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Abstract

The work presented in this thesis aims at shedding some microscopic insights into

thermal stability of bacterial cells (denaturation and cell growth).

The thesis is divided into six chapters, starting from the first one which contains a

presentation of the temperature effects on living matter, introduces the topic of thermal

response of bacteria to high temperature.

The second chapter is devoted to the theoretical framework of neutron scattering

in condensed matter physics, whose formalism is introduced leading to the main equa-

tions for the relevant observables. Elastic (EINS), quasi-elastic (QENS) and inelastic

neutron scattering are also defined. In the realm of EINS, the Gaussian approximation

and the non-Gaussian behavior due to anharmonicity and dynamical heterogeneity are

discussed, and different models for the heterogeneity are considered. In the realm of

QENS it is derived how to decompose the spectrum to provide information of motions

of atoms at different length and time scales: rigid (global), confined diffusive (as e.g.,

the ‘cage diffusive’ methyl groups hydrogen motions) and internal vibrations.

Computational methods used in the thesis are described in the third chapter. It

contains the explanation of standard molecular dynamics techniques, with focus on

protein simulations. Two scenarios are described: full atomistic simulations and coarse

grain simulations, including the approach provided by the Lattice Boltzmann method.

Chapter 4 present the main result of this work: through the use of quasi-elastic

neutron scattering combined with molecular dynamics simulations, it has been shown

that there is a strong slow down of the global diffusion in the cytoplasm starting just

below cell death temperature supporting the idea of protein unfolding as part of the ir-

riversible denaturation process. Surprisingly though the fraction of unfolded proteins is

only around 5% but it is the effect this causes of the whole proteome and its behaviour,

that affects cell viability. No catastrophic denaturation of the proteome occurs at the

cell death.

The last to chapters were devoted to two additional works both dealing with the

effects of protein-ligand complexation on protein dynamics, in which neutron scattering

techniques and molecular dynamics simulations are always coupled.
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Résumé en français

Le travail présenté dans cette thèse vise à apporter des informations microscopiques

sur la stabilité thermique des cellules bactériennes (dénaturation et croissance cellu-

laire).

La thèse est divisée en six chapitres, à partir du premier qui contient une présentation

des effets de la température sur la matière vivante, introduit le thème de la réponse ther-

mique des bactéries à haute température.

Le deuxième chapitre est consacré au cadre théorique de la diffusion neutronique

en physique de la matière condensée, dont le formalisme est introduit conduisant aux

principales équations pour les observables pertinentes. La diffusion élastique (EINS),

quasi-élastique (QENS) et inélastique des neutrons est également définie. Dans le do-

maine de l’EINS, l’approximation gaussienne et le comportement non gaussien dû à

l’anharmonicité et à l’hétérogénéité dynamique sont discutés, et différents modèles

d’hétérogénéité sont considérés. Dans le domaine de QENS, il est dérivé de la manière

de décomposer le spectre pour fournir des informations sur les mouvements des atomes

à différentes échelles de longueur et de temps : rigide (global), diffusif confiné (comme

par exemple, les mouvements d’hydrogène des groupes méthyle “diffusifs en cage”) et

vibrations interne.

Les méthodes de calcul utilisées dans la thèse sont décrites dans le troisième chapitre.

Il contient l’explication des techniques standard de dynamique moléculaire, en mettant

l’accent sur les simulations de protéines. Deux scénarios sont décrits : des simulations

atomistiques complètes et des simulations à gros grains, y compris l’approche fournie

par la méthode Lattice Boltzmann.

Le chapitre 4 présente le résultat principal de ce travail : grâce à l’utilisation de

la diffusion quasi-élastique des neutrons combinée à des simulations de dynamique

moléculaire, il a été montré qu’il y a un fort ralentissement de la diffusion globale

dans le cytoplasme à partir juste en dessous de la température de mort cellulaire sou-

tenant l’idée du déploiement des protéines dans le cadre du processus de dénaturation

irréversible. Étonnamment, la fraction de protéines dépliées n’est que d’environ 5%,

mais c’est l’effet que cela provoque sur l’ensemble du protéome et son comportement,

qui affecte la viabilité cellulaire. Aucune dénaturation catastrophique du protéome ne

se produit à la mort cellulaire.

Les derniers chapitres ont été consacrés à deux travaux complémentaires traitant

tous deux des effets de la complexation protéine-ligand sur la dynamique des protéines,

dans lesquels techniques de diffusion neutronique et simulations de dynamique moléculaire

sont toujours couplées.
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Chapter 1

Introduction

1.1 Cells and bacteria

In biology, an individual cell is the minimal self-reproducing unit of living matter.

To distinguishe living from non-living systems, we may consider that all living

systems metabolize (i.e. take in resources), grow and replicate. However, there are

systems that are clearly not alive who fit this definition - e.g. candle flames can take

in fuel, oxidize it, grow bigger fires and light new fires; oil droplets can grow and

duplicate, and similar processes can occur also in self-replicating computer codes or in

human institutions. To exclude these possibilities, here we follow the definition of Dill

and Agozzino [1], considering a system alive when it:

• exchanges energy and matter with the environment;

• grows and replicates independently;

• has ancestry and offspring variation;

• is formed by molecules.

The unity and diversity of organisms become apparent at the cellular level. The

smallest organisms consist of single cells and are microscopic. Larger, multicellular

organisms contain many different types of cells, which vary in size, shape, and spe-

cialized function. The cellular volume can vary over four orders of magnitude, from

⇡ 1.3µm3 in the case of the small Escherichia coli bacterium, up to ⇡ 104
µm3 for the

huge mammalian cell [2]. Despite the impressive diversity of living systems, all cells of

the simplest and most complex organisms share certain fundamental properties, which

can be observed at the biochemical level. In particular, cells of all kinds share a few of

structural features [3] – see Fig. 1.1.

Their boundaries are defined by plasma membranes, separating cells’ contents from

the surroundings. Plasma membranes are made of lipid and protein molecules, creating

a fine hydrophobic barrier around the cell that blocks the free passage of inorganic ions

and majority of charged and polar compounds. Transport proteins located in the mem-

brane control the passage of specific ions and molecules – receptor proteins transmit

signals into the cell, and membrane enzymes participate in some reaction pathways.

Moreover, since the individual proteins and lipids that form the plasma membrane are
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not covalently bound, the entire structure of the membrane is considerably flexible, al-

lowing changes of the size and shape of the cell. As a cell grows, newly made lipid and

protein molecules are inserted into its plasma membrane; cell division produces two

cells, each with its own membrane. This growth and cell division occurs without loss

of membrane integrity [3].

In general, cell reproduction involves the transmission of genetic information to

their offspring. Each cell stores this information in the same chemical form, i.e. as

double-stranded DNA molecules. For the replication, the cell copies its information by

splitting up the paired DNA strands and using each strand as a template for polymer-

ization to build a new DNA strand with a complementary sequence of nucleotides. The

same strategy of templated polymerization is used by the cells for the synthesis of pro-

teins. This is achieved through the transcription of portions of the genetic information

from DNA into the closely related RNA molecules, which in turn guide the protein pro-

duction by a more complex mechanism of translation that takes place in the ribosomes

[4].

Figure 1.1: Common features of living cells. Every cell has a nucleus or nucleoid storing their

DNA, a plasma membrane, and cytoplasm. Source: D. L. Nelson and M. M. Cox, “Lehninger

Principles of Biochemistry” (7th edition, 2017) [3].

These processes of replication and storage of the genetic information, with the as-

sociated proteins, take place in a specific region inside the bacteria. For bacteria and

archaea, this region is called nucleoid and is quite irregular, meanwhile, in the case of

eukaryotic cells, it is enclosed within a double membrane and is called nucleus. The

remaining material enclosed between the plasma membrane and the nucleous (or nu-

cleoid) formes the so called cytoplasm. The liquid phase of the cytoplasm in an intact

cell is the cytosol, which does not contain any part of the cytoplasm that is inside the

organelles. The set of all proteins in the cell is called proteome.

1.2 The effects of temperature on bacteria

Temperature is one of the key environmental factors in microbial life, and it can

be used to classify different bacteria depending on the temperature of optimal growth
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(TOG) - i.e. the thermal condition at which the bacteria live and thrive [5, 6, 7, 8, 9], see

Table 1.1.

Table 1.1: Classification of bacteria according to their optimal growth temperatures.

Classification Examples Optimal Growth Temperature

Psychrophiles Psychrobacter articus TOG < 24�C

Mesophiles Escherichia coli (E. coli) 24�C < TOG < 50�C

Thermophile Thermus thermophilus 50�C < TOG < 80�C

Hyperthermophile Aquifex aeolicus TOG > 80�C

Generally, extreme temperatures are problematic for all living systems. In the case

of bacteria, low temperatures can induce a decrease in enzymatic activity in the cell,

and the velocity of various biochemical reactions, cell metabolism, and the fluidity of

biomass membranes is reduced [10, 11]. If the temperature is further lowered below

the freezing point, the water inside the cell condenses forming ice crystals, causing

irreversible mechanical damage to the biomass membrane [12]. On the other hand, high

temperatures provoke the irreversible denaturation of proteins, affecting the normal cell

physiological activities, such as damaging the enzymes involved in the tricarboxylic

acid cycle [13]. Besides, high temperatures can lead to a loss of integrity for plasma

membrane and to the damage of nucleic acid molecules [14, 15].

In this thesis we will focus on the problem of the thermal response of bacteria at

high temperature.

1.2.1 Thermal inactivation of bacteria

Several factors influence bacterial inactivation due to high temperatures such as the

growth conditions and composition, and pH of the environment surrounding the cells

[16]. Every component of the bacteria (membranes, proteins, DNA, RNA) will be

affected to some degree by temperature increase. Thus, it is not an easy task to ascribe

a lethal effect to a single alteration within an organism. Nevertheless, some changes are

more pronounced than others, some types of damage may be repairable and all depend

upon the exact value of the temperature applied.

• Damage to the membrane. In the case of Gram-negative bacteria (such as the

E. coli), the outer membrane is quite sensitive to high temperature. In particular,

damage to the membrane already occurs when cells are subjected to moderate

heat shocks [17]. Morphological and structural changes altering the permeability

of the barrier have been observed [18] – see Figure 1.2 and 1.3. This effect is

enhanced in the presence of Tris buffer [19, 20]

However, the cytoplasmic (inner) membrane, that is responsible for controlling

the flux of molecules entering and leaving the cell interior, is more resistant to

heat shocks. Damage to this membrane has crucial effects on bacteria, causing

leaking of intracellular material [21, 22, 23, 24, 25, 26, 27]. Such injury can be

produced by physical processes such as extremely high temperatures (compared

with the bacterial TOG) and freezing [28]. Membrane damage can be detected

very readily by measuring the extent of intracellular material that leaks from the

heated cells.
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Overall, even if the rate and extent of leakage increases with the applied heating

temperature, the correlation between loss of viability and membrane damage is

poor [22, 23, 24, 25]. For this reason, it seems that membrane damage is not

the major cellular site responsible for inactivation. This is even more true for

Gram-positive bacteria that are relatively more heat resistant than Gram-negative

bacteria [29].

Figure 1.2: Transmission electron microscopy (TEM) images of E. coli cells showing the dam-

age of their membranes. A) incubated at 35 �C, and heated to B) 50 �C, and C) 65 �C. The first

row images are taken with x13,500 magnification; second row images are taken with x92,000

magnification. Source: B. Tonyali et al., “Evaluation of heating effects on the morphology and

membrane structure of Escherichia coli using electron paramagnetic resonance spectroscopy”

(Biophysical Chemistry 2019) [30].

Figure 1.3: Hydrodynamic diameter of E. coli cells with heat treatment (35-70 �C), measured

by dynamic light scattering (DLS). The solid line represents the mean of individual particle

size measurements and the dash lines represent standard deviations. Source: B. Tonyali et al.,

“Evaluation of heating effects on the morphology and membrane structure of Escherichia coli

using electron paramagnetic resonance spectroscopy” (Biophysical Chemistry 2019) [30].

• Ribosome and rRNA degradation. Many studies have been performed on

rRNA and ribosome to study their thermal stability in heated bacterial cells [25,
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26, 31, 32, 33]. Mild heating produces degradation of rRNA [32], and the degra-

dation of 30S ribosomal subunits seems to be very dependent on the concentra-

tion of salt ions in the cytoplasm [34, 35].

However, the rRNA degradation occurs before the loss of the cellular viability

[36]. On the other hand, Tomlins & Ordal [26] found that the degradation of

ribosomal RNA is reversible. Therefore, these are not considered to be primary

causes of heat inactivation.

• DNA damage. Due to its thermal resistance, the denaturation of DNA can be

considered to be a minor cause of the cell inactivation due to heat shocks [36].

However, there is a relationship between the bacterial sensitivities to ionizing

radiation and mild heat shock [37, 38, 39].

• Protein denaturation. Structural and functional proteins are a prime target for

heat inactivation. Protein denaturation occurs when cells are thermally stressed,

with coagulation occurring at very high temperatures [25, 40]. There is a numer-

ical correlation between the thermodynamic parameters of protein denaturation

and the observed death rates of various organisms, suggesting a likely cause of

cell death in mesophilic bacteria [41].

This relation is strengthened by the observation that, in thermophiles and hy-

perthermophiles, enzymes and proteins have an enhanced thermal stability and

appear to function optimally at high temperatures. The heat stability of proteins

from thermophiles is increased by the presence of a number of salt bridges and

by the densely packed hydrophobic interior nature of the proteins1.

In conclusion, lethal effects of high temperatures are due to a combination of pro-

cesses that involve simultaneously different parts of the bacteria. All the major cellular

components are impacted, namely the outer cell barrier (especially for Gram-negative

bacteria), ribosomal RNA, proteins and DNA. To react to thermal shock, the cells have

different active mechanisms, in particular, there is a rapid induction of intracellular

heat-shock proteins (HSPs). HSPs behave as molecular chaperones binding to the pro-

teins that are becoming unstable due to the increase in temperature, helping to stabilize

their structure and preventing their unfolding [42, 43] – see Figure 1.4.

1It must also be observed that, in thermophilic bacteria, not only proteins are less affected by high

temperatures, but also ribosomes and membranes are more stable [28].
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Figure 1.4: Proteome reallocation with change in temperature. The percentage is calculated

with FoldME. Source: K. Chen et al., “Thermosensitivity of growth is determined by chaperone-

mediated proteome reallocation” (PNAS 2017) [43].

Moreover, extracellular alarmones may be produced to warn organisms of imminent

inactivation. Exposure of cultures to increasing temperatures may enable the cells to

adapt to higher, normally rapidly lethal temperatures [14].

1.3 The role of proteins: current situation

As described in the previous section, the proteome’s thermal sensitivity has to play

a key role as a determinant for most of the temperature-dependent whole-organism

activities.

Different pictures have been proposed to link the degradation of the proteome to

the upper limit of the cellular thermal niche, i.e. the cell’s death temperature TCD. A

first essential aspect is to quantify the proteome’s thermal stability [44, 45, 46]. On one

hand a proposed theoretical model [47, 45] finds that cell death is linked to a global

catastrophe of the proteome with proteins unfolding in a narrow range of temperatures

near the TCD. This picture has being challenged recently by experimental investigations

of E. coli lysates and cells, and based on different techniques such as limited proteolysis

[46] or thermal proteome profile [48] combined with mass spectroscopy. According to

these studies only a small set of proteins indeed unfolds at the cell death. Thermal

adaptation would result from the preferential stabilization of a homologous subset of

proteins, thus indicating that the heat sensitivity of cells can be explained by a small

number of proteins that serve critical physiological roles.

Actually, the proteome’s thermal stability is not the only physical determinant of the

cell’s growth rate, which is expected to depend on the rate of protein diffusion through-

out the cell, the latter being often the limiting factor of the rates of cellular biochem-

ical processes [49]. Protein diffusion depends in turn on the temperature, especially

through the contribution of the intrinsic viscosity in the high-temperature range when

biomolecules start to unfold. To date, the relationship between the diffusive dynamics

of proteome and the thermal sensitivity of a cell has not yet been investigated, also due

to the extremely difficult challenge to represent the motions of proteins in a crowded

milieu cell’s cytoplasm where local concentration may vary from 200 g/L up to 400
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g/L [50]. Here, the protein diffusive dynamics is affected by several factors, such as

the presence of steric barriers given by the other macromolecules, hydrodynamic and

attractive interactions and spatial heterogeneity.

1.4 Our approach

To address this problem, we combined neutron scattering spectroscopy and multi-

scale molecular dynamics simulations to characterized the dynamical state of the E.

coli’s proteome in the thermal range between 276K and 360K, at increasing and de-

creasing temperatures to test its reversibility. We focus our studies on E. coli because

they are the most studied bacteria, and many useful information are available in the

literature that can be used to interpret the results. Moreover, this bacteria represent a

good model for all bacterial cells, and, since we are mainly interested in the bulk prop-

erties of the system, i.e the dynamical behavior of the cytoplasmic proteins which are

the most abundant in the cell, E. coli bacteria are a good reference also for the cytosol

of eukaryotic cells.

Concerning the experimental techniques, in chapter 2, we presented the basics con-

cepts on neutron scattering: introduction to neutron scattering theory, description of the

model used for the interpretation of the data, and data reduction. Chapter 3 is dedicated

to molecular dynamics simulation where we discussed about: the general aspects of

molecular dynamics, the simulation of proteins, and coarse-grained simulations. Fi-

nally, in chapter 4 we report our new results and we discuss their interpretations and

implications.

In the appendix, we reported also other two original results that we obtained, during

the PhD, studying the effects of protein-ligand complexation on protein dynamics.
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Chapter 2

Neutron Scattering

The aim of this chapter is to provide a short introduction to scattering theory. The

main equations relevant for the scattering techniques used within this thesis are derived

to provide a theoretical background. For more detailed explanations, literature e.g. by

Lovesey [51], Bée [52], Squires [53], Boothroyd [54], can be consulted.

2.1 General concepts

The neutron is an electrically neutral particle with mass mn ⇡ 939.6MeV/c2, spin

s = h̄/2 and a magnetic dipole moment µn =�1.913µN , where h̄ = h
2π ⇡ 6.582µeVns

is the reduced Planck constant and µN ⇡ 3.1525 ·10�2
µeVT�1 is the nuclear magneton.

Neutrons are found in the atomic nuclei together with protons, where they are stable. In

order to use them as a probe for neutron scattering experiments they have to be extracted

from the nuclei. Free neutrons are not stable, they decay via a β decay process to a

proton p+ by emitting an electron e� and an electron antineutrino νe:

n �! p++ e�+νe

with a mean lifetime of approximately 880 seconds. Therefore, in order to perform

experiments, they have to be produced steadily from a source that, depending on the

energy of neutrons required for the measurements, should not be too far from the sam-

ple. To date, there are only two ways of producing high fluxes of free neutrons for

experiments: through nuclear fission in nuclear reactors or by nuclear spallation in

spallation sources.

The characteristics of a neutron flux produced by reactor based sources and spalla-

tion sources are different. A reactor produces neutrons at a constant rate and thus the

flux of neutrons has no explicit time structure - these are called continuous or steady

state neutron sources. Typical examples are the Institut Laue Langevin (ILL) reactor

in France or the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor

in Germany. In contrast, spallation sources generally work with pulsed neutron beams

and are thus called pulsed spallation sources. Typical examples are the ISIS in UK, the

Spallation Neutron Source (SNS) in USA, and in the near future the European Spalla-

tion Source (ESS) in Sweden.

The experiments describes in this thesis were all carried out at the ILL, therefore

we will briefly focus on nuclear fission being the production method employed at this
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facility.

Figure 2.1: Neutron-induced fission of the 235U nucleus. Source: [54].

Nuclear fission, specifically neutron-induced fission in a nuclear reactor is the pro-

cess by which a heavy nucleus like 235U absorbs a neutron and subsequently splits into

two or more lighter nuclei accompanied by the release, on average, of 2 or 3 neutrons

per fission with typical kinetic energies of about 2 MeV per neutron (Fig. 2.1). These

neutrons are released after the fission because the neutron/proton ratio for stable nuclei

increases with the increase of their atomic number Z and, as consequence, when heavy

nucleus splits into stable lighter nuclei there is an excess of neutrons that will be re-

leased with the fission. The core of a nuclear reactor contains the fissile fuel elements

and it is settled so that it there is an high probability that neutrons released after the

fission of a nucleus induce at least one additional fission by collision with other nuclei.

This in turn induces another fission, causing a chain reaction.

In the case of nuclear reactors designed for experiments, like the one of ILL, the

core is built so that the majority of the excess neutrons which do not participate in

fission reactions are extracted from the reactor through special guides, usually coated

with nickel and titanium, in order to guide the neutrons from the source to the instru-

ments. Moreover, since the energies of the neutrons generally needed for scattering

experiments are usually lower than few eV, to be suitable for experiments, the neutrons

extracted from the reactor must be slowed down to reduce their kinetic energy. This is

achieved with moderators, which are mediums that slow the neutrons down by repeated

collisions with their nuclei. After many collisions the neutrons reach thermal equilib-

rium with the moderator and the flux per unit energy φ(E) of out-coming neutrons can

described using a Maxwellian distribution, whose maximum is given by the moderator

temperature TM [54]:

φ(E) ∝ E · exp

✓

� E

kBTM

◆

(2.1)

and the mean energy is determined by the temperature of the moderator. Examples of

actual moderator substances are liquid hydrogen at 25K, liquid water at 300K, and solid

graphite at 2,400K1. For obvious reasons, neutrons emerging from these moderators are

termed cold, thermal, and hot, respectively.

1Light atoms are generally preferred as moderators since they uptake a high amount of the neutron

energy during each collision. Often either H2O or D2O is used, where mainly the mass of the H or the D

atoms accounts for the moderation efficiency and only about 18 (H2O) or 25 (D2O) collisions are needed

to obtain meV energies [52].
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Figure 2.2: The flux per unit energy from a moderator at three temperatures.

In these energy ranges, neutrons can be treated as non-relativistic particles. Thus,

given the wave-particle duality, the kinetic energy E of a neutron can either be described

as a particle by its mass mn and momentum h̄k or as a wave with a wavelength λ .

E =
h̄2k2

2mn
=

h2

2mnλ 2
(2.2)

In particular, thermal neutrons (e.g. moderated by a moderator with TM = 293K) have

a mean velocity of v ⇡ 2.20km/s and a corresponding wavelength of λ ⇡ 1.8Å – see

Tab. 2.1.

Table 2.1: Temperature, energy, and wavelength ranges for neutrons slowed down by different

moderators.

Moderator Temperature [K] Energy [meV] Speed [km/s] Wavelength [Å]

Cold 1 – 120 0.09 – 10.3 0.13 – 1.41 30.8 – 3.98

Thermal 60 – 1000 5.17 – 86.2 0.99 – 4.06 3.98 – 0.97

Hot 1000 – 6000 86.2 – 517 4.06 – 9.95 0.97 – 0.40

Since this wavelength is comparable to the interatomic distances of liquids and

solids, thermal neutrons provide an ideal tool for probing the microscopic properties of

these materials. In addition, the energy of thermal neutrons is comparable to thermal

excitations and can therefore be used to probe molecular vibrations, lattice excitations

as well as atomic dynamics.

Combining the average neutron speed with the mean lifetime of the neutron, it is

clear that the construction of instruments situated several hundred meters away from the

neutron source is feasible even for cold neutrons. This offers the possibility to construct

many instruments using one neutron source and to use e.g. curved neutron guides

blocking the direct view from the instrument towards the reactor core and therefore

reducing the background signal.

A diagram showing the key components of the research reactor at the ILL is pro-

vided in Fig. 2.3. The reactor operates at an output power of 56MW and produces a

steady flux of neutrons in the moderator region of 1.5 ·1015 cm�2 s�1. There are a num-

ber of cold, thermal, and hot moderators, and the neutrons from these are delivered to
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over forty instruments designed for a wide range of scattering and fundamental physics

experiments.

Figure 2.3: Schematic of the high-flux reactor at the Institut Laue–Langevin in Grenoble,

France. Labels of the form ‘Hn’ indicate beam tubes and guides. Source: [54].

2.2 Neutron Scattering - Basics

In neutron scattering experiments a beam of neutrons with energy Ei is used to

interact with a sample to obtain information on the dynamical structure and the motions

of its nuclei. To this end, the flux Φ of incident neutrons is measured as well as the rate J

of the scattered neutrons with a final energy between E f and E f +∆E f that are revealed,

with a certain efficiency η , by a detector placed far from the point of interaction that

covers a small solid angle ∆Ω in the direction (θ ,φ).

Figure 2.4: Geometry for a scattering process. Source: [51].
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In general, the scattering is axial symmetric i.e. the rate J does not depend on the φ
direction, and it can be described as follow

J(θ ,Ei,E f ) = η(θ) · Φ(Ei)



d2σ

dΩdE f

(θ ,Ei,E f )

�

· ∆E f · ∆Ω (2.3)

where d2σ
dΩdE f

is the double differential cross-section, which represents the probability

that a neutron in the initial state |ψii with an energy Ei and wave-vector ki passes over

into the final state
�

�ψ f

↵

characterized with an energy E f and the wave-vector k f that

forms an angle θ with ki. The probability of the transition from |ψii to
�

�ψ f

↵

can be

described by Fermi’s Golden Rule.

d2σ

dΩdE f

=
m

2π h̄2

k f

ki

�

�

⌦

ψ f

�

�VN(r̂) |ψii
�

�

2
δ (E +Ei �E f ) (2.4)

where δ (E +Ei �E f ) represents the energy conservation (E is the energy transferred

from the neutron to the sample and it should be always equal to Ei �E f ) and
k f

ki
is nec-

essary for the normalization of the neutron flux. VN is the so called pseudo potential

with VN(r̂) =
2π h̄2

m ∑α bαδ (r̂� r̂α) where N is the number of nuclei in the sample, r̂α

is the position of the α th particle, and bα is the corresponding scattering length which

represents the strength of the potential2. This pseudo potential causes the same scat-

tering as the real potential, but is weak enough to be treated by perturbation expansion

derived by Max Born. In first approximation, the Born expansion states that if |ψii can

be described by a plane wave with wave vector ki, the final state
�

�ψ f

↵

is as well a plane

wave with wave vector k f , and for the cross-section we obtain the following relation

d2σ

dΩdE f

=
k f

ki

*

∑
α,β

b⇤α eiq̂·r̂α ·bβ e�iq̂·r̂β

+

δ (E +Ei �E f ) (2.5)

where q̂ = k̂i � k̂ f is the wave-vector transferred from the neutron to the sample.

Now, take into account the integral form of the δ -function:

δ (E +Ei �E f ) =
1

2π h̄

Z +∞

�∞
dt · exp

✓

�it ·
E +Ei �E f

h̄

◆

(2.6)

it can be substituted in eq. (2.5) leading to [53]:

d2σ

dΩdE f

=
1

2π h̄

k f

ki

Z +∞

�∞
dt · e�i t E/h̄ ∑

α,β

D

b⇤α bβ eiq̂·r̂α (t) · e�iq̂·r̂β (0)
E

(2.7)

It is important to observe that q̂ and r̂α are actually operators and that generally they do

not commute. As a consequence, [r̂α , r̂α(t)] 6= 0 and therefore the product of e�iq̂·r̂α (0)

and eiq̂·r̂α (t) is not equal to e�iq̂·(r̂α (0)�rα (t)).

In the classical limit wave-vectors and the atomic positions are not operators, which

2bα is independent of the neutron energy and is a complex number: the real part can be negative or

positive depending of the attractive or repulsive nature of the interaction; the imaginary part represents

absorption.
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means that we replace q̂ ! q and r̂i ! ri, and consequently:

eiq·rα (t) e�iq·rβ (0) = eiq·[rα (t)�rβ (0)] (2.8)

Therefore for the cross-section we obtain

d2σ

dΩdE f

=
1

2π h̄

k f

ki

Z +∞

�∞
dt · e�i t E/h̄ ∑

α,β

D

b⇤α bβ eiq·[rα (t)�rβ (0)]
E

cl
(2.9)

where h. . .icl means that a classical average is taken. In the following, the index “cl”

will be omitted.

2.2.1 Coherent and Incoherent Scattering

The spins of the nuclei in the sample and the spins of the neutrons in the beam

are uncorrelated in our experiments. Assuming two scattering atoms α , β of the same

isotopes having the scattering lengths bα and bβ due to their spin states. The evaluation

of
⌦

b⇤α bβ

↵

leads to:

α 6= β :
⌦

b⇤α bβ

↵

= hb⇤αi
⌦

bβ

↵

= hbi2

α = β :
⌦

b⇤α bβ

↵

=
⌦

b2
↵

(2.10)

Combining the two equations above,
⌦

b⇤α bβ

↵

can be split in two parts, reading

⌦

b⇤α bβ

↵

= hbi2 +δαβ (hbi2 �
⌦

b2
↵

) =
1

4π
· (σcoh +δαβ σinc) (2.11)

with σcoh = 4π
⌦

b2
↵

and σinc = 4π(
⌦

b2
↵

�hbi2). With this result the scattering cross-

section in eq. (2.9) can be split into two components:

d2σ

dΩdE f

=
N

4π

k f

ki
[σcoh Scoh(q,E)+σinc Sinc(q,E)] (2.12)

where N is the total number of nuclei in the scattering system and

Scoh(q,E) =
1

2π h̄

Z +∞

�∞
dt · e�i tE

h̄
1

N
∑
α,β

D

eiq·[rα (t)�rβ (0)]
E

(2.13)

Sinc(q,E) =
1

2π h̄

Z +∞

�∞
dt e�i tE

h̄
1

N
∑
α

D

eiq·[rα (t)�rα (0)]
E

(2.14)

Scoh(q,E) and Sinc(q,E) are respectively the coherent and incoherent dynamic structure

factor (also known as scattering functions). Therefore, the coherent scattering depends

on the self-correlation between the positions of the same nucleus at different times and

on the correlation between the positions of different nuclei at different times, leading

to interference effects. In contrast, the incoherent scattering depends only on the self-

correlation between the positions of the same nucleus at different times which do not

give interference effects. Thus, coherent scattering can give information on structure
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and collective motions (correlations between all scatterers), whereas incoherent scat-

tering gives information about the space evolution in time (self- correlation), leading to

a probe of the local dynamics of the sample.

The scattering function Scoh(q,E) and Sinc(q,E) can be also expressed as the Fourier

transform in time of the coherent and the incoherent intermediate scattering function

I(q, t) defined as

Icoh(q, t) =
1

N
∑
α,β

D

eiq·[rα (t)�rβ (0)]
E

(2.15)

Iinc(q, t) =
1

N
∑
α

D

eiq·[rα (t)�rα (0)]
E

(2.16)

according to which:

Scoh(q,E) =
1

2π h̄

Z +∞

�∞
dt · Icoh(q, t) (2.17)

Sinc(q,E) =
1

2π h̄

Z +∞

�∞
dt · Iinc(q, t) (2.18)

It is important to observe that, if σinc ⌧ σcoh, then the incoherent scattering domi-

nates the scattering signal and we can approximate

d2σ

dΩdE f

⇡ N

4π
·

k f

ki
· σinc Sinc(q,E) (2.19)

This is a good approximation for biological samples, like proteins or bacteria. As

reported in Tab. 2.2, hydrogen H has a very large incoherent cross section of about 80

barns and in general, biological systems are approximately formed by half of H atoms.

The remaining atoms mainly consist of C, N and O which have all very small incoherent

cross sections (less than 0.5 barns), thus the majority of the signal comes from the

incoherent scattering of H atoms in the sample. In most systems, the surrounding water

(H2O) present in the sample will add an important contribution to the signal, thus often

heavy water D2O is used as medium since its incoherent scattering cross section is 40

times smaller with 2 barns. Deuterium can also be used as substitute of hydrogen to

mask specific regions in the protein.

Therefore, in what follows, we will only consider the incoherent scattering and the

index “inc” will be omitted.

Table 2.2: Coherent, incoherent and absorbtion cross sections (σcoh, σinc, σabs) of the principal

elements present in biological systems. The cross section is given for the isotopes of hydrogen

and deuterium separately. For the other elements the isotope average is given. All the σ are

measured in barns, i.e. 10�24 cm2.

