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A B S T R A C T

Text is undoubtedly the dominant method for storing, accessing and transferring
knowledge since the start of human civilization. With the rise of the computer
age, along with the invention of the Internet, text has been established as one of
the most popular ways to access and distribute data between humans, sometimes
preferred over speech (e.g. text messages over phone calls). Search engines, social
networks and online purchase platforms are only some examples of the largest
text-using technologies across the globe, creating a huge demand for fast and
meaningful use of these data. The need for tools that process text effectively and
efficiently is evident.

Modelling text for machines to understand is hard and thus a great research
effort is done by the communities of Computational Linguistics (CL), Natural
Language Processing (NLP) and Text Mining (TM). The complexity to model lan-
guage for machines is thus high, as we humans have not even discovered how our
brain models text and speech. Trying to mimic a more human-intelligent way, re-
searchers exploited other techniques from areas like Machine Learning (ML) and
more generally Artificial Intelligence (AI), in order to tackle the two challenging
subparts of NLP, Natural Language Understanding (NLU) and Natural Language
Generation (NLG).

Living in the big data era, textual data are also increasing at a high rate. Humans
can no longer handle simple tasks, for example even the process of classifying
documents, due to the large volume.

Extracting meaningful representations out of text has been a key element for
modelling language in order to tackle NLP tasks like text classification. These
representations can then form groups that one can use for supervised learning
problems. More specifically, one can utilize these linguistic groups for regulariza-
tion purposes. Last, these structures can be of help in another important field,
distance computation between text documents.

The main goal of this thesis is to study the aforementioned problems; first,
by examining new graph-based representations of text. Next, we studied how
groups of these representations can help regularization in machine learning mod-
els for text classification. Last, we dealt with sets and measuring distances between
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documents, utilizing our proposed linguistic groups, as well as graph-based ap-
proaches.

In the first part of the thesis, we have studied graph-based representations of
text. Turning text to graphs is not trivial and has been around even before word
embeddings were introduced to the NLP community. In our work, we show that
graph-based representations of text can capture effectively relationships like order,
semantic or syntactic structure. Moreover, they can be created fast while offering
great versatility for multiple tasks.

In the second part, we focused on structured regularization for text. Textual
data suffer from the dimensionality problem, creating huge feature spaces. Regu-
larization is critical for any machine learning model, as it can address overfitting.
In our work we present novel approaches for text regularization, by introducing
new groups of linguistic structures and designing new algorithms.

In the last part of the thesis, we study new methods to measure distance in the
word embedding space. First, we introduce diverse methods to boost comparison
between documents that consist of word vectors. Next, representing the compar-
ison of the documents as a weighted bipartite matching, we show how we can
learn hidden representations and improve results for the text classification task.

Finally, we conclude by summarizing the main points of the total contribution
and discuss future directions.
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R É S U M É

Le texte est sans aucun doute la méthode dominante de stockage, d’accès et
de transfert de connaissances depuis le début de la civilisation humaine. Avec
l’avènement de l’ère informatique, ainsi que l’invention d’Internet, le texte a été
établi comme l’un des moyens les plus populaires d’accéder et de distribuer des
données entre humains, parfois préféré à la parole (par exemple, les SMS sur les
appels téléphoniques). Les moteurs de recherche, les réseaux sociaux et les plate-
formes d’achat en ligne ne sont que quelques exemples des plus grandes tech-
nologies d’utilisation de texte à travers le monde, créant une énorme demande
pour une utilisation rapide et significative de ces données. Le besoin d’outils pour
traiter le texte de manière efficace et efficiente est évident.

Il est difficile de modéliser du texte pour que les machines le comprennent et,
par conséquent, un grand effort de recherche est effectué par les communautés
de linguistique computationnelle (CL), de traitement du langage naturel (NLP)
et d’exploration de texte (TM). La complexité pour modéliser le langage des ma-
chines est donc élevée, car nous, les humains, n’avons même pas découvert com-
ment notre cerveau modélise le texte et la parole. En essayant d’imiter une manière
plus intelligente pour l’homme, les chercheurs ont exploité d’autres techniques
dans des domaines tels que l’apprentissage automatique (ML) et plus générale-
ment l’intelligence artificielle (IA), afin de s’attaquer aux deux sous-parties diffi-
ciles de la NLP, la compréhension du langage naturel (NLU) et la nature Généra-
tion de langue (NLG).

Vivant à l’ère des mégadonnées, les données textuelles augmentent également
à un rythme élevé. Les humains ne peuvent plus gérer des tâches simples, par
exemple même le processus de classification des documents, en raison du volume
important.

L’extraction de représentations significatives hors du texte a été un élément clé
de la modélisation de langage afin de traiter des tâches de la NLP telles que la clas-
sification de texte. Ces représentations peuvent ensuite former des groupes que
l’on peut utiliser pour des problèmes d’apprentissage supervisé. Plus spécifique-
ment, on peut utiliser ces groupes linguistiques à des fins de régularisation. Enfin,
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ces structures peuvent être utiles dans un autre domaine important, le calcul de
distance entre documents texte.

L’objectif principal de cette thèse est d’étudier les problèmes susmentionnés;
Tout d’abord, en examinant de nouvelles représentations de texte basées sur des
graphes. Ensuite, nous avons étudié comment des groupes de ces représentations
peuvent aider à la régularisation dans des modèles d’apprentissage automatique
pour la classification de texte. Enfin, nous avons traité des ensembles et de la
mesure des distances entre les documents, en utilisant les groupes linguistiques
que nous avons proposés, ainsi que des approches basées sur des graphes.

Dans la première partie de la thèse, nous avons étudié les représentations de
texte basées sur des graphes. Transformer le texte en graphiques n’est pas anodin
et existait avant même que les mots incorporés ne soient introduits dans la commu-
nauté NLP. Dans notre travail, nous montrons que les représentations graphiques
de texte peuvent capturer efficacement des relations telles que l’ordre, la séman-
tique ou la structure syntaxique. De plus, ils peuvent être créés rapidement tout
en offrant une grande polyvalence pour de multiples tâches.

Dans la deuxième partie, nous sommes concentrés sur la régularisation struc-
turée du texte. Les données textuelles souffrent du problème de dimensionnalité,
créant de grands espaces de fonctionnalités. La régularisation est essentielle pour
tout modèle d’apprentissage automatique, car elle permet de remédier au sura-
justement. Dans notre travail, nous présentons de nouvelles approches pour la
régularisation de texte, en introduisant de nouveaux groupes de structures lin-
guistiques et en concevant de nouveaux algorithmes.

Dans la dernière partie de la thèse, nous étudions de nouvelles méthodes pour
mesurer la distance dans le mot englobant l’espace. Premièrement, nous présen-
tons diverses méthodes pour améliorer la comparaison entre des documents con-
stitués de vecteurs de mots. Ensuite, en présentant la comparaison des documents
comme une correspondance bipartite pondérée, nous montrons comment nous
pouvons apprendre des représentations cachées et améliorer les résultats pour la
tâche de classification de texte.

Enfin, nous conclurons en résumant les principaux points de la contribution
totale et en discutant des orientations futures.

vi



P U B L I C AT I O N S

The following publications and submissions under review are included in parts or
in an extended version in this thesis:

1. Fragkiskos D. Malliaros and Konstantinos Skianis. “Graph-based term weight-
ing for text categorization.” In: Proceedings of the 1st International Workshop
on Data Science for Social Media and Risk, IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. ACM. 2015, pp. 1473–1479.

2. Konstantinos Skianis, François Rousseau, and Michalis Vazirgiannis. “Regu-
larizing Text Categorization with Clusters of Words.” In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing. 2016, pp. 1827–
1837.

3. Konstantinos Skianis, Fragkiskos D. Malliaros, and Michalis Vazirgiannis.
“Fusing Document, Collection and Label Graph-based Representations with
Word Embeddings for Text Classification.” In: Proceedings of the Twelfth Work-
shop on Graph-Based Methods for Natural Language Processing (TextGraphs-12),
NAACL. 2018, pp. 49–58. (Best Paper Award)

4. Konstantinos Skianis, Nikolaos Tziortziotis, and Michalis Vazirgiannis. “Or-
thogonal Matching Pursuit for Text Classification.” In: Proceedings of the
Fourth Workshop on User-generated Text (W-NUT), Empirical Methods in Natural
Language Processing (EMNLP). 2018.

5. Konstantinos Skianis, Fragkiskos D. Malliaros, Nikolaos Tziortziotis, and
Michalis Vazirgiannis. “Boosting Tricks for Word Mover’s Distance.” Manuscript.
2019. (Submitted in ICWSM 2019)

6. Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis
Vazirgiannis. “Rep the Set: Neural Networks for Learning Set Represen-
tations.” Manuscript. 2019. (Submitted in ICML 2019)

7. Konstantinos Skianis, Vlad Niculae, Guillaume Wisniewski, and Michalis
Vazirgiannis. “Group Lasso for Linguistic Structured Attention.” Manuscript.
2019. (Will be submitted in TACL 2019)

vii



Furthermore, the following publications and submissions under review were part
of my Ph.D. research but are not covered in this thesis, as they fall beyond the
scope of the studied topics:

8. Antoine Tixier, Konstantinos Skianis, and Michalis Vazirgiannis. “Gowvis: a
web application for graph-of-words-based text visualization and summariza-
tion.” In: Proceedings of ACL System Demonstrations (2016), pp. 151–156

9. Konstantinos Skianis, Maria-Evgenia G Rossi, Fragkiskos D. Malliaros, and
Michalis Vazirgiannis. “SPREADVIZ: Analytics and Visualization of Spread-
ing Processes in Social Networks.” In: Data Mining Workshops (ICDMW),
2016 IEEE 16th International Conference on. IEEE. 2016, pp. 1324–1327

10. Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Kon-
stantinos Skianis, and Michalis Vazirgiannis. “Kernel graph convolutional
neural networks.” In: International Conference on Artificial Neural Networks.
Springer, Cham. 2018, pp. 22–32

11. Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis,
Konstantinos Skianis, and Michalis Vazirgianis. “GraKeL: A Graph Kernel
Library in Python.” In: arXiv preprint arXiv:1806.02193 (2018)

12. Stamatis Outsios, Konstantinos Skianis, Polykarpos Meladianos, Christos
Xypolopoulos, and Michalis Vazirgiannis. “Word Embeddings from Large-
Scale Greek Web content.” In: Spoken Language Technology (SLT). 2018

viii
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1
I N T R O D U C T I O N

T ext is undoubtedly the dominant method for storing, accessing and trans-
ferring knowledge since the start of human civilization. With the rise of
the computer age, along with the invention of the Internet, text has been

established as one of the most popular ways to access and distribute data between
humans, sometimes preferred over speech (e.g. text messages over phone calls).
Search engines, social networks and online purchase platforms are only some ex-
amples of the largest text-using technologies across the globe, creating a huge
demand for fast and meaningful use of these data. The need for tools that process
text effectively and efficiently is evident.

Modelling text for machines to understand is hard and thus a great research
effort is done by the communities of Computational Linguistics (CL), Natural
Language Processing (NLP) and Text Mining (TM). The complexity to model lan-
guage for machines is thus high, as we humans have not even discovered how our
brain models text and speech. Trying to mimic a more human-intelligent way, re-
searchers exploited other techniques from areas like Machine Learning (ML) and
more generally Artificial Intelligence (AI), in order to tackle the two challenging
subparts of NLP, Natural Language Understanding (NLU) and Natural Language
Generation (NLG). While great progress has been done on NLU, with NLG getting
more attention during the years, traditional NLU tasks may return and require re-
visiting.

Living in the big data era, textual data are also increasing at a high rate. Humans
can no longer handle simple tasks, for example even the process of classifying doc-
uments, due to the large volume. Through this dissertation we aim to battle such
NLU problems by enhancing existing tools or developing novel techniques for bet-
ter text representations, regularization in supervised learning scenarios and dis-
tances in word embeddings. As we will discuss later, our contribution is targeted,
but not necessarily limited, for the task of text classification.
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introduction

1.1 thesis statement

This thesis contributes algorithms, tools, models and new insights to problems
that arise in the area of natural language processing. We specifically:

• Develop methods for extracting rich graph-based representations of text, in
order to feed supervised learning models.

• Extract meaningful linguistic structures, which we can use for regularization.
We also design novel algorithms for standard and deep learning models.

• Extend and develop models that use distances between text documents.

Next, we provide an overview of the contributions of the dissertation with re-
spect to the above points.

1.2 overview of contributions

Our research has been conducted in order to attack and address specific NLP tasks,
which remain open to the community. In the following subsections, we will try
to answer some questions that attracted our original interest and motivated us for
our research contributions.

Graph-based Text Representations

How can we extract more meaningful representations than traditional ones?

Bag-of-Words (BoW) (Harris, 1954; Baeza-Yates and Ribeiro-Neto, 1999) had been
extensively used in the past and is still used as a simple (and sometimes surpris-
ingly effective) baseline. But this approach comes with losing a lot of information
concerning the text.

Using the Graph-of-Words (GoW) (Mihalcea and Tarau, 2004; Rousseau and
Vazirgiannis, 2013) approach, where we model a document or collection of words
as a graph with nodes representing words and edges corresponding to co-occurence,
we can harvest more information, for example, about word order. This graph rep-
resentation enables us to extend its capabilities, since the standard version carries
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1.2 overview of contributions

as well limitations. By default, the Graph-of-Words approach gives the possibility
to capture flows and relationships between the words of one document.

Building upon the Graph-of-Words, we introduce new ways of incorporating
prior knowledge about the text structure in order to extract more meaningful
graph-based representations. First, we propose the collection-level Graph-of-Words,
in order to rank words via graph centralities, similarly to the Inverse Document
Frequency (IDF). Next, in a supervised learning scenario, we develop label-level
Graph-of-Words, so that we use the label information and create graphs by group-
ing all documents per available class. Last, we introduce word embeddings’ simi-
larities as weights in the Graph-of-Words.

Linguistic Structured Regularization

How can prior linguistic structures be used for regularizing text classification?

Since regularization was proposed for machine learning, researchers developed
new methods for structured regularization. Assuming some prior grouping in-
formation is available, for example sentences or topics, one can utilize them in
order to regularize a supervised learning model by using group structured regu-
larization techniques (e.g. group lasso). A question that quickly arises is how do
different groups affect text classification with group lasso?

First, we show that groups by clustering in the word embedding space, either
by community detection in the Graph-of-Words, or by Latent Semantic Indexing
can be as effective and efficient as state-of-the-art linguistic structured regular-
izers. Furthermore our suggested schemes achieve big sparsity, without losing
significant accuracy, as well as faster learning times.

Last, new ways for structured regularization can be explored, diverging from
group lasso variants. Our proposal is the Overlapping Orthogonal Matching Pur-
suit algorithm, a greedy group feature selection method. With this approach we
show that we can achieve sparser models almost in all test cases, with a very high
accuracy.
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Boosting and Learning Distances in Text

How can we boost existing approaches for measuring distances using word em-
beddings or design new methods to learn these distances?

Assuming we have two documents of text and we want to measure similarity
between them, we need methods like the Word Mover’s Distance (WMD). In order
to boost this existing technique one can analyze and tune its components. More
specifically, we worked on three of these components: a) stopword removal, so
that we check if different stopwords can affect the document distance; b) cross
document-topic comparison, by augmenting the documents with nearest words
that may belong to the same topic and c) convex metric learning, where we replace
the non-convex part of the Supervised Word Mover’s Distance.

Last, we introduce a novel neural network architecture based on set matching
which can learn sets for comparison purposes. In the supervised learning scenario
We show that our simple method performs comparable to state-of-the-art methods
for the task of text classification.

1.3 software and libraries

Most of the code pertaining to the projects presented in this dissertation has been
developed in two programming languages: Python 2.7, 3.5 and Matlab.

For the graph representation and computation in Python, we used the most
popular libraries, networkx (Hagberg et al., 2008), along with igraph (Csardi and
Nepusz, 2006) and graph-tool (Peixoto, 2014) for fast operations.

Working on the text classification task, for the standard classifiers, we used the
Python scikit-learn library (Pedregosa et al., 2011), as well as Matlab toolboxes.
For the deep learning baselines as well as our contributed approaches, we used
Keras (Chollet, 2015) with Tensorflow (Abadi et al., 2016) and PyTorch (Paszke
et al., 2017).

1.4 outline of the thesis

The rest of the dissertation is organized as follows. In Chapter 2 we present ba-
sic concepts and background material that will be used throughout the thesis. In
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1.4 outline of the thesis

Chapter 3 we present novel methods for graph-based representations of text. Next,
Chapter 4 shows new linguistic groups that can be used for regularization, as well
as new methods for structured regularization in standard and deep learning ar-
chitectures. In Chapter 5 we present our work towards enhancing Word Mover’s
Distance and creating new models to learn distances via weighted bipartite match-
ing and graph flows. Finally, in Chapter 6, we offer concluding remarks about the
topics covered in the dissertation and future research directions.
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2
B A S I C C O N C E P T A N D P R E L I M I N A R I E S

I n this chapter, we describe the foundations upon which we conducted our
research. Since we were essentially interested in mining and extracting infor-
mation from textual content, i.e. tackling the field of Text Mining (TM), we

show our focused contribution under an application interpretation. More specifi-
cally, we describe the full framework of the single-label multi-class text classifica-
tion task and show where our methods can be fitted as components.

2.1 standard text representation

By default, current computer machines fail to understand natural language in a
human way, due to their ability to handle only real and binary values. It is widely
acceptable that we are far from making machines comprehend natural language in
its physical form. In order to proceed, and because of the continuously growing
volume of data, we came up with simple and fast ways of representing text as
machine readable information.

When we refer to a dataset, we mean that a collection of documents, denoted by
D, is given to us, where one label y is assigned to each one of these documents. A
document, referred as well as point or instance, carries a specific amount of raw
text. It can be a web page, social network post, an email or review. A document d
or x consists thus of a sequence of words:

d = (t1, t2, . . . , t|d|) (2.1)

where ti represents a word. The collection of distinct words form the vocabulary
T (or dictionary, or lexicon) of the given dataset. In this dissertation, converting
a document into a sequence of words, known as tokenization, is assumed to be
solved. Last, for test cases, we use datasets written in modern English.
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Figure 2.1: Basic pipeline of the Text Classification task.

2.2 single-label multi-class categorization

Text Categorization (TC), a.k.a. text classification, is defined as the task of automat-
ically predicting the class label, a.k.a. category of a given input textual document.
It finds applications in a wide variety of domains, from news filtering and docu-
ment organization to opinion mining and spam filtering.

In this dissertation, we only consider the case for which we want to predict a
single label per document but not necessarily restricted to a binary choice – hence
the “single-label multi-class” denomination (multi-label text categorization may
also be referred to as topic spotting where we want to predict probability weights
for each pre-defined topic).

Until recently, compared to other application domains of the general machine
learning task of classification, TC’s specificity lied in its high number of features,
its sparse feature vectors, its multi-class scenario and its skewed category distribu-
tion. For instance, when dealing with collections of thousands of news articles, it
is not uncommon to have millions of n-gram features, only a few hundreds actu-
ally present in each document, tens of class labels – some of them with thousands
of articles and some others will only a few hundreds. These particularities have
to be taken into account when considering feature selection, learning algorithms
and evaluation metrics as well as alternative document representations like in our
research.

Figure 2.1 depicts the basic pipeline of a text classification system. With the
ellipses shape we represent our input, the textual data, with blocks we indicate
the processes and with dashed borders the ones that can be seen as auxiliary
components. The pipeline that typically is followed to deal with the problem is
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2.2 single-label multi-class categorization

similar to the one applied in any classification problem; the goal is to learn the
parameters of a classifier from a collection of training documents (with known
class information) and then to predict the class of unlabeled documents. As we
observe the pipeline consists of multiple components.

These components are preprocessing, feature extraction, dimensionality reduc-
tion, model learning, regularization, class prediction and evaluation. Some of
these are not necessary parts of the text classification task, and thus can be re-
moved. For example, dimensionality reduction can be omitted if the number of
terms is not very high. Similarly, regularization is an additional component for
the model learning process and consequently can be selected optionally.

From all the text classification components, our contribution is focused on the
feature extraction, model learning and regularization parts. The graph-based text
representations in Chapter 3 can be seen as a feature extraction component. Next,
the linguistic structured regularization methods in Chapter 4 can be seen as an
optional component for the model learning process, belonging obviously in the
regularization part. In the last part, the first work for boosting distances in word
embeddings from Chapter 5, can also be interpreted as a feature extraction part,
while the second part with learning sets can be seen as a model learning compo-
nent.

2.2.1 Feature Extraction

The first step in text categorization is to transform documents, which typically
are strings of characters, into a representation suitable for the learning algorithm
and the classification task. The main approach here is apply the Vector Space
Model (VSM), a spatial representation of text documents. In this model, each doc-
ument is represented by a vector in a n-dimensional space, where each dimension
corresponds to a term (i.e., word) from the overall vocabulary of the given doc-
ument collection. More formally, let D = {d1, d2, . . . , dm} denote a collection of
m documents, and T = {t1, t2, . . . , tn} be the dictionary, i.e., the set of terms in
the corpus D. The set of terms T can be obtained either directly from the doc-
uments or after applying some standard natural language processing techniques,
such as tokenization, stop-words removal and stemming (Baeza-Yates and Ribeiro-
Neto, 1999). Each document di ∈ D is represented as a vector of term weights
di = {wi,1, wi,2, . . . , wi,n}, where wi,k is the weight of term k in document di.
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That way, data can be represented by the Document-Term matrix of size m× n,
where the rows correspond to documents and the columns to the different terms
(i.e., features) of set T . Note that, due to the large number of features of this ma-
trix, dimensionality reduction techniques, such as Latent Semantic Analysis (LSA)
(Yu et al., 2008), can be applied (Sebastiani, 2002).

2.2.2 Classifiers

Most considered approaches were first used with unigrams as features and then
extended to n-grams. A plethora of classifiers are available to train on these fea-
tures. We note in particular the seminal work of Joachims (1998) who was one
of the first to propose the use of a linear Support Vector Machine (SVM), a ge-
ometric classifier, with TF-IDF unigram features for the task. This approach is
one of the standard baselines because of its simplicity yet effectiveness (unsuper-
vised n-gram feature mining followed by standard supervised learning). Logistic
Regression (LR) and Linear Least Square Fit (LLSF) have been also used for text
classification; we still note the works of Zhang and Oles (2001), and Genkin et al.
(2007). Another popular approach is the use of Naive Bayes (NB), a probabilistic
classifier, and its multiple variants (McCallum and Nigam, 1998), in particular for
the subtask of spam filtering (Androutsopoulos et al., 2000). Finally, k-Nearest
Neighbors (kNN), an example-based classifier, has also been considered in the
literature (Creecy et al., 1992; Yang, 1994; Larkey and Croft, 1996).

More recently, deep learning has started to be used for solving the task as well
(Sarikaya et al., 2011). After the appearance of the word embeddings (Mikolov
et al., 2013a), more deep learning architectures were presented (Kim, 2014), to
achieve state-of-the-art results.

2.2.3 Regularization

Regularization is a tool to constrain/regularize or shrink the coefficient estimates
towards zero. In other words, this technique discourages learning a more complex
or flexible model, so as to avoid the risk of overfitting.

Regularization, significantly reduces the variance of the model, without sub-
stantial increase in its bias. Its most important tuning parameter λ, used in the
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regularization techniques, controls the impact on bias and variance. As the value
of λ rises, it reduces the value of coefficients and thus reducing the variance. Till
a point, this increase in λ is beneficial as it is only reducing the variance (hence
avoiding overfitting), without losing any important properties in the data. But
after a certain value, the model starts loosing important properties, giving rise
to significant bias in the model and thus underfitting. Therefore, the value of λ
should be carefully selected. Lastly, regularization is also associated to sparsity,
using fewer weights, and thus model interpretability.

2.3 evaluation

As we want to measure how good the performance of a model is, we require evalu-
ation as a standard process, after the classification task. We assume a classification
task for which we have ground truth data, a.k.a. a gold standard for the expected
outcome. For instance, it could be the set of true class labels in text classification.
In practice, a lot of these tasks have binary outcomes (e.g. spam/non-spam or pos-
itive/negative review) and we refer to one of the two outcomes as the “positive”,
usually the one corresponding to the task (the other alternative being the default
or the “negative” one). We may also have multi-class cases, where one can con-
sider one class as positive and the rest as negative and then average the metrics as
we will see later on.

