute à l’image
TIFF, et (iii) de l’image TIFF à l’image JPEG. Pour chaque partie, nous analysons les principales étapes
du traitement et nous introduisons les principaux modèles statistiques de l’image.

C.3.1 De la scène à l’image brute

Les appareils numériques imitent le système visuel humain. Ils sont constitués d’un objectif, de fil-
tres d’échantillonnage, d’un réseau de filtres colorés (CFA), d’un capteur d’image et d’un processeur
d’image numérique[1]. Le module optique est essentiellement composé d’un objectif et des mécan-
ismes permettant de contrôler l’exposition, la mise au point et la stabilisation de l’image pour collecter
et piloter la lumière provenant de la scène. Une fois que la lumière entre dans la caméra via l’objectif,
elle passe à travers une combinaison de filtres qui comprend des filtres infrarouge et des filtres anti-
crénelage pour garantir une qualité visible maximale. La lumière est ensuite focalisée sur le capteur
d’image, un ensemble de rangées et de colonnes d’éléments de détection de la lumière appelés pixels.
Chaque élément de détection de la lumière du capteur intègre la lumière incidente sur tout le spectre
et obtient un signal électrique représentant la scène. Comme chaque élément de capteur d’image est
essentiellement monochromatique, une façon simple de capturer des images en couleur est de séparer
chaque composante de couleurs.
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Figure C.5: Four possible configurations of the Bayer pattern

Parmi les nombreux motifs CFA, celui conçu par Bayer [14] est le plus utilisé dans les caméras
numériques. Il mesure la composante verte sur une grille en quinconce et les composantes rouge et
bleue sur des grilles rectangulaires. Le taux d’échantillonnage plus élevé pour le canal vert permet
de mieux capturer la luminance de la lumière. Le motif de Bayer a lui-même quatre configurations
possibles comme le montre la figure C.5. Nous cherchons une représentation mathématique V d’une
image brute capturée avec une configuration V du motif de Bayer. Comme l’illustre la figure C.6,
l’image brute V est de type monocanal car la configuration de Bayer B permet à chaque pixel de
n’enregistre qu’un seul canal de couleur c parmi le rouge (r ), le vert (д) ou le bleu (b). Par conséquent,
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nous pouvons exprimer V comme une matrice bidimensionnelle de tailleM×N dont la valeur du pixel
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à l’emplacement (m,n) de la composante couleur Vc est donnée par

vcm,n =


vm,n if Bm,n = c,

0 otherwise,
(C.1)

où 1 ≤ m ≤ M , 1 ≤ n ≤ N , et Bm,n désigne l’emplacement (m,n) de la configuration du filtre de Bayer.
Le processus d’acquisition des images brutes est perturbé par plusieurs sources de bruit dont le

bruit de grenaille, le bruit de courant d’obscurité, le bruit de lecture et le bruit de non-uniformité de
la réponse photographique (PRNU). Le dernier bruit est le plus importants (voir la figure C.4). Le
bruit de grenaille, également connu sous le nom de bruit de Poisson, trouve son origine dans la nature
quantique de la lumière. Le bruit du courant d’obscurité, également appelé bruit à motif fixe, est
généré par l’énergie thermique en l’absence de lumière. Le bruit de lecture englobe tous les bruits
électroniques intervenant dans la chaîne d’acquisition. Enfin, le bruit PRNU représente les différences
de réponse des pixels à la lumière incidente due aux imperfections du processus de fabrication des
capteurs (par exemple l’hétérogénéité des plaquettes de silicium). En tenant compte de ces sources de
bruit, nous pouvons exprimer le pixel de la manière suivante vm,n dans (C.1) comme suit

vm,n = µvm,n + ϵvm,n , (C.2)

où µvm,n représente l’espérance de vm,n en l’absence de bruit et ϵvm,n représente toutes les sources de
bruit. Alors que l’espérance µvm,n est simplement vue comme un signal déterministe et ne doit pas être
modélisée. Les modèles de bruit pour les images RAW peuvent être classés en deux classes dans la
littérature : (i) indépendant du signal, et (ii) dépendant du signal. Si la première suppose la stationnarité
du bruit dans l’ensemble de l’image, la seconde prend en compte la dépendance proportionnelle de la
variance du bruit par rapport au signal. Le modèle bien connu de bruit blanc additif gaussien (voir par
exemple [22]) est un exemple typique de la classe de bruit indépendant du signal. La classe de bruits
dépendants du signal comprend le modèle Poissonnien [119], le modèle de bruit Poisson-Gaussien
[141, 149] et le modèle de bruit hétéroscédastique [67, 205]. Par rapport à la première classe, la seconde
est plus précise mais plus difficile à traiter.

