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Inverse problems and local resonances
in irregular mechanical waveguides
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Abstract

Localization and reconstruction of defects in waveguides are crucial in the non-destructive industrial
health monitoring of structures like pipelines, optics fibers, nuclear power plant conduits, or even
ship hulls. This thesis aims at understanding wave propagation in irregular waveguides from a
mathematical point of view to design new efficient methods to detect and reconstruct possible
imperfections or defects in waveguides. Our approach is based on already existing experimental
setups. One usually generates many waves propagating at different frequencies in the waveguide
and measures their wavefields to get information about the defects. The use of multi-frequency
measurements helps not only to localize but also to reconstruct the shape of the defect.

This manuscript develops two different multi-frequency inversion methods applicable to acoustic
and elastic waveguides. The first method analyzes the scattered field generated by a known incident
field. Choosing frequencies away from the set of cut-off frequencies associated with the waveguide,
a Born approximation is performed to reduce the inverse problem to a Fourier inversion with
partial frequency data. The second method uses a different approach: instead of avoiding cut-off
frequencies, we chose to take advantage of them to obtain the reconstruction. Adapting former
studies of the Schrödinger equation, we can approach the wavefield propagation at locally resonant
frequencies. This approximation enables us to find a nonlinear yet exploitable link between the
defect profile and the wavefield measurements.

The first part of this manuscript is focused on defects reconstruction in two or three dimensional
acoustic or elastic waveguides using multi-frequency scattered data. Before studying the inverse
problem, one must first understand the forward problem fully. In the time-harmonic regime, an
acoustic wavefield u satisfies the Helmholtz equation

∆u+ k2u = s, (1)

where k stands for the frequency, and s is a source of waves. Similarly, an elastic wavefield u
satisfies the elastic equation

∇ · σ(u) + ω2u = s, (2)
where ω stands for the frequency and σ(u) is the stress tensor depending on the Lamé coefficients
of the material. In those two waveguides, wavefields can be decomposed as a sum of modes in each
waveguide’s slice, leading to a similar treatment of both problems.

We focus on the inversion of three main types of defects: a local inhomogeneity in the waveguide,
a bend of the waveguide, and a localized defect in the geometry of the waveguide. A controlled
source generates wavefields for some frequencies k ∈ K ⊂ R+, and we assume the knowledge of the
corresponding measurements u(x) for every x ∈ Σ where Σ is either a section or a surface of the
waveguide.

The strategy to study the impact of small geometrical defects is to provide a well-suited mapping
from the perturbed waveguide to a perfect waveguide that generates some changes in the equation
itself. Assuming that the defects are small in amplitude and support, we can simplify these equa-
tions using a Born approximation. Theoretical justifications of the Born approximation require

iii



controlling the norm of any wavefield by the norm of the known source that generated it. If this
control is easily obtained in the acoustic case, it proves more tricky in the elastic case and requires
an extensive study of the inhomogeneous Lamb modes. Then, through the reconstruction of their
source term, we can recover the Fourier transform of the defects. An essential difficulty is that
low spatial frequency information carried by vanishing modes is systematically missing. Assuming
some regularity and compacity, we proved a key result to control the recovery error of a function
from an incomplete knowledge of its Fourier transform.

This work provides a theoretical stability argument to run a mode-by-mode well-conditioned
inversion using a penalized least-square technique. This method was tested on data generated
by finite element methods and proved numerically efficient in getting great reconstructions of the
different considered defects.

This manuscript’s second part is dedicated to defects reconstruction using locally resonant fre-
quencies. The previous method used a Born approximation to simplify the equation satisfied by
the wavefield. This approximation is only valid if the frequency is far from the cut-off frequencies,
where both elastic and acoustic problems are known to be ill-conditioned. However, different physi-
cal experiments prove that waves propagating at these peculiar frequencies are very sensitive to the
presence of defects, making it a great potential inversion tool. We aim to explain this phenomenon
and develop a new reconstruction method based on locally resonant frequencies.

Assuming that the waveguide is slowly varying, we study the propagation of wavefields us-
ing a Wentzel-Kramers-Brillouin approximation combined with former results on the Schrödinger
equation near turning points. We prove that near locally resonant frequencies, wavefields can be
expressed using modified Airy functions and that defects act like obstacles that stop the wave
propagation and reflect it to the source.

Our strategy to reconstruct the defects is then based on this observation. The coordinate of this
virtual obstacle is called the locally resonant point, and we know the local waveguides width at
this point. Using wavefield measurements, we can track the displacement of the locally resonant
point with respect to the frequency, which provides a high-sensibility inverse method to reconstruct
defects. This method is numerically efficient and can be applied to recover different shapes of slowly
varying defects. This method is tested numerically for locally resonant frequencies in acoustic
waveguides and for longitudinal, transverse, and zero-group velocity critical frequencies in elastic
waveguides. In each case, it produces extremely precise reconstructions of width variations.

Keywords: waveguides, inverse problems, non-destructive testing, wave propagation, mutli-frequency
data, Helmholtz equation, elastic displacement equation, locally resonances.
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Résumé

La détection et la reconstruction de défauts dans les guides d’ondes sont un enjeu contemporain
important pour contrôler l’état de structures diverses allant des oléoducs aux fibres optiques, en
passant par les conduits de centrales nucléaires ou les coques de navires. Cette thèse a pour but
de mieux comprendre d’un point de vue mathématique la propagation des ondes en guide d’onde
irrégulier, pour pouvoir ensuite proposer des méthodes efficaces pour détecter et reconstruire avec
précision déventuels défauts. Notre approche se base sur des dispositifs physiques déjà existants où,
pour détecter ces défauts, plusieurs ondes se propageant à différentes fréquences sont envoyées dans
le guide d’onde puis mesurées pour obtenir de l’information sur le défaut. L’usage de données multi-
frequencielles est ici particulièrement important et permet non seulement de localiser les défauts,
mais aussi de reconstruire leur forme.

Ce manuscrit développe deux méthodes de reconstruction multi-frequencielles s’appliquant à la
fois aux guides acoustiques et élastiques. La première méthode se base sur l’analyse du champ
réfléchi par une onde incidente connue. En choisissant des fréquences éloignées des fréquences de
résonance du guide d’onde, il est possible d’effectuer une approximation de Born pour réduire le
problème à une inversion de Fourier avec données partielles. La deuxième méthode, au lieu d’éviter
les fréquences de résonance, les utilise pour obtenir la reconstruction. En s’inspirant de résultats
sur l’équation de Schrödinger, nous avons proposé une approximation des ondes se propageant aux
fréquences résonnantes. Cette approximation permet d’exhiber non linéaire mais exploitable entre
le défaut et les mesures de l’onde.

La première partie du manuscrit présente en détail la méthode utilisée pour reconstruire des
défauts dans des guides acoustiques ou élastiques de dimension deux ou trois grâce aux mesures
multi-frequencielles du champ réfléchi. Avant d’étudier le problème inverse, il est indispensable de
s’intéresser au problème direct pour comprendre comment les ondes se propagent dans un guide
d’onde. En régime harmonique, une onde acoustique u vérifie l’équation de Helmholtz

∆u+ k2u = s, (3)

où k est la fréquence de propagation et s la source générant les ondes. De même, un champ de
déplacement élastique u vérifie l’équation du déplacement élastique

∇ · σ(u) + ω2u = s, (4)

où ω est la fréquence de propagation et σ(u) est le tenseur de contrainte dépendant des coefficients
de Lamé du matériau. Dans ces deux situations, les ondes peuvent se décomposer comme des sommes
de modes sur chaque tranche du guide ce qui permet d’étudier les deux problèmes de manière très
similaire.

Nous nous concentrons dans cette partie sur la reconstruction de trois types de défauts : une
perturbation locale de l’indice du milieu de propagation, un coude dans le guide d’onde, et un défaut
dans la géométrie du guide. Dans chacun des cas, une source génère une onde se propageant à une
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fréquence k ∈ K ⊂ R+ et des mesures du champ u(x) sont effectuées pour x ∈ Σ où Σ désigne une
section ou une surface du guide d’onde.

Pour étudier l’impact des petits défauts, nous choisissons de transformer le guide endommagé en
un guide parfait grâce à un changement de variable, ce qui génère des modifications dans l’équation
de propagation. Si les défauts sont petits en taille et en amplitude, ces équations peuvent être
simplifiées avec une approximation de Born. Pour justifier cette approximation, il est nécessaire
de contrôler la norme de toute onde par la norme de la source qui l’a généré. Si ce contrôle peut
être facilement obtenu dans le cas acoustique, il est plus délicat à obtenir dans le cas élastique et
nécessite une étude poussée des modes de Lamb inhomogènes. Après simplification des équations,
nous avons prouvé qu’il était possible d’obtenir une approximation de la transformée de Fourier du
défaut en mesurant les ondes réfléchies. Cependant, certaines basses fréquences transportées par les
modes évanescents ne sont pas mesurables, ce qui rend l’inversion de Fourier difficile. En ajoutant
des hypothèses de régularité et de compacité, nous avons démontré qu’il était possible de contrôler
l’erreur de reconstruction d’une fonction à partir d’une connaissance incomplète de sa transformée
de Fourier.

Ce travail permet de prouver la stabilité de la méthode d’inversion que nous proposons qui
reconstruit mode par mode la transformée de Fourier en minimisant des moindres carrés pénalisés.
Cette méthode a été testée sur des données générées par éléments finis et s’avère particulièrement
efficace pour reconstruire les différents défauts évoqués plus tôt.

La seconde partie de la thèse est dédiée à la reconstruction des défauts grâce aux fréquences
de résonance. Si la méthode précédente utilisait une approximation de Born pour simplifier les
équations, cette technique n’est pas applicable près des fréquences de résonances où les problèmes
élastiques et acoustiques sont réputés mal conditionnés. Malgré tout, de nombreuses expériences
physiques montrent que les ondes se propageant aux fréquences de résonances sont particulièrement
sensibles aux défauts présents dans le guide d’onde, ce qui en fait un outil intéressant pour recons-
truire les défauts. Ainsi, nous avons cherché à expliquer ce phénomène et à developper une nouvelle
méthode de reconstruction utilisant ces fréquences particulières.

En supposant que le guide d’onde présente des défauts de formes variant lentement, nous avons
étudié la propagation des ondes grâce à une approximation de Brillouin-Kramers-Wentzel combinée
avec d’anciens résultats sur le comportement des solutions de l’équation de Schrödinger près des
points de retournement. Nous avons ainsi prouvé que près des fréquences localement résonantes, les
ondes peuvent s’exprimer à l’aide de fonctions d’Airy modifiées et que les défauts agissent comme
des obstacles stoppant la propagation de l’onde et la réfléchissant en direction de la source.

La stratégie que nous avons développée pour reconstruire le défaut se base sur cette observation.
La coordonnée de l’obstacle virtuel est appelée le point de résonance locale, et la hauteur locale
du guide d’onde en ce point est connue. En utilisant les mesures de l’onde, on peut suivre le
déplacement de ce point de résonance locale quand la fréquence change, ce qui fournit une méthode
très précise de reconstruction des variations lentes de hauteur des guides d’onde. Cette méthode
a été testée numériquement aux fréquences localement résonantes en guides acoustiques et aux
fréquences critiques longitudinale, transverses et à vitesse de groupe nulle des guides élastiques.
Dans chacun des cas, les reconstructions des variations de hauteur sont extrêmement précises.

Mots-Clefs : guides d’ondes, problèmes inverses, contrôle non destructif, propagation des ondes,
données multi-fréquencielles, équation de Helmholtz, équation du déplacement élastique, résonances
locales.
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Essential notations

Variables

Ω Considered waveguide
Ωr Waveguide truncated for |x| < r.
∂Ω Boundary of the waveguide
∂Ωtop Top boundary of the waveguide
∂Ωbot Bottom boundary of the waveguide
h Width of the waveguide
ν Unit outer normal vector to the boundary
u Wavefield in acoustic waveguides
uinc Incident wavefield
us Scattered wavefield
u Wavefield in elastic waveguides
σ(u) Stress tensor
k, ω Frequency
kn n-th wavenumber
δ Distance between a frequency and the set of all the wavenumbers
η Small parameter which control the variation of the waveguide width
N Index of a locally resonant mode
x? Locally resonant coordinate
d Measured data
a : b : m Discretization of the interval [a, b] with m points
mod(π) Modulus π
Bn(0, r) Ball of radius r centered at 0 in n-dimensions

Functional spaces

L∞, L1, L2 Usual Lebesgue spaces on piecewise smooth domains
W1,1 Usual Sobolev space on piecewise smooth domains
H1, H2, H3 Usual Hilbert Sobolev spaces on piecewise smooth domains
H1/2, H3/2 Usual fractional Hilbert Sobolev spaces on piecewise smooth domains
H̃

1/2
(−r, r) Closure of the distributions supported in (−r, r) for the H1/2 norm (see [66])

Vloc(E) Functions f such that for all compact set C ⊂ E, f ∈ V (C)
‖S‖E1,E2 Operator norm defined by sup{‖S(x)‖E2 |x ∈ E1, ‖x‖E1 = 1}

Functions

supp(f) Support of the function f
φ Mapping of a deform waveguide to a regular waveguide

xi



ϕn n-th acoustic mode
(Xn,Yn) n-th right-going Lamb mode
〈·, ·〉 Canonical R-scalar product in L2

Jn Scalar product 〈Xn,Yn〉
δs Dirac distribution at the coordinate s
δn=m Function equal to 1 if n = m and 0 otherwise
1E Indicator function of the set E
fapp Approximation of a function f
f top Function f defined on ∂Ωtop
fbot Function f defined on ∂Ωbot
F(f)(ξ) Fourier transform of f at frequency ξ
Gn Green function of the n-th mode
A Airy function of the first kind (see Figure 1)
B Airy function of the second kind (see Figure 1)
H

(1)
0 Hankel function of the first kind (see Figure 2)
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Figure 1 – Representation of the Airy functions A and B solutions of the equation y′′ + xy = 0. More details can be
found in [4, 78].
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Figure 2 – Representation of the Hankel function of the first kind H(1)
0 solution of the equation x2y′′ + xy + x2y = 0.

More details can be found in [4].
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1.2.2 Contributions of the thesis 13
1.3 Reconstruction of small defects from multi-frequency data . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Acoustic waveguides 14
1.3.2 Elastic waveguides 16

1.4 Reconstruction in slowly varying waveguides using locally resonant frequencies . . . . . . . . . . 18
1.4.1 Forward problem in the acoustic case 18
1.4.2 Inverse problem in the acoustic case from surface measurements 20
1.4.3 Inverse problem in the acoustic case from section measurements 21
1.4.4 Generalization to the elastic case 22

This thesis focuses on developing new mathematical tools to monitor waveguides, which are
vastly used in industry. Acoustic waveguides are good representations of structures like air ducts
[71], pipes [101], ear canals [98], or even shallow water [39]. Optical waveguides may be the most
famous and depict optical fibers [96, 45], dielectric materials [35], or conductive metal pipes [57].
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We also consider elastic waveguides that model metal plates [48], boat hulls [83], bridges [109] or
train tracks [74] for instance.

In this manuscript, we are interested in two major industrial issues. The first one is to understand
how waves generated by known sources propagate in perfect or damaged waveguides at a given
frequency. This issue is fundamental for evaluating the stress endured by any material during its
lifetime or predicting and improving buildings’ robustness [63]. The second issue relates to non-
destructive control of structures: using known sources generating waves in the waveguide, one wants
to detect, localize, and reconstruct possible defects [105].

In order to numerically compute the propagation of waves in waveguides, industrial usually use
discretization methods and computation software [74, 62, 41, 87]. However, these kinds of numerical
approach have a substantial computational cost, and one simulation on a three-dimensional waveg-
uide can take more than one day to run [68, 69]. There is a high demand for simpler and faster
codes modeling the propagation of waves and taking into account the very particular structures
of waveguides. Some propagation phenomena, such as propagation near corners or at resonant
frequencies, are also not yet completely understood and need to be studied in detail [87, 10].

Similarly to non-destructive control of structures, pipes and plates usually need to be inspected
in production lines to detect potential defects or characterize the robustness and dimensions of
the material without deteriorating it [105]. We represent in Figure 1.1 such non-destructive health
monitoring. In the nuclear, chemical, or aeronautic industry, pipes and plates must be regularly
checked to detect defects and avoid severe consequences [1]. Especially, there is a great need to
develop precise non-destructive methods to study and fix pipes corrosion defects in French nuclear
power plants in order to keep operational power stations [86].

Figure 1.1 – From [89, 106, 108]: Practitioners non-destructive health monitoring of waveguides. Top left: monitoring
of a pipeline. Top right: monitoring of train tracks. Bottom left: monitoring of a metal plate. Bottom right: monitoring

of a large aircraft part.

This manuscript will provide partial answers to these issues. In the following, we briefly present
the general mathematical framework used in the thesis and recall some of the available tools and
methods already developed in this context. It will then enable us to put into perspective the
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main contributions of this thesis, which will be summarized and simplified here before being fully
developed in the body of the manuscript.

1.1 Wave propagation in waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To detect and reconstruct defects in waveguides, one usually generates multiple waves that prop-
agate in the waveguide and carry useful information about the possible imperfections. Here, we
work with two types of waves: acoustic and elastic waves. Usually, the study of acoustic waves
is more straightforward than that of elastic waves. Besides being of interest in itself, the acoustic
case is often used to intuit the results before reproducing them in the elastic case. We describe the
acoustic and elastic mathematical frameworks below and point out the links that connect them.

1.1.1 Acoustic wave equation

1.1.1.a Acoustic waveguides

Acoustic and electromagnetic wavefields U propagating in a domain Ω ⊂ R3 satisfy the normalized
scalar wave equation

∂ttU(t,x) = ∆U(t,x) + S(t,x) in Ω, (1.1)
where S is a source of waves. In most physical situations, variables of S can be separated and S
is written S(t,x) = s(x)f(t) where s stands for the physical position of the source (antennas, loud
speaker, transducers...) and f represents the emitted time signal. We look for solutions in the
frequency domain and consider the time signal under a Fourier decomposition of the form

f(t) =
∫
R
F (k)e−iktdk. (1.2)

We then look for solutions of (1.1) under the form

U(x, t) =
∫
R
u(x, k)e−iktdk. (1.3)

At a fixed frequency k ∈ R+, we can prove that the wavefield u is solution of the so-called Helmholtz
equation

∆u+ k2u = −F (k)s in Ω. (1.4)
We refer to the book [40] for more details about the wave equation and the transformation to the
Helmholtz equation. Given the equivalency between the temporal regime and the harmonic one,
we only consider the Helmholtz equation and from now on, every acoustic wavefield satisfies (1.4)
for a frequency k > 0.

Since we aim to reconstruct defects in waveguides, we choose to work in acoustic waveguides
such as pipes, and the domain Ω is defined as the three dimensional set

Ω = R ×B2(0, h) ⊂ R3. (1.5)

The parameter h stands for the width of the waveguide. If the waveguide does not have any defect,
h is a constant in R∗

+ and the waveguide is called regular or perfect. Due to the different symmetries
seen in the definition of Ω, people often consider the propagation of waves in sections of Ω, which
simplify all the conducted studies [59, 104, 6]. It boils down to the analysis of the two-dimensional
waveguide

Ω = R × (−h, h). (1.6)
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3D acoustic waveguide 2D acoustic waveguide

Figure 1.2 – Representation of regular acoustic waveguides in three and two dimensions. Acoustic waves propagate in
the pipe according to the Helmholtz equation (1.4). Here, the three-dimensional waveguide is cut along the grey plan to

get the two-dimensional waveguide.

We represent in Figure 1.2 acoustic waveguides in three and two-dimensional cases, as well as
examples of waves propagation in these structures.

To get a well-posed Helmholtz equation, we need to add boundary conditions. Three types of
boundary conditions are usually considered:

• The Dirichlet boundary condition, written u = b on ∂Ω, imposes a given wavefield b on the
waveguide boundaries.

• The Neumann boundary condition, written ∂νu = b on ∂Ω, imposes a strength b on the
waveguide boundaries.

• The Robin boundary condition, written au + ∂νu = b on ∂Ω with a ∈ R∗, is a mix between
a Dirichlet condition and a Neumann condition. It can be seen as a strength b imposed on
boundaries combined with frictions contained in the term au.

In this manuscript, we choose to use Neumann boundary conditions exclusively. When the boundary
source term b vanishes, it models a waveguide free from constraints in a surrounding environment
like air. However, the use of Dirichlet or Robin conditions would only change minor calculation
steps, and the results exposed in this manuscript are valid for any of these three types of boundary
conditions.

1.1.1.b Acoustic modal decomposition
The Helmholtz equation is easier to study in waveguides than in free space thanks to the existence
of a modal decomposition. In acoustic pipes, any coordinate x ∈ Ω can be rewritten as x = (x,y)
where x ∈ R and y ∈ Σ := (−h, h) in two dimensions or y ∈ Σ := B2(0, h) in three dimensions.
We can prove that the wavefield u can be decomposed as a sum of modes

u(x,y) =
∑
n∈N

un(x)ϕn(y) ∀(x,y) ∈ R × Σ, (1.7)

where un is called the n-th modal component of u and ϕn the n-th mode. Each mode is the n-th
Neumann eigenvector of the negative Laplacian [27], and satisfies{

−∆ϕn = λnϕn in Σ,
∂νϕn = 0 on ∂Σ, (1.8)
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where (λn)n≥0 are Neumann eigenvalues of the negative Laplacian. For instance, in two dimensions,
we have the simple expression

ϕn(y) =


1√
2h

if n = 0,
1√
h

cos
(
nπ(y + h)

2h

)
if n ≥ 1.

(1.9)

Note that this modal decomposition still works for more general shapes Σ, although we will not use
it in the following.

The family (ϕn)n∈N is orthonormal in L2(Σ) for the usual scalar product, and each modal
component un is given by

un(x) =
∫

Σ
u(x,y)ϕn(y)dy. (1.10)

Using this modal decomposition, the Helmholtz equation is equivalent to a sequence of equations
on each mode:

u′′
n + k2

nun = sn with kn =
√
k2 − n2π2

4h2 ∀n ∈ N, (1.11)

where kn is called the n-th wavenumber [27, 34] and sn is a modal source term. To ensure the
uniqueness of un, we adapt the Sommerfeld condition used in free space [95] into a boundary
condition at infinity called an outgoing condition. Then, this equation has a unique solution except
for a countable number of frequencies. These frequencies are called resonant frequencies, cut-off
frequencies, or critical frequencies depending on the communities. The one-dimensional Helmholtz
equation is not well-posed at these frequencies, and its solutions explode when k is chosen near a
cut-off [27]. On the contrary, each modal equation (1.11) has a unique solution un when k is away
from cut-offs, and the whole wavefield u can be computed everywhere in the waveguide given any
source term.

1.1.2 Elastic wave equation

1.1.2.a Elastic waveguides
We now move to the elastic case and compare it with the acoustic one. When elastic waves are
propagating in a domain Ω ⊂ R3, the domain is momentarily deformed along a displacement field
U following the linear elasticity model

∂ttU(t,x) = ∇ · σ(U)(t,x) + S(t,x), σ(U) = C : ∇s(U) in Ω, (1.12)

where σ(U) is called the stress tensor, ∇s = (∇ + ∇T )/2 is the symmetric part of the gradient, : is
the tensor product and C is a the fourth order stiffness tensor depending on two coefficients (λ, µ)
called the Lamé coefficients of the plate. We notice that this equation resembles the Helmholtz
equation where the Laplacian is replaced by the operator ∇ · σ. In addition to its more complex
expression, the elastic equation is different from the acoustic one since it is a vector equation: U
has now two or three components instead of being a scalar. Like in the acoustic case, we choose to
work in the harmonic regime and look for solutions of (1.12) of the form

U(t,x) =
∫
R

u(x, ω)eiωtdω. (1.13)
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Here, the frequency is denoted by ω instead of k to correspond as closely as possible to notations
already used in the elasticity community. At a fixed frequency ω ∈ R+, the wavefield u is solution
of the so-called displacement elastic equation

∇ · σ(u) + ω2u = s in Ω, (1.14)

where s is a source term. We refer to books [94, 91, 5] for further details, and from now on, we
only consider the elastic equation in the harmonic regime.

We choose to work in elastic waveguides such as plates, and the domain Ω is defined as the three
dimensional set

Ω = R2 × (−h, h). (1.15)

Like in the acoustic case, the parameter h stands for the width of the waveguide and is constant in
R∗

+ if the waveguide does not have any defect. Due to the symmetries seen in the definition of Ω,
we also consider the propagation of elastic waves in sections of Ω which comes back to the analysis
of the two-dimensional waveguide

Ω = R × (−h, h). (1.16)

We represent in Figure 1.3 regular plates in three and two-dimensional cases, as well as examples
of waves propagation in these structures.

3D elastic plate 2D elastic plate

Figure 1.3 – Representation of a regular plate in two and three dimensions. Elastic displacement waves propagate in the
plate according to the elastic equation (1.14). Here, the three-dimensional waveguide is cut along the grey plan to get

the two-dimensional waveguide. Only the normal component is kept in the two-dimensional representation.

Similar to the acoustic case, a boundary condition needs to be added to ensure well-posedness of
the elastic equation. We choose to work in this manuscript with the Neumann boundary condition
σ(u) ·ν = b on ∂Ω but similar studies could be conducted using Dirichlet condition u = b or Robin
condition au + σ(u) = b without altering the obtained results.

1.1.2.b Lamb and Shear horizontal modal decompositions
To simplify the elastic equation and find its solutions, we look for an extension of the modal de-
composition presented in the acoustic case. It is usual in elasticity theory to decompose elastic
wavefields u using the classic longitudinal/transverse decomposition u = ut + u`. In this decom-
position, u` is a longitudinal wave (`) whose displacement is parallel to the propagation direction,
and ut is a transverse wave (t) whose displacement is orthogonal to the propagation direction (see
Figure 1.4). This decomposition is often used in the free space as these two components are inde-
pendent and solve simpler wave equations, but it loses its interest in waveguides [91, 5]. Indeed,
when a longitudinal or transverse wave meets an interface, it is reflected as a combination of (`)
and (t) waves (see Figure 1.4), and the resulting wave is neither a pure longitudinal nor a pure
transverse wave.
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Propagation of (`) and (t) waves Reflexions of (`) and (t) waves

at rest:

(`) wave:

(t) wave:
(`) wave (t) wave

Figure 1.4 – Schematic representations of longitudinal (`) and transverse (t) waves. On the left, we illustrate the
propagation of (`) and (t) waves. Waves propagate on a line of particles from left to right. The longitudinal

displacement is parallel to the direction of propagation, while the transverse displacement is orthogonal. On the right, we
represent the reflections of an incident longitudinal wave in a two-dimensional plate. At each interface, the wave is

reflected into a longitudinal and a transverse part, generating a so-called Lamb wave at the end.

Nevertheless, transverse waves are useful to get a first decomposition of any wavefield u propa-
gating in a three-dimensional plate. Physical experiments and explicitly resolutions of the elastic
equation adding symmetries assumptions show that u can be decomposed as

u = uSH + uL. (1.17)

In this decomposition, uSH is called the shear horizontal part of u, and uL is called the Lamb
part of u. The wavefield uSH is a transverse wave represented in Figure 1.5. Given a direction of
propagation p, the displacement uSH is orthogonal to p and parallel to the plate surface. On the
other hand, the wavefield uL is in the plane orthogonal to the plate surface and containing p.

p

uSH

p

uL

Figure 1.5 – Decomposition of an elastic wavefield u = uSH + uL propagating in the direction p in a three-dimensional
plate. The shear horizontal displacement uSH is a transverse wave orthogonal to p and contained in the plane parallel to
the plate surface. The Lamb displacement uL is contained in the plane orthogonal to the plate surface and containing p.

The main advantage of this splitting of u is that both uSH and uL and be decomposed using
modes. The shear horizontal part can be decomposed in shear horizontal modes (SH) with expres-
sions and wavenumbers similar to acoustic ones (1.8)-(1.11) and are already well-studied [91, 5].
The decomposition of the Lamb part uL proves more difficult.

By definition, uL is contained in a domain assimilated to a two-dimensional plate where coordi-
nates are now denoted (x, z). As explained before, the decomposition in transverse and longitudinal
modes fails due to the waveguide interfaces (see Figure 1.4). Instead, we consider the so-called
Lamb modes to get a decomposition uL. From a physical point a view, Lamb modes are defined
as functions un(z) = (un(z), vn(z)) associated with a wavenumber kn ∈ C such that the Lamb
wave u(x, z) := un(z) exp(iknx) satisfies the elasticity equation (1.14) with Neumann boundary
conditions [91, 5]. Mathematicians prefer to define Lamb modes and wavenumbers kn as eigenele-
ments of an operator L defined using the elasticity equation [65, 80]. No matter which approach
is chosen, it is possible to find analytical expressions of kn and explicit expressions of Lamb modes
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(un(z), vn(z)). We represent Lamb waves in Figure 1.6 for two different values of n. Note here
that the notation un does not hold the same meaning in elastic and acoustic waveguides: while un

stands for the modal component in the acoustic case, it represents the modal basis in the elastic
case. This choice of notation was retained despite this to remain as consistent as possible with the
existing literature.

Figure 1.6 – Representation of two Lamb waves u(x, z) = un(z) exp(iknx). The initial shape of the two-dimensional
plate is represented in dotted line while the displacement induced by the Lamb wave is represented in plain lines. On the
left is the third symmetric Lamb mode and on the right is the third antisymmetric Lamb mode. Here, ω = 3, h = 1 and

the Lamé coefficients are λ = 0.31 and µ = 0.25

It can be proved that the family of Lamb modes forms a complete set of functions [56, 19, 8],
and any wavefield uL := (u, v) can be decomposed as

u(x, z) =
∑
n>0

an(x)un(z), v(x, z) =
∑
n>0

bn(x)vn(z) ∀(x, z) ∈ R × (−h, h). (1.18)

However, contrarily to the acoustic modal decomposition, Lamb modes do not form an orthonormal
basis. To obtain the dependency of an and bn with respect to uL, one needs to use the Fraser bi-
orthogonality relation [44]:

an(x) =
∫ h

−h
(vn(y)σ(uL)1,2(x, y) − σ(un)1,1(y)u(x, y))dy∫ h

−h
(vn(y)σ(un)1,2(y) − σ(un)1,1(y)un(y))dy

, (1.19)

bn(x) =
∫ h

−h
(v(x, y)σ(un)1,2(y) − σ(uL)1,1(x, y)un(y))dy∫ h

−h
(vn(y)σ(un)1,2(y) − σ(un)1,1(y)un(y))dy

, (1.20)

where σ is the stress tensor evoked in (1.14). In Chapter 2, we will see that the formalism X/Y
developed by Pagneux and Maurel [80, 81] can simplify these bi-orthogonality relations. Then, the
elastic equation is equivalent to a collection of equations on each mode, similar to the one presented
for acoustic modes:

a′′
n + k2

nan = s1
n, b′′

n + k2
nbn = s2

n, (1.21)

where s1
n and s2

n are modal source terms. Each mode is uniquely defined after adding an outgoing
condition and can be computed away from the cut-off frequencies. The wavefield uL and therefore
the whole wavefield u is then explicitly determined for any chosen source at each frequency ω ∈ R+,

To synthesize, elastic and acoustic waves can be decomposed in regular waveguides using a
modal decomposition. Each modal component satisfies the one-dimensional Helmholtz equation
y′′ + k2

ny = 0, which is well-posed and easily solved after adding an outgoing condition at infinity.
Thereby, the propagation in two and three-dimensional regular waveguides, whether acoustic or
elastic, is overall well understood.
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1.1.3 Propagation in perturbed waveguides
To identify and reconstruct defects in waveguides, one must first understand how these defects
impact wave propagation and modify the previous framework developed for regular waveguides. In
this thesis, we deal with three types of defects: a local perturbation of the medium index, a bend
of the waveguide, and a defect in the geometry of Ω (see Figure 1.7).

Inhomogeneity Bend Geometry defects

Figure 1.7 – Representation of three types of defects in a two-dimensional waveguide. From the left to the right, we see
inhomogeneities in the medium index, a bend on the waveguide, and a defect in the geometry of the waveguide.

A bend or a geometry defect changes the definition of Ω and leaves equation (1.14) of (1.4)
unchanged, while an inhomogeneity leaves Ω intact but introduces a perturbation q(x) in the
Helmholtz and elastic equations:

∆u+ k2(1 + q)u = 0, or ∇ · σ(u) + ω2(1 + q)u = 0. (1.22)

In general, these equations cannot be solved explicitly, and we aim at finding precise and quick
way to compute approximations of the solutions. Many different techniques have been developed
over the years to answer this issue, and we present here a brief overview of the general ideas.

After studying wave propagation in regular waveguides, the most naive idea that could come to
mind is to generalize the previous modal decomposition to perturbed waveguides. In the case of
inhomogeneities, the shape of Ω has not changed, and all the previous results on modal decompo-
sitions still apply. However, if we try to project the acoustic equation (1.22) on each mode n, we
obtain the system

∀n ∈ N u′′
n + k2

nun +
∑
m∈N

um

∫ h

−h

qϕnϕm = 0. (1.23)

Each mode is now coupled with all the others, and we cannot find a simple equation for each mode
un [34]. A similar result would also occur for the elastic case. As for bends and shape defects, the
width of each slice varies, and every mode depends on x through the function h(x):

u(x, y) =
∑
n∈N

un(x)ϕn(x, y), or u(x, y) =
∑
n>0

(an(x)un(x, y), bn(x)vn(x, y)). (1.24)

After replacing these expressions in the Helmholtz equation (1.4) and projecting on each mode [81],
we obtain the system

∀n ∈ N u′′
n + k2

nun + 2
∑
m∈N

u′
m

∫ h

−h

∂xϕmϕn +
∑
m∈N

um

∫ h

−h

∂xxumϕ
′′
mϕn = 0. (1.25)

Again, we observe that modes are coupled like in the inhomogeneous case. We cannot get an
explicit expression of every mode un, but we might use these modal systems to get a wavefield
approximation. Norms of modal components (un)n∈N are decreasing since the family is summable
and we can cut the decomposition at a chosen rank N ∈ N. By doing so, infinite systems (1.23)
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and (1.25) are reduced to a N ×N matrix differential equations, which can be solved and provide
an approximation of the wavefield [81, 46]. Assuming that k is away from every cut-off frequency,
this method provides satisfactory numerical wavefield approximations. However, we do not control
the approximation error nor have easily usable expressions of the approximated wavefield.

Instead of using the modal decomposition on each slide, other works suggest to map the perturbed
waveguide to a regular one [3, 2, 61]. Different mappings can be chosen. While the easiest mapping
seems to be the transformation (x, y) 7→ (x, y/h(x)), this transformation does not preserve the
outward normal and changes the boundary conditions. To solve this issue, one could also use a
conformal mapping, which preserves all the angles [3]. If such transformations are convenient, they
are rarely explicit and hardly usable in practice. Both these transformations are represented in
Figure 1.8. Regardless of the chosen mapping φ, we notice that v := u ◦ φ satisfies in the regular
acoustic waveguide the equation

∆v + k2v = T (v), (1.26)

where T (v) is an application depending on φ, ∇φ and ∇2φ. Again, this equation can not be
projected simply on each mode, and we are back to the problem of inhomogeneous defects. To
summarize, the use of mappings from perturbed waveguides to regular ones can simplify the problem
a little but mainly exchanges a shape defect problem for an inhomogeneity one.

Figure 1.8 – Representation of two mappings of a perturbed waveguide with a geometry defect at the top. On the left,
the mapping is conformal, meaning that it preserves the angles and especially the outward normal, but it does not have a
simple expression. On the right, the mapping flattens the waveguide with the simple expression (x, y) 7→ (x, y/h(x)) but

does not preserve the outward normal.

Instead of cutting the modal decomposition to a finite number of modes, another method is
commonly used when the wavefield is measured far from the defect area. Instead of working with
the classical expression of Helmholtz and elastic equation, we can rewrite them as integral equations

u(x) =
∫

Ω
G(x,x′)q(x′)u(x′)dx′, (1.27)

where G is the Green function found with the previous wave propagation studies in regular waveg-
uides. This integral equation is also known as the Lippman-Schwinger equation. If the coordinate
x is located far from the perturbation q, one can compute an asymptotic approximation of u(x)
using an asymptotic form of the Green function G [34, 24, 9, 13]. If this method is very efficient
for computing theoretically and numerically a far-field approximation of the wavefield, it fails near
the defect area. Furthermore, if this method is largely used in acoustic theory, fewer people use it
in the elastic theory due to the complexity of the Green elastic function asymptotics.

Finally, let us mention one last approximation method widely used in the rest of this manuscript.
If we assume that defects are small in support and size (which is often the case in physical appli-
cations), back-scattering techniques can also simplify the problem. Giving a source of wave s, we
denote uinc the generated wavefield in a regular waveguide, u the perturbed wavefield in the inho-
mogeneous waveguide, and us = u − uinc the scattered wavefield. Since the inhomogeneities are
small, one could feel that u and uinc should be very similar and us small compared to u. Such an
approximation is called a Born approximation and is often used to simplify wave equations with
small defects [32, 92]. Away from cut-off frequencies, we can prove that the scattered field us is
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close to the wavefield v satisfying the equation

∆v + k2v = −k2quinc, or ∇ · σ(v) + ω2v = −ω2quinc, (1.28)

and we can control the error between us and v [32]. The equation on v can now be solved easily
using the Green function in the regular waveguide.

In all these approximation methods, the frequency k needs to be chosen far from cut-off frequen-
cies to get accurate approximations. However, different physical experiments were made near these
cut-off frequencies and produced encouraging results on defects reconstruction [11, 58, 29]. Thus,
we also need to find suitable approximation methods around cut-off frequencies. Very few works
are concerned with this issue, and to our knowledge, every one of them is done in slowly varying
waveguides. Under this assumption, each mode does not interact a lot with the others, and people
usually neglect terms depending on h′ or h′′ in modal systems (1.23) [81, 46, 82], and

u′′
n + kn(x)2un = 0. (1.29)

Since kn depends on x through the function h, this equation is no longer so easy to solve, especially
since kn(x) vanishes at cut-off frequencies. We notice that this equation can be seen as a Schrödinger
equation, which is usually written under the form

~2

2m∂xxψ + (E − V (x))ψ = 0, (1.30)

where ~ is the reduced Planck constant, m the particle mass, ψ the probability density, E the
energy, and V a potential [90]. Coordinates x such that E = V (x) are called turning points,
and approximations of ψ around these points have been mathematically studied by Olver [76, 77].
We represent in Figure 1.9 an example of a potential V and the associated approximation of ψ.
This approximation involves the Airy function, defined as the solution of the ordinary equation
y′′(x) + xy(x) = 0 [4]. Using this link with the Schrödinger equation, general approximations of
the wavefield in slowly variable waveguides have been proposed.

−6 −4 −2 0 2 4 60

20

40

60
Potential of the environnement

V (x) E turning point

−6 −4 −2 0 2 4 60

0.2

0.4

0.6

Probability density of particles

|ψ| turning point

Figure 1.9 – Probability density of particles given a potential V and an energy E. On the left, we represent the
potential V (x), the energy E and the turning points satisfying V (x) = E. On the right, we plot the associated

probability density ψ and we materialize the position of the turning points. The function ψ expressed using an Airy
function propagates between the turning points and fast decays outside.

Other approximation methods exist in more specific cases where stronger assumptions are made
on defects. Still, they globally lean on the idea presented here: cutting the number of modes in the
modal decomposition, using integral representation and approximations of the Green function, or
neglecting terms on the propagation equation using Born approximations.
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1.2 Reconstruction of defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.1 Existing reconstruction methods
As mentioned initially, we aim to detect and reconstruct the possible waveguides defects. Using
the studies of the forward problem, we want to measure the wavefield and see if it exists a usable
link with the defect. Given physical constraints of the problem, we cannot take measurements
everywhere in the waveguide, and Figure 1.10 illustrates the different areas where one could place
receivers. On the one hand, the wavefield is often accessible on one or many sections of an acoustic
pipe [55, 27]. On the other hand, measurements are only available at the top and the bottom of
an elastic plate [11, 58]. In the rest of this thesis, we will alternatively use surface or sections
measurements of the wavefield depending on the considered waveguide.

Measurements on a pipe section Measurements on the top of an elastic plate

Figure 1.10 – Illustration of the available wavefields measurements in acoustic pipes and elastic plates. Receivers are
represented with red triangles. They are placed along a section of the pipe, and on the top surface of the plate.

Different reconstruction methods are already developed in the literature, and many use wavefield
measurements taken at a fixed frequency k > 0 away from cut-off frequencies.

1.2.1.a Inversion with one frequency and multiple incident waves
Many authors chose to work with a single frequency k > 0 and to send multiple incident waves in
the waveguide to develop reconstruction methods. One of the most famous is an adaptation of the
Linear Sampling Method, developed by D. Colton and A. Kirsch [31] to recover obstacles in free
space, to acoustic and elastic waveguides [27, 15, 23]. The Green function of the regular waveguide
is still denoted by G. After sending different incident waves of the form G(·,x′) where x′ is located
on a section Σ, we measure the scattered field on the same section and define the operator

Fh(x) :=
∫

Σ
us(x,x′)h(x′)dx′ ∀x ∈ Σ. (1.31)

It is possible to prove that the norm of hz solution of Fhz = G(·, z) diverges towards infinity when
z tends to the boundary of the obstacle. Solving a discretized version of this equation provides a
good approximation of the support of the defect. Moreover, this method can also be generalized to
elastic waveguide and surface measurements. However, it only applies to reflecting obstacles in the
waveguide.

To reconstruct inhomogeneities q defined in (1.22), the same operator F can be used. At far-field,
the spectral decomposition of this operator depends linearly on the inhomogeneity q [34], and one
has to inverse a well-chosen matrix to reconstruct a good approximation of q. Different adaptations
of these methods are also available for open and periodic waveguides [25, 26].
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Even if these methods provide satisfactory results in detecting inhomogeneities and obstacles,
they require sending different well-chosen incident waves on each mode, and uses only measurement
at one frequency. However, in physical experiments, data are often given in the temporal regime,
which provides wavefield measurements for a range of frequencies [11, 54]. One could argue that
the previous reconstruction methods can still be applied frequency by frequency before taking the
average of all reconstructions. However, this method does not use all the benefits of multi-frequency
measurements. It is proved in the free space that multi-frequency data can help to improve the
reconstruction and get mathematical insights on the uniqueness and stability of the reconstruction
[7, 14, 93, 52]. For all these reasons, we will focus on this thesis on developing multi-frequency
reconstruction methods.

1.2.1.b Existing multi-frequency methods
Few methods have been developed to reconstruct defects in waveguides given multi-frequency mea-
surements. Their main idea is to use the integral equation (1.27) and to provide an asymptotic
development of the quantity ∫

Ω
G(x,x′)q(x′)u(x′)dx′ ∀x ∈ Ω, (1.32)

when the observation point x is far from the inhomogeneity q [24, 9, 13, 23]. The first term of this
development depends linearly on the inhomogeneity’s localization and volume, and the far-field
measurements allow reconstruction of these parameters. If it is proven that the far-field uniquely
determines the waveguide’s defects, there is not, up to our knowledge, any stable and efficiently
numerical multi-frequency reconstruction method.

More importantly, as mentioned before, wavefields near cut-off frequencies of the waveguide
contain a lot of information on the defect. Due to the lack of well-posedness near these frequencies,
every previous multi-frequency methods choose to avoid cut-off frequencies, and none uses it to
obtain information on the defects.

1.2.2 Contributions of the thesis
This manuscript is decomposed in two parts, each bringing a different answer to the problems raised
below. In the first part, we develop a new multi-frequency method to reconstruct inhomogeneities,
geometry defects, and bends of waveguides using frequencies away from cut-off frequencies. This
method leans on a Born approximation of the wavefield and a partial data Fourier inversion, and can
be applied for any small defects. In addition to localize the defect, this method fully reconstructs
the shape of the defect in a stable way, and we prove that it is numerically efficient by testing it on
simulated data. Chapter 2 focuses on developing this method in the acoustic case, while Chapter
3 extends it to the elastic case.

The main result of Chapter 2 is Theorem 2.2 which justifies the stability of the reconstruction
method and controls the reconstruction error. This theorem leans on the important Lemma 2.1
which provides a control of any function given partial measurements of its Fourier transform and
enough regularity. As for Chapter 3, three important results stand out. Theorem 3.1 provides a
complete characterization of critical frequencies of an elastic waveguide and help understand the
mathematical analysis of Lamb modes. Avoiding these critical frequencies, we provide in Theo-
rem 3.2 an explicit decomposition of any wavefield generated by a known internal or boundary
source in Lamb modes, and we control the wavefield by the norm of the sources. This control
is extremely important to apply the Born approximation and reconstruct small defects in elastic
waveguides. Finally, we extend this theorem to the three-dimensional case in Theorem 3.3 where
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we formalize the decomposition in SH and Lamb modes in an elastic plate. All these results are
then used to justify the stability and the accuracy of our multi-frequency reconstruction method in
the elastic case.

The second part of the manuscript focuses on using cut-off frequencies, called here locally reso-
nant frequencies, to get reconstructions of geometry defects in Ω. An important work is being done
to understand and model the propagation of waves in slowly varying waveguides. Then, we propose
new reconstruction methods using only locally resonant frequencies to recover width defects. These
methods are especially of interest in elastic waveguides. It enables us to justify and better under-
stand the zero-velocity group reconstruction method experimentally used in the non-destructive
control of plates [11]. In Chapter 4, we study the forward problem near resonances in the acoustic
case. We use this study to develop our reconstruction method using locally resonant frequencies in
Chapter 5 given surface measurements, and in Chapter 6 given section measurements. Chapter 7
extends these results to the elastic case.

Different results are found in this second part. Theorem 4.1 provides an explicit approximation
of any wavefield propagating in slowly varying waveguides at locally resonant frequencies using
Airy functions, as well as a control of the approximation error. This approximation is used to
reconstruct width defects. Theorem 5.3 and Theorem 6.2 prove that this reconstruction method
is stable and control the reconstruction error given surface or section measurements. Finally, this
method is generalized to the elastic case. Depending on the nature of the resonant point, Theorem
7.1, 7.2 and 7.3 generalize Theorem 4.1, which enables to adapt the reconstruction method from
the acoustic case to the elastic one easily.

In the rest of this introduction, we summarize the main ideas and results presented in these two
parts. These results are simplified to keep only their main ideas, and only a sketch of proofs will be
provided. Readers may refer to the corresponding chapter of the manuscript to find more details.

1.3 Reconstruction of small defects from multi-frequency data . . . . . . . . . . . . . . . . . . . . . . .

This part focuses on developing a new multi-frequency reconstruction method to detect any inho-
mogeneities, shape defects, or bends in the waveguide as long as they are small in support and
amplitude. The modeling of the problem is based on experiments conducted at the “Laboratoire
de Tribologie et Dynamique des Systèmes” on acoustic pipes and thin elastic cylinders [55, 54]. In
these experiments, an incident pulse is sent from one waveguide section and generates a scattered
field when it meets the waveguide’s defect. This scattered field comes back and is measured on
another section of the waveguide (see the experimental setup in Figure 1.11). By looking at the
time between the emission and the reception of the signal, it is possible to predict roughly the
defect localization. The following method proves that is is possible to do better and to use these
data to reconstruct the defect entirely.

1.3.1 Acoustic waveguides
Chapter 2 starts by studying the simplest case of a two-dimensional acoustic waveguide. We chose
to send in the waveguide an incident wave uinc carried on the first mode n = 0, and we measure
the scattered field us generated by defects in the waveguide. If we denote us,k the scattered field
at frequency k, the aim is to solve the inverse problem

Reconstruct the defect from us,k|Σ for different k ∈ R+ where Σ is a section of Ω. (1.33)

Since all the defects are small in size, the framework of the Born approximation applies, and we
know that in presence of an inhomogeneity q, the scattered wavefield is close to the solution of the
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Generator and receiver rings Transducers around the pipe

Figure 1.11 – From [55, 54]: Generation and measurement system used to localize defects in thin elastic cylinders. The
first ring generates an incident wave propagating in the waveguide, and the second one measures the scattered field

generated by the defect. On each ring, piezoelectric transducers are used as transmitters and receivers.

equation
∆us + k2us = −k2quinc. (1.34)

Then, if F stands for the Fourier transform, we proved that measuring the wavefield us on a section
of the waveguide is equivalent to measuring

F(qn)(k + kn) = F(qn)
(
k +

√
k2 − n2π2

4h2

)
∀k ∈ (kmin, kmax), k >

nπ

2h , ∀n ∈ N, (1.35)

where qn is the n-th modal component of the function q, and (kmin, kmax) is the range of measure-
ment frequencies. To recover the function q, we need to inverse a Fourier transform with limited
frequency data. The lack of high frequency, caused by the limitation k < kmax, is easily control-
lable, providing some regularity on the function q. However, the lack of low frequency is a lesser
studied problem and cannot be neglected here. Indeed, even if kmin = 0, we can only measure
propagative modes which imposes k > nπ/(2h). Adding minimal smoothness and compact sup-
port hypothesis on q, we prove that the function F(qn) is analytic [38] and we provide a stable
reconstruction of qn even with these frequency gaps as explained in Lemma 2.1. By discretizing
the interval (kmin + kn, kmax + kn) into a set K and the function qn on a set of coordinate X, we
define the approximation qapp

n of qn as

qapp
n = argmin (J), where J(f) = 1

2‖F(f)(K) − F(qn)(K)‖2
2 + λ

2 ‖G(f)‖2
2. (1.36)

Here, G stand for a discrete gradient operator and λ is a penalization parameter. We prove that
qapp

n is well-defined for every n ∈ N, and the stability result on the reconstruction of q can be
summarized as follows:
Theorem 1.1. For a chosen number of modes N > 0, we denote by qapp :=

∑N
n=0 q

app
n ϕn the

reconstruction of q. If q is compactly supported in H1 with a priori bounds, then

‖qapp − q‖2
L2 ≤ C1

k2
max︸ ︷︷ ︸

lack of high
frequencies

+C2

N∑
n=0

‖F(qapp
n ) − F(qn)‖2

L2︸ ︷︷ ︸
noise on measurements of F(qn)

+C3

N∑
n=0

‖F(qapp
n ) − F(qn)‖2−2ε

L2︸ ︷︷ ︸
lack of low frequencies

, (1.37)
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where ε ∈ (0, 1) and C1, C2, C3 are constants.

This stability result is less than linear and is very similar to the one established for the Calderon
problem in impedance theory [102]. Using this theorem, we can reconstruct several qn for n < N ,
which approximate q. This reconstruction method was tested on finite element simulated data, and
Figure 1.12 presents an example of reconstruction.
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0.6
0.8
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qapp

0

2

4·10−2

Figure 1.12 – Reconstruction of an inhomogeneity q. On the left is the initial representation of q, and on the right is
the reconstruction qapp where the support of q is reminded in black line. In this reconstruction, N = 20 modes are used

to reconstruct q with a range of frequencies kmin = 0.01 and kmax = 150.

A similar study is conducted for geometry defects and bends. We use a mapping from the
perturbed waveguide to a regular waveguide (see Figure 1.8) which introduces new terms in the
Helmholtz equation (see equation (1.25)). Under the Born approximation framework, we can neglect
most of these terms. In the case of a bend, the scattered wavefield is close to the solution of{

∆us + k2us = f(x)uinc in Ω,
∂νu = 0 on ∂Ω, (1.38)

where f is a function depending explicitly on the parameters of the bend. Again, measurements
on a slice of the waveguide give partial information on the Fourier transform of f . However, this
case is simpler than the inhomogeneities since the first mode n = 0 alone carries all the needed
information

F(f)(k) ∀k ∈ (kmin, kmax). (1.39)
Using Theorem 1.1, we reconstruct f and the parameters of a bend in a stable way. An illustration
of such a reconstruction is presented in Figure 1.13. Similarly, in the case of width defects, the
scattered wavefield is close to the solution of{

∆us + k2us = 0 in Ω,
∂νus = ikh′uinc on ∂Ω. (1.40)

We see that we have a boundary source term instead of the internal source term. However, similar
studies are conducted, and the measurements of us give information on the Fourier transform of
h′. Here, we only need to use the modes n = 0 and n = 1 to reconstruct all the information on
h′. Then, using Theorem 1.1, we reconstruct stably h′, and then h. Reconstructions are shown in
Figure 1.13.

1.3.2 Elastic waveguides
In Chapter 3, we are interested in generalizing the results of the previous chapter to two- and
three-dimensional elastic plates satisfying the elasticity equation (1.14). The aim is to solve the
inverse problem

Reconstruct the defect from us,k|S for different k ∈ R+ where S is the top surface of Ω. (1.41)
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Initial shape
Reconstruction slightly shifted

Figure 1.13 – Reconstruction of geometry defects and bends in waveguides. On the left is the reconstruction of a
waveguide with two successive bends, and on the right is the reconstruction of a geometry defect. The relative L2-errors
are 8.3% and 5.3%. The black lines represent the initial shape of Ω, and the red reconstructions of Ω, slightly shifted for

comparison purposes. Here, kmin = 0.01 and kmax = 40.

Even if the initial goal is to provide a reconstruction method in perturbed waveguides, a significant
part of this chapter is dedicated to studying the forward problem in regular elastic waveguides.
Indeed, to use Born approximation, we need control of any wavefield propagating in a regular
waveguide by the norm of the source that generated it. This control was easily obtained in the
acoustic case thanks to the orthogonality of the modes and the Parseval equality. Still, things get
more complicated in the elastic case as Lamb modes do not form an orthogonal family.

We propose a study of the inhomogeneous Lamb modes when their index n tends toward infinity
to resolve this issue. Relying on an old asymptotic of kn provided by Merkulov et al. [67], we can
control the decreasing of inhomogeneous Lamb modes (un, vn) and the convergence to the modal
decomposition

∑
anun and

∑
bnvn. It leads to the following control Theorem:

Theorem 1.2. Every wavefield u in a two-dimensional elastic waveguide generated by an internal
source f ∈ H1(Ω,R2) and a boundary source b ∈ H̃

3/2
(R,R2), both compactly supported, satisfies

‖u‖H3(Ωr) ≤ C
(

‖f‖H1(Ω) + ‖b‖H3/2(R)

)
, (1.42)

where C is a constant.

While proving this result, we had to study the critical frequencies of the waveguide, where the
elastic problem is not well-posed, to avoid them. By doing so, we provide a characterization of such
frequencies, unproved until now:

Proposition 1.1. Critical frequencies can be seen as frequencies satisfying one of these three
equivalent definitions:

• The denominator of the Fraser bi-orthonormality relation (1.19) and (1.20) vanishes and
prevents from recovering the coefficients an and bn,

• The Lamb basis (un, vn) loses its completeness and a new mode, called a generalized Lamb
mode, needs to be added for the family to remain complete,

• The derivative ∂ωReal(kn) is infinite or equivalently, seeing ω as a function of kn, we have
∂Real(kn)ω = 0.

Before studying the inverse problem, we also clarify the propagation of waves in three-dimensional
plates. We are especially interested in finding a general definition of Lamb waves in three-dimensional
spaces and understanding their interactions with the SH waves in three dimensions.
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Using a Helmholtz-Hodge decomposition [88, 103] of the wavefield on the surface of the plate,
we prove that any wavefield propagating in a three-dimensional plate can be explicitly decomposed
as a Lamb part, which is curl-free, and an SH part, which is divergence-free:

Theorem 1.3. Every wavefield u in a three dimensional waveguide can be decomposed as u =
uL + uSH where

uL(x, z) =
(∑

n>0
An(x)un(z),

∑
n>0

bn(x)vn(z)
)
, uSH(x, z) =

∑
n≥0

Cn(x)ϕn(z), 0

 , (1.43)

and An : R2 → R2, bn : R2 → R and Cn : R2 × R2 satisfy Helmholtz equations on the surface of
the waveguide. Moreover, the control (1.42) still holds.

Note that this theorem enables high-speed computations of wavefields in three-dimensional
waveguides since we have reduced the three-dimensional problem to a collection of two-dimensional
ones.

Finally, we have all the needed tools to apply the Born approximation in elastic waveguides and
reconstruct small defects. Due to the complexity of the Lamb basis, the recovery of inhomogeneity
proves much more complex than in the acoustic case, and we choose to leave it aside and focus on
the reconstruction of geometry defects with varying width h. We prove that by providing a post-
treatment of measurements, we can extract the Fourier transform of h′ (or the Hankel transform
of ∇u in three dimensions), and Theorem 1.1 still applies. Reconstructions very similar to the one
presented in Figure 1.13 can be obtained.

1.4 Reconstruction in slowly varying waveguides using locally resonant
frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second part of the manuscript studies a different approach to reconstruct defects: instead of
avoiding cut-off frequencies, we take advantage of them to do the reconstruction and we accept to
deal with the non linearity of the inverse problem. Like in Chapter 3, we now focus on reconstructing
only geometry defects. The modeling of our problem is inspired by the experiments conducted at
the “Institut Langevin” on elastic plates with varying widths [11, 58, 29]. In these experiments,
a laser source generates a wavefield propagating in the plate. When the frequency gets close to a
cut-off frequency in a regular plate, the amplitude response explodes. Since cut-off frequencies are
closely linked to the width of the plate (remember the exact expression (1.11) in the acoustic case),
it provides a straightforward method to recover the width h of a regular waveguide.

Experiments suggest that this phenomenon can be generalized to plates with varying widths. If
the frequency corresponds to a local cut-off of width h(x?), the amplitude response should explode
at the point x? and only there. We present in Figure 1.14 experimental results that support this
idea.

This part aims at investigating this phenomenon from a mathematical point of view and under-
stand if defects can be reconstructed using these specific frequencies.

1.4.1 Forward problem in the acoustic case
In Chapter 4, we study the simplest case of a two-dimensional acoustic waveguide with varying
width h(x). The goal is to understand what appends exactly when the frequency is chosen as a cut-
off frequency of one section h(x?). As mentioned above, all the existing works on this topic are done
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Figure 1.14 – From [11, 70]: Experimental setup to measure the amplitude response in a plate with index variations.
On the top are a picture and a scheme of the experimental setup: a laser source generates elastic displacements is a

sample and this displacement is measured using an heterodyne interferometer. On the bottom left is a plate
representation, where black and white areas do not have the same index. Measurements are made along the dotted line.
The amplitude response along the dotted line at the cut-off frequency associated with the white area is represented on

the right. We notice a significant response in the white area, while the response in the black area is weak. These
measurements can be used to identify the black and the white areas.

in slowly varying waveguides, and we use the same framework. We want to find an approximation
of the wavefield and control the approximation error.

From now on, each frequency such that k = Nπ/(2h(x?)) for a mode N ∈ N and a coordinate
x? ∈ R is called a locally resonant frequency, and we have kN (x?) = 0. As mentioned in (1.29) we
expect each modal component to satisfy the modal equation

u′′
n + k2

nun = 0, (1.44)

and Olver extensively studied this equation in [76, 77]. Adapting his works, we can approximate
the Green function of (1.44) and control the decrease of these approximations with respect to the
mode n. Then, we follow the same process used to neglect terms in Born approximations. However,
we adapt it to ensure that it still works around locally resonant frequencies. It enables us to provide
a controlled approximation of the solution u of the Helmholtz equation, summarized in the following
theorem:

Theorem 1.4. A wavefield u in slowly variable waveguides can be approximated by

uapp(x, y) :=
∑
n≥0

uapp
n (x)ϕn(y), (1.45)
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Figure 1.15 – Wavefields |u| propagating in a slowly variable waveguide for two different locally resonant frequencies
k = 31.1 and k = 31.4.

where uapp
n is the convolution of source terms with the Green function Gapp

n defined by

Gapp
n (x, s) =



c1 exp
(
i

∣∣∣∣∫ x

s

kn

∣∣∣∣) if n < N,

c2 exp
(

−
∣∣∣∣∫ x

s

kn

∣∣∣∣) if n > N,

c3 A

(
−
(

3
2

∫ x

x?

kn

)2/3
)

if n = N, s > x > x?,

(1.46)

where A stands for the Airy function [4] and c1, c2, c3 are constants. Moreover, there exists a
constant C > 0 such that

‖u− uapp‖H1 ≤ C‖h′‖∞. (1.47)

Using this result, we better understand the propagation of waves at a locally resonant frequencies.
As illustrated in Figure 1.15, the wavefield seems very sensitive to small changes in locally resonant
frequencies. More precisely, the coordinate x? acts like an immaterial barrier that reflect the
wavefield back to the source.

1.4.2 Inverse problem in the acoustic case from surface measurements
Chapter 5 uses the previous study of the forward problem near locally resonant frequencies to
develop a new reconstruction method and solve the inverse problem

Find h from uk|S for frequencies k ∈ R+ where S is the top surface of Ω. (1.48)

Since the wavefield at locally resonant frequencies is very sensitive to width defects, we plan on
using measurements of u to reconstruct the coordinate x? mentioned above. Since x? is associated
with the locally resonant frequency k, we know using (1.11) that h(x?) = Nπ/(2k). It means that
if we can find the location of x?, we immediately know the local width at this point. Then, turning
the frequency to browse all the locally resonant frequencies, we should get a good approximation
of h.

Since we want to use this reconstruction method for elastic plates later, we assume that we have
access to measurements of the wavefield at the surface of the waveguide, even if it may not be a good
physical model for acoustic pipes. Using Theorem 1.4, we already have an approximation of the
wavefield. However, this approximation is hardly usable due to the complexity of the expressions
at n = N . To simplify it, we use a Taylor approximation of the wavefield around the point x?, and
we prove that measurements are close to a three parameters function

dapp
z,α,x? := zA(α(x− x?)). (1.49)
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Denoting by d the measurements of u(X, 0) where X is a set of coordinates, we fit this three-
parameter function on the data with

(z, α, x?) = argmin (J), where J(z, α, x?) = 1
2‖zA(α(X − x?)) − d‖2. (1.50)

We prove that this problem is well-posed and we find good approximations of z, α but most
importantly of x?. Setting happ(x?) = Nπ/(2k), it provides a good approximation of h at one
point. We then repeat the same method when changing the frequency to get a reconstruction of h,
controlled by the following theorem:

Theorem 1.5. We denote by d the measurements of u(x, 0). There exists a constant C > 0 such
that

‖happ − h‖∞ ≤ C‖h′‖∞
4/3︸ ︷︷ ︸

successive approximations
of measurement

+C‖h′‖∞‖d− u(x, 0)‖L2︸ ︷︷ ︸
error on measurements

. (1.51)

This method enables to reconstruct h with a very high sensibility, as long as the waveguide slowly
varies. We present two different reconstructions in Figure 1.16.

Figure 1.16 – Reconstruction of width defects in slowly varying waveguides given surface measurements. Black lines
represent the initial shape of Ω, and red ones the reconstruction of Ω, slightly shifted for comparison purposes.