In this context, given a binary classification task with positive and negative ex-
amples or even a multi-class one, we want to evaluate how well a system manages
to predict accurately. There are four types of possible predictions (Swets, 1963):

1. True Positive (TP) – the system correctly predicts a positive class for a posi-
tive example, resulting in a correct acceptance

2. True Negative (TN) – the system correctly predicts a negative class for a
negative example, resulting in a correct rejection

3. False Positive (FP) – the system wrongly predicts a positive class for a nega-
tive example, resulting in a false alarm

4. False Negative (FN) – the system wrongly predicts a negative class for a
positive example, resulting in a miss
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Now, using the aforementioned rations, we can formulate the metrics which we
will use for the evaluation process.

accuracy An intuitive way of measuring a system’s performance would be
to count the number of successful predictions and then divide them by the total
number of predictions. This is given by the accuracy metric (Acc) and is defined
as follows:

Acc =
TP + TN

TP + TN + FP + FN
(2.2)

Although accuracy is one of the most popular metrics for text classification, as
well as other tasks of ML, it could be misleading. If there is high imbalance in
the class distribution, even a majority class classifier (classifying all instances into
the large class) will have very high accuracy score, misleading us to believe that
performance is good.

precision is basically the fraction of correct predictions restricted to the pos-
itive class (which alleviates the pitfall of accuracy when the negative examples
belong to the majority class). The definition of the Precision metric (P):

P =
TP

TP + FP
(2.3)

For example, in spam filtering, a false alarm is detrimental since it means tag-
ging a real email as junk and therefore hiding it from the user, which translates
into wanting to reduce FP w.r.t. TP, thus increasing Precision.

recall Conversely, consider a medical doctor that uses a specialized search
engine to retrieve all patients with cancer – we realize that no miss can be tolerated,
which translates into wanting to reduce FN w.r.t. TP, leading to the definition of a
metric known as Recall (R), a.k.a. sensitivity:

R =
TP

TP + FN
(2.4)

f-measure and f1-score As aforementioned, depending on the task at hand
and the context, sometimes the sole precision matters or only the recall is of inter-
est but in general both precision and recall are important. However, it is hard to
compare two systems where one has a better precision and the other one a better
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recall. Therefore, the research community devised a combined measure of pre-
cision and recall. Van Rijsbergen (1979) proposed a measure of effectiveness E to
capture the trade-off between precision and recall and it is actually its complement
F(= 1 − E) that became popular, known as F-measure (Fβ):

Fβ =
1

α/P + (1 −α)/R
= (1 +β2)

P× R
β2P + R

, α =
1

1 +β2
(2.5)

α controls the relative weight we want to give to precision w. r. t. recall. When
we consider that precision and recall are of equal importance (i. e. α = 1/2, β = 1),
the metric is usually referred to as F1-score (F1):

F1 =
2P×R
P + R

(2.6)

which corresponds to the harmonic mean of precision and recall. Note that if the
precision and recall are equal then they are also equal to the F1-score.

micro- vs . macro-averaged metrics One can consider micro- and macro-
averaged metrics, which means that when comparing two systems, we can per-
form a pairwise comparison of respectively the per-example binary decisions and
the per-class/per-task metrics. Per-example binary decisions (e.g. spam/non-
spam) can only tell us if the two systems differ and if so, which one was right.
Per-class/per-task metric (e.g., F1-score for a given category) can also help us
quantify the magnitude of the difference.

significance testing However, when evaluation measures are averaged
over a number of classes or tasks, we can obtain an estimate of the error with
that measure and statistical significance testing becomes applicable. Intuitively,
the decision to consider an improvement significant is strengthened (1) when the
difference values are relatively high; or (2) when these values are, more or less,
always in favor of one system; and (3) when the sample size grows.

null hypothesis The preliminary assumption, or null hypothesis H0, is that
the systems are equivalent in terms of performances (i.e. the observed improve-
ment is due to chance). The significance test will attempt to disprove this hy-
pothesis by determining a p-value, i.e. a measurement of the probability that the
observed improvement could have occurred assuming that H0 holds. Under H0,
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each test computes a statistic T and calculates the achieved significance level of this
test, which is the probability of observing a value at least as extreme as T when
H0 holds: p = P(X > T ) where X is the random variable for the statistic and P the
assumed probability distribution, typically the standard normal distribution. If
this probability is less than a pre-defined significance level α (typically 0.05 or 0.01

to be more conservative), which corresponds to the Type I error rate we are willing
to accept, we may reject the null hypothesis with 1 − α (i. e. 95% or 99%) confi-
dence and conclude that the two systems are significantly different, i. e. that the
alternative hypothesis is at least more likely than the null hypothesis. The effect
size on the other hand measures the magnitude of the improvement and relates in
that sense more to the idea of noticeable and material changes (Sparck-Jones and
Bates, 1977).

distribution assumptions Significance tests fall into a number of different
categories, in particular parametric vs. non-parametric (a.k.a. distribution-free)
depending on whether we make specific assumptions about the distribution of
the measurements and their errors. We considered in our experiments the sign
test (Conover and Conover, 1980). Paired tests (as opposed to independent tests)
are the most suitable for comparing values produced by two systems for the same
set of independent observations (in our case queries or documents at the macro-
level and classification decisions at the micro-level) and also because there is no
risk of “contamination” between the two automated systems (as opposed to let’s
say having each patient taking the drug and the placebo). These tests are by far
the most used in text categorization (Yang and Liu, 1999).

sign test vs . t-test The sign test* looks only at which system performed bet-
ter: if one system performs better than the other far more frequently than would
be expected on average, then this is strong evidence that it is superior. The sign
test can be used for both micro and macro-averaged metrics. The Student’s t-test†

compares the magnitude of the difference between systems to the variation among
the differences. If the average difference is large compared to its standard error,
then the systems are significantly different. The t-test assumes that the difference
follows the normal distribution, but it often performs well even when this assump-
tion is violated (Hull, 1993; Yang and Liu, 1999). Since we are considering both

* https://stat.ethz.ch/R-manual/R-devel/library/stats/html/binom.test.html
† https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

14

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/binom.test.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
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binary classification and multiclass decisions and the t-test only makes sense for
macro-averaged metrics where we can measure the magnitude of the difference
between real-valued metrics, we end up using sign test across all our experiments.
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3
G R A P H - B A S E D R E P R E S E N TAT I O N S O F T E X T

I n this chapter we provide a novel framework for graph-based text represen-
tations. Our work proposes new ways of transforming textual data to rich
graph representations that can capture more information than traditional

approaches. First, we present related work about standard techniques based in
Bag-of-Words and existing ones based on graphs, along with the required back-
ground. Next, we present novel methods for graph-based representations of text.
Last, we show an extensive experimental study for the text categorization task. We
provide all code and data online*.

3.1 introduction

Contrary to the traditional Bag-of-Words approach, we consider the Graph-of-
Words (GoW) model in which each document is represented by a graph that en-
codes relationships between the different terms. Based on this formulation, the
importance of a term is determined by weighting the corresponding node in the
document, collection and label graphs, using node centrality criteria. We also
introduce novel graph-based weighting schemes by enriching graphs with word-
embedding similarities, in order to reward or penalize semantic relationships. Our
methods produce more discriminative feature weights for text categorization, out-
performing existing frequency-based criteria.

With the rapid growth of the social media and networking platforms, the avail-
able textual resources have been increased. Being able to automatically analyze
and extract useful information from textual data is an important task with many
applications. Text categorization or classification (TC) refers to the supervised
learning task of assigning a document to a set of two or more predefined cate-
gories (or classes) (Sebastiani, 2002). TC can be applied in several domains. A
well-known application is the one of sentiment analysis, where the goal is to iden-
tify subjective information from text corpora. Other popular applications of TC

* github.com/y3nk0/Graph-Based-TC
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include spam detection (Androutsopoulos et al., 2000), news filtering (Aggarwal
and Zhai, 2012), as well as novel ones like computational phenotyping (Zeng et al.,
2018).

In the TC pipeline, each document is modelled using the so-called Vector Space
Model (VSM) (Baeza-Yates and Ribeiro-Neto, 1999). The main issue here is how
to find appropriate weights regarding the importance of each term in a document.
Typically, the Bag-of-Words (BoW) model is applied and a document is repre-
sented as a multiset of its terms, disregarding co-occurence between the terms;
using this model, the importance of a term in a document is mainly determined
by the frequency of the term.

Although several variants and extensions of this modeling approach have been
proposed (e.g., the n-gram model (Baeza-Yates and Ribeiro-Neto, 1999)), the main
weakness comes from the underlying term independence assumption, where the
order of the terms is also completely disregarded.

After the introduction of deep learning models for text classification (Blunsom
et al., 2014; Kim, 2014), recent work by Johnson and Zhang (2015) shows how
we could effectively use the order of words with Convolutional Neural Networks
(CNN) (LeCun and Bengio, 1995). In many cases though, space and time limita-
tions may arise due to complex neural network architectures. As stated in work by
Joulin et al. (2017), computation can still be expensive and prohibitive. Moreover,
word vectors, unless pre-trained, require also a considerable time to learn.

In this chapter, we explore fast graph-based term weighting criteria for text
classification that go beyond the term independence assumption. Under this for-
mulation, we create graph representations of collections of words, with nodes
representing the terms and edges capturing co-occurrence relationships of terms.

The basic advantage of our approach is that we are able to augment the unigram
feature space of the learning task with weights that implicitly consider information
about n-grams in the document as well as the collection of documents – expressed
by paths in the graph – without increasing the dimensionality of the problem.
Furthermore, we introduce word-embedding similarities as weights in the GoW
approach, in order to further boost the performance of our methods. Finally, we
successfully mix document, collection and label GoWs along with word vector
similarities into a single powerful graph-based framework.
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3.2 related work

The main contributions of our work can be summarized as follows:

• Graph-based term weighting schemes: adopt a graph-based representation of
documents and derive novel term weighting schemes for TC through a rank-
ing process in the interconnected feature space defined by the graph.

• Inverse Collection Weight (ICW): propose a novel graph-based, term weighting
criterion to penalize the importance of terms across the collection level.

• Label Weight (LW): a novel graph-based, term weighting criterion to reward
the importance of terms across class graphs level.

• Word embeddings: we utilize word vectors as semantic information and inte-
grate similarities between words to our graph-based approach as weights in
the edges.

• Empirical study: we perform experiments on well-known datasets for TC. Our
results indicate that the proposed weighting schemes are able to outperform
existing frequency-based ones.

3.2 related work

In this section we review the related work, which can be placed into four main
categories: term weighting for document representation, text categorization, deep
learning for text categorization, graph-based text classification and graph-based
methods in text mining, natural language processing and information retrieval.

term weighting schemes A core aspect in the Vector Space Model for doc-
ument representation, is how to determine the importance of a term within a doc-
ument. This is central, and still active, research topic that goes back to the origins
of IR; since then, many criteria have been introduced with the most prominent
ones being TF, TF-IDF (Salton and Buckley, 1988; Singhal et al., 1996; Baeza-Yates
and Ribeiro-Neto, 1999; Robertson, 2004) and Okapi BM25 (Robertson et al., 1996),
while some recent ones include N-gram IDF (Shirakawa et al., 2015). An extensive
study can be found in Manning et al. (2008).

With the advances on learning techniques for textual data, many of these weight-
ing schemes were considered or extended in order to deal with supervised and
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Figure 3.1: A Graph-of-words example.

unsupervised tasks. Some examples include the Term Frequency - Inverse Corpus
Frequency (TF-ICF) (Reed et al., 2006) method proposed for document clustering
and the TF-RF scheme (Lan et al., 2009) used in text categorization. Lan et al.
(2005) conducted a comparative study of frequency-based term weighting crite-
ria for text categorization; one of their outcomes was that, in many cases, the
IDF factor is not significant for the categorization task, leading to no improve-
ment of the performance. It is interesting to point out here that, more specialized
approaches have been proposed for specific classification tasks, such as the Delta
TF-IDF method that constitutes an extension of TF-IDF for sentiment analysis (Mar-
tineau and Finin, 2009).

However, most of the previously proposed frequency-based weights consider
the document as a Bag-of-Words; that way, any structural information about the
ordering or in general, syntactic relationship of the terms, is ignored by the weight-
ing process. The notion of dependencies between terms is introduced via a Graph-
of-Words (GoW) representation model (Rousseau and Vazirgiannis, 2013). Under
this model, each term is represented as a node in the graph and the edges capture
co-occurrence relationships of terms with a specified distance in the document.
We present a toy example of a Graph-of-Words in Figure 3.1.
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3.2 related work

text categorization A number of diverse approaches have been proposed
for TC (Joachims, 1998; McCallum and Nigam, 1998; Nigam et al., 2000; Sebastiani,
2002; Kim et al., 2006a). The first step of TC concerns the feature extraction task,
i.e., which features will be used to represent the textual content. Typically, the
straightforward Bag-of-Words approach is adopted, where every document is rep-
resented by a feature vector that contains boolean or weighted representation of
unigrams or n-grams in general. In the case of weighted feature vectors, various
term weighting schemes have been used, with the most well-known ones being TF
(Term Frequency), TF-IDF (Term Frequency - Inverse Document Frequency).

Although these weighting schemes were initially introduced in the NLP and
IR fields, they have also been applied in the text classification task. Paltoglou
and Thelwall (2010) reported that, in the case of sentiment analysis, extensions
of the TF-IDF weighting schemes introduced in the IR field, can further improve
the classification accuracy. A comprehensive review of this area is offered in the
article by Sebastiani (2002).

deep learning for tc With the rise of deep learning models, CNN archi-
tectures were applied for text classification (Blunsom et al., 2014; Kim, 2014), pre-
senting state-of-the-art results for many datasets. Work by Johnson and Zhang,
2015 was the first to exploit the order of the words in deep neural network archi-
tectures. Next, Zhang et al. (2015) presented character-level CNNs for the task of
TC, with Conneau et al. (2017) extending that to much deeper models. Johnson
and Zhang (2016) enabled LSTMs for supervised and semi-supervised text catego-
rization, where text regions of variable and large sizes can be embedded. Later,
Johnson and Zhang (2017) introduced a deep pyramid CNN, a low-complexity
word-level deep convolutional network that can efficiently represent long-range
associations in text. Joulin et al. (2017) proposed a novel text classifier based on a
shallow neural network which achieves equivalent performance to state-of-the-art
TC models, with faster learning times, able to run in a standard multicore CPU.
Last, Miyato et al. (2017) extended adversarial and virtual adversarial training to
the text domain by applying perturbations to the word embeddings in a recurrent
neural network rather than to the original input itself. Our work is not considered
a full model that includes the feature extraction and learning components, as the
aforementioned methods, but is focused only on the extraction part.
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graph-based text categorization In the related literature, most of the
graph-based method for TC, rely on graph mining algorithms that are applied to
extract frequent subgraphs, which are then used to produce feature vectors for
classification (Deshpande et al., 2005; Jiang et al., 2010; Rousseau et al., 2015; Niko-
lentzos et al., 2017b). The basic shortcoming of those methods stems from the
computational complexity of the frequent subgraph mining algorithm. Further-
more, most of these methods require from the user to set the support parameter,
which concerns the frequency of appearance of a subgraph. Wang et al. (2005)
introduced a term graph model that, contrary to our approach, captures the re-
lationships among terms using frequent itemset mining algorithms. Aery and
Chakravarthy (2005) proposed InfoSift, a graph-matching based method for doc-
ument classification. Lately, deep learning has been combined with graph-based
approaches for the task of text classification. Peng et al. (2018) proposed a graph-
CNN based deep learning model to first convert texts to Graph-of-Words, and
then use graph convolution operations for the convolution operation. Yao et al.
(2019) build a single text graph for a corpus based on word co-occurrence and
document word relations. Then a Text Graph Convolutional Network (Text GCN)
is learned for the corpus.

Close to our work are the approaches followed by Hassan et al. (2007) and
Malliaros and Skianis (2015); they explored how random walks and other graph
centrality criteria can be applied to determine the importance of a term.

The basic difference of our work is that: (i) we consider the concept of collection-
level graph which leads to the Inverse Collection Weight (ICW) for penalizing
globally frequent terms; (ii) we also propose a simple-yet-effective mechanism to
enhance the graph-based document representation with word-embeddings, by se-
lecting appropriate weights for the edges of the Graph-of-Words – deriving novel
term weighting schemes. In this work, we revisit and further extend this approach,
showing, among other things, that we can rely on simpler and easier to compute
graph-based criteria – such as the degree of a node – to achieve even better classi-
fication results.

graph-based nlp & ir Representing text documents as graphs is a well-
known approach in NLP and IR. Dhillon (2001) proposed to deal with the docu-
ment clustering problem using a bipartite graph model. The first partition of the
graph corresponds to the terms of the collection, while the other to the documents;
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then, the existence of an edge indicates the appearance of the term in the docu-
ment. Then, graph partitioning algorithms can be used to solve the document
clustering problem. Still, one question here is how to weight the edges of the
graph and in most of the related work, the TF-IDF scheme is adopted.

Related methods are proposed for keyword extraction (KE) and ad hoc IR. Tex-
tRank algorithm, proposed by Mihalcea and Tarau (2004), was among the first
works that considered a random walk model similar to PageRank, over a graph
representation of the document, in order to extract representative keywords and
sentences. Later, several methods for those tasks were followed (Erkan and Radev,
2004; Litvak and Last, 2008; Boudin, 2013; Lahiri et al., 2014; Rousseau and Vazir-
giannis, 2015).

Another domain where graph-based term weighting schemes have been applied
is the one of ad hoc Information Retrieval (Rousseau and Vazirgiannis, 2013). An
interesting survey can be found in the work of Blanco and Lioma (2012) for a
detailed description of graph-based methods in the text domain.

3.3 preliminaries and background

In this section, we briefly discuss the basic formulation of the TC problem, as well
as the frequency-based weighting criteria that are derived from the traditional
BoW model, namely TF and TF-IDF. Then, we introduce the graph-theoretic con-
cepts upon which our framework for TC is built.

3.3.1 TC Pipeline in the BoW Model

Let D = {d1, d2, . . . , dm} be a collection of documents and let C = {c1, c2, . . . , c|C|}

be the set of predefined categories. Text categorization is considered the task
of assigning a boolean value to each pair (di, ci) ∈ D × C, i.e., assigning each
document to one or more categories (Sebastiani, 2002). The main point here is
how to find appropriate weights for the terms within a document. As we will
present below shortly, our approach utilizes network centrality criteria which are
briefly summarized below.

The first step in the TC process is to transform documents, which typically are
strings of characters, into a representation suitable for the learning algorithm and
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the classification task. Here, we consider the widely used Vector Space Model,
i.e., the spatial representation in which each document is represented by a vector
in the n-dimensional space defined by the terms T = {t1, t2, . . . , tn} of the overall
vocabulary of the collection (Baeza-Yates and Ribeiro-Neto, 1999). That way, each
document di ∈ D is represented by a vector of weights di = {wi,1, wi,2, . . . , wi,n},
where wi,k is the weight of term k in document di.

In the traditional Bag-of-Words model, each document is represented as the bag
(multiset) of its words, disregarding the ordering or in general, any potential de-
pendencies between the terms of the document. Under this model, the importance
of a term in a document is mainly determined by the frequency of the term. That
is, the weight of a term t ∈ T within a document d ∈ D is based on the frequency
tf(t, d) of the term in the document (TF weighting scheme). Furthermore, terms
that occur frequently in one document but rarely in the rest of the documents,
are more likely to be relevant to the topic of the document. This is known as the
inverse document frequency (IDF) factor, and is computed at the collection level.
It is obtained by dividing the total number of documents by the number of doc-
uments containing the term, and then taking the logarithm of that quotient, as
follows:

IDF(t,D) = log

(
m + 1

|{d ∈ D : t ∈ d|}

)
,

where m is the total number of documents in collection D, and the denominator
captures the number of documents that term t appears. Then, the TF-IDF scheme
is produced by the multiplication of the TF and IDF factors.

One of the most commonly used TF-IDF weighting scheme, proposed by Singhal
et al. (1996), is called pivoted normalization weighting, where we also take under
consideration the length of the document, as well as the average document length
in the training dataset.

TF-IDF(t, d) =
1 + ln (1 + ln(TF(t, d)))

1 − b + b× |d|
`

× IDF(t,D), (3.1)

where d is the length of the document, ` is the average document length and
parameter b is set by default to 0.20 (as suggested in (Singhal et al., 1996)). The
TF-IDF scoring function captures the intuitions that (i) the frequency of a term
in a document is proportional of how representative it is for its content, and (ii)
the higher the number of documents a term occurs in, the less discriminating it is
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(term specificity)†. In this chapter, we use a simple version of TF-IDF, which gave
the best results. This weighting scheme (and its variants) has been widely used in
the TC task; as we will present shortly, the TF and TF-IDF weighting mechanisms
will be the main baseline approaches for our experimental evaluation.

As we understand, the main point here is how to find appropriate weights for
the terms within a document, but based on a graph representation.

3.3.2 Node Centrality Criteria

Centrality‡ represents a central notion in graph theory and network analysis in
general; it consists of measures that capture the relative importance of the node in
the graph based on specific criteria (Newman, 2010).

Local centrality criteria. One important characteristic of the centrality measures is
that they consider either local information of the graph (e.g., degree centrality, in-
degree/out-degree centrality in directed networks, weighted degree in weighted
graphs, clustering coefficient) (Newman, 2010), or more global information – in
the sense that the importance of a node is determined by the properties of the
node globally in the graph (e.g., PageRank, closeness). Let G = (V, E) be a graph
(directed or undirected), and let |V |, |E| be the number of nodes and edges re-
spectively. Next, we define basic centrality criteria that are used in the proposed
methodology.

Degree centrality. The degree centrality is one of the simplest local node importance
criteria, which captures the number of neighbors that each node has. Let N (i) be
the set of nodes connected to node i. Then, the degree centrality can be derived
based on the following formula:

degree_centrality(i) =
|N (i)|
|V |−1

.

In-degree & out-degree centrality. These centralities constitute extensions of the de-
gree centrality in directed networks, where we treat independently the in-degree

† Several variants of the TF-IDF score have been proposed. See also the description given in Sebastiani
(2002).

‡ en.wikipedia.org/wiki/Centrality.
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(number of incoming edges) and out-degree (number of outgoing edges) of each
node.

Global centrality criteria. The closeness and pagerank centrality could be also
used as global centrality criteria, in order to capture important nodes using global
information of the graph.

Closeness centrality. Let dist(i, j) be the shortest path distance between nodes i and
j. The closeness centrality of a node i is defined as the inverse of the average
shortest path distance from the node to any other node in the graph (Newman,
2010):

closeness(i) =
|V |−1∑

j∈V dist(i, j)
.

Contrary to degree centrality, the closeness score is a global metric, in the sense
that it combines information from all the nodes of the graph. Here we compute
the closeness centrality in the undirected graph.

PageRank centrality. PageRank counts the number and quality of edges to a node
to determine a rough estimate of how important the node is:

PR(i) =
1 −α

|V |
+α

∑
∀(j,i)∈E

PR(j)
out-deg(j)

,

where α is the damping factor and out-deg(i) denotes the out degree on node i.

3.4 proposed framework

In this section, we present the components of the proposed graph-based frame-
work for TC. We adopt the Graph-of-Words document representation, where doc-
uments are represented as graphs that capture term co-occurrence relationships
within a fixed-size sliding window. In this section, we show (i) how to derive
meaningful term weighting schemes for TC – at document, collection and class
level – and (ii) how to introduce similarities of terms in the word-embedding
space as weights in the graphs.
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Figure 3.2: Example of document, collection-level and label GoWs for a collection com-
posed by two documents and window size w = 3. Weights on the edges of Gd1

and Gd2
correspond to the similarity of two terms in the vector space. Here, La-

bel GoWs are the same with Document GoWs (one document per class-label).

3.4.1 Graph Construction

We model documents as graphs that capture dependencies between terms. More
precisely, each document d ∈ D is represented by a graph Gd = (Vd, Ed), where
the nodes correspond to the terms t of the document and the edges capture co-
occurrence relationships between terms within a fixed-size sliding window of size
w. That is, for all the terms that co-occur within the window, we add edges be-
tween the corresponding nodes of the graph. Note that, the windows are overlap-
ping starting from the first term of the document; at each step, we simply remove
the first term of the window and add the new one from the document. Figure 3.2
gives a toy example of the construction of GoW for a collection composed by two
documents. As graphs constitute rich modelling structures, several parameters
about the construction phase need to be specified, including the directionality of
the edges, the addition of edge weights, well as the size w of the sliding window.

• Directed vs. undirected graph. One parameter of the model is if the graph
representation of the document will be directed or undirected (Easley and
Kleinberg, 2010). Directed graphs are able to preserve actual flow on a text,
while in undirected ones, an edge captures co-occurrence of two terms what-
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ever the respective order between them is. We have tested both choices,
observing that undirected graphs perform significantly better; it becomes
evident that the actual ordering of terms is not a discriminative factor in TC.

• Weighted vs. unweighted graph. One approach is to consider weighted
graphs. That is, the higher the number of co-occurrences of two terms in the
document, the higher the weight of the corresponding edge (i.e., the weight
of each edge will be equal to the number of co-occurrences of its endpoints).
The second and more simple option, is to consider unweighted graphs.

• Size w of the sliding window. In the construction of the graph, we add
edges between the terms of the document that co-occur within a sliding
window of size w. Although by increasing the size of the window we are
able to capture co-occurrence relationships between not necessarily nearby
terms (similar to the notion of (long) n-grams), the produced graph becomes
relatively dense. From our experimental results, we have observed that small
window sizes give persistently better classification results.

To summarize, the key point of the graph-based representation for TC is the
fact that it deals with the term independence assumption. Even if we consider the
n-gram model, still information about the relationship between two different n-
grams is not fully captured – as happens in the case of graphs. This has also been
noted in other application domains (e.g., IR (Rousseau and Vazirgiannis, 2013)).

Note that, the above procedure, as has been applied in our framework, concerns
unigrams; we consider that a similar approach can potentially be applied to build
a graph using n-gram features of documents.

3.4.2 Term Weighting

As we have already presented, when the document is represented by the Bag-of-
Words model, the term frequency (TF) criterion (or TF-IDF) constitutes the basis
for weighting the terms of each document. How can this be done in the graph-
based representation? The answer is given by utilizing node centrality criteria of
the graph (Newman, 2010; Easley and Kleinberg, 2010). Given a graph representa-
tion, the importance of a term in a document can be inferred by the importance of
the corresponding node in the graph.
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In the previous section, we presented local and global centrality criteria that
have been widely used for graph mining and network analysis purposes; here, we
propose that those criteria can also be used for weighting terms in the TC task.
That way, similar to TF, we can define the Term Weight (TW) weighting scheme as
TW(t, d) = centrality(t, d), where centrality(t, d) corresponds to the score of term
(node) t in the graph representation Gd of document d. The interesting point here
is that TW can be used along with any centrality criterion in the graph, local or
global.

Furthermore, we can extend this weighting scheme by considering information
about the inverse document frequency (IDF factor) of the term t in the collection
D. That way, we can derive the TW-IDF model as follows:

TW-IDF(t, d) = TW(t, d)× IDF(t,D). (3.2)

In fact, TW and TW-IDF constitute suites for graph-based term-weighting schemes
and thus, can be applied in any text analytics task. Some of them have already
been explored in graph-based IR (Rousseau and Vazirgiannis, 2013) and keyword
extraction (Mihalcea and Tarau, 2004; Rousseau and Vazirgiannis, 2015).

A natural question here is what is the additive value of the TW and TW-IDF,
compared to the widely used TF and TF-IDF. As we have already discussed, the
graph-based representation and the corresponding weighting functions, question
the term independence assumption that is imposed by the Bag-of-Words model
and is inherited to the frequency-based schemes. The proposed weights are in-
ferred from the interconnection of features (i.e., terms) – as suggested by the graph
– and therefore information about n-grams is implicitly captured. That way, the
feature space of the learning problem is kept to the one defined by the unique uni-
grams of our collection (instead of using simultaneously as features all the possible
unigrams, bigrams, 3-grams, etc.), but the produced term weights incorporate n-
gram information through the graph-based representation. In other words, the
importance and discriminative power of a term is determined by a ranking pro-
cess on the corresponding centrality metrics, in the interconnected feature space
defined by the graph.
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3.4.3 Inverse Collection Weight (ICW)

In the case of TF-IDF scheme, the frequency of each term in the document (TF
factor) is penalized by the number of documents into which it appears (IDF factor).
The same appearance-based IDF penalization mechanism can also be applied to
the TW graph-based weight, and according to this the TW-IDF scheme of Eq. (3.2)
has been derived. In this paragraph, we introduce the concept of Inverse Collection
Weight (ICW) – a graph-based criterion to penalize the weight of terms that are
“important" across the whole collection of documents. The main concept behind
ICW is the collection-level graph G – an extension of the Graph-of-Words in the
collection of documents D.

Definition 3.1 (Collection Level Graph G). Let {G1, G2, . . . , Gd}|D| be the set of
graphs that correspond to all documents d ∈ D. The collection level graph G is defined as
the union of graphs G1 ∪G2 ∪ . . .∪Gd over all documents in the collection.