C.3.2 De l’image brute à l’image TIFF

Pour rendre une image TIFF non compressée en couleur à partir de l’image brute, plusieurs opérations
de post-traitement sont effectuées où le dématriçage, l’équilibrage des blancs et la correction gamma
sont les plus importantes.

Le dématriçage, également connu sous le nom d’interpolation CFA, permet de combler les pixels
manquants dus à l’échantillonnage CFA en utilisant leur voisinage [185]. En général, on peut classer
les algorithmes de dématriçage en deux classes : (i) non adaptatif et (ii) adaptatif. Les algorithmes
non adaptatifs utilisent la même technique d’interpolation pour tous les pixels, de sorte que, dans la
plupart des cas, ils peuvent être simplement définis par un seul schéma pour chaque canal de couleur
c (voir le tableau C.1). Par conséquent, la composante de couleur Xc

D de l’image dématriçée XD peut
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name Canaux rouge et bleu Canal vert

bi-linear Kr = Kb = 1
4


1 2 1
2 4 2
1 2 1

 Kд = 1
4


0 1 0
1 4 1
0 1 0



bi-cubic Kr = Kb = 1
256



1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 144 81 0 −9
−16 0 144 256 144 0 −16
−6 0 81 144 81 0 −6
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1


Kд = 1

256



0 0 0 1 0 0 0
0 0 −9 0 −9 0 0
0 −9 0 81 0 −9 0
1 0 81 256 81 0 1
0 −9 0 81 0 −9 0
0 0 −9 0 −9 0 0
0 0 0 1 0 0 0


Table C.1: Exemples de noyaux d’interpolation utilisés dans les algorithmes de dématriçage non adap-
tatifs

être calculée à partir de la composante brute Vc comme suit:

Xc
D = Kc ∗ Vc, (C.3)

où ∗ désigne l’opération de convolution bidimensionnelle. Les algorithmes de dématriçage non adap-
tatifs donnent des résultats satisfaisants dans les régions lisses, mais échouent généralement dans les
régions texturées et les bords. Les algorithmes adaptatifs peuvent résoudre ce problème. Ils prennent
en compte les informations sur les bords, ainsi que la corrélation inter-canaux pour trouver un ensem-
ble approprié de coefficients qui permet de minimiser l’erreur d’interpolation globale ((voir [42, 210]).
Cela rend les algorithmes adaptatifs plus précis que les algorithmes non adaptatifs, au prix d’un calcul
plus important.

Après le dématriçage, il faut procéder à l’équilibrage des blancs pour supprimer les teintes irréal-
istes [186]. En effet, en raison de la différence de température des sources lumineuses, un décalage
du spectre de réflexion de l’objet par rapport à sa vraie couleur peut se produire. Ce décalage fait
que l’objet apparaît de couleur différente lorsqu’il est éclairé par différentes sources lumineuses. Le
réglage de la balance des blancs est donc mis en oeuvre dans les appareils numériques pour compenser
ce déséquilibre d’éclairage. Fondamentalement, il est effectué en multipliant les pixels de chaque canal
de couleurXc

D par un facteur de gain différentдcW pour obtenir une image équilibrée au niveau du blanc
XW .

Xc
W = д

c
W · X

c
D, (C.4)

où Xc
W désigne la composante de XW associée au canal de couleur c . La connaissance préalable des

sources lumineuses est essentielle pour sélectionner les gains appropriés дcW . En l’absence de cette
connaissance, дcW peut être estimé par plusieurs algorithmes décrits dans [121]. A titre d’exemple,
nous présentons ci-après un algorithme simple basé sur l’hypothèsemode gris: la réflectance moyenne
d’une scène est achromatique. Cela implique que les valeurs moyennes des trois canaux de couleur
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dans une scène donnée sont à peu près égales de sorte que

xrW = x
д
W = xbW , (C.5)

où xcW , En utilisant (C.4) et (C.5), il en résulte que

дrW · x
r
D = д

д
W · x

д
D = д

b
W · x

b
D, (C.6)

où xcD représente l’intensité moyenne de Xc
D . calculée de la même manière que (2.6). Puisque l’oeil

humain est plus sensible à la couleur verte, l’algorithme propose de conserver le le canal vert tel qu’il
est, donc