H D C O N S Na Cl Al V

σcoh 1.758 5.59 5.55 4.23 11.0 1.02 1.66 1.52 1.50 0.02

σinc 80.27 2.05 0.001 0.0008 0.5 0.007 1.62 5.3 0.009 5.08

σabs 0.333 0.001 0.004 0.002 1.9 0.53 0.53 33.5 0.23 5.08
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Figure 2.5: Illustration of the EINS, QENS and INS component of Sinc(q,E). Source: [55].

Finally, in many neutron scattering experiments it is useful to split the dynamical

structure factor in three components, depending on the amount of energy transferred

with the scattering:

1. Elastic incoherent neutron scattering (EINS): neutrons do not exchange energy

with the sample, i.e. E ⇡ 0.

2. Quasi-elastic neutron scattering (QENS): only a small amount of energy is ex-

changed between the neutron and the sample (typically less then few meV),

which produce a broadening of the elastic peak.

3. Inelastic neutron scattering (INS) which appears as additional peaks centered at

E 6= 0 well separated from the elastic peak that correspond to specific modes or

excitations within the sample.

A schematic is shown in Figure 2.5.

2.2.2 Elastic Incoherent Neutron Scattering (EINS)

In the case of elastic incoherent neutron scattering (EINS), E ⇡ 0, i.e. the trans-

ferred energy is comprised between 0 and ∆E, where ∆E is the accuracy on the mea-

surement of the energy. As it will be described with more detail in section 2.3.2, the

measured dynamical structure factor Sexp depends on the theoretical scattering function

Sth (which comes from the sample-neutron interaction), and the resolution function of

the instrument as follow:

Sexp(q,E = 0;∆ω) = Sth(q,0)⌦R(q,E;∆E) =
Z +∞

�∞
dE 0 Sth(q,E

0)R(q,E 0;∆E)

(2.20)

and, considering that in our experiments the resolution of the instruments is generally

well represented by a Gaussian where ∆E corresponds to its Full Width Half Maximum
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(FWHM), the measured scattering function Sexp(q,E = 0;∆E) is approximately equal

to the intermediate scattering function Iexp(q, tR) [56]:

Sexp(q,E = 0;∆E) ⇡ Iexp(q, tR) =
1

N

N

∑
α=1

heiq·[rα (tR)�rα (0)]i (2.21)

where tR = 4h̄
p

π�1 ln2/∆E is the time window fixed by the instrumental resolution

and determines the experimentally observable motions [57]. Therefore, in elastic neu-

tron scattering the rate of scattered neutrons is proportional to the self intermediate

scattering function I(q, t) and, as a consequence, we can focus directly on this function

instead of the Sexp(q,E = 0;∆E).

If we define the displacement ∆rα(tR) = rα(0)� rα(tR), the self intermediate scat-

tering function can be describe as:

I(q, tR) =
1

N

N

∑
α=1

he�iq·∆rα (tR)i (2.22)

The index “exp” will be omitted in the following sections.

2.2.2.1 Gaussian Approximation (GA)

Starting from eq. 2.22, we can use the cumulant expansion for each term of the sum

[53]:

he�iq·∆rα (tR)i = e�q2 ·ρ2(tR)+q4 ·ρ4(tR)± ... (2.23)

with:
ρ2(t) = 1

2!hnq · ∆r2
α(t)i

ρ4(t) = 1
4!

⇥

hnq · ∆r4
α(t)i � 3hnq · ∆r2

α(t)i2
⇤

(2.24)

where nq is the direction of q and hnq · ∆rn
α(t)i is the mean value of the n-th power of

displacements in the direction of q.

Then, neglecting the terms of order higher than q2 and assuming that, on average,

only isotropic displacements take place3 (such that hnq · ∆rn
αi= h∆r2

αi/3), the interme-

diate scattering function can be written as:

I(q, tR) ⇡
1

N

N

∑
α=1

e�
1
6 q2 ·h∆r2

α (tR)i (2.25)

Now, if we neglect also the motional heterogeneity of the H atoms in the system

and we assume that the h∆r2
αi of all the H are the same, i.e. the harmonic potential is

equal for all the H atoms, the h∆r2
αi = h∆r2i and we obtain the well known Gaussian

Approximation (GA):

I(q, tR) ⇡ I0 · e�
1
6 q2 ·h∆r2(tR)i (2.26)

3The approximation to the q2-term is equivalent to assume that the motion of any atoms in the system

can be described by diffusive motion in a harmonic potential that we consider isotropic.
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where I0 is the value of I(q, tR) for |q|= 0 and

ln(S) ⇡ �1

6
q2 h∆r2(tR)i+ ln(I0) (2.27)

It is important to observe that the GA is generally only valid in a restricted region

of q (specifically at low q values) since it neglects any effects from anharmonicity,

heterogeneity or anisotropy. Each of these effects alone or any combination can lead to

a divergence from the Gaussian behaviour. As shown by Tokuhisa et al. [58] and Vural

et al. [59], usually the heterogeneity of motions is the biggest contribution to the non

Gaussianity of the self intermediate scattering function [60].

2.2.2.2 Non-Gaussian Scattering

This model tries to correct, separately, the non-Gaussian behavior of the self inter-

mediate scattering function due to single-atom non-Gaussian scattering (anharmonic

displacements) and dynamic heterogeneity [61].

Non-Gaussian single-atom dynamics leads to the contribution of higher-order terms

in eq. (2.23) being non-negligible, that can be expanded as [61]:

he�iq·∆rα (tR)i = e�
1
6 q2 ·h∆r2(tR)i

"

1+
∞

∑
k=2

ρk (�q2)k

#

(2.28)

where we did the approximation of isotropic displacements. Now, retaining only the

k = 2 term and neglect the motional heterogeneity, with eq. (2.24), I(q, tR) can be

written as [61]:

I(q, tR) = e�
1
6 q2 ·h∆r2(tR)i



1+
h∆r4(tR)i�h∆r2(tR)i2

72
· q4

�

(2.29)

On the other hand, the dynamical heterogeneity also leads to non-Gaussian behavior

and, starting from eq. (2.25), the correction can be made as follows [61]:

I(q, tR) ⇡ e�
1
6 q2 ·h∆r2(tR)i · 1

N ∑
N
α=1 e�

1
6 q2 ·(h∆r2

α (tR)i�h∆r2(tR)i)

= e�
1
6 q2 ·h∆r2(tR)i · 1

N ∑
N
α=1 ∑

∞
α=1

µ(m)
m!

⇣

� q2

6

⌘m

⇡ e�
1
6 q2 ·h∆r2(tR)i ·

⇣

1+ q4

72 σ2
⌘

(2.30)

where µ(m) is the m-th central moment of the distribution of h∆r2(tR)i and σ2 is the

variance:

σ2 =
1

N
∑

α=1

�

h∆r2
α(tR)i�h∆r2(tR)i

�2
(2.31)

and the last approximation in eq. (2.29) is valid if (�q2/6)m
µ(m)⌧ 1.

Both eq. (2.29) and eq. (2.30) have similar expressions, indicating the general

validity of the proposed q4 model. Moreover, in systems in which dynamical hetero-

geneity is the dominant contribution to non-Gaussian behavior, the elastic scattering

can in principle be used to obtain experimentally the variance and higher statistical

moments of the distribution of the mean-square displacements of individual atoms. It
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should be noted that this q4 correction to the GA does not presume any particular form

of the distribution of MSD [61].

However, since it does not contain higher order terms further than q4, its applica-

bility is limited in q [60].

2.2.2.3 Dynamical Heterogeneity - Distribution function approaches

In order to incorporate dynamical heterogeneity, the distribution function should be

explicitly included for the calculation of the self intermediate scattering function [62]:

I(q, tR) =
Z ∞

0
g(s) · e�sq2

ds (2.32)

where g(s) is the distribution function of MSD and s is h∆r2(tR)i/6. It is useful to

underline that, with this approach, we have not a single value for the MSD, but a dis-

tribution of values. In particular, the mean value of the MSD, h∆r2(tR)i, is given by:

s =
Z ∞

0
s ·g(s)ds (2.33)

where the h∆r2(tR)i = 6 · s.

Peters and Kneller Model: This model tries to correct the GA model describing the

dynamical heterogeneity with a Gamma distribution for the individual MSD.

Following Peters and Kneller [63], we define the dimensionless momentum transfer

q̃ = lq where l > 0 is a scale variable with the dimension of a length, and substitute s

by λ = s/l2. Thus, from eq. 2.33, we obtain:

I(q, tR) =
Z ∞

0
g(λ ) · e�λq2

ds =
Z ∞

0

β (βλ )β�1

Γ(β )
· e�βλ · e�λq2

dλ (2.34)

where Γ(β ) is the Gamma function and β is a parameter of the distribution such that

0 < β < 1. This integral can be solved analytically and yields a simple analytical form

for the model I(q, tR):

I(q, tR) =
1

⇣

1+ h∆r2(tR)i2 q2

6β

⌘β
(2.35)

Bimodal: This model tries to correct the GA model describing the dynamical hetero-

geneity by a bimodal distribution for the individual MSD [62]:

g(s) = p ·δ (s� sF)+(1� p) ·δ (s� sR) (2.36)

where sF = h∆r2
F(tR)i/6 and sR = h∆r2

R(tR)i/6 are two MSD and p is a ratio of the two

contributions such that 0  p  1. The interpretation of this model is that the system

can be roughly separated in two classes of structures, flexible (F) and rigid (R), such

that h∆r2
F(tR)i< h∆r2

R(tR)i. This leads to:

I(q, tR) = I0 ·
h

p · e�
1
6 q2 h∆r2

F i+(1� p) · e�
1
6 q2 h∆r2

Ri
i

(2.37)

19



or, simplifying the eq. (2.37) in order to make easier the fit, we have:

I(q, tR) = IF · e�
1
6 q2 h∆r2

F i+ IR · e
� 1

6 q2 h∆r2
Ri (2.38)

where:

p =
IF

IR + IF
and I0 = IR + IF (2.39)

The mean value of the MSD is then:

h∆r2i = p · h∆r2
Fi+(1� p) · h∆r2

Ri (2.40)

Two q-Ranges: It is clear that eq. (2.37) opens the door to another approximation.

Indeed, if there exist two q-ranges, qF and qR, such that:

IF e�
1
6 q2 h∆r2

F i >> IR e�
1
6 q2 h∆r2

Ri f or q 2 {q}F

IF e�
1
6 q2 h∆r2

F i << IR e�
1
6 q2 h∆r2

Ri f or q 2 {q}R

(2.41)

the eq. (2.37) yields to:

Sel ⇡
(

IF e�
1
6 q2 h∆r2

F i f or q 2 {q}F

IR e�
1
6 q2 h∆r2

Ri f or q 2 {q}R

(2.42)

and in analogy with eq. (2.27), this results in two linear regimes:

ln(Sel) ⇡
⇢

�1
6 q2 h∆r2

Fi+ ln(IF) f or q 2 {q}F

�1
6 q2 h∆r2

Ri+ ln(IR) f or q 2 {q}R
(2.43)

The interpretation of this model is that in the system there are two different dynamical

processes which are visible at different time scales [64, 65, 60].

2.2.2.4 Generalized Mean Squared Displacement

Hennig et al. in 2011 [66] have further developed the Gaussian approximation by

transferring the approach by Rahman et al. [67] to a the elastic scattering function

S(q,E = 0), where a general q-dependent mean square displacement
⌦

u2
↵

q
is intro-

duced by

e
� 1

6 q2·hu2i
q := S(q,E = 0) (2.44)

thus
⌦

u2
↵

q
= �6 ·

ln [S(q,E = 0)]

q2
(2.45)

We approximate
⌦

u2
↵

q
by using a Taylor expansion around q = 0 up to the 3rd order

⌦

u2
↵

q
=

3

∑
n=0

an

n!
qn +O(q4) (2.46)
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with the coefficients

an = lim
q!0

dn

dqn

⌦

u2
↵

q
(2.47)

Then, using a model for the description of S(q,E ⇡ 0) (similar to what we will see in

next section on QENS), it is possible to show that the coefficients a1 and a3 are zero:

⌦

u2
↵

q
= a0 +a2 q2 +O(q4) (2.48)

therefore

S(q,E = 0) = e�
1
6 (a0 q2+a2 q4+O(q6)) (2.49)

and, if we take the limit q ! 0, we obtain a mean square displacement
⌦

u2
↵

that does

not depend on q:

⌦

u2
↵

= lim
q!0

⇢

�6 ·
ln [S(q,E = 0)]

q2

�

= a0 (2.50)

From this result, it can be proved that it possible to decomposed
⌦

u2
↵

as follows [66]:

⌦

u2
↵

=
⌦

u2
vib

↵

+
⌦

u2
sub

↵

+
⌦

u2
diff

↵

(2.51)

where
⌦

u2
vib

↵

takes into account the atomic vibrations, meanwhile
⌦

u2
sub

↵

and
⌦

u2
diff

↵

are

two diffusive contributions: the first is due to the internal motions of the molecular sub-

unit (e.g. conformational changes), the second arises from the roto-translation of the

entire molecule described by apparent diffusion coefficient Dapp. In particular,
⌦

u2
diff

↵

can be calculated from Dapp:

⌦

u2
diff

↵

= 6 tR Dapp (2.52)

and consequently, also the internal mean square displacement
⌦

u2
int

↵

=
⌦

u2
vib

↵

+
⌦

u2
sub

↵

can be obtained as
⌦

u2
int

↵

=
⌦

u2
↵

�
⌦

u2
diff

↵

(2.53)

2.2.3 Quasi-Elastic Neutron Scattering (QENS)

The section is based on references [52, 68], if no other references are mentioned.

The incoherent intermediate scattering function in eq. (2.16) can be written as

I(q, t) =
1

N
∑
α

D

eiq·Rα (t)
E

(2.54)

where Rα(t) = rα(t)� rα(0) is the displacement of the α-th atom covered within the

time t. For molecules, it is often possible to decompose the motion of an atom as a

superposition of different diffusive modes acting on different time-scales. In particular,

in the case of large molecules like proteins, we can rewrite Rα(t) as a combination of

translational (“trn”), rotational (“rot”), internal diffusive (“int”) and vibrational (“vib”)

motions:

Rα(t) = rtrn(t)+ rrot(t)+ rint(t)+ rvib(t) (2.55)
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therefore, assuming that those contributions are independent, I(q, t) can then be de-

composed likewise in a product with:

I(q, t) = Itrn(q, t) · Irot(q, t) · Iint(q, t) · Ivib(q, t) (2.56)

and, consequently, for the incoherent scattering function holds relation:

S(q,E) = Strn(q,E)⌦Srot(q,E)⌦Sint(q,E)⌦Svib(q,E) (2.57)

where ⌦ is the convolution with respect to E.

This equation is the initial point for the evaluation of the QENS spectrum S(q,E).
Each component in eq. 2.57 leads to a broadening of the quasielastic peak, which is

illustrated by the orange curve in Fig. 2.5. As a consequence, the broadening of this

peak gives information about the different types of diffusion within the probed system.

Translational Diffusion: In the simplest case, the component Strn(q,E) reflects the

translational diffusion of the center of mass (CoM) of the molecule which is mov-

ing freely and can described by the Brownian motion. The probability of finding the

CoM of the molecule at a position rtrn(t) after a time t is given by the incoherent self-

correlation function G(t, t):

G(r, t) = (4π Dt t)�
3
2 · exp



� r2

4Dt t

�

(2.58)

where Dt is the translational diffusion coefficient. The intermediate scattering function

is obtained by the Fourier transform in space leading to:

I(q, t) = e�q2 Dt t (2.59)

The scattering function is obtained by the Fourier transform of eq. 2.59 in time which

leads to a Lorentzian reading [55]:

Strn(q,E) =
1

π
·

γt(q)

E2 + γ2
t (q)

(2.60)

where the parameter γt(q) is the width of the Lorentzian and, in the case of free diffu-

sion, it is equal to Dt q2. It is possible to prove that, even for more complex types of

diffusive processes (like jump-diffusion), the scattering function can be described with

a single Lorentzian, but the width γt(q) will have a different dependence on q (in the

case of jump diffusion, γt(q) =
Dt q2

1+Dt q2 τ
) [55].

Global Dynamics: Global diffusion describes the superposition of translational and

rotational diffusion . In 1999, Perez et al. [69] showed that the translational and the

rotational motions of proteins acts often on similar time-scales, therefore, the contri-

bution to the dynamical structure factor for the rotational and translational diffusion of

proteins cannot be separated. On the contrary, they can be approximated by a single

22



Lorentzian:

Sglb(q,E) =
1

π
·

γg(q)

E2 + γ2
g (q)

(2.61)

where the width γg(q) depends on an apparent diffusion coefficient Dapp which, in turn,

is a function of both the translational and the rotational diffusion coefficients [70].

Internal Dynamics: Proteins in aqueous solution are not rigid since the peptide chain

is able to move within a confined space. The corresponding structure factor can be

approximated by

Sint(q,E) = A0(q) ·δ (E)+ [1�A0(q)]Lα(E) (2.62)

with the Kohlrausch-Williams-Watts function [66]:

Lα(E) =
1

2π

Z +∞

�∞
dt · e�itE/h̄ · e�|t Γ|α (2.63)

This function is a generalized Lorentzian function with a broad range of relaxation

times occurring in the dynamics of the protein. 0  α  1 is a phenomenological

parameter, and for α = 1, L1 is a normal Lorentzian with width Γ. A0(q) is the so

called elastic incoherent structure factor (EISF) which describes the confined internal

dynamics [52].

The EISF describes the internal dynamics of a protein more precisely. These inter-

nal dynamics are very complex and therefore difficult to evaluate analytically. Notwith-

standing, it is possible to apply a simplified model in which the EISF A0(q) is assumed

to be a simple sum of weighted distributions describing different motions that are not

uncorrelated [71]:

A0(q) = p+(1� p)
⇥

sAsph(q)+(1� s)A3JD(q)
⇤

(2.64)

where p is the fraction of atoms which appears to be fixed within the time scale of the

instrument, whereas s is the fraction of hydrogen atoms undergoing a three-site jump

diffusion. A3JD(q) is the intensity caused by the jump diffusion process of the H-atoms

in methyl groups (-CH3). Those atoms are located on a circle at an average distance

aM ⇡ 1.715Å from each other and they perform jumps of 120� around the 3-fold axis

[52, 69].

A3JD(q,T ) =
1+2 j0(q ·aM)

3
where j0(x) =

sinx

x
(2.65)

The internal motions are additionally described by the model of an atom diffusing in

an impermeable spherical volume of radius r. The corresponding scattering intensity

Asph(q) is given by

Asph(q) =

✓

3 ·
j1(q · r)

q · r

◆2

where j1(x) =
sinx

x2
� cosx

x
(2.66)

Atomic Vibration: Atoms in the protein oscillate around their equilibrium position.

The structure factor of these vibrations can be decomposed into an elastic and an in-
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elastic part

Svib(q,E) = e�
1
6hu2

vibi·q2

(2.67)

The inelastic component Sinel(q,E) has pronounced peaks at distinct energies E, as

illustrated by the green line in Fig. 2.5.

2.3 Data reduction

When performing QENS measurements, very large arrays containing the counts

from every detector are recorded together with the time when each neutron was de-

tected - the time information is essential to determine the energy of the neutrons. In

order to obtain the scattering function described in the previous sections, before any

data analysis can be performed, the data must be reduced to a treatable form: for every

count collected from different detectors and time channels is associated with a trans-

ferred wave-vector q, and a transferred energy E. Then, the data are grouped and

integrated with the desired binning of both energy and wave-vectors. More specifi-

cally, the Mantid routines [72] provided by the ILL facility were used to reduce data.

The subsequent analysis and fitting was preformed by self-written python available

on github: https://github.com/DanieleDiBari/NSAnalysis. In general, QENS spectra

present two main issues: 1) there is a contribution to the measured signal coming from

the aluminum sample holder; 2) instrument-dependent calibration accounting for dif-

ferent efficiency of different detectors and the instrument resolution.

2.3.1 Empty Cell Subtraction

Even if the scattering cross-sections of aluminum are quite small (see Table 2.2), the

contribution to the raw spectra arises from the aluminum cell containing the sample is

not negligible. In order to correct such a contribution from the total scattering function,

the spectrum of the empty sample holder is measured in addition to the samples.

However, when the gap between the cell walls is filled with the sample, the spec-

trum of the cell is slightly different from that of the empty sample holder. In fact, both

the incident and the scattered beams are subject to absorption not only within the walls

of the sample cell, but also within the sample. To account for this effect, if the atomic

composition of the sample is known, it is possible to employ the Paalman-Pings cor-

rection [73]. In the following, the superscript refers to the scattering object, while the

subscript indicates the absorbing object. In both the super- and the subscript, “c” indi-

cates the cell, and “s” the sample. Therefore, the scattering intensity of the bare sample

Is, without the contribution of the empty cell is given by

Is(q,E) = αsc · Isc
sc (q,E)�βsc · Ic

c (q,E) (2.68)

where Isc
sc indicates the intensity after scattering and absorption from both the sample

and the cell, meanwhile Ic
c is the scattering intensity of the empty cell. Concerning the
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parameters αsc and βsc, they are defined as follows [73]:

αsc =
1

As
sc

βsc =
1

As
sc

·
Ac

sc

Ac
c

(2.69)

where As
sc, Ac

sc, and Ac
c are the absorption factors, also known as Paalman-Pings coef-

ficients, which depend on the scattering angle θ , the transferred energy E, the atomic

composition of the sample, and the shape of cell.

Nevertheless, for complex samples, like bacteria or other cells, the atomic compo-

sition could be difficult to estimate. In these cases, measuring the transmission Tsc of

the sample and the cell, it is possible to approximate eq. (2.68) as follow:

Is(q, t) ⇡ Isc
sc (q, t)�Tsc · Ic

c (q, t) (2.70)

2.3.2 Calibration: detector efficiency and energy resolution

The measured intensity of the QENS data depends, practically, on the efficiency of

each detector as shown in eq. (2.3). In general we can say that the recorded intensity

Sexp(q,E) can be described by:

Sexp(q,E) = η(q) · Sth(q,E) (2.71)

where Sth(q,E) is the scattering function theoretically produced by the interaction be-

tween the neutron beam and the sample. In the ideal case of perfect detector efficiency

η(q), Sexp(q,E) = Sth(q,E), therefore η(q) = 1. For incoherent QENS, η(q) can be

estimated by integrating SV
exp(q,E) of Vanadium (V):

η(q) =
Z +E 0

�E 0
SV

exp(q,E) ·dE (2.72)

whit (�E 0, E 0) that is the energy range used for the integration elastic peak of the

Vanadium. Vanadium is chosen because of its large incoherent neutron scattering cross-

section, and its purely elastic peak (modulated by the Debye-Waller factor, see below)

over the observable energy transfer range, meaning that ideally all the incoherent scat-

tering intensity is detected. Therefore, all the measured spectra are corrected for the

detector efficiency by the q-wise normalization:

Sth(q,E) =
Sexp(q,E)

R+E 0
�E 0 SV

exp(q,E) ·dE
(2.73)

However another crucial instrument-dependent feature that often affects every mea-

surements, and that should be included in eq. (2.71), is the resolution function of the

instrument. This function filters the signal produced by the scattering accordingly to the

limitations of the data acquisition system of the instrument, and it depends generally on
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the transferred wave-vector and the time, R(q, t). In particular, it holds the following:

Iexp(q, t) = η(q) · R(q, t) · Ith(q, t) (2.74)

where Iexp and Ith are, respectively, the measured intermediate scattering function and

the theoretical one. To compare this equation with eq. (2.71), we can take the Fourier

transform (in time) of eq. (2.74) and we obtain

Sexp(q,E) = η(q) · R(q,E) ⌦ Sth(q,E) (2.75)

where R(q,E) Fourier transform of R(q, t).
As for the determination of the detector efficiency, measuring the scattering of

Vanadium is ideal for determining the resolution function, since it is a strong elastic

incoherent scatterer (Table 2.2) and serves as a standard to determine both the reso-

lution function and the efficiency of the detectors of a neutron scattering instrument.

The theoretical incoherent scattering function of vanadium in the µeV energy regime

is [52]:

SV
th(q,E) = e�

1
6 hu2i

T
·q2

· δ (E) (2.76)

where
⌦

u2
↵

T
is the temperature dependent mean-squared displacement, which for T =

296 K is
⌦

u2
↵

T
= (6.7±0.6) ·10�3Å

2
[74]. Hence, for the q-range of typical neutron

scattering spectrometers, 0.2Å
�1  q  2Å

�1
, we can assume that the

⌦

u2
↵

T
exponent

in eq. (2.76) is negligible at ambient temperatures. Consequently, the vanadium signal

can be approximated by a delta function with a q-independent peak intensity which

is exactly what we need to characterize the detectors efficiency and their resolution

function. Combining eq. (2.75) and (2.76) we obtain indeed the following relation:

SV
exp(q,E) =η(q) · R(q,E) ⌦ SV

th(q,E)

=η(q) · R(q,E) ⌦ δ (E)

=η(q) · R(q,E)

(2.77)
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Chapter 3

Molecular dynamics simulations

One technique employed in this thesis is Molecular Dynamics (MD) simulation. It

is one of the most extended computer simulation techniques in material science and bio-

physics. In short, MD is used to calculate the time evolution of a classical many-body

system by numerically integrating Newton’s equations of motion. It is currently applied

to a large spectrum of systems, from nanomaterials to biomolecules. This method pro-

vides two key features: it offers high spatial resolution and allows for the calculation

of transport properties and relaxation constants since it does not disrupt the kinetics of

the system. However, when applied to large systems, the sampling is limited by the

current computational resources, e.g. the typical limit for a system of 100,000 atoms is

the microsecond timescale [75].

In the first section of this chapter, an introduction to the basic concepts of the MD

simulation is presented. In the second section an insight on the atomistic MD simu-

lation of proteins is shown - since proteins are complex systems they require specific

techniques developed ad hoc. Finally, in the last section, the coarse graining strategy

to simulate complex systems is presented.

3.1 Introduction to molecular dynamics simulations

MD simulations are one of the principal tools in the theoretical study of biomolecules

providing information on the relative positions of molecules and atoms as a function

of time and thus their dynamics. In fact, MD is a computational method which allows

to calculate the time dependent behavior of complex molecular systems (e.g. proteins,

nucleic acids, etc.) and hence it is generally used to describe such systems in terms of a

realistic atomic model, with the aim to understand and predict macroscopic properties

based on detailed knowledge on an atomic scale. Indeed, starting from an atomistic

level, MD simulations are used to predict and better understand the properties of com-

plex materials. In this way MD provide a direct route from the microscopic details of

a system (the masses of the atoms, the interactions between them, etc.) to macroscopic

properties of experimental interest (the equation of state, transport coefficients and so

on). In particular, usually biomolecular MD simulations are used to gain insight into

ligand binding, enzymatic activities, signalling mechanisms and protein folding [76].

Additionally simulations are valuable tools for the refinement of electron microscopy,

x-ray, neutron scattering or other spectroscopic data in order to obtain more accurate

molecular structures and used to interpret experimental results.
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Actually, MD simulations compute the motions of individual molecules for a clas-

sical many-body system in order to describe the equilibrium and transport properties

of solids, liquids and gasses. Although this modelling of the matter at the microscopic

level must be, in principle, based on quantum mechanics, MD generally adopts a clas-

sical point of view. In this context, the word classical means that the nuclear motions

of the constituent particles obey the laws of classical mechanics (the motions are de-

scribed by the second Newton’s law). This is an excellent approximation for a wide

range of materials.

Hence, in MD neither relativistic nor quantum effects are considered:

� Special relativity does not allow information to travel faster than light; MD sim-

ulations assume forces with an infinite speed of propagation.

� Quantum mechanics has at its base the uncertainty principle; MD requires, and

provides, complete information about position and momentum at all times.

In practice, the phenomena studied by MD simulations are those where relativistic

effects are not observed and quantum effects can, if necessary, be incorporated as semi-

classical corrections derived from quantum theory.1

MD simulations allow to calculate several properties of many-particle systems.

However, not all properties can be directly measured in a simulation. Conversely, most

of the quantities that can be measured in a simulation do not correspond to proper-

ties that are measured in real experiments. Actually, molecular simulations generate

information at the microscopic level (atomic and molecular positions, velocities, etc.)

and the conversion of this very detailed information into macroscopic terms (pressure,

internal energy, etc.) is the field of the statistical mechanics. Thus, the language of

statistical mechanics is necessary to use these simulations as the numerical counterpart

of experiments.

In this context, it is useful to see that there is a direct connection between MD

simulations and the microcanonical ensemble of statistical mechanics. Indeed, the mi-

crocanonical ensemble consists of all microscopic states (rN(t), pN(t)) on the constant

energy hypersurface H(rN(t), pN(t)) = E. On the other hand in the classical Hamilto-

nian mechanics the equations of motion conserve the total energy:

dH

dt
= 0 =) H(rN(t), pN(t)) = const. (3.1)

This suggests a link between the microcanonical ensemble and classical Hamilto-

nian mechanics. For a system that evolves according to Hamilton’s equations of motion,

a trajectory computed with these equations, namely:

ṙi(t) =
∂H

∂pi
ṗi(t) = �∂H

∂ri
(3.2)

will generate microscopic configurations belonging to the microcanonical ensemble

with the constant energy E. Thus, if after a long time a system with energy E is able

1For example, dealing with very light atoms or molecules (e.g. He, H2, D2) or with vibrational mo-

tions with characteristic energy comparable or larger than kBT , quantum effects became not negligible.
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to visit practically all the configurations on the constant energy hypersurface, the dy-

namical evolution of this system can be used to generate a microcanonical ensemble.

A system that has this property is said to be ergodic.

In general this dynamical approach, that is at the basis of MD simulations, provides

a powerful method for generating an ensemble and its averages.2 Thus MD simula-

tions have evolved into one of the most widely used techniques for solving statistical

mechanical problems.

Figure 3.1: A schematic representation of phase space. The hexagonal cells

represent state points (rN , pN). In an ergodic system, all the trajectories in

this figure represent different sections of a single long trajectory. Indeed,

if the system is ergodic, the single long trajectory would eventually pass

through (or arbitrarily near) all states. A substantial region of cyclical trajec-

tories, and a barrier region leading to bottleneck, are shaded. Source: Allen

and Tildesley, Computer Simulation of Liquids (1st edition, 1987) [77].

Given an ergodic trajectory, microcanonical phase space averages can be replaced

by time averages over the trajectory according to:

hAi ⌘
R

dx A(x)δ (H(x)�E)
R

dx δ (H(x)�E)
= lim

τ!∞

1

τ

Z τ

0
dt A[x(t)] ⌘ Ā (3.3)

where x(t) is a representative point of the phase space defined as x(t) = (rN(t), pN(t)).
This formula can be discretized for MD simulations as follows:

hAi = 1

M

M

∑
n=0

A(xn∆t) (3.4)

The discretization derives from the fact that the equations of motion are solved nu-

merically using some numerical integrators that generate phase space vectors at discrete

2In MD programs the phase of the simulation used to generate the ensemble is usually named: equi-

libration.
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times that are multiples of a fundamental time discretization parameter ∆t, known as

time step. Starting from x0, the vectors xn∆t (where n = 0 , . . . , M with M as the total

number of integration steps) are generated by applying the integrator iteratively3 [78].

x(t)��������!
t ! n∆t

xn∆t (3.5)

By the way, adopting the classical point of view, doing a MD simulation basically

means solving Newton’s equations of motion for a system of N interacting atoms:

mi r̈i = Fi[r
N(t)] i = 1 , . . . , N (3.6)

where the forces are derived as the negative derivatives of the potential energy function

U [rN(t)]:
Fi[r

N(t)] = �∇ri
U [rN(t)] (3.7)

The equations (3.6) and (3.7) are solved simultaneously at every time step. The system

is supervised for a certain lapse of time, taking care that temperature and pressure re-

main at the required values and the coordinates are written to an output file at regular

intervals. The coordinates, as a function of time, represent a trajectory of the system.

After the initial changes, the system will usually reach an equilibrium state. By averag-

ing over an equilibrium trajectory, many macroscopic properties can be extracted from

an output file.

