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Abstract

Several factors, at different scales, support learning: molecular (genetic), cerebral (neural
networks), psychological and environmental (education, socioeconomic status, culture...).
Psychology and cognitive neuroscience can help to investigate the multi-scale mechanisms
underlying learning by providing insights into the capacities and constraints of the learn-
ing brain. These approaches require an interdisciplinary process combining developmental
psychology and educational cognitive neuroscience to design the interventions and inter-
pret their findings but also applied mathematics to develop and implement algorithms for
the processing and in-depth analysis of the multi-scale (gene-brain-behavior) data.

The aim of this PhD was to investigate the effects of age and cognitive training on
the organization of executive functions(EF) changes at different levels: cognitive (Study
1, 2 & 3), cerebral (Study 4 & 5) and genetic (Study 4). These studies were based on the
ANR-funded APEX project, a large computerized executive training program carried out in
children (9-10 years) and adolescents (16-17 years), withmultilevel data (DNA SNP, anatom-
ical/functional/diffusion MRI, cognitive evaluations) measured before and after 5 weeks of
training on tactile tablets. In Study 1, we used the network analysis framework to ana-
lyze EFs organization at the cognitive level in children and adolescents, before and after
cognitive training. In Study 2, we further investigated the developmental changes of EF or-
ganization on an independent and larger sample of 1019 participants aged 7.8 to 15.3 years
from the Texas Twin Project using three complementary analytical methods: confirmatory
factorial analysis, network analysis and latent network analysis. These two studies support
that 1)inhibitory control (IC) is initially strongly connected to the two other EFs (working
memory updating and cognitive flexibility) and then separates from the other EFs (inter-
and intra-EF differentiation); 2) connections of workingmemory updating strongly increase
from 12 years old while a constant decrease in cognitive flexibility can be observed during
development. In Study 3, we used structural equation model (SEM) analyses to scrutinize
the transfer effects during cognitive training. We found that 1) changes in workingmemory
updating and cognitive flexibility depend on initial levels in each of these EFs but also on
initial levels in the other EFs and 2) children and adolescents with lower initial EF abilities
progress more than those with higher initial abilities. In Study 4, we investigated the brain
regions implicated in EFs performance and in EFs training receptivity. In Study 5, we used
Machine Learning algorithms to predict the brain age from structural MRI. Based on the
difference between chronological age and predicted brain age before and after the cognitive
training, we tested the hypothesis that training could accelerate development. Finally, in
Study 6, we used a multilevel SEM model to investigate the cognitive, cerebral, and genetic
factors contributing to training gains. We found that IC gains were influenced at different
levels, including cognitive (initial IC level), cerebral (pretest and training-related change of
the left anterior cingulate cortex volume) and genetic (EF polygenic risk score) factors.
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Résumé
Plusieurs facteurs, à différentes échelles, soutiennent l’apprentissage : moléculaire (géné-

tique), cérébral (réseaux cérébraux), psychologique et environnemental (éducation, statut
socio-économique, culture...). En apportant un éclairage sur les capacités et les contraintes
du cerveau apprenant, la psychologie et les neurosciences cognitives peuvent contribuer à
étudier les mécanismes multiniveaux qui sous-tendent les apprentissages. Ces approches
nécessitent une démarche interdisciplinaire combinant la psychologie du développement et
les neurosciences cognitives de l’éducation pour concevoir les interventions et interpréter
leurs résultats, mais aussi les mathématiques appliquées pour développer et appliquer des
algorithmes pour le traitement et l’analyse approfondie des données multi-niveaux (gène-
cerveau-comportement).

L’objectif de cette thèse était d’étudier les effets de l’âge et de l’entraînement cognitif
sur l’organisation à différents niveaux des fonctions exécutives (FEs) : cognitif (Etudes 1,
2 & 3), cérébral (Etudes 4 & 5) et génétique (Etude 6). Ces études se sont appuyées sur le
projet APEX financé par l’ANR, un programme d’entraînement des FEs mené chez des en-
fants (9-10 ans) et des adolescents (16-17 ans), avec des données multi-niveaux (ADN, IRM
anatomique/fonctionnelle/de diffusion, évaluations cognitives) mesurées avant et après 5
semaines d’entraînement sur tablette tactile. Dans l’Etude 1, nous avons utilisé les méth-
odes d’analyse en réseau pour analyser l’organisation des FEs au niveau cognitif chez les en-
fants et les adolescents, avant et après l’entraînement cognitif. Dans l’Etude 2 , nous avons
étudié plus finement les changements développementaux de l’organisation des FEs sur un
échantillon indépendant de 1019 participants âgés de 7,8 à 15,3 ans en utilisant trois méth-
odes d’analyses complémentaires : l’analyse factorielle confirmatoire, l’analyse en réseau et
l’analyse de réseau latent. Ces deux études confirment que 1) le contrôle inhibiteur (CI) est
initialement fortement connecté aux deux autres FEs (mise à jour de la mémoire de travail
et flexibilité cognitive) puis se sépare des autres FEs (différenciation inter- et intra-FEs) ; 2)
les connexions de la mise à jour de la mémoire de travail augmentent fortement à partir
de 12 ans tandis qu’une diminution constante de la flexibilité cognitive peut être observée
au cours du développement. Dans l’Etude 3, nous avons utilisé des analyses de modèle
d’équation structurelle (SEM) pour examiner les effets de transfert après un entraînement
cognitif. Nous avons constaté que 1) les changements dans la mise à jour de la mémoire de
travail et la flexibilité cognitive dépendent des niveaux initiaux de chacune de ces FEs mais
aussi des niveaux initiaux des autres FEs et 2) les enfants et les adolescents dont les capac-
ités initiales aux FEs sont plus faibles progressent davantage que ceux dont les capacités
initiales sont plus élevées. Dans l’étude 4, nous avons regardé, à partir d’IRM anatomiques,
les régions cérébrales impliquées dans le fonctionnement exécutif et dans l’entraînement
cognitif. Dans l’étude 5, nous avons ensuite utilisé des algorithmes de Machine Learning
(ML) pour prédire l’âge du cerveau à partir d’IRM anatomiques. Sur la base de la différence
entre l’âge chronologique réel et l’âge cérébral prédit avant et après l’entraînement cognitif,
nous avons testé l’hypothèse selon laquelle l’entraînement pourrait accélérer le développe-
ment. Enfin, dans l’étude 6, nous avons utilisé un modèle SEM multiniveau pour étudier
les facteurs cognitifs, cérébraux et génétiques contribuant au progrès cognitif après un en-
traînement. Nous avons constaté que les progrès en CI étaient influencés par des facteurs
à différents niveaux, à la fois cognitifs (niveau initial de CI), cérébraux (volume initial et
changement de volume du cortex cingulaire antérieur gauche et du putamen gauche) et
génétiques (score de risque polygénique des FEs).
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Part I: Background

Factors supporting learning are multiple and at different levels of life: molecular (genetics),
cerebral (neural networks), psychological and environmental (educational, socio-economic,
cultural).

By providing insights into the capacities and constraints of the learning brain, psy-
chology and cognitive neuroscience can contribute to the investigation of the mechanisms
underlying the effectiveness of different types of learning. This requires an interdisci-
plinary approach combining both developmental psychology and educational cognitive
neuroscience, to build and analyze this type of data, and applied mathematics, to develop
and apply algorithms for the automatic processing of these databases, in particular the
analysis of multi-scale data (gene-brain-behavior) in order to link the different levels of
analysis.

A core domain of learning is that of executive functions (EFs), i.e., functions which allow
an individual to intentionally regulate his or her thinking and acts in order to achieve goals
(Diamond, 2013).

These functions are primarily supported by the prefrontal cortex which develops during
childhood and adolescence (Best et al., 2009) and, while under genetic control (Logue and
Gould, 2014), are susceptible to improvement through the effect of targeted instructional
interventions (Diamond and Lee, 2011; Karbach and Kray, 2021).

In this context, this project aims at analyzing developmental and training multilevel
data by developing and applying mathematical methods (multi-scale analysis, supervised
and unsupervised prediction).

This project therefore had several objectives:

1. Analysis of EF changes associated with development and cognitive training
using advanced longitudinal statistical methods
The first aim of the project was to investigate the change of EF organization at a cog-
nitive level through development and training. The organization of these basic cog-
nitive functions during development is at the heart of several researches (Hartung et
al., 2020). Moreover, there is evidence suggesting that cognitive training could speed
up development (Jolles and Crone, 2012). The development and improvement of sta-
tistical methods such as structural equation modeling (SEM) or network modeling
(NM) allows to directly test the EF structure. Thus, the aim of this work was also to
investigate EF organization with these new tools under the hypothesis that training
is an accelerator of development.

2. Testing the hypothesis that trainingmay change the brain age usingmachine
learning models
Different machine learning algorithms for the classification of massive data (e.g.
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imaging or genetics) have been developed recently, proposing parsimonious learning
methods taking into account the structure of the data, such as the spatial neighbor-
hood for MRI data (de Pierrefeu et al., 2018b). With this development, age prediction
from brain imaging data has become popular (Baecker et al., 2021b). In this con-
text, we aimed at investigating if training changed the brain age and if these changes
were related to cognitive progress. The adaptation and application of the algorithms
to imaging-behavioral data have been be done in collaboration with Edouard Duch-
esnay & Julie Victor (CEA/Neurospin).

3. Multilevel analysis of genetic, cerebral and cognitive information
SEM is a very relevant statistical approach for multilevel analyses because it allows
the combination of both causal mechanism modelling and the use of complex con-
structs with latent variable modelling (Bollen, 2005). Causal modeling thus allows for
simultaneous and global testing of the existence of several hypothetical relationships
between a set of variables at different levels (gene-brain-behavior) that may be depen-
dent and/or independent. Structural equation modeling is adaptable to longitudinal
(McArdle, 2009) and multi-modal (Judd et al., 2020) data. Thus, we aimed at develop-
ing a multilevel SEM in order to integrate the different levels of observation (brain,
genetics, cognition) and to have a complete picture of EFs through development and
training.

4. The acquisition of a multi-modality and multi-level database to characterize
learning
The creation of the multilevel training database will rely on the APEX-Enfant and
APEX-Ado projects (APprentissages EXécutifs et cerveau chez l’enfant d’âge scolaire
et chez l’adolescent). These projects aim at testing at different ages the impact of
an executive learning targeted on Inhibitory Control (IC) and a more general pure
metacognitive learning, mindfulness (PC). Learning will be assessed at the brain level
- through anatomical (aMRI), diffusion (dMRI) and functional (fMRI) MRI data - as
well as at the genetic (single nucleotide polymorphism, SNP) and behavioral (perfor-
mance on cognitive tasks) levels. The data for IC learning were already acquired. An
objective of this PhD project was to contribute to the acquisition of the data for PC
learning (Gabriela Rezende’s PhD), including recruitment of participants, acquisition
of genetic, MRI, and cognitive data.

This PhD project is at the crossroads of cognitive neuroscience, developmental psychol-
ogy and applied statistics, funded by a grant for interdisciplinary projects (CNRS PRIME
80). Because of this interdisciplinary funding, this research project have both a theoretical
objective - to characterize the organization of EFs through development and training - and
a methodological objective - to develop statistical tools in order to analyze longitudinal and
multilevel data.
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1 Executive functions: definition

The notion of executive functions (EFs) have emerged from studies of frontal lobe function-
ing and adult clinical neuropsychology. They have given rise to a multitude of overlapping
definitions. Current definitions of EFs describe a set of high-level cognitive functions that
allow an individual to intentionally regulate his or her thinking and acts in order to achieve
goals (Diamond, 2013). These EFs are invoked when automated routines do not work or
are not possible (e.g., in novel situations). EFs allow people to both resolve immediate con-
flict (e.g., ignoring a distractor) and to manage, in the moment, future conflicts/goals (e.g.,
preparing for tomorrow’s class or next year’s marathon).

Over the years, studies have shown that these functions are necessary for the develop-
ment of more complex skills such as reasoning (Richland and Burchinal, 2013), theory of
mind (Benson et al., 2013; Marcovitch et al., 2015; Sabbagh et al., 2006), arithmetic (Cragg
et al., 2017; Gilmore and Cragg, 2018; Lee et al., 2018; Roell et al., 2019), decision-making
(Xu et al., 2020) or creativity (Cassotti et al., 2016; Kleibeuker et al., 2013).

Since EFs are too broad to be modelized computationally or measured by a single vari-
able, they have been either operationalized in a more precise manner or broken down to be
studied. Miyake et al., 2000 have laid the foundations in their model of EFs with updating,
inhibition and shifting forming three distinct (diversity of EFs) but still correlated (unity of
EFs; Miyake et al., 2000) factors. Each EF would therefore be composed of a common part
to all three EFs (common-EF ) and a specific part to the EF in question (EF-specific ability;
Miyake and Friedman, 2012; see Figure 1).

Figure 1: Unity and Diversity of executive functions. Figure from Miyake and Fried-
man, 2012.
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1.1 Diversity of EFs

1.1.1 Inhibitory control

Inhibitory control (IC) or inhibition, as we will see, is central to a number of abilities and a
source of interest in many disciplines, which has thus led to numerous studies on the sub-
ject (see Figure 2). Many conceptual distinctions of IC components exist such as automatic
inhibition (Johnson et al., 2003; Pritchard and Neumann, 2009), behavioral inhibition (Har-
nishfeger, 1995; Nigg, 2000); cognitive inhibition (Harnishfeger, 1995; Nigg, 2000), effortful
inhibition (Johnson et al., 2003; Pritchard and Neumann, 2009), inhibition of return (Pos-
ner and Cohen, 1984), pre-potent inhibition (Ozonoff et al., 1994), resistance to proactive
interference (Friedman and Miyake, 2004), or response inhibition (Verbruggen and Logan,
2008). Consequently, two studies focusing on inhibition may be studying very different
processes. It is therefore important to know which specific mechanism is being studied in
order to make the most accurate interpretations and inferences possible. For this reason,
we will first provide a theoretical overview of IC, notably its components and measures.

Figure 2: Types of inhibition in neuroscience and psychology. Figure fromAron, 2007.

IC can be defined as the ability to resist automatisms and distractions in order to activate
the appropriate response in conflict situations (Diamond, 2013). For example, in a cocktail
party situation, IC allows one to focus one’s attention on the conversation of interest while
ignoring other distracting conversations.

In the literature, most of the IC models consist of one-factor (Cohen et al., 1990; Demp-
ster, 1992; Diamond, 2006; Morton and Munakata, 2002) or two-factor accounts (Andres
et al., 2008; Bjorklund and Harnishfeger, 1995; Collette et al., 2009; D’Amico and Passol-
unghi, 2009; Engelhardt et al., 2008; Johnson et al., 2003; Pritchard and Neumann, 2009).

4



General introduction

While one-factor models propose a single inhibitory resource responsible for interrupting
task-irrelevant cognitive processes, multi-factor accounts propose that multiple resources
contribute to IC, resulting in diverging developmental trajectories and distinct relationships
with other cognitive processes.

There is now a consensus about the multi-dimensionality of the IC construct (Diamond,
2013). An early study has shed light on a common inhibition ability which is however not
involved in all IC functions (Friedman and Miyake, 2004). Classically, two types of IC are
distinguished (Friedman and Miyake, 2004; Gandolfi et al., 2014; Kane et al., 2016; Nigg,
2000; Stahl et al., 2014; Vink et al., 2005; Wiebe et al., 2008):

• Response inhibition (or behavioral/motor/prepotent response inhibition):
This sub-function refers to the ability to inhibit a prepotent motor response. It is
generally measured by non-selective stopping tasks such as the stop signal, Go/No-
go or antisaccade tasks, in which participants have to suppress intermittently a motor
response given the presentation of a condition cue (Aron et al., 2014; Chambers, 2009;
Verbruggen and Logan, 2008).

• Interference control (also referred as attentional inhibition, interference suppression,
attention constraint, resistance to distracter/interference):
This sub-function is defined as the ability to resist interference from external environ-
ment’s stimuli. It is classically measured by visual matching tasks such as Stroop or
Flanker tasks, in which participants have to determine whether the target and com-
parison stimuli are identical or not without taking into account the task-irrelevant
stimuli (Friedman and Miyake, 2004; Nigg et al., 2018; Stahl et al., 2014).

A hierarchical model of IC demonstrated that response inhibition and interference con-
trol could be modeled as empirically independent constructs, suggesting that they are dis-
tinct, and perhaps functionally unrelated cognitive abilities (Tiego et al., 2018).

Another study (Bari and Robbins, 2013) proposed a model of IC integrating impulsivity,
with a decomposition of IC in two main sub-functions (see Figure 3): behavioral and cog-
nitive inhibition. Within behavioral inhibition, three sub-functions are defined: response
inhibition, deferred gratification and reversal learning. Response inhibition has been de-
fined the same as above. Deferred gratification or impulsivity refers to the urge to obtain
an immediate reward. This urge should be inhibited when it enables one to obtain larger
rewards after a certain amount of time or effort. Finally, reversal learning is defined as the
ability to overcome the strong association between the response and the outcome when
the context changes without explicit signals. These response-outcome contexts can either
be deterministic or probabilistic. Of note, this definition is really close to that of CF (see
section 1.1.3).

Other types of distinction were proposed in the literature such as the distinction be-
tween automatic and effortful inhibition (Howard et al., 2014). Overall, the multi-factorial
organization of IC points to the importance of using different tasks to measure IC or at least
to specify the inhibitory subfunction involved. Furthermore, it also introduces the possibil-
ity of separate brain bases and perhaps distinct developmental trajectories between these
different subfactors.
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Figure 3: A possible decomposition of IC. Figure from Bari and Robbins, 2013.

1.1.2 Working memory updating

Working memory updating (WMU) is another core component of EFs. This function allows
us to keep information in memory and to perform operations on it (Diamond, 2013).

In adult literature, WMU and working memory (WM) are two correlated but distinct
constructs whereas, in the developmental literature, WM andWMU are often considered as
synonyms (e.g., Garon et al., 2008). Indeed, while the term WM usually refers to the ability
to store and process information simultaneously (Engle et al., 1992; Oberauer et al., 2016),
WMU refers to the ability to operate on this temporarily stored information in the light of
new incoming information and to update the WM regarding the results of this operation
(Ecker et al., 2010). There is divergence in the literature in the distinction between these
two abilities. Some theories ofWM assume a tight link betweenWM and EFs (Miyake et al.,
2001) and thus state that WMU abilities are closely related to that of WM (Schmiedek et al.,
2014), WMU being one component of EFs (Miyake et al., 2000). On the other hand, other
studies state that WMU and WM may be dissociable processes (Radvansky and Copeland,
2001; Radvansky and Dijkstra, 2007).

Regading WMU, Ecker et al., 2010 proposed a decomposition of this EF into three com-
ponents:

• Retrieval, which allows the recall of an information maintained in WM in order to
operate on it (e.g., "What was the assignment for tomorrow’s class? Amath exercise")

• Transformation, which allows the modification of an information or representation
maintained in WM (e.g., "Finally the assignment is no longer a math exercise to do
but a poem to learn")
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• Item-removal, which allows the substitution of a previously relevant information in
memory by a new updated one (e.g., removing the information "math exercise to do"
from WM)

Classic tasks ofWMUare tasks inwhich participants are asked to remember and operate
on a sequence of ongoing stimuli such as reverse digit-span, N-back (Cohen et al., 1994),
Dot-Matrix (Miyake et al., 2001) or Memory Updating (Salthouse et al., 1991) tasks.

The threeWMU processes are used to different degrees inWMU tasks. For instance, the
N-back task involves a retrieval component —because one has to maintain inWM the last n
items and retrieve the nth one back at every step— but it does not involve any transformation
because the information must be retrieved in a form that is identical to the form in which
it was presented (Ecker et al., 2010).

1.1.3 Cognitive flexibility

Cognitive flexibility (CF), also referred to as switching or shifting, is the third EF classi-
cally described. It is defined as the function that allows one to switch between different
instructions, strategies and thus to move from one cognitive operation to another.

Currently, the two types of tasks commonly used to assess CF are:

• Task switching paradigms: the participant has to alternate between tasks (Monsell,
2003; Vandierendonck et al., 2010). Rule-switching tasks such as the trail making test
(Reitan and Wolfson, 1992) or the plus-minus (Miyake et al., 2000) are examples of
task switching paradigms: participants have to switch their response selection or task
to another based on the current rule (Wendelken et al., 2012a).

• Set-shifting paradigms: the participant has to shift or switch within a task (Dajani
and Uddin, 2015). The Dimensional Change Card Sort (DCCS; Zelazo, 2006) and the
Wisconsin Card Sorting Test (WCST; Heaton and Staff, 1993) are set-shifting tasks:
participants have to shift their attention from one dimension (like color, shape or
number) to another based on external feedbacks (Casey et al., 2004).

Although these two types of tasks differ in terms of switching within versus between
tasks, they are both thought to rely on CF. However, these differences may have impli-
cations in terms of the neural processes or development underlying the different types of
CF.

Task switching and set-shifting performance are usually measured by a “switch cost”
representing the difference of performance (reaction times and/or error rate) between task
switches and task repetitions (Jersild, 1927; Spector and Biederman, 1976; Vandierendonck
et al., 2010). Two different types of switch costs can be identified: the global and the lo-
cal switch costs. The global switch cost refers to the difference in performance between
pure blocks (i.e., blocks including the repetition of one single task; AAAA or BBBB) and
mixed blocks (i.e., blocks including the alternation between two tasks; ABABAB). In con-
trast, local switch costs correspond to the specific difference between task-repetition trials
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and task-switch trials in mixed blocks. More specifically, local switch costs are measured
by comparing the performance in AA and BB transitions (task-repetition trials) with the
performance in BA and AB transitions (task-switch trials) in a mixed block such as AAB-
BAABB (e.g., Kiesel et al., 2010; Kray and Lindenberger, 2000; Mayr, 2001; Vandierendonck
et al., 2010). To measure CF, local switch costs are currently preferred above global switch
costs because the global switch cost is also influenced by a difference in WM load between
both blocks (Kiesel et al., 2010; Vandierendonck et al., 2010). Finally, an asymmetrical switch
cost is typically observed in task-switching paradigms when the two tasks involve unequal
levels of difficulty. That is, the switch cost is larger when switching from a difficult task
to an easier task than the opposite, resulting in higher switch costs for the easy task (e.g.,
Monsell et al., 2000; Wylie and Allport, 2000).

As we have seen, a common explanation of CF is that this process is based on the disen-
gagement from a set of irrelevant tasks to the active engagement in a set of relevant tasks.
However, research suggests that this conceptualization of flexibility may be too simplistic
(Nigg et al., 2005). Indeed, in everyday life, when a new operation (e.g., subtracting 8) is
performed on a set of stimuli (e.g., a list of two-digit numbers), it may be necessary to over-
come the induced interference or negative priming due to having previously performed a
different operation (e.g., adding 8) on the same type of stimuli. Thus, the differences that
can be observed between individuals may not be a simple reflection of the ability to en-
gage and disengage from sets of tasks, but may instead involve the ability to perform a new
operation in the face of induced interference or negative priming. Disengaging from this
negative priming would then require IC (blocking the negative priming), suggesting that
these two EFs are likely to be linked in everyday life. In an experimental situation, how-
ever, it is easier to have tasks which measure only pure CF, as this negative priming can be
controlled.

In addition, CF tasks require themaintenance inWMof two ormore rules to then switch
between the two (Dajani and Uddin, 2015). CF can thus be decomposed into two processes:
the maintenance of rules in WM and the alternation between these rules which, according
to some authors, requires IC (Dajani and Uddin, 2015; Nigg et al., 2005). Therefore, due
to the complexity of the processes involved in CF and its close relationship with IC and
WM(U) (Dajani and Uddin, 2015), this EF is sometimes seen as a common-EF instead of a
specific one (Nigg et al., 2005).

1.1.4 High level EFs

From these three core EFs, higher order EFs such as reasoning, problem solving, and plan-
ning are built (Collins and Koechlin, 2012; Lunt et al., 2012).

Reasoning is central to the generalization and abstraction processes that enable concept
formation and creativity (Cristofori et al., 2019). The bat and ball task (Frederick, 2005;
Kahneman and Frederick, 2002) or syllogisms are classic measures of reasoning abilities.
For instance, a link between reasoning abilities and adherence to fake news has recently
been highlighted by Pennycook and Rand, 2019. The underlying mechanisms however,
remain a current issue.

8



General introduction

Problem solving requires the examination of the details of a problem to arrive at a so-
lution. It can include mathematical or systematic operations and can also be an indicator
of an individual’s critical thinking (Cristofori et al., 2019).

Planning includes the executive processes involved in the formulation, evaluation and
selection of actions required to achieve a goal (Cristofori et al., 2019). Planning ability has
been studied using a variety of tasks, but the most common one is the Tower of London
(Shallice, 1982).

These three high-level EFs (with other higher level EFs such as task initiation or self-
monitoring) are necessary in everyday life (to organize one’s schedule, to adapt to unex-
pected difficulties, to make decisions, to get to a specific place) but they are also and espe-
cially necessary at school for a wide variety of learning tasks (e.g., managing homework,
organizing work, mathematical abilities, etc.).

Of note, EFs are sometimes referred to in other terms such as self-control or self-
regulation, cognitive control, impulsivity, risk-taking, delayed gratification, amongst oth-
ers.

Self-regulation is sometimes associated with EFs. However, these two terms are not
completely synonymous. Indeed, self-regulation is an adaptive change in our internal state,
emotions, thoughts or actions, whereas EFs are a set of cognitive abilities that, when im-
plemented, allow self-regulation to occur. EFs are also available for purposes other than
self-regulation. For example, as we have seen, solving a mathematical problem requires
good executive functioning but no self-regulating.

Cognitive control is a term often found in the field of EFs. It is defined as the ability to
flexibly adjust behavior to achieve a goal in a context where task demands vary dynamically,
and thus corresponds to the active maintenance of goals and the means to achieve them.
Cognitive control is also divided into different components. Themain factors found areWM
-considered as central-, executive attention, response inhibition and interference control,
which correspond to the low-levels functions of EFs. Thus, despite a close relationship
with EFs, cognitive control is more restricted than EFs, with a particular focus on resource
allocation, informationmaintenance (WM) and executive attention, rather than on complex
cognition. Cognitive control can thus be seen as the basic top-down operations from which
the more complex EFs emerge.

There is also an overlap of EFs with the notion of attentional control, defined as the
ability to focus on a task and ignore distractions while constantly scanning the environment
for new sources of information (see Figure 4; Bavelier and Green, 2019). Indeed, attentional
control involves CF to shift between attentional states, WMU and IC (Bavelier and Green,
2019).

Finally, as we have seen, impulsivity, i.e., the tendency to act without previous thinking
nor control, is often associated with EFs (Friedman et al., 2020). It has been described as
mediated by top-down EF processes of goal-directed attention and response inhibition in
addition to bottom-up reward-related processes (Nigg, 2017). Common brain regions have
also been demonstrated between impulsivity and executive dysfunction (Bickel et al., 2012).
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Figure 4: Overlap with sub-processes from Executive Function and Attention liter-
ature. From Bavelier and Green, 2019.

However, a recent study has suggested that EFs and impulsivity reflect overlapping but
phenotypically and genetically distinct constructs (Friedman et al., 2020).

Thus, the literature on EFs can be found under different keywords and in different fields.
These multiple names and theories make it necessary to clarify what we are referring to
when we speak of executive functions.

In the rest of this manuscript, we will only use the terms inhibitory control, working
memory updating and cognitive flexibility (or the acronyms IC, WMU and CF respectively).
It should be noted that this is my theoretical choice. It is important to look at the tasks used
in order to see to which constructs and denominations they refer, in a general way when
discussing EFs but also in the particular case of this PhD project as will be pointed out later.

After having seen the specificity of each factor, we will now see how these factors or-
ganize themselves to form a whole: the EFs.

1.2 Unity of EFs

Studies of individual differences in EFs indicated that performance on tasks designed to tap
into a specific EF domain (e.g., IC) is correlated with, but also separable from performance
on tasks tapping into other EF domains (e.g., CF; Miyake et al., 2000). Consequently, several
studies have investigated the structure of these functions (e.g., Rey-Mermet et al., 2019;
Tiego et al., 2018). We have first seen how each EF was defined, their specificity, we will
now see how they form a unity according to different models.
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1.2.1 A theoretical model: Diamond, 2013

Figure 5: Adele Diamond’s model of Executive Functions. From Diamond, 2013.

In her model of 2013, Adele Diamond (Diamond, 2013) gave a detailed definition of
each EF and their development along with a description of the organization of these EFs.
This model (see Figure 5) proposes an organization of EFs as separated processes, with one
serving the other. More precisely, WM and IC serve each other and both of them serve CF.
These three core EFs are needed for higher level EFs. This model is therefore a three-stage
model with WM and IC at the first stage, CF at the middle stage and finally higher level
EFs at the final stage. Finally, this model is based on the theory and knowledge obtained
on the different EFs and their organization and development so far, but has not been tested
mathematically. Although the current trend is towards operationalization and modeling,
theory and knowledge must not be forgotten for both the construction of future models
and their interpretation; Adele Diamond’s model of EFs is great for that.

1.2.2 An empirical model: Miyake et al., 2000

Using structural equation modeling (SEM), Miyake et al., 2000 have proposed a hierarchical
structure of EFs: in their model, each of the three EF domains are represented by a latent
factor, i.e. a factor inferred by different manifest variables measuring the same EF (Panel
A of Figure 6). In adults, these latent factors are separable (EF diversity), although they
share a significant proportion of their variances (EF unity, or common-EF ability; Miyake
and Friedman, 2012). Although, similar to Diamond’s model (Diamond, 2013), the three
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base EFs serve higher level EFs (here Complex Executive Task). In fact, the main difference
with Diamond’s model is that, in Miyake’s model, Shifting is placed on the same level as
Inhibition and Updating.

Figure 6: Miyake’s model of Executive Functions. From Miyake et al., 2000.

Specifically, the authors modeled four latent variables (Inhibition, Shifting, Updating
and Complex EF Task), each explained by three tasks (Panel B of Figure 6). The complex
tasks comprised theWisconsin Card Sorting Test (WCST), Tower of Hanoi and the Random
Number Generation.

Since this model sheds light on the fact that the three core EFs are moderately corre-
lated with one another, but still clearly separable and that they contribute differentially to
performance on complex executive tasks, it is therefore important to recognize both the
unity and diversity of EFs (see Figure 1). On top of that, this study has shown that latent
variable analysis is a useful approach to studying the organization and roles of EFs and has
paved the way for many studies using this statistical approach when investigating EFs.

We will see later (see section 1.4.2) that this hierarchical three-factor model has been
re-tested several times in developmental studies and that this organization is one of the
structures supported by the literature today in adulthood, but not in childhood.

To sum up, this study constitutes the reference in terms of EF organization and has laid
the foundations for future research. Unlike the organization proposed by Diamond, 2013,
this model has the advantage of being mathematically testable. However, the design of this
model is not random, but has instead been inspired by theory. It is by uniting theory and
modeling that we will be able to approach a precise definition of EFs and their organization.
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1.2.3 Other models

1.2.3.1 Baddeley’sworkingmemorymodel (2000) Another influentialmodel is Bad-
deley’s multicomponent model of working memory (Figure 7; Baddeley, 2000, 2010; Badde-
ley and Hitch, 1974).

Thismodel is composed of a central executive systemwhich regulates other subsystems:

• The phonological loop: allows to maintain verbal information

• The visuospatial sketchpad: allows to maintain visual and spatial information

• The episodic buffer : this subsystem was added in 2000 to the 1974 model. It integrates
short- and long-term memory in order to hold and manipulate temporary storage of
multimodal information.

Figure 7: Baddeley’s model of Working Memory. From Baddeley, 2010.

Although this model contains an executive center, it focuses onWM and its functioning,
but not on WMU or on EFs in general. However, this model is predominant in the field of
WMand should be kept inmind because of its overlapwith othermodels of EF organization.

1.2.3.2 Miller and Cohen’s model (2001) Miller and Cohen proposed a neuro-based
model of cognitive control (Miller and Cohen, 2001). In this model, cognitive control is the
major function of the prefrontal cortex (see Section 2) and results from the active mainte-
nance of activation in the prefrontal cortex which represents goals and themeans to achieve
them. It provides bias signals to other brain structures whose net effect is to guide the flow
of activity along neural pathways which establish the proper mappings between inputs,
internal states, and outputs needed to perform a given task.

Therefore, according to this model, the prefrontal cortex could control input (sensory)
or output (response) neurons, as well as the structures involved in other functions such as
memory, or emotion. Cognitive control might then be mediated by reciprocal prefrontal
cortex connectivity with sensory and motor cortices, and with the limbic system. Within
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Figure 8: Banich’s "cascade of control" model. From Banich, 2019.

this approach, cognitive control refers to a situation where a biasing signal is used to pro-
mote task-appropriate response, and thus becomes a core component of different psycho-
logical constructs such as selective attention, error monitoring, decision-making, and IC.

1.2.3.3 Banich’s cascade of control model (2009) The "cascade of control" model
from Banich, 2009 (Figure 8) has the specificity of involving a sequential cascade of brain re-
gions involved in maintaining attention in order to reach a goal (here, inhibit). In sequence,
the model involves four brain areas: the posterior dorsolateral prefrontal cortex (DLPFC),
the mid-DLPFC, and the posterior and anterior dorsal anterior cingulate cortex (ACC). This
model was developped in a Stroop task situation. For an incongruent trial (BLUE written
in red), control is implemented via a "cascade".

1. Posterior DLPFC biases towards task-relevant information relative to task-irrelevant
information (depicted in Figure 8 by the larger representation of the color blue than
the word RED),

2. Mid-DLPFC allows the relevant information to be maintained in working memory
(here maintaining the representation of blue and not red),

3. Posterior ACC favors the correct response when multiple potential responses are
competing (here by going toward the response linked to blue and not toward the one
linked to red; depicted in Figure 8 by the larger blue circle),

4. Rostral/anterior dorsal areas of ACC are involved in response evaluation and send
information to DLPFC to adjust control.

Noteworthy, the degree to which one region is activated in controlling Stroop interfer-
ence depends on how well control has been implemented at prior points in the cascade.
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This model is of great interest because, for a given task, it allows us to highlight the dif-
ferent stages of resolution of the inhibitory interference, based on the contributions of neu-
roimaging. By linking theory and brain imaging observations, this model allows, in a very
original way, to precisely define the processes involved in interference control. However,
this model has only been developed for the color-word Stroop, and needs to be validated
for other types of IC and EFs.

Other models such as the Supervisory Attentional System (Norman and Shallice, 1980),
the Problem-solving model (Zelazo et al., 1997) or Munakata’s computational model (Mu-
nakata et al., 2011; Munakata et al., 2012) are related to EFs and have influenced the field of
research focusing on EF organization.

To conclude, it is important not to forget the theory and the clinical and behavioral
observations that allowed the development of the first models. The development of neu-
roimaging has allowed the development of these models by bringing a complementary level
of information. It could be interesting to include other levels of information (genetic, bi-
ological, environmental) in order to move toward the most complete model possible. For
this, it is essential to keep all these models in mind. Moreover, we must not forget that EFs
develop with age and can change with training and these models are therefore not fixed.
Here, these models were developed in adult studies. It is therefore important to examine
how the organization of EFs is affected by development as we will see in part 1.4.2.

1.3 Importance of EFs

We saw that EFs represent an important field of research in psychology with numerous
studies aiming to define EFs, their functioning and organization. If EFs are so extensively
studied, it is because they are important for many aspects of our lives, especially for school
achievement.

1.3.1 At school

Indeed, EFs are of great importance for school achievement such as reading or mathematics
(Diamond, 2013). It was shown that EFs correlate with both early reading and mathematics
ability (Blair and Razza, 2007). Even at age 2, EFs are strong predictors of mathematics and
literacy outcomes at age five (Mulder et al., 2017). However, the three core EFs are not
related in the same way to the different components of mathematics and literacy.

Response inhibition was shown to be related to most mathematics components (Pur-
pura et al., 2017). For example, when learning decimal numbers, a heuristic often observed
in children is to think that the decimal number with the greatest value is the one that is
composed of the greatest number of digits after the decimal point. (e.g., the child incorrectly
thinks that 1.34 > 1.5; 34 being larger than 5). It has been shown that IC was necessary in
order to block the "the more digits the number has, the larger its value" automatism and an-
swer correctly (Roell et al., 2019). On the other hand, WMU was related to more advanced
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mathematics skills (e.g., when comparing or combining numbers and quantities). Finally,
CF was related to more conceptual or abstract mathematics skills (Purpura et al., 2017).

As for early literacy, response inhibition and CF were related to print knowledge,
whereas WMwas related only to phonological awareness (Purpura et al., 2017). Indeed, the
contribution of EFs is primordial for reading acquisition. WM is essential, for example to
retain all the phonemes (corresponding to linguistic sounds, like /f/) decoded from a string
of graphemes (corresponding to a letter or group of letters, like "ph") in a word, while not
forgetting the first decoded sound of the word when reaching the last. IC is also necessary
for reading by inhibiting phonological ("dough" and "low") or orthographic ("dough" and
"though") neighbors of the word being read. Similarly, the difficulty for kindergartners and
first graders to discriminate between mirrored letters is also well known. While it is rather
easy to distinguish "a" and "h" as two distinct letters, things get very complicated for the
letter pairs "b/d" and "p/q" whose mirror image is another letter (Borst et al., 2015). When
children learn to read, the temporo-occipital region of the left hemisphere (i.e., a visual
area), also known as the "visual face and word recognition region," becomes specialized for
the recognition of written words, making the child capable of quickly processing a string of
characters perceived on the retina (Cohen et al., 2000; Dehaene and Cohen, 2011). However,
because of neural recycling (our brain, during ontogeny, finds itself obliged to recycle some
regions or circuits for new learning such as reading or maths; Dehaene and Cohen, 2007,
2011; Dehaene et al., 2004). Within this circuit, a mirror generalization heuristic was already
present, leading to the categorization of two objects in an identical manner, independently
of their orientation in space. This heuristic, which works well in the case of object and face
recognition, continues to apply in the case of letters (Baylis and Driver, 2001). The child
must then unlearn the automatic mirror generalization in order to avoid letter confusion
and become a good reader (Dehaene et al., 2010). IC is then necessary to block this mirror
generalization, in children and adults (Ahr et al., 2016; Borst et al., 2015). Note that letters
mirrored not laterally but vertically (e.g., b/p) are less affected by this phenomenon (Ahr
et al., 2017).

An emerging literature focuses on the causality of EF effects. It was shown that a bidi-
rectional relation exists between math and EFs (Clements et al., 2016; Schmitt et al., 2017)
but not between EFs and literacy (Schmitt et al., 2017). These new findings suggest that both
EFs and academic learning are mutually supportive of each other’s development, but it is
clear that EFs are necessary for the successful development of academic learning. Indeed,
this strong association between EFs and academic achievement is also supported by stud-
ies demonstrating the presence of learning disabilities in children with executive deficits
(Gathercole et al., 2006; Schuchardt et al., 2008). Moreover, interventional studies propos-
ing to train EFs have the advantage of being able to test this causal effect by looking at the
impact of such training on academic performance (see further, section 6).

These relationships between EFs and learning continue in high school and even at Uni-
versity (Duckworth and Seligman, 2005). As adults, we use EFs for a lot of daily activities
such as reading, shopping, driving, reasoning, etc., and EFs were shown to be related to
work success (Bailey, 2007), marital harmony (Eakin et al., 2004) and parenting (Johnston
et al., 2012).
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1.3.2 In physical and mental health

It was shown that EFs were related to physical and mental health (for a review, Snyder
et al., 2015). First, it was shown that EFs and more specifically WM impairments were
found in schizophrenic patients (Barch, 2005; Thomas et al., 2009). Regarding schizophre-
nia symptomatology, negative symptoms were shown to be predicted by IC (assessed by
the color word Stroop task), whereas positive symptoms (in patients with mostly negative
symptoms) were predicted by Switching (assessed by the Visual Elevator task; Donohoe
et al., 2006). On another hand, auditory hallucinations are related to intentional inhibi-
tion deficits, and more generally to an inhibition/excitation imbalance at multiple levels
(biological, cognitive, cerebral; Jardri et al., 2016). Moreover, this link between EF impair-
ment and schizophrenia is supported by family studies which have shown that relatives of
schizophrenic patients appear to have wide but not severe executive dysfunctions (Szöke
et al., 2005).

Such effects were also found in bipolar disorders since bipolar patients showed poorer
IC (assessed by the color-word Stroop Task), WM (assessed by letters/numbers sequencing)
and high-level EFs (measured by the WCST; Lera-Miguel et al., 2011). CF (measured by
TMT) and high-level EFs (assessed by the WCST) also showed familial resemblance among
the relatives of bipolar patients (Szöke et al., 2005).

A relationship was also demonstrated between executive dysfunction, autism spectrum
disorder (ASD; Craig et al., 2016; Demetriou et al., 2018), attention deficit (hyperactivity)
disorder (ADD/ADHD; Brown, 2009; Craig et al., 2016; Diamond, 2005; Nigg et al., 2005),
anxiety (Ajilchi and Nejati, 2017), depression (Stordal et al., 2004; Taylor Tavares et al.,
2007; Walters and Hines-Martin, 2018), epilepsy (Patrikelis et al., 2009; Riva et al., 2005)
and substance consumption (Gustavson et al., 2017).

In addition, EF deficits were found in participants with obesity diagnosis compared to
healthy weight controls, with significant deficits in IC and WM, (Favieri et al., 2019; Yang
et al., 2018). More generally, negative correlations were shown between BMI (Body Mass
Index) and EFs (Ronan et al., 2020), and IC abilities (Mamrot and Hanć, 2019). At the motor
level, an interaction between IC and postural control during development has also been
demonstrated (Olivier et al., 2007, 2010). The EF brain network would also be involved in
the cerebral body schema (Assaiante et al., 2014).

Overall, EFs were shown to predict health related quality of life (Brown and Landgraf,
2010; Davis et al., 2010) and are perhaps the most widely impacted cognitive functions in
psychiatric pathologies (see Figure 9).

1.4 Development of EFs

The development of EFs is nowwidely studied (Hughes, 2002), and the first studies focusing
on it are not new. As the frontal lobe is known to have a late maturation (Diamond, 1991;
Golden, 1981), its historical link with EFs quickly raised the question of an EF development
parallel to that of the frontal lobe (Diamond, 2000; Stuss, 1992). Ten years later, in her paper,
Adele Diamond clearly associated the development of the prefrontal cortex with that of the
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Figure 9: Pathologies with executive dysfunction. From Executive Dysfunction Re-
search & Advocacy.

EFs and had invited neuroimaging studies, which had made major progress in the early
part of the century, to provide knowledge on the precise links between neurodevelopment
and executive development (Diamond, 2002). Two decades later, neuroimaging and behav-
ioral studies have proliferated and provide much more information on EF development at
different levels.

1.4.1 Developmental trajectories of EF components

1.4.1.1 Development of inhibitory control IC is present from childhood (Johnson,
1995) and evolves with age (Bjorklund and Harnishfeger, 1995; Casey et al., 1997; Luna
et al., 2004; Marsh et al., 2006; Paulsen et al., 2015; Rubia et al., 2013; Tamm et al., 2002),
following a reverse U trajectory with a rapid increase in performance in early childhood, a
slower one throughout adolescence, reaching a plateau at adulthood (Bessette et al., 2020)
before a decrease in later adulthood (Williams et al., 1999).

More specifically, response inhibition, in its most basic form, is present in the first year
of life with the inhibition of neonatal reflexes and the inhibition of predominant behav-
ioral reaching responses (Diamond, 1990). After age 6, IC improves linearly in childhood
(Macdonald et al., 2014; McAuley and White, 2011; Williams et al., 1999) and tasks with
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greater interference show improvement up to young adolescence (Klenberg et al., 2015). It
seems that adolescents have the full capacities for accurate IC but, because of an increased
susceptibility to interference demands (such as peer presence), their performance results
are irregular and inefficient (Luna et al., 2004; Luna et al., 2013). From adolescence to adult-
hood, modest improvements continue, with a focus on tasks with greater interference and
complexity (Huizinga et al., 2006; McAuley and White, 2011).

Hence, the age at which performance on IC tasks reaches adult levels depends largely
upon task complexity and difficulty, with performance on some basic tasks reaching adult
levels in early childhood, while performance on other tasks requiring the integration of
multiple EFs, continues to improve until adolescence (for a review, see Garon et al., 2008).
Therefore, effortful/response inhibition tasks were shown to follow a protracted develop-
ment across the different ages whereas tasks relying on a more automatic form of inhibition
show little to no gain with age (Howard et al., 2014). It is important to point out that studies
indicate that the rate of correct inhibitory responses, but not the ability to generate a cor-
rect inhibitory response, improves through childhood (Bedard et al., 2002; Luna et al., 2004;
Ridderinkhof et al., 1999; van den Wildenberg and van der Molen, 2004; Williams et al.,
1999; Wise et al., 1975).

However, in order to observe and measure IC abilities throughout development, it was
necessary to adapt the classic tasks. Thus, the color Stroop, requiring the acquisition of
reading skills, was modified for younger children. Different versions exist: the Animal
Stroop (where the child must name the animal corresponding to the body of a hybrid an-
imal composed of the head of one animal and the body of another), the Day/Night Stroop
(where the child must say "day" when shown a picture of the moon and "night" when shown
a picture of the sun)... It is important to note that these tasks vary considerably in difficulty
(Simpson and Carroll, 2019), raising the question of measure homogeneity during develop-
ment (Petersen et al., 2016).

Furthermore, it has been shown that the emotional degree of the task interferes with
the developmental trajectory. Previous developmental studies have emphasized the impor-
tance of differentiating hot (affectively charged contexts: motivationally and emotionally
relevant) and cool (affectively neutral contexts) EFs (Prencipe et al., 2011; Schweizer et al.,
2020; Welsh and Peterson, 2014; Zelazo and Carlson, 2012; Zelazo andMüller, 2002). For ex-
ample, hot IC abilities, measured by an emotional Stroop task, in which participants must
inhibit the reading of a word referring to an emotion in order to focus on the emotional
facial recognition task, follow a quadratic developmental trajectory (with a trough at ado-
lescence), whereas cool IC abilities, measured by a classic color-word Stroop task, develop
linearly with age (Aïte et al., 2018). However, some studies have reported a quadratic de-
velopmental pattern for response inhibition abilities using an affectively charged Go/No-go
task (Hare et al., 2008; Somerville et al., 2011) whereas others reported a linear development
using the same task with a protracted development of response inhibition in an affectively
charged context (Schel and Crone, 2013; Tottenham et al., 2011). Similarly, based on a stop
signal task, studies have reported a linear development of both cool and hot response inhi-
bition abilities from childhood to young adulthood (Salvia et al., 2021; Urben et al., 2012),
but with a more protracted development of response inhibition in an affectively charged
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context than in an affectively neutral context (Salvia et al., 2021). These last results are in
line with anothermodel of the development of EFs in affectively neutral or charged contexts
that assumes a later development of EFs and of IC in particular in an affectively charged
than in an affectively neutral context (Zelazo and Carlson, 2012). As for adolescents and
adults, cool and hot IC were shown to be unrelated (Aïte et al., 2018), suggesting that these
two types of IC might rely on different processes (Bouhours et al., 2021).

1.4.1.2 Development of workingmemory updating Summarizing the development
of working memory updating (WMU) is challenging as there is often a confusion between
WMUandworkingmemory (WM) in developmental studies (Panesi et al., 2022). Thiswould
not be an issue if the two components were interchangeable through development but it
has been demonstrated that WMU correlated higher with measures of IC than with WM
measures (Panesi and Morra, 2020; Traverso et al., 2015) and that differences between the
concepts of WM and WMU already exist in preschoolers (e.g., Morra et al., 2018).

WMU was shown to follow a similar developmental trajectory to that of WM but with
slightly lower scores (Garon et al., 2014). A proposition is that WMU depends on WM to
develop without coinciding with it while WM develops essentially by maturation and is
therefore closely related to age (Panesi et al., 2022). WMU abilities have been demonstrated
in 5-months-old (Koechlin, 1997; Wynn, 1992) and 8-months old (Huntley-Fenner et al.,
2002; Kaldy and Leslie, 2003) infants. Then, performance increases until mid-adolescence
(Gathercole et al., 2004; Huizinga et al., 2006; Klingberg, 2006; Kwon et al., 2002; Pelegrina et
al., 2015; Schleepen and Jonkman, 2009; Tamnes et al., 2010; Vuontela et al., 2003), continues
to increase over adolescence and into early adulthood (Demetriou et al., 2002; Ferguson et
al., 2021; Luna et al., 2004) before declining around the age of 30 (Ferguson et al., 2021) and
in later adulthood (Nyberg et al., 2012; Park et al., 2002). Of note, there is a debate regarding
the linearity of WMU development in middle childhood, whith some studies supporting a
linear pattern (Best and Miller, 2010; Carriedo et al., 2016) while others concluding on a
nonlinear development (Brocki and Bohlin, 2004; Lensing and Elsner, 2018; Röthlisberger
et al., 2013).

Just as IC, WMU performance also depends on the task difficulty (Carriedo et al., 2016;
Lee et al., 2013). Complex tasks which require high executive control, showed developmen-
tal trajectories which continue up to age 16 and stabilize around 18 to 20 years, but, with
lower executive control tasks, development remains stable from ages 11 to 12 (Conklin et
al., 2007; Luciana et al., 2005). For example, mature levels in the 1-back task are reached at
the end of childhood (10–12 years), whereas at more demanding levels (e.g., 2-back) perfor-
mance continues to improve well into adolescence (Brahmbhatt et al., 2010; Pelegrina et al.,
2015; Schleepen and Jonkman, 2009; Vuontela et al., 2003).

Looking at the 3-component of WMU as defined by Ecker et al., 2010, different develop-
mental trajectories were found according to the different components: retrieval accuracy
but not the substitution nor the transformation processes differed with age (Linares et al.,
2016).
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1.4.1.3 Development of cognitive flexibility Just as the other EFs, cognitive flexi-
bility (CF) evolves with age. CF develops quickly in preschool years, as young children’s
performance improved on a variety of tasks (Deak, 2000; Espy, 1997; Jacques and Zelazo,
2001; Smidts et al., 2004; Zelazo et al., 1996, for a review see Carlson, 2005). Children as
young as 4 years old are able to demonstrate CF and to switch rules on the DCCS task
while 3-years-old children persevere in applying the first rule (Doebel and Zelazo, 2015;
Frye et al., 1995; Zelazo, 2006; Zelazo et al., 2003). Such persevering errors may be due to
failed inhibition of previously relevant information and/or failed activation of previously
ignored information (Chevalier and Blaye, 2008; Jacques et al., 1999; Zelazo et al., 2003)
and to distraction (Chevalier and Blaye, 2008). Globally, children’s CF ability is affected
by interference both at the stimulus and the response level but also by the specific tasks
which are switched between (Cragg and Nation, 2009). Then, through elementary school
age, CF takes a protracted development compared with other EFs (Davidson et al., 2006).
CF performance continues to develop with age, as children are able to apply higher-order
rules and handle more complex tasks (e.g., Chevalier and Blaye, 2009; Diamond, 2013). For
example, while 4.5 year olds perform well on the DCCS, they fail the WCST until the age
of 6, performance on this task at an adult level happens only around the age of 10 (Chelune
and Baer, 1986; Crone et al., 2004; Dick, 2014; Paniak et al., 1996; Rosselli and Ardila, 1993;
Welsh et al., 1991). But, while a rapid development is observed between 3 and 4.5 years
of age on the DCCS (i.e., children tend to either pass or fail the task), improvement on the
WCST is gradual (Chelune and Baer, 1986; Crone et al., 2004).

It also seems that the two components of CF (i.e., maintenance vs. switching) follow
distinct developmental trajectories (Cepeda et al., 2001; Crone et al., 2004; Huizinga and
van der Molen, 2007; Karbach and Kray, 2007; Kray et al., 2008; Reimers and Maylor, 2005):
task-switching abilities mature earlier (around the age of 11) than task-maintenance and
selection abilities (around the age of 15; Huizinga and van der Molen, 2007; Karbach and
Kray, 2007). CF skills continue to develop into adolescence and adulthood (Anderson, 2002;
Kalkut et al., 2009), peaking between 21 and 30 years (Cepeda et al., 2001).

1.4.1.4 Sum-up To sum up on EF development, infants within their first year of life
already exhibit fundamental forms of EFs (Diamond, 1990), but the core components (IC,
WMU and CF) rapidly develop during the preschool years (Hughes, 1998), continue devel-
oping throughout childhood (e.g., Davidson et al., 2006), adolescence (e.g., Huizinga and
van der Molen, 2007) and early adulthood (e.g., Anderson et al., 2001; Ferguson et al., 2021).

The development of EFs requires more than a quantitative increase in the efficiency
of executive processes (Chevalier, 2015). Development is also driven by changes in the
control strategies available to children, which come with the challenge of adaptively coor-
dinating this expanding control ability. With age, children adjust control engagement (i.e.,
the amount of control and strategy selection) more effectively as a function of moment-to-
moment variations in the demands of tasks. Increasingly optimal coordination of control
results in more efficient and more economic cognitive functioning. In other words, the de-
velopment of EFs reflects, in part, more optimal use of existing control resources with age
(Chevalier, 2015; Doebel, 2020).

As we have seen with IC, it is also important to differentiate the developmental tra-
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jectory of hot and cool EFs (Prencipe et al., 2011; Welsh and Peterson, 2014; Zelazo and
Carlson, 2012). Studies reported that both cool and hot EFs developed linearly but cool EFs
developed more rapidly than hot EFs (except for interference in IC which develops quadrat-
ically). Moreover, while cool and hot EF capabilities seem correlated in children, they are
not related in adolescents suggesting that these two types of EFs become increasingly more
specific with age (Aïte et al., 2018; Botdorf et al., 2017; Welsh and Peterson, 2014; Zelazo
and Carlson, 2012), also since difficulties in hot EFs can appear without apparent difficulties
in cool EFs (Welsh and Peterson, 2014; Zelazo and Carlson, 2012).

1.4.2 Developmental trajectories of EF structure

Since Miyake’s model’s first publication in 2000 (Miyake et al., 2000), much research has
focused on reproducing this model on the same population as they did but also across age
and pathologies. The use of latent variable analysis in particular has been themost common
approach to evaluating the changing organization of EFs over development.

Published measurement models showed that, with age, EF structure goes from a one-
factor structure in early childhood with no clear separation among EF tasks (Shing et
al., 2010; Wiebe et al., 2008; Willoughby et al., 2012; Xu et al., 2013) to a two- to four-
factors structure at adolescence (Agostino et al., 2010; Friedman et al., 2016; Lee et al., 2013;
McAuley andWhite, 2011; Wu et al., 2011; Xu et al., 2013). Of note, some studies also report
an organization with more than one factor in young children (Wu et al., 2011) and less than
three factors in older children (Huizinga et al., 2006). Karr et al., 2018 made a systematic
review and a re-analysis of the data produced in almost 20 years.

This meta-analysis concluded on a one to two factor model among children and adoles-
cent samples and on a nested factor model among adult samples (Karr et al., 2018). These
results suggest greater unity among younger samples and a balance of unity and diver-
sity among adult samples, hence supporting a differentiation of EFs from preschool into
adulthood, with the emergence of CF during the school-age to adolescent years (Karr et
al., 2018). Moreover, a recent behavioral study on children from 7 to 15 years (Hartung
et al., 2020) found that age impacts mostly the common-EF loadings of IC and CF. While in
childhood, WMU, CF and IC rely on similar underlying cognitive processes, in adolescence,
EFs become more specialized and independent. Another preprint using both latent variable
and network analysis approaches showed a stabilization of EF organization around the age
of 10 that continues to develop until the age of 14, going from one-factor to three-factor
organization (Younger et al., 2021). However, it is important to note that the 7 models ex-
amined by Karr et al. showed low acceptance rates (such as convergence problems or poor
model fit) and low model selectivity (models did not differ much in fit; Karr et al., 2018).
This highlights the need for longitudinal research, with sufficient power, to validate the
factorial organization of EFs during development.

This developmental organization of EFs (for a review: Karr et al., 2018; Lee et al., 2013)
is also supported by a brain imaging study reporting an increasing segregation of structural
brain networkmodules with age, this segregationmediating the effects of age on EFs (Baum
et al., 2017). Indeed, the development of EFs has been widely studied in relation with brain
development. Therefore, we will focus now on EF brain network and its development.

22



General introduction

2 Neural basis of EFs

We are learning more and more about the functioning and organization of the brain thanks
to the development of neuroscience and its brain imaging methods. Brain imaging, such
as Magnetic Resonance Imaging (MRI), Electro-Encephalography (EEG) and Magnetoen-
cephalography (MEG), allows to measure in a non-invasive way the functioning of the
brain when it is engaged in a cognitive task or in its basal activity (called resting state) but
also, using MRI, its anatomy.

Over the last twenty years, neuroimaging research has established two fundamental
principles of brain organization: segregation, the segregated or modular distribution of
anatomical and/or functional specialization within brain regions, and integration, the func-
tional and/or effective connectivity between brain regions (Friston, 2009). Details on the
history of these two concepts and their measurements in neuroimaging can be found in
Appendix A1.

2.1 Segregation: regional brain specialization for EFs

Neuroimaging studies have led to a better understanding of the development and function-
ing of EFs, which, as we have seen, are essential to the establishment of several functions
during development. Because EFs are present in childhood and improve with age, it was
suggested that the underlying neural mechanisms are available early in development and
develop throughout development (Luna et al., 2010). This developmental trajectory of EFs
would thus be linked to the prolonged structural and functional maturation of certain brain
regions, notably the prefrontal cortex (PFC; Bunge and Wright, 2007; Casey et al., 2005;
Crone and Steinbeis, 2017; Gogtay et al., 2004; Luna et al., 2015; Luna et al., 2010). In-
deed, different studies have shown an age-related increase in activity in the prefrontal and
parietal cortexes (Kwon et al., 2002; Paus et al., 2008).

Regarding EFs, from a developmental perspective, one hypothesis is that, similar to
the organization of EFs at the behavioral level (from a 1-factor organization to a 3-factor
organization), EF development is related to the segregation of network modules (Baum et
al., 2017, see Figure 10). This will lead to the fact that, in adults, EFs would function in a
hierarchical manner: while some regions would play an integrative and more common role,
others would be more specialized on a particular EF (Collette et al., 2006; Luna et al., 2015;
Niendam et al., 2012; Simmonds et al., 2008; Wager et al., 2004; Wager and Smith, 2003),
reflecting on a cerebral level the unity and diversity of EFs. This prefrontal modularity of
both unitary (common-EF) and diverse EF (specific-EF) was recently supported using the
Delis-Kaplan Executive Function Scale (D-KEFS) (Mace et al., 2019).

2.1.1 Diversity of EFs

Some brain regions are shared by all three EFs and their common part, but others are more
specific to each EF. For example, one study was able to identify a prefrontal network, com-
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Figure 10: Modular segregation of structural brain networks supports the develop-
ment of executive function in youth. From Baum et al., 2017.

mon to all three EFs, and specific ROIs for each EF (Mace et al., 2019). We will start by
describing in detail the brain networks that have been shown to be involved in the differ-
ent EFs, reflecting their diversity.

2.1.1.1 Neural basis of IC Of the three core EFs, IC is probably the one whose brain
bases have been investigated the most, probably because of its overlap with cognitive con-
trol, impulsivity... Various studies have shown an age-related increase in activity in the
prefrontal and parietal cortex (Kwon et al., 2002; Pas et al., 2021).

2.1.1.1.1 ACC One of the key regions of the IC network is the anterior cingulate
cortex (ACC). In its dorsal part, the ACC is connected to the prefrontal and parietal cortex
as well as to motor areas. On the ventral side, it is connected to regions such as the hy-
pothalamus, the amygdala and the nucleus accumbens. Thus, because of its position and
its connections with these other cerebral areas, it is a place of cerebral control.

At the anatomical level, various studies have highlighted the link between the cortical
thickness of this region and IC performance (Elderkin-Thompson et al., 2008; Takeuchi et
al., 2012; Westlye et al., 2011). The left-right asymetry sulcal pattern of the ACC, which can
be single or double parallel, has been shown to correlate with Stroop score in 5-year-olds
(Cachia et al., 2014), 9-year-olds (Borst et al., 2014), and young adults (Tissier et al., 2018).
Specifically, Stroop scores were lower (and thus inhibitory performance better) in subjects
with ACC asymmetry (a different sulcal pattern in the two cerebral hemispheres) compared
to subjects with symmetric ACC. ACC anatomy, as measured by plastic or fixed markers,
is therefore related to IC performance.

Functionally, the activity of this region increases with age and development, as does
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IC performance measured by a Stroop task (Adleman et al., 2002). This region has also
been shown to be more prominently activated during Simon (Kharitonova et al., 2013) and
Go/No-go (Pornpattananangkul et al., 2016) tasks, having a central role in conflict detection
and being increasly activated when errors are commited (Braver et al., 2001). A review has
also shown that the anterior part of the ACC is more emotional whereas its posterior part
is more cognitive, using an emotional or cognitive Go/No-go (Bush et al., 2000). Thus, ACC
represents a key region for attention, motor regulation, and response selection (Carter et
al., 1998; Pardo et al., 1990; Paus et al., 1993).

2.1.1.1.2 IFG Similarly, the inferior frontal gyrus (IFG) activity increases with age
and inhibitory performance (Bunge et al., 2002). The IFG, which is part of the prefrontal
cortex (PFC), is the lowest of the frontal lobe gyrus. It is bounded superiorly by the inferior
frontal sulcus (IFS; which separates it from themiddle frontal gyrus), inferiorly by the lateral
sulcus (which separates it from the superior temporal gyrus) and posteriorly by the inferior
precentral sulcus (IPS). Above is located the middle frontal gyrus, behind is located the
precentral gyrus.

Functionally, the right IFG is a region which is activated during inhibitory tasks such as
the stop signal task (Aron et al., 2003; Obeso et al., 2013), Go/No-go (Pornpattananangkul
et al., 2016) and Simon (Kharitonova et al., 2013), and its activation seems to be proportional
to the success of the task (negative correlation with stop signal reaction time, SSRT; Aron,
2006; Aron, 2007). Moreover, this activation is proportional to the difficulty of the task
(Hughes et al., 2013) and increases with age (Kleerekooper et al., 2016). Unlike other regions
involved for IC, the right IFG is activated during preparation for inhibition (anticipation)
but also during efficient inhibition (Swann et al., 2012).