1.4.3 Inverse problem in the acoustic case from section measurements
In the previous Chapter, we used surface measurements to reconstruct the width of the waveguide.
Even if this reconstruction method was initially thought to be applied to elastic plates, we noticed
that it could also be used in acoustic pipes, providing that data are taken on one section of the
waveguide instead of the surface. In Chapter 6, we explain how to adapt the reconstruction method
to section data and solve the inverse problem

Find h from uk|Σ for frequencies k ∈ R+ where Σ is a section of Ω. (1.52)

Since data are taken on one surface, we can hardly use the previous method to fit the three
parameters Airy function to the data. We assume that the measurement section is located at
x = xs. Using the study of the forward problem presented in Theorem 1.4, we prove that we have
access to

Φ
(∫ xs

x?

kN (z)dz
)
, where Φ(x) = sin

(
x+ π

4

)
exp

(
ix+ i

π

4

)
. (1.53)

If the discretization of the frequency interval is sufficiently small, we can find a local inverse to
the function Φ. Since we still want to recover the location of x?, we approximate the integral
of kN using a quadrature method of order 1. Wet get a linear system MV = m, where M is a
known matrix, m is a vector made with measurements data and V contains the locations of each
x?. Solving this system and using the previous approximation h(x?) = Nπ/(2k) provides again a
approximation happ of the width of the waveguide, and we can prove the following stability result:

21



In
tro

du
ct
io
n

Theorem 1.6. Let ρ be the discretization step of the frequency interval measurements. There exists
constants C1, C2 > 0 such that

‖happ − h‖∞ ≤ C1‖h′‖∞ρ
−5/2︸ ︷︷ ︸

inversion of M

+ C2ρ‖h′‖2
∞︸ ︷︷ ︸

approximation of
measurements

. (1.54)

This reconstruction method only works with monotonous widths since we can only put the source
of waves near the measurement section. It does not provide an accurate reconstruction for general
non-monotonous width variations, as illustrated in Figure 1.17.

Figure 1.17 – Reconstruction of width defects in slowly varying waveguides given section measurements. Black lines
represent the initial shape of Ω, and red ones the reconstruction of Ω, slightly shifted for comparison purposes.

1.4.4 Generalization to the elastic case
The last chapter of this thesis extends the results of Chapter 5 and Chapter 6 to the elastic case
and solve the inverse problem

Find h from uk|S for frequencies k ∈ R+ where S is the top surface of Ω. (1.55)

In the acoustic case, the relation between h and the vanishing of kn was explicit and used to
approach the width at the locally resonant point. The elastic case proves more difficult since the
Rayleigh Lamb dispersion relation, which rules the dependency of h and kn, does not have explicitly
solutions. Moreover, contrary to the acoustic case, there are three types of critical points instead
of one:

• The longitudinal points (L) where kn = 0 and the Lamb mode un vanishes,

• The transverse points (T) where kn = 0 and the Lamb mode vn vanishes,

• The zero-group velocity points (ZGV) where ∂Real(kn) = 0 and k 6= 0.

We represent in Figure 1.18 an example of the dispersion curves of kn and the positions of critical
points.

The situation near longitudinal and transverse points is very similar to the one presented in
Chapter 3 for the acoustic case, and using Theorem 1.2, we can prove a theorem similar to Theorem
1.4 in the elastic case. The situation near ZGV points is more complex and needs further studies.
Using a modified Lamb basis which is continuously defined all along the varying waveguide, we
provide an analysis of the forward problem. We especially prove that around the locally resonant
point x? such that kn(x?) is a ZGV point, the wavefield can be approached with an explicit but
hardly usable expression (see Theorem 7.3 in Chapter 7). More importantly, we notice that a
specific linear combination of u and v can be approached by the three parameters function

dapp
α,z,x? := zA(α(x− x?)), (1.56)
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Figure 1.18 – Some dispersion curves of the relation between h and k, with the position of the three types of critical
points. Purple curves are in the real plan, green one are in the purely imaginary one, and yellow one are in neither of

them.

previously used in Chapter 4. Then, we can apply the reconstruction method developed in Chapter 5
to reconstruct width defects in elastic plates. Propagation and reconstructions at longitudinal and
transverse points are very similar to the one presented in Figure 1.15 and 1.16. In Figure 1.19, we
present one example of propagation near ZGV points and one reconstruction obtained using this
locally resonant point.

−5 0 50

0.1
|v|, ω = 13.17

0

2

4

Figure 1.19 – Reconstruction method at ZGV locally resonant points. On the left, we represent the wavefield |v|
propagating in a slowly variable waveguide at frequency ω = 13.17. On the right, we use these propagation

measurements for different frequencies to reconstruct the width variations. The initial is represented in black, and the
reconstruction is in red and lightly shifted for comparison purposes

Chapters of this manuscript come from published, submitted or in preparation articles. This
leads to some redundancies, especially at the beginning of chapters. Still, it enables each chapter
to be readable independently and aside from the others. At the end of this manuscript, we will
discuss all the limitations and extensions of these results and raise possible future works related to
our research.
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2
Small defects reconstruction inwaveguides frommul-
tifrequency one-side scattering data

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Forward and inverse source problem in a waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Forward source problem in a perfect waveguide 30
2.2.2 Forward source problem with perturbations 32
2.2.3 Inverse source problem in a perfect waveguide 34
2.2.4 Inverse source problem from limited frequency data 36

2.3 Application to the identification of shape defects, bending or inhomogeneities . . . . . . . . . . . 42
2.3.1 Transformation of the deformed waveguide 42
2.3.2 Detection of bends 43
2.3.3 Detection of bumps 46
2.3.4 Detection of inhomogeneities 48

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.1 Numerical source inversion from limited frequency data 50
2.4.2 Generation of data for the detection of defects 52
2.4.3 Detection of bends 53
2.4.4 Detection of bumps 54
2.4.5 Detection of inhomogeneities 55

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Appendix 2.A: Proof of Proposition 2.1 and 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix 2.B: Proof of Proposition 2.2 and 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

The aim of this first chapter is to present a new multi-frequency inversion method to reconstruct
small defects in a 2D acoustic waveguide. This case is the simplest one to study and gives insights
on possible generalization to 3D acoustic waveguides or 2D elastic waveguide. Given one-side multi-
frequency wavefield measurements of propagating modes, we use a Born approximation to provide
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a L2-stable reconstruction of three types of defects: a local perturbation inside the waveguide, a
bending of the waveguide, and a localized defect in the geometry of the waveguide. This method is
based on a mode-by-mode spatial Fourier inversion from the available partial data in the Fourier
domain. Indeed, in the available data, some high and low spatial frequency information on the
defect are missing. We overcome this issue using both a compact support hypothesis and a minimal
smoothness hypothesis on the defects. We also provide a suitable numerical method for efficient
reconstruction of such defects and we discuss its applications and limits.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In all this chapter, we present a method to detect and reconstruct small defects in a waveguide of
dimension 2 from multi-frequency wavefield measurements. The measurements are taken on one
section of the waveguide, and we assume that only the propagative modes can be detected. Indeed,
in most of practical cases, measurements are made far from the defects where the evanescent modes
vanish. In a waveguide Ω ⊂ R2, in the time harmonic regime the wavefield uk satisfies the Helmholtz
equation

∆uk + k2(1 + q)uk = −s, (2.1)
where k is the frequency, q is a compactly supported bounded perturbation inside the waveguide
and the function s is a source of waves.

(1) s

Σ

uinc
k us

k

q (2) s

Σ

uinc
k

us
k

(3)

Σ

s
uinc

k us
k

Figure 2.1 – Representation of the three types of defects: in (1) a local perturbation q, in (2) a bending of the
waveguide, in (3) a localized defect in the geometry of Ω. A controlled source s generates a wavefield uinc

k . When it
crosses the defect, it generates a scattered wavefield us

k. Both uinc
k and us

k are measured on the section Σ.

We focus on the inversion of three main types of defects represented in Figure 2.1: a local
perturbation of the index q, a bend of the waveguide, and a localized defect in the geometry of
Ω. The detection of such defects can be used as a non destructive means to monitor pipes, optical
fibers, or train rails for instance (see [55, 54]). A controlled source s generates wavefields in Ω for
some frequencies k ∈ K ⊂ R∗

+ and we assume the knowledge of the corresponding measurements
uk(x, y) for every (x, y) ∈ Σ where Σ is a fixed section of Ω.

The detection of bends or shape defects in a waveguide is mentioned in the articles [61, 3,
2]. To solve the forward problem, the authors use a conformal mapping or a local orthogonal
transformation to map the geometry to that of a regular waveguide. This method is very helpful
to understand the propagation of waves in irregular waveguides but is not easily adaptable for
the inverse problem and for the reconstruction of defects, since the transformation to a regular
waveguide is not explicit and proves numerically expensive.

The recovery of inhomogeneities in a waveguide using scattered field data has been extensively
studied. In [34], the authors use a spectral decomposition and assume knowledge of the far-field
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scattered wavefield to reconstruct the inhomogeneities in a 2D waveguide. The authors in [27] adapt
the Linear Sampling Method [31] to waveguides detection of inhomogeneities in 2D or 3D. In [9], an
asymptotic formula of the scattered field is used to localize small inclusions. Periodic waveguides
are considered in [25]. In all these articles, the frequency in the Helmholtz equation is fixed and it
is assumed that incident waves can be sent on every propagative mode in the waveguide. However,
as defects may be invisible at some frequencies (as shown in [36]) the frequency has to be chosen
wisely.

Our work concerns a different approach, also used in [13, 12], where we assume that data is
available for a whole interval of frequencies. This provides additional information that should help
not only localize but reconstruct the shape of the defect. The use of multi-frequency data provides
uniqueness of the reconstruction (see [7]) and better stability (see [14, 52, 93]). In this work we
assume that one only send the first propagative mode at different frequencies in the waveguide
as an excitation source. This situation seems to correspond to the practice of monitoring pipes
in mechanical experiments [55]. In this study, we assume that the defects are small in amplitude
and/or in support in order to approximate the wavefield using its Born approximation. This seems
to be a reasonable assumption considering the applications that this work intends to address. This
approximation is described in [32], and is also used in [34, 9]. Our strategy to study the impact
of small geometrical defects is to provide a well suited mapping from the perturbed waveguide to
a perfect waveguide that generates some change in the Helmholtz equation itself. Through the
reconstruction of these modifications in the equation while assuming a perfect waveguide, it is
possible to recover the defects in the geometry.

An important difficulty in detecting inhomogeneities using one sided multi-frequencies measure-
ments in a waveguide is that low spatial frequency information carried by vanishing modes about
the inhomogeneities may be missing. Indeed, these modes are not measurable in practice due to
their exponential decay.

One of the key results of this chapter is given by Theorem 2.2 that provides conditions to
control the error of approximation in the recovery of a function from an incomplete knowledge of
its Fourier transform. In this result, we assume that both high frequencies and a reasonable amount
of low frequencies are missing. Nevertheless, a stable inversion in L2 remains possible assuming a
reasonable a priori knowledge of the smoothness and the support of the unknown perturbation.
This result provides a theoretical stability argument that allows us to run a mode-by-mode well-
conditioned inversion using a penalized least-square technique. This method is numerically efficient,
and can be applied to recover defects of the three different types.

The chapter is organized a follows. In section 2.2, we recall some properties of the forward source
problem in a waveguide using the modal decompositions of both the wavefield and the source. We
then study the inverse source problem with full frequency data and then with partial frequency
data. In section 2.3, we apply the results to recover all three types of defects that we are interested
in: internal inhomogeneities, bending or shape defects. In section 2.4, we present the numerical
method used to detect defects and some numerical simulations. To avoid the so called “inverse
crime” in the numerical tests, we use two different codes. We use a finite element based solver with
PML’s [18] to generate the data from a waveguide with defects. Another solver, based on a modal
decomposition, allows us to recover the inhomogeneities from the simulated data. Only the second
code is used in the inversion procedure.

2.2 Forward and inverse source problem in a waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we present the tools required to study the forward and inverse source problems in
a waveguide. First, we recall some classical results about the forward source problem and modal
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decomposition. These results can also be found in [27, 34]. Next, assuming that the perturbation
is small enough, we show existence, uniqueness and stability of a solution to the perturbed forward
source problem. Finally, we present an inversion strategy using the measurements of the wavefield
on a section of the waveguide for full and partial frequency data.

2.2.1 Forward source problem in a perfect waveguide
We consider a 2D infinite perfect waveguide Ω = R × (0, 1) in which waves can propagate at
frequency k > 0 according to the homogeneous Helmholtz equation

∆uk + k2uk = 0. (2.2)

We choose a Neumann condition on the boundary ∂Ω, but this condition can be changed to a
Dirichlet or a Robin condition without altering of our results. It is known that the homogeneous
Neumann spectral problem for the negative Laplacian on (0, 1) has an infinite sequence of eigen-
values λn for n ∈ N, and that it is possible to find eigenvectors ϕn that form an orthonormal basis
of L2(0, 1). Precisely,

λn = n2π2, ϕn =
{

1 if n = 0,
y 7→

√
2 cos(nπy) otherwise. (2.3)

This basis proves quite helpful in the study of waveguides since every function f ∈ L2
loc(Ω) can be

decomposed as a sum of modes:

f(x, y) =
∑
n∈N

fn(x)ϕn(y) f. a. e. (x, y) ∈ Ω, fn ∈ L2
loc(R). (2.4)

Let ν be the outward unit normal on ∂Ω. Using this orthonormal basis, the solutions to the
homogeneous problem {

∆uk + k2uk = 0 in Ω,
∂νuk = 0 on ∂Ω, (2.5)

are linear combinations of (x, y) 7→ ϕn(y)e±iknx where k2
n = k2 − n2π2 and Re(kn), Im(kn) ≥ 0.

This solution is called the n-th mode. In the following, we assume that kn 6= 0, meaning that we
do not choose a wavelength k = nπ for n ∈ N. Two types of modes appear in the decomposition of
uk. Propagative modes correspond to n < k/π and then kn ∈ R, while evanescent modes feature
n > k/π and kn ∈ iR. The amplitude of evanescent modes decays exponentially fast at one end
of the waveguide. An extra condition is then needed to ensure the uniqueness of a solution to the
Helmholtz problem (2.5).

Definition 2.1. A solution uk ∈ H2
loc(Ω) of (2.2) is outgoing if it satisfies the radiation conditions:∣∣∣∣〈uk(x, ·), ϕn〉′ x

|x|
− ikn〈uk(x, ·), ϕn〉

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N, (2.6)

where 〈·, ·〉 is the inner scalar product in L2(0, 1).

Remark 2.1. This condition is an adaptation to our problem of the Sommerfeld condition used
in free space. The articles [34, 27] adopt another radiation condition called Dirichlet to Neumann
condition, which is equivalent to our radiation condition when s is compactly supported.

Using the previous conditions, the following proposition holds, the proof of which is given in the
Appendix 2.A at the end of the chapter.
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Proposition 2.1. For every s ∈ L1(Ω) ∩ L2
loc(Ω), the problem ∆uk + k2uk = −s in Ω,

∂νuk = 0 on ∂Ω,
uk is outgoing,

(2.7)

has a unique solution uk ∈ H2
loc(Ω), which decomposes as

uk(x, y) =
∑
n∈N

uk,n(x)ϕn(y) where uk,n(x) = i

2kn

∫
R
sn(z)eikn|x−z|dz, (2.8)

if the decomposition of s is s(x, y) =
∑
n∈N

sn(x)ϕn(y).

Remark 2.2. It is interesting to note that s does not need to have a compact support in this
context, as is the case in the free space Helmholtz problem.

Let Ωr := (−r, r) × (0, 1) where r > 0 denote a restriction of length 2r of the waveguide. We
assume that every source defined on Ωr is extended by 0 in Ω and we define the forward Helmholtz
source operator Hk by

Hk : L2(Ωr) → H2(Ωr)
s 7→ uk Ωr

where uk is the solution to (2.7). (2.9)

The following proposition quantifies the dependence between u and the source s. Its proof is given
in Appendix 2.B at the end of the chapter.

Proposition 2.2. The forward Helmholtz source operator Hk is well defined, continuous and there
exists C > 0 depending only on k and r such that for every s ∈ L2(Ωr),

‖uk‖H2(Ωr) ≤ C‖s‖L2(Ωr). (2.10)

Remark 2.3. We notice from the proof that C increases when the distance between k and πN
decreases.

In the following, we also need to consider the problem where the source is located on the boundary
of the waveguide. Let ∂Ωtop = R× {1} and ∂Ωbot = R× {0}. Similarly to Proposition 2.1, we have

Proposition 2.3. Let b1, b2 ∈ L1(R) ∩ H1/2
loc (R). The Helmholtz equation

∆uk + k2uk = 0 in Ω,
∂νuk = b1 on ∂Ωtop,
∂νuk = b2 on ∂Ωbot,

uk is outgoing,

(2.11)

has a unique solution uk ∈ H2
loc(Ω), which decomposes as

uk(x, y) =
∑
n∈N

uk,n(x)ϕn(y) (2.12)

where
uk,n(x) = i

2kn

∫
R
(b1(z)ϕn(1) + b2(z)ϕn(0))eikn|x−z|dz. (2.13)
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In the restricted guide Ωr, we assume again that every source defined on (−r, r) is extended by
0 on R and we define the forward Helmholtz boundary source operator Gk by

Gk :

(
H̃

1/2
(−r, r)

)2
→ H2(Ωr)

(b1, b2) 7→ uk

where uk is the solution to (2.11), (2.14)

and H̃
1/2

(−r, r) is the closure of D(−r, r), the space of distributions with support in (−r, r), for
the H1/2(R) norm (see [66] for more details). A result similar to Proposition 2.2 holds:
Proposition 2.4. The forward Helmholtz boundary source operator Gk is well defined, continuous
and there exists a constant D depending only on k and r such that for every b1, b2 ∈ H̃

1/2
(−r, r),

‖G(b1, b2)‖H2(Ωr) ≤ D
(

‖b1‖
H̃

1/2
(−r,r)

+ ‖b2‖
H̃

1/2
(−r,r)

)
. (2.15)

Remark 2.4. Combining Propositions 2.1 and 2.3, we see by linearity that the problem
∆uk + k2uk = −s in Ω,

∂νuk = b1 on ∂Ωtop,
∂νuk = b2 on ∂Ωbot,

uk is outgoing,

(2.16)

has a unique solution uk ∈ H2
loc(Ω).

We represent in Figure 2.2 illustrations of wavefields uk generated by internal and boundary
sources.

3 4 5 60
0.2
0.4
0.6
0.8

1
internal source s

0

0.15

2 3 4 5 60
0.2
0.4
0.6
0.8

1
boundary source b2

0

8
·10−2

Figure 2.2 – Representation of wavefields |uk| propagating in a regular waveguide. On the left, the wavefield is
generated by an internal source s whose support is delimited with a black line. On the right, the wavefield is generated

by a boundary source b2 whose support is represented with a write line. In both situations, k = 6.

2.2.2 Forward source problem with perturbations
In the following we introduce a theoretical framework for a perturbed Helmholtz problem in a
perfect waveguide. Under the Born hypothesis, we prove existence and uniqueness of a solution for
the perturbed problem. Then, we provide estimates on the error between the exact solution of the
perturbed problem and its Born approximation.

The perturbed Helmholtz equation takes the form
∆wk + k2wk = −s− S(wk) in Ω,

∂νwk = b1 + T1(wk) on ∂Ωtop,
∂νwk = b2 + T2(wk) on ∂Ωbot,
wk is outgoing,

(2.17)
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where S, T1, T2 are linear operators depending on wk. Moreover, we assume that there exists r > 0
such that supp(S(wk)) ⊂ Ωr and supp(T1(wk)), supp(T2(wk)) ⊂ (−r, r) for every wk ∈ H2

loc(Ω).
Using the forward Helmholtz source operator Hk and the forward Helmholtz boundary source

operator Gk defined in (2.9) and (2.14), we can rewrite this equation on Ωr:

wk = Hk(s) + Gk(b1, b2) + Hk(S(wk)) + Gk(T1(wk), T2(wk)). (2.18)

Proposition 2.5. Let r > 0 such that S : H2(Ωr) → L2(Ωr) and T1, T2 : H2(Ωr) → H̃
1/2

(−r, r). Let
C and D be the constants defined in Propositions 2.2 and 2.4. Let s ∈ L2(Ωr), b1, b2 ∈ H̃

1/2
(−r, r)

and assume that

µ := C‖S‖H2(Ωr)→L2(Ωr) +D
(

‖T1‖
H2(Ωr)→H̃

1/2
(−r,r)

+ ‖T2‖
H2(Ωr)→H̃

1/2
(−r,r)

)
< 1. (2.19)

Then (2.18) has a unique solution wk ∈ H2(Ωr) and

wk =
∑
m∈N

[Hk ◦ S + Gk ◦ (T1, T2)]m (Hk(s) + Gk(b1, b2)) . (2.20)

Proof. If (2.19) is satisfied then Hk ◦ S + Gk ◦ (T1, T2) is a contraction, and the expression (2.20) is
the expansion of wk into a Born series (see for instance [32]).

Remark 2.5. In this work, we only consider perturbations which affect the partial differential
equation via a linear operator. However, the above Proposition also extends to non linear operators,
assuming they are Lipschitz.

To compute numerically wk, we approximate the Born series by its first term.

Definition 2.2. Let wk be defined by (2.20). We define vk, the Born approximation of wk by

vk = Hk(s) + Gk(b1, b2). (2.21)

Proposition 2.6. Assume that µ satisfies (2.19) as in Proposition 2.5. Let wk be the solution of
(2.18) and vk its Born approximation. Then

‖wk − vk‖H2(Ωr) ≤
(
C‖s‖L2(Ωr) +D

(
‖b1‖

H̃
1/2

(−r,r)
+ ‖b2‖

H̃
1/2

(−r,r)

)) µ

1 − µ
. (2.22)

Proof. We use the definitions of wk and vk and the sum of geometrical series.

Remark 2.6. If S, T1 and T2 are small, we have proved that the solution of (2.17) is very close to
the solution of 

∆vk + k2vk = −s in Ω,
∂νvk = b1 on ∂Ωtop,
∂νvk = b2 on ∂Ωbot,

vk is outgoing,

(2.23)

and we have quantified the error made by approximating wk by vk.
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uk

s Ω

x = 0

Figure 2.3 – Representation of the inverse source problem in a perfect waveguide. A source s generates a wavefield uk

propagation in Ω. This wavefield is measured on the section x = 0, symbolized with red triangles.

2.2.3 Inverse source problem in a perfect waveguide
In this section, we consider the inverse problem of reconstructing a real-valued source s. The goal
is to determine the location of s form measurements made on the section {0} × (0, 1) at every
frequency k > 0, as illustrated in Figure 2.3.

For every k > 0 and 0 < y < 1, uk(0, y) is measured. Using Proposition 2.1, we know that

uk(0, y) =
∑
n∈N

uk,n(0)ϕn(y) where uk,n(0) = i

2kn

∫
R
sn(z)eikn|z|dz, (2.24)

if the decomposition of s is s(x, y) =
∑
n∈N

sn(x)ϕn(y). Since

uk,n(0) =
∫
R
uk(0, y)ϕn(y)dy, (2.25)

we can theoretically have access to uk,n(0) for every n ∈ N. However, in real-life experiments, noise
is likely to pollute the response of evanescent mode, so we assume that we only have access to
uk,n(0) for every n ∈ N such that n < k/π:

uk,n(0) = i

2kn

∫
R
sn(z)eikn|z|dz ∀k > 0, ∀n ∈ N, n < k/π. (2.26)

We notice that this expression depends on kn =
√
k2 − n2π2. Since

(k, n) 7→ (ω, n) := (
√
k2 − n2π2, n), (2.27)

is one-to-one from {(k, n) ∈ R∗
+ × N, n < k/π} to R∗

+ × N, the available data is then

dω,n := i

2ω

∫
R
sn(z)eiω|z|dz ∀n ∈ N, ∀ω ∈ R∗

+. (2.28)

This change of variable means that given a mode n and a value ω > 0, there exists a frequency
k > 0 such that n is a propagative mode and kn = ω. In order to remove the absolute value in the
expression of the available data, we assume that supp(s) ⊂ (0,+∞) × (0, 1), i.e. that the source is
located to the right of the section where the measurements are made.

Definition 2.3. Let H be the Hilbert space defined by

H :=
{
û : R∗

+ → C
∣∣∣∣ ∫ +∞

0
ω2|û(ω)|2dω < +∞

}
, ‖û‖2

H =
∫ +∞

0
ω2|û(ω)|2dk. (2.29)
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We denote by Γ the forward modal operator and by Fsource the forward source operator for prob-
lem (2.7). Then Γ and Fsource are defined by

Γ :
L2(R+) → H

f 7→
(
ω 7→ i

2ω

∫ +∞

0
f(z)eiωzdz

)
, (2.30)

Fsource : L2(Ω) → `2(H)
s 7→ (Γ(sn))n∈N

, (2.31)

if the decomposition of s is s(x, y) =
∑
n∈N

sn(x)ϕn(y).

We choose the following definition for the Fourier transform:

F(f)(ω) =
∫
R
f(z)e−iωzdz.

Since s is real-valued, Γ is related to the Fourier transform:

F(f)(ω) =


2ω
i

Γ(f)(ω) if ω > 0
−2ω
i

Γ(f)(−ω) if ω < 0
.

Using the properties of the Fourier transform, we can prove the following Proposition:

Proposition 2.7. The forward modal operator Γ and the forward source operator Fsource satisfy
the relations

‖Γ(f)‖2
H = π

4 ‖f‖2
L2(R+) ∀f ∈ L2(R+), (2.32)

‖Fsource(s)‖2
`2(H) = π

4 ‖s‖2
L2(Ω) ∀s ∈ L2(Ω), (2.33)

and their inverse operators are given by

Γ−1 :
H → L2(R)

v 7→
(
x 7→ i

π

∫ +∞

0
ωv(ω)eiωxdω + i

π

∫ 0

−∞
ωv(−ω)eiωxdω

)
, (2.34)

F−1
source :

`2(H) → L2(Ω)

(vn)n∈N 7→

(
(x, y) 7→

∑
n∈N

Γ−1(vn)(x)ϕn(y)
)
. (2.35)

We can use the same framework for problem (2.11) when the source term is a boundary term.
In this case, the measured data is

uk,n(0) = i

2kn

∫
R
(−b1(z)ϕn(1) + b2(z)ϕn(0))eikn|z|dz ∀n ∈ N, (2.36)

As (k, n) 7→ (
√
k2 − n2π2, n) is one-to-one from {(k, n) ∈ R∗

+ ×N, n < k/π} to R∗
+ ×N, we assume

that the available data is

dω,1 = i

2ω

∫
R
(b1(z) + b2(z))eiω|z|dz ∀ω ∈ R∗

+, (2.37)
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dω,2 = i

2ω

∫
R
(−

√
2b1(z) +

√
2b2(z))eiω|z|dz ∀ω ∈ R∗

+. (2.38)

Again, we assume that supp(b1), supp(b2) ⊂ (0,+∞) and with the help of Proposition 2.3, we define
the forward operator.

Definition 2.4. The forward Helmholtz boundary source operator Fbound for the problem (2.11) is
defined by

Fbound :

(
H1/2(R+)

)2
→ H × H

(b1, b2) 7→

 ω 7→ i

2ω

∫ +∞

0
(b1(z) + b2(z))eiωzdz

ω 7→ i√
2ω

∫ +∞

0
(b2(z) − b1(z))eiωzdz

 . (2.39)

This operator is invertible:

Proposition 2.8. The forward Helmholtz boundary source operator Fbound is invertible:

F−1
bound :

H × H →
(

H1/2(R+)
)2

(v1, v2) 7→
(

Γ−1
(√

2v1 − v2

2
√

2

)
,Γ−1

(√
2v1 + v2

2
√

2

)) . (2.40)

Propositions 2.7 and 2.8 show that the measurements of the wave on a section of the waveguide
for every frequency k > 0 are sufficient to reconstruct the source. Thus, the inverse operators can
be computed explicitly and in a stable way. However, it is unrealistic to measure uk for every
frequency k > 0 in practice. We address this issue of limited data in the next subsection.

2.2.4 Inverse source problem from limited frequency data
In this section, we assume that the frequency data are only known in a given interval. To reconstruct
every sn in (2.7), we need to find a way to reconstruct a function f knowing only the values of its
Fourier transform on a given interval. This problem is called Fourier synthesis, and has been studied
in [51] for instance. If the given interval has the form (0, ω1), some regularity on the function is
sufficient to provide a good reconstruction of f and to control the approximation error (see [38]).
On the other hand, we have to deal in the next section with intervals of the form (ω0,+∞). This
case is harder, and it seems difficult to get a good reconstruction of the function f . However, if the
function f is compactly supported, its Fourier transform is analytic. Thus, the values of Γ(f)(ω)
for ω in an interval (ω0, ω1) completely determine Γ(f)(ω) for ω in (0,+∞). In the following, we
address the issue of the stability of this reconstruction.

We start with a lemma to control the L2 norm on (0, ω0) of an analytic function in terms of its
values on (ω0, ω0 + σ) where ω0 and σ are positive real numbers.

Lemma 2.1. Let f be a function in C∞(R+) ∩ L2(R+) and assume that for every j ∈ N and

ω ∈ R+, |f (j)(ω)| ≤ c
rj

jα
‖f‖L2(R+) where r, α, c ∈ R∗

+. Let ω0, σ ∈ R∗
+ and ε ∈ (0, 1). There exists

a constant ξ, depending only on ω0, σ, r, α, c, ε, such that

‖f‖L2(0,ω0)

‖f‖L2(R+)
≤ ξ

(‖f‖L2(ω0,ω0+σ)

‖f‖L2(R+)

)1−ε

. (2.41)
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Proof. Let n ∈ N, we define δj = c
rj

jα
and write the Taylor expansion of f at ω0 up to order n:

f(ω) =
n∑

j=0

(ω − ω0)j

j! f (j)(ω0) +Rn(ω),

with
|Rn(ω)| ≤

δn+1‖f‖L2(R+)|ω − ω0|n+1

(n+ 1)! .

We denote by Pn ∈ Rn[X] the Taylor polynomial associated with this expansion:

Pn =
n∑

j=0
aj(X − ω0)j :=

n∑
j=0

f (j)(ω0)
j! (X − ω0)j ,

and the operator
In : Rn[X] ∩ L2(ω0, ω0 + σ) → Rn[X] ∩ L2(0, ω0)

P 7→ P
,

endowed with the norm
‖In‖ := sup

P ∈Rn[X]

‖P‖L2(0,ω0)

‖P‖L2(ω0,ω0+σ)
.

We immediately see that

‖f‖L2(0,ω0) ≤ ‖f − Pn‖L2(0,ω0) + ‖Pn‖L2(0,ω0)

≤ ‖Rn‖L2(0,ω0) + ‖In‖‖Pn‖L2(ω0,ω0+σ)

≤ ‖Rn‖L2(0,ω0) + ‖In‖‖Rn‖L2(ω0,ω0+σ) + ‖In‖‖f‖L2(ω0,ω0+σ). (2.42)

Let us compute ‖In‖. Let P =
n∑

j=0
ak(X − ω0)j be a polynomial in Rn[X], then

‖P‖2
L2(0,ω0) =

∫ ω0

0

n∑
k,p=0

akap(ω − ω0)k+pdω =
n∑

k,p=0
akap

−(−ω0)k+p+1

k + p+ 1 = ω0W
THnW,

where W :=
(
ak(−ω0)k

)
k=0,··· ,n

and Hn =
(

1
k + p+ 1

)
p,k=0,··· ,n

is the Hilbert matrix. In the
same way,

‖P‖2
L2(ω0,ω0+σ) =

∫ ω0+σ

ω0

n∑
k,p=0

akap(ω − ω0)k+pdω =
n∑

k,p=0
akap

σk+p+1

k + p+ 1 = σV THnV.

where V :=
(
akσ

k
)

k=0,··· ,n
. Let λmin and λmax be the lowest and greatest eigenvalues of Hn. It

follows that
ω0W

THnW ≤ ω0‖W‖2
2λmax, σV THnV ≥ σ‖V ‖2

2λmin. (2.43)

Notice that

‖W‖2
2 ≤ max(1, ω0)2n

n∑
k=0

|ak|2 ≤ max(1, ω0)2n

min(1, σ)2n

n∑
k=0

|ak|2σ2k ≤ max(1, ω0)2n

min(1, σ)2n
‖V ‖2

2.
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Thus, if ω0 ≤ σ, then ‖W‖2
2 ≤ ‖V ‖2

2. We follow [99] to estimate the condition number of the Hilbert
matrix: There exists cH > 0 such that cond2(Hn) for the euclidean norm satisfies

λmax

λmin
= cond2(Hn) ≤ cH

(1 +
√

2)4n

√
n

.

We conclude that

‖P‖2
L2(0,ω0) ≤ ω0

σ

(
1ω0≤σ + 1ω0>σ

max(1, ω0)2n

min(1, σ)2n

)
cH

(1 +
√

2)4n

√
n

‖P‖2
L2(ω0,ω0+σ).

We define C1 :=
√
cHω0

σ
and C2 :=

(
1 +

√
2
)2
(

1ω0≤σ + 1ω0>σ
max(1, ω0)
min(1, σ)

)
, then

‖In‖ ≤ C1
Cn

2
n1/4 . (2.44)

We next bound Rn in L2(0, ω0) by

‖Rn‖L2(0,ω0) ≤
δn+1‖f‖L2(R+)

(n+ 1)!

(∫ ω0

0
(ω0 − ω)2n+2dω

)1/2
≤
δn+1‖f‖L2(R+)

(n+ 1)!

(
ω2n+3

0
2n+ 3

)1/2

,

and in L2(ω0, ω0 + σ) by

‖Rn‖L2(ω0,ω0+σ) ≤
δn+1‖f‖L2(R+)

(n+ 1)!

(∫ ω0+σ

ω0

(ω − ω0)2n+2dω
)1/2

≤
δn+1‖f‖L2(R+)

(n+ 1)!

(
σ2n+3

2n+ 3

)1/2

.

Substituting in (2.42) we find

‖f‖L2(0,ω0) ≤
δn+1‖f‖L2(R+)

(n+ 1)!
ω

n+3/2
0√
2n+ 3

+
δn+1‖f‖L2(R+)

(n+ 1)!
σn+3/2

√
2n+ 3

C1C
n
2

n1/4 + C1C
n
2

n1/4 ‖f‖L2(ω0,ω0+σ). (2.45)

To simplify the notations, we define

C3 := 2√
2

max
(
ω

1/2
0 , C1σ

1/2
)

= max (1,√cH)
√

2ω0, C4 := max(ω0, σC2).

We notice that

C4 = max
[
ω0,
(

1 +
√

2
)2
(

1ω0≤σσ + 1ω0>σ
σmax(1, ω0)

min(1, σ)

)]
= σc2.

The expression (2.45) can be simplified and

‖f‖L2(0,ω0)

‖f‖L2(0,+∞)
≤ C3

δn+1C
n+1
4

(n+ 1)!
√
n+ 1

+ C1C
n
2

‖f‖L2(ω0,ω0+σ)

‖f‖L2(0,+∞)
∀n ∈ N.

The first term does not depend on f , and this expression shows that it is impossible to obtain a
Lipschitz estimate. To optimize this estimate, we play on the degree n of the polynomials. Indeed,
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the first term on the right hand side may be large for small values of n, while the second term blows
up when n is large. We set Q := ‖f‖L2(ω0,ω0+σ)/‖f‖L2(R+) and for ε ∈ (0, 1) we choose the integer

n =
⌊

− ε

ln(C2) ln(Q) + ln(C5)
ln(C2)

⌋
,

where C5 > 0 is a constant to be determined later, and b c is the floor function. Invoking the

Stirling formula n! ≥
√

2πnn
n

en
and the fact that δn+1 = c

rn+1

(n+ 1)α
, we obtain

C3
δn+1C

n+1
4

(n+ 1)!
√
n+ 1

≤ C3c(erC4)n+1

(n+ 1)α+1
√

2π(n+ 1)n+1
= C3c√

2π
(erC4)n+1

(n+ 1)n+α+2 .

To simplify the notations, we define

γ := erC4, A := ln(C5)
ln(C2) , B := ε

ln(C2) .

Using the fact that A−B ln(Q) ≤ n+ 1 ≤ A−B ln(Q) + 1, we see that

(ert)n+1

(n+ 1)n+α+2 ≤ exp[(A−B ln(Q) + 1) ln(γ)

− (A−B ln(Q) + α+ 1) ln(A−B ln(Q))]
= γA+1Q−B ln(γ)+B ln(A−B ln(Q))(A−B ln(Q))−(A+α+1).

The exponent of Q is greater that 1 − ε provided

Q ≤ exp
(

− 1
B

[
exp

(
1 − ε

B
+ ln(γ)

)
−A

])
.

Since Q ≤ 1, this condition is satisfied if

A = exp
(

1 − ε

B
+ ln(γ)

)
+B ln(η) = erC4C

1−ε
ε

2 ,

which fixes the value of

C5 = C
erC4C

1−ε
ε

2
2 .

Using the fact that A−B ln(Q) ≥ erC4C
1−ε

ε
2 , it follows that

‖f‖L2(0,ω0)

‖f‖L2(R+)
≤ ξ

(‖f‖L2(ω0,ω0+σ)

‖f‖L2(R+)

)1−ε

,

where

ξ := C3c√
2π
C

− 1−ε
ε

(
1+α+erC4C

1−ε
ε

2

)
2 (erC4)−α + C1C

erC4C
1−ε

ε
2

2 . (2.46)

Remark 2.7. The expression (2.46) certainly over-estimates the optimal constant in (2.41), in
particular in view of (2.43).
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We now consider two functions f and fapp of one variable. We assume again that every function
defined on (r, r) is extended by 0 on R. The following theorem provides a control over the distance
between f and fapp using only the values of their Fourier transforms on the interval [ω0,+∞).

Theorem 2.1 (Reconstruction with low frequency gap in the Fourier transform). Let f, fapp ∈
L2(−r, r) where r ∈ R∗

+. Let ω0, σ ∈ R∗
+. We assume that there exists M ∈ R∗

+ such that

‖f‖L2(−r,r) ≤ M, ‖fapp‖L2(−r,r) ≤ M. (2.47)

For every 0 < ε < 1, there exists ξ, depending on r, ω0, σ, ε, such that

‖f − fapp‖2
L2(−r,r) ≤

(
8πM2)ε

π
ξ2‖F(f) − F(fapp)‖2−2ε

L2(ω0,ω0+σ)

+ 1
π

‖F(f) − F(fapp)‖2
L2(ω0,+∞).

(2.48)

Proof. We know that

‖f − fapp‖2
L2(−r,r) = 1

π
‖F(f) − F(fapp)‖2

L2(0,ω0) + 1
π

‖F(f) − F(fapp)‖2
L2(ω0,+∞).

Since f is compactly supported as a function of L2(R), we know that for every j ∈ N, ω ∈ R+,∣∣∣∣ dj

dωj
(F(f) − F(fapp))(ω)

∣∣∣∣ ≤
(

2
∫ r

0
x2jdx

)1/2
‖f − fapp‖L2(−r,r)

≤
rj

√
r‖F(f) − F(fapp)‖L2(R+)√

π
√

2j + 1 .

It follows from Lemma 2.1 that

‖f − fapp‖2
L2(−r,r) ≤ 1

π
ξ2‖F(f) − F(fapp)‖2ε

L2(R+)‖F(f) − F(fapp)‖2−2ε
L2(ω0,ω0+σ)

+ 1
π

‖F(f) − F(fapp)‖2
L2(ω0,+∞).

Since ‖F(f) − F(fapp)‖2ε
L2(R+) ≤

(
2π‖f − fapp‖2

L2(−r,r)

)ε

≤
(
8πM2)ε, the result follows.

Next, we generalize Theorem 2.1 to the case when we control the Fourier transform of f on a
finite interval [ω0, ω1].

Theorem 2.2 (Reconstruction from a finite interval of the Fourier transform). Let f, fapp ∈
H1(−r, r) where r > 0. Let ω0, ω1 ∈ R∗

+, ω0 < ω1. We assume that there exists M ∈ R∗
+ such

that
‖f‖H1(−r,r) ≤ M, ‖fapp‖H1(−r,r) ≤ M. (2.49)

For every 0 < ε < 1, there exists ξ, depending on r, ω0, ω1, ε,M , such that

‖f − fapp‖2
L2(−r,r) ≤

(
8πM2)ε

π
ξ2‖F(f) − F(fapp)‖2−2ε

L2(ω0,ω1)

+ 1
π

‖F(f) − F(fapp)‖2
L2(ω0,ω1) + 8

ω2
1
M2.

(2.50)
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Proof. We choose σ = max(1, ω1) in the Theorem 2.1. Since f − fapp ∈ H1(−r, r),

‖F(f) − F(fapp)‖2
L2(ω1,+∞) =

∥∥∥∥ω 7→
F(f ′)(ω) − F(f ′

app)(ω)
ω

∥∥∥∥2

L2(ω1,+∞)
≤ 2π
ω2

1
‖f ′ − f ′

app‖2
L2(−r,r).

Remark 2.8. Using (2.46), we notice that ξ −→
ω0→0

0 and that 8πM2

ω2
1

−→
ω1→+∞

0. Moreover, if we

define d = Γ(f) and dapp = Γ(fapp) then 2|ω(d− dapp)(ω)| = |F(f − fapp)(ω)| so
1
π

‖F(f) − F(fapp)‖2
L2(ω0,ω1) −→

[ω0,ω1]→(0,+∞)

4
π

‖d− d̃‖2
H, (2.51)

which is consistent with Proposition 2.7.
Theorem 2.2 provides a theoretical control of the error of the reconstruction between f and

fapp. However, since ξ can be very large, such control might not be sufficient to ensure a numerical
convergence of fapp to f . To illustrate this point, we consider a source s supported on [1 − r, 1 + r].
Let X be the discretization of [1 − r, 1 + r] with NX points. We define h = 2r/(NX − 1). Using
the fast Fourier transform, we compute the discretization of the Fourier transform F(s) on a set K
of frequencies. We notice that F(s)(K) = Ms(X) where M := h(eixk)x∈X,k∈K , and that s(X) =
M−1F(s)(K). To simulate the low frequency gap, we truncate K and define Kt = {k ∈ K, k > ω0}
and Mt = h(eixk)x∈X,k∈Kt

. Then, s(X) = (MT
t Mt)−1MT

t F(s)(Kt). Even if MT
t Mt is invertible,

its condition number strongly depends on r and ω0 just like the constant ξ in Lemma 2.1. Figure
2.4 illustrates this fact for different values of ω0 and r.
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Figure 2.4 – Condition number of MT
t Mt for different sizes of support and values of ω0. Here, X is the discretization

of [1 − r, 1 + r] with 500r + 1 points. The x-axis represents the evolution of r, and the y-axis cond2(MT
t Mt). Each

curve corresponds to value of ω0 as indicated in the left rectangle.

To conclude, if we only have access to perturbed Fourier transform data on a given interval of
frequencies, we can build an approximation of f provided f is compactly supported and an a priori
bound on the norm of f is known. However, depending of ω0 and r, the error between f and its
approximation can be large. We can reduce it by increasing ω1 and by diminishing ω0 and r.
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2.3 Application to the identification of shape defects, bending or inhomo-
geneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We propose a method to identify shape defects or bends in a waveguide, which is almost identical
to our method of source detection. We first map the deformed waveguide to a regular waveguide,
and then use the source inverse method discussed in the first section to reconstruct the parameters
that characterize the defect.

2.3.1 Transformation of the deformed waveguide

Let φ0 and φ1 in C1(R). We consider a deformed waveguide

Ω̃ =
⋃
x∈R

(φ0(x), φ1(x)) = {φ0(x) < y < φ1(x), x ∈ R}. (2.52)

A wave ũ in Ω̃ satisfies the equation
∆ũ+ k2ũ = −s̃ in Ω̃,

∂ν ũ = b̃1 on ∂Ω̃top,

∂ν ũ = b̃2 on ∂Ω̃bot,
ũ is outgoing,

(2.53)

where s̃ ∈ L2
loc(Ω̃), b̃1 ∈ H1/2

loc (∂Ω̃top), and b̃2 ∈ H1/2
loc (∂Ω̃bot). To use the tools developed in the

previous section, we map Ω̃ to the regular waveguide Ω = (0, 1)×R. Let φ be a one-to-one function
that maps Ω into Ω̃. Such a function exists and can even be assumed to be conformal (see for
instance [3]). We define u = ũ ◦ φ the wave in the regular guide, Jφ the Jacobien matrix of φ,
τ = |det(Jφ)|, t1 = |∇φ0| , and t2 = |∇φ1|. The variational formulation of (2.53) shows that for
every ṽ ∈ H1(Ω̃), ∫

Ω̃
∇ũ · ∇ṽ − k2

∫
Ω̃
ũṽ =

∫
Ω̃
s̃ṽ +

∫
∂Ω̃top

b̃1ṽ +
∫

∂Ω̃bot

b̃2ṽ,

or equivalently, ∫
Ω

(∇ũ ◦ φ) · (∇ṽ ◦ φ)τ − k2
∫

Ω
(ũ ◦ φ)(ṽ ◦ φ)τ =

∫
Ω

(s̃ ◦ φ)(ṽ ◦ φ)τ

+
∫

∂Ωtop

b̃1 ◦ φ1 t1 ṽ ◦ φ+
∫

∂Ωbot

b̃2 ◦ φ0 t2 ṽ ◦ φ.
(2.54)

Using the fact that ∇u = JφT ∇ũ ◦ φ, we set s = s̃ ◦ φ, b1 = b̃1 ◦ φ1, b2 = b̃2 ◦ φ0, and obtain that
for every v ∈ H1(Ω),∫

Ω
S∇u · ∇v − k2

∫
Ω
u v τ =

∫
Ω
s v τ +

∫
∂Ωtop

b1 v t1 +
∫

∂Ωbot

b2 v t2. (2.55)

where S = Jφ−1 (Jφ−1)T
τ , which yields the equation satisfied by u: ∇ · (S∇u) + k2τu = −τs in Ω,

S∇u · ν = b1t1 on ∂Ωtop,
S∇u · ν = b2t2 on ∂Ωbot.

(2.56)
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We write S = I2 +M and τ = 1 + ε, where M and ε are expected to be small if the deformation is
small. The above partial differential equation becomes ∆u+ k2u = −τs− ∇ · (M∇u) − k2εu in Ω,

∇u · ν = b1t1 −M∇u · ν on ∂Ωtop,
∇u · ν = b2t2 −M∇u · ν on ∂Ωbot.

(2.57)

For r > 0, we set

Σ : H2(Ωr) → L2(Ωr)
u 7→ ∇ · (M∇u) + k2εu

, Π : H2(Ωr) → H̃
1/2

(−r, r)
u 7→ M∇u · ν

. (2.58)

The next Proposition follows from the definitions of Σ and Π and the dependence between
‖M‖C1(Ωr), ε and φ.

Proposition 2.9. The operator Σ and Π are continuous if M ∈ C1(Ωr). In addition, there exists
constants A(φ), B(φ) depending only on k, r, M and ε such that

‖Σ(u)‖L2(Ωr) ≤ A(φ)‖u‖H2(Ωr), ‖Π(u)‖H1/2(Ωr) ≤ B(φ)‖u‖H2(Ωr). (2.59)

Recalling section 2.2.2 and Definition 2.2, we define the Born approximation v of u by
∆v + k2v = −τs in Ω,

∇v · ν = b1t1 on ∂Ωtop,
∇v · ν = b2t2 on ∂Ωbot,
v is outgoing.

(2.60)

Proposition 2.5 and 2.6 yield the following:

Proposition 2.10. Let C and D be the constants defined in Propositions 2.2 and 2.4, and A(φ),
B(φ) defined in Proposition 2.9. If CA(φ) + 2DB(φ) < 1 then (2.57) has a unique solution u and

‖u− v‖H2(Ωr) ≤ CA(φ) + 2DB(φ)
1 − CA(φ) + 2DB(φ)

[
C‖τs‖L2(Ωr)

+D
(

‖b2t2‖
H̃

1/2
(−r,r)

+ ‖b1t1‖
H̃

1/2
(−r,r)

)]
.

(2.61)

The Born approximation leads to a problem of source inversion similar to that of section 2.2.
Using the results proved in this section, we recover τs, b1t1 and b2t2. In the following, we study
how to characterize a defect by recovering one of those functions. In the case of a bend, one can
fix b1 = b2 = 0 and reduce the inversion to the sole recovery of τs. In the case of a bump, s = 0
and the problem reduces to the reconstruction of b1t1 and b2t2.

2.3.2 Detection of bends
We first consider bends which are parallel portions of circular arcs, whose geometry is determined
by the center and the arc-length of these arcs, or equivalently by the distance xc where the guide
starts bending, the angle θ and the radius of curvature r (see Figure 2.5).

More precisely, we define the mapping φ from Ω to Ω̃ as follow:

• If x ≤ xc, φ(x, y) = (x, y).
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uinc
k

θ

r

xc

Figure 2.5 – Representation of a bend in a waveguide, with three parameters of interest: the radius of curvature r, the
angle θ and the start of the bending xc. An known incident wave uinc

k is sent in the waveguide.

• If x ∈ (xc, xc + θ(r + 1)), then

φ(x, y) =
(
xc + (r + y) sin

(
x− xc

r + 1

)
,−r + (r + y) cos

(
x− xc

r + 1

))
.

• If x ≥ xc + θ(r + 1) then

φ(x, y) = (xc + (r + y) sin θ + (x− xc − θ(r + 1)) cos θ,−r + (r + y) cos θ
−(x− xc − θ(r + 1)) sin θ).

The matrix Jφ is orthogonal if x 6∈ (xc, xc + θ(r + 1)) and so τ = 1 in this range. If x ∈
(xc, xc + θ(r + 1)), then

Jφ(x, y) =


r + y

r + 1 cos
(
x− xc

r + 1

)
sin
(
x− xc

r + 1

)
−r + y

r + 1 sin
(
x− xc

r + 1

)
cos
(
x− xc

r + 1

)
 , τ = r + y

r + 1 ,

S = Jφ−1 (Jφ−1)T
τ =

 r + 1
r + y

0

0 r + y

r + 1

 . (2.62)

Moreover, t1 = 1 for every x ∈ R, t2 = 1 if x 6∈ (xc, xc + θ(r + 1)) and t2 = r

r + 1 otherwise.
We assume along this section that the bend is located to the right of the section {0}× (0, 1). We

introduce a source s̃k = −2ikδ0(x), and we notice that sk = s̃k ◦ φ = s̃k. In the absence of defect,
the wavefield generated by this source would be uinc

k := eik|x|. Let us
k be the scattered wavefield

defined by us
k := uk − uinc

k . Using (2.57), we notice that us
k satisfies the equation ∇(S∇us

k) + k2τus
k = −τsk − ∇(S∇uinc

k ) − k2duinc
k in Ω,

S∇us
k · ν = −S∇uinc

k · ν on ∂Ω,
us

k is outgoing.
(2.63)

The fact that S∇uinc
k · ν = 0, and

−τsk − ∇(S∇uinc
k ) − k2duinc

k = −1x∈[xc,xc+θ(r+1)]k
2eikxhr(y), (2.64)
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with hr(y) = (y − 1)
(

1
r + y

+ 1
r + 1

)
leads to the equation ∇(S∇us

k) + k2τus
k = −1x∈[xc,xc+θ(r+1)]k

2eikxhr(y) in Ω,
S∇us

k · ν = 0 on ∂Ω,
us

k is outgoing.
(2.65)

Under the assumptions of Proposition 2.10, us
k is close to the solution vk of ∆vk + k2vk = −1x∈[xc,xc+θ(r+1)]k

2eikxhr(y) in Ω,
∇vk · ν = 0 on ∂Ω,

vk is outgoing.
(2.66)

The measurements consist in the first mode vk,0 of vk for every frequency k ∈ (0, kmax) where
kmax ∈ R∗

+ is given. To simplify the source in (2.65), we define

f = 1x∈[xc,xc+θ(r+1)]

∫ 1

0
hr(t)dt. (2.67)

Proposition 2.1 yields

vk,0(0) = i

2k

∫ +∞

0
k2f(y)e2ikydy = 2k2Γ(f)(2k) ∀k ∈ (0, kmax), (2.68)

which shows that we have access to Γ(f)(k) for all k ∈ (0, 2kmax). We denote by d = Γ(f)(k) the
data and by dapp the perturbed data. We use the method described in section 2.2 to reconstruct
an approximation fapp of f . The error is controlled by the following:
Proposition 2.11. Let f and fapp be two indicator functions supported in (−a, a) where a > 0. We
assume that the size of the supports of f and fapp is greater than δ. Let kmax ∈ R∗

+, d(k) = Γ(f)(k)
and dapp(k) = Γ(fapp)(k) defined for k ∈ (0, 2kmax). Let c(k) = (

∫ +∞
k

sinc2(x)dx)1/2. Then there
exists a constant M ∈ R∗

+ such that

‖f − fapp‖2
L2(−a,a) ≤ 4

π
‖d− dapp‖2

H +Mc(δ kmax). (2.69)

Proof. We notice that |F(f)(k)| = 2|kΓ(f)(k)| and we use the fact that the Fourier transform of a
indicator function is a sinc function.

Remark 2.9. This bound of the error of approximation highlights two different sources of error:
the error due to the perturbed data, and the error due to the lack of measurements for frequencies
above 2kmax. The uncertainty on the measurements can lead to small perturbations of the data, but
the most important source of perturbation comes from the Born approximation and the error given
in Proposition 2.10.

To recover the parameters of the bend from f , we see that∫ 1

0
hr(t)dt = 1 − 1

2(r + 1) − (r + 1) ln
(
r + 1
r

)
= −1

r
+ or→+∞

(
1
r

)
.

If r is large enough, we can use the approximation 1/r or invert the exact expression. The values
of xc and θ are then deduced from the size of supp(f).

To conclude, with the measurements on a section of the waveguide of the scattered field due to a
source s̃k = −2ikδ0(x) for every frequency in (0, kmax), we are able to reconstruct an approximation
of f from which we can derive the parameters of the bend. Moreover, we can quantify the error of
this approximation, and this error decreases as kmax increases and as θ decreases or r increases.
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Remark 2.10. This inversion can also be applied for a succession of bends, each parametrized as
in Figure 2.5. In this case, the function f is a sum of disjoint indicator functions. Our framework
could also certainly be used to reconstruct more general geometries of bends. However, the expression
of S is then more complicated and the source function in (2.65) may no longer reduces to indicator
function.

2.3.3 Detection of bumps
We now consider shape defects as those depicted in Figure 2.6: the goal is to reconstruct the
functions g and h that define the bump geometries, from the measurements.

uinc
k

h(x)

g(x)

Figure 2.6 – Representation of a shape defect in a waveguide. Functions h and g represents the width variations on the
top and bottom of the waveguide. An incident wave uinc

k is sent in the waveguide.

We assume that supp(h), supp(g) are compact, that 1 + h > g, and that h, g ∈ C2(R) so
Proposition 2.10 applies. Note that h − 1 and g do not need to be of constant sign. We define
φ(x, y) = (x, (1 + h(x) − g(x))y + g(x)) and compute

Jφ(x, y) =
(

1 0
(h′(x) − g′(x))y + g′(x) 1 + h(x) − g(x)

)
, (2.70)

Jφ−1(x, y) =

 1 0

− (h′(x) − g′(x))y + g′(x)
1 + h(x) − g(x)

1
1 + h(x) − g(x)

 .

Moreover, τ = |det(Jφ)| = 1 + h(x) − g(x), t1 =
√

1 + h′(x)2, t2 =
√

1 + g′(x)2 and

S =

 1 + h(x) − g(x) −(h′(x) − g′(x))y − g′(x)

−(h′(x) − g′(x))y − g′(x) ((h′(x) − g′(x))y + g′(x))2

1 + h(x) − g(x) + 1
1 + h(x) − g(x)

 .

Assuming that the bumps are located to the right of the section {0} × (0, 1), we introduce a
source s̃k = −2ikδ0(x), and notice that sk = s̃k ◦ φ = s̃k. In the absence of defect, the wavefield
generated by this source would be uinc

k := eik|x|. Let ũs
k := ũk − uinc

k be the scattered wavefield
which solves  ∆ũk + k2ũk = s̃k in Ω̃,

∂ν ũk = 0 on ∂Ω̃,
ũk is outgoing.

(2.71)

Using the expression of uinc
k and the fact that if x > 0 then eik|x| = eikx, ũk

s satisfies the equation

∆ũk
s + k2ũk

s = 0 in Ω̃,

∂ν ũk
s = h′(x)√

1 + h′(x)2
ikeikx on ∂Ω̃top,

∂ν ũk
s = −g′(x)√

1 + g′(x)2
ikeikx on ∂Ω̃bot,

ũk
s is outgoing.

(2.72)
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Transforming the deformed guide to a regular guide leads to
∆us

k + k2us = −∇ · (M∇us
k) − k2εus

k in Ω,
∂νu

s
k = −M∇us

k · ν + h′(x)ikeikx on Ωtop,

∂νu
s
k = −M∇us

k · ν − g′(x)ikeikx on Ωbot,
us

k is outgoing.

(2.73)

If the assumptions of Proposition 2.10 are satisfied, us
k is close to the solution vk of

∆vk + k2vk = 0 in Ω,
∂νvk = h′(x)ikeikx on Ωtop,

∂νvk = −g′(x)ikeikx on Ωbot,
vk is outgoing.

(2.74)

Given kmax > 0, we measure the first mode vk,0 of vk for all frequencies k ∈ (0, kmax). However,
since we assumed that we can measure only propagative modes, we have access to vk,1 the second
mode of vk for all frequencies k > π, so for k ∈ (π, kmax). Using Proposition 2.3 and the inversion
of source, we have access to

vk,0(0) = i

2k

∫ +∞

0
(h′(z) − g′(z))ikeikzeikzdz ∀k ∈ (0, kmax), (2.75)

vk,1(0) = −i√
2k1

∫ +∞

0
(h′(z) + g′(z))ikeikzeik1zdz ∀k ∈ (π, kmax). (2.76)

We notice that
vk,0(0) = 2ikΓ(h′ − g′)(2k) ∀k ∈ (0, kmax), (2.77)

vk,1(0) = −
√

2ik(k1 + k)
k1

Γ(h′ + g′)(k + k1) ∀k ∈ (π, kmax). (2.78)

We define s0 = h′ − g′ and s1 = h′ + g′. We have access to Γ(s0)(k) for all k ∈ (0, 2kmax), and
since k 7→ k+

√
k2 − π2 is one-to-one from (π, kmax) to (π, kmax +

√
k2

max − π2), we have access to
Γ(s1)(k) for all k ∈ (π, kmax +

√
k2

max − π2). We denote by d0(k) = Γ(s0)(k), d1(k) = Γ(s1)(k) the
data and consider the perturbed data d0app , d1app . The method described in section 2.2 provides
approximations s0app , s1app which we can control by the following:

Proposition 2.12. Let s0, s1, s0app , s1app ∈ H1(−r, r) where r ∈ R∗
+. Let kmax ∈ R∗

+, d0 =
Γ(s0), d0app = Γ(s0app) defined on (0, 2kmax), d1 = Γ(s1), d1app = Γ(s1app) defined on (π, kmax +√
k2

max − π2). Assume that there exists M ∈ R∗
+ such that ‖si‖H1(−r,r) ≤ M and ‖siapp‖H1(−r,r) ≤

M for i = 0, 1. Then for every 0 < ε < 1, there exists a constant ξkmax , depending on r,M, ε, such
that

‖s0 − s0app‖2
L2(−r,r) ≤ 4

π
‖d0 − d0app‖2

H + 2π
k2

max
M2, (2.79)

‖s1 − s1app‖2
L2(−r,r) ≤ ξkmax‖d1 − d1app‖2−2ε

H + 4
π

‖d1 − d1app‖2
H

+ 8π(
kmax +

√
k2

max − π2
)2M

2.
(2.80)
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Proof. Noticing that |F(h′)(k)| = 2|kΓ(h′)(k)|, we apply Theorem 2.2 and Remark 2.8 with ω0 = 0
and ω1 = 2kmax, and then ω0 = π and ω1 = kmax +

√
k2

max − π2.

Remark 2.11. This estimate highlights the different sources of error: the error due to the per-
turbed data, the error due to the lack of measurements at high frequencies, and due to the lack of
measurements for the low frequencies of s1. Note that the error diminishes if K increases and if
the bump gets smaller. Numerical illustrations can be found in section 2.4.4.

2.3.4 Detection of inhomogeneities
This case is different from the two previous cases, as the presence of an inhomogeneity affects the
index of the medium and leads to changes in the homogeneous Helmholtz equation:

∆u+ k2(1 + h(x, y))u = 0. (2.81)

We assume that supp(h) is compact and that the inhomogeneity is located to the right of the section
{0} × (0, 1). To detect the defect, we introduce a source sk = −2ikδ0(x). In the absence of defect,
the wavefield generated by this source would be uinc

k := eik|x|. Let us
k be the scattered wavefield

defined by us
k := uk − uinc

k . We know that uk satisfies the equation (2.7), and so ∆us
k + k2us

k = −k2huinc
k − k2huinc

k in Ω,
∂νu

s
k = 0 on ∂Ω,

us
k is outgoing.

(2.82)

Let S(u) := k2hu which satisfies the hypothesis of Proposition 2.5, and for every r > 0,

‖S‖H2(Ωr)→L2(Ωr) ≤ k2‖h‖L∞(−r,r). (2.83)

Proposition 2.5 shows that if k2‖h‖L∞(−r,r) is small enough, us
k is close to vk the solution of ∆vk + k2vk = −k2huinc

k in Ω,
∂νvk = 0 on ∂Ω,

vk is outgoing.
(2.84)

and that, with C the constant defined in Proposition 2.4,

‖u− v‖H2(−r,r) ≤
C2k4‖h‖2

L∞(−r,r)‖u
inc
k ‖L2(−r,r)

1 − Ck2‖h‖L∞(−r,r)
. (2.85)

We assume that the measurements consist in the n-th propagative mode vk,n for all non resonant
frequencies k ∈ (0, kmax) where kmax > 0 is given. Proposition 2.1 shows that for every k ∈ (0, kmax),

vn,k(0) = i

2kn

∫ +∞

0
k2hn(z)eikzeiknzdz = (k + kn)k2

kn
Γ(hn)(k + kn). (2.86)

Since we assume that only the propagative modes are measured, the frequency k must satisfy
k > nπ, and kn ∈ R. The function k 7→ k +

√
k2 − n2π2 is one-to-one from (nπ, kmax) to

(nπ, kmax +
√
k2

max − n2π2). This means that we have access to Γ(hn)(k) for every k ∈ (nπ, kmax +√
k2

max − n2π2). We denote by dn = Γ(hn) the data and by dnapp the perturbed data. We use the
method described in section 2.2 to reconstruct hnapp , an approximation of hn, and control the error
using Theorem 2.2.
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Proposition 2.13. Let n ∈ N, hnapp , hn ∈ H1(−r, r) where r > 0. Let kmax > nπ, dn(k) = Γ(hn)(k)
and dnapp(k) = Γ(hnapp)(k) for k ∈ (nπ, kmax+

√
k2

max − n2π2). We assume that there exists M ∈ R∗
+

such that ‖hn‖H1(−r,r) ≤ M , ‖hnapp‖H1(−r,r) ≤ M . Then for every 0 < ε < 1 there exists a constant
ξn,kmax depending on r,M, ε such that

‖hn − hnapp‖2
L2(−r,r) ≤ ξn,kmax‖dn − dnapp‖2−2ε

H + 4
π

‖dn − dnapp‖2
H

+ 8π(
kmax +

√
k2

max − n2π2
)2M

2.
(2.87)

Corollary 2.1. Let kmax ∈ R∗
+ and N ∈ N such that N < kmax/π. Let happ, h ∈ H1(Ωr) where r >

0 and d = F (h), dapp = Fs(happ) such that dn and dnapp are defined on (nπ, kmax +
√
k2

max − n2π2).
We assume that there exists M ∈ R∗

+ such that ‖h‖H1(Ωr) ≤ M and ‖happ‖H1(Ωr) ≤ M . Then for
every 0 < ε < 1 there exists a constant ξN,kmax depending on r,M, ε such that

‖h− happ‖2
L2(Ωr) ≤ ξN,kmax(N + 1)ε‖d− dapp‖2−2ε

`2(H) + 4
π

‖d− dapp‖2
l2(H)

+8π(N + 1)
K2 M2 + 4

N2π2M
2.