The union of two graphs G = (VG, EG) and H = (VH, EH) is defined as the union of
their node and edge sets, i.e., G ∪H = (VG ∪ VH, EG ∪ EH). The number of nodes
in graph G is equal to the number of unique terms in the collection, while the
number of edges is equal to the number of unique edges over all document-level
graphs (see also Figure 3.2).

This graph captures the overall dependencies between the terms of the collec-
tion; the relative overall importance of a term in the collection will be proportional
to the importance of the corresponding node in G. Following similar methodolog-
ical arguments as used for IDF (Robertson, 2004), we define a probability distri-
bution over the nodes of G (or equivalently, the unique terms of D), with respect
to a centrality (term-weighting in our case) criterion; then, the probability of node
(term) t will be:

Pr(t) =
TW(t,D)∑
v∈D TW(v,D)

. (3.3)

Note that, in Eq. (3.3), we use D instead of G; we consider that the space defined
by the document collection D is equivalent to the one defined by graph G with
respect to the unique terms of the collection. This way, the notion of TW(t,D)
used here is consistent with what was described earlier. Based on this, we define
the ICW measure as:

ICW(t,D) =
maxv∈D TW(v,D)

TW(t,D)
. (3.4)
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Instead of selecting the maximum centrality in the collection level (Eq. (3.4)), the
sum of all centralities also yields good results.

ICW shares common intuition with the inverse total term frequency described in
Robertson (2004). In fact, it can be considered as an extension of the total collection
frequency of a term, to the graph-based document representation. Furthermore,
similar to TW, it can be used along with any node centrality criterion.

Using ICW as a graph-based collection-level term penalisation factor, we derive
a new class of term-to-document weighting mechanism, namely TW-ICW. This
weighting scheme is derived combining different local (i.e., document-level) and
global (i.e., collection-level) criteria as follows:

TW-ICW(t, d) = TW(t, d)× log(ICW(t,D)). (3.5)

In the case of TW and ICW, any centrality criterion can be applied. However, the
computational complexity is a crucial factor that should be taken into account.
Nevertheless, as we have noticed from the experimental evaluation, even using
simple and easy-to-compute local criteria (e.g., degree), we achieve good classifi-
cation performance.

3.4.4 Label Graphs

Following previous work (Ko, 2012) on how to use class information for text clas-
sification, Shanavas et al. (2016) introduced supervised term weighting (TW-CRC)
as a method to integrate class information with graphs. Similarly, we create a
graph for each class (label), where we add all words of documents belonging to
the respective class as nodes and their co-occurrence as edges. Our weighting
scheme is a variant of TW-CRC; we define LW for a term t as:

LW(t) =
max(deg(t, L))

max(avg(deg(t, L)),min(deg(L))
, (3.6)

where the maximum degree of term t in all label graphs (L) is divided by the max
of two values: the average degree of the term in all label graphs (except the one
having the max degree) and the min degree of all the terms in all the label graphs.
Then, we obtain ICW-LW as follows:

ICW-LW(t, d) = log(ICW(t,D)× LW(t)), (3.7)
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and multiply it with TW(t, d) to get TW-ICW-LW. Notice that, supervised frequency-
based methods have also been proposed in previous work (Debole and Sebastiani,
2004; Huynh et al., 2011), where the Term Category Dependence Measure was
introduced.

3.4.5 Edge Weighting using Word Embeddings

With our proposed framework, we can now use word embeddings (Bengio et al.,
2003) in order to extract similarities between terms. Our goal is to integrate these
similarities in the graph representation as weights on the edge between two words.
The key idea behind our approach is that we want to reward semantically close
words in the graph-document level (TW) and penalize them in the collection level
(ICW).

The most commonly used similarity between two words t1 and t2 in the word-
embedding space is cosine similarity, which ranges between -1 and 1. In order
to have a valid distance metric, we need to bound this between 0 and 1. We use
the angular similarity to represent the weight of an edge between two words, and
since the vector elements may be positive or negative, the formula becomes:

weight(t1, t2) = 1 −
arccos(sim(t1, t2))

π
. (3.8)

A key problem that arises when using word embeddings, is how to deal with
words that are not present in the vocabulary. GloVe (Pennington et al., 2014) in-
cludes an “unknown" word-vector for words that are not present in the word em-
bedding space. In this case we will have a cosine similarity of one for two words
that do not exist in the vocabulary. A solution, is finding synonyms of words using
the wordnet tool.

The best performance was given by using Google’s pre-trained word embed-
dings (Mikolov et al., 2013a) and not by learning them by the datasets. We remind
that the learning is done on the training words. Since the words included in the
pre-trained version of word2vec are case sensitive and not stemmed, we did not
apply any of these transformations. For words that do not appear in word2vec, we
add a small value as similarity. Other distances (e.g. inverse euclidean, fractional)
did not yield any further improvement.
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Document
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Figure 3.3: Blending different types of GoWs and word vector similarities in one frame-
work. Our proposed metrics are located in the intersected areas.

A similar approach for generic keyphrase extraction can be tracked in work by
Wang et al. (2015). Providing more information in the weights, like number of
co-occurrences between words, did not yield better results.

3.4.6 Computational complexity

As described earlier, some formulations of the TW-based schemes consider central-
ity criteria that are computationally intensive (e.g., closeness centrality). Neverthe-
less, in the case of TW and TW-IDF, those criteria are applied on a per document
basis, where the corresponding graphs are sparse and of very small size, and
thus are not prohibitive (we have observed that, with very small window sizes
(w = {2, 3}), we can achieve both high accuracy and low computation time). We
stress out here that the local and computationally efficient degree centrality cri-
terion – with complexity of same order as the one of term frequency – performs
quite well in most of the cases. In any case, even the most intensive criteria consid-
ered here (such as the closeness centrality), can be efficiently approximated very
well (Eppstein and Wang, 2004).

For the collection level graph G and the ICW-based schemes, the basic point is
that the weighting of each term will be computed once during the training phase of
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Train Test Voc Avg #w2v #ICW

Imdb 1,340 660 32,844 343 27,462 352K
WebKB 2,803 1,396 23,206 179 20,990 273K

20ng 11,293 7,528 62,752 155 54,892 1.7M
Amazon 5,359 2,640 19,980 65 19,646 274K
Reuters 5,485 2,189 11,965 66 9,218 163K

Subj. 6,694 3,293 8,639 11 8,097 58K

Table 3.1: Datasets’ statistics: #ICW shows the number of edges in the collection-level
graph; #w2v: number of words that exist in pre-trained vectors.

the model; thus, in the testing phase, heavy computations are not performed. In a
similar way as in the document-based (local) graphs, the overall execution time can
be improved, relying on approximation techniques of the corresponding measures.
Lastly, by applying the easy-to-compute feature selection method presented earlier,
the feature space of the problem is reduced, improving the training time of the
classifier.

Our implementation is also efficient for large datasets, as the graph construction
and centrality computation processes, take advantage of multi-core machines and
can be distributed evenly to all available threads.

An overview of our approach is shown in Figure 3.3.

3.5 experiments

In this section, we present the datasets and the experimental evaluation of the
proposed TC framework. Here, we deal with the problem of multi-class, single-
label text categorization, where each document is assigned exactly to one category.

We have evaluated our method on six freely available standard TC datasets,
covering multi-class document categorization, sentiment analysis and subjectivity.
Specifically:

1. 20ng
§: newsgroup documents belonging to 20 categories,

2. Reuters
§: 8 categories of Reuters-21578,

§ web.ist.utl.pt/acardoso/datasets/
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3. WebKB§: 4 most frequent categories of webpages from Computer Science
departments,

4. Imdb (Pang and Lee, 2004): positive and negative movie reviews;

5. Amazon (Blitzer et al., 2007): product reviews acquired from Amazon over
four different sub-collections;

6. Subjectivity (Pang and Lee, 2004): contains subjective sentences gathered
from Rotten Tomatoes and objective sentences gathered from IMDB.

A summary of the datasets can be found in Table 3.1.

Since the goal of this work is to introduce new term weighting schemes, we
rely on widely used classification algorithms. Specifically, we have used linear
SVMs, due to their superior performance in TC (Joachims, 1998). Furthermore,
as discussed in Leopold and Kindermann (2002), the choice of the kernel func-
tion of SVM is not very crucial, compared to the significance of the term weight-
ing schemes. In the experiments, linear SVMs were used with grid search cross-
validation for tuning the C parameter. We also examined logistic regression (LR),
and observed similar performance. In the text preprocessing step, we have re-
moved stopwords. No stemming or lowercase transformation was applied in order
to match the most words in word2vec.

We compare the proposed weighting schemes to several baseline methods. (i)
The TW weighting scheme to (a) binary n-gram features (denoted by TF binary),
(b) the traditional TF weights (denoted by TF), (c) to centroid embeddings (w2v),
and (d) TF-IDF aggregated with w2v features. (ii) The TW-IDF scheme to the
well-known TF-IDF. (iii) The TW-ICW scheme with word embedding similarities
as weights to TF-IDF combined with centroids of word embeddings.

We consider that comparing models of similar degree of complexity is more
meaningful. Given the fact that TF and TF-IDF baselines perform well in general,
we are also interested to have a more broad comparison of the performances, ex-
amining the best scheme for each dataset. For evaluation we use macro-average
F1 score (F1) and classification accuracy (Acc) on the test sets; that way, we deal
with the skewed class size distribution of some datasets (Sebastiani, 2002).

For the notation of the proposed schemes, we use TW (centrality measure) (e.g.,
TW (degree)) to indicate the centrality and TW-ICW (centrality at G, centrality
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20ng (max) IMDB (sum) Subjectivity (max)

Methods w = 3 w = 4 w = 2 w = 3 w = 6 w = 7

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.88 81.55 - 84.23 84.24 - 88.42 88.43 -
w2v 74.43 75.75 - 82.57 82.57 - 87.67 87.67 -
TF-binary (ngrams) 81.64 82.11* - 83.02 83.03 - 87.51 87.51 -
TW (degree) 82.37 83.00* 82.21 82.83* 84.82 84.84 84.67 84.69 88.33 88.33 89.00 89.00*
TW (w2v) 81.88 82.51* 82.21 82.87* 84.66 84.69 84.52 84.54 87.75 87.57 87.66 87.67

TF-IDF 82.44 83.01* - 83.33 83.33 - 89.06 89.06* -
TF-IDF-w2v 82.52 83.09* - 82.87 82.87 - 89.91 89.91* -
TW-IDF (degree) 84.75 85.47* 84.80 85.46* 82.86 82.87 83.02 83.03 89.33 89.34* 89.33 89.34*
TW-IDF (w2v) 84.66 85.32 84.46 85.13 83.47 83.48 83.31 83.33 86.42 86.42 86.51 86.51

TW-ICW (deg, deg) 85.24 85.80* 85.41 86.05* 84.98 85.00 85.13 85.15 89.30 89.31* 89.61 89.61*
TW-ICW (w2v) 85.33 85.93* 85.29 85.90* 85.12 85.15 84.82 84.84 89.61 89.61* 87.30 87.30

TW-ICW-LW (deg) 85.01 85.66* 85.02 85.66* 85.73 85.75 85.28 85.30 90.12 90.13* 90.27 90.28*
TW-ICW-LW (w2v) 82.56 83.11* 82.24 82.81* 85.29 85.30 84.39 84.39 87.70 87.70 87.70 87.70

TW-ICW-LW (pgr) 83.92 84.66 83.80 84.54 84.97 85.00 85.73 85.75 86.60 86.60 86.45 86.45

TW-ICW-LW (cl) 84.61 85.22 84.71 85.27 87.27 87.27* 86.06 86.06 89.97 89.97* 90.09 90.10*

Table 3.2: Macro-F1 and accuracy for window size w. Bold shows the best performance on
each window size and blue the best overall on each dataset. * indicates statistical
significance of improvement over TF at p < 0.05 using micro sign test. MAX and
SUM state the best numerator for ICW in Eq. (3.4).

at G) (e.g., TW-ICW (degree, degree)) for the local and collection-level graphs
respectively. In TW-IDF (w2v), we compute the weighted degree centrality on the
document level, with word-embedding similarities as weights. Similarly, in TW-
ICW (w2v) we compute both weighted centralities for document and collection
graphs. Finally, we denote as TW-ICW-LW the blending of TW, ICW and label
graphs (LW). In label graphs we only make use of the degree centrality, since it is
fast and performs best.

results Tables 3.2 and 3.3 present the results concerning the categorization
performance of the proposed schemes for the six datasets. As discussed previously,
the size of the window considered to create the graphs is one of the model’s
parameters. From the extensive experimental evaluation that we have performed,
we have concluded that small window sizes give the most persistent results across
various datasets and weighting schemes. For completeness in the presentation, we
report results for two window sizes. In order to capture more information, we
need larger window sizes for small datasets (e.g. Subjectivity). Also, since for
the baseline methods (TF, TF binary, TF-IDF, w2v, TF-IDF-w2v) there is no notion
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Amazon (max) WebKB (sum) Reuters (max)

Methods w = 2 w = 3 w = 2 w = 3 w = 2 w = 3

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

TF 80.68 80.68 - 90.31 91.91 - 91.51 96.34 -
w2v 79.05 79.05 - 84.54 86.58 - 91.35 96.84 -
TF-binary (ngrams) 79.84 79.84 - 91.22 92.85 - 86.33 95.34 -
TW (degree) 80.07 80.07 80.41 80.41 91.69 92.64 91.45 92.49 93.58 97.53* 93.08 97.25*
TW (w2v) 80.07 80.07 79.54 79.54 91.70 92.64 91.00 92.06 93.09 97.35* 93.43 97.25*

TF-IDF 80.26 80.26 - 87.79 89.89 - 91.89 96.71 -
TF-IDF-w2v 80.49 80.49 - 88.18 90.18 - 91.33 96.80 -
TW-IDF (degree) 81.47 81.47* 81.55 81.55* 90.38 91.70 90.47 91.84 93.80 97.30* 93.13 97.35*
TW-IDF (w2v) 79.61 79.62 77.60 77.61 90.81 92.20 90.60 91.91 93.38 97.44* 93.87 97.44*

TW-ICW (deg, deg) 82.08 82.08* 82.02 82.02* 91.72 92.78 91.42 92.49 92.91 97.35 93.59 97.39*
TW-ICW (w2v) 80.86 80.87* 78.82 78.82 91.58 92.64 91.84 92.85 93.57 97.30* 92.96 97.25

TW-ICW-LW (deg) 82.72 82.72* 82.91 82.91* 91.86 92.92 91.95 92.92 93.88 97.53* 93.48 97.35*
TW-ICW-LW (w2v) 80.56 80.56 78.32 78.33 90.74 91.99 90.01 91.34 92.51 96.89 92.14 96.98

TW-ICW-LW (pgr) 82.23 82.23* 82.46 82.46* 91.18 92.20 92.23 93.07 93.38 97.35* 93.37 97.35*
TW-ICW-LW (cl) 82.90 82.91* 83.02 83.03* 92.72 93.57* 92.86 93.57* 93.12 97.25 92.87 97.21

Table 3.3: Macro-F1 and accuracy for different window size w. Bold shows the best perfor-
mance for a sliding window and blue the best overall on each dataset.

of window size, the results for w = {2, 3} are the same. We have also examined
several centrality criteria (using both undirected and directed graphs); undirected
giving better results.

Comparing TF to the graph-based ones, namely TW (degree), in almost all cases
TW gives higher F1 and accuracy results. Similar observations can be made in
the case where the IDF penalization is applied. In most of the datasets, the TW-
IDF (degree) scheme performs quite well. The interesting point here, which is
confirmed by the related literature (Lan et al., 2005), is that TF-IDF is in general
inferior to TF in TC. However, when the IDF penalization factor is applied on the
TW term-to-document weighting, a powerful mechanism is derived. In the case
of purely graph-based schemes, we can observe that some of them produce very
good classification results. In almost all cases, TW-ICW-LW (degree or closeness)
achieve the best performance.

word2vec similarities Significant improvement is observed by adding the
w2v similarities as weights in the document, collection level and label graphs in
almost all datasets. In fact, we have obtained better results in 20NG (TW-ICW
(w2v)), WebKB (TW-ICW (w2v)) and Reuters (TW-IDF(w2v)), by boosting seman-
tically close words in the document level and penalizing them in the collection
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20ng Imdb Subj. Amazon WebKB Reuters

CNN (no w2v, 20 ep.) (Kim, 2014) 83.19 74.09 88.16 80.68 88.17 94.75

CNN (w2v, 20 ep.) 81.92 64.09 89.04 82.08 84.05 95.80

FastText (100 ep.) (Joulin et al., 2017) 79.70 84.70 88.60 79.50 92.60 97.00

FastText (w2v, 5 ep.) 80.80 86.10 88.50 80.90 91.40 97.40

TextRank (Mihalcea and Tarau, 2004) 82.56 83.33 84.78 80.49 92.27 97.35

Word Attraction (Wang et al., 2015) 61.24 70.75 86.60 78.29 79.46 91.34

TW-CRC (Shanavas et al., 2016) 85.35 85.15 89.28 81.13 92.71 97.39

TW-ICW-LW (ours) 86.05 87.27 90.28 83.03 93.57 97.53

Table 3.4: Comparison in accuracy(%) to deep learning and graph-based approaches.

level. It is evident that the graph-based criteria can further improve the classifica-
tion task.

The discriminative nature of the features is derived by the underlying graph
and by the fact that we treat the term weighting process as a ranking task in
the interconnected feature space defined by the graph. We augment the unigram
feature space of the learning task with weights that implicitly consider information
of n-grams (short and long ones) in the document – as expressed by paths in the
graph – without increasing the dimensionality of the problem. In other words, the
feature space is the one defined by the unigrams of our collection, but the weights
capture information beyond them.

TF n-gram binary scheme (TF binary) has also been examined, i.e., all the pos-
sible n-grams of the collection with binary values (up to 6-grams in our experi-
ments). This has the effect that the feature space explodes (e.g. 20ng: 6M, Reuters:
1.3M, WebKB: 1.5M and Imdb: 3M) – with direct implication on the efficiency of
the method.

For comparison reasons, the size of the unigram feature space considered by
our framework is equal to the unique terms in the collections and much smaller
compared to the n−grams ones. Moreover, graph-based weighting is able to out-
perform TF (binary) in all datasets.

We clearly see that by fusing document, collection and label graphs we obtain
the best results in almost in 5 out of 6 datasets. Label graphs information consist
a powerful weighting method, when combined with our proposed collection level
graph approach.
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Figure 3.4: F1 score (left) and accuracy (right) of TW, TW-ICW and TW-ICW-LW (all de-
gree) on Reuters, WebKB and Subjectivity, for window size w = {2, . . . , 10}.

Adding word2vec similarities as weights, when label graphs are used, does
not improve the accuracy. This implies that important terms concerning different
labels can be close in the word vector space. Choosing closeness in the document
level GoW yields the best performance in 3 datasets. Closeness can only have an
affect in larger document lengths and when used along with label graphs.

comparison To further investigate the effectiveness of our approach, we have
compared our results with current state-of-the-art graph-based and non graph-
based methods. In Table 3.4 we compare against CNN for text classification, with-
out pre-trained word vectors (Kim, 2014), FastText (Joulin et al., 2017), TextRank
(Mihalcea and Tarau, 2004), Word Attraction weights based on word2vec similar-
ities (Wang et al., 2015) and Supervised Term Weighting (TW-CRC) by Shanavas
et al. (2016). Our work produces better or comparable results to their work. Since
the implementation of most models is our own, their performance is not optimal.

sliding window in gow Selecting the window size w is also important. As
we observed, the maximum accuracy is achieved while using small window sizes.

39



graph-based representations of text

autos
TF-IDF

pos: Jeep, Opel, eliot, clas, Intrepid
neg: bike, edu, University, College, David

TW-ICW
pos: driving, autos, Ford, Toyota, automotive
neg: bike, DoD, bikes, guns, parking

electr.
TF-IDF

pos: circuits, phone, Yingbin, Radar, Shack
neg: Windows, university, com, forsale, edu

TW-ICW
pos: power, circuits, detector, voltage, scope
neg: forsale, unused, modem, sale, shipping

Table 3.5: Largest weights in TF-IDF and TW-ICW for subsets of 20ng.

In any case, even if larger values of w were able to get slightly better results, a
smaller window size would be preferable, due to the overall overhead that could
be introduced (increase of the density of the graph). Figure 3.4 depicts the F1

score and accuracy on the WebKB, Reuters and Subjectivity datasets, using the
TW, TW-ICW and TW-ICW-LW(deg) schemes for various window sizes. We notice
also that larger sliding windows are only improving accuracy in datasets with
small document length (e.g. Subjectivity).

expressiveness In Table 3.5 we present the largest weights connected with
their respective words for two subsets of 20NG. One can easily observe that TW-
ICW manages to associate bigger weights with more expressive words than TF-IDF.
TW-ICW succeeds to capture more meaningful words as more important for both
positive and negative class, compared to TF-IDF, which outputs similar words for
the negative class across different subsets.

3.6 conclusion & future work

In this chapter, we proposed a full graph-based framework for text classification.
By treating the term weighting task as a node ranking problem of interconnected
features defined by a graph, we were able to determine the importance of a term
using node centrality criteria. Building on this formulation, we introduced simple-
yet-effective weighting schemes at the collection and label level, in order to pe-
nalize globally important terms (as analogous to “globally frequent terms") and
reward locally important terms respectively. We also incorporate additional word-
embedding information as weights in the graph-based representations.

40



3.6 conclusion & future work

Our proposed methods could also be applied in information retrieval, as well as
other domains. In fact, document-level graph-based term weighting has already
been applied there, so it would be interesting to examine the performance of the
proposed collection-level (ICW) penalization mechanism. In the unsupervised sce-
nario, where label information is not available, community detection algorithms
may be applied to identify clusters of words or documents in collection graphs.
Graph-based representations of text could also be fitted into deep learning archi-
tectures following the idea of Lei et al. (2015). Alternatively, they can be passed
to neural message passing architectures (Gilmer et al., 2017). Lastly, one could ex-
amine a Graph-of-Documents approach, in which we create a graph, where nodes
represent documents and edges correspond to similarity between them. In this
case, graph kernels could be utilized for graph comparison and/or Word Mover’s
distance (Kusner et al., 2015) between two documents as weights.
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4
R E G U L A R I Z AT I O N F O R T E X T C L A S S I F I C AT I O N

R egularization is a critical step in supervised learning to not only address
overfitting, but also to take into account any prior knowledge we may
have on the features and their dependence. In this chapter, we explore

diverse linguistic groups, like clusters in the word embedding space, for structured
regularization, as well as new regularizers for standard classifiers, which can come
from text representations studied previously. We show that our proposed meth-
ods are comparable to state-of-the-art ones in terms of accuracy while producing
sparser models.

4.1 introduction

Harnessing the full potential in text data has always been a key task for the natural
language processing and machine learning communities. The properties hidden
under the inherent high dimensionality of text are of major importance in tasks
such as text categorization and opinion mining.

Although simple models like Bag-of-Words (BoW) manage to perform well, the
problem of overfitting still remains. Regularization, as proven in Chen and Rosen-
feld (2000), is of paramount importance in Natural Language Processing and more
specifically language modeling, structured prediction, and classification. In this
work we build upon the paper of Yogatama and Smith (2014b) who introduce
prior knowledge of data as a regularization term. One of the most popular struc-
tured regularizers, the group lasso (Yuan and Lin, 2006), was proposed to avoid
large L2 norms for groups of weights.

Our contribution will consist of novel linguistic structured regularizers that cap-
italize on the clusters learned from texts using the word2vec and Graph-of-Words
(GoW) document representation, which can be seen as group lasso variants, as
well as new algorithms for structured regularization. The extensive experiments
we conducted demonstrate that these regularizers, along with the our new pro-
posed regularization algorigthms, can boost standard Bag-of-Words models on
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most cases tested in the task of text categorization, by imposing additional unused
information as bias.

4.2 related work

In this part, we review particularly relevant prior work on regularization for text
classification and more specifically methods based on group lasso.

In many applications of statistics and machine learning, the number of ex-
ploratory variables may be very large, while only a small subset may truly be
relevant in explaining the response to be modelled. In certain cases, the dimen-
sionality of the predictor space may also exceed the number of examples. Then
the only way to avoid overfitting is via some form of “capacity control” over the
family of dependencies being explored. Estimation of sparse models that are sup-
ported on a small set of input variables is thus highly desirable, with the additional
benefit of leading to parsimonious models, which can be used not only for predic-
tive purposes but also to understand the effects (or lack thereof) of the candidate
predictors on the response.

More specifically, regularization in text scenarios is essential as it can lead to
removing unnecessary words along with their weights. For example, in text clas-
sification, we may only care for a small subset of the vocabulary that is important
during the learning process, by penalizing independently or in grouped way noisy
and irrelevant words.

With noiseness we refer to words that may increase the dimensionality and
complexity of a problem, while having a clear decreasing effect in performance.

Another example task is text normalization, where we want to transform lexical
variants of words to their canonical forms. Text normalization can be seen as a
machine learning problem (Ikeda et al., 2016) and thus regularization techniques
can be applied.

Next we present standard regularization methods, which prove to be effective
for classification tasks. We also use them later as baselines for our experiments.

l1 and l2 regularization The two most used penalty terms are known
as L1 regularization, a. k. a. lasso (Tibshirani, 1996), and L2 regularization, a. k. a.
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ridge (Hoerl and Kennard, 1970) as they correspond to penalizing the model with
respectively the L1 and L2 norm of the feature weight vector θ:

θ∗ = argmin
θ

N∑
i=1

L(xi,θ, yi) + λ
p∑
j=1

|θj| (4.1)

θ∗ = argmin
θ

N∑
i=1

L(xi,θ, yi) + λ
p∑
j=1

θj
2 (4.2)

elastic net A linear combination of the L1 and L2 penalties has been also
introduced by Zou and Hastie (2005), called elastic net. Although L1 and elastic
net can be very effective in terms of sparsity, the accuracy achieved by these regu-
larizers can be low. On the contrary, L2 can deliver sufficient accuracy at the cost
of zero sparsity. The need for new methods that outperform the aforementioned
approaches in both accuracy and sparsity is evident.

group structured regularization In many problems a predefined group-
ing structure exists within the explanatory variables, and it is natural to incorpo-
rate the prior knowledge so that the support of the model should be a union over
some subset of these variable groups. Group structured regularization has been
proposed to address the problem of overfitting, given we are provided with groups
of features. Group lasso is a special case of group regularization proposed by Yuan
and Lin (2006), to avoid large L2 norms for groups of weights, given we are pro-
vided with groups of features. The main idea is to penalize together features that
may share some properties.