Finally, the left IFG is not left out. Although less found as a neural center of IC than its
right counterpart, several works have shown that this region is also involved for efficient
IC (Leite et al., 2018; Menzies et al., 2007; Mirabella et al., 2020; Quidé et al., 2018; Swick
et al., 2008; Wiers et al., 2015).

Thus, the PFC, notably the IFG and ACC, seems to be a key zone for IC (Aron et al.,
2014). However, other brain regions have also been shown to be involved in this EF.

2.1.1.1.3 pre-SMA The supplementary motor complex (SMC), a region of medial
frontal cortex at the interface between the prefrontal and motor systems, is subdivided
into two distinct areas: the pre-supplementary motor area (pre-SMA) and the more caudal
supplementary motor area (SMA), which are distinguished by different cortical and sub-
cortical connectivity (Nachev et al., 2007). Notably, the pre-SMA has extensive prefrontal
connectivity (Luppino et al., 1993; Wang et al., 2005).

At the functional level, several studies have shown that inhibitory performance in-
creases with activation of pre-SMA (Duann et al., 2009; Li et al., 2006; Obeso et al., 2013;
Schel et al., 2014). Specifically, pre-SMA is thought to be a region involved in the prepa-
ration of motor inhibition (in a stop signal task for example, by anticipating a Stop signal:
Swann et al., 2012). However, according to some authors, the activation of this regionwould
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not be directly related to IC but rather to cognitive functions solicited in parallel such as
attention or WM (Criaud and Boulinguez, 2013).

2.1.1.1.4 Cerebellum The cerebellum is a brain region that has been found to be
related to performance in IC measured, for example, by the color-word Stroop (Ravnkilde
et al., 2002). Being located behind the brainstem in the posterior fossa, the majority of
studies have linked this region to IC through the connections it may have with other brain
areas. Thus, the cerebellumwould be functionally connected to the fronto-parietal network
(Zhang et al., 2015) and to the right IFG (Picazio et al., 2016). Its action on ICwould therefore
be indirect.

2.1.1.1.5 Striatum The striatum is a subcortical region of the basal ganglia con-
sisting of the caudate nucleus, the putamen, and the ventral striatum (which includes the
nucleus accumbens). These striatal regions are areas classically involved in learning (Seger,
2006, 2008; Seger and Cincotta, 2005b). However, regarding IC, Beste et al., 2018 pointed out
that the striatum is partially involved in IC due to its structural and functional connections
with the PFC.

Thus, activation of the striatum has been shown to be related to reactive response in-
hibition during a stop signal task (Vink et al., 2005). Further studies have clarified the
crucial role of the striatum: it has been shown to be associated with motor response sup-
pression (by deactivating M1 primary motor cortex) and inhibition anticipation (Pas et al.,
2021; Zandbelt and Vink, 2010), and this activity would depend on contextual cues such
as the proportion of Stop trials in the task (Vink et al., 2015; Zandbelt and Vink, 2010).
More specifically, recent studies have shown that a sub-part of the striatum, the putamen,
is specifically involved in proactive response inhibition in the stop signal task (anticipation
of Stop signals; Pas et al., 2019) but also in the effective stop by suppressing the activation
of the response in the motor cortex (Pas et al., 2017).

Finally a meta-analysis on the neural correlates of response inhibition in adults has
suggested the activation of a right hemispheric network common to all tasks (IFG, medial
cingulate, paracingulate, and superior parietal gyri) but also distinct networks, thus empha-
sizing that IC is a multi-dimensional construct (Zhang et al., 2018). To conclude, IC would
be the result of a particularly complex brain network, including regions that are more or
less similar across studies, reviews, and meta-analyses.

2.1.1.1.6 Development of ICneural bases In a neurodevelopmental point of view,
adults, who perform better than children, recruit more regions (right VLPFC, thalamus,
caudate and cerebellum; Bunge et al., 2002; Rubia et al., 2001) and more strongly other
ones (portions of the prefrontal cortex, anterior cingulate cortex, inferior parietal cortex
and striatum; Bunge et al., 2002; Bunge and Wright, 2007; Rubia et al., 2006) than children
and adolescents. Thus, prefrontal engagement decreases with age (Alahyane et al., 2014;
Ordaz et al., 2013) in parallel with performance improvement (Dwyer et al., 2014) whereas
increased engagement in performance monitoring in the dACC drives the development of
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IC during adolescence, at least to some extent (Adleman et al., 2002; Ferdinand and Kray,
2014; Rubia et al., 2007; Santesso and Segalowitz, 2008; Segalowitz et al., 2010; Velanova
et al., 2008). More precisely, there is a shift from global to local activations during IC tasks
as the PFC develops and matures (Fiske and Holmboe, 2019). Of note, this general principle
of brain development with the shift from a diffuse functional network to a focal network
with age is also found in other domains such as body representation in children and adults
(Cignetti et al., 2017; Fontan et al., 2017).

2.1.1.2 Neural basis of workingmemory updating WMU shares many regions with
IC as it is thought to be underpinned by a widely distributed bilateral fronto-parietal net-
work involving the ventro and dorsolateral as well as medial PFC, parietal lobes, left fron-
topolar gyrus, but also the striatum, middle temporal gyrus, and cerebellum (Collette and
Van der Linden, 2002; Collette et al., 2005; Rottschy et al., 2012; Sörqvist and Sætrevik,
2010). These regions would be more recruited as cognitive load increases (see Luna et al.,
2010 for a review). More precisely, the dorsolateral and medial PFC, in conjunction with
the posterior parietal cortex, often referred as the frontoparietal network (FPN), contribute
to the maintenance of WM content (D’Esposito and Postle, 2015; Feredoes et al., 2011; Nee
et al., 2013; Roth et al., 2006). This FPN was also specifically activated during WMU tasks
as N-back (Owen et al., 2005), digit-span (Kharitonova et al., 2013), keeping track (Tamnes
et al., 2010), reading-span test (Osaka et al., 2004) or AX-CPT (Lopez-Garcia et al., 2016).
These regions have therefore been referred as the core network ofWM (Harding et al., 2015;
Johnson et al., 2019; Rottschy et al., 2012).

2.1.1.2.1 Basal ganglia The basal ganglia (BG) refer to a network of interconnected
subcortical structures, including: the striatum (composed of the caudate nucleus and the
putamen), the globus pallidus, or pallidum, the subthalamic nucleus and the substantia
nigra. The nucleus accumbens is sometimes added to these structures. All these structures
are paired (one for each hemisphere).

Studies have provided support for the involvement of BG inWMU (Chatham and Badre,
2015; Cools et al., 2007; Murty et al., 2011; Nir-Cohen et al., 2020). More precisely, BG
activation was shown to precede the selection of relevant information forWMmaintenance
(McNab and Klingberg, 2008).

2.1.1.2.2 Middle temporal gyrus The middle temporal gyrus (MTG) is a gyrus on
the temporal lobe located between the superior temporal gyrus and inferior temporal gyrus.

MTG activation has been shown to be related to bothWM,measured by long-termmem-
ories task (Axmacher et al., 2008; Ranganath and D’Esposito, 2001), and WMU, measured
by the 2-back task (Stern et al., 2001).

2.1.1.2.3 Cerebellum A series of early neuroimaging studies have focused on the
role of the cerebellum activation in verbalWM (Chen andDesmond, 2005a, 2005b; Desmond
et al., 1997; Kirschen et al., 2005). This studies provide support for the model developed
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by Desmond et al., 1997 in which the superior cerebellum participates in the articulatory
rehearsal loop (as proposed by Baddeley’s model) and the right inferior cerebellum is in-
volved in errors correction by comparing information in the articulatory rehearsal loop
with the contents of the phonological store. Cerebellum activation was shown to increase
with memory load (Desmond and Fiez, 1998) However, it was shown that the cerebellum
was activated across other WM modalities than verbal ones, supporting the fact that the
cerebellum, together with prefrontal and parietal areas, is necessary forWM (Hautzel et al.,
2009).

The implication of the cerebellum for WM, especially in error corrections, can be im-
portant for WMU. At the structural level, a relationship between cerebellum volume and
WMU was demonstrated and the shrinkage of this region might be involved in WMU de-
clinewith age (Podell et al., 2012). At the functional level, the right cerebellumwas activated
specifically during WMU trials (Qin and Basak, 2020).

2.1.1.2.4 Midbrain The midbrain or mesencephalon is the uppermost part of the
brain stem. It is subdivided in three main components: the cerebral peduncles, the tegmen-
tum - or cap (which contains the substancia nigra) and the tectum. This structure has also
been shown to be related withWMU (D’Ardenne et al., 2012; Murty et al., 2011; Podell et al.,
2012). More precisely, the midbrain, along with striatal regions, might be associated in the
anticipation of updating probability (Yu et al., 2013).

2.1.1.2.5 Development ofWMUneural bases From a developmental perspective,
fMRI studies consistently indicate that prefrontal systems are engaged in WM and WMU
processes as early as 8 years of age but the magnitude of engagement varies with age (Luna,
2009). Most studies found age-related increases in the recruitment of PFC (Ciesielski et al.,
2006) due to immaturities in the ability to manipulate information in WM (Crone et al.,
2006; Olesen et al., 2007), to generate an accurate response (Klingberg et al., 2002; Scherf
et al., 2006), and to suppress distractors (Olesen et al., 2007). Globally, a shift from global to
local recruitment of frontal regions from childhood to adolescence and then to adulthood
was demonstrated (Fiske and Holmboe, 2019).

2.1.1.3 Neural basis of cognitive flexibility CF tasks activate various brain regions.
While it is possible to identify a common brain network underlying this EF (Dajani et al.,
2020), brain areas involved in CF are more sensitive to different types of tasks (e.g., Kim
et al., 2012; Wager et al., 2004) due to the the fact that these tasks generally include one
and/or the other of the alternative components of EFs (Diamond, 2013).

Thus, the brain regions found to be involved in core CF across all tasks include the FPN,
the ACC, the IFG, the insula, the inferior frontal junction (IFJ), the pre-SMA, the inferior
and superior parietal cortices, inferior temporal cortex, occipital cortex, and subcortical
structures such as the caudate and thalamus (Dajani et al., 2020; Dajani and Uddin, 2015;
Kim et al., 2012; Niendam et al., 2012).

On the other hand, in contrast to this common "general domain" network of CF, the
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activation of regions specific to characteristics of this EF has been highlighted.

2.1.1.3.1 IFJ The inferior frontal junction is located within a transition zone be-
tween the premotor and prefrontal cortex, at the junction of the inferior frontal sulcus and
the inferior precentral sulcus.

This region is specifically activated during CF tasks (e.g., Armbruster et al., 2012;
Armbruster-Genç et al., 2016; Dajani et al., 2020). A meta-analysis of both task-switching
and set-shifting tasks have found that IFJ is the most activated region during CF tasks (Der-
rfuss et al., 2005). IFJ seems to play a "domain-general" role (Kim et al., 2011), being involved
in task representations by allowing to adjust behavior in advance to a new task environ-
ment (Brass and Cramon, 2004; Brass and von Cramon, 2002). Specifically, the left IFJ was
shown to be the first region to be activated in response to engagement with CF and leads
to engagement with other regions of the prefrontal, parietal and cerebellar regions (Dajani
et al., 2020).

2.1.1.3.2 PFC Activations of the PFC were observed during CF tasks (Dove et al.,
2000; Sohn et al., 2000). However, in contrast to the IFJ, more "domain-specific" activa-
tions were observed across lateral and medial PFC (Kim et al., 2011). Moreover, this PFC
activation was shown to follow a gradient depending on the degree of endogenous control
processes in the task: the more abstract (i.e., context switches were not triggered by a di-
rect cue-task association) the switching tasks were, the more anterior was the activation of
the PFC, and, at the opposite, the more constrained (driven by external cues that directly
indicate the upcoming task) was the switching, the more posterior was the activated part
of PFC (Kim et al., 2012).

2.1.1.3.3 Dorsal premotor cortex The dorsal premotor cortex is the upper part of
the premotor cortex, an area of the motor cortex lying within the frontal lobe of the brain.

This region has been shown to be activated during CF tasks (Kim et al., 2011). More
precisely, the dorsal premotor cortex was specifically activated when switching attention
between perceptual features of stimuli (e.g., shape and direction) as opposed to switching
between response mappings or contextual rules (Kim et al., 2012).

To sum up, CF is not controlled by a single brain network but multiple brain regions
appear to be activated for switching, depending upon the type of switch being performed
(Kim et al., 2012). These neural results support the hypothesis that CF is not a unitary
process and that future studies involving task switching paradigms should consider the
type of switch being performed.

2.1.1.3.4 Development of CF neural bases From a developmental point of view,
the refinement process that has been demonstrated during tasks of CF follows a protracted
developmental trajectory (Fiske and Holmboe, 2019). Like the other EFs, studies hypothe-
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sized a functional relation between CF and the PFC development (Bunge and Zelazo, 2006;
Crone et al., 2004; Stuss, 1992). With age and the increase of CF performance, larger parts
of the brain, including left right inferior PFC, left parietal cortex, anterior cingulate cortex
(ACC), and striatum, are recruited (Moriguchi and Hiraki, 2009, 2014; Rubia et al., 2006) and
more strongly (Moriguchi and Hiraki, 2011; Morton et al., 2009). Similarly, activation of the
FPN and insula increases across development, suggesting that CF abilities increase with the
development of these regions (Rubia et al., 2006; Wendelken et al., 2012b). Moreover, this
link between CF and brain development depends on the CF component involved: while for
switching, an adult-like pattern of activation in the pre-supplementary motor area was ob-
served in adolescence but not in childhood, the activation for maintenance and selection in
the ventrolateral PFC differed among children, adolescents, and adults (Crone et al., 2006).
In addition, the IFJ activation, specific to CF tasks in adults (Dajani et al., 2020; Kim et al.,
2011), was observed only once in children (Morton et al., 2009). The fact that this region is
not commonly found as active in CF studies in children supports the fact that switching co-
ordination is under developmental influences. The differential development of the different
components of CF mentioned earlier is thus detected at the cerebral level.

To conclude, although we have seen that each EF recruits specific regions, sometimes
specific to certain task characteristics, imaging studies have revealed that the three core
EFs display extensive overlap in the brain regions recruited, all activating functional net-
works involving prefrontal and parietal regions arguing for common components to these
functions (unity of EFs; Greene et al., 2008).

2.1.2 Unity of EFs

Along with unity of EFs, numerous neuroimaging studies in adult participants have identi-
fied a set of brain networks that are consistently activated regardless of the EF engaged. As
we have seen, the three basic EFs would jointly involve frontal (e.g., dorsolateral PFC and
ACC) and parietal (e.g., superior and inferior parietal lobe and precuneus) activations, re-
flecting a common-EF (Collette et al., 2006; Niendam et al., 2012; Wager et al., 2004; Wager
and Smith, 2003).

At the beginning, lesional studies and early fMRI work provided the first evidence that
the PFC was fundamental to WM and IC (Zelazo et al., 2008; for a review, see Collette et al.,
2006). Indeed, as early as 1976, Pribram spoke of the importance of the PFC in behavior and
"executive programs" (Pribram, 1976).

This area remains the most cited brain region when discussing the neural bases of EFs
and especially IC (Aron et al., 2014; Chafee and Heilbronner, 2022). In particular, it was
shown that, to accomplish the coordinated operations of multiple neural systems, the PFC
must monitor the activities in other cortical and subcortical structures and control and
supervise their operations by sending command signals, which is called top-down signaling
(Funahashi and Andreau, 2013). The PFC is therefore thought to play a primary role and to
manage complex interactions with several cortical and subcortical brain structures (Gruber
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et al., 2006; Heyder et al., 2004; Norman and Shallice, 1986; O’Reilly and Frank, 2006).

More recent studies using several tasks measuring different EFs have revealed complex
and distributed brain networks of activation. More precisely, it was shown that a largely
unified network of prefrontal and parietal regions, alongwith areaswithin the basal ganglia,
subserve processes of IC and CF and are involved whenever potentially relevant informa-
tion must be selected from multiple information channels (Hedden and Gabrieli, 2010).

A recent fMRI study in children (Engelhardt et al., 2019) has shown that the cingulo-
opercular and fronto-parietal networks that were involved for the three EFs (see Figure 11)
are the same networks as in adults, suggesting that the improvement in EFs with age from
childhood to adulthood, and perhaps their differentiation, are likely due to changes within
these networks rather than in the networks’ organization per se (Engelhardt et al., 2019).

Figure 11: Overlapping task-positive brain activity across three EF tasks, overlaid
with adult ROIs. From Engelhardt et al., 2019.

However, it was suggested that maturation of EFs is related to the refinement of activ-
ity in brain regions directly linked to the EF in question, as well as decreased activity in
supplementary brain regions (Durston et al., 2003; Durston et al., 2006; Durston et al., 2002;
Fiske and Holmboe, 2019; Lamm et al., 2012).

It was also suggested that some developmental changes can take the form of changes in
temporal dynamics rather than qualitative changes in the network of brain regions engaged
(Wendelken et al., 2012b).

However, a major limitation in the interpretation of the brain regions involved in the
different EF networks is that the results are often analyzed within the framework of the
reverse inference hypothesis. The latter consists in inferring the mental processes involved
in the task from MRI acquisitions and is based on the hypothesis that the activation of a
region is the product of a single process, which is generally not the case (Borst and Cachia,
2018).
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2.2 Integration: connectivity of the EF network

As we have seen, although certain brain regions appear to be specific to an EF, there is
instead a network of regions that, together, enable proper executive functioning. A great
deal of research focuses on these networks under the spectrum of connectivity.

2.2.1 Structural connectivity of the EF network

A recent review (Goddings et al., 2021) summed up the relations between white matter
microstructure and the three core EFs over the course of development.

Regarding IC, it was shown that, in childhood and adolescence, ICwas positively associ-
ated to fractional anisotropy (FA) in frontal regions. In adolescents, this positive association
between IC and frontal lobes (Liston et al., 2006) was more precisely found in regions re-
lated to IC such as the IFG or pre-SMA (Madsen et al., 2010), the corpus callosum (Fjell
et al., 2012) or the anterior corona radiata (Seghete et al., 2013). In children (before 12 years
old), IC was related to FA in the forceps major (Fjell et al., 2012). However, these results
are still under debate. Indeed, some studies described limited (Jernigan et al., 2016) or no
(Ursache et al., 2016) association between DTI metrics and IC performance. A longitudinal
study suggested that better IC was associated with earlier white matter microstructural de-
velopment, specifically with higher FA in the hippocampal portion of the left cingulum in
late adolescence/early adulthood but with lower FA in the cingulum in early adolescence,
and with higher FA growth during mid-late adolescence (Simmonds et al., 2014).

Regarding WM, there is consensus on an association between developing WM and
changes in white matter microstructure during childhood and adolescence, particularly of
frontoparietal and occipito-temporal tracts even if some mixed results are still observed
(Goddings et al., 2021). Indeed, as young as in infants of 12 month-old, better WM scores
were related to higher FA and lower radial diffusion (RD) in white matter tracts that con-
nect brain regions supporting WM in children and adults (Short et al., 2013). In older chil-
dren and adolescents, better performance in verbal and spatial WM was associated with
higher FA and lower RD in the superior longitudinal fasciculus (SLF), independently of age
(Vestergaard et al., 2011; Østby et al., 2011) and a longitudinal study even found that FA in
frontal tracts predicted laterWMcapacity (Darki and Klingberg, 2015). However, in another
longitudinal study of younger children, scanned between 4 to 11 years-old, there was no
significant association between development of either verbal or visuospatial WM capacity
and DTI changes in the SLF but with increased FA and decreased MD in the right inferior
fronto-occipital fasciculus and the forceps major and a decreased MD in the inferior longi-
tudinal fasciculus (ILF) and uncinate fasciculus (UF) in the right hemisphere (Krogsrud et
al., 2018). Finally, in a study with children from 6 to 16 years, for the younger, the executive
part of WM (defined by a principal component analysis - PCA on 4 WM tasks) was associ-
ated with the corpus callosum and the posterior temporal white matter structure (Bathelt
et al., 2018).

Fewer studies have focused on CF and no consensus has yet been reached (Goddings et
al., 2021). As CF have been associated with fronto-parietal and striatal regions, studies have
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examined whether white matter microstructure of tracts connecting these regions support
CF (Badre andWagner, 2006; Gold et al., 2010). Higher FA and lower RD in anterior portions
of the corpus callosum were related to better task-switching, indicating the importance
of inter-hemispheric communication for CF, here measured by three tasks: shape-color,
spatial- and verbal-switching paradigms (Vallesi et al., 2016). Finally, higher FA in posterior
brain regions was associated with better CF (measured by the switching condition in the
NEPSY-II Inhibition test) in children from 5 to 16 years (Treit et al., 2014).

2.2.2 Functional connectivity of the EF network

2.2.2.1 Functional networks of common-EF In an fMRI study, a common pattern of
activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices
across EFs, supporting the idea that EFs are related to a superordinate cognitive control
network: the control executive network (CEN; Niendam et al., 2012). Among the CEN, two
networks are central to supporting cognitive control and, more broadly, EFs: the fronto
parietal network (hereafter referred as FPN) and the cingulo-opercular network (hereafter
referred as CON; Alchihabi et al., 2021; Barbey, 2018; Bressler and Menon, 2010; Cocchi et
al., 2013; Crone and Steinbeis, 2017; Dosenbach et al., 2007). In adults, a stronger connectiv-
ity between the frontal pole and attention network and between crus of the cerebellum and
the right FPN were shown to be associated with better efficiency of common-EF (Reineberg
et al., 2015). In participants from 8 to 22 years, this FPN segregation was positively related
with EF efficiency (Baum et al., 2017).

Based on the differences in their connectivity and activation profiles, it was sug-
gested that FPN et CON support distinct functions: adaptive control (FPN) and stable set-
maintenance (CON), supporting a "dual-network" account of task control better than "uni-
tary" models of executive control (Dosenbach et al., 2007). Cooperation between different
neural systems, including the FPN, the CON and the default mode network (DMN), would
be the key to efficient executive functioning.

2.2.2.2 Functional networks of EF components On another hand, the specific EFs
were associated with other connectivity characteristics. Higher shifting abilities were asso-
ciated with increased connectivity of the ventral attention network with the angular gyrus
(Reineberg et al., 2015) and a decreased connectivity of the ventral attention network with
the DMN (Reineberg et al., 2018). Greater posterior cingulate cortex/precuneus (medial-
FPN) connectivity with the ventromedial striatopallidum (basal ganglia) was also shown to
be correlated with fewer total errors on a set-shifting task (Vatansever et al., 2016). Finally,
greater lateral-FPN and medial-FPN connectivity during resting-state was related to poorer
cognitive flexibility performance (Douw et al., 2016; Kupis et al., 2021).

WMabilities were related to the anticorrelations between themedial prefrontal cortex (a
component of DMN) and between the dorsolateral prefrontal cortex (dLPFC, a component
of FPN) (Keller et al., 2015). FC between bilateral dLPFC and the dorsal ACC and between
the right dLPFC and the left orbital fronto-insular cortex have also been demonstrated to be
related to WM accuracy and could predict individual differences in WM (Fang et al., 2016).
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Overall, the level of global connectivity of frontal hubs would predict individual variations
in WM performance (Cole et al., 2012).

Regarding IC, stronger intra-FPN connectivity is associated with poorer inhibitory ef-
ficiency (Liu et al., 2018). Similarly, stronger connectivity between the FPN and the DMN
was associated with decreased SSRT on the Stop signal task (Lee and Hsieh, 2017). White
matter damage to the cingulo-opercular network led to less DMN deactivation and poorer
inhibitory performance (Bonnelle et al., 2012). Stronger connectivity between the right
inferior parietal lobule/lateral occipital cortex and bilateral lingual gyrus, stronger connec-
tivity between the IPS/lateral occipital cortex and right lingual gyrus, weaker connection
between the IFG and inferior temporal gyrus, and weaker connection between the left IPS
and frontal gyrus opercular part are associated with better inhibitory performance with
shorter SSRT (Zhong et al., 2014).

At last, a recent study (Panikratova et al., 2020) focusing on the functional connectiv-
ity of the DLPFC concluded that this functional connectivity contributes to distinct EFs:
whereas IC efficiency was related to functional connectivity with DMN regions, switch-
ing was associated to functional connectivity with visual regions. Also, in children of 6-10
years, WM and response inhibition were related to regional functional connectivity but
not topological organization (as local or global efficiency) of functional networks and func-
tional connectivity associated with “bottom-up” processing were more clearly related to
children’s performance on WM and response inhibition (Zhong et al., 2014).

Finally, resting-state EEG studies have also focused on EFs. While a first one did not
succeed in revealing individual differences in EFs through rsEEG (Gordon et al., 2018) an-
other has shown that some rsEEG features predicted differently IC and planning but none
of them could predict WM performance (Cai et al., 2021).

As activity across brain regions becomes more evenly distributed with age, it is possible
that as we reach adulthood there is more distributed function across the brain which may
decrease the need to recruit prefrontal systems. The hypothesis that integration across the
brain is central to cognitive development (Edin et al., 2007; Olesen et al., 2003) is supported
by DTI studies (described earlier) showing that age related improvements in WM are re-
lated to increased functional connectivity within cortical regions and in corticosubcortical
pathways (Luna, 2009).

Neuroimaging techniques continue to develop and with them, new research perspec-
tives. Here we have described mainly MRI or lesion studies: localization studies. Electroen-
cephalography (EEG) or functional Near Infra-red Spectroscopy (fNIRS) studies have also
contributed to the knowledge of executive functioning, especially at the temporal level. At
the level of psychological research, all of these methods are recent and have not yet been
fully exploited. It remains to build bridges between all the knowledge that has already been
contributed and that which will be acquired thanks to these new techniques. Only this will
allow us to fully understand the complex development and functioning of cognitive func-
tions such as EFs, and only at a neural level. However, it seems important to point out,
especially at a time when the prefix neuro- is particularly popular, that this research must
be done in connection with the theories already developed and the knowledge validated by
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experimental research, along with clinicians and with the use of environmental measures.
Observing the brain alone, without behavioral correlates, makes little sense. Observing it
to test research hypotheses, to validate empirical theories, on the other hand, makes a lot
and is now easy and accessible, thanks to the development of all the imaging techniques
and the collaborative area that is currently happening.
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3 Genetic basis of EFs

As we have seen, different brain characteristics are related to executive abilities. While
some represent early markers, such as brain sulcal patterns, others are plastic features that
can vary with time, environment, and learning. In the eternal debate between nature and
nurture, many studies have thus focused on genetic influences on EFs.

3.1 Non molecular genetics: twin studies

Twin studies, as one of the most popular design in behavioral genetics, have long been
used to distinguish between nature and nurture. Indeed, monozygotic twins (MZ, "identical
twins") have an identical genome (except for mutations occurring during their individual
development) whereas dizygotic twins (DZ, "fraternal twins") share 50% of the genes (in
the same way as any pair of brothers/sisters). It is then possible to calculate the correlation
between the values observed for a given trait, on the one hand in a cohort of monozygotic
twins (with identical genomes), and on the other hand in a group of dizygotic twins (50%
identical genes). If the correlation is significantly higher in identical twins, the existence of
a genetic factor can be inferred.

Structural equation models (SEM) have provided mathematical modeling for these stud-
ies. Individual differences in performance on a measure are modeled due to three types of
influences (see Figure 12): additive genetics/heritability (A), shared environment (C), and
non-shared environment (E).

Figure 12: Structural Equation Modeling for twin studies. From Friedman et al., 2008.

The correlation A between Twin 1 and Twin 2 is set to 1.0 for MZ twins because they
share all of their genes and to 0.5 for DZ twins because they share on average half of their
genes per offspring. The C correlation is set to 1.0 for both types of twins because in both
cases the two twins are raised together. The E correlation is set to 0 because the non-shared
environment is uncorrelated by definition.
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Different types of SEM can be modeled, making it a powerful tool for partitioning ge-
netic from environmental factors on a trait (Rijsdijk, 2002). These types of studies and
models have been used to investigate EFs and their genetic part. Regarding IC, a study
has shown that by using the MZ/DZ twins design that genetic factors accounted for 29%
of response inhibition in aging adults, measured by a color-word Stroop task (Lee et al.,
2012). In children, a twin study of 9-, 12-, and 18-year-old-twins using a color-word Stroop
task has shown that genetic variance ranged from 39 to 51% across age (Polderman et al.,
2009). Another study with 6-year-olds tested in a Go/No-go task displayed familial resem-
blance although model-fitting analyses could not make a distinction between genetic and
shared environmental effects (Groot et al., 2004). Interestingly, it was also demonstrated
that changes in IC across early childhood (between 2 and 3 years) were explained mostly
by genetic influences although there was also an influence of shared and nonshared envi-
ronmental factors (Gagne and Saudino, 2016).

Regarding WMU, a study (Zhou et al., 2018) found a moderate heritability for spatial
WM, of which the genetic factors accounted for 33% of the total variance. For a short-term
memory task (digits forward span), the overall heritability was shown to be at .27 (Kremen
et al., 2007).

Finally, no significant heritability was found for CF ability, of which the specific envi-
ronmental factor explained most of the variance (85%; Zhou et al., 2018).

As for more complex EFs, a study using theWCST in a longitudinal sample of adolescent
twins tested at ages 12 and 14 showed an increase in heritability in females (19% at age 12
and 49% at age 14) and in shared environmental influences in males (non-significant at age
12 and 34% at age 14; Anokhin et al., 2010). These results suggest increasing influence
of familial factors during adolescence, as well as gender differences in the relative role of
genetic and environmental factors.

However, the effect of genetics has been shown to vary in strength between themanifest
and latent levels. Notably, while the genetic component (influence A) ranged from 15-30%
for IC tasks (Stroop, stop signal and antisaccade), it was as high as 99% for the latent IC
factor (Friedman et al., 2008). This was replicated with Updating and Shifting where the
genetic share was worth 100 and 81% respectively, while it ranged from 0 to 14% for the
measured tasks. Moreover, when including the common-EF into the model, this one was
shown to be at 99% heritable along with Updating (56%) and Shifting (42%). Taken together,
these findings imply that the unity and diversity of EFs are due to genetic influences at the
common (for all three EFs) and specific levels (for Updating and Shifting) (Friedman et al.,
2008, see Figure 13).

Thus, regarding common-EF, twin studies have established that EF is highly heritable
in childhood (Engelhardt et al., 2016; Polderman et al., 2007), early adulthood (Friedman
et al., 2008) and middle age (Ando et al., 2001; Gustavson et al., 2017). Indeed, a signifi-
cant influence of genes was shown with an heritability of about 50% in adults (Ando et al.,
2001) but also in children of 5 and 12 years (Polderman et al., 2007). This last study showed
that genes contributed significantly to the longitudinal covariances between EF indices at
age 5 and age 12. More precisely, it was shown that developmental changes in EFs during
preschool period are promoted by genetic and environmental influences, but that EF sta-
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Figure 13: Hierarchical multivariate executive function ACE model. From Friedman
et al., 2008.

bility during this period is attributed to the experience of shared environments (Fujisawa
et al., 2017). At the opposite, during late adolescence, individual differences in EFs seem
quite heritable and stable by late adolescence, with this stability due almost entirely to high
genetic correlations across time. However, there was still small but significant nonshared
environmental influences on change in common-EF (15%; Friedman et al., 2016). Regarding
self-reported measures, a study using the BRIEF indicated presence of genetic and non-
shared environmental influences for some scales (Initiate, Plan/Organize, Organization of
Materials, Shift, and Monitor and Self-Monitor) whereas the Emotional Control scale was
only environmental (Little et al., 2017).

Although these studies have highlighted the heritability of EFs, they do not provide
information on the genes involved.

3.2 Molecular genetics

After introducing techniques used in molecular genetics, we will describe the dopaminergic
system which plays an important role for EFs. Then we will detail the genes involved in
this system in relation to their role in EFs (candidate gene approach). We will then conclude
with EF genome association studies.
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3.2.1 Some genetic bases

3.2.1.1 Genome Each cell of the human body carries our genetic code: the genome
(21,000 genes). This genome contains about 3 billion nucleotide bases (Adenine, Thymine,
Guanine or Cytosine) which, by three, constitute an amino acid. These chains of amino
acids then code for a protein (one protein = a hundred amino acids).

3.2.1.2 Single nucleotide polymorphisms SNPs (Single Nucleotide Polymorphisms)
correspond to a minor variation of the genome since it is the substitution of a single nu-
cleotide (Adenine, Thymine, Guanine or Cytosine) by another. A SNP is therefore the vari-
ation (polymorphism) of a single base pair of the genome, between individuals of the same
species (Figure 14). The terminology SNP is used if the frequency of the substitution is
higher than 1% in the population and of mutation otherwise. These variations are mostly
silent but can sometimes be at the origin of phenotypic variations (6 million SNPs would
characterize the genetic diversity of the world population, Goldberg and Weinberger, 2004)
or even pathologies such as sickle cell disease (Higgs and Wood, 2008).

Figure 14: Single Nucleotid Polymorphism.

3.2.1.3 Genome wide association studies As we saw, historical candidate genes lit-
terature have shown that EFs are supported by the dopaminergic system and its neuro-
modulator effect. In addition to candidate gene studies, genome wide association studies
(GWAS) have also been able to identify certain SNPs involved in EFs. GWAS is basically
a linear regression model with phenotype as the dependant variable and genotype (with
or without covariates) as the independant variable. Of note, these analyses require a large
sample size to represent all the variability at the genetic and phenotypic levels.

3.2.1.4 Polygenic risk score The use of polygenic risk scores (PRS, also called poly-
genic scores or PGS) is a powerful approach for gaining insights into the genetic architec-
ture of cognitive phenotypes. PRSs are quantitative scores that index, for each individual
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subject in a study sample, their aggregate genetic risk for a phenotype of interest (see Fig-
ure 15). Specifically, a PRS is computed as the weighted sum counting all risk alleles for a
selected set of SNPs carried by an individual. The weight used for each risk allele is the SNP
log odds ratio estimated out of sample in a large GWAS of the given phenotype. PRS have
been demonstrated to be powerful and reliable indicators not only for genetic contributions
to single traits but also for genetic correlations between phenotypes.

Figure 15: Polygenic risk score construction. From Konuma and Okada, 2021

3.2.2 The dopaminergic system

Dopamine is a key neurotransmitter for EFs (e.g., Cropley et al., 2006). Studies have found
that increased dopamine levels are linked to better performance on EF tasks (Barnes et al.,
2011; Beu et al., 2019; Bowirrat et al., 2012; Eisenberg and Berman, 2010; Luna et al., 2015;
Mulligan et al., 2014; Ott and Nieder, 2019) and that a dopaminergic deficit was linked
to a deficit in EFs (Hosenbocus and Chahal, 2012). Such deficit is also found in certain
pathologies such as ADHD (e.g., Volkow et al., 2009), Alzheimer’s disease (e.g., Pan et al.,
2019) or schizophrenia (e.g., Howes et al., 2017). This link can be explained by the fact that
the dopaminergic system modulates the activity of brain networks involved in EFs such
as the PFC or the striatum (Hosenbocus and Chahal, 2012). Certain genes can therefore
vary the level of dopamine by impacting either the number of dopamine receptors at the
synaptic cleft, or the reuptake and degradation of dopamine.

There are four main dopaminergic pathways: one cortical, the mesocortical pathway,
and three subcortical, the tuberoinfundibular pathway, the nigrostriatal pathway and the
mesolimbic pathway. In the mesocortical pathway (in red in Figure 16), dopaminergic neu-
rons project from the ventral tegmental area to the frontal lobes, particularly the prefrontal
cortex. In themesolimbic pathway (in dark blue in Figure 16), dopaminergic neurons project
also from the ventral tegmental area but innervate the nucleus accumbens (or ventral stria-
tum). The nigrostriatal pathway (in light blue in Figure 16) consists of dopaminergic neu-
rons that come from the substantia nigra and that terminate in the dorsal striatum. Finally,
the tuberoinfundibular pathway (in green in Figure 16) connects the hypothalamus and the
pituitary gland.

The dopaminergic system in the PFC, which is, as we have seen, a key region for EFs,
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Figure 16: Dopaminergic pathways in the brain. Figure from Nummenmaa et al., 2020.

modulates the activation of this region but also of other regions like the striatum. We can
see that dopaminoreceptive and dopaminergic regions overlapwith the brain areas involved
in EFs (Figure 16).

Thus, the study of genes involved in the dopaminergic system (either through knowl-
edge of their mechanisms or through their involvement in pathologies where EFs were
impaired) has made possible to highlight a certain number of SNPs linked to executive per-
formance.

A review from 2014 (Logue and Gould, 2014) concluded that EFs, as a collective of multi-
ple complex cognitive processes, are differentially altered by monoamines and cholinergic
afferents into the underlying cortical substrates and by polymorphisms associated with
these neurotransmitter systems. CF was associated with COMTVal158Met, DRD2/ANKK1,
and DRD4 polymorphisms whereas response inhibition was linked to the polymorphism of
the 5-HT2A gene. These different polymorphisms impact different aspects of the dopamin-
ergic system (dopamine reuptake, dopamine receptors, etc.).

3.2.3 Candidate genes from the dopaminergic system

3.2.3.1 COMT The COMT gene coding for the protein of the same name is one of these.
This gene can vary in polymorphism by changing a single base pair (158-Met, CATG →
CGTG) resulting in an amino acid change (Valine → Methionine). The Met allele is asso-
ciated with methylation and therefore slower degradation of dopamine. Thus, dopamine
levels are higher which allows its action to be prolonged (Logue and Gould, 2014).

41



General introduction

Various studies have shown that the 158-Met version of the gene was associated with
better performance on EF tasks in children and adults (Diamond, 2007; Diamond, 2011; Di-
amond et al., 2004; Malhotra et al., 2002; Thomason et al., 2009; for a review see Harrison
and Weinberger, 2005; Tunbridge et al., 2006) on various measures as the Frontal Assess-
ment Battery (Mitaki et al., 2013), the BRIEF (Zhang et al., 2018), the WCST (Khanthiyong
et al., 2019; Nagel, 2008), the Tower of London (Choudhry et al., 2014), the Letter–Number
Sequencing (Bruder et al., 2005) and the TMT (Wishart et al., 2011). Two meta-analyses
concluded in a effect of Val158Met genotype on EFs (Barnett et al., 2007; Barnett et al.,
2008). Regarding IC, results are more debated, with divergent results (Haraldsson et al.,
2010; Schneider et al., 2015) or lack of results (Kasparbauer et al., 2015) observed across
studies. Regarding WM and WMU, 158-Met individuals were shown to perform better at
WM tasks whereas 158-Val individuals performed better in WMU tasks (Bellander et al.,
2015; Colzato et al., 2010; Krugel et al., 2009). Moreover, 158-Val carriers presented larger
training gains, maybe because WMU operations have a higher level of plasticity than WM
maintenance operations (Bellander et al., 2015). At the psychopathological level, the Valine
allele is associated with an increased risk of schizophrenia (Egan et al., 2001), bipolarity
(Shifman et al., 2004), or ADHD (Diamond, 2007). Furthermore, this polymorphism mod-
ulates the impact of schizophrenia (Egan et al., 2001; Ehlis et al., 2007) and cannabis use
(Verdejo-García et al., 2013) on EFs.

3.2.3.2 DAT1 The DAT1 gene, encoding the selective Dopamine Active Transporter
(DAT), acts on the reuptake of dopamine at the synapses of the striatum. One of the al-
lelic versions of this gene is composed of 10 repeats (L-Long) while there are usually 9
(S-Short). The L version leads to a higher expression of the DAT transporter which gen-
erates an excess of dopamine reuptake, then decreasing its level (Barnes et al., 2011). This
version is linked to poorer performance in IC measured by a stop signal task (Congdon
et al., 2008; Cummins et al., 2012; van Rooij et al., 2015), in WM measured by an N-back
task (Brown et al., 2011; Stollstorff et al., 2010) and in CF measured by the WCST (Fagundo
et al., 2014; Garcia-Garcia et al., 2010) and TMT (Fagundo et al., 2014). Furthermore, this L
version is associated with an increased risk of ADHD (Swanson et al., 2000) and modulates
the response to Methylphenidate treatment in these patients (Ding et al., 2017).

3.2.3.3 DRD1 andDRD2 TheDRD1 andDRD2 genes code for the D1 andD2 dopamine
receptors respectively. DRD1 can vary in polymorphism with the substitution of an Ade-
nine by a Guanine. The G (Guanine) allelic version leads to a decrease in the expression
of the gene and thus the number of D1 receptors (Huang and Li, 2009), causing dopamine
levels to drop. This allelic version is associated with poorer inhibitory performance as
measured by a Go - No go task (Beste et al., 2016; Loos et al., 2010) as well as an increased
risk of schizophrenia (Zhu et al., 2011), addictions (Batel et al., 2008; Huang et al., 2008;
Zhu et al., 2013), entry into the autism spectrum (Hettinger et al., 2008) and ADHD (Bobb
et al., 2005). Similarly, DRD2 can vary in polymorphism with the substitution of a Cyto-
sine for a Thymine. The T (Thymine) allelic version results in a decrease in D2 receptor
responsiveness to dopamine (Ritchie and Noble, 2003), thus lowering its level. This ver-
sion is associated with poorer performance on tasks measuring EFs such as ANT or WCST
(Nkam et al., 2017; Rodriguez-Jimenez et al., 2006), CF (Stelzel et al., 2010), WM (Klaus
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et al., 2017) or IC (delayed gratification task; Eisenberg et al., 2007). However, a recent
meta-analysis reported that DRD2 has a limited effect on EFs in healthy adults (Klaus et al.,
2019). At the psychopathological level, this version is also associated with an increased risk
of schizophrenia (Golimbet et al., 1998), addictions (Ponce et al., 2003), obesity (Noble et al.,
1994), ADHD (Comings et al., 1996; Lawford et al., 2000; Noble et al., 1994; Ponce et al.,
2003).

3.2.4 Other candidate genes and neurotransmitters systems

Figure 17: Schematic of glutamatergic andGABAergic projections. Major glutamater-
gic projections (in red) arise from the frontal cortex to the anterior cingulate cortex (ACC),
thalamus (TH), ventral tegmental area (VTA), hippocampus (HPC) and nucleus accumbens
(NAc). Additionally, glutamatergic neurons originate from hippocampus, and innervate
into hypothalamus (HT), VTA, NAc and PFC and from amygdala to HT, ACC and NAc.
The GABAergic projections (in green) are widely distributed throughout the brain. In the
boxes are described the structural changes observed in the brain regions of depressed sub-
jects. From Sarawagi et al., 2021.

It should be noted that the dopaminergic system, on which many studies have focused,
is not the only one to influence EFs. In particular, several studies have shown that the
glutamatergic and the GABAergic systems influence executive capacities (see Figure 17;
Dauvermann et al., 2017; Logue and Gould, 2014; Thomas et al., 2017). However, these
studies are mainly based on psychopathology data and there is a need to study these two
systems’ mechanisms and their impact on EFs in more detail and in healthy subjects.

Other genes, from the dopaminergic system or not, were identified in the literature as
linked with EFs such as RELN (Baune et al., 2010), MAO-A (Söderqvist and Bergman Nutley,
2015), BDNF (Alfimova et al., 2013; Enge et al., 2016) or APOEe4 (Rusted et al., 2013).
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3.2.5 EF GWAS

As we have seen, GWAS requires a large sample size and, because of this, few EF GWAS
have been performed.

A first study included 1,311 to 32,070 individuals (depending on the task) and analyzed
performance on different tasks including EF ones such as trail making or color-word Stroop
(Ibrahim-Verbaas et al., 2016). The study highlighted a genome-wide significant association
for processing speed but not for the other tasks. Another recent preprint investigated the
GWAS of a common-EF factor, based on multiple tasks, using SEM, in a sample of 93,027 to
427,037 adults (depending on the task; Hatoum et al., 2022). They found 299 independent
loci with synaptic, potassium channel and GABA pathways associated with common-EF
(see Figure 18).

Figure 18: Manhattan plots for GWAS of Common Executive Functioning. Each dot
is a single nucleotide polymorphism (SNP), chromosomes are organized on the x-axis, and
the y-axis represents the negative log10 of the p-value for each SNP. From Hatoum et al.,
2022.

Another GWAS study conducted analyses for processing speed, WM (measured by a
PCA build on N-back, Digit Vigilance, Counting Span and Dual tasks) and IC (measured
by a stop signal task) in 4,611 adolescents. No SNPs were significantly associated with any
of the cognitive measures, but two genes were found to be associated with WM as a PCA
index ( Donati et al., 2019).

Additional studies with large sample size are needed to discover and differentiate the
molecular pathways associated with EFs in the general population. Moreover, the inclusion
of different age groups is required to investigate the development of genetic basis of EFs.

A novel approach that could lead to a better understanding of EF genetics is genomic
SEM (Grotzinger et al., 2019). Thismultivariatemethod synthesizes genetic correlations and
SNP heritabilities from GWAS summary statistics of individual traits and allows to model
multivariate genetic associations among phenotypes. This method is promising as poly-
genic scores from genomic SEM consistently outperform those from univariate GWASs.
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3.2.6 EF PRS

It appears that the genetic architecture of EFs, like other complex cognitive phenotypes,
is diffuse across very many variants (polygenic). Few studies have used PRS method to
investigate EF phenotypes and their associations with other phenotypes or disorders.

A first one calculated, PRS for multiple psychiatric disorders such as autism spectrum
disorder (ASD), major depressive disorder (MDD) and schizophrenia (SZ; Schork et al.,
2019). They found that the ASD-PRS score was associated with better performance on
the DCCS test, especially in the youngest children, whereas MDD-PRS was associated with
poorer performance on the Flanker test. In addition, association between a bipolar disorder
(BD) PRS and EFs was shown in children (Mistry et al., 2019). These results were confirmed
by a recent study that highlighted, yet again, distinct affects on EF domains for the differ-
ent psychiatric disorders polygenic risk: whereas ADHD- and MDD-PRSs were associated
with IC, BP-PRS was associated with WMU and SZ-PRS with CF (Chang et al., 2020). Inter-
estingly, mediation analyses revealed that ADHD- and MDD- PRSs which were associated
with IC, had significant indirect effects on ADHD symptoms through the mediation of IC.
Thus, molecular genetic factors contributing to variability in EFs during typical develop-
ment are at least partially overlapping with those associated with psychiatric disorders.

Finally, a recent study (Rea-Sandin et al., 2021) examined the relationship between a PRS
indexing educational attainment (EA) and IC in early andmiddle childhood through a longi-
tudinal design. Results showed that the EA-PRS predictedmiddle childhood IC but not early
childhood IC. To date and to our knowledge, this study is the first to use a non-psychiatric
phenotype to generate PRS and thus, paves the way for a new area of investigation: using
non-psychiatric but related to EF outcomes to calculte PRS and emphasize relationships at
the genome level.

However, complex gene–gene interaction between SNPs in the genes related to
dopamine neurotransmission was shown to influence EFs (Mitaki et al., 2013) and this in-
teraction is not (yet) controlled by PRS techniques.

3.2.7 Genetics perspectives

Since the discovery of the genome is still recent and genetic studies are in full swing, it is
likely that discoveries about the genetic basis of EFs will continue to grow in the coming
years. But, because it is a recent field of research, new questions arise. For example, es-
pecially for the domain of developmental psychology, the effects of the inherited genome,
or direct genetic effects, has to be distincted from the effects of the environment created
by the parent or indirect parental genetic effects (Harpak and Edge, 2021). This distinction
is important to generalize results as PGS based on GWASs predict less when the GWAS
sample is heterogeneous in terms of ancestry or socio-economic background (Harpak and
Edge, 2021). This may also raise ethical or political questions (Harden, 2021).

Finally, epigenetics (i.e., the study of factors that impact expression of genes but not to
the underlying DNA sequence, like DNA methylation) of EFs are emerging and could lead
to the identification of biomarkers for EFs and related pathologies (Ibrahim et al., 2018).
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4 Environmental and cultural bases of EFs

Brain and genes have an importance for EF efficiency and development. However, it must
not be forgotten that environment and culture also play a fundamental role in EFs (Mu-
nakata and Michaelson, 2021).

4.1 Socioeconomic status influence

Socio-economic status (SES) is a classic measure of the wealth (in the financial sense) of the
environment in which an individual evolves. This index can be measured in different ways
and is used in many fields of research, from psychology to sociology and economics.

Three classical measures for SES in children and adolescents are (Antonoplis, 2022):

• Parental income: it might be the most used variable but, in France, it is often the least
transmitted information by parents (which results in a lot of missing data for this
field)

• Parental education: most of the times, either the mother’s educational level is mea-
sured or the educational level of both parents (calculated with a principle of domi-
nance by attributing to the family the higher educational level of the two parents).

• Parental occupation: this indicator is sometimes complicated to track, as parents do
not always know which category their occupation falls into, so this measure is more
prone to error.

Two commonmodels explaining the relationship between SES and development are the
family stress model and the family investment model (Conger and Donnellan, 2007). In the
family stress model, the stress due to low SES affects the development by impacting the
caregivers’ practices’ quality, sensitivity, and responsivity. In the family investment model,
SES affects development by the time, care and guidance caregivers provide and by the more
numerous learning resources and opportunities. Parental care and home environment both
impact the development of brain regions involved in EFs as well as overall cognitive and
behavioral development, which can support both models (for a review see Hackman et al.,
2010).

Indeed, the differences in children’s intelligence and behaviors can be seen as early as
in the second year of life (Noble et al., 2015). It was demonstrated that income could predict
WM performance (measured by memory for sentences) as early as 54 months and, with
maternal education, it could also predict planning (measured by the Tower of Hanoi task)
by first grade and persisted through middle to late childhood (Hackman et al., 2015). Also,
analyses of mediation suggested that early childhood home environment could explain the
relationship between SES and EFs (Hackman et al., 2015).

Later, multiple studies have reported SES-related disparities on common-EF in children
as young as 2 years old through age 5 (Blair et al., 2011; Noble et al., 2005; Rhoades et al.,

46



General introduction

2011; Wiebe et al., 2011). This relationship was also found in specific EFs: indeed, lower-SES
children performed worse on tasks of IC, WMU, CF, and higher-level EFs such as planning
(Clearfield and Niman, 2012; Lipina et al., 2005; Mezzacappa, 2004; Noble et al., 2007). By
middle childhood, this relationship remained for the three core EFs (Ardila et al., 2005;
Farah et al., 2006; Sarsour et al., 2011). Overall, a recent meta-analysis has found a small to
medium association between SES and EFs with a variability in the samples and measures
(Lawson et al., 2018; see Figure 19).

Figure 19: Forest plot of all studies included in the meta-analysis of Lawson et al.,
2018. Figure from Lawson et al., 2018.

Interestingly, it has been demonstrated that the duration of poverty through childhood
and adolescence was negatively related to WM abilities measured as age 17 (Evans and
Schamberg, 2009) and that changes in family income predicted changes in EFs (Hackman
et al., 2015). Thus, SES impact does not seem to be fixed even if, as we have seen just before,
on another level of observation, a PGS for educational attainment predicted middle but not
early childhood IC (Rey-Mermet et al., 2019).

On another hand, the SES-EFs relationship has been shown to be impacted by cortisol
reactivity (cortisol being the stress hormone), more precisely, higher SES was associated
with a better IC performance in children with high cortisol reactivity but, for WM skills,
the SES-WM association was independent from reactivity to cortisol (Wu et al., 2021). The
impact of stress on EFs is of major importance as it was demonstrated that the stress a
mother experiences during pregnancy can affect the developmental trajectory of their un-
born child (O’Donnell and Meaney, 2017).
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4.2 Culture and EFs

Culture can be differentially distinguished as an abstract construct characterized by the
socialization of shared knowledge, meanings, and understandings of particular groups of
people (Shore, 2002).

It has been shown that executive abilities can vary between cultures (for a review: Roos
et al., 2017). For example, chinese children improved more their EFs during preschool com-
pared to US children and that, for every SES (Schmitt et al., 2019). Another example: chil-
dren of 3-4 years from Eastern culture presented better performance in IC than children
from Latin American, themselves performing better than children from Western culture
(Tran et al., 2019). Also, U.S. preschoolers, but not South African children, showed an age-
related increase in CF assessed by the DCCS task (Legare et al., 2018).

Overall, young children of East Asian cultures present better EF performance and this
result was related to the intensive memory-based language demands (Roos et al., 2017).

Maybe more importantly, it was demonstrated that, differing on the culture, EFs pre-
dicted differently academic outcomes (Georgiou et al., 2020). WM predicted reading and
mathematics performance for canadian children, while both WM and IC predicted them
for chinese children (Georgiou et al., 2020).

However, it is important to keep in mind that creating material for a culture that is not
our own and that we know less well is difficult. Indeed, the experimental material is often
developed by researchers belonging to a culture and this culture may already favor people
from that culture. This bias has been shown for the Wechsler tests for example (Fernández
and Abe, 2018).

4.3 Specific environmental and cultural factors

After having described the effects of general environment and culture, we will now detail
the impact on EFs of more specific environmental and cultural factors such as the practice of
music, sports or the use of screens which play an important role in children and adolescents.

4.3.1 Sports practice

Among cultural and environmental factors, sports practice was several times studied. In-
deed, sports appear to be positively related to EFs in children and adolescents. In particular,
this association is thought to be dependent on the type of sports, the purpose of the physi-
cal activity (competition vs. enjoyment) and its intensity, and the age of the subjects (e.g.,
Davis et al., 2011).

Furthermore, sports and exercise do not have an equivalent effect on each EF (for a re-
view: Bidzan-Bluma and Lipowska, 2018). This may be explained, on the one hand, by the
diversity of EFs. On the other hand, some sports might have specific demands on IC, shift-
ing, or updating, due to their intrinsic and particular characteristics. For example, karate, in
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view of its high demands on self-discipline and respect for rules and others would preferen-
tially solicit WM (Alesi et al., 2014). In contrast, aerobic fitness appears to involve CF and IC
more (e.g., Oberer et al., 2018). More specifically, in children, karate practice in childhood is
related to better performance inWMU, assessed by both forward and backward digit spans,
and planning ,as measured by the Tower of London task (Alesi et al., 2014). On the other
hand, the practice of tennis was related to a better IC performance assessed by a color-word
Stroop task (Ishihara et al., 2017). In adolescents, there is far less research on the effect of
sports on EFs than in children. Still, it has been shown that, for example, in adolescents,
aerobic fitness is associated with better IC skills, assessed by a Go/No-go or Flanker task
(Chuang et al., 2015; Hogan et al., 2013; Westfall et al., 2018). Thus, the executive common
core appears to be amenable to improvement through certain types of physical activities.
Several studies show an effect of sports or physical activity on EFs in general, while others
show an effect specific to one or two EFs (Bidzan-Bluma and Lipowska, 2018). However,
these results should be taken with caution. Several studies also show a lack of association,
particularly for IC (Chuang et al., 2015; de Greeff et al., 2016; Kvalø et al., 2017; Stroth et al.,
2009).

Still, because of these observed links between sports practice and executive skills, many
sports-based interventions have been proposed with the aim of improving EFs. For exam-
ple, an intervention on 7- to 9-year-old children based on 2 hours of daily fitness training
led to increased skills in WM assessed by an adapted Sternberg task (Kamijo et al., 2011).
On another hand, a 6-months soccer practice in children had a general influence on EFs
and notably increased skills in planning and IC required by the Tower of London task in
comparison to a control group of sedentary subjects (Alesi et al., 2016). Furthermore, in a
meta-analysis, the authors report a small but significant effect size of regular exercise inter-
ventions on EFs in general and IC in particular for a child and adolescent population (Xue
et al., 2019).

Taken together, these results should be viewed with caution. First, they generally have
few participants and no cultural or socioeconomic level balance. In addition, there is poor
information on participants’ initial skills (Bidzan-Bluma and Lipowska, 2018). Finally, when
regular physical activity is associated with improved cognitive functioning in youth, these
associations are often small (Biddle and Asare, 2011).

4.3.2 Music

As for sports practice, musical practice has also been investigated multiple times. Indeed,
learning to play an instrument has been shown to increase an individual’s abilities in a
wide range of cognitive domains (Suárez et al., 2016), such as attention (Patston et al., 2007),
reading-spelling (McPherson, 1995), as well as auditory (Kraus and Chandrasekaran, 2010),
motor (Amunts et al., 1997), verbal (Chan et al., 1998), and visuospatial (Brochard et al.,
2004) abilities.

At the level of EFs, a recent study concluded that musically trained children had an
advantage in attention inhibition (assessed by a color-word Stroop task), response inhi-
bition (assessed by a Go/No-go task), and WM (assessed by the Continuous Performance
task), but not in CF (assessed by the Switching task) and that the level of musical training
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was positively correlated with response inhibition and working memory abilities (Chen et
al., 2022). On top of that, early-trained musicians performed better on Stroop, Go/No-go
and Continuous Performance suggesting that the proposed musical training was associ-
ated with enhanced EF abilities and that early childhood is a sensitive period when musical
training has a more powerful effect on the development of EFs (Chen et al., 2022). In par-
ticular, much research was conducted on music and working memory skills and suggested
that musicians perform better in WMU compared to non-musicians (D’Souza et al., 2018).
Similarly, musical training leads to better performance in WMU (George and Coch, 2011;
Suárez et al., 2016) but these effects differ across components (Suárez et al., 2016). Notably,
7-8 year olds have been shown to perform better on tasks testing WM at the executive cen-
ter level after 18 months of music training compared to control training in natural science
(Roden et al., 2014).

Just like with sports, some studies proposedmusical training in order to boost EF perfor-
mances. First, a 45 minutes twice a week for 6 weeks preschool music program in children
aged 4 and 5 years led to better performance compared to a control group in Matching Fa-
miliar Figures Test, a task requiring IC and visual discrimination, but not in the Day/Night
Stroop Task (requiring IC of a dominant verbal response; Bugos and DeMarie, 2017). In
another study, 5-year-old children who followed a short-term program of computer-based
musical training improved on IC (measured by a Go/No-go) after 20 days of training, while
no significant changes were observed in children who followed a painting training (Moreno
et al., 2011). Another interventional study showed that 3-4 years old children who received
8 music classes (once a week) showed greater improvement on planning, measured by the
Tower of London task, and on IC, measured by peg tapping, than their peers who remained
in regular nursery playtime but these small differences in performance were not maintained
when an active control condition was introduced even if there was a trend for greater im-
provement in the music intervention groups on IC (Bowmer et al., 2018). Finally, a last
study indicated that children following music lessons performed better on tasks designed
to measure planning (the Tower of London task) and IC (here, a Go/No-go task) but not in
Working Memory (measured here by the Dot Matrix task) in comparison with a "no-art"
control group (Jaschke et al., 2018).

Just like sports, we know that musical practice is not accessible to all socio-economical
backgrounds. Cultural accessibility is a main point of inequality between the richest and
the poorest. Thus, some programs started to emerge in order to minimize this gap. One of
them is the Demos project at Paris’s Philharmonie (https://demos.philharmoniedeparis.fr/)
which offers to children from difficult minorities a weekly musical practice in group.

4.3.3 Other cultural and environmental influences

Some other practices could also impact EF performance and development. Among them,
the trendy Mindfulness or Yoga practices along with relaxation exercises (see Diamond,
2016). A recent meta-analysis on 56 studies which proposed a Mindfulness Based Practice
(MBP) concluded that this type of training conferred a significant benefit on EFs (g = 0.15;
[0.02, 0.27]) but, among EF subdomains, onWMU only (g = 0.23; [0.11, 0.36]; Whitfield et al.,
2021).

50

https://demos.philharmoniedeparis.fr/


General introduction

Another emerging field in research concerns screen-use: a growing number of studies
are focusing on the effects of early exposure to screens on cognitive and emotional develop-
ment (e.g., Sauce et al., 2022). The scientific literature used to make a distinction between
two types of screens: passive and active screens (Kim et al., 2020; Sweetser et al., 2012).
This distinction has been made based on the type of use and content they offer. Active
screens are defined as screens that allow for physical, social, or cognitive engagement and
include video games, virtual chats, or Internet searches. Passive screens involve the passive
reception of information via a screen and therefore include watching a movie, a program
or a video. Earlier studies made this distinction, but now the focus is more on the specific
content, which plays an important role (Sauce et al., 2022). Effects can vary depending on
the type of content viewed. In particular, fantasy and action programs induce a signifi-
cant decrease in IC and involve more attentional difficulties (Rhodes et al., 2020). Violent
programs also induce poorer executive functioning with lower scores on the Stroop tasks
in adolescents (Lillard and Peterson, 2011). The duration of the programs also modulates
these effects. Short programs, lasting between ten and fifteen minutes, induce poorer IC
and greater impulsivity on the DDT in four-year-olds (Lillard and Peterson, 2011). The
results regarding active screens are much more mixed and contradictory. Some authors
find no correlation between play time, type of play, and IC performance (McCarthy et al.,
2016; Nordby et al., 2019). Other studies find negative results: playing video games daily is
positively correlated with increased temporal impulsivity (Crone and Konijn, 2018). Play-
ing time is also positively correlated with players’ impulsivity scores (Buono et al., 2017;
Gentile et al., 2012). However, many studies find positive outcomes of video game use.
Indeed, playing video games moderately increases performance in attention, IC, CF, and
visual-spatial WM (Green and Bavelier, 2012; Yeh, 2015). With respect to active screens
and especially video games, results may vary depending on the type of video game. For
example, action video games (e.g., GTA) have been shown to be related to visual-spatial
WM abilities (e.g., Colzato et al., 2013) while this is not the case for life simulation video
games (e.g., The Sims; Blacker et al., 2014).

However, like other out-of-school factors, screen use is closely related to SES and gen-
der, which may represent confounding factors.

Other cultural factors as maternal scaffolding or disorganized/unpredictable family life
(Hughes and Ensor, 2009), sleep quality (Morales-Muñoz et al., 2021) or sleep deprivation
(Pesoli et al., 2021), paternal mind-mindedness (Regueiro et al., 2022) or physical abuse and
neglect (Spann et al., 2012) have been showed to be related to executive functioning.