дbW = 1. (C.7)

Par conséquent, les gains des autres canaux de couleur sont dérivés de (C.6) comme suit

дrW =
x
д
D

xrD
and дbW =

x
д
D

xbD
. (C.8)

En introduisant (C.7) et (C.8) dans (C.4), nous obtenons finalement l’image équilibrée en blanc XW .
A ce stade, l’intensité du pixel ne présente que la caractéristique linéaire de l’intensité de l’image

brute [53]. Cette linéarité ne correspond pas à la plupart des dispositifs d’affichage dont la fonction
de transfert représente une relation entre la luminance L et la tensionU

L = V γ , (C.9)

où γ est une constante spécifique à chaque dispositif. En particulier, γ = 2, 2 pour le moniteur à
tube cathodique. La correction gamma est nécessaire pour rendre la luminance dans un domaine
perceptiblement uniforme. Il s’agit simplement de l’inverse de (C.9) en appliquant à chaque valeur de
pixels de XW une valeur telle que

xcm,n =
(
xcW ,m,n

) 1
γ
, (C.10)

où xcm,n désigne le pixel situé à l’emplacement (m,n). de la composante Xc de l’image TIFF.
A la sortie du processus précédent, nous obtenons une image TIFF non compressée, en couleur, X,

caractérisée par une matrice tridimensionnelle de tailleM × N × 3 (voir figure C.7).

C.3.3 De l’image TIFF à l’image JPEG

En raison de sa haute qualité, l’image TIFF n’est pas vraiment adaptée pour le stockage ou la transmis-
sion, surtout en grand nombre. C’est pourquoi la plupart des appareils photographiques numériques
utilisent un algorithme de compression pour réduire la taille des données de l’image. Un tel algo-
rithme tente d’éliminer les informations de l’image qui ne sont pas visuellement significatives. Parmi
les nombreux algorithmes de compression avec perte (voir par exemple [92], la norme JPEG (Joint
Photographic Experts Group) [213] est la plus populaire grâce à son bon compromis entre la qualité
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Figure C.7: Processus de formation d’une image au format TIFF

visuelle et la taille de l’image. Comme le montre la figure C.8, une chaîne de compression JPEG typ-
ique consiste en quatre étapes fondamentales: (i) la transformation de la couleur, (ii) la transformée en
cosinus discret (iii), la quantification, et (iv) le codage entropique.

color TIFF image X
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Figure C.8: Les étapes fondamentales dans une chaîne de compression JPEG

C.4 Localisation des falsifications à partir du dématriçage

Dans le processus d’acquisition d’une caméra numérique, le dématriçage sert à reconstruire une image
en couleurs à partir des données échantillonnées superposées à un réseau de filtres colorés (voir la
figure C.4). Bien que la plupart des appareils photographiques partagent un processus d’acquisition
commun, chaque étape est personnalisée en fonction des choix du fabricant. Les traces laissées par
le dématriçage sont spécifiques aux différentes marques et/ou modèles de caméras. Ces traces sont
totalement absentes d’une image lorsque l’image est susceptible d’être falsifiée. En outre, étant donné
que le dématriçage est une opération située en amont dans le processus d’acquisition, ses traces sont
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résistantes aux manipulations post-caméra telles que le clonage, l’épissage, le redimensionnement,
etc... Par conséquent, les traces du dématriçage pourraient être une preuve robuste et puissante pour
évaluer la crédibilité des images numériques.

Analyse bibliographique

Nous pouvons classer les travaux demédecine légale qui considèrent les traces de dématriçage en deux
classes principales. La première consiste en des algorithmes visant à estimer, à partir d’une image
numérique, le motif CFA et/ou l’algorithme de dématriçage inhérent aux appareils photographiques.
La seconde caractérise les algorithmes utilisés pour évaluer la présence/absence d’artefacts générés
par les par les opérations de dématriçage. Dans la suite de ce document, nous détaillons ces 2 classes.

Première classe

Les travaux [38, 96, 108, 193, 202] présentent des méthodes clés pour l’identification du modèle CFA.
Dans [108], le motif CFA de Bayer est identifié en réduisant au minimum la différence entre le signal
brut du capteur et le signal inverse dématriçé. Dans [38], l’identification est effectuée via un algorithme
développé à partir de l’observation que la valeur des échantillons de couleur interpolés se situe toujours
entre les valeurs minimale et maximale de leurs voisins. Une autre méthode consiste à calculer le
rapport entre la variance moyenne du bruit des pixels interpolés et des pixels acquis pour tous les
motifs candidats possibles duCFA [202]. Plus récemment, des blocs de couleur ont été proposés comme
moyen permettant d’estimer la configuration du CFA dans [96, 193].