Group structured regularization or variable group selection problem is a well-
studied problem, based on minimizing a loss function penalized by a regulariza-
tion term designed to encourage sparsity at the variable group level. Specifically,
a number of variants of the L1-regularized lasso algorithm (Tibshirani, 1996) have
been proposed for the variable group selection problem, and their properties have
been extensively studied recently. First, for linear regression, Yuan and Lin (2006)
proposed the group lasso algorithm as an extension of lasso, which minimizes the
squared error penalized by the sum of L2-norms of the group variable coefficients
across groups. Here the use of L2-norm within the groups and L1-norm across the
groups encourages sparsity at the group level.
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In addition, group lasso has been extended to logistic regression for binary clas-
sification, by replacing the squared error with the logistic error (Kim et al., 2006b;
Meier et al., 2008), and several extensions thereof have been proposed (Roth and
Fischer, 2008).

Later, sparse group lasso and overlapping group lasso were introduced (Jacob
et al., 2009; Obozinski et al., 2011) to additionally penalize features inside the
groups, while the latter can be used when groups include features that can be
shared between them.

linguistic structured regularizers As mentioned previously, words
that appear together in the same context, share topics or even have a similar mean-
ing, may form groups that capture semantic or syntactic prior information. Hence
we can feed these groups to group lasso. Yogatama and Smith (2014a) used the
Alternating Direction Method of Multipliers algorithm (ADMM) (Boyd et al., 2011)
for group lasso, an algorithm that solves convex optimization problems by break-
ing them into smaller pieces. In their paper, groups extracted by Latent Dirichlet
Allocation (LDA) and sentences were used for structured regularization.

While current state-of-the-art methods either focus on finding the most mean-
ingful groups of features or how to further “optimize" the group lasso approach,
the attempts carry as well the disadvantages of group lasso architectures. In some
cases, we may not be able to extract “good" groups of words. As presented in the
next section, we want to explore new ways of regularization on groups, diverging
from group lasso, that can give high accuracy with high sparsity.

4.3 background

We place ourselves in the scenario where we consider a prediction problem, in
our case text categorization, as a loss minimization problem, i. e., we define a
loss function L(x,θ, y) that quantifies the loss between the prediction hθ(x) of a
classifier parametrized by a vector of feature weights θ and a bias b, and the true
class label y ∈ Y associated with the example x ∈ X . Given a training set of N
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data points {(xi, yi)}i=1...N, we want to find the optimal set of feature weights θ∗

such that:

θ∗ = argmin
θ

N∑
i=1

L(xi,θ, yi)︸ ︷︷ ︸
empirical risk

(4.3)

In the case of logistic regression with binary predictions (Y = {-1, +1}), hθ(x) =
θ>x + b and L(x,θ, y) = log[1 + e−yhθ(x)] (log loss).

4.3.1 Regularization

Only minimizing the empirical risk can lead to overfitting, that is, the model no
longer learns the underlying pattern we are trying to capture but fits the noise con-
tained in the training data and thus results in poorer generalization (e. g., lower
performances on the test set). For instance, along with some feature space transfor-
mations to obtain non-linear decision boundaries in the original feature space, one
could imagine a decision boundary that follows every quirk of the training data.
Additionally, if two hypothesis lead to similar low empirical risks, one should se-
lect the “simpler” model for better generalization power, simplicity assessed using
some measure of model complexity.

loss+penalty Regularization takes the form of additional constraints to the
minimization problem, i. e., a budget on the feature weights, which are often re-
laxed into a penalty term Ω(θ) controlled via a Lagrange multiplier λ. We refer to
the book of Boyd and Vandenberghe (2004) for the theory behind convex optimiza-
tion. Therefore, the overall expected risk (Vapnik, 1991) is the weighted sum of
two components: the empirical risk and a regularization penalty term, expression
referred to as “Loss+Penalty" by Hastie et al. (2009). Given a training set of N data
points {(xi, yi)}i=1...N, we now want to find the optimal set of feature weights θ∗

such that:

θ∗ = argmin
θ

N∑
i=1

L(xi,θ, yi)︸ ︷︷ ︸
empirical risk

+ λΩ(θ)︸ ︷︷ ︸
penalty term︸ ︷︷ ︸

expected risk

(4.4)
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l1 and l2 regularization As also mentioned previously, two of the most
used regularization schemes are L1 regularization, called Lasso (Tibshirani, 1996) or
basis pursuit in signal processing (Chen et al., 2001), and L2 regularization, called
ridge (Hoerl and Kennard, 1970) or Tikhonov (Tikhonov and Arsenin, 1977).

prior on the feature weights L1 (resp. L2) regularization can be inter-
preted as adding a Laplacian (resp. Gaussian) prior on the feature weight vector.
Indeed, given the training set, we want to find the most likely hypothesis h∗ ∈ H,
i. e., the one with maximum a posteriori probability:

h∗ = arg max
h∈H

(
P(h|{(xi, yi)}i=1...N)

)
= arg max

h∈H

(
P({yi}i|{xi}i, h) P(h|{xi}i)

P({yi}i|{xi}i)

)
= arg max

h∈H

(
P({yi}i|{xi}i, h) P(h|{xi}i)

)
= arg max

h∈H

(
P({yi}i|{xi}i, h) P(h)

)
(4.5)

= arg max
h∈H

(
N∏
i=1

(
P(yi|xi, h)

)
P(h)

)
(4.6)

= arg max
h∈H

(
N∑
i=1

(
log P(yi|xi, h)

)
+ log P(h)

)

= argmin
h∈H


N∑
i=1

(
− log P(yi|xi, h)

)
︸ ︷︷ ︸

empirical risk

− log P(h)︸ ︷︷ ︸
penalty term


For the derivation, we assumed that the hypothesis h does not depend on the

examples alone (Eq. 4.5) and that the N training labeled examples are drawn from
an i.i.d. sample (Eq. 4.6). In that last form, we see that the loss function can
be interpreted as a negative log-likelihood and the regularization penalty term as
a negative log-prior over the hypothesis. Therefore, if we assume a multivariate
Gaussian prior on the feature weight vector of mean vector 0 and covariance matrix
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Σ = σ2I (i. e., independent features of same prior standard deviation σ), we do
obtain the L2 regularization:

P(h) =
1√

(2π)p|Σ|
e−

1

2
θ>Σ−1θ (4.7)

⇒ − log P(h) =
1

2σ2
θ>Iθ +

p

2

log(2πσ)

argmax= λ‖θ‖2

2, λ =
1

2σ2
(4.8)

And similarly, if we assume a multivariate Laplacian prior on the feature weight
vector (i. e., θi ∼ Laplace(0, 1

λ )), we obtain L1-regularization. In practice, in both
cases, the priors basically mean that we expect weights around 0 on average. The
main difference between L1 and L2 regularization is that the Laplacian prior will
result in explicitly setting some feature weights to 0 (feature sparsity) while the
Gaussian prior will only result in reducing their values (shrinkage).

4.3.2 Structured Regularization

In L1 and L2 regularizations, features are considered as independent, which makes
sense without any additional prior knowledge. However, similar features have
similar weights in the case of linear classifiers – equal weights for redundant fea-
tures in the extreme case – and therefore, if we have some prior knowledge on
the relationships between features, we should include that information for better
generalization, i. e., include it in the regularization penalty term.

Depending on how the similarity between features is encoded, e. g., through sets,
trees (Kim and Xing, 2010; Liu and Ye, 2010; Mairal et al., 2010) or graphs (Jenatton
et al., 2010), the penalization term varies but in any case, we take into account the
structure between features, hence the “structured regularization” terminology. It
should not be confused with “structured prediction” where this time the outcome
is a structured object as opposed to a scalar (e. g., a class label) classically.

group lasso Bakin (1999) and later Yuan and Lin (2006) proposed an exten-
sion of L1 regularization to encourage groups of features to either go to zero (as a
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· · · group lasso
G1 G2

G3 GL

· · ·
sparse group

lasso

G1 G2
G3 GL

· · ·
overlapping
group lasso

G1 G2
G3 GL

· · ·

overlapping
sparse

group lasso

G1 G2
G3 GL

Figure 4.1: A graphical representation of different group lasso architectures. Grey boxes
depict active features. While group lasso selects a whole group, sparse group
lasso can select part of the group’s features. In the overlapping case, groups
can share features, while in the last case L1 is applied inside each group.

group) or not (as a group), introducing group sparsity in the model. To do so, they
proposed to regularize with the L1,2 norm of the feature weight vector:

Ω(θ) = λ
∑
g

λg‖θg‖2 (4.9)

where θg is the subset of feature weights restricted to group g. Note that the
groups can be overlapping (Jacob et al., 2009; Schmidt and Murphy, 2010; Jenatton
et al., 2011; Yuan et al., 2011) even though it makes the optimization harder.

In Figure 4.1, we illustrate the selection of features by the most used group lasso
regularizers. In group lasso, a group of features is selected and all its features are
used. Next, in the sparse group lasso case, groups of features are selected again
but not all the features belonging to them are used. In the overlapping group lasso,
groups can share features between them. Finally, we may have sparse group lasso
with overlaps.
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Algorithm 1 ADMM for overlapping group-lasso
Input: augmented Lagrangian variable ρ, regularization strengths λglas and λlas

1: while update in weights not small do

2: θ = argmin
θ

Ωlas(θ) +L(θ) + ρ
2

V∑
i=1

Ni(θi − µi)2

3: for g = 1 to G do
4: vg = prox

Ωglas,
λg
ρ

(zg)

5: end for
6: u = u + ρ(v −Mθ)
7: end while

4.3.3 Learning

In our case we use a logistic regression loss function in order to integrate our
regularization terms easily.

L(x,θ, y) = log(1 + exp(−yθTx)) (4.10)

It is obvious that the framework can be extended to other loss functions (e. g.,
hinge loss).

For the case of structured regularizers, there exist a plethora of optimization
methods, such as group lasso. Since our tasks involve overlapping groups, we se-
lect the method of Yogatama and Smith (2014b). Their method uses the alternating
directions method of multipliers (Hestenes, 1969; Powell, 1969).

Now given the lasso penalty for each feature and the group lasso regularizer,
we get:

min
θ,v

Ωlas(θ) + Ωglas(v) +
D∑
d=1

L(xd,θ, yd) (4.11)

so that v = Mθ, where v is a copy-vector of θ. The copy-vector v is needed
because the group-lasso regularizer contains overlaps between the used groups.
M is an indicator matrix of size L× V , where L is the sum of the total sizes of all
groups, and its ones show the link between the actual weights θ and their copies
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v. Following Yogatama and Smith (2014b), a constrained optimization problem is
formed, that can be transformed to an augmented Lagrangian problem:

Ωlas(θ) + Ωglas(v) +L(θ) + u>(v −Mθ) +
ρ

2

‖v −Mθ‖2

2
(4.12)

Essentially, the problem becomes the iterative update of θ, v and u:

min
θ

Ωlas(θ) +L(θ) + u>Mθ +
ρ

2

‖v −Mθ‖2

2
(4.13)

min
v

Ωglas(v) + u>v +
ρ

2

‖v −Mθ‖2

2
(4.14)

u = u + ρ(v −Mθ) (4.15)

A schematic pseudocode presenting ADMM for sparse overlapping group is
shown in Algorithm 1.

convergence Yogatama and Smith (2014b) proved that ADMM for sparse
overlapping group lasso converges. It is also shown that a good approximate
solution is reached in a few tens of iterations. Our experiments confirm this as
well.

4.4 regularizing text classification with clusters of words

In this section we explore state-of-the-art structured regularizers and propose
novel ones based on clusters of words from Latent Semantic Indexing topics,
word2vec embeddings and Graph-of-Words document representation. We show
that our proposed regularizers are faster than the state-of-the-art ones and still
improve text classification accuracy. All code and data are available online*.

4.4.1 Proposed framework

In recent efforts there are results to identify useful structures in text that can be
used to enhance the effectiveness of the text categorization in a NLP context. Since
the main regularization approach we are going to use are variants of the group

* https://goo.gl/mKqvro
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lasso, we are interested on prior knowledge in terms of groups/clusters that can
be found in the training text data. These groups could capture either semantic,
or syntactic structures that affiliate words to communities. In our work, we study
both semantic and syntactic properties of text data, and incorporate them in struc-
tured regularizer. The grouping of terms is produced by either LSI or clustering
in the word2vec or Graph-of-Words space.

4.4.1.1 Statistical regularizers

In this section, we present statistical regularizers, i. e., with groups of words based
on co-occurrences, as opposed to syntactic ones (Mitra et al., 1997).

network of features Sandler et al. (2009) introduced regularized learning
with networks of features. They define a graph G whose edges are non-negative
with larger weights indicating greater similarity. Conversely, a weight of zero
means that two features are not believed a priori to be similar. Previous work
(Ando and Zhang, 2005; Raina et al., 2006; Krupka and Tishby, 2007) shows such
similarities can be inferred from prior domain knowledge and statistics computed
on unlabeled data.

The weights of G are mapped in a matrix P, where Pij > 0 gives the weight
of the directed edge from vertex i to vertex j. The out-degree of each vertex is
constrained to sum to one,

∑
j Pij = 1, so that no feature “dominates" the graph.

Ωnetwork(θ) = λnet
∑
θ>kMθk (4.16)

where M = α(I− P)>(I− P) +βI. The matrix M is symmetric positive definite, and
therefore it possesses a Bayesian interpretation in which the weight vector θ, is a
priori normally distributed with mean zero and covariance matrix 2M−1. However,
preliminary results show poorer performance compared to structured regularizers
in larger datasets.

sentence regularizer Yogatama and Smith (2014b) proposed to define
groups as the sentences in the training dataset. The main idea is to define a group
dd,s for every sentence s in every training document d so that each group holds
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weights for occurring words in its sentence. Thus a word can be a member of one
group for every distinct (training) sentence it occurs in. The regularizer is:

Ωsen(θ) =
D∑
d=1

Sd∑
s=1

λd,s‖θd,s‖2 (4.17)

where Sd is the number of sentences in document d.

Since modern text datasets typically contain thousands of sentences and many
words appear in more than one sentence, the sentence regularizer could potentially
lead to thousands heavily overlapping groups. As stated in the work of Yogatama
and Smith (2014b), a rather important fact is that the regularizer will force all the
weights of a sentence, if it is recognized as irrelevant. Respectively, it will keep all
the weights of a relevant sentence, even though the group contains unimportant
words. Fortunately, the problem can be resolved by adding a lasso regularization
(Friedman et al., 2010).

4.4.1.2 Semantic regularizers

In this section, we present semantic regularizers that define groups based on how
semantically close words are.

lda regularizer Yogatama and Smith (2014a) considered topics as another
type of structure. It is obvious that textual data can contain a huge number of
topics and especially topics that overlap each other. Again the main idea is to
penalize weights for words that co-occur in the same topic, instead of treating the
weight of each word separately.

Having a training corpus, topics can be easily extracted with the help of the
Latent Dirichlet Allocation (LDA) model (Blei et al., 2003). In our experiments, we
form a group by extracting the n most probable words in a topic. We note that the
extracted topics can vary depending the text preprocessing methods we apply on
the data.

lsi regularizer Latent Semantic Indexing (LSI) can also be used in order to
identify topics or groups and thus discover correlation between terms (Deerwester
et al., 1990). LSI uses singular value decomposition (SVD) on the document-term
matrix to identify latent variables that link co-occurring terms with documents.
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The main basis behind LSI is that words being used in the same contexts (i. e., the
documents) tend to have similar meanings. We used LSI as a baseline and compare
it with other standard baselines as well as other proposed structured regularizers.
In our work, we keep the top 10 words which contribute the most in a topic.

The regularizer for both LDA and LSI is:

ΩLDA, LSI(θ) =
K∑
k=1

λ‖θk‖2 (4.18)

where K is the number of topics.

4.4.1.3 Graphical regularizers

In this section we present our proposed regularizers based on Graph-of-Words
and word2vec. Essentially the word2vec space can be seen as a large graph where
nodes represent terms and edges similarities between them.

graph-of-words regularizer Following the idea of the network of fea-
tures, we introduce a simpler and faster technique to identify relationships be-
tween features. We create a big collection graph from the training documents,
where the nodes correspond to terms and edges correspond to co-occurrence of
terms in a sliding window. The idea comes from the work (Skianis et al., 2018a)
presented in the previous Chapter, where the collection-level GoW was introduced.
An example of a Graph-of-Words representation lies in Figure 3.1.

A critical advantage of Graph-of-Words is that it easily encodes term depen-
dency and term order (via edge direction). The strength of the dependence be-
tween two words can also be captured by assigning a weight to the edge that links
them.

Graph-of-Words was originally an idea of Mihalcea and Tarau (2004) and Erkan
and Radev (2004) who applied it to the tasks of unsupervised keyword extraction
and extractive single document summarization. Rousseau and Vazirgiannis (2013)
and Malliaros and Skianis (2015) showed it performs well in the tasks of infor-
mation retrieval and text categorization. Notably, the former effort ranked nodes
based on a modified version of the PageRank algorithm.
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community detection on graph-of-words Our goal is to identify groups
or communities of words. Having constructed the collection-level Graph-of-Words,
we can now apply community detection algorithms (Fortunato, 2010).

In our case we use the Louvain method, a community detection algorithm for
non-overlapping groups described in the work of Blondel et al. (2008). Essentially
it is a fast modularity maximization approach, which iteratively optimizes local
communities until we reach optimal global modularity given some perturbations
to the current community state. The regularizer becomes:

Ωgow(θ) =
C∑
c=1

λ‖θc‖2 (4.19)

where c ranges over the C communities. Thus θc corresponds to the sub-vector of
θ such that the corresponding features are present in the community c. Note that
in this case we do not have overlapping groups, since we use a non-overlapping
version of the algorithm.

As we observe that the collection-level Graph-of-Words does not create well
separated communities of terms, overlapping community detection algorithms,
like the work of Xie et al. (2013) fail to identify “good" groups and do not offer
better results.

word2vec regularizer Mikolov et al. (2013b) proposed the word2vec method
for learning continuous vector representations of words from large text datasets.
Word2vec manages to capture morpho-syntactic and semantic aspects of words
and map them to a multi-dimensional vector space, giving the possibility of ap-
plying vector operations on them. We introduce another novel regularizer method,
by applying unsupervised clustering algorithms on the word2vec space.

clustering on word2vec Pre-trained word embedding models contain mil-
lions of words represented as vectors. Since word2vec succeeds in capturing
semantic and morpho-syntactic similarity between words, semantically related
words tend to group together and create large clusters that can be interpreted
as “topics".
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In order to extract these groups, we use a fast clustering algorithm such as K-
Means (MacQueen, 1967) and especially Minibatch K-means. The regularizer is:

Ωword2vec(θ) =
K∑
k=1

λ‖θk‖2 (4.20)

where K is the number of clusters we extracted from the word2vec space.

Clustering these semantic vectors is a very interesting area to study and could
be a research topic by itself. The actual clustering output could vary as we change
the number of clusters we are trying to identify. In this work we do not focus
on optimizing the clustering process, as the number of clustering algorithms and
parameters is huge.

4.4.2 Experiments

We evaluated our structured regularizers on several well-known datasets for the
text categorization task. Table 4.1 summarizes statistics about the ten datasets we
used in our experiments.

datasets From the 20 Newsgroups† dataset, we examine four binary classi-
fication tasks. We end up with binary classification problems, where we classify
a document according to two related categories: comp.sys: ibm.pc.hardware vs.
mac.hardware; rec.sport: baseball vs. hockey; sci: med vs. space and alt.atheism
vs. soc.religion.christian. We use the 20NG dataset from the scikit-learn‡ library
in Python.

sentiment analysis . The sentiment analysis datasets we examined include
movie reviews (Pang and Lee, 2004; Zaidan and Eisner, 2008)§, floor speeches
by U.S. Congressmen deciding “yea"/“nay" votes on the bill under discussion
(Thomas et al., 2006)§ and product reviews from Amazon (Blitzer et al., 2007)¶.

† http://qwone.com/~jason/20Newsgroups/
‡ https://scikit-learn.org/
§ http://www.cs.cornell.edu/~ainur/data.html
¶ http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Dataset Train Dev Test # Words # Sents

2
0
N

G

science 949 238 790 25787 16411

sports 957 240 796 21938 14997

religion 863 216 717 18822 18853

comp. 934 234 777 16282 10772

Se
nt

im
en

t
vote 1175 257 860 19813 43563

movie 1600 200 200 43800 49433

books 1440 360 200 21545 13806

dvd 1440 360 200 21086 13794

electr. 1440 360 200 10961 10227

kitch. 1440 360 200 9248 8998

Table 4.1: Descriptive statistics of the datasets.

experimental setup As features we use unigram frequency concatenated
with an additional unregularized bias term.

Logistic regression was only considered, because of its interpretation for L2 reg-
ularizers as Gaussian prior on the feature weights and following Sandler et al.
(2009), we considered a non-diagonal covariance matrix for L2 based on word
similarity before moving to group lasso as presented in the paper. We are not ex-
pecting a significant change in results with different loss functions as the proposed
regularizers are not log loss specific.

We reproduce standard regularizers like lasso, ridge, elastic and state-of-the-art
structured regularizers like sentence, LDA as baselines and compare them with
our proposed methods.

To extract LSI, LDA and word2vec groups we use the Gensim package (Řehůřek
and Sojka, 2010) in Python. For the learning part we used Matlab and specifically
code by Schmidt et al. (2007).

We split the training set in a stratified manner to retain the percentage of classes.
We use 80% of the data for training and 20% for validation.

All the hyperparameters are tuned on the development dataset, using accuracy
as the evaluation criterion. For lasso and ridge regularization, we choose λ from
{10

-2, 10
-1, 1, 10, 10

2}. For elastic net, we perform grid search on the same set of
values as ridge and lasso experiments for λridge and λlasso.
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dataset no reg. lasso ridge elastic
group lasso

LDA LSI sentence GoW word2vec
2
0
N

G

science 0.946 0.916 0.954 0.954 0.968 0.968*
0.942 0.967

* 0.968*

sports 0.908 0.907 0.925 0.920 0.959 0.964
* 0.966 0.959

*
0.946

*

religion 0.894 0.876 0.895 0.890 0.918 0.907
* 0.934 0.911

*
0.916

*

computer 0.846 0.843 0.869 0.856 0.891 0.885
*

0.904 0.885
* 0.911*

Se
nt

im
en

t

vote 0.606 0.643 0.616 0.622 0.658 0.653 0.656 0.640 0.651

movie 0.865 0.860 0.870 0.875 0.900 0.895 0.895 0.895 0.890

books 0.750 0.770 0.760 0.780 0.790 0.795 0.785 0.790 0.800
dvd 0.765 0.735 0.770 0.760 0.800 0.805*

0.785 0.795
*

0.795
*

electr. 0.790 0.800 0.800 0.825 0.800 0.815 0.805 0.820 0.815

kitch. 0.760 0.800 0.775 0.800 0.845 0.860*
0.855 0.840 0.855

*

Table 4.2: Accuracy results on the test sets. Bold font marks the best performance for a
dataset. * indicates statistical significance of improvement over lasso at p < 0.05

using micro sign test for one of our models LSI, GoW and word2vec (under-
lined).

For the LDA, LSI, sentence, Graph-of-Words (GoW), word2vec regularizers, we
perform grid search on the same set of values as ridge and lasso experiments
for the ρ, λglas, λlasso parameters. In the case we get the same accuracy on the
development data, the model with the highest sparsity is selected. For LDA we
set the number of topics to 1000 and we keep the 10 most probable words of each
topic as a group. For LSI we keep 1000 latent dimensions and we select the 10

most significant words per topic. For the clustering process on word2vec we ran
Minibatch-Kmeans for max 2000 clusters. For each word belonging to a cluster, we
also keep the top 5 or 10 nearest words so that we introduce overlapping groups.
The intuition behind this is that words can be part of multiple “concepts" or topics,
thus they can belong to many clusters.

results In Table 4.2 we report the results of our experiments on the aforemen-
tioned datasets, and we distinguish our proposed regularizers LSI, GoW, word2vec
with underlining. Our results are inline and confirm that of Yogatama and Smith
(2014a) showing the advantages of using structured regularizers in the text catego-
rization task. The group based regularizers perform systematically better than the
baseline ones.

We observe that the word2vec clustering based regularizers performs very well
- achieving best performance for three out of the ten data sets while it is quite fast
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dataset no reg. lasso ridge elastic
group lasso

LDA LSI sentence GoW word2vec
2

0
N

G

science 100 1 100 63 19 20 86 19 21

sports 100 1 100 5 60 11 6.4 55 44

religion 100 1 100 3 94 31 99 10 85

computer 100 2 100 7 40 35 77 38 18

Se
nt

im
en

t

vote 100 1 100 8 15 16 13 97 13

movie 100 1 100 59 72 81 55 90 62

books 100 3 100 14 41 74 72 90 99

dvd 100 2 100 28 64 8 8 58 64

electr. 100 4 100 6 10 8 43 8 9

kitch. 100 5 100 79 73 44 27 75 46

Table 4.3: Fraction (in %) of non-zero feature weights in each model for each dataset: the
smaller, the more compact the model.

Dataset GoW word2vec

2
0
N

G

science 79 691

sports 137 630

religion 35 639

computer 95 594

Table 4.4: Number of groups.

with regards to execution time as it appears in Table 4.5 (i. e., it is four to ten times
faster than the sentence based one).

The LSI based regularization, proposed for the first time in this thesis, performs
surprisingly well as it achieves the best performance for three of the ten datasets.
This is somehow explained by the fact that this method extracts the inherent di-
mensions that best represent the different semantics of the documents - as we see
as well in the anecdotal examples in Table 4.6, 4.7, 4.8. This method proves as well
very fast as it appears in Table 4.5 (i.e. it is three to sixty times faster than the
sentence based one).

The GoW based regularization although very fast, did not outperform the other
methods (while it has a very good performance in general). It remains to be seen
whether a more thorough parameter tuning and community detection algorithm
selection would improve further the accuracy of the method.
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4.4 regularizing text classification with clusters of words

Dataset lasso ridge elastic group lasso
LDA LSI sentence GoW word2vec

2
0
N

G

science 10 1.6 1.6 15 11 76 12 19

sports 12 3 3 7 20 67 5 9

religion 12 3 7 10 4 248 6 20

computer 7 1.4 0.8 8 6 43 5 10

Table 4.5: Time (in seconds) for learning with best hyperparameters.

= 0

piscataway combination jil@donuts0.uucp
jamie reading/seeing chambliss

left-handedness abilities lubin
acad sci obesity page erythromycin bottom

6= 0

and space the launch health for use that medical you
space cancer and nasa hiv health shuttle for tobacco that
cancer that research center space hiv aids are use theory
keyboard data telescope available are from system information space ftp

Table 4.6: Examples with LSI regularizer.