However, the neural, genetic, environmental and cultural basis are not totally inde-
pendent from one another. With the development of both neuroimaging techniques and
statistical modelings, multi-level studies of EFs have started to emerge.
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5 Multi-scale analysis of EFs

The type of studies which includes different levels of analysis (such as genetic, cerebral,
behavioral, environmental, cultural...) are called multi-scale studies. These studies aim to
better represent the complexity of reality. On top of that, we already know that these dif-
ferent levels interact with each other. Indeed, many studies have highlighted the influence
of genetics on various brain modalities for example.

Most studies have focused on the relationships between two different levels. Thus, as
we have seen, there is a rich literature regarding the brain, genetic and environmental bases
of EFs, but fewer studies have investigated the relationship that may exist between all these
levels.

5.1 Genes, brain and EFs

Among these levels, based on the dopaminergic system, multiple studies have investigated
the relationship between brain, genes and EFs and, in particular, the mediating role that
could have the brain between genes and EFs. The influence of genes, by twin studies or ge-
netic psychophysiology, on the human brain structure have been studied for a long time (for
reviews: Peper et al., 2007; Toga and Thompson, 2005). Indeed, in 1997, the utility of genetic
psychophysiology has already been demonstrated for the investigation of the gene-brain-
behavior relationships (Boomsma et al., 1997). Recently, it was demonstrated that changes
in subcortical volumes follow a genetic organization that remains stable throughout the
lifespan (Fjell et al., 2021).

Regarding EFs, it was demonstrated that brain activation of regions involved in EFs
could mediate the relationship between COMT polymorphism and IC performance (Green
et al., 2013) and on the relationship between genes and EFs in general (for a review: Greene
et al., 2008). In a twin study, the genetic influenced the activation of frontal brain in EEG
regarding IC,measured by aGo/No-go task (Anokhin et al., 2004). It was also shown that ge-
netic factors could influence the relationship between WM performance and, on one hand,
gray and white matter volumes (Posthuma et al., 2002) and, on the other hand, brain ac-
tivation (Blokland et al., 2008). Recently, it was shown that the thickness of important
dopaminergic regions (here PFC, parietal and posterior cingulate cortices) mediated the ef-
fect of COMT polymorphism on common-EF and this mediation was independent of age
(Miranda-Dominguez et al., n.d. 2019).

5.2 Brain, environment and EFs

The cultural neuroscience is a growing field of research investigating the relationships be-
tween the environment and the brain (Han et al., 2013). As a matter of fact, it was demon-
strated that cultural background could influence neural activity underlying high- as well
as low-level cognitive functions (e.g., Han and Northoff, 2008). Because of repeated cul-
tural impact, related brain pathways might experience rewiring and thus a neuroplasticity
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induced by culture (Kitayama and Uskul, 2011).

SES could also impact the brain. Indeed, higher SES in childhood was associated with a
protracted structural brain development and a prolonged functional connectivity segrega-
tion, resulting in more efficient cortical networks in adulthood (Tooley et al., 2021). How-
ever, SES relationship with brain and cognition was shown to be greater in North american
than in European subjects, reflecting a moderating role of culture (Walhovd et al., 2022).

On another note, the relationship between environment and brain measures related
to EFs have also been studied. For example, SES differences in PFC activation and cortical
structure have been reported (D’Angiulli et al., 2008; Jednoróg et al., 2012; Noble et al., 2012;
Sheridan et al., 2012). Children and infants in low SES households were also shown to have
smaller brain growth, smaller surface area, and smaller lobes of the brain that support EFs
(Johnson et al., 2016). Early caregiving environments were also shown to be related to the
developmental plasticity of brain regions underlying EFs (McDermott et al., 2012). Culture
can also impact brain activation: Chinese-Canadian children presented an ERP pattern of
hemispheric differentiation during a Go/No-go task that was more pronounced than that of
European-Canadian children (Lahat et al., 2010). Similarly, US-american children presented
more important activations of PFC regions than Japanese children during a shifting task
(Senzaki et al., 2021). Also, as structural and functional changes and reorganization in EF
neural bases and in the social brain occur at adolescence, changes in the social environment
that could happen during this period could interact with EFs (Blakemore and Mills, 2014).

Finally, stress hormones were shown to be related to EF development through their reg-
ulatory role in the PFC (Mizoguchi et al., 2008). Physiological effects of stress (increased
cortisol levels) might cause structural and functional changes in the brain, maybe underly-
ing modifications in neurocognitive functioning (Müller et al., 2013).

Figure 20: Relationship between socioeconomic status, brain development and cog-
nition. Figure from Hackman et al., 2010.

Altogether, these results might be indicative of possible SES differences in the neural
substrates underlying EFs. Notably, Hackman et al., 2010 proposed that SES has an effect
on brain development which has an effect on cognition (see Figure 20).
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5.3 Genes, environment and EFs

The environment effect on genes can be studied through epigenetics investigations for ex-
ample. Indeed, developmental outcomes can be characterized by “a probabilistic epigenesis
in the sense that there are bidirectional influences within and between different levels of
analysis" (Müller et al., 2013).

Also, a recent study on COMT showed that Val-allele Japanese children carriers pre-
sented better shifting abilities than Met-allele Japanese children carriers while no differ-
ence between Val- and Met-alleles carriers was found in a sample of US-american children,
demonstrating that culture could moderate the effect of COMT polymorphism on shifting
(Senzaki et al., 2021). Another study found an interaction of parental warmth on updating
by 4 genetic variants and also on the common-EF by another variant (Chen et al., 2020a).

These studies highlight an interaction between different levels but also between differ-
ent modalities within the same level. As we have seen, EFs are a complex and important
area for the development of other capabilities. It is therefore important to know the mech-
anisms underlying these functions in order to understand how they function and to think
about solutions and remediation if a deficit is observed in these functions. Classical regres-
sion analyses allow us to highlight the effect of one or more IVs on a DV or correlations
between different variables. However, as soon as we have several modalities and/or several
levels, these analyses do not allow us to answer all the questions we might have and to
create all the bridges needed. It is then necessary to use more complex statistical analyses
for multilevel modeling (Hoffman and Walters, 2022).

All this leads us to different ways to improve functioning that requires EFs. For exam-
ple, we can find ways to reduce the demands on EFs by reducing the number of distractors,
the amount of information presented... Another way could be to work on the environment
by reducing factors that impair EFs such as stress, low SES, etc. Finally, another solution to
improve EFs and related functions might be to propose cognitive training during develop-
ment.
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6 Cognitive training to improve EF abilities

A cognitive training can be defined as a means to increase cognitive functioning through
practice and/or instruction (Jolles and Crone, 2012). First, we will see the different charac-
teristics of cognitive training in general, then we will focus on EF training.

6.1 What makes a good training?

6.1.1 An adjusted content

The literature shows that training is effective when the difficulty level of the task is adapted
to participants’ individual performance throughout the training (Diamond, 2016; Diamond
and Lee, 2011; Green and Bavelier, 2008; Jolles and Crone, 2012). In particular, this adap-
tive difficulty prevents premature automation of processes or strategy development during
practice (Green and Bavelier, 2008; Klingberg, 2010). Indeed, in the case where automa-
tion occurs, the cognitive function of interest cannot be trained efficiently due to the ob-
vious mismatch between the participant’s cognitive abilities and the demands of the task
(Enriquez-Geppert et al., 2013). In order to observe an improvement in EFs, therefore, the
limits of the EFs must be continually pushed so that the participant moves out of his or her
"comfort zone" and so that that he or she exceeds his or her current skill level (see Diamond,
2011; Diamond and Ling, 2016).

From a cerebral point of view, changes also occur when there is a mismatch between
the environmental demands and environmental requirements and the possibilities of the
current structural system. In other words, trainingwith an "adaptive" difficulty is necessary,
although not sufficient to induce long-term brain changes (Lövdén et al., 2010). For example,
plastic changes in the FPN were observed if the practice of a WM task requires them to
mentally hold more objects than they can (Klingberg, 2010). However, some modifications
remain impossible, such as WM capacity, which cannot be infinitely increased (Jolles and
Crone, 2012).

A high degree of variability in stimuli, response modalities, and tasks (both within and
across cognitive domains) must be considered during training to avoid any priming effect
or alternatively the development of strategies by participants to complete the task (Green
and Bavelier, 2008; Jolles and Crone, 2012). Variability in stimuli thus keeps the partici-
pant motivated and prevents automaticity (Green and Bavelier, 2008). Similarly, the use
of multiple tasks during training of a specific cognitive function also prevents strategy
development while increasing the likelihood of effective training of the targeted process
(Enriquez-Geppert et al., 2013). Finally, the complexity of the trained task, i.e., the fact that
it is specific to a function or that it recruits different processes at the same time, is likely
to influence the benefits of training (Jolles and Crone, 2012). Indeed, a study which aims
to develop effective cognitive training in practice may benefit more from a complex and
variable task paradigm, as the latter may generate increased generalization in real-world
situations (Buschkuehl et al., 2012; Green and Bavelier, 2008).
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6.1.2 The right duration

Second, the benefits of EF training depend on the duration of training (Diamond, 2016; Jolles
and Crone, 2012). Studies show that the longer EF training (i.e., several weeks), the better
the results are, when the duration (i.e., length of a session) and frequency (i.e., number of
sessions per week) of sessions are held constant (see Diamond, 2016). Similarly, in order to
see specific brain changes, the duration of a training session should be long enough (Lövdén
et al., 2010).

6.1.3 The good timing: sensitive periods

Training receptivity can also evolve with age. If we learn to walk around 1 year old or
read around 6 years old, it is because these periods are more opportune (i.e., sensitive) to
acquire these new skills. Thus, sensitivity periods can be defined as developmental periods
during which certain capacities are easily modulated by experience (Knudsen, 2004). It is
important to take these sensitive periods into account when implementing interventions in
order to get the most out of them because, once these time windows have passed, acquisi-
tion becomes much more difficult (see, for example, the acquisition of a foreign language:
White et al., 2013). These periods correspond to periods of high neuronal abundance, axonal
projections and synaptic connections (Greenough et al., 1987; Huttenlocher, 2002; Uylings,
2006).

The strong changes in neural organization during childhood (Gogtay and Thompson,
2010) indicate that this period would be ideal for cognitive interventions (Kray and Ferdi-
nand, 2013). For example, young children admit a greater degree of plasticity than young
adults, making them more receptive to learning (Kray and Ferdinand, 2013). The brain
would then be sensitive to executive interventions during childhood, as it is more capable
of quantitatively and qualitatively restructuring neural networks (Galván, 2010).

6.2 Training EFs

Given the importance of EFs for cognitive and socio-emotional development as well as for
academic and professional success (Best et al., 2011; Diamond, 2013), various studies have
been conducted on intervention programs to stimulate various aspects of EFs (Diamond,
2013; Hu et al., 2017; Jaeggi et al., 2011; Klingberg, 2010; Liu et al., 2015; Maraver et al.,
2016; Xu et al., 2020; Zhao et al., 2015).

6.2.1 How? Different types of EF training

Many training materials have been tested to train EFs. As we have previously seen, sports
practice and EFs are related. As a result, many programs aiming to improve EFs have used
sports as a training. For example, aerobic activity improved CF of 8-12 years old children,
although aerobic effectiveness is still under debate (for a quick review: Diamond and Lee,
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2011). On another hand, martial arts, which emphasize self-control, discipline, and charac-
ter development (Diamond and Lee, 2011) also appear to improve EF abilities. For example,
Lakes and Hoyt, 2004 have compared the effects of taekwondo training to regular physical
education practice in children aged 5-11 years. Greater improvements on tasks of cogni-
tive inhibition, discipline, and emotional regulation were found in the taekwondo group,
indicating a generalization of training to multiple cognitive and behavioral measures. The
practice of yoga also showed increase in planning and executive tasks such as the Tower of
London in girls of 10 to 13 years (Manjunath and Telles, 2001).

In addition, meditation based practice has been demonstrated to improve performance
in executive components, assessed by the BRIEF, in children aged 7 to 9 years with lower
initial EF levels (Flook et al., 2010). Intense mindfulness training has also been shown to
increase the resting-state functional connectivity between brain regions associated with
EFs in adults with high level of psychological distress (Taren et al., 2017).

Furthermore, curriculum-based approaches, such as Montessori and Tools of the Mind,
appear to improve EFs (Diamond, 2007; Lillard and Else-Quest, 2006). Indeed, children who
studied according to the Montessori method performed better in reading, mathematics, but
also in executive control at the end of kindergarten (Lillard and Else-Quest, 2006). Similarly,
in the "Tools of the Mind" program (which is based on social simulation play) implemented
in an urban school setting with a low school setting (Diamond, 2007), children aged 4 to
5 years performed better on EF tasks (e.g., Dot matrix and Flanker tasks) than those who
had attended another educational program and the variance in EFs was better explained by
participation in this program than either age or gender of the children.

On the other hand, studies have focused on training EFs by targeting them directly,
often using computerized cognitive training.

A lot of studies have focused on training WM (e.g., Holmes et al., 2009; Klingberg et al.,
2005; for a review, see Klingberg, 2010) or WMU (e.g., Dahlin et al., 2008; Jaeggi et al., 2011;
Jaeggi et al., 2008). For example, following training on CogMed©, participants generally
improved their performance on both trained and untrained WM tasks (Bergman Nutley et
al., 2011; Holmes et al., 2010; Klingberg et al., 2005; Thorell et al., 2009). Other studies have
focused on executive attention (e.g., Rueda et al., 2005b), mental flexibility (e.g., Karbach
and Kray, 2009; Zinke et al., 2012) or IC, although the latter has shown limited success (e.g.,
Thorell et al., 2009).

6.2.1.1 IC training Because of the importance of IC for many aspects of life (Benson
et al., 2013; Borst et al., 2015; Cassotti et al., 2016; Gilmore et al., 2013), some studies have
focused on training IC.

In adults, a stop signal training led to a better IC performance (Manuel et al., 2013), a
training coupling IC and WM decreased impulsivity (Peckham and Johnson, 2018). Simi-
larly, an IC training, proposed for 20 minutes, 3 times a week, for 2 weeks (i.e., 6 hours of
training as a result) and composed of 3 activities: a color Stroop task, a conflict resolution
task and a Go/No-go, increased the performance of adults in the color Stroop task but also
on the stop signal task (Maraver et al., 2016).
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Thorell et al., 2009 trained children aged 4-5 years 15 minutes per day, five days per
week, for five weeks, via a program that targeted WM or IC. Children in the IC group (who
practiced on Go/No-go, stop signal and Flanker tasks) showed increased performance on
the stop signal and Flanker tasks but not on the Go/No-go, whose training did not appear
to be effective at this age.

At the same time, studies have also investigated the effect of IC training on different
brain characteristics (Jolles and Crone, 2012; Owen et al., 2010) including the degree of
activity in areas previously defined as IC related such as the prefrontal cortex including
IFG and ACC (e.g., Aron et al., 2014; Houdé et al., 2010; see section 2). In adults, studies
have shown that short term training (i.e., 1 hour) andmiddle term training (i.e., 5 to 10 hours
over several weeks) using the stop signal task (SST) or the Go/No Go task lead to functional
changes in the regions of the inhibition brain network, especially the cortices prefrontals
(Berkman et al., 2014; Chavan et al., 2015; Manuel et al., 2013; Spierer et al., 2013) and
parietals (Manuel et al., 2010). Delalande et al., 2020 put in evidence an evolution of neuro-
plastic characteristics, cortical thickness, and cortical surface area, in the same regions,
after IC training. Moreover, this type of executive training not only increases activity in
specific areas, but also improves functional connectivity between the IC network and other
networks (Hu et al., 2017).

6.2.2 When? Childhood and adolescence: sensitive periods for an executive train-
ing

Many authors advocate the practice of a training program in childhood, from an early age
(for a review, see Park and Mackey, 2022). However, it was demonstrated that EF training
is more beneficial in 8-12 year olds than in 4-5 year olds (Diamond and Lee, 2011).

On the other hand, adolescence, due to thematuration of the PFC, is a sensitive period of
brain development. The brain system is more receptive to interventions related to executive
functions during this period (Blakemore and Choudhury, 2006). Therefore, analogous to the
sensitive periods of brain development that are evident in the early sensory system in the
first years of life, the brain would be more sensitive to EF interventions in adolescence than
in the early years of life (Blakemore and Choudhury, 2006). Training could thus lead to both
cognitive and cerebral changes. For example, cortical thickness or grey matter volume are
plastic features that, in addition to changing over time, may change with environment and
training (Bengtsson et al., 2005; Maguire et al., 2006).

6.3 Evaluate the effectiveness of a training

Ideally, training should have both a long-term and a generalizable effect. While many stud-
ies are reduced to an assessment of cognitive skills under laboratory conditions, the ultimate
goal of training in children and adolescents is on the one hand to optimize performance in
the trained domain and on the other to enable application in everyday life, especially in
school learning (Karbach and Unger, 2014; Titz and Karbach, 2014).
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6.3.1 Near and far transfer

Indeed, when studying an experimental training, the questions of training receptivity and
transfer are often debated. While there is no doubt that specific training improves perfor-
mance directly linked to the trained skill (referred to as near transfer), it remains unclear
whether training in a given task can improve other skills that are not directly related to the
training activities (referred to as far transfer) (Bigand and Tillmann, 2021). Most cognitive
stimulation programs claim to provide far transfer effects, but there are almost as many
studies confirming this claim than those denying it (Sala et al., 2019; Sala and Gobet, 2019).
These differences could be explained by the fact that transfer effects can vary with train-
ing time (Jaeggi et al., 2008) but also with individual differences that play a major role in
training performance (Jaeggi et al., 2011; Jaeggi et al., 2014).

Regarding EFs, a recent meta-analysis suggests that training a single EF have non-
systematic effects on the improvement of untrained EFs (i.e., Kassai et al., 2019). For in-
stance, studies in which one EF is trained have reported no effect of the training (Enge et
al., 2014; Talanow and Ettinger, 2018; Thorell et al., 2009), only near transfer, i.e., improve-
ment on the same EF (Bergman Nutley et al., 2011; Dunning et al., 2013; Zhao et al., 2015)
or far transfer, i.e., abilities that are not targeted by the intervention (Aydmune et al., 2019;
Beauchamp et al., 2016; Jaeggi et al., 2011; Liu et al., 2015; Maraver et al., 2016; Söderqvist
and Bergman Nutley, 2015). Interestingly, studies in which all the EFs were trained reported
far transfer effects on school abilities (Blakey and Carroll, 2015; Traverso et al., 2019) as well
as near transfer to specific EF, including WMU (Blakey and Carroll, 2015) and IC (Dowsett
and Livesey, 2000). Given the particular organization of EFs in united but specific functions,
one can imagine that the variations affecting one of the functions (e.g., IC) are not totally
independent of the other two EFs (e.g., WMU and CF). Thus, receptivity to learning (the
progress of a function after having trained it) could be seen as not independent of the other
related functions, as well as transfer effects.

6.3.2 Training and development

A training during childhood or adolescence may influence developmental trajectories in
different ways (Jolles and Crone, 2012).

Development and training can be regarded as two ends of the same continuum (Galván,
2010) as development is driven by an interaction between pre-specified biological matura-
tion and experience (Stiles, 2011). Indeed, training may simply “speed-up” development,
such that the cognition of an individual is more similar after training than before training
to the cognition of older individuals (Jolles and Crone, 2012). Patterns of change observed
during development are sometimes similar to those involved in skill acquisition in adults
(Casey et al., 2005; Johnson, 2001, 2011).

However, a potential difference between developmental and training- related mecha-
nisms concerns the fact that training could influence cognitive processing and brain struc-
ture in a way that deviates from typical developmental trajectory (Denney, 1984; Fong et
al., 2012; Hertzog et al., 2008; Jolles and Crone, 2012). The specialization of a particular
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brain region could be the consequence of its interaction and competition with other brain
regions over the course of development (Changeux and Danchin, 1976; Greenough et al.,
1987; Huttenlocher, 2002; Uylings, 2006). It has been argued that (early) development relies
to a large extent on experience-expectant neural mechanisms, while training is more influ-
enced by experience-dependent processes (Galván, 2010). Therefore, age differences could
bemagnified rather than reduced after training (Baltes and Kliegl, 1992; Nyberg et al., 2003).

6.3.3 Inter-individual differences in training receptivity

Regarding training, the impact of the baseline level is often studied since it is important
to know who benefits the most from the training proposed. Two hypotheses have been
developed in literature.

First, the "magnification account" hypothesis suggests that cognitive training will ben-
efit most individuals who are already performing well. According to this hypothesis, these
individuals already possess sufficiently efficient cognitive resources to acquire and im-
plement new strategies and abilities (Karbach and Kray, 2021; Karbach and Unger, 2014;
Lövdén et al., 2012b; Titz and Karbach, 2014). Training could result in an amplification
of age-related and individual differences according to the hypothesis of training being an
accelerator of development.

The second hypothesis, the "compensation account" hypothesis suggests that individu-
als who are already high performers will benefit the least from cognitive training because
they are already functioning at an optimal level. This then leaves them less room to im-
prove, in contrast to individuals who showmore fragile baseline performance (Karbach and
Kray, 2021; Karbach and Unger, 2014; Lövdén et al., 2012a; Titz and Karbach, 2014). Indeed,
several studies of EF training have found greater benefits for children and older adults than
for young adults (see Karbach and Unger, 2014, for a review see Lövdén et al., 2012a).

For example, children with low WM and children with ADHD improved more their
performance following EF training (Diamond and Lee, 2011). However, EF training did not
appear to be useful in cases where the study population showed an IQ too low or severe
cognitive decline (Colcombe and Kramer, 2003; Söderqvist et al., 2012). Nonetheless, it is
possible that the exercise was too demanding for them and thus a simpler EF training might
be more suitable for their conditions (Diamond, 2016).

In conclusion, the magnification mechanism would generally be involved during
strategy-based training (e.g., memory training), whereas the compensation mechanism
would be more likely associated with process-based training such as EF training (see Kar-
bach and Unger, 2014). However, this conclusion is still under debate as Foster et al., 2017
pointed out that WM training predominantly benefited participants showing high baseline
level compared to participants with lower level.

Other variables could explain inter-individual differences.

At the brain level, direct links (controlling for baseline) between cerebral organization
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and training receptivity have also been demonstrated: brain network organization pre-
dicted cognitive gains after training in children (Chaddock-Heyman et al., 2020), and young
adults (Baniqued et al., 2019) and older adults (Baniqued et al., 2018; Gallen et al., 2016).

At the genetic level, a first indirect link between genetic polymorphism and training
receptivity was proposed by Rueda et al., 2005b. Children with poorer initial performance
on attentional conflict were more likely to show training effects than others (compensa-
tion account hypothesis). Moreover, DAT1, a gene implicated in the dopamine system,
polymorphism explained attentional conflict scores at pre-test. The link between DAT1
polymorphism and training receptivity was thus really indirect. One study established a
direct link between genetic factor and training receptivity while controlling for baseline
and showed that BDNF polymorphism mediated the effect of a physical training interven-
tion on executive functions in older adults (Leckie et al., 2014). Other levels of information
are thus important factors to consider when investigating the effects of an EF training.
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7 Aim of the project

The aim of this PhD project is to contribute to the characterization of EF organization
change through development and training using a multi-level approach, including cogni-
tive, neural and genetic levels. Obviously, a PhD thesis cannot meet such a wide goal, but
it can try, at its own level, to bring some stones to the edifice, both at the methodological
and applied levels.

8 Thesis organization

This thesis is based on an interventional, developmental and multilevel research project,
APEX, described in the following section, which allows to address some of the issues raised
in the General introduction. These issues, although not new, will be approachedwith recent
methodological frameworks.

Study 1 uses network modeling to evaluate EF organization changes with development
and cognitive training. Study 2 uses both network and structural equation models to evalu-
ate the EF organization changes with development on a large independent cohort. Study 3
uses SEM to investigate the transfer of cognitive training during development. Study 4 in-
vestigates the relations between brain and EFs through development and training. Study 5
uses deep andmachine learning to investigate the acceleration of brain development related
to cognitive training. Study 6 uses SEM to evaluate the contribution of genetic, behavioral
and brain factors to cognitive training during development.
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Part II: Experimental part

1 The APEX project

APEX - "APprentissages EXécutifs" , in english, executive learning - is a basic research
project (PIs: O. Houdé, G. Borst, A. Cachia) funded by the Agence Nationale de la Recherche
(ANR) to investigate the IC training at cognitive, neural and and genetic levels.

This project’s acquisitions were spread out from January 2016 to December 2020 and 6
PhD students and one post-doctoral student have worked (full time) on it until now.

The aim of the APEX project is to investigate in 4th and 5th grades children (9-10 years)
and 11th and 12th grades adolescents (16-17 years) the respective effects of one executive
training of a key process of the prefrontal cortex – Inhibitory Control – and of a more
general pure metacognitive learning - mindfulness - using the most adapted brain imaging
techniques to date (Magnetic Resonance Imaging). The APEX project aims at first devising
computerized training tasks on tactile tablets, a device that can be used in ecological settings
both at school and at home. Then, a goal is to investigate the effects of these two training
conditions at a cerebral level, both anatomically (anatomical MRI and diffusion MRI) and
functionally (functional MRI), in relation with the polymorphism of certain genes and a
set of cognitive and academic performance. The data collected will ultimately allow us to
propose pedagogical interventions validated experimentally.

Figure 21: APEX protocol.

To do this, children and adolescents completed a 5-week touch tablet training at home.
Prior to this, a pre-test provided a baseline with cognitive, brain and genetic measures and a
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post-test, including the same cognitive and brain measures, highlighted the training effects
(see Figure 21).

2 Participants

For the APEX project, 201 healthy participants from public schools were recruited: 110
children (33 males, M ± SD = 9.84 ± 0.53 years, range = 9–10 years) and 91 adolescents (20
males, M = 16.71 ± 0.53 years, range = 15–17 years, see Table 1). Of note, 3 children also
took part in a work memory training but this axis of the project was interrupted due to
practical constraints.

Children Adolescents
N 110 91
Age 9.84 (0.53) 16.71 (0.53)

Sex
F 61 (55.5%) 55 (60.4%)
M 49 (44.5%) 36 (39.6%)

Training group
Active Control (AC) 40 (36.4%) 28 (30.8%)
Inhibitory Control (IC) 37 (33.6%) 32 (35.2%)
Mindfulness (PC) 33 (30.0%) 31 (34.1%)

Table 1: Description of the APEX sample. Age is given in years with a mean (SD) esti-
mation. For Sex and Training group, the proportion in percentage is represented.

All participants were right-handed as determined by the Edinburgh Handedness In-
ventory Oldfield, 1971, were born full-term, had normal or corrected-to-normal vision,
had no history of neurological disease and had no cerebral abnormalities. Parents or le-
gal guardians gave written consent for the children and the adolescents, and all children
and adolescents agreed to participate. All participants were tested in accordance with the
national and international norms that govern the use of human research participants. Two
ethics committees approved our study (IRB 2015-A00383-46 and IRB 2015-A00811-48).

3 Training sessions

The training was carried out on a tablet, at the child’s or adolescent’s home, for a period
of 5 weeks. It was made clear to the participant that he/she had to do this training daily in
order to reach 5 sessions per week and that he/she should not do several sessions during
the same day, even if he/she had forgotten to do one the day before. Each training session
lasted about 15 minutes. Number of sessions followed are depicted in Figure 22. Note that
assiduity for the Mindfulness training are not represented as the information was missing
for this group, however, we ensure that a minimum of 15 sessions were followed.
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(a) Children (b) Adolescents

Figure 22: Training assiduity in children (a) and adolescents (b). The number of par-
ticipants per session is represented. The different colors correspond to the different training
exercises. This data is extracted from the tactile tablets.

At the end of each session, the participant (or his/her parents) was asked to send the data
file generated by E-prime 2.0 to the experimenter (Marine Moyon for the children’s cohort,
Cloélia Tissier for the adolescents) and was asked to fill in his/her logbook, evaluating in
particular his/her motivation and commitment during the session.

3.1 The Active Control training

Figure 23: Active control training task. Image: Marine Moyon.

For participants who were assigned to the control group (active control or AC group), the
training, adapted from Jaeggi et al., 2011, consisted of general knowledge tasks or "General
Questions Game" (e.g., What type of skiing is done on water? Alpine skiing/cross-country
skiing/water skiing/freestyle skiing) and academic skills "Specific Questions Game" (e.g.,
What is the number of grams in ½ kg?), again of increasing difficulty. Each question re-
quired the participant to answer within 30 seconds by touching one of the 4 answers pro-
vided on the touch pad. The questions were inspired by the collection Les Incollables®. An
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online pre-test carried out with more than 1600 children and adolescents allowed the se-
lection of the questions and their organization in levels of difficulty. As with the inhibitory
control training, the control tasks were organized into 8 levels of difficulty, each consisting
of 10 questions. If the rate of correct answers was higher than 90%, the level was validated
and the participant moved on to the next level. If the number of correct answers was less
than 70%, the participant returned to the lower level. Finally, if the rate of correct answers
was between 70 and 90%, the level remained the same. Levels reached at each session are
represented in Figures 26 & 27.

3.2 The Inhibitory Control training

For participants who were assigned to the experimental group (cognitive inhibitory con-
trol training or IC group), the training consisted of two tasks. Since inhibitory control is
a multidimensional construct (Diamond, 2013), the first (color-word Stroop, Stroop, 1935)
involved interference control while the second (stop signal task, Logan, 1994) involved in-
hibitory response.

3.2.1 The trained Stroop

During a Stroop or "Word and Color Game" session, participants had to press the button
whose color corresponded to the ink color of the word presented among the four (red, blue,
yellow, green) proposed on the tablet. The taskwas composed of congruent itemswhere the
ink color corresponded to the word (e.g. red written in red) and incongruent items where
the ink color differed from the word presented (e.g. blue written in red). Control items
where the word was presented written in black (e.g. RED) were also proposed. Subjects
were then instructed to press the colored button corresponding to the color designated by
the word. All stimuli were presented in the center of the tablet screen in Arial font, bold,
size 24. Each training session consisted of 13 control, 13 congruent, and 13 incongruent
items.

As the training sessions progressed, the difficulty of the task increased by decreasing
the SOA (Stimulus Onset Asynchrony), i.e. the delay between the presentation of the word
(written in light grey) and its colouring in one of the four colors. The SOA of the first
level was 450 ms and decreased by 50 ms per level until it reached 100 ms at level 8. If
the number of correct answers per block was greater than 90%, the level was validated and
the participant moved on to the next level. If the number of correct answers was less than
70%, the participant went back to the lower level. Finally, if the number of correct answers
was between 70 and 90%, the level remained the same. Levels reached at each session are
represented in Figures 26 & 27.

66



The APEX project

Figure 24: Color-word color task. Here an incongruent trial is represented. Image: Ma-
rine Moyon.

3.2.2 The trained stop signal

During a stop signal session, participants had to press one of the two response buttons
(the left or the right one) on the touchpad to indicate in which direction the arrow on the
screen was pointing, except when a beep sounded, in which case they had to hold back
their response. Each training session began with 16 Go items and was followed by 30 Go
items and 10 randomly assigned Stop items.

The difficulty increased with an increase in the SOA, the time between the presentation
of the arrow and the Stop tone. The SOA in the first level was 100 ms and increased by
50 ms per level until it reached 450 ms in level 8. If the success rate of the Stop trials was
greater than 80% and the success rate of the Go trials was greater than 90%, the level was
validated and the participant moved on to the next level. If the success rate was less than
60% for the Stop trials and/or less than 80% for the Go trials, the participant returned to the
lower level. Finally, for intermediate scores, the level remained the same. Levels reached at
each session are represented in Figures 26 & 27.

Figure 25: Stop signal task. Image: Marine Moyon.
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Figure 26: Learning curves in children for each training block. Levels go from 1 (min-
imum) to 8 (maximum). Mean lines represent the weighted mean by the number of partic-
ipants.

Figure 27: Learning curves in adolescents for each training block. Levels go from 1
(minimum) to 8 (maximum). Mean lines represent the weighted mean by the number of
participants.

68



The APEX project

3.3 The Mindfulness based training

This mindfulness training was composed of different exercises of guided meditation. These
exercises were inspired by the book Calme et attentif comme une grenouille. Each session
of 15 minutes was composed of two different exorcises. On the contrary of the two other
types of training, there were no progression in this training as no score was collected after
the sessions.

3.4 The logbook

To ensure follow-up and motivational support, a logbook was provided to participants at
the beginning of the training. After each session, they were asked to indicate the day and
time of the practice as well as their state of mind and remarks. These information, crossed
with those of the tablet, made it possible to check the good respect of the protocol by the
participants.

4 Pre- and post-training sessions

4.1 Medical appointment

For the inclusion interview, the presence of at least one of the legal guardians was essential.
The interview with the investigating physician had a supervisory role, on a double level,
ethical and medical. The health professional first made sure that the child or adolescent
understood the reason for his/ her visit, the scientific issues and objectives that his/her
participation would attempt to address, as well as the expectations that the team had of
him/her and the practicalities of the research study. Participant consent was then collected.

4.2 Genetic sampling

The genetic sample was only taken as a pre-test. The participant had to fill a plastic tube
with his/her saliva.

DNA was extracted from saliva recovered with the Oragene saliva collection kit (DNA
Genotek, Inc., Canada) and the pangenome analysis pangenome analysis by nucleotide
polymorphism (SNP) genotyping was performed by the IntegraGen SA (Genopole, Evry).
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4.3 MRI acquisition

4.3.1 Protocol

The participants came for an MRI before and after their training. They came to the Cyceron
platform in Caen for the children or to the CIREN (Centre d’Imagerie et de Recherche En
Neurosciences) at the GHU Sainte-Anne in Paris for the adolescents.

The appointment started with a training on computers for the four tasks presented in
the MRI: attention network task (ANT), stop signal task (SST), delayed discounting task
(DDT)and DOT-matrix task (DOT). This training allowed the participant to properly inte-
grate the instructions and to practice the response modalities (right or left button). Once
this training was completed, a blood glucose measurement was performed. Finally, the
participant (or a parent) completed an MRI safety questionnaire.

The participant was then taken to an individual room to change comfortably, remove
any jewelry and metal objects from their pockets. For adolescent participants only, a series
of questions were asked about their recent behaviors (alcohol consumption the day before,
last tobacco and cannabis consumption, tea or coffee consumption during the day, and last
sweet meal or drink). Finally, the participant was reminded of the protocol once they were
installed in the MRI and the questions from the MRI safety questionnaire were repeated.

The participant was then accompanied into the MRI. The participant was provided with
earplugs, a headset and a cap before lying down and positioning themselves in the machine.
A call button (in case the participant was not feeling well or if a problem occurred during
one of the tasks) was presented and taped to the participant’s chest. Similarly, a response
box was presented and then installed after positioning the fingers (index finger on the left
button, middle finger on the right button). The participant’s head was then wedged with
foam pads after which the antenna was placed. The participant could then adjust the mirror
attached to the antenna so that he/she could see the screen behind the MRI on which the
stimuli would be presented during the tasks during the functional sequences. Finally, after
checking that the participant was well positioned but above all comfortable, the table was
moved forward and the experimenters (and possibly the parents) left the room.

TheMRI run consisted of 11 sequences: a calibration, a first anatomical sequence (3DT1),
a resting MRI sequence (rsfMRI), four functional sequences (ANT, DDT, DOT and SST), a
second anatomical sequence (AxT2) and a diffusion sequence (DTI). We only detail the
anatomical sequence, as the imaging data from the other sequences are not exploited in
this thesis work.

4.3.2 Anatomical MRI Acquisition

The high-resolution (1 x 1 x 1 mm) isotropic 3T sagittal MRI data were acquired in children
and adolescents. MRI data in children were acquired on Cyceron’s biomedical imaging
platform in Caen (Archieva, Philips Medical System, Netherlands). Prior to theMRI session,
the children had become familiar with the noise of MRI and had practiced not moving
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during acquisition in a mock MRI (or mockscanner). In order to reduce waiting time and to
provide amore positive experience for the participants and thus to reducemovement during
acquisition, children watched passively a cartoon on an MRI-compatible screen (Lemaire
et al., 2009). MRI data in adolescents were acquired on the biomedical imaging platform
of the Imaging Center for Research and Teaching in Neurosciences (CIREN, Paris; General
Electric). The parameters of the sequences have been optimized in each site to obtain an
acquisition similar to Cyceron (TE = 3.3ms; TR = 7.2ms; flip angle = 9°; matrix size = 256 x
240mm; field of view = 256mm) and at CIREN (TE = 3.2ms; TR = 8.2ms ; flip angle = 11°;
matrix size = 256 x 256mm; fields of view = 256mm).

4.4 Questionnaires

Several questionnaires were filled by the participants and/or their parents before training.

The first questionnaire filled by the parents was the socio-economic questionnaire. This
questionnaire was composed of questions to assess for the education level, the actual work
title and work time of each parent as well as the parental income. This questionnaire also
included questions about the family, more broadly, as the parental relation (married, di-
vorced, widowed, etc.), the presence of step parents, the number of siblings. Finally, this
questionnaire had a section about important events that happened in the participant’s life
and over the last year.

The second questionnaire was filled by the participants with help of the parents for the
children and concerned the participant’s habits. It included questions about

• extra-scholar activities (which ones? for how many years? at which frequence?),

• reading habits (number of hours dedicated to reading per week, presence of books,
library cards, magazine subscriptions, etc.),

• screen habits (number of hours per day or per week watching TV, on the phone, play-
ing video-games on phone/tablet/computer/play-station, playing education games,
etc.),

• cultural habits (number of exhibitions, movies, concerts, visited per year,

4.5 Cognitive tasks

The cognitive battery took place during the week of the MRI (either pre- or post-test) but
necessarily after it. It took place in the same premises as the MRI. The participant was then
received by the experimenter and, after a blood sugar measurement, the cognitive battery
could be started.

This consisted of 24 tasks for children and 21 tasks for children. Optional tasks had been
considered but the battery was already very complete and long (about 2h15), so they were
not performed. The order of these tasks was the same for all subjects and for both sessions
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In children, this battery was split in two, in order to keep the children focused during
all tasks. No break was mandated to participants but they were free to ask one whenever
they needed to.

Figure 28: APEX cognitive tasks.

The tasks were the same for children and adolescents except for few ones:

• Raven’s matrices differed: children answered with paper/pencil medium whereas
adolescents performed the tasks directly on the computer. Matrices adapted for chil-
dren included 36 items vs 12 items for adolescents.

• Alphabetical cognition tasks (Alouette-R, Phoneme fusion, Letters discrimination,
Verbal accord) were passed only by children. Adolescents did not performed these
tasks.

• In the same way, the Right and reverse span and the Mathematical fluence tasks were
performed by children only.

The Table 28 below summarizes the task design, the instructions given to the partici-
pants and the computed scores for the six tasks considered during this PhD project. Detailed
descriptions of the tasks and the theories associated are described below.

4.5.1 Color-word Stroop task

4.5.1.1 Stroop theory The Stroop task (Stroop, 1935) is perhaps one of the most classic
measures of inhibitory control, at least one of the best known. It has even been integrated
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Task Reference Protocol DV

Color-
word
Stroop

Stroop,
1935

Indicate the ink color of the word presented
on the screen. Incongruent trials are tri-
als where the color indicated by the words
does not match the color in which the words
are printed (for example, the word GREEN is
written in blue).

Interference score calculated
as RT for incongruent trials
- RT for congruent trials (for
correct answers only).

Stop signal Verbruggen
and Lo-
gan,
2008

Indicate which way an arrow points, but do
not respond if a tone (stop signal) sounds af-
ter the arrow is presented.

SSRTmeasured by substract-
ing the stop signal delay
from the median value of the
subject’s Go RT distribution
(when there is no Stop sig-
nal).

Simon Lu and
Proctor,
1995

Indicate whether the stimulus presented on
the screen is a butterfly or a frog. On con-
gruent trials, the response key for a stimulus
was on the same side as that stimulus; on in-
congruent trials, the response key was on the
opposite side.

Interference score calculated
as RT for incongruent trials
- RT for congruent trials (for
correct answers only).

ANT Fan et al.,
2002

Look at the five fish on the screen and indi-
cate which way the middle fish is swimming.
It is surrounded on both sides by fish swim-
ming in the same direction (congruent condi-
tion), in the opposite direction (incongruent
condition).

Interference score calculated
as RT for incongruent trials
- RT for congruent trials (for
correct answers only).

Trail Mak-
ing Test

Reitan
and
Wolfson,
1992

In part A, connect circles containing num-
bers in numerical sequence. In part A, only
numbers are presented. In part B, both num-
bers and letters are presented and the cir-
cles should be connected in an alternating se-
quence (numbers-letters: 1-A-2-B, etc.)

Shifting score calculated as
the time needed to fill the
part B - time needed to fill
the part A.

Nback Cohen et
al., 1994

View a sequence of squares popping at dif-
ferent places of the screen and indicate when
the current square emplacement matches
the emplacement from\textit{ n} trials prior.
Blocks consist of 1-, 2- and 3-back targets.

Score is the RT for successful
trials in the 3-back condition
minus the RT for successful
trials in the 1-back condition.

Table 2: Descriptions of the tasks.

in very popular "brain training" programs proposed on game consoles in the 2000s.

This task consists in presenting the subject with a board of color names written with
different colored inks. Two control conditions exist. The first one is the color-control con-
dition: the subject must then name the color of pellets of different colors. There is no
interference between reading and naming since reading is absent. The second one is the
reading-control condition: the subject must then read different color names written in black
on a white board. Here again, there is no interference between reading and naming since
naming is absent. In the test conditions, the stimuli can be congruent, in which case the
color of the ink corresponds to the word itself (BLUEwritten in blue) or incongruent, where
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the color of the ink differs from theword (BLUEwritten in red). The subject must then name
the color of the ink and, to do so, he must inhibit the reading of the word. The difference in
reading time (but also in correctly read words) between congruent and incongruent items
is called the Stroop effect or semantic interference. Logan, 1997 explains failure on this task
as due to reading automatism.

Indeed, according to Logan, 1997, the automatism of a process has an influence on per-
formance in terms of speed, motivation, cognitive resources required and the level of aware-
ness of the subject during the task. For him, reading is an automatic process, at least at
the word-to-word level, including decoding the word and accessing its lexicon. Thus, in a
Stroop task, naming the color of the ink would require more motivation, time and cognitive
resources than simply reading the word. Since the reading of the word is automatic, it is
also compulsory, leading to a strong interference during the conflicting Stroop task.

Also, good reading skills would allow for automation of this reading, resulting in failure
on the Stroop task. Therefore, this type of task is not effective to measure IC in young
children who didn’t finish their reading acquisition. Indeed, it was demonstrated that the
interference increased with the learning of reading (Ehri and Wilce, 1979). Similarly, in an
experimental study, when reading was blocked, a negative linear relationship between age
and Stroop interference was observed (Leon-Carrion et al., 2004).

Of note, other models were proposed to explain Stroop effects like the tectonic (Melara
and Algom, 2003), the parallel race (Eidels, 2012) or the three component (Demetriou et al.,
2002) models.

Then, Stroop effect evolution through development is studied for a long time. It was
shown that there were a greatest interference in young children (6-7 years) that declined
from around 10 years into adulthood (around 17 years of age) before increasing again in
elderly (Comalli et al., 1962; Leon-Carrion et al., 2004). Of note, interference was shown to
be minimal in grade 1, before the acquisition of lecture (Schiller, 1966).

4.5.1.2 Task design As for the SST, the color-word Stroop task presented in the cogni-
tive battery featured two training blocks followed by an experimental block.

The first practice block included 12 trials was proposed to allow an associative learning
between the colors and the answer buttons. Monochrome dots (yellow, blue, green or red)
appeared successively on the computer screen. Their order of presentation was random-
ized (three trials per color). The participant was instructed to press the associated key as
quickly as possible and without making a mistake. In order to facilitate the memorization
of the keys, stickers with the corresponding colors were previously glued to the computer
keyboard. Blue and yellow stickers were stuck on the "s" key, lateralized to the left. Green
and red stickers were stuck on the "l" key, lateralized to the right. Thus, participants had to
press the key " s " in the case of a yellow or blue dot and the key "l" in the case of a green
or red dot. During the whole exercise, the participant were asked to keep their left index
finger above the "s" key and their right index finger above the "l" key. The visual stimulus
(colored dot) always appeared after a 500 ms fixation cross. In order to guarantee a good
motor learning, the colored dot remained displayed until the participant pressed the right
response button.
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The second practice block was proposed to really practice the task. It was composed
of 8 trials (2 per color) of which seven were incongruent and only one was congruent.
Apart from the first two stimuli which were presented without fixation cross or feedback,
the other 6 were presented after a fixation cross of 500 ms, during 7000ms maximum and a
feedback on the performance during 1500ms. As soon as the participant pressed the answer
button, the computer told him/her if his/her answer was successful ("Good answer!!!") or
not ("Bad answer"). If the participant did not answered within the time limit of 7000ms, the
message "Answer faster" was displayed.

After these two practice blocks, the experimental block started. This color-word Stroop
task was composed of 32 pairs of stimuli, for a total of 64 trials. A fixation cross of 1500ms
separated the pairs of stimuli. Within each pair, a faster fixation cross of 500ms separated
the presentation of the two trials. These trials were presented in the center of the screen, in
Courier New font, bold, size 24, on a gray background. Participants responded by pressing
a key on the keyboard, ’s’ for yellow and blue, ’l’ for red and green. Each trial was pre-
sented for a duration of 3000ms, and in order for their response to be taken into account,
participants were required to respond during this stimulus presentation period. Thus, the
response times were reduced compared to the training condition. There were three types
of trials:

• congruent trials

• incongruent trials for which a reading error would lead to pressing the same answer
button (e.g. the word RED written in green; the "l" button allowing to answer both
"red" and "green"), noted CP for Perceptual Conflict

• incongruent trials for which a reading error would lead to pressing the wrong answer
button (e.g. the word BLUEwritten in red; answer button "l" to answer "red" if correct
denomination versus answer button "s" to answer "blue" if expression of the reading
automatism), noted CPCM for Perceptual and Motor Conflict

The combination of these three types of trials resulted in eight types of trial pairs, each
represented four times in this task:

• IC-CPCM pair composed of an incongruent CPCM item and a congruent item

• CI-CPCM pair composed of a congruent item then an incongruent CPCM item

• II-CPCM pair composed of two incongruent items CPCM

• IC-CP pair composed of one incongruent item CP and one congruent item

• CC-CPCM pair composed of a congruent item for which the "s" answer key must be
pressed and then a congruent item for which the "l" answer key must be pressed

• CC-CP pair composed of a congruent item for which the "s" answer key must be
pressed and then a congruent item for which the "l" answer key must be pressed

• CI-CP pair composed of a congruent item then an incongruent item CP
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Figure 29: Negative-priming color-word Stroop design. Here, the prime is congruent
(RED written in red) and the probe is incongruent (GREEN written in yellow) with a Per-
ceptual and Motor Conflict constituting a CI-CPCM trial pair.

• II-CP pair composed of two incongruent items CP

This paired design was made to investigate negative priming effects. First trials of the
pairs were therefore the primes and second trials the probes. In our case, we were not
interested in negative priming effects. Thus, we only looked at the primes.

4.5.1.3 Stroop interference score Based on the theory from Logan, 1997, an interfer-
ence score could be calculated from the color-word Stroop task.

As we were not interested in negative priming effects, we only considered the primes.
The Stroop interference score was then computed for each subject as follow:

Interference = mean(RTs for CPCM successful trials) - mean(RTs for congruent successful trials)

CP trials were not included as it was not possible to discriminate correct to incorrect
responses within this task design.

Intra-subject corrections were applied to exclude premature or too slow responses. Two
types of corrections were applied:

• a SD (Standard Deviation) correction: a RT was considered outlier if it was below or
above the RTs mean + or - 2.5 SD.
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• a MAD (Median Absolute Deviation) correction: for a trial i, a RT was considered
outlier if it was below or above the RTs median + or - 2.5* 1.4826 * median(Disti)
where Disti= |median(RTs) - RTi|

We thus obtained three scores: an interference Stroop score without any intra-subject
correction, a score with a SD correction and a score with a MAD correction.

Figure 30: Stroop interference distribution before and after training. The top panel
corresponds to the children, the bottom one to the adolescents. The left panel corresponds
to pre-training distribution, right panel to post-training. Training groups are represented
in color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

4.5.1.4 Descriptive results Behavioral data for the color-word Stroop task in the APEX
project can be found in Table 3. Distribution plots are disposed in Figure 30. Of note, this
task has been further investigated in the following experimental studies.

4.5.2 Stop signal task

4.5.2.1 Horse-race model The stop-signal paradigm (Logan, 1994) provides tools for
examining this relatively simple type of control (i.e., its success, duration, and variability).

The stop-signal paradigm consists of a reaction time (RT) task in which the occasional
presentation of a stop signal indicates that the pending response should be cancelled. The
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probability of stopping can be manipulated by the timing of the stop signal regarding the
reaction signal.

Response inhibition in the stop-signal task can be conceptualized as an independent race
between a ’go runner’, triggered by the presentation of a go stimulus, and a ’stop runner’,
triggered by the presentation of a stop signal (Logan and Cowan, 1984). When the ’stop
runner’ finishes before the ’go runner’, response inhibition is successful and no response is
emitted (successful stop trial); but when the ’go runner’ finishes before the ’stop runner’,
response inhibition is unsuccessful and the response is emitted (unsuccessful stop trial).

The independent race model mathematically relates (a) the latencies (RT) of responses
on unsuccessful stop trials; (b) RTs on go trials; and (c) the probability of responding on
stop-signal trials [p(respond|stop signal)] as a function of stop-signal delay (yielding ’inhi-
bition functions’).

Figure 31: (A) Graphic representation of the horse-race idea. The length of the bars
represents the duration of the process (SSD = stop-signal delay; SSRT = stop-signal reaction
time). (B) Graphic representation of the assumptions of the independent horse-
race model of Logan and Cowan, 1984, indicating how the probability of responding
[p(respond|signal)] and the probability of inhibiting [p(inhibit|signal)] depend on the dis-
tribution of go reaction times, stop-signal delay (SSD) and stop-signal reaction time (SSRT).
From Verbruggen and Logan, 2008.

Because this task is very popular in the literature and because different designs and
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methods for indices calculation exist, an extensive consultation round was organized to
reach an agreement. The resulting paper (Verbruggen et al., 2019) lists twelve recommen-
dations to improve the overall quality of future stop-signal research. These recommenda-
tions were based on previous methodological studies or, where further empirical support
was required, on novel simulations.

4.5.2.2 Task design The task presented in the cognitive battery featured two training
blocks followed by an experimental block.

Each trial began with the presentation of a circle for 250 ms and then an arrow appeared
in the circle. Participants were then instructed to click the left mouse button as quickly as
possible if the arrow pointed left, and the right mouse button if the arrow pointed right.
Specifically, participants were asked not to wait for a stop signal, that the task was difficult
because it was designed so that they would fail 50% of the time. If a tone (the Stop signal,
750 Hz, 75 ms) sounded after a variable delay (the stop signal delay, SSD) following the
presentation of the arrow, then subjects were instructed to inhibit their response, by not
clicking any buttons. Regarding the Stop trials, the task was adaptive in difficulty. The
SSD was initially set at 350 ms and increased by 50 ms after each successful Stop trial, to
a maximum of 1150 ms, and decreased by 50 ms after each failed Stop trial, to a minimum
of 50 ms. This tracking procedure, recommended by the literature, allowed to approach a
probability of 0.50 in order to fit the horce race model theory. Each trial lasted 2000 ms
during which participants could respond (see Figure 32).

Figure 32: Stop signal task design.

The first training block included only Go trials to train participants in the response
modalities (if the arrow points to the left, left click; if the arrow points to the right, right
click).
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A second training block was then proposed. This block allowed participants to actually
practice the task and to become familiar with the stop signals. This block of 16 trials in
total consisted of 4 Stop trials and 12 Go trials.

Finally, once these two training blocks were completed, the task could begin. It con-
sisted of 64 trials, including 16 Stop trials and 48 Go trials.

Every block was counterbalanced in terms of stimulus orientation (as many arrows
pointing to the left as to the right).

The recommendations from the consensus paper Verbruggen et al., 2019) regarding the
task design are the following:

1. Use an appropriate go task, a standard two-choice reaction time task is recommended
→ this was the case in our study as described above

2. Use a salient stop signal, indeed, the stop signals should be salients and easily de-
tectable → the Stop signals were salient in our study, it was a sound signal, so in
another modality (auditory) than the stimuli (visual)

3. Present stop signals on a minority of trials, a ratio of 25% Stop trials/75% Go trials is
recommended → the ratio was respected for our study as 16 Stop trials represented
25% of the total of 64 trials

4. Use the tracking procedure to obtain a broad range of stop-signal delays, with 50 ms
steps→ this recommendation was also followed

5. Instruct participants not to wait and include block-based feedback and for certain
populations as young children, include a practice block without stop signals in addi-
tion to a practice block with go and stop trials → the instruction "not to wait for the
stop signal" was given orally to the participants but also written on the screen before
the beginning of the task. The task, as described above, included the two types of
practice blocks.

6. Include sufficient trials, that is about 50 stop trials → this was not the case in our
study. As the SST was one of more than 20 tasks and the participants were aged
between 9 and 17 years old, the task had to be short in time and could not include
more items if we didn’t want to lose our participants’ engagement in the protocol.

4.5.2.3 Stop signal reaction time Given a small set of assumptions, it is possible to
calculate the time required for stopping the response; that is, the stop-signal reaction time
(SSRT).

The recommandations from Verbruggen et al., 2019 regarding the SSRT estimation are
the following:

1. Do not estimate the SSRT when the assumptions of the race model are violated, the
mean RT on unsuccessful stop trials should not be numerically longer than the mean
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RT on go trials (all trials with a response, even with choice errors or premature re-
sponse, should be included)

2. If using a non-parametric approach, SSRT should be estimated by the integration
method with replacement of go omissions

3. SSRT should not be estimated if the probability of responding on stop-signal trials de-
viates substantially from 0.50 or when the probability of omissions on go trials is high.
More precisely, individual SSRTs should not be estimated when p(respond|signal) is
lower than 0.25 or higher than 0.75 (Congdon et al., 2012).

Finally, two ways to calculate SSRT have been chosen.

The first one is the mean and median method described in Aron, 2006. For each
subject, were estimated the mean RT of all go trials (correct as uncorrect or premature) and
the median of the SSD for all stop trials (successful ones and unsuccessful ones). The SSRT
was calculated as the equation below:

SSRTa = median(RTsofgotrials)−mean(SSD)

Then, before making any analysis, the SSRTs were deleted for subjects with a
p(respond|signal) lower than 0.25 or higher than 0.75 and for subjects with a mean RT on
unsuccessful stop trials numerically longer than the mean RT on go trials.

Then, a second method recommended by Verbruggen et al., 2019 was used to estimate
SSRT: the integration method with replacement of go omissions. This method is de-
scribed as the authors as the most reliable and least biased SSRT estimates.

To do so, for each subject, we:

1. ranked the RT of all go trials with a response in ascending order,

2. assigned the maximum RT to the omitted Go trials (i.e., those where the participants
would not have responded at all)

3. determined the nth RT with n = the number of RT in the RT distribution of the go
trials multiplied by p(respond|signal). In our case we have 48 Go trials, we should
then, for each subject calculate n = 48*p.

4. calculated the SSRT as in the equation

SSRTb = nthfastestRT −mean(SSD)

In the ideal case where p = 0.5, n = 48*0.5 = 24 so the nth fastest RT equalsmedian(RTs
of go trials) and we should therefore obtain the same score as with the first calculation
method (SSRTa = SSRTb).

As with the previous calculation method, SSRTs were deleted for subjects with a
p(respond|signal) lower than 0.25 or higher than 0.75 and for subjects with a mean RT on
unsuccessful stop trials numerically longer than the mean RT on go trials.

81



The APEX project

Previous studies have found SSRT of young adults close to 200 ms when they try to
interrupt continuous actions such as typing (Logan, 1982), overlearned responses, such as
speaking (Ladefoged et al., 1973). The similarity of stop results has been interpreted as
support for a model with one stopping mechanism that can be used to stop a variety of
actions (see Logan, 1994).

Figure 33: Stop signal distribution before and after training. The top panel corre-
sponds to the children, the bottom one to the adolescents. The left panel corresponds to
pre-training distribution, right panel to post-training. Training groups are represented in
color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

4.5.2.4 Descriptive results The behavioral data for the stop signal task in the APEX
project can be found in Table 3. Distribution plots are disposed in Figure 33. Of note, this
task has been further investigated in the following experimental studies.

4.5.3 Simon task

4.5.3.1 Simon effect The Simon task (Simon and WOLF, 1963) is based on stimulus-
response compatibility and assesses the extent to which prepotent association with irrele-
vant spatial information affects participants’ response to task-relevant non-spatial informa-
tion. The so-called Simon effect (Simon and Berbaum, 1990) refers to the fact that spatially
arranged responses (e.g., with left or right hands) to nonspatial stimulus features (e.g., stim-
ulus shapes) are faster when the task-irrelevant stimulus location and the response location
are compatible than when they are incompatible.
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Simon and Berbaum, 1990 considered the eponymous effect to be rooted in a processing
competition occurring during response selection. He claimed that the location of a stimu-
lus elicits an unlearned tendency to respond in its direction. When the required response
is directionally opposite this natural tendency, the observer must overcome the latter in se-
lecting the correct response, an effort that yields the Simon effect. Although many theorists
do not subscribe to Simon’s idea of reflexive orienting (e.g., Dutta and Proctor, 1992), there
is widespread agreement (see Lu and Proctor, 1995) that the Simon effect emerges primarily
from competition at a response-selection stage (Melara et al., 2008).

A common approach for characterizing response competition is embodied in dual-route
models of the Simon effect (Hommel, 1993; Ridderinkhof, 2002). In these models, Simon ef-
fect arises because the spatial position of the stimulus directly activates or primes a response
position (direct route), which, for incongruent trials, differs from the response position de-
fined by the instructed stimulus– response assignment (conditional route; Schacht et al.,
2010). Response selection is facilitated on the congruent trials of a Simon task – those in
which the location of the correct response coincides with the actual stimulus location – be-
cause fast automatic activation primes the code for the correct response. However, response
selection is hindered on the incongruent trials – those in which the location of the correct
response mismatches the stimulus location. Indeed, the intentional route must inhibit the
automatically primed response code before selecting the correct one, a competitive process
that yields response interference (Melara et al., 2008; Schacht et al., 2010).

Electrophysiological studies have provided strong evidence in favor of response con-
flicts in the Simon tasks by demonstrating early and transient incorrect response activa-
tion in the case of incompatible trials followed by activation of the correct response (e.g.,
Stürmer et al., 2002i).

To be noted, there are other accounts of the Simon effect as well (Melara et al., 2008).

Developmental investigations of the Simon task have revealed substantial age-related
gains in cognitive control between childhood and adulthood as evidenced by reductions in
the size of the Simon effect (e.g., Davidson et al., 2006).

4.5.3.2 Task design As for the other tasks, the Simon task presented in the cognitive
battery featured two training blocks followed by an experimental block.

In the implementation of this task, stimuli (a butterfly and a frog) are presented on
the left or right side of the screen. Participants must press the e key when they see the
butterfly (located on the left side of the keyboard) and the p key (on the right side of the
keyboard) when they see the frog. On congruent trials, the correct response for a stimulus
was on the same side as that stimulus; on non-congruent trials, the correct response was on
the opposite side. Irrelevant location information leads to longer reaction times (RTs) for
incongruent items. The extra time required to respond to incongruent items is the Simon
effect. The Simon effect refers to the fact that responses are faster when the location of the
stimulus matches the location of the assigned response. A key-press response to a word
(located, for example, on the left) is faster when the word appears in a congruent position
(here, left side) than when it appears in an incongruent position (right side).
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The first practice block included 6 trials was proposed to allow an associative learning
between the stimuli (a drawing of a frog and another of a butterfly) and the answer buttons.
Stimuli appeared successively on the center of the computer screen. Their order of presen-
tation was randomized (3 trials per stimulus). The participant was instructed to press the
associated key as quickly as possible and without making a mistake. In order to facilitate
the memorization of the keys, stickers with the corresponding drawing were previously
glued to the computer keyboard. A butterfly sticker was stuck on the "e" key, lateralized to
the left. A frog sticker was stuck on the "p" key, lateralized to the right. Thus, participants
had to press the key "e" in the case of a butterfly stimulus and the key "p" in the case of
a frog stimulus. During the whole exercise, the participant were asked to keep their left
index finger above the "e" key and their right index finger above the "p" key. The visual
stimulus always appeared after a 500 ms fixation cross.

The second practice block was proposed to really practice the task. It was composed
of 8 trials (4 per stimulus) of which half were incongruent. This time the stimuli were no
longer presented in the center of the screen but in a rectangular frame. This frame had a
central fixation cross and the stimuli were presented in the frame, either to the left or to
the right of the cross. The distance between the central cross and the stimulus could vary,
as the stimulus could be close, far or very far from this cross (see Figure 34).

On congruent trials, the correct response for a stimulus was on the same side as that
stimulus (a butterfly on the left side of the screen or a frog on the right side); on incongruent
trials, the correct response was on the opposite side (a butterfly on the right side of the
screen or a frog on the left side). As soon as the participant pressed the answer button,
the computer told him/her if his/her answer was successful ("Good answer!!!") or not ("Bad
answer"). If the participant did not answered within the time limit of 7000ms, the message
"Answer faster" was displayed.

After these two practice blocks, the experimental block started. The proposed Simon
task was composed of 48 trials, half of which were incongruent trials. As in the practice
blocks, participants responded by pressing a key on the keyboard, ’e’ for butterfly, ’p’ for
frog. Each trial was presented for a duration of 3000ms, and in order for their response to be
taken into account, participants were required to respond during this stimulus presentation
period.

4.5.3.3 Simon effect Two Simon scores were calculated as below.

RT Simon effect = mean(RTs for incongruent successful trials) - mean(RTs for congruent suc-
cessful trials)

Accuracy Simon effect = mean(accuracy for incongruent trials) - mean(accuracy)

Intra-subject correction was applied to exclude premature or too slow responses. As for
the other tasks, the MAD correction was applied.
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Figure 34: Simon task’s stimuli. The top two trials are incongruent trials, the bottom
stimulus trials are congruent trials. For the top two trials, the distance between the central
cross and the stimulus is medium, for the 3rd trial the stimulus is close to the cross and for
the last one, the stimulus is very far from the cross.

4.5.3.4 Descriptive results Behavioral data for the Simon task of the APEX project can
be found in Table 3. Distribution plot is disposed in Figure 35.