Au-delà de l’identification du modèle CFA, des travaux se concentrent plus particulièrement sur
l’estimation des algorithmes de dématriçage. Dans [174], un algorithme demaximisation de l’espérance
(EM) est utilisé pour estimer les coefficients des noyaux d’interpolation linéaire. Une amélioration est
apportée dans [15] en combinant l’algorithme EM avec un spectre dérivé du second ordre [73] pour
obtenir des coefficients d’interpolation es régions lisses et non lisses séparément. Dans [27], uneméth-
ode précise basée sur un modèle de dérivées partielles du second ordre est proposé pour récupérer les
formules de dématriçage. La méthode permet de prendre en compte la corrélation entre les trois
canaux de couleur de l’image.

Étant donné que le motif CFA et/ou l’algorithme de démosaïquage sont spécifiques à chaque mod-
èle de caméras, ils peuvent être utilisés comme preuves pour la détection et la localisation des falsifi-
cations d’images. Par exemple, dans [28, 200], les incohérences entre les coefficients de dématriçage
sont exploitées pour vérifier si le modèle CFA et l’algorithme de dématriçage sont compatibles. En
remarquant que le modèle CFA est changé si la couleur de l’image est modifiée, les auteurs de [39] ont
conçu un algorithme avancé de comptage de valeurs intermédiaires pour mesurer le changement du
motif CFA, et donc de localiser l’étendue de la modification de la couleur dans les images numériques.
Nous notons également que le motif CFA estimé et/ou l’algorithme de dématriçage sont utilisés non
seulement pour évaluer la crédibilité du contenu des images numériques, mais aussi pour identifier la
source de la caméra (voir [75]). Cependant, ce dernier point n’entre pas dans le cadre de notre étude.



138 French Summary

Deuxième classe

La deuxième classe repose sur des artefacts périodiques causés par le dématriçage. En effet, les cap-
teurs d’images d’un CFA sont généralement organisés périodiquement [153]. En outre, de nombreux
algorithmes de dématriçag se comportent comme un processus de filtrage où les signaux manquants
sont sont interpolés en appliquant périodiquement un noyau d’interpolation aux signaux acquis (voir
[174]). Par conséquent, la périodicité des artefacts de dématriçage est intrinsèque aux photographies
numériques et peut contribuer à l’authentification des images. Inspirés par cette idée, Popescu et Farid
construisent [174] une carte de probabilité pour exprimer le modèle périodique de pixels corrélés.
Lorsque des pixels interpolés sont présents, la périodicité est clairement visible dans le domaine de
Fourier. Une telle analyse peut être appliquée à différentes zones de l’image pour détecter la présence
de d’une altération locale, mais la taille de la zone ne doit pas être inférieure à 256× 256 pour garantir
la précision des résultats. En observant que la variance de la dérivée seconde des images interpolées
est périodique [73], Gallagher et Chen utilisent dans [74] un filtrage passe-haut et une analyse de
Fourier pour calculer la fréquence périodique. Les régions falsifiées d’une image auront une périod-
icité différente que le reste. Cette méthode est applicable pour des blocs d’images de taille 64 × 64 ou
plus. Une autre méthode basée sur l’analyse de la périodicité de la variance des erreurs de prédiction
a été récemment proposée par Li et al. dans [134]. En supposant que les erreurs d’interpolation sont
distribuées de manière gaussienne, une carte de probabilité est dérivée selon la règle de Bayes. Une
analyse avec la transformée de Fourier discrète bidimensionnelle permet de capturer la périodicité. Li
et al. montrent que cette méthode peut être appliquée pour la détection de la falsification locale avec
des blocs de taille allant jusqu’à 32 × 32.