In Table 4.3 we present the feature space sizes retained by each of the regulariz-
ers for each dataset. As expected the lasso regularizer sets the vast majority of the
features’ weights to zero, and thus a very sparse feature space is generated. This
fact has as a consequence the significant decrease in accuracy performance. Our
proposed structured regularizers managed to perform better in most of the cases,
introducing more sparse models compared to the state-of-the-art regularizers.

time complexity Although certain types of structured regularizers improve
significantly the accuracy and address the problem of overfitting, they require a
notable amount of time in the learning process.

As seen in Yogatama and Smith (2014b), a considerable disadvantage is the need
of search for the optimal hyperparameters: λglas, λlasso , and ρ, whereas standard
baselines like lasso and ridge only have one hyperparameter and elastic net has
two.

Parallel grid search can be critical for finding the optimal set of hyperparameters,
since there is no dependency on each other, but again the process can be very
expensive. Especially for the case of the sentence regularizer, the process can be
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= 0

village town
edc fashionable trendy trendy fashionable
points guard guarding
crown title champion champions

6= 0

numbness tingling dizziness fevers
laryngitis bronchitis undergo undergoing undergoes undergone healed
mankind humanity civilization planet
nasa kunin lang tao kay kong

Table 4.7: Examples with word2vec regularizer.

= 0

islands inta spain galapagos canary originated
anodise advertises jewelry mercedes benzes diamond trendy
octave chanute lillienthal

6= 0

vibrational broiled relieving succumb spacewalks dna nf-psychiatry itself
commented usenet golded insects alternate self-consistent retrospect

Table 4.8: Examples with Graph-of-Words regularizer.

extremely slow due to two factors. First, the high number of sentences in text
data. Second, sentences consist of heavily overlapping groups, that include words
reappearing in one or more sentences. On the contrary, as it appears on Table
4.4, the number of clusters in the clustering based regularizers is significantly
smaller than that of the sentences - and definitely controlled by the designer -
thus resulting in much faster computation. The update of v still remains time
consuming for small datasets, even with parallelization.

Our proposed structured regularizers are considerably faster in reaching conver-
gence, since they offer a smaller number of groups with less overlapping between
words. For example, on the computer subset of the 20NG dataset, learning models
with the best hyperparameter value(s) for lasso, ridge, and elastic net took 7, 1.4,
and 0.8 seconds, respectively, on an Intel Xeon CPU E5-1607 3.00 GHz machine
with 4 cores and 128GB RAM. Given the best hyperparameter values the LSI reg-
ularizer takes 6 seconds to converge, the word2vec regularizer takes 10 seconds to
reach convergence, the Graph-of-Words takes 4 seconds while the sentence regu-
larizer requires 43 seconds. Table 4.5 summarizes required learning time on 20ng

datasets.
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4.5 orthogonal matching pursuit for text classification

We also need to consider the time needed to extract the groups. For word2vec,
Minibatch K-means requires 15 minutes to cluster the pre-trained vectors by Google.
The clustering is executed only once. Getting the clusters of words that belong to
the vocabulary of each dataset requires 20 minutes, but can be further optimized.
Finding also the communities in the Graph-of-Words approach with the Louvain
algorithm, is very fast and requires a few minutes depending on the size and
structure of the graph.

In Tables 4.6, 4.7, 4.8 we show examples of our proposed regularizers-removed
and -selected groups (in v) in the science subset of the 20NG dataset. Words with
weights (in w) of magnitude greater than 10

−3 are highlighted in red (sci.med)
and blue (sci.space).

In this section, we proposed novel structured regularizers for the task of text
classification based on word and graph embeddings. We show that our methods
significantly outperform standard baselines and in some datasets the state-of-art
approaches. Our regularizers, that exploit syntactic and semantic prior knowledge
are faster to train and at the same time retain the property of sparsity.

In the next section, we diverge from the group lasso architectures and examine
new algorithms for linguistic structured regularization.

4.5 orthogonal matching pursuit for text classification

In text classification, the problem of overfitting arises due to the high dimensional-
ity, making regularization essential. Although classic regularizers provide sparsity,
they fail to return highly accurate models. On the contrary, state-of-the-art group-
lasso regularizers provide better results at the expense of low sparsity.

In this section, we apply a greedy variable selection algorithm, called Orthogo-
nal Matching Pursuit (OMP), for the text classification task. We also extend stan-
dard group OMP by introducing overlapping Group OMP to handle overlapping
groups of features. Empirical analysis verifies that both OMP and overlapping
GOMP constitute powerful regularizers, able to produce effective and very sparse
models. Code and data are available online||.

|| github.com/y3nk0/OMP-for-Text-Classification
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4.5.1 Existing limitations

The overall high dimensionality of textual data is of major importance in text clas-
sification (also known as text categorization), opinion mining, noisy text normal-
ization and other NLP tasks. Since in most cases a high number of words occurs,
one can easily fall in the case of overfitting. Regularization remains a key element
for addressing overfitting in tasks like text classification, domain adaptation and
neural machine translation (Chen and Rosenfeld, 2000; Lu et al., 2016; Barone et
al., 2017). Along with better generalization capabilities, a proper scheme of reg-
ularization can also introduce sparsity. Recently, a number of text regularization
techniques have been proposed in the context of deep learning (Qian et al., 2017;
Ma et al., 2017; Zhang et al., 2017).

Apart from L1, L2 and elastic net, a very popular method for regularizing text
classification is group lasso. Yogatama and Smith (2014b) introduced a group
lasso variant to utilize groups of words for logistic models. Occasionally though,
these groupings are either not available or hard to be extracted. Moreover, no
ground truth groups of words exist to validate their quality. Furthermore, group
lasso can also fail to create sparse models. Lastly, there has been little work in
overlapping group regularization for text, since words can appear in different
groups, following the intuition that they can share multiple contexts or topics.

In this work, we apply two greedy variable selection techniques to the text clas-
sification task, Orthogonal Matching Pursuit (OMP) and overlapping group Or-
thogonal Matching Pursuit (GOMP). In the case of GOMP, we build upon work of
Lozano et al. (2011), where the authors propose the GOMP algorithm for Logistic
Regression for selecting relevant groups of features. More specifically, standard
GOMP is based on the assumption that a number of disjoint groups of features
are available. Nevertheless, in most cases, these groups are not disjoint. To over-
come this problem we extend GOMP to handle overlapping groups of features. We
empirically show that both OMP and overlapping GOMP provide highly accurate
models, while producing very sparse models compared to group lasso variants.

Our contribution can be summarized in the following novel aspects:

1. apply OMP to text classification;

2. introduce overlapping GOMP, moving from disjoint to overlapping groups;

64
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3. analyze their efficiency in accuracy and sparsity, compared to group lasso
variants and state-of-the-art deep learning models.

The rest of this section is organized as follows. Subection 4.5.2 formally intro-
duces the proposed OMP and overlapping GOMP algorithms for the text classifica-
tion problem. Experimental results are presented in Subsection 4.5.3. We conclude
our work in Subsection 4.5.4 by discussing possible future directions.

4.5.2 Proposed framework

The vanilla Matching Pursuit (MP) algorithm (Mallat and Zhang, 1993) has its
origin in signal processing where it is mainly used in the compressed sensing task.
Actually, it approximates the original “signal” iteratively improving the current
solution by minimizing the norm of the residual (approximation error). It can
also be considered as a forward greedy algorithm for feature selection (dictionary
learning problem), that at each iteration uses the correlation between the residual
and the candidate features to (greedily) decide which feature to add next. The
correlation between the residual and the candidate features is considered to be
the length of the orthogonal projection. Then, it subtracts off the correlated part
from the residual and performs the same procedure on the updated residual. The
algorithm terminates when the residual is lower than a predefined threshold. The
final solution is obtained by combining the selected features weighted by their
respective correlation values, which are calculated at each iteration.

Orthogonal Matching Pursuit (Pati et al., 1993) is one of the most famous ex-
tensions of the matching pursuit algorithm. Similar to MP, OMP can be used for
the dictionary learning task where it constitutes a competitive alternative to lasso
algorithm. The way it differs from the standard MP is that at every step, all the
coefficients extracted so far are updated, by computing the orthogonal projection
of the data onto the set of features selected so far. In this way, the newly derived
residual is orthogonal to not only the immediately selected feature at the current
iteration, but also to all the features that have already been selected. Therefore,
OMP never selects the same feature twice. Tropp (2004) provided a theoretical
analysis of OMP, which has been generalized by Zhang (2009) on the stochastic
noise case.
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Algorithm 2 Logistic-OMP

Input: X = [x1, ..., xN]> ∈ RN×d, y ∈ {−1, 1}N, K (budget), ε (precision), λ (regulariza-
tion factor).

Initialize: I = ∅, r(0) = y, k = 1

1: while |I |6 K do
2: j(k) = arg maxj/∈I

∣∣∣X>j r(k−1)
∣∣∣

3: if |X>
j(k)r

(k−1)|6 ε then
4: break
5: end if
6: I = I ∪ {j(k)}

7: θ(k) = argminθ
∑N
i=1
L(xi,θ, yi) + λ‖θ‖2

2
s.t. supp(θ) ⊆ I

8: r(k) = 1

1+exp{−Xθ(k)
}
− 1{y}

9: k += 1

10: end while
11: return θ(k), I

In the following part, we explain the main steps of the logistic OMP algorithm
in detail. Given a training set, we define X = [x1, ..., xN]> ∈ RN×d to be the (dic-
tionary) matrix of features (or variables) vectors, with each column Xj to represent
a feature, fj ∈ RN. Let also y = [y1, . . . , yN]> denote the response vector. For any
set of indices I, let XI denote a subset of features from X , such that feature fj is
included in XI if j ∈ I. Thus, XI = {fj, j ∈ I}, with the columns fj to be arranged
in ascending order.

OMP starts by setting the residual equal to the response vector, r(0) = y, assum-
ing that the set of indices I (contains the indices of the active features) is initially
empty. At each iteration k, OMP activates the feature that has the maximum cor-
relation with the residual r(k−1) (calculated in the previous step):

j(k) = arg max
j/∈I

∣∣∣X>j r(k−1)
∣∣∣ . (4.21)

Then, we incorporate the index j(k) to the set I, i. e., I = I ∪ {j(k)}. Afterwards, we
apply the ordinary logistic regression (LR) by considering only the active features.
More specifically, we get the optimal coefficients by minimizing the negative log
likelihood along with an L2 penalty term:

θ(k) = argmin
θ

N∑
i=1

L(xi,θ, yi) + λ‖θ‖2

2
,
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Best feature (word):

j(k) = argmaxj =2I

∣

∣X>
j r(k�1)

∣

∣

Logistic
regression

on active
features

Compute residual rk:

r(k) = 1
1+exp(�Xθ (k))

− 1(y)

Budget:
jIj ≥ K

r(0) = y

I = ;

r(k)

j(k)

I

θ
(k)k+ = 1

No

Yes

Final solution: θ(k)

Figure 4.2: OMP pipeline where X ∈ RN×d is the design matrix, y ∈ RN is the response
vector, K is our budget and I the set of active features.

s.t. supp(θ) ⊆ I (4.22)

where supp(θ) = {j : θj 6= 0}. Roughly speaking, the values of the coefficients
correspond to inactive features (indices) forced to be equal to zero.

Finally, we calculate the updated residual:

r(k) =
1

1 + exp{−Xθ(k)}
− 1{y}, (4.23)

where 1{y} , 1{yi ∈ {1}, ∀i ∈ {1, . . . , n}} indicates if instance xi belongs to class 1

or not. We repeat the process until the residual becomes smaller than a predefined
threshold, ε > 0, or a desired number of active features, K (budget), has been
selected. Through our empirical analysis we set ε = 0, examining only the number
of active features. An overview of logistic-OMP is given in Alg. 2. A detailed
analysis of the algorithm’s complexity is provided by Tropp and Gilbert (2007).

4.5.2.1 Overlapping Group OMP

The Group OMP (GOMP) algorithm was originally introduced by Swirszcz et al.
(2009) for linear regression models, and extended by Lozano et al. (2011) in order
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Algorithm 3 Logistic Overlapping GOMP

Input: X = [x1, ..., xN]> ∈ RN×d, y ∈ {−1, 1}N, {G1, . . . , GJ} (group structure), K (budget),
ε (precision), λ (regularization factor).

Initialize: I = ∅, r(0) = y, k = 1

1: while |I |6 K do

2: j(k) = arg maxj
1

|Gj|

∥∥∥X>Gjr(k−1)
∥∥∥2

2

3: if
∥∥∥∥X>G

j(k)
r(k−1)

∥∥∥∥2

2

6 ε then

4: break
5: end if
6: I = I ∪ {Gj(k) }

7: for i = 1 to J do
8: Gi = Gi \Gj(k)

9: end for
10: θ(k) = argminθ

∑N
i=1
L(xi,θ, yi) + λ‖θ‖2

2
s.t. supp(θ) ⊆ I

11: r(k) = 1

1+exp{−Xθ(k)
}
− 1{y}

12: k += 1

13: end while
14: return θ(k), I

to select groups of variables in logistic regression models. Following the notion
of group lasso, GOMP utilizes prior knowledge about groups of features in order
to penalize large weights in a collective way. Given that we have words sharing
some properties, we can leverage these grouping for regularization purposes. Fig-
ure 4.2 illustrates the complete text classification pipeline, including the GOMP
component, needed for the regularization part.

Similar to Lozano et al. (2011), let us assume that a natural grouping structure ex-
ists within the variables consisting of J groups XG1

, . . . ,XGJ , whereGi ⊂ {1, . . . , d},
and XGi ∈ RN×|Gi|. The standard GOMP algorithm also assumes that the groups
are disjoint, Gi ∩Gj = ∅ for i 6= j. We will remove this assumption later on, by
proposing the overlapping GOMP algorithm that is able to handle overlapping
groups of features. GOMP operates in the same way with OMP but instead of se-
lecting a single feature, it selects a group of features with the maximum correlation
between them and the residual:

j(k) = arg max
j

∥∥∥X>Gjr(k−1)
∥∥∥2

2

. (4.24)
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In the case where the groups are not orthonormalized (i. e., X>GjXGj = IGj ,
where IGj is the identity matrix of size R|Gj|×|Gj|), we select the best group based
on the next criterion:

j(k) = arg max
j

∣∣∣∣(r(k−1)
)>

XGj (X
>
Gj

XGj)
−1X>Gjr

(k−1)
∣∣∣∣ . (4.25)

During our empirical analysis, we have noticed that the aforementioned criteria
benefit large groups. This becomes apparent especially in the case where the
size of the groups is not balanced. In this way, groups with a large number of
“irrelevant” features are highly probable to be added. For instance, it is more
probable to add a group that consists of 2 good features and 100 bad features,
instead of a group that contains only 2 good features. To deal with situations like
this one, we consider the average correlation between the group’s features and the
residual:

j(k) = arg max
j

1

|Gj|

∥∥∥X>Gjr(k−1)
∥∥∥2

2

. (4.26)

Overlapping GOMP extends the standard GOMP in the case where the groups
of indices are overlapping, i. e., Gi ∩Gj 6= ∅ for i 6= j. The main difference with
GOMP is that each time a group becomes active, we remove its indices from each
inactive group: Gi = Gi \Gj(k) , ∀i ∈ {1, . . . , J}. In this way, the theoretical proper-
ties of GOMP hold also in the case of the overlapping GOMP algorithm. A sketch
of the overlapping GOMP is shown in Alg. 3.

Figure 4.2 illustrates schematically the pipeline of OMP.

4.5.3 Experiments

Next, we present the data, setup and results of our empirical analysis on the text
classification task. We also describe the algorithms used as baselines for compari-
son. To demonstrate the capabilities of the proposed OMP and GOMP algorithms
on the text classification task, we considered ten well-known datasets. In total, we
tested our method on ten binary classification tasks.

datasets We use the same datasets as the previous section for comparison
purposes. Table 4.1 summarizes statistics about the aforementioned datasets used
in our experiments. We choose small datasets intentionally, like Yogatama and
Smith (2014b), so that we can observe the regularization effect clearly.
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Dataset no reg lasso ridge elastic OMP
Group lasso regularizers

GOMP
LDA LSI sen GoW w2v

2
0
N

G

science 0.946 0.916 0.954 0.954 0.964
* 0.968 0.968*

0.942 0.967
* 0.968*

0.953
*

sports 0.908 0.907 0.925 0.920 0.949
*

0.959 0.964
* 0.966 0.959

*
0.946

*
0.951

*

religion 0.894 0.876 0.895 0.890 0.902
*

0.918 0.907
* 0.934 0.911

*
0.916

*
0.902

*

computer 0.846 0.843 0.869 0.856 0.876
*

0.891 0.885
*

0.904 0.885
* 0.911*

0.902
*

Se
nt

im
en

t

vote 0.606 0.643 0.616 0.622 0.684
*

0.658 0.653 0.656 0.640 0.651 0.687*

movie 0.865 0.860 0.870 0.875 0.860
* 0.900 0.895 0.895 0.895 0.890 0.850

books 0.750 0.770 0.760 0.780 0.800 0.790 0.795 0.785 0.790 0.800 0.805*

dvd 0.765 0.735 0.770 0.760 0.785 0.800 0.805
*

0.785 0.795
*

0.795
* 0.820*

electr. 0.790 0.800 0.800 0.825 0.830 0.800 0.815 0.805 0.820 0.815 0.800

kitch. 0.760 0.800 0.775 0.800 0.825 0.845 0.860*
0.855 0.840 0.855

*
0.830

Table 4.9: Accuracy on the test sets. Bold font marks the best performance for a dataset,
while * indicates statistical significance at p < 0.05 using micro sign test against
lasso. For GOMP, we use w2v clusters and add all unigram features as individ-
ual groups.

experimental setup In our setup, as features we use unigram frequency
concatenated with an additional bias term. We reproduce standard regularizers
like lasso, ridge, elastic and state-of-the-art structured regularizers like sentence,
LDA, GoW and w2v groups (Skianis et al., 2016a) as baselines and compare them
with the proposed OMP and GOMP.

parameter tuning All the hyperparameters are tuned on the development
dataset, using accuracy for evaluation. For lasso and ridge regularization, we
choose λ from 10{−2, 10

−1, 1, 10, 10
2}. For elastic net, we perform grid search on

the same set of values as ridge and lasso experiments for λridge and λlasso. For
group lasso, OMP and GOMP regularizers, we perform grid search on the same
set of parameters as ridge and lasso experiments. In the case we get the same
accuracy on the development data, the model with the highest sparsity is selected.
In GOMP we considered all individual features as separate groups of size one,
along with the w2v groups. Last but not least, in both OMP and GOMP the
maximum number of features, K(budget), is set to 2000.

results Table 4.9 reports the results of our experiments on the aforementioned
datasets. The empirical results reveal the advantages of using OMP or GOMP for
regularization in the text categorization task. The OMP regularizer performs sys-
tematically better than the baseline ones. More specifically, OMP outperforms the
lasso, ridge and elastic net regularizers in all datasets, as regards to the accuracy.
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Dataset no reg lasso ridge elastic OMP Group lasso regularizers GOMP
LDA LSI sen GoW w2v

2
0

N
G

science 100 1 100 63 2.7 19 20 86 19 21 5.8

sports 100 1 100 5 1.8 60 11 6.4 55 44 7.7

religion 100 1.1 100 3 1.5 94 31 99 10 85 1.5

computer 100 1.6 100 7 0.6 40 35 77 38 18 4.9

Se
nt

im
en

t

vote 100 0.1 100 8 5 15 16 13 97 13 1.5

movie 100 1.3 100 59 0.9 72 81 55 90 62 2.3

books 100 3.3 100 14 4.6 41 74 72 90 99 8.3

dvd 100 2 100 28 2.8 64 8 8 58 64 9

electr. 100 4 100 6 6.3 10 8 43 8 9 12

kitch. 100 4.5 100 79 4.3 73 44 27 75 46 6.5

Table 4.10: Model sizes (percentages of non-zero features in the resulting models). Bold
for best, blue for best group.

science lasso orbit, space, contribute, funding, landing
OMP space, orbit, moon, planets, scientifically

Table 4.11: Largest positive weights in lasso and OMP for the science subset of 20NG.

At the same time, the performance of OMP is quite close or even better to that
of structured regularizers. Actually, in the case of electronics data, the model
produced by OMP is the one with the highest accuracy. On the other hand, the
proposed overlapping GOMP regularizer outperforms all the other regularizers in
3 out of 10 datasets.

Another important observation is how GOMP performs with different types
of groups. GOMP only requires some “good" groups along with single features
in order to achieve good accuracy. Smaller groups provided by LDA, LSI and
w2v clusters provide a good solution and also fast computation, while others
(GoW communities) can produce similar results with slower learning times. This
phenomenon can be attributed to the different structure of groups. While LDA
and LSI have a large number of groups with small number of features in them
(1000 groups, 10 words per group), w2v clusters and GoW communities consist of
smaller number of groups with larger number of words belonging to each group.
Nevertheless, we have reached the conclusion that the selection of groups is not
crucial for the general performance of the proposed GOMP algorithm.

Table 4.10 shows the sparsity sizes of all the regularizers we tested. As it be-
comes apparent, both OMP and GOMP yield super-sparse models, with good
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Dataset CNN FastText Best OMP Best

(20eps) (100eps) or GOMP Lasso

2
0
N

G

science 0.935 0.958 0.964 0.968

sports 0.924 0.935 0.951 0.966

religion 0.934 0.898 0.902 0.934

computer 0.885 0.867 0.902 0.911
Se

nt
im

en
t

vote 0.651 0.643 0.687 0.658

movie 0.780 0.875 0.860 0.900

books 0.742 0.787 0.805 0.800

dvd 0.732 0.757 0.820 0.805

electr. 0.760 0.800 0.830 0.820

kitch. 0.805 0.845 0.830 0.860

Table 4.12: Comparison in test accuracy with state-of-the-art classifiers: CNN (Kim, 2014),
FastText (Joulin et al., 2017) with no pre-trained vectors. The proposed OMP
and GOMP algorithms produce the highest accurate model in 4 out of 10

datasets.

generalization capabilities. More specifically, OMP produces sparse spaces similar
to lasso, while GOMP keeps a significantly lower number of features compared to
the other structured regularizers. In group regularization, GOMP achieves both
best accuracy and sparsity in two datasets (vote & books), while group lasso only
in one (sports).

In Table 4.11 we demonstrate the ability of OMP to produce more discriminative
features compared to lasso by showing the largest weights and their respective
term.

Finally, in Table 4.12 we compare state-of-the-art group lasso classifiers with
deep learning architectures (Kim, 2014) with Dropout (Srivastava et al., 2014) for
regularization and FastText (Joulin et al., 2017). We show that group lasso regu-
larizers with simple logistic models remain very effective. Nevertheless, adding
pre-trained vectors in the deep learning techniques and performing parameter
tuning would definitely increase their performance against our models, but with
a significant cost in time complexity.

sparsity vs accuracy Figure 4.3 visualizes the accuracy vs. sparsity for
all datasets and all classifiers. We do that in order to identify the best models,
by both metrics. The desirable is for classifiers to belong in the top right corner,
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Figure 4.3: Accuracy vs sparsity on the test sets. Regularizers close to the top right corner
are preferred.

offering high accuracy and high sparsity at the same time. We observe that OMP
and GOMP tend to belong in the right parts of the plot, having very high sparsity,
often comparable to the aggressive lasso, even when they do not achieve the best
accuracies.

number of active features (atoms) In both OMP and GOMP algorithms,
the maximum desired number of active features (K, budget) was used as stopping
criterion. For instance, by setting K = 1000, the proposed methods return the
learned values that correspond to the first {100, 200, . . . , 1000} features, respectively.
Thus, we exploit the feedforward feature selection structures of OMP and GOMP.

Figure 4.4 presents the number of active features versus accuracy in the devel-
opment subsets of the 20NG dataset. It can be easily observed that after selecting
1000 active atoms, the accuracy stabilizes or even drops (overfitting problem). For
instance, the best number of active features are: i) science: 700, ii) sports: 1100,
iii) religion: 400 and iv) computer: 1500. The reason for selecting K = 2000 as
the number of features to examine was to provide a sufficient number for OMP
to reach a good accuracy while providing a super-sparse solution comparable to
lasso.

time complexity Although certain types of group lasso regularizers perform
well, they require a notable amount of time in the learning process.
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Figure 4.4: Accuracy vs. number of active atoms/features for OMP on 20NG data.

OMP offers fast learning time, given the hyperparameter values and the number
of atoms. For example, on the computer subset of the 20NG dataset, learning
models with the best hyperparameter value(s) for lasso, ridge, and elastic net took
7, 1.4, and 0.8 seconds, respectively, on a 4-core 3.00GHz CPU. On the other hand,
OMP requires only 4 seconds for training, making it even faster than lasso, while
providing a sparser model.

GOMP can have very slow learning time when adding the features as groups in-
dividually. This is due to the large number of groups that GOMP needs to explore
in order to extract the most “contributing" ones. If we consider GOMP without
the individual features as groups, then the learning process becomes faster, with
a clear decreasing effect on accuracy. In general, groups need to be well struc-
tured for GOMP to manage to surpass OMP and other state-of-the-art group lasso
regularizers.

The advantages of the proposed methods are: (1) OMP requires no prior struc-
tural knowledge, (2) producing more discriminative features and (3) fast with rel-
atively small number of dimensions.

Moreover, our implementation compared to the one of Lozano et al. (2011), pro-
vides the advantage of storing the weights and not having to recompute the whole
matrices from scratch.
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4.6 conclusion & future work

In the drawbacks of the methods: (1) OMP and GOMP are greedy algorithms,
thus GOMP gets slow when we add the features as individual groups and (2)
groups need to be “good".

4.5.4 Summary

In this part of the thesis, we introduced OMP and GOMP algorithms on the text
classification task. An extension of the standard GOMP algorithm was also pro-
posed, which is able to handle overlapping groups. The main advantages of both
OMP and GOMP compared to other regularization schemes are their simplicity
(greedy feedforward feature selection) and ability to produce accurate models
with good generalization capabilities. We have shown that the proposed classi-
fiers outperform standard baselines, as well as state-of-art structured regularizers
in various datasets. Similar to Mosci et al. (2010), Yen et al. (2017), and Xie et
al. (2017), our empirical analysis validates that regularization remains a highly
important topic, especially for deep learning models (Roth et al., 2017).

4.6 conclusion & future work

conclusion In this chapter we proposed new types of structured regularizers
to improve not only the accuracy but also the efficiency of the text categorization
task. We mainly focused on how to find and extract semantic and syntactic struc-
tures that lead to sparser feature spaces and therefore to faster learning times.
Overall, our results demonstrate that linguistic prior knowledge in the data can
be used to improve categorization performance for baseline Bag-of-Words models,
by mining inherent structures.