4.5.4 Attention network task

4.5.4.1 ANT theory TheAttention network task or test (ANT) assesses vigilance (alert-
ness), spatial orientation and attentional control and can easily be performed by children,
patients or monkeys (Fan et al., 2002).

The ANT combines a cued reaction time task (Posner, 1980) and a flanker task (Eriksen
and Eriksen, 1974). In the classic ANT, rows of arrows are presented on the screen, pointing
to the left or right. The target is an arrow pointing left or right in the center of the screen.
It can be surrounded on either side by arrows pointing in the same direction (congruent
condition), in the opposite direction (incongruent condition), or by lines without arrows
(neutral condition). Participants must identify the direction of the target (middle arrow) by
pressing the left mouse button when the middle arrow points to the left and right when it
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Figure 35: Simon effect distribution before and after training. The top panel corre-
sponds to the children, the bottom one to the adolescents. The left panel corresponds to
pre-training distribution, right panel to post-training. Training groups are represented in
color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

points to the right.

This task was developed to assess the operation of the attention system across three
kinds of attention processing: alerting, orienting, and executive control (Posner and Pe-
tersen, 1989).

The alerting condition of the ANT reflects the extent to which there is a benefit of tem-
poral cueing tomaintain cognitive vigilance. To assess orienting, a spatial cue is used before
onset of the primary stimulus which reveals the efficiency with which subsequent targets
can be located in space. Executive function is assessed by using peripheral or flanking ar-
rows incongruent with a central target arrow that requires quick decisionmaking, response
coordination, and execution (Togo et al., 2015).

Studies in adults observed that these three networks are uncorrelated but that there are
some interactions in which alerting and orienting can modulate the degree of interference
from flankers (Fan et al., 2002). This executive control network is also under the influence of
working memory as individual differences inWMC reflect variation in the ability to control
attention (Redick and Engle, 2006).

Development of each of these networks is debatted in the literature.

A first study used an adapted ANT in children from 6 to 9 years-old and showed that re-
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action time and accuracy improved at each age interval (Rueda et al., 2004). More precisely,
regarding each network, alertness showed evidence of change up to and beyond age 10,
while conflict scores appeared stable after age seven and orienting scores did not change in
the age range studied. Moreover, children, as adults, showed independence between these
three networks (Rueda et al., 2004).

On the other hand, results from more recent studies (Pozuelos et al., 2014) revealed
separate developmental trajectories for each attention network in children from 6 to 12
years old. Developmental changes in orienting were mostly observed on response accu-
racy between middle and late childhood, whereas executive attention showed increases in
efficiency between 7 years and older ages, and further improvements in late childhood. Sig-
nificant interactions between alerting and orienting, as well as between each of these and
the executive attention network, were observed. Indeed, both alerting and orienting cues
modulated the magnitude of the flanker interference effect.

Another developmental study in children from 6.5 to 12.5 years old found evidence for
developmental changes to alerting and executive control but stable orienting (Mullane et
al., 2016). More precisely, there was evidence for continued development of the alerting
network in this cohort and it seemed that alerting had not yet achieved the adult form
at 12.5 years-old. Regarding networks interaction, orienting interacts with alerting and
with executive control in a manner similar to what has been observed in adults whereas
interaction between alerting and executive control was at the opposite to the pattern that
is common in adults.

Finally, another study in EEG on children from 4 to 13 years and on adults revealed
protracted developmental curves for orienting and executive attention scores, while no dif-
ferences were observed on the alerting score (Abundis-Gutiérrez et al., 2014). Both alerting
and orienting interacted with conflict processing by the executive attention network but
the Orienting and Executive networks interactions was only observed after about age 7.

4.5.4.2 Task design In APEX, the child version of the ANT from Rueda et al., 2004
was proposed with arrows being replaced by drawing of fishes to engage participants more
easily. Participants received the instruction to feed the middle fish by pressing the mouse
button corresponding to it swimming direction. This fish was surrounded by 2 other fishes
on each side that could swim in the same direction or not.

Each trial began with a central fixation cross. The target array was a yellow colored line
drawing of either a single yellow fish or a horizontal row of five yellow fish, presented above
or below fixation, over a blue–green background. The participant was to respond based on
whether the central fish was pointing to the left or right by pressing the corresponding
left or right key on the mouse (see Figure 36). On congruent trials the flanking fish were
pointing in the same direction, on incongruent trials the flankers point in the opposite
direction from the central fish, and on neutral trials the central fish appeared alone (Fan
et al., 2002). Each target was preceded by one of four warning cue conditions: a center cue,
a double cue, a spatial cue, or no cue. In the center cue condition, an asterisk is presented
at the location of the fixation cross. In the double cue condition, an asterisk appears at
the locations of the target above and below the fixation cross. Spatial cues involve a single
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asterisk presented in the position of the upcoming target

A session of the ANT consisted of a total of 8 practice trials and two experimental blocks
of 48 trials in each. Each trial represented one of 12 conditions in equal proportions: three
target types (congruent, incongruent and neutral) × four cues (no cue, central cue, double
cue and spatial cue). Participants indicate their responses via a right or left button-press on
a mouse. Accuracy and reaction time are recorded.Each trial began with a fixation period
of a random variable duration of between 400 and 1600 ms. Subsequently, on some trials a
warning cue was presented for 150 ms. A brief fixation period of 450 ms appeared after the
disappearance of the cue, followed by either the simultaneous appearance of the target and
flanker, or by the appearance of the target alone. This display remained on the screen until a
response was detected, to amaximum of 1700ms. After responding,the participant received
auditory and visual feedback from the computer. For correct responses a simple animation
sequence showed the target fish blowing bubbles and the participant was presented with
a recording of child exclaiming “Woohoo!”. Incorrect responses were followed by a single
tone and no animation of the fish

Participants were told that a hungry fish would appear on the screen and they were
instructed to feed the fish by pressing the button on the mouse that matched the way the
fish was pointing. They were first shown index cards of the single rightward and leftward
fish stimuli (corresponding to the neutral condition) and were asked to demonstrate which
button on the mouse would successfully feed the fish. They were then told that sometimes
the hungry fishwould be alone, theway they had just seen, and sometimes the fishwould be
swimming with some other fish as well. They were instructed that in this case they should
pay attention to the fish in the middle and feed that fish using the mouse.The experimenters
then showed the participants cue cards showing the stimuli in a congruent configuration
and an incongruent configuration and asked them to demonstrate which button they should
press to feed the fish in themiddle. Finally, participants were instructed tomaintain fixation
on the cross in the center of the screen throughout the task and to respond as quickly and
accurately as possible

4.5.4.3 Interference score Three scores can be extracted from the ANT, each corre-
sponding to an attentional network (see above):

• Alerting score = mean(RTs for No Cue successful trials) - mean(RTs for Double Cue suc-
cessful trials)

• Orienting score = mean(RTs for Central Cue successful trials) - mean(RTs for Spatial Cue
successful trials)

• Conflict score = mean(RTs for Incongruent successful trials) - mean(RTs for Congruent
successful trials)

In the APEX project, as the main interest is inhibitory control, only the conflict score was
analyzed. Intra-subject correction was applied to exclude premature or too slow responses.
As for the other tasks, the MAD correction was applied.
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Figure 36: ANT design. The child version of the task is from Rueda et al., 2004.

4.5.4.4 Descriptive results Behavioral data for the ANT in the APEX project can be
found in Table 3. Distribution plot is disposed in Figure 37.

4.5.5 Trail Making Test

4.5.5.1 Behind the task The Trail Making Test (TMT) is a neuropsychological instru-
ment used as an indicator of cognitive processing speed and executive functioning (Reitan
and Wolfson, 1992).

This timed test consists of two parts. In Part A, numbers from 1 to 25 are spread across
the page and participants are asked to draw lines connecting the numbers in ascending
order, starting with 1, without lifting the pencil from the page. Part B contains numbers
from 1 to 12 and letters from A to L. The participant must then connect the symbols by
alternating numbers and letters, i.e. 1-A-2-B-3-C... 12-L. The direct score is the time in
seconds required to complete each A and B part. Other derived scores can also be computed:
the difference score (B-A), the ratio score (B : A) and the logarithmic transformation of B :
A (Log B : A), which aims at reducing the potential impact of scatter in the scores.

In particular, this task requires inhibitory (ignoring irrelevant symbols) and flexibility
(switching between symbols by switching from numbers to letters, depending on the cur-
rent rule) abilities. In addition, the presence of conflict creates conditions in which the
demands of the executive are greater (Part B) or lesser (Part A).
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Figure 37: ANT conflict scores distribution before and after training. The top panel
corresponds to the children, the bottom one to the adolescents. The left panel corresponds
to pre-training distribution, right panel to post-training. Training groups are represented
in color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

4.5.5.2 Task design The TMT of APEX was one of the few paper and pencil tasks. It
was adapted for children and adolescents in number of stimuli to connect.

Instead of 25 numbers in Part A, only 15 numbers were present on the page. Similarly,
Part B contained numbers from 1 to 8 and letters from A to G (see Figure 38).

Before each Part, a training was proposed to be certain that the participant understood
the instruction. The training of Part A contained numbers from 1 to 8. This training was
not just a sample from the experimental part as the numbers were not disposed at the same
emplacements in both parts. The training of Part B contained numbers from 1 to 4 and
letters from A to D. In the same way, stimuli were not disposed at the same place on the
training sheet and on the experimental sheet.

The participants were timed during the experimental part only and, if they made a
mistake (connected the wrong stimuli or omitted one stimulus), the time didn’t stop before
they corrected their mistake.

4.5.5.3 Flexibility score The TMT score, of flexibility score, was calculated based on
the difference score.

Flexibility score = Time to complete Part B - Time to complete Part A
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Figure 38: Trail Making Test design. This version of TMT is adapted for children.

No intra-subject correction was applied as they were only two trials, part A and part B.

4.5.5.4 Descriptive results Behavioral data for the Trail Making Test of the APEX
project can be found in Table 3. Distribution plot is disposed in Figure 39.

4.5.6 N-back

4.5.6.1 Behind the task The N-back task (e.g., Cohen et al., 1997; Gevins and Cutillo,
1993) is a continuous performancemeasure inworkingmemory. It is a popular paradigm for
studying working memory in neuroimaging research The subject must press the left mouse
button when the square on the screen is at the same position as the square that appeared
n trials before, and otherwise click the right button. The more n increases, the greater the
cognitive load and the more the working memory is solicited. Thus, in its higher cogni-
tive load conditions (at 2-back and 3-back), this task reinforces the demands on working
memory.

4.5.6.2 Task design The N-back was divided in three levels.

At each level, a black square was presented on a grey font screen. Participants were
instructed to press the left mouse button when the square on the screen is at the same
position as the square that appeared n trials before, and otherwise click the right button.

The participants first received a general instruction about the task and then, before each
level, they received a more precise instruction. Therefore, when the task started with the
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Figure 39: Trail Making scores distribution before and after training. The top panel
corresponds to the children, the bottom one to the adolescents. The left panel corresponds
to pre-training distribution, right panel to post-training. Training groups are represented
in color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

first level where n = 1, they were asked to press the left mouse button when the square on
the screen is at the same position as the square that appeared one trial before, and otherwise
click the right button (see Figure 40).

For this first level, right after the instruction, participants had a practice block to be sure
the instruction was properly understood. This practice block contained 5 trials. After this
practice block, an experimental block of 21 trials started.

At the end of the first level, the task continued to the level n = 2. As before, participants
were showed the personalized instruction and then they could practice this time for 6 trials.
After this practice block, the experimental block of 22 trials started.

The task ended with the level n = 3. As before, participants were showed the personal-
ized instruction and then they could practice for this level for 5 trials. After this practice
block, the experimental block of 23 trials started.

For the n first trials, as there were no stimulus to compare the position before, par-
ticipants were instructed to answer false so to click on the right button. Therefore, all
experimental blocks contained really 20 experimental trials with a stimulus to compare the
target to.
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Figure 40: N-back design for n = 2. This figure was presented to the participants during
the instruction to be sure they had understand the task correctly.

4.5.6.3 Updating score Three Updating score were calculated based on RT for success-
ful trials:

Nback31 = mean(RTs for successful trials at level 3) - mean(RTs for successful trials at level 1)
Nback21 = mean(RTs for successful trials at level 2) - mean(RTs for successful trials at level 1)
Nback32 = mean(RTs for successful trials at level 3) - mean(RTs for successful trials at level 2)

Intra-subject corrections were applied to exclude premature or too slow responses. As
for the previous tasks, the SD and the MAD corrections were applied. We thus obtained
nine scores: a score without any intra-subject correction, a score with a SD correction and
a score with a MAD correction, each per difference of levels. For the rest of the analysis,
we focused on the Nback21 with a MAD correction.

4.5.6.4 Descriptive results Behavioral data for the N-back task in the APEX project
can be found in Table 3. Distribution plot is disposed in Figure 41.

4.5.7 Univariate statistical analyses

Note: For inferential analyses and in the rest of the manuscript, we will focus on
the AC and IC training groups.

Training-related changes in task efficiency were evaluated with classical univariate sta-
tistical analyses (Analyses Of Variances, ANOVAs). ANOVAs were conducted separately
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Figure 41: N-back (level 2-1) distribution before and after training. The top panel
corresponds to the children, the bottom one to the adolescents. The left panel corresponds
to pre-training distribution, right panel to post-training. Training groups are represented
in color (blue for Active Control, yellow for Inhibitory Control and red for Mindfulness).

for each of the six EF tasks for the two age groups and the two training groups (AC and
IC). In order to assess possible group-specific effects, complementary ANOVAs were run
for each task, including age group (children vs adolescents) and training group (IC vs AC)
in the models. The repeated-measures ANOVAs were estimated using mixed-effects linear
models. We used the package lme4 (Bates et al., 2012). with the Time (pre- or post-training)
as fixed effects and intercepts for subjects as random effects. P-values were obtained by
using likelihood ratio tests of the full model, including the tested effect against the model
without the tested effect.

Children Adolescents
Pre IC-training Pre AC-training Post IC-training Post AC-training Pre IC-training Pre AC-training Post IC-training Post AC-training
Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

SST 0.26 ± 0.08 0.25 ± 0.08 0.21 ± 0.06* 0.23 ± 0.08 0.16 ± 0.03 0.16 ± 0.03 0.15 ± 0.04 0.16 ± 0.03
Stroop 0.11 ± 0.16 0.13 ± 0.15 0.06 ± 0.10* 0.08 ± 0.16 0.07 ± 0.09 0.09 ± 0.08 0.04 ± 0.05 0.06 ± 0.07*
Simon 0.04 ± 0.03 0.04 ± 0.03 0.03 ± 0.03 0.03 ± 0.04 0.08 ± 0.05 0.08 ± 0.06 0.02 ± 0.02◦ 0.02 ± 0.02
ANT 0.04 ± 0.03 0.03 ± 0.03 0.06 ± 0.04** 0.05 ± 0.04** 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02 0.04 ± 0.03
TMT 22.14 ± 12.01 18.18 ± 10.04 16.40 ± 9.07◦ 15.03 ± 6.66 6.87 ± 3.63 9.62 ± 4.73 7.83 ± 4.33 8.71 ± 4.15
N-back 0.09 ± 0.23 0.10 ± 0.20 0.06 ± 0.23 0.12 ± 0.24 0.04 ± 0.07 0.06 ± 0.08 0.07 ± 0.11 0.09 ± 0.11

Table 3: Efficiency of EFs in children and adolescents before and after an active
control (AC) or an inhibitory control (IC) training. For all tasks, scores were derived
from RTs (in s). Training-related changes in task efficiency were evaluated with repeated
measures ANOVAs. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001. SST = stop signal
task; TMT = trail making test.
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Complementary analyses, including age and training groups as factors in order to in-
vestigate possible age- and training-specific effects, only revealed significant main effects
of the age group for SST (p = 1.3x10-5), for TMT (p = 0.01) and for Simon (p = 0.04) but
no interactions effect involving the age nor the training group (all ps > 0.27; see details of
the analyses in Table S1). Post-hoc analyses, with Tukey correction for multiple testing,
revealed significant pre-post changes in children in IC group for SST (p = 0.009) and TMT
(p = 0.03).

Main effects Interaction effects
Time Training Age Time*Training Time*Age Age*Training Time*Training*Age
χ2, p χ2, p χ2, p χ2, p χ2, p χ2, p χ2, p

SST 0.01, 0.91 0.06, 0.81 18.96, 1.34e-05 0.07, 0.79 0.38, 0.54 0.72, 0.40 1.05, 0.31
Stroop 1.24, 0.27 0.08, 0.78 0.60, 0.44 0.08, 0.77 0.07, 0.80 0.05, 0.82 0.10, 0.75
Simon 1.88, 0.17 0.40, 0.53 4.16, 0.04 0.00, 0.98 0.23, 0.63 0.76, 0.38 0.04, 0.84
ANT 0.14, 0.71 0.00, 0.98 1.74, 0.19 0.41, 0.52 2.52, 0.11 0.04, 0.83 0.24, 0.62
TMT 0.16, 0.69 0.19, 0.66 7.78, 0.01 0.31, 0.58 1.07, 0.30 0.70, 0.40 1.05, 0.31
N-back 0.19, 0.66 0.08, 0.78 0.63, 0.43 0.00, 0.96 0.15, 0.70 0.54, 0.46 0.88, 0.35

Table 4: Main and interaction effects of a repeatedmeasuresANOVAswith Time (pre-
vs post-training), Training (IC vs AC) and Age (children vs adolescents) as fixed effects and
with intercepts for subjects as random effects.

Of note, Welch Two Sample t-tests revealed no significant differences between the two
training groups at pretest except for TMT in adolescents (t (39.39) = -2.16, p < .05) where
adolescents affected to the IC training showed lower score (6.87 ± 3.63) than those whowere
affected to the AC training (9.62 ± 4.73). All other ps > .17. See details of raw pretraining
and posttraining scores for the three EF tasks in Table 1 and in the radar-plots representing
the relative changes after the two types of training in Figures 48 & 49.

To conduct these analysis, only participants who followed at least 15 IC or AC training
sessions were included. Thereafter, for all analyses focusing on training effects (and thus
post-test scores), only subjects who completed at least 15 training sessions will be included.
This reduced sample was composed of 57 children (24 males, M ± SD = 9.79 ± 0.55 years,
range = 9–10 years) and 46 adolescents (13 males, M ± SD = 16.56 ± 0.50 years, range =
15–17 years). For other studies concerned only with pre-training executive abilities (e.g.,
Study 4), all subjects who completed the pre-test will be included.
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Figure 42: Stop signal scores before and after IC- and AC-training, in children and
adolescents. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.

Figure 43: Color-word Stroop scores before and after IC- and AC-training, in chil-
dren and adolescents. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.
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Figure 44: Simon scores before and after IC- and AC-training, in children and ado-
lescents. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.

Figure 45: ANT scores before and after IC- and AC-training, in children and adoles-
cents. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.
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Figure 46: ]
TMT scores before and after IC- and AC-training, in children and adolescents.

Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.

Figure 47: N-back scores before and after IC- and AC-training, in children and ado-
lescents. Significance levels: ◦ < .10; * < .05; ** < .01; *** < .001.
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Figure 48: Relative changes in EF tasks after cognitive training in children. The radar
graphs represent relative changes after Active Control (AC, in orange), Inhibitory Control
(IC, in yellow) and Mindulness (in green) trainings. Values corresponds to -log(p) with p
being the main effect of training in the repeated ANOVA presented in Table 3.

Figure 49: Relative changes in EF tasks after cognitive training in adolescents. The
radar graphs represent relative changes after Active Control (AC, in orange), Inhibitory
Control (IC, in yellow) and Mindulness (in green) trainings. Values corresponds to -log(p)
with p being the main effect of training in the repeated ANOVA presented in Table 3.
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Study 1

Study 1: Networkanalysis of EF changes
with age and training

This study led to a manuscript: Menu,
I., Rezende, G., Le Stanc, L., Borst, G.* &
Cachia, A.* (accepted). A network
analysis of executive functions before
and after computerized cognitive
training in children and adolescents.
Scientific reports.

In this first study, we investigated the impact of an inhibitory control training and de-
velopment on the organization of EFs, with the hypothesis that training could accelerate
development, using network models.
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1 Introduction

As we have seen in the section 1.4.2 of the General Introduction, studies have investigated
the structure of EFs to determine the extent to which (a) they reflect distinct or common
abilities and (b) these abilities become more specific with age. Using structural equation
modeling (SEM), Miyake et al., 2000 proposed a hierarchical structure of EFs, with three
latent factors representing each EF domain. In adults, these latent factors are separable (EF
diversity), although they share a significant proportion of variances (EF unity, or common-
EF ability) (Friedman et al., 2011). The EF organization evolves from a one-factor structure
in early childhood with no clear separation among EF tasks (Shing et al., 2010; Wiebe et al.,
2008; Willoughby et al., 2012; Xu et al., 2013) to a two- to four-factor structure in adoles-
cence (Agostino et al., 2010; Friedman et al., 2016; Lee et al., 2013; McAuley and White,
2011; Wu et al., 2011; Xu et al., 2013). Of note, some studies also reported an organization
with more than one factor in young children (Wu et al., 2011) and fewer than three factors
in older children (Huizinga et al., 2006). A recent meta-analysis (Karr et al., 2018) tested
seven models of EF structure and found some evidence for greater unidimensionality of
EFs among child/adolescent samples and both unity and diversity among adult samples.
The developmental organization of EFs (Lee et al., 2013) is also supported by a brain imag-
ing study reporting an increasing segregation of structural brain network modules with
age, and this segregation mediates the effects of age on EFs (Baum et al., 2017). In addi-
tion, a recent behavioral study on children from 7 to 15 years (Hartung et al., 2020) found
that age mostly impacts the common-EF loadings of IC and CF. Hence, while in childhood,
WMU, CF and IC likely rely on similar underlying cognitive processes, in adolescence, EFs
become more specialized and independent.

Because EFs are implicated in learning, academic achievement, psychiatric health, and
everyday functioning (see section 1.3 of the General Introduction; Best et al., 2011; Dia-
mond, 2013), several intervention programs have tested the possibility of stimulating var-
ious aspects of EFs, including IC (see section 6.2 of the General Introduction; Diamond,
2013; Hu et al., 2017; Jaeggi et al., 2011; Liu et al., 2015; Xu et al., 2020; Zhao et al., 2015).
But, to date no EF training studies have assessed the extent to which EF training changes
the structure of EFs.

Another way to understand EF organization and how it changes with age is to use net-
work modeling (NM), a graph theory based-approach allowing us to describe the structure
of complex systems (Newman, 2018). The underlying principle of NM is that systems can
be represented as nodes that are interconnected with edges (the thicker the edges are, the
stronger the interconnection). The complete graph (nodes and edges) summarizes the pat-
tern of relations among the elements (Barabási, 2012). While in SEM, shared variance of
observed variables (e.g., scores on cognitive tasks) is assumed to reflect a latent construct
(e.g., IC or WMU), in NM, shared variance is assumed to reflect a causal network (van Bork
et al., 2019).

NM applied to EFs allows us to identify which nodes (here, a specific EF task) play a
pivotal role within the whole network (here, different EF tasks). In addition, NM has the
potential to test theoretical models on how EF structures transform with age and more
specifically which components can become more central to general executive processing
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and, therefore, have a greater influence on other EF processes with age. Using NM on a
twin cohort aged 7 to 15 years of age, Hartung et al., 2020 found that the interconnections
between EF tasks remained stable with age except for the inhibition tasks, whose shared
variance with the other tasks was reduced with age. These findings provided convergent
evidence that IC is particularly important for allowing young children to employ other EFs
in pursuit of goals but plays a smaller role in regulating other EFs later in development
(Best et al., 2011; Huizinga et al., 2006; Isquith et al., 2004). NM can also provide interesting
insights into the effects of training on the structure of cognitive functions. To date, only
one study has used NM to treat such effects in young adults (Roca et al., 2019). The study
showed that the interconnections between 25 variables related to mindfulness, compassion,
psychological well-being, psychological distress and emotional-cognitive control changed
after a mindfulness-based stress reduction (MBSR) program.

In the present study, we investigated how the structure of EFs was affected by training
IC in children and in adolescents using NM. By using such an approach, we aimed to de-
termine whether training speeds up the development of EFs or qualitatively changes the
development of EFs by deviating from the developmental trajectory typically observed from
childhood to adolescence (Jolles and Crone, 2012). We reasoned that if training IC speeds up
the development of IC, then training-related changes should mimic developmental-related
changes, namely, the structure of EFs in children after IC training but not after control
training should be more similar to the structure of EFs in adolescents than before training.
On the other hand, if training IC changes the developmental trajectories of IC, then the
structure of EFs in children after IC training should differ from that before training (but
not after control training) and from the structure of EFs in adolescents. This study, which
is preliminary given the sample size, will allow testing these hypotheses before replication
on an independent sample.

2 Material and Methods

2.1 Participants

Of the APEX cohort, 124 participants of the IC and AC training groups, 67 children (29
males, M ± SD = 9.8 ± 0.54 years, range = 9–10 years) and 57 adolescents (20 males, M =
16.7 ± 0.56 years, range = 15–17 years) were included for the pre-test network analysis. Of
these, 103 participants completed a minimum of 15 training sessions and were included for
the post-test network analyses (pre-hoc inclusion criteria): 57 children (24 males, M ± SD =
9.79 ± 0.55 years, range = 9–10 years) and 46 adolescents (13 males, M ± SD = 16.56 ± 0.50
years, range = 15–17 years).

2.2 Evaluation of EFs

As we have seen in the General Method section, participants performed a cognitive bat-
tery measuring different facets of EFs in the pre- and post-training sessions. Six tasks were
administered to measure the three EFs: cognitive flexibility (in this study referred to as
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switching), working memory updating (in this study referred to as updating), and IC. The
task used to identify the switching factor was the trail making test (TMT) (Reitan andWolf-
son, 1992) and for the updating factor, the N-back task (Kirchner, 1958) was used. Four tasks
were used to identify the IC factor: the Color-Word Stroop (Stroop, 1935), the Stop-Signal
task (Logan, 1994), the Simon task (Simon and WOLF, 1963) and the ANT (Attention Net-
work Task) (Fan et al., 2002); each of these tasks taps on different aspects of IC: Stroop on
interference control, stop signal and Simon on response inhibition and ANT on attentional
inhibition (Diamond, 2013; Tiego et al., 2018). To limit potential differences in familiarity
with the Stroop and Stop-Signal tasks used in the pre- and post-training sessions between
participants of the IC and AC groups, we introduced a number of differences between these
tasks and those used in the IC training sessions: (a) we used no control trials, and we did
not vary the difficulty of the task in the Color-Word Stroop task; (b) the Stop-Signal delay
was adapted on a trial-by-trial basis and not on a block-of-trial basis in the SST.

For each task, scores were screened and cleaned for possible aberrant values using a
nonparametric approach: outliers were defined as values lower than median -2.5 MAD or
greater than median +2.5 MAD (MAD: median absolute deviation) and considered missing
values in the analyses.

2.3 Construction and analysis of cognitive networks

NM were completed with classical univariate statistical analyses (Analyses Of Variances,
ANOVAs) as seen in section 4.5.7 of the General Method. Like for NM, ANOVAs were
conducted separately for each of the six EF tasks for the two age groups and the two training
groups. In order to assess possible group-specific effects, complementary ANOVAs were
run for each task, including age group (children vs adolescents) and training group (IC vs
AC) in the models.

The repeated-measures ANOVAs were estimated using mixed-effects linear models. We
used the package lme4 (Bates et al., 2012) with the Time (pre- or post-training) as fixed ef-
fects and intercepts for subjects as random effects. P-values were obtained by using likeli-
hood ratio tests of the full model, including the tested effect against the model without the
tested effect.

Then, separate networks, based on the correlation matrix of the EF task scores, were
built for children and adolescents before training (pretest) and after training (inhibitory
control training: posttest IC; active control training: posttest AC). Six networks (3 per age
range) were estimated. These networks included 6 nodes corresponding to the scores of
the 6 cognitive tasks, which we grouped into three EFs:

• Inhibitory control: Color-Word Stroop, stop signal, Simon, and ANT scores (for
stop signal, we calculated the stop signal reaction time - SSRT as recommended (Ver-
bruggen et al., 2019), and, for the other tasks, we calculated the difference in reaction
time (RT) between incongruent and congruent trials)

• Switching: TMT flexibility score (RT difference between TMT-B and TMT-A)
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• Updating: N-back score (RT difference between the 2-back and the 1-back trials)

The inclusion of trained (Stroop and Stop-Signal) and untrained (Simon and ANT) IC
tasks allowed us to observe the direct effects of IC targeted training on the trained tasks but
also on other IC tasks (intra-EF) and thus, to assess near transfer effects within the same EF.
The inclusion of TMT and N-back allowed us to assess the effects of IC training on other EF
tasks (inter-EFs) and thus to evaluate the effects of a more distant transfer while keeping
the number of nodes limited to 6 (Mansueto et al., 2020).

In addition to the 6-node networks, balanced 3-node networks, with only one node
per EF (stop signal for IC, TMT for switching and N-back for updating), were built. Such
balanced networks overcome the issues for the interpretation of the 6-node network related
to the partial network models that remove shared variance associated with all other EFs
tests in the model (i.e., the relationship between each IC task with switching and updating
involved controlling for other tests IC inhibition).

NM was used to analyze 1) the multiple relations (edges) between the different EF tasks
(nodes) simultaneously and 2) how these relations change during development (children
vs adolescents) and after cognitive training (before vs after training). We used the suc-
cessive steps procedure proposed for network analysis in psychology (Fried et al., 2018):
1) network estimation; 2) network inference (topological characterization); and 3) node
community analysis. The interrelation between the different variables was modeled with
a Gaussian graphical model (GGM; Lauritzen and Wermuth, 1989), a regularized partial
correlation network (RPCN). The edge between two nodes/tasks corresponded to the par-
tial correlation between the two corresponding variables, controlling for the effects of the
remaining variables. We used Spearman correlations, as recommended (Epskamp et al.,
2018).

Statistical analyses were performed using R-statistical software, version 3.6.1 (R Devel-
opment Core Team, 2014). The networkswere constructed and visualized using the package
qgraph version 1.6.4 (Epskamp et al., 2012). As previously recommended (Borsboom et al.,
2018), we investigated the robustness and replicability of the analyses (accuracy check) us-
ing the bootnet package version 1.4 (Epskamp et al., 2018). Figures of edge-weight accuracy
can be found in the Appendix A2.

2.4 Characterization of the networks

The networks were characterized using both quantitative and qualitative measures. Five
classical centrality measures were used to quantitatively characterize the network at node
levels (Opsahl et al., 2010): strength (the sum of the weights of the direct relations of a node
to all other nodes), closeness centrality (the inverse of the total length of all the shortest
paths between the selected node and all other nodes in the network), betweenness centrality
(the shortest path length connecting any two variables), expected influence (the sum of both
positive and negative weights between a node and all the other nodes in the network), and
degree (number of connections for each node in the network), thus defining hubs (nodes
with the highest degree). The community analysis was based on the Spinglass algorithm
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(Reichardt and Bornholdt, 2006) with standard parameters (γ = 1, start temperature = 1,
stop temperature = 0.01, cooling factor = 0.99, spins = 25). The correlation between edge
weights across networks was also estimated.

3 Results

3.1 Developmental analysis: children vs adolescents at baseline (be-
fore training)

We first studied the EF structure in children and adolescents from the analysis of the EF net-
works at pretest before training (see Figure 1.1 and Figure 1.2). Visual inspections indicated
that networks in adolescents present more and stronger connections than in children.

This visual inspection was followed by a quantitative analysis of the network topol-
ogy using classical graph indices (see Figure 1.1 and Figure 1.2). The different indices were
similar in children and adolescents. Three common centrality measures were used to quan-
titatively characterize the network at node levels (Opsahl et al., 2010): strength (a measure
of how strongly a node is directly connected with the network), betweenness centrality
(a measure of how a node is central in connecting other variables) and closeness central-
ity (a measure of how strongly a node is connected indirectly with the network). Higher
closeness centrality indicates that a node (task) is more related, even indirectly, to other
nodes (tasks). Higher strength indicates that a node (task) is more strongly connected to
other nodes (tasks). Because these indices are calculated based on the absolute values of
edge-weights and may therefore miss information on the network structure if negative
relationships between nodes are present (Robinaugh et al., 2016), two other centrality mea-
sures were also used: expected influence (EI), which is the sum of both positive and negative
weights between a node and all the other nodes in the network, and degree, which is the
number of connections for each node in the network, thus defining hubs (nodes with high-
est degree). In both children and adolescents, the variables with the highest betweenness
were also the variables with the highest strength, closeness and EI. However, such central
variables varied with age: in children, the most central nodes included the Stroop, stop
signal and TMT while in adolescents, they included the ANT and TMT. In children, a high
number of relations (i.e., high degree) was generally accompanied by low weights (i.e., low
EI and strength).

In adolescents, analysis of hubs revealed homogeneous results, with similar weights
over the four indices. Overall, these indices were slightly lower in children than in adoles-
cents, reflecting a less connected network in 9-10-year-old children than in 16-17-year-old
children.

We then analyzed the communities. A community corresponds to a set of nodes that
cluster more strongly among each other than with other nodes in the network; such com-
munities reflect high mutual influences among nodes in a given cluster. The community
analysis detected two clusters in each age group’s network (Figures 1.1 and 1.2, left panel).
In children, the two clusters were as follows: 1) Cluster A (in orange), which included 3
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Figure 1.1: Networks for children, before, after an active control training (AC) and
after an inhibitory control (IC) training (left panel) with the corresponding cen-
trality indices (right panel). Color of nodes correspond to the communities. Each number
in the networks corresponds to an EF task (see details in the legend).
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Figure 1.2: Networks for adolescents, before, after an active control training (AC) or
an inhibitory control (IC) training (left panel) with the corresponding centrality
indices (right panel). Color of nodes correspond to the communities. Each number in the
networks corresponds to an EF task (see details in the legend).
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nodes corresponding to executive functioning (stop signal, ANT and TMT); 2) Cluster B
(in blue), which included 3 nodes corresponding to IC and updating (Stroop, Simon and
Nback). In adolescents, the two clusters were as follows: 1) Cluster A (in orange), includ-
ing 3 nodes corresponding to executive functioning (Simon, TMT and Nback); 2) Cluster B
(in blue), including 3 nodes corresponding to IC (Stroop, stop signal and ANT). The only
difference between children and adolescents’ networks was the cluster switch of Stroop
and TMT. Finally, the negative correlation between edge weights across networks (r = -.51)
reflected the differences previously observed in network connectivity.

3.2 Training effects: pretest vs posttest

The changes in EF structure were first investigated using classical univariate repeated-
measures ANOVAs applied to the two age groups and the two training groups separately
(see section 4.5.7 of the General Method). These analyses detected a significant change
in the stop signal (p < 0.05) and Stroop (p < 0.05) along with a marginal change in TMT
(p = 0.09) for children after IC training. In adolescents, a significant change in the stop
signal was detected following AC training (p < 0.05). All the other analyses failed to reach
significance (all ps > 0.14).

Complementary analyses, including age and training groups as factors in order to in-
vestigate possible age- and training-specific effects, only revealed significant main effects
of the age group for SST (p = 1.3x10-5) and for TMT (p = 0.01) but no interaction effects
involving the age nor the training group (all ps > 0.27). Post-hoc analyses, with Tukey cor-
rection for multiple testing, revealed significant pre-post changes in children in IC group
for SST (p = 0.009) and TMT (p = 0.03).

Of note, Welch Two Sample t-tests revealed no significant differences between the two
training groups at pretest except for TMT in adolescents (t (39.39) = -2.16, p < .05) where
adolescents affected to the IC training showed lower score (6.87 ± 3.63) than those who
were affected to the AC training (9.62 ± 4.73). All other ps > .17.

These standard analyses were further investigated by comparing the network structure
in the pretest and posttest for children (Figures 1.1 & 1.3) and adolescents (Figures 1.2 &
1.3).

3.2.1 Cognitive training in children

The children’s 6-nodes-network had a different organization, with denser, more numerous
and stronger connections after training compared to pretest, especially after the IC train-
ing. Almost all variables showed increasing strength (except for the stop signal task) and
closeness (Figure 1.1). Stroop and TMT remained the most central nodes of the network af-
ter IC training. After AC training, most of the variables increased in strength and closeness,
and N-back became the most central node in the network along with TMT. The centrality
indices revealed poor connections at pretest in children (strength < 1 and closeness < 0.03)
while at posttest, strength and closeness increased, but differently after AC and IC training.
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The community analysis (Figure 1.1) detected two communities both pretest and after IC
training and three communities after an AC training. After AC training, the three clusters
were as follows: 1) Cluster A (in orange), including only ANT; Cluster B (in blue), including
Stroop, stop signal and N-back and Cluster C (in green), including Simon and TMT. After
IC training, the two clusters were: 1) Cluster 1 (in orange), including Stroop and TMT and
Cluster B (in blue), including stop signal, Simon, ANT and Nback. Correlations between
edge weights across networks were low both after AC (rAC = -.30) and IC (rIC = -.23) train-
ing indicating few similarities between networks before and after training.

3.2.2 Cognitive training in adolescents

In adolescents (Figure 1.2), the differences in network structure between pretest and af-
ter IC training are less important than in children (see Figure 1.2). Nevertheless, after IC
training, almost all variables except Simon increased in strength and closeness. Analysis
of EI and Degree highlights the centrality of Stroop and Nback, which have the highest
scores in these indices. After AC training, fewer changes occurred with an increase in stop
signal and Simon for both Strength and Closeness. However, these changes were less im-
portant than those after IC training. Community analysis revealed small cluster changes
after training, with two nodes being switched after AC training (TMT and ANT) and after
IC training (ANT and Simon; see details in Figure 1.2). As for centrality indices, changes in
communities were less important in adolescents than in children.

Correlations between edge weights across networks between pretest and posttest were
low in both AC (rAC = -.08) and IC training (rIC = -.11), supporting very few similarities
between networks before and after training. In addition to the 6-node networks, a comple-
mentary analysis of balanced 3-node networks, where each node represented an EF (stop
signal for IC, TMT for switching and N-back for updating; Figure 1.3), was performed. The
stop signal, the IC task with the most significant progression after training (see pre-post
changes in Table 3), was selected as IC measure. This analysis provided similar results to
the previous analysis obtained with the 6-node network, namely greater network connec-
tions in childhood than in adolescence and similar network changes related to training and
to development.

4 Discussion

In this study, we report the first NM analysis of EF structure changes with age and cogni-
tive training. Based on the hypothesis that training mimics development and can therefore
accelerate cognitive changes with age, we anticipated a switch from a centralized to a dis-
tributed EF network from childhood to adolescence (Baum et al., 2017; Miyake et al., 2000;
Zink et al., 2020) as well as in children after IC but not AC training.

Quantitative and qualitative differences were detected in the EF network structure be-
tween children (9-10 years) and adolescents (16-17 years). The increased connections with
age between children’s and adolescents’ networks between tasks tapping different EF do-
mains support the previously reported increasing shared variance among EF variables dur-
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Figure 1.3: Three-nodes networks for children adolescents, before, after an active
control training (AC) or an inhibitory control (IC) training.
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ing development (Xu et al., 2013). This increased number of connections was confirmed by
an increased overall centrality in adolescents compared to children. These findings are also
consistent with a study on the development of EF structure from 7 to 15 years of age report-
ing increased centrality indices (closeness and strength) for EF tasks after 13 years of age
(Hartung et al., 2020). Our results also support a recent cross-sectional study using network
analysis to examine changes in EF organization from 3 to 85 years of age (Karr et al., 2022).
This study reported an increase in inter-EFs connections (increasing strength and expected
influence) from 15.5 years of age (Karr et al., 2022), consistently with our findings. However,
this study also demonstrated that this increase was preceded by a decrease in the centrality
indices from early childhood. Our two age groups are thus just around the point of inver-
sion, it might thus be interesting in the future to extend our analyses with participants just
at the point of inversion. Moreover, an accelerated longitudinal design study also suggested
organizational changes between ages 8 and 14, alongwith change for each age groupwithin
a single year (cYounger et al., 2021). Thus, it might be relevant to narrow the age range in
order to investigate finer developmental changes. Analysis of centrality also revealed that
Stroop, stop signal and TMT —the first two on IC and the last one on switching— are cen-
tral in the EF network of children. This is consistent with previous studies that reported
that IC is central for children to employ other EFs (Best et al., 2011; Huizinga et al., 2006;
Isquith et al., 2004). However, according to these studies, with age and EF development,
IC becomes less central, while in adolescence and adulthood, working memory increases
its role in regulating EFs (Best et al., 2011; Huizinga et al., 2006; Isquith et al., 2004). We
thus expected N-back to be the most central node in adolescents. Instead, TMT and ANT
—tapping on switching and attentional IC— were the central nodes of the network. Never-
theless, it should be noted that N-back had a high centrality in adolescents’ graphs, and this
centrality increased after 5 weeks of IC training, perhaps reflecting the increasing central
role of working memory in EFs’ regulation. Moreover, these results are consistent with a
recent study that emphasized the increasingly critical role of Switching during the develop-
ment, which would act as a mediator between IC and Updating from adolescence (Karr et
al., 2022). On another hand, the community analyses revealed an organization of EFs in two
clusters in both children (two clusters with mixed-EF tasks) and in adolescents (one cluster
with IC tasks and a second cluster composed of three tasks measuring the three different
EFs). Previous SEM studies reported a differentiation of EF organization between middle
childhood and adolescence (Agostino et al., 2010; Friedman et al., 2016; Hartung et al., 2020;
Lee et al., 2013; McAuley and White, 2011; Wu et al., 2011; Xu et al., 2013). It is important
to note that the clusters obtained with community analysis are determined a posteriori (via
a data-driven approach), while the factors obtained in SEM analysis are determined a priori
(via a hypothesis-driven approach). Indeed, clusters derived from community analysis cor-
respond to nodes with high mutual influence and are therefore dependent upon the data
under analysis, while SEM clusters correspond to latent factors that were defined before
the analysis. Hence, taken together, previous SEM studies and current NM analyses, which
are based on complementary approaches, converge toward changes in EF structure from
childhood, with a more general composition of EFs, to adolescence, with more specified
EFs.

In addition to developmental changes, quantitative and qualitative changes in the EF
structure were also found after training one EF, namely, IC. The results showed that after
IC training in children, networks have increasingly stronger connections both within and
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between EFs and are therefore more similar to adolescents’ networks than before training.
On the other hand, in adolescents, changes in the EF network were subtler. More pre-
cisely, after AC training, the number of connections decreased, but some edges increased
in weight, whereas after IC training, the edge weights became much more important, re-
flecting amore integrated network. However, these lower changes in adolescents compared
to childrenmay also be interpreted in terms of reduced training effects in adolescents. Com-
plementary analyses using classical repeated-measures ANOVAs (see Table 3 and Figures
48 & 49 in the General Method Section) indicated that adolescents did not improve their
performances in the six EF tasks, while children improved their performances after IC train-
ing for stop signal, ANT and tendentially for TMT. The lack of progress in adolescents
might reveal a ceiling effect (see Figure 27 in the General Method Section). Of note, the
AC and IC trainings were similar in children and adolescents, with difficulty adapted at
the individual level. Importantly, except for TMT in children, classical repeated-measures
ANOVAs did not detect important transfer effects, while NM could highlight changes in
the organization of EFs, including both trained and nontrained tasks (e.g., Stroop and stop
signal), thus revealing transfer effects. The community analyses also provided insights into
training-related reorganizations of EF structures. In children, networks had two communi-
ties before and after the IC training and three communities after the AC training, whereas
in adolescents, there were two communities before and after both types of training; these
communities had only slight changes in composition, once again reflecting the reduced
effects of training in adolescents compared to children. However, it can be noted that in
adolescents, after IC training, one of the two communities was composed of only IC tasks
and the other of attentional IC, switching and updating tasks, thus highlighting EF-specific
effects.

The present study has several limitations that call for caution when interpreting the re-
sults. First, sample size is a critical issue for the reliability of statistical analysis, particularly
for NM analysis (Epskamp et al., 2018). Hence, despite the relatively large sample size used
in this interventional longitudinal study in children and adolescents (N > 120), it is impor-
tant to replicate the findings with confirmatory studies conducted on larger and indepen-
dent samples. Of note, the recruitment and follow-up of typically developing school-aged
children and adolescents enrolled in a 5-week longitudinal study with cognitive training on
a tactile tablet raised sound logistical and practical issues which has constrained the sample
size. Following recent recommendations for NM analysis with small sample size (i.e., ap-
proximately hundreds of participants), we limited the number of variables to 6 (Mansueto
et al., 2020) as it allowed us to recover the global structure of the network even though the
full network could not be measured. This criterion also led to an imbalance of the three EFs
in the creation of the networks. Indeed, IC was overrepresented (4 nodes out of 6). As this
was one being trained, it seemed important to look at the impact of training on the organi-
zation of this particular EF. Because such imbalance may bias the analysis, and particularly
the estimation of the partial correlations, we completed our 6-node network analysis with
a balanced 3-node network analysis with networks including one measure per EF. These
3-node network further confirmed the results provided by the 6-node network analysis,
namely greater connections in childhood than in adolescence and similar network changes
related to training and to development. A perspective is the inclusion of latent variables in
the networks (Epskamp et al., 2017), which could allow us to observe the links, without a
priori, between tasks within the same EF latent variable. Second, the behavioral changes

114



Study 1: Network analysis of EF changes with age and training

observed from the pre- to the post-training sessions might not be attributed only to the
training per se but could also reflect a ‘regression to the mean’ effect (Barnett et al., 2005).
This statistical phenomenon arises when a random variable —here task scores— is extreme
at baseline but closer to the mean on follow-up or vice versa and typically affects longi-
tudinal design such as the one used in the present study. However, it is unlikely that the
difference in IC efficiency change from the pre- to the post-training sessions between the
IC and AC training groups only reflects such a ‘regression to the mean’ effect because par-
ticipants were randomly assigned to the two training groups, and thus, both groups were
potentially equally affected by such an effect (Yudkin and Stratton, 1996).

NM provides an original and relevant way to investigate the effect of cognitive training
on EF organization, complementary to more classical statistical approaches, such as uni-
variate ANOVAs. Our study combining NM and classical ANOVAs appears to be relevant to
analyses of developmental and training-related cognitive changes. Recent methodological
developments, such as moderated network models (Haslbeck et al., 2020) or network model
trees (Jones et al., 2020), could be an interesting perspective to further explore factors that
could influence network organization after an intervention. Because EF neural networks
are known to vary with age and to correlate with EF behavioral performance (Baum et al.,
2017), a multimodal and multilevel approach combining network analysis at the behavioral
level and the neural level (e.g., using resting-state functional magnetic resonance imag-
ing; Zink et al., 2020), is likely an interesting direction to explore. Such an approach could
provide a more complete view of EFs (Lydon-Staley et al., 2020) and could pave the way to-
ward an integrative approach, including behavioral, neural and genetic and environmental
levels.
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Study 2: Combination of network and
latentmodels to analyze the organiza-
tion of executive functions across de-
velopment

This study led to a manuscript in
preparation: Menu, I., Borst, G.* &
Cachia, A.* (in prep.). Latent network
analysis of executive functions across
development.

In order to replicate our first study and to further explore changes in the organization
of executive functions with age, a second study was conducted on the Texas Twin Project
database. This project recruited school-age twins (preschool to 12th grade) enrolled in
public schools in the Austin andHoustonmetropolitan areas. It was created with the goal of
increasing the representation of low-income families and racial/ethnic minorities (Harden
et al., 2013).
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1 Introduction

As we have seen, network analysis has many advantages and complements well the pre-
vious findings of SEM studies. However, it would be interesting to compare and combine
these two methods on the same sample.

The aim of this study was thus to investigate the organization of the three core EFs
across development by using and comparing differentmethods of analysis: networkmodels,
latent models and latent variable network models.

First, in order to look at the links between the different tasks of the EFs without any
a priori on the structure and to replicate our Study 1, EF network were estimated. A first
study (Hartung et al., 2020) have used NM to investigate EF structure through development.
This study, based on the Texas Twin Project cohort (7-15 years) found that the intercon-
nection between tasks generally remained globally stable except for the inhibition tasks,
whose shared-variance with the other EF domains was reduced with age, in line with the
previous theory. Of note, in this study, the authors used 4 components of EFs: IC, updating,
switching and working memory. In traditional EF models, only updating is a component of
EFs, while working memory is not. By taking these two factors into account, the authors
might have obtained different models’ results due to the strong interconnections between
these two elements. Another cross-sectional study used NM to examine changes in EF orga-
nization from 3 to 85 years of age (Karr et al., 2022). This study reported a differentiation of
EFs from childhood to adolescence and a dedifferentiation during young adulthood, which
accentuates at older adulthood (Karr et al., 2022). Moreover, an accelerated longitudinal de-
sign study also suggested organizational changes between ages 8 and 14, along with change
for each age group within a single year (cYounger et al., 2021).

Then, latent variable models were constructed and compared in order to replicate the
work of Karr et al., 2018 and Miyake et al., 2000. As we have seen in the introduction of
Study 1, EF structure goes from a one-factor structure in early childhood with no clear
separation among EF tasks (Shing et al., 2010; Wiebe et al., 2008; Willoughby et al., 2012;
Xu et al., 2013) to a two- to four-factors structure at adolescence (Agostino et al., 2010;
Friedman et al., 2016; Lee et al., 2013; McAuley and White, 2011; Wu et al., 2011; Xu et al.,
2013). The meta-analysis from Karr et al., 2018, tested seven models of EF structure and
found some evidence for greater unidimensionality of EFs among child/adolescent samples
and both unity and diversity among adult samples.

Finally, to provide the most complete and accurate view of the evolution of EF organiza-
tion with age, the two previous methods were combined to create a latent variable network
model (LVNM, Epskamp et al., 2017). To date and to our knowledge, no study has used this
methodology. This technique is extremely well suited for the study of EFs, as the factorial
organization of EFs, although evolving with development, is generally accepted.
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2 Material and Methods: the Texas Twin Project

This study was made possible by the collaboration with the Texas Twin Project (Harden
et al., 2013) team, Prof. Elliot Tucker-Drob, Prof. Kathryn Paige Harden and Dr. Johanna
Hartungwho provided us age-weighted (co)variancematrices. More details about the Texas
Twin Project can be found in (Engelhardt et al., 2016; Hartung et al., 2020).

2.1 Participants

Data were drawn from 1019 participants from the Texas Twin Project (Harden et al., 2013), a
population-based sample that included children spanning the range of functioning so long
as they were able to understand the instructions and complete the tasks encompassed in the
protocol. For this reason, children with very severe disabilities and delays were not eligible
to participate.

The average full scale intelligence quotient (FSIQ) of participants in the sample mea-
sured by the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011) was 103.99, with
a standard deviation of 14.09.

The current sample consisted of children in Grades 3 to 8 between 7.8 and 15.3 years of
age (M = 10.79 years, SD = 1.76). This sample, of which 50.4% was female, included 479 twin
pairs, 19 triplet sets, and 1 quadruplet set. In terms of race/ethnicity, 59.1% of the sample
identified as non-Hispanic Caucasian, 15.0% as Hispanic, 6.7% as African American, 4.2% as
Asian, 0.6% as another race or ethnicity, and 14.3% as multiple races or ethnicities.

2.2 Evaluation of EFs

We included 9 variables analyzed in the previous NM study (Hartung et al., 2020) derived
from several tasks spanning the different EFs:

• Inhibitory control (IC)

– Animal Stroop: participants were asked to verbally identify animals from line
drawings. In the congruent condition, the face of the animal matches the body.
In the incongruent condition, the face does not match the body and identifi-
cation should be based on the body. In the neutral condition, the face area is
blank, and identification should be based on the body (Wright et al., 2003). De-
pendent variable (DV) is the mean RT cost for incongruent conditions relative
to congruent and neutral conditions.

– Stop signal auditory: participants were asked to indicate which way an ar-
row points, but do not respond if a tone (stop signal) sounds after the arrow is
presented (Verbruggen and Logan, 2008). DV is the mean RT cost for go trials
relative to stop signal delay (time between arrow and stop signal presentation).
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– Mickey: participants were asked to indicate on which side of a computer screen
a cartoon Mickey Mouse face appears while ignoring any squares that flash on-
screen before Mickey. In the congruent condition, a square flashes on the same
side where Mickey appears. In the incongruent condition, a square flashes on
the opposite side. In the neutral condition, squares flash on both sides (Lee et al.,
2013). DV is the mean RT cost for incongruent trials relative to congruent and
neutral trials.

• Cognitive flexibility (CF)

– Trail making: participants were asked to connect circles containing numbers
in numerical sequence and circles containing letters in alphabetical order. In
the two simple conditions, only numbers or letters are presented. In the two
alternating conditions, both numbers and letters are presented, and the circles
should be connected in an alternating sequence (numbers–letters: 1-A-2-B, etc.;
letters–numbers: A-1-B-2, etc.) (Salthouse, 2011). DV is the mean RT cost for
alternating conditions relative to simple conditions.

– Plus-Minus: participants were asked to complete simple addition and subtrac-
tion problems on paper. In the adding condition, participants should add 1 to
each provided number. In the subtracting condition, they should subtract 1 from
each number. In the alternating condition, they should alternate between adding
1 and subtracting 1 (Miyake et al., 2000). DV is the mean RT cost for alternating
conditions relative to simple conditions.

– Local Global: participants were asked to verbally identify letters and shapes
composed of smaller letters and shapes. In the two local conditions, partici-
pants should name the small constituent letters or shapes. In the two global
conditions, they should name the large overall letter or shape. In the alternat-
ing condition, they should alternate between naming the constituent and overall
letters or shapes (Miyake et al., 2000). DV is the mean RT cost for alternating
conditions relative to simple conditions.

• Working memory updating (WMU)

– 2-Back: participants were asked to watch a sequence of individual shapes and
indicate when the current shape matches the shape from two trials prior (Jaeggi
et al., 2010). DV is the total number of hits (correct matches) minus false alarms
(nonmatches indicated).

– Running memory: participants were asked to watch a sequence of single let-
ters and identify the last n digits in order of their presentation (Broadway and
Engle, 2010). DV is the total number of visually presented letters correctly re-
called.

– Keeping track: participants were asked to listen to words falling under four
categories and recall the most recent word from a given category (Miyake et al.,
2000). DV is the total number of verbally presented words correctly recalled.
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2.3 Weighting function

Rather than grouping participants based on the moderator (here age) range, observations
were weighted around focal points (i.e., specific values of the continuous moderator vari-
able). This procedure, known as local structural equation modeling (LSEM), is thought to
be beneficial for age-group analyses because parameter estimates have been shown to be
more informative and less distortedwith respect to age differences (Hildebrandt et al., 2016).
Models (SEM but also NM or LVNM) can be estimated sequentially for each focal age point
using weighted samples of observations (Hildebrandt et al., 2016).

The weighting function used in Hartung et al., 2020 was based on the recommendations
of Hildebrandt et al., 2009. At each defined value of the age variable, called focal points, a
Gaussian kernel function was used to weight observations, with the highest weight at the
age point and decreasing weights for observations further from this age point. The focal
age points ranged from 8.0 to 14.0 with 0.1 increments. These upper and lower limits were
selected to reduce boundary bias based on the age distribution of the sample (Hildebrandt
et al., 2016; Hildebrandt et al., 2009). In total, 61 weighted (co)variance matrices were ob-
tained1.

3 Sub-study 1: Network models

3.1 Method

Network models (NM) were constructed for each focal age point based on the (co)variance
matrices of the same 9 EF variables described earlier. 61 networks were then estimated.
Nodes of the network corresponded to the scores at the 9 cognitive tasks, which were
grouped in three EFs. For each focal age point, network was estimated and its accuracy
was assessed using precision and robustness measures (Borsboom et al., 2018) and stan-
dard graph centrality indices (degree, closeness and expected influence) were calculated.

NM was then used to analyze 1) the multiple relations (edges) between the different EF
tasks (nodes) simultaneously, and 2) how these relations change during the development.
Just as in Study 1, we used the successive steps procedure proposed for network analysis in
psychology Fried et al., 2018: 1) network estimation; 2) network inference (topological char-
acterization). The interrelation between the different variables was modeled with Gaussian
Graphical Model (GGM; Lauritzen and Wermuth, 1989). The networks were characterized
using both quantitative and qualitative measures.

Statistical analyses were performed using R-statistical software, version 3.6.3 (R Devel-
opment Core Team, 2014). The NM were constructed and visualized using the package
qgraph version 1.6.9 (Epskamp et al., 2012).

1These were the matrices provided by the Texas Twin Project team that allowed for the following analyses.
I did not perform this weighting or participate in any preprocessing of the data.
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3.2 Results

Visually (see Figure 2.6), a differentiation of the EFs with age car be observed: while the
network is initially very dense, with many intra- and inter-EF connections, the network
becomes more andmore sparse with age 2. In particular, the IC tasks that had a lot of weight
in the network for the first focal age points, quickly separate from the rest of the nodes.
On the contrary, it seems that WMU tasks gain more weight with age. Given the overlap
between the results of the different centrality measures, we will describe only Degree and
Expected Influence indices. Closeness results can be found in Appendix A3.

Figure 2.1: Degree of the 9 nodes in the network models across age.

As a reminder, Degree indexes the number of connections for each node of the network,
weighted by the size of these connections, thus defining hubs (nodes with highest degree).

Degree of CF (left panel of Figure 2.1) varied according to the task. Plus Minus’s De-
gree dropped drastically through 9 y.o. and then continued to continuously drop through
13.6 y.o. and attaining a very low degree (0.22) before a small rebound. The Local Global
followed a similar trajectory with some age lag (drastic drop until 9 y.o., degree rebound
around 12.7 y.o.). Moreover, Local Global’s Degree never fell below 0.88. Finally, the Trail
making followed another trajectory with a slow decrease until 10 before a rebound peaking
at 10.9 y.o. preceding a new decrease until 12.9 y.o. and a last increase.

2For a visual animation, visit this link: https://sites.google.com/view/irismenu/study-2-gifs
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IC Degree varied again with the type of tasks (middle panel of Figure 2.1). Stroop’s
Degree was the highest at fist (2.17) and then decreased almost linearly with age until 12.58
y.o. and the value of 0.41 preceding a slight rebound. Stop signal Degree also strongly
decreases until the focal age point of 10.1 and the value of 0.24 before slightly increasing
with a high peak around 11.2 and a low peak around 12.3. Finally, Mickey’s Degree also
dropped from 1.05 at 8 y.o. to 0.61 at 9.2 y.o. before reincreasing slowly peaking at 0.70 at
the focal age point of 10.2 and decreasing again slowly through 13.5 y.o.

WMU tasks are likely the most homogeneous in Degree developmental trajectories
(right panel of Figure 2.1). 2-back and Running memory started by increasing in Degree
peaking respectively at 1.70 at 10.3 y.o. and at 2.04 at 8.9 y.o. Then, their Degree decreased
until 12.5 y.o. and the values of 1.25 for Running memory and 1.43 for 2-back. Starting 12.5,
their Degree rapidly increases through focal age point 14. Keeping track followed a similar
trajectory except for an initial low decrease from 8 to 9.1 y.o.

Figure 2.2: Expected influence of the 9 nodes in the network models across age.

As a reminder, contrary to Degree which takes the absolute value of the weights, Ex-
pected influence (EI) also takes into account the direction of the weight (negative or posi-
tive).

Regarding CF (left panel of Figure 2.2), Plus Minus task decreased slowly through age
whereas Trail making’s EI increased through the focal age of 10.9 before decreasing until
12.9 y.o. and reincreasing again. Local Global’s EI decreased slowly until 12.9 y.o. before
reincreasing again.
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We can see in themiddle panel of Figure 2.2 that the stop signal task has at the beginning
a rather negative impact on the other variables of the network and that this weight increases
almost linearly until 11.2 years when it stabilizes between 0 and 0.5. The other IC tasks
follow the same dynamics but do not start from the same starting values. For example,
the Mickey task has almost null expected influence values at the beginning which increase
linearly to 0.70 shortly at 10.1 years.

Regarding WMU (right panel of Figure 2.2), all three tasks followed the WMU trajec-
tories with an increase from 8 to 9-10 y.o., followed by a slight decrease until 12.5 y.o.,
preceding a strong increase until 14 y.o., especially for the 2-back and Running memory
tasks.

4 Sub-study 2: Latent models

4.1 Method

To further investigate the factorial structure of EFs through development, we built and
tested the seven factorial latent models described in Karr et al., 2018 (see Figure 2.3):

• Unidimensional model: one latent factor defined by the 9 EF variables (Common-EF)

• CF-WMU Merged model: two latent factors model, one referring to IC and one refer-
ring to CF and WMU merged

• IC-WMU Merged model: two latent factors model, one referring to CF and one refer-
ring to IC and WMU merged

• IC-CF Merged model: two latent factors model, one referring to WMU and one refer-
ring to CF and IC merged

• Three-Factor Model: three latent factors model, each referring to one EF (IC, WMU
and CF)

• Nested Factor Model: three latent factors model, one referring to CF, another referring
to WMU and a last one defined by the 9 EF variables (Common-EF)

• Bifactor Model: combination of the Three-Factor and the Unidimensional models: 4
latent factors, three referring to each EF (IC, WMU and CF) and a last one defined by
the 9 EF variables (common-EF)

Each model was constructed and then fitted separately for each focal age point and
compared to identify the model that best explain the data at each focal point. To find out
which model provides the best fit for each of the 61 age points, the fit indices (AIC, BIC,
RMSEA) were compared for each model for each focal age point. The respective factor
loadings and details of the estimates for each model were then inspected.

The LMwere constructed and estimated using the package lavaan version 0.6-7 (Rosseel,
2012).
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Figure 2.3: Seven latent models of executive functions. From Karr et al., 2018.

4.2 Results

4.2.1 Model fit

The fit results can be found in Figure 2.4. Within this sample, some models did not con-
verge: in particular, the bifactorial model converges for few focal age points (20 out of 61).
Similarly, the nested model did not converge for 19 focal age points, mostly located at the
endpoints (between 8 and 8.9 years and between 12.4 and 13.9 years).