3.2 Molecular dynamics simulations of proteins

In this section several useful concepts are presented to outline how MD simulations

of macromolecular systems generally work. Firstly, an introduction to the problem of

the calculation of the forces is set: classical MD force field and boundary conditions,

with a consideration of the special case of the long range Coulomb interactions, are

shown. This is followed by a brief introduction to the numerical integration of (3.6)

with mention to a simulation strategy for controlling temperature and pressure. Finally,

the problem concerning the creation of the initial state is discussed: starting structures,

solvation, minimization and equilibration.

3.2.1 Calculation of the forces

The potential energy is one of the most crucial parts of the simulation because it

must faithfully represent the interaction between atoms, cast in the form of a simple

mathematical function that can be calculated quickly. Indeed, the computation of the

forces acting on every particle is the most time-consuming task of almost all MD sim-

ulations.

As biological systems involve many atoms of different types, a quantum mechan-

ical treatment of these atoms is not feasible. The usual way to solve them is to use

3For biological MD simulations ∆t is usually of the order of few femtoseconds (10�15 s) therefore,

in order to obtain a trajectory of few nanoseconds (10�9 s), one has to perform at least a million of

integration steps.
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empirical potential energy functions, conventionally called force fields, which are com-

putationally less expensive, but involve numerous approximations leading to certain

limitations.4 These functions and parameters have been derived from experimental re-

sults and quantum mechanical calculations of small model compounds. They are often

refined by the use of computer simulations to compare calculated condensed phase

properties with experiment. Current generation force fields provide a reasonable good

compromise between accuracy and computational efficiency. Among the most com-

monly used potential energy functions are the AMBER, CHARMM, GROMOS and

OPLS/AMBER force fields. One of the most important limitations of the empirical

force fields is that no drastic changes in the electronic structure are allowed. i.e. no

events like bond making or breaking can be modeled [79].

3.2.1.1 The force field

As shown in eq. (3.7), the force acting on an atom i is calculated as the negative

gradient of a scalar potential energy function U that depends on all atomic positions

and, thereby, couples the motion of atoms. For systems of biomolecules, this potential

energy function is usually divided into two parts:

U = Ubonded + Unon-bonded (3.8)

The bonded potential Ubonded involves 2 , 3, and 4-body interactions of covalently

bonded atoms, with O(N) terms in the summation.5 The non-bonded potential Unon-bonded

involves long-range interactions between all pairs of atoms (usually excluding pairs of

atoms already involved in a bonded term), with O(N2) terms in the summation, al-

though fast evaluation techniques are used to compute good approximations to their

contributions to the potential with O(N) or O(N log N) computational cost. The differ-

ent terms will be explained in more detail in the following sections.

Figure 3.2: Schematic representation of the bonded interaction terms

contributing to the force field. Source: P. Gkeka and Z. Cournia, Molec-

ular Dynamics simulations of lysozyme in water (2015) [79].

4A force field, in the context of a computer simulation, refers to the functional forms used to describe

the intra-molecular and inter-molecular potential energy of a collection of atoms, and the corresponding

parameters that will determine the energy of a given configuration. Thus it is a special case of interatomic

potentials and it must not be confused with force field in classical physics.
5Indeed, the number of covalent bound is proportional to the number of atoms.
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Bonded potential terms

The bonded potential describes the stretching, bending, and torsional of the covalent

bonds.

I Bond stretching:

The bond stretching term is a 2-body potential, generally assumed to be har-

monic, that describes the vibrational motion between a pair of covalently bonded

atoms:

Ub = kb (b � b0)
2 (3.9)

where b is the distance between the two atoms. Two parameters characterize each

bonded interaction: b0 the average distance between them and a force constant

kb.

I Angle bending:

The angle bending term describes the force originating from the deformation of

the valence angles between three covalently bonded atoms (3-body interactions).

The angle bending term is described using a harmonic potential:

Uθ = kθ (θ � θ0)
2 (3.10)

where θ is the angle between three atoms. Two parameters characterize each an-

gle in the system: the reference angle θ0 and a force constant kθ .

I Torsional terms:

The torsional terms are weaker than the bond stretching and angle bending terms.

They describe the barriers to rotations existing between four bonded atoms (4-

body interaction). There are two types of torsional terms: proper and improper

dihedrals. Proper torsional potentials are described by a cosine function:

Uφ = kφ [1 + cos(nφ � δ )] (3.11)

where φ is the angle between the planes formed by the first and the last three

of the four atoms. Three parameters characterize this interaction: δ sets the

minimum energy angle, kφ is a force constant and n is the periodicity.

The improper dihedral term is designed both to maintain chirality about a tetra-

hedral heavy atom and to maintain planarity about certain atoms. The potential

is described by a harmonic function:

Uω = kω (ω � ω0)
2 (3.12)

where ω is the angle between the plane formed by the central atom and two

peripheral atoms and the plane formed by the peripheral atoms (see Fig. 3.2).

Non-bonded potential terms

The non-bonded potential describes the van der Waals forces and the electrostatic in-

teractions between the atoms.
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Figure 3.3: Schematic representation of Lennard-Jones poten-

tial. The collision parameter, σ , is shown along with the well

depth, ε . Source: Eni. Generalic, Lennard-Jones potential

(Croatian-English Chemistry Dictionary & Glossar, 2017) [80].

I Van der Waals interactions:

The van der Waals force acts on atoms in close proximity. It is strongly repulsive

at short range and weakly attractive at medium range. The interaction is described

by a Lennard-Jones potential:

UV dW = 4ε
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r

⌘12

�
⇣σ

r

⌘6
�

(3.13)

where r is the distance between two atoms. It is parametrized by σ : the collision

parameter (the separation for which the energy is zero) and ε the depth of the

potential well. The Lennard–Jones potential approaches 0 rapidly as r increases,

so it is usually truncated (smoothly shifted) to 0 past a cutoff radius, requiring

O(N) computational cost.

I Electrostatic interactions:

Finally, the long distance electrostatic interaction between two atoms is described

by Coulomb’s law:

Uel = ε1�4 ·
q1 q2

4π ε0 r12
(3.14)

where q1 and q2 are the charges of both atoms and r12 the distance between them,

while ε0 is the electric susceptibility of vacuum. The parameter ε1�4 is a unitless

scaling factor whose value is 1, except for a modified 1� 4 interaction, where

the pair of atoms is separated by a sequence of three covalent bonds (so that

the atoms might also be involved in a torsion angle interaction), in which case

ε1�4 = ε , for a fixed constant 0  ε  1. Although the electrostatic potential

may be computed with a cutoff like the Lennard-Jones potential, the r�1 potential

approaches 0 much more slowly than the r�6 potential, so neglecting the long

range electrostatic terms can degrade qualitative results, especially for highly

charged systems. There are other fast evaluation methods that approximate the

contribution to the long range electrostatic terms that require O(N) or O(N logN)
computational cost, depending on the method.
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Potential energy function

Finally, the equation for the potential energy describing the force field can be expressed

as:

U = ∑
bonds b

kb (b � b0)
2 + ∑

anglesθ

kθ (θ � θ0)
2 +

+ ∑
proper

dihedrals

kφ [1 + cos(nφ � δ )] + ∑
improper
dihedrals

kω (ω � ω0)
2 +
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ε1�4 ·
q1 q2

4π ε0 r12
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INTERACTIONS

(3.15b)

3.2.1.2 Boundary condition

To avoid surface effects at the boundary of the simulated system, periodic boundary

conditions are often used in MD simulations; the particles are enclosed in a cell that is

replicated to infinity by periodic translations. A particle that leaves the cell on one side

is replaced by a copy entering the cell on the opposite side, and each particle is subject

to the potential from all other particles in the system including images in the surround-

ing cells, thus entirely eliminating surface effects (but not finite-size effects). Because

every cell is an identical copy of all the others, all the image particles move together,

consequently they should be represented only once inside the molecular dynamics code.

Figure 3.4: A two-dimensional periodic system. Molecules can enter

and leave each box across each of the four edges. In a three-dimensional

example, molecules would be free to cross any of the six cube faces.

Source: Allen and Tildesley, Computer Simulation of Liquids (1st edi-

tion, 1987) [77].

However, because van der Waals and electrostatic interactions exist between every

non-bonded pair of atoms in the system (including those in neighboring cells) comput-

ing the long-range interaction exactly is unfeasible. To perform this computation, the

van der Waals interaction is spatially truncated at a user-specified cutoff distance. For
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a simulation using periodic boundary conditions, the system periodicity is exploited to

compute the full (non-truncated) electrostatic interaction with minimal additional cost

using the Particle-Mesh Ewald (PME) method described in the next paragraph.

Full Electrostatic Computation

Ewald summation is a description of the long-range electrostatic interactions for a spa-

tially limited system with periodic boundary conditions. The infinite sum of charge-

charge interactions for a charge-neutral system is conditionally convergent, meaning

that the result of the summation depends on the order in which it is taken. Ewald sum-

mation specifies the order as follows: sum over each box first, then sum over spheres of

boxes of increasingly larger radii. Ewald summation is considered more reliable than a

cutoff scheme, although it is noted that the artificial periodicity can lead to bias in free

energy, and can artificially stabilize a protein that should have unfolded quickly.

Figure 3.5: In PME, a charge (denoted by an empty circle with label q in

the figure) is distributed over grid (here a mesh in two dimensions) points

with weighting functions chosen according to the distance of the respec-

tive grid points to the location of the charge. Positioning all charges on

a grid enables the use of the Fast Fourier Transform (FFT) to solve Pois-

son’s equation for the electrostatic potential due to the charge distribution.

In real applications, the grid is three-dimensional. Source: J. C. Phillips et

al., Scalable Molecular Dynamics with NAMD (Journal of Computational

Chemistry, 2005) [81].

The PME method is a fast numerical method to compute the Ewald sum. The cost

of PME is proportional to N logN and the time reduction is significant even for a small

system of several hundred atoms. The strict conservation of energy resulting from the

computed force is crucial and is strongly assisted by maintaining the symplecticness of

the integrator, as discussed further below. However the PME method does not conserve

energy and momentum simultaneously, but momentum conservation can be enforced

by subtracting the net force from the reciprocal sum computation, albeit at the cost of a

small long-time energy drift.

3.2.2 Numerical Integration

Biomolecular simulations often require millions of time steps. Furthermore, bio-

logical systems are chaotic; trajectories starting from slightly different initial condi-

tions diverge exponentially fast and after a few picoseconds are completely uncorre-

lated. However, highly accurate trajectories are not normally a goal for biomolecular

35



simulations; more important is a proper sampling of phase space. Therefore, for con-

stant energy (NVE ensemble) simulations, the key features of an integrator are not only

how accurate it is locally, but also how efficient it is, and how well it preserves the

fundamental dynamical properties, such as energy, momentum, time-reversibility, and

symplecticness.

Figure 3.6: Simple example that shows the merit of a symplectic integra-

tor: integration of a one-dimensional harmonic oscillator with an unit circle

as exact trajectory. The trajectory of nonsymplectic method initially draw

a circle, but after few steps starts to collapse toward the center while the

symplectic method maintains a stable orbit, showing a superior long-time

stability, even though its trajectory is deformed into an ellipse by a larger

local error. Source: J. C. Phillips et al., Scalable Molecular Dynamics with

NAMD (Journal of Computational Chemistry, 2005) [81].

The time evolution of a strict Hamiltonian system is symplectic. A consequence of

this is the conservation of phase space volume along the trajectory, that is, the enforce-

ment of the Liouville theorem. To a large extent, the trajectories computed by numerical

integrators observing symplecticness represent the solution of a closely related prob-

lem that is still Hamiltonian. Because of this, the errors, unavoidably generated by an

integrator at each time step, accumulate imperceptibly slowly, resulting in a very small

long-time energy drift, if there is any at all. Artificial measures to conserve energy, for

example, scaling the velocity at each time step so that the total energy is constant, lead

to biased phase space sampling of the constant energy surface; in contrast, there has

been no evidence that symplectic integrators have this problem.

One of the most used integratos for NVE simulations is the velocity Verlet [82].

This method obtains the position and velocity at the next time step (rn+1, vn+1) from

the current one (rn, vn), assuming the force Fn = F(rn) is already computed, in the

following way:

half-kick ! v
n+ 1

2
= vn + 0.5 ·∆t ·Fn/m

drift ! rn+1 = rn + ∆t · v
n+ 1

2

compute force ! Fn+1 = F(rn+1)

half-kick ! vn+1 = v
n+ 1

2
+ 0.5 ·∆t ·Fn+1/m

where m is the mass. The Verlet method is symplectic and time reversible, conserves

linear and angular momentum, and requires only one force evaluation for each time

step. For a fixed time period, the method exhibits a (global) error proportional to ∆t2.
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Figure 3.7: Schematic representation of the velocity Verlet algorithm. At

each step, the stored variables are in grey boxes. Source: Allen and Tildes-

ley, Computer Simulation of Liquids (1st edition, 1987) [77].

More accurate (higher order) methods are desirable if they can increase the time step

per force evaluation. However, higher order Runge-Kutta type methods, symplectic or

not, are not suitable for biomolecular simulations because they require several force

evaluations for each time step and force evaluation is by far the most time-consuming

task in molecular dynamics simulations. Gear type predictor-corrector methods, or

linear multistep methods in general, are not symplectic. Hence, no symplectic method

has been found as yet that is both more accurate than the Verlet method and as practical

for biomolecular simulations.

On the other hand, it is also possible to employ multiple-time-stepping methods

to improve integration efficiency. Because the biomolecular interactions described in

eq. (3.15) generally act on different time scales, this allows us to compute the slower-

varying forces less frequently than faster ones. This idea can be implemented by three

levels of integration loops. The inner loop uses only bonded forces to advance the

system, the middle loop uses Lennard–Jones and short-range electrostatic forces, and

the outer loop uses long-range electrostatic forces.6

Using this multiple time-step approach can increase computational efficiency by a

factor of 2, however the longest time step is limited by resonance.7

3.2.3 NVT Ensemble Simulations

A fundamental requirement for an integrator is to generate the correct ensemble

distribution for the specified temperature and pressure in an appropriate way. For this

purpose the Newtonian equations of motion (3.6) should be modified “mildly” so that

the computed short-time trajectory can still be interpreted in a conventional way. To

generate the correct ensemble distribution, the system is coupled to a reservoir, with

the coupling being either deterministic or stochastic. Deterministic couplings generally

have some conserved quantities (similar to total energy), the monitoring of which can

provide some confidence in the simulation. NAMD uses a stochastic coupling approach

because it is easier to implement and the friction terms tend to enhance the dynamical

stability.

The (stochastic) Langevin equation is used in NAMD to generate the Boltzmann

distribution for canonical (NVT) ensemble simulations. The generic Langevin equation

6In the article: Scalable Molecular Dynamics with NAMD (Journal of Computational Chemistry,

2005), Phillips and his colleagues note that this method, implemented in the NAMD software, is sym-

plectic and time reversible [81].
7When good energy conservation is needed for NVE ensemble simulations, it is recommended to

choose 2 f s, 2 f s, and 4 f s as the inner, middle, and outer time steps if rigid bonds to hydrogen atoms are

used; or 1 f s, 1 f s, and 3 f s if bonds to hydrogen are flexible. More aggressive time steps may be used,

instead, for NVT or NPT ensemble simulations - i.e. 2 f s, 2 f s, and 6 f s with rigid bonds and 1 f s, 2 f s,

and 4 f s without [81].
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is:

mir̈i(t) = Fi[r
N(t)] � γ ṙi(t) +

r

2γ kBT

mi
R(t) (3.16)

where γ is the friction coefficient, kB is the Boltzmann constant, T is the temperature

and R(t) is a univariate Gaussian random process. Coupling to the reservoir is mod-

eled by adding the fluctuating (the last term) and dissipative (�γ ṙi term) forces to the

Newtonian equations of motion. To integrate the Langevin equation, NAMD uses the

Brünger-Brooks-Karplus (BBK) method, a natural extension of the Verlet method for

the Langevin equation. The position recurrence relation of the BBK method is:

rn+1 = rn +
1 � 0.5γ ∆t

1 + 0.5γ ∆t
(rn � rn�1) +

∆t2

1 + 0.5γ ∆t

"

F(rn)

m
+

r

2γ kBT

m
Zn

#

(3.17)

where Zn is a set of Gaussian random variables of zero mean and variance 1. The

BBK integrator requires only one random number for each degree of freedom. The

steady-state distribution generated by the BBK method has an error proportional to

∆t2, although the error in the time correlation function can have an error proportional

to ∆t.

3.2.4 NPT Ensemble Simulations

Often, it is useful to maintain a simulated system at both constant temperature and

pressure. In a thermodynamic sense, systems at constant pressure are the ones that

can exchange volume with their surroundings (e.g., by way of a piston). Their volume

therefore fluctuates. Likewise, simulated systems at constant pressure involve volume

fluctuations.

A number of different barostat techniques exist with the scope of maintaining a tar-

get pressure by dynamically adjusting the volume of the system during the simulation.

Mainly, the most common barostat techniques are based on:

. Volume rescaling – the instantaneous pressure is made to equal the target pressure

by rescaling the system volume at periodic intervals.

. Berendsen barostat – the pressure is weakly coupled to a pressure bath and the

volume periodically rescaled.

. Extended ensemble barostat (also known as Andersen barostat) – the system is

coupled to a fictitious pressure bath using an extended Lagrangian and the intro-

duction of new degrees of freedom.

A detailed discussion of the algorithms commonly used is beyond the scope of this

thesis.

3.2.5 Initial state of the system

In order to perform a simulation for measuring some selected properties of a given

system, it is essential, like in a real experiment, to prepare first the initial state of the

38



system. This means to obtain, in some way, a set of coordinates and velocities for all

the atoms that identify an initial configuration of the system compatible with the desired

initial state.

Specifically, for the simulation of large biological molecules such as proteins or nu-

cleic acids, and as a consequence of the complex structures of these macromolecules,

the initial positions of their atoms are usually obtained from the results of some real

experiments, like X-Rays crystallography or nuclear magnetic resonance (NMR) spec-

troscopy, whereas the initial velocities are typically set pseudorandomly so that the total

kinetic energy of the system corresponds to the expected value at the target temperature.

Actually, the sets of coordinates obtained from these experiments often do not rep-

resent an initial configuration that is compatible with the desired initial state of the

system (e.g. due to the hydration of the sample or to the fact that the set of coordi-

nates usually refer only to one macromolecule, while the real system might be formed

by more). However, since these coordinates represent the three-dimensional structure

of the macromolecules involved in the simulation, they provide a fundamental starting

point for the preparation of the system. Indeed from these coordinates, through several

processes that exploit and modify them, it is possible to derive a configuration for the

entire system that, been as close as possible to the configuration of the real system that

it is intended to study, can be used to simulate its initial state.

Hence, when the initial configuration is achieved, it is possible to make several

simulations of the system that can be used to measure the properties to be studied (this

phase of the simulation is conventionally named: production phase and the main scope

of a molecular simulation is to get some interesting results from this phase). The pro-

cess generally used in MD simulations of biological system, preceding the production

phase, is mainly the following: solvation, minimization, heating (set the velocities) and

equilibration; that are describe below.

In any case, it is important to point out that the choice of the initial configuration

must be done carefully as this can influence the quality of the entire simulation.

3.2.5.1 Solvation

Solvation consists in the process of taking into account the solvent surrounding

the biomolecules. Actually, biomolecules are generally in solution with some types of

aqueous solvent and therefore solvation is a common process that is used to prepare the

initial configuration of the system. This is indeed due to the known fact that solvation

effects play a crucial role in determining molecular conformation, electronic properties,

binding energies, etc.

There are mainly two ways to solvate a biomolecular system:

• explicit treatment: the coordinates of the solvent atoms are directly added to the

system with the specification of the structure of the molecules that occur in the

solvent (most often water molecules and, sometimes, also salt ions).8

• implicit treatment: the force field is modified to include also the effect due to the

interaction between the biomolecular system and the solvent. Thus this technique

eliminates the need of specifying all the atoms of the solvent by including many

8Usually, in this phase of the simulation, periodic boundary conditions are particularly important to

avoid surface effects.
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of their average effects in the inter-atomic force calculation. For example, polar

solvent acts as a dielectric and screens (lessens) electrostatic interactions.

The elimination of explicit water accelerates conformational explorations and some-

times increases simulation speed, although at the cost of not modeling the solvent as

accurately as explicit models. However, since implicit solvent models represent the

solvent in an averaged manner, they are considered less accurate than explicit solvent

models. Caution should always be used when implicit solvents are employed for molec-

ular dynamics research.

3.2.5.2 Minimization

In the context of MD simulation, the energy minimization, in short known as min-

imization, is the process of finding an arrangement in space for a collection of atoms

where, according to the force field used, the net inter-atomic force on each atom is

acceptably close to zero and the position on the potential energy surface is a station-

ary point. In general, the collection of atoms might be a single molecule, an ion, a

condensed phase, a transition state or even a collection of any of these.

As an example, when optimizing the geometry of a water molecule, one aims to

obtain the hydrogen-oxygen bond lengths and the hydrogen-oxygen-hydrogen bond

angle which minimize the forces that would otherwise be pulling atoms together or

pushing them apart.

The motivation for performing an energy minimization is the physical significance

of the obtained structure: even when initial coordinates are available from an exper-

iment, the starting vector may not correspond to a minimum in the potential energy

function used, and as such minimization is needed to relax strained contacts. When an

experimental structure is not available, a build-up technique may be used to construct a

structure on the basis of the known building blocks, and minimization again is required.

For a biomolecular system, the potential energy function is a very complex and

multidimensional landscape. It has one deepest point, the global minimum, and a very

large number of local minima.

Figure 3.8: Simplified example of the energy landscape (as a function of only two

variables). Source: Voet D., Voet J.G. and Pratt C.W., “Fundamentals of Biochem-

istry” (5th edition 2016)[83].
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The goal of the energy minimization is to find a local minimum. The energy at this

local minimum may be much higher than the energy of the global minimum. Perform-

ing an energy minimization will guarantee the removal of any strong van der Waals

interactions which might otherwise lead to local structural distortion and result in an

unstable simulation.

3.2.5.3 Heating

During this phase, the integration of the equations of motion starts. The heating

process, usually performed in the NVT ensemble, consists of progressively increasing

of the reservoir’s temperature to gradually heat the system. This process is performed

mainly for two reasons:

• to reach the desired temperature at which the system has to be studied;

• to change the configuration of the system so as to escape from local minima

within the energy landscape that are probably obtained with the minimization but

that do not represent the real state of the system.9

In both cases, the need of a gradual increase of the temperature is due to the fact that,

starting from the structures obtained from the X-Ray experiment, typically performed

at low temperatures, and after some manipulations and the minimization that modifies

these structures, the configuration of the system obtained is built without taking into ac-

count the velocities and hence the contribution of the kinetic energy to the total energy.

Indeed starting a simulation at high temperature with such artificial configuration of the

system that may be considered as “frozen”, might be unfeasible because the simulation

will be probably numerically unstable.

Therefore, during the heating phase, initial velocities are assigned at a low tempera-

ture and the simulation is started with periodically assigning new velocities at a slightly

higher temperature and letting the simulation to continue. This step is repeated until

the desired temperature is reached.10

3.2.5.4 Equilibration

Once the heating process is over and the desired temperature is reached, the simula-

tion is continued and during this phase, properties such as structure, pressure, temper-

ature and the energy are monitored. The point of the equilibration phase is to run the

simulation until these properties become stable with respect to time. If in the process,

the temperature increases or decreases significantly, the velocities are scaled such that

the temperature returns to its desired value.

9This might be done also in alternation with some phases of cooling.
10Clearly, between the velocities of the atoms and the temperature of the system there is a strong

connection. According to the classical equipartition theorem, each normal mode has 1
2
kBT energy, on

average, at thermal equilibrium. Thus hEi = 1
2 ∑i miv

2
i = 1

2
NkBT . One of the most common ways to set

the initial velocities is by generating numbers pseudorandomly and choose them so that the total kinetic

energy of the system corresponds to the expected value at the target temperature T .
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Figure 3.9: From the Mountains to the Valleys: a molecular dynamics fairy

tale. Source: Theoretical and Computational Biophysics Group, “Computa-

tional Biophysics Workshop” (Boston, Dec. 5-9, 2004).

3.2.6 Production and Analysis

The last step of the simulation is the production phase, wherein the system is sim-

ulated for the time length required, normally from several hundred ps to ns or more.

During this process, coordinates and eventually also velocities, of the system at differ-

ent times are stored in the form of trajectories. These are then used for calculations

of mean energy, mean square distance (MSD) between structures, local mean square

atomic fluctuations (MSF) etc. From MD simulations, time dependent properties such

as correlation functions can also be calculated and these in turn can be related to spec-

troscopic measurements.

3.3 Coarse graining

The atomistic simulations described in the previous sections have been success-

fully employed to investigate many aspects of biological systems like the folding of

small proteins.However, biological systems and phenomena exhibit complexities and

diversities that spread over a wide and disparate range of spatio-temporal scales. These

phenomena include the dynamics of large proteins and the self-assembly of biologi-

cal molecules. Different space and time resolutions are involved, from the quantum

mechanical level, describing the electronic structures, to the atomic scale, and the con-

tinuum level of fluid motion at macroscopic scales (Figure 3.10).

3.3.1 Production and Analysis

Despite the growth of computational resources and power, and the emergence of

enhanced sampling methodologies, all-atom simulations are still limited to systems

containing tens or hundreds of thousands of atoms on a µs time scale, that only rarely
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reach the millisecond time-scale [84]. Hence, the deployment of simplified represen-

tations still able to capture the essential features of the phenomena is required (Fig.

3.11). One successful strategy is to reduce the number of degrees of freedom by a sys-

tematic coarse-graining. Coarse-grained (CG) models present an attractive alternative

to the traditional atomistic simulations offering the possibility of investigating complex

cellular processes over larger lengths and longer time scales at a reduced level of detail.

A coarse-graining operation requires the selection of the level of description. Then, the

degrees of freedom are reduced by averaging off the behaviour of the fast ones. In the

coarse-graining of biomolecules, the strategy is, for example, to cast together groups

of atoms, thus preserving some degrees of molecularity. However, depending on the

problem under consideration a more aggressive coarsening can be performed, i.e. a

whole protein can be modelled as a single particle.

Figure 3.10: Schematic representation of various computational approaches,

used to cover different scales of length and time pertinent to different biophys-

ical processes. These methods range from highly accurate, but computational

demanding to the highly efficient but very low-detail continuum models. Fig-

ure reprinted from [84].

Figure 3.11: All-atom versus coarse-grained energy landscape. The figure

illustrates the effect of the smoothening of the energy landscape in a coarse-

grained model as compared to an all-atom model. Figure reprinted from [84].
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The parametrization of force fields that are both accurate and transferable - that

is, capable of describing the general dynamics of systems with different compositions

and different configurations - becomes increasingly difficult as the graining becomes

’coarser’, because more specific interactions must effectively be included in fewer pa-

rameters and functional forms. On other hand, coarse-graining also affects thermo-

dynamic properties of a modelled system, particularly the balance between enthalpy

and entropy. Reduction of the degrees of freedom affects the entropy of the simulated

system, which is compensated by reduced enthalpic terms. In turn, a coarse-grained

model may accurately reproduce free energy differences but contributing enthalpy and

entropy values may be inaccurate. Such limitations are typical for the majority of

coarse-grained models.

For fluids like water, the molecular CG consists in describing an ensemble of par-

ticles as a single entity and inserting important features at the level of the interaction

potentials. Stronger simplification can reduce the fluid to essential variables, like den-

sity or velocity. For instance, in the Brownian Dynamics, the effects of collisions of the

solvent with a large particle are described without representing explicitly the solvent

molecules.

It is clear that when the CG is performed only phenomena at the pertinent scales

are accessible and the high level information is lost. For instance, when liquid water is

described at the mesoscopic level, we can not use this representation to investigate the

kinetics of the hydrogen-bond formation. The reason is that the dynamics is averaged

out in the model. Many strategies, and rigorous procedures can be devised to perform

coarse-graining.

3.3.2 The OPEP force field

In our work, for the description of the proteins in the CG simulations, we have em-

ployed the Optimized Potential for Efficient protein structure Prediction (OPEP) force

field. This model has been developed 21 years ago by Derreumaux and coworkers, [85].

and it consist in an intermediate resolution model where each amino acid is represented

with six beads: the backbone is retained in full atomic detail (all N, Cα , C, O and H

main-chain atoms are considered), while side chains are represented by a unique bead

located at the center of mass of their heavy atoms11, see Figure 3.12.

Figure 3.12: The figure show an example of the OPEP model for the pep-

tide Ala-Lys-Phe-Pro-Val in its zwitterion form to show the details of the

backbone and the side-chains. Figure reprinted from [85].

11Clearly, an exception is made for the amino acid proline, whose the side chain is formed by only

one H atom. Therefore it is represented in the OPEP model by all its atomic constituents.

44



The Van der Waals radius and the positions of the side chain beads were calculated

using a database of 2,250 PDB structures with sequence identity lower than 30%. OPEP

is highly transferable among different proteins, but it is limited to soluble protein in

water. On the other hand, it requires a small integration time step of 1.5–2.0 fs due to

the detailed backbone and hydrogen bonds, limiting the amount of sampling that can

be accomplished.

3.3.3 Hydrodynamic interactions: Lattice Boltzmann Molecular Dy-

namics coupled with OPEP

Treating the hydrodynamic interactions is complex and computationally demand-

ing, because they are long range interactions, non-linear in nature, and cannot be ex-

pressed simply as a sum of two-body terms. Several alternative schemes have been

developed along the years. The basic idea is to track the solvent degrees of freedom

through a simplified mesoscopic representation, with the local dynamics that satisfies

the mass, momentum and energy conservation laws and recovers the solution of hydro-

dynamic equations in the large-scale limit. In order to simulate a soft matter system,

the solvent model must then be coupled with the respective algorithms that models

the dynamics of solute particles. One of the most widely used schemes is the Lattice

Boltzmann (LB) method.

Figure 3.13: Pictorial view of the LBMD multiscale scheme. Proteins

are described at microscopic level, interact according to the OPEP coarse-

grained force field and move in the continuum. The aqueous solvent is han-

dled by the lattice Boltzmann method, so that fluid populations that reside on

a Cartesian mesh are evolved in time and move to neighboring mesh points

as connected by a set of discrete speeds (indicated as D3Q19) [86].

In the LB approach, the fluid is represented through particles that reside on a three-

dimensional cubic lattice with spacing ∆x [87, 88]. Here “fluid particles” do not cor-

respond to single molecular entities but represent instead the collective motion of the
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fluid (see Fig. 3.13). In short, we track the solvent kinetic degrees of freedom through a

simplified representation, with a local dynamics that satisfies the mass and momentum

conservation laws and recovers in the large-scale limit the Navier-Stokes equation of

fluid-mechanics.

The lattice Boltzmann equation reads as follows:

fp (x+ cp∆t, t +∆t) = fp (x, t)�ω∆t ·
�

fp � f eq
p

�

(x, t)+gp(x, t) (3.18)

where fp (x, t) denotes the probability distribution of finding a particle at lattice site x

at time t and moving in lattice space with discrete velocity cp, ∆t is the time-step for the

numerical integration. The particle displacement occurs to the first and second lattice

neighbors (D3Q19) by using 18 directions plus a null one mimicking particles at rest.

The distribution fp (x, t) evolves in space and time toward the equilibrium target

f
eq
p with the characteristic relaxation frequency ω = 1/τ . The term gp (x, t) includes

the drag force FD and extra contributions Fext as the random noise encoded in the

molecular dynamics. When focusing on a solute particle suspended in the fluid, this

term describes essentially the particle-to-fluid back reaction. An accurate expression of

gp(x, t) is given by [89]:

gp (x, t) = �wp∆t



G · cp

c2
s

+
(G · cp)(u · cp)� c2

s

c2
s G · cp

c4
s

�

(3.19)

The force G contains any external force and the exchange of momentum induced by

N moving atoms, G = FD +Fext . To lowest order, it can be shown that gp (x, t) =

�wp∆t
G·cp

c2
s

, whereas in practice a higher order version is needed to ensure a global

second-order accuracy of the lattice Boltzmann solver [90]. Without entering into the

analytical details, the method is typically extended to account for local fluctuations at

the level of the stress tensor, such that fluctuating hydrodynamics are recovered.