(2.88)

Proof. Using the previous proposition,

‖h− happ‖2
L2(Ωr) ≤

N∑
n=0

ξn,kmax‖dn − dnapp‖2−2ε
H + 4

π
‖dn − dnapp‖2

H

+ 8πM2(
kmax +

√
k2

max − n2π2
)2 +

∑
n>N

‖hn − hnapp‖2
L2(−r,r).

We define ξN,kmax = max
n=0,..,N

ξn,kmax and using the concavity of x 7→ x1−ε, we deduce that

‖h− happ‖2
L2(Ωr) ≤ ξN,kmax(N + 1)ε‖d− dapp‖2−2ε

`2(H) + 4
π

‖d− dapp‖2
`2(H)

+8πM2(N + 1)
k2

max
+

‖∂y(h− happ)‖2
L2(Ωr)

N2π2 .

We conclude using the upper bound on ‖h‖H1(Ωr) and ‖happ‖H1(Ωr).

Remark 2.12. Again, this estimate highlights the different sources of error: the lack of measure-
ments if the mode if greater than 1 in the low frequencies, the perturbed data, the lack of measure-
ments in the high frequencies and finally the truncation to the N -th mode. The predominant term
here seems to be the first one, and we need to find a balance between increasing N to decrease the
error of truncation and diminishing N to lower the value of ξN,kmax .

Unlike the two previous cases, the detection of inhomogeneities requires more modes than just
the first two modes. However, using measurements on one section of the scattered field associated
with a source sk = −2ikδ0(x) allows reconstruction of an approximation of h with quantified error.
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2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4.1 Numerical source inversion from limited frequency data
In Proposition 2.7, we have seen that the forward modal operator Γ is invertible. Knowing the
measurements of the wavefield generated by a source for every frequency, we are theoretically abble
to reconstruct the source. Moreover, Theorem 2.2 shows that if the source is compactly supported,
measurements are only needed for a finite interval of frequencies to approximate the source. In this
section, we discuss the numerical aspects of the inversion.

We assume that the wavefield in the waveguide is generated by a source f compactly supported,
located between the sections x = xm and x = xM . The interval [xm, xM ] is regularly discretized
by a set of NX values X, and seek an approximation of f(X). The measurements of the wavefield
are made for a discrete set of NK frequencies denoted K. Let h = xM

NX − 1 denote the stepsize of
the discretization X. Using Definition 2.3 and Equation (2.30), the operator f 7→ (k 7→ kΓ(f)(k))
maps L2(R) onto L2(R∗

+) and can be discretized by the operator

γ :
CNX → CNK

y 7→

(
ih

2
∑
x∈X

yxe
ikx

)
k∈K

. (2.89)

To invert this operator, we use a least square method. Given the data d = γ(f(X)), we seek an
approximation of f(X) by minimizing the quantity

1
2‖γ(y) − d‖2

`2
(
CNX

).
To avoid small oscillations in the reconstruction we also define the discrete gradient

G : CNX → CNX

y 7→ (yi − yi−1)1≤i≤NX

, (2.90)

with the convention that x0 = xNX
and xNX +1 = x1. Note that the adjoints of γ and G, denoted

by γ∗ and G∗, can be easily computed. For λ > 0, we minimize the quantity

J(y) = 1
2‖γ(y) − d‖2

`2
(
CNK

) + λ

2 ‖G(y)‖,

`2
(
CNX

). (2.91)

with a steepest descent method, with the initialization y0 = (0)x∈X :

ym+1 = ym −
‖∇J(ym)‖2

`2
(
CNX

)
‖S(∇J(ym))‖2

`2
(
CNK

) + ‖G(∇J(ym))‖2
`2
(
CNX

)∇J(ym), (2.92)

where
∇J(ym) = γ∗(γ(ym) − d) + λG∗(G(ym)). (2.93)

We use this algorithm to illustrate the results given in Theorem 2.2. Firstly, we reconstruct a
source f with a gap in the high frequencies, i.e. for which measurements of the wavefield generated
by f are available for a discrete set of frequencies between 0 and ω1. Figure 2.7 presents the
comparison between a function f and its reconstruction for different values of ω1. As expected, we
observe convergence when ω1 increases, and the reconstruction becomes almost perfect visually. The
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Figure 2.7 – Reconstruction of f(x) = (x− 0.8)(1.2 − x)10.8≤x≤1.2 for different values of ω1 using the discrete
operator γ and the algorithm (2.92) with λ = 0.001. Here, X is the discretization of [0.5, 1.5] with 10ω1 points, and K

is the discretization of [0.01, ω1] with 1000 points.

100.6 100.8 101 101.2 101.4 101.610−4

10−3

10−2

ω1

‖f
−
f a

pp
‖ 2

‖f − fapp‖2
−1 slope

Figure 2.8 – L2-error between f(x) = (x− 0.8)(1.2 − x)10.8≤x≤1.2 and its reconstruction fapp for different values of
ω1 using the discrete operator γ and the algorithm (2.92) with λ = 0.001. Here, X is the discretization of [0.5, 1.5] with

10ω1 points, and K is the discretization of [0.01, ω1] with 1000 points.

speed of convergence is illustrated in Figure 2.8, and as expected from Theorem 2.2, the L2-error
between the function and its approximation decreases like 1/ω1.
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Secondly, we investigate the influence of r and ω0 in Theorem 2.2. Consistently with Propositions
2.12 and 2.13, we choose ω0 to be a multiple of π. In Figure 2.9, we present the comparison between
a 1D function f and its reconstruction is represented for different values of ω0, when the support
of f is fixed. Figure 2.10 depicts the comparison between a 1D function f and its reconstruction
for different sizes r of support when ω0 is fixed. As expected from the definition of the constant C
in Theorem 2.2, the quality of the reconstruction deteriorates when r and ω0 increase.

0.6 0.8 1 1.2 1.4
−2

0

2

4 ·10−2 ω0 = π

f
fapp

0.6 0.8 1 1.2 1.4
−2

0

2

4 ·10−2 ω0 = 3π

f
fapp

0.6 0.8 1 1.2 1.4
−2

0

2

4 ·10−2 ω0 = 5π

f
fapp

0.6 0.8 1 1.2 1.4
−2

0

2

4 ·10−2 ω0 = 7π

f
fapp

Figure 2.9 – Reconstruction of f(x) = (x− 0.8)(1.2 − x)10.8≤x≤1.2 for different values of ω0 and r = 0.5 using the
discrete operator γ and the algorithm (2.92) with λ = 0.001. Here, X is the discretization of [0.5, 1.5] with 251 points,

and K is the discretization of [ω0, 50] with 1000 points.

The reconstruction of a source is almost perfect for ω0 = 0 if we increase sufficiently ω1. However,
if ω0 > 0, the problem is ill-conditioned and if the size of the support of the source or ω0 increase,
the quality of the reconstruction is poor.

2.4.2 Generation of data for the detection of defects
Applying the results of section 2.3 requires measurements generated by a defect on a section of
the wavefield. This data is generated by solving numerically the PDE with Matlab, and evaluating
its solution on a section of the waveguide. The equations of propagation in a regular waveguide
Ω for a bend, a bump and a inhomogeneity are given by (2.65), (2.73) and (2.82) respectively. In
the following, we assume that the interesting part of the waveguide is located between x = 0 and
x = 8, and that the measurements are made on the section {1} × (0, 1). To generate the solution
of these equations of propagation on [0, 8] × [0, 1], we use the finite element method and a perfectly
matched layer between x = −19 and x = 0 on the left side of the waveguide and between x = 8 and
x = 27 on the right side. The coefficient of absorption for the perfectly matched layer is defined by
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Figure 2.10 – Reconstruction of f(x) = (x− 0.8)(1.2 − x)10.8≤x≤1.2 for different sizes of support r and ω0 = 3π using
the discrete operator γ and the algorithm (2.92) with λ = 0.001. Here, X is the discretization of [1 − r, 1 + r] with

500r + 1 points, and K is the discretization of [3π, 50] with 1000 points.

−k((x− 8)1x≥8 − x1x≤0). The structured mesh is built with a stepsize 0.01.

2.4.3 Detection of bends
Using the method described in the previous subsection, we generate the solution of (2.65) for a set
of frequencies K and we evaluate the solutions on the section {1} × (0, 1). As explained in section
2.3.2 and equation (2.68), the corresponding data amounts to knowing Γ(s)(2k) for every k ∈ K,
where

s = 1x∈[xc,xc+θ(r+1)]

(
1 − 1

2(r + 1) − (r + 1) ln
(
r + 1
r

))
. (2.94)

Note that algorithm (2.92) could be used to construct an approximation sapp of s. However, since
we are looking for a rectangular function, we can directly define sapp = −p11x∈[p2,p2+p3] and see
that

Γ(sapp)(k) = − ip1

k
eik

2p2+p3
2 sin

(p3

2 k
)
. (2.95)

We determine (p1, p2, p3) by minimizing ‖Γ(sapp)(2k) − Γ(s)(2k)‖
`2
(
CNK

), and the approximations
of xc, r and θ follow. We present in Figure 2.11 the reconstructions of two different bends, and
in Table 2.1 the relative error on the estimation of (xc, r, θ) for different bends. We note that if
the bend is really small, the reconstruction is very good. On the other hand, when r increases or
when θ decreases, the reconstruction deteriorates due to the fact that the Born approximation is
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no longer a good approximation of the wavefield in the waveguide. As mentioned in Remark 2.10,
our algorithm can also be used to recover a succession of bends, as shown in Figure 2.12.

(xc, r, θ) = (4, 10, π/12) (xc, r, θ) = (2, 5, π/6)

Figure 2.11 – Reconstruction of two different bends. The black lines represent the initial shape of Ω, and the red the
reconstruction of Ω. In both cases, K is the discretization of [0.01, 40] with 100 points, and the reconstruction is obtain

by (2.95). On the left, the initial parameters of the bend are (xc, r, θ) = (4, 10, π/12) and on the right,
(xc, r, θ) = (2, 5, π/6).

(xc, r, θ) (2.5, 40, π/80) (4, 10, π/12) (2, 5, π/6)
relative error on xc 1.8% 0% 7.6%
relative error on r 3.0% 7.5% 23.8%
relative error on θ 1.6% 10.7% 16.9%

Table 2.1 – Relative errors on the reconstruction of (xc, r, θ) for different bends. In each case, K is the discretization of
[0.01, 40] with 100 points, and the reconstruction is obtain by (2.95).

Figure 2.12 – Reconstruction of a waveguide with two successive bends. The black lines represent the initial shape of
Ω, and the red the reconstruction of Ω, slightly shifted for comparison purposes. In both cases, K is the discretization of

[0.01, 40] with 100 points. The parameters of the two bends are (x(1)
c , r(1), θ(1)) = (2, 10, π/30)) and

(x(2)
c , r(2), θ(2)) = (3.8, 8,−π/20))

2.4.4 Detection of bumps

Using the method described in section 2.4.2, we generate the solutions of (2.73) for a set of frequen-
cies K and we evaluate the solutions on the section {1}×(0, 1). In view of Remark 2.3, and to ensure
that the Born hypothesis (2.19) is satisfied, we do not choose frequencies in [nπ− 0.2, nπ+ 0.2], for
every n ∈ N. As explained in section 2.3.3 and equations (2.77), (2.78), the data only determines
Γ(s0)(2k) for every k ∈ K and Γ(s1)(k +

√
k2 − π2) for every k ∈ K, k > π, where h and g

parametrize the bump (recall that s0 = h′ + g′, s1 = −
√

2h′ + g′). Using the algorithm (2.92), we
find an approximation of h′ and g′, and the approximation of h and g follows by integration. In
figure 2.13, we represent two different reconstructions of a shape defect. As predicted in Proposition
2.10, the reconstruction improves when ‖h‖C1(R) and ‖g‖C1(R) decrease. Table 2.2 illustrates this
point as it depicts the relative error on a reconstruction of h when its amplitude increases.
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Figure 2.13 – Reconstruction of two shape defects. In black, the initial shape of Ω, and in red the reconstruction,
slightly shifted for comparison purposes. In both cases, K is the discretization of

[0.01, 70] \ {[nπ − 0.2, nπ + 0.2], n ∈ N} with 300 points, X is the discretization of [3, 4.5] with 151 points and we use
the algorithm (2.92) with λ = 0.08 to reconstruct s0 and s1. On the left, h(x) = 5/1613.2≤x≤4.2(x− 3.2)2(4.2 − x)2

and g(x) = −35/1613.4≤x≤4(x− 3.4)2(4 − x)2. On the right, h(x) = 125/1613.7≤x≤4.2(x− 3.7)2(4.2 − x)2 and
g(x) = 125/1613.4≤x≤4(x− 3.4)2(4 − x)2.

A 0.1 0.2 0.3 0.5
‖h− happ‖L2(R)/‖h‖L2(R) 8.82% 10.41% 15.12% 54.99%

Table 2.2 – Relative errors on the reconstruction of h for different amplitudes A. We choose
h(x) = A13≤x≤5(x− 3)2(5 − x)2 and g(x) = 0. In every reconstruction, K is the discretization of

[0.01, 40] \ {[nπ − 0.2, nπ + 0.2], n ∈ N} with 100 points, X is the discretization of [1, 7] with 601 points and we use the
algorithm (2.92) with λ = 0.08 to reconstruct h′.

2.4.5 Detection of inhomogeneities
Using the method described in section 2.4.2, we generate the solutions of (2.82) for a set of fre-
quencies K and we evaluate the solutions on the section {1} × (0, 1). As explained in section 2.3.4
and equation (2.86), the data only determines Γ(hn)(k + kn) for every k ∈ K, k > nπ where hn

is the n-th mode of h, and h is the inhomogeneity. We define a number of modes N used for the
reconstruction of h, and with the algorithm (2.92), we find an approximation of hn for every n ≤ N .
In Figure 2.14, we show the reconstruction of hn for 0 ≤ n ≤ N = 9. We obtain an approximation
of h by using the expression h(x, y) =

∑
hn(x)ϕn(y). Figures 2.15 and 2.16 show two reconstruc-

tions of h. In the first one, h has a small support and is very well reconstructed. In the latter, the
support of h is larger. And albeit it does not yield a good approximation of h, it allows localization
of the inhomogeneity in the waveguide. Moreover, if we assume that h is a positive function, we
can improve the algorithm (2.92) by reconstructing h on each step and projecting on the space of
positive functions (see the third part of Figure 2.16).

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we have presented a new approach to recover defects in a waveguide. By sending
the first propagative mode for frequencies in a given interval, the scattered wavefields generated by
the defects are measured on a slice of the waveguide. Based on the Fourier transform and the Born
approximation, we propose a method to reconstruct the parameters of the defect. We provide a
control of the error in the approximation of the parameters of the defects if they are small enough
so that the Born approximation makes sense.

Our numerical results show that the method works well for the three types of defects consid-
ered : bends, bumps, localized inhomogeneities. From measurements generated by a finite element
method, we were able to numerically recover the different types of defects using the modal decom-
position and a penalized least square algorithm. Our reconstruction of inhomogeneities is similar to
the one presented in [34]. Even though the number of propagative modes sent in the waveguide can
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n = 0 n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8 n = 9

Figure 2.14 – Reconstruction of hn for 0 ≤ n ≤ 9, where h(x) = 0.051∣∣( x−4
0.05 ,

y−0.6
0.15

)∣∣≤1

∣∣∣(x− 4
0.05

,
y − 0.6

0.15

)∣∣∣2. In

blue, we represent hn and in red the reconstruction of hnapp . In every reconstruction, K is the discretization of
[0.01, 150] with 200 points, X is the discretization of [3.8, 4.2] with 101 points and we use the algorithm (2.92) with

λ = 0.002 to reconstruct every hn.

3.8 3.9 4 4.1 4.20
0.2
0.4
0.6
0.8

1
h

0

2

4

·10−2

3.8 3.9 4 4.1 4.20
0.2
0.4
0.6
0.8

1
happ
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Figure 2.15 – Reconstruction of an inhomogeneity h, where h(x) = 0.051∣∣( x−4
0.05 ,

y−0.6
0.15

)∣∣≤1

∣∣∣(x− 4
0.05

,
y − 0.6

0.15

)∣∣∣2. On

the left, we represent the initial shape of h, and on the right the reconstruction happ. Here, K is the discretization of
[0.01, 150] with 200 points, X is the discretization of [3.8, 4.2] with 101 points and we use the algorithm (2.92) with

λ = 0.002 to reconstruct every hn. We used N = 20 modes to reconstruct h.

be increased to improve the reconstruction presented in this article, so can we increase the number
of frequencies.

Our work could be extended to other types of defects such as impenetrable obstacles or cracks in
the waveguide. One could also try to apply this multi-frequency point of view to elastic waveguides,
where a modal decomposition in terms of Lamb waves is also available.
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Figure 2.16 – Reconstruction of an inhomogeneity h. From top to bottom, the initial representation of h, the
reconstruction happ and the reconstruction happ with the knowledge of the positivity of h. Here, K is the discretization
of [0.01, 150] with 200 points, X is the discretization of [3, 6] with 3001 points and we use the algorithm (2.92) with

λ = 0.01 to reconstruct every hn. We choose used N = 20 modes to reconstruct h.

Appendix 2.A: Proof of Proposition 2.1 and 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin with the proof of Proposition 2.1. Let r > 0, Ωr = (−r, r) × (0, 1) and T the application
defined by

T :
L2(Ωr) → L2(−r, r)N

u 7→
(∫ 1

0
u(x, y)ϕn(y)dy

)
n∈N

.

Let H1 denote the Hilbert space

H1 :=
{

(un) ∈ `2(H1(−r, r)),
∑
n∈N

n2‖un‖2
L2(−r,r) < +∞

}
,
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equipped with the inner product

〈(un), (vn)〉H1 =
∑
n∈N

(1 + n2π2)〈un, vn〉L2(−r,r) +
∑
n∈N

〈u′
n, v

′
n〉L2(−r,r).

The mapping T is a Hilbert isomorphism between H1(Ωr) and H1.
The variation formulation of (2.7) takes the form, for every v ∈ H1(Ωr),∫

Ωr

∇uk∇v − k2
∫

Ωr

ukv =
∫

Ωr

sv. (2.96)

Set T (uk) = (uk,n)n∈N, T (v) = (vn)n∈N, and notice that the above variational formulation is
equivalent to the sequence of problems

∀vn ∈ H1(−r, r),
∫ r

−r

u′
k,nv

′
n + (n2π2 − k2)

∫ r

−r

uk,nvn =
∫ r

−r

snvn. (2.97)

Setting k2
n = k2 − n2π2 with Re(kn) > 0, Im(kn) > 0, the formulation (2.97) is associated to

the equation u′′
k,n + k2

nuk,n = sn. We notice that Gkn(x) = i/(2kn)eikn|x| satisfies the equation
G′′

kn
+ k2

nGkn
= −δ0 and so we define uk := T−1 ((Gkn

∗ sn)n∈N) and note that uk ∈ H1(Ωr) and
satisfies (2.96). Moreover, uk is outgoing. Finally, using results from elliptic regularity theory
(see [47]) we deduce that uk ∈ H2(Ωr). As this result holds for every r > 0, we conclude that
uk ∈ H2

loc(Ω).
The solution of (2.11) is constructed by the same method. The variational formulation gives for

every v ∈ H1(Ωr), ∫
Ωr

∇uk∇v − k2
∫

Ωr

ukv −
∫

Ωtop

b1v −
∫

Ωbot

b2v = 0. (2.98)

This formulation is equivalent to∫ r

−r

u′
k,nv

′
n + (n2π2 − k2)

∫ r

−r

uk,nvn =
∫ r

−r

(b1ϕn(1) + b2ϕn(0))vn ∀n ∈ N.

The function uk := T−1 ((Gkn
∗ (b1ϕn(1) + b2ϕn(0)))n∈N) is in H1(Ωr), is outgoing and satisfies

(2.98). From the elliptic regularity theory, we deduce that uk ∈ H2(Ωr).
To prove uniqueness for both problems, we notice that uk satisfies ∆uk + k2uk = 0 in Ω.

Thus, uk is a classical solution and uk ∈ C∞(Ω) and can be written as a linear combination of
(x, y) 7→ ϕn(y)e±iknx. The outgoing character of uk shows that uk = 0 if s = 0 or b1 = b2 = 0.

Appendix 2.B: Proof of Proposition 2.2 and 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin with the proof of proposition 2.2. Using the same notation as in Appendix 2.A, the
function Gkn satisfies

‖Gkn‖L1(−2r,2r) ≤


2r
kn

if n < k/π,

1
|kn|

min
(

1
|kn|

, 2r
)

if n > k/π,

‖G′
kn

‖L1(−2r,2r) ≤

 2r if n < k/π,

min
(

1
|kn|

, 2r
)

if n > k/π.
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We define δ = min
n∈N

(√
|k2 − n2π2|

)
, and apply the Young inequality to uk,n:

‖uk,n‖L2(−r,r) ≤ ‖Gkn
‖L1(−2r,2r)‖sn‖L2(−r,r).

This leads to
‖uk‖2

L2(Ωr) ≤ 4r2

δ2

∑
n∈N

‖sn‖2
L2(−r,r) = 4r2

δ2 ‖s‖2
L2(Ωr).

Applying the Young inequality to u′
k,n, we get

‖∇uk‖2
L2(Ωr) ≤ 4r2

∑
n<k/π

(
1 + n2π2

k2
n

)
‖sn‖2

L2(−r,r)

+4r2
∑

n>k/π

(
1 + n2π2

|kn|2

)
‖sn‖2

L2(−r,r).

If N is the largest propagative mode and if n > k/π > N ,

1 + n2π2

|kn|2
≤ 1 + (N + 1)2π2

|kN+1|2
≤ 1 + (N + 1)2π2

δ2 ,

so that
‖∇uk‖2

L2(Ωr) ≤ 4r2
(

1 + (k + π)2

δ2

)
‖s‖2

L2(Ωr).

Finally, we notice that

‖∇2uk‖2
L2(Ωr) =

∑
n∈N

n4π4‖uk,n‖2
L2(−r,r) +

∑
n∈N

2n2π2‖u′
k,n‖2

L2(−r,r)

+
∑
n∈N

‖u′′
k,n‖2

L2(−r,r),

and that

‖u′′
k,n‖2

L2(−r,r) = ‖ − sn − k2
nuk,n‖2

L2(−r,r) ≤
(
‖sn‖L2(−r,r) + k2

n‖uk,n‖L2(−r,r)
)2
.

Combining both relations yields

‖∇2u‖2
L2(Ωr) ≤

∑
n<k/π

(
4r2n4π4

k2
n

+ 8n2π2r2 + (1 + 2knr)2
)

‖sn‖2
L2(−r,r)

+
∑

n>k/π

[
n4π4

|kn|4
+ 2n2π2

|kn|2
+
(

1 + |kn|2

|kn|
min

(
1

|kn|
, 2r
))2]

‖sn‖2
L2(−r,r).

If N is the largest propagative mode, and if n > k/π,

n4π4 min
(

1
|kn|2 , 4r2

)
|kn|2

+ 2n2π2 min
(

1
|kn|2

, 4r2
)

≤ (k + π)4

δ4 + 2(k + π)2

δ2 ,

and the following estimate holds

‖∇2u‖2
L2(Ωr) ≤ [ max

(
4r2,

1
δ2

)(
(k + π)4

δ2 + 2(k + π)2
)

+ max((1 + 2kr)2, 4) ] ‖s‖2
L2(Ωr).
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To prove Proposition 2.4, we deduce from the results in [47] that there exists constants d(r) and
µ > 0, such that

‖uk‖H2(Ωr) ≤ d(r)
(

‖ − ∆uk + µuk‖L2(Ωr) + ‖b1‖H1/2(−r,r) + ‖b2‖H1/2(−r,r)

)
,

and if follows that

‖u‖H2(Ωr) ≤ d(r)
(

(k2 + µ)‖u‖L2(Ωr) + ‖b1‖H1/2(−r,r) + ‖b2‖H1/2(−r,r)

)
.

Using the same method as for the estimation of ‖uk,n‖L2(−r,r) with the Young inequality, we get

‖u‖2
L2(Ωr) ≤

(
‖b1‖2

H1/2(−r,r) + ‖b2‖2
H1/2(−r,r)

) ∑
n<k/π

4r2

k2
n

+
∑

n>k/π

1
k4

n

 .

Finally, we obtain

D = d(r)

(k2 + µ) max
(

2r, 1
δ

)√∑
n∈N

1
k2

n

+ 1

 .
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3
Lamb modes and Born approximation for small de-
fects inversion in elastic plates

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Forward source problem in a regular 2D waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Lamb modes and critical frequencies 63
3.2.2 Solution of the 2D elasticity problem 69

3.3 Forward source problem in a regular 3D plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1 Decoupling of the linear elastic equation 75
3.3.2 Helmholtz-Hodge decomposition 79

3.4 Reconstruction of small shape defects from multi-frequency measurements . . . . . . . . . . . . . 80
3.4.1 Born approximation 81
3.4.2 Boundary source inversion 83

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

The aim of this work is to present a multi-frequency scattering method to reconstruct small
defects in a 2D and 3D elastic plate. Given surface multi-frequency wavefield measurements, we
use a Born approximation to reconstruct localized defect in the geometry of the plate. To justify
this approximation, we introduce a rigorous framework to study the propagation of elastic wavefield
generated by arbitrary sources. By studying the decreasing of inhomogeneous Lamb mode, we prove
well-posedness of the PDE that model elastic wave propagation in 2D and 3D planar waveguides.
This result is not valid for some critical frequencies that we study and characterize. Using these
results, we generalize the shape reconstruction method already developed for acoustic waveguide
and provide a stable reconstruction method based on a mode-by-mode spacial Fourier inversion
given by the scattered field.
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3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This work is devoted to the reconstruction of small defects in a waveguide using multi-frequency
scattering data. It is an extension of the method exposed in Chapter 2 in the acoustic case, to the
more complex case of elastic plates. If the scalar Helmholtz case is relevant to the non destructive
testing of pipes or optical fibers (see [55]), applications in the elastic case concern the monitoring
of airplane or ship structural parts, offshore wind energy plants or bridges (see [105]).

The main common point between acoustic and elastic waveguides is the existence of a modal
decomposition of the wavefield in explicitly guided modes. The acoustic modes form an orthonormal
basis, a property not satisfied by their elastic counter-parts, called Lamb modes. Several authors
have looked into this feature. The books [91, 5] provide analytic expressions of Lamb modes as well
as dispersion relations for their wavenumbers. In [65, 80, 81] a new formulation is introduced, the
X/Y formulation, under which the family of Lamb mode turns out to be complete [8, 56, 19]. The
associated bi-orthonormality relations [44] thus allow the use of the Lamb basis to decompose any
wavefield that propagates in an elastic waveguide as a sum of Lamb modes.

However, a rigorous mathematical framework is still missing to study the propagation of an
elastic wavefield generated by an arbitrary source term (see however [15, 16] in 2D). One main
goal of the present chapter is to prove well-posedness of the system of PDE’s, that models 2D or
3D planar elastic waveguides with internal and boundary source terms. To this end, we adapt the
strategy developed for acoustic waveguides in Chapter 2, which differs from [15]. Under stronger
assumptions on the regularity of the source terms than those in [15], we present a constructive
proof of existence and regularity of a wavefield propagating in a two dimensional elastic waveguide
in Theorem 3.2.

As it turns out, this result is not valid at some particular frequencies, which we call critical
frequencies, and that are characterized in the proof of Theorem 3.2. In particular, we establish
in Corollary 3.1 that the critical frequencies, for which the Lamb family is no longer complete,
coincide with the vanishing of the bi-orthogonality relation established by [44]. This result, up to
our knowledge, has not been proven before and may help understanding the mathematical analysis
of elastic waveguides.

Concerning the study of wave propagation in three-dimensional plates, most of the work that we
are aware of consists in adapting the 2D framework to situations with radial or axial symmetry (see
for instance [59, 91, 6, 104]). In [100], arbitrary source terms are considered, without mathematical
justification however. Introducing the Helmholtz-Hodge decomposition [20] of the wavefield, we
split the three dimensional system of elasticity into a system of two independent equations. One of
them fits into the scalar wave framework developed in Chapter 2, while the other can be rewritten
using the X/Y formulation. This provides a full expression for the decomposition of the wavefield
generated by arbitrary source terms, see Theorem 3.3.

Equipped with these results, we can generalize the shape reconstruction method presented in
Chapter 2 to the case of elastic plates, so as to determine possible defects (bumps or dips) in the
geometry of a plate, from multi-frequency measurements. We use the very same procedure as in
the acoustic case : after mapping the perturbed plate to a straight configuration, we simplify the
resulting system of equations using a Born approximation. The scattered wavefield generated by a
known incident wavefield in the original geometry, gives rise in the straightened plate to a boundary
source term, that depends on the shape defect. Using measurements of the scattered field on the
surface of the plate at different frequencies, we can reconstruct in a stable way the shape defect
(provided the latter is small enough). Numerical reconstructions are presented in the last part of
the chapter, which show the efficiency of the method.

The chapter is organized as follows. In section 3.2, we study the forward source problem in
a two dimensional waveguide and introduce all the tools needed to use Lamb waves as a modal
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basis. In section 3.3, we generalize the results of section 3.2 to the forward source problem in
three dimensional plates. Section 3.4 is devoted to the reconstruction of shape defects in two
dimensional plates, generalizing the method presented in Chapter 2. Finally, in section 3.5 we show
numerical illustrations of the propagation of waves in two and three dimensional plates as well as
reconstructions of different shape defects.

3.2 Forward source problem in a regular 2D waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we present a complete study of the forward elastic source problem in a two-
dimensional regular waveguide. We use the X/Y formulation developed in [80, 81] which allows a
modal decomposition of any elastic wavefield using Lamb modes. Most of the results presented here
are already known, and can be found in [81, 91, 5]. Our main contribution is to provide a rigorous
proof of well-posedness for the direct problem and of the fact that its solutions can be represented
in terms of Lamb modes (Theorem 3.2). We also follow the suggestions in [56] to properly define the
set of critical frequencies and critical wavenumbers in Definition 3.3, and we prove in Corollary 3.1
that it coincides with the set of frequencies for which the components Xn and Yn of the eigenmodes
are orthogonal for some n.

3.2.1 Lamb modes and critical frequencies
We consider a 2D infinite, straight, elastic waveguide Ω = {(x, z) ∈ R × (−h, h)} of width 2h > 0.
The displacement field is denoted by u = (u, v) . Given a frequency ω ∈ R, and given (λ, µ) the
Lamé coefficients of the elastic waveguide, the wavefield u satisfies

∇ · σ(u) + ω2u = −f in Ω, (3.1)

where f = (f1, f2) is a given source term, and where the stress tensor σ(u) is defined by

σ(u) =
(

(λ+ 2µ)∂xu+ λ∂zv µ∂zu+ µ∂xv
µ∂zu+ µ∂xv λ∂xu+ (λ+ 2µ)∂zv

)
:=
(
s t
t r

)
. (3.2)

In this work, we assume that a Neumann boundary condition is imposed on both sides of the plate

σ(u) · ν = btop on ∂Ωtop, σ(u) · ν = bbot on ∂Ωbot, (3.3)

where btop = (btop
1 , bbot

2 ) and bbot = (bbot
1 , bbot

2 ) are given boundary source terms. This condition
could easily be replaced by a Dirichlet or a Robin condition, without altering our results. The
setting is represented in Figure 3.1.

f Ω

h

−h

ex

ez

btop

bbot

Figure 3.1 – Parametrization of a two dimensional plate Ω. Elastic wavefields are generated using an internal source
term f , and boundary source terms btop and bbot.
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In [65] this equation is analyzed in an operator form Z = L(Z) where Z = (u, t, s, v). This idea
was then adapted in [80] to formalize the so-called X/Y formulation. We introduce the variables

X := (u, t), Y := (−s, v), (3.4)

with which the elasticity equation can be rewritten as follows:

Proposition 3.1. The system (3.1), with the Neumann boundary conditions (3.3), is equivalent to
∂x

(
X
Y

)
= L(X,Y ) +


0

−f2 − btop
2 δz=h − bbot

2 δz=−h

f1 + btop
1 δz=h + btop

2 δz=−h

0

 in Ω,

B1(X) = B2(Y ) = 0 on ∂Ω,

(3.5)

where L(X,Y ) =
(
F (Y )
G(X)

)
and where F , G, B1 and B2 are matrix operators defined by

F =

 − 1
λ+ 2µ − λ

λ+ 2µ∂z

λ

λ+ 2µ∂z −ω2 − 4µ(λ+ µ)
λ+ 2µ ∂2

zz

 , G =

 ω2 ∂z

−∂z
1
µ

 , (3.6)

B1(X) = X · ez, B2(Y ) = − λ

λ+ 2µY · ex + 4µ(λ+ µ)
λ+ 2µ ∂zY · ez. (3.7)

The proof of this proposition follows the same steps as that presented in Appendix A of [81].
In this formulation, the operators F and G only depend on z, and are defined on one section of
the waveguide, while derivatives with respect to x only appear in the left-hand side of (3.5). We
consider the space

H0 :=
{

(X,Y ) ∈ (H2(−h, h))4 |B1(X)(±h) = B2(Y )(±h) = 0
}
, (3.8)

and the operator

L : H0 → (L2(−h, h))4

(X,Y ) 7→ (F (Y ), G(X)) . (3.9)

Our goal is to diagonalize this operator and, to this end, we introduce the Lamb modes:

Definition 3.1. A Lamb mode (X,Y ) ∈ H0, associated to the wavenumber k ∈ C, is a non-trivial
solution of

L(X,Y ) = ik(X,Y ).

The next Proposition provides the analytical expressions of these modes. The proof can be found
in [5, 91].

Proposition 3.2. The set of wavenumbers k ∈ C associated to Lamb modes is countable, and every
such wavenumber k satisfies the symmetric Rayleigh-Lamb equation

p2 = ω2

λ+ 2µ − k2, q2 = ω2

µ
− k2,

(
q2 − k2)2 = −4k2pq

tan(ph)
tan(qh) , (3.10)

64



Ch
ap

te
r3

Ch
ap

te
r3

Ch
ap

te
r3

or the antisymmetric Rayleigh-Lamb equation

p2 = ω2

λ+ 2µ − k2, q2 = ω2

µ
− k2,

(
q2 − k2)2 = −4k2pq

tan(qh)
tan(ph) . (3.11)

If k satisfies (3.10), the associated Lamb mode is called symmetric and is proportional to
u
t

−s
v

 :=


ik(q2 − k2) sin(qh) cos(pz) − 2ikpq sin(ph) cos(qz)
2ikµ(q2 − k2)p(− sin(qh) sin(pz) + sin(ph) sin(qz))

(q2 − k2)((λ+ 2µ)k2 + λp2) sin(qh) cos(pz) − 4µpqk2 sin(ph) cos(qz)
−p(q2 − k2) sin(qh) sin(pz) − 2k2p sin(ph) sin(qz)

 . (3.12)

If k satisfies (3.11), the associated Lamb mode is called anti-symmetric and is proportional to
u
t

−s
v

 :=


ik(q2 − k2) cos(qh) sin(pz) − 2ikpq cos(ph) sin(qz)
2ikµ(q2 − k2)p(cos(qh) cos(pz) − cos(ph) cos(qz))

(q2 − k2)((λ+ 2µ)k2 + λp2) cos(qh) sin(pz) − 4µpqk2 cos(ph) sin(qz)
p(q2 − k2) cos(qh) cos(pz) + 2k2p cos(ph) cos(qz)

 . (3.13)

Remark 3.1. We see on the above expressions that p and q are defined up to a multiplication by
−1. However, since Lamb modes are defined up to a multiplicative constant, the choice of the sign
of p or q does not change the associated value of k or the associated Lamb mode.

We notice that if k is a solution of the Rayleigh-Lamb equation then −k and k̄ are also solutions.
Figure 3.2 depicts different wavenumbers k where Real(k) ≥ 0 and Imag(k) ≥ 0, in terms of the
frequency ω.

We can distinguish three different types of modes (represented in different colors in the above
Figure) as in [59]:

Definition 3.2. There are three types of Lamb modes:

• If k ∈ R, the mode oscillates in the waveguide without energy decay and is called propagative.

• If k ∈ iR, the mode decays exponentially to zero as |x| → ∞, and is called evanescent.

• If Re(k) 6= 0 and Im(k) 6= 0, the mode oscillates very fast to zero and is called inhomogeneous.

The completeness of Lamb modes depends on whether the frequency ω is critical as defined
below:

Definition 3.3. A frequency ω and a wavenumber k are said to be critical if they satisfy k = 0 or
condition (3.10) and ΓS = 0 (resp. condition (3.11) and ΓA = 0) where

ΓS = h(q2 − k2)2 sin(qh)2 + 4k2p2 sin(ph)2 (3.14)

+(q2 − k2) sin(ph) cos(ph) sin(qh)2
(
q2 − k2

p
− 8p− 2p

k2 − p

q2

)
,

ΓA = h(q2 − k2)2 cos(qh)2 + 4k2p2 cos(ph)2 (3.15)

−(q2 − k2) cos(ph) sin(ph) cos(qh)2
(
q2 − k2

p
− 8p− 2p

k2 − p

q2

)
.

We denote by ωcrit the set of critical frequencies, and by kcrit the set of associated critical wavenum-
bers.
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02468

0 2 4 6 8

0

1

2

3

4

Imag(k)hReal(k)h

ω
h

propagative inhomogeneous evanescent critical

Figure 3.2 – Solutions of the symmetric Rayleigh-Lamb equation (3.12) in the space Im(k) ≥ 0, Re(k) ≥ 0 with
µ = 0.25 and λ = 0.31. Solutions on the full space can be obtained by axial symmetries. Propagative, evanescent and

inhomogeneous modes are represented by different colors. Critical points are represented by red dots.

Critical points solution to k = 0 or to ΓS = 0, where ΓS is defined in (3.14), are represented in
Figure 3.2. We notice that critical points seem to be located at the junction of branches of modes
of different types (see [56, 91] for more details). Next, we introduce the functional space

H := H1(−h, h) × L2(−h, h) × L2(−h, h) × H1(−h, h). (3.16)

and state the following completeness result:

Theorem 3.1. Lamb modes form a complete set of functions in H if and only if ω /∈ ωcrit.

Proof. Step 1 : It is shown in [8] (see also [56, 19]) that the operator L satisfies the following
properties:

• There exists a set of five rays in the complex plane such that the angles between adjacent
rays are less than π/2,

• Sufficiently far from the origin, all the points on these rays lie in the resolvent set of L,

• There exits N ∈ N such that the resolvent of L satisfies

‖(L − `I)−1)‖ = O(|`|N ) as |`| → +∞ along each ray. (3.17)
Invoking Theorem 6.2 in [60], one may then infer that the family of Lamb modes forms a complete
set of functions if and only if for every associated wavenumber k,

Ker(L − ikI) = Ker(L − ikI)2. (3.18)
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Step 2 : The above condition is however implicit and does not allow an effective determination
of the frequencies for which the Lamb modes form a complete set. In [56], a simpler condition
than (3.18) is derived (although not proved) with a reference to [97]. Our goal is to derive an
equivalent condition, that only depends on the parameters of the problem. To this end, we gen-
eralize the approach in [91] and in view of (3.18), we seek to characterize under which conditions
generalized eigenvalues exist. We present the argument in the case of a symmetric Lamb mode, the
antisymmetric situation can be handled in the same manner.

Assume that (u0, t0,−s0, v0) is a symmetric Lamb mode (given by (3.12)) associated with a
wavenumber k ∈ C. We look for (u, t,−s, v) ∈ H0 that satisfies

L(u, t,−s, v) = ikL(u, t,−s, v) + (u0, t0,−s0, v0), (3.19)

so that (3.18) is not satisfied. Defining

f1 = −(λ+ µ)∂zu0 − 2ikµv0, f2 = −2(λ+ 2µ)iku0 − (λ+ µ)∂zv0, (3.20)

we notice that (u, v) satisfies the equation
(λ+ 2µ)∂zzv + (λ+ µ)ik∂zu− µq2v = f1 in (−h, h),
µ∂zzu+ (λ+ µ)ik∂zv − p2(λ+ 2µ)u = f2 in (−h, h),

∂zu(±h) + ikv(±h) = −v0(±h),
λiku(±h) + (λ+ 2µ)∂zv(±h) = −λu0(±h).

(3.21)

We introduce the auxiliary functions

φ = −λ+ 2µ
ω2 (iku+ ∂zv), ψ = µ

ω2 (∂zu− ikv), (3.22)

which turn out to solve the following second order linear ODE’s with constant coefficients

∂zzφ(z) + p2φ(z) = −2ik(q2 − k2) sin(qh) cos(pz) + 2ikpq λ+ µ

µ
sin(ph) cos(qz), (3.23)

∂zzψ(z) + q2ψ(z) = −(q2 − k2)p sin(qh) λ+ µ

λ+ 2µ sin(pz) + 4k2p sin(ph) sin(qz). (3.24)

The solutions of the above ODE’s can be written

φ(z) = A1 cos(pz) +
(
A2 − ik(q2 − k2)

p
sin(qh)z

)
sin(pz) + 2ikpq(λ+ µ)

(p2 − q2)µ sin(ph) cos(qz), (3.25)

ψ(z) =
(
A′

1 − 2k2p

q
sin(ph)z

)
cos(qz) +A′

2 sin(qz) − (q2 − k2)p(λ+ µ)
(λ+ 2µ)(q2 − p2) sin(qh) sin(pz), (3.26)

for some A1, A2, A
′
1, A

′
2 ∈ C. Using the fact that u = ikφ−∂zψ+f2/ω

2 and v = ∂zφ+ ikψ+f1/ω
2,
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we find that

u(z) = A1ik cos(pz) +A2ik sin(pz) +A′
1q sin(qz) −A′

2q cos(qz) (3.27)

+k2(q2 − k2)
p

sin(qh)z sin(pz) − 2k2p sin(ph)z sin(qz) + 2k4µp

qω2 sin(ph) cos(qz)

+
(
q2 − k2 + k2(q2 − k2)(λ+ 2µ)

ω2

)
sin(qh) cos(pz),

v(z) = −A1p sin(pz) +A2p cos(pz) +A′
1ik cos(qz) +A′

2ik sin(qz) (3.28)

−ik(q2 − k2) sin(qh)z cos(pz) − 2k2p

q
sin(ph)z cos(qz) +

(
2ikp+ 2ik3µp

ω2

)
sin(ph) sin(qz)

− ik3(q2 − k2)(λ+ 2µ)
ω2p

sin(qh) sin(pz).

Expressing the boundary conditions, we obtain

M

(
A1
A′

2

)
= −

(
b1
b2

)
, (3.29)

where M =
(

−2ikp sin(ph) (q2 − k2) sin(qh)
−µ(q2 − k2) cos(ph) 2ikµq cos(qh)

)
, and where

b1 = 2k2(q2 − k2)h cos(ph) sin(qh) − 2(q2 − k2)k2p

q
h cos(qh) sin(ph)

+ sin(ph) sin(qh)
(

−9pk2 − pq2 + 4k2pq2

ω2 + (q2 − k2)(k2 − p2)(ω2 + (λ+ 2µ)k2)
pω2

)
,

b2 =
(

4µik3p+ ikµ(q2 − k2)2

p

)
h sin(ph) sin(qh) + cos(qh) sin(ph)

(
4ikµqp− 4ik5pµ2

qω2

)
+ cos(ph) sin(qh)

(
−2ikµ(q2 − k2)

ω2 (ω2 + k2(λ+ 2µ)) + λik(q2 − k2)
)
.

Since k satisfies the symmetric Rayleigh-Lamb equation (3.10), the determinant of the matrix M
vanishes.

If the first column of the matrix M is non zero, then (3.29) has a solution if and only if∣∣∣∣ 2ikp sin(ph) b1
µ(q2 − k2) cos(ph) b2

∣∣∣∣ = 0. (3.30)

Computing this determinant and using the relation (3.10) leads to

− 2k2µ

[
h(q2 − k2)2 sin(qh)2 + 4k2p2 sin(ph)2

+ (q2 − k2) sin(ph) cos(ph) sin(qh)2
(
q2 − k2

p
− 8p− 2p

k2 − p

q2

)]
= 0, (3.31)

in other words, ΓS = 0 and ω ∈ ωcrit.
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Assume now that M11 = M21 = 0. Then either k = 0 and q2 cos(ph) = 0 (the condition q = 0 is
excluded as it yields to a trivial eigenfunction (u0, t0,−s0, v0)) and the system takes the form(

0 q2 sin(qh)
0 0

)(
A1
B2

)
=
(

2pq2 sin(qh)
0

)
, (3.32)

and has non trivial solutions (for instance B2 = 2p and A1 = 0). Or k 6= 0, p ∈ πZ and q2 −k2 = 0,
in which case (b1, b2) = (0, 0) and the system also has nontrivial solutions. In this latter case, one
can check that ΓS = 0 as well.

Conversely, if (3.31) holds, then using (3.27)-(3.28) one can construct a solution (u, t,−s, v)
to (3.19). This shows that ω ∈ ωcrit if an only if (3.18) is not satisfied, and concludes the proof of
the Theorem.

Remark 3.2. When ω ∈ ωcrit, one needs to add generalized eigenmodes to the Lamb modes to
obtain a complete family [56, 8]. Our proof can be useful if ones want to find the expression of such
generalized modes: finding (A1, B2) solution to (3.29) and replacing it in (3.27) and (3.28) gives
the expression of the generalized modes.

Remark 3.3. If we derive equation (3.10) (resp. (3.11)) with respect to k, we notice that ∂kω = 0
if and only if (3.14) (resp. (3.15)) is satisfied. This shows that critical points are exactly located
where ∂kω = 0. When k 6= 0, these points are called zero velocity group points (ZGV points) and
have been extensively studied (see for instance [11]).

3.2.2 Solution of the 2D elasticity problem
In the rest of this section, we assume that ω /∈ ωcrit, so that Lamb modes form a complete family,
however they do not necessarily yield an orthonormal basis. In order to identify the decomposition
of a given function of H on the Lamb basis, we split the set of wavenumbers k in two parts:

Definition 3.4. Let ω /∈ ωcrit.

• We say that a Lamb mode with wavenumber k is right-going if Im(k) > 0 or Im(k) = 0 and
∂kω > 0,

• We say that a Lamb mode is left-going if Im(k) < 0 or Im(k) = 0 and ∂kω < 0.

We index the right-going modes by n ∈ N∗, and sort them by ascending order of imaginary part and
descending order of real part.

We illustrate this classification in Figure 3.3, where right and left-going wavenumbers are repre-
sented at the frequency ω = 1.37.

As mentioned previously, if kn is a right-going mode, −kn is also solution of the Rayleigh-Lamb
equation and is then a left-going mode. We also notice, using (3.12), that if (Xn,Yn) is (up to a
multiplicative constant) the right-going Lamb mode associated to kn and (X̃n, Ỹn) is the left-going
Lamb mode associated to −kn, then

un = −ũn, vn = ṽn, sn = s̃n, tn = −t̃n. (3.33)

It follows that for any (X,Y ) ∈ H, there exist (An)n∈N∗ , (Bn)n∈N∗ such that

(X,Y ) =
∑
n>0

An(Xn,Yn) +
∑
n>0

Bn(X̃n, Ỹn) =
∑
n>0

An(Xn,Yn) +
∑
n>0

Bn(−Xn,Yn). (3.34)
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−4 −3 −2 −1 0 1 2 3 41.3

1.35

1.4

Re(k)

ω

Rayleigh-Lamb solutions right going left going

Figure 3.3 – Representation of right and left-going wavenumbers at the frequency ω = 1.37 with µ = 0.25 and
λ = 0.31. Right-going modes are represented by circles and left-going modes by triangles. Top: classification of the

wavenumbers with Im(k) 6= 0. Bottom : classification of the wavenumbers with Im(k) = 0 by looking at ∂kω.

Defining an = An −Bn and bn = An +Bn,

X =
∑
n>0

anXn, Y =
∑
n>0

bnYn. (3.35)

This decomposition with right-going modes is easier to handle than the full decomposition: We
prove below that we can find an explicit expression of an and bn given (X,Y ). We denote 〈·, ·〉 the
product defined by

〈(z1, z2), (z3, z4)〉 =
∫ h

−h

z1z3 + z2z4. (3.36)

Note that this product is not a scalar product since the zi’s are complex-valued. The following
proposition states that families (Xn)n∈N? and (Yn)n∈N? are bi-orthogonal:

Proposition 3.3. For every n,m > 0, 〈Xm,Yn〉 = δn=mJn where Jn = iω2k ΓS if n is a symmetric
mode and Jn = iω2k ΓA if n is an anti symmetric mode, with ΓS and ΓA defined in (3.14) and
(3.15). Especially, Jn 6= 0 if and only if ω /∈ ωcrit.

Proof. The proof that 〈Xm,Yn〉 = 0 if m 6= n can be found in [44, 81]. Then, using expressions
(3.12) and (3.13), we can compute 〈Xn,Yn〉 as in [81].
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This provides a new characterization of critical points:

Corollary 3.1. The three following definitions of the set of critical frequencies are equivalent:

ωcrit = {ω ∈ R+ | ∃n ∈ N? 〈Xn,Yn〉 = 0}
= {ω ∈ R+ | (Xn,Yn)n>0 does not form a complete set of functions in H}
= {ω ∈ R+ | ∃n ∈ N? ∂kn

ω = 0}.
(3.37)

Proposition 3.3 allows us to compute the coefficients in a decomposition (3.35), as

an = 〈X,Yn〉
Jn

, bn = 〈Y ,Xn〉
Jn

. (3.38)

We use the modal decomposition to provide an outgoing condition for elastic waveguides. For
acoustic waves, one may ask that each modal component should satisfy a one dimensional Sommer-
feld radiation condition (see Chapter 2 for instance). In the same spirit, we consider the following

Definition 3.5. A wavefield u ∈ H2
loc(Ω) is said to be outgoing if X and Y defined in (3.4) satisfy∣∣∣∣〈Y ,Xn〉′(x) x

|x|
− ikn〈Y ,Xn〉(x)

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N∗, (3.39)

∣∣∣∣〈X,Yn〉′(x) x
|x|

− ikn〈X,Yn〉(x)
∣∣∣∣ −→

|x|→+∞
0 ∀n ∈ N∗. (3.40)

This condition guarantees existence and uniqueness for the source problem (3.1) as we prove
below. For every r > 0, we set Ωr := (−r, r) × (−h, h). We consider that any source defined on Ωr

(resp. (−r, r)) is extended by 0 on Ω (resp. R).

Theorem 3.2. Let r > 0. For every ω /∈ ωcrit, f = (f1, f2) ∈ H1(Ωr) and btop = (btop
1 , btop

2 ), bbot =
(bbot

1 , bbot
2 ) ∈ H̃

3/2
(−r, r), the PDE

∇ · σ(u) + ω2u = −f in Ω,
σ(u) · ν = btop/bot on Ωtop/bot,

u is outgoing,
(3.41)

has a unique solution u ∈ H3
loc(Ω), with a Lamb-mode decomposition

u(x, z) =
∑
n>0

an(x)un(z), v(x, z) =
∑
n>0

bn(x)vn(z), (3.42)

where an, bn are solutions to {
a′′

n + k2
nan = iknF

n
1 − Fn

2
′,

b′′
n + k2

nbn = Fn
1

′ − iknF2,
(3.43)

with

Fn
1 (x) = 1

Jn

(∫ h

−h

f1(x, z)un(z)dz + btop
1 (x)un(h) + bbot

1 (x)un(−h)
)
, (3.44)

Fn
2 (x) = 1

Jn

(∫ h

−h

f2(x, z)vn(z)dz + btop
2 (x)vn(h) + bbot

2 (x)vn(−h)
)
. (3.45)
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Equivalently, an = Gn
1 ∗ Fn

1 −Gn
2 ∗ Fn

2 and bn = Gn
2 ∗ Fn

1 −Gn
1 ∗ Fn

2 with

Gn
1 (x) = 1

2e
ikn|x|, Gn

2 (x) = x

2|x|
eikn|x|. (3.46)

Moreover, there exists a constant C > 0, which only depends on h, ω and r, such that

‖u‖H3(Ωr) ≤ C
(

‖f‖H1(Ω) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
. (3.47)

Proof. This proof is an adaptation of the proof presented in Appendix 2.A of Chapter 2.
Step 1. We first show uniqueness of the solution. Assume that u solves (3.41) with f = 0,

btop = bbot = 0. The associated fields X,Y defined in (3.4) can be decomposed as

X(x, z) =
∑
n>0

an(x)Xn(z), Y (x, z) =
∑
n>0

bn(x)Yn(z). (3.48)

As proved in [81], the operators F and G defined in (3.5) are self adjoint on H0. By projecting
(3.4) with the product 〈·, ·〉 on Xn and Yn, we see that

a′
n = iknbn, b′

n = iknan. (3.49)

Solving this system of ODE’s and using the outgoing condition shows that an = bn = 0, leading to
u = 0.

Step 2. Assume that the functions (u, v) defined in (3.42) is well defined. A quick computation
shows that the associated fields (X,Y ) satisfy (3.5) for every mode since

Gn
1

′ = iknG
n
2 , Gn

2
′ = iknG

n
1 + δ0. (3.50)

Assuming that |x| > r, we also see that∣∣∣∣〈X,Yn〉′(x) x
|x|

− ikn〈X,Yn〉(x)
∣∣∣∣

=
∣∣∣∣( x

|x|
Gn

1
′ − iknG

n
1

)
∗ Fn

1 (x) −
(
x

|x|
Gn

2
′ − iknG

n
2

)
∗ Fn

2 (x)
∣∣∣∣ = 0. (3.51)

Repeating this computation for 〈Y ,Xn〉, shows that (u, v) satisfies the outgoing condition.
Step 3. We prove that the functions given by (3.42) are well-defined, in other words that the

series in (3.42) converge. We know from [91] that the number of evanescent and propagative modes
is finite, so we only need to study the convergence of the inhomogeneous modes. We begin by
noticing that if kn is an inhomogeneous mode, then km = −kn also satisfies the dispersion relation,
and Xm = Xn and Ym = Yn. We index the subset of inhomogeneous wavenumbers with positive
real part by j ∈ N∗, and all the asymptotic comparison are now meant when j → +∞. Let
N = 2j − 1/2 (resp. N = 2j + 1/2) if kj is associated to a symmetric (resp. antisymmetric) mode.
Using [67], we know that

hkj = 1
2 ln(2πN) + i

πN

2 − i
ln(2πN)

2πN +O

(
1
N

)
. (3.52)

Let pj and qj be the quantities defined in (3.10). We notice that pj , qj ∼ −ikj . Since (pj − ikj)(pj +
ikj) = ω2/(λ+ 2µ) and (qj − ikj)(qj − ikj) = ω2/µ it follows that

pj = −ikj + ω2

(λ+ 2µ)π︸ ︷︷ ︸
cp

1
N

+ o

(
1
N

)
, qj = −ikj + ω2

µπ︸︷︷︸
cq

1
N

+ o

(
1
N

)
. (3.53)
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We notice that

sin(ikjz) = iz

2|z|
exp

(
|z|
h

(
1
2 ln(2πN) + i

πN

2 − i
ln(2πN)

2πN

))
+O

(
1

N1−|z|/2h

)
, (3.54)

cos(ikjz) = 1
2 exp

(
|z|
h

(
1
2 ln(2πN) + i

πN

2 − i
ln(2πN)

2πN

))
+O

(
1

N1−|z|/2h

)
, (3.55)

and if α stands for p or q,

cos(αjz) ∼ cos(ikjz) + cα

N
z sin(ikjz), sin(αjz) ∼ − sin(ikjz) + cα

N
z cos(ikjz). (3.56)

Using the definition of the symmetric modes (3.12), we find that

uj(z) ∼ π3N2(cp − cq)
16 (h− |z|) exp

((
|z|
h

+ 1
)(

ln(2πN)
2 + iπN

2 − i ln(2πN)
2πN

))
,

vj(z) ∼ iπ3N2(cp − cq)
16

(
z − h

z

|y|

)
exp

((
|z|
h

+ 1
)(

ln(2πN)
2 + iπN

2 − i ln(2πN)
2πN

))
,

tj(z) ∼ −iµπ4N3(cp − cq)
16

(
z − h

z

|z|

)
exp

((
|z|
h

+ 1
)(

ln(2πN)
2 + iπN

2 − i ln(2πN)
2πN

))
,

sj(z) ∼ −µπ4N3(cp − cq)
16 (h− |z|) exp

((
|z|
h

+ 1
)(

ln(2πN)
2 + iπN

2 − i ln(2πN)
2πN

))
,

and it follows that

‖uj‖L2(−h,h), ‖vj‖L2(−h,h) ∼ π4h3/2N3|cp − cq|
4 ln(2πN)3/2 , (3.57)

‖tj‖L2(−h,h), ‖sj‖L2(−1,1) ∼ π5h3/2µN4|cp − cq|
4 ln(2πN)3/2 , (3.58)

‖uj‖L∞(−h,h), ‖vj‖L∞(−h,h) ∼ π5hN2|cp − cq|
8 , (3.59)

|Jj | ∼ h2π6N5ω2|cp − cq|
8 . (3.60)

Similar estimates can be derived for the antisymmetric modes, which yield the same asymptotic
behaviors as (3.57), (3.58), (3.59) and (3.60). Defining

aj = Gj
1 ∗ F j

1 −Gj
2 ∗ F j

2 , bj = Gj
2 ∗ F j

1 −Gj
1 ∗ F j

2 , (3.61)

we see using Young’s inequality that

‖aj‖L2(−r,r) ≤ ‖Gj
1‖L1(−r,r)‖F

j
1 ‖L2(−r,r) + ‖Gj

2‖L1(−r,r)‖F
j
2 ‖L2(−r,r). (3.62)

From the asymptotics of kj it follows that ‖Gj
1‖L1(R), ‖G

j
2‖L1(R) ≤ 1/N . Thus if up

j denotes a
primitive of uj , we see that∫ h

−h

f1(x, z)uj(z)dy =
[
f1(x, z)up

j (z)
]z=h

z=−h
−
∫ h

−h

∂zf1(x, z)up1
j (z)dz. (3.63)

Using the previous estimates, we find that

up
j (z) ∼ 2

iπN
uj(z), (3.64)
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and so there exists a constant c1 > 0, that depends on ω and h, such that

‖F j
1 ‖L2(−r,r) ≤ c1

N3

(
‖f1‖H1(Ω) + ‖btop

1 ‖L2(R) + ‖bbot
1 ‖L2(R)

)
. (3.65)

We obtain a similar estimate for F2

‖F j
2 ‖L2(−r,r) ≤ c1

N3

(
‖f2‖H1(Ω) + ‖btop

2 ‖L2(R) + ‖bbot
2 ‖L2(R)

)
. (3.66)

Finally, using the triangular inequality,

‖u‖L2(Ωr) ≤
∑

n|kn∈R,iR

‖an‖L2(−r,r)‖un‖L2(−h,h) + 2
∑
j∈N∗

‖aj‖L2(−r,r)‖uj‖L2(−h,h), (3.67)

which leads to

‖u‖L2(Ω) ≤

[ ∑
n|kn∈R,iR

2r
|Jn|

(
‖un‖L2(−h,h) + ‖vn‖L2(−h,h)

)
‖un‖L2(−h,h)

+ 2c1
∑
j∈N∗

1
(2j ± 1/2) ln(2j ± 1/2)3/2

] (
‖f‖H1(R) + ‖btop‖L2(R) + ‖bbot‖L2(R)

)
, (3.68)

and similarly,

‖v‖L2(Ω) ≤

[ ∑
n|kn∈R,iR

2r
|Jn|

(
‖un‖L2(−h,h) + ‖vn‖L2(−h,h)

)
‖vn‖L2(−h,h)

+ 2c1
∑
j∈N∗

1
(2j ± 1/2) ln(2j ± 1/2)3/2

] (
‖f‖H1(R) + ‖btop‖L2(R) + ‖bbot‖L2(R)

)
. (3.69)

Elliptic regularity results (see e.g. [47]) show that there exists a constant c3 depending on r such
that

‖u‖H3(Ωr) ≤ c3

(
‖u‖L2(Ωr) + ‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
, (3.70)

which together with (3.68)-(3.69) conclude the proof.

Remark 3.4. This result is probably not optimal: indeed, in the scalar case one can merely assume
that the source term lies in L2(Ωr) and obtain a solution in H2

loc(Ω) (see Chapter 2). However, in
the present case, the Lamb modes are not orthogonal and Parseval equality does not hold, so that
in the above proof, we controlled terms using the triangular inequality, which may lead to a loss of
accuracy. We can see in the proof that the extra regularity of the source terms is needed to derive
(3.65) and (3.66), which in turn yields the convergence of the series (3.67). Providing adaptation
to elastic waveguides, the theory developed in [72] may be better adapted to treat source terms with
lower regularity.

To conclude, in this section we have constructed an explicit solution of the elasticity problem in
a regular waveguide, and have shown that its norm is controlled by that of the source terms. Such
estimates will be useful in the following, for the reconstruction of small defects of the waveguide.
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3.3 Forward source problem in a regular 3D plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we are interested in the forward source problem in a three-dimension regular waveg-
uide with two infinite dimensions. Our motivation comes from the experiments reported in [11],
where one tries to reconstruct width defects in thin elastic plates. The propagation of waves in
three-dimension waveguides with one infinite dimension such as pipes or air ducts is a direct gen-
eralization of the two dimensional case presented in the previous section, see for instance [16].
However, to our knowledge, the case of three-dimension waveguides with two infinite dimensions
has not been treated yet. Two main issues are at stake. First, as mentioned in [59], in addition to
longitudinal and transverse modes, one needs to take into account horizontal shear modes in order
to form a complete modal basis. Second, one would like to generalize the (X,Y ) formulation of
Definition 3.1 to 3D.

Given an elastic wavefield u = (u, v, w) that propagates in a three dimension plate, our main
contribution consists in introducing two auxiliary variables α and β, that only depend on u and v
(see (3.75)), which allow the decoupling of the equations of elasticity. We show that (α,w) can be
decomposed using Lamb modes, while β represents the horizontal shear modes. This allows us to
obtain a generalization of Theorem 3.2 to three dimensional plates.