Furthermore, we introduced OMP and GOMP algorithms on the text classifi-
cation task. An extension of the standard GOMP algorithm was also proposed,
which is able to handle overlapping groups. The main advantages of both OMP
and GOMP compared to other regularization schemes are their simplicity (greedy
feedforward feature selection) and ability to produce accurate models with good
generalization capabilities, while introducing larger sparsity compared to group-
lasso variants.
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future work In the future, we would like to involve a more thorough investi-
gation on how to create and cluster graphs, i. e., covering weighted and/or signed
cases. Finding better clusters in the word2vec space is also a critical part. This is
not only restricted in finding the best number of clusters but what type of clus-
ters we are trying to extract. Gaussian Mixture Models (McLachlan and Basford,
1988) could be applied in order to capture overlapping groups at the cost of high
complexity. The intuition behind this idea is that words can be part of multiple
and diverse topics. Furthermore, topical word embeddings (Liu et al., 2015) can
be considered for regularization. This approach could enhance the regularization
on topic specific datasets.

As mentioned previously, groups are not always specified in advance or hard
to extract. Especially in environments involving text. To address this problem,
we plan to extend our work by learning automatically the groups with Simultane-
ous Orthogonal Matching Pursuit (Szlam et al., 2012). Another interesting future
direction would be to additionally penalize features inside the groups, similarly
to sparse group lasso. Moreover, it would be highly interesting to examine the
theoretical properties of overlapping GOMP. Similar to Mosci et al. (2010), Yen
et al. (2017), and Xie et al. (2017), our empirical analysis validates that regulariza-
tion remains a highly important topic and should be further studied for current
state-of-the-art deep learning approaches (Roth et al., 2017).

Modern neural network architectures are commonly augmented with an atten-
tion mechanism, which tells the network where to look within the input in order
to make the next prediction. Attention augmented architectures have been suc-
cessfully applied to many and diverse areas ranging from machine translation
(Bahdanau et al., 2015; Luong et al., 2015), to speech recognition (Chorowski et al.,
2015), image caption generation (Xu et al., 2015), textual entailment (Rocktäschel
et al., 2016; Martins and Astudillo, 2016), and sentence summarization (Rush et al.,
2015). In our current work (Skianis et al., 2019b), we study group lasso as an atten-
tion mechanism, which will be easily fitted to deep learning models for structured
regularization.
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5
S E T S & D I S TA N C E S I N W O R D E M B E D D I N G S

W ord embeddings have opened a new path in creating novel approaches
for addressing traditional problems in the NLP domain. Their use has
lead to state-of-the-art results in numerous tasks like document simi-

larity, text classification or in general language modelling. However, using word
embeddings to compare text documents remains a relatively unexplored topic –
with Word Mover’s Distance (WMD) being the prominent tool used so far. In this
chapter, we present a variety of tools that can further improve the computation
of distances between documents. We demonstrate that simple tricks, like stop-
word removal, cross document-topic comparison based on our proposed linguis-
tic groups and alternative convex metric learning techniques constitute powerful
tools that can boost WMD towards measuring distance between documents.

Apart from Word Mover’s Distance, one can utilize bipartite matching and net-
work max-flow, to compute distances between distributions. Assuming we have
access to textual data objects and label information, we can train a model based
on the previous approaches. In several domains, as well as NLP, data objects can
be decomposed into sets of simpler objects. It is then natural to represent each
object as the set of its components or parts. Many conventional machine learning
algorithms are unable to process this kind of representations, since sets may vary
in cardinality and elements lack a meaningful ordering. In this part, we present
a new neural network architecture called RepSet) that can handle examples that
are represented as sets of vectors. The proposed model computes the correspon-
dences between an input set and some hidden sets by solving a series of network
flow problems. This representation is then fed to a standard neural network archi-
tecture to produce the output. The architecture allows end-to-end gradient-based
learning. We demonstrate the proposed model on the text classification task and
we show that the proposed neural network achieves performance better or compa-
rable to state-of-the-art algorithms.
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5.1 introduction

Measuring distance between documents has always been a key component in
many natural language processing tasks, such as document classification (Bigi,
2003), machine translation (Zhang et al., 2016), question answering (Brokos et al.,
2016) and text generation (Chen et al., 2018). In order to quantify the mutual in-
formation that two objects can carry, we need to derive a similarity real-valued
function. For text, the objects can be two text documents, forming reviews, news
e.t.c. Nevertheless, the task can present various difficulties, making it not trivial;
whether two documents are similar or not, is not always clear and may vary from
application to application.

Following a naive, but effective in many cases, assumption, previous similar-
ity measures that make use of the vector space model (Salton et al., 1975), were
treating words in a document as if they were independent to each other. On the
contrary, the distributional hypothesis (Harris, 1954), stated that words that co-
occur in similar contexts and frequently, tend to have similar meanings and share
common semantics.

With the rise of neural networks and deep learning methods in the natural
language processing community (Bengio et al., 2003; Collobert and Weston, 2008),
word embeddings (Mikolov et al., 2013b) have had a huge impact in numerous
tasks. Apart from constituting the most popular input for CNN (Kim, 2014) and
LSTM (Johnson and Zhang, 2016), word embeddings have been used to compute
similarity between documents that might not carry any identical words.

5.2 related work

Following the idea of using Earth Mover’s Distance (EMD) to measure document
distance (Tao et al., 2012), recent work presented Word Mover’s Distance (Kusner
et al., 2015), a method for measuring distances between documents in the word
vector space. Word Mover’s Distance is based on solving the Monge-Kantorovich
problem, which is essentially finding the optimal transport (Villani, 2008) between
two distributions. Figure 5.1 shows a schematic illustration of the WMD metric.

Moving forward, a supervised version of Word Mover’s Distance has been in-
troduced (Huang et al., 2016), which employs metric learning techniques when
label knowledge exists. Their work is based on regularized optimal transport by
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Figure 5.1: The Word Mover’s Distance by Kusner et al. (2015).

Cuturi (2013), who presented an O(n2) algorithm. Their approaches have shown
unprecedented results in the task of kNN text classification.

Although Word Mover’s Distance is a powerful method for comparing two text
documents, it can fall into the case where a word is very common and thus not
contributing to measuring the distance. Moreover the exact computation of WMD
scales at O(n3), making it prohibitive for large collections of documents with big
vocabularies. Kusner et al. (2015) addressed this problem with a much faster
variant, the Relaxed WMD (RWMD), which is a lower bound of the exact solution
of WMD. Later, Atasu et al. (2017) provided a linear complexity algorithm for
computing Relaxed Word Mover’s Distance.

learning sets As we care for learning hidden representations, we examine
current state-of-the-art approaches, suitable not only for the task of text classifica-
tion, which are close to our proposed approach. In their seminal work, Rubner
et al. (2000) presented Earth Mover’s Distance (EMD) as a Metric for Image Re-
trieval. The EMD is based on the minimal cost that must be paid to transform
one distribution into the other, in a precise sense, and was first proposed for cer-
tain vision problems by Peleg et al. (1989). Kusner et al. (2015) built on this idea,
and used EMD for distance computation with word embeddings. Their method,
called Word Mover’s Distance, was the first way to compute distance between two
text documents, given a word vector space. Later, a Supervised version of Word
Mover’s Distance(Huang et al., 2016) was presented, that enabled to utilize label
information via metric learning (Xing et al., 2003; Goldberger et al., 2005; Yang
and Jin, 2006).
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Besides EMD for text similarity, several kernels between sets of vectors have
been proposed in the past to enable kernel methods (e. g., SVMs) to handle un-
ordered sets.

Most of these kernels estimate a probability distribution on each set of vec-
tors, and then derive their similarity using distribution-based comparison mea-
sures such as Fisher kernels (Jaakkola and Haussler, 1999), probability product
kernels (Jebara et al., 2004; Lyu, 2005) and the classical Bhattacharyya similarity
measure (Kondor and Jebara, 2003). Furthermore, there are also kernels that map
the vectors of each set to multi-resolution histograms, and then in order to find
an approximate correspondence between the two sets of vectors, they compare
the histograms with a weighted histogram intersection measure (Grauman and
Darrell, 2007b; Grauman and Darrell, 2007a). Such kernels have been applied to
different tasks such as to the problem of graph classification (Nikolentzos et al.,
2017a). Although very effective in several tasks, these kernel-based approaches
suffer from high computational complexity. In most cases, the complexity of com-
puting kernels between sets is quadratic in the number of vectors per set, while
when dealing with classification problems, the complexity of optimizing the SVM
classifier is quadratic in the number of training samples.

The past years witnessed a surge of interest in the area of neural networks
for sets (Qi et al., 2017a; Zaheer et al., 2017; Li et al., 2018; Vinyals et al., 2015;
Rezatofighi et al., 2017; Rezatofighi et al., 2018). These networks served mainly
as the answer to computer vision problems such as the automated classification
of point clouds. Although conceptually simple, the proposed architectures have
achieved state-of-the-art results on many tasks. PointNet (Qi et al., 2017a) and
DeepSets (Zaheer et al., 2017) transform the vectors of the sets (i. e., using several
layers) into new representations. They then apply some permutation-invariant
function to the emerging vectors to generate representations for the sets. PointNet
uses max-pooling to aggregate information across vectors, while DeepSets adds up
the representations of the vectors. The representation of the set is then passed on
to a standard architecture (e. g., fully connected layers, nonlinearities, etc). Point-
Net++ Qi et al., 2017b and SO-Net (Li et al., 2018) apply PointNet hierarchically
in order to better capture local structures. Two other recent works employ neural
networks to learn the parameters of the likelihood of each set (Rezatofighi et al.,
2017; Rezatofighi et al., 2018). Vinyals et al. treat in Vinyals et al. (2015) unordered
sets as ordered sequences and apply RNN models to them. However, they show
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that the output of the network is highly dependent on the order of the elements
of the set.

5.3 background

In this section, we set the background and preliminaries on which we based our
work on boosting Word Mover’s Distance and learning set representations via
bipartite matching.

5.3.1 Word Mover’s Distance

Let’s assume that we have access to a word embedding matrix X ∈ Rn×d, for ex-
ample pre-trained vectors by Mikolov et al. (2013b), for a finite size vocabulary of
n words. xi ∈ Rd represents the embedding of the i-th word in a d-dimensional
space. We assume that text documents are represented as normalized Bag-of-
Words vectors, d ∈ Rn. Word Mover’s Distance tries to embody the semantic
similarity between individual word pairs into the document distance metric. One
such measure of word dissimilarity is naturally provided by their Euclidean dis-
tance in the word embedding space.

The Word Mover’s Distance (WMD), utilizes this property of word2vec embed-
dings. We represent text documents as a weighted point cloud of embedded words.
The distance between two text documents A and B is the minimum cumulative dis-
tance that words from document A need to travel to match exactly the point cloud
of document B.

As Word Mover’s Distance consists of multiple components, several improve-
ment suggestions can be done. We observe that many tools can be of service, such
as:

(a) dimensionality reduction, where some of the dimensions are actually useful
making the computation faster,

(b) POS-tagging matching, matching by POS-tags,

(c) stopword removal, which stopwords to remove

(d) topic modelling, adding words that belong in the same topic
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Figure 5.2: Tools to boost WMD.

(e) clustering word embeddings,

(f) cross doc-topic comparison, adding neighbor words

(g) different embeddings, like the recently introduced Poincare (Nickel and Kiela,
2017), ELMo (Peters et al., 2018) and state-of-the-art BERT embeddings (De-
vlin et al., 2018),

(h) metric learning, assuming we have access to label information.

An illustration of the possible enhancing tools is shown in Figure 5.2.

topic extraction In order to extract topics from the word embedding space,
clustering in word vectors (Skianis et al., 2016a) may be applied to obtain groups
of words, which then can be used for regularizing logistic models in text classifi-
cation. Kim et al. (2017) utilizes Word Mover’s Distance to identify related words
when no direct matches are found between a query and a document. In recent
work, a topical distance approach (Witt et al., 2016) was attempted using word em-
beddings, by iteratively picking words from a vocabulary that closes the topical
gap between documents.
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Figure 5.3: Example of a bipartite graph between 2 sets with dimension 3. Green color
indicates that an edge belongs to the matching. The total cost is 8.93.

metric learning Metric or distance learning is a field covering both super-
vised and unsupervised techniques (Yang and Jin, 2006). As an extension of Word
Mover’s Distance, Supervised Word Mover’s Distance (Huang et al., 2016) was
presented, a method which utilized Neighborhood Component Analysis (NCA)
(Goldberger et al., 2005) along with word embeddings and documents labels.
Apart from NCA, there exists a plethora of popular methods for generalized Eu-
clidean metric learning. Information-Theoretic Metric Learning (ITML) (Davis et
al., 2007) learns a metric by minimizing a KL-divergence subject to generalized
Euclidean distance constraints.

5.3.2 Weighted Bipartite Matching

Apart from Earth Mover’s Distance, which is based on finding the optimal trans-
port, different techniques can be used for computing distance between two distri-
butions. For example, if we model the two sets as a bipartite graph, we can solve
the pairing problem with bipartite matching.

The maximum weighted bipartite matching is one of the most well–studied
problems in combinatorial optimization. The input of the problem is a weighted
bipartite graph G = (V, E). The set of nodes V can be decomposed into two disjoint
sets V1 and V2, i. e., V = V1 ∪ V2. Every edge e ∈ E connects a vertex in V1 to one
in V2. A matching M is a subset of edges such that each node in V appears in at
most one edge inM. The optimal solution to the problem can be interpreted as the
similarity between the two node sets V1 and V2. A bipartite graph has a natural
representation as a rectangular |V1|×|V2| matrix where the ijth component is equal
to the weight of the edge between the ith element of V1 and the jth element of V2

if that edge exists, otherwise equal to 0. Figure 5.3 illustrates a weighted bipartite
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Figure 5.4: Bipartite Graph Matching for two documents.

graph along with the optimal matching M. Green edges belong to the matching
M.

5.3.3 Weighted Bipartite Matching for Text

We present an example for weighted bipartite matching between two text docu-
ments. The nodes in the bipartite graph represent the words of the two documents,
and on top of the edges we can have as weights the similarity of their correspond-
ing vectors. We see that there is one-to-one matching only, making it much faster
than the Word Mover’s Distance approach. A schematic illustration is shown in
Figure 5.4.

5.4 boosting word mover’s distance

Our contribution is focused on studying the contribution of the following three
tools in the computation of WMD: vocabulary trimming with stopword removal,
cross document-topic comparison and convex metric learning methods.

First, by selecting specific stopwords (Manning et al., 1999) we see that they
play a significant role in the distance computation process. Next, with utilizing
cross document-topic comparison, we aim to make the comparison of two docu-
ments more meaningful by utilizing additional neighbour words. Finally, in order
to boost the supervised version of WMD (S-WMD), we apply two state-of-the-
art convex metric learning algorithms, Large Margin Nearest Neighbors (LMNN)
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Figure 5.5: Cross document-topic comparison schematic. DT1 stands for adding Doc1

words with Topics1.

(Weinberger and Saul, 2009), as well as Maximally Collapsing Metric Learning
(MCML) (Globerson and Roweis, 2006).

5.4.1 Stopword Removal

Vocabulary trimming or pruning can help us to get rid of insignificant words,
making the Relaxed WMD faster, while producing a better comparison between
documents. In this way, we can make the “travel cost” needed from one docu-
ment to another cheaper, faster and more effective, as the remaining words (after
trimming) are the actual words that contribute to the meaning. Stopwords are
in general category independent and thus the first that one could consider irrele-
vant. In recent work by Schofield et al. (2017), stopword removal has been studied
especially for the topic modelling task.

In the Word Mover’s Distance paper, Kusner et al. (2015) used the stopword
list provided by the SMART system (Salton, 1971), composed of 571 words. Stone
et al. (2010) introduced another stopword list for English, with 339 words. Later,
Puurula (2013) created a new stopword list with 988 words. Along this study, we
found more than 10 different stopword lists that are currently being used across
many machine learning and natural language processing tools.
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5.4.2 Cross Document-Topic Comparison

Words that compose documents are sometimes not adequate to indicate the topics
covered. Following this intuition, we augment the word space of each document
by adding neighbors of each word. That way, the documents become more descrip-
tive and carry more specific information. Our initial approach is to apply kNN
search for each word in a document. Then, we either add these words’ vectors
inside the document features, or create a centroid of the word’s neighbors and
add it as a “topic-word".

Nevertheless, looking for the nearest neighbors of each word inside the global
word vector space for every document is expensive. Thus, we apply clustering
in the word vector space beforehand, and then search for the nearest neighbors
of each word in the cluster that the word belongs to. Here we introduce the
concept of “topic-words", which we refer to either neighbors or centroids of a
word’s neighbors. In our settings, we have used hard k-means clustering. After
extracting these “topic-words", we cross compare with the Relaxed Word Mover’s
Distance approach. Finally, we quantify the distance as the mean of the previous
two RWMD distances. An illustration of our proposed scheme is shown in Figure
5.5.

5.4.3 Convex Metric Learning

We extend our work in supervised settings, similarly to Supervised Word’s Mover
Distance (Huang et al., 2016). Here, we propose to replace the Neighborhood Com-
ponent Analysis method, which includes a non-convex cost function (Goldberger
et al., 2005) with the following convex ones.

large margin nearest neighbors The Large Margin Nearest Neighbors
approach (LMNN) (Weinberger and Saul, 2009) is a convex loss metric that en-
courages inputs with similar labels to be close in a local region, and inputs of
different labels to be farther by a large margin. LMNN is an algorithm to learn
a Mahalanobis metric specifically to improve the classification error of k-nearest
neighbors (kNN) classification (Cover and Hart, 1967).

More specifically, let {(~xi, yi)}ni=1
denote a training set of n labeled examples with

inputs ~xi ∈ Rd and discrete (but not necessarily binary) class labels yi. We use
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Figure 5.6: The LMNN algorithm for k = 3 target neighbors by Weinberger and Saul (2009).

the binary matrix yij ∈ {0, 1} to indicate whether or not the labels yi and yj match.
Our goal is to learn a linear transformation L : Rd → Rd, which we will use to
compute squared distances as:

D(xi, xj) = ||L(~xi − ~xj)||2 (5.1)

Specifically, we want to learn the linear transformation that optimizes kNN classi-
fication when distances are measured in this way.

In addition to the class label yi, for each input ~xi we also specify k target neigh-
bors

ε(L) =
∑
ij

ηij||L(~xi − ~xj)||2+c
∑
ijl

ηij(1 − yil)[1 + ||L(~xi − ~xj)||2−||L(~xi − ~xl)||2]+ (5.2)

The second term in the cost function incorporates the idea of a margin. In
particular, for each input ~xi, the hinge loss is incurred by differently labeled inputs
whose distances do not exceed, by one absolute unit of distance, the distance from
input ~xi to any of its target neighbors. The cost function favors distance metrics in
which differently labeled inputs maintain a large margin of distance and do not
threaten to “invade" each other’s neighborhoods. We show a schematic illustration
of the LMNN approach in Figure 5.6 for an input with k = 3 target neighbors.
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The optimization of eq. 5.2 can be reformulated as an instance of semidefinite
programming (Vandenberghe and Boyd, 1996). A semidefinite program (SDP) is
a linear program with the additional constraint that a matrix whose elements are
linear in the unknown variables is required to be positive semidefinite. SDPs
are convex; thus, with this reformulation, the global minimum of eq. 5.2 can be
efficiently computed. To obtain the equivalent SDP, eq. 5.1 can be rewriten as:

D(~xi, ~xj) = (~xi − ~xj)>M(~xi − ~xj) (5.3)

where the matrix M = LTL, parameterizes the Mahalanobis distance metric in-
duced by the linear transformation L. Rewriting eq. 5.2 as an SDP in terms of
M is straightforward, since the first term is already linear in M = L>L and the
hinge loss can be “mimicked” by introducing slack variables ξij for all pairs of
differently labeled inputs (i.e., for all hi, ji such that yij = 0). The resulting SDP is
given by:

min
∑
ij

ηij(~xi − ~xj)>M(~xi − ~xj) + c
∑
ijl

ηij(1 − yil)ξijl

subject to:

(~xi − ~xj)>M(~xi − ~xj) − (~xi − ~xj)>M(~xi − ~xj) > 1 − ξijl

ξij > 0

M � 0

(5.4)

The last constraint M � 0 indicates that the matrix M is required to be positive
semidefinite.

maximally collapsing metric learning Maximally Collapsing Metric
Learning (MCML) (Globerson and Roweis, 2006) was introduced as a linear learn-
ing algorithm for quadratic Gaussian metrics (Mahalanobis distances) used in su-
pervised classification tasks. The method is based on the simple geometric intu-
ition that a good metric is one under which points in the same class are simultane-
ously near each other and far from points in the other classes. A convex optimiza-
tion problem is formulated, whose solution generates such a metric by trying to
collapse all instances within the same class to a single point, while pushing other
class instances infinitely far away.
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Given a set of n labeled examples (xi, yi), where xi ∈ Rd and yi ∈ {1 . . . k}, we
seek a similarity measure between two points in X space. We focus on Mahalanobis
form metrics

d(xi, xj|A) = dAij = (xi − xj)>A(xi − xj) (5.5)

where A is a positive semidefinite (PSD) matrix. Intuitively, what we want from
a good metric is that it makes elements of X in the same class look close whereas
those in different classes appear far. Their approach starts with the ideal case when
this is true in the most optimistic sense: same class points are at zero distance, and
different class points are infinitely far. Alternatively this can be viewed as mapping
x via a linear projection Wx(A = WTW), such that all points in the same class are
mapped into the same point. This intuition is related to the analysis of spectral
clustering (Ng et al., 2002), where the ideal case analysis of the algorithm results
in all same cluster points being mapped to a single point. To learn a metric which
approximates the ideal geometric setup described above, for each training point,
a conditional distribution over the points. For each xi a conditional distribution
over points i 6= jsuchthat

pA(j|i) =
1

Zi
exp−dAij =

exp−dAij∑
k6=i exp−dAik

i 6= j (5.6)

If all points in the same class were mapped to a single point and infinitely far
from points in different classes, we would have the ideal “bi-level” distribution:

p0(j|i) ∝

1 yi = yj

0 yi 6= yj

Furthermore, under very mild conditions, any set of points which achieves the
above distribution must have the desired geometry. In particular, assume there
are at least d̂ + 2 points in each class, where d̂ = rank[A] (note that d̂ 6 d). Then
pA(j|i) = p0(j|i)(∀i, j) implies that under A all points in the same class will be
mapped to a single point, infinitely far from other class points.

Thus it is evident to find a matrix A such that pA(j|i) is as close as possible to
p0(j|i). Then the KL divergence KL[p0|p] is minimized, as the objective is to match
distributions:

minA
∑
i

KL[p0(j|i)|pA(j|i)] s.t.A ∈ PSD (5.7)
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Dataset n Voc Avg |y|

Bbcsport 517 13,243 117 5

Twitter 2,176 6,344 9.9 3

Recipe 3,059 5,708 48.5 15

Ohsumed 3,999 31,789 59.2 10

Classic 4,965 24,277 38.6 4

Reuters 5,485 22,425 37.1 8

Amazon 5600 42063 45.0 4

20news 11293 29671 72 20

Table 5.1: Dataset statistics.

The authors use a first order gradient method, specifically the projected gradient
approach. At each iteration they take a small step in the direction of the negative
gradient of the objective function, followed by a projection back onto the PSD cone.
This projection is performed simply by taking the eigen-decomposition of A and
removing the components with negative eigenvalues.

Both methods carry the property of learning a metric where points in the same
class are simultaneously near each other and far from points in the other classes.

5.4.4 Experiments

We evaluate the proposed methods in the context of kNN classification on six
benchmark document categorization tasks:

1. Bbcsport: BBC sports articles between 2004- 2005,

2. Twitter: a set of tweets labeled with sentiments ‘positive’, ‘negative’, or
‘neutral’ (Sanders, 2011),

3. Recipe: a set of recipe procedure descriptions labeled by their region of
origin,

4. Ohsumed: a collection of medical abstracts categorized by different car-
diovascular disease groups (for computational efficiency we subsample the
dataset, using the first 10 classes),

5. Classic: sets of sentences from academic papers, labeled by publisher name,
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6. Reuters: a classic news dataset labeled by news topics (we use the 8-class
version with train/test split as described in Cachopo (2007)),

In Table 5.1 we present some statistics for the used datasets.

experimental setup For comparison purposes, we use the train/test splits
provided by previous work (Kusner et al., 2015). Datasets are pre-processed by
removing all words in the SMART stopword list (Salton, 1971), except Twitter. We
make use of the pre-trained version of word embeddings, offering more than three
million words/phrases (from Google News), trained using the skip-gram variant
of word2vec, (Mikolov et al., 2013b). Words that do not exist in the word2vec
pre-trained model vocabulary, are removed. For the stopword removal method,
on top of the SMART list removal, we use another stopword list (Stone et al.,
2010), consisting of 339 words, which is used in popular libraries like Gensim*

and spaCy†. In k-means clustering we tried a range of 50, 100, 200, 500 clusters,
with 500 giving best results..

results We evaluate our approaches against WMD (Kusner et al., 2015), LSI
(Deerwester et al., 1990), and Supervised WMD (Huang et al., 2016). The effective-
ness of the learned metrics is assessed by the kNN classification error.

Table 5.2 demonstrates results of our proposed “bag-of-tricks” to boost Word
Mover’s Distance. Our unsupervised approaches achieve state-of-the-art results
in four out of six datasets. Stopword removal with various resources can assist the
embeddings and reach the Supervised WMD accuracy in the case of the Twitter

dataset. As expected, removing unnecessary stopwords can help WMD dramati-
cally, especially in small size documents.

Next, adding neighbors of words that exist in a document, can further enhance
the “topical” expression and thus result in better distance computation. We ob-
served that, by incrementing a document with words that are close in the word
embedding space, we achieve better accuracy than traditional WMD or LSI ap-
proach in most cases. Utilizing prior clustering in word vectors can further boost
neighbor words that belong in semantically closer clusters or groups, especially in
very small or very large document sizes.

* https://radimrehurek.com/gensim/
† https://spacy.io/
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Bbcsport Twitter Recipe Ohsumed Classic Reuters

U
ns

up
er

vi
se

d
LSI 4.30 ± 0.60 31.70 ± 0.70 45.40 ± 0.50 44.20 6.70 ± 0.40 6.30

WMD 4.60 ± 0.70 28.70 ± 0.60 42.60 ± 0.30 44.50 2.88 ± 0.10 3.50

Stop RWMD 4.27 ±1.19 27.51 ± 1.00 43.98 ± 1.40 44.27 3.25 ± 0.50 5.25

All, 5nn 6.00±1.34 29.23 ± 1.09 42.52 ± 1.18 46.73 3.18 ± 0.44 6.26

All, 5nn, Mean 4.00 ± 1.55 28.58 ± 2.29 42.53 ± 0.67 43.90 3.08 ± 0.62 5.76

k-m, 5nn 5.91 ± 2.65 28.56 ± 1.20 42.23 ± 1.15 46.50 2.98 ± 0.66 4.71

k-m, 5nn, Mean 3.82 ± 1.72 28.50 ± 1.51 41.95 ± 1.04 44.05 3.08 ± 0.51 4.57

Su
pe

rv
is

ed S-WMD (NCA) 2.10 ± 0.50 27.50 ± 0.50 39.20 ± 0.30 34.30 3.20 ± 0.20 3.20

LMNN 1.73 ± 0.67 28.86 ± 2.22 40.88 ± 1.88 39.59 2.76 ± 0.30 4.02

MCML 2.45 ± 1.27 27.15 ± 1.36 38.93 ± 1.24 42.38 3.56 ± 0.49 2.92

Table 5.2: Comparison in kNN test error(%) to LSI, WMD and S-WMD. Blue shows best
results in unsupervised methods and bold indicates best result for a dataset.