In addition, it can be shown that local mass and momentum of the global particle-

fluid elements are preserved, a key condition to obtain the correct fluid dynamic behav-

ior. It should also be remarked that the model can be easily extended to account for

thermodynamic forces. The coupling between the motion of a solute particle and the

fluid is based on the assumption that momenta exchange in Stokes-like fashion, thus

defining a drag force between the i-th particle of mass mi and the fluid [91]:

FD (Ri) = �mi γi [Vi � ũ(Ri)] (3.20)

where Vi is the atom velocity, and ũ indicates the fluid velocity field distributed over

the region occupied by the atom, and γi is a friction coefficient that in principle can vary

depending on the solute particle type.

In this scheme (LB coupled with the OPEP force field), the dynamics of the particles

are governed by the following evolution equations for the positions Ri and velocities

Vi of the particles:

Ṙi = Vi (3.21)

V̇i =
FC

i +FD
i

mi
+µi (3.22)
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where FC
i is a conservative force describing the sum of molecular interactions as en-

coded in the OPEP force field. The drag force is given by eq. (3.20). As anticipated

above, FD
i represents the mechanical and dissipative friction exerted between a parti-

cle and the surrounding fluid. The strength of this dissipation depends on γi, a friction

parameter that can be tuned in order to alter the response time between fluid and molec-

ular motions. Finally µi is a white noise mimicking the effect of the thermal collisions

with the molecules of the fluid, with the mean hµi(t)it = 0 and hµi(t)µi(0)it = 2γikBT ,

being kB the Boltzmann constant and T the temperature. Equation (3.21) is integrated

over the time step ∆tMD according to the symplectic position Verlet algorithm [90] and,

if ∆tMD = ∆tLB, the particle and LB dynamics are updated in a synchronous way.

In conclusion, conceptually we adopted Boltzmann kinetic theory, and its numerical

representation, in order to describe the solvent as a continuum in a probabilistic sense.

Traditionally, in the LB formulation the lattice space ∆x which supports the fluid kinet-

ics is defined as a representation (coarse-graining) of the collective kinetic behaviour of

a group of solvent molecules. It is also accepted that in order to observe hydrodynamic

behavior down to the ∆x scale, it is usually considered that the fluid mean free path

should not exceed ∆x. Since in liquid water, the molecular mean free path is of the or-

der of a few angstroms, a subnanometric lattice space can be supported in LB, allowing

for the hydrodynamic behaviour to emerge at distance larger than ∆x. In this approach,

the lattice grid element must not be viewed as a volumetric entity that contains a fixed

number of particles, but instead a numerical support for the probabilistic description of

the averaged single particle trajectories. Horbach and Succi [92] have shown that this

strategy is effective for the simulation of nanofluids and the obtained results agree very

closely with particle-based simulations.

This coupling between the LB method and the OPEP model has been implemented

in MUPHY software.
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Chapter 4

Characterization of the Dynamical

State of the E. Coli Cytoplasm and the

Effect of Cell Death

Based on a paper in preparation:

Short-time Diffusive Dynamics of Bacterial Proteome as a Proxy of the Cell

Death.

Daniele Di Bari, Stepan Timr, Marianne Guiral, Marie-Thérèse Giudici-

Orticoni, Tilo Seydel, Christian Beck, Caterina Petrillo, Philippe Derreumaux,

Simone Melchionna, Fabio Sterpone, Judith Peters and Alessandro Paciaroni

(to be submitted to Science)

Temperature is a boost for cellular metabolism, but above a certain threshold, it

corrupts functional processes involving proteins and causes cell death. Whether the

thermal denaturation involves the whole proteome or just a subset of critical proteins

in the cytoplasm is still debated. Here, we attack the problem from a preferential angle

by monitoring via QENS and multi-scale simulations the dynamical state of the E.coli

proteome across the cell death temperature. Above the cell death temperature, the cy-

toplasm experiences a dynamical slowdown caused by the unfolding of just a small

number of proteins. This small fraction is sufficient to induce the gelation of the cyto-

plasm. From the dynamical properties, the fraction of unfolding is extracted and used

to reconstruct successfully the E. coli growth rate.

4.1 Introduction

Temperature has a significant impact on cells. Notably, membranes, proteins and

nucleic acids suffer in various ways from heat. The membranous integrity can be

challenged resulting in the evasion of periplasmic proteins or the entrance of harm-

ful compounds [14]. Proteins are mandatory for good cellular functioning, but high

temperature provokes loss of conformations and denaturation. Nucleic acids are the
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most stable against thermal stress [93], so that their denaturation can be considered

as a minor cause of cell death. Moreover, biological migrations, extinctions, genetic

divergence, and speciation can all be triggered by small changes in environmental tem-

perature [94, 95, 96]. A deep understanding of the cell’s thermal stability is key to

model the impact of climate change on microbial organism growth [97], establish the-

oretical boundaries for life in extreme environments [98] and optimize thermal based

treatments for cancer [99]. Yet, the factors that influence the cell’s thermal sensitivity

are largely unknown. The proteome’s thermal sensitivity has to play a key role as a de-

terminant for most of the temperature-dependent whole-organism activities, as proteins

are the most abundant and less stable biomolecules in the cell.

Different pictures have been proposed to link the degradation of the proteome to

the upper limit of the cellular thermal niche, i.e. the cell’s death temperature TCD. A

first essential aspect is to quantify the proteome thermal stability [44, 45, 46]. On one

hand a proposed theoretical model [47, 45] finds that the cell death is linked to a global

catastrophe of the proteome with proteins unfolding in a narrow range of temperatures

near the TCD. This picture has been challenged recently by experimental investigations

of E. coli lysates and cells, and based on different techniques such as limited proteolysis

[46] or thermal proteome profile [48], combined with mass spectroscopy. According

to these studies only a small set of proteins indeed unfolds at the cell death. Thermal

adaptation would result from the preferential stabilization of a homologous subset of

proteins, thus indicating that the heat sensitivity of cells can be explained by a small

number of proteins that serve critical physiological roles.

Actually, the proteome’s thermal stability is not the only physical determinant of the

cell’s growth rate, which is expected to depend on the rate of protein diffusion through-

out the cell, the latter being often the limiting factor of the rates of cellular biochem-

ical processes [49]. Protein diffusion depends in turn on the temperature, especially

through the contribution of the intrinsic viscosity in the high-temperature range when

biomolecules start to unfold. To date, the relationship between the diffusive dynamics

of proteome and the thermal sensitivity of a cell has not yet been investigated, also due

to the extremely difficult challenge to represent the motions of proteins in a crowded

milieu cell’s cytoplasm where local concentration may vary from 200 g/L up to 400

g/L [50]. Here, the protein diffusive dynamics is affected by several factors, such as

the presence of steric barriers given by the other macromolecules, hydrodynamic and

attractive interactions and spatial heterogeneity.

On these grounds, here we provide an unprecedented picture of the dynamics of the

E. coli’s proteome in the nanosecond time-scale, based on state-of-the-art neutron scat-

tering spectroscopy and multi-scale molecular dynamics simulation. We show that in E.

coli the global protein diffusion is a close proxy of the bacterial metabolism, with a lin-

ear Stokes-Einstein dependence in the lower temperature range and a striking dynamic

slow-down above the thermal death. Combining the results on the proteome dynam-

ics from neutron scattering and simulations we describe the way the unfolded protein

fraction progressively increases with temperature, offering an alternative quantifica-

tion to existing ones [45, 46, 48]. We clearly show that no global proteome unfolding

occurs at cell death. Finally, we verify that the derived proteome stability curve and

temperature-dependent proteome diffusivity together, allow to excellently reproduce

the E. coli growth rate profile.
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4.2 Methods

4.2.1 Sample Preparation

E. coli BL21 (DE3) was grown overnight in LB medium (made with H2O) at 37�C

with shaking (200rpm). 3.3g of E. coli cells were collected by centrifugation and

washed twice with a buffer made in deuterium oxide (99.9 atom D) as followed: cells

were suspended in 36mL of D2O buffer at pD8, spun at 5400g for 18 minutes at 6�C

and the supernatant was removed. The pD 8 buffer contains 50mM Tris, 150mM NaCl

and 5mM KCl. To obtain a pD of 8, the pH of the buffer was adjusted to 7.6 using HCl.

4.2.2 QENS Experiments

We performed two experiments [100, 101] on the cold neutron backscattering spec-

trometer IN16B at the Institut Laue-Langevin (ILL) [102], with an energy resolution of

⇡ 0.75µeV FWHM, an energy-range of |E|  31µeV, and a wave-vector coverage of

0.19Å
�1  q  1.9Å

�1
. The samples were measured for 2 hours at each temperature

in a temperature range from 275 K to 348 K. The data reduction (i.e. normalization to

the monitor, integration over the regions of interest of the vertically position-sensitive

detector tubes, calculation of the energy axis, and centering of the elastic line positions

using separate Vanadium measurements) where carried out with the built-in module

for IN16B of the Mantid program [72]. The subtraction of the sample holder contri-

bution to the signals, the normalization of the detector efficiency, and the fit of the

data where performed using an in-house python module that is available on github:

https://github.com/DanieleDiBari/NSAnalysis.

QENS Model. The fully reduced scattering function measured from the E. coli sam-

ples, Sexp(q,E), can be obtained by the convolution of the theoretical scattering function

Sth, describing the interaction between the neutrons and the bacteria, and the instrumen-

tal resolution, R(q,E), which is determined by a vanadium sample, a completely elastic

and incoherent scatterer (see section 2.3.2) [52]:

Sexp(q,E,T ) = e
� E

2kBT · [R(q,E)⌦Sth(q,E,T )] (4.1)

where e
� E

2kBT is the detailed balance factor.

Since proteins represent ⇡ 55% of the bacterial dry weight (see Table 4.1) and have

a percentage of hydrogen higher (50%) than any other type of macromolecules (30%)

[103], the major contribution to Sth is originating from self-diffusive dynamics of an

average protein and of the bulk water present in the sample, in this case D2O (see

section 2.2.3):

Sth(q,E.T ) = SAP(q,E,T )+φ ·SD2O(q,E,T ) (4.2)

where SAP(q,E,T ) and SD2O(q,E,T ) are, respectively, the scattering functions of the

average protein and the D2O, and φ is a scalar factor that weights the contribution of

the solvent. φ can be estimated by the product of the D2O amount in the sample, which

constitutes about 80% of the sample mass, and the percentage of bulk water molecules

in E. coli, which is almost 60%.
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Table 4.1: Composition of the average E. coli bacteria (from Neidhardt et al. [104])

MOLECULES PERCENTAGE OF DRY WEIGHT

Macromolecules 96

Proteins 55

RNA 20.5

Lipids 9

Polysaccharides 5

Lipopolysaccharides 3.4

DNA 3.1

Monomers 3

Sugars and precursors 2

Amino acids and precursors 0.5

Nucleotides and precursors 0.5

Inorganic ions 1

QENS: Fitting procedure. To mitigate the problem of overfitting due to the com-

plexity of the system and the consequent high number of unknown parameters neces-

sary to describe the resutling QENS signal, we tried to reduce, as much as possible,

the number of free parameters that can vary during the fit. To this end, we used the

measurements of the PBS-D2O Buffer to fix the q-dependence of the solvent’s inten-

sity SD2O in eq. (4.2). Moreover, we employed a three step procedure for the analysis,

where at each step we perform a fit of the data and we used the resulting information to

improve the model used for the fit and reduce the number of free parameter.

QENS: Energy Resolution. The instrumental resolution function R(q,E) takes sev-

eral parameters into account and it strongly depends on the set-up of the instrument

(section 2.3.2).

Figure 4.1: Example of the QENS spectrum measured for the Vanadium at 275K and q =

0.94Å
�1

. The red line is the best fit of R(q,E) described by the eq. (4.3), meanwhile the dashed

lines are the different components of R(q,E). The inset shows the Full Width Half Maximum

(FWHM) of R(q,E) which represents a measure of the energy resolution of the instrument.
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In particular, at the IN16B spectrometer the resolution function is well described by

a sum weighted by the scalar parameter F(q) of a Gaussian and a Lorentzian function

[102]:

R(q,E) = A(q) ·

8

>

<

>

:

1

π
·

F(q) · γ(q)

γ2(q)+ [E �E0(q)]
2
+(1�F(q)) ·

exp
n

� [E�E0(q)]
2

2σ2(q)

o

σ(q)
p

2π

9

>

=

>

;

+B(q)

(4.3)

where |F(q)| 1. B(q) reflects a background which can depend on q. Figure 4.1 shows

the fit of the Vanadium data with the eq. (4.3) and the measured energy resolution of

the instrument, ∆EFWHM, corresponding to the Full Width Half Maximum (FWHM) of

eq. (4.3). The resulting parameters averaged over q are reported in table 4.2.

Table 4.2: Average parameters resulting from the fit of the Vanadium data with eq. (4.3).

hF(q)i hA(q)i hE0(q)i hB(q)i hσ(q)i hγ(q)i hFWHMi
[arb. units] [µeV] [arb. units] [µeV] [µeV] [µeV]

0.077 1.003 0.030 0.00102 0.317 0.41 0.76

QENS: D2O Contribution. To simplify the fit of the E. coli data, we first analyzed

the QENS data of the PBS-D2O buffer at three temperatures: 276 K, 300 K, and 324

K to obtain an estimation of the q-dependence of the intensity of the signal due to the

solvent. The main contribution here comes from D2O bulk water whose scattering

function can be well represented as follows [105]:

SD2O(q,E) = e
� E

2kBT ·R(q,E)⌦
⇥

βD2O(q) ·LγD2O
(E)
⇤

(4.4)

where βD2O is the intensity of the signal, and LγD2O
is a Lorentzian function that de-

scribes the diffusive translational motions of the D2O molecules. An example of the

resulting parameters is reported in Fig. 4.2.

Figure 4.2: PBS-D2O buffer. Resulting parameters of the fit with the eq. (4.4).
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The D2O cross section comprises 79% coherent and 21% incoherent scattering and,

applying Vineyard’s convolution approximation, we have SD2O(q,E = 0) ⇡ S
(coh)
D2O (q),

where S
(coh)
D2O is the coherent static structure factor [106]. Hence, SD2O(q,E) has as

main contribution the coherent scattering of D2O that can not be avoided [107]. It is

important to observe that the intensity of SD2O(q,E) that we have measured (Fig. 4.2)

reproduces qualitatively well the shape of S
(coh)
D2O (q) measured by Bosio et al. [108].

QENS: Average Protein Contribution. The dynamic scattering function of the pro-

teins is modeled here by the following expression (see section 2.2.3) [103, 109]:

SAP(q,E,T ) = I(q,T ) ·{L(E;γG(q,T ))⌦ [A0(q,T )δ (E)+(1�A0(q,T ))L(E;γL(q,T ))]}
(4.5)

where I(q) is the intensity of the signal which is related to the vibrational modes of the

proteins, meanwhile L(E;γG(q,T )) and L(E;γL(q,T )) are two Lorentzian functions

accounting for the diffusive contributions due to the global motions (roto-translations

of the entire proteins) and local dynamics (internal motions of sub-parts of the proteins,

e.g. conformational changes). Finally, A0(q), which multiplies the delta function δ (E),
represents the EISF containing information on the geometry of the internal motions that

are confined with respect to the space-time window of the spectrometer [52].

QENS: Data analysis. As described in the previous paragraphs, we employed a three

step-procedure for the fit of the data.

In the 1st step, we performed a simple fit that treated the measured spectra indepen-

dently, apart for the weighting factor for the solvent contribution φ which was shared

among the spectra since it should depend only on the amount of bulk D2O in the sam-

ples. On the contrary, all the remaining parameters can vary both with q ant T . As

shown in Fig. 4.3 and 4.4, this allows us to study the trends of the Lorentzian widths

as function of q2, and we verify that, both for the global and the local motions, they

are well described by a jump-diffusion model as already observed in previous in vivo

QENS experiments on bacteria (see section 2.2.3) [103, 110, 111]:

γi(q,T ) =
q2 Di(T )

1+q2 Di(T )τi(T )
for i 2 {G,L} (4.6)

Within this model, the diffusion is assumed to occur via infinitely small, elementary

jumps characterized by a negligible jump time during which the particle diffuses and

the residence time τi, i.e. the time a proton spends in a given position.
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Figure 4.3: Global motions (1st step). Lorentzian widths γG vs. q2 for different temperatures.

The dashed lines are fits with the jump-diffusion model described by the eq. (4.6).
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Figure 4.4: Local motions (1st step). Lorentzian widths γL vs. q2 for different temperatures.

The dashed lines are fits with the jump-diffusion model described by the eq. (4.6).
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In the 2nd step, we performed a simultaneous fit of the spectra measured at different

q-values assuming a-priori the jump-diffusion model for both the global and the local

dynamics, i.e. constraining the q-dependence of γG and γL with the eq. (4.6). The

resulting values of the diffusion coefficients and the residence time for the global and

the local dynamics are reported in Fig. 4.5.

Figure 4.5: Diffusion coefficients and residence times for the global and local motions obtained

from the simultaneous fit of the E. coli data, assuming a priori the jump-diffusion model eq.

(4.6). The solid blue line is a fit of DG with the gelation model described by the eq. (4.7)

Quite remarkably, around the cell-death temperature (TCD ⇡ 323.15K), there is an

important reduction of average motion of the entire protein described by DG. It is

possible to model the phenomenon by the following function [66, 109]:

DG(T ) = (a1 T +b1)
h

1�aQENS
u (T )

i

+(a2 T +b2)aQENS
u (T ) (4.7)

with:

aQENS
u (T ) =

1

1� e�(T�T0)/∆T
(4.8)

where a
QENS
u is a smeared step function describing the transition between the initial

liquid state and the final gel-like state.

In the 3rd and last step, we constrained the temperature dependence of DG with eq.

(4.7), and we performed a simultaneous fit of all the measured spectra. The resulting

parameters constant in T and q are reported in table 4.3.
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Table 4.3: Parameters shared among all the spectra (i.e. constant in T and q) obtained from the

simultaneous fit of the E. coli data at all the temperatures with eq. (4.1), taking into account eq.

(4.2), eq. (4.4), eq. (4.5), and assuming a priori the models described by eq. (4.6) and eq. (4.7).

T0 (58.7±0.3) C

∆T (4.21±0.06) C

a1 (0.020±0.001) Å2/(ns ·C)

b1 (0.605±0.005) Å2/ns

a2

�

10�10 ±0.001
�

Å2/(ns ·C)

b2 (0.48±0.01) Å2/ns

φ (40.1±0.1) %

An example of the resulting parameters for the EISF, A0(q), at five selected temper-

atures is shown in Fig. 4.6 (left).

Figure 4.6: Left: EISF derived from the global fit of the E. coli data. Dashed lines are the best

fit of the EISF with the model described by eq. (4.9). Right: Parameters resulting from the fit

of the EISF. pL is the fraction of H-atoms appearing fixed on the accessible time scale of the

instrument, sL is the fraction of H-atoms diffusing in a spherical volume with radius rL.

As it was anticipated in section 2.2.3, the EISF can be described quite well by the

model proposed by Grimaldo et al. in previous study on g-globulins [112]:

A0 = A0(q,T ) = pL(T )+ [1� pL(T )]
⇥

sL(T )Asph(q,T )+(1� sL(T ))A3JD(q,T )
⇤

(4.9)

where:

Asph(q,T ) =

✓

3 ·
j1(q · r(T ))

q · rL(T )

◆2

and A3JD(q,T ) =
1+2 j0(q ·aM)

3
(4.10)
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pL is the fraction of H-atoms appearing fixed on the accessible time scale of the instru-

ment. For the remaining H-atoms, two types of motions were taken into consideration:

confined diffusion in an impermeable spherical volume of radius rL, described by the

amplitude Asph, and random jump diffusion between three equidistant sites on a circle

of radius aM, arising from the methyl-groups, and described by A3JD – aM is fixed to

1.715Å which is the average distance of H-atoms in methyl groups. The relative con-

tribution of these two diffusive processes is measured by sL, which, more specifically,

describes the fraction of H-atoms that, among those atoms that are not appearing fixed

(i.e. 1� pL), are undergoing the spherically confined diffusion.

4.2.3 EINS Experiments

As Elastic Incoherent Neutron Scattering (EINS) measurements are much faster, we

performed also EINS measurements for much more temperature points on the E. coli

samples. The elastic data were collected for 30 seconds every 6.5 minutes, meanwhile

the sample was first heated from 300K to 350K with a heating rate of 0.25K/min and

then cooled down, in 20 minutes, from 350K to 305K [101].

Figure 4.7: EINS MSD fitted with eq. (4.7) describing the gelation of the system. The resulting

parameters, T0 and ∆T , are shown in the box on the upper left. These values are compared with

the corresponding parameters obtained from QENS (box on the upper right.

In general, incoherent neutron scattering on a biological sample probes the self-

diffusion, therefore the dynamics of hydrogen atoms, which present the highest cross

section among the particles contained in living matter [113]. As they are mainly dis-

tributed homogeneously in the sample, they allow to probe average molecular dynamics

of the H nuclei and of the molecular groups, to which they are bound. Elastic scatter-

ing refers to processes within the time limit going to infinity, therefore only short local

motions can be resolved. The elastic signal corresponds to the static structure function

S(q,∆E) , which can be written approximately as polynomial in q2 [66] containing the

atomic mean square displacement (MSD)
⌦

u2
↵

:

S(q,E ⇡ 0) = e�
1
6 ·[a+hu2iq2+cq4] (4.11)

Taking the logarithm of this expression gives access to
⌦

u2
↵

as function of temper-
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ature, which can then be fitted by applying the same gelation model as the one used in

eq. (4.7) to fit the global diffusion coefficient. Fig. 4.7 shows the resulting MSD and

their fit.

4.2.4 Model preparation for the simulations

Protein composition. To represent the protein composition of the E. coli cytoplasm

(see section 3.2.4), we built our simulation system on the basis of a previous computa-

tional model [114], which was derived from the results of a proteomics study [115] of

E. coli grown under minimal media conditions. The computational model reported in

[114] contained 45 different protein species as well as 5 types of RNA and RNA–protein

complexes. For the purposes of the present study and in order to permit back-mapping

of smaller sub-volumes into an all-atomistic resolution, we reduced the model in the

following aspects. First of all, we considered a smaller cytoplasmic volume than [114],

namely a 400 Å cubic box. Second, we focused exclusively on proteins since they are

known to form the most abundant macromolecular type in the E. coli cytoplasm and

since the second most abundant macromolecular type – the RNA – is mainly concen-

trated in large ribosomal particles, which we did not include in our model. Third, we

only considered protein species with molecular weights below 150 kDa to avoid large

protein oligomers that would not fit easily in back-mapped sub-volumes. We assumed

the same target macromolecular concentration as [114], that is, 275 g/L. Analogously

to [114], the number of copies of each individual protein species was based on the rel-

ative abundances reported in [115]. From the list of proteins simulated by [114], we

omitted those counting less than 0.5 copies per our simulation box. In addition, we did

not include the GltD, Hns, Pnp, and Bcp proteins, each of which would only exist in

one or two copies in our simulation box, owing to the absence of reliable structures

for homology modeling. On the other hand, for computational investigations of protein

unfolding that are not reported in this work, we included 10 small monomeric barrels of

superoxide dismutase 1 (SOD1) [116], raising the total macromolecular concentration

to 279 g/L. Overall, the system comprised 197 proteins of 35 species (see Table 4.4 and

Figure 4.8).

Obtaining protein structures. Where available, we used an E. coli PDB structure to

prepare an atomistic model of each protein species (see section 3.2.4). Unless we found

a more recent and higher-quality structure in the PDB database [117], we selected the

same PDB structure as was used in the previous work [114]. In four cases, we made

use of a homology model stored in the SWISS-MODEL repository [118] as a starting

point of the model preparation. Where needed, we subsequently added missing residues

and corrected non-proline cis peptide bonds using the MODELLER software, version

9.23 [119]. The quality of the structure was checked with the MolProbity server [120].

When present in the PDB structure, metal ions coordinated to the protein were included

in the model; however, larger ligand molecules were omitted. With the exception of

TufA and GpmA, the oligomerization state of the protein was taken to be the same as in

[114]. While TufA was modeled as a dimer by [114], the prediction of the PDBe PISA

server [121] yielded an ambiguous result, and the protein was described as a monomer

in a previous experimental work [122]. Therefore, we modeled TufA in a monomeric

state. Similarly, while the GpmA protein was simulated in a dimeric form by [114], the
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PDBe PISA prediction placed it in a grey zone, and according to the EcoCyc database

[123], the ATP-free version of the protein was monomeric. As a result, we considered

GpmA in a monomer state.

Table 4.4: Protein composition of the LBMD simulation together with the LBMD coupling

coefficient γ for each protein.

Protein PDB-Structure MW [kDa] Count γ [10�3 fs�1]

1 TufA 1DG1 43.3 67 1.1920

2 MetE SWISS 4zty.1.A 84.5 39 0.6950

3 CspC SWISS 3i2z.1.B 7.3 13 3.8150

4 IcdA 1P8F 91.5 8 0.6478

5 Pgk 1ZMR 41.1 5 1.1665

6 FusA 4V9O 77.4 4 0.7346

7 Eno 1E9I 91.0 3 0.6504

8 GlyA 1DFO 90.6 3 0.6526

9 IlvC 1YLR 54.1 3 0.9580

10 Adk 1AKE 23.6 3 1.4770

11 Efp 6ENU 20.6 3 1.8653

12 GapA 1S7C 142.1 2 0.4600

13 Ppa 2EIP 117.4 2 0.5357

14 SerC 1BJN 79.3 2 0.7217

15 DnaK 5NRO 69.0 2 0.8008

16 CysK 5J43 68.7 2 0.8031

17 Mdh 2PWZ 64.7 2 0.8400

18 Tsf 1EFU 60.6 2 0.8815

19 Tig 1W26 48.2 2 1.0413

20 SodA 1D5N 45.9 2 1.0779

21 Upp 2EHJ 45.1 2 1.0928

22 SodB 1ISC 42.3 2 1.1438

23 GpmA 1E59 28.4 2 1.5070

24 Hup 2O97 18.8 2 1.9797

25 Suc 1JLL 142.0 1 0.4628

26 PurA 1ADE 94.4 1 0.6326

27 Asd 1BRM 80.0 1 0.7167

28 Fba 5VJE 78.0 1 0.7305

29 PurC 2GQR 54.0 1 0.9591

30 TpiA 4IOT 53.9 1 0.9597

31 RpiA 1KS2 45.5 1 1.0860

32 UspA SWISS 1jmv.1.A 31.9 1 1.3938

33 Frr 1EK8 20.6 1 1.8626

34 PpiB 2RS4 18.2 1 2.0213

35 SOD1 4BCZ 11.0 10 2.7740

The atomistic protein structures were hydrogenated by the GROMACS pdb2gmx

tool [124], placed in rectangular boxes with a minimum distance of 1.5 nm between the

protein and the boundary of the box, and solvated in a 150 mM KCl solution, includ-

ing several additional ions to neutralize the net charge of the system, if needed. Each
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system was then subjected to a short energy minimization and equilibration protocol,

performed in the GROMACS 2018.7 software [124]. First, an energy minimization was

performed to bring the maximum force below 1000 kJ mol�1 nm�1, while harmonic

restraints were applied to all heavy atoms of the protein (with a force constant kBB =

1000 kJ mol�1 nm�2 assigned to the backbone atoms and a force constant kSC = 500 kJ

mol�1 nm�2 applied to the side-chain atoms). This energy minimization was followed

by a six-step relaxation protocol with gradually decreasing harmonic position restraints,

where the first two short simulations were performed in the NV T ensemble and were

followed by four NPT trajectories simulated at a pressure of 1.01 bar (see Table 4.5 for

more details). The minimization and equilibration protocol was performed separately

for the Amber99SB-disp [125] and CHARMM36m [126] force fields. The same simu-

lation parameters were used as for the respective Amber99SB-disp and CHARMM36m

systems described in the subsection 4.2.7, except for the temperature coupling, which

was ensured by the Berendsen thermostat [127] with a time constant of 1 ps. The equi-

librated protein structures obtained with the Amber99SB-disp force field (Figure 4.8)

were converted to the OPEP description (see section 3.3.2) by the OPEP File Generator

available on http://opep.galaxy.ibpc.fr.

Initial positions and orientations of the proteins in the simulation box were gen-

erated by the Packmol software [128]. To make the spatial distributions of different

protein species more uniform, each protein was treated separately in Packmol.

Figure 4.8: Structures and counts of proteins included in the LBMD simulation.
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Table 4.5: Overview of an equilibration protocol used for an initial relaxation of isolated protein

geometries. kBB and kSC – force constants of harmonic restraint potentials applied to the heavy

atoms of the backbone and the side chains, respectively. ∆t – time step.

Step Length [ns] ∆t [fs] Restraints kBB

h

kJ
molnm2

i

kSC

h

kJ
molnm2

i

1 0.1 1 heavy atoms 1000 500

2 0.1 1 heavy atoms 500 250

3 0.1 1 heavy atoms 250 100

4 0.5 2 heavy atoms 100 50

5 0.5 2 heavy atoms 50 0

6 0.5 2 none 0 0

4.2.5 LBMD simulation

We performed a coarse-grained simulation of the large system using the Lattice

Boltzmann Molecular Dynamics (LBMD) approach (see section 3.3.3) [129], imple-

mented in-house in the MUPHY software [130]. Our LBMD scheme, which has been

successfully applied to a number of biological systems [86, 131, 132, 133], combines

a coarse-grained protein model with a lattice-based description of hydrodynamic inter-

actions [129]. The protein model was based on the OPEP v.4 force field [85]. Since

the goal of this coarse-grained simulation was to sample different intermolecular ar-

rangements rather than simulate protein conformational changes, the conformations of

the proteins were restrained by an elastic network (distance cutoff 6 Å, force constant

5 kcal mol�1 Å
�2

). The primary focus on intermolecular interactions also allowed us

to simplify the description of the protein backbone, which was exclusively represented

by C al pha beads, the sizes of which were increased by 50 % relative to the standard

OPEP v.4 model. Finally, the OPEP sidechain–sidechain non-bonded interactions were

rescaled by a factor of 0.857 to mitigate excessive aggregation [134].

The simulation was performed in an NV T ensemble at T = 300 K, using a time step

of 10 fs for bonded interactions and a time step of 20 fs for non-bonded and hydrody-

namic interactions. A trajectory length of 4.3 µs was reached. Hydrodynamic inter-

actions were described using the LB technique [88], employing the BGK (Bhatnagar-

Gross-Krook) collisional operator [135], with a lattice grid spacing of 4 Å. The LB

kinematic viscosity ν0 was set to reproduce bulk water behaviour at ambient condi-

tions. The coupling coefficient γ was determined for each protein species as a function

of its molecular weight (see Figure 4.9). The dependence of γ on molecular weight

was derived by performing separate simulations of six protein species (namely CspC,

SOD1, Adk, TufA, MetE, and GapA) in dilute conditions and by adjusting the γ of each

species to match the diffusion coefficient of each isolated species with a prediction ob-

tained with the HYDROPRO software [136].
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Figure 4.9: Dependence of the LBMD coupling coefficients γ on protein molecular weight. The

γ values for six proteins (CspC, SOD1, Adk, TufA, MetE, and GapA) were optimized in order

for the diffusion coefficient of the given isolated protein in an LBMD simulation to match the

HYDROPRO [137] prediction. To determine the γ values for the remaining 29 protein species,

the resulting dependence of 1/γ on molecular weight (MW) was fitted with a power-law de-

pendence 1/γ = a ·MWb+c, yielding the parameter values a = 35.76222504, b = 0.81676473,

and c = 113.05584831 (for MW expressed in kDa and γ in fs�1).

4.2.6 Sub-volume selection and back-mapping

To explore the diffusion of proteins with an all-atom resolution, allowing the de-

scription of conformational flexibility and unfolding, we selected five sub-volumes

sampled in the LBMD trajectory and converted them into an atomistic resolution.

The selection of the sub-volumes proceeded in the following way. A cube with an

edge length of 170 Å was placed in randomly chosen trajectory frames over the first

3 µs of the LBMD trajectory, with random positions and orientations (60,000 trials). In

the dense environment of the cytoplasmic system, it was practically impossible to find

sub-volume positions and orientations so as to avoid cutting at least a few proteins by

the sub-volume boundary. For each placement, proteins that were fully contained in the

sub-volume were counted as well as those that were cut by the sub-volume boundary.