3.3.1 Decoupling of the linear elastic equation

Let us consider a 3D infinite elastic plate Ω = R2 × (−h, h), where h > 0 is half of the waveguide
thickness. For every r > 0, we define Ωr = B2(0, r) × (−h, h) where B2(0, r) is the ball in R2

centered at (0, 0) with radius r. A point (x, y, z) ∈ Ω will be denoted by (x, z), and the elastic
displacement by u = (u, v, w). Given a frequency ω ∈ R and given (λ, µ) the Lamé coefficients of
the elastic waveguide, the wavefield u satisfies

∇ · σ(u) + ω2u = −f in Ω, (3.71)

where f = (f1, f2, f3) is a source term and σ(u) is the stress tensor defined by

σ(u) =


(λ+ 2µ)∂xu

+λ∂yv + λ∂zw
µ∂yu+ µ∂xv µ∂zu+ µ∂xw

µ∂yu+ µ∂xv
(λ+ 2µ)∂yv

+λ∂xu+ λ∂zw
µ∂zv + µ∂yw

µ∂zu+ µ∂xw µ∂zv + µ∂yw
(λ+ 2µ)∂zw

+λ∂xu+ λ∂yv

 . (3.72)

In the following, we study the case of Neumann boundary conditions

σ(u) · ν = btop on ∂Ωtop, σ(u) · ν = bbot on ∂Ωbot, (3.73)

where btop = (btop
1 , bbot

2 , bbot
3 ) and bbot = (bbot

1 , bbot
2 , bbot

3 ) are boundary source terms. However, our
analysis applies also to the case of Dirichlet or Robin boundary conditions. We represent the set-up
in Figure 3.4.

To adapt the X/Y formulation to 3D, we introduce the following notations : for a vector field
g = (g1, g2, g3) and a scalar field g we set

div2(g) = ∂xg1 + ∂yg2, curl2(g) = ∂xg2 − ∂yg1, ∆2(g) = ∂xxg + ∂yyg. (3.74)

Given u = (u, v, w) ∈ H1
loc(Ω) we define

α = div2(u), β = curl2(u). (3.75)
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Figure 3.4 – The three dimensional plate Ω. Elastic wavefields are generated by an internal source term f and by
boundary source terms btop and bbot.

Note that α and β only involve the in-plane components of u. The following proposition shows
how these new variables decouple the elasticity system:

Proposition 3.4. If u is solution of (3.71) with boundary conditions (3.73), then (α,w) satisfies
(λ+ 2µ)∆2α+ µ∂zzα+ ω2α+ (λ+ µ)∆2∂zw = −div2(f) in Ω,

(λ+ µ)∂zα+ (λ+ 2µ)∂zzw + µ∆2w + ω2w = −f3 in Ω,
∂zα+ µ∆2w = div2(btop/bot) on ∂Ωtop/bot,

(λ+ 2µ)∂zw + λα = b
top/bot
3 on ∂Ωtop/bot,

(3.76)

while β satisfies {
µ∆2β + µ∂zzβ + ω2β = −curl2(f) in Ω,

µ∂zβ = curl2(btop/bot) on ∂Ωtop/bot.
(3.77)

Proof. If we denote Li the lines of (3.71) and Bi the lines of (3.73), we compute ∂xL1 + ∂yL2,
∂xB1 + ∂yB2 and with L3 and B3, we find (3.76). Then, ∂xL2 − ∂yL1 and ∂xB2 − ∂yB1 give
(3.77).

We start with the study of equation (3.77), which is a Helmholtz equation, similar to that of
acoustic waveguides, for the function β. Inspired by Chapter 2, we introduce a decomposition of β
as a sum of horizontal shear modes.

Definition 3.6. For every n ∈ N, we define κ2
n = ω2/µ − n2π2/4h2 with Real(κn) ≥ 0 and

Imag(κn) ≥ 0. We define the n-th shear horizontal mode (SH mode) ϕn by

ϕn(z) :=

 1/
√

2h if n = 0,
1√
h

cos
(
nπ(z + h)

2h

)
else. (3.78)

The sequence (ϕn)n≥0 defines an orthonormal basis of L2(−h, h) for the scalar product

(g1 | g2) :=
∫ h

−h

g1(x)g2(x)dx. (3.79)

Classical results on waveguides (see e.g. [27]) show that if one imposes a Sommerfeld radiation
condition [95], the problem (3.77) is well-posed except for the frequencies

ωsh
n =

√
µπ

2h n, n ≥ 0. (3.80)

More precisely, when ω /∈ ωsh
crit := {ωsh

n , n ≥ 0}, the following result holds:
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Proposition 3.5. For every ω /∈ ωsh
crit, f ∈ H1(Ωr) and btop, bbot ∈ H̃3/2(−r, r), the problem

µ∆2β + µ∂zzβ + ω2β = −curl2(f) in Ω,
µ∂zβ = curl2(bbot/top) on ∂Ωbot/top,√

R [∂r − iκn] (β |ϕn) (Reiθ) −→
R→+∞

0 ∀n ≥ 0 ∀θ ∈ (0, 2π),
(3.81)

has a unique solution β ∈ H2
loc(Ω) which decomposes as

β(x, z) =
∑
n≥0

−(Γn ∗ Fn
sh)(x)ϕn(z), (3.82)

where Γn denotes the Hankel function of the first kind

Γn(x) = − i

4H(1)
0 (κn|x|),

and where

Fn
sh = 1

µ

(∫ h

−h

curl2(f)ϕn + curl2(btop)ϕn(1) + curl2(bbot)ϕn(0)
)
.

Proof. We follow the exact same steps as Appendix 2.A in Chapter 2. Since the ϕn form an
orthonormal basis, any function β can be decomposed as β =

∑
βnϕn. Projecting on the SH

modes, the problem (3.81) is equivalent to the collection of problems indexed by n ∈ N{
∆2βn + κ2

nbn = gn
sh in R2

√
r [∂r − iκn]βn(Reiθ) −→

r→+∞
0 ∀θ ∈ (0, 2π). (3.83)

As ∆Γn + κ2
nΓn = δ0 [107], each function βn can be expressed as the convolution Γn ∗ Fn

sh. The
series (3.82) can be shown to converge in L2

loc(Ω) and provides a solution in the sense of distributions
to (3.81). Elliptic regularity allows then to show that β is actually in H2

loc(Ω).

Next, we study equation (3.76), which resembles the two dimensional elasticity system studied
in section 3.2. We propose to adapt the X/Y formulation to this new equation. We define the
variables

t = µ∂zα+ µ∆2w, s = (λ+ 2µ)α+ λ∂zw, X = (α, t), Y = (−s, w). (3.84)

Then, we adapt Proposition 3.1:

Proposition 3.6. The system (3.76) is equivalent to
(

X
∆2Y

)
= L(X,Y ) +


0

−f3 − δz=hb
top
3 − δz=−hb

bot
3

div2(f) + δz=hdiv2(btop) + δz=−hdiv2(bbot)
0

 in Ω,

B1(X) = B2(Y ) = 0 on ∂Ω,

(3.85)

where L(X,Y ) =
(
F (Y )
G(X)

)
, and F , G, B1 and B2 are the same matrix operators as those defined

in Proposition 3.1 in (3.6) and (3.7).

77



Ch
ap

te
r3

Ch
ap

te
r3

Ch
ap

te
r3

We thus may use Lamb modes to diagonalize the operator L as in the 2D situation, and obtain
in this way a result similar to Theorem 3.2. Let un, vn, kn be defined as in section 3.2 and assume
that ω /∈ ωcrit.

Proposition 3.7. For every ω /∈ ωcrit, f ∈ H1(Ωr) and btop, bbot ∈ H̃3/2(−r, r), the problem

(λ+ 2µ)∆2α+ µ∂zzα+ ω2α+ (λ+ µ)∆2∂zw = −div2(f) in Ω,
(λ+ µ)∂zα+ (λ+ 2µ)∂zzw + µ∆2w + ω2w = −f3 in Ω,

∂zα+ µ∆2w = div2(btop/bot) on ∂Ωtop/bot,

(λ+ 2µ)∂zw + λα = b
top/bot
3 on ∂Ωtop/bot,√

R [∂r − ikn] 〈Y ,Xn〉(Reiθ) −→
R→+∞

0 ∀n > 0 ∀θ ∈ (0, 2π),
√
R [∂r − ikn] 〈X,Yn〉(Reiθ) −→

R→+∞
0 ∀n > 0 ∀θ ∈ (0, 2π),

(3.86)

has a unique solution (α,w) ∈ H2
loc(Ω) × H3

loc(Ω) which decomposes as

α(x, z) =
∑
n>0

((k2
nF

n
3 + iknF

n
1 ) ∗Gn)un(z), w(x, z) =

∑
n>0

((−iknF
n
3 + Fn

1 ) ∗Gn)vn(z), (3.87)

where
Gn(x) = − i

4H(1)
0 (kn|x|), (3.88)

Fn
1 = 1

Jn

(∫ h

−h

div2(f)un + div2(btop)un(h) + div2(bbot)un(−h)
)
, (3.89)

Fn
3 = 1

Jn

(∫ h

−h

f3vn + btop
3 vn(h) + bbot

3 vn(−h)
)
. (3.90)

Proof. The proof is very similar to that of Theorem 3.2. We start by decomposing (X(x, y, z),Y (x, y, z))
in the form

X(x, y, z) =
∑
n>0

an(x, y)Xn(z), Y (x, y, z) =
∑
n>0

bn(x, y)Yn(z). (3.91)

Injecting in (3.85), one obtains, instead of (3.49) in the 2D case,

an = iknbn, ∆2bn = iknan. (3.92)

If (3.87) is well defined, it satisfies (3.86) since ∆2G
n = −k2

nG
n + δ0. The study of the asymptotic

behavior of an and bn can be performed as in section 3.2, using the fact that

‖k2
nG

n‖L1(B(0,r)) = O(1), ‖iknG
n‖L1(B(0,r)) = O(1/N), ‖Gn‖L1(B(0,r)) = O(1/N2). (3.93)

It follows that the series (3.91) are in L2
loc(Ω) and provide a solution of (3.86) in the sense of

distribution. Rewriting this system as an elliptic system
(λ+ 2µ)∆2α+ µ∂zz(α) = R(w, f) in Ω,

(λ+ 2µ)∂zzw + (λ+ 2µ)∆2w = S(α, f3) in Ω,
∂zα = r(∆2w,btop/bot) on ∂Ωtop/bot,

∂zw = s(α, btop/bot
3 ) on ∂Ωtop/bot,

using elliptic regularity [47] and a bootstrap argument, one further infers that α,w ∈ H2
loc(Ω),

which concludes the proof of the Proposition.
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3.3.2 Helmholtz-Hodge decomposition
Now that equations (3.76) and (3.77) are solved, we return to equations (3.71) and (3.73). We need
to ensure that given the expressions of α and β, we can recover a unique expression for u and v. To
this end, we use the Helmholtz-Hodge decomposition, which states that under certain conditions, a
vector field can be decomposed in a unique way as the sum of a curl-free and divergence free fields.
This decomposition is mostly used in fluid mechanics to analyze three dimensional vector fields (see
for instance [20, 30]). In our case, we apply it to two dimensional vector fields, since we are only
interested in finding a link between (u, v) and (α, β). We give the corresponding statement below,
the proof of which and be found in [88] concerning existence, while uniqueness is addressed in [103].

Proposition 3.8. Every vector field ξ ∈ H1
loc(R3,C2), vanishing at infinity, can be uniquely de-

composed as ξ = d + c where curl2(d) = 0 and div2(c) = 0. The couple (d, c) is called the
Helmholtz-Hodge decomposition (HHD) of ξ. Moreover, ξ is uniquely determined by div2(ξ) and
curl2(ξ).

Providing enough regularity on α and β, one can compute (u, v) using the formula [88]

(u, v) = −∇(G(α)) + ∇ × (G(β)), (3.94)

where G represents the Newtonian potential operator which convolves each function with x 7→
log(|x|)/(2π). However, in the following, we will not need to use this formula. Indeed, we exhibit
expressions of u and v that satisfy div2(u) = α and curl2(u) = β and thus are the ones we look for
thanks to the previous uniqueness result.

We introduce an outgoing radiation condition for 3D wavefields:

Definition 3.7. A wavefield u ∈ H2
loc(Ω) is said to be outgoing if it vanishes at infinity, and if

X,Y defined in (3.84) and β defined in (3.75) satisfy
√
R [∂r − ikn] 〈X,Yn〉(Reiθ) −→

R→+∞
0 ∀n > 0 ∀θ ∈ (0, 2π), (3.95)

√
R [∂r − ikn] 〈Y ,Xn〉(Reiθ) −→

R→+∞
0 ∀n > 0 ∀θ ∈ (0, 2π), (3.96)

√
R [∂r − iκn] (β |ϕn) (Reiθ) −→

R→+∞
0 ∀n ≥ 0 ∀θ ∈ (0, 2π). (3.97)

Under this condition, uniqueness of solutions to the source problem in 3D will be guaranteed, as
stated in the next Theorem. We first introduce some notations. We define the scalar convolution
by

g1 ∗ ·g2(x) =
∫

g1(x− y) · g2(y)dy, (3.98)

and introduce the Green functions

Gn
1 (x) = − i

4H(1)
0 (kn|x|), Gn

2 (x) = ∇Gn
1 (x), Gn

3 (x) = − i

4H(1)
0 (κn|x|). (3.99)

Let (fL,fsh), (bL
top, b

sh
top), (bL

bot, b
sh
bot) denote the HHD of (f1, f2), (btop

1 , btop
2 ), (bbot

1 , bbot
2 ) respec-

tively and set

gz
n(x) = 1

Jn

(∫ h

−h

f3(x, z)vn(z)dz + btop
3 (x)vn(h) + bbot

3 (x)vn(−h)
)
, (3.100)
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gL
n = 1

Jn

(∫ h

−h

fL(x, z)un(z)dz + bL
topun(h) + bL

botun(−h)
)
, (3.101)

gsh
n = 1

µ

(∫ h

−h

fsh(x, z)ϕn(z)dz + bsh
topϕn(h) + bsh

botϕn(−h)
)
. (3.102)

Theorem 3.3. Let r > 0. For every ω /∈ ωcrit ∪ωsh
crit, f ∈ H3(Ωr) and btop, bbot ∈ H̃3/2(−r, r), the

problem 
∇ · σ(u) + ω2u = −f in Ω,

σ(u) · ν = btop/bot on Ωtop/bot,
u is outgoing,

(3.103)

has a unique solution u ∈ H3
loc(Ω) which decomposes as u = uL + ush with

uL(x, z) =


∑
n>0

An(x)un(z)∑
n>0

bn(x)vn(z)

 , uSh(x, z) =

 ∑
n≥0

Cn(x)ϕn(z)

0

 , (3.104)

where An, bn,Cn satisfy the equations
∆2An + k2

nAn = −∇gz
n + ikngL

n ,

∆2Cn + κ2
nCn = −gsh

n ,

∆2bn + k2
nbn = −ikng

z
n + div2(gL

n).
(3.105)

Equivalently, An = −gz
n ∗ Gn

2 + ikngL
n ∗Gn

1 , Cn = −gsh
n /µ∗Gn

3 and bn = −ikng
z
n ∗Gn

1 + gL
n ∗ · Gn

2 .
Moreover, there exists a constant C > 0 depending only on h, ω and r such that

‖u‖H3(Ωr) ≤ C
(

‖f‖H1(Ω) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
. (3.106)

Proof. If f , btop and bbot vanish, uniqueness in Propositions 3.7 and 3.5 show that α = β = w = 0.
Since u and v are uniquely determined by div2(u, v) and curl2(u, v), it follows that u = v = 0 and the
uniqueness of a solution is established. Moreover, Propositions 3.7 and 3.5 provide expressions of α,
β and w. Using the HHD, there exists a unique wavefield u determined by (α, β) and we can check
that expressions provided in (3.104) indeed provide a solution. Finally, the control of the wavefield
with respect to source terms is obtained in the same manner as in the proof of Theorem 3.2, using
the following estimates on the Green functions:

‖GN
1 ‖L1(B(0,r)) = O(1/N2), ‖GN

2 ‖L1(B(0,r)) = O(1/N). (3.107)

3.4 Reconstruction of small shape defects frommulti-frequencymeasure-
ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we consider the inverse problem of reconstructing of small shape defects in an elastic
plate from multi-frequency measurements. We first detail the method used in the two dimensional
case. Its 3D generalization is discussed at the end of the section. We follow the method developed
in Chapter 2 for acoustic waveguides. In the present case, given current experimental setups [59],
we assume that the measurements consist in surface measurements of the displacement fields, rather
than measurements in a section of the waveguide, which were considered in the acoustic case.
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3.4.1 Born approximation

We consider a plate Ω̃ that contains localized bumps, defined by

Ω̃ = {(x, z) ∈ R2 |h(−1 + 2g2(x)) < z < h(1 + 2g1(x))},

where g1, g2 are C2 functions with compact support, such that −1 + 2g2(x) < 1 + 2g1(x), see
Figure 3.5. Note that g1 and g2 are not required to have a constant sign. Hereafter Ω̃ is called the
perturbed plate.

−h

h

uinc 2hg1(x)

2hg2(x)

Ω̃

Figure 3.5 – Representation of shape defects in a plate of width h.

Our goal is to reconstruct the functions g1 and g2, from the wavefields scattered by the bumps.
As incident wave, we use the function corresponding to the first symmetric Lamb mode of a straight
guide, which we denote by uinc(x, z) := u1(z)eik1x. The total wavefield ũ solves the equations of
elasticity in the waveguide: {

∇ · σ(ũ) + ω2ũ = 0 in Ω̃,
σ(ũ) · ν = 0 on ∂Ω̃top/bot.

(3.108)

We denote by ũs := ũ − uinc the scattered wavefield, which solves ∇ · σ(ũs) + ω2ũs = 0 in Ω̃,
σ(ũs) · ν = −σ(uinc) · ν on ∂Ω̃top/bot,

us is outgoing.
(3.109)

For every (x, z) ∈ ∂Ω̃, we know using the definition of Lamb modes that

σ(uinc) =
(
s1(z) t1(z)
t1(z) r1(z)

)
eik1x, (3.110)

so if (x, z) ∈ ∂Ω̃top then σ(ũs) · ν is equal to

−σ(ũinc) · 1√
1 + 4h2g′

1(x)2

(
−2hg′

1(x)
1

)
= − eik1x√

1 + 4h2g′
1(x)2

(
−2hg′

1(x)s1(z) + t1(z)
−2hg′

1(x)t1(z) + r1(z)

)
.

(3.111)
We can also do the same thing on ∂Ω̃bot to explicit the equation of the scattered wavefield. Then,
following the steps of Chapter 2, we map the perturbed waveguide Ω̃ to a regular waveguide
Ω := R × (−h, h) using the mapping

φ(x, z) = (x, (1 + g1(x) − g2(x)) z + hg1(x) + hg2(x)) . (3.112)
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We define us = ũs ◦φ. Equation (3.109) in the perturbed waveguide Ω̃ is equivalent to the following
equation in the regular waveguide Ω:



∇ · σ(us) + ω2us = −a(us) in Ω,

σ(us) · ν =
(

2hg′
1(x)s1(φ(x, z)) − t1(φ(x, z))

2hg′
1(x)t1(φ(x, z)) − r1(φ(x, z))

)
eik1x − b(us)1 on ∂Ωtop,

σ(us) · ν =
(

−2hg′
2(x)s1(φ(x, z)) − t1(φ(x, z))

−2hg′
2(x)t1(φ(x, z)) − r1(φ(x, z))

)
eik1x − b(us)2 on ∂Ωbot,

us is outgoing,

(3.113)

where we denote f1(x) = hg1(x) + hg2(x), f2(x) = 1 + g1(x) − g2(x),

a(u) = −f ′
1f2 + f ′

2(z − f1)
f2

2

(
2(λ+ 2µ)∂xzu+ (λ+ µ)∂zzv

2µ∂xzv + (λ+ µ)∂zzu

)
− f ′

2

f2
2

(
(λ+ 2µ)∂zv

µ∂zu

)
+ (f ′

1f2 + f ′
2(z − f1))2

f2
4

(
(λ+ 2µ)∂zzu

µ∂zzv

)
+
(

1
f2

− 1
)(

(λ+ µ)∂xzv
(λ+ µ)∂xzu

)
− f ′′

1 f2
2 + (f ′′

2 − 2f ′
2

2
f2)(z − f1) − 2f ′

2f
′
1f2

f2
3

(
(λ+ 2µ)∂yu

µ∂zv

)
+
(

1
f2

2 − 1
)(

µ∂zzu
(λ+ 2µ)∂zzv

)
,

(3.114)

and

b(u)1 = −g′
1(λ+ 2µ)∂xu− λ

g′
1
f2
∂zv + µ

(
1
f2

− 1
)
∂zu+ f ′

1f2 + f ′
2(z − f1)
f2

2 (g′
1(λ+ 2µ)∂zu− µ∂zv),

(3.115)

b(u)2 = g′
2µ∂xv + µ

g′
2
f2
∂zu− (λ+ 2µ)

(
1
f2

− 1
)
∂zv − f ′

1f2 + f ′
2(z − f1)
f2

2 (g′
2µ∂zv − λ∂zu). (3.116)

From now on, we only consider small shape defects, i.e. we assume that the quantity

ε = max
(
‖g1‖W2,∞(R), ‖g2‖W2,∞(R)

)
, (3.117)

is small compared to the size of the supports of g1 and g2, and compared to the width of the
waveguide. We can show the following estimate on the norm of the operators a and b:

Proposition 3.9. For every r > 0, there exist constants A,B > 0 depending on ω and r such that

‖a(u)‖H1(Ωr) ≤ Aε‖u‖H3(Ωr), ‖b(u)‖H3/2(Ωr) ≤ Bε‖u‖H3(Ωr). (3.118)

Following the steps of Chapter 2, we define the Born approximation v of us by

∇ · σ(v) + ω2v = 0 in Ω,

σ(v) · ν =
(

2hg′
1(x)s1(φ(x, z)) − t1(φ(x, z))

2hg′
1(x)t1(φ(x, z)) − r1(φ(x, z))

)
eik1x on ∂Ωtop,

σ(v) · ν =
(

−2hg′
2(x)s1(φ(x, z)) − t1(φ(x, z))

−2hg′
2(x)t1(φ(x, z)) − r1(φ(x, z))

)
eik1x on ∂Ωbot,

v is outgoing.

(3.119)

The following proposition, the proof of which is similar to Propositions 2.5 and 2.6 of Chapter 2,
shows that v is a good approximation of u if the defect is small:
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Proposition 3.10. Let C > 0 be the constant defined in Theorem 3.42. If εC(A + B) < 1 then
(3.113) has a unique solution u and

‖u − v‖H3(Ωr) ≤ εC(A+B)
1 − εC(A+B)4rChε(‖s1‖H2 + ‖t1‖H2 + ‖r1‖H2). (3.120)

Finally, to simplify the boundary source term and get rid of the dependency on φ, we notice that

g′
1(x)s1(φ(x, z)) = g′

1(x)s1(h) + O(ε2), t1(φ(x, z)) = (g′
1(x) − g′

2(x))∂zt1(h) + O(ε2), (3.121)

g′
1(x)t1(φ(x, z)) = O(ε2), r1(φ(x, z)) = (g′

1(x) − g′
2(x))∂zr1(h) + O(ε2). (3.122)

We define a simpler approximation w of v by

∇ · σ(w) + ω2w = 0 in Ω,

σ(w) · ν =
(

2hg′
1(x)s1(h) − (g′

1(x) − g′
2(x))∂zt1(h)

−(g′
1(x) − g′

2(x))∂zr1(h)

)
eik1x on ∂Ωtop,

σ(w) · ν =
(

−2hg′
2(x)s1(h) − (g′

1(x) − g′
2(x))∂zt1(h)

(g′
1(x) − g′

2(x))∂zr1(h)

)
eik1x on ∂Ωbot,

w is outgoing.

(3.123)

Using the control provided by Theorem 3.1, w is a good approximation of v if ε is small enough
and there exists a constant D > 0 such that

‖v − w‖H3(Ωr) ≤ ε2Dhr (‖s1‖H2 + ‖∂zt1‖H2 + ‖∂zr1‖H2) . (3.124)

3.4.2 Boundary source inversion
From now on, we denote by u the solution to (3.123) generated with boundary source terms denoted
by btop and bbot. Given a maximal frequency ωmax, we measure the wavefield at the surface of the
perturbed plate for every ω ∈ (0, ωmax). Using the previous Born approximation, we can assume
that the wavefield u is measured on the surface y = h and that the measurements may contain
noise. For every frequency ω and x ∈ R, the measured value of u(x, h) is denoted by uω(x, h).
Similarly, the associated wavenumbers and Lamb modes are denoted by kn(ω) and (un,ω, vn,ω)
respectively. Using Theorem 3.2, we know that

uω(x, h) =
∑
n>0

an(x)un,ω(h), vω(x, h) =
∑
n>0

bn(x)vn,ω(h), (3.125)

where an = Gn
1 ∗ Fn

1 −Gn
2 ∗ Fn

2 , bn = Gn
2 ∗ Fn

1 −Gn
1 ∗ Fn

2 and Gn
1 , G

n
2 are defined in (3.46) and

Fn
1 (x) = eik1x

Jn
((2hg′

1s1(h) − (g′
1 − g′

2)∂zt1(h))un,ω(h) − (2hg′
2s1(h) + (g′

1 − g′
2)∂zt1(h))un,ω(−h)) ,

(3.126)

Fn
2 = eik1x

Jn
(g′

1 − g′
2)∂zr1(g) (−un,ω(h) + un,ω(−h)) . (3.127)

Assuming that x is located on the left of the support of the sources,

uω(x, h) = 1
2
∑
n>0

un,ω(h)e−ikn(ω)x

∫
R
eikn(ω)z(Fn

1 (z) − Fn
2 (z))dz, (3.128)
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vω(x, h) = 1
2
∑
n>0

vn,ω(h)e−ikn(ω)x

∫
R

−eikn(ω)z(Fn
1 (z) − Fn

2 (z))dz. (3.129)

As explained in [64] and illustrated in [59], we can use a spatial Fourier transform along x to
separate each term of the sum. We notice that up to a multiplicative coefficient, the fields uω and
vω contain the same information about the source, so that only measurements of one component
of the displacement are needed.

Further, since noise is likely to pollute the response of evanescent and inhomogeneous modes in
real-life experiments, we only consider the propagative modes and for these modes n we have access
to ∫

R
ei(kn(ω)+k1(ω))z(g′

1(z)c1
n + g′

2(z)c2
n)dz ∀ω ∈ R+, (3.130)

where c1
n and c2

n are known coefficients depending on the mode n. We use the following definition
for the Fourier transform

F(g)(ξ) =
∫
R
g(z)e−iξzdz. (3.131)

From now on, we consider that n = 1 is the first propagative symmetric Lamb mode and n = 2
is the first propagative antisymmetric Lamb mode. Both modes exist at any frequency ω, and
ω 7→ k1(ω) or ω 7→ k2(ω) are increasing functions that map R+ to R+ (see an illustration in Figure
3.2 for the symmetric case, and for more details we refer to [91]). In particular, if we set ξ = 2k1, the
available information amounts to knowing F(c1

1g
′
1 +c2

1g
′
2)(ξ) for every ξ ∈ (0, 2k1(ωmax)). Similarly,

if ξ = k1 + k2, we have knowledge of F(c1
2g

′
1 + c2

2g
′
2) for every ξ ∈ (0, k1(ωmax) + k2(ωmax)). We

define
ξmax = min (k1(ωmax) + k2(ωmax), 2k1(ωmax)) . (3.132)

Looking at expressions (3.126)-(3.127), we notice that the linear combinations c1
1g

′
1 + c2

1g
′
2 and

c1
2g

′
1+c2

2g
′
2 are independent so the functions g′

1 and g′
2 can be reconstructed using the inverse Fourier

transform, in a stable way as the next Proposition shows (its proof is the same as Proposition 2.12
in Chapter 2).

Proposition 3.11. Let g, gapp ∈ C2(−r, r). Let d = F(g) and dapp = F(gapp) defined on (0, ξmax).
Assume that there exists M > 0 such that ‖g‖H1(−r,r), ‖gapp‖H1(−r,r) ≤ M , then

‖g − gapp‖2
L2(−r,r) ≤ 4

π
‖d− dapp‖L2(−r,r) + 2π

ξ2
max

M2. (3.133)

Remark 3.5. We notice that the above estimate is actually better than the one presented in the
acoustic case in Proposition 2.12 of Chapter 2. Indeed, in the acoustic case, there is only one
propagative mode at every frequency, and the function k1 +k2 is not one-to-one from R+ to R+. In
the elastic case however, we take advantage of the existence of two different Lamb modes propagating
at every frequency.

Given the reconstructions of g′
1 and g′

2, we can integrate these functions, using the fact that
g1 and g2 have compact support, and obtain an approximation of the shapes of the defects. In
the previous estimate, the error ‖d − dapp‖L2(−r,r) contains both the measurement error, as well
as the error caused by the Born approximation (3.120). It follows that the reconstruction error
decreases when the size of the defects gets smaller and when ωmax increases. We present examples
of numerical reconstructions in the next section.

We conclude this section by discussing possible extensions of this work. First, the method
presented here could be implemented in a similar fashion in 3D. Indeed, using a Born approximation,
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one can show that the measurements are close to those emanating from a wavefield generated by
two boundary source terms that depend on ∇g1 and ∇g2 in a regular waveguide. In 3D, a Hankel
transform plays the role of the Fourier transform, and one obtains thus a reconstruction. Second, by
the same method, one can also reconstruct bends in an elastic waveguide, in a similar manner as in
the acoustic case described in section 2.3.2 of Chapter 2. However, the detection of homogeneities
seems more difficult. Following section 2.3.4 of Chapter 2, one could use a Born approximation to
approximate the measurements by a wavefield generated by an internal source term f , that depends
on a transformed inhomogeneity in a regular waveguide. However, it does not seem easy to extract,
from the measurements, something like the Fourier transform of a function, that would characterize
the inhomogeneity, as in (3.130).

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this last section, we illustrate the results of Theorems 3.2 and 3.3, and present numerical recon-
structions of small shape defects.

Concerning Theorems 3.2 and 3.3, we compare the modal expressions of u given in (3.42) and
(3.104) to the wavefields generated using Matlab in 2D, and Freefem++ [49] in 3D, respectively
used to solve (3.41) and (3.103). In the following, we assume that sources are supported in Ωr

where r = 3 in 2D and r = 1 in 3D. To solve the elastic equation, we use the finite element method
with a perfectly matched layer (PML) [18] placed in Ω8 \ Ω4 in 2D, and Ω2.5 \ Ω1.3. Since PML’s
do not handle the presence of right-going propagating modes correctly when the wavenumber is
negative (see an example of such wavenumbers in Figure 3.3), we use the strategy presented in [21]
which modify the PML to provide a correct approximation of the wavefield, for every non critical
frequency. The coefficient of absorption in the PML is defined by α = −k((|x| − 4)1|x|≥4 in 2D
or α = −k((|x| − 1.3)1|x|≥1.3 in 3D, and ω2 is replaced in the elastic equation by ω2 + iα. The
structured mesh is built with a stepsize of 10−3 in 2D and 10−2 in 3D.

We first illustrate the two dimensional case, and the modal decomposition (3.42) solution to
(3.41). The wavefield is generated using internal and boundary source terms defined by

f(x, y) = 100 1(x−0.5)2+ (y−0.06)2
0.0152 <1(x, y)

(
(x− 0.5)2 + (y − 0.06)2

0.0152

)
(x+ 2y; 1), (3.134)

btop(x) = 10√
2π
e− (x+0.5)2

200 (1;x), bbot(x) = 20 1[2,2.5](x)(x− 2)(x− 2.5)(1; sin(x)). (3.135)

Numerical representations of the wavefield u, obtained using the modal decomposition (3.42) are
presented in Figure 3.6 as well as the wavefields generated by the finite element method, showing
good visual agreement. Their computed relative error in L∞(Ωr) and L2(Ωr) is smaller than 2%.

A similar comparison is carried out in 3D for the modal decomposition (3.104) solution to (3.103).
To visualize the decomposition u = uL + ush, we first choose a curl-free internal source

f(x, y, z) = z
50
π
e− (x2+y2)

200 (−x; −y; 1) . (3.136)

The modal simulation is compared with the fields obtained from a finite element approximation
in Figure 3.7. Again, both approximations of the true wavefield are visually similar, even if that
produced by the finite element discretization seems to propagate at a higher velocity. This could
be caused by the fact that the step size of the discretization may not be sufficiently small. We
point out that the calculation times of these simulations are not the same: while the finite element
method takes around eight hours to run, the modal decomposition produces a result in less than
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0.1
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0.1
Re(uFEM)

−2
−1
0
1
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−2 0 2
−0.1

0

0.1
Im(vmod)

−2 0 2
−0.1

0

0.1
Im(vFEM)

−2
0
2

Figure 3.6 – Comparison between a wavefield u computed using the modal solution (3.42) or using a finite element
method. Top: comparison between real parts of u. Bottom: comparison between imaginary parts of v. Similar results

could also be obtained for Im(u) and Re(v). The parameters of the problem are λ = 0.31, µ = 0.25, h = 0.1, ω = 13.7.
The sum in the modal decomposition of umod is cut at N = 20 modes. Wavefields are generated using an internal source
term f defined in (3.134) and boundary source terms btop and bbot defined in (3.135). Here, the relative L∞(Ωr)-error is

1.7% and the L2(Ωr)-error is 1.4%.

two minutes. This underlines the interest of using the modal solution to do computations in three-
dimensional perfect plates. Next, we choose a divergence-free boundary source term of the form

btop(x, y) = 25
π
e− (x2+y2)

200 (−y;x; 0), bbot(x, y) = 0. (3.137)

Comparisons are presented in Figure 3.8, and similar conclusions can be drawn.
Finally, we illustrate in Figure 3.9 two numerical reconstructions of small defects. Synthetic

surface measurements are generated using the finite element method described above for different
frequencies. Then, we reconstruct the derivative of defects profiles g1 and g2 using the penalized
least square algorithm described in Chapter 2. We get reconstructions as good or even better than
the one presented in the acoustic case, and we notice that the reconstruction seems more robust
than the acoustic one then ε increases.

Figure 3.9 – Reconstruction of two shape defects. In black, the initial shape of Ω, and in red the reconstruction, slightly
shifted for comparison purposes. In both cases, h = 0.1, ωmax = 17 and the interval (0, ωmax) is discretize with 170

points. On the left, g1(x) =
5
16

13.2≤x≤4.2(x− 3.2)2(4.2 − x)2 and g2(x) = −
35
16

13.4≤x≤4(x− 3.4)2(4 − x)2. On the

right, g1(x) =
125
16

13.7≤x≤4.2(x− 3.7)2(4.2 − x)2 and g2(x) =
125
16

13.4≤x≤4(x− 3.4)2(4 − x)2.
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Re(wmod) Re(wFEM)

−2

−1

0

·10−2

Re(umod) Re(uFEM)

−1

0

1

·10−2

Figure 3.7 – Comparison between u computed using the modal solution (3.104) and using the finite element method
with a curl-free internal source (3.136). Top: comparison of Re(w). Bottom: comparison of Re(u) (plots of

Im(u),Re(v), Im(v), Im(w) look similar). The parameters are λ = 0.31, µ = 0.25, h = 0.2, ω = 10. N = 20 modes are
used in the decomposition of umod. The relative L∞(Ωr)-error is 7.2% and the L2(Ωr)-error is 9.4%.

Re(vmod) Re(vFEM)

−5

0

5

·10−2

Figure 3.8 – Comparison between a wavefield u computed using the modal solution (3.104) or using a finite element
method with a divergence free boundary source (3.137). The real parts of v is shown (plots of

Im(v),Re(u), Im(u),Re(w), Im(w) would have similar aspect). The parameters are λ = 0.31, µ = 0.25, h = 0.2, ω = 10.
N = 10 modes are used in the decomposition of umod. The relative L∞(Ωr)-error is 5.3% and the L2(Ωr)-error is 4.1%.
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4
TheHelmholtz problem in slowly varyingwaveguides
at locally resonant frequencies

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.1 Scientific context 92
4.1.2 Outline of the chapter 93

4.2 Modal decomposition and local wavenumbers in a varying waveguide . . . . . . . . . . . . . . . . . 93
4.3 The Helmholtz equation in a waveguide with increasing width . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Sketch of proof 95
4.3.2 Main result 97
4.3.3 Modal Green functions and their approximations 98
4.3.4 Proof of Theorem 2 100
4.3.5 Proof of Theorem 4.1 105

4.4 Extension to general slowly varying waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.1 The cut and match strategy 108
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This chapter aims to present a general study of the Helmholtz problem in slowly varying waveg-
uides. This work is of particular interest at locally resonant frequencies, where a phenomenon close
to the tunnel effect for Schrödinger equation in quantum mechanics can be observed. In this situ-
ation, locally resonant modes propagate in the waveguide under the form of Airy functions. Using
previous mathematical results on the Schrödinger equation, we prove the existence of a unique
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solution to the Helmholtz source problem with outgoing conditions in such waveguides. We provide
an explicit modal approximation of this solution, as well as a control of the approximation error in
H1

loc. The main theorem is proved in the case of a waveguide with a monotonously varying profile
and then generalized using a matching strategy. We finally validate the modal approximation by
comparing it to numerical solutions based on the finite element method. The study of the forward
source problem done in this chapter will then be of great use to develop a new multi-frequency
method using locally resonant frequencies and presented in Chapters 5, 6 and 7.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we study the propagation in the time-harmonic regime of waves generated by
sources in a slowly varying waveguide of dimension 2. The waveguide is described by

Ω̃ :=
{

(x, y) ∈ R2 | 0 < y < h(x)
}
, (4.1)

where h ∈ C2(R) ∩ W 2,∞(R) is a positive profile function defining the top boundary. Here, the
bottom boundary is assumed to be flat but a similar analysis can be conducted with both slowly
varying top and bottom boundaries. In the time-harmonic regime, the wavefield ũ satisfies the
Helmholtz equation with Neumann boundary conditions{

∆ũ+ k2ũ = −f̃ in Ω̃,
∂ν ũ = b̃ on ∂Ω̃,

(4.2)

where k > 0 is the frequency, f̃ is an interior source term and b̃ is a possible boundary source
term. In this work, a waveguide is said to be slowly varying when there exists a small parameter
η > 0 such that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2. Such waveguides are good models of ducts or
corroded pipes, and studying the sound transmission through this type of structure can be used to
reduce noise emission (see [73]) or to perform non destructive monitoring of pipes or blood vessels
(see [50]).

4.1.1 Scientific context
Wave propagation in varying waveguides, whether acoustic or elastic, has already been studied by
several authors. From a numerical point of view, the articles [62, 41, 68] give different methods to
adapt the finite element method to numerically compute the wavefield in varying waveguides. In
[81], the authors study from the theoretical point of view the propagation of waves in a general
varying elastic waveguide using a modal decomposition. The same kind of method is used in [43],
in the case of a slowly varying waveguide. However, in these articles, the authors choose to avoid
all the locally resonant frequencies of the waveguide, which are the frequencies k > 0 such that
k = πn/h(x?) for a mode n ∈ N and a longitudinal position x? ∈ R.

In another approach, the authors of [82, 73, 46] choose to work near locally resonant frequencies
of the waveguide. They mainly show that this problem is very close to the tunneling effect seen in
quantum mechanics for the Schrödinger equation (see for instance [90]). Indeed, the wavefield can
be decomposed as a sum of modes ũ(x, y) =

∑
n∈N un(x)ϕn(y) (see section 4.2 for more details)

and when k = nπ/h(x?), for some x? ∈ R, the equation satisfied by the mode un is close to the
Schrödinger equation

∂xxun(x) + (V (x) − E)un(x) = 0, (4.3)

where V and E depend on h, f̃ and b̃ and satisfy V (x?) −E = 0. This equation for a simple mode
was studied from a mathematical point of view by F. W. J. Olver in [76] and [77], and it was proved
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that the solution un could be expressed using Airy functions of the first and second kind [4]. In all
the articles [82, 73, 46], the same methodology is used: first, the authors assume that mode coupling
is negligible in a slowly varying waveguide. Under this so-called adiabatic approximation, every
mode is independent from the others. Second, they seek solutions expressed as Wentzel Kramers
Brillouin (WKB) asymptotic series (see [78]), and they use the study of the Schrödinger equation
to find an approximation of the wavefield in the waveguide.

Our work is inspired by this methodology and provides a similar approximation of the wavefield
in a slowly varying waveguide. However, contrary to the work mentioned above, we are not making
any a priori assumptions on the wavefield such as WKB asymptotic development or the adiabatic
decoupling of modes. Like them, we use the work of [76, 77] to get an approximation of the
Schrödinger equation, but we improve it by providing precise control of the approximation error.
More importantly, we provide a way to justify the adiabatic decoupling of the modes using a Born
approximation of the wavefield. To this end, we again rely on [76, 77] to control the wavefield by
the general source term that generated it. The main result of this chapter is given by Theorem
4.1 that proves the existence of a unique solution of the problem (4.2) when h is an increasing
function in C2(R) ∩W 2,∞(R) and when η is small enough (compared to supp(h′), min(h) and the
distance between k and the left and right resonances of the waveguide). This theorem also provides
an approximation of the solution of (4.2) and a control of the approximation error.

Finally, we provide a numerical validation of the approximation of the wavefield in a slowly
varying waveguide. By comparing our approximation to solutions generated by a finite element
method, we show that this approximation is an excellent tool to numerically compute the wavefield
in a slowly varying waveguide in a very fast way.

4.1.2 Outline of the chapter

The chapter is organized as follows. In section 4.2, we briefly explain the modal decomposition in
general waveguides, and we recall classical results used in the rest of the chapter. In section 4.3, we
study the particular case of a slowly varying waveguide where the width h is an increasing function
of x, and we prove Theorem 1. In section 4.4, we adapt the method developed in section 4.3 to
the general case of a varying waveguide provided the variations of the profile are sufficiently slow,
and we describe more precisely the cases of compressed or dilated waveguides. In section 4.5, we
numerically validate our results by comparing the approximations derived in sections 4.3 and 4.4
with the solutions generated using a finite element solver with PML (perfectly matched layers, see
[18]) in a truncated waveguide.

4.2 Modal decomposition and local wavenumbers in a varying waveguide

In this section, we recall some classical results about modal decompositions, the proofs of which
can be found in Chapter 2 and[27].

Definition 4.1. We define the sequence of functions (ϕ̃n)n∈N

∀(x, y) ∈ Ω̃, ϕ̃n(x, y) :=


1/
√
h(x) if n = 0,√

2√
h(x)

cos
(
nπy

h(x)

)
if n ≥ 1, (4.4)

which for any x ∈ R defines an orthonormal basis of L2(0, h(x)). In the special case of a regular
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waveguide where h = 1 everywhere, this sequence of functions is independent of x, takes the form

∀y ∈ (0, 1), ϕn(y) :=
{

1 if n = 0,√
2 cos (nπy) if n ≥ 1. (4.5)

and defines an orthonormal basis of L2(0, 1).

Hence, any solution ũ ∈ H2
loc
(
Ω̃
)

of (4.2) admits a unique modal decomposition

ũ(x, y) =
∑
n∈N

ũn(x)ϕ̃n(x, y) where ũn(x) :=
∫ h(x)

0
ũ(x, y)ϕ̃n(x, y)dy. (4.6)

Note that when h is constant (outside of supph′), each mode ũn satisfies the simple equation
ũ′′

n + k2
nũn = −g̃n where kn is the wavenumber. When h is variable, the decomposition (4.6)

motivates the following definition:

Definition 4.2. The local wavenumber function of the mode n ∈ N is the complex function kn :
R → C defined by

k2
n(x) := k2 − n2π2

h(x)2 , (4.7)

with Re(kn), Im(kn) ≥ 0.

One of the main difficulties of this work is that as h(x) is non constant, kn(x) can vanish for
some x ∈ R and change from a positive real number to a purely imaginary number. We distinguish
three different situations.

Definition 4.3. A mode n ∈ N falls in one of the three following situations:

1. If n < kh(x)/π for all x ∈ R then kn(x) ∈ (0,+∞) for all x ∈ R and the mode n is called
propagative.

2. If n > kh(x)/π for all x ∈ R then kn(x) ∈ i(0,+∞) for all x ∈ R and the mode n is called
evanescent.

3. If there exists x? ∈ R such that n = kh(x?)/π the mode n is called locally resonant. The
associated points x? are called resonant points. They are simple if h′(x?) 6= 0, and multiple
otherwise.

A frequency k > 0 for which there exists at least a locally resonant mode is called a locally resonant
frequency.

Using the wavenumber function, one can adapt the classic Sommerfeld (or outgoing) condition,
defined in Chapter 2 for regular waveguides, to general varying waveguides Ω̃. This condition will
be used later to guarantee uniqueness for the source problem (4.2).

Definition 4.4. A wavefield ũ ∈ H2
loc
(
Ω̃
)

is said to be outgoing if it satisfies∣∣∣∣ũ′
n(x) x

|x|
− ikn(x)ũn(x)

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N, (4.8)

where ũn is given in (4.6).
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4.3 The Helmholtz equation in a waveguide with increasing width . . . . . . . . . . . . . . . . .

In all this work, we make the following assumptions:

Assumption 4.1. We assume that h ∈ C2(R) ∩W 2,∞(R) and satisfies

∀x ∈ R 0 < hmin ≤ h(x) ≤ hmax < ∞,

‖h′‖L∞(R) < η, ‖h′′‖L∞(R) < η2, supph′ ⊂
(

−R

η
,
R

η

)
,

for some η > 0 and R > 0.

Moreover, in all this section, and we assume that h is increasing in supph′ (the general case will
be treated in section 4.4). Such a waveguide is represented in Figure 4.1.

Ω̃

Figure 4.1 – A waveguide Ω̃ with increasing width.

The aim of this section is to state and prove the main theorem of this work, which is a triple
result. It provides existence and uniqueness of the solution ũ ∈ H2

loc
(
Ω̃
)

to the source problem
∆ũ+ k2ũ = −f̃ in Ω̃,
∂ν ũ = b̃top on ∂Ω̃top,

∂ν ũ = b̃bot on ∂Ω̃bot,
ũ is outgoing.

(H̃)

It also gives an explicit modal approximation of ũ, and provides a computable error bound for the
local H1-norm between the approximation and the exact solution. We first explain our strategy for
proving such an existence result.

4.3.1 Sketch of proof
In order to use results on the modal decomposition in the regular waveguide, the first step is to
map the perturbed waveguide to the regular one using the canonical mapping ψ : Ω → Ω̃ defined
by ψ : (x, y) 7→ (x, h(x)y). The problem

(
H̃
)

is then equivalent to
∆hu+ k2u = −f in Ω,
∂νu−Dhu = btop on ∂Ωtop,

∂νu = bbot on ∂Ωbot,
u is outgoing,

(H)

where u := ũ ◦ ψ, f := f̃ ◦ ψ, btop := b̃top
√

1 + (h′)2/h and bbot = b̃bot/h. The operators ∆h and
Dh are differential operators of order two and one respectively (see their expressions in (H)). As
there is no easy way to solve explicitly this equation we shall approach it by a simpler problem.
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To this end, we neglect the small terms in the operators ∆h and Dh, which depend on h′ and h′′.
This leads to a much simpler problem that reads

∂xxv + 1
h(x)2 ∂yyv + k2v = −f in Ω,

∂νv = btop on ∂Ωtop,
∂νv = bbot on ∂Ωbot,

v is outgoing.

(H′)

Next, we seek a solution to (H′) in a modal form. To this end, we use the fact that the wavefield
v and the source f can be decomposed in a sum of modes in the straight waveguide

v(x, y) =
∑
n∈N

vn(x)ϕn(y) where vn(x) :=
∫ 1

0
w(x, y)ϕn(y)dy,

f(x, y) =
∑
n∈N

fn(x)ϕn(y) where fn(x) :=
∫ 1

0
f(x, y)ϕn(y)dy.

(4.9)

We deduce that the two dimensional problem (H′) is equivalent to a sequence of one dimensional
problems:

(H′) ⇔ ∀n ∈ N (H′
n) :

{
v′′

n(x) + kn(x)2vn(x) = −(fn + ϕn(1)btop + ϕn(0)bbot)(x) in R,
vn is outgoing,

(4.10)
where kn is the local wavenumber function given in (4.7). As explained in [27], the modal problem
(H′

n) is not well-defined when {x ∈ R | kn(x) = 0} has a positive measure. Since h is increasing on
supph′, this only occurs when k = nπ/hmin or k = nπ/hmax. We assume this is not the case and
that

δ = min
n∈N

(√∣∣∣∣k2 − n2π2

hmin
2

∣∣∣∣,
√∣∣∣∣k2 − n2π2

hmax
2

∣∣∣∣
)
> 0. (4.11)

For each type of modes n ∈ N, the study of the equation v′′
n + k2

nvn = 0 has been carried out in
[76] and [77]. We summarize the main ideas bellow. The analysis depends on whether the mode n
is propagative, evanescent or locally resonant.

(a) If n is propagative or evanescent, |kn(x)| > 0 for all x ∈ R and we set z(x) =
∫ x |kn|. There is

a one-to-one correspondence between x and z and if we define wn =
√
zvn, then wn satisfies

the partial differential equation

∂zzwn ± wn = ζ(x, z)wn, (4.12)

where ‖ζ‖L∞(R) = O(η). The solutions of y′′ = ±y are exponential functions, and since ζ is
small, we can prove that wn is almost equal to a sum of two exponential functions and we
can control the approximation error (see (4.30) and (4.34) for more details).

(b) If n is locally resonant, since h is increasing on supph, there is a single resonant point x? ∈ R
and we define

ξ(x) :=



(
−3

2 i
∫ x?

x

kn(t)dt
)2/3

if x < x?,

−
(

3
2

∫ x

x?

kn(t)dt
)2/3

if x > x?.

(4.13)
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This new variable is in one-to-one correspondence with x and if we define the function wn =
−(
√
kn/ξ

1/4)vn, then wn satisfies the partial differential equation

∂ξξwn − ξwn = ζ(ξ)wn, (4.14)

where ‖ζ‖L∞(R) = O(η). The solutions of y′′ = xy are known as the Airy functions, and since
ζ is small, we can prove that wn is approximated by a sum of Airy functions and we can
control the approximation error (see (4.48) for more details).

Using these results, we prove that (H′
n) has a unique solution and we provide an explicit ap-

proximation of this solution. By equivalence, this approach yields the unique solution to (H′) and
its approximation. With a control of the approximation error between (H) and (H′), we obtain an
explicit approximation of (H) and by change of variable, of (H̃).

4.3.2 Main result
We now state the main result of this work, which shows existence and uniqueness of the solution
u of (H) (and thus of the solution of (H̃)) and provides an approximation of u with control of the
approximation error in H1

loc.

Theorem 4.1. Let h be an increasing function which defines a varying waveguide Ω̃ that satisfies
assumption 4.1. Consider sources f ∈ L2(Ω), b = (bbot, btop) ∈ (H1/2(R))2 both with compact
support contained in Ωr and Γr respectively, for some r > 0. Assume that there is a unique locally
resonant mode N ∈ N, associated with a simple resonant point x? ∈ R.

There exists η0 > 0, depending only on hmin, hmax, δ, r and R, such that if η < η0, then the
problem (H) admits a unique solution u ∈ H2

loc
(
Ω). Moreover, this solution is approximated by uapp

defined for almost every (x, y) ∈ Ω by

uapp(x, y) =
∑
n∈N

(∫
R
Gapp

n (x, s)
(
fn(s) + ϕn(1)btop(s) + ϕn(0)bbot(s)

)
ds
)
ϕn (y) , (4.15)

where fn is defined in (4.9), ϕn is defined in (4.5) and Gapp
n is given by

Gapp
n (x, s) :=



i

2
√
kn(s)kn(x)

exp
(
i

∣∣∣∣∫ x

s

kn

∣∣∣∣) , if n < N,

1
2
√

|kn|(s)|kn|(x)
exp

(
−
∣∣∣∣∫ x

s

|kn|
∣∣∣∣) , if n > N,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(s)A ◦ ξ(x) if x < s,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(x)A ◦ ξ(s) if x > s,

if n = N.

(4.16)

Th function kn is the wavenumber function defined in definition 4.2 and the function ξ is given in
equation (4.13). Moreover, there exists a constant C > 0 depending only on hmin, hmax, δ, r and
R such that

‖u− uapp‖H1(Ωr) ≤ ηC

(
‖f‖L2(Ω) + ‖b‖(

H1/2(R)
)2

)
. (4.17)

Remark 4.1. If there are no resonant modes, the result can be adapted by deleting the line n = N
in (4.16). On the other hand, if there are multiple locally resonant modes, the third line of (4.16)
becomes true for every resonant mode.
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Remark 4.2. If Ω̃ is a regular waveguide, we find the same expression for the wavefield as in
Chapter 2. We also see that the behavior of propagative and evanescent modes in a perturbed
waveguide is similar to that in a regular waveguide. The term

∫ x

s
|kn| simply acts as a change of

variable in the phase.

Remark 4.3. Looking at the proof, we can see that the constant C has a dependence on δ, r and
R of the form C = O(r2δ−6 + rRδ−8). Doing the same proof using W2,∞ spaces instead of H2, we
can also prove that for every x ∈ R,

|uN (x) − uapp
N (x)| ≤ ηC

(
‖f‖L∞(R) + ‖b‖(L∞(R))2

)
, (4.18)

where the constant C has a dependence on δ, r and R of the form C = O(δ−6 +Rδ−8)

Corollary 4.1. Under the same assumptions as in Theorem 1, the problem (H̃) admits a unique
solution ũ ∈ H2

loc(Ω̃), which can be approximated by ũapp defined for almost every (x, y) ∈ Ω̃ by

ũapp(x, y) = uapp
(
x,

y

h(x)

)
. (4.19)

Moreover, there exists a constant C̃ > 0 depending only on hmin, hmax, δ, r and R such that

‖ũ− ũapp‖H1(Ω̃r) ≤ ηC̃
(

‖f̃‖L2(Ω̃) + ‖b̃‖(H1/2(∂Ω̃)

)
. (4.20)

Proof. We use the equivalence between (H̃) and (H), and we notice that

‖ũ− ũapp‖H1(Ω̃r) ≤ hmax‖u− uapp‖H1(Ωr), ‖f̃‖L2(Ω̃) ≥ hmin‖f‖L2(Ω),

‖b̃‖(H1/2(R))2 ≥ hmin‖b‖(
H1/2(∂Ω̃)

)2 .

4.3.3 Modal Green functions and their approximations
As mentioned in the previous section, we start by studying equations (4.10) for every n ∈ N. To
this end, we denote by Gn(x, s) the modal Green functions associated to (H′

n). It satisfies for every
s ∈ R the partial differential equation{

∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (4.21)

We prove the following theorem which provides an approximation of Gn for every n ∈ N and the
control of the approximation error in W1,1(R).

Theorem 4.2. For every s ∈ R, the equation{
∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (4.22)

has a unique solution Gn(·, s) ∈ W1,1(R). This solution can be decomposed as Gn = Gapp
n + O(η)

where Gapp
n has the explicit form given in (4.16) and O(η) is a term that tends to 0 in W1,1(R)

uniformly in s as η tends to 0. Moreover, let r > 0. There exists η1 > 0 depending on R, r, hmin,
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hmax and δ such that if η < η1, there exists α, β > 0 depending only on hmin, hmax, r, δ and R
such that for every s ∈ R,

‖Gn(·, s)‖L1(−r,r) ≤ α(1)
n :=

{
α if n ≤ N,
α

min(|kn|)2 if n > N, (4.23)

‖∂xGn(·, s)‖L1(−r,r) ≤ α(2)
n :=

{
α if n ≤ N,
α

min(|kn|) if n > N, (4.24)

‖Gn(·, s) −Gapp
n (·, s)‖L1(−r,r) ≤ β(1)

n := η

 β if n ≤ N,
β

min(|kn|)2 if n > N,
(4.25)

‖∂xGn(·, s) − ∂xG
app
n (·, s)‖L1(−r,r) ≤ β(2)

n := η

 β if n ≤ N,
β

min(|kn|) if n > N.
(4.26)

Remark 4.4. The following proof shows that we can choose

η1 ≤ min
(

1
9CN−1

,
|kN+1|
9CN+1

,
1

4c8πCN

)
, (4.27)

where CN−1 and CN+1 are defined in (4.33), c8 is defined in Lemma 4.3 and CN comes from
Theorem 2 in [77]. It shows that η has to be small compared to r, R, hmin and δ for this theorem
to apply.

Remark 4.5. By looking at the proof, we can see that α, β and Cn depend on δ, r and R as rδ−1,
rRδ−6, and Rδ−5 respectively.

To prove this theorem, we first need a technical lemma to connect solutions of the partial
differential equation (4.22) defined for x < s and x > s.

Lemma 4.1 (Connection of the Green functions). Let s ∈ R. Assume that u is a solution to
u′′ + k2

nu = −δs and that there exist A,B ∈ R and w1, w2 ∈ C2(R) such that

u(x) =
{
Aw1(x) if x < s,
Bw2(x) if x > s,

(4.28)

then
A = w2(s)

w′
1(s)w2(s) − w′

2(s)w1(s) , B = w1(s)
w′

1(s)w2(s) − w′
2(s)w1(s) (4.29)

Proof. Since u is continuous in s, Aw1(s) = Bw2(s). Then, using the jump formula for distributions,
we find that

Bw′
2(s) −Aw′

1(s) = −1 ⇒ A(w1(s)w′
2(s) − w2(s)w′

1(s)) = −w2(s)

Next, we study the Green function for the three types of waves, depending on the value of n.
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4.3.4 Proof of Theorem 2
Proof. The propagative case (n < N)]

We denote un = Gn(·, s). Changing variable to σ = ηx, we see that wn = un(σ/η) satisfies the
equation w′′

n + k2
n(σ/η)w2

n/η
2 = 0 for every σ 6= ηs where in the case at hand, k2

n(σ/η) > 0. Using
Theorem 4 in [76] on wn, shows that there exist A,B ∈ C such that

un(x) =


A√
kn(x)

exp
(

−i
∫ x

s

kn

)
(1 + ε(x)) if x < s,

B√
kn(x)

exp
(
i

∫ x

s

kn

)
(1 + ε(x)) if x > s,

(4.30)

where ε ∈ C1(R) is such that for all x ∈ R,

|ε(x)| ≤ eF/2 − 1, |ε′(x)| ≤ 2kn(x)(eF/2 − 1), (4.31)

|F | ≤
∫
R
η

∣∣∣∣∣ 1√
kn(σ/η)

∂σσ

(
1√

kn(σ/η)

)∣∣∣∣∣ dσ. (4.32)

Using the expression of kn, we see that

|F | ≤ η

∫ R

−R

1
η2

∣∣∣∣n2π2(h′′h− 3(h′)2)
2h4k3

n

+ 5(h′)2n4π4

4h6k5
n

∣∣∣∣ (σ/η)dσ. (4.33)

We deduce that there exists a constant γ1 > 0 depending on hmin, hmax and R such that

|F | ≤ ηγ1

(
(N − 1)2π2

δ3 + (N − 1)4π4

δ5

)
:= ηCN−1.

Using Lemma 4.1, we find that

A = i(1 + ε(s))
2
√
kn(s)(1 +R)

, B = i(1 + ε(s))
2
√
kn(s)(1 +R)

,

where

R = 2Re(ε(s)) + |ε(s)|2 + Im(ε′(s)(1 + ε(s))
kn(s) .

It follows that

Gn(x, s) =


Gapp

n (x, s) (1 + ε(x))(1 + ε(s))
1 +R

if x < s,

Gapp
n (x, s) (1 + ε(x))(1 + ε(s))

1 +R
if x > s,

,

and

∂xGn(x, s) =


∂xG

app
n (x, s)1 + ε(s)

1 +R

(
1 + ε(x) + 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

)
if x < s,

∂xG
app
n (x, s)1 + ε(s)

1 +R

(
1 + ε(x) + 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

)
if x > s.
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Assuming that η < 1
9CN−1

,then |F | ≤ 1/9,

eF/2 − 1 ≤ |F |/2
1 − |F |/4 ≤ min

(
3
4ηCn,

1
16

)
,

and
|R| ≤ 2|ε(x)| + |ε|2 + |ε′(x)|(1 + |ε(x)|)

kn(x) ≤ 4(eF/2 − 1)eF/2 ≤ 1
2 .

It follows that ∣∣∣∣∣1 − (1 + ε(x))(1 + ε(s))
1 +R

∣∣∣∣∣ ≤
|ε′(x)|(1 + ‖ε‖L∞(R))/kn(x)

1 − |R|
≤ 6ηCn,

and that
‖Gn(·, s) −Gapp

n (·, s)‖L1(−r,r) ≤ η
6Cnr

min(kn) ,

‖Gn(·, s)‖L1(−r,r) ≤ 2r
min(kn) .

In the same way,∣∣∣∣1 + ε(s)
1 +R

∣∣∣∣ ∣∣∣∣ 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

∣∣∣∣ ≤ 43
2
Cnηkn(x)3h(x)3

kn(x)3h(x)3 ≤ 6Cnη

and so

‖∂xGn(·, s) − ∂xG
app
n (·, s)‖L1(−r,r) ≤ η

12Cnr

min(kn)

(
‖kn‖L∞(R) + n2π2

18Cn min(kn)2h3
min

)
,

and
‖∂xGn(·, s)‖L1(−r,r) ≤ 3r

min(kn)

(
‖kn‖L∞(R) + n2π2

18Cn min(kn)2h3
min

)
.

The evanescent case (n > N). We denote un = Gn(·, s). Changing variable to σ = ηx, we see that
wn = un(σ/η) satisfies the equation w′′

n + k2
n(σ/η)w2

n/η
2 = 0 for every σ 6= ηs. Theorem 3 in [76]

on wn yields the existence of A,B ∈ C such that

un(x) =


A√

|kn|(x)
exp

(∫ x

s

|kn|
)

(1 + ε2(x)) if x < s,

B√
|kn|(x)

exp
(

−
∫ x

s

|kn|
)

(1 + ε1(x)) if x > s,
(4.34)

where ε1, ε2 ∈ C1(R) are such that for i = 1, 2 and all x ∈ R,

|εi(x)| ≤ eF/2 − 1, |ε′
i(x)| ≤ 2|kn|(x)(eF/2 − 1), (4.35)

where F satisfies (4.33). It follows that there exist a constant γ2 > 0 depending on hmin, hmax and
R such that

|F | ≤ ηγ2(N + 1)2π2

min(|kn|)δ2

(
1 + (N + 1)2π2

δ2

)
:= η

CN+1

min(|kn|) .
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Using Lemma 4.1, we find that

A = 1 + ε1(s)
2
√
kn(s)(1 +R)

, B = 1 + ε2(s)
2
√
kn(s)(1 +R)

,

where
R =

(
ε2 + ε1 + ε1ε2 + ε′

2(1 + ε1)
2|kn|

− ε′
1(1 + ε2)

2|kn|

)
(s).

It follows that

Gn(x, s) =


Gapp

n (x, s) (1 + ε2(x))(1 + ε1(s))
1 +R

if x < s,

Gapp
n (x, s) (1 + ε1(x))(1 + ε2(s))

1 +R
if x > s,

and

∂xGn(x, s) =


∂xG

app
n (x, s)1 + ε1(s)

1 +R

(
1 + ε2(x) − 2ε′

2(x)|kn(x)|2h(x)3

h′(x)n2π2 + 2|kn(x)|3h(x)3

)
if x < s,

∂xG
app
n (x, s)1 + ε2(s)

1 +R

(
1 + ε1(x) − 2ε′

1(x)|kn(x)|2h(x)3

h′(x)n3π2 + 2|kn(x)|3h(x)3

)
if x > s.