The bifactorial model is the one that presents the best fit indices between 8 and 8.5
years. Then, the nested model is the one that obtains the best fit indices. However, the fit
variations between the different models were minimal.
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(a) (b)

(c) (d)

Figure 2.4: Fit indices of the 7 latent models. (a) = AIC (Akaike information criterion)
for each model by focal age point. (b) = BIC (Bayesian information criterion) for each model
by focal age point. (c) = RMSEA (root mean square error of approximation) for each model
by focal age point. (d) = legend of the seven latent models.
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4.2.2 Model results

In the following, we are presenting the results of the loadings obtained for the unidimen-
sional models. On the one hand, this allows a comparison with the network analyses pre-
sented above and, on the other hand, the results are highly similar to the loadings obtained
with the 3-factor models (see Appendix A4).

Concerning the loadings of IC variables, we see that the Stroop task has the highest
loadings at age 8 and that this weight progressively decreases to stabilize around age 12.
On the contrary, the loadings of Mickey and the stop signal gradually increase between 8
and 11 years of age and then stabilize (see Figure 2.5).

Regarding WMU, the loadings of the 3 tasks seem to evolve in the same way across age,
with a slight increase between 8 and 9.5 years, a stabilization/slight decrease between 9.5
and 12 years followed by an increase between 12 and 14 years. Note that the loadings of
Keeping track are lower than those of the other two tasks, especially between 12 and 14
years old where its loadings remain more stable.

Finally, concerning CF, the Plus-Minus loadings decrease almost linearly to 0 over time.
Global Local loadings also decrease but to a much lesser extent and without approaching
zero values. Finally, the Trail making ladings increase slightly between 8 and 11 years old
before decreasing until 13 years old and then slightly decreasing (Figure 2.5).

Finally, while the Stroop task has the largest loadings at the beginning, we see that
the loadings of this task and of the other inhibitory tasks approach 0 with time, while the
loadings of the updating tasks take on more and more weight in the definition of a common
executive factor (Figure 2.5).

5 Sub-study 3: Latent variable network models

5.1 Method

For each focal age point, following Epskamp et al., 2017, a latent variable network model
(LVNM) derived from the classical three-factor model tested just above was constructed
and estimated.

This LVNMallows to combine the two previous approaches by looking at the network at
the level of the latent variables IC, WMU and CF, and not between the variables themselves.
In the case of the unidimensional EF model, there is only one latent variable (common-EF),
and therefore there is no possibility to create an LVNM (one cannot observe a network with
only one node).

The LVNM were constructed and estimated using the package lvnet version 0.3.5 (Ep-
skamp et al., 2017).
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Figure 2.5: Loadings of the 9 EF variables in the unidimensional models across age.

5.2 Results

The visual inspection of the LVNM (see Figure 2.6) combined inspection of task loadings
for each EF and of connectivity between EFs.

Interestingly, LVNM factor loadings are quite similar to the ones from the regular la-
tent analysis. Thus, regarding CF, we see that Plus-Minus loadings decrease through age
from 0.6 at the 8th focal age year to 0.1 at the 14th. Local global loadings remain almost
stable and decrease way less than in SEM. Finally, trail making loadings increase almost
linearly through 11.5 years and decrease then. Regarding WMU, we see the same "smooth-
ing effect" with mexican hats pattern less identifiable. The biggest changes regard IC with
broken loadings lines around 9 years. It seems that there is a mirroring effect of these factor
loadings before this age. Indeed, Stroop loadings are at 8 years low (-1.1) and then increase
through 8.9 years to -0.8 and are then at 0.8 at 9 years before an abrupt and then almost
linear decrease.

Moreover, regarding the network between the three latent variables, we can see that,
similarly, there is a break at 9 years of age. Regarding relations between EFs, connections
between edges varied less homogeneously with time. Until 9 y.o., IC was negatively con-
nected with CF before being connected with it more positively and strongly. Then, inter-EF
connections remain low before an increase in connections between WMU and IC.
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6 Discussion

These studies had two objectives. Theoretically, it aimed at characterizing the organization
of EFs through development on a single cohort. Methodologically, it aimed at comparing
different tools for EF modeling, and in particular to evaluate the validity of latent variable
network modeling.

All three tools (latent models, network models and latent network models) gave very
consistent and similar results. For example, the tasks that had substantial weight in the
latent models were the same tasks that had large and strong connections in the network
models. This suggests that the results obtained are therefore due to mechanisms observed
in this sample and are therefore not attributable to the tool used. This consistency is not
surprising in the sense that all three methodologies are based on the same sample and ask
similar yet complementary questions. Indeed, whereas latent (factorial) analyses are more
concerned with the hypothesis of a factorial organization, and thus of the weight of each
variable for its associated factor, network analyses are interested in the free organization,
without any a priori, of the variables with each other. NM thus make it possible to assess
the links between a variable of one EF with the other variables of other EFs, which LM does
not allow. On the contrary, LM make it possible to answer the big question of the factorial
organization of EFs by directly testing and comparing different models with more or less
latent factors. The LVNM analyses provide an additional level of information by looking at
the links, without a priori, between the latent factors created by the researcher (here, the
EFs).

Perhaps most surprisingly, a consistency between the different latent models across
development was observed. With the exception of the first focal age points (until 10 y.o.),
the seven models tested in this study give very similar fit indices. Note that at the first focal
age points, some models have better fit indices than others, but, whatever the model, the
fit indices reveal a poor fit. This seems surprising because, given the literature, one would
expect that over the first few ages, a unidimensional model would show better fit indices
than the other models and, that with age and entry into adolescence, an improvement in
the fit of the 3-factor model could emerge. However, these homogeneous results, which are
not very clear-cut and sometimes poor in fit, are consistent with Karr et al., 2018, which
highlight models that are not so different and sometimes with poor fit.

Concerning the theoretical results themselves, this study highlights different things.
Overall, whatever the statistical tool used, we see that the connections between the vari-
ables and/or the EFs themselves decrease over time. This is all the more obvious with the
network analyses where we initially see a very integrated network with many inter- and
intra-EF connections that decrease with age until we obtain a very sparse and segregated
network. Considering each EF individually, for CF we see a segregation in intra (fewer and
weaker connections between CF tasks) and inter (fewer and weaker connections between
CF tasks and tasks of other EFs) even if the Trail making and Local Global tasks remain
well connected to WMU tasks. This last point could be explained by the fact that these
tasks solicit the WM (Brocki and Tillman, 2014; Chevalier et al., 2012) but we could have
expected similar associations with the IC which is also involved during these tasks (Brocki
and Tillman, 2014; Chevalier et al., 2012). Regarding IC, we observe a particular pattern
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with initial negative loadings and connections of some tasks. These inter- and intra-EF
connections then disappear quite early in the development with IC tasks, in the NMs, al-
most separated from the rest of the network and, in the CFAs, almost zero loadings. Thus,
there seems to be a very early dissociation of IC from other EFs, maybe reflecting the nested
organization observed in adults (Karr et al., 2018). On the contrary, for WMU, the intra-EF
connections remain rather stable over time. The inter-EF connections decrease a little dur-
ing development but it is the EF that has the most connections with the other EFs in our
last age groups. This result is found in all models where loadings, edges between tasks or
between latent variables increase in the later age groups. It would thus seem that theWMU
is the EF that has a greater weight in late childhood, early adolescence. These results are
consistent with previous results that stated that with age and EF development, IC becomes
less central, while in adolescence and adulthood, WMU increases its role in regulating EFs
(Best et al., 2011; Huizinga et al., 2006; Isquith et al., 2004).

At the task level, different observations can be made. For the WMU tasks, we see that
the three tasks follow the same trajectory with just a small gap in childhood (peak at 9.5
years for Keeping track and Running memory, peak at 10.5 years for 2-back). These very
similar patterns suggest that these three tasks solicit similar processes and thus point to a
homogeneity of the measure. For the CF tasks, we see slightly different trajectories. The
trajectory is almost linear for Plus-Minus, the trajectory follows a Mexican hat for the TMT
task and an intermediate trajectory for the Local-Global task, which is more similar in
dynamics to the Plus-Minus task. The use of TMT as a measure of CF is debated (for a
review: Sánchez-Cubillo et al., 2009), as this task requires among others IC (Chaytor et al.,
2006; Miner and Ferraro, 1998). Overall, these differences in trajectory suggest that these
are different CF processes. Finally, concerning the IC tasks, the three tasks are initially
different, especially the Stroop task, which has opposite loadings and correlations to the
other two tasks. These differences decrease with time until a homogenization around age
12. These differences can also be explained for theoretical reasons: whereas the Stroop task
corresponds to interference control, the Mickey and stop signal tasks correspond rather to
response inhibition (Diamond, 2013). Thus, while the two components would initially be
distinct, with the development of the IC, they would become increasingly integrated.

Before the age of 9, the patterns are very strange with results that mirror what would be
expected. Several hypotheses can explain this. First, it could be due to the construction of
the sample itself: if this is an under-represented age group in the sample, the results could
be biased by the different sample size. It could also be due to the measures themselves: the
difficulty of the tasks for this age group could explain our surprising results. Moreover, at
these ages, EFs are currently being acquired and a large inter-individual variability can be
observed which could, again, explain our strange results.

It would be very interesting to explorewhat happens during adolescence, after the age of
14 where this study ends. The period of adolescence is of great interest in EFs with notably
the maturation of the PFC (Crone, 2009) and the acquisition of an almost adult executive
performance (Huizinga and van der Molen, 2007; see 1.4). Generally, this study should
be replicated with a longitudinal study from childhood (not too early in order to use the
same tasks) to early adulthood with short time intervals. Indeed, we see very fine changes
over short periods. This also raises the question of selecting age ranges for developmental
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studies. In developmental psychology, it is common to have age intervals of several months
(e.g., 12-13 years) to several years (e.g., 10-14 years). However, if the dynamics are so fine-
grained over the course of a year, widening these age intervals could confound the results.
It would be really necessary to replicate these results with a longitudinal approach with
repeated and close measures in the EF domain or even in other cognitive domains.

A limitation of the study is that the data are from a twin study. Thus, a large propor-
tion of the sample shares a significant genetic part, more than in a general population. It
would therefore be necessary to replicate these results in an independent sample. However,
the genetic question is interesting and it could be worthwhile to replicate and extend twin
studies on EFs. In particular, it might be interesting to replicate the ACE models of Fried-
man et al., 2008 in our latent models but also to introduce these genetic and environment
variables in the networks and in the LVNM. We could then see more finely the weight of
genetics and environment on the tasks but also on the EF constructs.

Another perspective of this study would be to replicate it but with hot EF tasks. In-
deed, it has been shown that cool and hot EFs follow different developmental trajectories
(Prencipe et al., 2011; Welsh and Peterson, 2014; Zelazo and Carlson, 2012). It thus seems
interesting to look at the organization of hot EFs to see if EF organization is similar ac-
cording to the emotional load but also to see how it evolves over time. At periods such as
adolescence, knowing how the organization of hot and cool EFs is done could allow us to
understand the mechanisms at play and to contribute to the understanding of the observed
gap between hot and cool executive functioning.

In conclusion, this study, by comparing the different methodological tools used in the
literature, allows us to provide an update on the organization of EFs during development,
from 8 to 14 years of age, and thus on the validity of the inferences previously made in the
literature. The three approaches used gave consistent and complementary results. During
development, these results highlighted an early differentiation of IC from other EFs, fol-
lowed by a differentiation of CF, whereasWMU takes a more important role in the structure
of EFs over time.
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Study 3

Study 3: SEM to investigate EF training
transfer effects

This study led to a manuscript: Menu,
I., Rezende, G., Le Stanc, L., Borst, G.* &
Cachia, A.* (under review). Inhibitory
control training on executive functions
of children and adolescents: a latent
change score model approach.

After studying the changes in executive functions organization with development and
with inhibitory control training, we wanted to investigate the impact of this training on the
other two untrained executive functions, working memory updating and cognitive flexibil-
ity. The aim of this study was therefore to see whether, in addition to the organizational
changes observed in Study 1, the inhibitory control training had benefited these two exec-
utive functions and what factors might have influenced these training transfer effects.
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1 Introduction

Due to the fact that EFs are implicated in learning, academic achievement, psychiatric
health and everyday functioning (see section 1.3 of the General Introduction; Best et al.,
2011; Diamond, 2013), several intervention programs have tested the possibility of improv-
ing various aspects of EFs (for reviews, see Jolles and Crone, 2012; Karbach and Unger, 2014;
Spierer et al., 2013). A recent meta-analysis suggested that training a single EF has nonsys-
tematic effects on the improvement of untrained EFs (Kassai et al., 2019). For instance, some
studies in which one EF is trained have reported no effects of the training (Enge et al., 2014;
Talanow and Ettinger, 2018; Thorell et al., 2009), or only near transfer, i.e., improvement
on the same EF (Bergman Nutley et al., 2011; Dunning et al., 2013; Zhao et al., 2015) or far
transfer, i.e., improvement on another EF (Aydmune et al., 2019; Beauchamp et al., 2016;
Jaeggi et al., 2011; Liu et al., 2015; Maraver et al., 2016; Söderqvist and Bergman Nutley,
2015). Interestingly, studies in which several EFs were trained have reported near transfer
to specific EFs, including updating (Blakey and Carroll, 2015) and IC (Dowsett and Livesey,
2000) as well as far transfer effects on school abilities (Blakey and Carroll, 2015; Traverso
et al., 2019).

Among these studies, many have focused on IC because of its importance for cognitive
and socioemotional development (for a review, see Borst et al., 2015), academic success (e.g.,
Kim et al., 2013) and its impairment in many psychiatric disorders (e.g., Ajilchi and Nejati,
2017; Craig et al., 2016; Demetriou et al., 2019). IC is a multidimensional construct that
can be divided in response inhibition and interference control (Diamond, 2013). IC training
can target any of these dimensions and can affect them differently. For instance, IC training
based on a playground activity (e.g., ‘Wesley says’) was found to improve preschool children
performance in a Go/NoGo task (i.e., response inhibition) but not in a Stroop task (i.e.,
interference control) (Zhao et al., 2015). Such findings suggest that it may be preferable to
train both facets of the IC to ensure near transfer effects. This IC dimension specific effect
is not systematic. For instance, IC training composed of Simon and emotional Go/NoGo
tasks (i.e., response inhibition) was found to transfer to interference control in an untrained
Flanker task in adults (Millner et al., 2012).

Analyzing the extent to which training benefits other cognitive abilities, the extent to
which it transfers to other domains, is crucial in order to evaluate the overall benefits of
training. This is especially true for EFs, which are known to be important for many abilities.
If a training targeting an EF allows to improve this EF (near transfer) but also the other EFs
(far transfer), it is the whole EF core that is improved which can potentially impact many
other abilities. The implications of such a transfer mechanism are therefore considerable.
Moreover, studying transfer in the case of executive training could provide information
at the theoretical level on the structural organization of EFs. For instance, the existence
of near transfer, but not far transfer, could support the notion that training only impacts
the specific part of the trained EF, which would therefore provide evidence of a factorial
organization of EFs. On the contrary, the existence of a far transfer could support that
training likely acts on the common part of EFs, which would thus be evidence for the unity
of EFs.

The discrepancies in the near and far transfer effects following EF-, IC- or brain-training
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in general (Simons et al., 2016) that have been reported in the literature may be explained
by the fact that transfer effects vary with training time (Jaeggi et al., 2008) and individual
differences in training receptivity (Jaeggi et al., 2011; Jaeggi et al., 2014). Of note, many
studies have reported that individuals can respond differently to the same training inter-
vention depending on their baseline level. Two (opposite) prominent mechanisms have
been proposed to describe and explain such baseline effect (Karbach and Unger, 2014). The
‘compensation’ effect states that individuals with high baseline abilities benefit the least
from cognitive training because they are already functioning at an optimal level, which
indicates that they have less room to improve, in contrast to individuals with lower base-
line abilities. The ‘magnification’ effects (also referred as Matthew, or scissor, effect) states
that individuals that are already performing very well will also benefit the most from cog-
nitive interventions, because high-performing participants have more efficient cognitive
resources to acquire and implement new abilities. In case of magnification, baseline cogni-
tive performance positively correlates with training gains while in case of compensation,
baseline cognitive performance negatively correlates with training gains.

Finally, transfer effect can depend on the statistical approach that is used to assess this
potential transfer effect Noack et al., 2014). Training studies typically use analysis of vari-
ance (ANOVA) or linear models to assess near and far transfer effects. These statistical
approaches are intrinsically limited by the following three main issues: 1) dissociating the
change in trained cognitive function from the change in untrained functions; 2) simultane-
ously and explicitly testing an entire set of possibly correlated variables; and 3) taking into
account the complex error structure of longitudinal data (Noack et al., 2014). In the context
of EF training, the unity and diversity of EFs also raise specific statistical issues, due to the
fact that the changes of one EF (e.g., IC) are not entirely independent of the changes of the
other EF (e.g., WMU and CF).

The cross-lagged panel model (CLPM; e.g., Biesanz, 2012) has been one of the most
popular approaches for analyzing the interactions and reciprocal influences between vari-
ables over time. However, this model cannot investigate lasting effects, such as whether
the change between two consecutive measurement time points is associated with further
changes later in time (Mund and Nestler, 2019). An interesting alternative is the latent
change score model (LCS; Kievit et al., 2018), which involve extensions of SEMs that have
been developed for longitudinal, or repeated measures, data (McArdle, 2009). SEM, includ-
ing LCS, allows for the simultaneous estimation of multiple relationships, including the
specification of directed relations that correspond to hypothesized causal pathways. LCS
has the advantage of combining the features of both growth models and CLPM (McArdle,
2009; McArdle and Hamagami, 2001; Steyer et al., 1997). Indeed, rather than investigat-
ing shifts in the rank order between two time points (as occurs in the CLPM), LCS models
can examine the difference in a variable between two or more measurement time points
(Castro-Schilo and Grimm, 2018). Differences between successive measurements are mod-
eled in LCS as latent change factors. For instance, LCS models were recently used to test
mutualism theory, which states that basic cognitive abilities directly and positively inter-
act during development (Kievit et al., 2017). LCS models have shown that individuals with
higher scores in one domain (e.g., vocabulary) exhibited greater gains in another domain
(e.g., matrix reasoning) and vice versa (Kievit et al., 2017). Therefore, such an extendedmul-
tivariate LCS model can provide a highly dynamic perspective on the analysis of second-
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order interdependencies across time (Mund and Nestler, 2019).

In this context, this study aimed to evaluate the effect of 5 weeks of computerized IC
training on trained (IC) and nontrained (updating and switching) EFs in children and ado-
lescents by using LCS models. A dedicated LCS model was developed to assess the transfer
effects 1) directly from the estimation of the training-related changes in both the trained
and nontrained tasks and 2) indirectly from the effects of the initial levels of each EF on
the training-related changes of the other EFs (crossed effects). To evaluate the extent to
which the transfer or the lack of transfer effects that have been reported in some studies
may be due to the statistical approaches that have been used to reveal such a transfer, we
systematically compared the transfer effects (as revealed by LCS) compared to those effects
revealed with the use of classical repeated-measures ANOVAs.

2 Material and Methods

2.1 Participants

Of the APEX cohort, 103 participants of the IC and AC training groups completed a mini-
mum of 15 training sessions and were included in this study (pre-hoc inclusion criteria): 57
children (24 males, M ± SD = 9.79 ± 0.55 years, range = 9–10 years) and 46 adolescents (13
males, M ± SD = 16.56 ± 0.50 years, range = 15–17 years).

2.2 Pre- and post-training measures

IC efficacy was assessed from 1) the stop signal task by using the stop signal reaction time
(SSRT), as recommended in previous studies (Verbruggen et al., 2019) and 2) the Stroop in-
terference score calculated as the difference between the RT in congruent and incongruent
trials. The CF or switching efficacy was obtained from the TMT by using the RT difference
between TMT-B and TMT-A. TheWMU or updating efficacy was obtained from the N-back
task score by using the RT (in seconds) difference between the 2- and 1-back trials. This
updating difference score was built to ‘normalize’ the RT, similarly to the difference scores
used in the Stroop and TMT. A similar approach was used in Loughead et al., 2009. Of note,
by using these definitions, lower EF scores corresponded to higher EF efficiency.

For each task, relative changes were screened and cleaned for possible aberrant values
by using a nonparametric approach. Specifically, values lower than ‘median – 2.5 MAD’ or
greater than ‘median + 2.5 MAD’ (MAD, or the median absolute deviation) were considered
to be outliers.

2.3 Modeling framework

We fitted multivariate LCS models, as in previous studies (Kievit et al., 2017; McArdle,
2009; McArdle and Hamagami, 2001). Of note, the LCS model conceptualizes the difference
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between successive measurements as latent change factors, which allowed us to directly
model within-subjects changes as a function of structural parameters (McArdle and Ham-
agami, 2001). The basic equation of the LCS model specifies the score of individual i on test
Y (stop signal, Stroop, TMT or N-back scores) at pre-training and post-training as a sum of
the score at baseline (pre-training) and a change, or difference, score as follows:

Yi,post = βYi,pre +∆Yi,post

By setting the regression weight β) to 1 (McArdle and Hamagami, 2001), the LCS al-
lowed us to rewrite the change scores as follows:

∆Yi,post = Yi,post − Yi,pre

These change scores were then modeled as indicators of a latent factor of change scores.
The intercept provides approximately identical results as a paired-sample t-test when com-
paring differences across two measurement occasions; however, it provides two additional
parameters (Kievit et al., 2017): the variance in the change scores (i.e., whether individ-
uals change homogeneously or not over time) and the regression between the scores at
pretest (baseline) and the change scores (i.e., whether change varies according to the base-
line score).

We extended the basic univariate LCS model to a multivariate LCS model by modeling
the change scores on three tasks (Y1, Y2 and Y3), which corresponded to the stop signal or
the stroop, the TMT and the N-back scores, respectively, with the tasks being functions of
three processes: a self-feedback process (β) and two coupling processes (γ), as follows:

∆Y 1i,post = βY 1i,pre + γ2Y 2i,pre + γ3Y 3i,pre

The self-feedback parameter (β) reflects a combination of effects, including regression
to the mean and a dampening effect induced by an end horizon for rapid development (i.e.,
individuals reaching their performance ceiling; Kievit et al., 2017). The coupling parameters
(γ) demonstrate whether the change in Y1 is determined by the pretest scores in Y2 and Y3
(and vice versa; Kievit et al., 2017); thus, they index the degree to which the change in
one EF is affected by the baseline level of another EF, above and beyond the self-feedback
parameter.

We fitted a model that predicts multivariate coupling between the three EFs. We also
added the number of training sessions as a covariate in the model. Additionally, we a priori
anticipated that a higher baseline level in the stop signal and the Stroop would lead to larger
differences in TMT and N-back scores and vice versa (see Figure 3.1).
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Figure 3.1: Graphic illustration of the LCS model used to analyze the executive
training data. Training (i.e. number of training sessions) was entered as a covariate of
the latent change scores for IC abilities (deltaI), updating abilities (deltaU) and switching
abilities (deltaS). Circles indicate latent variables, and rectangles indicate observed vari-
ables. Thick single-headed arrows indicate regressions. Double-headed arrows indicate
variance and covariance. The figure was computed with ωnyx software (von Oertzen et al.,
2015).

2.4 Model fit and Comparison

LCS models were estimated with the lavaan software package (Version 6.8; Rosseel, 2012)
in R by using full information maximum likelihood with robust standard errors to account
for missingness and non normality.

Overall model fit was assessed by using standard indices (Schermelleh-Engel et al.,
2003), including the chi-square test, the root-mean-square error of approximation (RM-
SEA; acceptable fit: < 0.08, good fit: < 0.05), the comparative fit index (CFI; acceptable fit:
0.95–0.97, good fit: > 0.97) and the standardized root-mean-square residual (SRMR; accept-
able fit: 0.05–0.10, good fit: < 0.05).

2.5 Repeated-measures ANOVA

To evaluate the relevance of LCS, the same training data were also analyzed by using the
classical univariate repeated-measures analysis of variance (ANOVA) as seen in section
4.5.7 of the General Method. Like for SEM analyses, ANOVAs were conducted separately
for each of the four EF tasks for the two age groups and the two training groups. In order
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to assess possible group-specific effects, complementary ANOVAs were run for each task,
including age group (children vs adolescents) and training group (IC vs AC) in the models.

The repeated-measures ANOVAs were estimated using mixed-effects linear models. We
used the package lme4 (Bates et al., 2012) with the Time (pre- or post-training) as fixed ef-
fects and intercepts for subjects as random effects. P-values were obtained by using likeli-
hood ratio tests of the full model, including the tested effect against the model without the
tested effect.

3 Results

3.1 Repeated-measures ANOVAs

As we have seen in the section 4.5.7 of the General Method and in Study 1, the classical
repeated-measures ANOVAs applied to the two age groups and the two training groups
separately detected a significant change in the stop signal (p < 0.05) and Stroop (p < 0.05)
alongwith amarginal change in TMT (p = 0.09) for children after IC training. In adolescents,
a significant change in the stop signal was detected following AC training (p < 0.05). All the
other analyses failed to reach significance (all ps > 0.14). Raw pre-training and post-training
scores for the three EF tasks are shown in Table 3.

Complementary analyses, investigating possible interaction with age and training
groups, revealed a significant main effect of the age group for stop signal (p = 1.3x10-5)
and for TMT (p = 0.01). All other main and interaction effects, including for the analyses of
Stroop and N-Back scores, were not significant (all ps > 0.27; see details of the analyses in
section 4.5.7 of the General Method section).

Post-hoc analyses, with Tukey correction for multiple testing, revealed significant pre-
post changes in children in IC group for SST (p = 0.009) and TMT (p = 0.03).

3.2 LCS models

Data were then analyzed by using LCS models. One task for each EF was included to have
balanced models: stop signal or Stroop interference for IC abilities, N-Back for updating
abilities and TMT for switching abilities.

Two LCSmodels were fitted and compared to investigate the age and training effects. In
the firstmodel, referred to as the ‘constrainedmodel’, all of the parameterswere constrained
to be equal in the four groups (Children-ICpre = Children-ACpre & Adolescents-ICpre =
Adolescents-ACpre&Children-ICpost =Children-ACpost &Adolescents-ICpost =Adolescents-
ACpost), assuming the same training effects regardless of the training session and the age
group. In the second model, referred to as the ‘free model’, the parameters were only con-
strained to be equal at the pretest period for each age group (Children-ICpre = Children-
ACpre & Adolescents-ICpre = Adolescents-ACpre), assuming that the training effects were
specific to the training session and the age group. In both models, the baseline scores were
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constrained to be equal in each training group, assuming a similar level before training
because the participants were randomly assigned to the different training groups but were
left free in each age group, when assuming that children and adolescents do not have the
same EF abilities before training.

With stop signal as IC measure, the free model fitted the data significantly better than
the constrained model (χ2 [54] = 135.58, p < 0.001), thus indicating that the changes in EFs
are not the same according to the type of training and participants’ ages. Of note, the free
model fit the data well according to the classical LCS metrics (χ2 [30] = 23.65, p = 0.79;
RMSEA = 0.00, 90% confidence interval [CI] = [0.00, 0.11]; CFI = 1.00; SRMR = 0.11; Yuan-
Bentler scaling factor = 0.84). Similarly, with Stroop as IC measure, the free model fitted the
data significantly better than the constrained model (χ2 [54] = 187.68, p < 0.001), reflecting
that the changes in EFs are not the same according to the type of training and participants’
ages. The free model fit the data well according to the classical LCS metrics (χ2 [30] = 18.92,
p = 0.94; RMSEA = 0.00, 90% confidence interval [CI] = [0.00, 0.03]; CFI = 1.00; SRMR = 0.11;
Yuan-Bentler scaling factor = 0.91). For all of these reasons, the stop signal and Stroop free
models were subsequently selected and further investigated in the different training and
age groups. A summary of the fit indices of the two models for the two IC measures can
be found in Table 3.1. Details of the model estimations can be found in Table 3.2 with stop
signal as IC measure and in Table 3.3 with Stroop as IC measure.

IC measure Model χ2 df RMSEA CFI SRMR Selected model

Stop signal
LCS constrained 157.676 84 0.185 [0.134-0.233] 0.000 0.305
LCS free 23.648 30 0.000 [0.000-0.113] 1.000 0.106 x

Stroop
LCS constrained 198.001 84 0.230 [0.184-0.275] 0.000 0.361
LCS free 18.921 30 0.000 [0.000-0.029] 1.000 0.108 x

Table 3.1: Fit indices for the free LCS model and constrained LCS model. A robust
estimation of the parameters was used.

3.2.1 LCS model in children with stop signal as IC measure

Analysis of the free LCS model with the stop signal (Figure 3.2) at pretest in children re-
vealed that TMT was marginally correlated with both Nback (r = -0.73, SE = 0.44, z = - 1.67,
p = 0.10) and stop signal (r = 0.25, SE = 0.14, z = 1.79, p = 0.07) scores.

In the experimental group (IC), the intercepts for the latent change score were signif-
icant for the stop signal (0.18, SE = 0.08, z = 2.28, p < 0.05) and N-back (-0.84, SE = 0.32, z
= -2.61, p < 0.01) tasks and marginal for TMT (-18.53, SE = 9.99, z = -1.86, p = 0.06), thus
indicating significant changes in all of the EF scores after IC training. The self-feedback
parameters were significantly negative for the stop signal (-0.82, SE = 0.18, z = -4.58, p <
0.001) and TMT (-1.01, SE = 0.28, z = -3.54, p < 0.001) tasks and marginal for the N-back
task (-0.28, SE = 0.16, z = -1.81, p = 0.07), thus indicating that higher initial scores (and thus
a lower EF ability) on one EF task corresponded to greater gains on that task. An analysis
of the coupling parameters, which indicated crossed effects between gains in one EF and
initial performance in the two other EFs, showed that individuals with the larger improve-
ment on the TMT had a higher stop signal score (i.e., a lower IC ability; 61.11, SE = 23.77, z
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= 2.57, p < 0.05) and a lower N-back score (i.e., a better updating ability; -15.14, SE = 8.18, z
= -1.85, p = 0.06) at baseline. Additionally, children with a higher TMT score (i.e., a poorer
switching ability) at baseline improved more on the N-back (0.01, SE = 0.00, z = 1.95, p =
0.05). Finally, the number of training sessions was significantly related to latent change in
TMT (1.04, SE = 0.44, z = 2.37, p < 0.05) and N-back (0.03, SE = 0.01, z = 2.17, p < 0.05) but
not for the stop signal (p = 0.83) scores.

In the control training group (AC), there were no significant intercepts for the latent
variables related to the EF score changes (all ps > 0.65), thus indicating no significant
changes in EF scores after AC training. However, in contrast to the IC group, the latent
change scores related to stop signal and to TMT were negatively correlated (r = -0.17, SE
= 0.08, z = -2.07, p < 0.05), thus indicating that increased performance in stop signal fol-
lowing training was associated with a decreased performance in TMT following training.
As in the IC group, all of the self-feedback parameters were significantly negative (all ps
< 0.01). The coupling parameters were not significant (all ps > 0.59) except for updating;
specifically, children who had a lower N-back score (i.e., a better performance) at pretest
improved more in IC (-0.20, SE = 0.05, z = -3.95, p < 0.001).

3.2.2 LCS model in adolescents with stop signal as IC measure

The analysis at the pretest of free LCS model with the stop signal in adolescents (Figure 3.3)
did not reveal any significant correlation between any of the EF task scores (all ps > 0.11).

In the experimental group (IC), the latent change intercept for the stop signal was sig-
nificant (0.14, SE = 0.07, z = 2.05, p < 0.05; all other ps > 0.65), thus indicating a significant
change in stop signal scores after IC training, but not in the TMT or N-back scores. In
addition, latent changes in N-back and TMT were correlated (r = 0.11, SE = 0.06, z = 1.98,
p < 0.05). The self-feedback parameter of the stop signal was negative (-1.01, SE = 0.39, z
= -2.58, p < 0.05), marginal for the TMT (-0.43, SE = 0.23, z = -1.86, p = 0.06) and failed to
reach significance for the N-back (p = 0.28). The analysis of the coupling parameters indi-
cated that adolescents with a greater N-back score (i.e., a lower updating ability) at baseline
tended to improve more on the stop signal task (0.23, SE = 0.12, z = 1.92, p = 0.06). The other
coupling parameters did not obtain significance (all ps > 0.21).

In the control training group (AC), there were only marginal latent change intercepts
for N-back (-0.37, SE = 0.22, z = -1.66, p = 0.10; all other ps > 0.33), thus indicating no
significant change in the EF scores after the AC session, except for N-back, which was a
marginal change. Latent changes in stop signal and TMT were marginally correlated (r
= 0.03, SE = 0.02, z = -0.71, p = 0.09), thus indicating that increased performance in SST
following training was associated with increased performance in TMT following training,
and vice versa. As in the children, all of the self-feedback parameters were significantly
negative (all ps < 0.01), thus indicating that a lower efficiency on one EF task corresponded
to greater gains on that task following training. An analysis of the coupling parameters
revealed that individuals with a greater stop signal score at baseline (i.e., a lower IC ability)
improved more on N-back following training (1.54, SE = 0.72, z = 2.14, p < 0.05); similarly,
adolescents with a greater N-back score at baseline (i.e., a lower updating ability) improved
more on the stop signal (0.15, SE = 0.07, z = 2.33, p < 0.05). A summary of the analyses can
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Figure 3.2: Estimated parameters for the LCS model in children without equality
constraints between groups: IC group (experimental) on top and AC group (con-
trol) on bottom. Further results are given in Table 3.2. I1 = stop signal; U1 = N-back; S1 =
TMT; pre = before training; post = after training.
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Figure 3.3: Estimated parameters for the LCSmodel in adolescents without equality
constraints between groups: IC group (experimental) on top and AC group (con-
trol) on bottom. Further results are given in Table 3.2. I1 = stop signal; U1 = N-back; S1 =
TMT; pre = before training; post = after training.
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be found in Table 3.2.

3.2.3 LCS model in children with Stroop task as IC measure

Analysis of the free LCS model (Table 3.3) with the Stroop at pretest in children revealed
that TMT was marginally correlated with Nback (r = -0.75, SE = 0.43, z = - 1.72, p = 0.09).

In the experimental group (IC), the intercept for the latent change score was marginal
for the N-back (-0.62, SE = 0.32, z = -1.95, p = 0.05; all other ps > 0.32), thus indicating a
marginal change in N-back scores after IC training, but not in the TMT or Stroop scores.
The self-feedback parameters were significantly negative for the Stroop (-0.89, SE = 0.14, z
= -6.48, p < 0.001) and TMT (-1.12, SE = 0.25, z = -4.49, p < 0.001) tasks and marginal for the
N-back task (-0.27, SE = 0.14, z = -1.90, p = 0.06), thus indicating that higher initial scores
(and thus a lower EF ability) on one EF task corresponded to greater gains on that task. The
analysis of the coupling parameters, which indicated crossed effects between gains in one
EF and initial performance in the two other EFs, showed that individuals with the larger
improvement on the TMT had a higher Stroop score (i.e., a lower IC ability; 25.01, SE =
12.14, z = 3.82, p < 0.05) and a lower N-back score (i.e., a better updating ability; -14.70, SE
= 7.81, z = -1.88, p = 0.06) at baseline. Additionally, children with a higher TMT score (i.e., a
poorer switching ability) at baseline improved more on the N-back (0.01, SE = 0.00, z = 2.58,
p < 0.05) and on the Stroop (0.01, SE = 0.00, z = 3.82, p < 0.001) tasks. Finally, the number
of training sessions was not significantly related to any of the EF latent changes.

In the control training group (AC), there was no significant intercept for the latent vari-
ables related to the EF score changes (all ps > 0.10), thus indicating no significant changes in
EF scores after AC training. However, in contrast to the IC group, the latent change scores
related to Stroop and to TMT were marginally correlated (r = 0.30, SE = 0.16, z = 1.88, p =
0.06), thus suggesting that increased performance in Stroop following training was associ-
ated with an increased performance in TMT following training. As in the IC group, all the
self-feedback parameters were significantly negative (all ps < 0.01 expect for N-back whose
p = 0.05). The coupling parameters showed that individuals with the larger improvement
on the Nback had a lower Stroop score (i.e., a lower IC ability; -0.51, SE = 0.28, z = -1.81, p
= 0.07) and a lower TMT score (i.e., a lower switching ability; -0.01, SE = 0.00, z = -1.78, p =
0.07) at baseline. Additionally, children with a higher Stroop score (i.e., a poorer IC ability)
at baseline improved more on the TMT (24.30, SE = 11.69, z = 2.08, p < 0.05).

3.2.4 LCS model in adolescents with Stroop task as IC measure

The analysis at the pretest of the Stroop free LCS model in adolescents (Table 3.3) did not
reveal any significant correlation between any of the EF task scores (all ps > 0.11).

In the experimental group (IC), the latent change intercept for the Stroop was marginal
(0.08, SE = 0.05, z = 1.73, p = 0.08; all other ps > 0.47), thus indicating a marginal change in
Stroop scores after IC training, but not for the TMT or N-back scores. In addition, latent
changes in N-back and TMTwere correlated (r = 0.10, SE = 0.04, z = 2.58, p < 0.05). The self-
feedback parameter was significantly negative for the Stroop (-0.88, SE = 0.14, z = -6.32, p <
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0.001) and the TMT (-0.58, SE = 0.21, z = -2.79, p < 0.01) but failed to reach significance for
the N-back (p = 0.33). The analysis of the coupling parameters indicated that adolescents
with the larger improvement on the TMT had a higher Stroop score (i.e., a lower IC ability;
23.15, SE = 6.75, z = 3.43, p < 0.01) and a higher N-back score (i.e., a lower updating ability;
19.63, SE = 4.26, z = 4.61, p < 0.001) at baseline. The other coupling parameters did not reach
significance (all ps > 0.28).

In the control training group (AC), there were no significant latent change intercept
(all ps > 0.60), thus indicating no significant change in the EF scores after the AC train-
ing. Latent changes in Stroop and TMT were positively correlated (r = 0.10, SE = 0.04, z
= 2.55, p < 0.05), thus indicating that increased performance in Stroop following training
was associated with increased performance in TMT following training, and vice versa. All
the self-feedback parameters were significantly negative (all ps < 0.001), thus indicating
that a lower efficiency on one EF task corresponded to greater gains on that task following
training. The analysis of the coupling parameters indicated that individuals with the larger
improvement on the TMT had a higher Stroop score (i.e., a lower IC ability; 28.12, SE = 8.31,
z = 3.38, p < 0.001) and a lower N-back score (i.e., a higher updating ability; -22.37, SE =
8.03, z = -2.79, p < 0.01) at baseline. A summary of the analyses can be found in Table 3.3.

4 Discussion

This study reported the first multivariate LCS analysis of the effect on EFs of IC training
in children and adolescents. When compared to repeated-measures ANOVAs, LCS models
allowed us to identify the transfer of IC training on EFs and the modulation of such an
effect as a function of individual differences in training receptivity.

Previous studies of transfer following executive training have shown mixed results.
Some studies have reported far transfer (Aydmune et al., 2019; Beauchamp et al., 2016;
Jaeggi et al., 2011; Liu et al., 2015; Maraver et al., 2016; Söderqvist and Bergman Nutley,
2015), other studies only near transfer (Bergman Nutley et al., 2011; Dunning et al., 2013;
Zhao et al., 2015) and some studies no effect of the training at all (Enge et al., 2014; Ta-
lanow and Ettinger, 2018; Thorell et al., 2009). Our study, using a new statistical approach
which can model more accurately the theory, could detect both near and far transfer effects
following IC training. Hence, the mixed, and sometimes null, results reported in previous
studies may be related to the choice of the statistical tools. The use of LCS in executive
training therefore open new perspectives for both research and application.

Indeed, although the repeated-measures ANOVAs could only detect near transfer in
the IC abilities of children, LCS detected near transfer in IC but also a far transfer effect in
the updating abilities of children. The transfer detected in children with LCS is similar to
previous IC training studies in children (Aydmune et al., 2019; Liu et al., 2015) and young
adults (Beauchamp et al., 2016; Maraver et al., 2016). In adolescents, LCS, but not ANOVAs,
detected significant changes in IC abilities after training. Of note, no far transfer effect
could be detected in adolescents via ANOVAs or LCS. Such lack of transfer could be related
with the EFs specialization with age, with decreased EF unity and increased EF diversity,
thus leading to decreased common shared EFs (Agostino et al., 2010; Friedman et al., 2016;
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Hartung et al., 2020; Lee et al., 2013; McAuley and White, 2011; Wu et al., 2011; Xu et
al., 2013). Indeed, with age, EF structure progresses from a one-factor structure in early
childhood with no clear dissociation between EFs (Shing et al., 2010; Wiebe et al., 2008;
Willoughby et al., 2012; Xu et al., 2013) to a two- to four-factors structure at adolescence
(Agostino et al., 2010; Friedman et al., 2016; Lee et al., 2013; McAuley and White, 2011; Wu
et al., 2011; Xu et al., 2013). Hence, although in childhood, updating, switching and IC likely
rely on similar underlying cognitive processes, in adolescence, EFs becomemore specialized
and independent. This developmental change in EF organization (for a review: Lee et al.,
2013) is supported by a recent brain imaging study reporting an increasing segregation of
structural brain network modules with age, and this segregation mediates the effects of
age on EFs (Baum et al., 2017). Such differentiation of EF organization from childhood to
adolescence may also explain the stronger correlations observed in children compared to
adolescents between EF tasks at baseline.

The LCS analysis also revealed that children and adolescents with lower initial EF abil-
ities progress more than those individuals with higher initial EF abilities, thus confirming
the results of previous studies that training provides greater benefits for childrenwith lower
EFs (Au et al., 2015; Diamond and Lee, 2011; Jaeggi et al., 2008). Such findings are in line
with the ‘compensation account hypothesis’ (Karbach and Kray, 2021).

In addition, transfer effects (as measured by latent changes in updating and switching)
depend not only on the initial levels in each of these EFs but also on the initial levels in
the other EFs (cross-effects). Such cross-effects are consistent with a previous study on
older adults that demonstrated that WM training led to both a larger training receptivity
and marginally to larger transfer effects in planning, IC and fluid intelligence qualities in
participants with lower cognitive abilities before training (Zinke et al., 2014). These cross-
effects were less important in adolescents than in children. This age difference may be due
to a lower training receptivity in adolescents. It may also be a consequence of the separa-
tion/specialization of EFs with age. Indeed, cross-effects are likely related to the common
shared EFs; additionally, as previously mentioned, this common shared EFs decreases from
childhood to adolescence with EF separation/specialization (Agostino et al., 2010; Friedman
et al., 2016; Hartung et al., 2020; Lee et al., 2013; McAuley and White, 2011; Wu et al., 2011;
Xu et al., 2013).

Finally, we observed a positive linear dose effect of the number of IC training sessions
with the learning gains in updating and switching (but not in IC) in children. This finding
is similar to previous studies demonstrating that direct benefits of EF training depend on
the duration of training (Diamond and Ling, 2016; Jolles and Crone, 2012). Of note, in the
present study, the dose effect was only found in nontrained EF tasks (far transfer). The lack
of a dose effect in IC tasks may be related to a possible ceiling effect.

Ceiling effect may also contribute to the lack of transfer in adolescent (see Figure 27 in
the General Method section, which suggests that 1) adolescents did not progress after the
4th session and 2) the Stroop task used for the IC training was too easy since participants
reached the highest level quickly). This ceiling effect could be due, in part, by a decrease in
motivation. Similarly, the decrease in performance on the training tasks in children can be
explained by a decrease in motivation as well after more than 4 weeks of training. However,
we did not have any quantitative measure of motivation, but only qualitative assessments
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(auto-evaluation reports) and could not therefore test this hypothesis. For these reasons,
it is not possible to disentangle the possible methodological issues from the developmental
effects underlying the lack of transfer observed in adolescents. Of note, the separate analy-
sis of the congruent and incongruent items in the Stroop task (see Appendix A6), revealed
that the lack of change in Stroop interference score (RT difference between congruent and
incongruent conditions) in the IC and AC groups correspond to different mechanisms: in
IC group, RT decrease after training in both congruent and incongruent conditions, while
in AC group, RT remain stable after training in both congruent and incongruent conditions.

It should be noted that LCS analyses yielded very similar findings regarding baseline
effects, far transfer and crossed-effects using IC measured either by the stop signal task
or the Stroop task, thus reflecting the robustness of our analyses. The main differences
concerns the near transfer since LCS can detect IC change if the stop signal is used in the
model but no IC change if the Stroop is used. Of note, no Stroop change could be detected
with the classical ANOVAs nor the LCS.

Of note, LCS analysis detected changes after AC training. Several reasons may explain
such training effects in the control group. First, participants in the AC group followed an
active, and not a passive, 5-week training. Second, possible test-retest effects may have
occurred. Finally, childhood and adolescence are developmental periods with intensive EF
development, we cannot therefore rule out the possibility that the changes detected in the
AC group are actually related to normal cognitive development. All these reasons support
the use of an active control group to control for these different biases.

The present study had several limitations that warrant caution when interpreting the
results. This study reports the first LCS analysis of EF training in children and adolescents.
The SEM models uses robust estimates and have good fit, supporting the robustness of our
findings. The sample size of the current study is in line with the classical criteria based on
model complexity, with 3 – 10 participants per estimated parameter or variable (Bentler and
Chou, 1987; Cattell, 1978). Like for all statistical methods, an increase in the sample size
would increase the sensibility and specificity of the SEM analyses (Wang et al., 2021). Al-
though statistically significant effects were detected, our findings should be replicated with
a large and independent sample. In addition, such a 5-week longitudinal computerized-
training study in children and adolescents is logistically complex to organize. Thus, only
IC training could be investigated. Therefore, the training receptivity and transfer effects ob-
served for IC should also be investigated in updating and switching training, which would
allow us to evaluate to what extent the reported findings are EF training specific. Another
issue of this study is the use of N-back to measure Updating. Indeed, this task is not a pure
measure of Updating (Jaeggi et al., 2011; Kane et al., 2007), in particular the IC load increases
with the number of lures (Kane et al., 2007). However, it is important to note that N-back
task is classically used in the literature (Cohen et al., 1997; Gevins and Cutillo, 1993; Jaeggi
et al., 2010) since it remains a valid indicator of working memory (Schmiedek et al., 2014).
Finally, it may be interesting to have different tasks taping on the same EF, which would
enable us to assess the EF change not at the task level but at the level of the EF construct,
specifically by using latent variables for each EF. Such direct transposition of the model of
Miyake et al., 2000 with latent variables into a longitudinal design would provide key data
to investigate the near transfer effects.
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In conclusion, our study shows that LCSmodeling revealed transfer effects that were not
detected with the use of classical univariate analysis of variance applied to the same data.
This lower sensitivity of ANOVA may explain the lack of transfer effects that have been
reported in EF training studies by using classical statistical approaches (Kassai et al., 2019).
Due to its versatility, LCS can assess training transfer both directly (from the estimation of
the training-related changes) and indirectly (from the effects of the initial level of each EF
on the training-related changes of the other EFs).
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Study 4

Study 4: Associations between brain, EFs
and training receptivity

After showing that cognitive factors could play a role in the receptivity to inhibitory control
training, we wanted to know if factors at a cerebral level were also involved in the gains
after such training.
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1 Introduction

Executive functions are supported by a large cerebral network (see Section 2 of the Intro-
duction). As reported previously, the three basic EFs (i.e., IC, WMU and CF) elicit frontal
(e.g., dorsolateral PFC and ACC) and parietal (e.g., superior and inferior parietal lobes and
precuneus) activations, suggesting a common EF (Collette et al., 2006; Niendam et al., 2012;
Wager et al., 2004; Wager and Smith, 2003). However, while some regions would play an
integrative and more common role, other regions would be more specialized for a specific
EF (Collette et al., 2006; Luna et al., 2015; Nee et al., 2013; Niendam et al., 2012; Simmonds
et al., 2008; Wager et al., 2004; Wager and Smith, 2003), reflecting on a cerebral level the
unity and diversity of EFs. Of note, this cerebral organisation of EFs can vary with age (for
a review, Fiske and Holmboe, 2019) but also with training.

Indeed, as seen in section 6.2.1.1 of the General Introduction, IC training has been shown
to influence various brain characteristics (Jolles and Crone, 2012; Owen et al., 2010), such
as the degree of activity in IC-related areas such as the prefrontal cortex, including IFG and
ACC. For example, in adults, studies have shown that short term (i.e., 1 hour) and middle
term (i.e., 5 to 10 hours over several weeks) IC training leads to functional changes in the
inhibition brain network, particularly the prefrontal (Berkman et al., 2014; Manuel et al.,
2013; Spierer et al., 2013) and parietal (Manuel et al., 2010) cortices. Moreover, this type
of executive training not only improves FC between the IC network and other networks,
but it also increases activity in specific areas (Hu et al., 2017). Delalande et al., 2020 also
demonstrated an evolution of cortical thickness and cortical surface area in the same IC
regions following an IC computerized training. Finally, one study combined functional and
structural MRI to investigate functional and anatomical neuroplastic changes after an IC
training using a stop signal task (Chavan et al., 2015) and highlighted that IC gains were
associated with a neural activity decrease in the right pars opercularis and triangularis and
in the left pars orbitalis of the IFG and a gray matter volume increase in the right pars
orbitalis and modulations of white matter microstructure in the right pars triangularis.

As we have also seen previously, cognitive training does not benefit all participants
in the same way and inter-individual differences are important. For example, we saw in
the Study 3 that the initial cognitive level influenced the benefits of the training through a
compensation phenomenon (Karbach and Kray, 2021). It has been shown that cerebral or-
ganization can also influence the receptivity to training (Baniqued et al., 2019; Baniqued et
al., 2018; Chaddock-Heyman et al., 2020; Gallen et al., 2016). For example, higher brain net-
works’ modularity measured in rsfMRI before a physical activity intervention was related
to more important progress in EFs in children (Chaddock-Heyman et al., 2020) and older
adults (Baniqued et al., 2018). Similarly, brain modularity was positively related to cogni-
tive gains following numerical cognitive training targeting working memory and reasoning
in young adults (Baniqued et al., 2019) and older adults (Gallen et al., 2016), and this was
even more important for participants who performed more poorly initially (Baniqued et
al., 2019). To date, and to our knowledge, only one study has investigated the neuroplas-
tic anatomical characteristics underlying training receptivity (Chavan et al., 2015), and no
study has explored this on a whole brain scale.

In this study, we wanted to see to what extent the anatomy of brain regions involved in
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the EF efficacy were also involved in EF gains after cognitive training. To address this issue,
we conducted two analyses. First, we examined the brain regions with grey matter volume
associated with EF efficiency at baseline. Then, we studied the brain regions with changes
in grey matter volume associated to efficiency progress in an EF task following cognitive
training. We could then examine if the brain areas involved in EF efficacy corresponds to
brain areas related to training receptivity.

2 Material and Methods

2.1 Participants

For the first analysis (brain areas involved in EFs tasks before any training), all participants
in the APEX cohort were used (including the mindfulness and working memory training
groups in order to have the largest possible sample size). The sample was then composed
of 110 children (9.85 ± 0.52 years; 61 females) and 88 adolescents (16.71 ± 0.54 years; 53
females).

For the second question (brain areas whose changes are related to progress following
cognitive training), only participants from the AC and IC groups and who completed a min-
imum of 15 training sessions were included, i.e., 57 children (9.79 ± 0.55 years; 33 females)
and 48 adolescents (16.57 ± 0.50 years; 33 females).

2.2 EF measures

The same six cognitive measures were investigated as in Study 1, namely 4 measures of
inhibitory control (stop signal reaction time, Stroop interference, Simon interference, ANT
flanker score), 1 measure of cognitive flexibility (trail making test flexibility score) and 1
measure of working memory updating (N-back updating cost).

2.3 Pre-processing of anatomical MRI data

Voxel-BasedMorphometry (VBM)was performedwith CAT12 (http://www.neuro.uni-jena.
de/cat). The analysis stream includes non-linear spatial registration to the 1.5mm3 MNI
template, Gray Matter (GM), White Matter, and CerebroSpinal Fluid (CSF) tissues segmen-
tation, bias correction of intensity non-uniformities, and segmentationsmodulation by scal-
ing with the amount of volume changes due to spatial registration. We performed QC visual
analysis: 1) we monitored the Noise Contrast Ratio (NCR) and Image Quality Rating (IQR)
as two metrics of quality and we retained only images at a threshold below 4; 2) we sort the
images by increasing IQR score and images with the higher IQR were visually inspected.
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2.4 Statistical analyses

In order to investigate whether there were brain regions with grey matter volume associ-
ated with an EF score at pretest, we first performed whole brain voxel-wise analyses with
one-sample t-tests using FSL, for pre-test performance at each task (SST, Stroop, Simon,
ANT, TMT, N-back) and for each age group (children, adolescents) separately (6*2 = 12 in-
dependent analyses). This analysis was performed on pre-training data, so there was no
training group factor. The FSL tool Randomise, a non-parametric permutation testing (n =
500), was used for the voxel-wise analysis of MRI data (Winkler et al., 2014). The thresh-
old for significance was p < 0.05, using threshold-free cluster enhancement (TFCE) method
with family wise-error (FWE) correction for multiple comparisons (Smith et al., 2019).

In order to examine the local changes in brain volume related to changes in cognitive
scores after training, we performed voxel-wise correlations between the differences in VBM
maps (post-pre) and differences in cognitive scores (post-pre). Analyses were performed
for each EF task, each age group and each age group separately (6*2*2 = 24 independent
analyses). Randomise with 500 permutations was used and the threshold was still p < 0.05
using TFCE with FWE correction for multiple comparisons.

3 Results

3.1 Neural basis of EFs

(a)

(b)

Figure 4.1: Brain voxels involved in (a) Stroop and (b) Trailmaking test performance
at pre-test in adolescents.
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In children,the analyses revealed no significant association between local grey matter vol-
ume with any of the 6 EF scores at pre-test after TFCE correction (all ps > .08). TFCE-
corrected images of the uncorrected results are available in Appendix A7.

In adolescents, the analyses revealed a significant association between the grey mat-
ter volume in, one one hand, the left ACC and the TMT performance at pre-test and, on
the other hand, the left precuneus and the Stroop performance at pre-test (see Figure 4.1).
No other significant association after TFCE correction was detected (all ps > .18). TFCE-
corrected images of the uncorrected results are available in Appendix A7.

3.2 Neural basis of training receptivity

In children, a large area of voxels was identified as significantly related to cognitive change
in Stroop but after AC training only (p < .01). This area covered a large part of the left
medial frontal gyrus (MFG) as well as the inferior frontal gyrus (IFG) and the cingulate
gryrus (see Figure 4.2). For the other tasks and training group, no significant results after
TFCE correction could be identified (all ps > .06). TFCE-corrected images of the uncorrected
results are available in Appendix A8.

Figure 4.2: Brain voxels involved in Stroop progress following an AC training in
children.

In adolescents, several regionswere found to be significantly related to cognitive change
in Stroop after both AC and IC (ps < .05) training (see Figure 4.3). The regions corresponded
to the left insula, the left IFG and the left and right ACC for the IC group (see Figure 4.3a)
and to a part of the right middle temporal gyrus for the AC group (see Figure 4.3b). Some
voxels or the left ACC and middle frontal gyrus were also associated with cognitive change
in Trail making test after AC training (p < .05). For the other tasks, in this age group, no
significant results after TFCE correction could be identified (all ps > .09). TFCE-corrected
images of the uncorrected results are available in Appendix A9.
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(a)

(b)

Figure 4.3: Brain voxels involved in Stroop progress following (a) an IC or (b) an AC
training in adolescents.

Figure 4.4: Brain voxels involved in Trail making test progress following an AC
training in adolescents.

4 Discussion

The aim of this study was to examine whether the brain areas involved in executive func-
tioning were the same as the regions involved in responsiveness to cognitive training.

To test this hypothesis, we first looked at which brain areaswere significantly associated
with each of our 6 executive tasks, in children and in adolescents separately. On all six
EF tasks, regions were shown to be significantly associated with TMT and Stroop and in
adolescents only. Because these regions were located in the left ACC and left precuneus,
these results are consistent with those previously observed in the literature (Collette et al.,
2005; Dajani and Uddin, 2015; Dosenbach et al., 2006; Gläscher et al., 2012; Kim et al., 2012;
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Leber et al., 2008; Niendam et al., 2012). We anticipated associations between our EF tasks
and brain areas previously described as EFs’ brain bases such as the IFG (Aron, 2006; Aron
et al., 2003; Obeso et al., 2013; Rubia et al., 2001), or the Putamen (Pas et al., 2019; Pas et al.,
2017; Vink et al., 2005). However, this lack of results may be explained by the small sample
size for whole brain association studies. Indeed, it has recently been shown that it would
require samples of at least 1000 subjects for such analyses (Marek et al., 2022). In smaller
cohorts, a solution to observe brain-behavior association in smaller cohorts would be to
employ more suitable methods such as machine learning models (Genon et al., 2022). Of
note, we have performed preliminary machine learning analyses with a linear Ridge model
but they were inconclusive (see Appendix A10.1).

Then, we examined the local changes in brain volume associated with cognitive changes
after IC or AC training training. In children, a large number of brain regions, including the
medial-frontal and inferior-frontal gyrus (IFG), were shown to be related to change in stop
signal after AC training. However, at the cognitive level, changes were not shown to be
significant in this group (see Table 3). In adolescents, interestingly, different brain regions
were shown to be associated with change in Stroop after IC (insula, IFG, ACC) and after AC
(middle temporal gyrus) training. These regions, although not detected in the first part of
our analyses, correspond to the brain bases previously identified in the literature. Indeed,
executive performance has been shown to be related to ACC (e.g., Aron et al., 2014; Houdé
et al., 2010), insula (e.g., Molnar-Szakacs and Uddin, 2022; Varjačić et al., 2018), IFG (e.g.,
Bunge et al., 2002; Houdé et al., 2010). Thus, it seems that there is an overlap between
the brain bases of EFs and the brain bases of training receptivity. However, given the small
sample size, replication of these results on a larger, independent sample is needed. Moreover
this sample size also does not allow to obtain good results with methods such as machine
learning models as suggested by Genon et al., 2022 (see Appendix A10.2).

Overall, we obtained more brain-behavior associations in our second analyses than in
the first ones, even if the samples were at least a third smaller (N ∼ 90-110 for the first
analyses, N ∼ 30 for the second ones). This may seem surprising given recent results sup-
porting the need for very large samples to observe brain-behavior associations. In reality,
Marek et al., 2022 paper paves two different paths for future brain-behavior studies in neu-
roscience: (1) the need for large consortia to have very large sample sizes, or (2) the need
for more precise, theoretically guided, noise-minimizing, signal-maximizing experimental
designs (Gratton et al., 2022). For example, in clinical populations where behavior may have
less variability due to its measurement (patient/control) but also due to the greater homo-
geneity of measurements in clinical populations than in normal populations, much smaller
sample sizes may be sufficient to find nontrivial effect sizes (Libedinsky et al., 2022). As
well, the use of repeated measures data, personalized for each subject (post - pre image)
allowed us to increase our statistical power for our second analysis, even for brain-wide
data. Having repeated measures designs allows control for inter-individual variability at
the level of brain organization and can thus allow for precision analyses at the individual
level (Gordon et al., 2017). Indeed, the methods used by Marek et al., 2022, while popu-
lar, do not take into account the fact that the functional organization of the brain differs
from one person to another; individualized localization tools allow to obtain much better
brain-behavior associations (DeYoung et al., 2022).
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An interesting perspective would be to look at whether these brain effects vary with
sex, especially in adolescents. Indeed, it has been shown that there are differential effects
of brain anatomy on EFs according to sex in the same cohort of participants (Delalande
et al., 2020). Sex-specific analyses could thus reduce noise and refine the question (Gratton
et al., 2022), potentially leading to more personalized results.

Other factors could have a moderating role on these brain-behavior associations such
as socioeconomic status or culture. For example, SES has been shown to be correlated
with structural brain development and functional connectivity segregation, with higher
SES being associated with more protracted brain development and more efficient cortical
networks in adulthood (Tooley et al., 2021). In addition, different associations between
cerebral activity and cognition have been observed across cultures (Han and Ma, 2014; Han
and Northoff, 2008). Moreover, a recent study has highlighted a moderating effect of culture
on the SES relationship with brain and cognition (Walhovd et al., 2022). Thus, it may be
interesting to replicate our analyses in other cultures and socioeconomic backgrounds to
see if these effects would be universal or moderated by environmental factors. In general,
it would be of great interest to perform multilevel analyses to look at the different factors
supporting learning while controlling for the presence of these other factors. A perspective
to increase reliability and validity for brain, environmental or behavioral data is the use
of SEM which, thanks to latent variables, allows to reduce the measurement error of the
constructs of interest (DeYoung et al., 2022).

Furthermore, several studies have shown that brain organization (resting state func-
tional MRI data) is associated with training responsiveness (Baniqued et al., 2019; Baniqued
et al., 2018; Chaddock-Heyman et al., 2020; Gallen et al., 2016). It could thus be interesting to
explore different imaging modalities, both at the anatomical level with cortical surface area
or thickness, and at the functional level, at rest or related to a task, in order to understand
the different factors that, within the same brain level, support learning. This could allow
us to understand the precise mechanisms that are put in place and then propose the most
personalized interventions possible. In addition, it was shown that overall, over the course
of development, EFs goes from a global to a local cerebral organization (Fiske and Holmboe,
2019). This may explain the more important results identified in adolescents even though
they seem to have benefited less from the training according to their cognitive results (see
Figure 27). Moreover, it could be interesting to replicate these developmental findings from
a global to a local organization, and to compare them with training results on the same
sample to see if training would accelerate development (Jolles and Crone, 2012).

In conclusion, this study replicated the role of the left ACC for EFs in adolescents and
highlighted the role of brain regions typically involved in executive functioning (such as
insula, ACC, IFG) for receptivity to inhibitory control training. This latter result suggests
that brain anatomical features of the EF brain network would also be a factor supporting
executive learning.
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Study 5

Study 5: Machine learning methods to
investigate brain aging changes follow-
ing training

We were able to observe that the brain regions whose plasticity was associated with recep-
tivity to learning corresponded to regions of the executive function brain network. These
results, together with those of Study 1, support the hypothesis that training could accelerate
development and lead us to test this hypothesis at the cerebral level.
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1 Introduction

Several authors propose that cognitive training could “speed-up” the development, so that
neurocognition in children would be more mature after than before training (Bryck and
Fisher, 2012; Diamond and Lee, 2011; Fong et al., 2012; Jolles and Crone, 2012). Galván,
2010 also pointed out that development and learning should not be considered two sep-
arate constructs as the development is driven by interaction between both pre-specified
biological maturation and also experience (Stiles, 2011). Finally, some findings also suggest
that training may not mimic but rather interferes and deviates the typical developmental
trajectory (Denney, 1984; Hertzog et al., 2008; Jolles and Crone, 2012).