Subsequently, we isolated 120 sub-volumes that minimized the ratio of the total mass

of proteins cut by the sub-volume boundary versus the total mass of proteins entirely

placed inside the sub-volume. If we had only kept those proteins that were not cut

by the sub-volume boundary, we would have systematically underestimated the protein

concentration in the sub-volumes. Therefore, for each of the 120 sub-volumes, the

proteins that were integrally inside the sub-volume were complemented by a subset of

proteins that were cut by the boundary. This subset was constructed in the following

way. First of all, we only retained proteins the periodic images of which did not overlap

with any protein that was integrally placed inside the sub-volume. An overlap was

defined as a close contact between two protein beads, with a distance less than 3 Å.

Next, we checked for overlaps among the proteins that we retained in the previous step,

and we removed, one by one, proteins that exhibited the largest number of overlaps
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with the remaining members of the subset. In this way, we ended up with a subset of

proteins that had no overlap with any other protein in the sub-volume.

Out of the 120 sub-volumes constructed with the procedure described above, we

selected a representative set of five sub-volumes that 1) approximated the distribution of

local protein concentrations inside the large volume and that 2) maximized the diversity

of protein species represented in the set while approximating the number distribution of

protein species in the large volume. The distribution of local protein concentrations (see

Figure 4.21B) was obtained by randomly placing a 170 Å cube over the trajectory (2000

trials) and by evaluating the protein concentration inside the cube for each placement.

The protein concentration and species composition of each of the five cubic sub-

volumes, sampling the structure and local concentration of the crowded solution, is

indicated in Table 4.6.

Table 4.6: Protein concentration and species composition of the five cubic sub-volumes ex-

tracted from the LBMD trajectory.

Conc. [g/L] Protein List

134.0 CspC (x4), TufA (x3), MetE, Mdh, FusA, SOD1

197.5 TufA (x4), MetE (x2), CspC, GlyA, CysK, Mdh, SOD1

279.8 TufA (x2), GapA, GpmA, MetE (x3), CspC, CysK, SodA, IlvC,

DnaK, Frr, SOD1 (x3)

287.7 TufA (x3), MetE (x4), IcdA (x2), CspC (x2), PpiB, Mdh, IlvC,

Efp, GpmA

297.7 TufA (x8), MetE, CspC (x2), IlvC(x2), SOD1 (x2), Ppa, GlyA,

Adk, GpmA, RpiA

Each sub-box, with a size of 170 Å and containing between 11 and 27 proteins, was

subsequently converted into the all-atom resolution using the following back-mapping

protocol. Atomistic structures prepared as described in the paragraph “Obtaining pro-

tein structures” were overlapped with the geometries from LBMD by aligning the

C al pha atoms of the atomistic structures with the corresponding C al pha beads. We

checked the back-mapped configuration for the presence of entangled aromatic side

chains and corrected this artifact if needed. The boxes were subsequently hydrated, and

a 150 mM concentration of K+ and Cl� ions was added, including extra ions neutraliz-

ing the net charge of the proteins. The systems were then minimized and equilibrated

using the protocol described below.

4.2.7 All-atom simulations

Force field and simulation parameters. All-atom molecular dynamics (MD) sim-

ulations were performed using the GROMACS 2019.4 software [124]. We employed

two distinct sets of force field parameters to describe the proteins (see section 3.2.1):

Amber Amber99SB-disp [125] and CHARMM36m [126], which belong to the most

recent generation of protein force fields and which were optimized to correctly capture

the properties of unfolded ensembles. The Amber99SB-disp protein force field was

coupled with the Amber99SB-disp water model, while CHARMM36m used the TIP3P

water model [138]. In both cases, K+ and Cl� ions were described with the default

parameters for the respective force field. A 1.2 nm cutoff was applied to short-range
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non-bonded interactions. In addition, van der Waals forces were smoothly switched to

zero between 1.0 and 1.2 nm in the CHARMM36m simulations. Long-range electro-

static interactions were evaluated using the particle mesh Ewald method [139]. New-

ton’s equations of motion were propagated using the leap-frog algorithm [140]. The

LINCS algorithm [141] was used to constrain the lengths of all protein bonds involving

hydrogen, and the SETTLE algorithm [142] was employed to keep water molecules

rigid.

The temperature of the system was maintained by the velocity rescaling thermostat

with a stochastic term [143], which was coupled separately to the proteins and to the

rest of the system with a time constant of 0.1 ps. The pressure was kept at 1.01 bar by

the Parrinello-Rahman barostat [144] in all the production runs and by the Berendsen

barostat [127] in all the NPT equilibration steps, with the time constant equaling 2 ps

for both barostats.

Sub-volume equilibration. The procedure that we employed to equilibrate the atom-

istic sub-volumes at different temperatures and both in folded or unfolded states is

detailed in Figure 4.10). First, the configurations back-mapped from LBMD under-

went a short initial relaxation (Figure 4.10B). Subsequently, a heating protocol (Figure

4.10C) was used to equilibrate folded sub-volumes at increased temperatures, rang-

ing between 310 and 380 K. In parallel to this, an unfolding protocol (Figure 4.10D)

and a subsequent cooling protocol (Figure 4.10E) were employed to produce unfolded

sub-volumes and equilibrate them at different temperatures in the range between 300

and 380 K. To efficiently heat up or cool down the system in the heating and cooling

protocols, a heating sequence was used [145], enabling us to quickly reach the desired

temperature while allowing the system to equilibrate. To follow the unfolding of the

proteins during the unfolding protocol, we measured the root-mean-square deviation

(RMSD) of each protein’s atoms, its radius of gyration (Rg), as well as the amount of

secondary structure present in the system, as determined by the DSSP software (Figure

4.11) [146, 147].

Preparation of partially unfolded sub-volumes. The partially unfolded sub-volumes

were derived from the same initial configuration as the 287 g/L sub-volume (Table 4.6).

The proteins selected for unfolding are listed in Table 4.7. The unfolded fraction ru

was quantified by computing the fraction of hydrogen atoms belong to the unfolded

protein structures. The sub-volume preparation followed a protocol equivalent to that

employed to obtain fully unfolded sub-volumes (Figure 4.10). In addition, the positions

of the atoms in proteins deemed to remain folded were kept frozen during the unfolding

protocol (Figure 4.10D) as well as during the three pre-cooling stages of the cooling

protocol (Figure 4.10E). Moreover, before the subsequent 100 ns NPT equilibration at

360 K, the frozen folded structures were gradually relaxed using the same six-step NV T

equilibration as in the initial relaxation protocol (Figure 4.10B); however, in contrast to

the initial relaxation, the decreasing harmonic position restraints acted on the atoms of

the folded structures only.

Production simulations. The production runs following the equilibration procedure

(see section 3.3.1) were performed at eight different temperatures (300, 310, 320, 330,
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340, 350, 360, and 380 K) both for folded and unfolded sub-volumes with a time step

of 2 fs and each reaching a trajectory length of 102.4 ns. For the 288 g/L sub-volume

simulated using the CHARMM36m force field, the production trajectories performed

at T = 330 K were extended to 1 µs for further analysis (see Figure 4.23).

Preparation of sub-volume geometries

at different temperatures

INITIAL RELAXATION

HEATING PROTOCOL UNFOLDING PROTOCOL

COOLING PROTOCOL

Back-mapped

configuration

Folded sub-volumes

at Ti = 310, 320, …, 380 K

Unfolded sub-volumes

at Ti = 300, 310, …, 380 K

Folded sub-volume

at Ti = 300 K

T = 300 K

Time step: 2 fs

Trajectory length: 10 ns

Quick energy minimization

with position restraints

INITIAL RELAXATION

End when Fmax < 1000 kJ mol-1 nm-1

Force constants of harmonic position restraints:

kbb = 2500 kJ mol-1 nm-2 (backbone heavy atoms)

ksc = 1000 kJ mol-1 nm-2 (side chain heavy atoms)

6-step NVT equilibration

with decreasing restraints 

T = 300 K

Time steps:                   1,       1,      1,       2,      2,       2 fs

Trajectory lengths: 100,  100,  100,  500,  500,  500 ps

Force constants of harmonic position restraints:

kbb = 2500, 1000, 500, 250, 100, 50 kJ mol-1 nm-2

ksc = 1000,    500, 250, 100,   50,   0 kJ mol-1 nm-2

NVT equilibration

NPT equilibration

T = 300 K

Time step: 2 fs

Trajectory length: 100 ns

Back-mapped

configuration

Relaxed configuration

Time step: 1 fs

Trajectory length: 5 ns

HEATING/COOLING SEQUENCE

NPT equilibration at Ti

NPT equilibration at Ti

Sub-volume heated at Ti

Time. s. : 1 fs

Traj. l.: 5 ns

Input configuration for Ti

Input configuration for Ti+1

Ti+1 > Ti : heating

Ti+1 < Ti : cooling

HEATING PROTOCOL

Relaxed configuration

Heating sequence

. . .

Sub-volumes heated to

Ti = 310, 320, …, 380 K

UNFOLDING PROTOCOL

NVT pre-heating

NVT heat shock 1

Unfolded configuration

Relaxed configuration

NVT heat shock 2

T = 450 K

Time step: 2 fs

Trajectory length: 10 ns

T = 1500 K

Time step: 0.5 fs

Trajectory length: 0.25 ns

T = 1500 K

Time step: 1 fs

Trajectory length: 4.75 ns

COOLING PROTOCOL

NVT pre-cooling 1

NVT pre-cooling 2

Unfolded configuration

NVT pre-cooling 3

T = 450 K

Time step: 2 fs

Trajectory length: 10 ns

T = 400 K

Time step: 2 fs

Trajectory length: 10 ns

T = 360 K

Time step: 2 fs

Trajectory length: 10 ns

NPT equilibration

T = 360 K

Time step: 2 fs

Trajectory length: 100 ns

Cooling sequence

. . .

Unf. sub-volumes cooled down

to Ti = 350, 340, …, 300 K

Heating sequenceUnf. sub-volume

at T = 360 K

Unf. sub-volumes heated

to Ti = 370, 380 K

B
A

C D E

F

Figure 4.10: Schematic representation of the procedure used to equilibrate atomistic sub-

volumes at different temperatures and in different folding states. (A) General overview of the

procedure, (B–F) detailed description of its individual parts.
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Figure 4.11: Monitoring the unfolding protocol for each protein in the sub-volume with the

concentration of 287.7 g/L. (A) Root-mean-square deviation, RMSD, of the proteins. (B)

Modulus of radius of gyration. (C) Number of residues per secondary structure, as determined

by the DSSP software: the graph in the upper right corner is a magnification of other main plot

on the left to focus on the effects of the heat-shock at 1500 K.
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Table 4.7: Protein composition of partially unfolded sub-volumes with a varying fraction ru of

unfolded proteins.

ru = 25 %

UNFOLDED (5):

CspC, IlvC, MetE, PpiB, TufA

FOLDED (11):

CspC, Efp, GpmA,2x IcdA, Mdh, 3x MetE 2x TufA

ru = 50 %

UNFOLDED (8):

CspC, IcdA, IlvC, 2x MetE, PpiB, 2xTufA

FOLDED (8):

CspC, Efp, GpmA, IcdA, Mdh, 2x MetE, TufA

ru = 75 %

UNFOLDED (11):

CspC, 2x IcdA, IlvC, 3x MetE, PpiB, 3x TufA

FOLDED (5):

CspC, Efp, GpmA, Mdh, MetE

4.2.8 Calculation of Dt and Dr

Obtaining average Dt per sub-volume. To evaluate the average protein translational

diffusion coefficients Dt for a given sub-volume, folding state, and temperature, the

production trajectory was divided into 20 ns blocks. In each block, we first calculated

the mean squared displacement (MSD) of the center of mass of each protein molecule.

We then computed the average of these MSD curves weighted by the numbers of atoms

of the proteins (see Figure 4.12). This average MSD curve was subsequently fitted

with a straight line in the 0.3–5 ns regime, and Dt was extracted from the slope of the

fit. Subsequently, we determined the average of Dt over the 20 ns blocks as well as

the corresponding standard error of the mean. For the given sub-volume, folding state,

and temperature, the resulting Dt was corrected for the effects of periodic boundary

conditions (PBC) (see the section 4.2.9). The estimated error of the PBC correction

was then added to the standard error of the mean determined from the block averaging

to express the uncertainty of Dt .

To obtain a final value of Dt characterizing the entire cytoplasm, we calculated

an average of the PBC-corrected Dt’s over all the sub-volumes, with the individual

Dt’s being weighted by the numbers of protein hydrogen atoms in the sub-volumes. An

analogous weighted average of the error bars was performed to estimate the uncertainty

of the final value of Dt .
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Figure 4.12: Examples of MSD curves in a folded- (blue) and an unfolded (red) system. The

MSD curves were computed as a weighted average over all protein center-of-mass MSDs in 20

ns blocks of a production trajectory performed at T = 300 K for the 288 g/L sub-volume using

the Amber99SB-disp force field.

Calculating Dt and Dr for the evaluation of Dapp. To compute the apparent diffusion

coefficient Dapp (see section 2.2.3), a quantity directly comparable with the experimen-

tal observable, it was necessary to calculate Dt and the rotational diffusion coefficient

Dr separately for each individual protein chain. The reason for considering individual

chains rather than entire protein molecules lies in the fact that upon unfolding, the dif-

ferent sub-units of a protein may dissociate, and as a consequence, the evaluation of Dr

for the entire molecule would no longer be meaningful.

For each protein chain, Dr was computed by using the following approach [148,

149], approximating the chain rotation as being isotropic. One thousand randomly dis-

tributed unit vectors were centered and rotated along with the protein chain. This was

done – for each frame – by fitting the geometry of the protein chain to a reference

structure to which the fixed orientations of the unit vectors had been set. An autocor-

relation function of the unit vectors’ directions was then calculated by employing the

gmx rotacf tool [124] and using the second-order Legendre polynomial for evaluating

the autocorrelation. The resulting autocorrelation curve was fitted with an exponential

function in the 0.3–5 ns regime to obtain the decay time τ which was subsequently used

for calculating Dr as Dr = 1/(6τ).

To achieve the best possible convergence, the single-chain Dt and Dr were calcu-

lated from the entire trajectory without cutting it into multiple blocks.

4.2.9 Correcting Dt and Dr for PBC effects

To correct the translational diffusion coefficients for PBC effects, we added the

following term [150] to Dt computed from simulations:

Dcorr
t =

kBT ξ

6π · η(T,c) · L
(4.12)
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where ξ = 2.837297, L is the side length of the cubic box, and η(T,c) is an empirical

function that we parameterized on the basis of viscosity values computed from simula-

tions (this procedure is described in details in the following section). The uncertainty

in the value of η(T,c) was propagated to estimate the error of the correction term Dcorr
t .

Similarly, we computed the correction to the rotational diffusion coefficient as [151]

Dcorr
r =

kBT

6 · η(T,c) · L3
(4.13)

4.2.10 Viscosity calculations

We estimated the low-frequency, low-shear viscosity η of the 288 g/L sub-volume

(see Table 4.6) at three different temperatures (300 K, 320 K, and 380 K) for both

the folded- and the unfolded systems. We also considered the intermediate unfolded

systems with 25%, 50%, and 75% of unfolded proteins (see Table 4.7) at T = 300 K.

All the calculations were repeated for both sets of force field parameters employed in

this study.

To calculate η , we followed a similar approach as was used in [152]. For each sys-

tem and temperature, we extracted 30 snapshots (50 for the unfolded CHARMM36m

system at 300 K) in 1 ns intervals from the final part of the respective production run.

Each of those snapshots served as a starting point of a 1 ns NPT equilibration followed

by a 10–30 ns NV T simulation (10 ns for the folded systems, 20 ns for the rest of the

Amber99SB-disp systems, and 30 ns for the remaining CHARMM36m systems). The

NV T simulation was used to sample the elements of the pressure tensor, which was

saved in 10 fs intervals. The viscosity was calculated from an integral of the autocor-

relation functions of the pressure tensor fluctuations. Namely, for each off-diagonal

element of the pressure tensor (Pi j = Pxy, Pxz, and Pyz) and for each of the three com-

binations Pi j = (Pxx �Pyy)/2, (Pxx �Pzz)/2, and (Pyy �Pzz)/2 of its diagonal elements,

we computed the running integral

ηi j(t) =
V

kBT

Z t

0
hPi j(0)Pi j(τ)idτ (4.14)

where V represents the volume of the simulation box. For each i j, the average of ηi j(t)
over all the NV T simulations was fitted with an analytical function corresponding to a

bi-exponential decay of the autocorrelation function:

ηi j(t) = Aα τ1(1� e�t/τ1)+B(1�α)τ2(1� e�t/τ2) (4.15)

where A, B, α , τ1, and τ2 were parameters of the fit. The cutoff time tcut for the fitting

was determined as the time where the standard error of the mean of ηi j(t) for the given

i j exceeded 20% of the mean. Examples of ηi j(t) and the fits can be found in figure

4.13. The ηi j was then calculated as the limit of ηi j(t) at infinity. Finally, the value of η
was obtained as the mean of the six ηi j values, and the uncertainty of η was determined

as the standard error of the mean of the six ηi j values.

To obtain a dilute reference, we also calculated the viscosity of an aqueous solution

of 150 mM KCl considering the two respective water models—the Amber99SB-disp

water model and the TIP3P model—and the same three temperatures as above. In each
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case, we performed a 100 ns NV T simulation of a 5.1 nm cubic box after a short energy

minimization and a 1 ns NPT equilibration. We split the simulation into 10 ns blocks

and computed the autocorrelation functions hPi j(0)Pi j(t)i separately for each block.

Next, we averaged the autocorrelation functions over i j for each block and calculated

the running integral η(t) from the average. Subsequently, the average of η(t) from all

the blocks was fitted—using a 10 ps cutoff—with the same analytical function as shown

in Eq. (4.15). Analogously to the case of the crowded sub-volumes, η was computed

as the limit of the analytical function at infinity.

Figure 4.13: The ηi j(t) running integrals (Eq. (4.14)) obtained for the 288 g/L CHARMM36m

sub-volume at T = 300 K. The black curve shows the average of ηi j(t) over all the NV T

simulations, the gray stripe represents the standard error of the mean, and the blue curve is a fit

using the analytical function (4.15).
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To estimate the correction to the diffusion coefficients due to periodic boundary

conditions, we interpolated the viscosity to intermediate temperatures and extrapolated

it to different protein concentrations by using analytical expressions derived in [153].

First, we interpolated the temperature dependence of the solvent viscosity η0(T ) using

the following expression [153]:

η0(T ) = exp

✓

�Bw +DwT +
∆Ew

RT

◆

(4.16)

The curves resulting from these interpolations are shown in Figure 4.14, and the corre-

sponding values of the parameters Bw, Dw, and ∆Ew are listed in Table 4.8.

Figure 4.14: Solvent viscosities determined from simulations. The solvent was modeled as

a 150 mM aqueous KCl solution, and the respective water model (Amber99SB-disp water, or

TIP3P) was used. Intermediate viscosity values (blue line) were interpolated using the expres-

sion (4.16).

Table 4.8: Parameters resulting from the interpolation of solvent viscosities.

Force field Bw [-] Dw [K�1] ∆Ew [kJ/mol]

a99SB-disp 20.05 0.0115 24.3

CHARMM36m 14.75 0.0054 12.8

As a next step, we interpolated the viscosities of the crowded system to different

temperatures using the relationship [153]:

η(T,c) = η0(T ) exp



c

α �βc

✓

�B+DT +
∆E

RT

◆�

(4.17)

In this expression, c denotes the protein concentration while B, D, and ∆E are free

parameters. The parameter α is a function of the protein molecular weight Mp, the

molecular weight of water Mw, and its density ρw:

α = ρw
Mp

Mw
(4.18)

We set Mp to the average molecular weight of the proteins in our model. The parameter

β was defined as:

β = αν �1 (4.19)
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where we set ν to a value that was determined previously for BSA, ν = 1.417 x 10�3

m3/kg [153] The parameters B, D, and ∆E obtained for each force field and for both

folded and unfolded systems are listed in Table 4.9 and the resulting η(T,c) functions

for c = 288 g/L are displayed in Fig. 4.15A, and Fig. 4.15B. As illustrated in Figure

4.15C, the analytical function η(T,c) defined by Eq. (4.17) allowed us to extrapolate

the dependence of viscosity on concentration for a given T .

Figure 4.15: Viscosities calculated for the 288 g/L sub-volume using the Amber99SB-disp

force field (left column) and the CHARMM36m force field (right column). (A) Folded sys-

tem. (B) Unfolded system. The solid lines show an interpolation using Eq. (4.17) with bands

expressing the uncertainty of this interpolation. (C) Extrapolation to different concentrations

using Eq. (4.17).

Table 4.9: Parameters describing an analytical dependence derived from the computed viscosi-

tites for the crowded protein solution.

Folded

Force field B [-] D [K�1] ∆E [kJ/mol]

a99SB-disp -20.05 32.8272 7157.1

CHARMM36m -14.75 12.9697 44982.1

Unfolded

Force field B [-] D [K�1] ∆E [kJ/mol]

a99SB-disp -20.05 35.2641 36692.3

CHARMM36m 113942.65 189.9209 251039.8
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To estimate the uncertainty of the interpolated/extrapolated viscosity values, we

repeated the fitting of Eq. (4.17) with random combinations of viscosities each sampled

within the confidence interval at the given temperature.

4.2.11 Evaluation of the apparent diffusion coefficient

In order to directly compare simulations with experiments, we estimated the ap-

parent diffusion coefficient D of each protein, which takes into account not only the

translational motions, but also the rotations of the entire protein. To this end, we used

the following relation that links D to the translational, Dt , and the rotational. Dr diffu-

sion coefficients [70, 105]:

N

∑
n=0

Bn(q) ·
Dr n(n+1)+(Dt �D)q2

[Dr n(n+1)+(Dt +D)q2]
2
���!
N!∞

0 (4.20)

where Bn(q) is:

Bn(q) = (2n+1)
Z ∞

0
ρH(r) · j2

n(qr)dr (4.21)

and jn is the spherical Bessel function of order n and ρH is the Radial Distribution

Function (RDF) of the protein H atoms.

Figure 4.16: Comparison of D for the folded and the unfolded average protein at different

temperatures for systems with different concentrations (force field: CHARMM36m).

After the calculation of Dt and Dr for each protein (as described in the previous

subsections), we fixed N = 550 [105] and we solved numerically the l’eq. (4.20) for

three values of q: 0.2Å�1, 1Å�1, and 2Å�1, verifying that, in the q-range explored by

the experiment (0.2Å�1  q  2Å�1), the value of D is constant. Indeed, if N and q are

big enough, it is possible to show that the result do not depend on them [105].
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Figure 4.17: D of the average protein at different temperatures for systems with different con-

centrations (force field: CHARMM36m). The slowdown is reproduced using the smeared step

function aQENS
u to weight the prediction obtained from the simulation of the fully folded and

fully unfolded systems.

In this way, we obtained the D of each protein in the folded and the unfolded con-

figuration at all the temperatures. Then, aiming to compare these data with the QENS

results, for each system we calculated the average value of D weighting each protein

with the number of its H atoms. Figure 4.16 shows the results for the 5 selected sub-

volumes extracted from the larger cubic box used for the LBMD simulations.

Figure 4.18: A: Probability distribution for the selection of a sub-volume of (17 nm)3 with a

concentration c from the larger system of (40 nm)3 used for the course-grained representation

of the E. coli cytoplasm. B: Weight of each sub-volume for the estimation of the D.

To combine the information related to the systems with fully folded proteins with

the ones with fully unfolded proteins, we used the following relation:

D(T ) = D( f ) · [1�aQENS
u (T )]+D(u) ·aQENS

u (4.22)

for further details on the validity of this approach see the section 4.4.2. The resulting

values of D, for CHARMM36m, are reported in Fig. 4.17.
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Finally, in order to calculate the most representative value of Dapp for the average

protein in the E. coli cytoplasm, we considered the probability distribution p(c) for the

selection of a sub-volume of (17 nm)3 and concentration c from the larger system of

(40 nm)3 used in the LBMD simulation as representative of the bacterial cytoplasm -

see Fig. 4.18A. The weights of each sub-volume (Fig. 4.18B) was calculated as follow:

w(ci) =
p(ci)

∑
5
k=1 p(ck)

(4.23)

The result, obtained with both the two force field, is shown in Figure 4.28.

4.3 Results

Characterization of the dynamical state of the E. coli cytoplasm near cell death.

Quasi-elastic Neutron Scattering (QENS) experiments were performed on the backscat-

tering spectrometer IN16b [102] at the Institut Laue Langevin (ILL), France, on in vivo

E. coli samples. The scattering signal of these samples is mainly due to the large in-

coherent scattering cross section of the hydrogen atoms whose dynamics lying in the

nanosecond time- and the nanometer length-scales is accessible to the spectrometer

(See Methods in SM). In particular, the predominant contribution is due to the self-

diffusive dynamics of an average protein in the bacterial cytoplasm, as more than 75%

of the E. coli dry weight consists of proteins and ribosomes, themselves made up of

about 50% proteins and 50% RNA by mass [104, 103, 110, 154, 111]. In addition,

the number of hydrogen atoms in proteins is larger than in nucleic acids, while the re-

mainder biomolecular components, mainly phospholipids, contribute to just about 10

% of the dry weight of the bacterium. QENS allows to directly measure the incoher-

ent dynamic structure factor S(Q,E), which can be in turn modeled to obtain unique

information on the microscopic spatial and time correlation functions [52]. The dynam-

ical state of the proteome was sampled at increasing temperatures starting from 276K,

where the bacteria can live and thrive, till 350K, i.e. well above the temperature of cell-

death (TCD ⇡ 323K) [45]. In addition, to test the reversibility of dynamical changes, we

performed a few measurements while cooling the bacteria after they underwent thermal

death.

Protein dynamics at all the temperatures are well described in terms of two dis-

tinct diffusive processes arising from the dynamics of the average protein in the E.

coli cytoplasm (See Fig. 4.19A), whose narrow and broad Half Width–Half Maximum

(HWHM) of the signal γG and γL correspond, respectively, to the long and the fast

characteristic timescales of the probed global (G) and local (L) motions. The wavevec-

tor dependence of both γG and γL follows the Singwi and Sjölander jump-diffusion

model [155], as shown in Fig. 4.19B and 4.19C, where the scatterers alternate oscil-

latory motions around their equilibrium positions for a certain residence time τ and

diffusive motions between two equilibrium positions (for further details see section

4.2.2). This is consistent with results of previous in vivo QENS experiments on bacte-

ria [103, 110, 111]. We interpret the γG component as due to global diffusive dynamics

of an average protein while caged in the crowded E. coli cytoplasm. The faster γL

contribution arises from the local internal and inter-domain dynamics occurring within

proteins [70].
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Figure 4.19: (A) Example of a QENS spectrum measured on the neutron backscattering spec-

trometer IN16b at ILL [102] on E. coli cell pellets suspended in D2O. The displayed data were

recorded at 306 K and q = 0.72Å�1. We present the resulting fit of the data assuming three main

diffusive contributions accounting for the global and internal motions of proteins, and for the

D2O dynamics (see section 4.2.2 for further details on the model and the fit procedure). (B-C)

HWHM of the Lorentzian components accounting for the global (γG) and the local diffusive pro-

tein motions (γL) at four different temperatures. The dashed lines are the fits of the linewidths

assuming the Singwi and Sjölander jump-diffusion model [155]. (D) Apparent self-diffusion

coefficient, DG, of an average protein in the E. coli cytoplasm as a function of temperature. A

clear non reversible slow-down of DG is visible after the temperature of cell death (TCD) due to

the gelation of the cytoplasm. The inset shows the residence time τG for the global motions as

function of temperature that undergoes an important upturn after TCD and continues to increase

during the cooling. (E) Temperature dependence of the diffusion coefficient DL for the local

motions of the side-chains. The transition at TCD, where DL starts to increase more steeply with

the temperature, is reversible. The inset shows the residence time τL for the internal dynamics

which is nearly constant (⇡ 180ps). (F-G) Geometries of the local motions as derived by the

elastic incoherent structure factor (EISF) [52, 55]: pL is the fraction of atoms appearing fixed

on the accessible time scale (F), and rL is the radius of the confinement region for this type of

fluctuations (G).

The apparent diffusion coefficient DG, which combines both the translational and

rotational motions of proteins [69] (see section 4.2.2) exhibits a dramatic non-reversible

reduction in proximity of the cell-death temperature (Fig. 4.19D). In protein crowded

solutions a similar slow-down of the diffusive dynamics was ascribed to the gelation of

the system induced by the protein unfolding [66, 109, 156]. The transition to a gel-like
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phase is also supported by the slight increase of τG above TCD (inset of Fig. 1D), which

suggests an increasing localization of proteins in cage-like structures.

Further, the local dynamics is very sensitive to temperature change, but in this case

the diffusion coefficient DL shows a significant increase above TCD, while τL is nearly

constant at ⇡ 180ps (Fig. 1E and its inset). This suggests that the changes in the local

dynamics are due to a variation in the extent of the explored spatial region. This is

confirmed by the increase of the distance between two jumps rL, that displays a sudden

break toward higher values after TCD (Fig. 4.19G). Interestingly, also the number of

atoms too slow to be visible by QENS, pL, shows a similar increasing trend above TCD,

as seen in Fig. 4.19F, when temperature is rising. However, comparing the fraction of

H-atoms that are fixed with those that diffuse in a sphere or undergo a 3-jump diffusion

(see Fig. 4.20), we find that the percentage of H-atoms that are diffusing in a spherical

volume is constant in temperature. Therefore, the changes in the fraction of fixed atoms

are due to the variation of the fraction of H-atoms undergoing the 3-jump diffusion,

only. This behavior is consistent with the progressive unfolding of a part of the E. coli

proteome. In fact, moving subgroups of denatured proteins can access larger spatial

regions, and at the same time their number gradually decreases because of the growing

interactions of the gel-like system formed in the cytoplasm.

Figure 4.20: Comparison of the percentage of H-atoms that appear fixed with those of H-atoms

that diffuse in a spherical volume or undergo a 3-jump diffusion.

The rate at which protein groups locally explore their environment seems to be

reversible across the thermal death, as we can see from the trend of both DL and τL

in Fig. 4.19E, confirming previous results on crowded protein solutions [109]. On the

other hand, the characteristic lengths of the local dynamics, i.e. rL and pL, show an

irreversible trend.

Simulations show how protein unfolding slows down protein diffusion. To exam-

ine how protein motions are affected by heating and thermal denaturation of parts of

the E. coli interior, we performed multi-scale molecular dynamics simulations. Pre-

vious works studied protein diffusion in crowded environments using coarse-grained

(CG) [157, 114] and all-atom [158, 152] MD simulations. However, while simplified

CG models help sample long time-scales, they either lack solvent mediated correla-

tions [114] – essential for describing the protein mobility – or rely on oversimplified

description of the protein lacking chemical features [157]. Here, we combined two

levels of description: a CG model for protein (OPEP) owning residue level chemical

resolution [85] to sample the local structure of the crowded solution and an all-atom
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description to subsequently explore the diffusion of proteins in sub-volumes obtained

from the coarse-grained simulation. In our approach we used the lattice Boltzmann

molecular dynamics (LBMD) technique that allows to include naturally hydrodynamic

interactions in the simulations of implicit solvent molecular models, and already suc-

cessfully applied to complex biological situations like protein crowded solutions [159]

and multi-scale protein aggregation [160].

Figure 4.21: (A) Protein diffusion in the CG model cytoplasm simulated by LBMD. Distribu-

tion of the traslational diffusion coefficients, and its dependence as a function of the proteins

molecular weight. The solid lines represent the fits of the experimental data reported in Ref.