We also notice that∥∥∥∥exp
(

−
∫ x

s

|kn|
)∥∥∥∥

L1(−r,r)
≤ ‖ exp (− min(|kn|)|x− s|) ‖L1(−r,r) ≤ 2

min(|kn|) .

Assuming that η < |kN+1|
9CN+1

then |F | ≤ 1/9,

eF/2 − 1 ≤ |F |/2
1 − |F |/4 ≤ min

(
3
4
ηCN+1

min(|kn|) ,
1
16

)
,

and
|R| ≤ 2(eF/2 − 1) + (eF/2 − 1)2 + 2eF/2(eF/2 − 1) ≤ 4(eF/2 − 1)eF/2 ≤ 1

2 .

It follows that∣∣∣∣1 − (1 + ε1(x))(1 + ε2(s))
1 +R

∣∣∣∣ ≤
|ε1(x)|(1 + ‖ε2‖L∞(R)) + |ε2(x)|(1 + ‖ε1‖L∞(R))

2|kn(x)|(1 − |R|) ≤ 6ηCN+1

min(|kn|) .

and that
‖Gn(·, s) −Gapp

n (·, s)‖L1(−r,r) ≤ η
12CN+1r

min(|kn|)2 , (4.36)

‖Gn(·, s)‖L1(−r,r) ≤ 4r
min(|kn|)2 , (4.37)

In the same way,∣∣∣∣1 + ε1(s)
1 +R

∣∣∣∣ ∣∣∣∣ 2ε′
2(x)|kn(x)|2h(x)3

h′(x)n2π2 + 2|kn(x)|3h(x)3

∣∣∣∣ ≤ 43
2

2CN+1η|kn(x)|3h(x)3/min(|kn|)
2|kn(x)|3h(x)3 ≤ 6CN+1η

min(|kn|) ,

and so

‖∂xGn(·, s) − ∂xG
app
n (·, s)‖L1(−r,r) ≤ η

24r
min(|kn|)2

(
‖kn‖L∞(R) + (N + 1)2π2

2δ2h3
min

)
, (4.38)
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and
‖∂xGn(·, s)‖L1(−r,r) ≤ 6r

min(|kn|)2

(
‖kn‖L∞(R) + (N + 1)2π2

2δ2h3
min

)
. (4.39)

Remark 4.6. We notice that the control of Gn, ∂xGn and ∂xGn − ∂xG
app
n is uniform in n > N ,

with
η <

|kN+1|
9CN+1

. (4.40)

This uniform control is essential to obtain the global control η < η1 in Theorem 4.2. We could
also provide a uniform control in inequalities (4.36), (4.37), (4.38) and (4.39). However, in the
following, we add these inequalities and thus we keep track of the factors 1/min(|kn|) to ensure fast
decrease when n goes to infinity.

It remains to deal with the case n = N . This case is more complicated, since x 7→ kn(x)2 is not
of constant sign. We first introduce two technical Lemmas used to give an approximation of the
Green function for n = N .

Lemma 4.2. Let us define

ξ(x) =



(
−3

2 i
∫ x∗

x

kN

)2/3

if x < x∗,

−
(

3
2

∫ x

x∗
kN

)2/3
if x > x∗.

(4.41)

This function is a decreasing bijection from R to R. Moreover, the function

φ : x 7→ (−ξ(x))1/4/
√
kn(x), (4.42)

is in C2(R) and for all x ∈ R, there exists a constant cφ such that |φ′(x)| ≤ cφ|φ(x)|.

Proof. This lemma can be proved by adapting section 4 of [77].

Lemma 4.3. Let us define the following functions:

E(x) = exp
(

2
3x

3/2
)

1x>0 + 1x≤0, (4.43)

M =
√
E2A2 + E−2B2, N =

√
E2(A′)2 + E−2(B′)2 (4.44)

There exist a constant c1 ≈ 0.4 such that for all x ∈ R,

|M(x)E(x)A′(x)| ≤ c1,

∣∣∣∣B(x)N(x)
E(x)

∣∣∣∣ ≤ c1, |M(x)N(x)| ≤ c1, (4.45)

∣∣∣∣B′(x)M(x)
E(x)

∣∣∣∣ ≤ c1, |A(x)E(x)N(x)| ≤ c1. (4.46)

There also exist constants c2, c3 depending on hmin, hmax, k and R such that for every x ∈ R,∣∣∣∣∣ (−ξ(x))1/4√
kn(x)

M(ξ(x))
∣∣∣∣∣ ≤ c6,

∣∣∣∣∣
√
kn(x)

(−ξ(x))1/4N(ξ(x))
∣∣∣∣∣ ≤ c7. (4.47)
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Proof. Using Airy’s asymptotic expansions presented in section 10.4 of [4], we obtain the first
constant and the control

M(x) = O|x|→∞

(
1

|x|1/4

)
, N(x) = O|x|→∞

(
|x|1/4

)
.

Since h′ is compactly supported, we conclude the proof by noticing that
kn(x) = O|x|→∞(1), ξ(x) = O|x|→∞(|x|).

The locally resonant case (n = N). We set un = Gn(·, s). Changing variable to σ = ηx, we see
that wn = un(σ/η) satisfies the equation w′′

n + k2
n(σ/η)w2

n/η
2 = 0 for every σ 6= ηs. This equation

is very similar to the Airy equation and from Theorem 2 in [77], we know that there exist A,B ∈ C
such that

un(x) =


A(−ξ(x))1/4√

kn(x)
(A(ξ(x)) + ε1(ξ(x))) if x < s,

B(−ξ(x))1/4√
kn(x)

(iA(ξ(x)) + B(ξ(x)) + iε1(ξ(x)) + ε2(ξ(x))) if x > s,

(4.48)

where ε1, ε2 ∈ C1(R) are such that there exist CN depending on hmin, hmax, δ and R such that for
all x ∈ R, ∣∣∣∣ E(ξ)

M(ξ)

∣∣∣∣ |ε1(ξ)| ≤ 1
λ1

(eηCN λ1 − 1),
∣∣∣∣E(ξ)
N(ξ)

∣∣∣∣ |ε′
1(ξ)| ≤ 1

λ1
(eηCN λ1 − 1), (4.49)∣∣∣∣ 1

E(ξ)M(ξ)

∣∣∣∣ |ε2(ξ)| ≤ λ2

λ1
(eηCN λ1 − 1),

∣∣∣∣ 1
E(ξ)N(ξ)

∣∣∣∣ |ε′
2(ξ)| ≤ λ2

λ1
(eηCN λ1 − 1), (4.50)

where λ1 > λ2 are known constants. Using Lemma 4.1 and the fact that BA′ − B′A = −1/π, we
find that

A = −π(−ξ(s))1/4(iA(ξ(s)) + B(ξ(s)) + iε1(ξ(s)) + ε2(ξ(s)))
(1 −Rπ)

√
kn(s)

,

B = −π(−ξ(s))1/4(A(ξ(s)) + ε1(ξ(s)))
(1 −Rπ)

√
kn(s)

,

where
R = (A′ε2 + ε′

1B + ε′
1ε2 − B′ε1 − Aε′

2 − ε′
2ε1)(ξ(s)).

It follows that

Gn(x, s) =


Gapp

n (x, s)
(

1 + ε1(ξ(x))
A(ξ(x))

)
1

1 −Rπ

(
1 + iε1(ξ(s)) + ε2(ξ(s))

iA(ξ(s)) + B(ξ(s))

)
if x < s,

Gapp
n (x, s)

(
1 + iε1(ξ(x)) + ε2(ξ(x))

iA(ξ(x)) + B(ξ(x))

)
1

1 −Rπ

(
1 + ε1(ξ(s))

A(ξ(s))

)
if x > s,

and ∂xG
app
n (x, s) =

−π(−ξ(s))1/4

(1 −Rπ)
√
kn(s)



[
(A′ + ε′

1)(ξ(x))
√
kn(x)

(−ξ(x))1/4 + (A + ε1)(ξ(x))φ′(x)
]

×(iA + B + iε1 + ε2)(ξ(s)) if x < s,[
(iA′ + B + iε′

1 + ε′
2)(ξ(x))

√
kn(x)

(−ξ(x))1/4 + (iA

+B + iε1 + ε2)(ξ(x))φ′(x)
]
(A + ε1)(ξ(s)) if x > s.
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We define c4 = (4λ2 + 2)c1. Assuming that η ≤ 1/(4CNc4π), we know that η ≤ 1/(CNλ1) and
(eηCN λ1 − 1)/λ1 ≤ 2ηCN , so

|R| ≤ 2ηCNc4,

∣∣∣∣ Rπ

1 −Rπ

∣∣∣∣ ≤ 2ηCNc4π

1 − 2ηπCNc4
≤ 4ηπCNc4 ≤ 1,

∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√
kn(s)

√
kn(x)

A(ξ(x))(iε1(ξ(s)) + ε2(ξ(s)))
∣∣∣∣∣ ≤∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√

kn(s)
√
kn(x)

∣∣∣∣∣ 4λ2ηCNM(ξ(x))M(ξ(s)) ≤ 4λ2ηCNc
2
2,

∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√
kn(s)

√
kn(x)

ε1(ξ(x)) (iA(ξ(s)) + B(ξ(s)) + iε1(ξ(s)) + ε2(ξ(s)))
∣∣∣∣∣ ≤ (1+2λ2ηCN )4ηCNc

2
2.

It follows that

|Gn(x, s) −Gapp
n (x, s)| ≤ 4ηπCNc4|Gapp

n (x)| +
(
8πc2

2λ2ηCN + 24πηCNc
2
2
)
,

which leads to
|Gn(x) −Gapp

n (x)| ≤ 4ηCNπ
(
c4|Gapp

n (x)| + c2
2 (2λ2 + 6)

)
.

Using the same idea, we prove that

|Gapp
n (x, s)| ≤ 2c2

2π,

and it follows that

‖Gn(·, s) −Gapp
n (·, s)‖L1(−r,r) ≤ η16rCNπc

2
2(c4π + λ2 + 3),

and
‖Gn(·, s)‖L1(−r,r) ≤ 4rc2

2π

(
2 + λ2 + 3

c4π

)
.

Using the same technique also prove that

‖∂xGn(·, s) − ∂xG
app
n (·, s)‖L1(−r,r) ≤ η8rCNπc2(c3 + c2cφ)(2c4 + 3λ2),

‖∂xGn(·, s)‖L1(−r,r) ≤ 16rπc2(c3 + c2cφ).

4.3.5 Proof of Theorem 4.1

As mentioned at the beginning of section 4.3.1, we map the deformed waveguide Ω̃ to the regular
waveguide Ω by a change of variables ψ : (x, y) 7→ (x, h(x)y). The problem (H̃) is equivalent in Ω
to the problem 

∂xxu+ k2u+ 1
h2 ∂yyu− h′′h− 2(h′)2

h3 y∂yu

+(h′)2

h4 y2∂yyu− 2h′

h2 y∂yxu = −f in Ω,

∂νu = btop + h′

h
∂xu on ∂Ωtop,

∂νu = bbot on ∂Ωbot,
u is outgoing.

(H)
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If we try and use the modal decomposition on this equation, mode coupling appears. We can
however try to approach the solutions of (H) by the solutions of the following system

∂xxv + 1
h(x)2 ∂yyv + k2v = −f in Ω,

∂νv = btop on ∂Ωtop,
∂νv = bbot on ∂Ωbot,

v is outgoing,

(H′)

which is amenable to modal decomposition. To estimate the error of such an approximation, we
need to control the dependence between the source and the solution of (H′). In Proposition 4.1, we
provide a control of the wavefield generated by a source term in the waveguide, and in Proposition
4.2, we do the same thing for a source term on its boundary. The proofs of both propositions are
given in the appendix.

Remark 4.7. (H′) was obtained from (H) by formally eliminating the terms likely to cause mode
coupling. We cannot however neglect the term 1

h(x)2 ∂yyu and approximate

1
h(x)2 ≈ 1

h(x0)2 + ηOx→x0(x− x0),

for a constant x0 ∈ R. Indeed, if x is large enough, x− x0 � η and
1

h(x0)2 − 1
h2

min
= O(1), 1

h(x0)2 − 1
h2

max
= O(1).

Proposition 4.1. Let r > 0 and f ∈ L2(Ωr). The equation
∂xxu+ 1

h2 ∂yyu+ k2u = −f in Ω,
∂νu = 0 on ∂Ω,

u is outgoing,
(4.51)

has a unique solution u ∈ H2
loc(Ω). Using notations of Theorem 4.2, if η < η1 then the operator

Γ : L2(Ωr) → H2(Ωr)
f 7→ u|Ωr

, where u is the solution to (4.51), (4.52)

is well defined, continuous and there exists a constant D1 depending on δ, hmin, hmax, R and r
such that

‖u‖H2(Ωr) ≤ D1‖f‖L2(Ωr). (4.53)

Proposition 4.2. Let r > 0 and b = (btop, bbot) ∈ (H̃
1/2

(−r, r))2. The equation
∂xxu+ 1

h2 ∂yyu+ k2u = 0 in Ω,
∂νu = btop on ∂Ωtop,
∂νu = bbot on ∂Ωbot,

u is outgoing.

(4.54)

has a unique solution u ∈ H2
loc(Ω). Using notations of Theorem 4.2, if η < η1 then the operator

Π :

(
H̃

1/2
(−r, r)

)2
→ H2(Ωr)

b = (btop, bbot) 7→ u|Ωr

, where u is the solution to (4.54), (4.55)
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is well defined, continuous and there exists a constant D2 depending on δ, hmin, hmax, R and r
such that

‖u‖H2(Ωr) ≤ D2‖b‖
(̃H

1/2
(−r,r))2

. (4.56)

Using these two propositions, we are now able to justify the approximation of (H) by (H′) which,
as in [32] and Chapter 2, is a Born approximation. However, here we show that this approximation
remains valid near resonance frequencies.
Proposition 4.3 (Born approximation). Let S and T be operators where S : H2(Ωr) → L2(Ωr)
and T : H2(Ωr) → (H̃

1/2
(−r, r))2. Let D1 and D2 be the constants defined in Propositions 4.1 and

4.2. Let f ∈ L2(Ωr) and b ∈ (H̃
1/2

(−r, r))2. If

µ := D1‖S‖H2(Ωr),L2(Ωr) +D2‖T ‖
H2(Ωr),(H̃

1/2
(−r,r))2

< 1, (4.57)

then the equation
u = Γ(f) + Π(b) + Γ(S(u)) + Π(T (u)), (4.58)

has a unique solution u ∈ H2(Ωr). Moreover, if we define v = Γ(f) + Π(b) then

‖u− v‖H2(Ωr) ≤
(
D1‖f‖L2(Ωr) +D2‖b‖

(H̃
1/2

(−r,r))2

) µ

1 − µ
. (4.59)

Proof. If (4.57) is satisfied then Γ ◦ S + Π ◦ T is a contraction and u can be expressed into a Born
series (see [32]). We conclude using the results on geometrical series.

Coming back to equation (H), we define the operators

S :
H2(Ωr) → L2(Ωr)

u 7→ h′′h− 2(h′)2

h3 y∂yu− (h′)2

h4 y2∂yyu+ 2h′

h2 y∂yxu
,

and

T :
H2(Ωr) → H̃

1/2
(−r, r)

u 7→ h′

h
∂xu|y=1

.

With these definitions, (H) can be rewritten as (4.58). We define

η0 = min

1, η1,
1

2 D1
hmin2

(
3 + 1

hmin2 + 2
hmin

)
+ 2D2

1
hmin

 ,

and we notice that if η ≤ η0 then

‖S‖H2(Ωr),L2(Ωr) ≤ η

hmin
2

(
2 + η

hmin
2 + η + 2η

hmin

)
≤ η

hmin
2

(
3 + 1

hmin
2 + 2

hmin

)
,

‖T ‖
H2(Ωr),(H̃

1/2
(−r,r))2

≤ η
1

hmin
.

We choose µ as in (4.57) and we define v = Γ(f)+Π(btop, bbot). Using Proposition 4.3, the problem
(H) has a unique solution u ∈ H2(Ωr) and

‖u− v‖H2(−r,r) ≤ 2η
(

D1

hmin
2

(
3 + 1

hmin
2 + 2

hmin

)
+D2

1
hmin

)
×
(
D1‖f‖L2(Ωr) +D2‖b‖

(H̃
1/2

(−r,r))2

)
.
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Using the modal decomposition, we know that

v(x, y) =
∑
n∈N

(∫
R
Gn(x, s)(fn(s) + btop(s)ϕn(1) + bbot(s)ϕn(0))ds

)
ϕn(y).

We now estimate the error between v and uapp given by (4.15), following the same idea as in the
proof of Proposition 4.1. We denote gn = fn + btopϕn(1) + bbotϕn(0) and g =

∑
n∈N gnϕn. Using

the Young inequality for integral operators and the results and notations of Theorem 4.2,

‖vn − uapp
n ‖L2(−r,r) ≤ β(1)

n ‖gn‖L2(−r,r), ‖v′
n − (uapp

n )′‖L2(−r,r) ≤ β(2)
n ‖gn‖L2(−r,r).

It follows that

‖v − uapp‖2
H1(Ωr) ≤

N∑
n=0

(2 + n2π2)β2η2‖gn‖2
L2(−r,r)

+
∑
n>N

(
(1 + n2π2)β2η2

min(|kn|)4 + η2β2

min(|kn|)2

)
‖gn‖2

L2(−r,r),

and so

‖v − uapp‖2
H1(Ωr) ≤ β2η2 max

(
2 +N2π2,

1 + (N + 1)2π2

δ4 + 1
δ2

)
‖g‖2

L2(Ωr).

We conclude by noticing that

‖u− uapp‖H1(Ωr) ≤ ‖u− v‖H2(Ωr) + ‖v − uapp‖H1(Ωr).

4.4 Extension to general slowly varying waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1 The cut and match strategy
In the previous section, we constructed an approximation for the solution to the Helmholtz equation
in a slowly increasing waveguide. In this section, we generalize our result by considering a 2D
infinite waveguide Ω̃ = {(x, y) ∈ R2 | 0 < y < h(x)} where h ∈ C2(R) is such that h′ is compactly
supported and there exists a parameter η, assumed to be small compared to R and hmin, such that
‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2.

When we look at the proof of Theorem 4.1, we notice that the condition that h is increasing is
only required to properly define the change of variable x 7→ ξ(x) in Theorem 4.2 when n = N . In
order to generalize Theorem 4.1, we only need to generalize Theorem 4.2 for the case n = N . To
this end, we follow a strategy developed in the context of the Schrödinger equation, see for instance
[90]. We partition Ω̃ in J regions (Sj)j=1,..,J , on which h′ has a constant sign, as shown in Figure
4.2.

If there exists x ∈ R such that kn(x) = 0 in Sj , we denote this coordinate by x∗
j . Otherwise, as

in section 5 of [77], x∗
j is chosen to be greater than max(Sj) if k2

n is positive on Sj (resp. smaller
than min(Sj) if k2

n is negative on Sj). Then, if h is increasing in Sj , we define

ξj(x) =



(
−3

2 i
∫ x∗

j

x

kn(t)dt
)2/3

if x < x∗
j and x ∈ Sj ,

−

(
3
2

∫ x

x∗
j

kn(t)dt
)2/3

if x > x∗
j and x ∈ Sj .

(4.60)
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S1 S2 S3

Figure 4.2 – Representation of the sections in a slowly varying waveguide.

Otherwise, if h is decreasing in Sj , we define

ξj(x) =


−

(
3
2

∫ x∗
j

x

kn(t)dt
)2/3

if x < x∗
j and x ∈ Sj ,(

−3
2 i
∫ x

x∗
j

kn(t)dt
)2/3

if x > x∗
j and x ∈ Sj .

(4.61)

In both cases, we denote

φj(x) = (−ξj(x))1/4√
kn(x)

. (4.62)

Given s ∈ R, we study the problem{
∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (4.63)

We denote Sj0 the region such that s ∈ Sj0 , and we assume that j0 6= 1 and j0 6= J even if it means
adding an artificial section before or after the coordinate s. Theorem 2 in [77] shows that (4.63)
has a solution and that there exist (Aj)j=1,...,J , (Bj)j=1,...,J ∈ C such that Gn(x, s) is close to

Gapp
n (x, s) =



A1φ1(x)w1(x) if x ∈ S1,

AJφJ(x)wJ(x) if x ∈ SJ ,

φj(x)(AjA(ξj(x)) +BjB(ξj(x))) if x ∈ Sj , j 6= j0,

φj0(x)(Aj0A(ξj0(x)) +Bj0B(ξj0(x))) if x ∈ Sj0 , x < s,

φj0(x)(btopA(ξj0(x)) +BJB(ξj0(x))) if x ∈ Sj0 , x > s,

(4.64)

where
w1(x) =

{
A(ξ1(x)) if h′ > 0 in S1,

iA(ξ1(x)) + B(ξ1(x)) if h′ < 0 in S1,
(4.65)

wJ(x) =
{
iA(ξJ(x)) + B(ξJ(x)) if h′ > 0 in SJ ,

A(ξJ(x)) if h′ < 0 in SJ .
(4.66)

To find the value of the constants Aj and Bj , we first use the continuity of Gapp
n and ∂xG

app
n on

the shared boundaries of each section, which gives 2J − 2 linear equations. Moreover, using the
continuity of Gapp

n at x = s, we find that

Aj0A(ξj0(s)) +Bj0B(ξj0(s)) = btopA(ξj0(s)) +BJBj0B(ξj0(s)). (4.67)

Using the jump formula for distributions, we also have

btopA′(ξj0(s)) +BJB′(ξj0(s)) −Aj0A′(ξj0(s)) −Bj0B′(ξj0(s)) = −φj0(s). (4.68)

Altogether, we obtain a linear system of 2J equations for the constants Aj , Bj , 1 ≤ j ≤ J . We
study its invertibility in the particular case J = 2 in the next section.
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4.4.2 Example of dilations or compressions in waveguides
In this section, we apply the method described previously to the simplest case, when the sign of h′

changes only once, at x = t. If h is increasing then decreasing, we say that the waveguide is dilated.
On the other hand, if h is decreasing then increasing, we say that the waveguide is compressed.
First, we study the case of dilations. Up to a change of variable x 7→ −x, we can assume that s > t,
as represented in Figure 4.3.

t s

S1 S2

Figure 4.3 – Parametrization of a dilated waveguide: t is the unique coordinate in the interior of supph′ such that
h′(t) = 0, S1 (resp. S2) is the section at the left (resp. right) of t, and s is a coordinate satisfying s > t.

We know from section 4.2 that Gn(x, s) is close to

Gapp
n (x, s) =

 A1φ1(x)A(ξ1(x)) if x ∈ S1,
φ2(x)(B1A(ξ2(x)) +B2B(ξ2(x))) if x ∈ S2, x < s,

A2φ2(x)A(ξ2(x)) if x ∈ S2, x > s,
(4.69)

where φ1, φ2 are defined in (4.62). The constants A1, A2, B1, B2 satisfy the linear system

M(s, t)


A1
B1
B2
A2

 = V (s) :=


0
0
0

−φ2(s)

 , (4.70)

where

M(s, t) =


−(φ1A(ξ1))(t) (φ2A(ξ2))(t) (φ2B(ξ2))(t) 0
−(φ1A(ξ1))′(t) (φ2A(ξ2))′(t) (φ2B(ξ2))′(t) 0

0 −A(ξ2(s)) −B(ξ2(s)) A(ξ2(s))
0 −A′(ξ2(s)) −B′(ξ2(s)) A′(ξ2(s))

 . (4.71)

We next study when M is invertible.

Proposition 4.4. The determinant D of M(s, t) defined in (4.71) is

D = 1
π

(−φ1(t)A(ξ1(t))(φ2A(ξ2))′(t) + (φ1A(ξ1))′(t)φ2(t)A(ξ2(t))) . (4.72)

Proof. We expand of the determinant along the first column and use the fact that BA′ − B′A =
−1/π.

Remark 4.8. Using the asymptotics of A provided in [82, 4], the condition D = 0 asymptotically
reduces to

cos
(∫ x?

2

x?
1

kn(x)dx
)

= 0. (4.73)

Under this condition, it is not possible to find the values of (A1, B1, B2, A2). This may be explained
by the potential presence of trapped modes in the dilated waveguide under this condition.
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Except for special values of k such that D = 0, we can find constants (A1, B1, B2, A2) by
computing either symbolically or numerically the solution of M(s, t)X = V (s).

We also study the case of compressions. Again, we assume that s > t, and we know that Gn(x, s)
is close to

Gapp
n (x, s) =

 A1φ1(x)(iA(ξ1(x)) + B(ξ1(x))) if x ∈ S1,
φ2(x)(B1A(ξ2(x)) +B2B(ξ2(x))) if x ∈ S2, x < s,
A2φ2(x)(iA(ξ2(x)) + B(ξ2(x))) if x ∈ S2, x > s.

(4.74)

The constants A1, A2, B1, B2 satisfy the linear system

M(s, t)


A1
B1
B2
A2

 = V (s) :=


0
0
0

φ2(s)

 , (4.75)

where

M(s, t) =


−(φ1(iA + B) ◦ ξ1)(t) (φ2A(ξ2))(t) (φ2B(ξ2))(t) 0
−(φ1(iA + B) ◦ ξ1)′(t) (φ2A(ξ2))′(t) (φ2B(ξ2))′(t) 0

0 −A(ξ2(s)) −B(ξ2(s)) (iA + B)(ξ2(s))
0 −A′(ξ2(s)) −B′(ξ2(s)) (iA′ + B′)(ξ2(s))

 . (4.76)

Proposition 4.5. The matrice M(s, t) defined in (4.76) is invertible.

Proof. Its determinant D is

D = 1
π

(−φ1(t)(iA + B)(ξ1(t))(φ2(iA(ξ2) + B(ξ2))′(t)

+ (φ1(iA(ξ1) + B(ξ1))′(t)φ2(t)(iA + B)(ξ2(t)).

The asymptotic expansions provided in [4, 82] show that there exists β1 > 0 such that

φ1(t)(iA(ξ1(t)) + B(ξ1(t)) ≈


1

2
√
π
√
kn(t)

exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

if |t− x?
1| � η−1/3,

1√
β1

(iA + B)(β1(t− x?
1)) if |t− x?

1| � η−1/2,

and since h′(t) = 0,

(φ1(iA(ξ1) + B(ξ1))′(t) ≈


|kn(t)|

2
√
π
√
kn(t)

exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

if |t− x?
1| � η−1/3,√

β1(iA′ + B′)(β1(t− x?
1)) if |t− x?

1| � η−1/2.

This case distinction covers every relative positions of t, x?
1 and x?

2 since η−1/2 � η−1/3. We can
do the same in S2, and find β2 > 0 such that

φ2(t)(iA(ξ2(t)) + B(ξ2(t)) ≈


1

2
√
π
√
kn(t)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)

if |t− x?
2| � η−1/3,

1√
β2

(iA + B)(β2(x?
2 − t)) if |t− x?

2| � η−1/2,
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(φ2(iA(ξ2) + B(ξ2))′(t) ≈

 − |kn|
2
√
π
√
kn(t)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)

if |t− x?
2| � η−1/3,

−
√
β2(iA′ + B′)(β2(x?

2 − t)) if |t− x?
2| � η−1/2.

If |t− x?
2| � η−1/3 and |t− x?

1| � η−1/3 then

D ≈ exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)

6= 0.

The remaining three relative positions of t, x?
1 and x?

2 can be analyzed in the same way. It follows
that ∀(t, s) ∈ R, D 6= 0.

Contrarily to the case of dilations, the matrix M is always invertible, and we can compute again
the values of (A1, B1, B2, A2). Figure 4.9 and 4.10 show examples of such computation.

4.5 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we illustrate our results. We compare the asymptotic expression of u to data
generated using the software Matlab to solve numerically the equation (H̃) satisfied by the wavefield
in Ω̃. In the following, we assume that h′ is supported between x = −7 and x = 7. To generate
the solution ũ of (H̃) on Ω̃7, we use the finite element method and a perfectly matched layer (see
[18]) placed on the left side of the waveguide between x = −15 and x = −8, and on the right side
between x = 8 and x = 15. The coefficient of absorption for the perfectly matched layer is defined
by α = −k((x− 8)1x≥8 − (x+ 8)1x≤−8) and k2 is replaced in the Helmholtz equation by k2 + iα.
The structured mesh is built with a stepsize of 10−3.

4.5.1 Computation of the modal Green function
To test the validity of the expression (4.16) of the Green function, we consider a profile with α = 0.1,
β = 0.04/30 and

h(x) =
(
α− β + β

√
x+ 4√

2

)
1[−4,4](x) + (α+ β) 1(4,+∞)(x) + (α− β) 1(−∞,−α)(x), (4.77)

with k = 31.5. There is only one locally resonant mode N = 1 associated to the resonant point
x? ≈ −2.72. We place an internal source f(x, y) = d(x)ϕn(y/h(x)) with n ∈ N where d is a
Gaussian approximation of δs at s ∈ R with

d(x) = 1√
2πσ

exp
(

− (x− s)2

2σ2

)
, (4.78)

and σ = 0.005. We measure the wavefield ũ at y = 0, and we compare it to the expression (4.16).
In Figure 4.4 (resp 4.5), we illustrate the case where n = 0 < N (resp. n = 2 > N). In Figures 4.6,
4.7 and 4.8, we illustrate the case where n = N for different values of s. The approximation seems
to be accurate, and the small discrepancies observed for instance in the imaginary part of Figure
4.7 are caused by the imprecise approximation of the Dirac function δs by d. However, even in this
particular case, the relative L2 error is still very small.
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sx?

zoom

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2 ·10−2

Re(u(x, 0))
Re(Gapp

n )

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2 ·10−2

Im(u(x, 0))
Im(Gapp

n )

Figure 4.4 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a propagative mode n = 0 and s = 0 in an

expanding waveguide, in the zoomed area (−2, 2). Top: representation of h, x? and s. Middle: comparison between real
parts of ũ(x, 0) and Gapp

n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2

error between ũ(x, 0) and Gapp
n (x) is 0.93%.

sx?

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 80

2

4

6 ·10−3

Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−4

−2

0

2

4 ·10−8

Im(u(x, 0))
Im(Gapp

n )

Figure 4.5 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for an evanescent mode n = 2 and s = 0 in an

expanding waveguide. Top: representation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp

n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2 error between

ũ(x, 0) and Gapp
n (x) is 3.68%.

We also consider a more general waveguide. As in section 4.3.2, we choose the simplest case of
dilation and compression, and we compare ũ(x, 0) to Gapp

n defined in (4.69) and (4.74). First, we
choose to work with a dilated waveguide, described by its width

h(x) = 0.1 + 0.0025 sin
( π

10(x+ 5)
)

1[−5,5](x), (4.79)
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s x?

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
0
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·10−2

Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
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0
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·10−3

Im(u(x, 0))
Im(Gapp

n )

Figure 4.6 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally resonant mode n = 1 and s = −4 in

an expanding waveguide. Top: representation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp

n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2 error between

ũ(x, 0) and Gapp
n (x) is 5.32%.

sx?

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−4

−2

0

·10−1

Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−2

−1

0

1

2 ·10−2

Im(u(x, 0))
Im(Gapp

n )

Figure 4.7 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally resonant mode n = 1 and s = −1.5 in

an expanding waveguide. Top: representation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp

n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2 error between

ũ(x, 0) and Gapp
n (x) is 7.24%.

at frequency k = 31. The only locally resonant mode is still N = 1, associated to two resonant
points x?

1 ≈ −3.19 and x?
2 = −x?

1. We choose the same internal source f as before, and we illustrate
the case n = N in Figure 4.9. Figure 4.10 illustrates the case of a compressed waveguide, with
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−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−0.2

−0.1

0

0.1

0.2
Re(u(x, 0))
Re(Gapp
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0.2 Im(u(x, 0))
Im(Gapp

n )

Figure 4.8 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally resonant mode n = 1 and s = 5 in an

expanding waveguide. Top: representation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp

n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2 error between

ũ(x, 0) and Gapp
n (x) is 6.08%.

profile

h(x) = 0.1 − 0.0005(x+ 5)1[−5,0](x) + 0.0025
4 (x− 4)1(0,4](x), (4.80)

at frequency k = 32.1 with a resonant mode N = 1 and resonant points x?
1 ≈ −0.74 and x?

2 ≈ 0.59.

sx?
1 x?

2

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−5

0

5 ·10−1

Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−2

−1

0

1

2
·10−6

Im(u(x, 0))
Im(Gapp

n )

Figure 4.9 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for n = 1 and s = 0.5 in a dilated waveguide. Top:

representation of h, x?
1, x?

2 and s. Middle: comparison between real parts of ũ(x, 0) and Gapp
n (x). Bottom: comparison

between imaginary parts of ũ(x, 0) and Gapp
n (x) Here, the relative L2 error between ũ(x, 0) and Gapp

n (x) is 10.09%.
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Im(u(x, 0))
Im(Gapp
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Figure 4.10 – Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for n = 1 and s = 0.5 in a compressed

waveguide. Top: representation of h, x?
1, x?

2 and s. Middle: comparison between real parts of ũ(x, 0) and Gapp
n (x).

Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp
n (x). Here, the relative L2 error between ũ(x, 0) and

Gapp
n (x) is 4.39%.

4.5.2 General source terms
We now validate the approximation provided in (4.15) for general sources, in the same expanding
waveguide defined by its width in (4.77). We choose two different types of sources : a vertical
internal source (see Figure 4.11), and a boundary source (see Figure 4.12). To compute the approx-
imation in (4.15), we choose to reduce the sum to 15 modes. Every time, we compute the relative
error made between ũ and its approximation ũapp defined by (4.15).

−6 −4 −2 0 2 4 60
2
4
6
8

10 ·10−2
|ũ|

5

10

·10−3

−6 −4 −2 0 2 4 60
2
4
6
8

10 ·10−2
|ũ− ũapp|

0

2

4

6
·10−4

Figure 4.11 – Representation of the wavefield u generated by a source f(x, y) = d(x)y where d is defined in (4.78) with
s = 0. Up, the absolute value |ũ|, down, the error of approximation |ũ− ũapp|. Here, the relative L2 error between ũ and

ũapp is 6.22%.
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10 ·10−2
|ũ− ũapp|

0
5
10
15
20

·10−2

Figure 4.12 – Representation of the wavefield ũ generated by a source bbot = 1−1≤x≤1. Up, the absolute value |ũ|,
down, the error of approximation |ũ− ũapp|. Here, the relative L2 error between ũ and ũapp is 7.73%.

10−1 100

101

102

η

‖u− uapp‖H1(Ω̃r)
1 slope

Figure 4.13 – Representation of ‖ũ− ũapp‖
H1(Ω̃7)

for different values of η to illustrate the result of Theorem 4.1.

4.5.3 Dependence of the error of approximation with respect to η

Finally, we evaluate in this section the influence of the parameter η in the approximation error
‖ũ− ũapp‖H1(Ω̃r). First, we chose large values of η to illustrate the control provided in Theorem 4.1.
We work at k = 5.23, with an increasing waveguide parametrized by

h(x) = 0.5 + 0.2ηx1−5<x<−5+1/η + 0.21x≥−5+1/η, (4.81)

and a boundary source bbot = 14<x<5. We present in Figure 4.13 the error of approximation with
respect to η. We can see that the error grows a little bit slower than the 1 slope expected. We also
notice than for small values of η, the error seems to reach a level where it is almost constant. This
is the error due to the finite element method.
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4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we have presented a complete proof of the existence of a unique solution to the
Helmholtz equation in slowly variable waveguides. We also provide a suitable approximation of this
solution and a control of the error of approximation in H1

loc(Ω). We validate this approximation
numerically, and show that this expression is an excellent way to compute quickly the wavefield in
a slowly varying waveguide.

We believe that this work could be extended to elastic waveguides in two dimensions, using the
modal decomposition in Lamb modes as in [82]. One could also try to generalize the ideas of this
chapter to acoustic waveguides in three dimensions. We think it would be possible to recover some
Laplacian eigenvalues of local sections, and from that to recover some information on the waveguide
shape.

Finally, we plan to use this work to develop a new multi-frequency method to recover the width
of a waveguide given measurements of the wavefield at the surface or on a section of the waveguide.
Indeed, for a locally resonant frequency, the wavefield in a perturbed waveguide is very different
from the one in a regular waveguide, even if the width h is close to a constant function. This should
provide a very high sensitivity inversion method to reconstruct the width of the waveguide, and
will be done in a future work.

Appendix 4.A: Proofs of Proposition 4.1 and 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Source f . This proof is an adaptation of the proof presented in Appendix 2.B of Chapter 2. Using
the results on the modal decomposition presented in Appendix 2.A of Chapter 2, we know that the
equation (4.51) is equivalent to

∀n ∈ N
{
u′′

n + kn(x)2un = −fn in R,
un is outgoing,

where

u(x, y) =
∑
n∈N

un(x)ϕn(y), f(x, y) =
∑
n∈N

fn(x) a.e. (x, y) ∈ Ω, un, fn ∈ L2
loc(R).

Using Theorem 4.2, there exist a unique Green function Gn(x, s) associated to this equation, and

∀n ∈ N un(x) =
∫
R
Gn(x, s)fn(s)ds.

We also notice that for every (x, s) ∈ R2, Gn(x, s) = Gn(s, x), and using controls from Theorem
4.2, for every s ∈ R and x ∈ R,

∀n ∈ N ‖Gn(·, s)‖L1(−r,r), ‖Gn(x, ·)‖L1(−r,r) ≤ α(1)
n .

Using Young’s inequality for integral operators,

∀n ∈ N ‖un‖L2(−r,r) ≤ α(1)
n ‖fn‖L2(−r,r).

Using Parseval equality and the results of Theorem 4.2,

‖u‖2
L2(Ωr) ≤ α2

N∑
n=0

‖fn‖2
L2(−r,r) + α2

δ4

∑
n>N

‖fn‖2
L2(−r,r) ≤ α2 max

(
1, 1
δ4

)
‖f‖2

L2(Ωr).

118



Ch
ap

te
r4

Ch
ap

te
r4

Ch
ap

te
r4

Ch
ap

te
r4

Applying Young’s inequality to u′
n, we get

‖∇u‖2
L2(Ωr) ≤ α2

N∑
n=0

(
1 + n2π2) ‖fn‖2

L2(−r,r) + α2
∑
n>N

(
1

min(|kn|)2 + n2π2

min(|kn|)4

)
‖fn‖2

L2(−r,r).

We deduce that

‖∇u‖2
L2(Ωr) ≤ α2 max

(
1 +N2π2,

1
δ2 + (N + 1)2π2

δ4

)
‖f‖2

L2(Ωr).

Finally,
‖u′′

n‖L2(−r,r) ≤ |kn|2‖un‖L2(−r,r) + ‖fn‖L2(−r,r)

It follows that

‖∇2u‖2
L2(Ωr) ≤

N∑
n=0

α2 ((k2
n + 1)2 + 2n2π2 + n4π4) ‖fn‖2

L2(−r,r)

+
∑
n>N

α2

((
|kn|2

min(|kn|)2 + 1
)2

+ 2n2π2

min(|kn|)2 + n4π4

min(|kn|)4

)
‖fn‖2

L2(−r,r),

and so

‖∇2u‖2
L2(Ωr) ≤ α2 max

[ (
(k2

N + 1)2 + 2N2π2 +N4π4)
+
((

|kN+1|2

δ2 + 1
)2

+ 2(N + 1)2π2

δ2 + (N + 1)4π4

δ4

)]
‖f‖2

L2(Ωr).

Source b. Using the same arguments as before, the equation (4.54) is equivalent to

∀n ∈ N
{
u′′

n + k2
nun = −btopϕn(1) − bbotϕn(0) in R,

un is outgoing,

and we know that

∀n ∈ N un(x) =
∫
R
Gn(x, s)(btopϕn(1) + bbotϕn(0))ds.

We notice that |ϕn(1)|, |ϕn(0)| ≤
√

2. Using Theorem 2.3.2.9 in [47], there exist a constant d(r)
and µ > 0 such that

‖u‖H2(Ωr) ≤ d(r)
(∥∥∥∥−∂xxu− 1

h2 ∂yyu+ µu

∥∥∥∥
L2(Ωr)

+ ‖btop‖
H̃

1/2
(−r,r)

+ ‖bbot‖H̃
1/2

(−r,r)

)
,

and it follows that

‖u‖H2(Ωr) ≤ d(r)
(

(k2 + µ)‖u‖L2(Ωr) + ‖btop‖
H̃

1/2
(−r,r)

+ ‖bbot‖H̃
1/2

(−r,r)

)
.

Finally,

‖u‖2
L2(Ωr) ≤ 2α2

(
‖btop‖2

H̃
1/2

(−r,r)
+ ‖bbot‖2

H̃
1/2

(−r,r)

)(
N + 1 +

∑
n>N

1
min(|kn|)4

)
,

which concludes the proof.
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5
Reconstruction of smooth shape defects in waveg-
uides using locally resonant frequencies surfacemea-
surements
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5.1.2 Outline of the chapter 123

5.2 Brief study of the forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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5.3.1 Wavefield approximation and measurements approximation 129
5.3.2 Stable reconstruction of x?

k 132
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5.5.1 Generation of data 140
5.5.2 Method of reconstruction 140
5.5.3 Numerical results 140

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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Appendix 5.B: Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

This chapter uses the study of the forward problem presented in Chapter 4 to develop a new
method to reconstruct slowly varying width defects in 2D acoustic waveguides using locally resonant
frequencies. At these frequencies, locally resonant modes propagate in the waveguide under the form
of Airy functions depending on a parameter called the locally resonant point. In this particular
point, the local width of the waveguide is known and we use the shape of the wavefields to recover
its location. Using the same process for different frequencies, we produce a good approximation of
the width in all the waveguide. Given multi-frequency measurements taken at the surface of the
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waveguide, we provide a L∞-stable explicit method to reconstruct the width of the waveguide. We
finally validate our method on numerical data, and we discuss its applications and limits.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This chapter presents a new method to reconstruct width variations of a slowly varying waveguide
from multi-frequency surface measurements in dimension 2. The considered varying waveguide is
described by

Ω :=
{

(x, y) ∈ R2 | 0 < y < h(x)
}
, (5.1)

where h ∈ C2(R) ∩ W 2,∞(R) is a positive profile function defining the top boundary. The bottom
boundary is assumed to be flat (see an illustration in Figure 5.1) but a similar analysis could be
done when both boundaries are varying. In the time-harmonic regime, the wavefield u satisfies the
Helmholtz equation with Neumann boundary conditions{

∆u+ k2u = −f in Ω,
∂νu = b on ∂Ω, (5.2)

where k ∈ (0,+∞) is the frequency, f is an interior source term, and b is a boundary source term.
In this work, a waveguide is said to be slowly varying when there exists a small parameter η > 0
such that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2. Such waveguides are good models of ducts, corroded
pipes, or metal plates (see [50, 59]).

We focus in this work on the recovery of the function h modeling the waveguide shape from
the knowledge of the wavefield dex(x) := u(x, 0) on one surface of the waveguide and for multiple
frequencies k. This model and inverse problem is inspired from non destructive monitoring of plates
done in [11, 58, 29]. Hence we assume the knowledge of measurements of u(x, y) for x ∈ R and
y = 0 in a frequency interval K ⊂ (0,+∞), as shown in Figure 5.1.

If k is chosen such that k = nπ/h(x?
k) with n ∈ N and x?

k ∈ R, the Helmholtz problem is not
well posed in general. Nevertheless, we proved in Chapter 4 that there exists a unique solution to
this problem as long as the waveguide is slowly varying. In the same work, we also give a suitable
explicit approximation of the wavefield that explicitly depends on x?

k. The aim in this chapter is to
recover the position of x?

k for different frequencies also called locally resonant frequencies, and then
the shape function h. Using these frequencies, the proposed inverse problem is highly non linear
but a unique and stable recovering of h is possible up to a controllable approximation error.

y = 0

y = h(x)
b

f

Figure 5.1 – Parametrization of a slowly variable waveguide of width h. A wavefield u is generated by an internal source
f and a boundary source b. Triangles represent measurements of u taken on the surface y = 0.

5.1.1 Scientific context
The detection and reconstruction of shape defects in a waveguide are mentioned in different works.
In articles [61, 3, 2], the authors use a conformal mapping to map the geometry of the perturbed
waveguide to that of a regular waveguide. This method is beneficial to understand the propagation
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of waves in irregular waveguides. Still, it is not easily adaptable to the inverse problem and the
reconstruction of defects since the transformation to a regular waveguide is not explicit and proves
numerically expensive. Another approach based on the scattering field treatment is developed in
[75]. Finally, articles [81, 43] study the forward problem and give leads on how to use surface
measurements to reconstruct the width of a slowly varying waveguide.

Our work concerns a different approach, also used in [13, 12], where we assume the data to be
available for a whole interval of frequencies. This provides additional information that should help
localize and reconstruct the shape of the defect. Moreover, the use of multi-frequency data often
provides uniqueness of the reconstruction (see [7]) and better stability (see [14, 52, 93]).

In our previous work done in Chapter 2, we already presented a method to reconstruct small
width variations using back scattering data. However, we avoided all the cut-off frequencies of the
waveguide, which are frequencies k > 0 such that k = nπ/h(x?

k) for a mode n ∈ N and a longitudinal
position x?

k. Since experimental works presented in [11, 29] suggest that these resonant frequencies
are helpful to reconstruct width variations, we choose in this chapter to work only with these
frequencies. Using the study of the forward problem already done in Chapter 4, we know that if
k is a locally resonant frequency, the wavefield u strongly depends on x?

k. The main idea of our
reconstruction method is to use measurements of u to find back x?

k. Since h(x?
k) = nπ/k, it then

gives up the information about the waveguide’s width in one point. By taking different locally
resonant frequencies k, we show that we can obtain a complete approximation of the width h of
the waveguide.

5.1.2 Outline of the chapter
The key result of this chapter is Theorem 5.2, which proves that u is close to a three parameters
Airy function, one parameter being x?

k. As explained in Proposition 5.3, it enables us to find the
value of x?

k for every locally resonant frequency, and to prove that our reconstruction method is
L∞-stable. The chapter is organized as follows. In section 5.2, we briefly recall results on the
modal decomposition and the study of the forward problem. In section 5.3, we study the inverse
problem with measurements taken at the surface of the waveguide and we provide a stability result
for the reconstruction of the width of the waveguide. Finally, in section 5.4, we provide numerical
reconstruction of different width defects.

5.2 Brief study of the forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before studying the inverse problem associated with the reconstruction of the width in a varying
waveguide, we need to study the forward problem in order to find an approximation of the available
data. In this section, we briefly recall all the main results on the study of the forward problem.
These results and their proofs can be found in Chapter 2 and [27].

A useful tool when working in waveguides is the modal decomposition. The following definition
provides a modal decomposition in varying waveguides:

Definition 5.1. We define the sequence of functions (ϕn)n∈N by

∀(x, y) ∈ Ω, ϕn(x, y) :=


1/
√
h(x) if n = 0,√

2√
h(x)

cos
(
nπy

h(x)

)
if n ≥ 1, (5.3)

which for any fixed x ∈ R defines an orthonormal basis of L2(0, h(x)).
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Hence, a solution u ∈ H2
loc
(
Ω
)

of (5.2) admits a unique modal decomposition

u(x, y) =
∑
n∈N

un(x)ϕn(x, y) where un(x) :=
∫ h(x)

0
u(x, y)ϕn(x, y)dy. (5.4)

Note that un does not satisfy in general any nice equation. However, when h is constant (outside
of supp(h′)), it satisfies an equation of the form u′′

n + k2
nun = −gn where kn =

√
k2 − n2π2/h2 is

the wavenumber. When h is variable, the decomposition (5.4) motivates the following definition:

Definition 5.2. The local wavenumber function of the mode n ∈ N is the complex function kn :
R → C defined by

k2
n(x) := k2 − n2π2

h(x)2 , (5.5)

with Re(kn), Im(kn) ≥ 0.

In this work, as h(x) is non constant, kn(x) may vanish for some x ∈ R and change from a
positive real number to a purely imaginary one. We then distinguish three different situations:

Definition 5.3. A mode n ∈ N falls in one of these three situations:

1. If n < kh(x)/π for all x ∈ R then kn(x) ∈ (0,+∞) for all x ∈ R and the mode n is called
propagative.

2. If n > kh(x)/π for all x ∈ R then kn(x) ∈ i(0,+∞) for all x ∈ R and the mode n is called
evanescent.

3. If there exists x?
k ∈ R such that n = kh(x?

k)/π the mode n is called locally resonant. Such
points x?

k are called resonant points, and there are simple if h′(x?
k) 6= 0, and multiple otherwise.

A frequency k > 0 for which there exists at least a locally resonant mode is called a locally resonant
frequency.

Using the wavenumber function, one can adapt the classic Sommerfeld (or outgoing) condition,
defined in Chapter 2 for regular waveguides, to general varying waveguides Ω. This condition is
used to guarantee uniqueness for the source problem given in equation (5.2).

Definition 5.4. A wavefield uk ∈ H2
loc
(
Ω
)

is said to be outgoing if it satisfies∣∣∣∣u′
n(x) x

|x|
− ikn(x)un(x)

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N, (5.6)

where un is given in (5.4).

In all this work, we make the following assumptions:

Assumption 5.1. We assume that h ∈ C2(R) ∩W 2,∞(R) with h′ compactly supported and that

∀x ∈ R hmin ≤ h(x) ≤ hmax for some 0 < hmax < hmin < ∞.

We also assume that h(x) = hmin or h(x) = hmax if x /∈ supp(h′). For such a function we define a
parameter η > 0 that satisfies for a constant R > 0

‖h′‖L∞(R) < η and ‖h′′‖L∞(R) < η2, supph′ ⊂
(

−R

η
,
R

η

)
.
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Ω
hmin

hmax

supp(h′)

Figure 5.2 – Representation of an increasing slowly and compactly varying waveguide.

Such a waveguide is represented in Figure 5.2.
The forward source problem is defined for every frequency by

(Hk) :


∆u+ k2u = −f in Ω,
∂νu = btop in ∂Ωtop,
∂νu = bbot in ∂Ωbot,

u is outgoing,

(5.7)

As explained in [27], this problem is not well-posed when {x | kn(x) = 0} is a non-trivial interval of
R. This especially happens when k = nπ/hmin or k = nπ/hmax. We then avoid these two forbidden
situations and we set

δ(k) := min
n∈N

(√∣∣∣∣k2 − n2π2

hmin
2

∣∣∣∣,
√∣∣∣∣k2 − n2π2

hmax
2

∣∣∣∣
)
. (5.8)

From now on, we define (fn)n∈N the modal decomposition of f , and

gn(x) = fn(x)√
h(x)

+ ϕn(1)btop(x)
√

1 + (h′(x))2
√
h

+ ϕn(0)bbot(x) 1√
h
. (5.9)

Using the work done in Chapter 4, we are able to provide an approximation of the solution of (5.7).
If h is increasing, we can state the following result using Theorem 4.1 and Remark 4.3 in Chapter
4.

Theorem 5.1. Let h be an increasing function defining a varying waveguide Ω that satisfies As-
sumption 5.1 with a variation parameter η > 0. Consider sources f ∈ L∞

c (Ω), b := (bbot, btop) ∈
(H1/2(R))2 ∩ (L∞

c (R)2). Assume that there is a unique locally resonant mode N ∈ N, associ-
ated with a simple resonant point x?

k ∈ R. Let I ⊂ R be an interval of length R > 0, and
ΩI := {(x, y) ∈ Ω |x ∈ I}.

There exists η0 > 0 depending only on hmin, hmax, δ(k) and R such that if η ≤ η0, then the
problem (Hk) admits a unique solution u ∈ H2

loc
(
Ω). Moreover, this solution is approached by uapp

defined for almost every (x, y) ∈ Ω by

uapp(x, y) :=
∑
n∈N

(∫
R
Gapp

n (x, s)gn(s)ds
)
ϕn (y) , (5.10)
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where (fn)n∈N is the modal decomposition of f , ϕn is defined in (5.3) and Gapp
n is given by

Gapp
n (x, s) :=



i

2
√
kn(s)kn(x)

exp
(
i

∣∣∣∣∫ x

s

kn

∣∣∣∣) , if n < N,

1
2
√

|kn|(s)|kn|(x)
exp

(
−
∣∣∣∣∫ x

s

|kn|
∣∣∣∣) , if n > N,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(s)A ◦ ξ(x) if x < s,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(x)A ◦ ξ(s) if x > s,

if n = N.

(5.11)

Function kn is the wavenumber function defined in Definition 5.2 and the function ξ is given by

ξ(x) :=



(
−3

2 i
∫ x?

k

x

kN (t)dt
)2/3

if x < x?
k,

−

(
3
2

∫ x

x?
k

kN (t)dt
)2/3

if x > x?
k.

(5.12)

Precisely, there exist a constant C1 > 0 depending only on hmin, hmax and N such that

‖u− uapp‖H1(ΩI ) ≤ ηC1R
2δ(k)−8

(
‖f‖L2(Ω) + ‖b‖(

H1/2(R)
)2

)
. (5.13)

This result provides an approximation of the measurements of the wavefield for every frequency,
and a control of the approximation error. We represent in Figure 5.3 the wavefield for different
frequencies. We also point out in Figure 5.4 that the source should be located in an area where
h > h(x?) in order to generated a significant locally resonant mode.

We notice that at locally resonant frequencies, the wavefield strongly depends on the position
of x?

k, which justify the idea of using it to develop an inverse method to reconstruct the width h.
This method is based on surface measurements of the wavefield, meaning that we have access to

dex := u(x, 0) ∀k > 0 ∀x ∈ I. (5.14)

An illustration is provided in Figure 5.5 with a representation of the wavefield u and the surface
measurement u(x, 0) when k is a locally resonant frequency.

5.3 Shape Inversion using a monochromatic source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we describe the method to recover the width h from surface measurements of the
wavefield at locally resonant frequencies. We focus here on the reconstruction of the shape of h
on supp(h′), assuming the a priori knowledge of the constants hmin and hmax and of an interval
containing supp(h′). We detail in Appendix 5.A how these constants can be estimated. To recover
the shape function h on supp(h′), we start by studying the simpler case of a source term f generating
only a single locally resonant mode in the waveguide. Hence we assume that f takes the form

∀(x, y) ∈ Ω f(x, y) = fN (x)ϕN (y), fN ∈ L2(R), (5.15)
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Figure 5.3 – Representation of the wavefield |u| solution of (5.7) with a monochromatic source f(x, y) = δx=6ϕ1(y)
for different frequencies k. When k = 30.9, the mode n = 1 is evanescent, and the wavefield decreases very fast around
the source. When k = 31.1, 31.2, 31.3, 31.4, 31.8, the mode n = 1 is locally resonant and the wavefield propagates in the

waveguide as an Airy function until it reaches the point x?
k. When k = 32, the mode n = 1 is propagative and the

wavefield propagates in all the waveguide. In all these representations, the width h is defined by the function (5.52).
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Figure 5.4 – Representation of the wavefield |u| solution of (5.7) with a monochromatic source f(x, y) = δx=sϕ1(y) for
different positions s. On the first two pictures, h is a dilation defined in (5.55) and on the last two pictures, h is a

shrinkage defined in (5.56). Depending on the location of the source, we observe different behaviors. For the dilation,
when s is located between the positions x?

k the mode is locally resonant, while it is evanescent if s is outside the
positions x?

k. For the shrinkage and the mode is locally resonant when s is outside the positions x?
k. In order to generate

a significant locally resonant mode, the source s should be placed at a width where h(s) > h(x?
k) and the mode only

propagates until it reaches the point x?
k.

where fN is compactly supported. We also assume the absence of boundary source term, meaning
that b = 0. This simplified situation is useful to understand the method of reconstruction. It will
be generalized to any kind of internal and boundary sources in section 5.4.

In the simplest case of a single internal source (5.15), we know from the study of the forward
problem in Theorem 5.1 that the measured data without noise dex satisfies

dex(x) := u(x, 0) ≈ uapp
N (x)ϕN (0) where uapp

N (x) =
∫
R
Gapp

N (x, s)fN (s)ds. (5.16)

Our reconstruction method is based on the recovery of the resonant x?
k for every locally resonant

frequencies k. It can be seen in Theorem 5.1 that the approached Green function Gapp
N depends on
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2

4

|u(x, 0)|

Figure 5.5 – Illustration of the wavefield measurements in a varying waveguide. The wavefield u is solution of (5.7)
where the profile h is given in (5.52) and k = 31.5 is a locally resonant frequency. Data are generated using the finite

element method described in section 5.5.1. Top: amplitude of |u| in the whole waveguide Ω (non scaled). Bottom:
amplitude of the measurements of |u| on the surface y = 0.

x?
k through the function ξ. However, this dependence is intricate and hardly usable to find a direct

link between dex and x?
k. Thus we need to find a simpler approximation of the measurements. In

a first part, we provide an approximation of measured data dex using a three parameters model
function

dapp
z,α,x?

k
: x 7→ zA(α(x?

k − x)), (5.17)

where z ∈ C∗ is a complex amplitude, α > 0 is a scaling parameter and x?
k is the resonant point

playing the role of a longitudinal shift. In a second part, we first control the approximation error
between this function and the exact measurements and then, we develop a stable way to reconstruct
x?

k from this approximated data.

5.3.1 Wavefield approximation and measurements approximation
In order to find a reconstruction of x?

k, we need to find an exploitable link between dex := u(x, 0)
and x?

k. To do so, we make a Taylor expansion of Gapp
N around the point x?

k. For every frequency
k > 0 and R > 0, we denote

ΩR(x?
k) := {(x, y) ∈ Ω | |x− x?

k| < R}, ΓR(x?
k) := (x?

k −R, x?
k +R), (5.18)

and we consider the Taylor expansion on the interval ΓR. Moreover, we assume that the source is
located at the right of the interval ΓR, and we define

Ω+
R(x?

k) := {(x, y) ∈ Ω |x− x?
k > R}, Γ+

R(x?
k) = (x?

k +R,+∞). (5.19)

Both these sets are represented in Figure 5.6.
The following Proposition shows that uapp

N can be approached by a three parameters function of
type dapp

z,α,x?
k

if the shape function h is steep enough at x?
k.
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x?
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ΓR(x?
k)

ΩR(x?
k) f

Γ+
R(x?

k)

Ω+
R(x?

k)

Figure 5.6 – Representation of ΓR(x?
k), ΩR(x?

k), Γ+
R(x?

k) and Ω+
R(x?

k). The source f is assumed to be compactly
supported in Γ+

R(x?
k).

Proposition 5.1. Assume that Ω satisfies assumptions 5.1, let R > 0 and k > 0 be a locally
resonant frequency associated to the mode N ∈ N and the locally resonant point x?

k that satisfies
h′(x?

k) ≥ θη for some θ > 0. There exist z ∈ C∗, α > 0 and a constant C2 > 0 depending only on
hmin, hmax, N and θ such that

‖uapp
N − dapp

z,α,x?
k
‖L2(ΓR(x?

k
)) ≤ C2

(
R3/2η5/6 +R5/2η7/6

)
. (5.20)

Proof. Using the information about the support of the source term, we know that

uapp
N (x) =

∫ +∞

x?
k

+R

Gapp
N (x, s)fN (s)ds.

Using the definition of Gapp
N given in (5.11), there exists a function qk such that for every x ∈ ΓR(x?

k),

Gapp
N (x, s) = qk(s) (−ξ(x))1/4√

kn(x)
A(ξ(x)).

It follows that
uapp

N (x) = (−ξ(x))1/4√
kn(x)

A(ξ(x))
∫ +∞

x?
k

+R

qk(s)fN (s)ds.

In the following, we denote O(·) bounds depending only on hmax, hmin and N . We see that

kN (x)2 = 2N2π2h′(x?
k)

h(x?
k)3 (x− x?

k) + O(η2(x− x?
k)2).

From now on, we assume that x > x?
k, which leads to

kN (x) =

√
2N2π2h′(x?

k)
h(x?

k)3 (x− x?
k)1/2 + O

(
η2(x− x?

k)3/2√
h′(x?

k)

)
, (5.21)

and so

ξ(x) =
(

2N2π2h′(x?
k)

h(x?
k)3

)1/3

(x?
k − x) + O

(
η2(x− x?

k)2

h′(x?
k)2/3

)
.

Then,

A(ξ(x)) = A

((
2N2π2h′(x?

k)
h(x?

k)3

)1/3

(x?
k − x)

)
+ O

(
η2(x− x?

k)2

h′(x?
k)2/3

)
,

and
(−ξ(x))1/4√

kN (x)
=
(

2N2π2h′(x?
k)

h(x?
k)3

)−1/6

+ O
(
η2(x− x?

k)
h′(x?

k)7/6

)
.
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We set

z =
(

2N2π2h′(x?
k)

h(x?
k)3

)−1/6 ∫ +∞

x?
k

+R

qk(s)fN (s)ds, α =
(

2N2π2h′(x?
k)

h(x?
k)3

)1/3

, (5.22)

and it follows that

uapp
N (x) = zA(α(x?

k − x)) + O
(
η2(x− x?

k)
h′(x?

k)7/6

)
+ O

(
η2(x− x?

k)2

h′(x?
k)5/6

)
.

The exact same study can be done in the case x < x?
k. Since |x− x?

k| ≤ R, we conclude that

‖uapp
N − dapp

z,α,x?
k
‖L2(ΓR(x?

k
)) = η2O

(
R3/2(h′(x?

k))−7/6 +R5/2(h′(x?
k))−5/6

)
.

To conclude, we use the fact that h′(x?
k) ≥ θη.

Corollary 5.1. Assume that Ω satisfies assumptions 5.1, let R > 0 and k > 0 be a locally resonant
frequency associated to the mode N ∈ N and the locally resonant point x?

k that satisfies h′(x?
k) ≥ θη

for some θ > 0. There exist η > 0 such that if η ≤ η0 then there exist z ∈ C∗, α > 0 and a constant
C3 > 0 depending only on hmin, hmax, N and θ such that

‖dex − dapp
z,α,x?

k
‖L2(ΓR(x?

k
)) ≤ C3

(
δ(k)−8R2η +R3/2η5/6 +R5/2η7/6

)
. (5.23)

Proof. We apply Proposition 5.1, Theorem 5.1 and trace results which prove that there exists a
constant γ > 0 depending only on R, hmin and hmax such that

‖u(·, 0) − uapp(·, 0)‖L2(ΓR(x?
k

)) ≤ ‖u− uapp‖H1/2(ΓR(x?
k

)) ≤ γ‖u− uapp‖H1(ΩR(x?
k

)).

This result indicates a strategy to determine x?
k from the exact data dex. Assuming that η

is small enough to see dapp
z,α,x?

k
as a good approximation of dex, one may fit the three parameters

(α, z, x?
k) that minimize the misfit dex − dapp

z,α,x?
k

for some norm. We also see from this result that
the error in the Taylor expansion strongly depends on the values of θ, R and δ(k). Since we plan on
using different locally resonant frequencies, we need to get a uniform control over k on the Taylor
expansion. Moreover, we need to control the length R of the measurement interval. If R is too
large, the quality of the Taylor expansion diminishes and if R is too small, the data on the interval
ΓR(x?

k) may not contain enough information to fit the three parameters (z, α, x?
k) with stability.