Figure 5.1: Machine learning method for brain age prediction. From Baecker et al.,
2021b.

An interesting and original approach to test this hypothesis at the cerebral level is to
calculate the brain age (i.e., predict age from cerebral information such as grey matter vol-
ume, etc.) before and after training to see if the training has indeed accelerated development
(by increasing the brain age compared to the chronological age). Indeed, for the past few
years and the development of machine learning, age prediction from brain imaging data
has become popular (Baecker et al., 2021b).

The principle is quite simple: on a subset of data, a computer learns to predict the age
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of subjects from an image of their brain and this learning is tested on another independent
data set. Using such models, correlations of .90 were observed between the predicted brain
age and the real chronological age (e.g., Ashburner, 2007; Dosenbach et al., 2010). It is then
possible to look at the difference between the predicted brain age and the real chronological
age for each subject. This brainAGE1 (brain Age Gap Estimation, also called brain-PAD or
brain-predicted age difference) can be negative (brain age < chronological age) or positive
(brain age > chronological age) (see Figure 5.1).

This tool has been used extensively in psychiatry and studies have shown a larger
brainAGE (i.e., a brain age greater than chronological age) is associated with schizophrenia
(Hajek et al., 2019; Lee et al., 2021; Schnack et al., 2016; Shahab et al., 2019), bipolar disorder
(Hajek et al., 2019; Shahab et al., 2019), autism spectrum disorder, ADHD (Kaufmann et al.,
2019), Alzheimer (Beheshti et al., 2018; Gaser et al., 2013), epilepsy (de Bézenac et al., 2021;
Sone et al., 2021) and even mortality (Cole et al., 2018). In clinical practice, the brainAGE
could then be used to estimate the general state of health of the brain, to detect disorders
before they appear (prevention), to help in diagnosis and in treatment recommendations
(Baecker et al., 2021b). BrainAGE has also been used longitudinally but for clinical issues.
For example, brainAGE was reduced after neurosurgery in epilepsy patients (de Bézenac
et al., 2021) and after the intake of ibuprofen in healthy subjects (Le et al., 2018). How-
ever, to date and to our knowledge, no study has looked at the effect on brainAGE of more
ecological interventions such as cognitive training.

Fewer studies on brainAGE have been conducted in healthy subjects. In healthy adults
(45-80 years old), brainAGE has been shown to be related to performance in CF, planning
and fluid intelligence (Cole, 2020). In the aging population, a link between brainAGE and
various cognitive measures (processing speed, CF, visual attention, etc.) has nevertheless
been demonstrated (Boyle et al., 2021). Brain age also seems to be related to lifestyle. For
example, in 50-years-old adults, long-term meditation practitioners had a 7.5-year younger
brain age than control participants (Luders et al., 2016).

Therefore, this study aimed to address three questions. First, does the brain matures
with cognitive training? We hypothesized that the brainAGE in post-test would be superior
than the brainAGE in pre-test and that this difference would be more important in the
experimental IC training group than in the control AC training group. Then, the second
question is whether the brain development is related to cognition? We hypothesized that the
brainAGE at pre-test would be a predictor of EF performance at pre-test. Finally, is the brain
aging after cognitive training related to gains following training? We hypothesized that the
difference between the brainAGE at post-test and the one at pre-test will be a predictor of
EF performance difference, and that this effect will be more important in the experimental
IC training group than in the control AC training group.

1brainAGE refers to the difference between the predicted brain age and the real chronological age. brain
age refers to the predicted brain age. brainAGE difference or∆brainAGE refers to the difference of brainAGE
post-pre training.
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2 Material and Methods

2.1 Brain age prediction

2.1.1 Training data

To calculate the brain age, it is necessary to have independent training data and test data.
Our test data being the APEX cohort, it was necessary to find independent cohorts that
could constitute our training data. Two different cohorts were used: ADHD200 (Milham et
al., 2012; http://fcon_1000.projects.nitrc.org/indi/adhd200/) and ABIDE2 (Di Martino et al.,
2017; http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html).

ADHD200 is a cohort of control and ADHD subjects. For this study, we included control
participants only so a total of 474 participants (246 boys, 228 girls) of mean age 12.25 years
[7.09-21.83 years]. MRIs were acquired across 7 sites. ABIDE2 is a cohort of control and
ASD subjects. As for ADHD200, we included control participants only so a total of 658
subjects (440 boys, 218 girls) of mean age 16.31 years [5.89-64.00 years]. The acquisition of
MRI data were done over more than 15 sites.

Figure 5.2: Age distribution across the three training datasets (ABIDE2 and
ADHD200) with a threshold at 25 years of age.

In total, our training data was constituted of 1132 healthy participants (686 boys, 446
girls) of mean age 14.61 years [5.89-64.00 years]. However, because of the age distribution
over 25 years and the test data targeting children and adolescents, we decided to exclude
from the training set the 102 participants fromABIDE2 over 25 years. The final training data
included 1030 healthy participants (612 boys, 418 girls) of mean age 12.78 years [5.89-25.00
years] (see Figure 5.2).
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2.1.2 Test data

To predict brain age at pretest, in order to have the largest possible sample size, all par-
ticipants in the APEX cohort were used (including the mindfulness and working memory
training groups, see Figure 5.3a). Of note, before training, the sample was then composed
of 110 children (9.85 ± 0.52 years; 61 females) and 88 adolescents (16.71 ± 0.54 years; 53 fe-
males). For the statistical group analyses, only participants from the AC and IC groups and
who completed a minimum of 15 training sessions were included (see Figure 5.3b), i.e., 57
children (9.79 ± 0.55 years; 33 females) and 48 adolescents (16.57 ± 0.50 years; 33 females).

(a) (b)

Figure 5.3: Age distribution across the APEX dataset. (a) = all participants included for
the brain age prediction; (b) = participants who met inclusion criteria and that are included
for the following statistical analyses.

2.1.3 Preprocessing and derived anatomical features

Voxel-BasedMorphometry (VBM)was performedwith CAT12 (http://www.neuro.uni-jena.
de/cat). The analysis stream includes non-linear spatial registration to the 1.5mm3 MNI
template, Gray Matter (GM), White Matter, and CerebroSpinal Fluid (CSF) tissues seg-
mentation, bias correction of intensity non-uniformities, and segmentations modulation by
scaling with the amount of volume changes due to spatial registration. Moreover, CAT12
computes GM volumes averaged on the Neuromorphometrics atlas that includes 284 brain
cortical and sub-cortical ROI. We performed QC visual analysis: 1) we monitored the Noise
Contrast Ratio (NCR) and Image Quality Rating (IQR) as two metrics of quality and we re-
tained only images at a threshold below 4; 2) we sort the images by increasing IQR score
and images with the higher IQR were visually inspected.

2.1.4 Machine learning models

We tested six machine learning models, three linear models (Ridge, ElasticNet, linear Sup-
port vector regression), two non linear models (Gradient boosing, Random forest) and one
deep learning model (Multilayer perceptron).
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These models were optimized in the training set (i.e., ADHD200 + ABIDE2) using a 5-
fold cross-validation randomized hyperparameter search. No residualisation was applied.
Global scaling based on total intracranial volume was done.

Next, we recomputed the machine learning models using the entire training dataset
(ADHD200 + ABIDE2) and the optimal parameters and used it to predict brain age for the
test dataset (APEX).

These models were conducted on GM volumes derived from VBM analyses, either at
local level (using voxel-wise analysis of modulated normalized VBMmaps) or regional level
(averaging VBM maps in regions of interest of the Neuromorphometrics atlas).

To select the best model, R2, MAE and MSE of the different models were compared. R2

corresponds to the variance explained by the regression divided by the total variance (see
equation 5.1), MAE (mean absolute error) to the expected value of the absolute error (see
equation 5.2) and MSE (mean square error) to the expected value of the squared (quadratic)
error (see equation 5.3).

R2 = 1−
∑n

i=1 brainAGE2
i∑n

i=1(agechrono,i − agechrono,i)
2

(5.1)

MAE =
1

N

n∑
i=1

|brainAGEi| (5.2)

MSE =
1

N

n∑
i=1

brainAGE2
i (5.3)

2.2 EF measures

Six EF measures were investigated, namely 4 measures of inhibitory control (Stop signal
reaction time, Stroop interference, Simon interference, ANT flanker score), 1 measure of
cognitive flexibility (trail making test flexibility score) and 1 measure of working memory
updating (N-back updating cost).

2.3 Statistical analysis

To investigate if brainAGE, i.e. difference between brain and chronological ages, changed
following training, repeated-measures ANOVAs were estimated using mixed-effects linear
models. We used the package lme4 (Bates et al., 2012) with Time (pre- or post-training) as
fixed effect and intercepts for subjects as random effects. To see if these effects were specific
to the type of training, mixed-effects linear models with Time (pre- or post-training) and
Training group (IC or AC training) as fixed effects and intercepts for subjects as random
effects were run. P-values were obtained by using likelihood ratio tests of the full model,
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including the tested effect against the model without the tested effect.

To investigate if brainAGE was related to EF performance at pre-test, ANCOVAs were
estimated using each of the 6 EF tasks performance at pre-test as dependant variable and
with an interaction between brainAGE and Age group (children or adolescents) as indepen-
dent variables.

Finally, to investigate if brainAGE difference was related to EF progress following cogni-
tive training, ANCOVAs were estimated using each of the 6 EF tasks performance progres-
sion (post-pre) as dependant variable and with an interaction between ∆brainAGE (i.e.,
brainAGE at post-test - brainAGE at pre-test), Age group (children or adolescents) and
Training group (IC or AC training) as independent variables.

3 Results

3.1 Brain age prediction

All results for the different models are presented in Table 5.1 for age predictions from ROIs
and in Table 5.2 for age predictions from voxel-wise analyses. The parameters for each
model can be found in Appendix A11.

All participants Children Adolescents
R2 MAE MSE R2 MAE MSE R2 MAE MSE

Ridge 0.82515225 1.15530548 1.44110153 -4.91160575 1.01764460 1.26400227 -8.36683554 1.32738158 1.63573025
ElasticNet 0.80791494 1.20893627 1.51046739 -3.84432429 0.91564348 1.14422578 -11.24178492 1.57555226 1.86998279
Support vector regression 0.79205662 1.27168347 1.57158223 -4.80137829 1.01704746 1.25216257 -11.59356306 1.58997848 1.89666027
Random forest 0.59233451 1.73585395 2.20047546 -6.20034560 1.07190927 1.39499225 -28.62463319 2.56578479 2.90898665
Gradient boosting 0.65380571 1.53922720 2.02779715 -6.56571054 1.05555827 1.42994714 -22.44139571 2.14381336 2.58765856
Multilayer perceptron 0.65427997 1.63373225 2.02640769 -10.24663390 1.40243872 1.74343758 -18.04364458 1.92284917 2.33233146

Table 5.1: Brain age prediction results from ROIs by type of model and age groups.

All participants Children Adolescents
R2 MAE MSE R2 MAE MSE R2 MAE MSE

Ridge 0.75755503 1.39488996 1.69695822 -10.78503303 1.48801945 1.78468070 -7.74467458 1.27847808 1.58047294
ElasticNet 0.67402584 1.57247986 1.96768756 -8.35890277 1.26278856 1.59040448 -18.42885425 1.95959398 2.35580225
Support vector regression 0.53812123 2.15872601 2.34222470 -12.86163346 1.78705308 1.93554080 -25.81850436 2.62331716 2.76778604
Random forest 0.55344451 1.87119280 2.30304420 -9.17981113 1.34120063 1.65868908 -28.73933120 2.53368300 2.91461259
Gradient boosting 0.54583713 1.83691799 2.32257831 -8.38950308 1.21029624 1.59300239 -30.38574921 2.62019518 2.99420470
Multilayer perceptron -2.22669827 5.14274797 6.19075667 -16.26096743 2.09637182 2.15987039 -280.46927422 8.95071816 8.96666065

Table 5.2: Brain age prediction results from voxel analysis by type ofmodel and age
groups.

Among these models, we selected those that, by imaging modality, presented the best
results. Thus, for prediction from ROIs, the Ridge model was selected (R2 = 0.83, MAE =
1.16, RMSE = 1.4, see Figure 5.4) and, for prediction from voxel analysis, the Ridge model
was also selected (R2 = 0.76, MAE = 1.39, RMSE = 1.70, see Figure 5.5). These two age
prediction models will therefore be the ones used for the further analyses.
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Figure 5.4: Brain age prediction from ROIs with Ridge model. The color of the dots
indicates the training group (see legend on the right). The x-axis corresponds to the pre-
dicted brain age and the y-axis to the measured chronological age.

Figure 5.5: Brain age prediction from voxel analysis with Ridge model. The color of
the dots indicates the training group (see legend on the right). The x-axis corresponds to
the predicted brain age and the y-axis to the measured chronological age.

Note that, although most of the models show very good fit indices (with large R2), these
indices drop drastically when we look at the results by age group. The correct R2s on the
whole sample are due to the fact that there was indeed a differentiation between the group
of children and adolescents, but within these two age subgroups, the prediction of brain
age is rather poor according to this index. However, we can note a MAE lower than 1.5 for
many of the models, i.e. a brain age predicted with less than 1.5 years precision.
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3.2 Does the brain ages with cognitive training?

3.2.1 Results from brain age prediction from ROIs measure with Ridge model

Regardless of the type of training followed, repeated-measures ANOVA highlighted a
marginal difference between the brainAGE at pre-test (-0.2077 ± 1.4253) and the brainAGE
at post-test (-0.3190 ± 1.4905) (χ2 = 2.84, p = 0.09). In addition, the interaction between
the training group (IC vs. AC) and the time session (pre- vs. post-test, see Figure 5.6) was
marginal (χ2 = 3.18, p = 0.07).

Figure 5.6: BrainAGE by training group and session (fromROIsmeasure with Ridge
model).

3.2.2 Results frombrain age prediction fromvoxel-wise analyseswithRidgemodel

Regardless of the type of training followed, repeated-measures ANOVA failed to detect any
difference between the brainAGE at pre-test (0.5091 ± 1.6154) and the brainAGE at post-
test (0.5005 ± 1.6607) (χ2 = 0.02, p = 0.88). In addition, the interaction between the training
group (IC vs. AC) and the time session (pre- vs. post-test, see Figure 5.6) failed to reach
significance as well (χ2 = 1.47, p = 0.23).

3.3 Does the brainAGE predicts EF performance?

3.3.1 Results from brain age prediction from ROIs measure with Ridge model

To investigate whether brainAGE could predict executive functioning, we performed AN-
COVAswith EF tasks performance at pre-test as dependant variable and with an interaction
between brainAGE andAge group (children or adolescents) as independent variables. These
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Figure 5.7: BrainAGE by training group and session (from voxel-wise analyses with
Ridge model).

analyses revealed that, for the Simon task, there was a marginal interaction between age
group and brainAGE (F(1,113) = 3.68, p = 0.06, see Figure 5.8) and a significant main effect
of brainAGE (F(1,113) = 7.53, p < .01) on the Simon score interference at pre-test while main
effect of age group failed to reach significance (p = .18).

Figure 5.8: BrainAGE effect on Simon interference score at pre-test by age group.

No significant other interaction or main effects of brainAGE on any of the 5 other EF
tasks at pre-test were observed (all ps > .26).

175



Study 5: Machine learning methods to investigate brain aging changes following training

3.3.2 Results frombrain age prediction fromvoxel-wise analyseswithRidgemodel

There were significant main effects of brain age (F(1,100) = 4.02, p < .05, see Figure 5.9)
while the other main and interaction effects of brainAGE and age group failed to reach
significance (all ps > .54).

Figure 5.9: BrainAGE effect on Simon interference score at pre-test.

No significant other interaction or main effects of brainAGE on any of the 5 other EF
tasks at pre-test were observed (all ps > .23).

3.4 Does the change in brainAGE predicts cognitive gains following
training?

3.4.1 Results from brain age prediction from ROIs measure with Ridge model

To investigate whether∆brainAGE (i.e., brainAGE at post-test - brainAGE at pre-test) could
predict EF gains (i.e., EF score at post-test - EF score at pre-test, for each EF task) follow-
ing AC or IC training, we performed ANCOVAs with EF tasks performance progression
(post-pre) as dependant variable and with an interaction between ∆brainAGE, Age group
(children or adolescents) and Training group (IC or AC training) as independent variables.
These analyses revealed a marginal triple interaction Age group * Training * ∆brainAGE
for the stop signal task progress (F(1,91) = 3.63, p = 0.06, see Figure 5.10a) and the N-back
progress (F(1,100) = 2.76, p = 0.10, see Figure 5.10b). Post-hoc Tukey analyses revealed sig-
nificant differences in∆brainAGE effect on N-back progress between children from the IC
and AC training groups (t(100) = -3.03, p < .05) but not in adolescents (p = .97). On the other
hand, the same analyses conducted on stop signal progress did not reveal any significant
difference between the two training groups (all ps > .36).
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(a) (b)

Figure 5.10: BrainAGE difference effect on (a) stop signal and (b) N-back progress
by age and training group.

All other main and interaction effects of age and training groups failed to reach signif-
icance (all ps > .11).

All other interaction or main effects of brainAGE difference failed to reach significance
(ps > 0.16).

3.4.2 Results frombrain age prediction fromvoxel-wise analyseswithRidgemodel

An interaction Training (IC vs. AC) * ∆brainAGE was found marginal for the Stroop task
progress (F(1,104) = 2.95, p = .09, see Figure 5.11). Post-hoc Tukey analyses revealed signif-
icant differences in∆brainAGE effect on Stroop progress between participants from the IC
and AC training groups (t(104) = -2.20, p < .05).

Figure 5.11: BrainAGE difference effect on Stroop progress by training group.
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All other interaction or main effects of∆brainAGE on EF tasks progress failed to reach
significance (ps > 0.13).

4 Discussion

This study aimed to predict brain age to test different hypotheses. First of all, it aimed to see
if cognitive training could accelerate development (Jolles and Crone, 2012), i.e. whether the
gap between the predicted brain age and the real chronological age increased after training.
Although ourmodels provided a good prediction of age, similar to previous studies (e.g., Ball
et al., 2021), no significant effect of training was observed. There are several reasons for this
lack of results. First, although our prediction of brain age is quite good, its accuracy (approx.
1.5 years) is most likely not sufficient to highlight a difference between two measurement
times spaced 5 weeks apart. It would therefore be necessary either to improve the accuracy
of the prediction of brain age and/or to increase the delay between the pre- and post-test.
This methodology is therefore not ideal for short duration cognitive training. However,
this approach could be relevant to examine the impact of longer-term training or learning,
such as learning to read or cognitive remediation training.

Second, this study aimed to see if brain age could predict executive functioning. With
the Ridge prediction model from the ROIs data, an effect on the Simon task performance
of the difference between the predicted brain age and the real chronological age, different
in children and adolescents, was demonstrated. Notably, children with a larger brainAGE
(i.e., a brain agemore important than their chronological age) had poorer inhibitory abilities
(i.e., higher interference scores on the Simon task). The same results were observedwith the
Ridge prediction model from the voxel-wise analysis. However, the fact that the cerebral
cortical volume was not related to EF performance (see Study 4) may lead us to believe that
these results could hardly be generalized. It is possible that in young populations such as the
APEX cohort, the variability in cognitive and brain development does not allow the use of
an index such as brain age as a marker of executive functioning. It is also possible that brain
age, calculated from a combination of anatomical and functional, would be a better marker
of EF functioning and development. Thus, it would be necessary to replicate our analyses on
a sample with more variability in age, and not just two groups of participants concentrated
in two narrow age ranges, but alsowith a prediction of brain age on several variables, maybe
combined, and not just cortical volume. However, it is possible that by combining different
modalities, noise can be added and that the interpretation of the results is more difficult
(to know which is the result of functional and which is the result of anatomical features
for example; Groves et al., 2012). Another perspective would be more theory-driven and
calculate participants’ brain age from more a priori specified brain characteristics, more
related to EFs. In particular, a brain age calculated on brain features of the EF network
(PFC striatum, etc.) could prove to be a better indicator of executive performance. By
integrating markers of segregation (such as ROI volume or surface area) and integration
(such as functional or structural connectivity), a brain age reflecting the development of
the EF brain network could indeed be calculated.

Finally, the last goal of this study was to see if variations in brain age following cogni-
tive training could predict executive progress following this cognitive training. With the
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prediction of brain age from ROI data and a Ridge model, the difference in brain age was
predictive of progress following cognitive training on the stop signal and N-back. For these
two tasks, the effects of∆brainAGE varied according to the age group and the type of train-
ing followed. In the case of N-back, brainAGE difference does not seem to play any role
in N-back progress in adolescents. But, in children, results seem to show that the greater
the progress in WMU are likely to be observed if the brain "got older" following IC training
and if the brain "got younger" following AC training. In the case of stop signal, brainAGE
difference seemed to be a poor indicator of IC progress following the AC training. On the
other hand, following IC training, in children, the more the brain "got younger", the greater
the progress in IC following the 5 weeks of training, whereas in adolescents, the opposite
effect was found (the more the brain "got older", the greater the progress in IC). These re-
sults, suggest differentiated effects according to age. While a brain that is "getting younger"
would be linked to more progress following training in childhood, in adolescence on the
contrary, progress would be more linked to a brain that is "getting older". It would be nec-
essary to look at the brain areas that drive these results. In particular, it seems that brain
age is not predicted in an equivalent way by all the cerebral regions (Ball et al., 2021). If
our brain age is computed in an important way by a developing region from childhood to
adolescence, our results could be driven by the overrepresentation of a developing region.
In the same way as mentioned above, it could be interesting to calculate the brain age from
characteristics of the EF brain network but also from the learning brain network (striatum,
etc.). Moreover, as we have previously seen in Study 3, progress following IC training is
variable from one individual to another. More personalized analyses of individual trajec-
tories would be necessary to shed more light on the neurocognitive mechanisms at play
during IC training. With the prediction of brain age from the voxel-wise analysis and a
Ridge model, the brainAGE difference was predictive of progress following cognitive train-
ing on the Stroop task. The effect of brainAGE difference varied with the type of training
but there was no difference of age. This effect of brainAGE difference seemed to be more
important following AC training (the more the brain "got younger", the greater the progress
in Stroop) as it was almost null following IC training. Thus, given our results fluctuating
from one prediction model to another as well as the small sample size, these results should
be interpreted with caution and need to be replicated before being generalized.

Another reason that could explain our results is a bias, systematically observed in the
estimation of brain age, which makes that the brain age is underestimated for the oldest
subjects and overestimated for the youngest (Aycheh et al., 2018; Cole et al., 2017; Le et al.,
2018). Potential explanations for this bias include regression toward the mean (Liang et al.,
2019) and nongaussian distribution of subject ages (Smith et al., 2019). When the brain age
gap is used as a biomarker for psychopathology or cognition development, this bias can
introduce a confounding effect of chronological age (Niu et al., 2020).

The question of the development of the brainAGE deserves to be investigated. While
most studies using brain age are performed in adults, the calculation of brain age in child-
hood raises questions. Indeed, the brain is still developing up to age 25, and there are
maturation lags between brain regions (Bethlehem et al., 2022). This lag in brain matura-
tion according to the regions also raises the question of the data to be included in training:
it could then be more relevant to have a training set very similar to the test-set or, on the
contrary, to have a training set that is as broad as possible. Secondly, although most studies
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present brainAGE as a potential marker of pathologies (e.g., Shahab et al., 2019) or cog-
nitive difficulties (e.g., Cole, 2020), little is known about the stability of brainAGE during
development. Notably, little association between cross-sectional brain age and longitudinal
changes in brain age was observed, rather brain age in adulthood was shown to be associ-
ated with very early life factors such as birth weight (Vidal-Pineiro et al., 2021). It could be
very interesting to look at the variations of brainAGE during development or at least lon-
gitudinally and if these variations are influenced by the data included in the model. This
could give us information about the plasticity or the fixed character of this index which is
increasingly used as a psychiatric and psychological marker.

In conclusion, although we were not able to use brainAGE to test the hypothesis of
brain aging after training, our promising first results associating brainAGE with executive
performance and gains after IC training suggest that longitudinal brainAGE can be a very
interesting tool for development and training.
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Study 6: Relationships of brain, genes
and inhibitory control through cogni-
tive training and development - a mul-
tilevel analysis

This study led to a manuscript in
preparation: Menu, I., He, Q., Victor,
J., Rezende, G., Le Stanc, L., Vidal, J.,
Oppenheim, C., Duchesnay, E.,
Chaumette, B., Houdé, O., Borst, G. &
Cachia, A. (in prep.). Do
neuroplasticity and genetic factors
contribute to cognitive training in
children and adolescents?

After investigating the effects of development and inhibitory control training at the
cognitive and brain levels, we wanted to examine how these different levels of analysis,
cognitive and cerebral, as well as genetic, interact to explain inter-individual differences in
training receptivity.
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1 Introduction

Various studies have been conducted to stimulate IC (Diamond and Lee, 2011; Hu et al.,
2017; Jaeggi et al., 2011; Liu et al., 2015; Zhao et al., 2015). Although studies reported cog-
nitive gains following IC training (Manuel et al., 2010; Maraver et al., 2016; Peckham and
Johnson, 2018; Thorell et al., 2009), inter-individual differences persist in training receptiv-
ity.

At the cognitive level, as we have seen in Study 3, the impact of the baseline level is a
critical predictive factor of training receptivity often studied to investigate who benefits the
most from the training proposed. The "compensation account" hypothesis postulates that
individuals who are already high performers will benefit the least from cognitive training
because they are already functioning at an optimal level. This leaves them less room to
improve, in contrast to individuals who have more fragile baseline performance (Karbach
and Kray, 2021; Karbach and Unger, 2014; Lövdén et al., 2012b; Titz and Karbach, 2014).
Indeed, several studies of EF training have found greater benefits for children and older
adults than for young adults (see for review: Karbach and Unger, 2014) but also for children
with low working memory or with ADHD (Diamond, 2011).

At the brain level, as seen in Study 4, direct links between cerebral organization and
training receptivity have also been demonstrated: brain network organization predicted
cognitive gains after training in children (Chaddock-Heyman et al., 2020), in young adults
(Baniqued et al., 2019) and in older adults (Baniqued et al., 2018; Gallen et al., 2016).

Finally, at the genetic level, a first indirect link between genetic polymorphism and
training receptivity was proposed by Rueda et al., 2005a. Children with poorer initial
performance on attentional conflict were more likely to show training effects than others
(compensation account hypothesis). Moreover, DAT1, a gene implicated in the dopamine
system, polymorphism explained attentional conflict scores at pre-test. The link between
DAT1 polymorphism and training receptivity was thus really indirect. But one study did
establish a direct link between genetic factor and training receptivity while controlling for
baseline and showed that BDNF polymorphism mediated the effect of a physical training
intervention on EFs in older adults (Leckie et al., 2014).

However, to date, no study has been able to put all the levels together by investigating
simultaneously the effects between these different factors and training receptivity. This lack
of studies can be explained firstly by amethodological difficulty. Indeed, classical regression
analyses allow to highlight the effect of one or more independent variable(s) on a dependent
variable, or correlations between different variables. However, as soon as we investigate
several levels, these classical analyses do not allow answering all the questions we might
have and to create all the needed connections. It is then necessary to use more complex
statistical analyses for multilevel modeling (Hoffman and Walters, 2022). Mediations can
be used to highlight links between three different levels of data but are not sufficient in the
case of an experimental design involving training: it would be necessary to carry out these
mediations before and after the intervention, while controlling their effect on each other
but also the effect of baseline, etc.
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Figure 6.1: Path diagram of a strict measurement invariant bLCS model with the
change of surface area and working memory from 14 to 19. From Judd et al., 2020.

Such multilevel modeling is possible with structural equation modeling (SEM) analyses
that allow to test simultaneously and globally the existence of several hypothetical rela-
tionships. SEM can be use in multi-level and longitudinal data. Indeed, latent change score
(LCS) models, extensions of SEM seen in Study 3, have been developed for longitudinal
data (McArdle, 2009) and can examine the difference in a variable between two or more
measurement time points rather than investigating shifts in the rank order between two
time points (Castro-Schilo and Grimm, 2018). Differences between successive measure-
ments are then modeled as latent change factors. This modeling can easily and accurately
investigate complex and critical training issues, such as 1) the estimation of inter-individual
differences in the initial levels and in training-related changes and 2) the characterization
of complex (and possibly nonlinear) change trajectories, along with the determination of
the factors influencing these trajectories (McArdle, 2009; McArdle and Nesselroade, 2014).
This model can be extended for a multilevel characterization as in a bivariate latent change
score (BLCS) to investigate cross-level coupling (Kievit, 2017). For instance, we can quan-
tify the extent to which cognitive changes between pre- and post-training are a function of
brain structure and cognition at pretest (Kievit et al., 2018). In a previous study, this type
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of modeling demonstrated that environment (SES index) and genetic (PRS based on educa-
tional attainment) were important for cognitive (working memory) and brain (surface area
of the two brain hemispheres) development through adolescence (Judd et al., 2020; see Fig-
ure 6.1). This study, looking at changes during normal development, uses a modeling that
is also suitable for examining changes following cognitive training such as our IC training.

The aim of the present study was thus, through a multilevel SEM similar to the one
used in (Judd et al., 2020), to put all the pieces together and to investigate which cognitive,
cerebral, and genetic factors contribute to inter-individual differences in training receptiv-
ity in our APEX cohort of healthy children and adolescents after a 5-weeks computerized
IC (experimental group, IC) or control (active control group, AC) training.

At the brain level, we a priori focused on the ACC and the IFG as they were shown to
be associated with IC abilities (see fMRI meta-analyses: Criaud and Boulinguez, 2013; Sim-
monds et al., 2008; Swick et al., 2011) and to present changes in structure (cortical thickness
and surface; Delalande et al., 2020) and in functionnal connectivity (Hu et al., 2017) after an
IC training. We also focused on striatal regions, including caudate nucleus and putamen,
since these regions were shown to be classically involved in learning (Seger, 2006, 2008;
Seger and Cincotta, 2005a; Seger and Cincotta, 2005b) and in IC (Beste et al., 2018).

At the neurobiological level, given the polygenic architecture of IC, diffuse across very
many variants (Donati et al., 2019; Hatoum et al., 2022), polygenic risk scores (PRSs; Wray
et al., 2007) seem to be the most relevant to study the genetic impact on variability in IC
training receptivity. PRSs are quantitative scores that index, for each individual subject
in a study sample, their aggregate genetic risk for a trait of interest. Specifically, a PRS is
computed as the weighted sum counting all risk alleles for a selected set of single nucleotide
polymorphisms (SNPs) carried by an individual. The weight used for each risk allele is the
SNP log odds ratio estimated out of sample in a large GWAS of the given trait.

Thus, multilevel SEM will able us to investigate how cognitive (basal stop signal and
color-word Stroop efficiency), cerebral (grey matter volume in left and right ACC, left and
right IFG, left and right caudate, left and right putamen), and genetic (PRS) factors con-
tribute to inter-individual differences in training gain in our cohort of children and adoles-
cents after a 5-weeks computerized training.

2 Methods

2.1 Participants

Of the APEX cohort, 176 participants (102 children and 74 adolescents) had given their
consent for the genetic part of the study and were included for the PRS calculation. For the
multilevel modeling, we included APEX participants who completed at least 15 sessions of
the AC or the IC training, i.e., 57 children (9.79 ± 0.55 years; 33 females) and 48 adolescents
(16.57 ± 0.50 years; 33 females).
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2.2 IC evaluation in pre- and post-training sessions

In this study, we focused on the tasks completed before and after training that were trained,
namely the stop signal and color-word Stroop task. As described in the Method section of
this manuscript (see section 8), we estimated the stop signal reaction time (SSRT) using
the integration method with replacement of go omissions as recommended in literature
(Verbruggen et al., 2019) while the Stroop interference score was calculated as the difference
between the reaction time (RT) for successful incongruent CPCM trials and the RT for
successful congruent trials. For each task, relative changes were screened and cleaned for
possible aberrant values by using a nonparametric approach. Specifically, values lower than
‘median – 2.5 MAD’ or greater than ‘median + 2.5 MAD’ (MAD, or the median absolute
deviation) were considered to be outliers.

2.3 MRI acquisition

2.3.1 Anatomical MRI acquisition

High-resolution isotropic 3T sagittal MRI data (1 x 1 x 1 mm) were acquired for both chil-
dren and adolescents, before and after training. MRI data in children were acquired at
the Cyceron biomedical imaging platform (Archieva, Philips Medical System, Netherlands).
MRI data of adolescents were acquired at the CIREN biomedical imaging platform (General
Electric Healthcare). The parameters of the sequences were optimized in each site to obtain
similar acquisition at Cyceron (TE = 3.3 ms; TR = 7.2 ms; flip angle = 9°; matrix size = 256 x
240 mm; field of view = 256 mm) and at CIREN (TE = 3.2 ms; TR = 8.2 ms; flip angle = 11°;
matrix size = 256 x 256 mm; fields of view = 256 mm).

2.3.2 MRI data analyses

Local grey matter volumes were automatically assessed on the whole brain based on the
standard voxel-based morphometry (VBM) approach using the Computational Anatomy
Toolbox (CAT12) (http://www.neuro.uni-jena.de/cat/) as described in Studies 4 & 5. Local
grey matter volume of the eight regions of interest (ROIs) were extracted: left (lACC) and
right anterior cingulate cortex (rACC), left (lIFG) and right inferior frontal gyrus (rIFG), left
(lCaudate) and right caudate (rCaudate), left (lPutamen) and right putamen (rPutamen).
Both absolute (raw) and relative (after spatial normalization with global scaling using Total
Intracranial Volume; TIV) volumes of these 8 ROIs were computed.

2.4 Genotyping and imputation

Genotyping data was generated for all individuals using the genome-wide genotyping ar-
ray Infinium PsychArray (Illumina, San Diego,California, United States). The genetic data
of one participant could not be calculated because of insufficient salivary volume. We per-

186

http://www.neuro.uni-jena.de/cat/


Study 6: Relationships of brain, genes and inhibitory control through cognitive training
and development - a multilevel analysis

formed quality control with PLINK (v1.9, www.cog-genomics.org/plink/1.9/; Purcell et al.,
2007) on the raw genotyping data to exclude single nucleotide polymorphisms (SNPs) with
a minor allele frequency <2%, genotyping missing rate >5% and Hardy–Weinberg Equilib-
rium p value < 10-6. Only autosomal SNPs were kept. The software KING was used to
compute and check sex, relatedness and ancestry (Manichaikul et al., 2010). After filtering,
157 children and adolescents were confirmed with European ancestry, and all passed the
quality filtering.

2.5 Polygenic risk score

Polygenic risk score calculates the aggregate genetic risk for a phenotype of interest for each
subject in a study sample (test data) as the weighted sum of all risk alleles for a selected
set of single nucleotide polymorphisms (SNPs). The SNP log odds ratio estimated out of
sample in a large GWAS (train data) of the given phenotype is used as the weight for each
risk allele.

Here, the PRS for each APEX participant was calculated using PRSice (v2.2.8; Choi et al.,
2020) with the summary statistics of latest GWAS related TMT-alphanumeric (Watanabe
et al., 2019, see Appendix A12), freely available online on the Atlas of GWAS Summary
Statistics website (https://atlas.ctglab.nl/). The sample size and number of SNPs for this data
set are in Table 6.1. The P-value threshold was automatically determined by testing a wide
range of thresholds to capture the best fit PRS possible (Choi et al., 2020). Linear regression
models were used to determine the relationships between the two IC tasks (stop signal
and color-word Stroop tasks) and their respective PRS, adjusted on age, sex and ten top
principal components that reflects population structure identified as covariates by KING.
The Empirical P-value for the linear regression was adjusted by using 1,000 permutations.
Empirical P <0.05 was considered as significant.

Data set Reference Sample size Number of SNPs
TMT-B Watanabe et al., 2019 84,259 9,267,643

Table 6.1: Data set used for polygenic risk score calculations.

2.6 Statistical analyses

2.6.1 Multi-level model

A multilevel model (see Figures 6.3 & 6.4) was created to combine four existing common
models.

First, this model incorporates a latent change score model (LCS, see Study 3; Kievit,
2017; McArdle, 2009; McArdle and Nesselroade, 2014) at the cognitive level, for each IC
task (color-word Stroop or stop signal, down Figures 6.3 & 6.4 in yellow and black). LCS
model conceptualizes the difference between successivemeasurements as latent change fac-
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tors, which allowed us to directly model within-subjects changes (McArdle and Hamagami,
2001). Similarly, ourmultilevel model also integrates a LCSmodel at the brain level, for each
ROI (lACC, rACC, lIFG, rIFG, lCaudate, rCaudate, lPutamen, rPutamen, down Figures 6.3 &
6.4 in yellow and black). Cross-effects (down Figures 6.3 & 6.4 in red) were modeled in order
to investigate the possible role of the cognitive baseline on the ROI volume change and of
the ROI volume baseline on the cognitive change (Kievit, 2017). Moreover, this model also
includes a mediation model at pretest level where the PRS predicts the IC score at pretest
and the grey matter volume at pretest (down Figures 6.3 & 6.4 in blue). Finally, a mediation
model at the level of latent change was included with PRS predicting cognitive and cerebral
LCS change (down Figures 6.3 & 6.4 in green).

Tomake sure that training effects were specific to the IC-training group, we run amodel
comparison. Indeed, two types of multilevel models were fitted for the eight ROIs of interest
by age group. In the first model, referred to as the ‘constrained model’, all of the parameters
were constrained to be equal in the two groups (ICpre = ACpre & ICchange = ACchange),
assuming the same training effects regardless of the training group. In the second model,
referred to as the ‘free model’, the parameters were only constrained to be equal at the
pretest period (ICpre = ACpre), assuming that the training effects on change were specific
to the training group. In both models, the baseline scores were constrained to be equal,
assuming a similar level before training because the participants were randomly assigned
to the different training groups. We then compared these two models with a χ2 comparison
test.

2.6.2 Model fit and comparison

The multilevel models were estimated with the lavaan software package (Version 6.8;
Rosseel, 2012) in R, for each age group separately, using full information maximum likeli-
hood with robust standard errors to account for missingness and non-normality. Overall
model fit was assessed using standard indexes (Schermelleh-Engel et al., 2003): the chi-
square test, the root-mean-square error of approximation (RMSEA; acceptable fit: < .08,
good fit: < .05), the comparative fit index (CFI; acceptable fit: .95–.97, good fit: > .97), and
the standardized root-mean-square residual (SRMR; acceptable fit: .05–.10, good fit: < .05).

3 Results

3.1 Association of polygenic risk for cognitive flexibility with In-
hibitory Control

We calculated polygenic score for executive functioning using the summary statistics from
the trail making test (time to complete the alphanumeric part, TMT-B) in 84,259 adults of
the UK Biobank 2 study (UKB2; Watanabe et al., 2019). We found that common genetic
variation predisposing to executive functioning significantly contributed, in our indepen-
dent subsample of 157 children and adolescents, to response inhibition measured by stop
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signal reaction time (SSRT) (empirical P = 0.01, r2 = 7.19 %, coefficient = -10.00, se = 2.82)
but not to interference control measured by Stroop interference score (empirical P = 0.51,
r2 = 2.09%, coefficient = 43.23, se = 25.05). Hence, for the remaining analyses, only PRS
associated to the SSRT was investigated. The corresponding PRS barplot can be found in
Figure 6.2. Detailed results can be found in Table 6.2.

Figure 6.2: Barplot of the stop signal PRS at different p-value thresholds.

Discovery Target Threshold PRS.R2 Beta SE P Num SNP
Adjusted P
(Bonferroni)

Adjusted P
(Holm)

Empirical P

TMT-B Stop signal 0.0098 0.0719 -10.0040 2.8224 0.0006 4401 0.0011 0.0011 0.0130
TMT-B Stroop 0.2270 0.0209 43.2317 25.0471 0.0865 43823 0.1730 0.0865 0.5057

Table 6.2: The association of the polygenic risk score (PRS) for TMT with IC mea-
sures. Beta is the coefficient. SE is the standard error. The coefficient and standard error
are standardized.

3.2 Multilevel model

To investigate to which extent cognitive, cerebral, and genetic factors contributed to cogni-
tive training receptivity, we designed and estimated amultilevel model designed to combine
two LCS models to investigate change induced by training, one at the cognitive level of the
stop signal and one at the brain level of grey matter (GM) volume of a given ROI of the IC
brain network (lACC, rACC, lIFG, rIFG, lCaudate, rCaudate, lPutamen, rPutamen), and two
mediation models to investigate whether the genetic effect of PRS on response inhibition
was mediated by a cerebral variable, the GM volume of one of the 8 ROI, at both pre-test
and latent change levels (see Methods section above).

Since we were interested in factors involved in cognitive gains following training, we
focused on models showing (1) training effects specific to the IC-training group, (2) good
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fit indices to ensure the robustness of our estimations, (3) a significant learning-related
cognitive change.

3.2.1 Raw volumes (without spatial normalization)

In children, we ran 8 models corresponding to the 8 ROIs and we found that the model with
left ACC was the only model with training effects specific to the IC-training group (χ2 [11]
= 41.06, p < 0.001), fitted the data well according to the classical SEM metrics (Schermelleh-
Engel et al., 2003: χ2 (7) = 11.28, p = .13, RMSEA = .13, 90% confidence interval (CI) = [0.00,
0.27]; CFI = 0.98; SRMR = 0.15, Yuan-Bentler scaling factor = .76) and showed a significant
learning-related cognitive change (p < .01, R2 = 0.86).

Figure 6.3: LCS model estimations. Top = children of the experimental (IC) training
group; Bottom = children of the control (AC) training group. Plain lines represent p <.05,
dotted lines represent p ≥ .05.

At pre-test, this model estimation (see Figure 6.3) revealed a significant influence of
genes (PRS) on response inhibition (SSRT; -11.84, SE = 4.82, z = -2.45, p < .05). There were
no significant effect of PRS on lACC GM volume (p = .36) nor of lACC GM volume on SSRT
at pre-test (p = .18).

In the experimental IC group, there was a significant latent change score for the stop
signal (-0.27, SE = 0.10, z = -2.70, p < .01), indicating significant changes in SSRT after IC
training. Among factors contributing to this change of stop signal, at the cognitive level,
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there was a significant baseline effect (-0.86, SE = 0.12, z = -7.49, p < .001), indicating that the
higher the initial cognitive scores (and thus the lower the IC efficiency) on stop signal, the
greater the gain on that task. At the brain level, significant effects of both lACC GM volume
baseline (0.06, SE = 0.01, z = 4.56, p < .001) and latent change of lACC GM volume (-0.12,
SE = 0.05, z = -2.65, p < .01) were observed, reflecting an effect of both neural architecture
at baseline and plasticity. Finally, at the genetic level, a significant effect of PRS on change
for stop signal was detected (20.02, SE = 4.30, z = 4.65, p < .001), indicating that the higher
the risk of having good executive functioning (i.e., low PRS), the greater the change after
IC-training. Of note, there were no significant latent change of the lACC GM volume (p =
.59) and this change of lACCwas not impacted by either cerebral baseline lACCGM volume
(p = .85), genetic PRS (p = .26), nor cognitive stop signal baseline performance (p = .88).

In the AC training group, there was no significant latent change for the stop signal (p
= .11), i.e., no significant cognitive change following this placebo training. Among factors
contributing to change of stop signal, only the baseline parameter was significantly nega-
tive for the stop signal (-0.63, SE = 0.10, z = -6.22, p < .001). All other factors failed to reach
significance (ps >.16). Of note, there were no significant change of the lACC GM volume
(p = .29) and this change of lACC was not impacted by either cerebral baseline lACC GM
volume (p = .15), genetic PRS (p = .51), nor cognitive stop signal baseline level (p = .64).

In adolescents, none of the model estimation completed the three criteria, namely train-
ing effects specific to the IC-training group, good fit indices to ensure the robustness of our
estimations, and a significant learning-related cognitive change. Fit indices for all ROIs in
children and adolescents are available in Appendix A13. All model estimates for all ROIs
are available in Appendix A14.

3.2.2 Global-scaled ROI volumes (with spatial normalization)

In children, among the 8 ROIs, the model estimation with lPutamen as the ROI was the one
that met all the criteria. Indeed, training effects where specific to the IC-training group
(χ2 [11] = 27.47, p < 0.01), fitted the data well according to the classical SEM metrics
(Schermelleh-Engel et al., 2003: χ2 (7) = 7.82, p = .35, RMSEA = .06, 90% confidence in-
terval (CI) = [0.00, 0.24]; CFI = 0.99; SRMR = 0.12, Yuan-Bentler scaling factor = .87) and
showed a significant learning-related cognitive change (p < .001, R2 = 0.78).

At pre-test, this model estimation revealed a significant influence of genes (PRS) on
response inhibition (SSRT; -10.33, SE = 4.98, z = -2.07, p < .05). There were no significant
effect of PRS on lPutamen GM volume (p = .31) nor of lPutamen GM volume on SSRT at
pre-test (p = .35).

In the experimental group (IC, upper part of Figure 6.4), there was a significant latent
change score for the stop signal (0.54, SE = 0.10, z = 5.23, p < .001), indicating significant
changes in stop signal score after IC training. Among factors contributing to this change
of stop signal, at the cognitive level, there was a significant baseline effect (-1.02, SE = 0.14,
z = -7.28, p < .001), indicating that the higher the initial scores (and thus the lower the IC
efficiency) on stop signal, the greater the gain on that task. At the brain level, significant
effects of both lPutamen GM volume baseline (-0.07, SE = 0.02, z = -3.97, p < .001) and latent
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Figure 6.4: LCS model estimations. Top = children of the experimental (IC) training
group; Bottom = children of the control (AC) training group. Plain lines represent p < .05,
dotted lines represent p ≥ .05.

change of lPutamen GM volume (-0.08, SE = 0.03, z = -2.32, p < .05) were observed, reflecting
an effect of both neural architecture at baseline and plasticity. Finally, at the genetic level,
no significant effect of PRS on change for stop signal was detected (p = .24). Of note, there
were no significant latent change of the lPutamen GM volume (p = .21) and this change
of lPutamen was not impacted by either cerebral baseline lPutamen GM volume (p = .28),
genetic PRS (p = .31), nor cognitive stop signal baseline performance (p = .77).

In the control training group (AC, bottom part of Figure 6.4), there was no significant
latent change score for the stop signal (p = .25), i.e., no significant cognitive change follow-
ing this placebo training. Among factors contributing to latent change of stop signal, only
the cognitive baseline parameter was significantly negative for the stop signal (-0.55, SE =
0.16, z = -3.54, p <.001). All other contributing factors failed to reach significance (ps >.52).
Of note, this time there were a significant latent change of the lPutamen GM volume (0.62,
SE = 0.24, z = 2.59, p <.05) and this latent change of lPutamen was impacted by genetic PRS
(-62.18, SE = 7.44, z = -8.36, p <.001) and baseline cognitive stop signal level (-0.99, SE = 0.35,
z = -2.88, p <.01) but not by cerebral baseline lPutamen GM volume (p = .23).

In adolescents, none of the model estimation completed the three criteria. Fit indices
for all ROIs in children and adolescents are available in Appendix A13. All model estimates
for all ROIs are available in Appendix A14.
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4 Discussion

This study used a multilevel SEM model to investigate the role of cognitive, brain, and
genetic factors on receptivity to IC training (i.e., cognitive gain) in children and adolescents.

In children, some effects at the three different levels have been demonstrated. We found
an effect of the basal cognitive level in line with the compensation hypothesis (e.g., Kar-
bach and Unger, 2014), i.e., the children who benefit the most from the training are those
who have the most difficulties initially (see Study 3). At the genetic level, we observed an
effect of the PRS on the cognitive gains following training. This is consistent with previous
studies that have shown a role of single nucleotid polymorphisms in training receptivity
(Leckie et al., 2014; Rueda et al., 2005a). Here, since the PRS was calculated from a cognitive
flexibility score (Trail making test) and was associated with the initial level of stop signal,
this result suggests that the genetic basis of EFs would be involved for training receptiv-
ity. Again, this is consistent with the two studies that showed that polymorphism of genes
involved in EFs (DAT1 and BDNF) were linked to post-training gains. At the brain level,
we could detect an effect of the baseline brain ROIs volume and volume changes (i.e., plas-
ticity) on cognitive gain. These results are the first to show an effect of brain anatomy on
the benefits following training, and complement the brain basis of training receptivity with
the previously described effects of cerebral network organization (Baniqued et al., 2019;
Baniqued et al., 2018; Chaddock-Heyman et al., 2020; Gallen et al., 2016).

In adolescents, like all of our findings on APEX where cognition is involved (see Studies
1 & 3), the results were very limited. It would have been very interesting to have results
in this age group, as it would have allowed us to compare our model with Judd’s model
(Judd et al., 2020) which covered similar age ranges. This longitudinal study of adolescents
seen at 14 and then at 19 years of age had demonstrated through multilevel SEM that devel-
opmental changes in WM and cortical surface were under the influence of socioeconomic
(SES index) and genetic (PRS) factors. Although in their study, baseline effects, cross-effects,
and cognition-brain relationships at the pretest and latent change levels were bidirectional
(whereas we modeled them as causal to be able to infer mediation effects), our two models
were very similar and deal with theoretically related variables (IC and WM), so it might
have been interesting to compare them.

Interestingly, among the 8 ROIs tested, twowere found to have effects on cognitive gain:
the left ACC and the left putamen, two key regions for IC. Indeed, various studies have re-
ported the link between ACC cortical thickness and IC performance (Elderkin-Thompson
et al., 2008; Takeuchi et al., 2010; Westlye et al., 2010). Functionally, ACC activity increases
with age and development, similarly to IC performance measured by a Stroop task (Adle-
man et al., 2002). This region has also been shown to be more prominently activated during
other IC tasks like Simon (Kharitonova et al., 2013) and Go/No-Go (Pornpattananangkul et
al., 2016), having a central role in conflict detection and being increasingly activated when
errors are committed (Braver et al., 2001). Therefore, both anatomy and function of ACC
are related to IC performance. On the other hand, the activation of striatum, including the
putamen, was shown to be related to response inhibition during the Stop signal task (Vink
et al., 2005). Striatum, and particularly the putamen, are associated with motor response
suppression (Pas et al., 2017) and inhibition anticipation (Pas et al., 2021; Pas et al., 2019;
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Zandbelt and Vink, 2010). Thus, while ACC is a general region for IC, putamen is more
specific for the stop signal task.

To get insight on raw and normalized brain changes, we conducted analyses using ab-
solute or relative volumes (normalized by total intracranial volume; TIV). We observed
slightly different but complementary results. The issue of spatial normalization of anatom-
ical brain imaging data has been debated for a long time (Mills et al., 2016; O’Brien et
al., 2011). Most often, a corrective factor, frequently TIV, is used as a regressor in VBM
studies. If global differences related to sex, body height, and head size are not thoroughly
controlled, these factors can bias the comparison. TIV is under the influence of genetic
(early; the Alzheimer’s Disease Neuroimaging Initiative (ADNI) et al., 2012; the Cohorts
for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium and Early
Growth Genetics (EGG) Consortium, 2012) and environmental factors (Caspi et al., 2020). In
a developmental perspective, there is less consensus with studies correcting regional brain
volume (Herting et al., 2014; Urošević et al., 2012), other studies using the raw volumes
of brain structures (Goddings et al., 2014; Raznahan et al., 2011; Wierenga et al., 2014),
and some studies reporting both analyses (Coupé et al., 2017; Dennison et al., 2013). As
our volume measurements were very close in time (5 weeks) and the observed changes in
brain volume were very limited (see Study 4), there are likely very few changes in the TIV
explaining our results.

This study is the first to use a non-psychiatric phenotype to generate PRS and thus,
paves the way for a new area of investigation: using non-psychiatric but related to IC out-
comes to calculate PRS and emphasize relationships at the genome level. In particular,
associating non-psychiatric and EF-related PRS with IC performance in healthy popula-
tions may advance our understanding of the overlap among genetic factors contributing
to cognitive variability. Although PRSs do not provide the molecular specificity of single
locus studies, they can provide important insights into broader aspects of genetic architec-
tures. These broader relationships are important for informing newer analytic approaches
exploiting functional hypotheses for improved power at finer scales.

Our results should be interpreted with caution given the small sample size and would
need to be replicated on a larger independent sample before being generalized. Despite the
large number of parameters, our models presented good fit indices, suggesting a reasonable
robustness of the results within our sample. At the genetic level, extremely large sample
sizes for reliable single variant studies or alternative approaches will be needed to advance
understanding of the molecular genetic contributions to IC performance and training re-
ceptivity.

To conclude, this study paves the way for multilevel modeling to answer the question of
intervention outcomes. This could be used to investigate the factors supporting learning,
as in this study, but also, in clinical practice, to understand the evolution of a pathology,
particularly following a therapeutic intervention, and thus participating in the development
of a more precise and personalized medicine.
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This thesis had sub-goals in psychology and in methodology. In psychology:

• To study at the cognitive level the changes in the organization of executive functions
following inhibitory control training and throughout development

• To investigate the factors at different levels (cognitive, cerebral and genetic) influenc-
ing inter-individual differences in the direct benefits and transfer effects of the same
training

• With the underlying hypothesis that training could accelerates development

To this end, this thesis also had methodological objectives:

• To apply advanced statistical models tomodel the change following cognitive training
• To develop models that can link the different levels of observation
• To use machine learning models to test the hypothesis that training may change the
brain age

1 On executive functions

EFs are important for academic learning (e.g., Diamond, 2013) but also for mental and phys-
ical health (for a review, Snyder et al., 2015). The number of publications on EFs and the
diversity of the fields of study that are interested in them (psychology, psychiatry, neuro-
science, cognitive science) can reflect the central role that they play in our lives. Thus, their
development is of crucial importance.

1.1 EF organization

1.1.1 Through development

To have a better knowledge of EFs, their characteristics and their development, the question
of their factorial organization is crucial. This question was particularly developed after the
work of Miyake et al., 2000 who revealed, in adults, a three-factor organization of EFs (IC,
WMU and CF) in three distinct but correlated factors which would each be composed of a
common base (unity of EFs) and a unique part (specificity of EFs) (Miyake and Friedman,
2012). Following these findings, many studies have focused on the factorial organization of
EFs at the developmental level (for reviews, see Karr et al., 2018; Lee et al., 2013). The recent
meta-analysis and literature review by Karr et al., 2018 highlighted an organization ranging
from one factor in childhood to a 3-factors (IC, WMU, CF) or nested (bifactor without IC)
organization in adulthood. Within this framework, we investigated the organization of
EFs during development (Studies 1 and 2). For these studies, we used different modeling
techniques allowing to scrutinize the structure of EFs using both theory- and data-driven
approaches.
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In Study 1, we were able to demonstrate a segregation of EFs from childhood to ado-
lescence with a network analysis (i.e., data-driven approach without a priori) on the APEX
cohort. These results are consistent with a differentiation of EFs (e.g., Hartung et al., 2020)
and a specialization of processes (Anderson and Nelson, 2005) with age.

In Study 2, we investigated the developmental organization of EFs in the Texas Twin
Project (Harden et al., 2013) cohort using three complementary methods: network models,
latent models, and latent network models. These three analyses revealed consistent and
complementary results supporting a differentiation of EFs with development. Moreover, we
were able to see that the weight of the different EFs varied with time, with the IC having a
central role in childhood and then giving its central place to theWMU in early adolescence,
in line with previous studies (Huizinga et al., 2006).

These results, consistent across the two studies, of different sample sizes but also dif-
ferent cultural background and with different experimental designs (i.e., different EF tasks),
support the idea that EFs become segregated with age. These results are consistent with the
developmental differentiation hypothesis that suggest that the structure of a child’s devel-
opment is unitary early in infancy but becomes more differentiated with age (Anderson and
Nelson, 2005). As this hypothesis stated that the higher the differentiation, the higher the
cognitive abilities (Anderson and Nelson, 2005), this highlights the importance of studying
such factorial organization. Moreover, this differentiation may explain the different devel-
opmental trajectories between EFs (e.g., Best et al., 2009) as well as the segregation of brain
networks with age (e.g., Baum et al., 2017). These results may also raise questions about
the genetic bases of EFs, where it could be envisaged that there are genes associated with
the common core of EFs and others associated with the specific part of each EF. At the in-
terventional and clinical level, this suggests that there may be different sensitive periods
for the development of the common-EF part and for each specific-EF individually. Further
research is needed to investigate how higher-level EFs such as planning fit into this struc-
tural organization. Taken together, these findings will also provide a better understanding
and insight into dysexecutive disorders in a clinical context.

There are some limitations to these studies. First of all, these two studies are cross-
sectional with rather small sample sizes per age group. In addition, we saw in Study 2
that there appeared to be significant dynamics of change across the age groups proposed
in Study 1. Further studies with a longitudinal design and more closely spaced repeated
measures are thus needed.

1.1.2 During training

In addition to studying the organization of EFs throughout development, we were also
interested in changes in EF organization after cognitive training. Thus, in Study 1, we were
able to examine the effects of two types of training (targeting IC vs. active control) on the
organization of EFs in a group of children and a group of adolescents.

In children, we found that the organizational changes following IC trainingwere consis-
tent with those occurring during development, with a network of children post-IC-training
having similarities with the network of adolescents pre-training. These results are thus
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consistent with the hypothesis that training may accelerate development (Jolles and Crone,
2012).

In adolescents, it appears that training had much less impact on EF structure than in
children. As previously mentioned, this lack of results can be explained by the fact that
adolescents seem to have benefited much less from training, reaching a plateau very early.

To confirm these results and to look at whether this lack of results in adolescence is
due to poorly adapted training or to a developmental specificity, replication studies are
needed. In addition, these studies need to be replicated within a longitudinal design to
ensure that training does not deviate from the normal developmental trajectory (Jolles and
Crone, 2012).

1.2 Training EFs

In Study 1, we were able to report that cognitive training could accelerate the development
of EFs at the organizational level. However, in addition to looking at the results of such
training at the group level, it is important to consider several things.

1.2.1 Inter-individual differences

Firstly, as we saw in Studies 3 and 6, inter-individual differences in training receptivity exist.
In particular, we noticed that the children and adolescents who had the lowest basal level
were the ones who benefited the most from the training, in line with the compensation hy-
pothesis (Karbach and Unger, 2014). But these inter-individual differences were not solely
explained by this cognitive level baseline. In Study 6, in addition to this cognitive factor,
we observed an effect of genetic and brain factors. Indeed, in children who followed the IC
training, within the samemultilevel SEMmodel, the change in stop signal was explained by
the pre-test score in stop signal, the polygenic risk score calculated from a TMTmeasure, as
well as the initial volume and volume change (i.e., neuroplasticity) of the left ACC and the
left putamen. These results are in agreement with the literature that had previously high-
lighted the influence of cognitive (e.g., Karbach and Unger, 2014), cerebral (e.g., Baniqued
et al., 2019), and genetic (e.g., Leckie et al., 2014) factors in training responsiveness.

Together, these results point to the need for more personalized training. To this end,
further studies are needed to identify the factors that contribute to the benefits of training
and to perform cluster analyses to see if it is possible to draw up learner profiles. Then, on
the basis of the properties of these profiles, it could be possible to propose the most adapted
training to participants according to their learning characteristics.

Such approaches have already been adopted in medicine, for example in the context
of "personalized" or "precision" mental medicine. For example, by using this type of ap-
proach, patients with depression can be subdivided into four neurophysiological subtypes
("biotypes") defined on the basis of distinct functional brain connectivity profiles (Drysdale
et al., 2017). The use of these biotypes also improved the prediction of response to a ther-
apeutic intervention (prognostic biomarker) and thus allowed the identification of the best

197



General discussion

type of treatment for a given patient (Bzdok and Meyer-Lindenberg, 2018).

1.2.2 Transfer effects

In addition to direct benefits, training can also be valued according to the extent of its
generalization. These transfer effects are also important at the theoretical level as they
provide additional information on the relationship between the cognitive function trained
and the cognitive function that benefited from the transfer. Above all, they make it possible
to evaluate the total benefits of a cognitive training and thus to assess its overall impact.

In Study 3, we were able to show that transfer effects following IC training in children
depended both on the baseline level of the EF that benefited from the transfer, the baseline
level of other EFs, and the number of training sessions. In view of the development of the
organization of EFs towards segregation, it is reasonable to think that offering the same
training later on, once the EFs are already differentiated, transfer effects could be more re-
duced. On the contrary, offeringWMU training at a time whenWMU has a more important
role in the organization of EFs (see Study 2), could lead to larger transfer effects. Taking
into account the development of EF structure could thus maximize the transfer effects of
training one EF to other EFs.

However, transfer effects are not limited to benefits on other EFs but could be assessed
bymeasures of academic learning, which could represent the ultimate target. In this project,
we did not have measures of academic performance, but it might be interesting to see if
executive training could lead to improvements in academic abilities with a latent change
score model and to see to what extent these improvements are related to transfer effects on
other EFs. However, we can already hypothesize that such training could benefit academic
learning, as learning relies on executive abilities. Ideally, several EFs should be trained at
the same time in order to consolidate the common EF base and thus increase the chances
of transfer to academic learning (e.g., Traverso et al., 2019).

Finally, the motivational factor could play a role for transfer effects since it is known to
be involved in direct benefits (Jaeggi et al., 2014; Smid et al., 2020; Strobach and Karbach,
2021). In the training evaluated here, the sessions were adaptive according to the partici-
pants’ performance level, in particular to keep them motivated (Green and Bavelier, 2008).
However, it would have been very interesting to have quantitative measures of motivation
in order to directly test the effect of motivation on transfer effects.

1.2.3 Sensitive periods

It is acknowledged that there are sensitive periods, i.e. developmental periods during which
certain capacities are easily modulated by experience, for learning (e.g., White et al., 2013).
This could also be the case for cognitive training, although current results are not entirely
conclusive (Park and Mackey, 2022). Cognitive training has been proposed for childhood
and adolescence according to this logic of periods of opportunity. Indeed, children would
be more receptive than young adults to learning due to their increased neuroplasticity ca-
pacity (Kray and Ferdinand, 2013) and it was demonstrated that this type of numeric EF
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training benefits 8-12 year olds more than younger 4-5 year olds (Diamond and Lee, 2011).
Adolescence may be another sensitive period for interventions targeting EFs due to the be-
havioral, cognitive, and brain developments taking place during this time (Blakemore and
Choudhury, 2006).