Finally, suggesting LMNN and MCML, as convex minimization algorithms for
initializing Supervised WMD, provided the best results across five datasets, due to
their convex nature. While MCML achieved very good performance, its training
required a notable amount of time, compared to LMNN. In particular, our goal
was to signify the potential of alternative metric learning methods as one of the
most intriguing components of Supervised WMD. The final results show that the
supervised version of WMD requires further investigation, since a small change
in the initialization part affected the computation.

5.5 neural networks for learning set representations

In a variety of domains, complex data objects can be expressed as compositions of
other, simpler objects. These simpler objects naturally correspond to the parts or
components of the complex objects. For instance, in natural language processing,
documents may be represented by sets of word embeddings. Likewise, in graph
mining, a graph may be viewed as a set of vectors where these vectors correspond
to the embeddings of its nodes. In computer vision, images may be described
by local features extracted from different regions of the image. In such scenarios,
one set of feature vectors denotes a single instance of a particular class of interest
(an object, document, graph, etc.). Performing machine learning tasks on such
types of objects (e.g., set classification, set regression, etc.) is very challenging.
While typical machine learning algorithms are designed for fixed dimensional data
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instances, the cardinalities of these sets are not fixed, but they are allowed to vary.
Furthermore, the components of the sets usually do not have an inherent ordering.
Hence, machine learning algorithms have to be invariant to permutations of these
components.

Traditionally, the most common approach to the problem is to define a dis-
tance/similarity measure or kernel that finds a correspondence between a pair of
sets, and to combine it with an instance-based machine learning algorithm such
as kNN or SVM. This approach has dominated the field, and has achieved state-
of-the-art results on many datasets. However, its main disadvantage is that it is a
two-step approach. Data representation and learning are independent from each
other. Ideally, we would like to have an end-to-end approach. Besides the above
problem, these methods usually suffer from high computational and memory com-
plexity since they compare all sets to each other.

In recent years, neural network architectures have proven extremely successful
on a wide variety of tasks, notably in computer vision, in natural language pro-
cessing, and in graph mining. One of the main reasons of the success of neural
networks is that the representation of data is adapted to the task at hand. Specif-
ically, recent neural network models are end-to-end trainable, and they generate
features that are suitable for the task at hand. Most models that operate on sets
usually update the representations of the components of the set using some ar-
chitectures, typically a stack of fully connected layers. And then, they apply a
permutation invariant function to the updated component representations to ob-
tain a representation for the set. Although these networks have proven successful
in several tasks, they usually employ very simple permutation invariant functions
such as the sum or the average of the representations of the components. This may
potentially limit the expressive power of these architectures.

In this part, we propose a novel neural network architecture for performing
machine learning tasks on sets of vectors. The network is capable of generating
representations for unordered, variable-sized feature sets. Interestingly, the pro-
posed model produces exactly the same output for all possible permutations of a
set of vectors.

To achieve that, we generate a number of hidden sets and we compare the in-
put set with these sets using a network flow algorithm such as bipartite matching
(BM). The outputs of the network flow algorithm form the penultimate layer and
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are passed to a fully-connected layer which produces the output. Since the em-
ployed network flow algorithms are differentiable, we can update these hidden
sets during training with backpropagation. Hence, the proposed neural network
is end-to-end trainable, while the hidden sets are different for each problem con-
sidered. Deeper models can be obtained by stacking more fully-connected layers
one after another. We demonstrate the proposed architecture in a variety of clas-
sification tasks: object recognition from sets of points that define the shape of
objects, text categorization from sets of word embeddings, and graph classifica-
tion from bags of node embeddings. The results show that the proposed model
produces better or competitive results with state-of-the-art techniques, while its
time complexity remains attractive.

Our main contributions are summarized as follows:

• We propose a novel architecture, RepSet, for performing machine learning
on sets which, in contrast to traditional approaches, is capable of adapting
data representation to the task at hand.

• We also propose a relaxed version of the previous method, called Approx-
RepSet, for large data volumes, higher dimensions and bigger document
sizes.

• We evaluate the proposed architecture on several benchmark datasets, and
achieve state-of-the-art performance.

5.5.1 Methodology

Conventional machine learning algorithms are designed to operate on fixed-size
feature vectors, and they are thus unable to handle sets. In our setting, each ex-
ample is represented as a collection X = {v1, v2, . . . , vn} of d-dimensional vectors,
vi ∈ Rd. Note that examples are allowed to vary in the number of elements.
Hence, it is not necessary that all examples comprise of exactly n components.
Since our input is a set X = {v1, v2, . . . , vn}, vi ∈ Rd, our input domain is the
power set X = 2

Rd , and we would like to design an architecture whose output
would be the same regardless of the ordering of the elements of X . Clearly, to
achieve that, a permutation invariant function is necessary to be introduced at
some layer of the architecture. In fact, the model that we propose consists sim-
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ply of standard fully-connected layers along with a permutation invariant layer.
Hence, we next present that permutation invariant layer in detail.

In this part, we propose a novel permutation invariant layer which capitalizes on
well-established concepts from flows and matchings in graphs. The proposed layer
contains m hidden sets Y1, Y2, . . . , Ym of d-dimensional vectors. These sets may
have different cardinalities and their components are trainable, i. e., the elements
of a hidden set Yi correspond to the rows of a trainable matrix Wi. Therefore, each
column of matrix Wi is a vector u ∈ Yi.

A natural way to measure the similarity between the input set and each one of
the hidden sets is by comparing their building blocks, i. e., their components. To
achieve that, we capitalize on network flow algorithms. Specifically, we use the
bipartite matching algorithm to compute a correspondence between the elements
of the input set X and the elements of each hidden set Yi.

In our setting, the input set X corresponds to set V1, the hidden set Yi corre-
sponds to set V2, and the bipartite graph is fully connected, i. e., every element of
V1 is connected to all the elements of V2. The weight of each edge is the result of
a differentiable function f on the representations of the edge’s two endpoints.

Formally, given an input set of vectors, X = {v1, v2, . . . , vk1
} and a hidden set

Yi = {u1,u2, . . . ,uk2
}, we can obtain the maximum matching between the elements

of the two sets by solving the following linear program:

max
k1∑
i=1

k2∑
j=1

xijf(vi,uj)

subject to
k1∑
i=1

xij 6 1 ∀j ∈ {1, . . . , k2}

k2∑
j=1

xij 6 1 ∀i ∈ {1, . . . , k1}

xij > 0 ∀i ∈ {1, . . . , k1}, ∀j ∈ {1, . . . , k2}

(5.8)

where f(vi,uj) is, as mentioned above, a differentiable function, and xij = 1 if
component i of X is assigned to component j of Yi and 0 otherwise. In our exper-
iments, we have defined f(vi,uj) as the inner product between the two vectors vi,
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Figure 5.7: Our RepSet architecture.

and uj followed by the ReLU activation function. Hence, f(vi, uj) = ReLU(v>i uj).
We further define the matrix G(i) for each set Yi such as G(i)

jk = f(vj, vk).

We also define the matrix D(i) ∈ Rk1×k2 such as D(i)
jk = xjk. Given an input

set X and the m hidden sets Y1, Y2, . . . , Ym, we formulate m different bipartite
matching (BM) problems, and by solving all m of them, we end up with an m-
dimensional vector vX which corresponds to the hidden representation of set X .
This m-dimensional vector can be used as features for different machine learning
tasks such as set regression or set classification. For instance, in the case of a set
classification with c classes, the output is computed as follows:

pX = softmax(W(c)vX + b(c)) (5.9)

With W(c) ∈ Rm×c trainable matrix and b(c) ∈ Rc being the bias term. We use the
negative log likelihood of the correct labels as training loss:

L = −
∑
ci∈c

δcX(ci) log pXci (5.10)

where i is the class label of set X . Note that we can create a deeper architecture
by adding more fully-connected layers. In Figure 5.7 we present an illustration of
our proposed architecture.

As mentioned above, a constraint that the neural network is necessary to satisfy
is to be invariant under any permutation of the elements of the input set. Our
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next theoretical result shows that the proposed model generates the same output
for all n! permutations of the elements of X .

Theorem 5.1. Let X be a set having elements from a countable or uncountable universe.
The proposed architecture is invariant to the permutation of elements in X .

Proof. We set Πn be the set of all permutations of the integers from 1 to n. Let’s
pick π ∈ Πk1

and apply it to the set X . The bipartite matching problem then
becomes :

max
k1∑
i=1

k2∑
j=1

xijf(vπ(i),uj)

subject to
k1∑
i=1

xij 6 1 ∀j ∈ {1, . . . , k2}

k2∑
j=1

xij 6 1 ∀i ∈ {1, . . . , k1}

xij > 0 ∀i ∈ {1, . . . , k1}, ∀j ∈ {1, . . . , k2}

(5.11)

since the sum of the elements of a whole set is permutation invariant it ensures
that for every permutations in Πk1

applied to xij the constraints will remain the
same.
Moreover:

k1∑
i=1

k2∑
j=1

xijf(vπ(i),uj) =
k1∑
i=1

k2∑
j=1

xπ−1(i)jf(vi,uj) (5.12)

the set giving the optimal solution of problem (5.8), say {x∗π−1(i)j, ∀i ∈ {1, . . . , k1}, ∀j ∈
{1, . . . , k2}} provides the same maximal solution as problem (5.11) modulo one the
permutation π. As those arguments providing the same maximum for both prob-
lems it ensures the permutation invariance of the bipartite matching.

Let’s now focus on the gradient of the loss:

∂L

∂W(c)
j

= pj − yj (5.13)
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where W(c)
j is the jth row of W(c). Before going any further, we also need to

define the following differentiable function:

g(W(k)) =
k1∑
i=1

k2∑
j=1

D(k)∗
ij f(vi,u

(k)
j ) (5.14)

where D(k)∗ is the arg max of the optimisation problem (5.8) for the corresponding
Yk.

∂L

∂W(k) =
∂L

∂W(c)
k

∂W(c)
k

∂W(k) = (pk − yk)
∂W(c)

k

∂W(k)

= (pk − yk)
∂

∂W(k)σ(g(W(k)))

= (pk − yk)σ(g(W(k)))(1 − σ(g(W(k))))
∂

∂W(k)g(W(k)).

then

∂

∂W(k)g(W(k)) =
∂

∂W(k) tr(D
(k)∗>G(k)) (5.15)

We consider as X the matrix representation of set X . Since we have G(k) =
ReLU(XW) the points that have been nullified by the ReLU function during the
forward pass are stored as zero values in the optimal solution D(k)∗. Indeed, no
edge was created whenever the value of the dot product was negative. Then none
of these pairs have been used during the forward pass. This yields :

∂

∂W(k)g(W(k)) =
∂

∂W(k) tr(D
(k)∗>XW(k)) (5.16)

∂

∂W(k)g(W(k)) = X>D(k)∗ (5.17)

Which finally gives:

∂L

∂W(k) = (pk − yk)σ(g(W(k)))(1 − σ(g(W(k))))X>D(k)∗ (5.18)

The major weakness of the above architecture is its computational complexity.
Computing a maximum cardinality matching in a weighted bipartite graph with
n vertices and m edges takes time O(mn+n2 logn), using the classical Hungarian
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algorithm. This prohibits the proposed model from being applied to very large
datasets. To account for that, we next present an approximation of the bipartite
matching problem which involves operations that can be performed on a GPU,
allowing thus efficient implementations.

More specifically, given an input set of vectors, X = {v1, v2, . . . , vk1
} and a hidden

set Yi = {u1,u2, . . . ,uk2
}, first we identify which of the two sets has the highest

cardinality. If |X|> |Yi|, we solve the following linear program:

max
k1∑
i=1

k2∑
j=1

xijf(vi,uj)

subject to
k1∑
i=1

xij 6 1 ∀j ∈ {1, . . . , k2}

xij > 0 ∀i ∈ {1, . . . , k1}, ∀j ∈ {1, . . . , k2}

(5.19)

Conversely, if |X|< |Yi|, then we replace the first constraint with the following∑k2

j=1
xij 6 1 ∀i ∈ {1, . . . , k1}. This relaxed problem must yield an upper-bound

to the Bipartite Matching problem as any solution satisfying the it must remain
feasible if one constraint is removed.

Proposition 5.1. The optimization problem defined in Equation 5.19 is an upper bound
to the bipartite matching problem defined in Equation 5.8

Proof. We define an optimal solution to the relaxed problem, namely D∗, such as:

D∗ij =

1 if i = arg maxi f(vi, uj)

0 otherwise

The relaxed problem actually enables us to pick an edge of the bipartite graph
with weight f(vi, uj), even if we already picked another one with sink uj. The
optimality of this solution then comes from the following fact. We always pick
the maximal weight for every pair of nodes, regardless if it was already picked
from another one on the restricted side of the bipartite graph. Then, with i∗ =
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arg maxi f(vi, uj), the optimality of this solution follows for non relaxed problem.
As with any D feasible solution subject to both constraints, for any j we have:

k1∑
i=1

Dijf(vi,uj) 6
k1∑
i=1

Dijf(vi,uj∗)

= f(vi,uj∗)
k1∑
i=1

Dij

6 f(vi,uj∗) =
k1∑
i=1

D∗ijf(vi,uj)

(5.20)

Therefore, D∗ must yield a maximal objective value for the bipartite matching
problem.

5.5.2 Experiments

datasets As previously, we evaluate the proposed methods in the context of
kNN classification on six benchmark document categorization tasks: (1) Bbcsport:
BBC sports articles between 2004-2005; (2) Twitter: a set of tweets labeled with
sentiments ‘positive’, ‘negative’, or ‘neutral’; (3) Recipe: a set of recipe procedure
descriptions labeled by their region of origin; (4) Ohsumed: a collection of med-
ical abstracts; (5) Classic: sets of sentences from academic papers, labeled by
publisher name; (6) Reuters: a classic news dataset labeled by news topics (Ca-
chopo, 2007); (7) Amazon: a set of Amazon reviews which are labeled by category
product in books, dvd, electronics, kitchen (as opposed to by sentiment); (8) 20ng:
news articles classified into 20 different categories (we use the “bydate” train/test
split by Cachopo (2007)). We refer to Table 5.1 for datasets’ statistics.

experimental setup We preprocess all datasets by removing all words in
the SMART stopword list (Salton, 1971) like the configuration of Kusner et al.
(2015). For the size of latent sets as well as their document size, we choose between
{10, 20, 30, 50, 100}. We also examine different batch sizes ranging in {8, 16, 32, 64}.
For optimization, the learning rate was set to 0.01.
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Bbcsport Twitter Recipe Ohsumed Classic Reuters Amazon 20ng

LSI 4.30 ± 0.60 31.70 ± 0.70 45.40 ± 0.50 44.20 6.70 ± 0.40 6.30 9.30 ± 0.40 28.90

WMD 4.60 ± 0.70 28.70 ± 0.60 42.60 ± 0.30 44.50 2.88 ± 0.10 3.50 7.40 ± 0.30 26.80

S-WMD 2.10 ± 0.50 27.50 ± 0.50 39.20 ± 0.30 34.30 3.20 ± 0.20 3.20 5.80 ± 0.10 26.80

DeepSets 25.45 ± 20.1 29.66 ± 1.62 70.25 71.53 5.95 ± 1.50 10.00 8.58 ± 0.67 38.88

NN-mean 10.09 ± 2.62 31.56 ± 1.53 64.30 ± 7.30 45.37 5.35 ± 0.75 11.37 13.66 ± 3.16 38.40

NN-max 2.18 ± 1.75 30.27 ± 1.26 43.47 ± 1.05 35.88 4.21 ± 0.11 4.33 7.55 ± 0.63 32.15

NN-attention 4.72 ± 0.97 29.09 ± 0.62 43.18 ± 1.22 31.36 4.42 ± 0.73 3.97 6.92 ± 0.51 28.73

RepSet 2.00 ± 0.89 25.42 ± 1.10 38.57 ± 0.83 33.88 3.35 ± 0.32 3.15 5.29 ± 0.28 22.98
Approx 4.27 ± 1.73 27.40 ± 1.95 40.94 ± 0.40 35.94 3.76 ± 0.45 2.83 5.69 ± 0.40 23.82

Table 5.3: Comparison in kNN test error(%). Bold shows best results.

results We observe that RepSet achieves comparable to state-of-the-art tech-
niques like WMD, LSI, Supervised WMD, DeepSets and attention models. This
is because of its power to learn the hidden representations based on the distances
computed by the weighted bipartite matching. RepSet performs better in 7 out
of 8 text classification datasets. Surprisingly, the approximate algorithm, Approx-
RepSet, performed better than the exact RepSet for the Reuters dataset. This is
because ApproxRepSet is significantly faster than the exact version and thus with
small parameter tuning we had better results. Since the computation of the ex-
act RepSet in Matlab was slow, we did not have the time to perform extensive
parameter tuning.

It is remarkable that our RepSet model performed better than the state-of-the-
art distance-based Supervised Word Mover’s Distance, which involves complex
metric learning and exhaustive parameter tuning. In 4 datasets, the Supervised
WMD is surpassed even by our approximate RepSet, with a significant smaller
complexity.

Table 5.3 shows the average classification error of the proposed models and
those of the baselines. On all datasets except two (OHSUMED, CLASSIC), the
proposed model outperforms the baselines. In some cases, the gains in accu-
racy over the best performing competitors are considerable. For instance, on the
20NG, TWITTER, and RECIPE datasets, RepSet achieves respective absolute im-
provements of 3.82%, 2.08% and 0.63% in accuracy over the best competitor, the
S-WMD method. Furthermore, the proposed model outperforms DeepSets on all
datasets, and on most of them by wide margins. Overall, it is clear from Table ??
that RepSet is superior to the other methods in the text categorization task. Regard-
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Hidden Terms similar to Terms similar to
set elements of hidden sets centroids of hidden sets

1 chelsea, football, striker, club, champions footballing

2 qualify, madrid, arsenal, striker, united, france ARSENAL_Wenger

3 olympic, athlete, olympics, sport, pentathlon Olympic_Medalist

4 penalty, cup, rugby, coach, goal rugby

5 match, playing, batsman, batting, striker batsman

Table 5.4: Terms of the employed pre-trained model that are most similar to the elements
and centroids of elements of 5 hidden sets.

ing the two variants of the proposed architecture, the model that solves exactly the
bipartite matching problem (RepSet) outperforms the model that approximates it
(ApproxRepSet) on all datasets except from REUTERS. However, on most datasets
the difference in performance is not large. Hence, although less powerful, the ap-
proximate model is still capable of learning expressive representations of sets, and
it can thus provide the means for tackling computationally challenging tasks.

We should mention at this point that besides effective, the proposed model is
also highly interpretable. For instance, in the text categorization setting, the ele-
ments of each hidden set can be regarded as the terms of hidden documents which
are likely to be related to the topics of the different classes. To experimentally ver-
ify that, we trained a model with 50 hidden sets on the BBCSPORT dataset. Each
hidden set consisted of 20 vectors. We found the terms that are closer to these
vectors and then computed the centroid for 5 of the hidden sets. Table 5.4 shows
the terms of the pre-trained model that were found to be most similar (using co-
sine similarity), with respect to the vectors and centroids. Clearly, the centroids
of these 5 hidden sets are close to terms that are related to sports. Interestingly,
some of these terms correspond to cricket positions, as well as to names of famous
soccer players.

Apart from text classification, we tested our approach also on the graph classifi-
cation task, getting also state-of-the-art results. As this application falls out of the
scope of this Ph.D. thesis, we point the reader to our paper.

runtime analysis To evaluate the runtime performance and scalability of
the proposed models, we created a series of synthetic datasets and measured how
the average running time per epoch varies with respect to the parameters of the
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Figure 5.8: Runtimes with respect to the number of hidden sets m, the size of the hidden
sets |Yi| (left) and embeddings with different dimensions (right).

model. Figure 5.8 illustrates the running time of RepSet and ApproxRepSet as a
function of the size of the hidden sets |Yi|, i = 1, . . . ,m (top left) and as a function
of the number of hidden sets m (bottom left). Note that for RepSet, training was
performed on an Intel Xeon E5 − 1607 CPU (4 threads), while for ApproxRepSet,
it was performed on an NVIDIA Titan Xp GPU. As expected, we observe that
RepSet is more computationally expensive than ApproxRepSet, while its running
time increases significantly as the size and the number of hidden sets increase.
On the other hand, the values of these parameters do not have a large impact on
the running time of ApproxRepSet. We also evaluate (Figure 5.8 (right)) how the
proposed models scale as the dimensionality of the vectors contained in the sets
increases and compare them against the DeepSets model. DeepSets is the fastest
model, followed by ApproxRepSet. The running times of both these models are
much smaller than that of RepSet, while they also grow very slowly as the dimen-
sionality of vectors increases. Conversely, the running time of RepSet increases
notably especially for dimensionalities larger than 100. We also examine in Figure
5.9 how the running time of the three models varies with respect to the number of
input samplesN (left) and to their cardinality |Xi|, i = 1, . . . , N (right). Surprisingly,
we find that the running time of RepSet grows slowly as the number of samples
increases. On the other hand, it increases significantly as the the cardinality of
these samples increases. The running times of DeepSets and ApproxRepSet are
again much lower than that of RepSet, and grow only slightly as the number of
samples and their cardinality increase.
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Figure 5.9: Runtimes with respect to the number of input sets N (left) and the size of the
input sets |Xi| (right).

sensitivity analysis The proposed RepSet and ApproxRepSet models in-
volve two main parameters: (1) the number of hidden sets m, and (2) the car-
dinalities of the hidden sets |Yi|, i = 1, . . . ,m. We next investigate how these two
parameters influence the performance of the RepSet model. Specifically, in Figures
5.10 and 5.11, we examine how the different choices of these parameters affect the
performance of RepSet on the TWITTER and RECIPE datasets, respectively. We
measure the test error as a function of the two parameters. Note that each hidden
set Yi can have a different cardinality compared to the other sets. However, we set
the cardinalities of all hidden sets to the same value. We observe that on TWITTER,
the number of hidden sets m does not have a large impact on the performance, es-
pecially for small cardinalities of the hidden sets (|Yi|6 50). For most cardinalities,
the test error is within 1% to 3% when varying this parameter. Furthermore, in
most cases, the best performance is attained when the number of hidden sets is
small (m 6 20). Similar behavior is also observed for the second parameter on the
TWITTER dataset. For most values of m, the test error changes only slightly when
varying the cardinalities of the hidden sets. For m > 50, the model produces best
results when the cardinalities of the hidden sets |Yi| are close to 20. On the other
hand, for small values of m, the model yields good performance even when the
cardinalities of the hidden sets |Yi| are large. On the RECIPE dataset, both param-
eters have a higher impact on the performance of the RepSet model. In general,
small values ofm lead to higher test error than larger values ofm. For most values
of |Yi|, values of m between 20 and 50 result in the lowest test error. As regards the
size of the hidden sets |Yi|, there is no consistency in the obtained results. Specif-
ically, for small values of m (m 6 20), large cardinalities of the hidden sets result
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Figure 5.10: Average test error of RepSet with respect to the number of hidden setsm (left)
and the size of the hidden sets |Yi| (right) on the TWITTER dataset.
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Figure 5.11: Average test error of RepSet with respect to the number of hidden setsm (left)
and the size of the hidden sets |Yi| (right) on the RECIPE dataset.

in better performace, while for large values of m (m > 50), small cardinalities lead
to smaller error.

5.6 conclusion & future work

summary In this part of the thesis, we presented effective and efficient boost-
ing tricks for improving Word Mover’s Distance speed and accuracy. We empir-
ically pointed out a number of possible adjustments for the existing WMD, such
as stopword removal, cross document-topic comparison and convex metric learn-
ing methods. Calibrating those three components (two unsupervised and one
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Figure 5.12: Areas covered by two documents in the word vector space.

supervised), we managed to achieve lower error in the task of text categorization
compared to the original WMD and its supervised counterpart.

future work Measuring similarity between two documents that share words
appearing in different context, can make the comparison process harder. Thus,
the problem of polysemy should also be addressed. In order to address the phe-
nomenon of words appearing in multiple contexts, Topical Word Embeddings (Liu
et al., 2015) can be applied. Thus, a “topical" WMD, based on topics rather than
documents alone, would be a promising direction step. Recently new techniques
for learning word representations have been proposed, like the Poincaré (Nickel
and Kiela, 2017), ELMo (Peters et al., 2018) and BERT embeddings (Devlin et al.,
2018), as they could improve WMD dramatically. Finally, we plan to fully examine
non-Linear Metric Learning (Kedem et al., 2012) methods for the supervised ver-
sion of WMD. Gradient Boosting LMNN or χ2-LMNN could provide better results
with the use of their non-linear nature.

In future work we want to examine new metrics for measuring distance between
text documents, using methodologies from computational geometry. Our idea, is
built upon the work of Kusner et al. (2015), combining the powerful word embed-
dings Mikolov et al. (2013b) with traditional approaches for shape comparisons.

We represent text documents as convex hull polygons in the word embeddings
space. The space could be already dropped with dimensionality techniques like
Maaten and Hinton (2008). The distance between two text documents A and B is
given by the dice area of the union of the two areas and their intersection. Our

106



5.6 conclusion & future work

Obama

President

speaks

mediaIllinois

USA

Obama

President

speaks

USA

mediaIllinois

Convex hull Alpha shape

Figure 5.13: Convex hull to alpha-shape comparison.

preliminary results show that our proposed metric works well for small document
length datasets like Twitter, but not for larger ones. Figure 5.12 shows a schematic
illustration of our new proposed idea.

The convex hull distance has several intriguing properties:

1. it is hyper-parameter free and straight-forward to understand and use;

2. it is highly interpretable as the areas covered by the two documents can be
seen as the topics they hide.

3. it is very effective, as complexity remains low in small dimensions.