Les méthodes de détection de la falsification d’images numériques sont également basées sur les
différences entrela distribution des pixels acquis et interpolés. Dans [55], Dirik et Memon reconnais-
sent que la nature passe-bas du dématriçage rend la variance du bruit du capteur plus importante.
En conséquence, les artefacts de dématriçage peuvent être mesurés par un rapport des variances du
bruit entre les pixels interpolés et acquis.Si ce rapport est proche de 1, une altération a été réalisée sur
l’image. La méthode présente une bonne performance pour les blocs d’images de taille supérieure à
96× 96. Partageant la même idée, Ferrara et al. [63] effectuent une analyse fine des artefacts du déma-
triçage et proposent une fonction permettant de mesurer la présence du dématriçage. Alors que les
travaux ci-dessus considèrent les caractéristiques spatiales des artefacts de démosaïquage, González-
Fernández et al. [79] s’intéressent plutôt à leur spectre. En effet, en calculant la probabilité de chaque
pixel d’être interpolé puis en appliquant la transformée en cosinus discrète (DCT) sur de petits blocs
de la carte de probabilité, la présence/absence d’artefacts de démztriçage. Les expériences montrent
que la méthode est fiable pour des blocs de taille 16 × 16.

Remarques communes

Comme le dématriçage est une opération en amont du processus d’acquisition des caméras numériques,
ses traces sont indépendantes des falsifications. Par conséquent, les méthodes basées sur les traces de
dématriçage ne ciblent pas une opération de falsification spécifique, mais plutôt une variété d’opérations.
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Malgré cet avantage, les traces de dématriçage sont facilement détruites par la compression JPEG,
même avec des niveaux de qualité très élevés. C’est pourquoi ces méthodes sont adaptées aux pho-
tographies non compressées ou peu compressées. Il s’agit d’une limitation courante et et presque
inévitable des méthodes basées sur les traces de dématriçage. De plus, très souvent, un seuil de com-
paraison est nécessaire pour détecter ou localiser les faux [55, 63, 134]. En pratique, le choix d’un tel
seuil n’est pas facile et peut avoir une grande influence sur la robustesse des méthodes. En outre, les
traces de dématriçage utilisées (c’est-à-dire le modèle CFA, l’algorithme de dématriçage, la périodicité
des artefacts de dématriçage, les différences dans la distribution des pixels acquis et interpolés, etc.. )
sont étroitement corrélées. Cependant, la classification ci-dessus des travaux connexes implique qu’ils
sont traités séparément dans la plupart des algorithmes existants. L’utilisation conjointe de ces traces
pourrait améliorer les performances de la détection et de la localisation de la falsification d’images.

Problématiques et contributions

Les deux classes d’algorithmes utilisant des traces de dématriçages ont été étudiées séparément dans
la littérature. Ici, nous cherchons à les combiner dans un algorithme unifié afin d’améliorer les perfor-
mances d’authentification de l’image et la localisation de la contrefaçon. Le résultat est un algorithme
hybride composé de l’identification du motif CFA, de l’estimation de l’algorithme de dématriçages et
de l’analyse des artefacts. En visant une détection fine, nous avons adopté le schéma d’identification
proposé dans [199] pour révéler le motif CFA et le noyau d’interpolation et une analyse locale similaire
à celle de [63] pour déterminer les artefacts de dématriçages des résidus de prédiction.

1. Nous analysons théoriquement comment la moyenne et la variance des résidus de prédiction
dans les signaux interpolés et acquis évoluent dans le processus d’acquisition d’un appareil
photographique, du format RAW au format JPEG. Ceci constitue la base pour construire des
caractéristiques d’intérêt. En outre, l’analyse permet d’expliquer en partie pourquoi l’approche
basée sur les traces de dématriçage est moins efficace avec les images compressées au format
JPEG.

2. Dans la plupart des algorithmes de dématriçage basés sur les traces (voir [63, 134, 174, 194]), les
résidus de prédiction sont donnés à partir des valerus des pixels. Ici, en partitionnant un pixel
en 2 parties comportant le contenu et le bruit, nous réalisons que le dématriçage se comporte de
la même manière pour le contenu et le bruit. Cependant, en raison de la faible énergie du bruit,
les traces du dématriçage sont plus visibles dans le bruit. C’est pourquoi les caractéristiques
utilisées dans l’algorithme sont extraites des résidus de bruit plutôt que des résidus du contenu/

3. Comme mentionné dans [63], la présence de bords nets dans les images réduit la qualité des car-
actéristiques, car elle peut perturber par la corrélation entre les résidus interpolés et acquis.Pour
surmonter cet obstacle, nous construisons nos caractéristiques statistiques à partir d’une région
lisse du canal vert au lieu de la totalité de l’image. Ainsi, le problème des bords n’est plus un
problème majeur.
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4. En ce qui concerne l’authentification, après avoir vérifié la distribution normale des caractéris-
tiques dans les images naturelles, nous adoptons la loi normale pour l’authentification.