The different studies presented in this manuscript have shown that children benefited
more from IC training at the cognitive level, even though Study 4 reported results at the
cerebral level in adolescents. However, as already mentioned above, this discrepancy in
results may also be due to training methodological problems in adolescents (progression
cessation rather quickly).

Replication studies should be proposed to specify the periods of opportunity in order to
know which are the most relevant times to obtain both direct benefits and transfer effects.
Given the development of both performance and organization of EFs, it is possible that
these periods could vary according to the composition of the training and the EFs targeted
by it.

2 Neuroimaging studies

This PhD research was also an opportunity to analyse neuroimaging data and to investigate
the links between brain, EFs and IC training. In particular, we were able to show in Study
4 that the brain regions whose plastic changes (here changes in local grey matter volume)
were linked to changes in EFs (differences in scores after vs. before training) were regions
identified in the literature as EF network regions (i.e., insula, anterior cingulate cortex,
inferior frontal gyrus). We also tried to look at whether the initial volume of brain regions
was related to executive abilities before any training. These analyses yielded fewer insights
than our longitudinal analyses, but the result obtained was consistent with the literature
(e.g., left precuneus associated with Stroop performance, Banich et al., 2000; Takeuchi et al.,
2015).

However, it must be kept in mind that these brain-behavior associations are not reflect-
ing causal relationships. We wrongly use the terminology of brain bases, which suggests a
causality (see Genon et al., 2022). These discussions on the terminology used are part of a
broader process of rethinking brain-behavior associations research following a replicability
crisis in neuroimaging that questioned the way to conduct research (Genon et al., 2022).

2.1 Neuroscience at the time of big data

More and more consortia with neuroimaging data are being set up, such as the Human
Connectome Project (Van Essen et al., 2012), UK-Biobank (Sudlow et al., 2015) or the Ado-
lescent Brain Cognitive Development consortium (Casey et al., 2018). In parallel, studies
have recently been published to emphasize the need for very large sample sizes (> 1000 par-
ticipants) to be able to draw reliable conclusions on brain-behavior associations (Marek et
al., 2022). While neuroimaging studies have traditionally involved smaller numbers of par-
ticipants (25-100 subjects, Gratton et al., 2022), this shift to big data can also be perceived
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in the methodologies used in neuroimaging, with the development of machine learning
models that can be trained on large cohorts (Abraham et al., 2014). It is certain that the
development of these consortia will allow scientific questions to be asked and analyses to
be carried out that would not be possible with small sample sizes. However, it is important
to ensure that it is not just these methods and consortia that guide research. It can seem
that sometimes the data is used as a starting point to find a suitable research question, while
the scientific method requires starting with the theory in order to pose a question and hy-
potheses before conducting analyses to answer the question (Bergmann and Spence, 1941).
Furthermore, as stated in the discussion section of Study 4, if the research questions are
asked precisely and a relevant design is proposed, then the signal can be maximized and
the noise minimized and it is not necessary to have samples of thousands of participants to
produce reliable results (Gratton et al., 2022). In particular, as we have seen in Study 4, in
the case of longitudinal data, it is possible to control for inter-individual variability at the
cerebral organization level (Gordon et al., 2017), which makes it possible to obtain reliable
results while reducing the sample size.

In conclusion, it is undeniable that big data brain imaging studies and these new tools
have allowed and will continue to allow new valuable findings, such as the development of
brain charts (e.g., Bethlehem et al., 2022), but they should not however become the standard
and prevent the results of smaller studies from being considered.

2.2 Diversity of tools and frameworks

In addition to sample size, other research practices may explain the differences in results
and thus the challenge of replicability.

In particular, different preprocessing and analysis practices can lead to very different
outcomes. As an example, 70 research teams were given the same neuroimaging data with
the same 9 hypotheses to test and their final results were extremely variable (Botvinik-Nezer
et al., 2020). Given these findings, one possibility would be to offer recommendations with
unified pipelines across teams in conjunction with shared data and analysis codes. How-
ever, these choices of pipelines and processing tools are also influenced by the research
question. For example, VBM is most commonly used for voxel-wise analysis in the context
of statistical parametric mapping, whereas FreeSurfer is best suited for investigating cor-
tical thickness (Ashburner and Friston, 2000; Fischl, 2012). It should also be kept in mind
that the study of certain populations may require different analysis tools. For example,
neuroimaging in children may require a greater correction of movements (Kaplan et al.,
2022).

Finally, it is also important to take into account that neuroimaging is a recent field of
research where innovations are regular and can interfere with the standardization of prac-
tices. There is thus a balance to be found between the standardization of analysis pipelines,
the precision of research questions and the ongoing evolution of tools.
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2.3 Towards multivariate studies

In future neuroimaging studies, it might be interesting to integrate the different brain fea-
tures and not limit the analysis to one of them. Indeed, it is known that cortical area and
thickness have different genetic etiologies (Panizzon et al., 2009) and may reveal different
outcomes in the analysis of psychiatric disorders for example (Rimol et al., 2012). The anal-
ysis of these two variables therefore provides complementary information. Simply combin-
ing these different variables can however create noise and erase the specific effects of each
variable. Ideally, one should assess each of these influences individually or use adapted
tools for multivariate analyses such as latent factors. This type of analysis, often used for
diffusion modalities, allows to create a latent variable from the different diffusion variables
(e.g., McCormick et al., 2022). This kind of modeling would allow to look at the influences
of each variable but also more globally at the latent modality level. Such multivariate and
multimodal analysis would allow a good understanding of the brain mechanisms underly-
ing the phenotypes of interest.

These multimodal and multivariate analyses could also be used to investigate the rela-
tionship between structure and function. There are several studies supporting the hypoth-
esis that structure precedes function (Batista-García-Ramó and Fernández-Verdecia, 2018;
Cohen et al., 2008; Damoiseaux et al., 2006; Honey et al., 2009; Mantini et al., 2007; Passing-
ham et al., 2002; Rykhlevskaia et al., 2008; Vincent et al., 2007). This hypothesis comes from
the fact that functional connectivity at rest is constrained by the anatomical configuration
of the brain (Batista-García-Ramó and Fernández-Verdecia, 2018; Honey et al., 2009). With
the integration of different variables from different modalities, it would also be possible to
look at how early brain constraints such as sulcal patterns might compel other anatomical
features such as volume and especially its neuroplastic variations. By understanding the
links between these different cerebral features, it could be possible in the future to know
which variable to consider according to the question asked. For example, if we know that
changes after an intervention occur first at the structural level and then at the functional
level, it might be more relevant to look first at the anatomical variations.

2.4 Machine learning

With the expansion of big data, the application of machine learning algorithms on brain
imaging data has developed (Abraham et al., 2014). At the methodological level, these mod-
els make it possible to obtain more generalizable and stable results. By performing cross-
validation and thus ensuring that the observed brain-behavior associations are not sample-
dependent, the possibility of generalizing them to other data sets is increased, the ideal
being to perform cross-validation on independent samples (Genon et al., 2022). With the
evolution of consortia, and especially in the field of psychopathology, these models allow
generalization across acquisition sites and thus obtain robust results that can then be used
for clinical purposes (Chen et al., 2020b; de Pierrefeu et al., 2018a). An important prospect
for the future of research and clinic is the development of meta-matching, an approach that
allows to translate predictive models from large datasets to related but new phenotypes in
smaller datasets (He et al., 2022).

201



General discussion

2.5 Brain age

The development of machine learning in neuroimaging has led to the development of a
new notion, the brain age. In Study 5, we were able to estimate the brain age of the chil-
dren and adolescents participants with an accuracy of about 1 year from structural imaging
data. Our preliminary results show that brain age gap estimation (brainAGE = brain age -
chronological age) can be related to pre-test executive performance and to training respon-
siveness. However, these results are preliminary and it would be necessary to replicate
them in independent samples.

2.5.1 Challenges for brain age prediction

In the midst of its development, brain age prediction is currently facing many challenges.
In particular, on the issue of replicability, we know that the estimation of brain age can vary
according to the data used to train the model (de Lange et al., 2022; Franke and Gaser, 2019),
according to the modalities used (Franke and Gaser, 2019) but also according to the spatial
level (e.g., ROIs vs. voxel; Baecker et al., 2021a) and finally according to the algorithm
(Lee et al., 2021). If neuroimaging is recent, brain age is even more so. Studies calculating
brain age are numerous but based on different characteristics and parameters and it will
be necessary to explore these differences in detail to understand precisely what these brain
ages represent. This exploration may help to establish guidelines for the models, variables
and parameters to be used.

Finally, a challenge that may be important is brain age prediction by region of interest.
It is known that in certain pathologies, certain regions are more affected than others (e.g.,
post-traumatic stress disorder and amygdala and prefrontal cortex, Koenigs and Grafman,
2009), and that for certain cognitive abilities, certain regions play a more important role
(e.g., prefrontal cortex for EFs, Diamond, 2000). Predicting age from specific brain regions
could thus make it possible to identify differences at the brain level that would be erased at
the whole brain scale.

2.5.2 Development of brainAGE

Another axis of research, already mentioned in Study 5, would be to study the development
of brain age and in particular its deviation from chronological age in a longitudinal design.
Once a consensus has been reached on the methods and characteristics to be used to esti-
mate brain age at the different stages of life, it will then be possible to study its variation
during development and to produce brainAGE charts. As we know that the brain age can
be impacted by surgical interventions (de Bézenac et al., 2021) or drugs (Le et al., 2018),
it is possible to consider that its estimation can vary during the development. Creating a
reference at the developmental level could allow to investigate the effects of the environ-
ment (pathology, learning, culture, etc.). The dynamics of brainAGE during development
could also question the idea of brainAGE as a brain marker, or at least it could clarify what
it indicates (trait/fix or state/plastic marker). Notably, it was demonstrated that brainAGE
was partly determined by very early factors such as birth weight (Vidal-Pineiro et al., 2021).
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Large longitudinal studies are therefore needed to disentangle early from plastic mark-
ers and to characterize the development of brainAGE so that it can be used for further
clinical or research purposes.

2.5.3 Translational perspectives

BrainAGE is already being used in a clinical framework, but it is likely that once method-
ological studies have converged on how to model it, it could become a more standard tool.
In the clinical context, brainAGE could be used for diagnosis, prognosis and management
(Baecker et al., 2021b, see Figure 50). In the development of precision medicine, it can be
combined with other brain, cognitive, biological and environmental measurements to pro-
pose the most appropriate medicine possible. Within this context, an estimation of age
based on indices on different organs (body age) could allow us to understand the impact of
a pathology on the whole human body but also to evaluate the state of each organ in order
to adapt the medical treatment (see https://people.eng.unimelb.edu.au/azalesky/project3.
html). Such approach with multi-scale data could also be adapted to the field of learning in
a personalized education approach.

Figure 50: Potential clinical applications of brain age at different stages of the pa-
tient lifecycle. From Baecker et al., 2021b.
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3 Genetic studies

Finally, we investigated in this PhD research the influence of genetic factors. The polymor-
phism of several genes, in particular of the dopaminergic system, has been shown to be
related to performance in EFs (Cropley et al., 2006). However, it is quite certain that there
are not a small number of genes whose polymorphism alone would determine our executive
abilities but that the influence is rather polygenic (Donati et al., 2019; Hatoum et al., 2022).
This polygenic influence has encouraged us to use statistical tools such as the polygenic
risk score (PRS, Choi et al., 2020), rather than a candidate gene approach. Candidate gene
approach also requires an a priori hypothesis on biological functioning and thus increases
the risk of arbitrariness which can lead to contradictory results (Tabor et al., 2002), as seen
in the General Introduction (see section 3.2.3). Of note, given our sample size, it was im-
possible to perform a genome wide association study (GWAS). We also wanted to follow a
"genome-first" approach in which genome sequencing is done in a large population with
subsequent determination of its association with the phenotypes of interest, here EFs. In
a "phenotype-first" approach, the sequencing is done on a population presenting impair-
ments of the phenotype of interest, allowing to determine which genetic variants could
be associated with the phenotype. This approach is not adapted to study of EFs, which
are highly variable in the normal population and are almost always associated with other
symptoms in pathological populations.

Thus, in Study 6, the calculation of a PRS from a TMT score allowed the demonstration
of an effect of genetics (indexed by the PRS) both on initial IC performance measured by
the stop signal but also on the benefits in stop signal following training. These results,
combined with those of Study 4, seem to indicate an overlap between the cerebral or genetic
bases of EFs and those of training receptivity.

3.1 PRS : the top of the iceberg

Even though PRS have the huge advantage of taking into account the polygenic dimension
by considering the influences of several genes at the same time, they do not yet take into
account epistasis, i.e. the interaction of genes between them (Moore and Williams, 2009).
Moreover, to calculate PRS, it is necessary to rely on GWAS independent from the target
sample (Choi et al., 2020). However, current GWAS are far from representing the universal
contribution of all SNPs for a given phenotype. In particular, it is necessary to integrate
data from populations that are still poorly represented (Tam et al., 2019; see Figure 51).

Genetics, although a long-standing source of interest, has only recently been studied
at the genome level and the first studies calculating PRS were published in the late 2000s
(Wray et al., 2007). There is no doubt that in the coming years, we will see the emergence
of analysis methods to consider the different parts of the iceberg that are not yet han-
dled. In particular, among the analyses that are developing, we can mention genomic SEM
(Grotzinger et al., 2019), that incorporates genetic covariance structure into multivariate
GWAS discovery, or multivariate analyses that combine several phenotypes, revealing an
important pleiotropy (Hindley et al., 2022).
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Figure 51: GWAS, the top of the iceberg. From Tam et al., 2019.

3.2 Why studying genetics

Genetic studies are important for fundamental research in order to understand the neuro-
biological mechanisms underlying what can be observed at the brain or behavioral level.
In addition, in the clinical context, genetic assessments are being increasingly used, both
for diagnostic purposes and for the understanding of mechanisms underlying a pathology
(e.g., which pathways are affected and what treatment should be proposed knowing this).
The degree of analysis is increasingly refined at the genetic level, looking not only at the
number of chromosomes or certain candidate genes, but also at more detailed variables
such as copy number variants (Kaminsky et al., 2011). Thus, the development of research
can serve clinical practice to understand the pathways of action of certain pathologies at
the group level but also at the individual level as part of precision medicine.

Moreover, genetics can also be seen as a factor of inequalities. Indeed, knowing that
genetics matters for educational and professional success, it could be important to keep in
mind the inequalities carried by our DNA, which very often come from and interact with
socio-economic background (Abdellaoui et al., 2022), to distance ourselves from meritoc-
racy and promote a fairer society (Harden, 2021). Thus, genetics could be seen as a social
outcome and studying it could help to provide insight into inter-individual differences and
maybe could contribute to move toward a more equitable society.
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3.3 Ethic considerations

It is necessary to be careful as, even if our intentions are good, eugenics is not that far away.
Of course, it is not a matter here of identifying genes that would allow better performance
in order to promote them, but rather of understanding the underlying mechanisms in order
to help those who experience difficulties.

In particular, it is important to remember that the influence of genetics remains limited
(R2 = 7.19 % in our Study 6, and usually between 1 and 6 % for psychiatric disorders Mistry
et al., 2018). Moreover, although not studied here, there are also epigenetic mechanisms
that modulate gene expression, notably under the influence of the environment (Ibrahim
et al., 2018).

It is part of the researcher’s responsibility in presenting and promoting these results to
emphasize this and not to present inter-individual variations as simply innate. For example,
in our Study 6, although we showed that PRS is a factor that explains initial CI performance
(up to 7 %) and changes in IC after training, it is not the only factor that plays a role. It is
therefore important to use statistical approaches such as SEM or NM that allows to analyze
all the factors, and not only the genetic one, at the same time.

4 On the importance of integrating environment

Among the factors that play an important role on, among others, EFs and their development,
are environmental factors, including culture and socio-economic status (e.g., Lawson et al.,
2018; Roos et al., 2017).

4.1 The need of diversity in population studies

In psychology in general, there is a serious lack of studies on non-WEIRD (Western, ed-
ucated, industrialized, rich and democratic) populations (Nielsen et al., 2017). However,
effects observed in WEIRD populations are not always replicated in non-WEIRD popula-
tions, putting forward a cultural factor (e.g., Caparos et al., 2012). Notably, as presented in
section 4.2 of the General Introduction, executive capacities may differ from one culture to
another (for a review: Roos et al., 2017). Indeed, cultural habits may encourage the devel-
opment of certain cognitive abilities and explain inter-individual variability (Yanaoka et al.,
2022). Moreover, for genetic studies, as explained above, the distribution of SNPs can vary
according to ancestry (Tam et al., 2019) and it is therefore relevant to have an idea of gene-
behavior associations in not only europeans populations. Nevertheless, it is important to
be aware that even in non-European populations, diversity is not always represented (e.g.,
Han population mostly represented in the studies on Chinese populations). Lastly, it is
important to be careful not to generalize results obtained in one population to all human
beings.
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4.2 Limits on studying SES

In addition to culture, within the same genetic population, there are differences due to
the environment and in particular to socioeconomic status (SES). Indeed, SES is known to
be related with executive abilities (for review and meta-analysis, see Lawson et al., 2018)
but also with brain development (e.g., Tooley et al., 2021). However, studies focusing on
SES differences may present different results (e.g., Lawson et al., 2018) particularly due
to measurement diversity. In a recent literature review, 147 unique measures of SES were
found, and in almost 80% of studies, SES was not defined (Antonoplis, 2022). This variability
in measurement may play into the variations in results. These difficulties are sometimes
added to those of data acquisition with, for example, the difficulty in France of obtaining
salary information.

Moreover, SES effects on brain and cognition seem to be rather complex, with the im-
portant variability in results between cohorts with different cultural backgrounds, with no
consistent association of SES with either brain or cognition (Walhovd et al., 2022).

Given the crucial role that SES plays in cognitive and brain development, it seems im-
portant to address these variables and to converge on one or several ways to measure it.
Until this consensus is reached, it would be advisable for further studies to precisely define
their measures of SES, for example by describing how the variables that compose and the
ways to calculate the index used.

5 Methodological issues

In this PhD project, a methodological objective was also involved.

5.1 Development of models for longitudinal designs

First, different models have been proposed to investigate longitudinal changes. Thus, net-
work model in Study 1 and latent change scores (LCS) models in Studies 3 and 6 allowed to
highlight results that could not have been highlighted with a classical statistical approach.
In particular, in Study 1, networks were used to model the organization of EFs without a
priori and allowed to test the hypothesis of training accelerating development on EF orga-
nization. In studies 3 and 6, the LCS allowed us to look at the change as a latent variable
and to look at the factors that could influence it. LCS present the advantages of assessing
training-related changes without the use of classical change scores (post-pre), which do not
estimate causal effects (Tennant et al., 2019), of allowing to investigate inter-individual dif-
ferences in the initial levels and in training-related changes and of determining the factors
influencing the change trajectories.

The LCS was specifically developed for longitudinal studies with at least two measure-
ment times. Other models have been developed for this type of study such as the latent
growth curve model (LGCM). LGCM integrates within-person and between-person mod-
els of individual growth into a single structural framework, allowing for the description

207



General discussion

of a single individual’s developmental trajectory, the capture of individual differences in
these trajectories over time, and the study of development at the group level (Duncan and
Duncan, 2004).

5.2 Development of multilevel models

A model was also devised to study longitudinal changes at different levels (Study 6). This
model, combining classical models such as the LCS and mediation models, allowed the
integration of cognitive, genetic and brain variables within the same model.

The factors underlying a phenomenon are often complex, present at different levels of
observation and interacting with each other. This is why it is important to study the rela-
tionships between these different variables, while controlling for these different relation-
ships. Integrating these different modes of observation and levels of analysis is necessary in
order to understand the intra- and inter-level mechanisms that take place and thus, more
globally, the relationship between the structure and dynamics of psychological systems
(Borsboom, 2022). The development of these multilevel models are part of a larger move-
ment to connect variables, components, that were traditionally studied separately. This is
also reflected in the growing popularity of network analyses (Borsboom, 2022) that can in-
tegrate different levels of measurement (Isvoranu et al., 2019) as well as SEM (Judd et al.,
2020). Indeed, inter- and intra-level analyses require adapted and more complex tools than
simple correlations or regressions, which can constitute a methodological barrier.

5.3 Methodological considerations

These methodological tools are still in evolution. Even if SEMs were introduced in the field
of social sciences in the 1970s (Duncan, 1975) and applied to the issue of EFs as early as
2000 (Miyake et al., 2000), the different models presented in this thesis are still being devel-
oped and appropriated by psychological research. This is even more true for newer models
such as networks (Borsboom, 2022). Tutorials and recommendations are developing (e.g.,
Epskamp and Fried, 2018) and it is likely that in the coming years, more precise standards
and adapted recommendations will emerge.

5.3.1 The importance of theory

An important thing to consider when building a model is the theory. Even with a limited
number of variables, the number of possible models is enormous and there is no question
of estimating and comparing all these models but rather of relating them to the theory. We
must preserve ourselves from being guided by the data. Even if tools such as the Loadings
Comparison Test, which can predict whether a data set is rather structured in factors or
in networks (Christensen and Golino, 2020), it is above all the scientific and psychological
questions that must guide the choice of variables and models.
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For example, as we saw in Study 2, the different models produced similar yet comple-
mentary results. The comparison of these different models was interesting in view of the
question (i.e., the development of the EF organization). However, in the context of our
Study 3, it would have made little sense to use network analyses to answer the question
of transfer and the factors influencing it. Thus, it is the scientific question and theory that
must guide practice but also interpretation.

5.3.2 Limitations on path models

Most models are evaluated by their fit indices. However, while some may be good, others
may indicate a not so great fit of the model. It is the researchers’ responsibility not to pick
out the fit indices that would support a good fit of the data and use them to justify a poorly
fitted model (Stone, 2021).

Moreover, there is currently a critical discourse on SEMs that these models are too
complex to be used as a descriptive tool but are not complex and flexible enough to be used
as predictive tools (e.g., Foster, 2010; Rohrer et al., 2022). For example, it has been suggested
that, in contradiction to common practice, observing a good fit for, say, a mediation model,
would not be sufficient to be able to make causal inferences (Rohrer et al., 2022). To make
causal inferences, it would be necessary to be able to ensure that there is no reverse causality
or that confounding variables are not involved (Rohrer et al., 2022).

In conclusion, it is also important to keep in mind that no analysis is inherently better
than the others and thus that no single statistical analysis should rule out others (Wagen-
makers et al., 2022).

6 Perspectives

After reviewing the different results of this thesis and discussing the different methods and
levels of measurements used in this research, several perspectives emerge.

6.1 For future APEX-like studies

6.1.1 Sample

First, as we have seen in several of the studies presented in this manuscript, the relatively
small sample size, although important for a longitudinal project with multilevel data ac-
quisition, has often been a limitation. Thus, increasing the number of participants could
allow for analyses that were limited here by the small sample size (e.g., machine learning
analyses for Study 4, inclusion of an additional level of measurement for Study 6).

Most importantly, it seems crucial to have a more diverse sample at the socio-economic
level. This may allow us to look at and control for the effects of SES on EFs and training
but also potentially a better generalization of our results. As mentioned earlier, it could
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also be interesting to replicate our study in other cultures because we know that cultural
factors play a role in the EF performance (Roos et al., 2017) and question their sole definition
(Yanaoka et al., 2022).

It could also be interesting to test such cognitive training on younger populations,
maybe as early as preschool like Tools of the Mind (Diamond et al., 2019). Identifying the
most sensitive age group could make it possible to offer the training at the moment when
it could bring the most benefits. However, if results are to be compared across different age
groups, methodological adjustments may be necessary, particularly in terms of the tasks
used (Simpson and Carroll, 2019).

Finally, in the context of clinical application, as initiated with part of the APEX project,
which was conducted on 9-10 year old children born prematurely, it could be very rele-
vant to test the effects of such executive training on populations with executive difficulties,
who might benefit particularly from such training. Testing EF training in different clinical
populations could, depending on its results, open the way to targeted interventions for ex-
ecutive difficulties. Moreover, depending on the direct benefits but also of transfer effects
for example on other symptoms, this could provide information on the organization of a
pathology’s symptoms and help characterize it a little more precisely.

6.1.2 Other types of training

The APEX project had the great interest of comparing an inhibitory control training and
an active control training. The inclusion of this active control group allowed control for
experimenter and test-retest (Diamond and Ling, 2016) effects. However, in the future it
may be interesting to include a passive control group to be able to distinguish the effects of
any training from EF training.

In addition, it might be interesting to test trainings targeting the other EFs and even
targeting several EFs at the same time. It could be valuable to compare the results of these
different training sessions, both on the organization of the EFs as well as on the direct
benefits and transfer effects.

Finally, proposing Stroop and stop signal tasks every day does not seem very adapted
in a context other than experimental. It would be interesting to test trainings that could be
integrated into everyday life, such as trainings based on sports (Diamond and Lee, 2011),
mindfulness meditation (Gabriela Rezende’s PhD at LaPsyDE), school games (Letang et
al., 2021) or video games (Chiara Andreola’s PhD at LaPsyDE, Andreola et al., 2022). It is
likely that these more adapted and gamified trainings would increase the adherence and
motivation of the participants, which could enhance the benefits (see Katz et al., 2014).

6.1.3 EF measures

To address some of the perspectives developed in this section, it might also be interesting
to reconsider the different tasks proposed in the cognitive battery before and after training.
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6.1.3.1 To examine EF organization through development In particular, it seems
extremely relevant to integrate several measures for each EF in order to be able to look at
the organization of the EFs and test the different Karr et al., 2018 models (see Study 2). For
each EF, measurements of the different subcomponents should be available (e.g., response
inhibition and motor inhibition tasks to measure IC). Ideally, this executive battery should
be pre-tested and a confirmatory factor analysis conducted to test and confirm the factorial
organization at different ages of life (e.g., childhood, adolescence, adulthood). However,
care should be taken not to multiply the tasks in order to respect correct and child-friendly
administration times, especially in a longitudinal design.

6.1.3.2 Hot and cool EFs It might also be interesting to conduct a parallel study on
hot EFs, which involve the emotional system and have a distinct developmental trajectory
from cool EFs (e.g., Zelazo and Carlson, 2012). To date, and to our knowledge, no study has
investigated training hot EFs or looking at the effects of cognitive training on these func-
tions. Furthermore, to date and to our knowledge, no study has looked at the organization
of hot EFs. It might be interesting to compare trajectories during development or after
training of hot and cool EFs. As these do not have the same developmental trajectories,
we could expect different effects of training, but also different organization of EFs during
development.

6.1.4 Implement a delayed post-test

It would be interesting to repeat these different executive measures, but also the brain imag-
ing and perhaps epigenetic measures, several weeks or even months after the training has
been stopped. First, it would allow us to investigate the stabilization of all these changes
during this delayed post-test, which is more than relevant to evaluate the overall effets of
a cognitive training. Moreover, this would also allow us to study the temporal dynamics
taking place at different levels after a cognitive training. For example, we have seen that
there is a hypothesis that anatomical changes constrain functional changes (e.g., Batista-
García-Ramó and Fernández-Verdecia, 2018). We could thus imagine observing different
dynamics at the group level (structural and then functional changes over time) but also at
the individual level (those who have shown greater structural changes following training
coulb be also those who could show greater and more stable functional changes over time).

6.1.5 Deeper investigation of training characteristics

We are used to looking at the effects of a training session by comparing pre- and post-test
but it could be relevant to look at the effects of the training as the sessions progress and the
program progresses.

At the cognitive level, it may be relevant to look at the intra-individual variability from
one session to another or within a session (Aristodemou et al., 2022; Könen and Karbach,
2015) and the individual progression curves. On one hand, at the group level, this could
allow us to understand the mechanisms that come into play during cognitive training. In
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particular, this could allow us to identify how long it would take for the progression to
reach its peak and thus determine the ideal number of sessions. On the other hand, at the
individual level, as we have seen in Study 3, there is a large inter-individual variability in
the benefits of training, especially according to the baseline cognitive level (e.g., Lövdén et
al., 2012a). There may also be different individual trajectories with subjects who progress
rapidly and then stabilise, others who progress linearly or others who are not responsive
to training at all. Looking at individual trajectories could thus allow for individualization
of training durations.

At the brain level, it could be very relevant to perform repeated anatomical and func-
tional measurements to see how training can affect the brain (Samplex project at LaPsyDE).
In particular, this could allow us to see if training has an impact from the first sessions or if a
minimal number of sessions is necessary before observing an effect. In particular, we could
see which brain characteristics are impacted by training and according to what timing, and
we could hypothesize that changes would first be observed at the structural level and then
at the functional level (Batista-García-Ramó and Fernández-Verdecia, 2018) and, by linking
them to individual progression curves, to understand the neuro-cognitive mechanisms that
support learning. The implementation of the delayed post-test could allow us to see if these
effects persist even after the training has ended.

6.2 Towards a precise definition of EFs

Overall, in future EF studies, it will be necessary to specify what is meant by EFs. Indeed, as
seen in the introduction, EFs suffer from a lack of precision. While multiple terminologies
are used for similar or very similar processes, shortcuts are sometimes used. Moreover, the
fact that these concepts are very similar leads to a real methodological difficulty: which
task should be used to measure a precise concept?

All these imprecisions and difficulties lead to two observations and recommendations.
First, it is necessary to investigate each of the components of EFs and precise their defini-
tion, and for this, it is also necessary to understand how EFs are organized and related to
each other. This will allow, in a second step, to specify the measurement spectra of the dif-
ferent tasks. A given task should no longer be able to be used in one experiment to measure
one EF and in another to measure another EF.

This work will certainly be long and cannot be done one theory separated from another,
at a single level of observation. It will have to be done collectively, by integrating cognitive,
developmental, cerebral, genetic, environmental, and cultural data, and by using statistical
tools that will make possible to finely investigate the links between the different levels of
observation.

6.3 Potential clinical applications

At the EF level, gathering knowledge to understand at the fundamental level their orga-
nization, their development and the factors that influence them is important for the care
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of pathologies in which these EFs are impacted (e.g., Thomas et al., 2009). By linking this
knowledge with that of other symptoms, it could also allow us to understand the mecha-
nisms that are at play in these pathologies.

In terms of cognitive training, training programs such as APEX could be proposed,
not as a treatment but as a preventive tool( Diamond, 2013). Thus, training targeting EFs
could be proposed to at-risk populations, for example those diagnosed but without detected
executive difficulties, those with initial but undiagnosed EF difficulties or those who present
symptoms in which EFs are known to play a role, such as IC for auditory hallucinations
(Jardri et al., 2016).

Finally, at the methodological level, the tools used in this research can be used in the
clinical context. Networks are alreadywidely used in clinical studies, whether in depression
(Mullarkey et al., 2019), post-traumatic stress disorder (Hansen et al., 2021) or psychosis
(Isvoranu et al., 2017). But the longitudinal andmultilevel models presented in Studies 3 and
6 could also be used to study the effects of a therapeutic intervention and the mechanisms
that influence the benefits of that intervention. They could also be used to investigate the
evolution of a pathology in conjunction with the mechanisms influencing the development
of symptoms.

6.4 Towards a personalized education

At the educational level, we know that EFs have an important supporting role in learning
(e.g., Mulder et al., 2017). Training EFs could then allow to compensate or prevent the
difficulties of some students. In particular, we could propose training aimed at improving
the EFs in children who have difficulties in certain learning areas such as reading (Andreola
et al., 2022). Such training could also be proposed as a preventive measure to children with
initial difficulties in EF in order to ensure that their executive base is sufficiently solid to
allow the implementation of school learning.

Overall, this research is in line with precision education or personalized instruction
(Watson and Watson, 2016). It has been known for a long time that not all children learn in
the same way, and that some have more learning difficulties than others (Watson and Wat-
son, 2016). Identifying the factors that support learning could make it possible to propose a
more personalized education adapted to each learning child. These personalized education
approaches are at the core of certain pedagogies such as Montessori (Cossentino, 2010).

6.5 Ethical questions

However, we must be careful because as soon as we talk about personalized education
and the identification of learning profiles of children, we can think of categorization and
potential educational inequalities. The aim of personalized education is not to stigmatize,
but to offer an education adapted to each child so that everyone can expect the same results
and in this sense promote equality.

It is also important to emphasize that this work must be done in conjunction with the
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actors of education: the teachers. They are the experts in education and school learning
and they are the ones who see the students learning on a daily basis. It is not possible to
move forward without them in the field of education and bridges must be built in this sense.
This can be constructed with collaborative research (Letang et al., 2021) and curricula such
as the DU Neuroeducation in which I was involved during my thesis, where researchers in
psychology and neuroscience of education bring their knowledge to the actors of education
in order to co-create the school of tomorrow.

Furthermore, it is important to note that this research does not aim to go towards a
search for EF excellence for healthy populations. Rather, this thesis is part of fundamental
research: to understand EFs, their development, their training and to propose statistical
methods to be able to do so rigorously. There is absolutely no question of encouraging
excellence in EFs, inter-individual variability is natural and should be preserved.

7 Being a researcher in psychology nowadays

To conclude this manuscript, I would like to briefly present some more general considera-
tions about psychological research nowadays.

7.1 The growth of psychological science

When we introduce ourselves as researchers in psychology, we can observe that there is
often a gap between the public’s perception of psychology and the current research in
this field. In particular, and this is especially true in France, psychology is often asso-
ciated with psychoanalysis while we are getting further and further away from it. We
are moving towards a scientific psychology, based on mathematical proof. This can be
seen with the creation of scientific societies like the Association for Psychological Sci-
ence (https://www.psychologicalscience.org/), the Society for the Improvement of Psycho-
logical Science (https://improvingpsych.org/), or the Society for Mathematical Psychology
(https://mathpsych.org/). We can hope that this will contribute to a greater credibility to
this field of research which sometimes suffers from misconception without dismissing the
complementarity of approaches between scientific psychology and literary approaches of
mental phenomena.

7.2 The development of new tools

This scientific progression of psychology can also be seen in the methods now used in
research. In particular, studies using SEM or networks, initially developed by other disci-
plines, are multiplying and spreading on different research questions in psychology thanks
to the appropriation of these methods by several actors of the discipline. This evolution in
psychometrics is linked to a new vision of human beings as complex systems that evolve
over time and that involve different levels of observation and analysis, sweeping aside the
conventional analyses in which the different psychological components were studied indi-
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vidually (Borsboom, 2022).

In general, statistics are becoming more and more important with the development
of psychological methods. In particular, among the statistics not mentioned in this PhD,
Bayesian statistics are likely to become more and more widely used and with them the
p-values more and more abandoned.

7.3 Improving psychological researchers’ training

The evolution of the discipline and these new tools are changing the way of conducting
psychological research. It is necessary to integrate into researchers’ training courses on
these methods and tools so that they can understand them, appropriate them and use them.
It would also be useful to include courses on modeling theory and not just statistics, as
scientific models are lacking in psychology (van Rooij, 2022). Finally, we must not fall into
another extreme: as stated several times, theory remains at the heart of research and there
is no intention of abandoning theoretical and practical training in favor of methodological
and statistical training.

7.4 Collaborative framework

This emerging science is also part of a broader context of open science with the creation
of consortia, data sharing and increasingly open access codes and analysis tools. This dy-
namic can allow questions to be asked that could not be answered alone in one’s laboratory,
especially for " smaller " laboratories with reduced funding. However, one must be careful
not to forget to ask scientific questions with rigor and not just let oneself be carried away
by the open access data. For this, knowing what it is to acquire data allows one to have
experience of the scientific method. In the same way, concerning the open access codes
and analysis tools, it is important to make sure that one understands what is being done in
order to correctly interpret the results. In conclusion, open science, both for data and for
codes, is an important resource but should not guide the entire future of research.

7.5 The future of doing research in psychology

Thus, it appears that research in psychology will be carried out more and more in col-
laboration with other researchers in psychology but also in other disciplines, allowing for
interdisciplinarity to develop. These collaborations will also be made with other special-
ists: as for education, research and especially its clinical applications must also be made in
collaboration with experts in the field: the clinicians.

The replicability crisis (e.g., Anvari and Lakens, 2018) has been a major issue in psy-
chological research and since then, many actions have been taken. In particular, pre-
registration (Nosek et al., 2018) and pre-registered reports (Nosek and Lakens, 2014) have
developed a lot to fight against p-hacking. Although more difficult, we also see a trend
of publishing negative results to fight against publication bias (Hubbard and Armstrong,
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1997). It is likely that more and more rigorous studies will emerge in terms of design and
analysis, and hopefully also at the theoretical level.

To conclude I would say: what an exciting time to do research in psychology!
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Conclusion

Throughout this thesis, we have investigated the effects of inhibitory control training and
development at different levels of observation: cognitive, cerebral and genetic.

Regarding the organization of executive functions, we were able to show a differentia-
tion of executive functions with development, supporting the hypothesis of differentiation
of processes with age and acquisition of these processes (Anderson and Nelson, 2005). We
have also been able to see that the different executive functions do not play the same role in
this organization during development, at the beginning the inhibitory control being very
central and then leaving its place to the working memory updating. We could also demon-
strate that these developmental changes were fairly similar to changes following 5 weeks of
computerized inhibitory control training in children, supporting the hypothesis that train-
ing accelerates development (Jolles and Crone, 2012). However, such results have not been
replicated in the adolescent sample. Further studies are needed to determine whether these
results are due to a developmental characteristic or to the proposed training.

In terms of inhibitory control training benefits, we were able to see that inter-individual
differences in training could be explained by cognitive, brain and genetic factors. Notably,
participants with initial lower inhibitory abilities were found to benefit most from an in-
hibitory control-targeted intervention, supporting the compensation hypothesis (Karbach
and Kray, 2021). In addition, children who were at lower genetic risk for poor executive
functioning also showed the most progress. Thus, an overlap seems to exist between the
genetic basis of executive functions and the genetic basis of responsiveness to training.
Similar overlap was also observed at the brain level. Further studies are needed to integrate
environmental variables into this multilevel modeling.

This thesis is also taking place in the context of an evolution of psychological research
which becomes more precise and interdisciplinary, with the development of analytical
methods such as network, structural equations or machine learning models, and more inte-
grative, with the simultaneous integration of different levels of observation. These method-
ological developments allow crucial questions in developmental psychology to be answered
and variables to be considered not isolated but as part of an integrated human system.
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Appendices

A1 General introduction: Segregation and integration

Over the last twenty years, neuroimaging research has established two fundamental princi-
ples of brain organization: segregation, the segregated ormodular distribution of anatomical
and/or functional specialization within brain regions, and integration, the functional and/or
effective connectivity between brain regions (Friston, 2009).

A1.1 Study of brain segregation

A1.1.1 Anatomical segregation

The idea of specialized regions for a brain function is not new. Phrenology, developed by
Franz Joseph Gall (1758-1828), is a well-known theory: each part of the brain would be
involved in a cognitive capacity or a personality trait and, the more developed this capacity
or this trait is, the more important the associated brain region would be. According to
Gall, it would then be possible to discover the intellectual capacities and personality traits
of a person only from the analysis of the bumps in his skull, such as the famous "math
bump". Some aspects of this theory, such as the organization of the brain into functional
regions or the link between the anatomy of the brain and its functioning, have since been
validated experimentally on numerous occasions, in humans and animals. However, the
main concern with this theory is that there is no link between the shape of the skull and
the shape of the brain.

At the end of the 19th century, the French physician Paul Broca (1824-1880) proposed a
clinical proof establishing a link between a precise cerebral region and a specific cognitive
function. One of his patients, Monsieur Leborgne, suffered from aphasia and presented
a lesion in the third convolution of the left frontal lobe, now called Broca’s area. This
lesion associated with the functional deficit allowed Broca to establish a link between this
area of the brain and language production. Since Broca, lesional studies have increased in
order to understand the link between a given function and a specific brain structure. These
studies are the first brick in the study of brain segregation but have the disadvantage of
being applicable only to bimodal functions (aphasia vs. no aphasia) and, before the arrival
of neuroimaging, of only being performed post-mortem. Today, these studies are often
performed on patients who have suffered a brain lesion after a head injury or a stroke and
can be observed with neuroimaging tools while the patient is alive. However, for complex
functions such as EFs, these studies do not allow the analysis of normal inter-individual
variability.

The development of neuroimaging tools has accelerated the development of brain seg-
regation studies. At the anatomical level, the scanner first allowed in vivo lesional studies
to be performed (see above). But it is really the development of cerebral MRI that has been a
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game changer for research. Structural MRI allows the precise characterization of the cere-
bral anatomy. It is then possible to study the volume, surface or thickness of regions of
interest (see Figure A1) and look at the link between these characteristics and phenotypic
variables (e.g., executive performance).

Figure A1: Schematic representation of thickness, volume and surface of a brain
area. From Bethlehem et al., 2022.

As represented in Figure A1, cortical volume is a combination of thickness and surface
area. Thus, a change in volume can reflect either a change in thickness, a change in surface
area, or both. Over the lifespan, it was demonstrated that volume changes were primarily
explained by changes in thickness rather than surface area (Storsve et al., 2014). However,
it is possible to assess cortical thickness and cortical area separately (Dale et al., 1999; Dale
and Sereno, 1993). These two components of cortical volume, area and thickness, result
from well-differentiated ontogenic stages during corticogenesis (Lichtenstein et al., 2009)
and appear to have independent genetic etiologies (Dale and Sereno, 1993).

Of note, other neuro morphometrics can be extracted from structural MRI such as white
matter surface area (Fischl and Dale, 2000), sulcal length, depth (Im et al., 2006) and mor-
phology (Ono (M.D.) et al., 1990), gyrification index (Schaer et al., 2012), or fractal dimen-
sionality (Madan and Kensinger, 2016). Whereas some of these metrics such as volume,
surface or thickness can evolve with time, events, environment and learning, others such
as sulcal morphology remain unchanged over time. The former are called plastic markers
(they reflect a situation at a given moment; e.g., Draganski et al., 2004) and the latter are
called fixed or stable markers (they remain the same over time; Sun et al., 2012).

A1.1.2 Functional segregation

In addition to the anatomical results, functional neuroimaging methods made it possible to
highlight the regions that were particularly activated during the performance of a task or
action.

Functional MRI allows an indirect observation of brain activity using the BOLD (blood-
oxygen-level dependent) signal, which reflects local and transitory variations in the quan-
tity of oxygen transported by hemoglobin as a function of neuronal activity in the brain.
This technique is indirect and is based on the idea that any neuronal activation will be ac-
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companied by a local increase in blood flow in order to cover the metabolic needs related
to this activation. Classically, to see the regions particularly activated for a cognitive func-
tion, the participant is asked to perform a task requiring this function while in the MRI.
This may require adaptations, especially for tasks that are not compatible with the techni-
cal characteristics of MRI (powerful magnet, lying patient who must keep his head still),
such as writing (Palmis et al., 2020).

Electroencephalography (EEG) allows less constraints in the tasks that can be per-
formed. Indeed, since it is only a helmet connected to a computer and placed on the head of
the participant, the latter is much freer of his/her movements than in the MRI where he/she
must remain lain down and immobile. For this same reason, EEG is used a lot in young
populations, as early as the first days of life (de Hevia et al., 2014). However, EEG does not
provide the same information as MRI, having a much lower spatial resolution although a
better temporal resolution (Logothetis, 2008). Thus, fMRI allows us to map more precisely
the local brain regions activated during the execution of a task and we will therefore focus
mostly on fMRI studies in this introduction.

Of note, other techniques have been use to map brain function such as magnetoen-
cephalography (Hillebrand et al., 2005) or transcranial magnetic stimulation (Hallett, 2007).

A1.2 Study of brain integration

Integration refers to the connectivity between brain regions (Friston, 2009). Two types
of connectivity can be distinguished: structural (or effective) connectivity and functional
connectivity.

A1.2.1 Structural connectivity

Structural connectivity (SC) can be defined as the description of the anatomical connections
between network nodes (i.e., brain regions, neurons) and relates often to reconstructed
anatomical projections derived from diffusion MRI (dMRI), directed anatomical pathways
derived from neural tract tracing, or synaptic connections between individual neurons (van
den Heuvel and Sporns, 2013), mostly using diffusion tensor imaging (DTI). DTI provides a
three-dimensional model of diffusion distribution within each voxel quantifying the diffu-
sivity along three orthogonal axes.

The most common metric extracted from DTI studies (see Figure A2) are:

• Fractional anisotropy (FA): measure of the directionality of diffusion that ranges from
0-1 with higher values reflecting highly ordered diffusion which occurs primarily in
one direction and lower values reflecting isotropic diffusionwhich is more distributed
in each direction.

• Mean diffusivity (MD): mean of the diffusivity along the three axes.
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Figure A2: Schematic representation of DTI-derived metrics. From DeSouza et al.,
2016.

• Axial diffusivity (AD): diffusivity in the direction of the primary axon orientation
(within the voxel), represented by the principal diffusion axis in the tensor.

• Radial diffusivity (RD): mean of the diffusivity along the secondary and tertiary axes
reflecting diffusion perpendicular to the axon bundle.

Developmental studies hypothesized that changes in FA and RD reflect changes inmyeli-
nation and/or axonal packing and diameter (Krogsrud et al., 2018; Lebel et al., 2008), whereas
changes in AD might be related to axon straightening (Giorgio et al., 2010).

A1.2.1.1 Main white fiber tracts With the analyses of cerebral white matter fibers,
main routes have been identified, connecting different brain regions (see Figure A3).

Figure A3: Main white matter fiber tracts. Fasc. = fasciculus. From Gupta, 2017.

Themost well known bundle might be the corpus callosum, connecting the two cerebral
hemispheres (in white in Figure A3). The forceps major is a subpart of this corpus callosum
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which connects the posterior portions of the occipital lobes with each other. The cingulum
is the main route connecting frontal regions to the hippocampus (in yellow in Figure A3).
The superior longitudinal fasciculus (SLF) connects parietal and lateral prefrontal cortices
(in red in Figure A3). The inferior longitudinal fasciculus (ILF) is the main route connecting
occipital and temporal-occipital areas of the brain to the anterior temporal areas (in orange
in Figure A3). The uncinate fasciculus (UF) links the anterior temporal lobes to the anterior
prefrontal and lateral orbitofrontal cortex (in blue in Figure A3).

A1.2.2 Functional connectivity

On the other hand, functional connectivity reflects how the activities of different brain
regions are linked. This functional connectivity, measured as the statistical dependence
between time series of two network nodes (e.g., brain regions, neurons; van den Heuvel
and Sporns, 2013) can be observed by activation (fMRI) or resting state functional MRI
(rsfMRI) sequences.

From these works are derived the field of connectome, the comprehensive network map
of the connections of a species’ nervous system (Sporns, 2012; Sporns et al., 2005). A prin-
cipal aim of connectome studies is to unravel the architecture of brain networks and to
explain how the topology of networks shape and modulate brain function. Brain networks
can be mathematically described as graphs, composed of sets of nodes (neuronal elements)
and edges (their interconnections) whose pairwise couplings can be summarized in the
network’s connection matrix and whose arrangement defines the network’s topology (van
den Heuvel and Sporns, 2013). The term connectotype or functional fingerprint has been
introduced to point out interindividual variations in terms of connectivity profile (Miranda-
Dominguez et al., n.d.; Miranda-Dominguez et al., 2014; Sripada et al., 2019).

The study of the functional connectome has confirmed the organization of brain net-
works around the segregation and integration main principles (Bullmore and Sporns, 2012;
Mišić et al., 2014; Park et al., 2019; Rubinov and Sporns, 2010). At the network level, seg-
regation refers to local, within-module processing with sets of nodes that are highly inter-
connected within a single module but have few connections to nodes in other modules.
Integration on the other hand refers to global processing and inter-module connectivity.

A1.2.2.1 Three core neurocognitive networks The brain is thus organized into a
number of large networks based on shared function. The correlations of these networks
during resting-state fMRI scans varies across individuals and is an indicator of individual
differences in abilities.

Of the many stable functional networks identified in the human brain, three are partic-
ularly important for understanding cognitive functioning and dysfunctioning and are often
designated as the ‘core’ neurocognitive networks (Menon, 2011). These three networks are
the central executive network (CEN), the default mode network (DMN) and the salience
network (SN; see Figure A4; Greicius et al., 2003; Seeley et al., 2007). Importantly, these
networks show close correspondence in independent analyses of resting and task-related
connectivity patterns, suggesting that intrinsically coupled functional networks are also
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systematically engaged during cognition (Smith et al., 2009).

Figure A4: Representation of the default mode network (top, in red), the central
executive network (middle, in blue) and the salience network (bottom, in yellow).
mPFC = medial prefrontal cortex; PCC/PCu = posterior cingulate cortex/precuneus; IPL =
inferior parietal lobule; LTC = lateral temporal cortex; HF = hippocampal formation; dlPFC
= dorsolateral prefrontal cortex; PPC = posterior parietal cortex; dmPFC = dorsomedial
prefrontal cortex; FFF = frontal eye fields; IC = insular cortex; dACC = dorsal anterior
cingulate cortex; TP = temporal pole; Amy = amygdala. From Mulders et al., 2015.

The default mode network (DMN) reflects the permanent intrinsic functional activity
of the brain. This network arose from research based on rsfMRI sequences. In contrast
to activation fMRI, which aims to capture in real time the regions recruited during a task,
resting fMRI is amodality free of stimuli. These sequences are acquiredwhile the participant
is in a particular mental state of conscious rest, during which he/she is given the instruction
to remain calm, perfectly still, eyes closed but wide awake and to let his/her thoughts go.
This instruction is necessary for the process of spontaneous cognition, characteristic of this
resting mental state. This basic state, which does not require any attentional resources, is
called the default mode (Raichle et al., 2001). A resting state network corresponds to a set of
brain regions whose temporal decays of the BOLD signal measured in the conscious resting
state are synchronized.

This DMN consists of two core regions: the medial prefrontal cortex (mPFC) and the
posterior cingulate cortex/precuneus (PCC/PCu), with the inferior parietal lobule (IPL) also
being reported consistently. The lateral temporal cortex (LTC) and the hippocampal forma-
tion (HF) are often found as being strongly related to the DMN, and are likely to constitute
a subsystem within the DMN (Mulders et al., 2015). The central executive network (CEN)
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is engaged during a cognitively demanding task requiring attention (Fox et al., 2006). This
CEN is centered on the dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex
(PPC), and also includes the dorsomedial prefrontal cortex (dmPFC) and frontal eye fields
(FEF) (Mulders et al., 2015). The salience network (SN) is related to the degree of subjective
salience, whether cognitive, homeostatic, or emotional. It is composed of the insular cor-
tex (IC), dorsal anterior cingulate cortex (dACC), temporal pole (TP) and amygdala (Amy)
(Mulders et al., 2015).

These three networks are interdependent. Indeed, it was demonstrated that the SN
drives the switching between the DMN and the CEN (Goulden et al., 2014). Models of
pathology have also proposed a theory of triple network dysfunction where the regulation
between the three networks are impaired (Menon, 2011).

A1.2.2.2 Development of functional connectivity Many authors have focused on
the development of functional connectivity in infancy (Gao et al., n.d.; Grayson and Fair,
2017; Hoff et al., 2014; Power et al., 2010; van den Heuvel et al., 2018) and even in utero
(Dubois et al., 2015; Thomason et al., 2014; van den Heuvel and Thomason, 2016; Wheelock
et al., 2019). Hierarchical organization of functional resting networks is already present
in the newborn (Teeuw et al., 2019). However, between the early years of life and adult-
hood, significant maturational changes in resting networks occur continuously (Collin and
van den Heuvel, 2013; Dennis and Thompson, 2013; Khan et al., 2018; Menon, 2013; Power
et al., 2010; Vértes and Bullmore, 2015). This functional connectivity has been shown to be
predictive of brain maturity (Dosenbach et al., 2010; Qin et al., 2015). This network organi-
zation evolves drastically during the first two years of life to be more spatially structured
and distributed and continues to do so through childhood and adolescence (for a review:
Grayson and Fair, 2017). This local to distributed principle is supported by the decrease in
functional connectivity between different functionally distinct regions and the increase in
functional connectivity between functionally related regions resulting in improved func-
tional communication (i.e. functional integration; Dosenbach et al., 2010; Fair et al., 2008;
Fair et al., 2009; Fair et al., 2007; Marek, n.d.).

In contrast, while some resting networks are already well established and mature at
birth, with a topology similar to the one found in adults (e.g. sensorimotor or auditory
networks; Bo et al., 2014; Gao et al., 2015), others take longer to develop (Shen, 2015). For
example, the DMN structure differs in children compared to adults: even if the connections
between the same regions from one hemisphere to the other are strong in childhood, the
overall network goes from a sparse network in childhood to a more integrated one in adults
(Fair et al., 2008), going from a local to a distributed organization, related to the development
of neural systems underlying cognition (Fair et al., 2009).

311



Appendices

A2 Study 1: Networks accuracy

Figure A5: Accuracy of children’s networks. (Top) 95% bootstrapped CIs (nBoots = 500)
for each network edge weight before (left), after active control training (center) and after
inhibitory control training (right). (Down) Stability across bootstrap iterations (nBoots =
500) (rows: edges, columns: iterations) for the estimated networks before (left), after active
control training (center) and after inhibitory control training (right).

Figure A6: Accuracy of adolescents’ networks. (Top) 95% bootstrapped CIs (nBoots =
500) for each network edge weight before (left), after active control training (center) and af-
ter inhibitory control training (right). (Down) Stability across bootstrap iterations (nBoots
= 500) (rows: edges, columns: iterations) for the estimated networks before (left), after ac-
tive control training (center) and after inhibitory control training (right).
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A3 Study 2: Closeness of network models

Figure A7: Closeness of the 9 nodes in the network models across age.

Closeness centrality (the inverse of the total length of all the shortest paths between the
selected node and all other nodes in the network), a measure of how strongly a node is
connected indirectly with the network. Higher closeness centrality indicates that a task is
related to more other tasks, and strength indicates that a task is related more strongly with
other tasks.
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A4 Study 2: Loadings for the 3-factors and the unidi-
mensional models.

Figure A8: Loadings of the 9 EFs variables for the 3-factors (above) and unidimen-
sional (below) models across age.
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A5 Study 3: LCS analyses with N-back accuracy as Up-
dating measure.

Model 2 df RMSEA CFI SRMR Selected model
LCS constrained 249.957 84 0.277 [0.233-0.322] 0.000 0.946
LCS free 23.462 30 0.000 [0.000-0.110] 1.000 0.114 x

Table A1: Fit indices of LCS analyses with N-back accuracy as Updating measure.

In children, the results remained very similar while in adolescents, more changes were
observed. Most differences were related to statistical power. Of note, the differences almost
exclusively concern variables involving the N-back.

In children, after IC training, the latent change for TMT was marginal (p = 0.06) with
RT and not significant with accuracy scores (p = 0.20). In addition, the effect of the number
of training sessions on latent changes in Updating and Switching were not more significant
with accuracy scores (ps > .15). Finally, baseline correlation between TMT and N-back
along with self-feedback parameter of the Nback that were previously marginal with the
RT difference score become significant with the accuracy scores. After AC training, latent
change is detected for the N-back with the accuracy scores (p < .05) but not the RT (p = 0.82).
However, the correlations between the latent changes in SST and TMTwere significantwith
the RT but not with the accuracy score. Other effects remained similar.

In adolescents, after IC training, significant latent changes were detected in N-back
and TMT with accuracy scores (all ps < 0.01) but not RT (all ps > .65). In addition, the
correlation between TMT and N-back latent was significant with RT but not with accuracy
scores. Two crossed-effect implicating N-back, that were not significant with the RT (all ps
> 0.21), were significant with the accuracy scores (p < 0.05), namely the effect of stop signal
baseline level on N-back change and the effect of N-back baseline level on TMT change.
After AC training, significant latent changes were detected in stop signal and N-back with
accuracy scores (p < 0.05) that were not detected with RT (ps > .09). Of note, the effect of
stop signal baseline level on N-back latent change was significant with the RT (p < 0.05)
but not with the accuracy scores (p = 0.11).
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A6 Study 3: Reaction time (in s) at the Stroop task by
trial condition.

Figure A9: Reaction time (in s) at the Stroop task by trial condition.
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A7 Study 4: Brain voxels involved in the 6 EF tasks base-
line in children and adolescents.

Figure A10: Brain voxels involved in the 6 EF tasks baseline in children and adoles-
cents.
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A8 Study 4: Brain voxels involved in the 6EF tasks progress
following IC and AC training in children.

Figure A11: Brain voxels involved in the 6 EF tasks progress following IC and AC
training in children.
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A9 Study 4: Brain voxels involved in the 6EF tasks progress
following IC and AC training in adolescents.

Figure A12: Brain voxels involved in the 6 EF tasks progress following IC and AC
training in adolescents.
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A10 Study 4: Complementary machine learning analy-
ses

A10.1 Neural bases of EFs

All participants Children Adolescents
R2 MAE MSE R2 MAE MSE R2 MAE MSE

Stop signal
Ridge -0,029372 0,058205 0,074054 -0,254220 0,060181 0,077687 -2,429664 0,055364 0,068495
ElasticNet 0,192108 0,051552 0,067401 -0,098254 0,054969 0,072332 -0,806913 0,046640 0,059601
Support vector machine -0,106907 0,063703 0,076098 -0,176704 0,068363 0,080822 -4,457897 0,057005 0,068740
Random forest 0,203745 0,050244 0,066380 -0,101005 0,053888 0,070708 -0,395273 0,045005 0,059611
Gradient boosting 0,169452 0,051621 0,068195 -0,128551 0,054607 0,073707 -0,522246 0,047329 0,059382
Multilayer perceptron -2,827082 0,102528 0,139801 -3,498620 0,099971 0,136230 -16,039109 0,106204 0,144780
Stroop
Ridge -0,205998 0,105788 0,132158 -0,150571 0,101964 0,127211 -0,460673 0,110197 0,137640
ElasticNet -0,005715 0,096185 0,121093 -0,017610 0,097412 0,120968 -0,053489 0,094770 0,121238
Support vector machine -0,028701 0,096257 0,122452 -0,050336 0,096158 0,120863 -0,034452 0,096370 0,124259
Random forest -0,046368 0,097954 0,123722 -0,062372 0,096617 0,120707 -0,084187 0,099496 0,127108
Gradient boosting -0,027616 0,097210 0,122497 -0,024286 0,098124 0,122212 -0,142524 0,096155 0,122824
Multilayer perceptron -1,172045 0,139184 0,179705 -0,955325 0,152154 0,193869 -2,253150 0,124230 0,161843
ANT
Ridge -0,091586 0,033294 0,042831 -0,193735 0,033472 0,042361 -0,816981 0,033065 0,043427
ElasticNet 0,031401 0,031955 0,041235 -0,104392 0,031561 0,039977 -0,386726 0,032462 0,042801
Support vector machine -0,359711 0,040523 0,048409 -0,087411 0,039434 0,046875 -3,910609 0,041924 0,050317
Random forest -0,006226 0,031850 0,041086 -0,170277 0,031454 0,040478 -0,240003 0,032359 0,041856
Gradient boosting -0,048281 0,031958 0,041999 -0,229351 0,031104 0,040356 -0,285998 0,033058 0,044023
Multilayer perceptron -8,473383 0,089002 0,125166 -6,513376 0,097307 0,138665 -30,162582 0,078310 0,105268
Simon
Ridge -0,422963 0,028025 0,035736 -0,501263 0,029443 0,037978 -0,679035 0,026509 0,033169
ElasticNet -0,030427 0,024685 0,030801 -0,215701 0,025512 0,031937 -0,134673 0,023801 0,029537
Support vector machine -0,048415 0,025028 0,031189 -0,222942 0,026012 0,032475 -0,096482 0,023974 0,029752
Random forest -0,066498 0,025090 0,031415 -0,254269 0,025464 0,032201 -0,183349 0,024690 0,030551
Gradient boosting -0,067336 0,025031 0,031293 -0,229206 0,025766 0,032627 -0,231853 0,024246 0,029801
Multilayer perceptron -14,457539 0,087649 0,118302 -20,876344 0,084849 0,110427 -27,988714 0,090645 0,126183
Trail making test
Ridge 0,044869 7,789444 10,138706 -0,379226 7,626890 10,190166 -2,586358 7,991093 10,074504
ElasticNet 0,267771 6,896336 8,921844 -0,125373 7,102925 9,062393 -0,885653 6,640060 8,744354
Support vector machine 0,240897 6,615937 9,068357 -0,241113 6,621107 9,138306 -0,272605 6,609524 8,980828
Random forest 0,168796 6,914576 9,421571 -0,363657 6,598327 9,116646 -0,329444 7,306886 9,786639
Gradient boosting 0,239966 6,610877 9,110109 -0,241957 6,889302 9,384133 -0,361176 6,265489 8,758273
Multilayer perceptron -0,115040 8,181444 10,883553 -0,770791 7,856809 10,572735 -1,100718 8,584155 11,257206
N-back
Ridge -0,340531 0,161339 0,207508 -0,268017 0,155869 0,201949 -1,607575 0,168966 0,215020
ElasticNet -0,033895 0,137942 0,181431 -0,032553 0,131881 0,178108 -0,290067 0,146393 0,185965
Support vector machine -0,076188 0,139474 0,184911 -0,079908 0,134273 0,180145 -0,268383 0,146727 0,191357
Random forest -0,154004 0,145537 0,191468 -0,166047 0,138050 0,184398 -0,265356 0,155978 0,200912
Gradient boosting -0,086789 0,141058 0,185100 -0,089202 0,135639 0,179221 -0,249156 0,148615 0,192998
Multilayer perceptron -0,485550 0,167376 0,215124 -0,374035 0,160247 0,211601 -2,283428 0,177316 0,219942

Table A3: Machine learning analyses of neural bases of EFs.
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A10.2 Neural bases of training receptivity

Children Adolescents
IC training AC training IC training AC training

R2 MAE MSE R2 MAE MSE R2 MAE MSE R2 MAE MSE
Stop signal -0,0342 0,3133 0,3236 0,2838 0,2708 0,2866 -0,6900 0,1789 0,1812 -1,2807 0,1665 0,1695
Stroop -0,1055 0,1785 0,2097 -0,1046 0,1894 0,2262 -0,1641 0,0890 0,1155 -1,0537 0,1175 0,1344
Simon -0,3162 0,0387 0,0450 -0,0924 0,0477 0,0576 -0,0046 0,0425 0,0494 -0,7410 0,0396 0,0443
ANT -0,0360 0,1091 0,1188 -0,0920 0,0999 0,1157 -1,5627 0,0370 0,0409 -0,4556 0,0496 0,0536
TMT -1,8057 26,7296 28,3089 -0,2125 22,3102 24,3514 -0,7708 6,2024 7,1662 -0,4258 9,6524 10,7065
N-back -0,8323 0,2115 0,2532 -0,3646 0,1540 0,1959 -1,5705 0,0703 0,0812 -0,8068 0,0777 0,0872

Table A4: Machine learning analyses of neural bases of training receptivity.
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A11 Study 5: Best parameters

ROIs mwp1
Ridge α = 100.00 α = 0.001
ElasticNet α/l1 = 0.50 α/l1 = 0.10
Support vector regression C = 10.00 C = 10.00
Random forest criterion = 100.00 criterion = 100.00
Gradient boosting loss = 100.00 loss = 100.00
Multilayer perceptron α = 0.0001 α = 0.0001

Table A5: Best parameters of machine learning models.
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A12 Study 6: Manhattan plot of the GWAS for TMT-B.