[161]. (B) Distribution of local protein concentrations in 17 nm cubic sub-boxes randomly

placed in the large simulation system. The vertical lines correspond to the local concentrations

of the sub-boxes then back-mapped at the atomistic resolution. (C) Pictorial representation of

the CG cytoplasm system (cubic box of side 40 nm) and the schematic strategy of the back-map,

and of the temperature scans for the folded and unfolded versions of the atomistic systems. (D)

Average protein translational diffusion coefficients, computed in the atomistic systems for the

0.3–5 ns regime and corrected for the effects of periodic boundary conditions, as described

in section 4.2.9. The plot shows results obtained with the Amber99SB-disp force field; the

results for CHARMM36m are summarized in figure 4.25. (E) Average number of neighbor-

ing proteins per protein molecule as a function of its molecular weight. (F) Average number

of different classes of protein–protein contacts per protein molecule: hydrophilic–hydrophilic

(Phi-Phi), hydrophilic–hydrophobic (Phi-Pho), and hydrophobic–hydrophobic (Pho-Pho). An

atom was considered “hydrophobic” if its partial charge was less than 0.2 · e in magnitude. The

plots in (E-F) show results obtained from two Amber99SB-disp trajectories, each extended to

1 µs, for the back-mapped all-atom systems with a protein concentration of 288g/L and simu-

lated at T = 330K before and after unfolding. The results for CHARMM36m are reported in

figure 4.25.

The 4.3 µs coarse-grained LBMD [129] simulation contained 197 proteins of 35
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different species, mimicking the protein composition of the E. coli cytoplasm [114]

(see Fig. 4.21C for a pictorial representation of the system, and section 4.2.4 for more

details on the protein composition). The length of the trajectory allowed significant

reshuffling of the initial positions of the proteins and thus also exploration of different

geometries of the crowded system; in fact, only 35% of the initial interaction partners

were also in contact at the end of the trajectory (Fig. 4.22). The reshuffling is kinetically

meaningful since the computed diffusivity for each molecular species is very close to

its experimental estimate. In Fig. 4.21A we report the distribution of the translational

diffusion coefficients computed for each protein. The coefficients vary between 0.5 and

7Å
2
/ns depending on the molecular weight (Table 4.4), values in excellent agreement

with what reported experimentally [161], see blue solid lines in the graphs.

Figure 4.22: Proportion of initial protein neighbors of an average protein that remain in contact

with the protein in the course of the LBMD trajectory. Two proteins were considered in contact

if the shortest distance between their beads was below 7.34 Å.

From different frames of this large-scale trajectory, we selected five sub-volumes

of the whole system containing 11–20 proteins so to reflect the protein composition

and concentration heterogeneity of the cytoplasm (Figure 4.21B). Each sub-box was

converted to the all-atom resolution (Figure 4.21C) and exposed to a sequence of pro-

duction simulations (⇠ 100ns per run) at increasing temperatures to investigate protein

translational diffusion coefficients, probed in the 0.3–5 ns regime. Subsequently, for

these atomistic systems we repeated this heating protocol with the same box after ex-

posing it to a simulated rapid heat shock (see section 4.2.7), serving to completely

unfold all the proteins within the time scale accessible to the simulation.

Our simulations showed a strong decrease in the average translational diffusion co-

efficient upon unfolding (Figure 4.21D). The observed decrease quantitatively agreed

for two distinct force fields, Amber99SB-disp [125] and CHARMM36m [126], which

we used to model the proteins (see Figure 4.25). In addition, for both folded and un-

folded proteins the diffusion coefficient scales linearly with temperature. A similar

slow-down upon unfolding has been observed in previous theoretical and experimental

studies of monocomponent protein solutions [66, 109, 156].
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Unfolding changes protein interactions. A detailed look at the protein–protein in-

teractions reveals the cause of the diffusion slow-down. We consider as an example one

of the simulated atomistic systems of protein concentration 288 g/L. While each protein

had, on average, 2.1 interaction partners in the folded system, this number increased to

8.6 when the proteins are all unfolded (see Figure 4.21E). As a consequence, the aver-

age number of atom–atom contacts per protein rose by a factor of 25 upon unfolding.

Among the different contact types, this increase was the strongest for “hydrophobic”

contacts (i.e., between non-polar atoms), which were enhanced by a factor of 41 (see

Figure 4.21F). Recently, the diffusion slow-down in crowded solutions of globular pro-

teins at intermediate concentrations ( 200 g/L) has been linked to the formation of

transient protein clusters [149, 152]. Indeed, we observed that in folded systems with

protein concentrations below 200 g/L, the proteins were organized in 1–3 clusters, with

a few remaining protein molecules floating freely in solution. At higher concentrations,

the folded proteins formed a single large cluster most of the time, while maintaining

a degree of dynamical exchange with the bulk (see Figure 4.23). On the contrary, re-

gardless of the protein concentration, unfolding led to the formation of a single cluster,

encompassing all the proteins and creating a stable network.

Figure 4.23: Number of protein clusters present in the course of a sub-volume simulation and

the resulting partitioning of proteins into clusters of different sizes for three different protein

concentrations in folded (left) and unfolded (right) sub-volumes. The trajectories were obtained

with the Amber99SB-disp force field at T = 300 K. Two proteins were considered in contact if

the minimum distance between their atom was lower than 3 Å.

The enhanced stickiness of the unfolded proteins was reflected by a strong rise

in the viscosity of the crowded protein solutions. For a 288 g/L protein system at

T = 300 K, the viscosity increased upon unfolding from η = 8 ± 1 mPa·s to 60 ± 8

mPa·s with a99SB-disp and from η = 11 ± 3 mPa·s to as much as 360 ± 70 mPa·s
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with CHARMM36m (Fig. 4.15). The substantial relative increase in viscosity caused

by unfolding persisted even at the highest temperatures, (with η going up from 3.4 ±
0.8 to 18 ± 4 mPa·s for Amber99SB-disp and from 3.7 ± 0.3 to 72 ± 19 mPa·s for

CHARMM36m at T = 380 K). Our results are consistent with the trend observed in

previous experimental studies [162, 163, 164], reporting an increase in the viscosity

of protein solutions undergoing thermal denaturation. Owing to the significantly lower

protein concentrations (below 100 g/L) that were examined in those measurements,

the unfolded protein viscosities (⇠1–40 mPa·s) are lower than our computational es-

timates. On the other hand, the viscosities of our unfolded systems are smaller than

those reported for concentrated antibody solutions [165], reaching up to 1700 mPa·s,

and several phase-separated biomolecular condensates [166]. In fact, given the very

slow decay of the pressure autocorrelation function (Fig. 4.13), the viscosity values ob-

tained for the unfolded systems likely represent a lower bound for the actual viscosity.

Figure 4.24: (A) Concentration-dependent diffusion slow-down from simulations. The slow-

down is expressed relative to the diffusion coefficient for the least concentrated sub-box (134

g/L). The dashed lines represent fits with a second-order polynomial fraction. (B) Snapshots

showing folded- (upper row) and unfolded (lower row) simulation boxes at different protein

concentrations. (C) Snapshots of sub-boxes (288 g/L) with a progressively increasing unfolded

fraction ru. Folded proteins are blue while unfolded proteins are shown in red. (D) Translational

diffusion coefficients in sub-boxes (288 g/L; see panel C) with a varying fraction of unfolded

proteins. The insets show the dependence—fitted to a power law—of the apparent unfolded

fraction au on ru. (E-F) The decrease in the translational diffusion coefficient of folded and un-

folded proteins inside the partially unfolded sub-box (288 g/L) with increasing ru. The values

shown in panels A, E, and F as well as in the inset of panel D are averages across all temper-

atures, with error bars expressing the standard deviations. The results presented in this figure

were obtained with the a99SB-disp force field; analogous plots for CHARMM36m, exhibiting

qualitatively the same behavior, can be found in Figure 4.25.

Simulations show concentration dependence of diffusion slow-down. In line with

previous results for crowded protein solutions [70, 112] and cell lysates [167, 168], the
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translational diffusion coefficients extracted from the atomistic simulations decreased

with increasing protein concentration (see Figure 4.24A), and the effect is stronger for

the unfolded systems. In both folded and unfolded cases, the sharpest drop occurred

below 200 g/L, whereas the concentration sensitivity was predicted to be weaker in

the concentration range of 200–400 g/L, characteristic of the E. coli cytoplasm [50].

This indicates that variations in the macromolecular concentrations inside the E. coli

proteome should not affected strongly the comparison of simulations with experiments.

Figure 4.25: Translational diffusion in sub-volumes described using the CHARMM36m force

field. (A) Protein translational diffusion coefficients, computed for the 0.3–5 ns regime. (B)

Concentration-dependent diffusion slow-down. The slow-down is expressed relative to the dif-

fusion coefficient for the least concentrated sub-box (134 g/L). Averages of the slow-down

values for all the temperatures are shown together with their standard deviations. The dashed

lines represent fits with a second-order polynomial fraction. (C) Translational diffusion coeffi-

cients in sub-boxes (288 g/L) with a varying fraction of unfolded proteins ru; The inset shows

the dependence – fitted with a power law – of the apparent unfolded fraction au on ru. (D-E)

Decrease in the translational diffusion coefficient of folded- and unfolded proteins inside the

partially unfolded sub-boxes with increasing ru.

Even partial proteome unfolding causes strong diffusion slow-down. The simula-

tions clearly prove that massive unfolding leads to a strong diffusion slow-down. How-

ever, only a fraction of the proteome might be unfolded near the cell-death temperature

as suggested by recent experiments [46, 48]. To explore the effect of such partial un-

folding on the overall protein diffusivity, we performed additional temperature scans

for a selected atomistic system (288 g/L) with a varying fraction ru of unfolded pro-

teins (25%, 50%, and 75%; see Figure 4.24C). In each case we completely unfolded

the chosen amount of proteins while leaving the remainder fully folded. Since the Dill

model predicts similar denaturation temperatures (⇡ 328.5K ± 1.5K) for all the pro-

teins contained in the system, we selected the proteins to be unfolded randomly, trying

to maximize the species’ heterogeneity of the chosen sub-set. Our simulations revealed

that with the increasing unfolded content, the overall translational diffusion coefficients

quickly approached those calculated for the fully unfolded system (see Figure 4.24D
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where we report data for Amber99SB-disp force field), this effect is even stronger when

using the CHARMM36m force field (Figure 4.25).

Figure 4.26: Viscosities calculated for the 288 g/L sub-volume at T = 300 K with a varying

fraction of unfolded proteins (see Table 4.7).

This finding demonstrates that the translational diffusion coefficient, experiencing

a sharp drop already for small values of ru, is a non-linear function of ru. To explain

the reason why Dt shows such a rapid drop, we analysed separately the diffusion coef-

ficients of folded and unfolded proteins in the intermediate boxes. We found that the

Dt of folded proteins decreased by more than 50% already for the smallest fraction

of unfolded proteins (see Figure 4.24E). Thus, the presence of even a small amount

of unfolded proteins is able to strongly affect the diffusion of the remaining folded

proteins. On the other hand, the diffusion coefficient of the unfolded proteins shows

a more gradual decrease (Figure 4.24F). On a quantitative point of view, the trans-

lational diffusion coefficient in the partially unfolded proteome can be expressed as

Dt = (1�au)D
( f )
t +auD

(u)
t , where au is an “apparent” unfolded fraction, weighting the

diffusion coefficient of the fully folded D
( f )
t and the fully unfolded D

(u)
t systems. The

non-linear dependence of au of the actual proteome unfolded fraction ru describes the

diffusion slow-down due to the unfolding. We found that this dependence can be fitted

with the power law au = r
p
u (see the insets in Figures 4.24D and 4.25C), with the expo-

nent p equal to 0.411±0.026 for a99SB-disp and 0.142±0.012 for CHARMM36m.

Figure 4.27: Comparison of the transfer function obtained directly from simulations using the

Amber99SB-disp force field and a transfer function based on the considerations described in

Supplementary Results. Each set of points is fitted with a power law dependence, with the

exponents equaling 0.41 and 0.26, respectively.
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Unlike the translational diffusion coefficient, the dependence of viscosity on the

unfolded content appeared to be nearly linear, within the limits posed by a slow con-

vergence (Figure 4.26). As we describe in section 4.4, a linear unfolding dependence

of viscosity combined with the simplified Stokes–Einstein model results in a non-linear

dependence of au on ru that is similar to the one recovered directly from simulations

(Figure 4.27).

Estimation of the folding state of the cytoplasm and validation of the results. By

combining the QENS and MD simulations results, we estimated the temperature de-

pendence of the fraction of unfolded proteins in the E. coli cytoplasm.

For this purpose, and inspired by previous work on protein crowded solutions [109],

we first consider the temperature dependent profile of the apparent diffusion coefficient

measured from QENS experiments (Fig. 4.19D), and we perform a fit using an empir-

ical relation that combines the diffusivity of proteins in the folded and unfolded states,

D(T ) = D( f ) · [1�a
QENS
u ]+D(u) ·aQENS

u (T ), where the function a
QENS
u , that measures

the changes in the global diffusion, is equivalent to the apparent fraction of unfolded

proteins in the system as defined in the previous paragraph.

Figure 4.28: (A) Fraction ru of unfolded proteins in the E. coli cytoplasm as a function

of temperature. The cell-death temperature of 323.15 K [45], determined from the E. coli

growth rate, is indicated by a vertical line. The red solid (Amber99SB-disp) and dashed lines

(CHARMM36m) show r
QENS
u (T ) calculated by combining a

QENS
u (T ), measured by QENS and

describing the global diffusion slow-down, with the relationship derived from simulations with

the exponent p being force-field dependent. The results are compared with theoretical predic-

tion derived by Dill [45] (blue solid line). (B) Comparison of the apparent diffusion coefficient

from QENS experiments (circles) with the apparent diffusion coefficient computed for the two

force field from simulations and by combining the contribution from translational and rotational

motions, see SM for details.

In the second step we exploited the empirical relationship derived from simulations

between the real fraction of unfolded proteins in the solution, ru, with its apparent coun-

terpart, au. We applied at each temperature the empirical relation to the experimentally

derived apparent fraction of unfolded proteins1, r
QENS
u (T ) =

h

a
QENS
u (T )

i1/p

. With this

1Further details on the connection between the apparent and real unfolded fraction are reported in

section 4.4.2.
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tool in hands, we obtained the experimentally derived fraction of unfolded proteins as

a function of the temperature, r
QENS
u (T ), see Fig. 4.28A. This quantity is force field

dependent via the exponent parameter p, and can be now compared with the equivalent

function theoretically derived by Dill and coworkers [45], see Fig. 4.28A.

Strikingly, at variance with the proteome catastrophe scenario derived theoretically

[45], the experimentally derived r
QENS
u s show a very slow increase of the fraction of

unfolded proteins as temperature crosses TCD = 323.15K . For sake of clarity, a few

degrees above the cell death temperature, the Dill’s model predicts more than 50% of

the proteins unfolded, while the experimentally derived unfolded fraction is, on aver-

age, less than 15% (see Table 4.10). This result is in line with recent experiments on

proteome thermal stability [46, 48].

Table 4.10: Different estimations for the fraction of unfolded proteins ru(T ) in the E. coli cy-

toplasm at increasing temperatures and temperature T50% needed to unfold 50% of the proteins.

Models ru(TCD) ru(TCD +3K) ru(TCD +5K) T50%

Dill et al. PNAS 2011 5.39 % 21.47 % 53.54 % 327.9 K

Apparent Fraction 28.75 % 42.65 % 52.72 % 327.6 K

QENS+MDA99d 4.82 % 12.59 % 21.07 % 333.0 K

QENS+MDC36m 0.02 % 0.25 % 1.07 % 338.7 K

QENS+MDAVG 0.71 % 3.40 % 7.86 % 335.7 K

It is worth to recall that our approach is based on two assumptions (see section

4.2). First, we hypothesized that the main contribution to the QENS signal comes from

an average protein. This is a quite reasonable approximation, as ribosomes, DNAs

and RNAs are too massive and consequently slow to be detected, while the remainder

biomolecular components, mainly phospholipids, contribute to just about the 10% of

the dry weight of the bacterium [104]. In addition, in our simulations we represented

a very simplified version of the E. coli cytoplasm, composed of just a small subset of

proteins. This simplified representation, however, is able to catch the main dynamic

features of the system we investigated, thus strengthening the picture we propose. (see

the Discussion for more details).

An additional support to our findings comes from the fact that the experimental

apparent diffusion coefficient DG of the average protein can be correctly described from

the simulations just starting from the estimates of the apparent fraction of unfolded

proteins and of D
( f ,u)
G . The curves are reported in Fig. 4.28B, showing a very good

agreement with the experimental data, thus endorsing the assumptions we made.

Reproducing the growth rate of E. coli. The stability curve of the proteome is

used now to reconstruct the growth-rate curve of E. coli. We follow in spirit the ap-

proach described by Dill in [45] where the growth-rate (g(T )) is related to the tem-

perature dependent fraction of unfolded protein via an Arrhenius reaction rate term,

g(T ) = g0e�∆H†

∏
Γ
i=1 ri(T ); where g0 is an intrinsic growth-rate parameter, ∆H† is

the dominant activation barrier, Γ is the number of essential proteins for the bacterium

growth, and ri is the temperature dependent fraction of unfolding for the protein species

i. In our approach, ri is replaced by the average estimated r
QENS
u . When using r

QENS
u

from a99SB-disp we obtained an excellent fit, and values for ∆H† ' 45 kJ/mol and
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Γ = 86. For sake of comparison, we recall that Dill obtained the following values

∆H† ' 27 kJ/mol and Γ = 51 but starting with a very different form of the stability

curve.

Figure 4.29: Growth-rate of E. coli bacteria as a function of temperature. Fit obtained using

a kinetic model for the growth-rate based on the temperature dependent fraction of unfolded

protein in the cytoplasm deduced by QENS/MD, r
QENS
u , and the temperature dependent diffu-

sion constant measured by QENS. The fit is performed using a constant intrinsic growth-rate

parameter g0 (blue line), a temperature dependent g0(T ) ∝ DQENS (orange), and assuming a

negligible activation barrier ∆H† (green).

We then introduce into the fit the temperature dependence of the exponential pre-

factor in terms of a reaction-diffusion model by assuming g0 ∝ D
QENS
G (see Fig. 4.19).

The fit, see Fig. 4.29, is comparable to the case where g0 is constant, but by includ-

ing the dependence on diffusivity we recover smaller activation barrier and number

of essential proteins (∆H† ' 35 kJ/mol and Γ = 81). A final numerical test is done

by assuming the growth rate of the bacterium completely rate-limited by diffusivity

(∆H† = 0). In this case, the E. coli growth rate curve cannot be fitted at temperatures

below the cell-death.

The obtained results confirm that even without assuming a proteome catastrophe,

the growth-rate of E. coli can be reproduced very well by a more smooth temperature

progress of unfolding of the proteome; and that including the diffusion contribution to

reactivity may help tuning the essential parameters of the model, the activation barrier

and the estimate of essential proteins for the bacterium growth.

4.4 Appendix

4.4.1 EINS Results

The temperature dependence of the total MSD measured with EINS is similar to

the one observed for the apparent diffusion coefficient DG measured by QENS and the

parameters T0 and ∆T resulting from the fit with eq. (4.7) are close to the ones obtained

from DG (see Figure 4.7). This result becomes evident from Figure 4.30 where we

compare aEINS
u and a

QENS
u .
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Figure 4.30: Comparison of the smeared step functions aQENS
u (T ), and aEINS

u (T ), obtained

respectively from QENS and EINS.

The total MSD represent an average over various motions in the time limit going to

infinity. However, as described in sections 2.2.3 and 2.2.2, typical biosystems contain

several kind of motions and following [52, 66], we can subdivide the movements into

a sum of three contributions: local vibrations, diffusive motions of molecular sub-units

and global diffusion of the entire protein, as they correspond to distinct time scales.

Consequently, we can rewrite the total MSD,
⌦

u2
↵

, as the sum of three different MSD:

⌦

u2
↵

=
⌦

u2
vib

↵

+
⌦

u2
sub

↵

+
⌦

u2
diff

↵

(4.24)

where
⌦

u2
vib

↵

is due to vibrations,
⌦

u2
sub

↵

is arising from the diffusive motions of the

protein sub-units, and
⌦

u2
diff

↵

is due to the roto-translation of the entire protein.

In general, the first two first contributions
⌦

u2
vib

↵

and
⌦

u2
sub

↵

correspond to the inter-

nal motions, thus we can define
⌦

u2
int

↵

as:

⌦

u2
int

↵

=
⌦

u2
vib

↵

+
⌦

u2
sub

↵

=
⌦

u2
↵

�
⌦

u2
diff

↵

(4.25)

On the other hand, it is possible to show that
⌦

u2
diff

↵

can be derived from the global

diffusion coefficient [66]:

⌦

u2
diff

↵

= 6 DG tres with tres =
4h̄

p
π�1 ln2

∆EFWHM
, (4.26)

where tres is the resolution time determined from the energy resolution ∆EFWHM of the

instrument [57].

We therefore combined EINS and QENS to measure
⌦

u2
↵

,
⌦

u2
diff

↵

, and
⌦

u2
int

↵

at

different temperatures, as shown in Figure 4.31. A clear upturn of internal MSD is

visible around the temperature of cell-death. This result is similar to what was observed

by Henning et al. on proteins in vitro [66], and it is consistent with our QENS results

for the local dynamics (Fig. 4.19E). A direct comparison between the internal MSD

estimated for heating and cooling is reported in Figure 4.32.
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Figure 4.31: Different components of the MSD for the heating and the cooling phases.
⌦

u2
↵

is

the total MSD, measured by EINS, taking into account all the types of motions of the average

protein in the E. coli cytoplasm.
⌦

u2
diff

↵

is the MSD due to the roto-tranlational diffusive motions

of the entire average protein determined by QENS though the measurement of the apparent

diffusion coefficient DG (see eq. (4.26)).
⌦

u2
int

↵

is the MSD related to the internal sub-diffusive

and vibrational motions of the proteins, obtained by the subtraction of
⌦

u2
↵

and
⌦

u2
diff

↵

.

Figure 4.32: Comparison of the internal MSD obtained for the heating with the those calculated

for cooling.

4.4.2 Connection between the apparent and the real unfolded frac-

tions

As we detailed in the subsection “Neutron scattering data analysis”, we found that

DG measured by QENS experiments can be described as:

DG(T ) = (T ·a1 +b1) · [1�aQENS
u (T )]+(T ·a2 +b2) ·a

QENS
u (T ) (4.27)
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where a
QENS
u (T ) is a smeared step function parameterized by the temperature of tran-

sition T0 and the width of the transition ∆T :

aQENS
u (T ) =

1

1+ e�
T�T0

∆T

(4.28)

The function a
QENS
u (T ) weights the transition between two different dynamical regimes

characterized by the two extremal diffusion coefficients D1(T ) and D2(T ), and since

D2(T ) < D1(T ), a
QENS
u (T ) is a measure of the diffusion slow-down. At low tem-

peratures (T ⌧ T0), the parameter a
QENS
u tends to zero; therefore, DG(T ) ⇡ D1(T ) =

T · a1 + b1. At high temperatures (T � T0), the smeared step function is close to one,

and DG(T )⇡ D2(T ) = T ·a2 +b2. However, the observed dynamical transitions is not

reversible—after the transition, DG(T ) remains equal to D2(T ), even at low temper-

atures. The same dynamical behavior was previously found for proteins in solutions

and, due to the similarity of the systems, this suggests that the underlying process is the

same. In particular, in the first state (state 1), the E. coli cytoplasm is a liquid where the

majority of proteins are folded. After the transition (state 2), the cytoplasm is in a gel

state, and the proteins are mainly unfolded. For simplicity, we will assume that in states

1 and 2, all the proteins are fully folded and fully unfolded, respectively. Therefore, the

diffusion coefficient D1 will describe the global diffusion of the folded average protein

in the liquid state, termed D( f ), whereas D2 will be related to the global diffusion of the

fully unfolded average protein in the gel state, termed D(u). Thus, for DG(T ) we have:

DG(T ) = D( f )(T ) · [1�aQENS
u (T )]+D(u)(T ) ·aQENS

u (T ) (4.29)

In this picture, a
QENS
u (T ) can be interpreted not only as a measure of the diffusion

slow-down during the unfolding, but it also represents the apparent fraction of unfolded

proteins that weights D( f ) and D(u) and that is necessary to reproduce the values of DG

for systems in a partially unfolded state. In particular, our simulations suggested that

the relation between the apparent fraction of unfolded proteins determined dynamically,

aMD
u , and the real fraction of unfolded proteins, rMD

u , can be described by a power law:

aMD
u =

⇥

rMD
u

⇤p
(4.30)

Therefore, to estimate the real unfolded fraction as a function of temperature start-

ing from the dynamical QENS results, we can use the inverse relation:

ru(T ) =
h

aQENS
u (T )

i(1/p)
(4.31)

In conclusion, comparing QENS experiments and MD simulation, first we verified

that the simulations can reproduce the linearity of D( f )(T ) = D1(T ) = T ·a1 +b1, and

D(u)(T ) = D2(T ) = T · a2 + b2 (Figure 2D and 4.25A). Then, since protein unfolding

is computationally demanding for all-atom MD simulations, instead of calculating ex-

tremely long trajectories to allow all proteins to unfold, we forced the unfolding (as

described in Subsection “Preparation of partially unfolded sub-volumes”), and we per-

formed a series of relatively short simulations (⇠100 ns), sufficiently long to determine

the diffusion coefficient in the timescale explored by the QENS experiments, but brief
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enough to ensure that the folding state of the proteins was not affected. This allowed

us to verify that if the folding state remains constant, the diffusion coefficient of the

average protein scales linearly with the temperature (Figure 3D and Figure 4.25 panel

C), and this relation also holds for systems with different concentrations (Figure 4.16).

Comparing the diffusion coefficients calculated for a system simulated in different

folding states (Figure 3D and 4.25C), we found a relationship between the amount of

unfolded proteins and the consequent diffusion slowdown—eq. (4.30). Finally, with

the inverse relation eq. (4.31) and the QENS measurement of the slowdown, we were

able to estimate the real fraction of unfolded proteins at different temperatures in the E.

coli cytoplasm through the study of its dynamical state (see Figure 4A).

4.4.3 Origins of the nonlinearity of the transfer function

The observation that the translation diffusion coefficient Dt cannot be expressed

simply as

Dt(ru) = (1� ru)D
( f )
t + ruD

(u)
t (4.32)

where ru is the unfolded fraction and D
( f )
t and D

(u)
t are the translational diffusion coef-

ficients corresponding to a fully folded- and a fully unfolded system, respectively, can

be rationalized in the following way. If we assume the validity of the Stokes–Einstein

relation, the diffusion coefficients D
( f )
t and D

(u)
t , forming two limiting cases, can be

written as

D
( f )
t =

kBT

6πη( f )R( f )
(4.33)

and

D
(u)
t =

kBT

6πη(u)R(u)
(4.34)

Here, R( f ) and R(u) are protein hydrodynamic radii in the folded and unfolded states,

respectively, and η( f ) and η(u) denote the viscosities of the fully folded and fully un-

folded volumes.

However, in intermediate boxes with an unfolded fraction ru, η(ru) is neither iden-

tical to η( f ) nor to η(u). Consequently, for the diffusion of folded/unfolded proteins in

the intermediate boxes, we can expect

D
( f )
t (ru) =

kBT

6πη(ru)R( f )
(4.35)

and

D
(u)
t (ru) =

kBT

6πη(ru)R(u)
(4.36)

where the viscosity is a function of ru. Therefore, rather than assuming Eq. 4.32, one

should take into account the effect of the intermediate viscosity:

Dt(ru) = (1� ru)D
( f )
t (ru)+ ruD

(u)
t (ru) = (1� ru)

η( f )

η(ru)
D
( f )
t + ru

η(u)

η(ru)
D
(u)
t (4.37)
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If we consider a linear dependence of η on ru,

η(ru) = η( f )+ ru(η
(u)�η( f )) (4.38)

with values of η( f ) and η(u) estimated using simulations, we obtain a similar depen-

dence of au on ru as the one based on the actual diffusion coefficients determined from

simulations (see Figure 4.27).
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Further Results

scientific results obtained during the Ph.D. studies concerning the

effects of protein-ligand complexation on protein dynamics
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Chapter 5

Differences between Ca2+ reach and

depleted α-La investigated by MD

simulations and NS experiments

Based the publication:

Differences between calcium rich and depleted alpha-lactalbumin in-

vestigated by molecular dynamics simulations and incoherent neutron

scattering.

Dominik Zeller, Pan Tan, Liang Hong, Daniele Di Bari, Victoria Garcia

Sakai, and Judith Peters

Physical Review E 101, 032415 – Published 25 March 2020

In this chapter, we present a study comparing atomic motional amplitudes in cal-

cium rich and depleted alpha-lactalbumin. The investigations were performed by elas-

tic incoherent neutron scattering (EINS) and molecular dynamics (MD) simulations.

As the variations were expected to be very small, three different hydration levels and

timescales (instrumental resolutions) were measured. In addition, we used two mod-

els to extract the mean square displacements (MSDs) from the EINS data, one taking

into account the motional heterogeneity of the MSD. At a timescale of several nanosec-

onds, small differences in the amplitudes between the calcium enriched and depleted

alpha-lactalbumin are visible, whereas at lower timescales no changes can be concluded

within the statistics. The results are compared to MD simulations at 280 and 300 K by

extracting the MSDs of the trajectories in two separate ways: first by direct calculation,

and second by a virtual neutron experiment using the same models as for the experi-

mental data. We show that the simulated data give qualitatively similar results as the

experimental data but quantitatively there are differences. Furthermore, the distribution

of the MSDs in the simulations suggests that the inclusion of heterogeneity is reason-

able for alpha-lactalbumin, but a bi-or trimodal approach may be sufficient.
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Figure 5.1: Calcium rich (yellow, bright) and depleted (red, dark) forms of α-La and the varia-

tions induced on their structures. α-La from most mammals consists of 123 amino acid residues

[169] and its molecular 4 weight is ⇡14.2 kDa.

5.1 Introduction

A number of proteins have the ability of binding ions that may lead to changes in the

protein’s structure and dynamics at the atomic scale, and subsequently, may affect their

functionality. Recent studies have shown that for example, in the case of enzymes the

presence of small inhibitors might influence the dynamics in a measurable way com-

pared to the dynamics of the wild type form [169, 170, 171, 172, 173] and single point

genetic mutation in proteins can affect collective density fluctuations in hydrating water

[174]. Another case is alpha-lactalbumin (α-La), the major whey protein found in the

milk of all mammals. It is a simple Ca2+ binding milk protein and has a significant role

in biosynthesis of lactose in the lactating mammary gland. Together with the enzyme

β -1,4-galactosyltransferase (β4GalT) it forms a complex which is responsible for the

lactose synthase, i.e., transforming galactose and glucose into lactose. It strongly binds

the cation Ca2+ and results in changes in the tertiary structure of the protein (see Fig.

5.1). Besides Ca2+, the binding site can also bind Mg2+, Mn2+, Na+, or K+, which

induce similar but smaller structural changes than Ca2+. However, the corresponding

binding constants are much lower except in the case of Mn2+. In general, the binding

of a cation stabilizes α-La and increases its thermal denaturation temperature. Further-

more, recently Shinozaki and Iwaoka [175] showed that Ca2+ and Mn2+ accelerates

folding to the native form of α-La, an effect not seen with the other cations. α–La

can also bind Zn2+ at several other distinct binding sites, but results in a decrease in

the stability of α-La bound to Ca2+. The apo form refers to α-La which is not bound

to Ca2+. Owing to the characteristics described above, α-La is often used as a simple

model for Ca2+ binding proteins.

In addition to structural changes, the binding of α-La to Ca2+ may also gener-

ate structural rearrangements capable of influencing locally molecular dynamics and

therefore varying the functionality of the protein. The task of probing such small ef-

fects is not easy and a sophisticated approach is required. Incoherent neutron scattering

is a technique used to probe atomic and molecular dynamics on timescales of pico- to

nanoseconds, and when combined with molecular dynamics (MD) simulations forms
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a powerful partnership, and could indeed offer unique insights into changes occurring

in the atomic scale (amplitudes of about a few angstroms). Despite the two techniques

accessing very similar times and dimensions, they are not always in full quantitative

agreement [176]. To better understand the reasons behind such disagreements, we

choose to make a detailed study of the dynamics of α-La, which is commercially avail-

able, to do exhaustive neutron experiments, and sufficiently small to permit accurate

simulations. We study the dynamics in both the Ca rich and depleted forms, which

from hereafter will be referred to as α-Laca and α-Ladep, respectively.