On the other hand, there are some limitations that need to be studied and ad-
dressed. Computing the convex hull is only efficient in 2 or 3 dimensions, with a
complexity of O(n logn). Additionally, since the words can be far from each other,
the convex hull may end up covering a huge area. Thus we could instead use the
alpha shape (α-shape), which is a tighter shape covering all the words in a docu-
ment and was presented by Edelsbrunner et al. (1983). You can see an illustrative
example in Figure 5.13.

Our RepSet approach was based on the availability of label information, to learn
the sets. We would also like to explore learning the weights in the bipartite match-
ing setting in an unsupervised way. This can be achieved via the local reconstruc-
tion error, like Karasuyama and Mamitsuka (2017) and Wu et al. (2018).

Last, we plan to extend our RepSet approach are replace bipartite matching
with optimal transport. As the optimal transport can be solved as a linear pro-
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gramming problem, we can apply the same methodology as the RepSet one and
learn the latent representations with the Word Mover’s Distance, thus presenting
a differentiable Supervised Word Mover’s Distance, without involving any metric
learning techniques.
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6
C O N C L U D I N G R E M A R K S

T ext is ubiquitous and has introduced numerous challenging problems
to the research community. This dissertation has focused on extracting
more meaningful information from textual data and using them for the

text classification task. We specifically explored how we can get better metrics
out of graph-based representations of text, use better linguistic structures for reg-
ularization, along with designing new algorithms for structured sparsity, enhance
existing techniques for distance computation between text documents and last de-
veloped new architectures for learning hidden representations based on distances.

6.1 summary of contributions

We particularly:

- Create new graph-based representations to model text in more meaningful
structures. This gave us the ability to create new metrics like TW-ICW, which
were more effective for identifying important words. This is the first work
to combine document, collection and label level graphs along with word
embeddings as weights in a full framework for text classification.

- Extracted novel linguistic groups and use them for structured regularization.
Moreover we created new models for group structured regularization, like
the overlapping Group Orthogonal Matching Pursuit, which brought accu-
racy with large sparsity.

- Boost existing document comparison techniques and design a new repre-
sentation learning model for set classification. First, we enhanced the Word
Mover’s Distance with bag-of-tricks to make the document comparison more
effective and efficient. Next, representing the comparison of two documents
with a weighted bipartite matching scheme, we created a novel network ap-
proach with end-to-end gradient-based learning for text classification.
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concluding remarks

In the next Section, we provide an overview of the main contributions of the
thesis and discuss future research directions.

6.2 future work

In this section, we briefly present the additional research ideas that came to mind
while conducting the research presented in this dissertation. Some of them are
direct follow-ups of our published works while others are more general and might
be worth another Ph.D. thesis. They were left unexplored as they would require a
significant amount of effort and time.

tw-idw Following the notion of TW-ICW, we could challenge the document
independence assumption usually made in text mining and consider a collection of
documents as a Graph-of-Documents instead of a Bag-of-Documents in order for
instance to compute an alternative to IDF. We could then envisage exploring term
weights based on TW-IDW rather than TF-IDF. This assumes in particular that we
have a Graph-of-Documents, even for Web-scale datasets, which is a research issue
in itself, especially if the document similarity capitalizes on the Graph-of-Words
representation, e. g., using the graph kernel proposed in Nikolentzos et al. (2017b).

graph neural networks Having graph-based text representations as input,
one can utilize graph neural networks, like work by Niepert et al. (2016). Another
work by Gilmer et al. (2017), which involves neural message passing, can be easily
applied for the task of text classification.

linguistic structured attention In Chapter 4 we studied regulariza-
tion in text classification. A current work that we investigate is a group lasso
attention mechanism for deep learning architectures. Having for example nested
groups taken from a syntactic parse tree, the attention mechanism can drop entire
constituents. When groups are overlapping but nested, the proximal operators can
be computed top-down efficiently (Jenatton et al., 2010).

adversarial structured regularization Following adversarial meth-
ods for regularization (Miyato et al., 2017; Miyato et al., 2018), we would also like
to extend the structured regularization methods for Generative Adversarial Net-
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works (Goodfellow et al., 2014). Alternatively, we may use adversarial rules for
NLP models, like recent work by Ribeiro et al. (2018), as a way of regularization.

gradient-based learning for word mover’s distance Last, an easy
extension of our SetRepNN approach can be done by replacing bipartite match-
ing with optimal transport. As the optimal transport can be solved as a linear
programming problem, we can apply the same methodology as the SetRepNN
one and learn the latent representations with the Word Mover’s Distance, thus
presenting a differentiable Supervised Word Mover’s Distance, without involving
any metric learning techniques.

6.3 epilogue

Managing and understanding text has been a key element in the area of Natural
Language Understanding. Throughout this dissertation we presented novel meth-
ods for representations, regularization and distances in text. Even though a lot of
work has been done in the field, there are still unanswered questions and challeng-
ing problems that will further enlighten our knowledge about the great problem
of modelling language.
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[148] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling
with Large Corpora.” English. In: Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May 2010,
pp. 45–50.

[149] S Hamid Rezatofighi, Anton Milan, Ehsan Abbasnejad, Anthony Dick, Ian
Reid, et al. “DeepSetNet: Predicting sets with deep neural networks.” In:
Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017,
pp. 5257–5266.

[150] S Hamid Rezatofighi, Anton Milan, Qinfeng Shi, Anthony Dick, and Ian
Reid. “Joint learning of set cardinality and state distribution.” In: Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence. 2018.

[151] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Semantically
equivalent adversarial rules for debugging nlp models.” In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Vol. 1. 2018, pp. 856–865.

[152] Stephen Robertson. “Understanding inverse document frequency: On theo-
retical arguments for IDF.” In: Journal of Documentation 60 (2004), p. 2004.

127



bibliography

[153] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, and Mike Gatford. “Okapi at TREC-3.” In: TREC ’96: Proceedings
of Text Retrieval Conference. 1996, pp. 109–126.

[154] Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. “Reasoning about entailment with neural attention.” In:
International Conference on Learning Representations (2016).

[155] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann.
“Stabilizing Training of Generative Adversarial Networks through Regu-
larization.” In: Advances in Neural Information Processing Systems 30. 2017,
pp. 2018–2028.

[156] Volker Roth and Bernd Fischer. “The group-lasso for generalized linear
models: uniqueness of solutions and efficient algorithms.” In: Proceedings of
the 25th international conference on Machine learning. 2008, pp. 848–855.

[157] François Rousseau and Michalis Vazirgiannis. “Graph-of-word and TW-
IDF: New Approach to Ad Hoc IR.” In: Proceedings of the 22Nd ACM Inter-
national Conference on Information & Knowledge Management. CIKM ’13. San
Francisco, California, USA: ACM, 2013, pp. 59–68. isbn: 978-1-4503-2263-8.

[158] François Rousseau and Michalis Vazirgiannis. “Main Core Retention on
Graph-of-Words for Single-Document Keyword Extraction.” In: ECIR. 2015,
pp. 382–393.

[159] François Rousseau, Emmanouil Kiagias, and Michalis Vazirgiannis. “Text
Categorization as a Graph Classification Problem.” In: ACL ’15: Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics.
2015.

[160] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The earth mover’s
distance as a metric for image retrieval.” In: International journal of computer
vision 40.2 (2000), pp. 99–121.

[161] Alexander M Rush, Sumit Chopra, and Jason Weston. “A neural attention
model for abstractive sentence summarization.” In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (2015), 379––
389.

[162] Gerard Salton. “The SMART retrieval system—experiments in automatic
document processing.” In: (1971).

128



bibliography

[163] Gerard Salton and Chris Buckley. “Term-weighting approaches in auto-
matic text retrieval.” In: Information Processing and Management 24.5 (1988),
pp. 513–523.

[164] Gerard Salton, Anita Wong, and Chung-Shu Yang. “A vector space model
for automatic indexing.” In: Communications of the ACM 18.11 (1975), pp. 613–
620.

[165] Niek J Sanders. “Sanders-twitter sentiment corpus.” In: Sanders Analytics
LLC (2011).

[166] Ted Sandler, John Blitzer, Partha P. Talukdar, and Lyle H. Ungar. “Regular-
ized learning with networks of features.” In: Advances in Neural Information
Processing Systems 22 (NIPS). 2009, pp. 1401–1408.

[167] Ruhi Sarikaya, Geoffrey E Hinton, and Bhuvana Ramabhadran. “Deep be-
lief nets for natural language call-routing.” In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2011 IEEE International Conference on. IEEE. 2011,
pp. 5680–5683.

[168] Mark W. Schmidt and Kevin Murphy. “Convex structure learning in log-
linear models: Beyond pairwise potentials.” In: Proceedings of the 13th Inter-
national Conference on Artificial Intelligence and Statistics. AISTATS ’10. JMLR
Workshop and Conference Proceedings, 2010, pp. 709–716.

[169] Mark W. Schmidt, Glenn Fung, and Rómer Rosales. “Fast Optimization
Methods for L1 Regularization: A Comparative Study and Two New Ap-
proaches.” In: Proceedings of the 18th European Conference on Machine Learning.
2007, pp. 286–297.

[170] Alexandra Schofield, Måns Magnusson, and David Mimno. “Pulling out
the stops: Rethinking stopword removal for topic models.” In: Proceedings of
the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Vol. 2. 2017, pp. 432–436.

[171] Fabrizio Sebastiani. “Machine Learning in Automated Text Categorization.”
In: ACM Computing Surveys 34.1 (Mar. 2002), pp. 1–47. issn: 0360-0300.

[172] Niloofer Shanavas, Hui Wang, Zhiwei Lin, and Glenn Hawe. “Centrality-
Based Approach for Supervised Term Weighting.” In: Data Mining Work-
shops (ICDMW), 2016 IEEE 16th International Conference on. IEEE. 2016, pp. 1261–
1268.

129



bibliography

[173] Masumi Shirakawa, Takahiro Hara, and Shojiro Nishio. “N-gram IDF: A
Global Term Weighting Scheme Based on Information Distance.” In: 2015.

[174] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis,
Konstantinos Skianis, and Michalis Vazirgianis. “GraKeL: A Graph Kernel
Library in Python.” In: arXiv preprint arXiv:1806.02193 (2018).

[175] Amit Singhal, Chris Buckley, and Mandar Mitra. “Pivoted Document Length
Normalization.” In: SIGIR ’96: Proceedings of the 19th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1996, pp. 21–29.

[176] Konstantinos Skianis, François Rousseau, and Michalis Vazirgiannis. “Reg-
ularizing Text Categorization with Clusters of Words.” In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing. 2016,
pp. 1827–1837.

[177] Konstantinos Skianis, Maria-Evgenia G Rossi, Fragkiskos D. Malliaros, and
Michalis Vazirgiannis. “SPREADVIZ: Analytics and Visualization of Spread-
ing Processes in Social Networks.” In: Data Mining Workshops (ICDMW),
2016 IEEE 16th International Conference on. IEEE. 2016, pp. 1324–1327.

[178] Konstantinos Skianis, Fragkiskos D. Malliaros, and Michalis Vazirgiannis.
“Fusing Document, Collection and Label Graph-based Representations with
Word Embeddings for Text Classification.” In: Proceedings of the Twelfth
Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-
12), NAACL. 2018, pp. 49–58.

[179] Konstantinos Skianis, Nikolaos Tziortziotis, and Michalis Vazirgiannis. “Or-
thogonal Matching Pursuit for Text Classification.” In: Proceedings of the
Fourth Workshop on User-generated Text (W-NUT), Empirical Methods in Natu-
ral Language Processing (EMNLP). 2018.

[180] Konstantinos Skianis, Fragkiskos D. Malliaros, Nikolaos Tziortziotis, and
Michalis Vazirgiannis. “Boosting Tricks for Word Mover’s Distance.” Manuscript.
2019.

[181] Konstantinos Skianis, Vlad Niculae, Guillaume Wisniewski, and Michalis
Vazirgiannis. “Group Lasso for Linguistic Structured Attention.” Manuscript.
2019.

130



bibliography

[182] Konstantinos Skianis, Giannis Nikolentzos, Stratis Limnios, and Michalis
Vazirgiannis. “Rep the Set: Neural Networks for Learning Set Representa-
tions.” Manuscript. 2019.

[183] Karen Sparck-Jones and RG Bates. “Research on automatic indexing, 1974-
1976.” In: (1977).

[184] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural networks
from overfitting.” In: Journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[185] Benjamin Stone, Simon Dennis, and Peter J Kwantes. “Comparing methods
for document similarity analysis.” In: TopiCS, DOI 10 (2010).

[186] John A Swets. “Information retrieval systems.” In: Science 141.3577 (1963),
pp. 245–250.

[187] Grzegorz Swirszcz, Naoki Abe, and Aurelie C Lozano. “Grouped Orthogo-
nal Matching Pursuit for Variable Selection and Prediction.” In: Advances in
Neural Information Processing Systems 22. Ed. by Y. Bengio, D. Schuurmans, J.
D. Lafferty, C. K. I. Williams, and A. Culotta. Curran Associates, Inc., 2009,
pp. 1150–1158.

[188] Arthur Szlam, Karol Gregor, and Yann LeCun. “Fast approximations to
structured sparse coding and applications to object classification.” In: Com-
puter Vision–ECCV 2012 (2012), pp. 200–213.

[189] Jin Tao, Marco Cuturi, and Akihiro Yamamoto. “A Distance Between Text
Documents based on Topic Models and Ground Metric Learning.” In: The
26th Annual Conference of the Japanese Society for Artificial Intelligence (2012).

[190] Matt Thomas, Bo Pang, and Lillian Lee. “Get Out The Vote: Determining
Support Or Opposition From Congressional Floor-Debate Transcripts.” In:
Proceedings of EMNLP. 2006, pp. 327–335.

[191] Robert Tibshirani. “Regression shrinkage and selection via the lasso.” In:
Journal of the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–
288.

[192] Andrei Nikolaevich Tikhonov and Vasilii Iakovlevich Arsenin. Solutions of
ill-posed problems. Winston, 1977. isbn: 978-0-470-99124-4.

131



bibliography

[193] Antoine Tixier, Konstantinos Skianis, and Michalis Vazirgiannis. “Gowvis:
a web application for graph-of-words-based text visualization and summa-
rization.” In: Proceedings of ACL System Demonstrations (2016), pp. 151–156.

[194] Joel A Tropp. “Greed is good: Algorithmic results for sparse approxima-
tion.” In: IEEE Transactions on Information theory 50.10 (2004), pp. 2231–2242.

[195] Joel A Tropp and Anna C Gilbert. “Signal recovery from random measure-
ments via orthogonal matching pursuit.” In: IEEE Transactions on informa-
tion theory 53.12 (2007), pp. 4655–4666.

[196] Cornelis Joost Van Rijsbergen. “Information retrieval.” In: (1979).

[197] Lieven Vandenberghe and Stephen Boyd. “Semidefinite programming.” In:
SIAM review 38.1 (1996), pp. 49–95.

[198] Vladimir Naumovich Vapnik. “Principles of Risk Minimization for Learn-
ing Theory.” In: Advances in Neural Information Processing Systems 4. 1991,
pp. 831–838.

[199] Cédric Villani. Optimal transport: old and new. Vol. 338. Springer Science &
Business Media, 2008.

[200] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. “Order matters: Se-
quence to sequence for sets.” In: International Conference on Learning Repre-
sentations. 2015.

[201] Rui Wang, Wei Liu, and Chris McDonald. “Corpus-independent Generic
Keyphrase Extraction Using Word Embedding Vectors.” In: 2015.

[202] Wei Wang, DiepBich Do, and Xuemin Lin. “Term Graph Model for Text
Classification.” In: Advanced Data Mining and Applications. Vol. 3584. 2005,
pp. 19–30. isbn: 978-3-540-27894-8.

[203] Kilian Q Weinberger and Lawrence K Saul. “Distance metric learning for
large margin nearest neighbor classification.” In: Journal of Machine Learning
Research 10.Feb (2009), pp. 207–244.

[204] Nils Witt, Christin Seifert, and Michael Granitzer. “Explaining topical dis-
tances using word embeddings.” In: Database and Expert Systems Applica-
tions (DEXA), 2016 27th International Workshop on. IEEE. 2016, pp. 212–217.

132



bibliography

[205] Xuan Wu, Lingxiao Zhao, and Leman Akoglu. “A Quest for Structure:
Jointly Learning the Graph Structure and Semi-Supervised Classification.”
In: Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM. 2018, pp. 87–96.

[206] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. “Overlapping Com-
munity Detection in Networks: The State-of-the-art and Comparative Study.”
In: ACM Comput. Surv. 45.4 (Aug. 2013), 43:1–43:35. issn: 0360-0300.

[207] Pengtao Xie, Aarti Singh, and Eric P. Xing. “Uncorrelation and Evenness:
a New Diversity-Promoting Regularizer.” In: Proceedings of the 34th Interna-
tional Conference on Machine Learning. Ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. International Con-
vention Centre, Sydney, Australia: PMLR, 2017, pp. 3811–3820.

[208] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. “Distance
metric learning with application to clustering with side-information.” In:
Advances in neural information processing systems. 2003, pp. 521–528.

[209] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. “Show, attend and tell:
Neural image caption generation with visual attention.” In: International
conference on machine learning. 2015, pp. 2048–2057.

[210] Liu Yang and Rong Jin. “Distance metric learning: A comprehensive sur-
vey.” In: Michigan State University 2.2 (2006).

[211] Yiming Yang. “Expert network: Effective and efficient learning from hu-
man decisions in text categorization and retrieval.” In: Proceedings of the
17th annual international ACM SIGIR conference on Research and development
in information retrieval. Springer-Verlag New York, Inc. 1994, pp. 13–22.

[212] Yiming Yang and Xin Liu. “A re-examination of text categorization meth-
ods.” In: Proceedings of the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval. ACM. 1999, pp. 42–49.

[213] Liang Yao, Chengsheng Mao, and Yuan Luo. “Graph Convolutional Net-
works for Text Classification.” In: Association for the Advancement of Artificial
Intelligence (2019).

[214] Ian En-Hsu Yen, Wei-Cheng Lee, Sung-En Chang, Arun Sai Suggala, Shou-
De Lin, and Pradeep Ravikumar. “Latent feature lasso.” In: International
Conference on Machine Learning. 2017, pp. 3949–3957.

133



bibliography

[215] Dani Yogatama and Noah A. Smith. “Linguistic Structured Sparsity in Text
Categorization.” In: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Baltimore, Maryland:
Association for Computational Linguistics, June 2014, pp. 786–796.

[216] Dani Yogatama and Noah A. Smith. “Making the Most of Bag of Words:
Sentence Regularization with Alternating Direction Method of Multipli-
ers.” In: Proceedings of the 31st International Conference on International Con-
ference on Machine Learning - Volume 32. ICML’14. Beijing, China: JMLR.org,
2014, pp. 656–664.

[217] Bo Yu, Zong-ben Xu, and Cheng-hua Li. “Latent Semantic Analysis for
Text Categorization Using Neural Network.” In: Know.-Based Syst. 21.8 (Dec.
2008), pp. 900–904. issn: 0950-7051.

[218] Lei Yuan, Jun Liu, and Jieping Ye. “Efficient methods for overlapping group
lasso.” In: Advances in Neural Information Processing Systems 24. NIPS ’11.
Neural Information Processing Systems, 2011, pp. 352–360.

[219] Ming Yuan and Yi Lin. “Model selection and estimation in regression with
grouped variables.” In: Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 68.1 (2006), pp. 49–67.

[220] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Rus-
lan R Salakhutdinov, and Alexander J Smola. “Deep sets.” In: Advances in
Neural Information Processing Systems. 2017, pp. 3391–3401.

[221] Omar Zaidan and Jason Eisner. “Modeling Annotators: A Generative Ap-
proach to Learning from Annotator Rationales.” In: 2008 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2008, Proceedings of
the Conference. 2008, pp. 31–40.

[222] Zexian Zeng, Yu Deng, Xiaoyu Li, Tristan Naumann, and Yuan Luo. “Natu-
ral Language Processing for EHR-Based Computational Phenotyping.” In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2018).

[223] Meng Zhang, Yang Liu, Huan-Bo Luan, Maosong Sun, Tatsuya Izuha, and
Jie Hao. “Building Earth Mover’s Distance on Bilingual Word Embeddings
for Machine Translation.” In: Association for the Advancement of Artificial In-
telligence. 2016, pp. 2870–2876.

134



bibliography

[224] Tong Zhang. “On the Consistency of Feature Selection using Greedy Least
Squares Regression.” In: Journal of Machine Learning Research 10 (2009), pp. 555–
568.

[225] Tong Zhang and Frank J Oles. “Text categorization based on regularized
linear classification methods.” In: Information retrieval 4.1 (2001), pp. 5–31.

[226] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level convolutional
networks for text classification.” In: Advances in neural information processing
systems. 2015, pp. 649–657.

[227] Ye Zhang, Matthew Lease, and Byron C Wallace. “Exploiting Domain Knowl-
edge via Grouped Weight Sharing with Application to Text Categoriza-
tion.” In: The 55th Annual Meeting of the Association for Computational Lin-
guistics (ACL) (2017).

[228] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the
Elastic Net.” In: Journal of the Royal Statistical Society: Series B 67.2 (2005),
pp. 301–320.

135





A C R O N Y M S

Acc Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 35

AI Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ApproxRepSet Approximate Set Representation Neural Network . . . . 93, 100, 101

BM Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93, 95

BoW Bag-of-Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 18, 43

CL Computational Linguistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CNN Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 18, 21, 78

EMD Earth Mover’s Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78, 79

F1 F1-score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 35

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 12

GOMP Group Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . 63, 64

GoW Graph-of-Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 17, 20, 27, 43, 59, 60

ICW Inverse Collection Weighting . . . . . . . . . . . . . . . . . . . . . . . . 19, 22, 30–32

IDF Inverse Document Frequency . . . . . . . . . . . . . . . . . . . . . . . . 3, 20, 24, 30

IR Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21–23, 28

KE Keyword Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

kNN k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 92

LDA Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 55, 58, 59

LLSF Linear Least Square Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LMNN Large Margin Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 86, 91

LR Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 35, 66

LSA Latent Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LSI Latent Semantic Indexing . . . . . . . . . . . . . . . . . . . 53–55, 58–60, 62, 100

LSTM Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

LW Label Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

MCML Maximally Collapsing Metric Learning. . . . . . . . . . . . . . . . . . . . . 88, 91

ML Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 12

NB Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

NCA Neighborhood Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

137



bibliography

NLG Natural Language Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

NLP Natural Language Processing . . . . . . . . . . . . . . . . . . 1, 2, 21, 22, 52, 77

NLU Natural Language Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

OMP Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

P Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

R Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

RepSet Set Representation Neural Network . . . . . . . . . . . . . . . . . . . 77, 93, 100

RWMD Relaxed Word Mover’s Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 79, 85

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 35, 92

TC Text Classification or Text Categorization . . 8, 17–19, 21, 23, 25, 26,
28, 29, 35

TF Term Frequency . . . . . . . . . . . . . . . . . . . . . . 19, 21, 23, 24, 28, 29, 35, 36

TF-IDF Term Frequency-Inverse Document Frequency . . 10, 19, 20, 23–25,
28, 29, 35

TM Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 7

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 12

TW Term Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 32, 33, 35

TW-ICW Term Weighting-Inverse Collection Weighting. . . . . . . . . . . . . . 31, 35

TW-ICW-LW Term Weighting-Inverse Collection Weighting-Label Weighting 32,
36

TW-IDF Term Weighting-Inverse Document Frequency . . . . . . 29, 30, 33, 35

VSM Vector Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 18

WMD Word Mover’s Distance . . . . . . . . . . . . . . . . . 4, 77–79, 81, 92, 100, 102

138



colophon

This document was typeset in LATEX using the typographical look-and-feel classicthesis.
The graphics in this dissertation are generated using the Matlab numerical comput-
ing environment, the R language, the Ipe extensible drawing editor and pgf/tikz.
The bibliography is typeset using biblatex.



Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  
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Résumé : Le texte a été le moyen dominant de 
stockage de données dans des systèmes 
informatiques et d’ envoi d�informations sur 
le Web. Extraire du texte des représentations 
significatives a été un élément clé pour la 
modélisation de langage. 
Le but de cette thèse est d� étudier les 
problèmes liés au traitement du langage 
naturel, comme l ‘ apprentissage de la 
représentation, la régularisation de la 
classification des textes et la mesure de la 
distance entre les documents. 
Dans la première partie de la thèse, nous avons 
étudié de nouvelles représentations à base de 
graphes pour le texte. Nous avons introduit 
ICW, une nouvelle métrique basée sur des 
graphiques au niveau de la collection afin de 
pénaliser les nœuds centraux, un peu comme 
l'IDF. Les rendements de TW-ICW et TW-
ICW-LW sont comparables à ceux des 
classificateurs d�apprentissage en profondeur 
les plus récents pour la tâche de classification 
du texte. 

Dans la deuxième partie de la thèse, nous nous 
sommes concentrés sur la régularisation pour le 
problème de l�apprentissage supervisé et plus 
spécifiquement pour la tâche de la 
classification du texte. Nous avons d�abord 
examiné comment divers groupes linguistiques 
existants peuvent aider de simples modèles de 
régression logistique pour la catégorisation de 
texte. Nous avons ensuite conçu une nouvelle 
version superposée de l’ algorithme 
Orthogonal Matching Pursuit, une technique de 
sélection de variables gloutonne bien connue. 
Dans la dernière partie de la thèse, nous 
étudions la mesure des distances entre les 
documents. Nous avons d�abord examiné les 
méthodes rapides permettant d�accroître la 
distance du populaire Word Mover ‘s Distance. 
Enfin, nous avons travaillé sur de nouvelles 
méthodes de graphes supervisés pour le calcul 
de la distance. 

 

 

Title : Novel Representations, Regularization and Distances for Text Classification 

Keywords : text mining, representations, regularization, distances 

Abstract: Text has been the dominant way of 
storing data in computer systems and sending 
information around the Web. Extracting 
meaningful representations out of text has been 
a key element for modeling language. 
The goal of this thesis is to study problems in 
the area of natural language processing, like 
representation learning, regularization in text 
classification and measuring distance between 
documents. 
In the first part of the thesis, we have studied 
novel graph-based representations for text. We 
have introduced ICW, which is a new metric 
based on collection-level graphs in order to 
penalize central nodes, much like IDF. TW-
ICW and TW-ICW-LW yield comparable to 
state-of-the-art deep learning classifiers results 
for the task of text classification. 

In the second part of the thesis, we focused on 
regularization for supervised learning problem 
and more specifically for the task of text 
classification. First we examined how diverse 
existing linguistic groups can help simple 
logistic regression models for text 
categorization. Next, we designed a new 
overlapping version of the Orthogonal 
Matching Pursuit  algorithm, a well-known 
greedy variable selection technique.  
In the last part of the thesis, we study 
measuring distances between documents. First 
we examined fast methods for boosting the 
popular Word Mover’s Distance. Last we 
worked on novel supervised graph-based 
methods for distance computation.  
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