Figure A13: Manhattan plot of the GWAS for TMT-B. Input SNPs were mapped to 19046
protein coding genes (distance 0). Genome wide significance (red dashed line in the plot)
was defined at P = 0.05/19046 = 2.625e-6.
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A13 Study 6: Fit indices of the multilevel model for the
eight ROIs

A13.1 Raw volumes (without spatial normalization)

A13.1.1 In children

Model comparison Fit indices
Chi2

difference df p-value Selected
model Chi2 p-val Yuan-Bentler

scaling factor RMSEA CFI SRMR

lACC 41,056 11 2,36E-05 free 11,278 0,127 0,758 0,131 [0,000-0,266] 0,984 0,147
rACC the model did not converge
lIFG 24,198 0,012 free 11,440 0,121 0,782 0,136 [0,000-0,272} 0,980 0,183
rIFG 37,579 11 9,21E-05 free 7,144 0,414 0,808 0,025 [0,000-0,215] 0,999 0,144
lCaudate 63,459 11 2,10E-09 free 15,938 0,026 0,733 0,186 [0,061-0,309] 0,970 0,192
rCaudate 21,123 11 0,032 free 13,839 0,054 0,752 0,165 [0,000-0,293] 0,977 0,192
lPutamen 23,593 11 1,46E-02 free 7,247 0,404 0,791 0,032 [0,000-0,215] 0,998 0,142
rPutamen 14,156 11 2,25E-01 constraint did not meet criteria 1

Table A6: Fit indices of themultilevel model for the eight ROIs in children (without
spatial normalization).

A13.1.2 In adolescents

Model comparison Fit indices
Chi2

difference df p-value Selected
model Chi2 p-val Yuan-Bentler

scaling factor RMSEA CFI SRMR

lACC 17,595 11 0,091 constraint did not meet criteria 1
rACC the model did not converge
lIFG 12,683 11 0,315 constraint did not meet criteria 1
rIFG 20,524 11 3,87E-02 free 10,996 0,139 0,867 0,182 [0,000-0,376] 0,961 0,361
lCaudate 6,870 11 8,10E-01 constraint did not meet criteria 1
rCaudate 12,566 11 0,323 constraint did not meet criteria 1
lPutamen 17,890 11 0,084 constraint did not meet criteria 1
rPutamen 24,747 11 9,93E-03 free 5,022 0,657 0,741 0,000 [0,000-0,220] 1,000 0,151

Table A7: Fit indices of themultilevelmodel for the eight ROIs in adolescents (with-
out spatial normalization).
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A13.2 Global-scaled ROI volumes (with spatial normalization)

A13.2.1 In children

Model comparison Fit indices
Chi2

difference df p-value Selected
model Chi2 p-val Yuan-Bentler

scaling factor RMSEA CFI SRMR

lACC 23,558 11 1,47E-02 free 12,550 0,084 0,748 0,148 [0,000-0,278] 0,976 0,107
rACC the model did not converge
lIFG 22,443 11 0,021 free 8,239 0,312 0,823 0,073 [0,000-0,235] 0,994 0,112
rIFG 26,681 11 5,13E-03 free 24,506 0,001 0,710 0,304 [0,157-0,466] 0,907 0,301
lCaudate 42,895 11 1,13E-05 free 18,701 0,009 0,682 0,205 [0,095-0,321] 0,963 0,169
rCaudate 11,959 11 0,367 constraint did not meet criteria 1
lPutamen 27,466 11 3,91E-03 free 7,818 0,349 0,873 0,061 [0,000-0,235] 0,994 0,120
rPutamen 20,116 11 4,38E-02 free 13,024 0,072 0,803 0,160 [0,000-0,294] 0,944 0,136

Table A8: Fit indices of the multilevel model for the eight ROIs in children (with
spatial normalization).

A13.2.2 In adolescents

Model comparison Fit indices
Chi2

difference df p-value Selected
model Chi2 p-val Yuan-Bentler

scaling factor RMSEA CFI SRMR

lACC 18,638 11 0,068 constraint did not meet criteria 1
rACC the model did not converge
lIFG 19,318 11 0,056 constraint did not meet criteria 1
rIFG 19,782 11 4,84E-02 free 6,135 0,524 0,816 0,000 [0,000-0,265] 1,000 0,158
lCaudate 7,9749 11 7,16E-01 constraint did not meet criteria 1
rCaudate 19,935 11 0,046 free 5,492 0,600 0,926 0,000 [0,000-0,262] 1,000 0,172
lPutamen 22,926 11 0,018 free 6,340 0,501 0,986 0,000 [0,000-0,297] 1,000 0,179
rPutamen 15,672 11 1,54E-01 constraint did not meet criteria 1

Table A9: Fit indices of themultilevel model for the eight ROIs in adolescents (with
spatial normalization).
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A14 Study 6: Model estimates of the multilevel model
for the eight ROIs

A14.1 Raw volumes (without spatial normalization)

A14.1.1 In children

lACC rACC lIFG rIFG lCaudate rCaudate lPutamen rPutamen

IC group

baseline mediation

the
model
did
not

converge

did
not
meet
criteria

1

COG_T1∼PRS -11.836* -11.807** -10.461* -10.237* -10.940* -10.251*
NEU_T1∼PRS -48.870 -33.374 -4.813 24.502 11.493 40.460
COG_T1∼NEU_T1 -0.020 -0.036 . 0.000 -0.010 0.005 -0.015
delta mediation
∆COG∼PRS 20.020*** 10.601 11.424** 1.705 -1.310 4.492
∆NEU∼PRS 20.449 10.305 27.151 . 10.063 -5.861 -12.072
∆COG∼∆NEU -0.118** -0.023 -0.070 -0.187* -0.291* -0.087*
baseline effects
∆COG∼COG_T1 -0.861*** -0.909*** -0.963*** -1.072*** -1.197*** -0.995***
∆NEU∼NEU_T1 0.010 0.077 -0.086 -0.077 -0.008 -0.105
crossed effects
∆COG∼NEU_T1 0.058*** 0.054* 0.089*** 0.078*** 0.090*** 0.032
∆NEU∼COG_T1 0.050 -0.188 0.141 0.233 -0.234 0.151
intercepts
∆COG -0.267** -0.071 -0.216* -0.041 . -0.052 0.045
∆NEU -0.201 -0.368 0.291 0.153 0.088 0.464
R2
∆COG 0,857 0,727 0,789 0,877 0,876 0,746
COG_T1 0,106 0,116 0,063 0,065 0,067 0,073
∆NEU 0,045 0,143 0,258 0,164 0,094 0,077
NEU_T1 0,014 0,015 0 0,013 0,003 0,028

AC group

baseline mediation
COG_T1∼PRS -11.836* -11.807** -10.461* -10.237* -10.940* -10.251*
NEU_T1∼PRS -48.870 -33.374 -4.813 24.502 11.493 40.460
COG_T1∼NEU_T1 -0.020 -0.036 . 0.000 -0.010 0.005 -0.015
delta mediation
∆COG∼PRS -7.321 -6.819 -12.475* -3.369 -7.900 -1.645
∆NEU∼PRS -6.702 -1.732 -19.037** -10.032* -9.124* -61.294***
∆COG∼∆NEU -0.083 -0.314*** -0.326** 0.387 . -0.055 0.076
baseline effects
∆COG∼COG_T1 -0.633*** -0.604*** -0.701*** -0.691*** -0.663*** -0.573***
∆NEU∼NEU_T1 -0.039 -0.015 -0.028 0.016 0.005 0.033
crossed effects
∆COG∼NEU_T1 -0.010 -0.017 -0.018 -0.025 -0.009 -0.009
∆NEU∼COG_T1 0.131 0.085 -0.242 0.041 -0.203 -0.822*
intercepts
∆COG 0.211 0.222* 0.250* 0.236 0.184 0.157
∆NEU 0.229 0.082 0.233 . -0.049 0.043 0.193
R2
∆COG 0,395 0,584 0,511 0,476 0,393 0,396
COG_T1 0,144 0,152 0,1 0,103 0,106 0,112
∆NEU 0,078 0,011 0,2 0,176 0,123 0,5
NEU_T1 0,023 0,025 0,001 0,021 0,005 0,046

Table A10: Multilevel SEM estimates per ROI in children (raw volumes). Significance
levels: . < .10 ; * < .05 ; ** < .01 ; *** < .001. Abbr.: IC = inhibitory control, AC = active control,
l = left, r = right, ACC = anterior cingulate cortex, IFG = inferior frontal gyrus. COG = stop
signal reaction time. NEU = raw grey matter volume of the ROI. PRS = polygenic risk score.
T1 = pre-test. ∆ = latent change.
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A14.1.2 In adolescents

lACC rACC lIFG rIFG lCaudate rCaudate lPutamen rPutamen

IC group

baseline mediation

did
not
meet
criteria

1

the
model
did
not

converge

did
not
meet
criteria

1

did
not
meet
criteria

1

did
not
meet
criteria

1

did
not
meet
criteria

1

COG_T1∼PRS 0.614 0.486
NEU_T1∼PRS -37.711 -65.830
COG_T1∼NEU_T1 0.008 0.004
delta mediation
∆COG∼PRS -5.880** -7.323*
∆NEU∼PRS -4.787 -16.508
∆COG∼∆NEU 0.155* 0.008
baseline effects
∆COG∼COG_T1 -1.272*** -1.191***
∆NEU∼NEU_T1 -0.138* 0.101
crossed effects
∆COG∼NEU_T1 0.063*** 0.011
∆NEU∼COG_T1 -0.166 -1.523
intercepts
∆COG -0.048 0.144
∆NEU 0.566 . -0.121
R2
∆COG 0,756 0,611
COG_T1 0,015 0,003
∆NEU 0,336 0,308
NEU_T1 0,03 0,101

AC group

baseline mediation
COG_T1∼PRS 0.614 0.486
NEU_T1∼PRS -37.711 -65.830
COG_T1∼NEU_T1 0.008 0.004
delta mediation
∆COG∼PRS -4.809 -1.817
∆NEU∼PRS -29.493* 44.646*
∆COG∼∆NEU -0.083 -0.105***
baseline effects
∆COG∼COG_T1 -1.281*** -1.333***
∆NEU∼NEU_T1 -0.105** -0.078
crossed effects
∆COG∼NEU_T1 -0.011 -0.020**
∆NEU∼COG_T1 0.948 0.280
intercepts
∆COG 0.255** 0.309***
∆NEU 0.351* 0.302
R2
∆COG 0,785 0,872
COG_T1 0,015 0,003
∆NEU 0,35 0,251
NEU_T1 0,014 0,049

Table A11: Multilevel SEM estimates per ROI in adolescents (raw volumes). Signifi-
cance levels: . < .10 ; * < .05 ; ** < .01 ; *** < .001. Abbr.: IC = inhibitory control, AC = active
control, l = left, r = right, ACC = anterior cingulate cortex, IFG = inferior frontal gyrus. COG
= stop signal reaction time. NEU = raw grey matter volume of the ROI. PRS = polygenic
risk score. T1 = pre-test. ∆ = latent change.
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A14.2 Global-scaled ROI volumes (with spatial normalization)

A14.2.1 In children

lACC rACC lIFG rIFG lCaudate rCaudate lPutamen rPutamen

IC group

baseline mediation

the
model
did
not

converge

did
not
meet
criteria

1

COG_T1∼PRS -13,063* -12,855** -10,497* -9,949* -10,325* -10,509*
NEU_T1∼PRS -64,31 -48,016 -18,974 10,903 27,334 22,661
COG_T1∼NEU_T1 -0,034. -0,045* -0,001 -0,011 -0,020 0,001
delta mediation
∆COG∼PRS 11,140 4,951 11,260. 4,554 10,010 11,889
∆NEU∼PRS 33,914** -3,884 30,896* 9,791 -17,043 -9,981
∆COG∼∆NEU -0,095 -0,003 -0,136 -0,332* -0,080* -0,070
baseline effects
∆COG∼COG_T1 -0,927*** -1,122*** -1,097*** -0,943*** -1,024*** -0,991***
∆NEU∼NEU_T1 0,110. 0,030 -0,071 -0,044 0,061 -0,142.
crossed effects
∆COG∼NEU_T1 0,018 -0,042 -0,092* 0,044. -0,068*** -0,069***
∆NEU∼COG_T1 0,528 0,038 0,064 0,226 0,257 -0,087
intercepts
∆COG 0,003** 0,423** 0,643** 0,024 0,535**** 0,518***
∆NEU -1,055* -0,168 0,262 0,056 -0,351 0,646
R2
∆COG 0,70 0,73 0,78 0,78 0,78 0,744
COG_T1 0,13 0,14 0,06 0,06 0,08 0,063
∆NEU 0,20 0,03 0,29 0,12 0,05 0,127
NEU_T1 0,04 0,04 0,01 0,00 0,02 0,008

AC group

baseline mediation
COG_T1∼PRS -13,063* -12,855** -10,497* -9,949* -10,325* -10,509*
NEU_T1∼PRS -64,314 -48,016 -18,974 10,903 27,334 22,661
COG_T1∼NEU_T1 -0,034. -0,045* -0,001 -0,011 -0,020 0,001
delta mediation
∆COG∼PRS -8,046. -7,666 -10,691* -3,822 -1,035 -7,749
∆NEU∼PRS -6,186 0,279 -18,987** -8,981. -62,184*** -30,412
∆COG∼∆NEU -0,105. -0,242*** -0,216** 0,471* 0,086 0,001
baseline effects
∆COG∼COG_T1 -0,633*** -0,622*** -0,660*** -0,655*** -0,550*** -0,649***
∆NEU∼NEU_T1 -0,055 0,005 -0,024 0,010 -0,047 -0,100
crossed effects
∆COG∼NEU_T1 -0,027 -0,039 -0,032 -0,038 -0,024 -0,018
∆NEU∼COG_T1 -0,000 -0,008 -0,348 -0,033 -0,994** -0,134
intercepts
∆COG 0,340* 0,329** 0,312* 0,277* 0,221 0,230
∆NEU 0,394 0,015 0,242 -0,010 0,623* 0,515
R2
∆COG 0,40 0,55 0,46 0,51 0,41 0,396
COG_T1 0,17 0,17 0,10 0,10 0,12 0,100
∆NEU 0,07 0,00 0,13 0,14 0,59 0,093
NEU_T1 0,07 0,06 0,02 0,01 0,03 0,013

Table A12: Multilevel SEM estimates per ROI in children (global-scaled volumes).
Significance levels: . < .10 ; * < .05 ; ** < .01 ; *** < .001. Abbr.: IC = inhibitory control, AC
= active control, l = left, r = right, ACC = anterior cingulate cortex, IFG = inferior frontal
gyrus. COG = stop signal reaction time. NEU = global-scaled grey matter volume of the
ROI. PRS = polygenic risk score. T1 = pre-test. ∆ = latent change.
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A14.2.2 In adolescents

lACC rACC lIFG rIFG lCaudate rCaudate lPutamen rPutamen

IC group

baseline mediation

did
not
meet
criteria

1

the
model
did
not

converge

did
not
meet
criteria

1

did
not
meet
criteria

1

did
not
meet
criteria

1

COG_T1∼PRS 0,501 0,537 1,484
NEU_T1∼PRS -32,220 1,194 -50,272
COG_T1∼NEU_T1 0,003 -0,012 -0,006
delta mediation
∆COG∼PRS -8,780** -10,599* -7,781*
∆NEU∼PRS 8,166 18,762** -12,496
∆COG∼∆NEU 0,106 0,132 -0,025
baseline effects
∆COG∼COG_T1 -1,180*** -1,094*** -1,263***
∆NEU∼NEU_T1 -0,109 -0,104 -0,166***
crossed effects
∆COG∼NEU_T1 0,039 0 0,001
∆NEU∼COG_T1 -0,479 -1,058 -1,118*
intercepts
∆COG 0,038 0,186. 0,199
∆NEU 0,469 0,468 0,921***
R2
∆COG 0,69 0,653 0,648
COG_T1 0,002 0,015 0,020
∆NEU 0,224 0,372 0,611
NEU_T1 0,033 0 0,088

AC group

baseline mediation
COG_T1∼PRS 0,501 0,537 1,484
NEU_T1∼PRS -32,220 1,194 -50,272
COG_T1∼NEU_T1 0,003 -0,012 -0,006
delta mediation
∆COG∼PRS 6,297 -6,005 -2,953
∆NEU∼PRS -29,390** 6,553 23,369*
∆COG∼∆NEU 0,010 0,162. 0,069
baseline effects
∆COG∼COG_T1 -1,356*** -1,328*** -1,441***
∆NEU∼NEU_T1 -0,144* -0,085* -0,077*
crossed effects
∆COG∼NEU_T1 0,033* 0,004 0,008
∆NEU∼COG_T1 0,562 -0,501 0,484
intercepts
∆COG 0,071 0,196* 0,194*
∆NEU 0,575* 0,416* 0,257
R2
∆COG 0,806 0,805 0,802
COG_T1 0,002 0,014 0,012
∆NEU 0,363 0,206 0,261
NEU_T1 0,015 0 0,042

Table A13: Multilevel SEM estimates per ROI in adolescents (global-scaled vol-
umes). Significance levels: . < .10 ; * < .05 ; ** < .01 ; *** < .001. Abbr.: IC = inhibitory
control, AC = active control, l = left, r = right, ACC = anterior cingulate cortex, IFG = in-
ferior frontal gyrus. COG = stop signal reaction time. NEU = global-scaled grey matter
volume of the ROI. PRS = polygenic risk score. T1 = pre-test. ∆ = latent change.
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Résumé de la thèse

Contexte

Les facteurs soutenant les apprentissages sont multiples et à différents niveaux du vivant :
moléculaires (génétique), cérébraux (réseaux neuronaux), psychologiques et environnemen-
taux (pédagogiques, socio-économiques, culturels...). En apportant des indications sur les
capacités et les contraintes du cerveau qui apprend, la psychologie et les neurosciences
cognitives peuvent aider à étudier les mécanismes sous-tendant l’efficacité de différents
types d’apprentissage. Cela nécessite une approche interdisciplinaire associant à la fois la
psychologie du développement et les neurosciences cognitives de l’éducation, pour con-
stituer et analyser ce type de données, et les mathématiques appliquées, pour développer
et appliquer des algorithmes de traitement automatique sur ces bases de données, en par-
ticulier l’analyse de données multiniveaux (gène-cerveau-comportement) afin de relier les
différents niveaux d’observation.

Un domaine essentiel de l’apprentissage est celui des fonctions exécutives (FEs), à savoir
les fonctions permettant à un individu de réguler intentionnellement sa pensée et ses actes
afin d’atteindre des objectifs (Diamond, 2013). Trois FEs de base sont généralement distin-
guées : la mise à jour en mémoire de travail (MAJ en MDT), le contrôle inhibiteur (CI) et la
flexibilité cognitive (FC), formant trois facteurs distincts (diversité des FEs) mais néanmoins
corrélés (unité des FEs ; Miyake et al., 2000). Chaque FE serait donc composée d’une par-
tie commune aux trois FEs (part commune) et d’une partie spécifique à la FE en question
(part spécifique; Miyake and Friedman, 2012). Cette organisation évoluerait au cours du
développement avec une organisation plutôt unidimensionnelle avec un seul facteur com-
mun au cours de l’enfance à une organisation à deux ou trois facteurs à l’âge adulte, les FEs
devenant de en plus spécifiques avec l’âge (Karr et al., 2018).

Dès leur première année de vie, les bébés présentent des formes basiques de FEs (Dia-
mond, 1990), mais les composantes essentielles (CI, MAJ en MDT et FC) se développent es-
sentiellement au cours des années préscolaires (Hughes, 1998) puis tout au long de l’enfance
(Davidson et al., 2006), de l’adolescence (Huizinga and van der Molen, 2007) jusqu’au début
de l’âge adulte (Anderson et al., 2001; Ferguson et al., 2021).

Ces fonctions sont principalement sous-tendues par le cortex préfrontal qui se développe
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pendant l’enfance et l’adolescence (Best et al., 2009) et, bien que chaque FE recrute des ré-
gions cérébrales spécifiques, il y a un chevauchement important des régions cérébrales
recrutées par les trois FEs, celles-ci activant toutes des régions préfrontales et pariétales,
ce qui plaide en faveur de composantes communes à ces fonctions (unité des FEs ; Greene
et al., 2008). De plus, différentes études ont montré une augmentation de l’activité des cor-
tex préfrontal et pariétal avec l’âge (Kwon et al., 2002; Paus et al., 2008). Une hypothèse
serait que, de manière similaire à l’organisation des FEs au niveau comportemental (d’une
organisation à 1 facteur à une organisation à 3 facteurs), le développement des FEs serait
lié à la ségrégation des modules du réseau (Baum et al., 2017). Cela conduirait au fait que,
chez l’adulte, les FEs fonctionneraient de manière hiérarchique : alors que certaines régions
joueraient un rôle intégratif et plus commun, d’autres seraient plus spécialisées pour une
FE particulière (Collette et al., 2006; Luna et al., 2015; Niendam et al., 2012; Simmonds et al.,
2008; Wager et al., 2004; Wager and Smith, 2003), reflétant au niveau cérébral l’unité et la
diversité des FEs.

Ces fonctions sont aussi sous influence génétique. Une revue de 2014 (Logue and Gould,
2014) a conclu que les FEs sont différentiellement altérées par les systèmes monoamin-
ergiques et cholinergiques et par les polymorphismes associés à ces systèmes de neuro-
transmetteurs. La FC est associée aux polymorphismes COMT, DRD2/ANKK1 et DRD4,
tandis que le CI est lui lié au polymorphisme du gène 5-HT2A. Ainsi, outre le système
dopaminergique, sur lequel de nombreuses études se sont concentrées, plusieurs études
ont montré que les systèmes glutamatergique et GABAergique influencent les capacités
exécutives (Dauvermann et al., 2017; Logue and Gould, 2014; Thomas et al., 2017). Il sem-
ble donc que l’architecture génétique des FEs se répartisse sur de très nombreux variants
(polygéniques).

D’autres facteurs jouent également un rôle important sur les FEs et leur développement,
notamment les facteurs environnementaux, dont la culture et le statut socio-économique
(Lawson et al., 2018; Roos et al., 2017).

Du fait de leur grande importance pour les acquisitions scolaires telles que la lecture ou
les mathématiques (Diamond, 2013), pour le développement cognitif et socio-émotionnel
(Borst et al., 2015)mais aussi pour la santé physique etmentale (Snyder et al., 2015), plusieurs
programmes d’intervention ont été proposés pour améliorer différents aspects des FEs, no-
tamment la MDT (Klingberg, 2010; Maraver et al., 2016) et le CI (Hu et al., 2017; Jaeggi
et al., 2011; Liu et al., 2015; Xu et al., 2020; Zhao et al., 2015). Ces études, menées chez

334



Résumé de la thèse

des enfants, des adolescents et des jeunes adultes, ont montré qu’il est possible d’entraîner
les FEs et ont soulevé la question de la possibilité de transférer les effets de l’entraînement
d’une FE à d’autres domaines exécutifs ou cognitifs. En effet, la plupart des études visent
à déterminer dans quelle mesure l’entraînement des FEs, et du CI en particulier, peuvent
se transférer à des tâches non entraînées dans le même domaine cognitif ou la même FE
(transfert proche) ou dans d’autres domaines cognitifs ou FEs (transfert lointain). Alors que
certaines études ont rapporté un effet de transfert proche et lointain chez les enfants d’âge
préscolaire (pour le transfert proche : Zhao et al., 2015 et pour le transfert lointain : Liu
et al., 2015; Rueda et al., 2005b), d’autres études n’ont montré aucun effet de transfert de
l’entraînement du CI Enge et al., 2014; Talanow and Ettinger, 2018; Thorell et al., 2009).

Parallèlement, des études ont également examiné l’effet de l’entraînement au CI sur dif-
férentes caractéristiques cérébrales (Jolles and Crone, 2012; Owen et al., 2010), et ont pu
mettre en évidence des changements fonctionnels (activité fonctionnelle) dans les régions
du réseau cérébral du CI, en particulier les cortex préfrontaux (Berkman et al., 2014; Chavan
et al., 2015; Manuel et al., 2013; Spierer et al., 2013) et pariétaux (Manuel et al., 2010). Une
étude a notamment mis en évidence une évolution des caractéristiques neuro-plastiques
(épaisseur et surface corticale) dans ces mêmes régions, après un entraînement au CI (De-
lalande et al., 2019). Enfin, ce type d’entraînement permet non seulement d’augmenter
l’activité dans des zones spécifiques, mais aussi d’améliorer la connectivité entre le réseau
lié à l’inhibition et d’autres réseaux (Hu et al., 2017).

Ce projet de thèse se situe au carrefour des neurosciences cognitives, de la psychologie
du développement et des statistiques appliquées, financé par une bourse pour des projets
interdisciplinaires (CNRS PRIME 80).

Dans ce contexte, ce projet de recherche a plusieurs objectifs :

• L’analyse statistique longitudinale avancée des changements exécutifs asso-

ciés au développement et à l’entraînement cognitif. Le premier objectif du projet
était d’étudier le changement de l’organisation des FEs au niveau cognitif au cours du
développement et après un entraînement au CI. Le développement de l’organisation
de ces fonctions cognitives de base est au cœur de plusieurs recherches (Hartung et
al., 2020). De plus, certaines données suggèrent que l’entraînement cognitif pourrait
accélérer le développement (Jolles and Crone, 2012). L’adaptation et l’amélioration
des méthodes statistiques telles que les modèles d’équations structurelles (SEM) ou
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les modèles en réseau (NM) permettent de tester directement la structure des FEs.
Ainsi, le premier objectif de cette thèse était d’étudier l’organisation des FEs avec ces
nouveaux outils et l’hypothèse que l’entraînement est un accélérateur de développe-
ment.

• Desmodèles d’apprentissage automatique pour tester l’hypothèse selon laque-

lle l’entraînement peut modifier l’âge du cerveau. La prédiction de l’âge à partir
de données d’imagerie cérébrale est devenue populaire (Baecker et al., 2021b). Nous
avons utilisé cet outil pour déterminer si l’entraînement modifiait l’âge du cerveau et
si ces changements étaient liés aux progrès cognitifs. L’adaptation et l’application des
algorithmes aux données d’imagerie ont été réalisées en collaboration avec Edouard
Duchesnay et Julie Victor, CEA/Neurospin.

• Analyse multiniveau des données génétiques, cérébrales et cognitives. Nous
avons cherché à développer un modèle d’équations structurelles (SEM) multiniveaux
afin d’intégrer les différents niveaux d’observation (cerveau, génétique, cognition)
pour avoir une image complète de l’impact du développement et de l’entraînement
sur les FEs.

• Lafinalisation de l’acquisition d’une base de donnéesmulti-modalité etmulti-

niveau pour caractériser l’apprentissage. Ce projet de recherche sur des don-
nées d’entraînement s’appuyait sur les projets APEX-Enfant et APEX-Ado (APpren-
tissages EXécutifs et cerveau chez l’enfant d’âge scolaire et chez l’adolescent). Ces
projets visaient à tester à différents âges l’impact d’un apprentissage exécutif ciblé sur
le contrôle inhibiteur (CI) et d’un apprentissage métacognitif plus général, la pleine
conscience (PC). Les données pour l’entraînement CI étaient déjà acquises. L’un des
objectifs de ce projet de doctorat était aussi de contribuer à l’acquisition des données
de l’entraînement PC (thèse de Gabriela Rezende), en particulier dans le recrutement
des participants, l’acquisition de données génétiques, IRM et cognitives.

Le projet APEX

Ces travaux de recherche se sont appuyés sur le projet APEX (financement ANR-14-CE30-
0014-01 APEX, CPP : ID-RCB 2015-A00383-46 et ID-RCB 2015-A00811-48), un programme
d’entraînement informatisé au contrôle inhibiteur (CI).
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Dans le cadre du projet APEX, 201 participants ont été recrutés : 110 enfants (33 garçons,
M ± SD = 9,84 ± 0,53 ans, [9-10 ans]) et 91 adolescents (20 garçons, M = 16,71 ± 0,53 ans,
[15-17 ans]).

Ces participants ont été répartis aléatoirement dans 3 groupes d’entraînement, le groupe
contrôle inhibiteur (CI; 37 enfants et 32 adolescents), le groupe contrôle actif (CA; 40 enfants
et 28 adolescents) et le groupe méditation pleine conscience (PC; 33 enfants et 31 adoles-
cents). A noter que 3 enfants ont également pris part à un entraînement à la mémoire du
travail mais cet axe du projet a été interrompu en raison de contraintes pratiques.

Les séances d’entraînement se faisaient sur une tablette tactile, au domicile de l’enfant
ou de l’adolescent, sur une période de 5 semaines. Chaque session d’entraînement durait
environ 15 minutes. Pour le groupe CI, chaque session d’entraînement était constituée
d’une tâche de Stroop couleur et d’une tâche de stop signal. Pour le groupe CA, les ses-
sions étaient composées d’un "jeu de questions générales", avec des questions de culture
générale, et d’un "jeu de questions spécifiques", avec des questions plus scolaires. Pour le
groupe PC, chaque séance était composée de deux exercices de méditation guidée. Dans
cette thèse, nous nous sommes focalisés sur les entraînements CA et CI. Dans ces deux
types d’entraînement, la difficulté des séances était progressivement augmentée et adap-
tée en temps réel à la courbe d’apprentissage de chaque participant afin de maintenir sa
motivation et d’éviter une automatisation.

Avant et après l’entraînement, les participants prenaient part à une batterie cognitive
composée de 21 tâches visant à évaluer différentes facettes des FEs. Au cours de cette thèse,
nous nous sommes intéressés à six d’entre elles :

• la tâche de Stroop couleur (Stroop, 1935), dont la performance était mesurée par
l’interférence au Stroop (temps de réaction - TR pour les essais incongruents - TR
pour les essais congruents)

• la tâche de stop signal (Verbruggen and Logan, 2008), mesurée par le stop signal reac-
tion time (SSRT) calculé selon la méthode intégrative recommandée par Verbruggen
et al., 2019

• la tâche de Simon (Lu and Proctor, 1995), mesurée par le Simon effect (TR pour les
essais incongruents - TR pour les essais congruents)

• l’attention network task (ANT; Fan et al., 2002), mesurée par l’effet d’interférence (TR
pour les essais incongruents - TR pour les essais congruents)

• la tâche de n-back (Cohen et al., 1994), mesurée par le TR moyen au niveau n = 2 - le
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TR moyen au niveau n = 1
• le trail making test (TMT; Reitan and Wolfson, 1992), dont l’efficience était mesurée
par le temps pour compléter la planche B - le temps pour compléter la planche A

Des analyses statistiques univariées classiques (analyses de variance, ANOVA) ont mis
en évidence des changements significatifs dans les tâches de stop signal et de Stroop ainsi
qu’un changement marginal à la tâche de TMT chez les enfants après l’entraînement
CI. Chez les adolescents, un changement significatif en stop signal a été détecté après
l’entraînement CA.

En plus de cette batterie cognitive, les participants réalisaient en pré- et post-test une
imagerie par résonance magnétique (IRM) cérébrale multimodalités (anatomique/ fonction-
nel/ diffusion).

Enfin, en pré-test, des prélèvements génétiques salivaires ainsi que des questionnaires
de mesures environnementales et culturelles étaient collectés.

Etude 1

Cette étude a donné lieu à un article : Menu, I., Rezende, G., Le Stanc, L., Borst,
G.* & Cachia, A.* (accepté). A network analysis of executive functions before
and after computerized cognitive training in children and adolescents. Scientific
reports.

Dans une première étude, nous nous sommes intéressés à l’organisation des FEs au
cours du développement (de l’enfance à l’adolescence) et avec l’entraînement cognitif (pre-
vs. post-test).

En utilisant des modèles d’équations structurelles (SEM), Miyake et al., 2000 avait pro-
posé, chez l’adulte, un modèle des FEs avec une structure hiérarchique, où trois facteurs
latents représentent chaque FE (CI, MAJ en MDT et FC). Au cours du développement, il a
été montré que cette structure des FEs évolue d’un seul facteur au cours de la petite en-
fance, sans séparation claire entre les différentes tâches des FEs (Shing et al., 2010; Wiebe
et al., 2008; Willoughby et al., 2012; Xu et al., 2013) à deux à quatre facteurs à l’adolescence
(Agostino et al., 2010; Friedman et al., 2016; Lee et al., 2013; McAuley and White, 2011; Wu
et al., 2011; Xu et al., 2013). Ainsi, alors que pendant l’enfance, la MAJ en MDT, la FC et
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le CI reposent sur des processus cognitifs sous-jacents similaires, à l’adolescence, les FEs
deviennent plus spécialisées et indépendantes (Hartung et al., 2020; Karr et al., 2018).

Les FEs étant impliqués dans l’apprentissage, la réussite scolaire, la santé mentale et la
vie quotidienne (Best et al., 2011; Diamond, 2013), plusieurs programmes d’intervention ont
testé la possibilité d’entraîner divers aspects des FEs, notamment le CI (Diamond, 2013; Hu
et al., 2017; Jaeggi et al., 2011; Liu et al., 2015; Xu et al., 2020; Zhao et al., 2015). Toutefois,
à ce jour, aucune étude n’a évalué dans quelle mesure un entraînement des FEs pouvait
modifier l’organisation de ces FEs.

Dans cette première étude, nous avons donc examiné comment la structure des FEs était
modifiée par l’entraînement au CI chez les enfants et les adolescents en utilisant un mod-
èle en réseaux. Dans cette modélisation, les systèmes peuvent être représentés comme des
nœuds reliés entre eux par des arêtes (plus les arêtes sont épaisses, plus l’interconnexion
est forte). Appliquée aux FEs, cette modélisation permet d’identifier les nœuds (ici, chaque
noeud correspond à une tâche de FEs) qui jouent un rôle central dans l’ensemble du réseau
(ici, différentes tâches FE). En utilisant une telle approche, nous avons cherché à déter-
miner si l’entraînement accélère le développement des FEs ou le modifie qualitativement
en s’écartant de la trajectoire développementale observée de l’enfance à l’adolescence (Jolles
and Crone, 2012).

Pour ce faire, des réseaux basés sur les matrices de corrélation des scores aux 6 tâches
de FE ont été construits pour les enfants et les adolescents avant l’entraînement (pré-test)
et après l’entraînement (entraînement au CI : post-test CI ; entraînement CA : post-test
CA). Six réseaux (3 par tranche d’âge) ont donc été estimés. Ces réseaux comprenaient
6 nœuds avec 4 mesures portant sur différents aspects du CI (Stroop pour le contrôle de
l’interférence, Stop Signal et Simon pour l’inhibition de la réponse et Attentional Network
Task pour l’inhibition attentionnelle), 1 mesure de FC (Trail making test) et 1 mesure de
MAJ en MDT (N-back).

Des différences quantitatives et qualitatives ont été détectées dans la structure des
réseaux des FEs entre les enfants (9-10 ans) et les adolescents (16-17 ans). Notamment,
les connexions entre les différentes tâches des FEs étaient de plus en plus nombreuses avec
l’âge. Ces résultats sont cohérents avec une augmentation de la variance partagée entre les
FEs avec le développement (Xu et al., 2013).

En plus de ces changements développementaux, des changements quantitatifs et quali-
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tatifs au niveau de la structure des FEs ont également été constatés après l’entraînement au
CI. Les résultats ont montré qu’après l’entraînement au CI chez les enfants, les réseaux ont
des connexions de plus en plus fortes à la fois entre les tâches d’une même FE et entre les
tâches des différentes FEs. Le réseau post-test était donc plus similaire à celui des adoles-
cents que celui avant l’entraînement. En revanche, chez les adolescents, les changements
au niveau du réseau des FEs étaient plus subtils. Plus précisément, après l’entraînement
CA, le nombre de connexions a diminué mais le poids de certaines arêtes a augmenté, alors
qu’après l’entraînement CI, le poids des arêtes est devenu beaucoup plus important, reflé-
tant un réseau plus intégré. Cependant, ces changements plus faibles chez les adolescents
par rapport aux enfants peuvent également être interprétés en termes d’effets réduits de
l’entraînement chez les adolescents.

Pour conclure, les modèles de réseaux constituent un outil original et pertinent pour
étudier les effets d’un entraînement cognitif sur l’organisation des FEs, en complément
d’approches statistiques plus classiques telles que les ANOVA univariées.

Etude 2

Cette étude a donné lieu à un article en préparation : Menu, I., Borst, G.* &
Cachia, A.* (en préparation). Latent network analysis of executive functions
across development.

Afin de répliquer notre première étude et d’explorer davantage les changements
développementaux dans l’organisation des FEs, une deuxième étude a été menée sur la
base de données du Texas Twin Project. Ce projet a recruté 1019 jumeaux de la maternelle
à la terminale, âgés de 7,8 à 15,3 ans (M = 10,79 ans, ET = 1,76), inscrits dans des écoles
publiques des régions d’Austin et de Houston, Texas, Etats-Unis (Harden et al., 2013).

Afin d’examiner les liens entre les différentes tâches des FE sans aucun a priori sur la
structure et pour reproduire notre étude 1, un réseau des FEs a tout d’abord été estimé.
Ensuite, des modèles factoriels à variables latentes ont été construits et comparés afin de
répliquer les travaux de Karr et al., 2018 et Miyake et al., 2000. Enfin, pour fournir la vi-
sion la plus complète et la plus précise de l’évolution de l’organisation des FEs avec l’âge,
ces deux méthodes ont été combinées pour créer un modèle de réseau de variables latentes
(LVNM, Epskamp et al., 2017). À ce jour et à notre connaissance, aucune étude n’a util-
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isé cette méthodologie. Cette technique est extrêmement bien adaptée à l’étude des FEs,
car l’organisation factorielle des FEs, bien qu’évoluant avec le développement, fait plutôt
consensus.

Globalement, quel que soit l’outil statistique utilisé, nous avons pu constater que les
connexions entre les variables et/ou les FEs elles-mêmes diminuaient avec le temps. Cela
était d’autant plus visible avec les analyses de réseau où il y avait initialement un réseau
très intégré avec de nombreuses connexions inter- et intra-FEs qui ont diminué avec l’âge
jusqu’à obtenir un réseau très clairsemé et ségrégué. Parmi les FEs, nous avons pu observer
que le CI, qui semblait avoir un rôle central dans l’organisation des FEs avant 10 ans, se
dissociait des autres FEs assez précocément. A l’inverse, la MAJ en MDT prenait un rôle de
plus en plus central dans la structure des FEs avec le développement.

En conclusion, cette étude, en comparant les différents outils méthodologiques utilisés
dans la littérature, a permis de faire le point sur le développement de l’organisation des FEs
de 8 à 14 ans. Les trois approches utilisées ont donné des résultats cohérents et complémen-
taires. Au cours du développement, ces résultats ont mis en évidence une différenciation
précoce du CI par rapport aux autres FEs, suivie d’une différenciation de la FC, tandis que la
MAJ enMDT prend un rôle plus important dans la structure des FEs au cours du développe-
ment.

Etude 3

Cette étude a donné lieu à un article : Menu, I., Rezende, G., Le Stanc, L.,
Borst, G.* & Cachia, A.* (en révision). Inhibitory control training on executive
functions of children and adolescents: a latent change score model approach.

Après avoir étudié les changements d’organisation des FEs avec le développement et
avec l’entraînement au CI, nous avons voulu étudier l’impact de cet entraînement sur les
deux autres FEs non entraînées, la MAJ en MDT et la FC. Le but de cette étude était donc
de voir si, en plus des changements d’organisation observés dans l’étude 1, l’entraînement
au CI avait bénéficié à ces deux FEs et quels facteurs pouvaient influencer ces effets de
transfert.

Pour cela, un modèle de score de changement latent (LCS) dédié a été développé.
Les modèles LCS sont des extensions des SEM qui ont été développés pour les données
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longitudinales (McArdle, 2009). Ces modèles permettent d’étudier facilement et précisé-
ment des questions complexes et importantes pour des données d’entraînement, telles que
l’estimation des différences interindividuelles dans les niveaux initiaux et dans les change-
ments liés à l’entraînement, ou encore la caractérisation de trajectoires de changement
complexes (et éventuellement non linéaires), ainsi que la détermination des facteurs in-
fluençant ces trajectoires. Appliqués à l’entraînement des FEs, les modèles LCS permettent
d’évaluer les effets de transfert 1) directement à partir de l’estimation des changements liés
à l’entraînement dans les tâches entraînées et non entraînées et 2) indirectement à partir
des effets des niveaux initiaux de chaque FE sur les changements liés à l’entraînement des
autres FEs (effets croisés).

Alors que les ANOVA à mesures répétées n’avaient détecté qu’un transfert proche dans
les capacités de CI des enfants, le modèle LCS a détecté un transfert proche en CI mais aussi
un effet de transfert lointain dans les capacités de MAJ en MDT chez les enfants. Le trans-
fert détecté chez les enfants avec les modèles LCS est cohérent avec les résultats d’études
précédentes sur l’entraînement au CI chez les enfants (Aydmune et al., 2019; Liu et al., 2015)
et les jeunes adultes (Beauchamp et al., 2016; Maraver et al., 2016). Chez les adolescents, les
modèles LCS, mais pas les ANOVA, ont permis de détecter des changements significatifs
dans les capacités de CI après l’entraînement. Il est à noter qu’aucun effet de transfert n’a
pu être détecté chez les adolescents via les ANOVA ou les LCS. Ce manque de transfert
pourrait être lié à la spécialisation des FEs avec l’âge, avec une diminution de l’unité des
FEs et une augmentation de la diversité des FEs, conduisant ainsi à une diminution de la
part commune des FEs (Agostino et al., 2010; Friedman et al., 2016; Hartung et al., 2020;
Lee et al., 2013; McAuley and White, 2011; Wu et al., 2011; Xu et al., 2013). Ces résultats
chez l’adolescent peuvent aussi s’expliquer par une plus faible implication des adolescents
à l’entraînement au CI, ceux-ci ne progressant plus après la 4ème séance.

Par ailleurs, chez les enfants, les effets de transfert observés dépendaient non seulement
du niveau initial dans la FE ayant bénéficié du transfert, mais aussi des niveaux initiaux dans
les autres FEs (effets croisés). De tels effets croisés sont cohérents avec une étude précédente
sur des adultes plus âgés qui a démontré qu’un entraînement ciblant la MDT a conduit
à la fois à de plus grands bénéfices en MDT et marginalement à des effets de transfert
plus importants en planification, en CI et en intelligence fluide chez les participants qui
présentaient initialement des capacités cognitives plus faibles (Zinke et al., 2014).

Enfin, nous avons observé un effet positif du nombre de séances d’entraînement au CI
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sur les gains d’apprentissage en MAJ en MDT et en FC chez les enfants. Ce résultat est
cohérent avec les résultats de précédentes études démontrant que les bénéfices directs de
l’entraînement aux FEs dépendent de la durée de l’entraînement (Diamond and Ling, 2016;
Jolles and Crone, 2012). Il convient de noter que, dans notre cas, l’effet de dose n’a été
constaté que dans les tâches de FEs non entraînées (transfert lointain). L’absence d’effet
dose dans les tâches du CI pourrait être liée à un éventuel effet plafond.

Enfin, le modèle LCS a également révélé que les enfants et les adolescents ayant des
capacités exécutives initiales plus faibles progressaient davantage que les individus ayant
des capacités en FEs initialement plus élevées, confirmant ainsi les résultats d’études an-
térieures selon lesquels l’entraînement bénéficie plus aux participants ayant un fonction-
nement exécutif plus faible (Au et al., 2015; Diamond and Lee, 2011; Jaeggi et al., 2008)
conformément à l’hypothèse de compensation (Karbach and Kray, 2021).

Pour conclure, notre étude montre que la modélisation LCS a révélé des effets de trans-
fert qui n’ont pas pu être détectés avec l’utilisation de modèles d’analyse de variance clas-
siques appliqués aux mêmes données. Cette sensibilité plus faible de l’ANOVA peut ex-
pliquer le manque d’effets de transfert rapportés dans les études d’entraînements exécutifs
utilisant des approches statistiques classiques (Kassai et al., 2019).

Etude 4

Après avoir montré que les facteurs cognitifs pouvaient jouer un rôle dans la réceptivité
à l’entraînement au CI, nous avons voulu savoir si des facteurs au niveau cérébral étaient
également impliqués dans les bénéfices après un tel entraînement.

Dans cette étude, nous avons voulu voir dans quelle mesure l’anatomie des régions
cérébrales impliquées dans les FEs était également impliquée dans les progrès exécutifs
suivant un entraînement cognitif. Pour aborder cette question, nous avons effectué deux
analyses.

Tout d’abord, nous avons examiné les régions du cerveau dont le volume de matière
grise était associé à la performance exécutive initiale. Sur les 6 tâches des FEs, des régions
cérébrales ont été identifiées seulement chez les adolescents pour la tâche de Stroop (pre-
cuneus) et de TMT (ACC). Chez les enfants, aucune région cérébrale n’était associée aux
tâches exécutives.
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Ensuite, nous avons étudié les régions cérébrales dont les changements de volume de
matière grise sont associés à la progression dans les tâche des FEs après l’entraînement cog-
nitif. Nous avons pu observer que des modifications de régions cérébrales étaient associées
à des gains à la tâche de Stroop (chez les enfants du groupe CA et chez les adolescents des
deux groupes d’entraînement) ainsi qu’à la tâche de TMT (chez les adolescents du groupe
CA). Les régions détectées correspondaient à des régions du réseau cérébral des FEs comme
l’ACC, l’IFG ou l’insula (Houdé et al., 2010; Molnar-Szakacs and Uddin, 2022). Ainsi, il y au-
rait un chevauchement entre les régions impliquées dans les FEs et celles impliquées dans
la réceptivité à l’entraînement au CI.

Etude 5

Nous avons pu observer que les régions cérébrales dont la plasticité était associée à la ré-
ceptivité à l’apprentissage correspondaient à des régions du réseau cérébral des FEs. Ces
résultats, ainsi que ceux de l’étude 1, soutiennent l’hypothèse selon laquelle l’entraînement
pourrait accélérer le développement et nous amènent à tester cette hypothèse au niveau
cérébral.

Une approche intéressante et originale pour tester directement cette hypothèse au
niveau cérébral est de calculer l’âge du cerveau (c’est-à-dire de prédire l’âge à partir de don-
nées cérébrales telles que le volume de matière grise, etc.) avant et après l’entraînement
pour voir si celui-ci avait effectivement accéléré le développement en augmentant le
brainAGE, à savoir la différence entre l’âge du cerveau et l’âge chronologique.

Pour calculer l’âge du cerveau, nos données de test étant la cohorte APEX, il était
nécessaire de trouver des cohortes indépendantes qui pourraient constituer nos données
d’entraînement. Deux cohortes différentes ont été utilisées : ADHD200 (Milham et al.,
2012 ; http://fcon_1000.projects.nitrc.org/indi/adhd200/) et ABIDE2 (Di Martino et al., 2017
; http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html).

Nous avons testé cinq modèles d’apprentissage automatique (demachine learning), trois
modèles linéaires (Ridge, ElasticNet, linear Support Vector Regression), deux modèles non
linéaires (Gradient boosting, Random forest) et un modèle de deep learning (Multilayer per-
ceptron). Cesmodèles ont été optimisés sur l’ensemble des données d’entraînement (c’est-à-
dire ADHD200 + ABIDE2). Ensuite, nous avons recalculé ces modèles avec l’ensemble des
données d’entraînement (ABIDE2, ADHD200) et les paramètres optimaux obtenus et les
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avons utilisés pour prédire l’âge du cerveau pour l’ensemble des données test (la cohorte
APEX) à partir des volumes de matière grise dérivés des analyses VBM, soit au niveau local
(par voxel), soit au niveau régional (par région d’intérêt). Que ce soit au niveau local ou
régional, le modèle Ridge était celui qui a donné la meilleure estimation de l’âge cérébral.

Nous avons ensuite essayé de déterminer si le cerveau maturait avec l’entraînement
cognitif. Nous avions émis l’hypothèse que le brainAGE au post-test serait supérieur au
brainAGE au pré-test et que cette différence serait plus importante dans le groupe expéri-
mental ayant suivi l’entraînement CI que dans le groupe témoin d’entraînement CA mais
nos résultats n’ont pas été concluants.

Ensuite, nous avons cherché à savoir si le développement du cerveau était lié à la cog-
nition avant tout entraînement. Nous avions émis l’hypothèse que le brainAGE serait un
prédicteur de la performance exécutive au pré-test. Sur nos six tâches des FEs, seule la per-
formance à la tâche de Simon était prédite par le brainAGE. Notamment, les participants
ayant un brainAGE plus important (âge cérébral > âge chronologique) avaient de moins
bonnes performances à cette tâche.

Enfin, nous avons voulu savoir si le "vieillissement" du cerveau après l’entraînement
cognitif était lié aux gains après l’entraînement. Nous avions émis l’hypothèse que la dif-
férence entre le brainAGE au post-test et celui au pré-test serait un prédicteur de la dif-
férence de performance aux tâches des FEs, et que cet effet sera plus important dans le
groupe CI que dans le groupe CA. Nous avons pu voir que cela était le cas pour la tâche de
N-back chez les enfants mais n’avons pas pu généraliser ces résultats à d’autres tâches ou
tranches d’âge.

En conclusion, nos résultats préliminaires associant brainAGE et performances exéc-
utives initiales ou gains après l’entraînement au CI suggèrent que le brainAGE utilisé de
manière longitudinale peut être un outil très intéressant pour étudier des apprentissages
plus longs, comme celui de la lecture.

Etude 6

Cette étude a donné lieu à un article en préparation : Menu, I., He, Q., Victor, J.,
Rezende, G., Le Stanc, L., Vidal, J., Oppenheim, C., Duchesnay, E., Chaumette,
B., Houdé, O., Borst, G. & Cachia, A. (en préparation). Do neuroplasticity and
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genetic factors contribute to cognitive training in children and adolescents?

Après avoir étudié les effets du développement et de l’entraînement au CI au niveau
cognitif et cérébral, nous avons voulu examiner comment ces différents niveaux d’analyse,
cognitif et cérébral, mais aussi génétique, interagissaient pour expliquer les différences in-
terindividuelles de réceptivité à l’entraînement.

Bien que des études aient rapporté des gains cognitifs à la suite d’un entraînement au CI
(Manuel et al., 2010; Maraver et al., 2016; Peckham and Johnson, 2018; Thorell et al., 2009),
des différences interindividuelles persistent dans la réceptivité à l’entraînement.

Au niveau cognitif, l’impact du niveau de base est un facteur prédictif important de
la réceptivité à l’entraînement souvent étudié pour déterminer qui bénéficie le plus d’un
entraînement proposé. L’hypothèse de "compensation" postule que les individus qui sont
déjà très performants bénéficieront le moins d’une formation cognitive car ils fonctionnent
déjà à un niveau optimal. Cela leur laisse moins de marge de progression, contrairement
aux individus dont les performances initiales sont plus fragiles (Karbach and Unger, 2014;
Lövdén et al., 2012b; Titz and Karbach, 2014). En effet, plusieurs études sur l’entraînement
des FEs ont trouvé des bénéfices plus importants pour les enfants et les adultes plus âgés
que pour les jeunes adultes (Karbach and Unger, 2014) mais aussi pour les enfants ayant
une plus faible mémoire de travail ou étant atteint de trouble déficitaire de l’attention avec
ou sans hyperactivité (Diamond, 2011).

Au niveau cérébral, des liens directs entre l’organisation cérébrale et la réceptivité à
l’entraînement ont également été démontrés : l’organisation des réseaux cérébraux a permis
de prédire les gains cognitifs après entraînement chez l’enfant (Chaddock-Heyman et al.,
2020), chez le jeune adulte (Baniqued et al., 2019) et chez l’adulte plus âgé (Baniqued et al.,
2018; Gallen et al., 2016).

Enfin, au niveau génétique, un premier lien indirect entre polymorphisme génétique et
réceptivité à l’entraînement a été proposé par Rueda et al., 2005a. Les enfants qui avaient
de moins bonnes performances initiales en conflit attentionnel étaient plus susceptibles
de bénéficier de l’entraînement que les autres (hypothèse de compensation). De plus, le
polymorphisme de DAT1, un gène impliqué dans le système dopaminergique, expliquait
les scores de conflit attentionnel au pré-test. Les auteurs ont alors émis l’hypothèse d’un
lien entre le polymorphisme de DAT1 et les bénéfices tirés de l’entraînement. Une autre
étude a montré que le polymorphisme de BDNF médiait, en contrôlant pour le niveau de
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base, l’effet d’un entraînement sportif sur les FEs chez les adultes plus âgés (Leckie et al.,
2014).

Cependant, à ce jour, aucune étude n’a pu rassembler tous les niveaux d’analyse
en étudiant simultanément les relations entre ces différents facteurs et la réceptivité à
l’entraînement chez les mêmes participants.

L’objectif de cette étude était donc, par le biais d’unmodèle SEMmultiniveau, de rassem-
bler toutes les pièces du puzzle et d’examiner quels facteurs cognitifs, cérébraux et géné-
tiques contribuaient aux différences interindividuelles de réceptivité à l’entraînement dans
notre cohorte APEX d’enfants et d’adolescents après un entraînement informatisé de 5 se-
maines au CI (groupe expérimental) ou contrôle (groupe contrôle actif, CA).

Le modèle SEM multiniveau combinait deux modèles LCS, un au niveau cognitif mod-
élisant le changement à la tâche de Stroop couleur ou de stop signal, et un au niveau cérébral
modélisant le changement de volume de matière grise dans une de 8 régions d’intérêt (ACC
gauche et droit, l’IFG gauche et droit, noyau caudé gauche et droit, putamen gauche et
droit). Il incluait aussi deux modèles de médiation, un au niveau du pré-test et un au niveau
du changement, permettant de voir si nos variables cérébrales avaient un rôle de média-
teur entre notre variable génétique et nos variables cognitives. Ainsi, le SEM multiniveau
nous permet d’étudier comment les facteurs cognitifs (niveaux initiaux en stop signal et à
la tâche de Stroop couleur), cérébraux (volume de matière grise dans l’ACC gauche et droit,
l’IFG gauche et droit, le caudate gauche et droit, le putamen gauche et droit) et génétiques
(score de risque polygénique, PRS) contribuent aux différences interindividuelles dans les
bénéfices suivant l’entraînement dans notre cohorte d’enfants et d’adolescents après un
entraînement informatisé de 5 semaines.

Chez les enfants, des effets aux trois différents niveaux ont été démontrés. Nous avons
pu observer un effet du niveau cognitif de base en accord avec l’hypothèse de compen-
sation (Karbach and Kray, 2021), c’est-à-dire que les enfants qui bénéficiaient le plus de
l’entraînement étaient ceux qui avaient le niveau initial le plus faible. Au niveau génétique,
nous avons observé un effet du PRS sur les gains cognitifs après l’entraînement. Ceci est
cohérent avec les études précédentes qui ont montré un rôle des polymorphismes de nu-
cléotides simples dans la réceptivité à l’entraînement (Leckie et al., 2014; Rueda et al., 2005a).
Ici, étant donné que le PRS a été calculé à partir d’un score de FC (Trail making test) et qu’il
était associé au niveau initial de stop signal, ce résultat suggère que les bases génétiques des
FEs serait aussi impliquées dans la réceptivité à l’entraînement. Encore une fois, ceci est
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cohérent avec les deux études qui ont montré que le polymorphisme des gènes impliqués
dans les FE (DAT1 et BDNF) était lié aux gains post-entraînement. Au niveau du cerveau,
nous avons pu détecter un effet du volume de base des ROIs du cerveau et des changements
de volume (plasticité) sur le gain cognitif. Ces résultats sont les premiers à montrer un effet
de l’anatomie cérébrale sur les bénéfices après l’entraînement, et complètent les résultats
précédent qui avaient décrit un effet de l’organisation du réseau cérébral sur la réceptivité à
l’entraînement (Baniqued et al., 2019; Baniqued et al., 2018; Chaddock-Heyman et al., 2020;
Gallen et al., 2016).

Ces résultats se sont focalisés sur deux régions d’intérêt : l’ACC et le Putamen gauche.
L’anatomie et la fonction de l’ACC ont été montrés comme liées à la performance à
différentes tâches de CI comme la tâche de Stroop (Adleman et al., 2002), de Simon
(Kharitonova et al., 2013) et de Go/No-Go (Pornpattananangkul et al., 2016). D’autre part, il
a été démontré que l’activation du striatum, et notamment du Putamen, est liée à l’inhibition
de la réponse pendant la tâche de stop signal (Vink et al., 2005), et particulièrement à la sup-
pression de la réponse motrice (Pas et al., 2017) et à l’anticipation de l’inhibition (Pas et al.,
2021; Pas et al., 2019; Zandbelt and Vink, 2010). Ainsi, alors que l’ACC est une région
générale pour le CI, le putamen est plus spécifique pour la tâche de stop signal.

Chez les adolescents, les résultats étaient bien pu limités. D’autres études sont néces-
saires pour déterminer s’il s’agit d’une spécificité due à cette tranche d’âge ou à un défaut
de l’entraînement proposé (plateau atteint dès la 4ème séance d’entraînement).

En conclusion, cette étude ouvre la voie de la modélisation multiniveau pour étudier
les résultats d’interventions. Celle-ci pourrait être utilisée pour étudier les facteurs fa-
vorisant l’apprentissage, comme dans cette étude, mais aussi, en clinique, pour comprendre
l’évolution d’une pathologie, notamment suite à une intervention thérapeutique, et ainsi
participer au développement d’une médecine plus précise et personnalisée.

Conclusion

Cette thèse avait des objectifs à la fois en psychologie et neurosciences, et en méthodologie.

En psychologie :

• Étudier au niveau cognitif les changements dans l’organisation des fonctions exécu-
tives suite à l’entraînement au contrôle inhibiteur et tout au long du développement.
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• Rechercher les facteurs à différents niveaux (cognitif, cérébral et génétique) influ-
ençant les différences interindividuelles dans les bénéfices directs et les effets de
transfert d’un même entraînement.

• Tester l’hypothèse que l’entraînement pourrait accélérer le développement.

Cette thèse avait également des objectifs méthodologiques :

• Tester des modèles statistiques avancés (modèle d’analyse en réseau, de machine
learning, SEM) pour modéliser le changement après un entraînement cognitif.

• Développer des modèles d’analyse capables de relier les différents niveaux
d’observation

• Utiliser des modèles d’apprentissage automatique pour tester l’hypothèse selon
laquelle l’entraînement peut modifier l’âge du cerveau.

Tout au long de cette thèse, nous avons étudié les effets de l’entraînement et du développe-
ment du contrôle inhibiteur à différents niveaux d’observation : cognitif, cérébral et géné-
tique.

Concernant l’organisation des fonctions exécutives, nous avons pu mettre en évidence
une différenciation des fonctions exécutives avec le développement, soutenant l’hypothèse
d’une différenciation des processus avec l’âge et l’acquisition de ces processus (Anderson
and Nelson, 2005). Nous avons également pu voir que les différentes fonctions exécutives
ne jouent pas le même rôle dans cette organisation au cours du développement, au début
le contrôle inhibiteur étant très central pour ensuite laisser sa place à la mise à jour de la
mémoire de travail. Nous avons également pu démontrer que ces changements développe-
mentaux étaient assez similaires aux changements suivant 5 semaines d’entraînement in-
formatisé du contrôle inhibiteur chez des enfants, soutenant l’hypothèse que l’entraînement
accélère le développement (Jolles and Crone, 2012). Cependant, ces résultats n’ont pas été
reproduits dans notre groupe d’adolescents. D’autres études sont nécessaires pour déter-
miner si ces résultats sont dus à une caractéristique du développement ou à l’entraînement
proposé.

En termes de bénéfices de l’entraînement au contrôle inhibiteur, nous avons pu con-
stater que les différences interindividuelles pouvaient être expliquées par des facteurs cog-
nitifs, cérébraux et génétiques. Notamment, on a constaté que les participants dont les
capacités inhibitrices initiales étaient plus faibles bénéficiaient davantage d’une interven-
tion ciblant l’inhibition, ce qui soutient l’hypothèse de compensation (Karbach and Kray,
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2021). En outre, les enfants qui présentaient un plus faible risque génétique pour un mau-
vais fonctionnement exécutif ont également montré de plus grands progrès. Ainsi, un
chevauchement semble exister entre les bases génétiques des fonctions exécutives et les
bases génétique de la réceptivité à l’entraînement. Un chevauchement similaire a égale-
ment été observé au niveau du cerveau. D’autres études seront nécessaires pour intégrer
les variables environnementales dans cette modélisation multiniveau.

Cette thèse s’inscrit également dans le contexte d’une évolution de la recherche en psy-
chologie qui devient plus précise et interdisciplinaire, avec le développement de méthodes
d’analyses telles que les modèles de réseaux, d’équations structurelles ou d’apprentissage
automatique, et plus intégrative, avec l’intégration simultanée de différents niveaux
d’observation. Ces développements méthodologiques permettent de répondre à des ques-
tions cruciales en psychologie du développement et de considérer les variables non plus
comme des éléments isolés mais comme des éléments faisant partie d’un système intégré.
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