The intensities measured using incoherent neutron scattering experiments are com-

monly used to extract mean square displacements (MSDs) of the protons within the

protein, almost exclusively by assuming a harmonic approximation of all possible dy-

namical contributions, i.e., the Gaussian approximation [67, 53]. Furthermore, it is

common to combine results from different neutron spectrometers, since they cover dif-

ferent timescales and length scales. Recently, we applied models that go beyond this

approximation and include dynamic heterogeneity, to be able to fully exploit a wider

instrumental spatial window [60]. In this work, we combine data from three neutron

spectrometers which access different timescales (have different energy resolutions) and

length scales (have different momentum transfer coverage). We apply a few models, in-

cluding the commonly used Gaussian approximation, to the data to investigate to what

extent they help to disentangle small effects on the dynamics and make a comparison

to results from MD simulations.

5.2 Experimental Section

5.2.1 Sample preparation for neutron experiments

All experiments described use bovine alpha-lactalbumin (α-La), either in its nat-

ural form with Ca2+ (α-Laca) or Ca2+ depleted α-Ladep. The protein was purchased

from Sigma-Aldrich in lyophilized powder form. Three different hydration levels were

prepared for each batch and protein type, hydrated with heavy water, D2O. This is so

the neutron signal is dominated by the incoherent scattering from the protons in the

protein (owing to the large incoherent neutron cross section of hydrogen compared to

deuterium or other atoms constituting the protein structure [113]). The hydration level

was determined from the difference in mass with and without D2O and is defined as

h = grams D2O/grams dry protein. The different levels of hydration were h ⇡ 0 (dry),

h ⇡ 0.4, and h ⇡ 0.8. The dry lyophilized sample represents the case where only har-

monic motions are present up to room temperature and 0.4h corresponds to around a

hydration level of one or two layers of water on the protein surface [177], which is suffi-

cient to allow for localized dynamical motions. Finally, 0.8h represents a gel state close

to full hydration. The purchased lyophilized protein powder was dried for at least 24 h,

after which it was weighed and then loaded into flat aluminum sample holders (standard

for neutron spectroscopy experiments) and vacuum sealed with indium wire. The 0.4h

and 0.8h samples were also dried before hydration, and then left in a D2O rich environ-

ment to uptake the water. The samples were weighed periodically until they achieved

the desired uptake of D2O and then sealed with indium in similar flat aluminum hold-

ers. Masses of around 100 mg were used to obtain around 10% scattering and ensure

there was no significant multiple scattering.
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Figure 5.2: Visualization of the dry and hydrated simulations of α-Ladep. (a) Dry environment

(0.05h). (b) Hydrated environment (0.4h). The lines show the simulation box size and inside

the six chains of α-Ladep at 300 K are visualized. The little (blue) molecules indicate water. For

the sake of better visibility, we represented the proteins as connected molecules, therefore going

beyond the limits of the box, and not as distributed within the same box due to the boundary

conditions.

5.2.2 Simulation setup

MD simulations of hydrated protein powder were used representing the interactions

of proteins with a small amount of water, to be able to compare them directly with ex-

perimental data. The simulations were started from two different protein structures

which can be found in the Protein Data Bank (PDB) [178]: (1) bovine α-La with cal-

cium (α-Laca), PDB ID: 1F6S and (2) bovine α-La without calcium (α-Ladep), PDB

ID: 1F6R. Both structures were published by Chrysina et al. [179]. Each PDB structure

consists of six distinct α-La proteins (= chains), allowing to calculate an average dy-

namics of a single α-La chain. As a matter of fact, Tarek and Tobias [180] pointed out

that a single protein covered by a shell of water is not sufficient to describe a powder

protein by simulations. Instead, a crystal composed by two proteins or more resulted

in a realistic model to reproduce neutron scattering data. This is the reason why, in the

present case, we used six chains of proteins placed in each box (see Fig. 5.2).

The protein molecule was centered in a cubic box of size 8.39 nm at first, with

the CHARMM27 force field [181, 182], and the TIP4P-EW water model [183], us-

ing GROMACS 5.0.7 (GPU version) as the MD engine [184, 124]. The boxes were

filled with water molecules to start with, which were then deleted (starting from the

outside) until the number of water molecules around the protein met the desired hydra-

tion level h. The box for a hydration level of 0.4h contained 1824 (dep) / 1834 (Ca)

water molecules and 232 (both) for the dry system (0.05h). All systems were electri-

cally neutralized by adding NaCl. Van der Waals interaction was truncated at 1.2 nm

with the Lennard-Jones potential switched to zero gradually at 1.0 nm. A particle mesh

Ewald [185] with a Coulomb cutoff of 1.2 nm was used to calculate electrostatic inter-

action. All bonds involving hydrogen atoms were constrained with the LINCS [141]
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algorithm. The systems were firstly energetically minimized using steepest descent

steps with a maximum force of 10.0 kJ mol�1 nm�1 and a maximum of 50000 steps.

Then they were equilibrated in the NVT ensemble at T = 280 K (and 300K) for 300 ps

and in the NPT ensemble at p = 1 bar for 50 ns, with a 0.5-fs time step to slowly release

the unreasonable atom contact and suppress vacuum. The temperature coupling was

performed using the velocity-rescale algorithm with a coupling time of 1 ps [143]. The

pressure coupling was performed using the Parrinello-Rahman algorithm with a cou-

pling time of 1 ps [186]. The production MD simulations for hydration level 0.4h were

conducted in the NPT ensemble for 100 ns, with a 2-fs time step, while those of the dry

systems were conducted for 500 ns. Only the last 20-ns trajectories recorded at every

2 ps were used for the analysis. For such a dense system, the global translation and

rotation of the protein molecules was strongly suppressed [187, 188]. A visualization

of the difference in box size and hydration level is shown in Fig. 5.2.

5.3 Neutron Scattering

Data were collected on three neutron spectrometers, all so-called inverted geometry

spectrometers, covering a wide temporal range, namely, OSIRIS [189] at the ISIS Neu-

tron and Muon Facility, UK; IN13 [190] at the Institut Laue Langevin, (ILL), Grenoble,

France; and SPHERES [191] at the MLZ Munich reactor in Germany. The data col-

lected at the ILL can be found under the DOIs in Refs. [192] and [193]. OSIRIS

and SPHERES use crystal analyzers that reflect cold neutrons (λ of 6.27 and 6.66 Å,

respectively) allowing access to a momentum transfer range, q-range, up to 1.8 Å�1,

whereas IN13 uses a thermal neutron crystal analyzer (λ of 2.23 Å) which opens up

the accessible q-range to 4.9 Å�1. This permits us to probe dynamics occurring in

a variety of length scales, where distance d = 2π/q. In addition, the three instru-

ments differ in energy resolutions allowing access to motions from a few picoseconds

to a few nanoseconds. Specifically, they are 25, 8, and 0.7 µeV, for OSIRIS, IN13,

and SPHERES, respectively. Transmission values for all samples were measured on

IN13 to be above 90% so that multiple scattering effects were not taken into consider-

ation for the data treatment. The initial data reduction was done with LAMP [194] for

IN13, SLAW for SPHERES, and MANTID [72] for OSIRIS. Slab can corrections for

a flat sample holder and normalizations providing the relative detector efficiency and

the instrumental resolution were done with LAMP for the samples measured on IN13

and SPHERES. The measurements on OSIRIS were corrected using the empty sam-

ple holder and normalized in MANTID. All intensity normalizations were done with

the lowest available temperature data of each scan. Therefore, the difference between

the slab correction algorithm and the subtraction of the empty sample holder alone are

negligible.

Incoherent neutron scattering measurements give access to the elastic incoherent

structure factor (EISF), S, which is a function of the momentum transfer q at the elastic

line, where the energy transfer h̄ω that occurs between the neutrons and the scattering

atoms (mostly hydrogen), as a result of the scattering event, is approximately zero. The

most commonly used approach to analyze this intensity is to assume that the atomic nu-

clei undergo harmonic motions around their equilibrium positions [67] and thus fit the

data to the so-called Gaussian approximation (GA). The intensity can then be expressed
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as

S(q, 0±∆E;
⌦

r2
↵

) ⇡ S0 exp

 

�q2
⌦

r2
↵

GA

3

!

(5.1)

where ∆E corresponds to the instrumental energy resolution. From this expression,

values for the static mean square displacements of the atoms,
⌦

r2
↵

GA
, are obtained at

each temperature point measured, by fitting the slope of the logarithm of the scattered

intensities plotted vs q2 according to

⌦

r2
↵

GA
⇡ �3

∂ lnS(q,0±∆E;
⌦

r2
↵

)

∂q2
(5.2)

The Gaussian approximation is strictly valid for q! 0, and it holds up to q2
⌦

r2
↵

GA
⇡ 1,

restricting the q-range that can be used for this type of analysis considerably.

A model that imposes no constraints on the q range is that developed by Kneller

and Hinsen [195] and applied to experimental data by Peters and Kneller [63]. It differs

from the GA in that it takes into account motional heterogeneity of the amino acid side

chains and their environment, compared to the Gaussian approximation where only one

atomic motion is representative for all hydrogens. The motional heterogeneity of the

hydrogen atoms is described by a Gamma distribution and the corresponding elastic

intensity can be calculated analytically as

S(q;
⌦

r2
↵

,β ) =
1

✓

1+
q2·hr2i

PK

3β

◆β
(5.3)

where β is a measure of the homogeneity in the atomic motions; e.g., when β ! 0

the Gaussian form is retrieved. Fits of the data give, then, access to the corresponding

static mean square displacement,
⌦

r2
↵

PK
, where PK stands for the Peters-Kneller model

hereafter.

An earlier attempt to account for motional heterogeneity in modeling the EISF was

suggested by Meinhold et al. [196] by describing the mean square motional amplitudes

by a Weibull distribution. However, this approach is not investigated here.

5.4 Analysis of the simulated data

5.4.1 Direct calculation of the MSD

The α-Laca (α-Ladep) proteins used in the simulations consist of a total of 11512

(11457) protein atoms. The number of atoms is different in the two forms, because

some chains are missing some amino acids (residues) at the end of the α-La chain

since they were not resolved in the PDB structure. In order to compare the simulation

data to the experiment, we analyze the H atoms in the protein, which account for the

majority of the scattering signal in the neutron experiments. Furthermore, in order

to be consistent in the evaluation of the MSD, only H atoms which are in all chains

are considered: Every single α-La consists of at least 922 H atoms which are of the

same type for all α-La protein chains. Therefore, with six single α-La chains in each
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simulation, in total 6⇥922 = 5532 H atoms have been evaluated to calculate the MSD

and thus to analyze the averaged atomic movements of the protein. The MSD of a

single atom α at location rα(t) at time step t in the simulation is calculated via

MSDα(t) =
D

[rα(t0)� rα(t + t0)]
2
E

t0
(5.4)

with h· · ·it0
being the average over all t0 defined by the time steps of the simulation.

From these individual atoms, a mean µ(t) of the MSD can be calculated.

We first calculated the time average of the MSD according to Eq. (5.4) using the

complete 20-ns trajectories. Further, to estimate the error of the mean of the MSD due

to different conformations, the 20-ns simulations were truncated in four equally time

spaced parts of 5 ns. The result of the four independent parts was then averaged to

obtain a mean MSD µ i(t) and its sample standard deviation s(t) taken as an estimation

of the error:

s(t) =

v

u

u

t

1

N �1

N=4

∑
i=1

[µi(t)�µ i(t)]
2 (5.5)

Finally, we compared the MSDs obtained from a direct calculation with the ones using

the fast correlation algorithm proposed by Kneller et al. [197]. See Figs. 5.7 and 5.8 in

the supporting information section for the results of the different checks.

In order to compare the dynamic MSD µ(t) of the simulations with the static MSD
⌦

r2
↵

calculated by the models, it has to be divided by 2 since the static MSD
⌦

r2
↵

is

defined as a time independent quantity due to the confined motion resulting in [198, 59]

2
⌦

r2
↵

= MSD(t ! 0) (5.6)

For convenience, in the following, the MSDs obtained from the simulations will be

labeled as direct MSD ∆dir(t) with the following definition:

∆dir(t) =
1

2
µ(t) (5.7)

The ∆dir(t) can be directly compared to the MSDs extracted from the fits [see Eqs. (5.2)

and (5.3)].

5.4.2 Indirect calculation of the MSD

An alternative way to compare the simulation results with the experimental data

is to extract the MSD from the convolution of the instrumental resolution R(ω) with

the theoretical dynamic incoherent structure factor (DISF) Sinc(q,ω) calculated with

the help of the simulation data. The DISF was calculated with the program MDANSE

[199] (v.1.1). The resolution function R(ω) for each instrument was approximated by a

normalized Gaussian function with a full width at half maximum (FWHM) equivalent

to the resolution of the instrument:

G(ω, t) =
1

σres

p
2π

· exp

(

�1

2

✓

ω

σres

◆2
)

(5.8)
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where

FWHM = σres

p
8ln2 ⇡ 2.35 ·σres (5.9)

The FWHM of each instrument was obtained by matching the above-defined Gaussian

function to data from vanadium which is used to measure, experimentally, the reso-

lution of neutron spectrometers since it is an isotropic incoherent scatterer. For IN13

and OSIRIS data from a vanadium standard summed over all momentum transfers, q

was used; for SPHERES, the resolution function found in the literature for the large

angle detectors was used [200] (see Fig. 5.2) (Voigt profile with σres = 0.244 µeV;

γres = 0.052µeV). The resolution functions are then convoluted with the DISF which

is obtained from the simulation. For each DISF calculated with an absolute momentum

transfer qm, Nq = 50 q-vectors qi with a randomized direction and an absolute length of

qi = qm +∆q, with ∆q  0.05 Å�1, are averaged. In total, the DISF is then calculated

in MDANSE as

Sinc(qm,ω) =
1

2π

Z +∞

�∞
Iinc(qm, t) · exp(iωt)dt (5.10)

Iinc(qm, t) =
1

Nα

Nα

∑
α

*

1

Nq

Nq

∑
i

exp{iqirα(t0)} · exp{�iqirα(t0 + t)}

+

t0

(5.11)

where Nα is the number of H atoms in the simulation and rα their location. t and t0 are

defined by the time steps of the trajectory.

From the resolution broadened DISF, SR
inc(q,∆ω), the elastic tic incoherent struc-

ture factor EISF(qm) is computed by summing up the intensities in the range ω =
±FWHM/2 and the resulting EISF(q) is normalized by EISF(qm = 0). The obtained

EISF(q) can be fitted in the same way as the experimental data to calculate the MSD. It

is important to mention that for the experimental data the lowest temperature scan was

used for the normalization, whereas here the value obtained at qm = 0 was taken due

to the lack of a simulation at very low temperature. The models chosen to analyze the

EISF(q) are the same as for the experimental data, namely, the Gaussian approximation

[Eq. (5.1)] and the PK model [Eq. (5.3)], over q ranges of 0 � 1 Å�1 and 0 � 4 Å�1,

respectively.

5.5 Neutron Scattering Results

The MSDs were extracted as described above for the three instruments and accord-

ing to the two models. The PK model fits data over a much wider range of q values,

and thus is expected to yield additional information about the motional amplitudes. As,

for instance, methyl group rotations are small motions and become particularly visible

only at higher q values (> 2Å�1) [201, 202, 203], such treatment is expected to give a

more precise description. However, it includes one more fit parameter and gives thus

higher error bars for the fitting parameters. No significant differences were observed

within statistical error between the dynamics (and MSD) of α-Ladep and α-Laca on the

timescales of OSIRIS or IN13 at any of the three hydrations. An example of this is

shown for the OSIRIS data fit using the PK model, in Fig. 5.3 (top). Furthermore, both

models show similar trends. Absolutely no differences are appreciable in the dry pro-
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Figure 5.3: Difference of MSD between α-Ladep and α-Laca for OSIRIS (a) and SPHERES

(b,c). Data are only shown from 100 to 310 K to enhance the differences, since at temperature

< 100 K there are no differences within statistical error. The MSD values of the α-Ladep are

shown as dotted lines and empty symbols, and those for α-Laca as solid lines and filled symbols.

The dry samples are blue (lower curves), the 0.4h samples are red (middle curves), and the 0.8h

samples are green (upper curves).

teins (blue curves). At h = 0.4 (red curves) and h = 0.8 (green curves), the dynamics

are almost identical except at the higher temperatures (290 - 310 K), where small differ-

ences are visible and both models suggest that the α-Laca has a slightly smaller MSD,

indicating less dynamics. Given the large error bars, the effect is not conclusive; how-

ever, the trend would confirm the findings of Chrysina et al. [179], which suggest that

the binding of a protein to a cation stabilizes the protein, irrespective of the hydration

level.

Differences between the dynamics of the two samples are visible on the timescale

of the SPHERES instrument (Figs. 3(b) and 3(c), slower dynamics up to a couple of

nanoseconds). Already in the dry state, the α-Laca sample has a slightly higher MSD

than the α-Ladep sample above 250 K. This difference is emphasized when using the

model that uses a larger q range, the PK model, suggesting that also smaller amplitudes

(corresponding to higher q values) have to be included in the analysis to permit such a

subtle differentiation.

At h = 0.4 no difference between the samples is observed in the PK model, and
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using the GA model gives a small difference where the α-Ladep is more mobile than

the α-Laca. This could indeed be the case, as for the highly hydrated samples (h = 0.8)

the same trend is observed, and, more apparent, the MSD is larger for the α-Ladep above

270 K. It is in fact the opposite behavior as for the dry, but more in line with the expected

scenario of stabilization of the α-La upon binding calcium. A higher resilience of a

protein upon binding of a cation indicates an increased free energy including a higher

enthalpy arising from bonded interactions [204]. Entropy is likely rather unchanged at

the same hydration level.

It appears that the sample hydrated at 0.4h presents higher dynamics between 200

and 270 K than the one hydrated at 0.8h. Similar effects were already observed for the

green fluorescent protein (GFP) [205, 206] and interpreted by the authors as a suppres-

sion of protein dynamics at lower temperatures by hydration water and an enhancement

of it at higher temperatures. Moreover, in the 0.4h sample, the water is in a confined or

glassy state so that secondary relaxations set in upon heating, whereas in the 0.8h sam-

ple where water is primarily bulk water, it is in a frozen state. The steplike increase of

the MSD around 270 K for the highest hydrated sample corresponds thus to the melting

of the surrounding water.

The GA model shows a more pronounced feature at the melting of ice in the higher

hydrated sample compared to the PK model. The GA model covers indeed only larger

length scales representing more likely the melting of the ice, whereas in the PK model,

which also covers local length scales, an average of the larger and smaller length scales

slightly smears out such effects.

5.6 MD Simulation Results

The MSD obtained directly and indirectly from the simulations were compared.

To relate the time dependent direct MSD ∆dir(t) to the results of the time independent

indirect MSD
⌦

r2
↵

ind
, Heisenberg’s uncertainty principle was used:

with τFWHM = h̄/FWHM. The corresponding times for each instrument are summa-

rized in Table 5.1.

Table 5.1: Instrument resolution FWHM vs time. Relation of the FWHM of Gaussian instru-

ment resolution in energy space to the time τ in time space.

Instrument FWHM (µeV) τFWHM (ps)

OSIRIS 24.8 30

IN13 10.8 60

SPHERES 0.62 1060

Figure 5.4 shows the results of the MSDs of the two different fitting models GA

and PK (blue and red, respectively) and the directly calculated MSDs (black), for the

two simulated sam- ples (dry and hydrated) at all three instrumental resolutions. The

results obtained with the various methods to calculate the MSDs directly were so close

(differences below 0.5%) that it was not possible to represent them individually in Fig.

5.4. For the dry protein, the MSD calculated via the direct method is always larger

than the MSD calculated from the models, but the behavior between the simulations is

the same. Assuming that the direct calculation represents a result as close as possible
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Figure 5.4: MSDs from analyzing data from MD simulations using both indirect (GA approx-

imation: lower curves, PK model: middle curves) and direct calculations (upper curves) for the

Gaussian resolution function of SPHERES (a), IN13 (b), and OSIRIS (c). On the left side the

dry α-La is shown and on the right side the hydrated protein at 0.4h. Each side is ordered in the

same way by increasing temperature (280 and 300 K) and α-Ladep is next to α-Laca.

to the true MSD, the difference between the values of the direct method and those

from the models could indicate the order of magnitude of the error introduced by using

models. As anticipated, the MSD increases with increasing temperature and in fact the

effect is larger on smaller timescales, i.e., at lower instrumental resolutions (IN13 and

OSIRIS). The α-Laca simulations also have a slightly higher MSD for all instrumental

resolutions. When comparing the different models, the GA evaluates to a higher MSD

than the PK model for IN13 and OSIRIS. For SPHERES this behavior is inverted.

Similar trends are observed for the hydrated protein, except for three main differ-

ences. First, the MSD of the models is much closer to the direct MSD, albeit still

smaller. Secondly, the difference between the MSDs at 280 and 300 K is much larger.

Thirdly, for SPHERES the MSD for α-Laca at 300 K is slightly lower than for α-Ladep,

which is the case for all methods considered.

The simulation also allows us to calculate the distribution of the MSDs for the

protons in the protein. This is calculated following the method used by Yi et al. [207]

which enables an evaluation of the main contributions to the heterogeneity and of how

many populations with different motions are present. Figure 5.5 shows the distribution

at t = 30 ps (OSIRIS), t = 60 ps (IN13), and t = 1ns (SPHERES) for all simulations. The

curve for each time was obtained by binning the individual direct MSD values in steps

of 0.02 Å2 together and normalized by the total number of H atoms. The individual

direct MSD values were obtained by averaging the value of the four independent slices

of 5 ns for each simulation in the same way as for the direct MSD evaluation. In all

simulations and for all three times t , one large peak at around 0.13 Å2 is visible (dashed
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Figure 5.5: Distributions of the direct MSDs. Comparison of distributions of the MSDs at t =

30 ps (OSIRIS, highest curve in the peak), 60 ps (IN13, middle curve in the peak), and 1000 ps

(SPHERES, lowest curve in the peak) for α-Laca (b) and α-Ladep (a). The MSD values were

obtained by the average value of the four independent slices of 5 ns for each simulation. ∆dir in

the legend shows the mean value of the distribution as defined in Eq. (5.7).

vertical line). Only for the distribution at 1 ns (green) a small second peak around 1.35

Å2 is visible. The latter peak was identified in the simulations to correspond to methyl

group rotations, which exist also within the IN13 data [63, 201], but are then retrieved

at much smaller MSD values below 0.5 Å2 and cannot be separated from the motions

in the main peak. For the hydrated samples the first peak is shifted slightly to higher

MSD values and its peak is significantly smaller than for 30 and 60 ps. This effect is

emphasized at 300 K. No significant variation is observed between the α-Ladep and α-

Laca samples. This seems understandable as the components forming the two samples

are extremely similar.

Such analysis helps us to understand if a complete distribution of Gaussian motions

is required to describe the MSD or if a bi- or trimodal approach is sufficient. According

to our results, a bimodal description seems to be very reasonable, in agreement with

recent works of Vural et al. [198] or Doster [201].

5.7 Comparison of Experimental and Simulated Results

To compare the MD simulations with the experimental data, the results of the fitting

models from the previous section are plotted together with the experimental results.
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Figure 5.6: Comparison between the three models obtained by fitting the experimental data

(open symbols, dashed lines) and the MD simulations (filled symbols, dotted lines). The circles

designate the GA approximation and the squares the PK model.

The experimental data were collected at 5-10 K intervals, which unfortunately are

not always in coincidence with the two simulation temperatures. To reduce the effects

on the results, experimental MSD values were averaged over three temperature val-

ues (smoothing average) and then the MSDs between two smoothed temperature data

points have been linearly interpolated. This procedure ensured that the simulated and

experimental data were at the same temperature as the simulations.

As can be seen in Fig. 5.6, the MSDs extracted from the simulated data agree

well with the experimental data and indicate that the different models hardly allow

differentiation. Furthermore, the variations between simulated and experimental results

may arise mainly from the instrumental limitations. Finally, the differences between the

models are larger for the experimental data reflecting the worse statistics.

The experimental MSDs of the depleted hydrated sample seem systematically higher

than those of the α-Laca sample, which is hardly visible within the statistics in the sim-

ulation results at 280 K and below 1 ns. It indicates slightly enhanced dynamics for the

depleted sample in such conditions, which could be expected as calcium has a stabiliz-

ing effect [208]. The higher mobility becomes visible only in the simulations at higher

temperatures and longer timescales, as the variations in the sample are certainly small.

An interesting point is the difference between the models. For the simulations, the PK

model mainly evaluates a very slightly smaller MSD values whereas for the experi-

ments they were larger. One has to note that each spectrometer has not only its specific

time resolution, but also a characteristic q-range. Both dimensions are important and

are related. Therefore, the evaluated results do not only depend on the time resolution,

but also on the accessible spatial domain, which permits us to see various behaviors of

the samples.
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5.8 Discussion and Conclusion

MD simulations are a very powerful tool to understand, in more detail, the dynamics

of individual atoms that are measured for a sample in a neutron scattering experiment,

as both techniques give access to comparable temporal and spatial scales. Unlike the

common simulations run in solution, comparison to elastic incoherent neutron scatter-

ing (EINS) measurements, frequently done with hydrated powders, has required the

development of approaches to simulate hydrated powders [207, 209] by adapting the

setup accordingly.

A direct comparison of neutron data and simulated signals is not always trivial as

the absolute values depend significantly on, one hand, data corrections and normal-

ization, and on the other, on the accuracy of force fields and starting structures. It is

also common to find that simulations cannot reproduce results extracted from neutron

scattering data quantitatively (see [176] or Fig. 5.6), hence, the decision to compare

MSDs by extracting them in a very similar way from both experiment and simulation.

In addition, we checked that different approaches to calculate the static MSDs from the

simulated trajectories gave identical results.

The order of magnitude of the values of experimental MSDs are well reproduced

by the simulations, with MSDs of hydrated samples being larger than those of the dry

samples. The results indicate that the models describing the simulated EISF (obtained

from the DISF) underestimate the simulated directly calculated MSDs (see Fig. 5.4).

One might therefore speculate that no model is able to take the whole dynamics into

account and that effects due to the limited space and time windows are not negligible.

For the hydrated protein, the differences are not as large as for the dry protein. In

addition, the difference between the models is not negligible, but the trends are always

the same and in agreement with the direct MSDs; i.e., all curves obtained through the

different models are mainly parallel. Interestingly, the hierarchy between the models is

always the same for an identical instrument resolution (with the exception of SPHERES

in a dry environment). One can therefore conclude that the GA gives equally good

results as the other models, since the absolute values of the MSDs are unknown.

In comparison to the experimental data, the simulation cannot provide reliable

quantitative results (see Fig. 5.6). In general, the experimental MSDs of the PK model

are higher than those from the GA model, whereas for the simulations this trend is in-

verted in most cases. Here, it has to be stressed again, this behavior is highly dependent

on the chosen q-range and thus no definitive trend can be concluded. The experimental

curves show larger differences and in particular the GA model gives MSDs which are

more strikingly different from the MSDs obtained through the PK model. Nevertheless,

none of these results favors any one model over another, as the statistics are probably

not good enough to discriminate small effects, eventually due to the different q-ranges

used.

As shown by Fig. 5.5 the distribution of the MSDs can be mainly described by two

different peaks which are independent of hydration. The second peak is most visible

above 1 ns, whereas below 60 ps it is not well distinguished. It is mainly the H atoms of

the methyl groups (not shown here) that are contributing to this peak, which is in accor-

dance to the findings of Yi et al. [207]. Methyl group rotations indeed contribute to the

elastic neutron spectra and the findings here support that they are a major contributor

to heterogeneity originating from these motions, which becomes more visible at longer

110



timescales. Yi et al. [207] simulated the camphor-bound cytochrome P450 at h = 0.4

in a way comparable to the simulations here. They also showed that this peak is more

dominant at higher temperatures. Furthermore, the second peak at larger amplitudes is

also more pronounced at 1 ns. At 100 ps it is closer to the first peak and much broader.

In addition, Tokuhisa et al. [58] simulated staphylococcal nuclease (SNase) in a water

box at 300 K and also found two distinguishable peaks. The time was not documented

but the evaluated simulation time was 1 ns, indicating that the investigated time window

was likely smaller than 100 ps.

Overall this leads to the conclusion that the two models give reasonable results in

comparison to the direct MSDs from the MD simulations. For a precise data set, the

differences between the models are not significant concerning the trends, but the quan-

titative values are, depending on the evaluated q-range. The PK model gives further

insight into the standard deviation of the MSD, but with respect to the MSD it does

not give more accurate results. Furthermore, it is also important to state again that in

contrast to the experimental data, the simulated EISF was not normalized to the low-

est temperature data due to the lack of such simulation data, which could also partly

explain the quantitative differences. Doing that, one would more consistently treat ex-

perimental and simulated data and eliminate more uncertainties, which might arise.

Supporting Information

Figure 5.7: Comparison of the time averaged MSD according to eq. (5.4) using the complete

20 ns trajectories with the MSD extracted from truncated trajectories of 5 ns. Error bars were

only obtained in the latter case. Both evaluations used the algorithm of Kneller et al. [197].

Figure 5.8: Comparison of the MSD obtained from a direct calculation with the ones using the

algorithm proposed by Kneller et al. [197]. Both methods use the 20 ns trajectories.
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Chapter 6

Role of low-frequency vibrational

dynamics of protein hydration water

for ligand binding

Based on a paper in preparation:

Role of low-frequency vibrational dynamics of protein hydration water for

ligand binding.

Daniele Di Bari, Judith Peters, Jacques Ollivier, Andrea Orecchini, Cate-

rina Petrillo, Fabio Sterpone and Alessandro Paciaroni

(to be submitted to Physical Review Letter)

We studied the low-frequency vibrational behavior of the hydration water of the

maltose binding protein (MBP), a prototypical biomolecule where a large scale hinge-

bending conformational change from the apo/open to the holo/closed state, the so-

called Venus-flytrap mechanism, is key for ligand binding. By using inelastic neu-

tron scattering spectroscopy we show that, upon complexation with maltose, not only

the MBP, but also its hydration water displays significant low-frequency vibrational

changes. The character of the MBP appears substantially softer in the apo than in the

holo state, while the opposite is true for its hydration water. Normal mode analysis

supports the experimental results and allows to identify their microscopic origin. The

alternative energetic vibrational contributions of protein and protein hydration water

support the view of the induced fit mechanism as underlying the MBP conformational

switching.

6.1 Introduction

An accurate knowledge of the dynamics of proteins is necessary to deeply under-

stand how they perform their biological activity [210], a question that is fundamental to

engineer proteins for specific functions and design next-generation therapeutics. Apart

from the dominant contribution of large conformational changes and domain move-
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ments, the degree of protein flexibility which is relevant to a given biological process

comes also from more subtle dynamical mechanisms [210]. These motions include

low-frequency (< 20 meV; < 5 THz) vibrational modes, the spectroscopic signatures

of which have been measured in different functional states of proteins by inelastic neu-

tron scattering (INS) [211, 212], optical Kerr effect spectroscopy [213] and anisotropic

terahertz microscopy [212, 214]. In the case of complexation, the protein vibrational

density of states may either undergo softening [211] or stiffening [212], with significant

consequences in the increase or reduction of the complex flexibility. Quite remarkably,

these changes affect, mainly through the vibrational entropy term, the stability of the

protein–ligand complex and the binding affinity [211, 212]. On the other hand, the

flexibility of a protein depends also on the dynamics of the water molecules interacting

with its surface, the so-called hydration water (HW) [215]. On the functional point of

view, there exists already evidence that the HW diffusive dynamics plays a significant

role in assisting enzyme-substrate interactions [216, 217]. On the other hand, the role

of the HW vibrational dynamics in protein-ligand recognition processes has been so far

largely neglected.

Figure 6.1: Illustration of the APO and HOLO forms of the MBP. The formation of the

MBP+MALT complex lead to an important conformational change, that can be measured by

the variation of the open anlge.

On these grounds we studied by INS spectroscopy the low-frequency vibrational

behavior of the HW of the maltose binding protein (MBP), a prototypical member of a

periplasmic-binding protein (PBP) superfamily [218]. Structurally, PBP proteins share

a two-domain architecture (N-terminal domain, NTD, and C-terminal domain, CTD)

with a central inter-domain cleft where the ligand is trapped following a large scale

hinge-bending conformational change from the apo/open to the holo/closed state, the

so-called Venus-flytrap mechanism. This conformational change is key for cellular

metabolism [219], drug design [220] and biosensor development [221]. It is widely ac-

cepted that ligand recognition by MBP proceeds through an induced fit (IF) mechanism,

by which the ligand binds the open state and prompts a transition to the closed state

[222, 223], however the energetics behind this conformational change is still unclear.