5. En modélisant la distribution des caractéristiques statistiques dans les images falsifiées comme
unmélange de lois normales, nous avons appliqué un algorithme pénalisé d’espérance-maximisation
(EM) pour localiser les régions falsifiées. Puisque l’algorithme ne nécessite pas de seuil de com-
paraison, il fournit des résultats de localisation plus robustes que les méthodes traditionnelles
[55, 63].

C.5 Modélisation des coefficients DCT d’images JPEG et local-
isation des contrefaçons

Le format JPEG (Joint Photographic Experts Group) est une norme de compression avec perte de
données permettant de trouver un compromis entre la taille de la mémoire et la qualité visuelle pour
les images numériques [213]. Elle est aujourd’hui adoptée par défaut dans la plupart des appareils
photographiques numériques et les services Web (réseaux sociaux, galeries photos, etc.). Cependant,
cette popularité fait également des images JPEG la cible d’attaques malveillantes. Cela nous motive
à développer dans ce chapitre un outil d’analyse fiable pour restaurer la confiance dans les images
JPEG. Plus particulièrement, nous nous intéressons à la statistique des coefficients de la transformée
en cosinus discrète (DCT).

Analyse bibliographique

De nombreux efforts ont été déployés pour construire des modèles statistiques pour les coefficients AC
non quantifiés des images naturelles JPEG. Le pionnier est peut-être Pratt, qui a adapté les propriétés
statistiques des coefficients AC non quantifiés primaires avec une distribution normale [177, chapitre
10]. Par la suite, divers modèles empiriques ont été proposés et vérifiéspar des tests d’adéquation stan-
dard. Par exemple, Reininger et Gibson [188] se sont appuyés sur des tests de Kolmogorov-Smirnov
(KS) pour confirmer que la distribution de Laplace (LD) est plus appropriée que la distrinution normale
pour la plupart des images. En se basant sur un test du χ 2, Müller [157] a affirmé que la distribution
normale généralisée (DNG) approxime les statistiques des coefficients AC non quantifiés mieux que la
loi normale. En utilisant les mêmes tests d’adéquation, Chang et al. a récemment montrée dans [30]
que la distribution Gamma généralisée est plus performante que la loi normale et et la DNG. Le prin-
cipal inconvénient de ces modèles empiriques ci-dessus est l’absence de fondement mathématique, ce
qui fait que leur précision et leur robustesse sont remises en question lorsqu’ils sont appliqués à un
large éventail d’images. Pour remédier à cet obstacle, Lam et Goodman ont analysé analytiquement
analysé dans [122] les propriétés statistiques des coefficients AC non quantifiés par rapport à la vari-
ation de leur variance. Ils ont prouvé que ces coefficients sont modélisés de manière raisonnable par
une loi normale lorsque la variance du bloc est fixe. Cependant, comme cette variance est aléatoire
pour une image naturelle JPEG, une distribution normale composée devrait plutôt être utilisée. Cette
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distribution a été étendue dans [158] en tenant compte des distributions flexibles pour la variance
des blocs. Pourtant, les justifications mathématiques pour le modèle la de variance d’un bloc man-
quaient toujours jusqu’à l’apparition de l’article du Thaï et al. [206]. Ils ont montré que la variance
par bloc d’une image naturelle JPEG peut être approximée de manière asymptotique par une distri-
bution Gamma à deux paramètres. Ce modèle est ensuite appliqué respectivement dans [207] et [189]
pour identifier le modèle des caméras et estimer le facteur de qualité des images JPEG.

Les modèles statistiques des coefficients AC quantifiés peuvent être développés à partir des coeffi-
cients primaires non quantifiés. Pour les images JPEG à compression unique, Qiao et al. a caractérisé
les coefficients AC quantifiés par une distubution de Laplace dans [178], et l’ont appliqué pour dé-
tecter des informations cachées incorporées par l’algorithme JSteg. Un modèle similaire a également
été adopté par Stamm et Liu dans [198] pour supprimer les traces laissées par la compression JPEG.
D’autres modèles basés peuvent être trouvés dans [45, 206].