To prevent this, R needs to be scaled depending on the parameter α. Indeed, the change of
variable x 7→ α(x?

k −x) must cover a large enough interval to perform the desired fitting. Using the
expression of α given in (5.22), we say that α(x?

k − x) covers an interval of fixed radius σ > 0 if

R ≥ σ

α
≥ σhmax

2β1/3N2π2 η
−1/3.

This means that R needs to be scaled as η−1/3 and we assume now that

R = R(η) := rη−1/3. (5.24)

where r > 0 is a constant. We can now give a uniform approximation result between dex and dapp
z,α,x?

k

on the interval ΓR(η)(x?
k

).
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Theorem 5.2. Under the hypotheses of Theorem 5.1, and fix N ∈ N∗ and θ > 0. There exists
η0 > 0 such that if η < η0, then for any locally resonant frequency k > 0 associated to the mode N
and the locally resonant point x?

k satisfying h′(x?
k) ≥ θη, there exist α > 0 and z ∈ C such that the

following approximation holds on ΓR(η)(x?
k):

dex = dapp
z,α,x?

k
+ O(η1/3).

More precisely, there exists a constant C4 > 0 depending only on hmin, hmax, θ and r such that∥∥∥dex − dapp
z,α,x?

k

∥∥∥
L2(ΓR(η)(x?

k
))

≤ C4η
1/3. (5.25)

Proof. To prove this result, we need to provide a uniform lower bound for δ(k) under the hypothesis
h′(x?

k) ≥ θη. From the definition of δ(k), we assume without loss of generality that δ(k) is reached
by the mode number N ∈ N and that δ(k)2 =

∣∣k2 −N2π2/h2
max
∣∣. Hence, as k is locally resonant,

we know that k = Nπ/h(x?
k) and that

δ(k)2 = N2π2
∣∣∣∣ 1
h(x?

k)2 − 1
h2

max

∣∣∣∣ ≤ 2N2π2

h2
minhmax

(hmax − h(x?
k)).

Let us call t ≥ 0 such that h(x?
k +t) = hmax, we necessarily have h′(x?

k +t) = 0. Using the hypothesis
h′′ ≥ −η2, we know that h′(x?

k + s) ≥ ηθ − η2s for all s ∈ (0, t). This implies that t ≥ θ/η. Then,

hmax − h(x?
k) =

∫ t

0
h′(x?

k + s)ds ≥ ηθt− η2 t
2

2 ≥ θ2

2 .

Then,
δ(k) ≥ Nπ

hmin
√
hmax

θ.

The proof of Theorem 5.2 is now straightforward, we simply replace R by rη−1/3 in Corollary 5.1
and use the lower bound on δ(k).

Remark 5.1. We underline the fact that the constant in this estimation depends on the value of θ,
and tends toward infinity if θ tends to zero. This result is illustrated in Figure 5.7 where we clearly
notice that the error between dex and dapp

z,α,x?
k

deteriorates when θ become too small.

5.3.2 Stable reconstruction of x?k

We proved so far that the surface measurements are close to the three parameters function

dapp
z,α,x?

k
: x 7→ zA(α(x?

k − x)), (5.26)

on the interval ΓR(η)(x?
k) = (x?

k − rη−1/3, x?
k + rη−1/3). The question is now to understand if one

can get a stable evaluation of x?
k from this approached data. We define then the following forward

operator

F :
{

C∗ × (0,+∞) × R −→ C0(ΓR(β/α))
(z, α, β) 7−→ (x 7→ zA(β − αx)) . (5.27)

If the three parameters are uniquely defined, we can deduce an approximation of the position x?
k

from the solution of F (z, α, β) = dapp
z,α,x?

k
through the formula x?

k = β/α. The following result
guarantee the uniqueness of the solution to this problem.
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Figure 5.7 – Error of approximation ‖dex − dapp
z,α,x?

k
‖L2(ΓR(η)(x?

k
)) for different values of θ with a fixed value of η. The

width h is represented on the left of the picture and exact data dex are generated as explained in section 5.5.1 with a
locally resonant mode N = 1 and a source f(x, y) = δx=6ϕN (y). Then, dex is compared with dapp

z,α,x?
k

where α and z are

defined using the expression (5.22). Here, r = 0.2 and η = 8.10−4.

Proposition 5.2. Let d0 := F (z0, α0, β0), there exists r0 > 0 such that if r > r0 then the problem
F (z, α, β) = d0 has a unique solution (z0, α0, β0).

Proof. If r is high enough, the interval ΓR is large enough to contain the maximum amplitude of
the function d0 at position xmax, and the two first zeros of the function d0 called x1 and x2. Hence
(z0, α0, β0) are uniquely determined by

z0 = d0(xmax)
‖A‖∞

, α0 = y1 − y2

x2 − x1
, β0 = y1x2 − y2x1

x2 − x1
, (5.28)

where y1 and y2 are the two first zeros of the Airy function A.

This result of uniqueness and the corresponding inversion formulas are not directly applicable.
Indeed, these formulas are not robust to noise or data uncertainties and we remind the reader that
an approximation is already made between dex and dapp

z,α,x?
k
.

A first strategy would be to use the explicit formula (5.28) and apply some data regularization
with a low-pass filter before doing the inversion (see [64] for more details). This method works per-
fectly with exact data, and will be called from now the “direct parameters reconstruction method”.

However, few issues can be raised with this method. Firstly, it is not sufficiently robust if data
are very noisy, as illustrated in Figure 5.9 where we use this method to reconstruct parameters with
a random additive noise of increasing amplitude. Secondly, as mentioned in the previous subsection,
we will only make measurements of the wavefield on the interval ΓR, and we cannot be sure that
neither the first two zeros nor the maximum of A will occur in this interval. Finally, it is more
realistic to assume that we only have access to dapp

z,α,x?
k

on a finite number of receivers positions. For
all this reasons, a least squares approach is introduced. On can keep the previous method to find
an initial guess of the parameters p := (z, α, β).

We now assume that we have access to the data

di := F (p)(ti), i = 1, . . . , n, (5.29)

where p := (z, α, β) and (ti)i=1,...,n ∈ ΓR is an increasing subdivision of ΓR. We denote by d :=
(d1, . . . , dn) ∈ Cn the discrete data on the subdivision t := (t1, . . . , tn). We aim to minimize the
least squares energy functional

Jd(p) := 1
2‖F (p)(t) − d‖2

`2 . (5.30)
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In this expression, the norm `2 is the normalized euclidean norm defined by

‖d‖2
`2 = 1

n

n∑
i=1

d2
i . (5.31)

Denoting by τ the step of the subdivision t, we know using quadrature results (see [33] for more
details) that for all functions f ∈ H2(ΓR),∣∣‖f‖L2(ΓR) − ‖f(t)‖`2

∣∣ ≤ 2τ‖f‖H1(ΓR). (5.32)

It shows that the `2 norm is a good approximation of the L2(ΓR) norm if the step of discretization
τ is small enough.

We assume the knowledge of an open set U ⊂ C∗ × (0,+∞) × R of the form

U := BC(0, zmax)× (αmin, αmax)× (βmin, βmax), zmax, αmin, αmax ∈ R?
+, βmin, βmax ∈ R, (5.33)

containing the solution p. The following proposition shows that the least squares problem is locally
well-posed if the sampling size n is large enough, and it quantifies the error on the recovered
parameters.

Proposition 5.3. There exists n0 ∈ N∗ such that if n ≥ n0, then for every p0 ∈ U and d0 =
F (p0)(x), there exist ε > 0 and U ′ ⊂ U such that for every d ∈ Rn satisfying ‖d − d0‖`2 < ε
then the functional Jd is strictly convex on U ′ and admits a unique minimum point denoted pLS =
(zLS, αLS, βLS). Moreover, there exists a constant C5 > 0 depending only on U , p0 and n such that

‖pLS − p0‖2 ≤ C5‖d − d0‖`2 . (5.34)

Finally, if we denote

Λ :

 B2(d0, ε) → R

d 7→ βLS

αLS

, (5.35)

the operator which approach the value of x?
k, there exists a constant C6 > 0 depending only on U ,

p0 and n such that
|Λ(d) − Λ(d0)| ≤ C6‖d − d0‖`2 . (5.36)

The proof of this result is given in Appendix 5.B. In this proof we can see that the choice of the
data discretization points t is important in order to improve the accuracy of the reconstruction.
We illustrate that by choosing p0 = (2 + i, 1.4,−2.8) and comparing the direct reconstruction of
the parameters (5.28) with the least squares method for three different sets t:

• t1 is a discretization of [−6,−1] with 100 points, where the tail of the Airy function is located.

• t2 is a discretization of [−2, 6] with 100 points, where the Airy function varies.

• t3 is a discretization of [−6, 6] with 200 points.

In Figure 5.8, we represent the four reconstructions where d = d0 +N and N is a a uniform random
additive noise of amplitude 0.3. We see that reconstructions with t2 and t3 seems more accurate
than the one with t1 and the direct reconstruction. We detail this in Figure 5.9, where we compare
the reconstruction errors with different noise amplitudes. We clearly see that using a least squares
method improves the reconstruction if t is well-chosen.
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Figure 5.8 – Comparison of four different reconstructions of F (p0) where d − d0 is a uniform random additive noise of
amplitude 0.3. Blue: direct reconstruction. Green: least square reconstruction with t = t1. Red: least square

reconstruction with t = t2. Purple: least square reconstruction with t = t3.

We now have a stable method to reconstruct an approximation x?,app
k of x?

k from given measure-
ments of u(x, 0). Since h(x?

k) = Nπ/k, we can approximate the width at positions x?,app
k with the

formula
happ(x?,app

k ) = Nπ

k
. (5.37)

This provides an approximation of h in one point. Then, we change the frequency k > 0 to
get approximations of h all along the support of h′. From now on, we denote uk the wavefield
propagating at frequency k. As mentioned before, we assume that we already have an approximation
of supp(h′), hmin and hmax (see Appendix 5.A). We denote

kmax = Nπ

hmin
, kmin = Nπ

hmax
. (5.38)

and we take a finite set of frequencies K ⊂ (kmin, kmax). For every frequency k ∈ K, we introduce
tk a discretization of ΓR and we set

∀k ∈ K dk = uk(tk, 0) + ζk, (5.39)

the measurement of uk where ζk is the measurement error. For every k ∈ K, using Proposition 5.3,
we have an εk and a constant Ck

6 associated with dk,0 = dapp
z,α,x?

k
. We define

ε := min
k∈K

(εk), C6 := max
k∈K

(Ck
6 ), (5.40)

and
X?,app := {Λ(dk), k ∈ K}. (5.41)

Using the known approximation of supp(h′) provided by Appendix 5.A, we set the coordinates x0
and xn+1 such that supp(h′) ⊂ (x0, xn+1) and X?,app ⊂ (x0, xn+1). We then define the function
happ as the piecewise linear function such that

happ(x?,app
k ) = Nπ

k
∀ k ∈ K, happ(x0) = Nπ

kmax
, happ(xn+1) = Nπ

kmin
. (5.42)
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Figure 5.9 – Error of reconstruction of p0 and Λ(d0) with respect to the noise on the data for different method of
reconstruction. On the left, ‖pLS − p0‖2 with respect to ‖d − d0‖`2/‖d‖`2 . On the right, |Λ(d0) − Λ(d)| with respect

to ‖d − d0‖`2/‖d‖`2 .

Using all the previous results, we are able to quantify the error of reconstruction between happ

and h:

Theorem 5.3. Let K be a subset of (kmin, kmax). Assume the same hypotheses than in Theorem
5.1, and fix N ∈ N∗ and θ > 0 such that for every k ∈ K, h′(x?

k) ≥ θη. There exist η1 > 0 and
ζ0 > 0 such that if η < η1 and max

k∈K
‖ζk‖`2 ≤ ζ0, then there exists a constant C7 > 0 depending only

on hmin, hmax, N , r, µ and θ such that

‖happ(X?
app) − h(X?

app)‖∞ ≤ ηC7

(
η1/3 + max

k∈K
‖ζk‖`2

)
. (5.43)

Proof. For every k ∈ K, we notice that

|happ(x?,app
k ) − h(x?,app

k )| = |h(x?
k) − h(x?,app

k )| ≤ η|x?
k − x?,app

k | = η|Λ(d0) − Λ(dk,0)|.
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Using Theorem 5.2 combined with the control (5.32), we know that

‖dk − d0,k‖`2 ≤ 2η1/3τC4

(
‖dex‖H1(ΓR) + ‖dapp

z,α,x?
k
‖H1(ΓR)

)
.

Using Theorem 5.1, we can control both these norm by a constant c2 > 0 which does no depend on
k. Then, if η and max

k∈K
‖ζk‖`2 are small enough,

2τC4c2η
1/3 + max

k∈K
‖ζk‖`2 ≤ ε,

and using Proposition 5.3,

|happ(x?,app
k ) − h(x?,app

k )| ≤ ηC6

(
2τC4c2η

1/3 + max
k∈K

‖ζk‖`2

)
.

The first error term of this theorem is a consequence of the approximation of the data by an
Airy function, while the second term is caused by the possible presence of measurements errors.
We illustrate this reconstruction in Figure 5.10 where we choose a subset K with 20 points, and we
compare happ(x?,app

k ) and h(x?
k).

−4 −3 −2 −1 0 1 2 3 40.98

0.99

1

1.01

1.02 ·10−1

x

(x?
k, Nπ/k)

h
(x?,app

k , Nπ/k)

Figure 5.10 – Representation of x?
k and x?,app

k
when K = 30.9 : 31.95 : 20. Here, h is defined in (5.50), N = 1, and

data are generated as explained in section 5.5.1 with a source f(x, y) = δx=6ϕ1(y).

To conclude, we have proved in this section that we are able to reconstruct in stable way a set
of resonant positions x?

k, which leads to a stable reconstruction of the function h. We present in
the next section the general idea needed to generalize this reconstruction to more realistic non-
monochromatic source terms.

5.4 Inversion using a general source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now consider the general case without any a priori assumptions on the source terms f and b. We
use the same idea as before to reconstruct the width using the locally resonant mode N . However,
other modes may also be present in the wavefield, and the previous approximation of dex by uapp

N

(see (5.16)) may not be valid. We provide here two methods to exploit the framework developed in
the previous section.
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The first idea is to treat all resonant and evanescent modes as an added noise to the locally
resonant mode. Indeed, we know using Theorem 5.1 that

dex = u(x, 0) ≈
∑
n∈N

∫
R
Gapp

n (x, s)gn(s)dsϕn (y) . (5.44)

Defining the noise
ζk(x) =

∑
n 6=N

∫
R
Gapp

n (x, s)gn(s)dsϕn (y) , (5.45)

we see that
dex ≈ uapp

N (x)ϕN (0) + ζk(x). (5.46)
To make a successful use of Theorem 5.3, the noise ζk needs to be smaller than the parameter ζ0.
Using the expression of Gapp

n given in (5.11), we notice that

∀n ∈ N, |Gapp
n (x)| = O

(
1

min(|kn|)

)
. (5.47)

Since
|kN |
|kn|

≤ |kN |2h2
max√

2N − 1π
, (5.48)

the amplitude of ζk seems to be neglectable compared to the amplitude of uapp
N if the width hmax

is small enough and if ‖fn‖L2(R) = O(‖fN ‖L2(R)) for every n 6= N . We illustrate this in Figure 5.11
where we compare the amplitude of u(x, 0) with the amplitude of uapp

N (x)ϕN (0) for source terms
f(x, y) = δx=6y

2 and btop(x) = δx=6. We see that it is possible to fit directly the Airy function on
u(x, 0), since the noise is very small.

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−4

−2

0

2

4

Real(u(x, 0))
Real(uapp

N (x)ϕN (0))

Figure 5.11 – Representation of u(x, 0) and uapp
N ϕN (0) generated by a source f(x, y) = δx=6y

2 and btop(x) = δx=6.
Here N = 1, k = 31.7 and h is defined as in (5.50).

However, in the general case, the noise of the other modes cannot always be neglected. In this
case, we can filter the measurements to keep only the locally resonant part. Evanescent modes
vanish away from the source and so their contribution is negligible in u(x, 0). As for propagative
modes, we notice that kn(x) is almost constant when n < N . Using (5.11), it means that every
propagative mode is oscillating with a frequency almost equal to kn. We illustrate it in Figure 5.12

138



Ch
ap

te
r5

Ch
ap

te
r5

Ch
ap

te
r5

Ch
ap

te
r5

Ch
ap

te
r5

with the Fourier transform of u(x, 0) and the contribution of each mode. Using a filter cutting
all frequencies around kn(x) for n < N , we can clean the signal and get a good approximation of
uN (x)ϕN (0) (see [64] for more details). We illustrate this in Figure 5.13 where we represent u(x, 0),
uN (x)ϕn(0) and the approximation obtained using this Fourier filtering.

0 10 20 30 40 50 60 70 80 900

0.2

0.4

ξ

F
(ξ

)

F(real(u(x, 0))
F(real(u2ϕ2(0)))
F(real(u1ϕ1(0)))
F(real(u0ϕ0(0)))
k1(0)
k0(0)

Figure 5.12 – Influence of each mode on the Fourier transform of the measurements real part. Fourier transform of
Real(unϕn(0)) are plotted for every non evanescent mode (n = 0, 1, 2). For comparison purpose, kn(0) is represented for
every propagative modes (n = 1, 2). Here, k = 63.4, N = 2, f(x, y) = δx=6(3ϕ0(y) + 2ϕ1(y) +ϕ2(y)) and btop = δx=6.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

x

Real(u(x, 0))
Real(uapp

N (x)ϕN (0))
Filtering

Figure 5.13 – Fourier filtering of Real(uk(x, 0)) and comparison with Real(uapp
k,N

(x)ϕN (0)). Here, k = 63.4, N = 2,
f(x, y) = δx=6(3ϕ0(y) + 2ϕ1(y) + ϕ2(y)) and btop = δx=6.

We can now fit the three parameters Airy function on the measurements, and find an approxima-
tion of x?

k as before. It proves that our method can be used in the case of general sources, providing
a filtering of propagative mode. This method can be used in a very general framework because it
does not need any a priori information on sources, as long as their locally resonant part does not
vanish. Using the extension of Theorem 5.1 to non monotone waveguides provided in section 4.4
of Chapter 4, all the results presented in this section remain true in any kind of slowly varying
waveguide.
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5.5 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we show some numerical applications of our reconstruction method on slowly varying
waveguides. We simulate surface measurements using numerically generated data, and we provide
reconstructions of increasing and general waveguides with different shape profiles.

5.5.1 Generation of data
In the following, numerical solutions of (5.7) are generated using the software Matlab to solve
numerically the equation in the waveguide Ω. In every numerical simulation, we assume that h′ is
supported between x = −7 and x = 7. To generate the solution u of (5.7) on Ω7, we use a self-coded
finite element method and a perfectly matched layer [18] on the left side of the waveguide between
x = −15 and x = −8 and on the right side between x = 8 and x = 15. The coefficient of absorption
for the perfectly matched layer is defined as α = −k((x−8)1x≥8 − (x+8)1x≤−8) and k2 is replaced
in the Helmholtz equation with k2 + iα. The structured mesh is built with a stepsize of 10−3.

5.5.2 Method of reconstruction
Using all the previous results, we summarize here all the steps to reconstruct the approximation
happ of the width h.

1. Find an approximation of supp(h′), kmin and kmax using the method described at the begin-
ning of Appendix 5.A.

2. Choose a set of frequencies K ⊂ (kmin, kmax) and sources f , btop, bbot. Then, for every
frequency, measure the wavefield u(x, 0) solution of (5.7).

3. Filter the data by eliminating in the Fourier transform responses around kn for every a
propagative mode n.

4. Find an approximation of the coordinate xmax where |u(x, 0)| is maximal. Then, choose a
length R > 0, and discretize the interval [xmax −R, xmax +R] into the set xk. The available
data dk are then the measurements of u(xk, 0).

5. For every frequency, minimize the quantity ‖dk − F (p)(xk)‖`2(x) using a gradient descent
to find the approximation x?,app

k of x?
k. The direct reconstruction method can be used to

initialize the gradient descent method.

6. Compute happ using expression (5.42).

In step 3, we should normally discretize the interval ΓR(x?
k). However, since we do not know yet

the value of x?
k, we use the fact that x?

k is located near xmax, and that the interval [xmax−R, xmax+R]
can be included into a bigger interval ΓR′(x?

k) where R′ > R.

5.5.3 Numerical results
We now apply this method to reconstruct different profiles of slowly varying waveguides. Firstly,
we present in Figure 5.14 the reconstruction happ obtained for different increasing functions h. We
choose four different waveguide profiles

Ω1 : h1(x) = 0.1 + γ1

(
x5

5 − 32x
3

3 + 256x
)

1−4≤x≤4 − γ21x<−4 + γ21x>4, (5.49)
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Ω2 : h2(x) = 0.1 + γ3

(
x5

5 − 2x4 + 16x
3

3

)
(10≤x≤4 − 1−4≤x<0) + γ4 (1x>4 − 1x<−4) , (5.50)

Ω3 : h3(x) = 0.1 + γ5x1−4≤x≤4 + 4γ51x>4 − 4γ41x<−4, (5.51)

Ω4 : h4(x) = 0.1 − 4γ5 + 4γ5

√
x+ 4√

2
1−4≤x≤4 + 8γ51x>4. (5.52)

where γ1 = 3.10−6, γ2 = 8192/5.10−6, γ3 = 5.10−5, γ4 = 53/3.10−5, γ5 = 0.01/30. All these
profiles are represented in black in Figure 5.14. We impose that sources of (5.7) need to be located
at the right of the waveguide in order to generate significant locally resonant mode (see Figure 5.4),
and we define

f(x, y) = δx=6y, btop(x) = δx=6, bbot = 0. (5.53)

We choose to work with the following sets of frequencies

K1 = 30.92 : 31.93 : 20, K2 = 30.9 : 31.95 : 20, K3 = K4 = 31.01 : 31.83 : 20. (5.54)

The profile h1 and the set K1 satisfy all the assumptions of Theorem 5.2, while the derivative
of h2 ∈ C2(R) vanishes once. The last two profiles h3 and h4 are not in C2(R) and show corners
where the derivative of the profile is not continuous. The function h′

3 is piecewise continuous and
bounded, contrary to h′

4 which explodes at x = −4.
We plot in red in Figure 5.14 the reconstructions happ, slightly shifted, obtained using our method

of reconstruction. We also compute the L∞ norm of h−happ in each situation. We clearly see that
the reconstruction deteriorates when h′(x?

k) is too small or when the function h is not sufficiently
smooth.

Figure 5.14 – Reconstruction of four different increasing profiles. In black, the initial shape of Ω5 (not scaled), and in
red the reconstruction, slightly for comparison purposes. In each case, K = Ki is defined in (5.54), h = hi is defined in

(5.49), (5.50), (5.51), (5.52), and the sources of (5.7) are defined in (5.53). Top left: i = 1,
‖h− happ‖∞/hmax = 0.49%. Top right: i = 2, ‖h− happ‖∞/hmax = 0.94%. Bottom left: i = 3,

‖h− happ‖∞/hmax = 0.40%. Bottom right: i = 4, ‖h− happ‖∞/hmax = 1.6%.

Secondly, we present in Figure 5.15 the reconstruction happ obtained for different non monoto-
neous widths. We choose three different profiles defined by

Ω5 : h5(x) = 0.1 + γ6 sin
( π

10(x+ 5)
)

1−5≤x≤5, (5.55)
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Ω6 : h6(x) = 0.1 − γ7(x+ 5)1−5≤x≤0 + γ6

4 (x− 4)10<x≤4, (5.56)

Ω7 : h7(x) = 0.1 − γ8
√

3 + 2γ8 sin
(

4π
√
x+ 5
3

)
1−3.5≤x≤4 + 2γ8 sin

(
4π

√
1.5

3

)
1x<−3.5, (5.57)

where γ6 = 25.10−4, γ7 = 5.10−4, γ8 = 4.10−4. All these profiles are represented in black in Figure
5.15. The profile h5 represent a dilation of the waveguide, while h6 represent a compression of the
waveguide. The profile h7 is the more general one with both compressions and dilations. Again,
sources in (5.7) are located in every large area of the waveguide to generate significant locally
resonant modes and are defined by

f5(x, y) = δx=0y, b5
top(x) = δx=0(x), b5

bot = 0, (5.58)

f6(x, y) = (δx=6 + δx=−6)y, b6
top(x) = (δx=6 + δx=−6), b6

bot = 0, (5.59)

f7(x, y) = (δx=−1.5 + δx=6)y, b7
top(x) = (δx=−1.5 + δx=6), b7

bot = 0. (5.60)

We also define the frequency sets

K5 = 30.65 : 31.4 : 20, K6 = 31.42 : 32.21 : 20, K7 = 30.97 : 31.43 : 20. (5.61)

We plot in red in Figure 5.15 the reconstructions happ, slightly shifted, obtained using our method
of reconstruction. We also compute the L∞ norm of h− happ in each situation.

Figure 5.15 – Reconstruction of three different general profiles. In black, the initial shape of Ω6, and in red, the
reconstruction, slightly shifted for comparison purposes. In each case, K = Ki is defined in (5.61), h = hi is defined in

(5.55), (5.56), (5.57), and sources of (5.7) are defined in (5.58), (5.59), (5.60). Top left: i = 5,
‖h− happ‖∞/hmax = 0.57%. Top right: i = 6, ‖h− happ‖∞/hmax = 0.81%. Bottom: i = 7,

‖h− happ‖∞/hmax = 0.97%.

To conclude, we have provided in this section a method to reconstruct slowly varying width
defects given surface measurements of the wavefield at local resonant frequencies. This method
works for every type of source and does not require any a priori information on the source except
the fact that it is located away from the defect. This reconstruction method is very sensitive to
small defects and works numerically to reconstruct dilations or compressions of the waveguide.
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5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we have used the study of the forward problem in slowly varying waveguide pre-
sented in Chapter 4 and the approximation of the solutions as combination of Airy functions to
develop a new inverse method to reconstruct the width of slowly varying waveguides. Given wave-
field measurements at the surface of the waveguide for different locally resonant frequencies, we
reconstruct the associated locally resonant points which provide a good approximation of the width
of the waveguide.

One main advantage of this new method is that is does not require any a priori information
on the sources, and we believe that it could be applied to develop new non destructive passive
monitoring methods. Moreover, using locally resonant modes, this method can detect very small
variations of the width with a very high sensibility. More importantly, when we compare this new
method with the usual back scattering method developed for instance in Chapter 2, we notice that
this new method seems a lot more precise: while the best relative reconstruction errors are of the
order of 8% in Chapter 2, we reach in this chapter relative errors of the order of less than 1%. Even
if measurements are not taken in the same area, this improvement of the reconstruction precision
needs to be underlined.

We believe that this work could be extended to elastic waveguides in two dimensions, using the
modal decomposition in Lamb modes presented in [81]. If the generalization to elastic waveguide
proves successful, we plan in future works to test the method developed in this chapter on exper-
imental data to see if the good numerical results obtained using data generated by finite element
methods can be reproduced. Indeed, different physical experiments have already been conducted
to recover width defects using locally resonant frequencies (see [11, 29]) and we hope that our
reconstruction method could both justify and improve these width reconstructions.

Appendix 5.A: Identification of supp(h), kmin and kmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Giving a compactly perturbed waveguide Ω, we describe here how surface measurements enable to
approximate very precisely the quantities supp(h), kmin and kmax. The article [27] mentions that
the problem (5.7) is not well-defined when kn(x) = 0 in a non-trivial interval, which especially
happens when k = nπ/hmin or k = nπ/hmax. Numerically, this results in an explosion of the
solution when k tends to nπ/hmin (resp. nπ/hmax) with a source term located in the area where
h(x) = hmin (resp. h(x) = hmax). This behavior is illustrated in Figure 5.16.

10 20 30 40 50 60 700

500

1,000

k

‖u
(x
,0

)‖
L

2
(−

8,
8) btop = δx=5

btop = δx=−5
nπ/hmax
nπ/hmin

Figure 5.16 – L2-norm of u(x, 0) on the interval (−8, 8) with respect to k for a source btop = δx=−5 at the left of
supp(h), and a source btop = δx=5 at the right of supp(h). For comparison purposes, nπ/hmax and nπ/hmin are plotted

for n = 1 and n = 2.
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Measuring the surface wavefield while k varies and detecting its explosions provides a good
approximation of the width at the left and the right of the waveguide. Then, we choose a frequency
k = nπ/hmax or k = nπ/hmin and we move the sources while measuring the amplitude of the
wavefield. It the source is located outside of the support of h, the wavefield is supposed to explode,
which provides a good approximation of the support of h. This behavior is illustrated in Figure
5.17.

−8 −6 −4 −2 0 2 4 6 80

100

200

300

s

‖u
(x
,0

)‖
L

2
(−

8,
8) k = nπ/hmin

k = nπ/hmax
supp(h)

Figure 5.17 – L2-norm of u(x, 0) on the interval (−8, 8) with respect to the position s of the source btop = δx=s, for a
frequency k = pi/hmax and k = π/hmin. For comparison purposes the support of h is plotted.

Appendix 5.B: Proof of Proposition 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof. For every p ∈ U , we compute

∇Jd(p) =



n∑
i=1

A(β − αti)(zA(β − αti) − di)
n∑

i=1
−ztiA′(β − αti)(zA(β − αti) − di)

n∑
i=1

zA′(β − αti)(zA(β − αti) − di)


, (5.62)

∇2Jd(p) =
n∑

i=1
Mi(β − αti), (5.63)

with

Mi =


A2 −tiA′ × (2zA − di) A′(2zA − di)

−ti × A′ × (2zA − di)
zt2i A′′ × (zA − di)

+z2t2i × (A′)2
−zti × A′′(zA − di)

−tiz2(A′)2

A′ × (2zA − di)
−zti × A′′(zA − di)

−tiz2 × (A′)2
zA′′ × (zA − di)

z2(A′)2

 . (5.64)

For every h ∈ C × R2, h 6= 0,

(∇2Jd(p)h|h) = A(P, h) +B(P, h), (5.65)
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where
A(P, h) =

n∑
i=1

(A(β − αti)h1 + zA′(β − αti)(h3 − h2ti))2, (5.66)

B(P, h) =
n∑

i=1
(zA(β − αti) − di)(2A′(β − αti)h1(h3 − h2ti) + zA′′(β − αti)(h3 − h2ti)2). (5.67)

We want to prove that A(P, h) > 0. To do so, we use the following Lemma.

Lemma 5.1. For every (h1, h2, h3) ∈ C × R × R and (z, α, β) ∈ U , the set of zeros of

x 7→ h1A(β − αx) + zA′(β − αx) (h3 − h2x) , (5.68)

is finite, and at most equal to 3`+ 3 where ` is the number of zeros of A′ on

I := [βmin − t, βmax + t], where t = αmax max(|t1|, |tn|). (5.69)

Proof. We do a change of variable u = β − αx, and we see that for every x ∈ [x1, xn], u ∈ I. We
now look for u ∈ I satisfying

g1(u) := h1A(u) + zA′(u)
(
h3 − h2

α
(β − u)

)
= 0. (5.70)

We notice that if h1 = 0 then g1(u) = 0 if and only if A′(u) = 0 or x = h3/h2, which gives ` + 1
zeros of g1. Otherwise, we notice that if A′(u) = 0 then g1(u) 6= 0 since every zero of the Airy
function is simple (see [4]). It means that there exist α ∈ C and β ∈ R such that

g1(u) = 0 ⇔ A
A′ (u) = αu+ β. (5.71)

We define
g2(u) = A

A′ (u) − αu− β, (5.72)

and then

g′
2(u) =

(
1 − u

(
A(u)
A′(u)

)2
)
, g′′

2 (u) = A(u)
A′(u)

(
2 − 2u

(
A(u)
A′(u)

)2
− A(u)

A′(u)

)
︸ ︷︷ ︸

>0

. (5.73)

Between two zeros of A′, A vanishes only once, meaning that depending of the value of α, g′
2

vanishes at most twice, and so depending of the value of β, g2 vanishes at most three times.

Back to the proof of Proposition 5.3, we now set n0 = 3`+ 3, and if n > n0 then it shows that
A(P, h) > 0. We denote λ1(p) = min

h∈R3,h6=0
a(P, h)/‖h‖2

2. This function is continuous on a subset
U1 ⊂ U , and we denote by m the minimum of λ1 on U1. We also notice that

|b(P, h)| ≤ ‖zA(β − αX) − d‖1(‖A′‖∞ + 2z‖A′′‖∞)(1 + ‖t‖∞)‖h‖2
2. (5.74)

We see that

‖zA(β − αX) − d‖1 = ‖F (p) − d‖1 ≤ ‖F (p) − F (p0)‖1 + ‖d0 − d‖1. (5.75)
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There exists a constant M > 0 depending on U such that for every p ∈ U ,

‖F (p) − F (p0)‖1 ≤ M‖P − p0‖1. (5.76)

We define U2 = U1 ∩B1(p0, ε1/M) where

ε1 := m

4(‖A′‖∞ + 2zmax‖A′′‖∞)(1 + max(|x1|, |xn|) . (5.77)

It follows that for every p ∈ U2 and d ∈ B1(d0, ε1),

‖F (p) − F (p0)‖1 ≤ ε1, |b(P, h)| ≤ m

2 ‖h‖2
2. (5.78)

The operator Jd is then strictly convex on U2 since

‖∇2Jd(p)‖2 ≥ min
h∈C×R2,h6=0

|A(P, h)| − |B(P, h)|
‖h‖2

2
≥ m

2 > 0 (5.79)

We now need to prove that the minimum of Jd is located inside of U2 and not on its boundary.
To do so, we look for a point p ∈ U2 such that ∇Jd(p) = 0. We already know that ∇Jd0(p0) = 0.
Using the implicit function theorem, there exists an open set V ⊂ Rn containing d0 such that there
exists a unique continuously differentiable function G1 : V → C×R×R such that ∇Fd(G1(d)) = 0.
We define U ′ = G1(V ) ∩ U2 and there exists ε > 0 such that B2(d0, ε) ⊂ G−1

1 (U ′) ∩ B1(d0, ε1). It
shows that the application

G :
{
B2(d0, ε) → U ′

d 7→ argminp∈U ′Jd(p) , (5.80)

is well-defined and continuously differentiable. Moreover, we also know that

∂dj
G(d) = −[∇2Jd(G(d))]−1[∂dj

∇Jd(G(d))]. (5.81)

We denote pLS = G(d), and

‖∂dj
∇Jd(pLS)‖2 =

∥∥∥∥∥∥
 −A(βLS − αLStj)

zLStjA′(βLS − αLStj)
−zLSA′(βLS − αLStj)

∥∥∥∥∥∥
2

≤
√

‖A‖2
∞ + αmax‖A′‖2

∞(1 + ‖t‖∞) := c1.

(5.82)
If follows that

‖pLS − p0‖2 = ‖G(d) −G(d0)‖2 ≤ 2
√
nc1

m
‖d − d0‖2. (5.83)

Finally,

|Λ(d)−Λ(d0)| ≤ 1
αmin

|βLS−β0|+ βmax

(αmin)2 |αLS−βLS| ≤
(

1
αmin

+ βmax

(αmin)2

)
2
√
nc1

m
‖d−d0‖2. (5.84)
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6
Reconstruction of smooth shape defects in waveg-
uides from section measurements using locally res-
onant frequencies

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.1.1 Description of the problem 148
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6.2 Brief study of the forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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6.4.3 Numerical results 162

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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This chapter aims to present an adaptation of the reconstruction method developed in Chapter 5
using now locally resonant frequencies one-side section measurements. At these frequencies, locally
resonant modes propagate in the waveguide as periodic functions instead of Airy functions, and still
depend on a locally resonant point x?. By post processing the measurements, we prove that one can
get an approximation of an integral depending on x?. Then, given multi-frequency measurements
taken on a section of the waveguide, we can approach this integral and provide and L∞-stable
explicit method to reconstruct the width of slowly monotonous varying waveguides. We validate
this method on numerical data and discuss its limits.
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6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This chapter aims to extend the multi-frequency reconstruction method developed in Chapter
5 from surface measurements to section measurements. Even if this method was adapted for
waveguides such as elastic plates where surface measurements are available, it is not suited to
acoustic waveguides such as pipes or air ducts where data are often measured on one section of the
waveguide [55, 27]. We present in the following all the adaptations required to use this method in
acoustic waveguides.

6.1.1 Description of the problem
In this chapter, we work in two dimensions and we consider the varying acoustic waveguide described
by

Ω :=
{

(x, y) ∈ R2 | 0 < y < h(x)
}
, (6.1)

where h ∈ C2(R)∩W 2,∞(R) is a positive profile function defining the top boundary, and the bottom
boundary is assumed to be flat (see an illustration in Figure 6.3). In the time-harmonic regime,
the wavefield u satisfies the Helmholtz equation with Neumann boundary conditions{

∆u+ k2u = −f in Ω,
∂νu = b on ∂Ω, (6.2)

where k is the frequency, f is an interior source term, and b is a boundary source term. In this
work, a waveguide is said to be slowly varying when there exists a small parameter η > 0 such
that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2. We focus in this work on the recovery of the function h
modeling the top boundary of the waveguide. Controlled sources f and b generate wavefields u in
Ω for some frequencies k ∈ K ⊂ R∗

+. We assume the knowledge of measurements u(x, y) on the
section Σ := {xs} × (0, h(xs)) for some coordinate xs ∈ R (see an illustration in Figure 6.3). The
reconstruction of such defects given measurements on a section is good modeling of the monitoring
of pipes, optical fibers, or train rails (see [50, 55, 54]).

If k is chosen such that k = nπ/h(x?
k) with n ∈ N and x?

k ∈ R, the Helmholtz problem is not well
posed in general [27]. Nevertheless, we proved in Chapter 4 that there exists a unique solution to
this problem as long as the waveguide is slowly varying. In the same work, we also gave a suitable
approximation of the wavefield that explicitly depends on x?

k. This approximation was used in
Chapter 5 with surface measurements to recover the position of x?

k for different frequencies called
locally resonant frequencies, and then to provide a reconstruction of the shape function h. We now
aim to adapt this method to section measurements and to solve the inverse problem

Find h from uk(xs, y) ∀k ∈ R+ where k is a resonant frequency, (6.3)

and where the subscript k in uk underlines the dependence of the wavefield u on the frequency k.

6.1.2 Scientific context
The detection and reconstruction of shape defects in a waveguide are mentioned in different works.
In articles [61, 3, 2], the authors use a conformal mapping to map the geometry of the perturbed
waveguide to the geometry of a regular waveguide, and suggest to inverse the mapping to recover the
width defects. Different inversion methods based on the scattering field analysis are also developed
in [75, 27, 34]. All these works perform the reconstruction using a single propagation frequency to
perform detections and reconstructions of defects.
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Our work concerns a different approach, also used in [13, 12], where we assume that data is
available for a whole interval of frequencies. This usually provides additional information that
should help to localize and to reconstruct the shape of the defect. Moreover, the use of multi-
frequency data often provides uniqueness of the reconstruction (see [7]) and better stability (see
[14, 52, 93]).

In Chapter 2, we already presented a method to recover small width variations using back
scattering data. However, in this previous work, we avoided all the locally resonant frequencies
of the waveguide, which are frequencies k > 0 such that k = nπ/h(x?

k) for a mode n ∈ N and a
longitudinal position x?

k. In Chapter 5, we showed that these resonant frequencies could be used to
recover slowly varying width defect given surface measurements. Given the high sensitivity of the
reconstructions obtained using this method, we choose in this chapter to use the same approach
and to work only with locally resonant frequencies.

The study of the forward problem is already done in Chapter 4, and we know that if k is a
locally resonant frequency, the wavefield u strongly depends on the position x?

k. Our reconstruction
method is inspired by the ideas presented in Chapter 5 and use measurements of the wavefield u to
recover the position x?

k. Since h(x?
k) = nπ/k, it gives up the information about the waveguide width

at this precise location. By taking different locally resonant frequencies k and finding corresponding
resonant location x?

k, we obtain a complete approximation of the width h of the waveguide.
If the global idea is the same as the one presented in Chapter 5, the realization strongly differs.

Indeed, section measurements contain much less information than surface ones, and we need to
recover the localization of x?

k from the value of the resonant mode in one point instead of a whole
interval. Thus, we first post process the measurements in order to find an approximation of

ξ(k) :=
∫ xs

x?
k

kN , (6.4)

where the wavenumber kN is a known function of the width h and xs is the source location. Then,
using a quadrature formula of this integral, we show in Proposition 6.3 that all the coordinates
x?

k are close to solutions of a linear system that can be built from the data. We prove that our
reconstruction method is L∞-stable in case of an increasing width. The chapter is organized as
follows. In section 6.2, we briefly recall needed results on the modal decomposition and the study
of the forward problem. In section 6.3, we study the inverse problem with measurements taken at
the section of the waveguide and provide a stability result for the reconstruction. Finally, in section
6.4, we illustrate our method with various reconstruction.

6.2 Brief study of the forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before studying the inverse problem associated with the reconstruction of the width in a varying
waveguide, we recall some needed tools to study the forward problem. These results where already
presented in Chapter 5 and their proofs can be found in Chapter 2 and [27]. However, Theorem
6.1 is slightly different from the one stated in Chapter 5 due to the change of measurements area.

A useful tool when working in waveguides is the modal decomposition. The following definition
provides a modal decomposition in varying waveguides:

Definition 6.1. We define the sequence of functions (ϕn)n∈N by

∀(x, y) ∈ Ω, ϕn(x, y) :=


1/
√
h(x) if n = 0,√

2√
h(x)

cos
(
nπy

h(x)

)
if n ≥ 1, (6.5)
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which for any fixed x ∈ R defines an orthonormal basis of L2(0, h(x)).

Hence, a solution u ∈ H2
loc
(
Ω
)

of (6.2) admits a unique modal decomposition

u(x, y) =
∑
n∈N

un(x)ϕn(x, y) where un(x) :=
∫ h(x)

0
u(x, y)ϕn(x, y)dy. (6.6)

Note that un does not satisfy in general any nice equation. However, when h is constant (outside
of supp(h′)), it satisfies an equation of the form u′′

n + k2
nun = −gn where kn =

√
k2 − n2π2/h2 is

the wavenumber. When h is variable, the decomposition (6.6) motivates the following definition:

Definition 6.2. The local wavenumber function of the mode n ∈ N is the complex function kn :
R → C defined by

k2
n(x) := k2 − n2π2

h(x)2 , (6.7)

with Re(kn), Im(kn) ≥ 0.

In this work, as h(x) is non constant, kn(x) may vanish for some x ∈ R and change from a
positive real number to a purely imaginary one. We then distinguish three different situations:

Definition 6.3. A mode n ∈ N falls in one of these three situations:

1. If n < kh(x)/π for all x ∈ R then kn(x) ∈ (0,+∞) for all x ∈ R and the mode n is called
propagative.

2. If n > kh(x)/π for all x ∈ R then kn(x) ∈ i(0,+∞) for all x ∈ R and the mode n is called
evanescent.

3. If there exists x?
k ∈ R such that n = kh(x?

k)/π the mode n is called locally resonant. Such
points x?

k are called resonant points, and there are simple if h′(x?
k) 6= 0, and multiple otherwise.

A frequency k > 0 for which there exists at least a locally resonant mode is called a locally resonant
frequency.

Using the wavenumber function, one can adapt the classic Sommerfeld (or outgoing) condition,
defined in Chapter 2 for regular waveguides, to general varying waveguides Ω. This condition is
used to guarantee uniqueness for the source problem given in equation (6.2).

Definition 6.4. A wavefield u ∈ H2
loc
(
Ω
)

is said to be outgoing if it satisfies∣∣∣∣u′
n(x) x

|x|
− ikn(x)un(x)

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N, (6.8)

where un is given in (6.6).

In all this work, we make the following assumptions:

Assumption 6.1. We assume that h ∈ C2(R) ∩W 2,∞(R) with h′ compactly supported and that

∀x ∈ R hmin ≤ h(x) ≤ hmax for some 0 < hmax < hmin < ∞.

We also assume that h(x) = hmin or h(x) = hmax if x /∈ supp(h′). For such a function we define a
parameter η > 0 that satisfies for a constant R > 0

‖h′‖L∞(R) < η and ‖h′′‖L∞(R) < η2, supph′ ⊂
(

−R

η
,
R

η

)
.
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Ω
y = hmin

y = hmax

y = 0
supp(h′)

Figure 6.1 – Representation of an slowly compactly increasing varying waveguide.

Such a waveguide is represented in Figure 6.1.
The forward source problem is defined for every frequency by

(Hk) :


∆u+ k2u = −f in Ω,
∂νu = btop in ∂Ωtop,
∂νu = bbot in ∂Ωbot,

u is outgoing,

(6.9)

As explained in [27], this problem is not well-posed when {x | kn(x) = 0} is a non-trivial interval of
R. This especially happens when k = nπ/hmin or k = nπ/hmax. We then avoid these two forbidden
situations and we set

δ(k) := min
n∈N

(√∣∣∣∣k2 − n2π2

hmin
2

∣∣∣∣,
√∣∣∣∣k2 − n2π2

hmax
2

∣∣∣∣
)
> 0. (6.10)

From now on, we define (fn)n∈N the modal decomposition of f , and

gn(x) = fn(x)√
h(x)

+ ϕn(1)btop(x)
√

1 + (h′(x))2
√
h

+ ϕn(0)bbot(x) 1√
h
. (6.11)

Using the work done in Chapter 4, we are able to provide an approximation of the solution of (6.9).
If h is increasing, we can state the following result using Theorem 4.1 and Remark 4.3 in Chapter 4:

Theorem 6.1. Let h be an increasing function defining a varying waveguide Ω that satisfies As-
sumption 6.1 with a variation parameter η > 0. Consider sources f ∈ L2(Ω) ∩ L∞

c (Ω), b :=
(bbot, btop) ∈ (H1/2(R))2 ∩ (L∞

c (R)2). Assume that there is a unique locally resonant mode N ∈ N,
associated with a simple resonant point x?

k ∈ R.
There exists η0 > 0 depending only on hmin, hmax, δ(k) and R such that if η ≤ η0, then the

problem (Hk) admits a unique solution u ∈ H2
loc
(
Ω). Moreover, this solution is approached by uapp

defined for almost every (x, y) ∈ Ω by

uapp(x, y) :=
∑
n∈N

(∫
R
Gapp

n (x, s)gn(s)ds
)
ϕn (y) , (6.12)
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where (fn)n∈N is the modal decomposition of f , ϕn is defined in (6.5) and Gapp
n is given by

Gapp
n (x, s) :=



i

2
√
kn(s)kn(x)

exp
(
i

∣∣∣∣∫ x

s

kn

∣∣∣∣) , if n < N,

1
2
√

|kn|(s)|kn|(x)
exp

(
−
∣∣∣∣∫ x

s

|kn|
∣∣∣∣) , if n > N,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(s)A ◦ ξ(x) if x < s,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(x)A ◦ ξ(s) if x > s,

if n = N.

(6.13)

Function kn is the wavenumber function defined in Definition 6.2 and the function ξ is given by

ξ(x) :=



(
−3

2 i
∫ x?

k

x

kN (t)dt
)2/3

if x < x?
k,

−

(
3
2

∫ x

x?
k

kN (t)dt
)2/3

if x > x?
k.

(6.14)

Precisely, given a coordinate xs ∈ R, there exist a constant C1 > 0 depending only on hmin, hmax
and N such that

|uN (xs) − uapp
N (xs)| ≤ ηC1δ(k)−8

(
‖f‖L2(Ω) + ‖b‖(

H1/2(R)
)2

)
. (6.15)

This result provides an approximation of the measurements of the N -th mode for every frequency,
and a control of the approximation error. We notice that at locally resonant frequencies, the
wavefield strongly depends on the position of x?

k, which justifies the idea of using it to develop an
inverse method to reconstruct the width h. In this work, we assume that we have access to the
exact data function

dex
k (y) := uk(xs, y) ∀k > 0 ∀y ∈ (0, h(xs)). (6.16)

Here, the subscript k underline the dependence on the frequency k. To lighten the notations, this
subscript will be omitted in the following when it is not necessary. An illustration is provided in
Figure 6.2 with a representation of the wavefield uk and the section measurements u(xs, y) when k
is a locally resonant frequency.

xs

−6 −4 −2 0 2 4 6
0

0.1

x

y

|u|

0

2

4

0 0.5 1
|u(xs, y)|

y

Figure 6.2 – Illustration of the wavefield measurements in a varying waveguide. The wavefield u is solution of (6.9)
where h is defined in (6.51), N = 1 and k = 31.5 is a locally resonant frequency. Data are generated using the finite

element method described in section 6.4.1. Left: amplitude of |u| in the whole waveguide Ω. Right: measurements of |u|
on the section xs = 6.
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6.3 Inversion using section measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we study the inverse problem and assume that measurements on one section of the
waveguide are available for every frequency. Given a chosen known source term, we assume that
we have access to the wavefield on a section x = xs. From now on, we assume that the waveguide
is slowly increasing and that source terms f and b generating the wavefield in (6.9) are located at
the right of the measurement section x = xs. Such a configuration is represented in Figure 6.3.

Ω

xs

b

f

Figure 6.3 – Set up of the inversion in the slowly variable waveguide Ω. An internal source f and a boundary source b
generate a wavefield propagating in the waveguide and measured on the section x = x2, represented by red triangles.

Using results presented in section 6.2 on the modal decomposition, the measurements of u(xs, y)
for every y ∈ (0, h(xs)) gives us access to

∀n ∈ N un(xs) =
∫ h(x)

0
u(xs, y)ϕn(y)dy. (6.17)

This problem is often seen as a back scattering problem when it is studied away from locally
resonant frequencies. Sending a known incident wave an measuring its scattered field, one can find
useful linearised information on the width of the waveguide (see Chapter 2 and [27, 23]). However,
we remind that the approach used here is different since we try to use locally resonant frequencies
to develop a new method of reconstruction. Therefore, the dependence between the shape h and
the scattered field becomes highly non linear.

We assume that there exists a resonant mode N , and that the modal source term gN de-
fined in (6.11) is not vanishing everywhere. We focus on the reconstruction of the shape of h
on supp(h′), assuming that an approximation of hmax and hmin is already given. We detail in
Appendix 6.A how these constants can be estimated. Given a set of locally resonant frequencies
K = (ki)1≤i≤m ⊂ (Nπ/hmax, Nπ/hmin), our method is based on the recovery of x?

ki
for every

locally resonant frequency k ∈ K, and we aim to solve the discretized inverse problem

Find (x?
k1
, . . . , x?

km
) from ukN (xs) ∀k ∈ K = (k1, . . . , km), (6.18)

We then use the study of the forward problem at locally resonant frequencies presented in
Theorem 6.1 to show that uN (xs) is almost proportional to

Φ
(∫ xs

x?
k

kN (z)dz
)
, where Φ(x) := sin

(
x+ π

4

)
exp

(
ix+ i

π

4

)
, (6.19)

Under certain conditions, we can find a reciprocal function of the π-periodic function Φ which gives
access for all resonant frequencies k to

ζ(k) :=
∫ xs

x?
k

kN (z)dz. (6.20)
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Using a composite rule of order 1 to approach this integral for the given set of frequencies K, we
show that the vector formed with all the x?

ki
is solution of a linear system, which provides a stable

reconstruction of (x?
k1
, . . . , x?

km
). Then, using the fact that

h(x?
ki

) = Nπ

ki
, (6.21)

we get a good approximation of the local width h at each coordinate x?
ki

.

6.3.1 Approximation and processing of measurements
As mentioned before, we want to find an exploitable link between the approached data uN (xs) and
x?

k in order to reconstruct x?
k. From now on, we denote

K := (ki)1≤i≤m ⊂
(
Nπ

hmax
,
Nπ

kmin

)
, (6.22)

the set of locally resonant frequencies where measurements are taken. Each frequency ki is associ-
ated to a wavenumber

ki,N (x) :=

√
k2

i − N2π2

h(x)2 , (6.23)

and a single locally resonant point x?
ki

. We set k0 := Nπ/hmax, km+1 = Nπ/hmin and supp(h) :=
(xm+1, x0). Finally, we define like in (6.10) the quantity

δ(K) = min
1≤i≤m

(√
k2

0 − k2
i ,
√
k2

i − k2
m+1

)
. (6.24)

We assume that K has a constant discretization step denoted ρ. We choose source terms f and
b located at the right of the measurement section xs, and we define gN as in (6.11). In order to
use Theorem 6.1, each locally resonant point x?

ki
must be simple, meaning that h′(x?

ki
) 6= 0. We

assume that it is the case, and that

θη := inf
x∈(x?

km
,x?

k1
)
h′(x) > 0. (6.25)

Then, we can provide a first approximation of measured N -th mode for every frequency k ∈ K:

Proposition 6.1. Assume that Ω satisfies assumption 6.1. Let xs ∈ R, there exist η0, A > 0 such
that if η < η0 and xs − x0 > A, then there exists C2 > 0 depending on δ, hmin and hmax such that
for every k ∈ K, ∣∣∣∣uN (xs) − q(xs)

kN (xs)Φ(ζ(k))
∣∣∣∣ ≤ ηC2, (6.26)

where q(xs) :=
∫
R
gN (z)eikN (xs)(z−xs)dz depends on the source terms.

Proof. Using Theorem 6.1, we know that for every k ∈ K,

|uN (xs) − uapp
N (xs)| ≤ ηC1δ

−8
(

‖f‖L2(R) + ‖b‖H1/2(R)

)
,

where
uapp

N (xs) = π(−ξ(xs))1/4A(ξ(xs))
kN (xs)

∫
R
gN (z)(−ξ(z))1/4(iA + B)(ξ(z))dz.
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Using approximations of Airy functions provided in [78] and [37, Chap. 9.7], we see that there
exists a constant c1 > 0 such that for all x > 0,∣∣∣∣√πx1/4A(−x) + sin

(
2
3x

3/2 + π

4

)∣∣∣∣ ≤ c1

x5/4 ,∣∣∣∣√πx1/4B(−x) + cos
(

2
3x

3/2 + π

4

)∣∣∣∣ ≤ c1

x5/4 .

and so ∣∣∣∣√πx1/4(iA + B)(−x) + exp
(
i
2
3x

3/2 + i
π

4

)∣∣∣∣ ≤ 2c1

x5/4 ,

Replacing x by −ξ(x) or −ξ(xs) leads to∣∣∣∣uapp
N (xs) − q(xs)

kN (xs)Φ(ζ(k))
∣∣∣∣ ≤ δ−1‖gN ‖L1(R)

3c1 + 2c2
1

(−ξ(xs))5/4 .

We conclude the proof by noticing that

−ξ(xs) =
(

3
2

∫ xs

x?
k

kN (t)dt
)2/3

≥ (xs − x0)2/3kN (xs)2/3 −→
xs→+∞

+∞.

Since source terms are assumed to be chosen, q(xs) and kN (xs) are explicit quantities and we
consider the following modified data:

vk := kN (xs)
q(xs) uN (xs), vapp

k := Φ(ζ(k)) = Φ
(∫ xs

x?
k

kN (z)dz
)
. (6.27)

Proposition 6.1 can be rewritten as follows:
Corollary 6.1. Assume that Ω satisfies assumption 6.1. Let xs ∈ R, there exist η0, A > 0 such
that if η < η0 and xs − x0 > A, then there exists C2 > 0 depending on δ, hmin and hmax such that
for every k ∈ K,

|vk − vapp
k | ≤ ηc2C2, (6.28)

where
c2 := max

k∈K

(
kN (xs)
q(xs)

)
.

To get access to ζ(k), we need to find the left inverse function of Φ. Since Φ is π-periodic, we
can only provide a partial left inverse function Φ−1 modulus π satisfying Φ−1(Φ(θ)) = θ mod(π),
with

Φ−1(z) :=

 arcsin(|z|) if |z| < 0.5 and Real(z) ≥ 0,
π − arcsin(|z|) if |z| < 0.5 and Real(z) < 0,

arccos (Real(z)/|z|) if |z| ≥ 0.5.
(6.29)

We represent in Figure 6.4 the values of Φ−1(vk) mod(π) for different sets of frequency. We can
see that the step of discretization of K needs to be sufficiently small if we expect to get rid of the
modulus π. Using the fact that ζ is increasing and assuming that ρ the discretization step of K
is small enough, the following proposition proves that we can get rid of the modulus π up to a
constant. We set

` =
⌊
ζ(k1)
π

⌋
, tapp

i = ζ(ki) − `π, 1 ≤ i ≤ m. (6.30)
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Proposition 6.2. Assume that Ω satisfies assumptions 6.1. There exist η0, A > 0 such that if
η < η0, xs − x0 > A, there exist ρ0 > 0 depending on xs and η such that if ρ < ρ0, then there exist
a unique sequence (ti)1≤i≤m such that

∀1 ≤ i ≤ m ti = Φ−1(vki) mod(π), |ti+1 − ti| < π/2. (6.31)

Moreover, there exists a constant C3 > 0 depending on δ, θ, hmin and hmax such that

∀1 ≤ i ≤ m |ti − tapp
i | ≤ C3η. (6.32)

Proof. Using Corollary 6.1, there exist η0, A > 0 such that if η < η0 and xs − x0 > A then

|vk − vapp
k | ≤ min(0.25, ηc2C2).

The quantity 0.25 is chosen to ensure that in each case of the definition of Φ−1(vk), we then have
|vk|, |vapp

k | ≤ 0.75 or |vk|, |vapp
k | ≥ 0.25. Then, we see that for every k ∈ K,

|Φ−1(vk) − Φ−1(vapp
k )| ≤ 1√

1 − 0.752
|vk − vapp

k | < min(1.6 ηc2C2, π/8).

We also notice that

0 ≤ tapp
i+1 − tapp

i =
∫ x?

ki

x?
ki+1

ki+1,N +
∫ xs

x?
ki

(ki+1,N − ki,N ).

Using the fact that

|x?
ki

− x?
ki+1

| =
∣∣∣∣h−1

(
Nπ

ki

)
− h−1

(
Nπ

ki+1

)∣∣∣∣ ≤ 1
θη

∣∣∣∣Nπki
− Nπ

ki+1

∣∣∣∣ ≤ ρNπ

k2
0θη

,

we have ∫ x?
ki

x?
ki+1

ki+1,N ≤ kn+1,N (xs)(x?
ki

− x?
ki+1

) = O(ρη−1),

∫ xs

x?
ki

(ki+1,N − ki,N ) ≤ (xs − xm+1)ρkm+1

δ
= O(ρ(xs − x0)),

we denote by O every majoration depending only on δ, θ, hmin, hmax. If ρ is small enough compared
to (xs − x0)−1 and η then

|tapp
i+1 − tapp

i | < π/4.
Therefore,

|ti+1 − ti| ≤ |ti+1 − tapp
i+1| + |tapp

i+1 − tapp
i | + |tapp

i − ti| < π/2.
Since there is a one-to-one correspondence between a sequence where the distance between each
term does not exceed π/2 and its representation modulus π, we conclude our proof.

This result is illustrated in Figure 6.4 where we see that providing a sufficiently small discretiza-
tion of the frequency interval, we can recover an approximation of each tapp

i giving measurements
of Φ−1(vk). Lastly, we have to find the constant ` ∈ N in order to reconstruct a complete approxi-
mation of ζ(k). Since

t1 ≈ tapp
1 ≈ (xs − x?

k1
)k1,N (xs) − `π, t2 ≈ tapp

2 ≈ (xs − x?
k1

)k2,N (xs) − `π, (6.33)
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we propose to approach ` by the following expression:

`app =
⌊
t2k1,N (xs) − t1k2,N (xs)
π(k2,N (xs) − k1,N (xs))

⌋
. (6.34)

The following lemma proves that under certain assumptions, the closest natural number to `app

can be a good approximation of `:
Lemma 6.1. Under the same assumptions as in Proposition 6.2, if δ(K), x0 − x?

k2
and ν are

sufficiently small then ` = `app.
Proof. We notice that

`π =
∫ xs

x?
k1

k1,N (z)dz − tapp
1 ≈ (xs − x?

k1
)k1,N (xs) − t1.

More precisely, we introduce ε1 such that

(xs − x?
k1

)k1,N (xs) = `π + t1 + ε1,

and using Proposition 6.2, there exists a constant c3 > 0 such that

|ε1| ≤ C3η +
∣∣∣∣∣
∫ x0

x?
k1

(k1,N (z) − k1,N (x0))dz
∣∣∣∣∣ ≤ C3η + c3(x0 − x?

k2
)δ(K).

Similarly, we introduce ε2 such that (xs − x?
k1

)k2,N (xs) = `π + t2 + ε2 and

|ε2| ≤ C3η + d3(x0 − x?
k2

)δ(K).

It follows that
|`− `app| ≤ |ε2|k2,N (xs) + |ε1|k1,N (xs)

k2,N (xs) − k1,N (xs) ,

and this quantity is smaller than 1 if ε1 and ε2 are small enough. Since `, `app ∈ N, it concludes
the proof.

Using this lemma, we can find the value of `. We represent in Figure 6.4 the different steps of
the post processing:

• First, we compute vki
defined in (6.27) for all 1 ≤ i ≤ m using the information on source terms

and measurements of the wavefield. The quantity vki
is a good approximation of Φ(ζ(ki)).

• Then, we recover each ζ(ki) up to a constant ` by applying Φ−1 on vki
and getting rid of the

modulus π.

• Finally, we compute the value of the constant ` using (6.34) and deduce a good approximation
of ζ(ki) for 1 ≤ i ≤ m.

As mentioned in Proposition 6.2, we clearly see the importance of choosing a sufficiently small
discretization of the frequency interval K in order to get a good approximation at the end of the
postprocessing of the measurements.

To summarize, we proved in this section that if the step of discretization of K is sufficiently
small, we are able to post process the measurements in order to find an approximation of ζ(ki) for
every frequency ki ∈ K. Moreover, this approximation is improving is η diminishes. From now on,
we work on data (di)1≤i≤m satisfying

∀i = 1, . . . ,m di := ti + `π, |di − ζ(ki)dz| ≤ C3η. (6.35)

The next section aims to inverse the problem and reconstruct (x?
ki

)1≤i≤m using this data.
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30.9 31 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.90

1

2

3

4

k

Φ−1(vapp
k ) Φ−1(vk), m = 50 Φ−1(vk), m = 25 Φ−1(vk), m = 13

30.9 31 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.90

20

40

60

k

tapp
i

ti, m = 50
ti, m = 25
ti, m = 13

Figure 6.4 – Representation of two steps of the post processing of measurements for a set of frequencies
K = 30.92 : 31.93 : m, xs = 6, h defined in (6.48) and source defined in (6.52). On the top, representation of

Φ−1(vapp
k

) and Φ−1(vk) modulus π. On the bottom, representation of tapp
i and ti after getting rid of the modulus π.

Here, `app = 0.