Here we investigate the role played by protein HW vibrational changes upon complex-

ation with maltose. We show that not only the very protein, but also its HW displays

significant low-frequency vibrational changes, with the character of such changes being

opposite in the MBP compared to its HW in terms of softening. The microscopic ori-

gin of this effect is dissected by exploiting normal mode analysis (NMA). Biomolecule
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and solvent have distinct and opposite contributions to the complexation vibrational

free energy change.

6.2 Methods

6.2.1 Inelastic Neutron Scattering

INS experiments were done on the time-of-flight spectrometer IN5 (Institut Laue-

Langevin, Grenoble) with an incident wavelength of 5 Å, (energy resolution ⇠ 0.09

meV) on apo-MBP (uncomplexed) and holo-MBP (complexed with maltose) hydrated

powders. The most significant contribution to the measured spectra comes from the

incoherent signal of the hydrogen atoms. In the case of the samples hydrated with heavy

water, i.e. apo- and holo-MBP at h=0.40 g D2O/dry protein, the incoherent signal arises

mainly from the protein non-exchangeable hydrogen atoms [113] that are copiously

and almost uniformly distributed throughout the whole protein, thus allowing for a

complete sampling of its molecular vibrational motions, within the time and spatial

windows defined by the resolutions and ranges of the experimental energy transfer E

and wave-vector transfer q. On the other hand, for apo- and holo-MBP hydrated with

normal water, h=0.36 g H2O/dry protein, also the hydrogen atoms belonging to the HW

give a substantial contribution to the measured spectra. The hydration degree h has been

chosen to ensure that the average protein was in the presence of approximately the same

number of H2O or D2O molecules in each sample corresponding to 1 - 2 layers at the

surface. The transmission of the samples, whose mass amounted to about 40 mg, ranged

from 0.93 to 0.96. Multiple scattering and multiphonon contributions were estimated

and considered negligible. The samples, placed in aluminum standard slab cells, were

oriented at 135 �. A temperature of 150 K was chosen, in such a way that anharmonic

effects can be disregarded. Before any data analysis, the raw spectra were corrected for

empty cell contribution and self-absorption, and normalized to a vanadium standard.

6.2.2 Normal Mode Analysis

All the simulations and the normal mode calculations were performed with GRO-

MACS 2019.4 [124] with the CHARMM36m [224] force-field . The crystallographic

coordinates of apo-MBP and holo-MBP were taken from the Protein Data Bank, en-

try 1OMP and 1ANF, respectively. The VMD software [225] and the python module

parmed [226] have been used to add the positions of the missing atoms, and generate

the topology file for the ligand. Positions the crystal waters were not removed. Follow-

ing the approach developed by Tarek and Tobias [180], using the PACKMOL software

[227], we created two boxes where we placed, at random, eight copies of the MBP

proteins in the apo and holo forms, respectively, to reproduce the neutron experiments

performed on an amorphous powder. Then, we hydrated the two systems with TIP3P

H2O molecules to a hydration level of 36% (i.e. 36 g of H2O per 100 g of protein), and

we added 64 Na ions in each box to neutralize the two systems.

To obtain the best staring configuration for the NMA, after a short energy mini-

mization to eliminate unfavorable contacts, we performed a series MD simulations to

relax the obtained structures. The particle mesh Ewald (PME) method was employed

to compute the long-range electrostatic interactions, and a cutoff distance of 1.2 nm
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was used for calculation of the short-range electrostatic and van der Waals interactions.

For the minimization, the steepest descent algorithm was used to a tolerance of 1000

kJ/mol/nm. The MD simulations were carried out with an integration time step of 1

fs. The systems were first heated to 300 K with a temperature increment of 10 K af-

ter each 50 steps. At each step, a temperature equilibration (NVT) was followed by

a constant pressure and temperature MD run (NPT) to allow the proteins to interact

with their neighbors and periodic images, leading to a contraction of the boxes. After

a longer NPT equilibration at 300 K of 100ns, the systems were cooled down to 150 K

with a reduction of 10 K every 50 ps. A further long NPT equilibration was performed

until the system reached a stationary volume. To keep constant the required tempera-

ture in the NVT and the NPT runs, we used the V-Rescale thermostat, coupled with the

Parrinello-Rahman barostat to maintain the pressure at 1 bar.

At the end of the last NPT run, the coordinates of each of the eight proteins,

both for the apo and holo systems, were taken separately with their closest 791 H2O

molecules (36% hydration level). Each hydrated protein was energy minimized with

the steepest descent algorithm [cit] followed by the low-memory Broyden-Fletcher-

Goldfarb-Shanno method until the maximum force in the system was smaller than 10�4

kJ/mol/nm.

6.3 Discussion

A direct view of the way the low-frequency modes of MBP and its hydration wa-

ter are affected by ligand binding is provided by Fig. 6.2, where the dynamic struc-

ture factor S(q,E) as measured by inelastic neutron scattering is reported. Panel (b)

shows that the dynamic structure factor of holo-MBP displays an excess of inelastic

signal compared to apo-MBP, This behaviour is in line with that reported for dihy-

drofolate reductase protein [211], but deviates from the low-frequency trend found

for lysozyme [213, 212] and aspartate aminotransferase [228] where ligand binding

is related to a rigidified vibrational dynamics. Due to the close interaction of water

molecules with the protein surface, one may ask whether there will be a vibrational

change upon complexation also in the protein HW dynamic structure factor. The hy-

dration water spectra have been obtained by properly subtracting the contribution of

apo-MBP+D2O (holo-MBP+D2O) from the signal of MBP-APO-H2O (MBP-HOLO-

H2O), to obtain the HW S(q,E) for the free (complexed) protein (See the SI for de-

tails). Panel (c) of Fig. 6.2 shows that the apo-MBP HW displays an excess of in-

elastic signal compared to holo-MBP HW, a behavior opposite to that of the protein.

Indeed, to quantitatively describe the vibrational changes occurring upon complexation

to both the protein and its HW, it is convenient to calculate the corresponding vibra-

tional density of states g(E), which is directly related to the dynamic structure fac-

tor by g(E) = limq!0
6E
}q2 (exp

E
KBT �1)S(q,E). Actually, the g(E) is mainly the proton

weighted vibrational density of states, as it derives from the average over the strong in-

coherent signal from all the hydrogen atoms. The vibrational modes of the g(E) shown

in panel (c) of Fig. 6.2 arise mostly from the collective displacements of both protein

groups of atoms and water molecules, while in panel (b) and panel (c) the protein and

HW contributions are singled out respectively.
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Figure 6.2: Dynamic structure factors (left) and vibrational density of states (right) for the

MBP+HW, MBP, and HW in the APO and HOLO states.

The g(E)s have been normalized to their absolute values using the procedure de-

scribed in Ref. [211] (See the SI for details). A vibrational difference beyond the

errorbars between the free and the complexed protein is visible in the low-energy range

from 2 meV to 4 meV, with a higher number of low-frequency large-amplitude modes

appearing in the holo state. This excess of modes provides complexed MBP with addi-

tional flexibility, a feature also known as softening. On the other hand, the protein HW

displays a reverse behaviour, with the free system showing an excess of low-frequency

modes compared to the case in the presence of maltose. To explain the origin of the an-

tithetical trend shown by the protein and HW g(E) we examined the structural changes

occurring to MBP during the apo/open to holo/closed transition. In particular, a key

role for this transition is played by protein hinge region (residues K170-D180), which

includes a short α-helix and a two-stranded β -sheets NTD [229]. The greater flexibil-

ity of this region after complexation, also revealed by the increased average B-factors

[230], is related to the excess of low-energy excess of modes displayed by holo-MBP.

Indeed, numerical g(E) non only reproduces the trend observed by experiments (Fig.

6.3), but also confirms that the low-frequency vibrational density of states of the atoms

in the hinge region is larger in the holo than in the apo conformation and is predominant

over the remaining protein contribution (see Fig. 6.4).
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Figure 6.3: Vibrational density of states (right) for the MBP+HW, MBP, and HW in the APO

and HOLO states, calculated by NMA. (left) Estimation of the dynamical structure factor start-

ing as g(E)/E2 by NMA.

On the other hand, Fig. 6.4 shows that the apo-MBP HW is more ordered than the

holo-MBP, and this means that it has a lower density [231].

On the thermodynamic point of view, the features in the g(E) reflect directly into

the changes of the vibrational free energy Avib of both the protein and its hydration

water on passing from the apo/open to the holo/closed conformation. In the harmonic

approximation one can easily estimate such changes through the relationship [232]:

∆Aα
vib = Aα

vib,holo �Aα
vib,apo =

= KBT

Z

ln



2sinh

✓

E

2KBT

◆�

�

gα
holo(E)�gα

apo(E)
�

dE

(6.1)

where α = MBP or HW . As for the protein, it turns out that ∆AMBP
vib = -(20±3) kJ/mol,

i.e. the vibrational change provides a favorable contribution for complexation. On the

other hand, and quite surprisingly, the contribution relative to the MBP HW ∆AHW
vib =

(14±5) kJ/mol promotes the stabilization of the open state. These results are in agree-

ment with the fact that just the MBP intrinsic dynamics is insufficient for a ’selection’
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mechanism [233], thus supporting the IF model for this enzyme. The emerging pic-

ture is one where substrate-mediated interactions are necessary to induce the protein

open-to-closed conformational transition and overcome the energy barrier separating

the MBP apo/open and holo/closed conformational state [222] to which the protein HW

vibrational dynamics contributes significantly through the ∆AHW
vib term. The holo/closed

state is further stabilized by the excess of low-frequency protein modes via the contri-

bution ∆AMBP
vib value, mainly of entropic nature. Quite remarkably, both ∆AHW

vib and

∆AMBP
vib are of the same order of the total complexation free energy, which amounts

to 35 ± 1 kJ/mol [229], thus indicating that protein and HW vibrational degrees of

freedom represent a crucial part in the energetics of the ligand binding processes.

Figure 6.4: (1st row) Vibrational density of states (vDOS) of selected residues of the MBP.

(2nd row) Order parameters of HW – all the Hydrogen-Bonding Donor/Acceptor, i.e the all the

Oxygens, Nitrogens and Sulphurs of the systems (water + protein + maltose) which were less

than 4.5 Åaway from water Oxygens were counted.

Supporting Information

6.3.1 Calculation of the MSD from the vDOS

From Lovesey eq. (4.40) we can evaluate the Debye-Waller factor, W (κ), factor

from the vDOS by [51]:

W (κ) =
3 h̄

4M

Z ωm

0
dω

g(ω)

ω
· [2n(ω)+1] ·

n

|κ ·σ |2
o

avg
(6.2)

=
3 h̄

4M

Z ωm

0
dω

g(ω)

ω
· coth

✓

h̄ω

2kb T

◆

·
n

|κ ·σ |2
o

avg
(6.3)
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with:

κ = k�k0 and k, k0 are the initial and final wave vector, respectively

M = mass of the singol atom

g(ω) = vibrational Density of States (vDOS) �! g(ω) = 1
3N ∑ j,q δ{ω �ω j(q)}

n(ω) = Bose-Einstein factor �! g(ω) =
h

eh̄ω/kBT �1
i�1

σ = polarization vector �! u(l) = σp
M

eiq·l and |σ | = 1

where u is the displacement of the atom at the l-site of the lattice - i.e. u is the fluctua-

tion of the position r(t) of an atom with respect to its average position hr(t)i= l.

Then, we can consider the relation between the Debye-Waller factor and the atom

displacement (see eq. (4.38) - Lovesey [51]):

2W (κ) =
⌦

(κ ·u)2
↵

= κ2
⌦

u2
κ

↵

(6.4)

where
⌦

u2
κ

↵

is the mean value of the projection of the atomic fluctuation into the direc-

tion of κ - i.e. if we define the direction of κ as nκ , uκ is defined as:

uκ = nκ ·u

Therefore, combining eq. 6.2 and eq. 6.4 we get:

⌦

u2
κ

↵

=
3 h̄

2M κ2

Z ωm

0
dω

g(ω)

ω
· coth

✓

h̄ω

2kb T

◆

·
n

|κ ·σ |2
o

avg
(6.5)

Now, in the case of cubic symmetry (or disordered materials), we have:

n

|κ ·σ |2
o

avg
=

1

3
κ2 (6.6)

⌦

u2
κ

↵

=
1

3

⌦

u2
↵

(6.7)

where
⌦

u2
↵

correspond to the Mean-Square atomic Position Fluctuations (MSPF):

⌦

u2
↵

=
⌦

[r(t)� l]2
↵

⌘
⌦

[r(t)�hr(t)i]2
↵

=
⌦

r2
↵

�hri2 = MSPF (6.8)

In this case, the Debye-Waller factor and the MSPF are:

2W (κ) =
1

3
κ2 MSPF (6.9)

MSPF =
3 h̄

2M

Z ωm

0
dω

g(ω)

ω
· coth

✓

h̄ω

2kb T

◆

(6.10)

Finally, takinkg into account the atomic Mean-Square Displacements (MSD) de-

fined as:

MSD(t) =
⌦

[r(t + t0)� r(t0)]
2
↵

t0
(6.11)
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if we assume that the motion is confined in space and stationary such that:

⌦

r2(t + t0)
↵

t0
=
⌦

r2(t0)
↵

t0
=
⌦

r2
↵

(6.12)

we obtain for the MSD the following expression:

MSD(t) = 2
⇣

⌦

r2
↵

�hr(t + t0) · r(t0)it0

⌘

(6.13)

Now, if we take the limit of t0 ! ∞, we have that r(t + t0) and r(t0) are uncorrelated:

lim
t0!∞

hr(t + t0) · r(t0)it0
= hr(t + t0)it0

· hr(t0)it0
= hri2

and consequently, from eq. 6.13, we obtain:

MSD(t ! ∞) = 2
⇣

⌦

r2
↵

�hri2
⌘

⌘ 2MSPF (6.14)

Therefore, combining eq. 6.9, 6.10, and 6.14 we obtain:

2W (κ) =
1

6
κ2 MSD(t ! ∞) (6.15)

MSD(t ! ∞) =
3 h̄

M

Z ωm

0
dω

g(ω)

ω
· coth

✓

h̄ω

2kb T

◆

(6.16)

In conclusion, if we want to express eq. 6.10 and 6.16 in function of E instead of

ω , we can make the substitutions:

h̄ω �! E

dω g(ω) �! dE g(E)

such that1:

MSPF =
3 h̄2

2M

Z Em

0
dE

g(E)

E
· coth

✓

E

2kb T

◆

(6.17)

MSD(t ! ∞) =
3 h̄2

M

Z Em

0
dE

g(E)

E
· coth

✓

E

2kb T

◆

(6.18)

6.3.2 Normalization on the vDOS

The vDOS obtained from the incoherent dynamic structure factor (IDSF) is on rela-

tive scales. To re-normalize the vDOS we can use the ratio between the experimentally

measured mean square MSD, which is on absolute scale, and the one calculated from

the vDOS on relative scale. Practically, this means that the vDOS in absolute scale,

1Note: the equation (3) in the paper of Niessen et al. (http://dx.doi.org/10.1016/j.bpj.2016.12.049)

correspond to the projection of the MSPF into an arbitrary direction, i.e.:

MSPF

3
=

h̄2

2M

Z Em

0
dE

g(E)

E
· coth

✓

E

2kb T

◆

.
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gabs(E), can be calculated as:

gabs(E) =
MSDexp

MSDcalc
·g(E) (6.19)

where MSDexp is the value of the MSD measured from the elastic peack at low q (i.e.

from S(q,E = 0)). In the gaussian approximation:

S(q,E = 0) = S0 · e
� 1

6 q2·MSDexp �! MSDexp =�1

6
·

∂ lnS(q,E = 0)

∂q2
(6.20)

However, the our IDSF data were collected at IN5 that is not optimized for this type

of elastic measurements. Therefore, we decided to take, for the value of the MSDexp

of the apo-MBP, the one measured by Wood et al. [234], and in order to re-normalize

properly also the vDOS of the holo-MBP, we considered that the differences between in

the vDOS of apo-MBP Apo and holo-MBP actually are due to a shift of the vibrational

modes due to the complexation [211]. This means that, if there is a softening of the

complexed MBP at low energy (vDOSholo > vDOSapo), there must be a stiffening at

higher frequencies (vDOSholo < vDOSapo) that compensates for the softening. Con-

sequently, if we assume that this compensation takes place before of a certain energy

E, then the integrals of the vDOS between 0 and E of the Apo and the Holo systems

should be equals and we can use their ratio to re-scale the vDOS.

g
(holo)
abs (E) =

MSDexp

MSDcalc

·

R E
0 g(apo)(E)dE

R 15µeV
0 g(holo)(E)dE

·g(holo)(E) (6.21)

with

MSDcalc =
h̄2

M

Z Em

0
dE

g(apo)(E)

E
· coth

✓

E

2kb T

◆

(6.22)

where we assumed that the compensation take place before 15 meV, i.e. that E = 15

meV.

Finally, with the vDOS properly normalized, we were able to obtain the vDOS

of the HW, for both the apo and the holo systems, simply subtracting the vDOS of

measured for the MBP from one measured from MBP+H2O.

6.3.3 vDOS from NMA

The vibrational density of states of a system is the frequency distribution of the

vibrational modes, obtained by solving the eigenvalue problem for the mass-weighted

Hessian matrix[235]

gα(E) =
1

∆E

3N

∑
i=1

|ei(α)|2 δ (E �Ei) (6.23)

where ei(α) is a three-dimensional vector with the x, y, and z components of the mass-

weighted displacement of atom α within the normal mode i (i.e. it is the eigen-vector

obtained with the NMA), ∆E is the width of the sampling interval and δ (E �Ei) such

that, it is equal to 1 when �∆E
2  E �Ei <

∆E
2 , otherwise it is 0.
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6.3.4 Domain Opening Angle (DOA)

The MBP DOA is defined as the angle between the Centers of Mass (CoM) of the C

atoms of the Nt domain (i.e. the N-terminal residues 1-108, 263-311), the CoM of the

C of central t domain (i.e. the -sheet hinge residues: 109-112, 259-262) and the COM

of the C of the Ct domain (i.e. the C-terminal residues 113-258, 320-370).

rN =
1

nN
· ∑

i2Nt

ri ; rβ =
1

nβ
· ∑

i2βt

ri ; rC =
1

nC
· ∑

i2Ct

ri (6.24)

DOA =

*

arccos

"

�

rN � rβ

�

·
�

rC � rβ

�

�

�rN � rβ

�

� ·
�

�rC � rβ

�

�

#+

(6.25)

An angle of around 160� correspond to the APO form (complexed) of the MBP, mean-

while a value of DOS of approximately 135�, correspond to the HOLO form (un-

complexed) of the MBP. As a reference for this section see (Stockner et. all, 2005).

6.3.5 Tetrahedral Order Parameter

The local tetrahedrality is a many-body property and can be defined (Chau & Hard-

wick, 1998) by:

qi = 1� 3

8
·

3

∑
j=1

4

∑
k= j+1

✓

cosθ jik +
1

3

◆2

(6.26)

where the sum is over all angles θ jik formed around a reference molecule i by its

four nearest potentially hydrogen-bonding neighbors, although no account is taken of

whether the neighbors are actually hydrogen bonded to molecule i. A larger value of qi

indicates a greater local tetrahedrality. In the case of water molecules close to the pro-

tein, nearest neighbors are taken to include potential hydrogen-bonding moieties of the

protein, such as threonine hydroxyl groups or the amide bonds of the protein backbone.

Close to the protein surface, there will undoubtedly be water molecules in a constricted

environment which cannot form tetrahedral structures.

6.3.6 Local structure index (LSI)

Let ri, j be the radial distance between the oxygen of the molecule i and the oxygen

of molecule j ordered such that r1 < r2 < ... < ri, j < ... < ri,n(i) < ri,n(i)+1, where n(i)

is chosen so that ri,n(i) < 3.7Å < ri,n(i)+1. Then, the LSI parameter is defined by as

(Shiratani & Sasai, 1996 and 1998):

LSIi =
1

n(i)
·

n(i)

∑
j=1

⇥

∆i, j �∆i

⇤

(6.27)

where ∆i, j = ri, j+1 � ri, j, ∆i is the average value of ∆i, j over all the n(i)+1 molecules.

The LSI aims at measuring the extent of the gap between the first and the second

hydration shells surrounding a water molecule measuring the inhomogeneity in the

radial distribution within the sphere of radius 3.7 Å. A high value of LSIi implies that
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the molecule i at time t is characterized by a tetrahedral local order and a low-local

density, while on the contrary, values of LSIi ⇡ 0 indicate a molecule with defective

tetrahedral order and high-local density [236].

124



Conclusions and discussion

The work presented in this thesis aims at shedding some microscopic insights into

thermal stability of bacterial cells (denaturation and cell growth). In particular, we

found that the thermal death of E. coli is signaled by a distinctive behavior of the pro-

teome short-time dynamics: a strong decrease of the protein global diffusion coefficient

starts just below TCD, from DG(320 K)= 1.5 Å2/ns down to DG(350 K)= 0.5 Å2/ns. The

results from MD simulations show that this dynamic slow-down is due to the unfolding

of a part of the proteome. This finding is consistent with previous experimental work

where an analogous trend for the diffusive dynamics has been observed in concentrated

protein solutions across the melting temperature [66, 109, 156]. Therefore, protein un-

folding dominates the observed temperature dependence, and in both cases the dynamic

slow-down is irreversible.

In this study, we take the analysis a crucial step forward by directly relating the

diffusion coefficient to the amount of unfolded proteins in the system. The theoreti-

cal description of protein solutions containing a varying ratio of folded and unfolded

proteins is challenging. These systems neither fit into the standard picture of solutions

formed by globular proteins, usually modeled as rigid colloidal particles [237], nor can

they be accurately described by means of simplified polymer models [238]. In par-

ticular, limitations of the colloidal model were demonstrated for highly concentrated

protein solutions involving changes in protein conformation [239], and the importance

of protein–protein interactions was stressed [240, 241].

Our simulations showed that the presence of minor amounts of unfolded proteins

causes a substantial slow-down in the protein global diffusion. As we demonstrated,

this drop was not only due to the slower diffusion of the fraction of unfolded proteins,

but also to a twofold slow-down of the remaining folded proteins as a consequence of

the enhanced interactions with their unfolded counterparts. Thus, unfolded proteins

form a sticky macromolecular network to which folded proteins associate. This resem-

bles the behavior recently observed in biomolecular condensates, where the interactions

of folded lysozyme proteins with a macromolecular network formed by pentameric

constructs of SH3 domains, and containing disordered linkers, strongly affected the

condensate viscoelastic properties [166].

From the combination of QENS experiments and MD simulations, we estimated

the amount of unfolded proteins in the cytoplasm at different temperatures. In the last

years, there have been several attempts to connect the thermal death of bacteria to a

critical amount of unfolding proteins. The aim was to understand if the death results

from a collective unfolding of cell proteins [47, 45] or if it is caused by the denaturation

of a subset of proteins controlling key biological functions [242, 46, 48, 243]. Here,

we found that a few degrees above the cell-death temperature only a small fraction of

proteins, less than 15%, are unfolded (see also Table 4.10). This result supports the
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hypothesis firstly put forward by Leuenberger et al. [46] that there is no catastrophic

denaturation of the proteome, but instead only an unfolding of a subset of proteins.

It is important to stress that there is no unique definition of TCD which, depending on

the growth conditions of bacteria and their environment, can vary by several Celsius

degrees. Owing to the predicted slow increase with temperature of the unfolded protein

fraction (see Fig. 4.28), this uncertainty does not affect our conclusions concerning

the minor amount of unfolded proteins that are present in the cytoplasm at the cell

death. Apart from the uncertainty in TCD, the quantitative estimate of the unfolded frac-

tion may also be affected by some limitations of our computational model in terms of

molecular composition, which focuses exclusively on proteins as most prevalent type

of macromolecules in the cytoplasm and which, moreover, is biased toward structurally

well-resolved folded proteins. In addition, the model does not consider thermal adap-

tations of the proteome, such as evolving populations of heat-shock proteins and chap-

erons. However, even though the cells in the experimental samples still have a basal

metabolism, they will have a reduced capability to tune the proteome composition due

to lack of nutrients.

The destabilization of the E. coli bacteria starts already at temperatures below the

TCD. Temperatures near 315K represent already a stress condition for the bacteria -

they resist to the increase of the environmental temperature with several active mech-

anisms, such as the change in the global protein population by increasing the number

of molecular chaperones to maintain a properly folded proteome [43] and the varia-

tion of internal viscosity by regulating the synthesis of glycogen and trehalose [244].

With a contribution of such mechanisms of thermal adaptation, the average dynami-

cal state of the cytoplasm observed at TCD is still similar to the dynamical state of the

cytoplasm near the temperature of optimal growth rate. This leads us to argue that the

average dynamics should not play a predominant role in thermal death. However, as our

simulations have shown, a low amount of unfolded proteins can trigger an important

slow-down in the diffusion of the surrounding macromolecules. Therefore, the increase

of local viscosity and the associated dramatically reduced protein diffusion caused by

unfolding, may threaten the viability of the cell by affecting localized physiological

processes. A pertinent example at molecular scale is the dynamics and substrate chan-

neling in enzymatic assembling [?], but also at larger scale the viscoelastic response

of the cytoplasm associated to organelles localization [245]. Morever, we have shown

that a very good reproduction of E. coli growth-rate can be obtained when combin-

ing together the fraction of unfolded proteins with the temperature-dependent diffusion

within a simple reaction-diffusion model. This supports the idea that at least a part of

the cell metabolism is modulated by diffusion. Finally, our findings are consistent with

the idea that intrinsically disordered proteins may induce as well a mobility slow-down

on the local environment, as it is probed in membrane-less organelles [246].

The approach hereby presented can be extended -and possibly complemented by

single-molecule techniques- to investigate the relationship between the dynamics and

the proteome unfolding in extremophiles resisting either to cold or hot environments.

Further, attention could be enlarged to the peculiarity of the proteins’ dynamical re-

sponse to stress in the functioning of specific networks of interaction like in the unfold-

ing protein response cascade.

In this thesis we presented also two other studies: “Differences between Ca2+ reach

and depleted α-La investigated by MD simulations and NS experiments”, and “Role
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of low-frequency vibrational dynamics of protein hydration water for ligand bind-

ing”dealing with the effects of protein-ligand complexation on protein dynamics, and

in which neutron scattering techniques and molecular dynamics simulations are always

coupled.

In the first one, we show how data from EINS and MD can be combined to probe

the dynamics in both protein-depleted and protein calcium rich systems. Two models

were exploited to extract the hydrogen atoms MSD from the EINS data, measured at

three different levels of hydration and with resolutions to explore different time scales

(picosecond to nanosecond, i.e. a time scale range accessible to simulations). In par-

allel, systems mimicking protein powders at different hydration levels were simulated

at the atomistic level, and MSD estimated with different methods, allowing a robust

comparison with neutron scattering data.

In the last study presented in this thesis, we describe the behavior of hydration water

in a system containing MBP, a protein undergoing a large-scale conformational change

(open-to-close) in ligand binding. In this case, INS experiments were performed to

probe the low frequency vibration modes of protein and water in both states. Results

point out that the protein and its hydration water have an opposite behavior in closing.

An interesting thermodynamics scenario, which however deserves further studies, is

proposed where the protein-ligand interactions allow the protein to overcome the open-

to-close free energy barrier, which is contributed by the hydration water (in a way still

to be clarified).
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[69] Javier Pérez, Jean-Marc Zanotti, and Dominique Durand. Evolution of the inter-

nal dynamics of two globular proteins from dry powder to solution. Biophysical

journal, 77(1):454–469, 1999.

[70] Felix Roosen-Runge, Marcus Hennig, Fajun Zhang, Robert MJ Jacobs, Michael

Sztucki, Helmut Schober, Tilo Seydel, and Frank Schreiber. Protein self-

diffusion in crowded solutions. Proceedings of the National Academy of Sci-

ences, 108(29):11815–11820, 2011.

[71] DJ Bicout. Incoherent neutron scattering functions for combined dynamics. In

ILL Millennium Symposium Preface to the proceedings, page 60, 2001.

[72] Owen Arnold, Jean-Christophe Bilheux, JM Borreguero, Alex Buts, Stuart I

Campbell, L Chapon, Mathieu Doucet, N Draper, R Ferraz Leal, MA Gigg,

et al. Mantid—Data analysis and visualization package for neutron scattering

and µ SR experiments. Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

764:156–166, 2014.

[73] HH Paalman and CJ Pings. Numerical evaluation of X-ray absorption factors

for cylindrical samples and annular sample cells. Journal of Applied Physics,

33(8):2635–2639, 1962.

[74] M Kamal, SS Malik, and D Rorer. Neutron incoherent elastic scattering study of

the temperature dependence of the Debye-Waller exponent in vanadium. Physi-

cal Review B, 18(4):1609, 1978.

[75] Maria Kalimeri. Are thermophilic proteins rigid or flexible? An in silico investi-

gation. PhD thesis, Paris Diderot University, 2014.

[76] Andreas Kukol. NAMD-VMD tutorial. ResearchGate, 2016.

[77] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford Uni-

versity Press, first edition, 1987.

[78] Daniele Di Bari. Molecular Dynamics Simulation - A brief introduction of se-

lected concepts. Also available as https://github.com/DanieleDiBari/Selected

concepts of Molecular Dynamics Simulation, 2018.

[79] Paraskevi Gkeka and Zoe Cournia. Molecular Dynamics simulations of

lysozyme in water. MSc in Bioinformatics and Medical Informatics, 2015/2016.

[80] Eni. Generalic. Lennard-Jones potential, 2017. Croatian-English Chemistry

Dictionary & Glossary. Also available on https://glossary.periodni.com.

134

https://github.com/DanieleDiBari/Selected_concepts_of_Molecular_Dynamics_Simulation
https://github.com/DanieleDiBari/Selected_concepts_of_Molecular_Dynamics_Simulation
https://glossary.periodni.com


[81] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhor-

shid, Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kalé, and
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[156] Olga Matsarskaia, Lena Bühl, Christian Beck, Marco Grimaldo, Ralf Schweins,

Fajun Zhang, Tilo Seydel, Frank Schreiber, and Felix Roosen-Runge. Evolution

of the structure and dynamics of bovine serum albumin induced by thermal de-

naturation. Physical Chemistry Chemical Physics, 22(33):18507–18517, 2020.

[157] Tadashi Ando and Jeffrey Skolnick. Crowding and hydrodynamic interactions

likely dominate in vivo macromolecular motion. Proceedings of the National

Academy of Sciences, 107(43):18457–18462, 2010.

[158] Isseki Yu, Takaharu Mori, Tadashi Ando, Ryuhei Harada, Jaewoon Jung, Yuji

Sugita, and Michael Feig. Biomolecular interactions modulate macromolecu-

lar structure and dynamics in atomistic model of a bacterial cytoplasm. Elife,

5:e19274, 2016.

[159] Stepan Timr, David Gnutt, Simon Ebbinghaus, and Fabio Sterpone. The Un-

folding Journey of Superoxide Dismutase 1 Barrels under Crowding: Atomistic

Simulations Shed Light on Intermediate States and Their Interactions with Crow-

ders. J. Phys. Chem. Lett., 11:4206–421., 2020.

[160] M. Chiriccotto, S. Melchionna, P. Derreumaux, and F. Sterpone. Multiscale

Aggregation of the Amyloid AB16–22 Peptide: From Disordered Coagulation

and Lateral Branching to Amorphous Prefibrils. J. Phys. Chem. Lett., 10:1594–

1599, 2019.

[161] T. Kalwarczyk, M. Tabaka, and R. Holyst. Biologistics—Diffusion Coefficients

for Complete Proteome of Escherichia coli. Bioinformatics, 28:2971–2978,

2012.

[162] ML Anson and AE Mirsky. The effect of denaturation on the viscosity of protein

systems. The Journal of general physiology, 15(3):341–350, 1932.

[163] Sungyoung Choi and Je-Kyun Park. Microfluidic rheometer for characterization

of protein unfolding and aggregation in microflows. Small, 6(12):1306–1310,

2010.
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