Problématiques et contributions

Grâce à l’analyse de la littérature, nous constatons que les modèles statistiques développés pour les
coefficients DCT des images JPEG falsifiées se limitent pour la plupart à l’effet de la double quantifica-
tion. En effet, dans de nombreux scénarios pratiques, les images peuvent être compressées plusieurs
fois avant d’être manipulées et enregistrées à nouveau au format JPEG. Par conséquent, notre objectif
est d’étendre ces modèles afin de mieux traiter les images JPEG falsifiées sujettes soumises à l’effet de
quantificationsmultiples. Notre choix est d’étudier les coefficients DCT dans leur forme brute directe-
ment plutôt que dans des formes modifiées comme dans certains travaux connexes ( voir [109], [166]).
Par conséquent, nous suivons le processus de compression JPEG et les effets des opérations de manip-
ulation sur les coefficients DCT afin de développer un cadre de modélisation statistique paramétrique
pour la falsification des images. Nous l’appliquons ensuite à la localisation des falsifications. Bien
que l’approche de modélisation et la technique de localisation de falsification soient relativement sim-
ilaires à certains travaux de la littérature (voir, par exemple, [18, 217]), plusieurs améliorations et
contributions significatives ont été apportées.

1. Nous proposons un cadre de modélisation généralisé plutôt qu’un modèle concret pour les co-
efficients DCT des images JPEG falsifiées. Ce cadre permet de dériver récursivement n’importe
quel modèle statistique à partir d’une distribution connue des coefficients DCT non quantifiés.
De cette façon, Un modèle des coefficients DCT primaires non quantifiés est hérité pour con-
struire un modèle statistique pertinent qui s’adapte le mieux à l’histogramme des coefficients
DCT quantifiés.

2. Pour décrire la distribution des coefficients DCT des images JPEG falsifiées, la plupart des
travaux existants s’appuient sur les modèles de mélange. Néanmoins, aucune explication claire
n’a encore été donnée. Par exemple, le nombre de composantes à prendre en compte dans le
modèle est encore une question ouverte. Dans ce chapitre, nous avons prouvé de manière ana-
lytique que les histogrammes des DCT quantifiés d’images JPEG falsifiées peuvent être correcte-
ment approchés par un modèle de mélange à deux composantes, indépendamment du nombre de
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zones falsifiées dans les images. La précision d’un tel modèle simplifié est évaluée numérique-
ment par la divergence de Kullback-Leibler sur diverses bases de données d’images.

3. En ce qui concerne la technique de localisation de la falsification, nous nous sommes également
appuyés sur l’algorithme Expectation-Maximization (EM), comme dans la plupart des travaux
connexes. Cependant, au lieu d’estimer tous les paramètres du modèle en même temps, nous
avons proposé d’estimer les paramètres de la distribution des composants, l’ensemble des étapes
de quantification et les coefficients de mélange séparément. Le premier est estimé à partir des
coefficients DCT non quantifiés d’images JPEG altérées [68] par la méthode d’estimation du
maximum de vraisemblance (ML), tandis que la seconde est obtenue en appliquant l’algorithme
EM aux coefficients DCT quantifiés associés. Cela permet d’accélérer le processus de localisation
de la falsification.

C.6 Détecteurs statistiques pour les images TIFF rééchantil-
lonnées

Dans les chapitres 3 et 4, nous avons traité les situations de falsification dans lesquelles une ou plusieurs
parties d’une image ont été manipulées. Dans ce chapitre, nous considérons que l’image entière est fal-
sifiée avec une intention malveillante. Pour ce type de falsification, le rééchantillonnage (y compris le
redimensionnement, la rotation et d’autres opérations linéaires) est une technique courante [61]. Elle
est généralement utilisée conjointement avec d’autres techniques de falsification telles que le clonage
ou l’épissage afin de créer une aspect visuel parfait. Cependant, quel que soit le degré de sophistica-
tion du rééchantillonnage, il laisse toujours deux principales traces similaires à celles laissées par le
dématriçage (voir le chapitre 3) : (i) la périodicité du signal rééchantillonné et (ii) l’incohérence de la
variance entre le signal original et les signaux interpolés). Comme indiqué dans la sous-section 2.4.2.2
du chapitre 2, la plupart des auteurs se sont concentrés sur les artefacts périodiques pour développer
leurs détecteurs de rééchantillonnage. Nous désirons profiter des deux traces ci-dessus pour con-
cevoir des détecteurs statistiques basés sur la théorie des tests d’hypothèse et ainsi concevoir dans ce
chapitre un test de rapport de vraisemblance généralisé (LRT) génralisé optimal pour les images TIFF
rééchantillonnées. Par rapport à l’état de l’art actuel (par exemple [139, 165, 181, 182]), les principales
innovations et contributions de notre travail sont de trois ordres:

1. Au lieu d’utiliser une distribution de probabilité arbitraire, nous analysons le processus de traite-
ment complet d’une image brute à une image TIFF rééchantillonnée afin de trouver un modèle
statistique approprié pour les images TIFF rééchantillonnées.