6.3.2 Recovery of x?k

Using the post processing of measurements and the data provided in the previous section, we now
try to reconstruct from (ζ(ki))1≤i≤m the set X? := (x?

ki
)1≤i≤m. To do so, we need to find a link

between (ζ(ki))1≤i≤m and X?. Noticing that

∀1 ≤ i ≤ m h(x?
ki

) = Nπ

ki
, ∀1 ≤ j < i ≤ m ki,N (x?

kj
) =

√
k2

i − N2π2

h(x?
kj

)2 =
√
k2

i − k2
j ,

(6.36)
we choose to discretize the integral

∫ xs

x?
ki

ki,N on the grid (x?
kj

)1≤j≤i. We define

pi,j :=
√

|k2
i − k2

j |. (6.37)

Since h is increasing, x 7→ ki,N (x) is concave and we know that for all j > 2,∫ x?
kj−1

x?
kj

ki,N ≥ (x?
kj−1

− x?
kj

)
ki,N (x?

kj
) + ki,N (x?

kj−1
)

2 = (x?
kj−1

− x?
kj

)pi,j + pi,j−1

2 , (6.38)

∫ x?
kj−1

x?
kj

ki,N ≤ (x?
kj−1

− x?
kj

)ki,N (x?
kj−1

) = (x?
kj−1

− x?
kj

)pi,j−1. (6.39)

We choose to approach the integral using the mean of these two bounds:∫ x?
kj−1

x?
kj

ki,N ≈ 1
4(x?

kj−1
− x?

kj
) (pi,j + 3pi,j−1) . (6.40)
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Remark 6.1. We chose here to approach the integral by taking the mean of a rectangle and a
trapezoidal rule. However, any barycenter between these two bounds would also work. Further
investigations may prove that the mean may not be the optimal choice. However, giving the lack of
regularity of ki,N around x?

ki
, any quadrature method should give the same error estimation up to

a constant.

The approximation when j = 1 is∫ xs

x?
k1

ki,N ≈ (xs − x?
k1

)ki,N (xs) = (xs − x?
k1

)p1, 0. (6.41)

We define the matrix

M := 1
4



4p1,0 0 0 . . . 0

4p2,0 3p2,1 0
...

4p3,0 p3,2 + 3p3,1
. . . . . . ...

...
... . . . 3pm−1,m−2 0

4pm,0 pm,2 + 3pm,1 . . . pm,m−1 + 3pm,m−2 3pm,m−1


, (6.42)

and we expect that

MV ≈ d := (di)1≤i≤n, where V =


xs − x?

k1
x?

k1
− x?

k2
...

x?
km−1

− x?
km

 . (6.43)

The following proposition quantify the error of this approximation.

Proposition 6.3. Assume that Ω satisfies assumption 6.1. There exist η0, A > 0 such that if
η < η0, xs − x0 > A, there exists ρ0 > 0 such that if ρ < ρ0, then there exist constants C4, C5 > 0
depending on δ, θ, hmin and hmax such that

‖d−MV ‖∞ ≤ 2C3η + C4 + C5ηρ. (6.44)

Proof. Using the proof of Lemma 6.1, we already know that∣∣∣∣∣
∫ xs

x?
k1

ki,N − (xs − x?
k1

)pi,0

∣∣∣∣∣ ≤ C3η + c3(x0 − x?
k2

)δ(K).

Then, we denote by z ∈ (x?
kj
, x?

kj−1
) the coordinate such that ki,N (z) = (pi,j + 3pi,j−1/4. If j < i,

then

|ki,N (x) − ki,N (z)| ≤ |x− z| N2π2η

h3
minki,N (x?

kj
) ≤ |x?

kj
− x?

kj−1
| N2π2η

h3
min

√
2
√
k0

√
i− jρ1/2

.

If j = i and x > z, then

|ki,N (x) − ki,N (z)| ≤ |x?
ki

− x?
ki−1

| 4N2π2η

3h3
minpi,i−1

≤ |x?
ki

− x?
ki−1

| 4N2π2η

3h3
minρ

1/2
√

2
√
k0
.
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If j = i and x < z, we use the approximation of ki,N near x?
ki

demonstrated in Chapter 5 and [85]
to deduce that there exists a constant c4 > 0 depending on θ such that

ki,N (x) ≥ c4(x− x?
ki

)1/2.

If follows that
|ki,N (x) − ki,N (z)| ≤ |x?

ki
− x?

ki−1
| N2π2η

h3
minc4(x− x?

ki
)1/2 ,∫ z

x?
ki

|ki,N (x) − ki,N (z)|dx ≤ |x?
ki

− x?
ki−1

|3/2η1−ν/2 N
2π2

h3
minc4

.

By noticing that |x?
ki

− x?
ki−1

| = O(ρ), we conclude that there exists a constant c5 > 0 such that∣∣∣∣∣∣
∫ x?

kj−1

x?
kj

ki,N − 1
4(x?

kj−1
− x?

kj
) (pi,j + 3pi,j−1)

∣∣∣∣∣∣ ≤ c5ηρ
3/2
(
δi=j + 1√

i− j
δi>j

)
.

By assembling everything, we see that

|mi − (MV )i| ≤ 2C3η + δc3(x0 − x?
k2

) + c5ηρ
3/2

1 +
i−1∑
j=1

1√
j

 .

We conclude the proof by noticing that
i∑

j=1
j−1/2 = O

(√
i
)

.

Remark 6.2. Note that D4 is proportional to δ(K), so δ(K) needs to be small in order to diminish
the error in this approximation. However, we mentioned in Chapter 5 that θ−1 →

δ(K)→0
+∞. It

means that if we want to diminish D4, we might in return also increase D5.

The matrix M is a lower triangular matrix with non vanishing diagonal entries so it is invertible.
To find an approximation of vector V and of X? given data d, we define

V app = M−1d, (X?,app)i := x?,app
ki

= xs −
i∑

j=1
V app

j . (6.45)

Since we know that h(x?
ki

) = Nπ/ki, we define the approximation of the width h by

happ(x?,app
ki

) = Nπ

ki
∀ ki ∈ K, happ(x0) = Nπ

km+1
, happ(xm+1) = Nπ

k0
. (6.46)

The following Theorem proves that we are able to quantify the error of reconstruction between happ

and h:

Theorem 6.2. Let K be a subset of (kmin, kmax). Assume that Ω satisfies assumption 6.1. There
exist η0, A > 0 such that if η < η0 and xs − x0 > A, there exists ρ0 > 0 such that if ρ < ρ0 then
there exist constants D3, D4, D5, D6 > 0 depending on θ, δ, hmin and hmax such that

‖happ(X?,app) − h(X?,app)‖∞ ≤ ηρ−5/2D6 (D4 + ηD3 + ηρD5) . (6.47)
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Proof. For every 1 ≤ i ≤ m, we see that

|x?,app
ki

− x?
ki

| ≤

∣∣∣∣∣∣
n∑

j=1
V app

j − Vj

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
n∑

j=1
M−1(dj − (MV )j)

∣∣∣∣∣∣ .
We denote a = d−MV , and b = M−1a. We see that

b1 = a1

p1,0
, bi = 4

3pi,i−1

ai − pi,0)a1 −
i−1∑
j=2

(pi,j + 3pi,j−1)aj

 ,
It follows that

b1 = O(‖a‖∞), bi = O(ρ−1/2m‖a‖∞) = O(ρ−3/2‖a‖∞),

∣∣∣∣∣
n∑

i=1
bi

∣∣∣∣∣ = O(‖a‖∞ρ
−3/2m) = O(‖a‖∞ρ

−5/2).

We conclude using Proposition 6.3 and the fact that

|happ(x?,app
ki

) − h(x?,app
ki

)| ≤ |h(x?
ki

) − h(x?,app)
ki

| ≤ η|x?
ki

− x?,app
ki

|.

Remark 6.3. We notice in this inequality that if η tends to zero then the error also tends to zero.
However, for a fixed η, the parameter ρ needs to be chosen wisely since it needs to be small enough
in order for the post processing of the measurements to work, and high enough so that the matrix
M is well conditioned. We illustrate it in Figure 6.5 where we present two different reconstructions
with the same post processing data discretized for two different set of frequencies K.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 40.98

0.99

1

1.01

1.02 ·10−1

h

happ, m = 10
happ, m = 30

Figure 6.5 – Representation of h and happ with post processing measurements discretized with m = 10 or m = 30
points. Due to the bad condition number of M , the use of too many frequency points diminishes the quality of the

reconstruction. Here, xs = 6, h defined in (6.48) and sources in (6.9) are defined in (6.52).

To summarize, using approximations of
∫ xs

x?
ki

ki,N , we have discretized this integral to approach
it using known parameters and values of each x?

ki
. It provides a linear inversible triangular system,

and by solving it, we can approach each value of x?
ki

, and so of h(x?
ki

).
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6.4 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we show some numerical applications of our reconstruction method on slowly varying
waveguides. We simulate section measurements using numerically generated data, and we provide
reconstructions of increasing waveguides with different shape profiles.

6.4.1 Generation of data
In the following, numerical solutions of (6.9) are generated using the software Matlab to solve
numerically the equation in the waveguide Ω. In every numerical simulation, we assume that h′ is
supported between x = −7 and x = 7. To generate the solution u of (6.9) on Ω7, we use a self-coded
finite element method and a perfectly matched layer [18] on the left side of the waveguide between
x = −15 and x = −8 and on the right side between x = 8 and x = 15. The coefficient of absorption
for the perfectly matched layer is defined as α = −k((x−8)1x≥8 − (x+8)1x≤−8) and k2 is replaced
in the Helmholtz equation with k2 + iα. The structured mesh is built with a stepsize of 10−3.

6.4.2 Method of reconstruction
In the following, all the numerical measurements are generated following the process described in
section 6.4.1. Using the previous results, we present all the steps to reconstruct happ, an approxi-
mation of h.

1. Find an approximation of hmin and hmax using the method described in Appendix 6.A.

2. Choose a set of frequencies K ⊂ (k0, km+1) with a very small step of discretization ρ1, and
sources f , btop, bbot. For every frequency k ∈ K, measure the N -th modal component uN (xs)
of the wavefield u solution of (6.9).

3. Post process the measurements by multiplying them by kN (xs)/q(xs) and applying Φ−1.
Then, get rid of the modulus π by straightening up the sequence, and compute the approxi-
mate value of ` using (6.34). The available data (di) are then the approximations of

∫ xs

x?
ki

ki,N .

4. Reduce the number of frequencies ki used in K and keep the associated data di, in order to
have a bigger step size denoted ρ2 ≥ ρ1. Solve MV = d, where M is defined in (6.42), to find
an approximation of the distance between every x?,app

ki
.

5. Compute happ using (6.46).

Remark 6.4. We propose here to choose two values of ρ: the first one is very small to ensure a
good post processing of the data in Proposition 6.2. The second one is bigger due to the cutting of
some frequencies, which improve the precision of the reconstruction in Theorem 6.2.

6.4.3 Numerical results
We now apply this method to reconstruct different profiles of slowly increasing waveguides. We
present in Figure 6.6 the reconstruction happ obtained for different profiles h:

h1(x) = 0.1 + γ1

(
x5

5 − 32x
3

3 + 256x
)

1−4≤x≤4 − γ21x<−4 + γ21x>4, (6.48)

h2(x) = 0.1 + γ3

(
x5

5 − 2x4 + 16x
3

3

)
(10≤x≤4 − 1−4≤x<0) + γ4 (1x>4 − 1x<−4) , (6.49)
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h3(x) = 0.1 + γ5x1−4≤x≤4 + 4γ51x>4 − 4γ41x<−4, (6.50)

h4(x) = 0.1 − 4γ5 + 4γ5

√
x+ 4√

2
1−4≤x≤4 + 8γ51x>4. (6.51)

where γ1 = 3.10−6, γ2 = 8192/5.10−6, γ3 = 5.10−5, γ4 = 53/3.10−5, γ5 = 0.01/30. All these
profiles are represented in black in Figure 6.6. The first two profile are in C2(R) while h3 and h4
show corners with an infinite derivative in h4. Sources in (6.9) are defined by

f(x, y) = δ6(x)y, btop(x) = δ6(x), bbot = 0, (6.52)

sets of frequencies by

K1 = 30.92 : 31.93 : 50, K2 = 30.9 : 31.95 : 50, K3 = K4 = 31.01 : 31.83 : 50, (6.53)

and post processing data are discretized to use only 12 frequencies for the inversion. The initial
profile are represented in black, while the reconstructions happ are plotted in red and slightly shifted
for comparison purposes. We see that the reconstruction are satisfactory and that the relative error
of the reconstruction is of the same order as the one presented in Chapter 5 and even better than
the one in Chapter 2.

Figure 6.6 – Reconstruction of four different increasing profiles. In black, the initial shape of Ω5, and in red, the
reconstruction, slightly shifted for comparison purposes. In each case, K = Ki is defined in (6.53), m is equal to 50 for
the post processing of the measurements and then to 12 for the inversion of the data, h = hi is defined in (6.48), (6.49),
(6.50), (6.51), and the sources of (6.9) are defined in (6.52). Top left: i = 1, ‖h− happ‖∞/hmax = 0.97%. Top right:

i = 2, ‖h− happ‖∞/hmax = 1.0%. Bottom left: i = 3, ‖h− happ‖∞/hmax = 1.1%. Bottom right: i = 4,
‖h− happ‖∞/hmax = 1.5%.

In Figure 6.7, we illustrate the stability of the recovery by adding some artificial noise on mea-
sured data. We notice that the recovery is still satisfactory as long as the amplitude of the noise is
small, and that the reconstruction error grows until it reaches a plateau.

Finally, we illustrate in Figure 6.8 that this method of reconstruction only works for increasing
functions. We define

h6(x) = 0.1 − γ7(x+ 5)1−5≤x≤0 + γ6

4 (x− 4)10<x≤4, (6.54)

where γ6 = 25.10−4, γ7 = 5.10−4. The reconstruction of this function shows that if the width
profile is not monotonous, we are only able to reconstruct the increasing part of the profile. To get
the other part, one needs to move both the source and the receiver.
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Figure 6.7 – Reconstruction error ‖h− happ‖∞ with increasing additive noise on measured data. Given an amplitude A
of the noise, we apply the inversion method with data uN (xs) +AN where N is a uniform random noise of amplitude 1.
The width profile h is defined in (6.51), source of (6.9) are defined in (6.52), K is defined in (6.53) and m = 50 for the

post processing an 12 or the inversion.

−5 0 5 0

0.1

x

y

|u|

0

5 · 10−2

0.1

Figure 6.8 – Reconstruction of a non monotonous profile. On the left, we represent the wavefield |u| at frequency
k = 32.1. On the right, we show the reconstruction of the width profile. In black is the initial shape of Ω5, and in red is
the reconstruction slightly shifted for comparison purposes. We notice that we cannot reconstruct the left variations of

the waveguide, which is explained by the fact that the wavefield u never propagates in the left area of the waveguide. In
the reconstruction, K = 31.42 : 32.1 : 50, we only select 12 frequencies for the inversion of data, h is defined in (6.54)

and the sources of (6.9) are defined in (6.52).

To conclude, using a known source located far away at the right of the defect, we are able to
reconstruct slowly increasing widths. Even if this method does not work for general shape defects,
it is relevant to identify and localize obstruction types of defects and gives good numerically results.

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the same analysis of the forward problem than in Chapter 5, we have developed a new method
to recover width defect using section measurements. We have used the study of the forward problem
in slowly varying waveguide presented in Chapter 4 and the approximation of the solutions using the
π-periodic function Φ to develop an inverse reconstruction method in slowly varying monotonous
waveguides. Given wavefield measurements on a section of the waveguide for different locally
resonant frequencies, we reconstruct with stability the associated resonant points which provides a
good approximation of the width in the waveguide.

Even if this method only works when sources and receivers are on the larger side of the waveguide,
its reconstruction results are excellent and we believe that this method could be useful to detect
and localize precisely the position of width defects in waveguides. Combined with a traditional
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multi-frequency back-scattering method like the one presented in Chapter 2, this method could
produce great results in recovering any type of width defect as long as there are small and slowly
varying.

Appendix 6.A: Identification of kmin and kmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Giving a compactly perturbed waveguide Ω, we describe here how section measurements enable
to approximate very precisely the quantities kmin and kmax. The article [27] mentions that the
problem (5.7) is not well-defined when kn(x) = 0 in a non-trivial interval, which especially happens
when k = nπ/hmin or k = nπ/hmax. Numerically, this results in an explosion of the solution when
k tends to nπ/hmin (resp. nπ/hmax) with a source term located in the area where h(x) = hmin
(resp. h(x) = hmax). Since our sources are located in the area k = nπ/hmax, measurements of the
wavefield enable to find a good approximation of hmax.

Moreover, using Theorem 6.1, we see that the Green function changes behavior when the mode
N switches from an evanescent mode to a locally resonant one. This change appends exactly around
the frequency Nπ/hmin and comparing the measurements with the known behavior of evanescent
modes, we can get a good approximation of hmin. We illustrate it in Figure 6.9.

29.5 30 30.5 31 31.5 32 32.5 33 33.50
0.2
0.4
0.6
0.8

1

k

|uN (xs)|
|Gapp

N (xs, xs)|
Nπ/hmax
Nπ/hmin

Figure 6.9 – Amplitude of uN (xs) with respect to k for xs = 6 and a source b = δxs compared with the amplitude of
the Green function Gapp

N (xs, xs). For comparison purposes, Nπ/hmax and Nπ/hmin are plotted.

Measuring the section wavefield while k varies and detecting its explosion and its changes of
behavior provides a good approximation of the width at the left and the right of the waveguide.
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This last chapter aims at extending the reconstruction method presented in Chapter 5 to elastic
waveguides. Contrary to the acoustic case presented in Chapter 4, there are three types of critical
points in elastic waveguides, called longitudinal, transverse and zero-group velocity points. Using
modified Lamb bases, we provide a study of the elastic displacement equation near each critical point
in slowly varying waveguides. We prove that modes propagate under the form of Airy functions
at longitudinal and transverse points, and that this Airy function is multiplied by an oscillating
exponential in the zero-group velocity case. This study of the forward problem enables us to
extend the reconstruction method developed in Chapter 5 to slowly varying elastic waveguides.
Given multi-frequency measurements taken at the surface of the waveguide, we provide a L∞-
stable explicit method to reconstruct variation of the width. This method is validated by numerical
results and comparisons between the three types of critical points are discussed.

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Chapter 5, we developed a shape defects reconstruction method in acoustic or electromagnetic
waveguides from surface measurements at locally resonant frequencies. Here we extend it to the
more complex case of elastic plates. If the acoustic case is relevant to the non destructive testing of
pipes or optical fibers (see [54]), applications in the elastic case concern the monitoring of airplane
or ship structural parts, offshore wind turbines or bridges (see [105]).

7.1.1 Description of the problem
In the whole chapter, we consider two-dimensional elastic waveguides described by

Ω := {(x, y) ∈ R2 | − h(x) < y < h(x)}, (7.1)

where h ∈ C2(R) ∩ W2,∞(R) is a positive profile function defining the local width of the waveguide
(see an illustration in Figure 7.1). Such a waveguide is said to be slowly varying when there exists
a small parameter η > 0 such that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) < η2. These waveguides are
good models of corroded plates and pipes (see [50, 58]). For the sake of simplicity, the waveguide
is assumed to be symmetric with its top and bottom boundaries presenting the same defects. A
similar analysis could also be conducted when both boundaries are varying independently.

In the time-harmonic regime, an elastic wavefield u satisfies the elastic displacement equation
with Neumann boundary conditions{

∇ · σ(u) + ω2u = −f in Ω,
σ(u) · ν = b on ∂Ω, (7.2)

where ω ∈ (0,+∞) is the frequency, σ(u) is the stress tensor, f is an interior source term and b is
a boundary source term. We focus here on the reconstruction of the function h which models the
shape of the waveguide using surface measurements of u consistently with the experimental setups
presented in [58, 29].
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Several authors have already introduced inverse methods to detect and reconstruct such shape
defects in general waveguides. In [61, 2], the use of conformal mapping that map the geometry of
the perturbed waveguide to that of a straight one is proposed. However, this transformation is not
explicit and proves numerically expensive. The article [75] develops another approach based on the
treatment of the scattered field. The articles [82, 81] study the forward problem and indicate how
the analysis therein may be used to reconstruct the width of the waveguide. All these methods use
different sources at a fixed frequency.

Our work concerns a different approach, as in Chapter 2 and in [13, 12], where the data is
assumed to be available for a whole interval of frequencies. This provides additional information
that should help localize and reconstruct the shape of defects and should improve the stability of
the reconstruction (see [93]). In Chapter 3, we already presented a multi-frequency method using
backscattering data. There, however, we avoided the critical frequencies of the waveguide, where
the elastic problem is known to be ill-posed [56].

Since experimental works [11, 29] suggest that critical frequencies may prove useful in recon-
structing variations in width, and given the encouraging results already obtained in Chapter 5 for
the acoustic case, we focus on these frequencies. A frequency ω is said to be locally resonant if
there exists a coordinate x? ∈ R such that ωh(x?) is a critical frequency. Adapting the study of the
forward problem from the acoustic case of Chapter 4, we prove in the following that the wavefield
u strongly depends on x?. The main idea of our reconstruction method is to use measurements of
u to determine x?. Since ωh(x?) is a known critical frequency, this in turn provides information
about the width of the waveguide at the point x?. Choosing several resonant frequencies, we may
then reconstruct the profile h(x?) as a function of x?.

7.1.2 Outline of the chapter
The chapter is organized as follows. Section 7.2 recalls all the tools needed for the modal decom-
position of wavefields in elastic waveguides. We introduce the critical points and classify them into
three different categories. In section 7.3, we study the forward problem associated to each type
of critical point, and we adapt the proof from in Chapter 4 to construct an approximation of the
wavefield. In section 7.4, we use this approximation as in the reconstruction method presented in
Chapter 5. Finally, in section 7.5, numerical illustrations of reconstructions are presented.

7.2 Modal decomposition and local wavenumbers in varying waveguides
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we recall some classical results about modal decompositions in elastic waveguides,
the proofs of which can be found in Chapter 3 and in [81, 91, 5].

7.2.1 Position of the problem
Let us consider a 2D infinite elastic waveguide

Ω = {(x, y) ∈ R | − h(x) < y < h(x)}, (7.3)

where h describes half of the waveguide’s varying width. In the following, we choose to work with
slowly varying waveguides and we make the following assumptions on the function h:

Assumption 7.1. We assume that h ∈ C2(R) ∩W 2,∞(R) with h′ compactly supported and that

∀x ∈ R hmin ≤ h(x) ≤ hmax for some 0 < hmin < hmax < ∞.
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We also assume that h(x) = hmin or h(x) = hmax if x /∈ supp(h′). For such a function we define a
parameter η > 0 that satisfies for a constant R > 0

‖h′‖L∞(R) < η and ‖h′′‖L∞(R) < η2, supph′ ⊂
(

−R

η
,
R

η

)
.

Such a waveguide is represented in Figure 7.1

Ω
ex

ey

Figure 7.1 – Representation of a slowly varying waveguide Ω.

We denote by u = (u, v) the displacement field in the waveguide. Given a frequency ω ∈ R and
(λ, µ) the Lamé coefficients of the elastic waveguide, the wavefield u satisfies the elasticity equation

∇ · σ(u) + ω2u = −f in Ω, (7.4)

where f = (f1, f2) is a source term and σ(u) is the stress tensor defined by

σ(u) =
(

(λ+ 2µ)∂xu+ λ∂yv µ∂yu+ µ∂xv
µ∂yu+ µ∂xv λ∂xu+ (λ+ 2µ)∂yv

)
:=
(
s t
t r

)
. (7.5)

In the following, we choose to impose a Neumann boundary condition

σ(u) · ν = btop on ∂Ωtop, σ(u) · ν = bbot on ∂Ωbot, (7.6)

where btop = (btop
1 , bbot

2 ) and bbot = (bbot
1 , bbot

2 ) are boundary source terms. This condition could
be easily changed to a Dirichlet or a Robin condition without altering our results.

7.2.2 Modal decomposition
Following the formalism developed in [80], we introduce the variables

X := (u, t), Y := (−s, v). (7.7)

The elasticity equation can then be rewritten as follows:

Proposition 7.1. The equation (7.4) with Neumann boundary condition (7.6) is equivalent in Ω to

∂x

(
X
Y

)
=
(
F (Y )
G(X)

)

+


0

−f2 − (btop
2 + h′X · ey)δy=h(x) − (bbot

2 − h′X · ey)δy=−h(x)
f1 + (btop

1 − h′(x)Y · ex)δy=h(x) + (bbot
1 + h′(x)Y · ex)δy=−h(x)

0

 , (7.8)
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with boundary conditions B1(X)(±h(x)) = B2(Y )(±h(x)) = 0. Here F , G, B1 and B2 are matrix-
valued operators defined by

F =

 − 1
λ+ 2µ − λ

λ+ 2µ∂y

λ

λ+ 2µ∂y −ω2 − 4µ(λ+ µ)
λ+ 2µ ∂2

yy

 , G =

 ω2 ∂y

−∂y
1
µ

 , (7.9)

B1(X) = X · ey, B2(Y ) = − λ

λ+ 2µY · ex + 4µ(λ+ µ)
λ+ 2µ ∂yY · ey. (7.10)

For each value of x, we define Lamb modes:

Definition 7.1. A Lamb mode (X(x, y),Y (x, y)) associated with the wavenumber k(x) ∈ C is a
non-vanishing solution of the system{

(F (Y ), G(X)) = ik(X,Y ) in (−h(x), h(x)),
B1(X)(±h(x)) = B2(Y )(±h(x)) = 0. (7.11)

The set of wavenumbers k(x) ∈ C associated to Lamb modes is countable, and every wavenumber
k(x) satisfies either the symmetric Rayleigh-Lamb equation

p2 = ω2

λ+ 2µ − k2, q2 = ω2

µ
− k2,

(
q2 − k2)2 = −4k2pq

tan(ph)
tan(qh) , (7.12)

or the antisymmetric Rayleigh-Lamb equation

p2 = ω2

λ+ 2µ − k2, q2 = ω2

µ
− k2,

(
q2 − k2)2 = −4k2pq

tan(qh)
tan(ph) . (7.13)

If k satisfies (7.12), the associated Lamb mode is called symmetric and is proportional to
u
t

−s
v

 (x, y) :=


ik(q2 − k2) sin(qh) cos(py) − 2ikpq sin(ph) cos(qy)
2ikµ(q2 − k2)p(− sin(qh) sin(py) + sin(ph) sin(qy))

(q2 − k2)((λ+ 2µ)k2 + λp2) sin(qh) cos(py) − 4µpqk2 sin(ph) cos(qy)
−p(q2 − k2) sin(qh) sin(py) − 2k2p sin(ph) sin(qy)

 .

(7.14)
If k satisfies (7.13), the associated Lamb mode is called anti-symmetric and is proportional to

u
t

−s
v

 (x, y) :=


ik(q2 − k2) cos(qh) sin(py) − 2ikpq cos(ph) sin(qy)
2ikµ(q2 − k2)p(cos(qh) cos(py) − cos(ph) cos(qy))

(q2 − k2)((λ+ 2µ)k2 + λp2) cos(qh) sin(py) − 4µpqk2 cos(ph) sin(qy)
p(q2 − k2) cos(qh) cos(py) + 2k2p cos(ph) cos(qy)

 .

(7.15)

We define the set of critical frequencies:

Definition 7.2. A frequency ω and a wavenumber k(x) are said to be critical if they satisfy (7.12)
(resp. (7.13)) and k = 0 or ΓS = 0 (resp. ΓA = 0) where

ΓS = h(q2 − k2)2 sin(qh)2 + 4k2p2 sin(ph)2

+ (q2 − k2) sin(ph) cos(ph) sin(qh)2
(
q2 − k2

p
− 8p− 2p

k2 − p

q2

)
, (7.16)
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ΓA = h(q2 − k2)2 cos(qh)2 + 4k2p2 cos(ph)2

− (q2 − k2) cos(ph) sin(ph) cos(qh)2
(
q2 − k2

p
− 8p− 2p

k2 − p

q2

)
. (7.17)

We denote by ω
h(x)
crit the set of critical frequencies at the position x ∈ R, and by k

h(x)
crit the set of

associated critical wavenumbers. We also define as ω1
crit the set of critical frequencies associated

with the width h = 1.

By looking at these relations, we notice that

ω ∈ ω
h(x)
crit ⇔ ωh(x) ∈ ω1

crit, (7.18)

so one can easily compute the set of critical frequencies for any value of h(x) from ω1
crit.

It enables to compute very easily the set of critical frequencies of any value of h(x). These
frequencies are used to provide the completeness of the Lamb modes family, as proved in [8] and
Chapter 3:

Proposition 7.2. Lamb modes form a complete set of functions in H(x) := H1(−h(x), h(x)) ×
L2(−h(x), h(x)) × L2(−h(x), h(x)) × H1(−h(x), h(x)) if and only if ω /∈ ω

h(x)
crit .

To identify the decomposition of a given function of H on the Lamb basis, we split the set of
wavenumbers k into two parts:

Definition 7.3. Let ω /∈ ω
h(x)
crit .

• We say that a Lamb mode with wavenumber k is right-going if Im(k) > 0 or Im(k) = 0 and
∂kω > 0.

• We say that a Lamb mode is left-going if Im(k) < 0 or Im(k) = 0 and ∂kω < 0.

Right-going Lamb modes are indexed by n ∈ N∗ and sorted by ascending order of imaginary part
and descending order of real part.

If kn is a right-going mode associated with the Lamb mode (Xn,Yn), −kn is a left-going mode
(−Xn,Yn). For any (X,Y ) ∈ H, it follows that there exist (an)n∈N∗ , (bn)n∈N∗ such that

X(x, y) =
∑
n>0

an(x)Xn(x, y), Y (x, y) =
∑
n>0

bn(x)Yn(x, y). (7.19)

The following proposition proves that the families (Xn)n>0 and (Yn)n>0 are bi-orthogonal:

Proposition 7.3. We denote by 〈·, ·〉 the product defined by

〈(z1, z2), (z3, z4)〉 =
∫ h(x)

−h(x)
z1z3 + z2z4.

For every n,m > 0, 〈Xm,Yn〉 = δn=mJn where Jn = iω2k ΓS if n is a symmetric mode and
Jn = iω2k ΓA if n is an anti symmetric mode, with ΓS and ΓA defined in (7.16) and (7.17).

Using this proposition, we obtain an expression for each modal component of the decomposition:

an = 〈X,Yn〉
Jn

, bn = 〈Y ,Xn〉
Jn

. (7.20)

Next, we adapt the classical Sommerfeld (or outgoing) condition, defined in Chapter 3 for regular
waveguides, to general varying waveguides. This condition will be used later to guarantee uniqueness
for the source problem (7.4).
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Definition 7.4. A wavefield u ∈ H2
loc(Ω) is said to be outgoing if X and Y defined in (7.7) satisfy∣∣∣∣〈Y ,Xn〉′(x) x

|x|
− ikn(x)〈Y ,Xn〉(x)

∣∣∣∣ −→
|x|→+∞

0 ∀n ∈ N∗, (7.21)

∣∣∣∣〈X,Yn〉′(x) x
|x|

− ikn(x)〈X,Yn〉(x)
∣∣∣∣ −→

|x|→+∞
0 ∀n ∈ N∗. (7.22)

7.2.3 Classification of the critical points
We investigate in more details the set of critical frequencies. As mentioned before, a symmetric
critical wavenumber satisfies the symmetric Rayleigh-Lamb equation (7.16) and

kn = 0 or ΓS = 0. (7.23)

We notice using the symmetric Rayleigh-Lamb equation (7.16) that if kn = 0 then

cos(pnh) = 0 or sin(qnh) = 0. (7.24)

Using expressions (7.14), we see that if cos(pnh) = 0 then Xn = 0 and Yn 6= 0. On the other hand,
if sin(qnh) = 0 then Xn 6= 0 and Yn = 0 after dividing the whole expression by kn. Because of
these distinct behaviors, we split the set of critical frequencies in three parts using the terminology
of [81, 11]:

Definition 7.5. The set of critical frequencies can be split as ωh(x)
crit := ω

h(x)
L ∪ωh(x)

T ∪ωh(x)
ZGV where

• The set ωL(x) contains all solutions of (7.14) (resp. (7.15)) where there exists N > 0 such
that kN = 0 and cos(pNh) = 0 (resp. sin(pNh) = 0). These frequencies are called longitudinal
(L) critical frequencies and make XN vanishes.

• The set ωT (x) contains all solutions of (7.14) (resp. (7.15)) where there exists N > 0 such
that kN = 0 and sin(qNh) = 0 (resp. cos(qNh) = 0). These frequencies are called transverse
(T) critical frequencies and make YN vanishes.

• The set ωZGV (x) contains all solutions of (7.14) (resp. (7.15)) such that ΓS = 0 (resp.
ΓA = 0). These frequencies are called zero group velocity (ZGV) critical frequencies and at
these frequencies, there exists a mode N > 0 such that ∂kN

ω vanishes with a wavenumber
kN 6= 0.

Using similar notations, we can split kh(x)
crit = k

h(x)
L ∪ k

h(x)
T ∪ k

h(x)
ZGV .

We represent in Figure 7.2 different wavenumbers kn(x) in terms of the frequency ω and some
critical points solutions to kn = 0 or ΓS = 0.

One of the main difficulties in our context is that h(x) is non-constant, so the behavior of a
wavenumber kn(x) changes with x. We distinguish several situations:

Definition 7.6. A right-going mode n ∈ N∗ falls in one of the four following situations:

1. If kn(x) ∈ R for all x ∈ R, the mode oscillates in the waveguide without energy loss and is
called propagative.

2. If kn(x) ∈ iR for all x ∈ R, the mode decays exponentially to zero as |x| → ∞ and is called
evanescent.
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0123456
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0

1
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3

4

Imag(k(x))h(x)Real(k(x))h(x)

ω
h

(x
)

propagative inhomogeneous evanescent normal
ZGV T L abnormal

Figure 7.2 – Solutions of the symmetric Rayleigh-Lamb equation (7.14) in the space Im(k) ≥ 0, Re(k) ≥ 0 with
µ = 0.25 and λ = 0.31. Solutions on the full space can be obtained by axial symmetries. Propagative, evanescent and

inhomogeneous modes are represented by different colors. Critical points are represented by dots, where green dots stand
for zero group velocity points, blue dots for longitudinal points, and red dots for transverse points. Crosses indicate

normal critical points, and triangles abnormal ones.

3. If Re(kn(x)) 6= 0 and Im(kn(x)) 6= 0 for all x ∈ R, the mode oscillates fast to zero and is
called inhomogeneous.

4. If there exists x? ∈ R such that kn(x?) ∈ k
h(x?)
crit the mode n is called locally resonant. The

associated points x? are called resonant points. They are simple if h′(x?) 6= 0, and multiple
otherwise.

A frequency ω > 0 for which there exists at least one locally resonant mode is called a locally
resonant frequency.

We represent in Figure 7.2 the branches where modes are propagative, evanescent, or inhomoge-
neous. If kn(x) switches from one branch to another when x varies, the mode is locally resonant. If
one of these branches is a propagative one, we use the terminology of [82] to distinguish two types
of locally resonant points:

Definition 7.7. A locally resonant point x?
k is called normal if kn(x) ∈ R when x approaches x?

from above, and abnormal if kn(x) ∈ R when x approaches x? from below.

This terminology is so chosen since most of the critical points are normal (see Figure 7.2) while
the abnormal one are exceptional. We represent normal and abnormal locally resonant points in
Figure 7.2.
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7.3 Forward problem at locally resonant frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we analyse the propagation of elastic waves at locally resonant frequencies. To this
end, we follow the arguments presented for acoustic waveguides in Chapter 4. Considering a slowly
variable waveguide as represented in Figure 7.1 and which satisfies assumption 7.1, we intend to
prove that the source problem

∇ · σ(u) + ω2u = −f in Ω,
σ(u) · ν = btop/bot on ∂Ωtop/bot,

u is outgoing,
(7.25)

has a unique solution which can be approximated by using an explicit modal expression.
We mainly follow the proof presented in Chapter 4 for acoustic waveguides. However, a major

issue arises in elastic waveguides. As mentioned before and contrary to acoustic modes, Lamb modes
do not form a complete family at critical frequencies. A generalized mode needs to be added to
the family in order to preserve its completeness, and consequently, the basis (Xn(x, y),Yn(x, y)) is
not continuous in x near a locally resonant point x?. We handle this problem by properly rescaling
and modifying the associated critical eigenfunctions, depending on the nature of the critical point
crossed by the locally resonant mode.

Firstly, we start by studying the longitudinal and transverse cases, which are very similar. Sec-
ondly, we move on to the ZGV case, which proves more complex. The study is done entirely in the
longitudinal case, and then we only point out the needed changes to adapt it to the transverse and
the ZGV case.

7.3.1 The Longitudinal case
To simplify the presentation of the results of this section, we assume that the profile h is strictly
increasing and that given a locally resonant frequency ω ∈ R+, there exists a unique locally resonant
mode, say the N -th mode, associated with a longitudinal critical point x?. We also assume that any
longitudinal critical point is not at the same time a transverse critical point. All these assumptions
and their generalization are discussed at the end of the section.

Solutions of the symmetric Rayleigh-Lamb dispersion relation near a longitudinal critical point
are represented in Figure 7.3. Note how the wavenumber kN switches from a real number to a
purely imaginary one around the critical point x?.

7.3.1.a Modified Lamb basis
If u is a solution of the elastic problem (7.25), it can be decomposed in the Lamb basis almost every-
where. However, as explained before, the Lamb basis loses its completeness at critical frequencies.
To resolve this issue, in the spirit of the method presented in [81], we set

X̃n := Xn

Jn
, Ỹn := Yn. (7.26)

We call this new family the modified Lamb modes, and we prove that it is a complete family even
at the longitudinal critical point:

Proposition 7.4. Modified Lamb modes (X̃n)n>0 (resp. (Ỹn)n>0) are well-defined and form a com-
plete set of functions in H1(−h(x), h(x))×L2(−h(x), h(x)) for every x ∈ R (resp. L2(−h(x), h(x))×
H1(−h(x), h(x))).
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Figure 7.3 – Solutions of the symmetric Rayleigh-Lamb equation (7.14) with µ = 0.25 and λ = 0.31. Propagative and
evanescent branches merge at the longitudinal (L) critical point.

Proof. From Proposition 7.3, Jn(x) 6= 0 for all x ∈ R when n 6= N . Using Proposition 7.2, the
modified Lamb modes are well-defined and form a complete family when x is not a locally resonant
point. We assume that the mode is symmetric (the antisymmetric case could be treated similarly)
and we investigate the behavior of X̃n around the locally resonant point. We set h? = h(x?),
p? = ω/

√
λ+ 2µ and q? = ω/

√
µ. All comparisons are written when kN → 0. Using a Taylor

expansion of ΓS and the definition of JN , we prove that

JN (h) ∼ ikNh
?ω2q?2 sin(q?h?),

XN ∼ ikNq
?

(
q? sin (q?h?) cos (p?y) − 2p? sin (p?h?) cos (q?y)
2µp?q?(sin(p?h?) sin(q?y) − sin(q?h?) sin(p?y))

)
.

It shows that X̃n is well defined, and that

X̃N (x?, y) = 1
h?ω2q? sin(q?h?)

(
q? sin (q?h?) cos (p?y) − 2p? sin (p?h?) cos (q?y)
2µp?q?(sin(p?h?) sin(q?y) − sin(q?h?) sin(p?y))

)
.

At critical frequencies, we need to add a generalized mode to ensure the completeness of the Lamb
family. It follows from Theorem 3.1 of Chapter 3 that (X̃N , 0) is a generalized Lamb mode. Since
the Lamb mode associated to kN was written (0,Yn) at x = x?, we conclude that (X̃n) and (Ỹn)
form complete sets of functions.

The modified Lamb basis functions are continuous with respect to x, and we can now decompose
continuously the wavefield u for every x ∈ R as

X(x, y) =
∑
n>0

an(x)X̃n(x, y), Y (x, y) =
∑
n>0

bn(x)Ỹn(x, y), (7.27)

where the coefficients an and bn can be computed as

an = 〈X, Ỹn〉, bn = 〈Y , X̃n〉. (7.28)
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7.3.1.b Sketch of the proof

Before stating the main result of this section regarding the approximation of u, we first explain our
strategy for proving such an existence result. We assume that

(X(1),Y (1)) =
∑
n>0

(a(1)
n X̃n, b

(1)
n Ỹn), (7.29)

is solution of the elastic problem (7.8). Using the notations of Proposition 7.1, it is proved in [81]
that F and G are selfadjoint operators under the condition B1(X)(±h) = B2(Y )(±h) = 0, so that

〈F (Y (1)), Ỹn〉 = 〈Y (1), F (Ỹn)〉 = iknJn〈Y (1), X̃n〉 = iknJnb
(1)
n ,

〈G(X(1)), X̃n〉 = 〈X(1), G(X̃n)〉 = ikn

Jn
〈X(1), Ỹn〉 = ikn

Jn
a(1)

n .

Following [81], we project equation (7.8) on each mode to see that it is equivalent to

∀n > 0



a(1)
n = 〈X(1), Ỹn〉, b(1)

n = 〈Y (1), X̃n〉,
a(1)

n

′ = −
∑
m>0

a(1)
m 〈∂xX̃m, Ỹn〉 + iknJnb

(1)
n − JnF

n
2 ,

b(1)
n

′ = −
∑
m>0

b(1)
m 〈∂xỸm, X̃n〉 + ikn

Jn
a(1)

n + Fn
1

+h′
∑
m>0

b(1)
m

(
sm(h)un(h)

Jn
− sm(−h)un(−h)

Jn

)
,

a(1)
n , b(1)

n are outgoing,

(E1)

where

Fn
2 (x) = 1

Jn

(∫ h(x)

−h(x)
f2(x, y)vn(y)dy + btop

2 (x)vn(h) + bbot
2 (x)vn(−h)

)
, (7.30)

Fn
1 (x) = 1

Jn

(∫ h(x)

−h(x)
f1(x, y)un(y)dy + btop

1 (x)un(h) + bbot
1 (x)un(−h)

)
. (7.31)

As there is no easy way to solve (E1) explicitly, we shall approximate its solution by that of a
simpler problem. A Born approximation, justified in Proposition 7.8, allows us to neglect all the
terms that depend on h′. This leads to the equations

∀n > 0


a(2)

n = 〈X(2), Ỹn〉, b(2)
n = 〈Y (2), X̃n〉,

a(2)
n

′ = iknJnb
(2)
n − JnF

n
2 ,

b(2)
n

′ = ikn

Jn
a(2)

n + Fn
1 ,

a(2)
n , b(2)

n are outgoing.

(E2)

Th modes are now decoupled, and we can solve independently the equations on each mode. We
notice that equations on a(2)

n and b(2)
n behave differently: while kn/Jn is bounded and tends to zero

when n increases, knJn blows up when n increases. This difference of behavior encourages us to
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work with the equation on bn. Taking a derivative, this system becomes

∀n > 0



a(2)
n = 〈X(2), Ỹn〉, b(2)

n = 〈Y (2), X̃n〉,

b(2)
n

′ = ikn

Jn
a(2)

n + Fn
1 ,

b(2)
n

′′ + k2
nb

(2)
n = i

(
kn

Jn

)′

a(2)
n − iknF

n
2 + Fn

1
′,

a(2)
n , b(2)

n are outgoing.

(E′
2)

To find an approximation of the solution, we neglect the contribution of (kn/Jn)′ in the equation
which amounts Born approximation justified in Proposition 7.6. It leads to

b(3)
n

′ = ikn

Jn
a(3)

n + Fn
1 ,

b(3)
n

′′ + k2
nb

(3)
n = −iknF

n
2 + Fn

1
′,

a(3)
n , b(3)

n are outgoing.

(En
3 )

The equation on b(3)
n is now self-governing. The study of the equation y′′ + k2

ny = 0 has already
been carried out for acoustic waveguides in Chapter 4 using results on the Schrödinger equation
[76, 77]. This problem is well-defined when {x ∈ R | kn(x) ∈ k

h(x)
crit } has zero measure in R, which

occurs when ω /∈ hminω
1
crit ∪ hmaxω

1
crit. We assume that this is the case, and that

δ := min
n∈R

{
|ω − ωn| where ωn ∈ hminω

1
crit ∪ hmaxω

1
crit
}
> 0.

It is proved in Chapter 4 that if n is not a locally resonant mode, the solution can be approximated
with exponential functions. Otherwise, we can approximate the solution using Airy functions.

Using these results, we prove that (En
3 ) has a unique solution, and we provide an explicit ap-

proximation of this solution. With a uniform control of the approximation error between (E′
2) and

(En
3 ), we obtain an explicit approximation of (E2). Then, estimating the error between solutions

of (E1) and (E2), we obtain an explicit approximation of the solution to (E1).

7.3.1.c Main result
We now state the main result of this section which shows the existence and uniqueness of the
solution u of (7.25) and provides an approximation of u with an estimate of the approximation
error in L2

loc. If the critical longitudinal point is normal, we set χ = −1. Otherwise, it is abnormal,
and we set χ = 1. We define the auxiliary function

ξ(x) :=



(
−3

2 iχ
∫ x

x?

kn(t)dt
)2/3

if χx > χx?,

−

(
3
2χ
∫ x?

x

kn(t)dt
)2/3

if χx < χx?.

(7.32)

Theorem 7.1. Let h be an increasing function which defines a non-uniform waveguide Ω that
satisfies assumption 7.1. Consider sources f ∈ H1(Ω), btop, bbot ∈ (H3/2(R))2 with compact support
contained in Ωr and (−r, r) respectively, for some r > 0. Assume that there is a unique locally
resonant mode N ∈ N, associated with a simple longitudinal resonant point x? ∈ R.

There exists η0 > 0, depending only on hmin, hmax, δ, r and R, such that if η < η0, then the
problem (7.4) admits a unique solution u ∈ H3

loc(Ω). Moreover, this solution is approximated by
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uapp defined for almost every (x, y) ∈ Ω by uapp(x, y) =
∑

(aapp
n (x)un(x, y), bapp

n (x)vn(x, y)) where
for all n > 0,

aapp
n (x) = − i

kn(x)

∫
R
∂xG

app
n (x, s)(ikn(s)Fn

2 (s) − Fn
1

′(s))ds+ i
Fn

1 (x)
kn(x) , (7.33)

bapp
n (x) =

∫
R
Gapp

n (x, s)(ikn(s)Fn
2 (s) − Fn

1
′(s))ds, (7.34)

where Fn
1 and Fn

2 are defined in (7.31) and (7.30) and

Gapp
n (x, s) =




i

2
√
kn(s)kn(x)

exp
(
i

∫ s

x

kn

)
if χx < χs,

i

2
√
kn(s)kn(x)

exp
(
i

∫ x

s

kn

)
if χx > χs,

if n 6= N,


π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(s)A ◦ ξ(x) if χx < χs,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA + B

)
◦ ξ(x)A ◦ ξ(s) if χx > χs,

if n = N.

(7.35)

Moreover, there exists a constant C > 0 depending only on hmin, hmax, δ, r and R such that

‖u − uapp‖L2(Ωr) ≤ ηC
(

‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
. (7.36)

Remark 7.1. If there are no resonant mode, the result can be adapted by deleting the line n = N
in (7.35). On the other hand, if there are multiple longitudinal locally resonant modes, the second
line of (7.35) holds for every resonant mode. We can also generalize this result to non-monotonous
slowly varying waveguides following the process described in section 4.4 of Chapter 4.
Remark 7.2. Comparing this result with the acoustic case in Chapter 4, we see that stronger
assumptions on the regularity of the sources lead to a worse estimate of the quality of the approxi-
mation. This phenomenon, explained in Chapter 3, is due to the lack of orthogonality of the Lamb
modes. The theory developed in [72] may be adapted for elastic waveguide to improve our result.
Remark 7.3. If Ω is a straight waveguide, we find the same expression for the wavefield as in
Chapter 3. Moreover, the modes n 6= N in a perturbed waveguide behave similarly to those in a
straight waveguide, with the term

∫
kn acting as a variable change in the phase.

We illustrate this result in Figure 7.4, where we compare our approximation uapp with a wavefield
u computed using a finite element method as explained in section 7.5.

7.3.1.d Proof of the Theorem
Using Theorem 4.2 of Chapter 4, we know that for every s ∈ R,{

∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing, (7.37)

has a unique solution Gn(·, s) ∈ W1,1(R) which can be approximated by Gapp
n defined in (7.35).

Moreover, there exists η1 > 0 depending on R, r, hmin, hmax and δ such that if η < η1, there exist
c, d > 0 depending only on hmin, hmax, r, δ and R such that for every s ∈ R,

‖Gn(·, s)‖L1(−r,r) ≤ c

(
δn=N + δn 6=N

min(|kn|2)

)
, (7.38)

179



Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

−6 −4 −2 0 2 4 6
−0.1

0

0.1
|u|

0

500

1,000

−6 −4 −2 0 2 4 6
−0.1

0

0.1
|v|

0

1,000

2,000

Figure 7.4 – Representation of a wavefield u computed using a finite element method as described in section 7.5. On
the top, we represent |u| and on the bottom |v|. The relative error of the approximation between u and uapp is

‖u − uapp‖L2/‖u‖L2 = 8.32%. We recognize in these pictures the Airy function and its derivative added to propagative
exponentials. Here, we have ω = 13.98, h is defined in (7.104), f1 = 0, btop = bbot = 0 and f2(x, y) = δ−5(x)v3(y).

‖∂xGn(·, s)‖L1(−r,r) ≤ c

(
δn=N + δn 6=N

min(|kn|)

)
, (7.39)

‖Gn(·, s) −Gapp
n (·, s)‖L1(−r,r) ≤ ηd

(
δn=N + δn 6=N

min(|kn|2)

)
, (7.40)

‖∂xGn(·, s) − ∂xG
app
n (·, s)‖L1(−r,r) ≤ ηd

(
δn=N + δn 6=N

min(|kn|)

)
. (7.41)

This Green function provides a solution to (En
3 ) for every n > 0. To control the approximation error

between (E′
2) and (En

3 ), we need to control the dependence between the source and the solution of
(En

3 ).

Proposition 7.5. Let r > 0, n > 0 and gn
1 , g

n
2 ∈ L2(−r, r). The equation

β′
n = ikn

Jn
αn + gn

1 ,

β′′
n + k2

nβn = gn
2 ,

αn, βn are outgoing,

(7.42)

has a unique solution (αn, βn) ∈ L2
loc(R). Moreover, if η < η1, the operator

Γ1 : L2(−r, r) → L2(−r, r)
(gn

1 , g
n
2 ) 7→ (αn, βn)|(−r,r)

where (αn, βn) is the solution of (7.42), (7.43)

is well-defined, continuous and there exists a constant C1 depending on δ, hmin, hmax, R and r such
that

‖(αn, βn)‖L2(−r,r) ≤ C1

(
δn=N + δn 6=N

min(|kn|)

)
(1 + Jn)‖(gn

1 , g
n
2 )‖L2(−r,r). (7.44)

180



Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Proof. Using the Green function Gn, we compute

βn(x) = −
∫
R
Gn(x, s)gn

2 (s)ds, αn(x) = i
Jn

kn

∫
R
∂xGn(x, s)gn

2 (s)ds+ i
Jn

kn
gn

1 (x). (7.45)

The upper bound (7.44) follows from Young’s inequality for integral operators, inequalities (7.38),
(7.39) and the fact that ‖Jn/kn‖W1,1(R) < ∞.

This proposition justifies the approximation of (E′
2) by (En

3 ) which, as in [32] and Chapter 2,
is a Born approximation. However, we show here that this approximation remains valid near the
longitudinal critical frequencies as in the acoustic case of Chapter 4.

The proof of the following Propositions (7.6)-(7.8) and of Lemma 7.1 are given in Appendix
7.A-7.D.

Proposition 7.6 (Born approximation (En
3 )/(E′

2)). Let r > 0. There exists η2 > 0 and C2 > 0
depending on δ, hmin, hmax, R and r such that for every n > 0, η < η2 and Fn

1 , F
n
2 ∈ H1(−r, r), the

equation (E′
2) has a unique solution (a(2)

n , b(2)
n ) ∈ L2(−r, r). If (a(3)

n , b(3)
n ) is the solution of (En

3 ),

‖a(2)
n − a(3)

n ‖L2(−r,r) ≤ ηC2Jn

(
δn=N + δn6=N

min(|kn|)

)(
‖(Fn

1 , F
n
2 )‖L2(−r,r) + 1

kn
‖Fn

1
′‖L2(−r,r)

)
,

(7.46)

‖b(2)
n − b(3)

n ‖L2(−r,r) ≤ ηC2

(
δn=N + δn 6=N

min(|kn|)

)(
‖Fn

2 ‖L2(−r,r) + 1
kn

‖Fn
1

′‖L2(−r,r)

)
. (7.47)

Next, in order to control approximation error between (E2) and (E1), we seek to control the
dependence between the source and the solution of (E2). For every ` > 0, we define the functional
spaces

H` := H`
loc(Ω) × H`−1

loc (Ω) × H`−1
loc (Ω) × H`

loc(Ω), H`
r = H`(Ωr) × H`−1(Ωr) × H`−1(Ωr) × H`(Ωr).

(7.48)
We also introduce the mappings

T2(X,Y ) :=


∑
m>0

〈X, Ỹm〉∂xX̃m∑
m>0

〈Y , X̃m〉∂xỸm

 , (7.49)

T3(X,Y ) = h′(x)
∑
m>0

〈Y , X̃m〉
((

sm(h)
0

)
,

(
−sm(−h)

0

))
. (7.50)

Lemma 7.1. The mappings T2 and T3 are well-defined and continuous from H3
r into H2

r and from
H3

r into (H̃
3/2

(−r, r))2 respectively. There exists C3 > 0 depending on δ, hmin, hmax, R and r such
that

‖T2‖H3
r,H2

r
≤ ηC3, ‖T3‖

H3
r,(H̃

3/2
(−r,r))2

≤ ηC3. (7.51)

We can now rewrite (E2) and estimate how its solution depends on the source terms.
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Proposition 7.7. Let r > 0, g ∈ H2
r, btop, bbot ∈ H̃

3/2
(−r, r). If η < min(η1, η2), the equation

∂x

(
X
Y

)
=
(
F (Y )
G(X)

)
+ T2(X,Y ) + g +


0

−btop
2 δy=h(x) − bbot

2 δy=−h(x)
btop

1 δy=h(x) + bbot
1 δy=−h(x)

0

 , (7.52)

with boundary conditions B1(X) = B2(Y ) = 0 and X,Y outgoing has a unique solution (X,Y ) ∈
H3. Moreover, the operator

Γ2 : H2
r × (H̃

3/2
(−r, r))2 → H3

r

(g, btop, bbot) 7→ (X,Y )
, (7.53)

where (X,Y ) is the solution of (7.52) is well-defined, continuous and there exists a constant C4 > 0
depending on δ, hmin, hmax, R and r such that

‖(X,Y )‖H3
r

≤ C4

(
‖g‖H2

r
+ ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
. (7.54)

Finally, we can now justify the approximation of (E1) by (E2) which is again a Born approxi-
mation:

Proposition 7.8 (Born approximation (E1)/(E2)). Let r > 0, f ∈ H1(Ωr) and btop, bbot ∈
H̃

3/2
(−r, r). There exists η3 > 0 such that if η < η3 the equation (E1) has a unique solution

(X(1),Y (1)) ∈ H3
loc(Ω). In addition, if (X(2),Y (2)) is the solution of (E2), there exists C4 > 0

depending on δ, hmin, hmax, R and r such that

‖(X(1),Y (1)) − (X(2),Y (2))‖H3
r

≤ ηC4

(
‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
. (7.55)

To conclude the proof of Theorem 7.1, we combine all the previous results. Using Young’s
inequality for integral operators, inequalities (7.40), (7.41) and the fact that ‖Jn/kn‖W1,1(R) < ∞,
we see that there exists C5 > 0 such that for every n > 0,

‖(a(3)
n , b(3)

n ) − (aapp
n , bapp

n )‖L2(−r,r) ≤ ηC5

(
δn=N + δn 6=N

min(|kn|)

)
(1 + Jn)

×
(

‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
.

Following the work already done in Appendix 7.C, we set (u(3),u(3)) =
∑

(a(3)
n ũn, b

(3)
n ṽn) and

(u(2),v(2)) =
∑

(a(2)
n ũn, b

(2)
n ṽn) and there exist constants C6, C7 > 0 such that

‖(u(3),v(3)) − (uapp,vapp)‖L2(Ωr) ≤ C6

(
‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
,

‖(u(2),v(2)) − (u(3),v(3))‖L2(Ωr) ≤ C7

(
‖f‖H1(R) + ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
,

We conclude by using Proposition (7.6) and Proposition (7.8).
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7.3.2 The Transverse case
We now move to the study of transverse critical points. Again we assume that the profile h of
the waveguide is an increasing function and that there is a unique locally resonant mode N ∈ N∗

associated with a critical point x?.
In the transverse case, the dispersion relations are very similar to those presented in Figure 7.3

where the wavenumber kN switches from a real number to a purely imaginary one. Again, the Lamb
basis needs to be modified in order to remain complete at the critical point. As in the longitudinal
case, we dwell on the method presented in [81]. We introduce the modified Lamb modes

X̃n := Xn

kn
, Ỹn := knYn

Jn
, (7.56)

which form a complete family even at the transverse critical point:

Proposition 7.9. The modified Lamb modes (X̃n)n>0 (resp. (Ỹn)n>0) are well-defined and form a
complete set of functions in H1(−h(x), h(x))×L2(−h(x), h(x)) for every x ∈ R (resp. L2(−h(x), h(x))×
H1(−h(x), h(x))).

Proof. The proof is similar to the one of Proposition 7.4, we only need to modify the study of the
behavior of ỸN and X̃N around the locally resonant point:

| sin(qh)| ∼ 4k2
Np

? tan(p?h?)
(q?)3 , JN (h) ∼ −32ik3

Nω
2 (p?)2 sin(p?h?)3 cos(p?h?)

(q?)4 ,

kN YN

JN
∼ ip?(q?)3

16ω2 cos(p?h?)2 sin(p?h?)2

×
(

2λ(p?)2 cos(q?h?) cos(p?y) − 2µ(q?)2 cos(p?h?) cos(q?y)
−2p? cos(q?h?) sin(p?y) − cos(p?h?) sin(q?y)

)
,

XN

kN
∼ 2ip?q? sin(p?h?)

(
− cos(q?y)
µq? sin(q?y)

)
.

Reversing the roles of X̃n and Ỹn, one concludes as in Proposition 7.4.

The modified Lamb basis functions are continuous with respect to x, and we can now decompose
continuously the wavefield u for every x ∈ R as

X(x, y) =
∑
n>0

an(x)X̃n(x, y), Y (x, y) =
∑
n>0

bn(x)Ỹn(x, y), (7.57)

where the coefficients an and bn are given by

an = 〈X, Ỹn〉, bn = 〈Y , X̃n〉. (7.58)

Next, we follow the steps of section 7.3.1.b. We project equation (7.8) on each mode, as in [81],
and after neglecting all the terms depending on h′, we obtain the equations

∀n > 0


a′

n = i
k3

n

Jn
bn − knF

n
2 ,

b′
n = i

Jn

kn
an + Jn

kn
Fn

1 ,

an, bn are outgoing.

(7.59)
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Since k3
n/Jn is bounded and tends to zero when n increases while Jn/kn blows up when n increases,

we work with the equation on an. After taking its derivative, we neglect the contribution of (k3
n/Jn)′

and the equation becomes 
a′

n = ik3
n

Jn
bn − knF

n
2 ,

a′′
n + k2

nan = ik2
nF

n
1 − (knF

n
2 )′,

an, bn are outgoing.
(7.60)

The second of these equations only involves an, and we can solve it using Gapp
n . Following the same

steps as in section 7.3.1.c, we can justify all the approximations and perform the same analysis as
in the longitudinal case:
Theorem 7.2. The statement of Theorem 7.1 remains true in the transverse case replacing the
expressions of aapp

n and bapp
n by

aapp
n (x) = 1

kn(x)

∫
R
Gapp

n (x, s)((knF
n
2 )′(s) − ikn(s)2Fn

1 (s))ds, (7.61)

bapp
n (x) = −i 1

kn(x)2

∫
R
∂xG

app
n (x, s)((knF

n
2 )′(s) − ikn(s)2Fn

1 (s))ds− i
Fn

2 (x)
kn(x)2 . (7.62)

We observe that the behavior of the solution is similar to that near the longitudinal critical
points, provided that we exchange aapp

n and bapp
n . We illustrate this Theorem in Figure 7.5, where we

compare our approximation uapp with a finite element method generated wavefield u, as explained
in section 7.5.

−6 −4 −2 0 2 4 6
−0.1

0

0.1
|u|

0
100
200
300

−6 −4 −2 0 2 4 6
−0.1

0

0.1
|v|

0
20
40
60
80

Figure 7.5 – Representation of a wavefield u generated a using finite element method described in section 7.5. On the
top, we represent |u| and on the bottom |v|. The relative error of the approximation between u and uapp is

‖u − uapp‖L2/‖u‖L2 = 6.58%. We recognize in these pictures the Airy function and its derivative added to propagative
exponentials. Here, we have ω = 15.65, h is defined in (7.104), f2 = 0, btop = bbot = 0 and f1(x, y) = δ5(x)u5(y).

7.3.3 The ZGV case
After studying longitudinal and transverse critical points, we now consider propagation near the
ZGV critical points. This study is a little bit different than the one presented before. As was
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noted in [81], the construction of a modified complete family of modes is more complex than is the
longitudinal and transverse cases. We propose a solution below.

We present solutions of the symmetric Rayleigh-Lamb dispersion relation near a ZGV critical
point in Figure 7.6. Contrarily to the previous cases, we need to deal with the junction of eight
different branches instead of four (or if we work only with right-going modes, with four branches
instead of two). In this example, two real wavenumbers switch to two complex ones. This is
the configuration that we study in detail, and which will be used in section 7.4 to reconstruct
geometrical defects in the waveguide (see also [11]). However, as shown in Figure 7.2, ZGV points
may also appear as transitions between evanescent and inhomogeneous waves. Our analysis would
apply to this case as well.

−0.20
0.2−1.4 −1.05 −0.7 −0.35 0 0.35 0.7 1.05 1.4

1.3

1.31

1.32

1.33

1.34

1.35

Imag(k(x))h(x)Real(k(x))h(x)

ω
h

(x
)

propagative inhomogeneous ZGV

Figure 7.6 – Solutions of the symmetric Rayleigh-Lamb equation (7.14) with µ = 0.25 and λ = 0.31. Propagative and
inhomogeneous branches merge at the ZGV critical point.

Without loss of generality, we may assume that the modes 1 and 2 collapse at the ZGV critical
point. The index 1 is used for the mode satisfying Re(k1) > 0 while the index 2 designates the
mode satisfying Re(k2) < 0. We introduce

X̃1 = X1 − X2

2 , Ỹ1 = Y1 + Y2

2 , X̃2 = X1 + X2

2J1
, Ỹ2 = Y1 − Y2

2J1
, (7.63)

while for all n 6= 1, 2 we set (X̃n, Ỹn) = (Xn,Yn). These modified Lamb modes form a complete
family even at the ZGV critical point:

Proposition 7.10. The modified Lamb modes (X̃n)n>0 (resp. (Ỹn)n>0) are well-defined and form
a complete set of H1(−h(x), h(x)) × L2(−h(x), h(x)) (resp. L2(−h(x), h(x)) × H1(−h(x), h(x))) for
every x ∈ R.