2. Sur la base des modèles développés pour les images TIFF originales et rééchantillonnées, nous
exploitons les artefacts périodiques inhérents aux pixels rééchantillonnés pour simplifier les
modèles. L’incohérence de la variance du bruit est ensuite utilisée comme mesure principale
pour distinguer une image TIFF rééchantillonnée d’une image originale. Il s’agit de la dif-
férence fondamentale entre notre travail et la plupart des travaux connexes dont les détecteurs
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de rééchantillonnage sont basés sur les artefacts périodiques. Il en résulte deux nouveaux dé-
tecteurs basés sur le LRT pour la détection du rééchantillonnage.

3. Enfin, nous sommes en mesure de fournir des expressions pour la fonction de puissance des
détecteurs proposés et d’en analyser les propriétés.

C.7 Conclusion

Nous avons développé, dans ces travaux de thèse, trois techniques polyvalentes pour détecter les im-
ages numériques contrefaites et localiser les différents types d’altération : (ii) les traces de dématriçage
[126], (ii) les traces de compression JPEG [127, 128], et (iii) les traces de rééchantillonnage [125]. Bien
que ces techniques soient différentes, elles fonctionnent selon l’hypothèse commune que les manipu-
lations peuvent altérer certaines propriétés statistiques sous-jacentes des images naturelles. Le même
processus en deux étapes a été adopté pour chaque technique de détection : (i) analyser et modéliser
les caractéristiques statistiques des images authentiques et falsifiées puis (ii) concevoir un détecteur
statistique pour différencier les images authentiques et les images falsifiées en estimant les change-
ments statistiques de leurs modèles.
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Modélisation statistique pour la détec-
tion de la falsification des images nu-
mériques 
 
 
À l’ère du numérique, la crédibilité du contenu des 
images est une préoccupation majeure en raison de 
la popularité des outils d’édition faciles à utiliser et 
peu coûteux. Les images falsifiées peuvent être 
utilisées pour manipuler l’opinion publique lors des 
élections, commettre des fraudes et discréditer ou 
faire chanter des personnes. Face à cette situation 
préoccupante, nous développons dans cette thèse 
trois techniques efficaces basées sur (i) les traces 
de dématriçage (ii) les traces de compression JPEG, 
et (iii) les traces de rééchantillonnage pour détecter 
les images falsifiées et localiser les différents types 
de falsification. Bien que ces techniques soient 
différentes, elles fonctionnent sous l’hypothèse 
commune que les manipulations peuvent altérer 
certaines propriétés statistiques sous-jacentes des 
images naturelles. Un processus de détection en 
deux étapes a été adopté pour chaque technique de 
détection : (i) analyser et modéliser les caractéris-
tiques statistiques des images authentiques et falsi-
fiées, puis (ii) concevoir un détecteur statistique 
pour différencier les images falsifiées des images 
authentiques en estimant les changements dans 
leurs modèles. Diverses expérimentations numé-
riques sur plusieurs ensembles de données de réfé-
rence bien connus mettent en évidence la qualité 
des performances et la robustesse des techniques 
de détection proposées. 
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Statistical  Modeling  for  Detection  of 
Digital  Image  Forgery 
 
 
 
In today’s digital age, the trustworthiness of image 
content is of great concern due to the dissemination 
of easy-to-use and low-cost image editing tools. 
Forged images can be used to manipulate public 
opinion during elections, commit fraud, discredit or 
blackmail people. Faced with such a serious situa-
tion, we develop in this doctoral project three versa-
tile techniques based on (i) demosaicing traces (ii) 
JPEG compression traces, and (iii) resampling traces 
for detecting forged digital images and localizing 
various types of tampering therein. Although these 
techniques are different, they work under the com-
mon assumption that manipulations may alter some 
underlying statistical properties of natural images. A 
two-steps detection process has been adopted for 
every detection technique: (i) analyze and model 
statistical features of both the authentic and forged 
images associated with specific in-camera and/or 
post-camera traces, then (ii) design a statistical 
detector to differentiate between the authentic and 
forged images by estimating statistical changes in 
their models. Various numerical experiments on 
several well-known benchmark datasets highlight 
the performances and robustness of the proposed 
detection techniques. 
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