Proof. The proof is similar to that of Proposition 7.4, except for the study of the behavior around
x?. We assume that the mode is symmetric (the antisymmetric case could be treated similarly) and
we know from [56, 91, 85] that k1(x?) = −k2(x?) := k0. We also denote by h0 = h(x?), p0 = p(x?),
q0 = q(x?) and ω0 = ω × h0. We set X0(y) = X1(x?, y) = −X2(x?, y) and Y0(y) = Y1(x?, y) =
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Y2(x?, y). Looking at the dispersion relation (7.14), also illustrated in Figure 7.2, we notice that
changing the width h when the frequency ω is fixed is equivalent to changing the frequency ω when
the width h is fixed. We use this idea, detailed in [85], and work at fixed width h0 while ω varies
with respect to k to simplify all the following asymptotic comparisons when k1 → k0 and k2 → −k0.
It is shown in [85] that there exists D > 0 such that

ω(k1) ∼ ω? +D(k1 − k0)2, ω(k2) ∼ ω? +D(k2 + k0)2. (7.64)

It follows that

X1(y) ∼ X0(y) + i(k1 − k0)Xg(y), Y1(y) ∼ Y0(y) + (k1 − k0)Yg(y),

where expressions of Xg and Yg are given in Appendix 7.E. Similarly,

X2(y) ∼ −X0(y) + i(k2 + k0)Xg(y), Y1(y) ∼ Y0(y) − (k2 + k0)Yg(y),

and that there exists a constant c 6= 0 such that J1 ∼ (k1 − k0)c and J2 ∼ (k2 + k0)c. Using the
development (7.64), we notice that when x → x?,

k1(x) ∼ k0 +
√
h(x) − h0

√
ω√
D
, k2(x) ∼ −k0 +

√
h(x) − h0

√
ω√
D
.

This implies in particular that k1−k0 ∼ k2+k0, which leads to the comparisons X̃1 ∼ X0, Ỹ1 ∼ Y0,
X̃2 ∼ Xg/c and Ỹ2 ∼ Yg/c when x → x?, proving that the new modes are well defined. Using the
characterization of generalized Lamb modes in Theorem 3.1 of Chapter 3, it follows that (Xg,Yg)
is a generalized mode, and we conclude that the (X̃n)’s and the (Ỹn)’s family form a complete set
of functions even at the critical ZGV frequency.

The new modified Lamb basis are continuous with respect to x, and we can now decompose the
wavefield u for every x ∈ R as

X(x, y) =
∑
n>0

an(x)X̃n(x, y), Y (x, y) =
∑
n>0

bn(x)Ỹn(x, y). (7.65)

To compute the coefficients an and bn, we introduce the new variables

Z1 = Y1

J1
− Y2

J2
, Z2 = Y1 + J1

J2
Y2, Z3 = X1

J1
+ X2

J2
, Z4 = X1 − J1

J2
X2, (7.66)

and we notice that

a1 = 〈X,Z1〉, a2 = 〈X,Z2〉, ∀n > 2 an = 1
Jn

〈X, Ỹn〉. (7.67)

b1 = 〈Y ,Z3〉, b2 = 〈X,Z4〉, ∀n > 2 bn = 1
Jn

〈Y , X̃n〉. (7.68)

We may then follow the same steps as in section 7.3.1.b. Denoting

k0 = k1 − k2

2 , kg = k1 + k2

2 , (7.69)

we project equation (7.8) on each mode, as in [81], and neglecting all the terms depending on h′,
we find

∀n > 2

 a′
n = iknbn − Fn

2 ,
b′

n = iknan + Fn
1 ,

an, bn are outgoing,
(7.70)
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
a′

1 = b1ik0 + b2i
kg

J1
+ F 2

2 − F 1
2 ,

a′
2 = b1iJ1kg + b2ik0 − J1F

2
2 − J1F

1
2 ,

b′
1 = a1ik0 + a2i

kg

J1
+ F 2

1 + F 1
1 ,

b′
2 = a1iJ1kg + a2ik0 − J1F

2
1 + J1F

1
1 ,

(7.71)

where Fn
1 and Fn

2 are defined in (7.31) and (7.30). The set of equations for n > 2 is easily solved
by taking derivatives and expressing the solutions to the resulting second order ODEs using the
approximation Green function Gapp

n . To solve the equations on modes 1 and 2, we introduce the
auxiliary coefficients

c1(x) = (a1(x) + b1(x)) exp
(

−i
∫ x

x?

k0

)
, c2 = (a2(x) + b2(x)) exp

(
−i
∫ x

x?

k0

)
, (7.72)

d1(x) = (a1(x) − b1(x)) exp
(
i

∫ x

x?

k0

)
, d2 = (a2(x) − b2(x)) exp

(
i

∫ x

x?

k0

)
, (7.73)

which yields 

c′
1 = i

kg

J1
c2 + (−F 2

2 − F 1
2 + F 2

1 + F 1
1 )e−i

∫
k0 ,

c′
2 = ikgJ1c1 + J1(−F 2

2 + F 1
2 + F 2

1 − F 1
1 )e−i

∫
k0 ,

d′
1 = −ikg

J1
d2 − (F 2

2 + F 1
2 + F 2

1 + F 1
1 )ei

∫
k0 ,

d′
2 = −ikgJ1d1 + J1(−F 2

2 + F 1
2 − F 2

1 + F 1
1 )ei

∫
k0

(7.74)

We notice that equations on modes 1 and 2 are different: while kg/J1 is bounded in W1,1(R),
the first derivative of J1kg blows up. This difference of behavior encourages us to privilege the
equations on c1 and d1. By deriving them and neglecting the contribution of (kg/J1)′, we nearly
recover to the framework developed in the previous sections. We just have to check that c1 and d1
are outgoing. By definition of the new Lamb basis, we already know that

a′
1 + a′

2
J1

− ik1a1 − ik1
a2

J1
−→

x→+∞
0, −a′

1 + a′
2
J1

+ ik2a1 − ik2
a2

J1
−→

x→+∞
0,

b′
1 + b′

2
J1

− ik1b1 − ik1
b2

J1
−→

x→+∞
0, b′

1 − b′
2
J1

− ik2b1 + ik2
b2

J1
−→

x→+∞
0.

It follows that

c′
2 + ik0c2 − ikgc2 − ik0J1c1 −→

x→+∞
0, d′

2 − ik0d2 − ikgd2 − ik0J1d1 −→
x→+∞

0.

Using equation (7.74), we can express c2 and d2 using c1 and d1, and it proves that c1 and d1 are
outgoing and can be approximated using the Green function Gapp

n . Following the same steps as
in section 7.3.1.c, we can justify all the approximations and perform the same analysis as in the
longitudinal and transverse case. We define the sign function by

χs(x) := |x− s|
x− s

. (7.75)
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Theorem 7.3. The statement of Theorem 7.1 remains true in the zero-velocity group case, replacing
the expression of uapp by uapp(x, y) =

∑
(aapp

n (x)ũn(x, y), bapp
n (x)ṽn(x, y)) where

∀n > 2 aapp
n (x) =

∫
R
Gapp

n (x, s)(Fn
2

′(s) − ikn(s)Fn
1 (s))ds, (7.76)

∀n > 2 bapp
n (x) =

∫
R
Gapp

n (x, s)(ikn(s)Fn
2 (s) − Fn

1
′(s))ds, (7.77)

aapp
1 (x) =

∫
R

[
(α(s) + θ(s)χs(x)) ei

∣∣∫ x

s
k0

∣∣
+ (β(s) + γ(s)χs(x)) e−i

∣∣∫ x

s
k0

∣∣]
Gapp

g (x, s)ds, (7.78)

aapp
2 (x) =

∫
R

[
(α(s)χs(x) + θ(s)) ei

∣∣∫ x

s
k0

∣∣
− (β(s)χs(x) + γ(s)) e−i

∣∣∫ x

s
k0

∣∣]
∂xG

app
g (x, s) J1(x)

ikg(x)ds,

(7.79)

bapp
1 (x) =

∫
R

[
(α(s)χs(x) + θ(s)) ei

∣∣∫ x

s
k0

∣∣
− (χs(x)β(s) + γ(s)) e−i

∣∣∫ x

s
k0

∣∣]
Gapp

g (x, s)ds, (7.80)

bapp
2 (x) =

∫
R

[
(α(s) + θ(s)χs(x)) ei

∣∣∫ x

s
k0

∣∣
+ (β(s) + γ(s)χs(x)) e−i

∣∣∫ x

s
k0

∣∣]
∂xG

app
g (x, s) J1(x)

ikg(x)ds,

(7.81)
with

α = F 1
1 + F 2

1
2Gapp

g
+ ikg(F 2

1 − F 1
1 ), β = −F 2

1 + F 1
1

2Gapp
g

+ ikg(F 2
1 − F 1

1 ), (7.82)

θ = F 2
2 − F 1

2
2Gapp

g
+ ikg(F 2

2 + F 1
2 ), γ = F 2

2 − F 1
2

2Gapp
g

− ikg(F 2
2 + F 1

2 ). (7.83)

We illustrate this Theorem in Figure 7.7, where we compare our approximation uapp with a
wavefield u obtained by a finite element method, as explained in section 7.5.

We notice that these expressions are very similar those proposed in [82], which, along with
the numerical simulations proposed in Figure 7.7, confirm our result. The main contribution of
this theorem compared the result stated in [82] is to give an approximation of the wavefield for
any source that generated it. Moreover, we provide a global approximation valid along the whole
waveguide, while the one proposed in [82] only concerns a neighborhood of x?. Finally, we formally
control the error of approximation and justify the existence of the solution in a slowly perturbed
waveguide.

To conclude this section, we have provided approximations of the wavefield in slowly varying
waveguides near the three types of critical points. These results were obtained using modified
Lamb bases adapted to each critical point. Our results assume that the profile h of the waveguide
is increasing but can be easily generalized to any waveguide using the method suggested in section
4.4 of Chapter 4. Moreover, the study of each critical point has been separated. Still, one can
easily generalize it to multiple critical points by slicing the waveguide into several sections, using
the appropriate theorem on each section, and then connecting solutions at the junction as in Chapter
4.
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−6 −4 −2 0 2 4 6
−0.1

0

0.1
|u|

0

2,000

4,000

−6 −4 −2 0 2 4 6
−0.1

0

0.1
|v|

0

2,000

4,000

Figure 7.7 – Representation of a wavefield u generated using a finite element method described in section 7.5. On the
top, we represent |u| and on the bottom |v|. The relative approximation error between u and uapp is

‖u − uapp‖L2/‖u‖L2 = 9.3%. We recognize in these pictures the Airy function multiplied by an exponential function.
Here, we have ω = 13.24, h is defined in (7.104), f2 = 0, btop = bbot = 0 and f1(x, y) = δ5(x)u2(y).

7.4 Reconstruction of shape defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After studying the propagation of waves in slowly varying waveguides, we present a method to
recover the profile h using surface measurements of the wavefield at locally resonant frequencies.
This method is the adaptation of that already developed in the acoustic case in Chapter 5. It makes
use of locally resonant frequencies to recover the associated position of the locally resonant points
x?, from which the values of h(x?) is deduced. From now on, we assume that we have access to the
surface measurements

u(x, h(x)) ∀ω > 0, ∀x ∈ R. (7.84)

We focus here on the reconstruction of the shape of h on supp(h′), assuming a priori knowledge
of the constants hmin and hmax and of an interval containing supp(h′). Appendix 5.A of Chapter 5
describes how such numerical approximations can be found in the acoustic case, and this method
is still valid in the elastic case and can be used similarly.

Our reconstruction method is based on the use of locally resonant modes to recover x?. To
underline its dependency on ω, we denote it x?

ω. We know that x?
ω is a locally resonant point,

meaning that ω ∈ ω
h(x?)
crit . As mentioned in section 7.2

ω ∈ ω
h(x?)
crit ⇔ ω ∈ ω1

crit × h(x?), (7.85)

where ω1
crit is defined as the set of critical frequencies at width 1. Even if the elements of ω1

crit
do not have any explicit expression, we can find extremely good approximations using numerical
solvers to look for solutions of the Rayleigh Lamb equation satisfying ΓS = 0 or ΓA = 0 (see [79]).
Given a locally resonant frequency ω, it gives us an extremely precise approximation of h(x?):

h(x?) ≈ (ω1
crit)j

ω
, (7.86)
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where j > 0 stands for the index of the critical point we are working on.
The first part of this section briefly explains how the locally resonant part of the wavefield,

denoted by dres, can be extracted from the surface measurements. This resonant part is expressed
using the Green function Gapp

n , which depends on x?
ω through the function ξ defined in (7.32).

However, this dependency is very complicated and hardly usable to find an explicit link between
the data and x?

ω. In the second part, we approximate of the locally resonant modes using a three-
parameter model function

dapp
z,a,x?

ω
: x 7→ zA(a(x?

ω − x)), (7.87)
where z ∈ C∗ is a complex amplitude, a > 0 is a scaling factor, and x?

ω is the locally resonant point,
playing the role of a longitudinal shift. This model function is then used to recover x?

ω in a stable
way.

7.4.1 Filtering of data
Given measurements of the whole wavefield u(x, h(x)) at a locally resonant frequency ω, we want
to extract the part carried by the locally resonant modes. Looking at the results of Theorems 7.1,
7.2 and 7.3, we notice that evanescent and inhomogeneous modes vanish away from the source,
meaning that their contribution in u(x, h(x)) is negligible. As for propagative modes, we notice
that kn(x) is almost constant since the waveguide varies slowly. Using the expression of Gapp

n given
in (7.35), we see that the propagative modes are oscillating with a frequency almost equal to kn.

As mentioned in section 5.4 of Chapter 5, since

∀n > 0 Gapp
n = O

(
1

min(|kn|)

)
, (7.88)

the amplitude of propagative modes is negligible compared to the amplitude of a locally resonant
one if each Fn

1 and Fn
2 are of comparable amplitude. In this case, one can assume that only the

locally resonant mode contributes to u(x, h(x)) while the contributions of the other modes is burried
in the noise. However, in the general case, the amplitudes of the Fn

1 ’s and Fn
2 ’s are not always

comparable, and we cannot neglect the influence of propagative modes.
In this case, inspired by the experimental post-treatment of the wavefield carried out in [59, 58],

we filter out all spatial frequencies around kn(x) for every propagative mode n. It cleans the signal
and keeps only the locally resonant part of it. This filtering creates a negligible noise on the data
as explained in [64]. More details and illustrations on this filtering method can be found in [64]
and in Chapter 5.

7.4.2 Wavefield approximation
From now on, we assume that our data is the locally resonant part of u(x, h(x)), denoted by dres.
In the case of a longitudinal or transverse locally resonant mode denoted by N , Theorem 7.1 and
7.2 state that

dres ≈ (aapp
N (x)uN (x, h(x)), bapp

N (x)vN (x, h(x))) . (7.89)
In the ZGV case, using the notations of section 7.3.3,

dres ≈ (aapp
1 (x)ũ1(x, h(x)) + aapp

2 (x)ũ2(x, h(x)), bapp
1 (x)ṽ1(x, h(x)) + bapp

2 (x)ṽ2(x, h(x))) . (7.90)

To find an exploitable link between dres and x?
ω, we consider the Taylor expansions of these ap-

proximations following the steps of section 5.3 in Chapter 5. For R > 0, we define the interval

ΓR(x?
ω) := (x?

ω −R, x?
ω +R),
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and we assume from now on that the sources are located to the right of this interval. Moreover,
we assume in the longitudinal and transverse cases that FN

2 , FN
1 6= 0, and in the ZGV case that

F 1
1 , F

2
1 , F

1
2 , F

2
2 6= 0. Then, we can prove the following proposition:

Proposition 7.11. Let r > 0 and h satisfying assumption 7.1. Assume that at the frequency ω > 0,
there exists a unique locally resonant point x?

ω satisfying h′(x?
k) ≥ θη for some θ > 0. Then there

exist η0 > 0 and C1 > 0 depending only on hmin, hmax, θ and r such that

• In the longitudinal case,

‖dres
2 − dapp

z,a,x?
k
‖L2(Γ

rη−1/3 (x?
ω)) ≤ C1η

1/3. (7.91)

• In the transverse case,

‖dres
1 − dapp

z,a,x?
k
‖L2(Γ

rη−1/3 (x?
ω)) ≤ C1η

1/3. (7.92)

• In the ZGV case,∥∥∥∥∣∣∣∣ dres
1

un(x?
ω, h(x?

ω)) + dex
2

vn(x?
ω, h(x?

ω))

∣∣∣∣−
∣∣∣dapp

z,a,x?
k

∣∣∣∥∥∥∥
L2(Γ

rη−1/3 (x?
ω))

≤ C1η
1/6, (7.93)

for some z ∈ C and a > 0 depending on the source terms.

Remark 7.4. Here, the interval ΓR(x?
ω) is resized with R = rη−1/3 to keep the same accessible

window of the Airy function for any choice of η. More details are provided in Chapter 5.

Proof. In the longitudinal and transverse cases, the Taylor expansions of aN and bN are exactly the
same as in the acoustic case presented in Proposition 5.2 of Chapter 5. Using the Taylor expansions
of uN and vN presented in the proofs of Propositions 7.4 and 7.9 yields the result. As for the ZGV
case, we use the Taylor expansion of Gapp

n presented in Proposition 5.1 of Chapter 5. Expanding
also ∂xG

app
n , we notice that

‖∂xG
app
n ‖L∞(Γ

rη−1/3 (x?
ω)) = O(η1/3), ‖∂xG

app
n ‖L2(Γ

rη−1/3 (x?
ω)) = O(η1/6),

which shows that the components aapp
2 and bapp

2 can be included in the error term. Since the sources
are located to the right of the zone of measurements, we know that χs(x) = −1. Using expressions
(7.78) and (7.80), there exists a function g such that

aapp
1 (x) + bapp

1 (x) = e
i
∫ x

0
k0

∫
R
g(s)Gapp

g (x, s)ds.

By taking the absolute value, we eliminate the phase shift and cast this expression in the framework
of Proposition 5.2 of Chapter 5. We conclude using the Taylor expansions of u1, v1, u2, v2 presented
in the proof of Proposition 7.10.

Note that in the ZGV case, we have full knowledge of un(x?
ω, h(x?

ω)) and vn(x?
ω, h(x?

ω)) since we
can determine ω and h(x?

ω) using (7.86).
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7.4.3 A stable reconstruction of x?ω

Using the previous approximations of measurements, we are now back to the same framework as in
the acoustic case, and we can use the stable algorithm already presented there to recover x?

ω from
dapp

z,a,x?
ω

. Given a discretization X of the interval Γrη−1/3(x?
ω), we recover the three parameters z, a

and x?
ω by minimizing the function

(z, a, x?
ω) 7→ ‖d− dapp

z,a,x?
ω

(X)‖2, (7.94)

with a gradient descent algorithm where d stands for dres
1 , dres

2 or dres
1 /un(x?

ω, h(x?
ω))+dres

2 /vn(x?
ω, h(x?

ω))
depending on the nature of the critical point. Proposition 5.3 of Chapter 5 shows that if the noise
on the data is small enough, the algorithm converges and gives a good approximation of x?

ω, which
we thereafter denote by x?,app

ω . Then, we approximate the width at x?,app
ω by

happ(x?,app
ω ) = (ω1

crit)j

ω
. (7.95)

This provides an approximation of h in one point. Then, we sweep through a range of frequencies
to get approximations of h all along the support of h′. Using the approximations of hmin and hmax
provided by Appendix 5.A of Chapter 5, we set

ωmax = (ω1
crit)j

hmin
, ωmin = (ω1

crit)j

hmax
, (7.96)

and we take a set of locally resonant frequencies W ⊂ (ωmin, ωmax). For every frequency ω ∈ W , we
introduce Xω a discretization of Γrη−1/3(x?

ω) and we measure dres, the resonant part of u(x, h(x)),
with a small noise denoted by ζω. We introduce X?,app the set of all x?,app

ω , and we assume that
card(X?,app) = card(W ). If we set supp(h′) = (x0, xn+1) the known approximation of the support
determined as in Appendix 5.A of Chapter 5, the function happ is then defined as the piecewise
linear function such that

happ(x?,app
ω ) = (ω1

crit)j

ω
∀ω ∈ W, happ(x0) = hmin, happ(xn+1) = hmax. (7.97)

We can quantify the error of reconstruction between happ and h:

Theorem 7.4. Let W be a subset of (ωmin, ωmax). If for every ω ∈ K, h′(x?
ω) ≥ θη for some θ > 0,

then there exists η1 > 0, Z > 0, C2 > 0 depending on hmin, hmax, θ and r such that

‖happ(X?,app) − h(X?,app)‖∞ ≤ ηC2

(
C1η

1/3 + max
k∈K

‖ζk‖2

)
, (7.98)

for all η < η1 and max
ω∈W

‖ζω‖2 ≤ Z.

Proof. The proof is similar to that of Theorem 5.2.

To conclude, we have provided here a stable reconstruction of the profile of slowly varying elastic
waveguides using the recovery of the locally resonant points x?

ω of locally resonant frequencies. This
method can be used in a very general framework as it does not require any a priori assumption on
the sources except compact support, as long as their locally resonant parts do not vanish.

Note that in this section, we chose to reconstruct x?
ω using the component of the wavefield, which

is convoluted with Gapp
n . However, in the longitudinal and transverse case, we could have used the

other component convoluted with ∂xG
app
n to fit the derivative of an Airy function instead of an

Airy function. This could be useful if only one component on the wavefield is available.
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7.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we show numerical applications of our reconstruction method of the profile of
slowly varying elastic waveguides. We simulate surface measurements using numerically generated
data, and we provide reconstructions of increasing and non monotonous profiles of waveguides with
different shapes, using the three types of locally resonant frequencies. .

7.5.1 Generation of the data
In the following, numerical solutions of (7.25) are generated using the software Matlab with which
the equations of elasticity are solved in the waveguide Ω. In each numerical simulation, we assume
that h′ is supported between x = −7 and x = 7. To generate the solution u of (7.25) in Ω7, we
use a self-coded finite element method and a perfectly matched layer (PML) [18] on the left side
of the waveguide, between x = −15 and x = −8, and on the right side between x = 8 and x = 15.
Since PML’s do not correctly handle the presence of right-going propagating modes with negative
wavenumbers, we use the strategy presented in [21] to correct the PML’s in order to obtain a true
approximation of the wavefield for every non critical frequency. The coefficient of absorption for
the perfectly matched layer is set to be α = −k((x− 8)1x≥8 − (x+ 8)1x≤−8) and ω2 is replaced in
the Helmholtz equation with ω2 + iα. The structured mesh is built with a stepsize of 10−3.

7.5.2 Method of reconstruction
We summarize the steps of the reconstruction. These steps are adapted from Chapter 5 and more
details on the computations can be found there.

1. Determine an approximation of supp(h′), ωmin and ωmax using the method described at the
beginning of Appendix 5.A.

2. Choose a set of frequencies W ⊂ (ωmin, ωmax) and sources f , btop, bbot. Then, for every
frequency, measure the wavefield u(x, h(x)) solution of (7.25).

3. Filter the data by eliminating the Fourier transform responses near kn for every propagative
mode n to obtain dres.

4. Compute the available data d depending on the nature of the chosen critical point as explained
in Proposition 7.11.

5. For every frequency, minimize the quantity ‖d−dapp
z,a,x?

ω
‖2 using a gradient descent to find the

approximation x?,app
ω of x?

ω.

6. Compute happ from expression (7.97).

7.5.3 Numerical results
We now apply this method to reconstruct a few specific profiles of slowly varying waveguides. In
Figure 7.8, we present two reconstructions of the profiles defined by

h1(x) = 0.1 + γ1x
31−4≤x≤4 + γ21x>4 − γ21x<−4, (7.99)

h2(x) = 0.1 + γ3 sin
( π

10(x+ 5)
)

1−5≤x≤5, (7.100)
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where γ1 = 2.08.10−5, γ2 = 0.0013 and γ3 = 25.10−4. The profile h1 is increasing while h2
represents a dilation of the waveguide. The sources in (7.25) are defined depending on the nature
of the critical point by

f = 0, bbot = 0, btop,(1) = (δζ5(x), 0), btop,(2) =
{

(δ0(x), 0) if χ = 1,
(δ−5(x) + δ5(x), 0) if χ = −1.

(7.101)
We recall that χ = 1 if the critical point is normal and χ = −1 if it is abnormal (see Figure 7.2).
The sets of used frequencies are

WL1 = 13.96 : 14.32 : 30, WT 1 = 15.51 : 15.9 : 30, WZGV 1 = 13.09 : 13.43 : 30, (7.102)

WL2 = 14.07 : 14.13 : 30, WT 2 = 15.63 : 15.69 : 30, WZGV 2 = 13.2 : 13.26 : 30. (7.103)
We plot in Figure 7.8 the reconstructions happ obtained for every critical point. We also compute
the L∞ relative reconstruction error in each situation. We notice that each reconstruction seems to
fit very well the defect, even if the ZGV one seems more precise than the others, especially around
the corners of h1 and h2.

−6 −4 −2 0 2 4 6

9.9

10

10.1

·10−2

x

h1
L: happ, error 2.8%
T: happ, error 2.9%
ZGV: happ, error 1.7%

−6 −4 −2 0 2 4 610

10.02

10.04

·10−2

h2
L: happ, error 6.5%
T: happ, error 5.2%
ZGV: happ, error 3.6%

Figure 7.8 – Reconstruction of two varying profiles. In black, the initial shapes of h1 and h2 defined in (7.99) and
(7.100). In blue, red and olive, the reconstructions happ obtained with longitudinal, transverse and zero-group velocity

frequencies. In each case, the set of used frequencies are defined in (7.102) and (7.103) and sources of (7.25) are defined
in (7.101). We also print the relative error of the reconstruction ‖h− happ‖∞/‖h‖∞.

We investigate in Table 7.1 the quality of the reconstruction given different profiles with increas-
ing values of η. We notice that the ZGV numerical reconstructions seems more robust than the L
and T ones.
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η 9.10−4 3.10−3 7.10−3 1.10−2

L, ‖h− happ‖∞/‖h‖∞ 2.8% 7.6% 13.2% 23.4%
T, ‖h− happ‖∞/‖h‖∞ 2.9% 5.3% 10.2% 17.4%

ZGV, ‖h− happ‖∞/‖h‖∞ 1.7% 2.3% 5.7% 8.2%

Table 7.1 – Relative L∞ errors on the reconstruction of h for increasing values of η. In each case, the width profile is
defined in (7.99) and dilated to increase the value of η.

Finally, we present in Figure 7.9 two additional shape reconstructions using ZGV frequencies
with

h3(x) = 0.1 + γ5x1−4≤x≤4 + 4γ41x>4 − 4γ41x<−4, (7.104)

h4(x) = 0.1 − γ6
√

3 + 2γ6 sin
(

4π
√
x+ 5
3

)
1−3.5≤x≤4 + 2γ6 sin

(
4π

√
1.5

3

)
1x<−3.5, (7.105)

where γ4 = 53/3.10−5, γ5 = 0.01/30, and γ6 = 25.10−4. In these examples, we choose

f = 0, bbot = 0, , btop,(3) = (δ5(x), 0), btop,(4) = (δ−1.5(x) + δ6(x), 0), (7.106)

and
KZGV 3 = 13.09 : 13.43 : 30, KZGV 4 = 13.07 : 13.27 : 30. (7.107)

We notice that even for more complex defects, our reconstruction method produces great results,
with relative errors or the order of a percent.

Figure 7.9 – Reconstruction of two varying width profiles with ZGV critical frequencies. In black, the initial shape of h3
and h4 defined in (7.104) and (7.105) and in red the reconstruction slightly shifted for comparison purposes. Sources of

(7.25) are defined in (7.106) and used frequencies in (7.107). The relative reconstruction error is
‖h− happ‖∞/‖h‖∞ = 3.1% for h3 and ‖h− happ‖∞/‖h‖∞ = 1.5% for h4.

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we have extended the method for reconstructing shape defects presented in Chapter
5 to the more complex case of elastic plates. After studying the propagation of elastic wavefields near
locally resonant frequencies using modified Lamb basis, we prove that solutions can be approximated
by Airy functions as in acoustic case (Chapter 4). We use these approximations to reconstruct the
associated locally resonant points for several locally resonant frequencies, which provides a good
approximation of the profile of the waveguide.

This method enables very precise numerical reconstructions of shape defects. We noticed that
ZGV points are particularly adapted and robust and provide good reconstructions. This method

195



Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

Ch
ap

te
r7

requires little a priori information on the sources, and provides some theoretical justification of the
experimental work reported in [11]. We plan in future work to test this method on experimental
data to see if the quality of the reconstructions persists.

We believe that this work could also be generalized to three dimensional elastic plates, in view
of our results in Chapter 3.

Appendix 7.A: The Born approximation (E ′
2)/(En

3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using the operator Γ1 introduced in Proposition 7.5, equation (E′
2) can be rewritten

(a(2)
n , b(2)

n ) = Γ1(Fn
1 ,−iknF

n
2 + Fn

1
′) + Γ1(T1(a(2)

n , b(2)
n )), (7.108)

where

T1 :
L2(−r, r) → L2(−r, r)

(a(2)
n , b(2)

n ) 7→

(
0, i
(
kn

Jn

)′

a(2)
n

)
.

We notice that (
kn

Jn

)′

= h′(x)∂h

(
kn

Jn

)
,

and it follows that there exists a constant c1(n) depending on the parameters of the problem such
that

‖T1‖L2(−r,r),L2(−r,r) ≤ ηc1(n).

The application Γ1 ◦ T1 is a contraction in L2(−r, r) if

η < η2(n) :=
C1

(
δn=N + δn6=N

min(|kn|)

)
(1 + Jn)

c1(n) .

To ensure a uniform control over n, we use asymptotic approximations of kn and Jn presented in
Chapter 3. We index the subset of inhomogeneous wavenumbers with positive real part by j ∈ N?,
and all the asymptotic comparisons are now meant when j → +∞. We define N = 2n− 1/2 if kn

is associated to a symmetric mode, and N = 2j + 1/2 if kj is associated to an antisymmetric one.
Then,

∂h

(
kn

Jn

)
= O(N−4), 1 + Jn

kn
= O(N4), η2(n) = O(1).

We then define η2 = min{η2(n), n > 0}. If η < η2, the mapping Γ1 ◦ T1 is a contraction for every
n > 0 and (7.108) has a unique solution (a(2)

n , b(2)
n ) which can be expressed as a Born series (see

[32] and Chapter 2). The solution (a(3)
n , b(3)

n ) of (En
3 ) is the first term of this series, and

‖(a(2)
n , b(2)

n ) − (a(3)
n , b(3)

n )‖L2(−r,r) ≤ ‖Γ1(Fn
1 ,−iknF

n
2 + Fn

1
′)‖L2(−r,r)

η

η2 − η
.

Recalling (7.45), we can compute more precisely ‖Γ1(Fn
1 ,−iknF

n
2 +Fn

1
′)‖L2(−r,r) and conclude the

proof.
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Appendix 7.B: Control of the operators T2 and T3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For every function φ, ∂xφ = h′(x)∂hφ. If we denote by (X(0)
m ,Y (0)

m ) the Lamb basis for h = 1, it
follows from (7.14) and (7.15) that

Xm(x, y) = h(x)3X(0)
m (y/h), Ym(x, y) = h(x)3Y (0)

m (y/h),

from which we easily compute ∂hX̃m and ∂hỸm. We use the same notations for inhomogeneous
modes as in Appendix 7.A. The asymptotic comparisons provided in Chapter 3 show that there
exists a constant d1 > 0 such that ∂hũj ∼ d1tj and ∂hṽj ∼ d1sj . It follows that when M → +∞,∑

m>M

〈X, Ỹm〉∂hũm ∼ d1
∑

m>M

〈X, Ỹm〉t̃m,
∑

m>M

〈Y , X̃m〉∂hṽm ∼ d1
∑

m>M

〈Y , X̃m〉s̃m,

proving that there exists a constant d2 > 0 such that∥∥∥∥∥∑
m>0

〈X, Ỹm〉∂hũm

∥∥∥∥∥
H2(Ωr)

≤ d2

∥∥∥∥∥∑
m>0

〈X, Ỹm〉t̃m

∥∥∥∥∥
H2(Ωr)

= d2‖t‖H2(Ωr) ≤ d2‖(X,Y )‖H3
r
.

Similarly, there exists d3 > 0 such that∥∥∥∥∥∑
m>0

〈Y , X̃m〉∂hṽm

∥∥∥∥∥
H2(Ωr)

≤ d3

∥∥∥∥∥∑
m>0

〈Y , X̃m〉s̃m

∥∥∥∥∥
H2(Ωr)

= d3‖s‖H2(Ωr) ≤ d3‖(X,Y )‖H3
r
.

Next, we notice that ∂hs̃m and ∂ht̃m can be expressed as linear combinations of

∂hũm, ∂hhũm, ∂hṽm, ∂hhṽm,

which leads to the control of T2 in H2
r . To control T3, we notice that∑

m>0
〈Y , X̃m〉sm(h) = s(x, h).

Since s ∈ H2(Ωr) has a trace s(·, h) ∈ H3/2(−r, r), there exists a constant d4 > 0 such that∥∥∥∥∥∑
m>0

〈Y , X̃m〉sm(h)
∥∥∥∥∥

H3/2(−r,r)

≤ d4‖s‖H2(Ωr) ≤ d4‖(X,Y )‖H3
r
.

Appendix 7.C: Control of the operator Γ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Following [81], we project (7.52) on the modified Lamb basis to notice that each modal component
(a(2)

n , b(2)
n ) satisfies (E′

2) with

Fn
1 (x) = 1

Jn

(∫ h(x)

−h(x)
(g3(x, y)un(y) + g4(x, y)tn(y))dy + btop

1 (x)un(h) + bbot
1 (x)un(−h)

)
,

Fn
2 (x) = 1

Jn

(∫ h(x)

−h(x)
(g1(x, y)sn(y) − g2(x, y)vn(y))dy + btop

2 (x)un(h) + bbot
2 (x)un(−h)

)
.
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Invoking Proposition 7.6, there exists a unique couple (a(2)
n , b(2)

n ) of solutions to (E′
2) for every

n > 0. Moreover, using the triangular inequality, there exists c2 > 0 such that

‖a(2)
n ‖L2(−r,r) ≤ c2Jn

(
δn=N + δn 6=N

min(|kn|)

)(
‖(Fn

1 , F
n
2 )‖L2(−r,r) + 1

kn
‖Fn

1
′‖L2(−r,r)

)
,

‖b(2)
n ‖L2(−r,r) ≤ c2

(
δn=N + δn 6=N

min(|kn|)

)(
‖Fn

2 ‖L2(−r,r) + 1
kn

‖Fn
1

′‖L2(−r,r)

)
.

We need to ensure that (X,Y ) =
∑

(a(2)
n X̃n, b

(2)
n Ỹn) is well defined. To this end, we adapt the

proof of Theorem 3.2 to control the decay of the modes. It is shown in [91] that only a finite set E of
modes are evanescent, propagative or locally resonant. We use the same notations as in Appendix
7.A to denote by j ∈ N∗ the inhomogeneous modes. The asymptotic comparisons provided in
Chapter 3 show that there exists c3 > 0 such that

‖F j
1 ‖L2(−r,r), ‖F

j
2 ‖L2(−r,r), ‖F

j
1

′
/kj‖L2(−r,r) ≤ c3

N3

(
‖g‖H2

r
+ ‖btop‖L2(R) + ‖bbot‖L2(R)

)
. (7.109)

Triangular inequality shows that,

‖X1‖L2(Ωr) ≤
∑
n∈E

‖An‖L2(−r,r)

∥∥∥∥un

Jn

∥∥∥∥
L∞(L2(−h,h))

+ 2
∑
j∈N∗

‖Aj‖L2(−r,r)

∥∥∥∥uj

Jj

∥∥∥∥
L∞(L2(−h,h))

.

Asymptotic comparisons of uj and Jj provided in Chapter 3 show that there exists c4 > 0 such
that

‖X1‖L2(Ωr) ≤

[
c4 + 4c2c3

∑
j∈N∗

1
(2j ± 1/2) ln(2j ± 1/2)3/2

]
×
(
‖g‖H2

r
+ ‖btop‖L2(R) + ‖bbot‖L2(R)

)
.

Similarly,

‖Y2‖L2(Ωr) ≤
∑
n∈E

‖Bn‖L2(−r,r) ‖vn‖L∞(L2(−h,h)) + 2
∑
j∈N∗

‖Bj‖L2(−r,r) ‖vj‖L∞(L2(−h,h)) ,

and there exists c5 > 0 such that

‖Y2‖L2(Ωr) ≤

[
c5 + 4c2c3

∑
j∈N∗

1
(2j ± 1/2) ln(2j ± 1/2)3/2

]
×
(
‖g‖H2

r
+ ‖btop‖L2(R) + ‖bbot‖L2(R)

)
.

To conclude the proof, we invoke results on elliptical regularity [47] to deduce that there exists a
constant c6 > 0 such that

‖(X,Y )‖Hr
≤ c6

(
‖(X1,Y2)‖L2(Ωr) + ‖g‖H2

r
+ ‖btop‖H3/2(R) + ‖bbot‖H3/2(R)

)
.

Appendix 7.D: The Born approximation (E1)/(E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using the operator Γ2 introduced in Proposition 7.7, equation (E1) can be rewritten

(X(1),Y (1)) = Γ2((0,−f2, f1, 0), btop, bbot) + Γ2(T2(X(1),Y (1)), T3(X(1),Y (1))). (7.110)
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As a consequence of Appendix 7.B, the mapping Γ2 ◦ (T2, T3) is a contraction in H3
r if

η < η3 := 1
2C3C4

,

and (7.110) has a unique solution (X(1),Y (1)) ∈ H3
r which can be expressed as a Born series. The

solution of (X(2),Y (2)) of (E2) is the first term of this series, and

‖(X(1),Y (1)) − (X(2),Y (2))‖H3
r

≤ ‖Γ2((0,−f2, f1, 0), btop, bbot)‖H2
r×(H̃3/2(−r,r))2

η

η3 − η
.

Using Proposition 7.7 on Γ2((0,−f2, f1, 0), btop, bbot), we conclude the proof.

Appendix 7.E: Generalized mode at ZGV frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The asymptotic expansion of the expressions X1, X2, Y1 and Y2 given in (7.14) leads to

(Xg)1(y) = i
k0(q2

0 − k2
0)

p0
sin(q0h0) sin(p0y)y − 2ik2

0p0 sin(p0h0) sin(q0y)y

− i
(q2

0 − k2
0)k2

0
q0

h0 cos(q0h0) cos(p0y) + 2ik2
0q0h0 cos(p0h) cos(q0h)

+ i(q2
0 − k2

0) sin(q0h0) cos(p0y) − 4ik2
0 sin(q0h) cos(p0y)

− 2ip0q0 sin(p0h0) cos(q0y) + i
2k2

0q0

p0
sin(p0h) cos(q0y) + i

2k2
0p0

q0
sin(p0h) cos(q0y),

(Xg)2(y) = 2iµ(sin(p0h0) sin(q0y) − sin(q0h0) sin(p0y))
(

(q2
0 − k2

0)p0 − 4k2
0p0 − k2

0
p0

(q2
0 − k2

0)
)

+ 2ik2
0µ(q2

0 − k2
0) sin(q0h0) cos(p0y) − 2ik2

0µ(q2
0 − k2

0)p0

q0
sin(p0h0) cos(q0y)y

+ 2ik2
0(q2

0 − k2
0)p0

q0
h0 sin(p0y) cos(q0h0) − 2ik2

0(q2
0 − k2

0)h0 sin(q0y) cos(p0h0),

(Yg)1(y) = −
(

4k0((λ+ 2µ)k2
0 + λp2

0) + (q2
0 − k2

0)
(

(λ+ 2µ)k0

p0
+ 2λk0

))
sin(q0h0) cos(p0y)

+ (q2
0 − k2

0)((λ+ 2µ)k2
0 + λp2

0)
(

sin(q0h0) sin(p0y)k0

p0
y − cos(p0y) cos(q0h0)k0

q0
h0

)
+
(

4µk3
0q0

p0
+ 4µk3

0p0

q0
− 8µp0q0k0

)
sin(p0h0) cos(q0y)

− 4µp0q0k
2
0

(
sin(p0h0) sin(q0y)k0

q0
y − cos(q0y) cos(p0h0)k0

p0
h0

)
,
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(Yg)2(y) = (q2
0 − k2

0)k0 sin(q0h0) cos(p0y)y + 2k
3
0p0

q0
sin(p0h0) cos(q0y)y

− p0(q2
0 − k2

0)k0

q0
h0 cos(q0h0) sin(p0y) + 2k3

0h0 cos(p0h) sin(q0h)

+ k0

p0
(q2

0 − k2
0) sin(q0h0) sin(p0y) + 4k0 sin(q0h) sin(p0y)

+ 2k3
0

p0
sin(p0h0) sin(q0y) − 4k0p0 sin(p0h) sin(q0y),

It follows from the definition given in Theorem 3.1 that (Xg,Yg) is a generalized Lamb mode.
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In this manuscript, we have presented our main original contributions. This last Chapter sum-
marizes them and discusses their applications and limits. We also present some generalizations and
possible future works in continuation of these different researches.

8.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1.1 Summary of the results
Our work is structured into two main parts, each describing a different multi-frequency reconstruc-
tion method. The first method presented in Part I is a multi-frequency back-scattering inverse
method relying on the small size and amplitude of defects. Under such assumption, the scattering
field generated by an incident wave contains linear information about the Fourier transform of the
defect. The main difficulty of this inversion is to deal with the lack of low frequency Fourier data
due to the evanescent modes. This is the main difference with the classical back-scattering theory
used in the free space. In Chapter 2, we recover the Fourier transform using section measurements
in acoustic waveguides. Making a Born approximation and using a partial data Fourier inversion,
we develop a new reconstruction method and control its accuracy. Numerical simulations are run
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on simulated data and show excellent recoveries of inhomogeneities, geometry defects, and bends
in acoustic waveguides.

Our method’s scope is then extended to elastic waveguides in Chapter 3. After studying the
propagation of Lamb waves in regular elastic waveguides, we prove that the Born approximation
can be generalized in the elastic case. It enables us to adapt our multi-frequency method to
defects in elastic waveguides and provide a stable reconstruction of geometry defects. Again, we
run numerical reconstructions on simulated data with good reconstruction results. Along with this
chapter, we also exhibit a new mathematical framework to generalize the X/Y formulation to the
three-dimensional elastic plates.

The second part of this manuscript develops a different multi-frequency method focused on using
locally resonant frequencies to recover width defects. Chapter 4 presents a complete mathematical
study of the forward problem at these peculiar frequencies. Using Airy functions, we provide an
explicit approximation of any wavefield propagating in a waveguide with varying width and we
control this approximation.

This study of the forward problem is then used in Chapters 5 and 6 to recover width defects in
scalar waveguides. Our reconstruction method uses different locally resonant frequencies and finds
the associated locally resonant point x? to recover the local width at this coordinate. In Chapter
5, we use surface measurements and prove that they are close to Airy functions depending on three
parameters, one being x?. It provides a stable reconstruction of the waveguide’s width, illustrated
by convincing numerical reconstructions. In Chapter 6, we switch to section measurements and
demonstrate that data can be post-treated to obtain an approximation of an integral quantity
depending on x?. Then, we discretize this integral to recover the value of x?. If the width defect is
monotonous, we also provide satisfactory numerical reconstructions.

Finally, in Chapter 7, we generalize this method to elastic waveguides with varying widths. In
the elastic case, there are three types of critical points (longitudinal, transverse, and zero-group
velocity), and we provide a complete study of the forward problem like in Chapter 4 near each
critical point. Then, using surface measurements, we prove that we can recover the same type of
three-parameters Airy function as in Chapter 5, which leads to a stable reconstruction of the width.
We then compare numerical reconstructions using these three types of critical points.

8.1.2 Commentary and discussions on the results
The results and numerical simulations of the multi-frequency back-scattering method presented in
Part I are encouraging. Under the assumptions of small defects in size and amplitude, we obtain
precise reconstructions of inhomogeneities, bends, and geometry defects with relative errors of the
order of a percent with noised measured data generated independently from the inverse solver. It
is difficult to provide complete comparisons with other existing methods since the framework, the
type of defects, and the assumptions are slightly different from ours. However, we can notice that
our reconstruction results seem more precise than the one presented in [27, 34, 24] where a single
working frequency is used, especially if we compare it with the back-scattering reconstructions.
The same ascertainment holds when we compare our results with the multi-frequency method [9],
where we recover the support and the volume of the defects as well or even better depending on
the defect.

We also want to point out that this reconstruction method seems simpler to implement than
the one presented in [27, 34]: indeed, it only requires sending the first propagative mode in the
waveguide instead of all modes. Moreover, it fully uses the potential of physical measurements
collected in the temporal regime and then turned into multi-frequency measurements, as explained
in [55, 16].

Yet, this multi-frequency back-scattering method has some drawbacks as well. The more im-
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portant one is that it needs an a priori information on the defect in the waveguide. Given the
measurements of the scattered wavefield, it is not straightforward to differentiate an inhomogene-
ity, a bend, or a geometry defect and we did not prove that measurements could be used to identify
the nature of the defects. Moreover, we did not study the detection of inclusions with boundaries
or cracks in the waveguide. Therefore, our method needs to be used in cases where one looks for
specific defects. Fortunately, it is often the case in the industrial applications we had in mind where
one looks for corrosion defects [39] or structural deformations [101].

We also want to mention that since our method uses back-scattering data, the measurements are
likely to have low amplitude compared to the incident wave. It could be a problem if measurement
noises are too high or if defects are almost non-existent.

The second multi-frequency reconstruction method in Part II partially answers these last con-
cerns. Indeed, one of the great benefits of using locally resonant frequencies is that the amplitude
response is very high, even if we proved in Chapter 4 that it does not explode as initially thought.
The measurement noise is, therefore, less of a problem. Moreover, we demonstrated that even the
smallest width defect radically changes the propagation of waves at locally resonant frequencies,
enabling us to reconstruct tiny defects.

Another great benefit of this method is that it does not require many hypotheses on the source
of waves. We proved that as long as the source has a non-vanishing locally resonant component,
it is possible to retrieve the location of the locally resonant point x?. This general framework is
adapted to the non-destructive control of structures, where sources of waves are not always known
entirely, and could also be of great use in non-destructive passive monitoring.

The main weakness of this second multi-frequency reconstruction method is that it can only
reconstruct slowly varying width defects at present. Contrary to the multi-frequency method of
Part I, this method can not detect width variations where the top and the bottom of the waveguides
vary independently with functions h and g. In this situation, our method would only provide a
reconstruction of the width differential h− g. More importantly, if [82] suggests that this method
could be used to detect inhomogeneities, we did not study this situation at all in this manuscript.
The reconstruction of inhomogeneities and the generalization to non slowly varying defects are part
of the possible future works presented in the next section.

8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this last section, we present our ongoing works and future idea to expand the scope of our
multi-frequency reconstruction methods.

8.2.1 Reconstruction using experimental data
The numerical simulations presented in this manuscript were done using simulated data generated
by finite element methods and perfectly matched layers. Since these numerical tests give excellent
reconstructions of different defects even with noisy data, the next step would be to test these multi-
frequency methods on experimental data. As mentioned in the introduction, the reconstruction
method of Part I could be tested on experimental data generated at the “Laboratoire de Tribologie
et Dynamique des Systèmes” at Ecole Centrale de Lyon, in collaboration with O. Bareille. Regarding
Part II, it is designed to be applied to the experimental data available at “Institut Langevin” in
Paris in collaboration with C. Prada.

To use the data provided by experiments done at “Laboratoire de Tribologie et Dynamique des
Systèmes” [55, 54], we first need to adapt our methods. Indeed, the studied waveguide is a thin
elastic cylinder in these experiments. However, experiments suggest that torsional waves in thin
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elastic cylinders satisfy a Helmholtz equation like wavefields in acoustic waveguides. We need to
verify that this assumption is true and understand how defects in three-dimensional thin cylinders
are passed on the Helmholtz equation to apply our reconstruction method. Using the studies of
thin elastic shells done in [17, 42], we did an asymptotic analysis to approximate the problem by
a two-dimensional equation on the surface of the cylinder, depending on the mean of the defects
in the cylinder’s thickness. Decomposing the displacement wavefield as u = (ux, ur, uθ) in cylinder
coordinates, we prove that the displacement field (uθ, ux) satisfies up to a change of basis two
Helmholtz equations {

∂zzuθ + k2
1uθ = 0,

∂zzux + k2
2ux = 0, (8.1)

where k1 and k2 are modified frequencies depending on the initial frequency ω and the Lamé
coefficients of the waveguide (λ, µ). Given a source term, we can compute a good approximation of
the wavefield in thin cylinders, as illustrated in Figure 8.1.

Re(ux) Re(uθ)

Figure 8.1 – Exemple of displacement wavefields uz and uθ in a thin cylinder. Here, ω = 25, and an internal source
located at (x, θ) = (0, π/4) generates the wavefield.

Even if we have already understood the forward problem in thin cylinders, we still have some
work to do on this topic. Indeed, we have to provide control of the approximation error in our
asymptotic analysis of the cylinder. Moreover, we need to control the wavefield by the source term
in regular cylinders to prove that the Born approximation is still valid in this case. Once these
theoretical points are sorted out, the results and reconstruction method presented in Chapter 1
will apply immediately, and we will be able to test our data on experimental data obtained in
experiments [55, 54].

Less work is needed to apply the multi-frequency method developed in Part II to experimental
data obtained at Institut Langevin. Some data are already available in [58] for three-dimensional
width defects. Under certain radial symmetries, we hope that these data can be seen as measure-
ments in two-dimensional waveguides. We are currently working on these data. Otherwise, it is
possible to create slowly varying plates with width defect invariant in one direction to get real
two-dimensional data and test our method in this experimental setup.

8.2.2 Generalization in three dimensions
Instead of reconstructing only two-dimensional defects, we can also think of generalizing our locally
resonant multi-frequency inversion method to defects in three-dimensional plates or pipes. We have
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already started to study this situation in acoustic pipes. In the three-dimensional case, the main
difference lies in the modal decomposition. Instead of using eigenelements of the negative laplacian
in (0, h), we need to consider the problem in each section of the waveguide. It still gives a basis of
eigenfunctions ϕn and wavenumbers kn, but they are no longer explicit. Like in the two-dimensional
case, we have the modal decomposition u =

∑
un(x)ϕn(y, z). However, in the case of width defects,

sections of the waveguide may vary, as represented in Figure 8.2.

Figure 8.2 – Representation of a three dimensional pipe with a width defect. Three sections of the pipe are represented
in black.

Then, kn depends on the two parameters of the width defect, and the wavefield u can be de-
composed as u(x, y, z) =

∑
un(x)kn(x, y, z). We are confident that by adapting the strategy

developed in Chapter 7 for Lamb modes, we can prove that each mode un is close to the solution
of u′′

n + k2
nun = 0, which brings us back to the framework developed in Chapter 4 and 5. Using

measurements of the wavefield, it might be possible to recover the vanishing of kn. However, we no
longer have a simple link between the vanishings of kn and the parametrization of the defect. We
should get access to a part of the eigenvalues of the Laplacien of each section and recovering the
sections shape is now a classical and well studied problem [53]. Further research in this direction
might provide some results to complete our reconstruction of three-dimension pipes.

As for the study of three-dimensional plates, we can use the study done in Chapter 3 to guess
that if Born approximations are still valid, then each coefficient an of the modal decomposition
should satisfy the equation

∆2an + kn(x, y)2an = 0, (8.2)

where kn depends on the width variation h(x, y). The framework is then different, and one needs to
study this equation when kn can vanish. However, given the already high complexity of the study
made in Chapter 7 for two-dimensional elastic waveguide, we have chosen to leave this problem
aside for now.

8.2.3 Study of the Lamb modes
Some questions are also left concerning the use of Lamb modes. Chapters 3 and 7 mentioned
that every theorem proven in the elastic case needed more robust hypotheses on the source term
regularity than in the acoustic case. It is due to the fact that the Lamb basis is not orthogonal
and that there does not exist any substitution results to the Parceval equality. However, the theory
developed in [72] might provide a different approach to control the rest in the Lamb mode sum.
With some work, this theory could be used to improve the hypothesis needed on source terms in
Chapters 3 and 7.

Another open question raised by our work concerns the study of inhomogeneities in elastic
waveguides. As mentioned at the end of Chapter 3, we miss some results on Lamb modes to
reconstruct inhomogeneities. In the acoustic case, we used the recovery of

∫
f ϕn for some n < N
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to get a good approximation of the source f . However, in the elastic case, our reconstruction
method provides instead information on

∫
f um where um are all the Lamb modes associated with

a given real wavenumber k, as illustrated in Figure 8.3.

0 1 2 3 4 5 60

1

2

3

4

5

kh

ω
h

Real dispersion curves
mode um

Figure 8.3 – Real symmetric Rayleigh-Lamb dispersion curves and associated modes at a fixed wavenumber k = 4.

Completeness of (um)m>0 is established when the frequency ω is fixed [8], but completeness when
the wavenumber k is fixed is an open question up to our knowledge. Numerically, functions um

oscillate with an increasing frequency asm increases, and we guess that a result similar to the Fourier
series decay may be accurate. However, we failed to prove a completeness result or a decomposition
formula. It could be an interesting problem for specialists of the Lamb decomposition.

8.2.4 Study of discontinuous width variations

Finally, we have chosen to work in the second part of this manuscript with slowly varying waveguides
in order to apply the existing results of Olver [76, 77]. However, we notice that most of the
experiments at “Institut Langevin” are done with waveguides presenting with discontinuous steps
[29, 11]. Studying this setup would be very interesting to understand the propagation of waves
in varying-width waveguides. Some numerical tests ran in such waveguides suggest that similar
behavior may occur near locally resonant frequencies, as illustrated in Figure 8.4. We notice that
at each step, the wavefield behavior changes from an evanescent to a propagative mode like in the
slowly varying waveguide.

However, the study carried on in slowly varying waveguides can not be reproduced in this situa-
tion since the Born approximation is not valid anymore, and different modes can mix. Note that the
study of width steps is also interesting away from resonant frequencies since it was experimentally
proved in [84, 28, 59] that such waveguides could act like negative index material when the size
of the step is chosen well. Indeed, if we denote by h1 and h2 the two widths at discontinuity, a
right-going mode can propagate at a frequency ω in the width h1 and turn into a right-going mode
at the width h2 for the same frequency. Such a situation is illustrated in Figure 8.5.

206



Co
nc

lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n
Co

nc
lu
sio

n

−5 −4 −3 −2 −1 0 1 2 3 4 50

0.1

|u|

0

0.1

0.2

0.3

−5 −4 −3 −2 −1 0 1 2 3 4 50
0.1
0.2
0.3
0.4

|u|
step
source

Figure 8.4 – Numerical simulation of an acoustic wavefield propagating in a waveguide with discontinuous variations of
width. Here, the wavefield is generated by a source located at x = 1 and the frequency k = 29 is chosen such that k1 is

propagative inside the step and evanescent outside the step. On the top, we represent the wavefield in the whole
waveguide, and on the bottom, we represent the measurements at y = 0.

0 0.5 1 1.5 2 2.5 31

1.2

1.4

1.6

1.8

2

k

ω

h = 1
h = 1.3
intersection

Figure 8.5 – Real Rayleigh-Lamb symmetric dispersion curves for two different widths h = 1 (in blue) and h = 1.3 (in
red). At the intersection, these two curves intersect and the corresponding Lamb modes are left-going for h = 1 and

right-going for h = 1.3.

The study of this problem at these particular frequencies is interesting with potential fallout
in the conception of negative index materials and perfect lens, as explained in [58]. In a three-
dimensional plate, we think that the surface wavefield generated by negative Lamb modes satisfies
a propagation equation with a negative medium index. We started to look for asymptotic wavefield
developments with respect to the length of the width step inspiring of the work [22] with the Green
expansions provided in [23]. This work is still in process.
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Problèmes inverses et résonances locales
dans les guides d’ondes mécaniques irréguliers

Résumé : La détection et la reconstruction de défauts dans les guides d’ondes sont un enjeu contemporain
important pour contrôler l’état de structures diverses allant des oléoducs aux fibres optiques, en passant par
les conduits de centrales nucléaires ou les coques de navires. Cette thèse a pour but de mieux comprendre
d’un point de vue mathématique la propagation des ondes en guide d’onde, pour pouvoir ensuite proposer
des méthodes efficaces pour détecter et reconstruire avec précision d’éventuels défauts. Pour modéliser
au mieux les dispositifs expérimentaux disponibles, on choisit ici d’utiliser des ondes se propageant à des
fréquences variables et parfois voisines des fréquences de résonances. Si les fréquences sont éloignées des
résonances, on montre que la reconstruction de défaut s’apparente à de l’inversion de Fourier avec données
partielles, ce qui permet de reconstruire de manière stable la plupart des petits défauts présents dans les
guides d’ondes. Si la fréquence est proche des résonances, les équations mathématiques sont très mal posées
mais les ondes sont particulièrement sensibles aux défauts présents dans le guide. Des parallèles avec des
travaux de physique quantique permettent une approximation asymptotique formelle de ces ondes sous
forme de fonctions d’Airy lorsque le guide varie lentement. Grâce à ces approximations, on propose une
méthode précise se basant sur le profil des fonctions d’Airy pour reconstruire entièrement les défauts de
hauteur du guide.

Mots clés : guides d’ondes, problèmes inverses, contrôle non destructif, propagation des ondes, données
multi-fréquencielles, équation de Helmholtz, équation du déplacement élastique, résonances locales.

Inverse problems and local resonances in irregular mechanical waveguides

Abstract : Localization and reconstruction of defects in waveguides are crucial in the nondestructive
evaluation of structures like pipelines, optics fibers, nuclear power plant conduits, or even ship hulls.
This thesis aims to understand waves propagation in waveguides from a mathematical point of view to
design new efficient methods to detect and reconstruct potential waveguides defects. To fit the existing
experimental setups, we use multi-frequency data with frequencies sometimes close to resonant ones.
Far from the resonant frequencies, we prove that the defects reconstruction is equivalent to a Fourier
inversion from partial data, and we provide a stable reconstruction method working for small defects. On
the other hand, mathematical equations are not well-posed near resonant frequencies, but waves seem
very sensitive to potential defects. Drawing a parallel with quantum mechanics, we provide an asymptotic
approximation of these waves as Airy functions when the width of the waveguide slowly varies. Using
these approximations, we develop a precise method based on the shape of Airy functions to reconstruct
width defects in waveguides.

Keywords : waveguides, inverse problems, non-destructing testing, wave propagation, mutli-frequency
data, Helmholtz equation, elastic displacement equation, locally resonances.

Image en couverture : Propagation d’une onde acoustique aux fréquences localement résonantes.


	Introduction
	Wave propagation in waveguides
	Acoustic wave equation
	Acoustic waveguides
	Acoustic modal decomposition

	Elastic wave equation
	Elastic waveguides
	Lamb and Shear horizontal modal decompositions

	Propagation in perturbed waveguides

	Reconstruction of defects
	Existing reconstruction methods
	Inversion with one frequency and multiple incident waves
	Existing multi-frequency methods 

	Contributions of the thesis

	Reconstruction of small defects from multi-frequency data
	Acoustic waveguides
	Elastic waveguides

	Reconstruction in slowly varying waveguides using locally resonant frequencies
	Forward problem in the acoustic case
	Inverse problem in the acoustic case from surface measurements
	Inverse problem in the acoustic case from section measurements
	Generalization to the elastic case


	I  Back-scattering multi-frequency reconstruction
	Small defects reconstruction in waveguides from multifrequency one-side scattering data
	Introduction
	Forward and inverse source problem in a waveguide 
	Forward source problem in a perfect waveguide
	Forward source problem with perturbations 
	Inverse source problem in a perfect waveguide
	Inverse source problem from limited frequency data

	Application to the identification of shape defects, bending or inhomogeneities
	Transformation of the deformed waveguide
	Detection of bends
	Detection of bumps
	Detection of inhomogeneities

	Numerical Results
	Numerical source inversion from limited frequency data
	Generation of data for the detection of defects
	Detection of bends
	Detection of bumps
	Detection of inhomogeneities

	Conclusion
	Appendix 2.A: Proof of Proposition 2.1 and 2.3
	Appendix 2.B: Proof of Proposition 2.2 and 2.4

	Lamb modes and Born approximation for small defects inversion in elastic plates
	Introduction
	Forward source problem in a regular 2D waveguide
	Lamb modes and critical frequencies
	Solution of the 2D elasticity problem

	Forward source problem in a regular 3D plate
	Decoupling of the linear elastic equation
	Helmholtz-Hodge decomposition

	Reconstruction of small shape defects from multi-frequency measurements
	Born approximation
	Boundary source inversion

	Numerical results


	II  Inversions from locally resonant frequencies
	The Helmholtz problem in slowly varying waveguides at locally resonant frequencies
	Introduction
	Scientific context
	Outline of the chapter

	Modal decomposition and local wavenumbers in a varying waveguide
	The Helmholtz equation in a waveguide with increasing width
	Sketch of proof
	Main result
	Modal Green functions and their approximations
	Proof of Theorem 2
	Proof of Theorem 4.1

	Extension to general slowly varying waveguides 
	The cut and match strategy
	Example of dilations or compressions in waveguides

	Numerical illustrations
	Computation of the modal Green function
	General source terms
	Dependence of the error of approximation with respect to 

	Conclusion
	Appendix 4.A: Proofs of Proposition 4.1 and 4.2

	Reconstruction of smooth shape defects in waveguides using locally resonant frequencies surface measurements
	Introduction
	Scientific context
	Outline of the chapter

	Brief study of the forward problem
	Shape Inversion using a monochromatic source  
	Wavefield approximation and measurements approximation
	Stable reconstruction of xk

	Inversion using a general source term 
	Numerical computations
	Generation of data 
	Method of reconstruction
	Numerical results

	Conclusion
	Appendix 5.A: Identification of `3́9`42`"̇613A``45`47`"603Asupp(h), kmin and kmax
	Appendix 5.B: Proof of Proposition 5.3

	Reconstruction of smooth shape defects in waveguides from section measurements using locally resonant frequencies
	Introduction
	Description of the problem
	Scientific context

	Brief study of the forward problem
	Inversion using section measurements 
	Approximation and processing of measurements
	Recovery of xk

	Numerical computations
	Generation of data 
	Method of reconstruction
	Numerical results

	Conclusion
	Appendix 6.A: Identification of kmin and kmax

	Reconstruction of shape defects in elastic waveguides using longitudinal, transversal and ZGV resonances
	Introduction
	Description of the problem
	Outline of the chapter

	Modal decomposition and local wavenumbers in varying waveguides 
	Position of the problem
	Modal decomposition
	Classification of the critical points

	Forward problem at locally resonant frequencies
	The Longitudinal case
	Modified Lamb basis
	Sketch of the proof 
	Main result 
	Proof of the Theorem

	The Transverse case
	The ZGV case 

	Reconstruction of shape defects 
	Filtering of data
	Wavefield approximation
	A stable reconstruction of x

	Numerical Results 
	Generation of the data 
	Method of reconstruction
	Numerical results

	Conclusion
	Appendix 7.A: The Born approximation (E2')/(E3n)
	Appendix 7.B: Control of the operators T1 and T2
	Appendix 7.C: Control of the operator 2
	Appendix 7.D: The Born approximation (E1)/(E2)
	Appendix 7.E: Generalized mode at ZGV frequency

	Conclusion
	Main contributions
	Summary of the results
	Commentary and discussions on the results

	Future works
	Reconstruction using experimental data
	Generalization in three dimensions
	Study of the Lamb modes
	Study of discontinuous width variations




